
Springer Texts in Statistics

Statistical 
Analysis of 
Financial Data 
in R

René Carmona

Second Edition



Springer Texts in Statistics

Series Editors:
G. Casella
R. DeVeaux
S.E. Fienberg
I. Olkin

For further volumes:
http://www.springer.com/series/417

http://www.springer.com/series/417
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Preface

Like its earlier incarnation in S-Plus written over 10 years ago, this book is a
polished version of the lecture notes written for a one-semester junior statistics
course offered to the undergraduate students majoring in the Department of Opera-
tions Research and Financial Engineering and a core course of the Master’s program
of the Bendheim Center for Finance at Princeton University.

The common goal of both courses is to introduce students to modern data anal-
ysis used in the financial industry. The prerequisites are minimal, though students
are expected to have already taken a basic introductory statistics course. Elementary
notions of random variables, expectation, and correlation are taken for granted, and
earlier exposure to statistical inference (estimation, tests, and confidence intervals) is
assumed. It is also expected that the students are familiar with a minimum of linear
algebra as well as vector and matrix calculus. However, all the background concepts
and results necessary for the comprehension of the material presented in the book (as
well as the solutions of the homework problems) are recalled before they are used or
needed.

By choice, the courses are both computational and mathematical in nature. Most
problems considered are formulated in a rigorous manner. Mathematical facts are
motivated by applications, stated precisely, justified at an intuitive level, but essen-
tially never proven rigorously. The emphasis is more on the relevance of concepts
and on the practical use of tools, rather than on their theoretical underpinnings.

I chose to illustrate concepts, manipulate data, build models, and implement esti-
mation and prediction procedures in the R computer environment. For this reason the
text is sprinkled with the R commands needed to perform the analyses and produce
the plots. The first incarnation of this text was written for S-Plus on Windows
platforms. The growing presence of Mac computers in the classrooms and the ease
with which Linux, Windows, and MacOS versions of R can be downloaded and
installed at no cost were influential in my decision to switch from S-Plus to R. To
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viii PREFACE

my surprise, the port was not as seamless as I originally expected. It took me several
years to complete the transition, and in the process, an entire chapter, several sec-
tions, and a large number of examples and problems have been added to the original
contents.

The text is divided into three parts. Part I, Data Exploration, Estimation, and
Simulation, introduces heavy tail distributions and dependence concepts for multi-
variate data, with an emphasis on the practical applications of copulas. Part II, Re-
gression, introduces the students to modern regression with an emphasis on robust-
ness and nonparametric techniques. Part III, Time Series and State Space Models, is
concerned with the theories of time series and state space models, including filtering
applications.

CONTENTS

Part I comprises three chapters. Chapter 1 begins with a review of the classical prob-
ability distributions encountered throughout the book and presents the exploratory
data analysis techniques (histograms, kernel density estimators, Q-Q plots, etc.) used
to handle empirical samples. As a preparation for many analyses and problems based
on random simulations, the chapter concludes with a discussion of Monte Carlo
computations.

Chapter 2 is devoted to the detection, estimation, and simulation of heavy tail
distributions already showcased in the first chapter. It contains more statements and
discussions of theoretical results than most other chapters, the reason being the desire
to provide insight in the estimation and simulation algorithms implemented in the
R library Rsafd used in the practical applications. Illustrative examples are used
to demonstrate the impact of the presence of heavy tails on the computations of
measures of risk such as value at risk (also known as VaR).

The third chapter is concerned with multivariate distributions and the various
concepts of dependence. We review the classical measures of correlation, demon-
strate the shortcomings of the Pearson correlation coefficient, and study the notion
of copula, and the important role it plays when the marginal distributions have heavy
tails, both in the bivariate case and in the high dimensional case. We learn how to
detect unusual dependencies, estimate and simulate them, and bring this expertise
to bear on the analysis of large portfolios of financial instruments including stocks
and credit derivatives. The chapter concludes with a complete discussion of principal
component analysis and two applications to the fixed income markets.

Part II is concerned with regression, and it is naturally divided into two chap-
ters: the first devoted to parametric methods and the second to nonparametric ones.
Chapter 4 deals with linear models and their applications. The notion of robustness is
introduced, and examples are used to illustrate the differences between least squares
and least absolute deviations regressions. Applications of linear models include
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polynomial and more general nonlinear regressions. We use financial examples
throughout, and we analyze the term structure of interest rates in detail. Chap-
ter 5 is concerned with nonparametric regression. We compare the properties of data
smoothers for univariate data, and we analyze in detail the multivariate kernel regres-
sion. For larger dimensions, we use projection pursuit. Examples of energy forward
curves and intraday S&P 500 futures tick data are given. The last part of this chapter
is devoted to the use of semi-parametric and nonparametric methods in option pric-
ing. We demonstrate the implementation of modern regression techniques as pricing
alternatives to the classical Black-Scholes pricing formula.

The first chapter of Part III is devoted to the classical linear models for time series
and to the idiosyncrasies of the R objects and methods included in the library Rsafd
for the sole purpose of their analyses. We discuss autoregressive and moving-average
models, and we give examples of their use in practice. The main application is the
analysis of temperature data. Even if it may not appear to be much of a financial
application at first, we recast this analysis in the framework of financial risk man-
agement via a thorough discussion of the market of weather derivatives. We give
practical examples to illustrate the use of the statistical techniques introduced in this
chapter to the control of these financial instruments.

In the following two chapters, we turn to the analysis of partially observed state
space systems. Chapter 7 deals with linear models and the classical Kalman filter.
For illustration purposes, we study two financial applications, one related to an ex-
tension of the CAPM model and a second dealing with the analysis of quarterly
company earnings. Chapter 8 is devoted to the analysis of nonlinear time series. We
first consider the natural generalizations of the linear time series models, and we
provide an extensive review of the theory and the practice of the famous ARCH and
GARCH models. We also consider models from continuous time finance through
their discretized forms. A special section is devoted to the use of scenarios for eco-
nomic modeling. We concentrate on scenarios for a stock index and the short and
long interest rates. These scenarios are of crucial importance in risk management
where they are used as input to large stochastic optimization programs. Finally, we
revisit the theory presented in the case of partially observed linear systems, and we
extend the filtering paradigm to nonlinear systems with the help of recent advances
in Monte Carlo techniques and the so-called particle filters. We give several applica-
tions of this material, including the estimation of stochastic volatility and commodity
convenience yield.

Each chapter contains a problem section. Most practical problems are rooted in
financial applications. Each problem is preceded by one or several symbols ©E , ©S ,
and/or ©T intended as hints suggesting if it is of an empirical, simulation, and/or
theoretical nature. Chapters end with Notes and Complements sections that include
complements and bibliographic references for the readers interested in acquiring a
deeper understanding of the topics of that chapter. The book ends with an appendix
and a suite of indexes. The appendix contains the text of an introductory session to
R intended to help the reader unfamiliar with R get started and to a crash course on
Black-Scholes option pricing theory used in several chapters.
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The code and the data sets used in the text and the problems are contained in the
library Rsafd developed as a companion to the book. It can be downloaded from
the URL:

http://www.princeton.edu/˜rcarmona

This web page will be updated regularly, with corrections, complements, new data
sets, code updates, etc.
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DATA EXPLORATION, ESTIMATION
AND SIMULATION



1

UNIVARIATE DATA DISTRIBUTIONS

The first part of the chapter gives a quick review of the classical parametric
families of probability distributions and the statistical estimation of their pa-
rameters. We also review nonparametric density estimation, but our interest
in financial data and heavy tail distributions prompts us to focus on quantile
comparison. We introduce Q-Q plots as the main graphical tool to detect the
presence of heavy tails. Because random simulation will be used throughout
the book, the last part of the chapter presents the basics of Monte Carlo com-
putations. The first two fundamental theorem of the calculus of probability
(the law of large numbers and the central limit theorem) are introduced as
a justification for the numerical approximations provided by Monte Carlo
computations.

1.1 PROBABILITY DISTRIBUTIONS AND THEIR PARAMETERS

This first section is of probabilistic nature. Its purpose is to introduce some of the
most commonly used parametric families of probability distributions. This part is
included for the sake of completeness. The reader familiar with this material can
skip it in a first reading, and use it whenever the needs to check the terminology and
the notation arise.

1.1.1 Standard Probability Distribution Families

We review the most frequently used probability distributions. Because of the very
nature of financial data, we are primarily interested in distributions with heavy tails,
and as a consequence, we shall concentrate our efforts on understanding continuous
distributions extending to plus or minus infinity.

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-8788-3 1, © Springer Science+Business Media New York 2014
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1.1.1.1 The Uniform Distribution

Despite the fact that its support is bounded, and hence does not have any tail to
speak of, the uniform distribution is of crucial importance for random simulations
and Monte Carlo computations.

The uniform distribution over an interval is the distribution of random numbers
in this interval when they are equally likely to fall into different intervals as long
as the lengths of those intervals are equal. It is also (hopefully) the distribution of
the samples produced by the random number generators provided by the computing
environment you are using. The density of the uniform distribution over the interval
[a, b] is given by the formula:

fa,b(x) =

{
0 if x < a or x > b
1/(b− a) if a ≤ x ≤ b.

(1.1)

The corresponding cumulative distribution function is given by:

Fa,b(x) =

⎧⎨
⎩

0 if x ≤ a
(x− a)/(b− a) if a ≤ x ≤ b,
1 if x > b

(1.2)

This probability distribution is denoted by U(a, b). The uniform distribution over the
unit interval [0, 1] is most frequently used. It corresponds to the end points a = 0
and b = 1. Figure 1.1 gives a plot of the density and of the cumulative distribution
function (cdf for short) of this uniform distribution. Values of fa,b(x) and Fa,b(x)

Fig. 1.1. Graphs of the density (left) and corresponding cdf (right) of the uniform distribution
U(0, 1) over the unit interval [0, 1]

can be computed with the R functions dunif and punif.

Remark. Formulae (1.1) and (1.2) are simple enough so that we should not need
special commands for the computations of the values of the density and the cdf of
the uniform distribution. Nevertheless, we mention the existence of these commands
to emphasize the fact that their format is the same for all the common distribution
families.
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1.1.1.2 R Convention

R follows a very simple convention when it comes to computing densities, cumula-
tive distribution functions, quantiles (which we consider in detail in Sect. 1.1.3 be-
low), and random samples (which we study systematically in Sect. 1.3). To describe
this convention, let us assume that name is the name or short name for a family
of probability distributions. For example, name was unif in the case of the fam-
ily of uniform distributions discussed above, and it will be norm in the case of the
normal or Gaussian distribution discussed below. Then, provided with appropriate
arguments, the R command

• dname gives values of the density function;
• pname gives values of the cumulative distribution function;
• qname gives values of the quantiles;
• rname produces random samples.

It is important to keep this convention in mind as it will be used throughout the book.

1.1.1.3 The Gaussian (Normal) Distribution

The univariate normal distribution, also called the Gaussian distribution, is most of-
ten defined by means of its density function. It depends upon two parameters μ and
σ2, and is given by the formula:

ϕμ,σ2 (x) =
1√
2πσ2

e−(x−μ)2/2σ2

, x ∈ R. (1.3)

The two parameters μ and σ2 are the mean and the variance of the distribution re-
spectively. Indeed, if X is a random variable with such a distribution (in which case
we use the notation X ∼ N(μ, σ2)) we have:

E{X} = μ, and var{X} = σ2.

The corresponding cdf

Φμ,σ2 (x) =

∫ x

−∞
fμ,σ2(x′) dx′ (1.4)

cannot be given by a formula in closed form involving standard functions. As a
consequence, it will have to be evaluated numerically via approximation procedures.
The R function norm is used throughout to compute values of this cdf. We drop the
subscripts μ and σ2 when μ = 0 and σ2 = 1. In this case, we call the distribution
standard normal distribution, or standard Gaussian distribution, we denote it by
N(0, 1), and the Greek letters ϕ andΦ are used for the density and the cdf. Figure 1.2
gives plots of three Gaussian densities. The density with the smallest variance has
the highest central peak and it gets close to zero faster than the other two densities.
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Fig. 1.2. Densities of the mean zero normal distributions N(0, 0.5), N(0, 1) and N(0, 2) with
variances 0.5, 1 and 2 respectively

The density with the largest variance has a flatter central bump, and it goes to zero
later than the other ones. By shifting a general normal distribution we can center it
around the origin, and in doing so, its mean becomes 0. By rescaling a mean zero
normal random variable by its standard deviation, we turn it into a unit variance
one. This qualitative statement can be turned into a rigorous mathematical fact in the
following logical equivalence:

X ∼ N(μ, σ2) ⇐⇒ X − μ

σ
∼ N(0, 1). (1.5)

Because of this fact, most computations are done with the N(0, 1) distribution only.
More on this in the subsection Effects of Affine Transformations later in the chapter.

As mentioned earlier we shall compute values of the cumulative distribution
function of a normal distribution using the command pnorm with arguments giv-
ing, respectively, the list of the values at which the computations are desired, the
mean and the standard deviation. For example, the following command computes
the probabilities that a standard normal variate is within one, two and three standard
deviations of its mean.

> pnorm(c(1,2,3),mean=0,sd=1)-pnorm(c(-1,-2,-3),mean=0,sd=1)
[1] 0.6826895 0.9544997 0.9973002

The reader unfamiliar with the syntax of R can benefit from the following remarks.
The seemingly simpler command
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> pnorm(c(1,2,3))-pnorm(c(-1,-2,-3))

would produce the same output since the default values of the parameters mean
and sd are 0 and 1 respectively. When parameters of R functions are not provided
in a call, default values are used whenever these default values are available. The
second remark concern the first argument which, in the two calls to the function
pnorm were c(1,2,3) and c(-1,-2,-3) respectively. Both arguments are nu-
meric vectors of lengths 3. Indeed the role of the R function c is to concatenate
the objects passed as parameters into a single object. Hence c(1,2,3) can be un-
derstood as the vector [1,2,3] and c(-1,-2,-3) as the vector [-1,-2,-3].
The third remark is that, whenever a numeric vector is passed as a parameter to
a numeric function originally intended for numeric parameters, the function re-
turns a vector of the same length as the vector passed as parameter, and the en-
tries of the output vector are the values of the function when evaluated at the
entries of the input vector. In the present situation, pnorm(c(1,2,3)) is the
vector of length 3 with entries pnorm(1), pnorm(2), and pnorm(3). Simi-
larly, pnorm(c(-1,-2,-3)) is the vector of length 3 with entries pnorm(-1),
pnorm(-2), and pnorm(-3), and since the difference of two numeric vec-
tors of the same lengths is the vector of the differences of the respective entries,
pnorm(c(1,2,3))-pnorm(c(-1,-2,-3)) is the vector of length 3 with
entries the numbers pnorm(1)-pnorm(-1), pnorm(2)-pnorm(-2), and fi-
nally pnorm(3)-pnorm(-3). This is what we intended to compute.

Warning. The notation N(μ, σ2) most frequently used in statistical textbooks uses
the mean μ and the variance σ2 as parameters. However, the R functions, rnorm,
dnorm, pnorm and qnorm use the mean and the standard deviation σ (i.e. the
square root of the variance) as parameters. So the probability that a normal random
variable with mean 1 and variance 9 is not greater than 2 is given by the command

> pnorm(2,mean=1,sd=3)s

Also, recall that if X ∼ N(μ, σ2), then the scaling property (1.5) implies that Z =
(X − μ)/σ ∼ N(0, 1) and the results of the computations done above with the R
function pnorm can be restated as:

P{−σ ≤ X − μ ≤ σ} = P{−1 ≤ Z ≤ 1} = Φ(1)− Φ(−1) = 0.683

P{−2σ ≤ X − μ ≤ 2σ} = P{−2 ≤ Z ≤ 2} = Φ(2)− Φ(−2) = 0.955

P{−3σ ≤ X − μ ≤ 3σ} = P{−3 ≤ Z ≤ 3} = Φ(3)− Φ(−3) = 0.997.

These facts can be restated in words as:

• The probability that a normal r.v. is one standard deviation, or less, away from its
mean is 0.683;

• The probability that a normal r.v. is two standard deviations, or less, away from
its mean is 0.955;

• The probability that a normal r.v. is three standard deviations, or less, away from
its mean is 0.997.



8 1 UNIVARIATE DATA DISTRIBUTIONS

In other words, Gaussian variates are most frequently found within two standard
deviations of their means, essentially always within three standard deviations.

We close this discussion of the Gaussian distribution with the derivation of a
useful formula.

X ∼ N(μ, σ2) =⇒ E{eX} = eμ+σ
2/2 (1.6)

To start with, notice that if Z ∼ N(0, 1), direct calculations (by a trick going under
the name of completing the square) give:

E{eσZ} =
1√
2π

∫ +∞

−∞
eσze−z

2/2dz =
eσ

2/2

√
2π

∫ +∞

−∞
e−(z−σ)2/2dz = eσ

2/2.

Now in general, if X ∼ N(μ, σ2), then as we saw, X = μ+ σZ with Z ∼ N(0, 1),
so that:

E{eX} = E{eμ+σZ} = eμE{eσZ} = eμeσ
2/2

which proves the desired formula (1.6) in full generality.
We now introduce three distribution families derived from the normal family.

1.1.1.4 The Log-Normal Distribution

The log-normal distribution is the major building block of the mathematical theory
of continuous time finance, and it plays a central role in the Samuelson’s model for
stock prices dynamics and the Black-Scholes pricing theory. A random variable is
said to be log-normal if it is the exponential of a Gaussian random variable, or in
other words, if it is positive and if its logarithm is a Gaussian random variable. This
definition has a clear consequence at the level of random samples, i.e. realizations of
independent random variables with the same distribution. Indeed, the definition of
the log-normal distribution can be restated as saying that

x1, x2, · · · · · · , xn
is a sample from a log-normal distribution if and only if

x1 = ey1 , x2 = ey2 , · · · · · · , xn = eyn

where y1, y2, · · · , yn is a sample from a normal distribution.
Things are not as straightforward at the level of the densities and cdf’s. Indeed,

if X = eY with Y ∼ N(μ, σ2), then if we denote by fX and FX the density and the
cdf of X , we have:

FX(x) = Φμ,σ2 (log x) = Φ

(
log x− μ

σ

)
(1.7)

since P{X ≤ x} = P{Y = logX ≤ log x}, and using the fact that the density
fX(x) can be computed as the derivative F ′

X(x) of the cdf whenever this derivative
exists, we get
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fX(x) =
1

x
ϕμ,σ2 (log x) =

1

σx
ϕ

(
log x− μ

σ

)
=

1

xσ
√
2π

exp

[
− (log x− μ)2

2σ2

]
.

(1.8)

In accordance with the R-convention explained earlier, values of the density and the
cdf of a log-normal distribution can be computed in R by means of the commands
dlnorm and plnorm. In other words, we use lnorm for name. We used them
to produce the plots of Fig. 1.3 which give the densities of the log-normal distribu-
tions with mean zero and variances 0.2, 1 and 3 respectively. As in the case of the
exponential distribution which is considered later on, we plot the graphs only over
the positive part of the x-axis because these densities vanish on the negative part of
the x-axis.

Fig. 1.3. Graphs of the densities of the log-normal distributions with mean zero and variances
0.2, 1 and 3

Warning. One often talks about a log-normal distribution with mean μ and variance
σ2 to mean that the corresponding normal distribution has mean μ and variance σ2.
This abuse of the terminology is very frequent despite the fact that it is misleading.
We shall do our best to make clear what we mean when we mention the parameters
of a log-normal distribution. In other words, saying that X is has a log-normal dis-
tribution with mean μ and variance σ2 actually means that logX is Gaussian, μ is
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the mean of logX and σ2 is the variance of logX . This is emphasized by the way
R names the parameters of the functions rlnorm, dlnorm, . . . by calling them
meanlog and sdlog.

So for example, the command dlnorm(X, meanlog = 0, sdlog = 1)
will compute the density of the log-normal distribution with mean zero and variance
one at X, or the entries of the array X if X is an array.

We conclude our discussion of the lognormal distribution with the computation
of the mean and the variance. Let us assume that X is lognormal with mean μ and
variance σ2 and let us compute μX = E{X} and σ2

X = var{X}. By definition,
X = eY with Y ∼ N(μ, σ2). In turn, this means that Y = μ + σZ for some
random variable Z ∼ N(0, 1). Consequently, using repeatedly formula (1.6) proved
earlier:

E{X} = E{eY } = E{eμ+σZ} = eμE{eσZ} = eμ+σ
2/2.

Similarly:

E{X2} = E{e2Y } = E{e2μ+2σZ} = e2μE{e2σZ} = e2μ+2σ2

.

And finally:

var{X} = E{X2} − E{X}2 = eμ+σ
2/2 − e2μ+2σ2

= e2μ+σ
2

[eσ
2 − 1].

In summary, if X ∼ LN(μ, σ2), then

μX = E{X} = eμ+σ
2/2 and σ2

X = var{X} = e2μ+σ
2

[eσ
2 − 1]. (1.9)

1.1.1.5 The Chi-Square Distribution

The χ2-distribution, in words chi square distribution, is of crucial importance in sta-
tistical inference and hypothesis testing. Its role in this book will be quite marginal,
its contribution being limited to the theoretical definition of the Student t distribu-
tion which we introduce and analyze in the following subsection. For the record we
mention that whenever k is an integer, the χ2-distribution with k degrees of freedom
is the distribution of the sum of the squares of k independent standard Gaussian ran-
dom variables. This distribution will be denoted χ2(k). In other words, if X1, · · · ,
Xk are independentN(0, 1) random variables, then

X2
1 + · · ·+X2

k ∼ χ2(k).

The R commands producing values of the quantiles, the density, and the cdf of the
χ2-distribution are qchisq, dchisq, and pchisqwhile random samples are gen-
erated with the command rchisq. See the help files for details.
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1.1.1.6 The Student t Distribution

For each integer k ≥ 1, the Student distribution – also called the t distribution –
with k degrees of freedom will be denoted by t(k). Intuitively, it should be thought
of as the distribution of a Gaussian random variable with a random variance which
is independent and χ2-distributed. More precisely, the t distribution with k degrees
of freedom is the distribution of a random variable X of the form

X =
ξ√
χ/k

(1.10)

where ξ ∼ N(0, 1) and χ ∼ χ2(k) are independent. One can use the definition

formula (1.10) to derive the density function f (t)
k (x) of the t(k) distribution. It is

given by the formula:

f
(t)
k (x) =

Γ ((k + 1)/2)√
kπΓ (k/2)

(1 + x2/k)−(k+1)/2, x ∈ R, (1.11)

where Γ denotes the classical gamma function defined by

Γ (λ) =

∫ ∞

0

xλ−1e−xdx, λ > 0. (1.12)

Fig. 1.4. Graphs of the densities of the t distributions with degrees of freedom 1, 5, 10 and 50
respectively
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One of the nice properties of the gamma function is that it offers a generalization of
the factorial function to real numbers. Indeed, if λ = n+ 1 for some integer n ≥ 0,
then repeated integrations by parts show that Γ (λ) = Γ (n+1) = n!. The cdf of the

t-distribution with k degrees of freedom will be denoted by F (t)
k (x).

Like the Gaussian distribution, the t-distribution is unimodal in the sense that
the graph of the density has a unique maximum. This maximum is located at the
origin, though it is not difficult to imagine that t-distributions centered around other
values can be obtained by mere shifts. Figure 1.4 gives plots of four t densities.
Values of the density and cdf of the Student t distribution can be computed in R
with the functions dt and pt both of which take the number of degrees of freedom
df as parameter. There is a non-central form of the t distribution. It needs an extra
parameter, the so-called non centrality parameter ncp, but we shall not need it in
this book. The distribution with one degree of freedom df=1, has the lowest central
peak, and it tails off slower that the three other densities. We shall see later in this
chapter the similarities between this distribution and the Cauchy distribution which
we introduce next. The graphs of the three other densities are very similar, the higher
the number of degrees of freedom, the higher the central bump and the faster the
decay of the density at plus and minus infinity, i.e. the thinner the tails. This similarity
with the role played by the standard deviation in the case of the normal family may be
deceiving and it is important to emphasize that the role of the number of degrees of
freedom is very different from a mere scale parameter. A Gaussian random variable
has moments of all order. However, this is not the case for random variables with
the t-distribution. Indeed, the number of degrees of freedom df determines how
many moments are finite. To be more specific, if X is a random variable with a
t-distribution with df degrees of freedom,

E{|X |k} <∞ ⇔ k < df

as we can see from the expression of the density of X given above. So the t-
distribution is a distribution with heavy tails in a sense we will make precise later,
and this should be of practical relevance, especially if the number of degrees of
freedom is small. At the other end of the spectrum, namely when the number of de-
grees of freedom becomes large without bound, the number of finite moments also
increases without bound, and the tail of the distribution become thinner. In fact, the
t-distribution converges (in a mathematical sense which we shall not attempt to make
precise here) toward the normal distribution. This theoretical result is what is known
as the normal approximation to the t-distribution. It is used quite frequently in the
computation of p-values and significance levels of statistical tests when the number
of degrees of freedom is in the range of 50, and often quite smaller. This fact is illus-
trated in Fig. 1.5 which gives the plot of the standard normal densityN(0, 1) together
with the t-densities with 5, 10 and 50 degrees of freedom.

1.1.1.7 The Fisher F Distribution

The Fisher or F -distribution is another distribution derived from the Gaussian with
important applications in statistical testing of hypotheses. We do not discuss it here
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because we shall not use it in this textbook. For the record we mention the R com-
mands for dealing with the F -distribution. Not surprisingly they are rf, df, pf, and
qf for the quantile function which we define later in this chapter.

Fig. 1.5. Graphical comparison of the densities of the Gaussian distribution N(0, 1), and the
t distributions with degrees of freedom 5, 10 and 50

1.1.1.8 The Cauchy Distribution

Among the probability distributions introduced in this section, the Cauchy distribu-
tion is the least known, presumably because of its lack of applications to statistical
testing. It is usually introduced as a particular element of the class of stable distri-
butions which are not discussed in this book, and of the class of Generalized Pareto
Distributions (GDP for short) which we study in detail in the second chapter of
the book. These distributions play an important role because of the thickness of their
tails. The Cauchy distribution is of great pedagogical (and possibly practical) interest
because it is one of the rare distribution from this class with explicit closed formulae
for the density, cdf, quantile function, etc. Like the Gaussian distribution, it depends
upon two parameters: a location parameter, say m, and a scale parameter, say λ. It
can be defined from its density function fm,λ(x) by the formula:

f
(C)
m,λ(x) =

1

π

λ

λ2 + (x−m)2
, x ∈ R. (1.13)
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This distribution is denoted by C(m,λ). The computation of its cdf F (C)
m,λ(x) leads

to a simple formula. Indeed:

F
(C)
m,λ(x) =

∫ x

−∞
fm,λ(y)dy

=
1

π

∫ x

−∞

1

1 + [(y −m)/λ]2
dy

λ

=
1

π

∫ (x−m)/λ

−∞

1

1 + z2
dz

=
1

π
[tan−1 x−m

λ
− tan−1(−∞)]

=
1

π
tan−1 x−m

λ
+

1

2
, (1.14)

where we used the substitution z = (y − m)/λ to compute the indefinite integral.
Like the Gaussian and the Student distributions, the Cauchy distribution is unimodal.

Fig. 1.6. Graphs of the densities of the Cauchy distributions C(0, 0.5), C(0, 1) and C(0, 2)
located around 0 and with scales 0.5, 1 and 2 respectively

The maximum of the central bump of the distribution is located at m. Figure 1.6
gives plots of three Cauchy densities with the same location parameter m = 0. The
distribution with the smallest scale parameter λ has the highest central peak, and it
tails off faster that the two other densities. The distribution with the largest scale
parameter has a wider central bump, and as a consequence, it goes to zero later than
the other ones. This figure seems to be very similar to Fig. 1.2 which shows graphs of
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normal densities, or even to Fig. 1.4 which shows graphs of t densities. Indeed, both
Gaussian, t, and Cauchy distributions are unimodal in the sense that the graph of the
density has a unique maximum. This maximum is located at the mean in the case of
the normal distribution, and at the value of the location parameterm in the case of the
Cauchy distribution. Moreover, if we associate the standard deviation of the normal
distribution to the scale parameter of the Cauchy distribution, then the discussion
of the qualitative features of the graphs in Fig. 1.2 also applies to those in Fig. 1.6.
Nevertheless, major differences exist between these two families of distributions.
Indeed, as we can see from Fig. 1.7, where the graphs of densities from both families
are superimposed on the same plot, the tails of the normal distribution are much
thinner than those of the Cauchy distribution. What we mean here is not so much
that the density of the normal distribution approaches zero earlier than the density of
the Cauchy distribution, but that it does so at a much faster rate. This is because the
decay toward zero away from the center of the density is exponential in the negative
of the square distance to the center, instead of being merely an inverse polynomial in
this distance. These rates of convergence to zero are very different, and one should
not be mislead by the apparent similarities between the two unimodal density graphs.
As explained earlier, because of its lack of moments, the t distribution with a small

Fig. 1.7. Graphical comparison of the Cauchy distribution C(0, 1) and the Gaussian distribu-
tion N(0, 1)

number of degrees of freedom bears to the Cauchy distribution, more similarity than
to the Gaussian distribution. We illustrate this fact in Fig. 1.8 by plotting together
the graphs of the C(0, 1) Cauchy distribution and of the t distributions with 1 and
5 degrees of freedom. On this plot, it is impossible to distinguish the graph of the
C(0, 1) density from the graph of the t(1) density. The standard Cauchy distribution
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C(0, 1) and the t distribution with one degree of freedom look very similar. Values
of the density and cumulative distribution functions of the Cauchy distribution can
be computed in R with the functions dcauchy and pcauchy both of which take
the location and the scale of the distribution as parameters.

It is quite clear that density plots as those given in this section do not make
it easy to distinguish distribution families according to the thickness of their tails.

Fig. 1.8. Graphical comparison of the Cauchy distribution C(0, 1) and the t distributions with
df=1 and df=5 degrees of freedom

Figure 1.24 below shows clearly the effects of these differences in tail thickness on
random samples. We will use Q-Q plots to emphasize and capture these differences
in tail behavior.

A review of the classical probability-distribution families would not be complete
without a discussion of the exponential distribution.

1.1.1.9 The Exponential Distribution

The exponential distribution is one of the rare distributions for which many compu-
tations can be carried out explicitly because of the simplicity of its definition. It is ex-
tremely useful in modeling the length of time-intervals separating successive arrivals



1.1 Probability Distributions and Their Parameters 17

of events captured in a stochastic process model. The problems analyzed with these
models include internet traffic, insurance, catastrophe and rainfall modeling, fail-
ure and reliability problems, queues, . . .. In financial applications, the exponential
distribution is a building block for models of the time separating economic regime
changes, jumps in prices, credit migrations, defaults, postings and cancellations of
market and limit orders on an electronic exchange, . . ..

The exponential distribution shares with the log-normal distribution the fact that
its support is the half line R+ = [0,∞). Random samples from the exponential
distribution are positive numbers: the density is non-zero on the positive axis only. In
particular, the tail or extreme values are only on the positive side, and the distribution
has only one tail at +∞. This distribution depends upon a parameter r > 0, called
the rate of the distribution, and it is denoted by E(r). It can be defined from its
density function fr(x) which is given by the formula:

fr(x) =

{
0 if x < 0
re−rx if x ≥ 0.

(1.15)

The positive number λ = 1/r is called the scale of the distribution. The reason why
λ is called the scale of the distribution is because of the following easily checked
fact: if X is an exponential random variable with rate r = 1 (in which case the
parameter λ is also equal to 1), then the random variable λX is also an exponential
random variable, its rate r is equal to 1/λ and consequently, its scale parameter is
equal to λ. The mean of this distribution is the inverse of the rate, in other words, the
scale of the distribution. Indeed, if X ∼ E(r) then

E{X} =

∫
xfr(x) dx = r

∫ ∞

0

xe−rx dx =
1

r
= λ.

In this respect, this property of the exponential distribution is quite unusual. Indeed,
the mean is typically used as a measure of the location of the distribution while the
scale is used as a measure of the spread of the distribution about its central location,
and these two characteristics are different in general. The cdf of the exponential
distribution is given by the following formula:

Fr(x) =

{
0 if x < 0
1− e−rx if x ≥ 0.

(1.16)

Also, note that the second moment E{X2} can be computed by a simple integration
by parts. We get;

E{X2} =

∫
x2fr(x) dx = r

∫ ∞

0

x2e−rx dx =
2

r2
= 2λ2

and this implies that

var{X} = E{X2} − E{X}2 = 1

r2
= λ2.
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So in the case of the exponential distribution, the standard deviation is equal to the
mean. This definitely blurs the interpretation of the parameter λ which could be a
scale as well as a location parameter. Figure 1.9 gives plots of three exponential
densities. The distribution with the highest rate has the highest starting point on the
y-axis, and it tails off faster that the other two densities. The distribution with the
lowest rate starts lower on the y-axis, and does not decay as fast. Values of the density
and the cdf of the exponential distribution can be computed in R with the functions
dexp and pexp, both of which take the rate of the distribution as parameter.

1.1.2 Estimation from Empirical Data

We now consider the challenging problem of the statistical estimation of the pa-
rameters which characterize the probability distributions from the families discussed

Fig. 1.9. Graphs of the densities of the exponential distributions E(0.5), E(1) and E(2) with
rates 0.5, 1 and 2. We plot the graphs only over the positive part of the x-axis because these
densities vanish on the negative part of the x-axis

above. This kind of statistical inference is based on the analysis of sample observa-
tions, say:

x1, x2, . . . . . . , xn

which we assume to be realizations of independent identically distributed (i.i.d. for
short) random variables X1, X2, . . . , Xn with common cdf F and/or density func-
tion f , and the challenge is to estimate F from the data. The premise of parametric
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statistics is to assume that the unknown distribution belongs to a given family, and the
whole estimation issue reduces to the estimation of the parameter(s) characterizing
the specific elements of the family in question.

A time honored method of parameter estimation is based on the maximiza-
tion of the likelihood of the observations. We describe this method briefly, and
for the sake of completeness, we also say a few words of the classical method of
moments.

1.1.2.1 Maximum Likelihood Estimation (MLE)

The likelihood of a set x1, x2, · · · , xn of observations from random variables X1,
X2, · · · , Xn is the value of the joint density f(X1,X2,··· ,Xn) evaluated at the obser-
vations x1, x2, · · · , xn. In other words, the likelihood for this set of observations is
the number f(X1,··· ,Xn)(x1, · · · , xn). In the case of discrete random variables, the
likelihood is in fact the probability that X1 = x1, at the same time as X2 = x2,
. . ., at the same time as Xn = xn, which is clearly what one should expect from
the likelihood of (x1, x2, · · · , xn). We are interested in the case when this joint dis-
tribution depends upon a parameter θ. This parameter can be multidimensional, e.g.
θ = (μ, σ2) in the case of the simultaneous estimation of the mean and the variance
of a Gaussian distribution from a sample of observations. In any case, for each given
set x1, x2, · · · , xn of observations, we can look at the likelihood as a function of the
parameter θ, and the so-called maximum likelihood estimate (MLE for short) of the
parameter θ is the value of θ, say θ̂MLE , which maximizes this function of θ. We
usually use the notation

θ ↪→ L(θ|x1, x2, · · · , xn)
for the likelihood function, and with this notation the above definition can be
stated as:

θ̂MLE = arg sup
θ
L(θ|x1, x2, · · · , xn).

We should keep in mind the fact that this estimate is a function of the observations,
i.e. θ̂MLE = θ̂MLE(x1, x2, · · · , xn), and if we replace the values of the observa-
tions by the actual random variables, the MLE θ̂MLE = θ̂MLE(X1, X2, · · · , Xn)
becomes a random variable. We will use these facts freely even though we shall
most often drop the dependence on the observations and the random variables from
our notation.

Most of the analyses conducted in this book deal with observationsx1, x2, · · · , xn
from independent random variablesX1, X2, · · · , Xn in which case

f(X1,X2,··· ,Xn)(x1, x2, · · · , xn) = fX1(x1)fX2(x2) · · · fXn(xn).

Moreover, when the random variables X1, X2, · · · , Xn are identically distributed,
all the densities fXi(x) are the same, say fXi(x) = f(x), and

f(X1,X2,··· ,Xn)(x1, x2, · · · , xn) = f(x1)f(x2) · · · f(xn).
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As explained above, in the parametric case, this common density f depends upon a
parameter, say f(x) = fθ(x), and the likelihood function appears as the product

L(θ|x1, . . . , xn) = fθ(x1)fθ(x2) · · · fθ(xn).
Now, since the logarithm function is monotone increasing, the maximum (if any) of
the likelihood function is attained for the same values of θ as the maximum of the
logarithm of the likelihood. So because of its product structure, the maximization
of the likelihood function L is often replaced by the maximization of its logarithm
which we denote by L

L(θ|x1, . . . , xn) = logL(θ|x1, . . . , xn) = log fθ(x1) + · · ·+ log fθ(xn)

and the MLE is computed as

θ̂MLE = arg sup
θ

L(θ|x1, . . . , xn).

We summarize the main properties of MLE’s (requiring minimal assumptions on the
nature of the common density fθ(x) and the form of its dependence upon θ which
will not be discussed here) in the following bullet points;

• θ̂MLE is consistent for large samples, in the sense that it converges in proba-
bility when the sample size grows without bound toward the true value of the
parameter θ;

• θ̂MLE is asymptotically normal, fact from which one can derive approximate
confidence intervals;

• Maximum likelihood estimation is covariant in the sense that the maximum like-
lihood estimate of a function of a parameter is that very function of the maximum
likelihood estimate of this parameter. For example, in the case of an exponential
family with rate r and mean λ = 1/r, this result implies that the maximum like-
lihood of the mean of the distribution is the inverse of the maximum likelihood
of the rate, i.e. λ̂MLE = 1/r̂MLE .

The most commonly studied parameters of a distribution are the mean and me-
dian which are measures of location of the distribution, together with other param-
eters such as the standard deviation or the scale, which quantify the spread of the
distribution around its location. All the distribution families reviewed earlier depend
upon parameters which can be estimated by maximum likelihood methods. Not to
distract from the objective of this book, we refrain from presenting examples here.
They can be found in essentially any introductory statistics textbook. We shall im-
plement the maximum likelihood estimation procedure in the case of GEV (General
Extreme Values) distributions and GPDs (General Pareto Distributions) of crucial
importance to us later in Chap. 2.

1.1.2.2 Classical Method of Moments

Let us assume that the parameter θ is a scalar (think for example of the rate of an
exponential distribution), and that the mean of the distribution,
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μ(θ) = E{X} =

∫
xfθ(x) dx

has a simple expression as a function of θ. In this case, given a sample x1, x2, · · · ,
xn of numeric observations from independent random variables X1, X2, · · · , Xn

with the same density fθ(x) we can try to solve the equation

μ(θ) = x

for θ, and call the solution, say θ̂MOM , the method of moments estimator of θ. Here
and throughout the book, we use the notation x for the sample mean (x1 + · · ·
+xn)/n. For example, if x1, x2, . . . . . . , xn is a sample of independent observations
from E(r), and if the goal is to estimate the rate of the distribution, i.e. θ = r, then
since μ(θ) = E{X} = r−1, solving the equation μ(r) = x for r gives the Method
Of Moments (MOM for short) estimate

r̂MOM =
1

x
.

When θ is not a scalar, we can use as many equations and as many empirical
moments, e.g. sample mean, sample variance, . . ., as we have parameters to esti-
mate, and solve a system of equations to find the method of moment estimators.
For example, if x1, x2, . . . . . . , xn is a sample of independent observations from
N(μ, σ2), and if the goal is to estimate the mean and the variance of the distribu-
tion, i.e. θ = (μ, σ2), and since E{X} = μ, which is the first component of the
vector parameter θ, and the second moment E{X2} = σ2 + μ2 has also a simple
expression in terms of the components of the parameter θ, replacing the theoretical
moments E{X} and E{X2} by the empirical moments x and x2 defined by

x2 =
x21 + x22 + · · ·+ x2n

n

and solving for μ and σ2 we find the moment estimates

μ̂MOM = x and σ̂2
MOM = x2 − x2.

Notice that in the case of the Gaussian distribution, if one uses the first two empirical
moments x and x2 computed from sample data, the MOM estimators of the mean
and the variance are uniquely defined. It is also interesting to notice that in this case,
they coincide with the MLE estimates of the mean and the variance.

Clearly, estimating parameters with the method of moments is even more intu-
itive than with the maximum likelihood estimation procedure. However, its realm of
applicability is much more limited and the MOM estimators do not share the desir-
able theoretical properties of the ME estimators listed above. Worse, in many simple
cases, it is not well defined and can lead to inconsistent results. Indeed, for a given
parameter, one can get different estimates depending on which moment equation we
use! Examples of some of these facts are given in problems at the end of the chapter.

We discussed MOM estimators here because of the implementation in the library
Rsafd of the so-called method of L-moments used to estimate the parameters of
generalized Pareto distributions in Chap. 2.
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1.1.3 Quantiles and Q-Q Plots

So far, the graphical tools used to compare two distributions were basically limited
to the comparison of the graphs of the densities. As we saw, this can give a clear
picture of the differences in the center of the distributions in some cases. However,
these graphical comparisons are not informative for the comparison of the distribu-
tion tails. This subsection is devoted to the introduction of a more efficient way to
quantify the thickness of a tail, and as a by-product, we will get tools allowing us to
compare the relative sizes of the tails to two distributions.

1.1.3.1 Quantiles of a Distribution

Given a (theoretical) distribution function F , and a number p ∈ [0, 1], the p-quantile,
or the 100pth percentile of the distribution, is the number πp = πp(F ) satisfying
F (πp) = p. If we think of F as the distribution function of a random variable X ,
then the quantile definition can be restated as:

F (πp) = P{X ≤ πp} = p. (1.17)

In words, the 100pth percentile, is the number πp such that the probability that X is
not greater than πp is exactly equal to p.

Remark. Even though statement (1.17) is very intuitive, it cannot be a
non-ambiguous definition. Indeed, there may not be any real number x satisfying
F (x) = P{X ≤ x} = p. Indeed, this can be the case for some values of p when the
distribution function F has jumps, i.e. when the random variableX can take discrete
values with positive probabilities. When such jumps occur, there may be plenty of
possible choices. In fact, all the real numbers x satisfying:

P{X < x} ≤ p ≤ P{X ≤ x} = F (x)

can be regarded as reasonable candidates for the p-quantile of the distribution. A
more precise definition would state that the set of p-quantiles is the closed interval
[x−p , x

+
p ] where:

x−p = inf{x; F (x) ≥ p} and x+p = inf{x; F (x) > p}.

In any case, we get a uniquely defined quantile πp(F ) (i.e. we have x−p = x+p ) except
for at most countably many p’s in [0, 1]. For the sake of definiteness, for any of these
countably many values of p, we shall use the left endpoint x−p of the interval as our
definition of the percentile.

Most of the cdf’s F used in this book are invertible. When it exists, the inverse
function F−1 is called the quantile function because (1.17) can be rewritten as:

πp = F−1(p). (1.18)



1.1 Probability Distributions and Their Parameters 23

1.1.3.2 Examples

As an illustration, let us consider the problem of the computation of the quantiles
of the classical distributions introduced earlier in the chapter. The results of these
computations will come handy when we discuss random number generators later on.

The quantiles of the uniform distribution are very easy to compute. However,
they are rarely needed. The quantiles of the Gaussian distribution cannot be given
in closed form: we cannot compute the Gaussian cdf in closed form, neither can we
compute its inverse in closed form, and we need to rely on numerical approximation
schemes to compute the quantiles of the Gaussian distributions. We give examples of
these computations in the next subsection below. For the exponential distribution, the
percentiles are easily computed from formula (1.16) which gives a simple expression
for the cdf Fr(x). One finds:

πp =
1

r
log

1

1− p
. (1.19)

Finally, in the case of the Cauchy distribution, the explicit form of the cdf can also
be inverted, and from trigonometry we find that the quantile function is given by:

πp = F−1
m,λ(p) = m+ λ tan

(
pπ − π

2

)
(1.20)

Quantiles and percentiles are numbers dividing the real line into intervals in
which a prescribed proportion of the probability distribution lives. For example, if
we compute the quantiles πp for a sequence of regularly spaced probability levels p,
patterns in the distribution of this set of percentiles can be interpreted as properties
of the probability distribution. This remark is particularly useful when it comes to
comparing several distributions. We develop this idea later on in this section with the
introduction of the concept of Q-Q plot which we discuss in great detail as it is the
cornerstone of the graphical analysis of heavy tail distributions.

1.1.3.3 Value at Risk (VaR)

For better or worse, Value at Risk (VaR for short) is nowadays a crucial component
of most risk management systems in the financial and insurance industries. Whether
its computation is imposed by regulators, or done on a voluntary basis by portfolio
managers, is irrelevant here. For the purpose of this subsection, we merely attempt
to understand the rationale behind this measure of risk.

We introduce the concept of risk measure at an intuitive level, relying on the
notion of required capital needed to make a financial position acceptable. We start
with the discussion with a simple example.

Let us imagine that we need to track the performance of a portfolio. Typical
portfolios comprise a large number of instruments, and a common assumption is to
assume that the (log) returns on these portfolios are normally distributed. Note that
in this book, we shall do our best not to make this assumption whenever we can
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help it. We denote by Pt the value of the portfolio at time t, we choose a specific
level of confidence, say p = 2%, and a time horizon Δt, say 1 year. Notice that the
period [t, t+Δt] is fixed. For that reason risk measures such as VaR are considered
to be static risk measures. See the Notes & Complements at the end of the chapter
for references.

Under these conditions, the associated required capital RCt is defined as the
capital needed to guarantee that the book will be in the red at time t + Δt with
probability no greater than p. In other words, RCt, is defined by the identity:

P{Pt+Δt +RCt < 0} = p.

The Value at Risk at time t is then defined as the sum of the current endowment and
the required capital

V aR = Pt +RCt.

Notice that P{Pt+Δt − Pt + V aRt < 0} = p, which says that −V aRt is the p-
quantile of the distribution of the change Pt+Δt − Pt in the value of the portfolio
over the given horizon. It is often more convenient to express V aRt in units of Pt,
i.e. to set V aRt = Ṽ aRt ∗ Pt. The definition

P{Pt+Δt − Pt + V aRt < 0} = p

of V aR can then be rewritten as:

P

{
Pt+Δt − Pt

Pt
+ Ṽ aRt < 0

}
= p

which shows that, expressed in units of Pt, the negative of the value at risk is nothing
more than the p-quantile of the distribution of the raw return over the period in ques-
tion. As we will stress during our comparison of raw returns and log returns later in
this section, they are very close to each other for small relative changes and we have:

Pt+Δt − Pt
Pt

∼ log
Pt+Δt
Pt

which justifies the fact that we will often call value at risk at the level p for the
horizonΔt, the negative of the p-quantile of the distribution of the log-return over a
typical period of length Δt.

We now recast the above rather informal discussion in the framework we use
throughout the book, and articulate a precise definition of Value at Risk. First, we
slightly change the convention: in order to get rid of the annoying negative sign
which we had to deal with above, it is convenient to think of a distribution function
F as modeling the loss, i.e. the down side of the profit and loss (P&L for short) dis-
tribution in the standard financial jargon, associated to a specific financial position.
A random variable X with cdf F could be for example the cumulative catastrophic
insurance losses in a reporting period, or the credit losses of a bank or a credit card
company, or the daily negative returns on a financial portfolio. Note that the length
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Δt of the time horizon can, and will change from one application to another. We will
consider many examples in which the frequency of the data will be different from
1 day. We will consider examples of minute by minute quotes used by day traders,
and weekly and monthly quotes used by fund managers.

For a given level p, the value at risk V aRp is defined as the 100p-th percentile of
the loss distribution. For the sake of definiteness, we shall choose the left hand point
of the interval of possible percentiles when the loss distribution is not continuous.
Value at Risk is widely used in the financial industry as a risk measure. Indeed,
according to the first Basel agreement, financial institutions have to control the VaR
of their exposures. Despite all that, VaR is not a satisfactory measure of risk for
several reasons. The first one is quite obvious: it does not involve the actual size of the
losses. The second one is less straightforward: it does not encourage diversification.
This property is more subtle and more difficult to prove mathematically, and we refer
the interested reader to the references given in the Notes & Complements at the end
of the chapter. For these reasons we shall introduce another way to quantify the risk
of a financial position modeled by a random variableX .

1.1.3.4 Effect of Affine Transformations

As we already witnessed, shifting the location and changing the scale of a distribu-
tion are common practices in statistical data analysis, and controlling the effect of
these transformations on the quantiles of a distribution is important. The results of
the following discussion will be used in the interpretation of the Q-Q plots introduced
and discussed below.

Let X be a random variable with cdf FX , and let us denote by π(X)
p its quantiles.

Let us now consider the random variable Z = (X − m)/λ obtained by shifting
the distribution of X by a real number m and scaling it by a positive number λ.
In most applications we will use a location parameter for m (for example the mean
of the distribution of X when it exists) and a scale parameter for λ (for example
the standard deviation of the distribution when the variance exists). In particular, Z
would be N(0, 1) if we were to start with X Gaussian. We now show that the affine
relationship

Z =
X −m

λ
or equivalently X = λZ +m

carries over to the quantiles π(X)
p and π(Z)

p of X and Z respectively. Indeed, for any

p ∈ [0, 1] the quantile π(X)
p is characterized as the number π satisfying FX(π) = p

and since

FX(π) = P{X ≤ π} = P{λZ +m ≤ π}
= P{Z ≤ π −m

λ
} = FZ(

π −m

λ
),

(recall that λ > 0 which justifies our manipulations of the above inequalities) the
number π satisfying FX(π) = p should satisfy FZ(π−mλ ) = p and hence we have
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π −m

λ
= π(Z)

p

which give the desired equivalence

π(X) −m

λ
= π(Z)

p or equivalently π(X)
p = λπ(Z)

p +m (1.21)

between the quantiles of X and Z .

1.1.3.5 Comparing Quantiles

We motivate the introduction of the theoretical Q-Q plots with a simple experiment
intended to illustrate the sizes of the quantiles of a distribution as they relate to the
size (e.g. thickness) of its tail.

X ∼ N(0, 1) X ∼ C(0, 1)

π0.8 = F−1
X (0.8) 0.842 1.376

π0.85 = F−1
X (0.85) 1.036 1.963

π0.9 = F−1
X (0.9) 1.282 3.078

π0.95 = F−1
X (0.95) 1.645 6.314

π0.975 = F−1
X (0.975) 1.960 12.706

π0.99 = F−1
X (0.99) 2.326 31.821

Table 1.1. Comparison of the quantiles of the standard Gaussian and Cauchy distributions

We already emphasized how thin the tails of the Gaussian distribution are by
quantifying the concentration of the probability mass around the mean of the dis-
tribution. We now compute quantiles of the normal distribution with the command
qnorm, and arguments giving respectively the list of quantiles we want, the mean,
and the standard deviation of the distribution. Because of the symmetry of the distri-
bution, we restrict ourselves to the upper tail.

> qnorm(c(.8,.85,.9,.95,.975,.99),mean=0,sd=1)
[1] 0.8416 1.0364 1.2816 1.6449 1.9599 2.3263

In words, these numbers tell us that 80% of the probability mass is to the left of x =
0.8416, 85% is to the left of x = 1.0364, . . .. The computation of the corresponding
quantiles for the Cauchy distribution gives:

> qcauchy(c(.8,.85,.9,.95,.975,.99),location=0,scale=1)
[1] 1.376 1.963 3.078 6.314 12.706 31.821

We display these results in tabular form in Table 1.1.

We see that in the case of the Cauchy distribution, in order to have 80% of the prob-
ability mass to its left, a quantile candidate has to be as large as x = 1.376, which is
greater than x = 0.842 found for the normal distribution. Obviously, the same is true
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for the other quantiles in the above lists. This pattern may be visualized by plotting
the quantiles of the Cauchy distribution against the corresponding quantiles of the
normal distribution. We would have to plot the points

(0.8416212, 1.376382), (1.0364334, 1.962611), (1.2815516, 3.077684),
(1.6448536, 6.313752), (1.9599640, 12.706205), (2.3263479, 31.820516).

Note that all these points are above the diagonal y = x, and in fact they drift further
and further away above this diagonal. This fact is at the core of the interpretation of
a Q-Q plots which we introduce formally below: points above the diagonal in the
rightmost part of the plot indicate that the upper tail of the first distribution (whose
quantiles are on the horizontal axis) is thinner than the tail of the distribution whose
quantiles are on the vertical axis. This phenomenon appears as well in the case of
the empirical Q-Q plots introduced later and illustrated for example in Figs. 1.23
and 1.25.

1.1.3.6 Theoretical Q-Q Plots

The above discussion seems to indicate that comparing the quantiles of two distri-
butions carries powerful information on the relative properties of the tails of these
distributions.

A quanrile-quantile plot (Q-Q plot for short) of a distribution F (2) against a
distribution F (1), is the plot of the curve formed by the couples (π

(1)
p , π

(2)
p ) when

the real number p varies over [0, 1]. Obviously, we use the notation π
(1)
p for the

quantiles of the distribution F (1), and π(2)
p for the quantiles of the distribution F (2).

The interpretation of these plots is based on the following simple remarks.

• The Q-Q plot should be on the diagonal if the two distributions are equal;
• If both distributions extend to +∞, and if the tail of F (1) is heavier than the tail

of F (2), then when p increases toward 1, the quantile π(1)
p of F (1) should grow

faster that the quantile π(2)
p of F (2), and consequently, the Q-Q plot should be

below the diagonal and curve downward below the diagonal;
• Similarly, if both distributions have right tails extending to +∞, and if the tail

of F (1) is thinner than the tail of F (2), then as p increases toward 1, the quantile
π
(1)
p of F (1) should grow slower that the quantile π(2)

p of F (2), and consequently,
the Q-Q plot should curve upward above the diagonal;

• If both distributions extend to −∞, and if the tail of F (1) is heavier than the tail
of F (2), then when p decreases toward 0, the quantile π(1)

p of F (1) should go to

−∞ faster that the quantile π(2)
p of F (2), and consequently, the Q-Q plot should

curve upward above the diagonal;
• Finally, if both distributions have a left tails extending to −∞, and if the tail of

F (1) is thinner than the tail ofF (2), then as p decreases toward 0, the quantile π(1)
p

of F (1) should go to −∞ slower that the quantile π(2)
p of F (2), and consequently,

the Q-Q plot should curve downward below the diagonal.

We illustrate these general qualitative statements with specific examples of Q-Q plots
of distributions from some of the families introduced in the first part of the chapter.



28 1 UNIVARIATE DATA DISTRIBUTIONS

1.1.3.7 Examples of Theoretical Q-Q Plots

We close this section with a discussion of specific examples of theoretical Q-Q plots.

One Tailed Distributions. We first consider two distributions on the half line R+ =
[0,∞), and we compare their tails at +∞. We choose the exponential distribution
with rate one, and the log-normal distribution with mean zero and variance one. We
implement the definition of the theoretical Q-Q plot of these distributions with the R
commands

> P <- seq(from=0,to=1,length=1025)
> plot(qexp(P,1),qlnorm(P,meanlog=0,sdlog=1),type="l",

xlab="E(1) quantiles",ylab="LogNormal quantiles")
> abline(0,1)

which also superimpose the diagonal (which helps the interpretation of the result,
especially when the scales on the vertical and horizontal axes differ). The result is
given in Fig. 1.10. The first R command creates a vector P of length 1025 with
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Fig. 1.10. Theoretical Q-Q plot of the log-normal distribution with mean zero and variance
one, against the exponential distribution with unit rate

entries forming a regular grid of real numbers from 0 to 1. The first two argu-
ments of the function plot give the x and y coordinates of the points to plot on
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the graph, the parameter type="l" implying that straight lines will be used to
connect the points. Applying a function to a vector creates a vector of the same
length with entries equal to the values of the function computed for the entries of the
original vector. So qexp(P,1) is a vector of length 1025 , the entries of which
are the quantiles of the exponential distribution with rate one (the second parame-
ter of the function qexp) computed at the values found in the vector P. Similarly,
qlnorm(P,meanlog=0,sdlog=1) is a vector of length 1025 whose entries
are the quantiles of the log-normal distribution with mean zero and variance one
computed at the values found in the vector P. The roles of the parameters xlab and
ylab in setting the labels of the axes are self explanatory. Finally, the command
abline(0,1) adds a line with intercept 0 and slope 1 (i.e. the first diagonal when
the units on the two axes are the same) to the plot.

The interpretation of the plot is plain: the upward bend in the right hand side
of Fig. 1.10, together with its convexity show that the log-normal distribution has a
heavier tail than the exponential distribution.

Two Tailed Distributions. Next, we consider theoretical Q-Q plots of two distri-
butions having tails extending to plus and minus infinity. The plots appearing in
Fig. 1.11 epitomize the most important features which can be identified, and we dis-
cuss them one by one in the next bullet points.
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Fig. 1.11. Theoretical Q-Q plots of the Cauchy distribution C(0, 1) against the t distribution
with 1 (left) and 2 (right) degrees of freedom

• The left pane of Fig. 1.11 shows the theoretical Q-Q plot of the Cauchy distribu-
tion with location zero and scale one against the t distribution with one degree of
freedom. The plot seems to align perfectly with the diagonal which shows that
there is no significant numerical difference between the sizes of the tails as cap-
tured by this type of plot. A quick look at the plots given earlier of the densities
of the two distributions is enough to explain why this had to be expected.

• The right pane of Fig. 1.11 shows the theoretical Q-Q plot of the same Cauchy
distribution against the t distribution with two degrees of freedom. The plot is
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obviously very different. First, we should notice that the scales on the two axes
are very different (see the tick labels on these axes), as evidenced among other
things, by the diagonal which is almost horizontal. Next the curvatures found on
both ends show that both tails of the t distribution are thinner than the tail of the
Cauchy distribution. Indeed, the fact that the Q-Q plot is above the diagonal on
the right of the plot is due to the fact that the upper quantiles of the t(2) distri-
bution grow to +∞ slower than those of the C(0, 1) distribution, implying that
the right tail of the t(2) distribution is lighter (we also say thinner) than the right
tail of the Cauchy distribution C(0, 1). Similarly, fact that the Q-Q plot is below
the diagonal on the left of the plot is an indication that the lower quantiles of the
t(2) distribution decrease to −∞ slower than those of the N(0, 1) distribution,
implying as before that the left tail of the t(2) distribution is thinner than the
left tail of the C(0, 1) distribution. The argument given for the upper tails was
repeated mutatis mutandis for the lower tails for pedagogical reasons. We could
have used the fact that both distributions are symmetric and as a consequence,
have same size at +∞ and −∞.
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Fig. 1.12. Theoretical Q-Q plots of the standard Gaussian distribution N(0, 1) against the t
distribution with 5 (left) and 50 (right) degrees of freedom. We used a dashed line for the Q-Q
plot in order to differentiate is clearly from the diagonal which is plotted as a solid line

• The left pane of Fig. 1.12 shows the theoretical Q-Q plot of the standard Gaussian
distribution against the t distribution with 5 degrees of freedom. The fact that the
Q-Q plot is below the diagonal on the right part of the plot is due to the fact that
the upper quantiles of the t(5) distribution grow to +∞ faster than those of the
N(0, 1) distribution, implying that the right tail of the t(5) distribution is heavier
(we also say thicker) than the right tail of the standard Gaussian distribution.
Similarly, the fact that the Q-Q plot is above the diagonal on the left of the plot
is an indication that the lower quantiles of the t(5) distribution decrease to −∞
faster than those of the N(0, 1) distribution, implying that the left tail of the t(5)
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distribution is heavier than the left tail of the N(0, 1) distribution. As before,
a symmetry argument can be used to reduce the comparison of the tails to the
right tails.

• However, as evidenced by the plot on the right pane of Fig. 1.12, the t distribution
with 50 degrees of freedom has tails of pretty much the same sizes as those of
the normal distribution. The tails are still heavier than the tails of the N(0, 1)
distribution since the Q-Q plot is on the same side of the diagonal as before,
but the difference is much smaller than earlier. This fact is a consequence of the
normal approximation result which we mentioned earlier in the text.

1.2 OBSERVATIONS AND NONPARAMETRIC DENSITY ESTIMATION

This section reviews some of the most basic nonparametric techniques of density
estimation. Our stand point is more practical than theoretical, and we emphasize
implementation in R.

1.2.1 Sample Data

The data used in this chapter come in the form of a sample:

x1, x2, . . . . . . , xn

where the xj are real numbers. They are analyzed with statistical tools based on
concepts of statistical data analysis which we review in this chapter. Our presenta-
tion is sprinkled with numerical illustrations anchored on a small number of specific
examples. We proceed to the introduction of the first of these examples.

1.2.1.1 The PCS Data

The PCS Index is the year-to-date aggregate amount of total damage reported in the
United States to the insurance industry. PCS stands for Property Claim Services. It
is a division of ISO Inc (Insurance Services Office). Regional indexes also exist, and
different regions have unique indexes, e.g. California, Florida, Texas, . . ., but we
only consider the national index in this example. Each index value represents $100
million worth of damage. For example, a value of 72.4 for the national index in 1966,
means that $(72.4×100) million (i.e. $7.24 billion) in damage were recorded on that
year.

The Chicago Board of Trade began trading options on the PCS Index in 1996.
Options and futures contracts on the PCS Index offer a possibility to securitize insur-
ance catastrophe risk in a standardized fashion. These financial products were seen in
the mid 1990s by the insurance industry as a way to tap into the inverstors enormous
appetite for risk.
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For the purpose of our analysis, we do not use the index values. Instead, we use
some of the individual claim reports used to compute the final values of the index.
The data we use come in the form of a matrix with 2 columns and 380 rows:

> head(PCS)
Col1 Col2

1 13 4.00
2 16 0.07
3 46 0.35
4 60 0.25
5 87 0.36
6 95 1.00

where the first column contains time stamps 13, 16, · · · (i.e. codes for the dates of
the catastrophic events), and the second column contains the aggregate amounts
4.00, 0.07, · · · (again in $100 million) of all the claims reported after each event.
These data are contained in an R matrix called PCS. The command head(PCS)
was used to print the first six rows of the data set. Notice that, since the object PCS
does not have column names and row names, R uses default names Col1 and Col2
for columns and the integers 1,2, ... for row names. The plot of the data is
given in Fig. 1.13. In a first analysis, we do not use the information of the timing of

Fig. 1.13. Approximately 10 years worth of individual catastrophe costs used to compute the
PCS index. For each catastrophic event included in the data set, the time stamp is reported on
the horizontal axis, and the aggregate dollar amount of the claims attributed to this catastrophic
event is reported on the vertical axis

the catastrophes. In other words, we first work with the second column of the data
set, i.e. with the dollar amounts only. So, at least in this chapter, the data of interest
to us will be:
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x1 = 4.00, x2 = 0, 07, x3 = 0.35, x4 = 0.25, . . . . . .

and we encapsulate this data set in the R object PCS.index (a numeric vector in
this case) with the command:

> PCS.index <- PCS[,2]

which extracts the second column of the matrix PCS, and renames it PCS.index.
From now on, we work with these values, ignoring the timing of the actual catas-
trophes. The analysis of the time dependence is the subject of time series analysis
which we will tackle in the third part of the book.

Again, we refer to the R Tutorial contained in the first Appendix at the end of the
book for details on the basic commands used in this chapter.

1.2.1.2 The S&P 500 Index and Financial Returns

For this second example, the data give the weekly closing values of the S&P 500
index. They come in the form:

1950-01-03 16.98
1950-01-09 16.67
1950-01-16 16.90
1950-01-23 16.82
1950-01-30 17.29
1950-02-06 17.24
.................... ..........

These data are contained in the R object WSP.ts of class timeSeries and plotted
in Fig. 1.14. timeSeries objects will be studied in Chap. 6. In the present chapter,
we do not make use of the time stamps appearing in the first entry of each row. We
concentrate on the data appearing in the second column. For the sake of convenience,
we organized these data in an R numeric vector which we called WSP. We are not
really interested in the raw values of the index. For reasons which will become clear
later, we would rather analyze the returns, so we transform the data for the purposes
of our analysis. However, before doing so we define the two notions of return used in
finance. For the sake of simplicity, we ignore the possibility of dividend payments.
Given the value of an index at time t, say St, and its value after a period of length
Δt, say St+Δt, the raw-return over that period is defined as:

RRt =
St+Δt − St

St
=
St+Δt
St

− 1 (1.22)

while the log-return over the same period is defined by the formula:

LRt = log
St+Δt
St

. (1.23)
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Fig. 1.14. Weekly values of the S&P index

Log-returns are natural in the context of continuous time discounting, while raw-
returns are more natural when discounting is done at discrete time intervals. Notice
that since x ∼ log(1 + x) when x is small, we have:

LRt = log

(
1 +

St+Δt − St
St

)
∼ St+Δt − St

St
= RRt

whenever the ratio St+Δt/St is close to 1. So we expect that the two methods of
computing returns will give essentially the same results when Δt is small, or when
the value of the index does not change much over a period of length Δt. Notice that
both notions depend upon the time period over which the returns are computed. Δt
is 1 week in the present situation. It will be 1 month in some examples, or even one
quarter in others. However, it will be 1 day in most of the examples considered in the
book.

The practical computation of the log-returns proceeds as follows. Except for the
first value, we divide each closing value by its value the previous week (computing
in this way the weekly return), and we then compute the logarithm of this ratio, ob-
taining in this way the weekly log-return. Since the log of a ratio is the difference of
the logarithms of the numerator and denominator, we use the following R command

> WSPLRet <- diff(log(WSP))

to compute the vector of log-returns. When applied to a vector, the R function log
produces a vector of the same length, whose entries are given by the logarithms of the



1.2 Observations and Nonparametric Density Estimation 35

entries of the original vector. The function diff gives a vector that is one element
shorter than the original vector, and whose entries are given by the differences of two
successive terms of that sequence. The first entries of the sample of log-returns are:

x1 = −0.018425484, x2 = 0.013702925, x3 = −0.004744967, x4 = 0.027559645, . . .

After this transformation of the original data, the resulting sample appears as if the
entries formed a set of observations of independent random variables with the same
distribution. In this chapter, we concentrate on the analysis of log-return values in-
stead of the original values of the index, and we try to infer statistical properties of
the common distribution of these log-return observations. We stress that in what fol-
lows, the results of the analysis do not depend upon the order of the observations. In
other words, were we to shuffle these numbers and change the order in which they
appear, the results of our analysis would remain unchanged.

1.2.2 Nonparametric Estimation

1.2.2.1 Statistical Estimation

When working with sample observations from an unknown cdf F , if the quantities
we want to estimate are numerical characteristics which can be computed from the
cdfF , our preferred strategy is to use the sample observations to produce an estimate,
say F̂ , of the cdf F , and then to use the corresponding characteristics computed from
the estimate F̂ as estimates of the desired characteristics of F . For example, the mean
of F̂ will be used to estimate the mean of F , the variance of F̂ for the variance of F ,
etc. Often, we assume that the unknown distribution has a density f = F ′, and we
try to compute the characteristics as integrals involving f .

A good part of classical parametric estimation theory can be recast in the frame-
work of density estimation: for instance, estimating the mean and the variance of
a normal population is nothing but estimating the density of a normal population.
Indeed, a Gaussian distribution is entirely determined by its first two moments,
and knowing its mean and variance is enough to determine the entire distribution.
Similarly, estimating the mean of an exponential population is the same as estimat-
ing the density of the population since the exponential distribution is determined
by its rate parameter, which in turn is determined by the mean of the distribution.
More generally, if the random mechanism governing the generation of the data is
known to be producing samples from a given parametric family, estimating the dis-
tribution reduces to estimating the parameters of the distribution, and we can use
classical estimation methods, such as maximum likelihood, method of moments,
. . . reviewed in the previous section. We can then plug the estimated values into
the formulae defining the parametric family and compute the desired characteris-
tics accordingly. However, if the unknown characteristics of the random mechanism
cannot be captured by a small set of parameters, we need to use a nonparametric
approach.
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1.2.2.2 The Empirical Cumulative Distribution Function (cdf)

When fitting a distribution to a data sample, different methods have to be brought to
bear when no rationale exists for the choice of a specific parametric family of distri-
butions. In the absence of specific information about the type of statistical distribu-
tion involved, the only recourse left is very often the so-called empirical distribution
function F̂n which we now define. Given a sample x1, x2, · · · , xn from an unknown
cdf F , the empirical distribution function F̂n of this sample is the piecewise constant
function defined by:

F̂n(x) =
1

n
#{i; 1 ≤ i ≤ n, xi ≤ x}. (1.24)

F̂n(x) represents the proportion of observations not greater than x. The function
F̂n(x) is piecewise constant, since it is equal to j/n for x in between the j-th and
the (j + 1)-th observations. Its graph is obtained by ordering the observations xj’s,
and then plotting the flat plateaus in between the ordered observations.

The rationale behind this estimation procedure is the fact that the empirical cdf
F̂n(x) converges uniformly in x ∈ R toward the unknown cdf F (x). This is known
as the Glivenko-Cantelli theorem (or the fundamental theorem of statistics). Its proof
is based on the Law of Large Numbers (LLN for short) which we state in Sect. 1.3 in
the context of Monte Carlo computations. It can be found in most introductory texts
in statistics.

According to the estimation strategy articulated earlier, once the empirical dis-
tribution function has been chosen as the estimate of the (theoretical) unknown cdf,
characteristics of the unknown cdf can be estimated by the corresponding charac-
teristics of the empirical distribution function F̂n. In particular, the percentiles can
be estimated by the percentiles computed from F̂n. So, according to this estimation
strategy, the 100p-th percentile πp = πp(F ) is estimated by the empirical percentile
πp(F̂n). This procedure has obvious applications to the computation of risk measures
based on quantiles, such as the value at risk V aRp.

1.2.2.3 Order Statistics

The actual construction of the empirical cdf given above emphasized the special role
played by the ordered observations:

min{x1, . . . , xn} = x(1),n ≤ x(2),n ≤ · · · ≤ x(n),n = max{x1, . . . , xn}
Warning. The ordered observations x(k),n are not defined uniquely because of pos-
sible ties, i.e. cases when xi = xj for different indices i and j. Ties cannot occur (to
be more specific, we should say that the probability that they do occur is zero) when
the distribution function F is continuous. The empirical cdf’s are never continuous,
but most of the cdf’s occurring in practice are continuous, so since such an assump-
tion does not restrict the scope of our analysis, we shall subsequently assume that
there are no ties in the sample observations.
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The ordered observations x(k),n can be viewed as realizations of random vari-
ables X(1),n, X(2),n, . . .X(n),n. Note that the latter are neither independent nor
identically distributed any more. The random variable X(k),n is called the k-th or-
der statistic. Our definition of the percentiles of a distribution with jumps, and of the
left inverse of a cdf imply that for each probability level p ∈ (0, 1):

x(k),n = π̂p = πp(F̂n) for
k − 1

n
< p ≤ k

n
.

The following will have far-reaching consequences in the analysis of distribution
tails.

Let us assume that x1, x2, . . . . . . , xn form a sample from an unknown cdf F ,
and let us assume that we are interested in the estimation of a quantile πp = πp(F ).
As we already emphasized, one important financial application is the computation of
VaR (value at risk). The probability that exactly k of the sample observations xj fall
in between πp and 1 is the same as the probability that

X(n−k),n ≤ πp < X(n−k+1),n. (1.25)

Since the cdf F is monotone increasing, the inequalities (1.25) can be equivalently
rewritten as:

F (X(n−k),n) ≤ p < F (X(n−k+1),n) (1.26)

and the probability that this happens is equal to the probability that exactly k of the
numbersF (Xj) fall in the interval [p, 1]. Since theF (Xj) are i.i.d. random variables,
this probability is equal to the binomial probability:(n

k

)
pk(1− p)n−k.

where p denotes the probability that a number F (Xj) belongs to the interval [p, 1].
But according to the results presented in Sect. 1.3, and especially Fact 1, this proba-
bility is equal to (1−p). Consequently, the probability that (1.26) occurs is given by:

(n
k

)
pn−k(1− p)k. (1.27)

This important result is used in practice to derive confidence intervals for the empir-
ical quantiles of a distribution.

1.2.2.4 R Implementation

For the purpose of illustration we work with the Calpine stock price data downloaded
from the internet and imported in R as explained in the appendix. We first compute
the daily log-returns. On any given day, the log return is the logarithm of the ratio of
the price on that day divided by the price the day before. Given the properties of the
logarithm function, this is also the difference between the logarithm of the price on
that day and the logarithm of the price the day before. We create a vector CPNLRet
containing the daily log returns with the command:
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> CPNLRet <- diff(log(CPN))

As explained in our discussion of the weekly log returns of the S&P 500, the com-
mand log(CPN) creates a vector with the same length as CPN, each entry being the
logarithm of the corresponding entry in CPN. The function diff creates a vector
with one less element, each entry being equal to the difference between the corre-
sponding entry in the argument vector, and its preceding entry (hence the shorter
length). Now we assume that the entries of CPNLRet form a sample from an un-
known distribution (the distribution of the daily log returns on Calpine stock) and
we proceed to the computation of the empirical quantiles. Remember that, according
to the above discussion, the latter can be viewed as estimates of the quantiles of the
unknown distribution.

> quantile(CPNLRet,c(.01,.05,.25,.5,.75,.95,.99))
1% 5% 25% 50% 75% 95% 99%

-0.1263 -0.0658 -0.0201 0.0000 0.0204 0.06353 0.1315

We use the R function quantile. Its first argument needs to be the numeric vector
of the sample values, CPNLRet in our case, while its second argument should be the
vector of probability levels at which we want to compute the quantiles. In the present
case, we chose to compute the empirical p-quantiles for the values 0.01, 0.05, 0.25,
0.5, 0.75, 0.95, 0.99 of p which we encapsulated in a vector with the concatenation
functionc. The functionquantile returns a vector of the same length as the vector
of probability levels. Its entries are the desired quantiles.

Even though we should not try to re-invent the wheel, for pedagogical reasons,
we think that it is important to use the tools offered by R to compute from scratch
(i.e. without using the function quantile) the ordered statistics of a sample. The
R function order gives the ranks of the entries of a numeric vector. Using the ranks
as new indexes, we can construct the vector of ordered entries. The following com-
mands illustrate these facts.

> RKS <- order(CPNLRet)
> OCPNLRet <- CPNLRet[RKS]
> par(mfrow=c(2,1))
> plot(CPNLRet,type="l")
> plot(OCPNLRet,type="l")
> par(mfrow=c(1,1))

The results are reproduced in Fig. 1.15. The left plot is typical of stock log returns.
The only reason we give the left plot is to check that the observations have been or-
dered correctly. We can now recover the empirical quantiles computed above with the
pedestrian approach based on the definition of these quantiles (e.g. the 1 – empirical
– percentile is the value of the entry which has 1% of the entries below)

> L <- length(OCPNLRet)
> P <- 0.01
> OCPNLRet[ceiling(P*L)]
[1] -0.1267517
> P <- 0.75
> OCPNLRet[ceiling(P*L)]
[1] 0.02040887
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Fig. 1.15. Sequential plot of the daily log returns on Calpine stock before (left) and after (right)
ordering the observations

1.2.3 Histograms

Together with pie charts, histograms are presumably the most frequently used graph-
ical representations of data. In this book, we are interested in the analysis of data
from continuous probability distributions, and we view histograms as estimators of
the densities of the corresponding distributions. Since the construction of a histogram
does not assume that the distribution is an element of a specific family of distribu-
tions, it can be viewed as a nonparametric estimation procedure. However, it is not
a panacea, and like most nonparametric functional estimation procedures, the his-
togram relies on the specification of a few constants, two in most cases. For example,
in order to produce a histogram, one chooses the width of the bins, and the origin
from which the bins are lined up.

Recall that once the range of the observation sample vector is covered by a set
of bins, plotting the histogram is plotting a rectangle above each bin, the height of
the rectangle being the absolute (or relative) frequency of the data entries falling
in the bin.

1.2.3.1 Implementation in R

Histograms are produced in R with the command hist. The left pane of Fig. 1.16
is the result of the command hist(CPNLRet). If the only argument passed to the
function hist is a numeric vector, R chooses automatically default values for all
the other arguments. We specified a few of these arguments to produce the histogram
appearing in the right pane of Fig. 1.16. We chose to force the histogram to have
25 bins by including breaks=25. In fact the parameter breaks can be used to
specify not only the number of bins, but the end points of these bins. Indeed, when
breaks is a numeric vector, its entries are interpreted as the end points of the bins.
We chose to plot the bars over the bins in blue by setting the parameter col ap-
propriately, namely by passing col="blue" to the function hist. Finally, we set
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Fig. 1.16. Histograms of the daily log returns on the Calpine stock

the parameter freq to FALSE in order for relative frequencies to be used as labels
on the vertical axis. This does not change the look of the histogram, but the nu-
merical values correspond now to the values of a probability density, instead of raw
frequency counts. We give the R commands used to produce Fig. 1.16 for the sake of
definiteness.

> par(mfrow=c(1,2))
> hist(CPNLRet)
> hist(CPNLRet,breaks=25,col="blue",freq=F)
> par(mfrow=c(1,1))

Both histograms give a good rendering of the central bump in the density. How-
ever, it is difficult to gauge the relative importance of the bins in the right and left
most parts of the graph. It seems that most of the bins are empty, except possibly for
some extreme bins which justify the choice of the range of x-values over which the
histogram is constructed.

1.2.3.2 More Shortcomings and Extensions

The dependence of the histogram upon the choice of the origin is an undesirable
artifact of the method. In order to circumvent this shortcoming, the notion of av-
eraged histogram was introduced: one histogram is computed for each of a certain
number of choices of the origin, and all these histograms are averaged out to pro-
duce a smoother curve expected to be robust to shifts in the origin. This estimate is
called the ASH estimate of the density of the population, the three initials A, S and
H standing for “average shifted histogram”.

Even though ASH estimates are free of the artificial dependence upon the choice
of the origin, they are still dependent on the particular choice of the bin width, the lat-
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ter being responsible for the look of the final product: ragged curves due to a choice
of small bin widths, and smoother looking blocks if the bins have larger widths.
The decisive influence of this parameter should be kept in mind as we inch our way
toward the introduction of our favorite density estimation procedure.

For the time being, we limit ourselves to the following remark: building a his-
togram is done by piling up rectangles. Given the choice of the subdivision of the
range of the data into intervals of equal lengths (the so-called bins), the contribution
of any given observation is a rectangle of height 1/(nb) (where n is the population
size and b is the bin width), the rectangle being set on top of the bin in which the
observation falls. In particular, if many observations fall near the boundary of a bin,
the piling up of these rectangles will create an undesirable effect which we illustrate
with one possible instance of this shortcoming. Let us assume that the bins have
been chosen to be the unit intervals [0, 1), [1, 2), [2, 3), . . ., [5, 6), and let us assume
that the data is comprised of 6 × 8 = 48 points grouped in 8’s around each of the
integers 1, 2, 3, 4, 5 and 6, in such a way that for each of these integers, four of the
data points are smaller than (and very close to), the other four (still very close) being
greater than the integer in question. Obviously, the distribution of the points shows
a periodic regularity, and one would want the density estimator to account for it: the
high concentration of points near the integers should be reflected in the presence of
high values for the density, while this same density should vanish in the middle of the
inter-integer intervals which are empty of data points. Unfortunately, our histogram
will completely miss this pattern. Indeed, the bins having been chosen as they were,
the histogram is flat throughout the interval [0, 6) leading us (misleading us should I
say!) to believe that the distribution is uniform over that interval.

One possible way out of this problem is to center the bins around the observation
values. Doing so is just computing the kernel density estimator proposed below with
the particular choice of the box kernel function !!!

1.2.4 Kernel Density Estimation

Given a sample x1, . . . , xn from a distribution with (unknown) density f(x), the
formal definition of a kernel density estimator of f is the function f̂b defined by:

f̂b(x) =
1

nb

n∑
i=1

K

(
x− xi
b

)
(1.28)

where the function K is a given non-negative function which integrates to one (i.e.
a probability density function) which we call the kernel, and b > 0 is a positive
number which we call the bandwidth. The interpretation of formula (1.28) is simple.
Over each point xi of the sample, we center a scaled copy of the kernel function K ,
and the final density estimate is the superposition of all these “bumps”. The division
by nb guarantees that the total mass is one (i.e. the integral of f̂b(x) is one.)
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1.2.4.1 Univariate Kernel Density Estimation in R

The function provided by R for univariate kernel density estimation is density. As
in the case of the function hist, most of the parameters are given default values by
the program. However, mostly for the sake of completeness, we mention the meaning
and the role of some of the most important parameters. The bandwidth parameter b
of formula (1.28) is given by the product of the parameters bw and adjust. The
latter is equal to 1 by default while the default value of the former is specified as
the value of an asymptotically optimal formula. However, the user can choose what-
ever values he or she pleases for these two parameters. The kernel estimate fb(x)
given by (1.28) is computed at n equally spaced values of x. The program chooses
n=512 by default, but the parameter n can be user specified. Also, the values of x
at which the density is computed can be chosen by specifying the parameters from
and to which determine (together with n) the entire grid of x-values where the den-
sity is computed. The function density returns a list whose components include
the vector x of points where the density function has been computed, the vector y of
the values on the estimate of the density function. See the help file for details of the
components returned by this function. For the purpose of illustration and compari-
son with the earlier histogram computations, we produce density estimates for the
Calpine daily log returns. We use the Gaussian kernel and two different bandwidths.

> par(mfrow=c(1,2))
> DENS <- density(CPNLRet,bw=.1)
> plot(DENS$x,DENS$y,type="l",main="KDE with bw=.1")
> DENS <- density(CPNLRet,bw=5)
> plot(DENS$x,DENS$y,type="l",main="KDE with bw=5")
> par(mfrow=c(1,1))

each call to the function density returns a list which we call DENS, and in each
case we extract the x and y components with the dollar sign and we plot them with
the command plot. The results are given in Fig. 1.17. They are strikingly different.
Indeed the scales on the horizontal axes as well as on the vertical axes are very differ-
ent, and any attempt to super-impose these two graphs on the same plot would flatten
one of them. Notice that, a small value of the bandwidth gives a sharp peak around
the bulk of the data, while a larger bandwidth gives a smoother curve and a larger
spread for the mass distribution. For the sake of comparison, we plot a histogram and
a kernel density estimate of the same daily log return data CPNLRet on the same
graph. We do this with the following commands.

> DENS <- density(CPNLRet)
> hist(CPNLRet,breaks=25,col="blue",freq=F,ylim=c(0,15),

main="Histogram and Kernel Density Estimator of CLPLRet")
> lines(DENS$x,DENS$y)

The results are given in Fig. 1.18. It is important to choose the option freq=F to
ensure that the histogram is normalized as a probability density. This guarantees that
the two estimates are on the same vertical scale. We also forced the limits of the
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Fig. 1.17. Kernel density estimates of the daily log returns on the Calpine stock with Gaussian
kernel and bandwidths equal to 0.1 (left) and 5 (right)

Fig. 1.18. Histogram and kernel density estimate of the daily log returns on the Calpine stock

vertical axis by setting the parameter ylim to guarantee that the graph of the kernel
density estimate will not leak out of the plot.

Figure 1.18 illustrates perfectly the advantages and the limitations of the kernel
density estimator. First and most importantly, it produces a smooth curve which has
a more pleasing look than the histogram. However, it has the same problem with the
extreme observations: they are poorly accounted for, especially if the bandwidth is
too large. Indeed, too large a bandwidth can smooth features out of the picture!

The kernel functionsK(x) used in the kernel density estimation functiondensity
is specified by a string of characters assigned to the parameter kernel. There are
seven possible choices. We give the plots of four of these possible kernel functions
in Fig. 1.19. The interested reader is invited to look at the help file of the function
density to find out about the other three options.
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1.2.4.2 Comparison with the Histogram

Both histogram and kernel estimates start from a data sample x1, x2, . . ., xn. In
order to construct a histogram, we choose an origin and n bins, and we define the
histogram as the graph of the function:

x ↪→ Hist(x) =
1

n

n∑
i=1

θ(x, xi) (1.29)

where θ(x, xi) = 1/b if x and xi belong to the same bin, and 0 otherwise (remember
that we use the notation b for the width of the bins.) Notice that definition (1.28) of
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Fig. 1.19. Graphs of four of the kernel functions used by the R function density. Top left:
rectangular kernel. Top right: triangular kernel. Bottom left: cosine kernel. Bot-
tom right: gaussian kernel

the kernel density estimator has exactly the same form as the re-formulation (1.29)
of the definition of the histogram, provided we re-define the function θ(x, xi) by:

θ(x, xi) =
1

b
K

(
x− xi
b

)
.

The similarity is striking. Nevertheless there are fundamental differences between
these two nonparametric density estimation methods.
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• First, at the level of the “bumps”: they are rectangular for the histogram, while
their shape is given by the graph of the kernel functionK(x) rescaled by b in the
case of the kernel estimate;

• At the level of the locations of the bumps: these locations are fixed more or less
independently of the data for the histogram, while they are centered around the
data points in the case of the kernel estimate;

• At the level of the smoothness of the resulting density estimate: It is determined
by the number (and size) of the bins in the case of the histogram while it is
determined by the value of the bandwidth b > 0 in the case of the kernel estimate.

1.2.4.3 Still Another Example

The goal of this subsection is to review the two methods of nonparametric density
estimation discussed in this chapter by testing them on another data set. We choose
the S&P 500 index for purpose of illustration. The data comprise the series of daily
closing values of the S&P 500 index over the period ranging from January 3, 1950 to
August 20, 2010. Figure 1.20 gives a sequential plot of these values, together with the
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Fig. 1.20. Daily S&P 500 closing prices as imported from the Web (left) and daily log-returns
over the same period (right)

series of the daily log-returns. Notice that in computing the returns, we ignored the
fact that the returns are actually computed over periods of different lengths. Indeed
we ignore the presence of weekends, typically when Monday’s close follows the
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preceding Friday’s close, and we use the quotes as if they were from consecutive
days. We also ignored holidays and days the market was closed, like the week of
September 11, 2001 of the terrorist attack on New York.

The other important point which needs to be made at this stage is that we are
not interested in the time evolution of the values of the series, but instead, in the
distribution of these values on a given day. In other words, instead of worrying about
how the value on a given day depends upon the values on previous days, we care
about statistics which would not change should we modify the order of the entries
of the data vector. This seems to be quite a reasonable requirement in the case of the
log-returns of the right pane of Fig. 1.20. We use the commands:

> hist(DSPLRet,col="blue",freq=F,ylim=c(0,30))
> DENS <- density(DSPLRet, adjust=12)
> lines(DENS)

to produce Fig. 1.21. As before, we use the option freq=F to force the area of
the histogram to be one, so it will be on the same vertical scale as the kernel den-
sity estimate computed next. Also, we set the parameter ylim to force the limits
on the vertical axis to be 0 and 30 so as to make sure that the kernel density es-
timate will be plotted inside the plot area. The parameter adjust, whose default
value is 1, is a multiplicative factor which is used to modify the bandwidth. The
bandwidth used by the function density is actually adjust times the default
bandwidth. We set it to 12 because the result of the density estimation with the de-
fault bandwidth was producing a curve too peaked around 0. Notice also that we
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Fig. 1.21. Histogram and kernel density estimates of the daily log-returns of the S&P 500
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used the command lines(DENS) instead of lines(DENS$x,DENS$y) which
we used before.They are equivalent because DENS has two components, DEN$x and
DENS$y.

The histogram reproduced in Fig. 1.21 is not satisfactory for two related rea-
sons. First it gives very little information about the center of the distribution, the two
central bars capturing too much of the information. Second, the extreme values to
the left and to the right of the distribution do not appear because they are in such
small numbers that the heights of the bars they create are too small compared to the
heights of the central bars, for the former to be visible. Because of this shortcoming,
we decided to use the kernel method as an alternative to the histogram, but despite
a smoother look, the same problem plagues the estimate: the contributions of both
ends of the distribution (which we call tails) to the graph are overwhelmed by the
central part of the distribution.

1.2.4.4 Importance of the Choice of the Bandwidth

The choice of bandwidth can have drastic consequences on the final look of the den-
sity estimate. Figure 1.22 shows two kernel density estimates for the same sample
of daily log-returns of the S&P 500. The left pane was obtained with a bandwidth
equal to 1 while the right pane was produced with a bandwidth equal to 0.1. The
results look very different. Notice that in order to allow for a meaningful compar-
ison, we forced identical scales on the vertical axes of the two panes. This ensures
that the observed differences are not due to an artifact from the choice of axis scales.
Indeed, the plots of these two density estimates would look almost identical if we
were to let the program adjust the limits of the axes to the actual values of the func-
tions. The strong influence of the value of the bandwidth will also be emphasized in
Problem 1.2.

In any case, both histograms and kernel density estimators are unable to give
a good account of the attributes of the tails. We appeal to other graphical tools to
exhibit the tail properties in a more suggestive way.

Fig. 1.22. Kernel density estimates of the daily log-returns of the S&P 500 produced by the
R function density with bandwidths computed by setting the parameter window to 1 (left)
and 0.1 (right)
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1.2.5 Empirical Q-Q Plots

The purpose of this subsection is to show how the properties of the theoretical
Q-Q plots introduced earlier can be used to infer tail properties of the distribu-
tions from which we have sample observations. This is done by producing a Q-
Q plot of the empirical distribution of the data sample against a given theoreti-
cal distribution. Figure 1.23 shows two such Q-Q plots. It was produced with the
commands:

Fig. 1.23. Examples of Q-Q plots: normal Q-Q plot of the weekly log-returns of the S&P 500
(left) and exponential Q-Q plot of the PCS index (right)

> par(mfrow=c(1,2))
> qqnorm(WSPLRet)
> qqexp(PCS.index)
> par(mfrow=c(1,1))

The plot on the right shows the empirical percentiles of the PCS index data
against the theoretical percentiles of the exponential distribution with unit rate. This
plot was produced by the function qqexp which we wrote to this effect. On top of
the points whose coordinates are the respective percentiles, it shows a line on which
all these points would be found should the distribution of the data sample be expo-
nential. The slope of this line should be the mean of the distribution (i.e. the inverse
of the rate). Indeed, one sees from formula (1.19) that
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π(r)
q =

1

r
π(1)
q

if we denote by π(r)
q the q-percentile of the exponential distribution E(r) with rate

r. So if the quantiles on the vertical axis are the quantiles of the distribution E(r)
and the quantiles on the horizontal axis are the quantiles of the distribution E(1)
with unit rate, the corresponding points in the plane should be on the straight line
with slope 1/r which is equal to the mean of the distribution E(r). So, the fact that
the points in the rightmost part of the figure are above the line indicates that the
right tail of the distribution is thicker than the tail of the exponential distribution.
The plot on the left is for the weekly log-returns on the S&P 500 index. It uses the
function qqnormwhich we modified to add to the standard R function qqnorm, the
plot of the line whose slope and intercept determine the parameters of the Gaussian
distribution, should all the points sit on this line. This plot shows that both tails are
heavier than the tails of the normal distribution.

Q-Q plots are very useful to detect heavy tails. We shall make an extensive use
of Q-Q plots in our study of heavy tail distributions.

1.3 MONTE CARLO COMPUTATIONS

This final section gives an introduction to the general principles of random number
generation, and the basics of Monte Carlo computations of probabilities and expec-
tations. This crash course is necessary because of the special emphasis of the book
on the many modern data analysis computational techniques which rely on random
simulations.

1.3.1 Generating Random Samples in R

Recall that by a random sample of size n we mean a set of n realizations x1, · · · , xn
of independent random variablesX1, · · · , Xn with the same distribution. Notice also
the fact that we use upper cases for random variables and lower cases for actual
realizations. Finally, we often talk about a sample from a distribution, to specify the
common distribution of the random variables, and we call it a white noise when this
common distribution has mean 0.

Examples of R commands producing samples from some of the classical probability
distribution families introduced earlier are given in the second column of Table 1.2.
We refer the reader to the examples used in the text and to the help files of these
R functions for details on the names and the meanings of the parameters of these
functions. For the sake of convenience, we also add columns for the R commands to
evaluate their densities, their cdf’s and their quantiles. As we already emphasized,
the rationale behind this terminology is easy to remember: a short name for the dis-
tribution family follows a r for random samples, a d for density, a p for probability
(giving the values of the cdf) and a q for quantile.
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Distribution Random samples Density cdf Quantiles

Uniform distribution runif dunif punif qunif
Univariate normal distribution rnorm dnorm pnorm qnorm
Exponential distribution rexp dexp pexp qexp
Log-normal distribution rlnorm dlnorm plnorm qlnorm
Student t distribution rt dt pt qt
Cauchy distribution rcauchy dcauchy pcauchy qcauchy

Table 1.2. R commands for the manipulation of the classical probability distributions

We already used some of these functions when we discussed white noise vectors
in the introduction to R given in the appendix, and showed how to produce plots of
density functions or compare distributions from their theoretical Q-Q plots. As an-
other illustration, we now generate and plot samples from the Gaussian and Cauchy
distributions. We use the commands:

> GWN <- rnorm(1024)
> CWN <- rcauchy(1024)
> par(mfrow=c(2,1))
> plot(GWN, type="l")
> title("Sequential Plot of a Standard Gaussian Sample")
> plot(CWN, type="l")
> title("Sequential Plot of a Standard Cauchy Sample")
> par(mfrow=c(1,1))

The command rnorm(1024) creates a vector of length 1,024 whose entries
form a sample of size n = 1,024 from the standard normal distribution. Indeed, since
we did not specify the parametersmean and sd, the functionrnorm used the default
values which are 0 and 1 respectively. Similarly, the command rcauchy(1024)
creates a vector of length 1,024 whose entries form a sample of size n = 1,024 from
the standard Cauchy distribution. Indeed, since we did not specify the parameters
location and scale, the function rcauchy used the default values of 0 and
1. The corresponding plot is given in Fig. 1.24. These two samples look very dif-
ferent. Indeed the Cauchy distribution produces positive and negative numbers with
very large absolute values while the values in the Gaussian sample seem to remain
between −3 and +3 in line with our earlier discussion. To better understand the
huge differences between these two plots, we first need to notice the differences in
scales on the vertical axes. The relative size of the extreme values in the Cauchy
sample forces the bulk of the other points to be crammed together, giving the false
impression that they are trying to line up along the horizontal axis!!

Since we claim that the most significant differences are in the tails of the dis-
tributions, we use a Q-Q plot of the empirical distributions of the two samples in
order to make our point. It is given in Fig. 1.25. The discrepancy between the ranges
of the two samples is reflected by the fact that the line representing the diagonal is
essentially horizontal. Moreover, the points on the right and left most parts of the
plot depart from this line, showing that the tails of the distribution implied by the
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Cauchy sample are much thicker than the tails of the distribution implied by the
Gaussian sample, confirming the thrust of our discussion of the Q-Q plots of these
distributions.

Fig. 1.24. Sequential plot of 1,024 i.i.d. samples from the Gaussian distribution N(0, 1) (top)
and the Cauchy distribution C(0, 1) (bottom)

Remarks. Sequences of mean zero independent and identically distributed (i.i.d. for
short) random variables are used extensively in the context of time series where they
are called white noise sequences. This terminology explains our use of the names
GWN and CWN for Gaussian white noise and Cauchy white noise respectively.

1.3.2 Limit Theorems and Monte Carlo Computations

In this section, we explain the relevance of the two most fundamental limit theorems
of the calculus of probability to Monte Carlo computations.

1.3.2.1 The Law of Large Numbers (LLN)

The law of large numbers states that, if Y, Y1, Y2, · · · · · · is a sequence of independent
random variables of order one with the same probability distribution, then for almost
all realizations, the following limit holds true



52 1 UNIVARIATE DATA DISTRIBUTIONS

Fig. 1.25. Empirical Q-Q plot of the sample of size 1,024 from the Cauchy distributionC(0, 1)
against the sample of size 1,024 from the Gaussian distribution N(0, 1) which were plotted
sequentially in Fig. 1.24

lim
n→∞

1

n
[Y1 + · · ·+ Yn] = E{Y }. (1.30)

Recall that a random variable Y is said to be of order 1 if E{|Y |} < ∞, in which
case the expectation E{Y } exists. Remember also that even though this is the case
for essentially all the distributions we encounter in this book, it is not the case of the
Cauchy distribution. Consequently, if

y1, y2, · · · , yn
is a sample from a probability distribution with cdf F (y), and if this distribution has
a first moment in the sense that ∫

|y| dF (y) < ∞

then the sample average

y =
y1 + y2 + · · ·+ yn

n
=

1

n

n∑
j=1

yj

can be used as an approximation of the mean μ of the distribution

μ =

∫
y dF (y),
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and the larger the sample size n, the better the approximation. We can think of
y1, y2, · · · , yn as realizations of the first n random variables of an infinite sequence
Y1, Y2, · · · , Yn, · · · , of independent random variables with a common cdf F , μ be-
ing its expectation. Then the theorem explained in words can be stated mathemati-
cally as:

lim
n→∞

Y1 + Y2 + · · ·+ Yn
n

= μ,

the only thing missing being a formal definition for the convergence of the random
variables in the left hand side toward the number appearing in the right hand side.

1.3.2.2 Computations of Probabilities and Expectations

One of the most pervasive use of the law of large numbers is the following. Let us
imagine that we need to produce a numerical value for an expectation E{ψ(X)}, or
a probability of the form P{ψ(X) ≥ α} for a given number α, whereX is a random
variable (possibly multivariate) and ψ is a real valued function defined on the range
of X . In financial applications, numerical values of expectations are often needed in
pricing problems, and as we saw earlier in the chapter, probabilities enter measures
of risk computations. Notice that, if one uses the fact that the probability of an event
is equal to the expectation of the random variable which is equal to 1 when the event
occurs and 0 otherwise, replacing the function ψ by another, one easily reduces the
computation of such a probability to the computation of an expectation. Indeed, if
we define the function ψ̃ by

ψ̃(x) =

{
1 if ψ(x) ≥ α

0 if ψ(x) < α

then clearly, P{ψ(X) ≤ α} = E{ψ̃(X)}. So at the theoretical level, we only dis-
cuss Monte Carlo approximations of expected values, even though we apply the the-
oretical results to the computations of probabilities as well as expectations. Given
a sample x1, x2, · · · , xn from the distribution of X , one obtains a sample from the
distribution of the random variable Y = ψ(X) by evaluating the function ψ on the
X-sample values:

y1 = ψ(x1), y2 = ψ(x2), · · · , yn = ψ(xn)

and the Law of Large Numbers tells us that the number

ψ(x1) + ψ(x2) + · · ·+ ψ(xn)

n
=

1

n

n∑
j=1

yj

is an approximation of the desired expectation E{ψ(X)}, the larger the sample size
n, the better the approximation. Applying this result to the function ψ̃ introduced
above, we see that
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ψ̃(x1) + ψ̃(x2) + · · ·+ ψ̃(xn)

n

provides an approximation of the probability P{ψ(X) ≤ α}, but since ψ̃(xj) is ei-
ther 0 or 1, the sum in the above numerator is merely equal to the number of ones
in the sum, and by definition of ψ̃, this is the number of observations xj ’s for which
ψ(xj) ≥ α. So the Monte Carlo approximation of the probability P{ψ(X) ≤ α}
is given by the proportion of the sample x1, x2, · · · , xn for which the condition
ψ(xj) ≥ α is satisfied. In other words, the Monte Carlo approximation of the prob-
ability of an event is given by the relative frequency with which the event occurs in
the sample.

1.3.2.3 Pricing a Call Option

Let us assume that X represents the value at a future date T of an asset, and let
us assume that we need to value a European call option with maturity T and strike
K written on this underlying asset. Then, ignoring discounting issues for the sake
of simplicity (say that the interest rates are 0 for the purpose of this illustration),
according to Black-Scholes theory, the price of the option is given by the expectation
E{ψ(X)} for the particular function ψ defined by ψ(x) = max{x−K, 0} (namely
the payoff function of the option) provided we use a risk neutral, or risk adjusted
expectation. Hence the price CT,K of the call option is given by the integral

CT,K =

∫
max{x−K, 0} f (rn)

X (x) dx (1.31)

where we use the notation f (rn)
X (x) for the risk neutral density of the value of the as-

set at maturity T . The classical Black-Scholes formula derived in the appendix at the
end of the book is nothing but an expression for the value of this integral when f (rn)

X

is the density of a log-normal distribution. The lognormal case is one of a handful
of models for which one can derive an explicit formula for option prices, hence its
popularity. Unfortunately, this is not the case for most of the financial models we
would like to use. However, most financial models are amenable to Monte Carlo
computations when generating samples from the risk neutral density is feasible. For
this reason, the option price is often inferred from the Monte Carlo approximation

CT,K ≈ 1

n
[max{x1 −K, 0}+ · · ·+max{xn −K, 0}] (1.32)

computed from a random sample x1, x2, · · · , xn from the risk neutral distribution of
the asset price underlying the option. We shall use this Monte Carlo approximation
many times in the sequel.

1.3.2.4 A Numerical Example in R

We now implement the computation of the Monte Carlo approximation described
above in R. On Thursday January 27, 2005 the value of Calpine stock was S = 3.36
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USD and the short interest rate was r = 2.4%. What was the price on that day of a
2 weeks at-the-money European call option priced at σ = 60% volatility? An option
is at the money when its strike is equal to the current value of the underlying stock, in
other words when S = K . We have all the information needed to use Black-Scholes
pricing formula. For the sake of comparison, we use the home-grown R function
bscallwhose code is explained in the appendix at the end of the book, to compute
the price given by the Black-Scholes formula.

> C <- bscall(TAU=0.04, K=3.36, S=3.36, R=0.024, SIG=.6)
> C
[1] 0.1622971

We now use the algorithm described above to compute a Monte Carlo approxima-
tion to this exact Black-Scholes price. If we denote by X the value of the underlying
stock at maturity (ST in the notation used in the appendix at the end of the book),
according to the theory reviewed in the appendix, the risk neutral distribution ofX is
the log-normal distribution with mean logS+(r−σ2/2)τ and variance τσ2, and the
price of the option is given by the risk neutral expectation of the discounted expected
pay-off e−rτ max{S −K, 0}.

> TAU <- 0.04; K <- 3.36; S <- 3.36; R <- 0.024; SIG <- 0.6
> N <- 10000
> ML <- log(S) + TAU*(R-SIGˆ2/2)
> SL <- SIG*sqrt(TAU)
> XX <- rlnorm(N, meanlog=ML, sdlog=SL)
> PSIX <- pmax(XX-K,0)
> MCCall <- exp(-R*TAU)*mean(PSIX)
> MCCall
[1] 0.1623504

which is a reasonable approximation since the relative error is only of the order of
0.009.

1.3.2.5 Probability That an Option Will Eventually Be Exercised

Let us consider once more the case of a European call with strike K, but instead of
worrying about its Black-Scholes price, let us compute the probability that the option
will be exercised at maturity. Assuming that the owner of the option acts rationally,
the option is exercised when and only when the value at maturity of the underlying
asset, say X , is greater than the strike K . Hence, we need to evaluate the probability
P{X > K} as we described earlier.

NB: A very important remark is in order at this stage: because we are not trying
to price a derivative, we do not need to use risk neutral or risk adjusted probabil-
ities. Instead, we need to work with real world probabilities also called objective
probabilities. So when we generate the sample x1, · · · , xn, we need to reproduce the
historical statistics of the value of X . In other words, we need to generate a sample
from the historical distribution of X .
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1.3.2.6 A Numerical Example in R

We implement in R the second of the two applications of the Monte Carlo principle
described above, namely the computation of the probability that an European call
option will be exercised at maturity.

We work in the framework of Samuelson’s model in which stocks dynamics are
given by geometric Brownian motions. Black-Scholes option pricing theory was de-
veloped in this context. According to this model, at any time, the value of the stock is
log-normally distributed, i.e. its logarithm has a normal distribution. More precisely,
the distribution of its logarithm is

N

(
log S + τ(μ− 1

2
σ2), σ2τ

)

where μ denotes the rate of growth of the stock, and σ the historical return volatil-
ity, i.e. the standard deviation of the log-returns. For the sake of comparison, we
work with the same example as before. We compute the probability on Thursday
January 27, 2005, when Calpine’s stock was valued at S = 3.36 USD, that the
option will be exercised when it matures, and we consider the same at-the-money
European call option (i.e. with striket K = S) with time to maturity τ = 0.04. In
the present situation, we do not need to know the value the short interest rate, but we
need to know the historical rate of return μ and the historical volatility σ. Accord-
ing to Samuelson’s model, Calpine’s stock value at maturity is a random variable
say X , with a log-normal distribution with mean logS + (μ− σ2/2)τ and variance
σ2τ , and if Z is any standard normal random variable, the desired probability is
given by:

P{X > K} = P{logX > logK}
= P{logS + (μ− σ2/2)τ + σ

√
τZ > logK}

= Φ

(
log(S/K) + (μ− σ2/2)τ

σ
√
τ

)
. (1.33)

Whatever numerical method we choose for the computation of this probability
(direct evaluation using the cdf Φ or Monte Carlo approximation), we need estimates
of the rate of growth μ and the historical volatility σ in order to get a numerical result
from the above formula.

Estimation of the Parameters. In theory, the observation of a single trajectory (re-
alization) of the price should be enough to completely determine the value of the
volatility σ. This would be true if the price process St could be observed continu-
ously! Unfortunately, this cannot be the case in practice and we have to settle for an
approximation. Given observations Stj of past values of the risky asset (usually the
times tj are of the form tj = t − jδt), we use the fact that in Samuelson’s model
the random variables log(Stj/Stj+1) are independent and normally distributed with
mean (μ− σ2/2)δt and variance σ2δt. Consequently, the volatility can be estimated
by the formula:
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σ̂ =

√√√√ 1

(N − 1)δt

N−1∑
j=0

[log
Stj
Stj+1

− LS]2, (1.34)

where LS is the sample mean daily log-return

LS =
1

N

N−1∑
j=0

log
Stj
Stj+1

.

The volatility estimate provided by formula (1.34) is called the historical volatility.
Even though the corresponding estimate of the variance is unbiased, σ̂ has a bias due
to the nonlinearity of the square root function. LS provides an estimate of the rate of
growth μ. It reads:

μ̂ =
1

δt
LS +

σ̂2

2
. (1.35)

The Equity Premium Puzzle. The above discussion can be very misleading as it
seems to imply that the parameters μ and σ can be easily estimated in a very natural
manner. However, estimates of the volatility σ are usually much better than estimates
of the rate of return μ. This fact has been amply documented in the econometrics
literature, and is known under the name of the Equity Premium Puzzle (EPP for
short).

We shall momentarily ignore this important issue as the main concern of this
chapter is Monte Carlo computations. For the sake of illustration, we use the data of
the Calpine daily log returns already massaged earlier. We get:

> LN <- mean(CPNLRet)
> DELTAT <- 1/252
> SIGHAT <- sqrt(var(CPNLRet)/DELTAT)
> MUHAT <- LN/DELTAT + SIGHATˆ2/2
> MUHAT

[1] 0.1408325
> SIGHAT
[1] 0.853481

In order to compute the probability that the option is going to be exercised, we
first consider the direct method of computation based on an implementation of the
computation of the Gaussian cdf Φ. Plugging these estimates of μ and σ into formula
(1.33) we get:

> TAU <- 0.04
> S <- 3.36
> K <- S
> MN <- log(S/K)
> PROBA <- pnorm((MN + TAU*LN/DELTAT)/(SIGHAT*sqrt(TAU)))
> PROBA

[1] 0.4791264
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So the probability that the owner of the option ends up exercising her option at matu-
rity is essentially 48%. This should not be too surprising for an option at the money
and relatively short time to maturity. We should expect a small (resp. large) proba-
bility when the option is out of (resp. in) the money. A call option is said to be out of
the money (resp. in the money) if its strike is higher (resp. smaller) than the current
value of the underlying stock, in other words when S < K (resp. S > K).

Monte Carlo Computation of the same Probability. The parametric model used
in the Samuelson approach leads to formula (1.33) for the expression of the desired
probability. In this case, a Monte Carlo computation is not really needed. We never-
theless explain how to compute a Monte Carlo approximation of this probability in
order to illustrate the procedure as it can be used in many instances where one does
not have the luxury of a closed form formula. We first produce a sample from the
distribution of the stock at maturity.

> N <- 10000
> ML <- log(S) + TAU*LN/DELTAT
> SL <- SIGHAT*sqrt(TAU)
> X <- rlnorm(N, meanlog=ML, sdlog=SL)
> Y <- X>K
> MCPROBA <- mean(Y)
> MCPROBA

[1] 0.4821

The first command chooses the number N of Monte Carlo samples we plan to use
in order to compute the Monte Carlo approximation. The next two commands set
the mean ML and the standard deviation SL of the log-normal distribution. The next
command produces a numerical vector X of length N containing the sample realiza-
tions of the log-normal random variable modeling the stock price at maturity. The
value of X>K is a boolean vector with the same length as X. Its entries are equal to
TRUE (which is automatically coerced one to the number 1 when needed) when the
condition X>K is satisfied, and to FALSE (automatically coerced to 0) otherwise.
Finally we compute the desired probability as the mean of this boolean vector, i.e.
the proportion of entries of X satisfying the boolean condition. The relative error of
the Monte Carlo approximation obtained with this run is 0.6%.

The following computations illustrate in the present situation, the convergence
of the Monte Carlo approximations as predicted by the law of large numbers.

> NMAX <- 100000
> X <- rlnorm(NMAX, meanlog=ML, sdlog=SL)
> Y <- X>K
> CS <- cumsum(Y)
> MCAPPROXS <- CS/(1:NMAX)
> plot(MCAPPROXS,type="l")
> abline(h=PROBA)
> title("Convergence of Monte Carlo Approximations")

We construct a large random sample of log-normal random variables as before. We
chose to have 100,000 sample realizations for this experiment. We also construct
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the boolean vector Y as before. The difference is that we now try to compute the
Monte Carlo approximation produced by the first n Monte Carlo samples, for each
n ≤ 100,000, In order to do so, we create a vector CS which has the same length
as Y, and whose n-th entry is the sum of the first n entries of the vector Y. This is
exactly what the R function cumsum does (cumsum is short for cumulative sum).
The remaining task is to divide the n-th entry of this vector CS by n in order to
get the average of the first n entries of Y, providing in this way, the Monte Carlo
approximation based on the first n samples. This is done by dividing the vector CS
by the vector 1:NMAX of the first NMAX integers, entry by entry. Finally, note that
the command abline is used to add a horizontal line to emphasize the true value
of the probability: convergence of the approximations means that this horizontal line
should be an asymptote.

The results are given in Fig. 1.26. The plot confirms the convergence at the same
time that it shows that a residual error can persist for quite a long time.

NB. A Monte Carlo approximation is only an approximation of the true value we
are trying to compute. So it is important to have an idea of the error in question. But
contrary to most of the approximations offered by standard numerical algorithms,
Monte Carlo approximations are random. As such, they are different each time we
compute them: they depend upon the seed of the random number generator used to
produce the random samples. Hence, quantifying the error will have to be done in a
statistical sense. We tackle this problem next.
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Fig. 1.26. Sequential plot of the Monte Carlo approximations of the probability that an option
is exercised as a function of the number of Monte Carlo samples used. The horizontal line
gives the true value of the probability
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1.3.2.7 The Central Limit Theorem (CLT)

The law of large numbers tells us that the sample mean converges toward the true
mean. The central limit theorem can be viewed as a successful attempt to quantify
the rate of convergence. Indeed, the central limit theorem identifies (at least asymp-
totically) the statistical distribution of the fluctuations around the true mean. In order
to describe this result precisely, we use the set up and the notation of Sect. 1.3.2.1
above, and we assume further that the random variables Yj have a moment of or-
der 2, namely that E{Y 2

j } < ∞ and hence that their variances exist. We denote by
μ = E{Y } and σ2 = E{(Y − μ)2} the common mean and variance of the variables
Y1, Y2. · · · , Yn in the sample. The central limit theorem states that the distribution
of the random variable

Y1 + · · ·+ Yn − nμ

σ
√
n

(1.36)

converges toward the standard Gaussian distribution. In order to understand this re-
sult as information on the rate of convergence, we rewrite its conclusion in the more
intuitive form:

Y1 + · · ·+ Yn
n

− μ ≈ σ√
n
Z

where Z is a standard Gaussian random variable, i.e. Z ∼ N(0, 1). Stated in this
form, the relevance of the central limit theorem to Monte Carlo computations is
clear. As predicted by the strong law of large numbers, the error of the Monte Carlo
approximation goes to zero when the sample size n increases without bound. How-
ever, we can derive much more information from the above computation. Indeed, we
learn that the rate of convergence is of the order n−1/2. So the size of the error can
be controlled by the choice of a large sample size. Furthermore, even though the size
of Z cannot be predicted, after all it is a random variable, we know that it will be
typically in the range [−3,+3], and the only remaining way to control the error is
to lower the variance of Y . Because of the increasing importance of Monte Carlo
computations in modern scientific computing, entire research programs are devoted
to variance reduction algorithms. We list the names of some of the most commonly
used techniques.

• Stratified sampling
• Antithetic variables
• Control variates
• Importance sampling

Discussing any of these topics would take us far beyond the scope of this book. The
interested reader should consult the Notes & Complements at the end of the chapter
for bibliographical references on these variance reduction techniques.

1.3.3 Home Grown Random Samples

All scientific computing environments (R is no exception) come equipped with a
random number generator for the uniform distribution U(0, 1). We shall use this



1.3 Monte Carlo Computations 61

generator as a building block. In fact, R comes with commands for the generation of
samples from the most common parametric families of distributions. We reviewed
some of them earlier. However, realistic applications require Monte Carlo simula-
tions of quantities with more general (and less generic) statistical properties. We
now review the elementary facts of the theory of probability which underpin the
construction of random number generators, setting the stage for the development of
more sophisticated tools needed for Monte Carlo computations. The following sim-
ple mathematical facts are fundamental to the discussion of the section.

Fact 1 Given a random variable X with cdf FX , the random variable
U = FX(X) is uniformly distributed in the interval [0, 1]

This is consistent with the fact that the cdf FX can only take values between 0 and
1. The fact that the values of FX(X) are uniformly distributed is due precisely to the
definition of the cdf. Indeed, if 0 ≤ u ≤ 1, we have:

P{U ≤ u} = P{FX(X) ≤ u} = P{X ≤ F−1
X (u)} = FX(F−1

X (u)) = u. (1.37)

This argument is perfectly rigorous when the cdf FX is strictly increasing (and hence
invertible). A little song and dance is needed to make the argument mathematically
sound in the general case, but we shall not worry about such details here. So we
proved that:

FX cdf of X =⇒ U = FX(X) ∼ U(0, 1). (1.38)

This result has a very important consequence in terms of random samples. Indeed, it
implies that, if x1, · · · , xn is a sample from the cdf F , then, the sample u1, · · · , un
defined by

u1 = F (x1), · · · , xn = F (xn)

is a sample from the uniform distribution U(0, 1)! We will use this fact repeatedly in
the sequel.
The above simple mathematical result stated as Fact 1 has a far-reaching converse.
Indeed, reading (1.37) from right to left we get:

Fact 2 If U ∼ U(0, 1) and F is a cdf, then if we define the random variable X
by X = F−1(U) we necessarily have FX = F .

Indeed:

P{X ≤ x} = P{F−1(U) ≤ x} = P{U ≤ F (x)} = F (x). (1.39)

Consequently, if we want to generate a sample of size n from a distribution for
which we do not have a random number generator, but for which we can compute
the inverse F−1 of the cdf F , we only need to generate a sample from the uniform
distribution, say

u1, u2, . . . . . . , un

and then compute the inverse of the target cdf for each of these outcomes. Because
of Fact 2, the sample



62 1 UNIVARIATE DATA DISTRIBUTIONS

x1 = F−1(u1), x2 = F−1(u2), . . . . . . , xn = F−1(un),

is a typical sample from the distribution determined by the cdf F .
This very elementary fact is extremely useful, and we shall use it many times

in this book, especially to simulate extreme events. Its only limitation lies in the
actual numerical computation of the inverse cumulative distribution function F−1

also known as the quantile function. This method is not used to generate samples
from the Gaussian distribution because the inversion of the cdf Φ is numerically too
costly as compared to other existing methods which we will not discuss here. On
the other hand, it is routinely used for the generation of exponential samples. See
Problem 1.9 for details. We illustrate the details of this random generation procedure
on the example of the Cauchy distribution.

Example. Recall that a random variableX is said to have a Cauchy distribution (with
location parameter m and scale parameter λ) if X has density:

fm,λ(x) =
1

π

λ

λ2 + (x−m)2
, x ∈ R

which was defined in (1.13). Its cdf

Fm,λ(x) =
1

π

[
tan−1 x−m

λ
+

1

2

]

was already computed in formula (1.14). From this expression of the cdf, we com-
pute the quantile function:

F−1
m,λ(p) = m+ λ tan

(
pπ − π

2

)

already defined in (1.20), and consequently, the R command:

> CAUCHY <- M +LAMBDA*tan(PI*(runif(N)-.5))

will produce a vector CAUCHY of length N of Cauchy variates with location M and
scale parameter LAMBDA. We shall not use this command in the sequel because as we
explained earlier, R has a special command rcauchy for the generation of Cauchy
random samples. The above exercise was motivated by our desire to open the box on
how many random number generators are designed.

PROBLEMS

©T Problem 1.1 Let us assume that F1(x) and F2(x) are two cdf satisfying

F1(x) ≤ F2(x) for all values of x.

1. Which of these two distributions has the heavier lower tail? Explain.
2. Which of these two distributions has the heavier upper tail? Explain.
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3. If these two distributions are proposed as models for the returns of a given portfolio over
the next month, and if you are asked to compute V aR0.01 for this portfolio over that
period, which of these two distributions will give the larger value at risk?

©E Problem 1.2 1. In R, generate a sample of size N = 1,024 from the exponential distribution
with rate parameter r = 0.2. Call X the vector containing the sample values.

2. Plot on the same graph, the exact (theoretical) density of the distribution of X, and a
histogram of X. It is recommended to try several values for the numbers of bins, and to
report only the result found most satisfactory.

3. Plot on the same graph, the same theoretical density as before, together with a kernel
density estimate of the distribution of X. Again, it is recommended to try several values of
the bandwidth, and to report only the result found most satisfactory.

4. Compare the two plots and explain the reasons for the differences. Say which estimate of
the density you prefer, and explain why.

©E Problem 1.3 Give an interpretation to each of the following four Q-Q plots of Fig. 1.27.

Fig. 1.27. The two plots of the top row were produced with the R command qqnorm while
the last ones (bottom row) were produced with the command qqplot

©E Problem 1.4 1. As explained in the caption, the plots of Fig. 1.28 were produced with the R
command qqnorm. Articulate properties of the distributions of XX and YY which you
can infer from these plots.
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Fig. 1.28. Plots produced by the commands qqnorm(XX) (left) and qqnorm(YY) (right)

2. We now assume that

x1, x2, · · · · · · , xm and y1, y2, · · · · · · , yn

are two univariate samples from possibly different distributions. In each of the following
situations, sketch the Q-Q plot of Y against X as given by the R command qqplot(X,Y)
when:
2.1. x1, x2, · · ·xm is a sample from the log-normal distribution LN(0, 1), and y1,

y2, · · · yn is a sample from the Cauchy distribution C(0, 1).
2.2. x1, x2, · · ·xm is a sample from the log-normal distribution LN(0, 1), and y1,

y2, · · · yn is a sample from the Gaussian distribution N(0, 1)

Explain your answers, label the horizontal and vertical axes of your plots, and mark them
with numerical values to specify the range of your plots.

©E Problem 1.5 1. As explained in the caption, the plots of Fig. 1.29 were produced with the
R commands qqnorm and qqexp which give Q-Q plots of the empirical quantiles of
the data against the theoretical quantiles of the normal and exponential distributions
respectively. Articulate properties of the distributions of XX and YY which you can infer
from these plots.

2. We now assume that

x1, x2, · · · · · · , xm and y1, y2, · · · · · · , yn

are two univariate samples from two possibly different distributions. In each of the fol-
lowing situations, sketch the Q-Q plot of Y against X (as produced for example by the R
command qqplot(X,Y)) when:
2.1. x1, x2, · · ·xm is a sample from the ordinary Pareto distribution with shape parame-

ter ξ = 0.1, and y1, y2, · · · yn is a sample from the Cauchy distribution with location
parameter m = 0 and scale parameter λ = 1.

2.2. x1, x2, · · ·xm is a sample from the ordinary Pareto distribution with shape param-
eter ξ = 0.1, and y1, y2, · · · yn is a sample from the exponential distribution with
rate r = 1.
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Exponential Q−Q Plot

Fig. 1.29. Plots produced by the commands qqnorm(XX) (left) and qqexp(YY) (right)

The ordinary Pareto distribution is defined by its density given by formula (2.1) in Chap. 2.
Explain your answers, label the horizontal and vertical axes of your plots, and mark them
with numerical values to specify the range of your plots.

©E Problem 1.6 1. The plots of Fig. 1.30 were produced with the R command qqnorm. In each
case, infer properties of the distribution of the data from the interpretations of these plots.

Fig. 1.30. Plots produced by the commands qqnorm(YY) (left) and qqnorm(ZZ) (right)

2. In each of the following two scenarios, sketch the Q-Q plot of a bivariate sample of the
form

(x1, y1), (x2, y2), · · · · · · , (xn, yn)

when:
2.1. x1, x2, · · ·xn is a typical sample from the Gaussian distribution N(0, 1) and y1,

y2, · · · yn is a typical sample from the Cauchy distribution C(0, 1)
2.2. x1, x2, · · ·xn is a typical sample from the Gaussian distribution N(0, 1) and y1,

y2, · · · yn is a typical sample from the Gaussian distribution N(1, 4)
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Explain your answers, label the horizontal and vertical axes of your plots, and mark them
with numerical values to specify the range of your plots.

©E Problem 1.7 1. As explained in the caption, the plots of Fig. 1.31 were produced with the R
command qqnorm. Articulate properties of the distributions of XX and YY which you
can infer from these plots.

2. We now assume that

x1, x2, · · · · · · , xm and y1, y2, · · · · · · , yn

are two univariate samples from possibly different distributions. In each of the following
situations, sketch the Q-Q plot of Y against X as given by the R command qqplot(X,Y)
when:
2.1. x1, x2, · · ·xm is a typical sample from the exponential distribution E(1) with rate

1, and y1, y2, · · · yn is a typical sample from the Cauchy distribution C(0, 1)
2.2. x1, x2, · · ·xn is a typical sample from the Cauchy distribution C(0, 1) and

y1, y2, · · · yn is a typical sample from the Cauchy distribution C(1, 4).

Explain your answers, label the horizontal and vertical axes of your plots, and mark them
with numerical values to specify the range of your plots.

Fig. 1.31. Plots produced by the commands qqnorm(XX) (left) and qqnorm(YY) (right)

©E ©S Problem 1.8 1. Create a sample of size N = 128 from the standard normal distribution
and use Q-Q plots to assess the normality of the data, in other words, explain which fea-
tures oft the Q-Q plot you produce suggest that the data are from a Gaussian distribution
and which don’t.

2. Create a sample of size N = 128 from the exponential distribution with parameter 1, and
use Q-Q plots to assess as in question 1, the normality of the data. Describe and explain
the differences with the results of question 1.

©S Problem 1.9 The goal of this problem is to design and use a home-grown random number
generator for the exponential distribution. For the first question of this problem, you are not
allowed to use any of the functions dexp, pexp, qexp or obviously rexp.
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1. Recall the formulas derived in the text for the cdf Fλ(x) = P{X ≤ x} of a random
variable X with an exponential distribution with scale parameter λ > 0. and its inverse
F−1
λ and write an R function myrexp which takes the parameters N, and LAMBDA, and

which returns a numeric vector of length N containing N samples of random variates from
the exponential distribution with scale parameter LAMBDA.

2. Use your function myrexp to generate a sample of size N = 1,024 from the exponential
distribution with mean 1.5, use the R function rexp to generate a sample of the size 2N
from the same distribution, and produce a Q-Q plot of the two samples. Are you satisfied
with the performance of your simulation function myrexp? Explain why.

©T Problem 1.10 Let us assume that the c.d.f. FX(x) of a random variable X is a continuous
function of x.

1. What is the distribution of the random variable FX(X)? Give its c.d.f.
2. What can you say about the distribution of the random variable FX(−X) without having

to make any extra assumptions on the distribution of X?
3. What can you say about the distribution of the random variable FX(−X) if X is posi-

tive?

©T Problem 1.11 Let X be a random variable with probability density function given by

fX(x) =

{
αβ−αxα−1e−(x/β)α if x > 0

0 otherwise
,

where α and β are strictly positive constants. Such a random variable is said to have a Weibull
distribution with shape parameter α > 0 and scale parameter β > 0, and we denote this fact
by X ∼ W (α,β).

1. Compute the cdf. FX of X .
2. The logarithm of a Weibull random variable has a distribution known as the Gumbel

distribution (with the same parameters). Describe (in words) an algorithm to generate a
random variable having such a Gumbel distribution.

NOTES & COMPLEMENTS

The emphasis of this book is on graphical, computational and simulation methods for data
analysis, with a view toward financial applications. Most introductory statistical textbooks
spend a fair amount of time discussing the exploratory data analysis tools introduced in this
chapter. An excellent reference in this spirit is the book of Bill Cleveland [23]. For books with
applications using R, we refer the interested reader to the book of Venables and Ripley [94],
for a thorough discussion of the properties of histograms and their implementations in R. A
detailed discussion of the ASH variation can be found there. The introductory book [25] by
Dalgaard gives a low key initiation to R.

Following its introduction in the mid 1990s, several mathematical models for the dynam-
ics of the PCS index have been proposed in the literature. Most of these models try to capture
the catastrophic events’ arrivals, the initial “shocks”, and the possible revisions to the damage
estimates that arise in the ensuing weeks after a catastrophe occurs. Standard probabilistic
arguments suggest to use a model of the form:
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S(t) =

N(t)∑
i=0

Xi(t),

where S(t) is the PCS (total) index, Xi(t) is the total damage caused by the i-th catastrophe,
and N(t) is a Poisson process modeling catastrophe arrival. The catastrophe damage is further
modeled as:

Xi(t) = ζ + θ(t− (Ti − Tθ)),

where ζ is the time of the initial shock (it is usually assumed to be exponentially distributed),
θ(t) is the revision function which is zero for t < 0 and equal to κ for t ≥ 0, Ti is the arrival
time of the i-th catastrophe, Tθ is the length of time until the catastrophe damage amount is
revised (it is usually assumed to be a random variable with a Poisson distribution), and finally
κ is a random variable used for the amount of revision of the index. In order to fit such a
model, four parameters need to be estimated:

• The catastrophe arrival time: it is usually modeled as a Poisson process;
• The initial damage of the catastrophe: it is often modeled as an exponentially distributed

random variable, but it may also be modeled with a heavy tail distribution;
• The delay time for the revision: it is usually modeled as an exponential distribution;
• The revision amount.

We shall not discuss any further this ambitious, though realistic, model.
The reader interested in applications of Monte Carlo techniques to financial engineering

problems is referred to Glasserman’s book [40] which is still the state of the art in the field.
The most encyclopedic compilation of algorithms for the generation of random number with
given distributions is the classic book by De Vroye [96]. Large scale computations on modern
computers are often based on low discrepancy sequences and such computations are often
called quasi Monte Carlo.



2

HEAVY TAIL DISTRIBUTIONS

Motivated by the instances of extreme events and heavy tail distributions
encountered in the first chapter, we present the most important theoretical
results underpinning the estimation of the probabilities of these extreme and
rare events. The basics of extreme value theory are presented as they per-
tain to estimation and risk management of extremes observed in financial
applications. Our goal is to explain the connection between the general-
ized extreme value distributions and the generalized Pareto distributions,
and illustrate the implementation of the theory into a set of practical tools
for the detection and estimation of heavy tail distributions. In preparation for
some of the applications considered later in the book, the chapter concludes
with a discussion of measures of risk, both from a theoretical and a practical
point of view.

2.1 A PRIMER ON EXTREME VALUE THEORY

We present the parametric families of Pareto and extreme value distributions, very
much in the spirit of the parametric families discussed in Chap. 1, and we show how
the properties of the latter can be used to detect and identify the characteristics of the
former.

2.1.1 Empirical Evidence of Extreme Events

We already argued that histograms and kernel density estimators could not give a
good account of the tail properties of distributions, and we insisted that Q-Q plots
offered the best graphical way to get a reasonable feeling for these properties. We
emphasize one more time the non-normality of the distribution of daily financial

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-8788-3 2, © Springer Science+Business Media New York 2014
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returns by considering their extreme values. Since we do not plan to give a precise
mathematical definition of an extreme value, we shall simply say that a value is
extreme if its distance to the mean location of the data (as given by the mean for
example) is large when measured in standard deviation units, say greater that three
or four standard deviations. For the purpose of illustration, we consider the daily log-
returns on the S&P 500 index. Their values are encapsulated in the numeric vector
DSPLRet included in the library Rsafd. Using the functions mean and sd, we
compute the mean and the standard deviation of the daily log-returns.

> mean(DSPLRet)
[1] -0.0002729406
> sd(DSPLRet)
[1] 0.009727974

Looking at the sequential plot of the daily log-return (as reproduced in the right pane
of Fig. 1.20) we notice a few very large negative values. Looking more closely at the
largest of these down-moves we see that:

> min(DSPLRet)
[1] -0.2289972
> (min(DSPLRet)-mean(DSPLRet))/sd(DSPLRet)
[1] -23.56813

which shows that this down move was over

23 standard deviations away from the mean

daily move! So much for the normal distribution as a model for the daily moves
of this index. The log-return on this single day of October 1987, as well as many
others since then (though less dramatic in sizes) cannot be accounted for if the Gaus-
sian distribution is used as a model for the daily log-returns. The tails of the normal
distribution are too thin to produce such extreme values. However, other families
of distributions could be used instead, and stable or Pareto distributions have been
proposed with reasonable success. Pareto distributions are studied in detail in this
chapter. For the time being, it suffices to say that, like Pareto distributions, stable
distributions have polynomial tails, and moreover, they have useful scaling prop-
erties. However, their usefulness as statistical models for heavy tail distribution is
limited by the fact that the rates of polynomial decay of their densities are restricted
to an interval. Moreover, their scaling properties are of very little use since at least
in the first part of the book, we are mostly interested in marginal distributions of fi-
nancial returns, and hence we rarely use dynamical models involving time evolution
of prices. Finally, the main shortcoming of the stable distributions is the lack of a
closed form formula for the density and/or the cdf. The Cauchy distribution, is the
only exception. Recall formula (1.13) for the definition of the Cauchy distribution
which is sometime used as an alternative to the Gaussian distribution in the presence
of extreme values. Indeed, like the Gaussian density, it is bell-shaped, but unlike the
Gaussian density, its tails are so thick that the moments of the distribution such as
the mathematical expectation (or mean) and the variance do not even exist.
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The theory of probability distributions giving rise to unusually large numbers
of extremes in each sample is called the theory of extreme-value distributions, or
extreme-value theory. It is a well developed mathematical theory. The remainder of
this chapter is devoted to an informal presentation of the most fundamental facts of
this theory. For the purpose of illustration we demonstrate the practical implementa-
tions in the library Rsafd, providing versatile tools to fit heavy tail distributions to
data, and generate random Monte Carlo samples from the fitted distributions.

2.1.2 Pareto Distributions

We first introduce a class of distributions which will play a fundamental role in our
modeling of heavy tails. The present subsection could have been included in the
previous chapter and provide one more example of a family of distributions. How-
ever, because of its pivotal role in the theory presented in this chapter, we chose to
introduce it here.

2.1.2.1 Ordinary Pareto Distributions

The classical Pareto distribution is a distribution on the positive axis [0,∞) (i.e. the
distribution of a positive random variable) with density given by the formula

fα(x) =

{
(1 + x

α )
−(1+α) = 1

(1+x/α)1+α if x > 0,

0 otherwise.
(2.1)

for some positive real number α > 0. Like the exponential and lognormal distribu-
tions, this distribution has only one tail extending to +∞. For this reason, it is often
called a one-sided Pareto distribution. The above definition of the one-sided Pareto
distribution can be found in many probability textbooks. For geosciences applica-
tions, especially in hydrology where heavy tail distributions were introduced first in
order to estimate the frequencies of floods, the Pareto distributions are parameterized
by α. However for some strange reason, in financial applications, these distributions
are parameterized by ξ = 1/αwhich is called the shape parameter of the distribution.
Both parametrizations are implemented in the library Rsafd, but as we concentrate
on the analysis of financial data, we shall use the ξ – parameterization in this book.
This choice is passed to the routines of the library Rsafd by setting the parameter
SHAPE.XI to TRUE. For the sake of convenience, we restate the definition of the
classical Pareto distribution using the shape parameter ξ.

fξ(x) =

{
(1 + ξx)−(1+1/ξ) = 1

(1+ξx)1+1/ξ if x > 0,

0 otherwise.
(2.2)

We shall discuss later the role of the shape parameter ξ, and when we do, we shall
emphasize that even though ξ will have to be a non-negative number in most of
the applications we are interested in, from a mathematical point of view, we can
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extend the definition of the Pareto distribution to include negative values of the shape
parameter ξ. See below for details.

In any case, it is easy to compute the cdf of an ordinary Pareto distribution in
closed form. Indeed straightforward integration gives:

Fξ(x) =

∫ x

−∞
fξ(x

′)dx′ =

{
1− (1 + ξx)−1/ξ = 1− 1

(1+ξx)1/ξ
if x > 0,

0 otherwise.

Changing location and scale, (remember our discussion of affine transformations),
we can define and study ordinary (one-sided) Pareto distributions with location
parameter m ∈ R and scale parameter λ > 0. Such a distribution is supported by
the half line [m,∞) (i.e. it is the distribution of a random variable which is always
greater than or equal to m). Its density will be denoted by fm,λ,ξ. It is given by the
formula:

fm,λ,ξ(x) =

⎧⎨
⎩

1
λ

(
1 + ξ

λ(x −m)
)−(1+1/ξ)

if x ≥ m,

0 otherwise.

As before, we can compute the corresponding cdf. It is given by:

Fm,λ,ξ(x) =

{
1− (1 + ξ x−mλ )−1/ξ = 1− 1

(1+ξ x−m
λ )1/ξ

if x > m,

0 otherwise.

2.1.2.2 More General Shape Parameters

We now consider a first generalization of the parametric family of one-sided Pareto
distributions which we shall call Generalized One-Sided Pareto distributions, GOSPD
for short. It still relies on three parameters: a location parameterm, a scale parame-
ter λ and a shape parameter ξ. The cumulative distribution function of a GOSPD is
given by

Fm,λ,ξ(x) =

{
1− (1 + ξ x−mλ

)−1/ξ
for ξ �= 0,

1− exp
{−x−m

λ

}
for ξ = 0.

(2.3)

the above formulae defining the GOSPD on the domains:

m < x ≤ m− λ/ξ for ξ < 0,
m < x ≤ ∞ for ξ ≥ 0.

In other words, we extended the family of one-sided Pareto distributions to include
distributions with a negative shape parameter ξ. This is done for the sake of general-
ity. It will not be used in the financial applications we consider in this book.

Notice that if ξ > 0, the generalized Pareto distribution with cdf Fm,λ,ξ is noth-
ing but the distribution of a random variable m + λX where X has the ordinary
Pareto distribution with parameter α provided we set ξ = 1/α as shape parameter.
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Notice also that the case ξ = 0, m = 0 corresponds to the exponential distribution
with scale parameter λ. In general, the case ξ = 0 corresponds to an exponential
distribution with scale λ shifted by the amountm, i.e. to the distribution of a random
variable X +m where X ∼ E(1/λ).

2.1.2.3 Existence of Moments (or Lack Thereof)

Another important fact concerning the size of the tail of a one sided Pareto distri-
bution (generalized or not) is given by the existence (or lack thereof) of moments.
Indeed, the above definition implies that, if X ∼ Fm,λ,ξ with ξ ≥ 0, then

E{|X |p} <∞ ⇔ p <
1

ξ
. (2.4)

Here are a few consequences for a non-negative random variableX with a one-sided
GOSPD.

• If ξ = 0, X has moments of all orders, i.e. E{Xp} <∞ for all p > 0;
• The mean of X exists (i.e. E{X} <∞) if and only if ξ < 1;
• The variance of X exists if and only if ξ < 0.5.

Figure 2.1 shows the graphs of the densities of three one-sided Pareto distribu-
tions with default values m = 0 and λ = 1 for the location and scale parameters,
and values ξ = 0.2, ξ = 1.6 and ξ = 2.5 for the shape parameter. The plots were
produced with the following commands.

> X <- seq(from=-.2,to=15,length=5000)
> plot(X,dpareto(X,xi=.2),type="l",ylab="GPD densities",

ylim=c(-.05,1.1))
> points(X,dpareto(X,xi=1.6),type="l",lty=3)
> points(X,dpareto(X,xi=2.5),type="l",lty=5)
> abline(h=0); abline(v=0)

Remark. The number of finite moments of a distribution is a good indication of
the thickness of its tail. This number has been estimated for the marginal distribu-
tion of financial returns over different periods ranging from minutes, to days, weeks,
months, . . . and there is a heated debate concerning the values of these estimates in
the so-called eocnophysics community. Indeed, it is claimed by some that this num-
ber of finite moments is universal across financial indices and asset classes. Others
use self-similarity arguments to claim that this exponent should not change with time
horizon, and that it should remain the same when computed with returns over 1 day,
1 week, 1 month, . . . The rationale behind the universality of this exponent is beyond
the scope of this book. However, we shall give examples (both in the text and in the
problem sets) indicating that this universality conjecture does not stand some of the
empirical analyzes made possible by the tools presented in this book.
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Fig. 2.1. One-sided Pareto densities with m = 0 and λ = 1 for the location and scale param-
eters, and values ξ = 0.2, ξ = 1.6 and ξ = 2.5 for the shape parameter

2.1.2.4 Implementation

As in the case of the classical distributions considered earlier, recall Table 1.2, on
can compute values of the density, quantile, and cumulative distribution functions,
as well as generating random samples with a set of functions adhering to the naming
convention used in R. They are listed in Table 2.1

Distribution Random samples Density cdf Quantiles

One-sided Pareto rpareto dpareto ppareto qpareto

Table 2.1. Rsafd commands for the manipulation of one-sided Pareto distributions

2.1.2.5 (Two-Sided) Generalized Pareto Distributions (GPD)

We now define the class of (heavy tail) distributions which we fit to sample data
exhibiting thick tails as detected by empirical Q-Q plots. At an intuitive level, our
fitting procedures will search for heavy tails (typically densities with inverse poly-
nomial decays) at +∞, and −∞ in the case of a left tail. Roughly speaking, these
distributions should behave like

• The distribution of a one-sided Pareto random variable to the right of a specific
threshold;
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• The distribution of the negative of a one-sided Pareto random variable to the left
of a specific threshold;

• Nothing special in between.

To be more specific, these distributions will be characterized by

• A location parameterm+, a scale parameter λ+ and a shape parameter ξ+ speci-
fying the one-sided Pareto distribution which applies to the right of the threshold
m+;

• A location parameter m−, a scale parameter λ− and a shape parameter ξ− spec-
ifying the one-sided Pareto distribution which applies to the left of the threshold
m− whenever the distribution has a left tail;

• Any distribution in the interval [m−,m+].

Clearly, estimating such a distribution amounts to the estimation of the three param-
eters (possibly six when the distribution has tails extending to both +∞ and −∞) of
the one sided Pareto distribution(s), and to the estimation of the density in between
the thresholds. The latter will be done by a plain histogram.

The class of (possibly two-sided) Generalized Pareto Distribution (GPD for
short) defined above is used in all the applications of extreme value theory con-
sidered in this book. The mathematical results we state and use for GPDs hold for a
slightly more general class of distributions, namely those distributions with densities
at +∞ and/or −∞ which, up to a slowly varying function (concept which we define
later), behave like inverse powers.

2.1.3 Tidbits of Extreme Value Theory

There are several ways to investigate the statistical properties of extremes. The clas-
sical approach is based on the analysis of the statistics of the maxima over large
blocks of data. It is most elegant mathematically, and we briefly review it below.
However, because it requires large data samples, and involves much too often inef-
ficient computations, the block maxima approach fell out of grace with practitioners
who prefer relying on threshold exceedance models which lead to a more efficient
use of limited data. We present the former first.

2.1.3.1 The Fisher-Tippett Theorem

As usual we start from a sample of values

x1, x2, · · · · · · , xn, · · ·

which we envision as realizations of independent identically distributed random vari-
ablesX1, X2, · · · · · · , Xn, · · · with a common distribution which we try to estimate.

Remark 1. Most of the results reviewed in this chapter remain valid without this inde-
pendence assumption. Indeed, under various forms of dependence between theXj’s,
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similar conclusions can be reached. These extensions have great practical relevance,
as real life data, and especially financial returns, are not strictly independent from
one period to the next. However, we refrain from considering these generalizations
by fear that their technical nature may obscure the ideas underpinning the theory.

As earlier, we use numerical statistics computed from the data in order to infer
properties of the common distribution of these random variables. The limit theorems
discussed in the first chapter are involved with the limiting behavior of the partial
sums Sn = X1 + · · · + Xn for large values of n. In particular, the Central Limit
Theorem (CLT) states that

lim
n→∞P

{
Sn −mn

λn
≤ x

}
= Φ(x), x ∈ R (2.5)

provided we define the normalizing (centering and scaling) constants mn and
λn > 0 as

mn = nμ and λn = σ
√
n

where μ and σ denote the mean and the standard deviation of the common distribu-
tion of theXj’s. Extreme Value Theory (EVT for short) is concerned with the search
of centering and scaling constants mn and λn > 0 for which limiting results of the
form (2.5) hold for some limiting distribution functions Ψ(x) when one replaces the
partial sums Sn by partial maxima

Mn = max{X1, · · · , Xn}. (2.6)

Obviously, switching from partial sums to maxima shifts the emphasis from aggre-
gation to extremes.

Remark 2. The theory presented below is geared toward the analysis of upper tails
of statistical distributions as it is formulated in terms of maxima of random samples.
Obviously, similar results hold true for minima, and the same theory can be used for
the analysis of lower tails of statistical distributions. For the sake of simplicity, we
focus our discussion on results on maxima of sequences of random variables, even
though we shall eventually turn the results of this theory into computing tools for the
analysis of both upper and lower tails of statistical distributions.

The cornerstone of the block maxima approach is the following theoretical result
known as the Gnedenko or Fisher-Tippett theorem.

Theorem 1. If the cdf

x ↪→ P

{
Mn −mn

λn
≤ x

}

converges as n→ ∞ toward a (non-degenerate) cdf for some normalizing sequences
{mn}n and {λn}n of centering and positive scaling constants, then the limiting
distribution necessarily belongs to the family of Generalized Extreme Values (GEV
for short) distributions defined below in formula (2.7).
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Before we give such a definition, we present a couple of enlightening examples, for
which the result of this theorem can be checked with elementary calculus.

The Case of the Exponential Distribution. If the Xj are independent random vari-
ables with the exponential distribution with rate r > 0, then FX(x) = 1 − e−rx for
x ≥ 0, and the cdf of normalized Mn is equal to

F(Mn−mn)/λn
(x) = FX(mn + λnx)

n = (1 − exp[−(mn + λnx)])
n

for x > −mn/λn, so that with the choices mn = (logn)/r and λn = 1/r for the
normalizing constants we get

lim
n→∞F(Mn−mn)/λn

(x) = lim
n→∞(1− 1

n
exp[−x])n = 1− exp(−e−x)

for all x ∈ R since − logn = −mn/λn. This limiting distribution is known as the
Gumbel distribution.

The Case of the Ordinary Pareto Distribution. Using the ordinary Pareto distri-
bution with shape parameter ξ > 0 instead of the exponential distribution, we can
still illustrate the result of the Fisher-Tippett-Gnedenko theorem with explicit com-
putations. Indeed, if we choose the centering and the scaling constants mn and λn
as mn = nξ − 1 and λn = ξnξ , then:

F(Mn−mn)/λn
(x) = FX(mn + λnx)

n =

(
1− 1

n
(1 +

x

α
)−α
)n

for α = 1/ξ and x > α(−1 + n−1/α), and consequently

lim
n→∞F(Mn−mn)/λn

(x) = lim
n→∞

(
1− 1

n
(1 +

x

α
)−α
)n

= exp
[
−(1 +

x

α
)−α
]

for x > −α. This distribution is known as the Fréchet distribution.

2.1.3.2 Generalized Extreme Value Distributions (EVD)

The families of extreme value distributions (EVD for short) which have been studied
in the classical statistical literature comprise the Gumbel distribution (also known
as EVI distribution), the Fréchet distribution (also known as EVII distribution), and
the Weibull distribution (also known as EVIII distribution). These three distribution
families can be combined into a single parametric family which is usually called the
Generalized Extreme Value (GEV) distribution family. Its cumulative distribution
function is given by the following formula:

Gm,λ,ξ(x) =

⎧⎪⎨
⎪⎩

exp

[
−
(
1 + ξ(x−m)

λ

)−1/ξ
]

for ξ �= 0,

exp
[
−
(
e−

(x−m)
λ

)]
for ξ = 0.

(2.7)
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A GEV distribution is characterized by three parameters: a location parameter m, a
scale parameter λ > 0, and a shape parameter ξ. In the above formula it is assumed
that:

−∞ < x ≤ m− λ/ξ for ξ < 0,
−∞ < x <∞ for ξ = 0,
m− λ/ξ ≤ x <∞ for ξ > 0.

The Gumbel distribution corresponds to the case ξ = 0, the Fréchet distribution
corresponds to the case ξ > 0, while the Weibull distribution corresponds to the case
ξ < 0.

Figure 2.2 shows the graphs of the densities of three GEV distributions with
default values m = 0 and λ = 1 for the location and scale parameters, and values
ξ = 0.2, ξ = 0.6 and ξ = 1.5 for the shape parameter. Note that the left hand point
of the distribution changes with the parameters. The plots were produced with the
following commands.

> X <- seq(from=-2.2,to=8,length=5000)
> plot(X,dgev(X,xi=.2),type="l",ylab="GEV densities",

ylim=c(-.05,.9))
> points(X,dgev(X,xi=.6),type="l",lty=3)
> points(X,dgev(X,xi=1.5),type="l",lty=5)
> abline(h=0); abline(v=0)

We use the fact that, like in the case of GPDs, the library Rsafd provides functions
to generate random samples and compute densities, cdfs and quantiles of the GEV
distributions. Table 2.2 gives these commands, and as we can see, they follow the
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Fig. 2.2. Densities of GEV distributions with m = 0 and λ = 1 for the location and scale
parameters, and values ξ = 0.2, ξ = 0.6 and ξ = 1.5 for the shape parameter
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Distribution Random samples Density cdf Quantiles

GEV distribution rgev dgev pgev qgev

Table 2.2. Commands for the manipulation of the generalized extreme value distributions

standard R naming convention. We do not give plots of densities corresponding to
negative values of ξ for they are typically not used in the analysis of financial data.

Formula (2.7) is explicit and simple enough to be inverted explicitly. Doing so,
we obtain the following formula for the quantile function of a GEV distribution.

Qm,λ,ξ(p) =

{
m− λ

ξ

[
1− (− log p)−ξ

]
for ξ �= 0,

m− λ log(− log p) for ξ = 0.
(2.8)

This closed form formula makes the generation of random samples from GEV dis-
tributions quite easy and efficient. It also shows that estimates of the quantiles of a
GEV distribution can be obtained from estimates of the parametersm, λ and ξ of the
distribution by substitution of these estimates in (2.8). We address the estimation of
the parameters of a GEV distribution later in this chapter.

Remark 3. Roughly speaking, when the Gnedenko, Fisher-Tippett theorem holds, it
says that if n is large enough

P{Mn ≤ x} ≈ Gm,λ,ξ(x)

for some set {m,λ, ξ} of parameters. But since the Xj’s are assumed to be indepen-
dent, we have

P{Mn ≤ x} = FX(x)n

and consequently
P{Mn ≤ πp} = FX(πp)

n = pn

(if we recall the notation πp for the p-quantile of the common distribution of the
Xj’s) which in turn implies that

πp ≈ m+
λ

ξ

[(
n log

1

p

)−ξ
− 1

]
.

This approximation for the quantiles of the distribution of the Xj’s should be com-
pared to the formula

πp = μ+ σΦ−1(p)

which holds in the Gaussian case. This remark should shed some light on the con-
sequences of the Gnedenko, Fisher-Tippett theorem on tail sizes and properties of
the quantiles of the common distribution of the individual random variables Xj . We
shall revisit the significance of this remark when we discuss the estimation of Value
at Risk in the presence of heavy tails.
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The Gnedenko, Fisher-Tippett theorem is a very nice theoretical result, but in
order to be useful in practical situations, we need to know for which distribution
functions FX it does hold, and even better, we need a hash table pointing out which
distributions FX lead to which GEV distributions. In mathematical terms, this last
request is screaming for the identification of the so-called domain of attraction of a
given GEV distribution. In other words, given a GEV distribution Gm,λ,ξ, can we
characterize the distribution functionsFX for which the distributions of maximaMn

converge (after proper normalization), toward the GEV distribution in question as
stated in Theorem 1. This wishful thinking is at the origin of several results of great
practical usefulness. They go under the names of Gnedenko, Pickands, Balkema and
de Haan. We state them in an informal way to avoid being distracted by the tech-
nical nature of some of the mathematical assumptions under which these results
hold. The interested reader is directed toward the Notes and Complements at the
end of the chapter for references of textbooks where these theories are presented in
detail.

2.1.3.3 Illustration

The following commands illustrate the convergence of the distribution of block max-
ima of ordinary Pareto variates toward the Fréchet distribution, fact which we proved
rigorously earlier.

> XX <- rpareto(1000000,xi=.4)
> dim(XX) <- c(1000,1000)
> MAX <- apply(XX,2,max)
> qqplot(MAX,rgev(1000,xi=.4))
> title("Q-Q Plot Evidence of Block Maxima Convergence,

xi=.4")

The first command creates a sample of size 106 of independent random samples
from the ordinary Pareto distribution with location 0, scale 1 and shape parameter
ξ = 0.4. The second command splits this sample into 1,000 blocks of lengths 1,000
each by organizing them in a 1,000 × 1,000 data matrix. The next command com-
putes the maximum of each of these blocks, creating in this way a sample of size
1,000 of maxima Mn with n = 1,000. The qqplot command produces a Q-Q plot
of this sample of maxima against a random sample from the GEV distribution with
the same shape parameter ξ = 0.4. This plot is reproduced in the left pane of Fig. 2.3.
The fact that the points line up on a straight line is an indication that we are in the
limiting regime of the theorem of Gnedenko, Pickands, Balkema and de Haan. This
fact is a particular case of a more general result which we state as a theorem for later
reference.

Theorem 2. The distribution of the maxima Mn converge after appropriate center-
ing and scaling, toward a GEV distribution with shape parameter ξ > 0 if and only
if the common cdf FX(x) of the Xj’s converges toward 1 as x → ∞ at the rate
x−1/ξ.



2.1 A Primer on Extreme Value Theory 81

0 200 400 600 800

0
10

20
30

40

MAX

rg
ev

(1
00

0,
 x

i =
 0

.4
)

Q-Q Plot Evidence of Block Maxima Convergence, xi=.4

3 4 5 6 7

−2
0

2
4

6
8

MAX

rg
ev

(1
00

0,
 x

i =
 0

)

Q-Q Plot Evidence of Block Maxima Convergence, xi=0

Fig. 2.3. Q-Q plots of a sample of 1,000 maxima over 1,000 disjoint blocks in a sample from
a GPD, against a sample from the GEV distribution with the same shape parameter. Left: case
of the Fréchet distribution with ξ = 0.4. Right: case of the Gumbel distribution (i.e. ξ = 0)
from an exponential sample with rate r = 2.0

The precise mathematical statement is that the function L(x) = x1/ξ(1− FX(x)) is
slowly varying at +∞ in the sense that

lim
x→∞

L(λx)

L(x)
= 1, for all λ > 0.

The case of the Gumbel distribution is unfortunately not as clearly delineated by a
theoretical result such as Theorem 2 above. We proved in Sect. 2.1.3.1 that the Gum-
bel distribution was the limit of the distributions of block maxima of increasing sizes
of independent exponential variates. As before, we can illustrate this theoretical fact
with the help of random simulations.

> XX <- rexp(1000000,r=2)
> dim(XX) <- c(1000,1000)
> MAX <- apply(XX,2,max)
> qqplot(MAX,rgev(1000,xi=0.0))
> title("Q-Q Plot Evidence of Block Maxima Convergence,

xi=0")

The resulting plot is reproduced in the right pane of Fig. 2.3, and as before, the fact
that the points line up on a straight line is an indication that we are in the limiting
regime of the theorem of Gnedenko, Pickands, Balkema and de Haan. The expo-
nential distribution is not the only distribution FX for which the distributions of the
block maxima converge toward the Gumbel distribution. These distributions FX are
not easily characterized. However, it can be proved that they all have finite moments
of all orders in the sense that E{Xp

j } < ∞ for all p > 0. So if the Xj’s have a
common density fX(x), then this density goes to zero faster than any inverse poly-
nomial. Exponentials do, but Gaussian and log-normal densities do as well. So in
the case ξ = 0, the information content of the fact that the limit distribution of the



82 2 HEAVY TAIL DISTRIBUTIONS

normalized block maxima is the Gumbel distribution is not as precise: we know that
the tail decays faster than any inverse polynomial, but we cannot pin-point the exact
rate of decay!

Remark. Notice that, because we are interested in extremes, and especially in rare
and unexpected large values of financial returns or losses, we shall not consider the
Weibull case ξ < 0 which forces the distribution to be limited, and prevents the tail
from extending to infinity.

2.1.3.4 Block Maxima Approach to Extreme Values Estimation

We now formulate in an algorithmic fashion, the tail size estimation procedure based
on the Gnedenko, Pickands, Balkema and de Haan theory which we reviewed earlier
and illustrated by examples. This will provide us with a natural transition to the
topics presented later on.

• In order to infer properties of the upper tail of the common distribution of the
entries of a data sample x1, x2, · · · · · · , xm, we partition the sample into blocks
B1, B2, · · · , BM , and we compute the maxima Mn = maxj∈Bn xj in each of
these blocks.

• Assuming that each block size is large enough, we treat the set {Mn}n of maxima
as a sample from a GEV distribution, and assuming that the number of blocks is
large enough, we estimate the parameters of this hypothetical GEV distribution
from the sample {Mn}n

• We infer the size of the tail of the common distribution of the xj’s (in particular
the shape parameter ξ) from the values of the estimated parameters and the results
of the Gnedenko, Pickands, Balkema and de Haan theory.

It is obvious from the second bullet point above that the inference procedure
is justified if the block size is large since we rely on an asymptotic result holding
in the limit of the block size going to ∞. Moreover, the estimation of the param-
eters of the limiting distribution also requires the blocks to be in large numbers.
Having both large blocks, and a large number of maxima, requires a very large
data set to start with. This sample size requirement is the major shortcoming of
this block maxima method. Band-aids have been suggested, the most natural one
being to use overlapping blocks. However, the gain in sample size is compensated
by a loss in accuracy since the block maxima are not independent any longer, and
as a consequence, the parameter estimation procedure looses efficiency. Quantify-
ing the effects of dependencies due to block overlap as well as in the original data
has been a concern of many researchers in the field, and the interested reader is
referred to the books mentioned in the Notes and Complements at the end of the
chapter.

For the time being, we note that the important second bullet point above stresses
the need for procedures capable of estimating the parameters of a GEV distribution.
This is the task we tackle next. Then, and only then, will we be able to implement
the block maxima method and conclude on specific tail size alternatives.
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2.2 GEV & GPD PARAMETER ESTIMATION

The previous section has singled out two distribution families playing an important
role in the analysis of extremes and heavy tails: the generalized extreme value and
Pareto distributions. It also showed the need for estimating the parameters of these
distributions. Maximum likelihood and method of moments are classical statistical
procedures frequently used in estimating parameters. This section explains how these
methods can be extended to fit these two important parametric distribution families.

2.2.1 The Method of L-Moments

Because many heavy tail distributions do not have enough finite moments (after all,
the Cauchy distribution does not even have a first moment!) the classical method of
moments cannot be used to estimate the parameters of GPD and GEV distributions.
Keeping with the spirit of this time honored estimation procedure, researchers have
devised work-arounds by renormalizing the traditional statistical moments in order
to get analogs which could be used for data with extreme values. With this simplistic
strategy in mind, we introduce the notion of theoretical L-moment.

2.2.1.1 Theoretical Definitions

L-moments are defined in terms of the so-called probability weighted moments.
These generalized moments are defined for non-negative random variables X with
finite expectations and continuous cdf F (x) in the following way. For each integer
r ≥ 0, the r-th probability weighted moment αr is defined as the number

αr = E{XF (X)r} =

∫ ∞

0

xF (x)r dF (x), r = 0, 1, 2, · · · . (2.9)

In other words, in computing the r-th probability weighted moment, we sum the
possible values x of the random variable X , but instead of weighting them by their
probability of occurrence, we weight them by this probability times the cdf F (x)
raised to the power r. Recall that assuming that X is has finite expectation means
that

E{X} =

∫ ∞

0

xdF (x) <∞,

which guarantees that all the probability weighted moments αr make sense as finite
numbers since 0 ≤ F (x)r ≤ 1.

As usual we denote the corresponding quantile function by F−1(x), and a simple
substitution in the integral appearing in (2.9) gives:

αr =

∫ 1

0

F−1(y)yrdy.
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The L-moments are defined as specific linear combinations of the probability
weighted moments with the intent to capture the descriptive features of the distri-
bution in question, namely location, dispersion and other shape parameters. The first
few L-moments are defined by the following equations

λ1 = α0 =

∫ 1

0

F−1(p) dp

λ2 = 2α1 − α0 =

∫ 1

0

F−1(p)(2p− 1) dp

λ3 = 6α2 − 6α1 + α0 =

∫ 1

0

F−1(p)(6p2 − 6p+ 1) dp

λ4 = 20α3 − 30α2 + 12α1 − α0

The coefficients of these linear combinations are nothing but the coefficients of the
“shifted Legendre polynomials”

P ∗
r−1(y) =

r∑
k=0

(−1)r−k
(
r

k

)(
r + k

k

)
yk, r = 1, 2, · · ·

For the sake of definiteness we give the values of the first four Legendre polynomials
P ∗
j (y):

P ∗
0 (y) = 1

P ∗
1 (y) = 2y − 1

P ∗
2 (y) = 6y2 − 6y + 1

P ∗
3 (y) = 20y3 − 30y2 + 12y − 1

An alternative definition of L-moments can be given in terms of order statistics. Such
form of the definition will be useful for empirical estimation from data samples. For
any given integer r ≥ 1 and sample X1, · · · , Xr of i.i.d. random variables with the
same distribution F , we use momentarily the notation

X(1:r) ≤ X(2:r) ≤ · · · · · · ≤ X(r:r)

for the order statistics which we usually denote by X(1) ≤ X(2) ≤ · · · ≤ X(r). We
use this notation to emphasize the dependence of these order statistics on the sample
size. Given these preliminaries, the r-th L-moment can be alternatively defined as

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E{X((r−k):r)}, r = 1, 2, · · · (2.10)

and using this definition we get the formulae

λ1 = E{X}
λ2 =

1

2

(
E{X(1:2)} − E{X(2:2)}

)

λ3 =
1

3

(
E{X(1:3)} − 2E{X(2:3)}+ E{X(3:3)}

)
,
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Descriptive statistics such as skewness and kurtosis play an important role in the
analysis of statistical distributions. Since they are defined in terms of moments and
their ratios, they have natural analogs in the present framework. An L-moment ra-
tio is a dimensionless quantity defined as the ratio of an L-moment to the second
L-moment. L-skewness, τ3, is the third L-moment ratio,

τ3 =
λ3
λ2
,

and L-kurtosis, τ4, is the fourth L-moment ratio,

τ4 =
λ4
λ2
.

Examples.

• For the uniform distribution U(0, 1) we have

λ1 = 1/2, λ2 = 1/6, τ3 = 0, τ4 = 0.

• In the case of the standard normal distribution N(0, 1) we have

λ1 = 0, λ2 = 1/
√
π, τ3 = 0, τ4 ≈ 0.123.

• In the case of the exponential distribution with unit rate we have

λ1 = 1, λ2 = 1/2, τ3 = 1/3, τ4 = 1/6.

2.2.1.2 First L-Moments Empirical Estimation

Given the ordered statistics

x(1) ≤ x(2) ≤ . . . ≤ x(n)

of a sample x1, x2, . . . , xn of size n, the estimate lr defined by

lr =
1(
n
r

) ∑
0≤i1<i2<...<ir≤n

r−1
r−1∑
k=0

(−1)k
(
r − 1

k

)
x(ir−k)

is an unbiased estimator of the theoretical r-th L-moment λr. Moreover, it has been
shown that lr can be computed, from the order statistics as

lr = (−1)r
r−1∑
k=0

(−1)r−k
(
r

k

)(
r + k

k

)
ak, r = 0, 1, 2, . . . (2.11)

where the numbers ak are the so-called probability weighted moments defined by
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a0 = x =
1

n

n∑
i=1

xi, ak =
1

n

n∑
j=k+1

(j − 1)(j − 2) · · · (j − k)

(n− 1)(n− 2) . . . (n− k)
x(i), k ≥ 1.

(2.12)

Notice that, consistent with our earlier discussion, the coefficients appearing in ex-
pression (2.11) are the coefficients of the shifted Legendre polynomials introduced
above.

The function sample.LMOM gives and implementation of formula (2.12). For
the sake of illustration, we compute the L-moments of a Monte Carlo sample of size
1,000 from a GPD.

> X <- rpareto(1000)
> sample.LMOM(X)
Mean (l_1) L-mom 2 (l_2) L-skewness L-kurtosis
1.0144528 0.5045187 0.3278689 0.1626310

For the sake of comparison we check with the theoretical L-moments of such a GPD.
Indeed, since the GPD with location parameter m = 0, scale parameter λ = 1, and
shape parameter ξ = 0 is nothing but the standard exponential distribution with rate
one, we already gave its L-moments L-skewness and L-kurtosis. They are

λ1 = 1, λ2 =
1

2
, τ3 =

1

3
, τ4 =

1

6
,

which shows that, at least in this case, the estimation procedure gets reasonable val-
ues for the parameters. Quite expectedly, the estimates t3 of L-skewness and t4 of
L-kurtosis computed by the function sample.LMOM are obtained as the ratios l3/l2
and l4/l2, respectively.

Important Remark. Even though a sample mean can be computed from any sample
irrespective of the distribution which governs the generation of the values appearing
in the sample, it is used as an estimator, only when the theoretical distribution is at
least of order one, namely when the mean actually exists. We recalled these facts in
our discussion of the law of large numbers in Chap. 1. In particular, the empirical
mean can always be computed for a sample from the Cauchy distribution, however,
it cannot have the interpretation of an estimate of the mean in that case. A similar
state of affairs holds in the case of L-moments. The empirical estimates introduced
in this section can always be computed. However, as we said in their introduction,
L-moments make sense only for distributions with a first moment. In particular, when
we talk about L-moments of GPDs and GEV distributions, we shall always implicitly
assume that ξ < 1 so the theoretical moment of order one does exist.

2.2.1.3 Small Sample Alternative

Because of the very definition of L-moments, estimation involves the approxima-
tion of an integral whose integrand depends upon the entire cdf. It is intuitively
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clear that the error produced by approximating the integral using a numerical
quadrature method is much smaller than the error due to the approximation of the
cdf from sample data when the sample size is small. For that reason, practition-
ers have searched for alternative estimates which could perform better with small
samples.

The following procedure was proven to give good estimates for the L-moments
of GPD in the case of small samples when the parameters γ and δ are chosen appro-
priately. It is based on the notion of plotting position. For each integer n (which will
be chosen as the size of the sample under study) the plotting positions are defined as
the numbers

pi =
i+ γ

n+ δ

and the corresponding estimates of the r-th L-moments are given by

lr =
1

n

n∑
i=1

r−1∑
k=0

(−1)r−1−k
(
r − 1

k

)(
r − 1 + k

k

)
pki xi.

It has been shown that the plotting position estimators with γ = 0.35 and δ = 0 pro-
duce good approximations of the L-moments for small GPD samples. This method is
implemented in the library Rsafd by the functionplotting.positionswhose
use is illustrated by the following display.

> X <- rpareto(50,xi = 0.4)
> PPLM <- plotting.positions(X)
> PPLM
ell_1 ell_2 tau_3 tau_4
2.0628630 1.7630784 0.7029661 0.5526929
> SLM <- sample.LMOM(X)
> SLM
ell_1 ell_2 tau_3 tau_4
2.3626477 1.7845944 0.7196471 0.5867451

2.2.1.4 Distribution Estimation by the Method of L-Moments

We now explain how estimates of the L-moments can be used to estimate the param-
eters of generalized extreme value and Pareto distributions.

2.2.1.5 Estimating the Parameters of a GEV Distribution

We now concentrate on the case of GEV distributions. Recall that, since the existence
of L-moments requires that the common distribution of the observations has at least
a first moment, we need to restrict ourselves to the case ξ < 1. Under this condition,
the L-moments of a GEV distribution can be computed in closed form, leading to the
following expressions:
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λ1 = m− λ(1 − Γ (1− ξ))

ξ
, (2.13)

λ2 = −λ(1− 2ξ)Γ (1− ξ)

ξ
, (2.14)

λ3 =
λ

ξ
(1− 3 · 2ξ + 2 · 3ξ)Γ (1 − ξ), (2.15)

where Γ (α) is the Gamma function whose definition was recalled in (1.12). Taking
the ratio of (2.15) to (2.14) we get:

τ3 =
2(1− 3ξ)

(1− 2ξ)
− 3.

Assuming that the first three L-moments λ1, λ2 and λ3 were estimated as λ̂1, λ̂2
and λ̂3 from an empirical sample, we set τ̂3 = λ̂3/λ̂2 and we plug the latter in the
above equation in lieu of τ3. Since the equation so obtained involves only the un-
known parameter ξ, we can use it to extract a value, say ξ̂, for the shape parameter ξ.
Obviously, this equation cannot be solved in a closed form, so we use a numerical
method to do so. Once this is done, the computation of the remaining estimates is
straightforward. The estimate of λ̂ is easily derived from Eq. (2.14),

λ̂ = − λ̂2ξ̂

(1− 2ξ̂)Γ (1− ξ̂)
, (2.16)

and after that, m̂ is obtained from Eq. (2.13) by

m̂ = λ̂1 +
λ̂

ξ̂

(
1− Γ (1− ξ̂)

)
. (2.17)

Remark. Since we aim at computing the values of three parameters, we should
only need three equations. Not surprisingly, the above methods requires only the
knowledge of the first two L-moments l1 and l2 and the L-skewness τ3.

The above method of L-moment estimation of a GEV distribution is implemented
in the function gev.lmom. Starting with a set of L-moments (as produced for exam-
ple by the functionssample.LMOM or even the functionplotting.positions
discussed above) this function computes estimates of the three parameters of the
GEV distribution suspected to have produced these L-moments. We demonstrate its
use with the following simulation example where we first estimate the L-moments
from a random sample from a GEV distribution which we choose.

> X <- rgev(500, lambda = 3.5, xi = 0.4)
> LMOMX <- sample.LMOM(X)
> LMOMX
ell_1 ell_2 tau_3 tau_4
4.2065658 3.9795450 0.4372888 0.3242249
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> gev.lmom(LMOMX)
$param.est

m lambda xi
0.1417766 3.4847654 0.3781168

2.2.1.6 Estimating the Parameters of a GPD

In the case of GPDs, different methods are used depending upon whether or not the
location parameter m is known. The reason for considering these two alternatives
will become clear in the next section. When using the POT method to estimate the
size of a tail, the estimation procedure consists in fitting a GPD to the exceedances
over an appropriately chosen threshold. By construction, the location parameter of
a sample of exceedances is automatically zero. If m is known, the GPD L-moment
estimators are:

ξ̂ = 2− l1
l2
, and λ̂ =

(
l1
l2

− 1

)
l1 .

Notice that, since we assume that m is known, we need to compute values for two
parameters only, and hence, two equations are sufficient. In this case, we need only
the knowledge of the first two L-moments l1 and l2 to estimate the entire GPD.

If m is unknown, we need to compute three parameters. We expect to need three
equations. However, instead of using the L-skewness as in the case of GEV distribu-
tions, the GPD L-moment estimation procedure which we implemented in Rsafd
uses the first two L-moments l1 and l2 and the first order statistics x(1). The resulting
estimates are given by the formulae:

ξ̂ = −2(n− 1)l2 − n(l1 − x(1))

(n− 1)l2 − (l1 − x(1))
, λ̂ = (1− ξ̂)(2− ξ̂)l2, and m̂ = x(1) − λ̂

n− ξ̂
,

where x(1) is the smallest value of the sample.

The above method of L-moment estimation of a GPD is implemented in the
function gpd.lmom. Starting with a set of L-moments and a value for the loca-
tion parameter m or a sample data set (from which the first order statistic will be
computed) this function computes estimates of the three parameters of the GPD
suspected to have produced these L-moments. As before, we demonstrate its use
with a simulation example where we first estimate the L-moments from a random
sample from a GPD which we choose. We give two examples, showing the re-
sults both when the location argument is provided and when the sample is provided
instead.

> X<- rpareto(500,xi = 0.4)
> SLM <- sample.LMOM(X)
> gpd.lmom(SLM,location=0)
$param.est
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m lambda xi
0.0000000 0.9178838 0.4531872
> gpd.lmom(SLM,sample=X)
$param.est

m lambda xi
0.002611717 0.912422137 0.455593845

2.2.2 Maximum Likelihood Estimation

We now present the most widely used method of parameter estimation. In the situ-
ations of interest, the parameter θ is multivariate since it comprises the location pa-
rameterm, the scale parameter λ and the shape parameter ξ, so θ = (m,λ, ξ). Since
explicit formulae for the density functions of GEV distributions and GPDs can be
derived in a straightforward manner from the definition expressions we gave in (2.7)
and (2.3), the strategy of the classical maximum likelihood estimation seems appro-
priate. The only slight difference with the classical cases handled by this method is
the fact that the domain of definition of the density function fθ changes with the
parameter. This is a minor hinderance which can be overcome in practice.

2.2.2.1 Likelihood and Log-Likelihood Functions

We first consider the case of the GEV distributions. For the sake of notation, we give
separate formulae for the cases ξ = 0 and ξ �= 0. When ξ = 0, taking derivatives of
both sides of (2.7) gives:

gm,λ,0(x) =
1

λ
e−(x−m)/λ exp[−e−(x−m)/λ] (2.18)

which implies that the likelihood of a sample x1, · · · , xn is given by

L(m,λ|x1, · · · , xn) = 1

λn
exp[− 1

λ

n∑
i=1

(x1 −m)] exp[−
n∑
i=1

e−(xi−m)/λ] (2.19)

and the corresponding log-likelihood by:

L(m,λ|x1, · · · , xn) = −n logλ+ nm− 1

λ

n∑
i=1

x1 −
n∑
i=1

e−(xi−m)/λ. (2.20)

The case ξ �= 0 leads to similar computations. The density of the GEV distribution
is given by:

gm,λ,ξ(x) =
1

λ

(
1 +

ξ

λ
(x−m)

)−(1+1/ξ)

exp

[
−
(
1 +

ξ

λ
(x−m)

)−1/ξ
]

(2.21)
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if x ≤ m− λ/ξ for ξ < 0 or x ≥ m− λ/ξ for ξ > 0, and 0 otherwise. This in turn
implies that the likelihood of a sample x1, · · · , xn is given by

L(m,λ, ξ|x1, · · · , xn) = 1

λn

n∏
i=1

(
1 +

ξ

λ
(xi −m)

)−(1+1/ξ)

exp

[
−

n∑
i=1

(
1 +

ξ

λ
(xi −m)

)−1/ξ
]

(2.22)

if max{x1, · · · , xn} ≤ m − λ/ξ for ξ < 0 or min{x1, · · · , xn} ≥ m − λ/ξ for
ξ > 0, and 0 otherwise. Finally, the corresponding log-likelihood is given by:

L(m,λ, ξ|x1, · · · , xn) = −n logλ−
(
1 +

1

ξ

) n∑
i=1

log

(
1 +

ξ

λ
(xi −m)

)

−
n∑
i=1

(
1 +

ξ

λ
(xi −m)

)−1/ξ

(2.23)

with the same domain restrictions as before. Consequently, maximum likelihood es-
timates of the parameters of a GEV distribution are obtained by solving the opti-
mization problem

(m̂, λ̂, ξ̂) = arg sup
λ>0. λ+ξ(xi−m)≥0, i=1,··· ,n

L(m,λ, ξ|x1, · · · , xn) (2.24)

The above constraints guarantee that the density is non-negative at the observations
x1, · · · , xn. Such an optimization problem could have presented difficulties years
ago, but with the advent of modern computers and the development of efficient
solvers, it can be solved in a very reliable manner on most every platforms. S and R
come with solvers for nonlinear optimization based on quasi-Newton methods. The
library Rsafd uses these solvers to produce maximum likelihood estimates of the
parameters.

Next, we consider the case of the GPDs. As before, we give separate formu-
lae for the cases ξ = 0 and ξ �= 0. The case ξ = 0 is well known since it re-
duces to the classical analysis of exponential samples. Indeed, the density function is
given by:

fm,λ,0(x) =
1

λ
e−(x−m)/λ (2.25)

if x ≥ m and 0 otherwise. This implies that the likelihood of a sample x1, · · · , xn is
given by

L(m,λ|x1, · · · , xn) = 1

λn
exp[− 1

λ

n∑
i=1

(x1 −m)] (2.26)

if min{x1, · · · , xn} ≥ m and 0 otherwise. Hence, the corresponding log-likelihood
is given by:
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L(m,λ|x1, · · · , xn) = −n logλ+
nm

λ
− 1

λ

n∑
i=1

xi (2.27)

which leads to the classical maximum likelihood estimates of the location and scale
of an exponential sample.

Computations are simpler in the case ξ �= 0. Indeed, taking derivatives on both
sides of (2.3) gives a density of the form:

fm,λ,ξ(x) =
1

λ

(
1 +

ξ

λ
(x−m)

)−(1+1/ξ)

(2.28)

if x ≤ m− λ/ξ for ξ < 0 or x ≥ m− λ/ξ for ξ > 0, and 0 otherwise. This in turn
implies that the likelihood of a sample x1, · · · , xn is given by

L(m,λ, ξ|x1, · · · , xn) = 1

λn

n∏
i=1

(
1 +

ξ

λ
(xi −m)

)−(1+1/ξ)

(2.29)

if max{x1, · · · , xn} ≤ m − λ/ξ for ξ < 0 or min{x1, · · · , xn} ≥ m − λ/ξ for
ξ > 0, and 0 otherwise. Finally, the corresponding log-likelihood is given by:

L(m,λ, ξ|x1, · · · , xn) = −n logλ−
(
1 +

1

ξ

) n∑
i=1

log

(
1 +

ξ

λ
(xi −m)

)
(2.30)

with the same domain restrictions.

2.2.2.2 MLE of the Parameters of a GPD and GEV Distributions

Maximum Likelihood Estimates (MLE for short) of the parameters of a GEV dis-
tribution and a GPD are provided by the functions gev.ml and gpd.ml. Since
by definition of a maximum likelihood estimate, the result is obtained by solving an
optimization problem, one needs to initialize the procedure with a first guess for the
set of arguments (i.e. the three parameters of the distribution family). In the gev.ml
and gpd.ml implementations, if no initial guess is provided, a vector of parameter
estimates obtained by a different method is used by the function as starting point for
the optimization routine attempting to maximize the likelihood. Indeed, if no such
argument is specified, L-moment estimates are computed by the functions gev.ml
and gpd.ml and used for initialization purposes. As in the case of L-moment
estimation, if the location parameter m of a GPD is known, it may be specified,
in which case, only the remaining two parameters will be estimated by maximum
likelihood.

As before, we demonstrate the use of the functions of the package Rsafd with a
simulation example where we choose the GEV distribution.

> X <- rgev(500, lambda = 3.5, xi = 0.4)
> gev.ml(X)



2.2 GEV & GPD Parameter Estimation 93

$param.est
m lambda xi

-0.1714924 3.4420736 0.4243908

$converged
[1] TRUE

Similarly, in the case of a GPD:

> X <- rpareto(500, lambda = 3.5, xi = 0.4)
> gpd.ml(X)$param.est
$param.est

m lambda xi
0.001238288 3.171523526 0.467466969

2.2.3 An Example Chosen for Pedagogical Reasons

It is possible to propose mathematical models for the time evolution of the PCS in-
dex. We described one of them in the Notes & Complements at the end of Chap. 1.
These models are most often quite sophisticated, and they are difficult to fit and use
in practice. Instead of aiming at a theory of the dynamics of the index, a less ambi-
tious program is to consider the value of the index on any given day, and to perform
a static analysis of its marginal distribution. This gives us a chance to illustrate how
one uses the tools introduced above to fit a Pareto distribution to the data. The pur-
pose of this exercise is to emphasize the limitations of a blind application of the
general theory, and to motivate the modifications introduced and implemented in the
following section on semi-parametric estimation.

The Q-Q plots produced in Chap. 1 clearly showed that the upper tail of the
PCS index data was heavier than the tail of the exponential distribution. We use the
function gpd.lmom to fit a GPD to the PCS.index, and we print the estimated
location, scale and shape parameters with the following commands:

> PCS.lmom <- gpd.lmom(PCS.index)$param.est
> PCS.lmom

m lambda xi
0.06824616 0.66521009 0.71314021

To visualize the properties of the fit we choose to plot the histogram of the original
data set PCS.index together with the density of the estimated GPD.

> hist(PCS.index,breaks=25,density=20,freq=F)
> X <- seq(from=-1,to=160,length=1000)
> points(X,dpareto(X,m=PCS.lmom[1],lambda=PCS.lmom[2],

xi=PCS.lmom[3]),type="l")

The plot is given in Fig. 2.4. The fit does not look very good, especially in the left
part of the plot where the histogram shows significant positive values.
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Fig. 2.4. Histogram of the PCS index, together with the density of the Pareto distribution
estimated by the method of L-moments

As we explained in the first chapter, histograms and density plots do not give a
clear picture of what is happening in the tail. So in order to check the goodness of
the fit in the tail, we generate a large random sample from the distribution fitted to
the data, and we produce a Q-Q plot of the Monte Carlo sample against the original
data set PCS.index.

> PCS.rlmom <- rpareto(n=10000,m=PCS.lmom[1],
lambda=PCS.lmom[2],xi=PCS.lmom[3])

> qqplot(PCS.index,PCS.rlmom)

The result is reproduced in the left pane of Fig. 2.5.
As with Fig. 2.4, the result is disappointing. However, the plot in Fig. 2.5 points

to a possible reason for the poor fit. Up until the large values, the quantiles of the
simulated sample seem to align reasonably well with the quantiles of PCS.index.
However the last quantile – quantile point being out of line seems to indicate that the
thickness of the tail was not captured properly by the estimated distribution. It hap-
pens often that moment estimates are not as good as maximum likelihood estimates,
so knowing that, we compute the GPD estimate produced by the function gpd.ml.

> PCS.ml <- gpd.ml(PCS.index)
> PCS.ml <- PCS.ml$param.est
> PCS.ml

m lambda xi
0.0700000 0.7095752 0.6359470
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Fig. 2.5. Q-Q-plot of the sample of the one-sided Pareto distribution generated from the pa-
rameters estimated with the method of L-moments (left) and by maximum likelihood (right)
against the original PCS index data

As before, we can try the same random generation experiment as before, using the
maximum likelihood estimates of the location, scale and shape parameter instead.

> PCS.rml <- rpareto(n=10000,m=PCS.ml[1],lambda=PCS.ml[2],
xi=PCS.ml[3])

> qqplot(PCS.index,PCS.rml)

The result shown in the right pane of Fig. 2.5 are much better, strikingly good in fact.
But a warning is in order as these results are very much dependent upon the actual
random sample generated, and as such, they vary from one Monte Carlo experiment
to another.

The following final remark uses the example of the PCS index given above to ex-
plain some of the reasons why one should not be surprised by the poor performance
of these statistical estimation procedures.

Final Remark. Fitting a parametric distribution family as specific as the Pareto fam-
ily cannot accommodate at the same time the features of the bulk of the data (i.e.
the small values of the index in the example treated above), and of the tail (i.e. the
extremely large values of the index). It is quite conceivable that the tail of the dis-
tribution has a polynomial decay while the left part of the distribution behaves in a
non-polynomial way. The estimation procedure tries to find one single set of parame-
ters to fit all the different parts of the distribution, and the resulting compromise often
penalizes the tail because by definition, the latter is represented by a small number of
data values. This conundrum is at the root of the semi-parametric approach presented
in the next section.

2.2.4 Implementation of the Block-Maxima Method

We closed the previous section with a discussion of the block-maxima method, and
we explained why its implementation required the estimation of the parameters of a
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GEV distribution. The maximum likelihood method and the method of L-moments
can now be brought to bear to solve a problem which we could not resolve then. We
use the function block.max of the package Rsafd to illustrate the performance of
the method on simulated data sets. Knowing the true shape parameter, and being able
to afford as large a data set as needed make it possible to illustrate the shortcomings
of the block-maxima method.

We first generate a sample of size n = 5,000 from the Pareto distribution with
shape parameter ξ = 0.3. In the context of daily financial data, such a sample size
would correspond approximately to 20 years worth of daily data.

Besides the data vector, the function main parameters of block.max are the
variable overlap which is 0 by default and which should be an integer between 0
and 50, and the common length of all the block passed to the function as parameter
block.size which needs to be an integer greater than or equal to 100. We study
the influence of these parameters separately.

Fig. 2.6. Block-maxima shape parameter estimate as a function of the block size, for a sample
of size 5,000 (left) and 50,000 (right). In both cases the true parameter was ξ = 0.3

The left pane of Fig. 2.6 shows the estimates ξ̂ given by the block-maxima
method when non-overlapping blocks are used. We vary the common length of the
blocks from 100 to 600 by increments of 20, and for each fixed block size, we com-
pute and plot the estimate of the shape parameter. The resulting points are scat-
tered, indicating that the method fails in most cases: either the block size is not large
enough, or when it is large enough, we do not have enough blocks to get a good
estimate of the GEV shape parameter. The right pane gives the plot of the shape
parameter estimates for the same block sizes when the data sample is 50,000. The
results are obviously much better (notice the differences of the ticks on the vertical
axes). However, if the data were arising from daily measurements, one would have
to collect 200 years worth of data to have such a sample size. Needless to say, this
does not happen often in financial applications.
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Fig. 2.7. Block-maxima shape parameter estimate as a function of the block overlap, for a
sample of size 5,000 (left) and 50,000 (right). In both cases we plotted a horizontal line at the
true value ξ = 0.3 of the parameter

The left pane of Fig. 2.7 shows the estimates ξ̂ given by the block-maxima
method when overlapping blocks are used. We vary the overlap of the blocks from 0
to 50 by increments of 2, and for each overlap, we compute and plot the estimate of
the shape parameter ξ. The results are not very good, for essentially the same reasons
as before. They improve dramatically when we increase the sample size to 50,000 as
shown in the right pane.

2.3 SEMI PARAMETRIC ESTIMATION

This section is the culmination of the density estimation procedures introduced in
this chapter. It combines the benefits of the non-parametric estimation when data are
plentiful, and of the parametric methods to estimate generalized Pareto distributions
in the tails when the latter are heavier than normal.

2.3.1 Threshold Exceedances

As before, we consider a sample x1, · · · , xn from the distribution of a random vari-
able X with cdf F which we try to estimate. In most insurance and financial appli-
cations, F is the loss distribution of a portfolio of contracts.

For any given level �, we define the excess distribution over the threshold � as the
conditional distribution of X − � given X > �. The corresponding cdf is given by

F
(x) = P{X − �| ≤ xX > �} =
F (x+ �)− F (�)

1− F (�)
, x ≥ 0.

The mean of F
 is called the mean excess over the level �, and viewed as a function
of the level �, it is called the mean excess function.
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� ↪→ e(�) = E{X − �|X > �}.
In the next section, we study risk measures computed from loss distributions.

When X represents a loss, the mean excess function gives the expected loss above a
given level �.

Examples. When F is an exponential distribution, the memoryless property implies
that the excess distribution F
 does not depend upon the level � since F
(x) ≡ F (x).
The excess distribution can also be computed explicitly in the case of GPD’s. Indeed,
for any � we have:

F
(x) =
Fm,λ,ξ(x+ �)− Fm,λ,ξ(�)

1− Fm,λ,ξ(�)

=
(1 + ξ(x+ �−m)/λ)−1/ξ − (1 + ξ(�−m)/λ)−1/ξ

(1 + ξ(x+ �−m)/λ)
−1/ξ

= 1−
[
1 + ξ(x + �−m)/λ

1 + ξ(�−m)/λ

]−1/ξ

= Fm′,λ′,ξ′(x)

with m′ = 0, λ′ = λ+ ξ(� −m) and ξ′ = ξ. So for a GPD, the excess distribution
is another GPD located at 0 and with the same shape parameter ξ. This stability
property is a remarkable property of the GPD’s. Notice also that the mean excess
function can only be defined when ξ < 1. It can be shown that in this case, it is
linear in � since

e(�) =
ξ

1− ξ
�+ cst (2.31)

as can be seen by a direct integration from the explicit form of F
(x) given above.

Empirical Estimation. Given a sample x1, · · · , xn and a level �, we denote by n

the number of xj ’s which are greater than �, i.e. the number of exceedances above

the level �, and we denote by x(e,
)1 , · · · , x(e,
)n� the actual overshoots over the level
� obtained by subtracting � from the n
 values xj ’s which are greater than �. In this

way, we can think of x(e,
)1 , · · · , x(e,
)n� as a sample from the excess distribution above
� and the excess function e(�) can be estimated by the empirical mean

ên(�) =
1

n


n�∑
j=1

x
(e,
)
j (2.32)

Formula (2.31) shows that, when the sample x(e,
)1 , · · · , x(e,
)n� comes from a GPD,
then the empirical estimate of the mean excess function given by formula (2.32)
should be approximately linear in the level �.

We now state in a rather informal way, the main theoretical result of this section.
It is known as the Balkema-de Hann-Pickands theorem. It is in the same vein as the
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main result of the block maxima approach presented in the previous section. How-
ever, the practical estimation procedure which it leads to makes a more parsimonious
use of the data, hence the reason of its success with practitioners.

Theorem 3. The distribution of the block maxima Mn converge toward a GEV with
shape parameter ξ if and only if the excess distributionF
(x) over a level � converges
uniformly in x as � increases, toward a GPD with shape parameter ξ and a scale
parameter possibly varying with �.

The above result is at the root of the Peaks Over Threshold (POT for short) method
described below. In particular, it has the following consequence. If the excess dis-
tribution F
(x) is essentially a GPD with shape parameter ξ, then the mean excess
function over the levels higher than � should be approximately linear. This justifies
the use of the mean excess plot as a diagnostic for the POT approach. This plot is
obtained by graphing the couples

(xj , ên(xj))j=1,··· ,n (2.33)

of the empirical estimate of the mean excess function computed at the sample values.
Except for the expected fact that the right most points may be randomly varying
because of the smaller number of exceedances used to compute the mean excess
estimate, this plot should show a linear trend in case the Balkema-de Hann-Pickands
theorem holds. We shall use this graphic diagnostic extensively in what follows.

2.3.1.1 Peaks Over Threshold Modelling

We now explain how the theoretical facts reviewed above can be used to estimate the
tail of a distribution function which behaves like a GPD beyond a certain threshold.
So, if we remember the disappointing results obtained in Sect. 2.2.3 when we tried to
fit a GPD to the whole PCS data, the main difference is that instead of forcing a GPD
on the entire range of the random samples, we only fit a GPD to the large values in
the sample. This seemingly innocent difference will turn out to have drastic effects
on the usefulness of the estimates.

As usual we describe the statistical procedure starting from a sample x1, · · · , xn
of realizations of random variables X1, · · · , Xn which we assume to be indepen-
dent and with the same cdf F . Our main assumption will be that the Balkema-de
Haan-Pickands result stated above as Theorem 3 applies to this distribution. In other
words, this common distribution gives rise to a distribution of block maxima con-
verging toward a GEV with shape parameter ξ. The theory presented in the previ-
ous section says that this shape parameter ξ determines the size of the upper tail
of the distribution, and controls the size and the frequency of the extreme values
occurrences.

• The first step is a graphical check that the method is appropriate for the data at
hand. Based on the rationale identified in the previous subsection, we check that
we are dealing with a generalized Pareto distribution by checking that the mean
excess plot is mostly linear (except may be for the few right most points).
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• Now, according to Balkema-de Haan-Pickands theorem, for each threshold � high
enough, the sample x(e,
)1 , · · · , x(e,
)n� of exceedances over the level � form a sam-
ple from a distribution which is uniformly close to a GPD with shape parameter
ξ and a scale parameter λ = λ(�) which may depend upon �.

• Using this sample of exceedances, we estimate the shape and scale parameters ξ
and λ by the method of L-moments, or by maximum likelihood. Let us denote by
ξ̂ the estimate of the shape parameter and by λ̂ the estimate of the scale parameter.
Note that the location estimate is irrelevant since we consider only exceedances,
so the location parameter is necessarily 0.

• The final estimate of the unknown cdf above the level � is then given by the
formula

F̂ (x) = 1− n

n

(
1 + ξ̂

x− �

λ̂

)1/ξ̂

, x ≥ � (2.34)

The rationale for this estimate is the following. If x ≥ � we have

1− F (x) = P{X > x|X ≥ �}P{X ≥ �}
= P{X − � > x− �|X ≥ �}(1− F (�))

= (1 − F
(x− �))(1 − F (�)) (2.35)

from which the choice of formula (2.34) is now clear. The factor 1 − F (�) ap-
pearing in the right hand side of (2.35) is estimated empirically by the ratio n
/n
giving the empirical frequency of the exceedances. This is usually a reasonable
estimate since by definition of the tail of a distribution, most of the data values
in the sample are below the level �. The estimate of the first factor of (2.35) is
taken from the fact that the sample of exceedances above � is a sample from a
GPD whose shape and scale parameters have been estimated.

This estimation strategy is extended in the next subsection to handle the estima-
tion of entire distributions.

2.3.2 Semi Parametric Estimation

After reviewing the classical parametric and non-parametric methods of density
estimation, we introduce our method of choice to estimate heavy tail distributions.

By definition of the tails of a distribution, most of the sample values do bundle up
in the center or bulk of the distribution. On this part of the domain, the density and
the cumulative distribution functions can efficiently be estimated by non-parametric
methods. Appealing again to the definition of the tails of a distribution, one knows
that observations in the tails, even if they end up being extreme, may not be plentiful,
and as a consequence, parametric estimation methods will make a better use of the
scarce data. This is exactly the philosophy promoted by the POT approach: identify
a threshold to the left of which the distribution can be estimated non-parametrically,
and beyond which it is estimated parametrically.
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Remark: Going beyond the Data. Another advantage of the parametric estimation
of the tails is the possibility to go beyond the data. Indeed, non-parametric meth-
ods are limited by the scope of the data. Except for minor leakage produced by the
smoothing of kernel-like methods, (especially when the bandwidth is too large) a
non-parametric estimate of a distribution will not assign probability to values which
are not part of the sample (i.e. have not been observed in the past). So in terms of ex-
treme events, nothing more extreme than what has already been observed will carry
any probability: so non-parametric methods cannot foresee events more extreme than
those that have already been observed. Parametric methods can. Indeed, having used
the data at hand to estimate the shape parameter ξ, the density estimate will extend
beyond the most extreme observed data values, and extreme events will be given a
positive probability (depending on the estimate of ξ) even if they never occurred in
the past.

Identifying the Tails. Before getting into the gory details of the estimation proce-
dures, the first question to address is:

where does the center of the distribution end, and where do the tails start?

As in most cases, common sense will be required to make sure that poor choices
do not bias the estimates of the shape parameters in a significant way. The POT im-
plementation of fit.gpd can be used without having to make this delicate choice.
If values of the thresholds are not provided, the program uses values which guar-
antee that the tail contains 15% of the points when the data set is small, and 150
observations when the original data set is large. But we should be clear on the fact
that there is no panacea, and that any automatic threshold choice will fail from time
to time. The solution we recommend is to use the plots provided by the function
shape.plot to choose the thresholds.

As we shall see throughout the remainder of this chapter, the results of many
analyzes depend upon the choices of these thresholds. So we encourage the reader
to get a sense of the sensitivities of his or her results with respect to the choices
of the thresholds. To this effect we propose an enlightening simulation example in
Problem 2.8 below. It was designed for pedagogical reasons to illustrate the pos-
sible biases in the estimates of the tail shape parameters with poor choices of the
thresholds. We show that the POT method can fail in two ways: either by not in-
cluding enough observations in the tail (this is typically the case when the absolute
value of the threshold is too large), or by including too many observations from the
center of the distribution in the tails when the absolute value of the threshold is not
large enough. This simulation example also shows that the graphical diagnostics of-
fered by the function shape.plot are our best weapon against the dangers of poor
threshold choices.

2.3.2.1 The POT Strategy

We first recall the main steps in this strategy to estimate the tail(s) of a distribution.
We concentrate on the upper tail for the sake of definiteness. Let X be a random
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variable with distributionFX , let x1, x2, . . . , xn, be a random sample of observations
of X , and let x(1) ≤ x(2) ≤ . . . ≤ x(n) be its order statistics. We assume that we
already gathered evidence (usually from descriptive statistics and plots such as Q-
Q plots) that the tail of the distribution is of a generalized Pareto type. Not only
does that implies that FX is in the domain of attraction of a GEV distribution in the
sense that the distributions of properly normalized block maxima converge toward a
GEV distribution, but the POT theory does also apply. In other words, we can use
the fact that, provided the level � is appropriately chosen, the conditional distribution
of excesses over � can be closely approximated by a GPD:

F
(x) = P{X ≤ x+ �|X > �} =
FX(� + x)− FX(�)

1− FX(�)
∼ Fm=0,λ(
),ξ(x).

As explained in formula (2.34), given a threshold level �, FX(x) is estimated by a
non-parametric empirical cdf for x ≤ �, and by a GPD for x > �. To be specific, we
choose the estimate

F̂ (x) =

⎧⎨
⎩

i−0.5
n if x(i) ≤ x < x(i+1) and x ≤ �,

1− n�

n

(
1− ξ̂(x−
)

â

)1/k̂
if x > �,

where n
 is the number of points greater than � in the sample. This estimate is im-
plemented in the function fit.gpd of the package Rsafd. Strictly speaking, the
above non-parametric part is implemented in the way described above when the op-
tional parameter linear is set to FALSE. If linear = TRUE, then F̂ (x) is lin-
early interpolated for x ≤ �.

Moreover, as we can see from a quick look at the explanations in the help file, this
function can handle distributions with two tails. In that case, instead of one single
level �, we need to identify two thresholds which we call upper and lower. The
non-parametric estimation of the cdf is now restricted to the interval limited by the
thresholds lower and upper. Furthermore, the exceedances above the threshold
upper are used as described above to estimate the shape parameter of the upper
tail, while similarly, the excursions below the threshold lower are treated in the
same way to estimate the shape parameter of the lower tail. Obviously the two shape
parameter estimates can be different, this is a result of the flexibility of the method
of estimation.

2.3.3 The Example of the PCS Index Revisited

We now revisit the estimation of the distribution of PCS.index already considered
in Sect. 2.2.3 where we attempted to fit a one-sided ordinary Pareto distribution.
Here, we try to fit a GPD with the tools of the library Rsafd. As noticed at the start
of Sect. 2.3.2, the first order of business is to choose a cut-off value to separate the
tail from the bulk of the distribution. This choice should be driven by the following
two seemingly contradictory requirements. The cut-off point should be large enough
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so that the behavior of the tail is homogeneous beyond this threshold. But at the same
time, it should not be too large, as we need enough data points beyond the threshold
to guarantee a reasonable estimation of ξ by the POT method. For the sake of the
discussion, we make a specific choice without justification, leaving the discussion of
a reasonable procedure to choose the threshold to our explanations about the function
shape.plot later in this subsection.

> PCS.est <- fit.gpd(PCS.index, tail="upper",upper=4)

This command creates an object PCS.est of class gpd which contains all we need
to know about the estimation results. As a side effect, it also generates a plot. We
reproduce the latter in Fig. 2.8. We shall also give examples of ways to extract in-
formation from the objects thus created. We used the parameter tail="upper"
because the distribution does not have a lower/left tail (remember that all the values
of the index are positive). According to our earlier discussion of the mean excess
plots, the fact that the points appearing in the left part of the plot in Fig. 2.8 are es-
sentially in a straight line is an indication that a generalized Pareto distribution may
be appropriate.
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Fig. 2.8. Mean excess plot from the use of the function fit.gpd on the PCS index data

Plotting an object of class gpd with the command plot(PCS.est) would
produce four plots: a plot of the excesses, a plot of the tail of the underlying distri-
bution, and also a scatterplot and a Q-Q plot of the residuals. Since we are mostly
interested in the second of these plots, we use instead the command tailplot to
visualize the quality of the fit. For the sake of illustration we run the commands:

> tailplot(PCS.est)

and reproduce the result in the bottom pane in Fig. 2.9. Notice that the vertical
axis is for the survival function 1 − F (x), instead of the cdf F (x). The use of the
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option optlog forces R to use the natural scale instead of the logarithmic scale
which is used by default. This is done for the first plot reproduced on the top of
Fig. 2.9. Unfortunately, the curve sticks very early to the horizontal axis and it is ex-
tremely difficult to properly quantify the quality of the fit. In other words, this plot
is not very instructive. It was given for illustration purposes only. Plotting both the
values of the index, and the values of the survival function on a logarithmic scale
makes it easier to see how well (or possibly how poorly) the fitted distribution gives
an account of the data. The second command (using the default value of the param-
eter optlog) gives the plot of the survival function in logarithmic scales. Both
plots show that the fit is very good. Our next inquiry concerns the value of the shape
parameter ξ. Remember that this number is what controls the power decay of the
density in the tail of the distribution at ∞. The choice of a threshold indicating the
beginning of the tail, forces an estimate of ξ. The value of this estimate is printed
on the plot produced by the function fit.gpd and it can be read off Fig. 2.8. Since
the location parameter is passed to the function as the (upper) threshold determin-
ing the beginning of the tail, only two parameters are fitted. The estimated values
for the parameters are included in the object PCS.est and can be extracted in the
following way:

> PCS.est@upper.par.ests
lambda xi

4.5014927 0.8027783,

the command $upper.par.ests[2] giving the single shape parameter xi.

Fig. 2.9. Plot of the tail of the GPD fitted to the PCS data together with the empirical tail given
by the actual data points, in the natural scale (top) and in logarithmic scale (bottom)
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Changing the value of the threshold upper in the call of the function fit.gpd
changes the value of the estimate of ξ, so we should be concerned with the stability
of the result: we would not want to rely on a procedure that is too sensitive to small
changes in the choice of the threshold. Indeed, since there is no obvious way to
choose this threshold, the result of the estimation of the shape parameter should
remain robust to reasonable errors/variations in the choice of this threshold. The best
way to check that this is indeed the case is graphical. It relies on the use of the
function shape.plot which gives a plot of the estimates of the shape parameter ξ
as they change with the values of the threshold used to produce these estimates. The
command:

> shape.plot(PCS.index)

produces a plot of all the different estimates of ξ which can be obtained by varying
the threshold parameter upper. This plot is reproduced in Fig. 2.10. The leftmost
part of the plot should be ignored because, if the threshold is too small, too much
of the bulk of the data (which should be included in the center of the distribution)
contributes to the estimate of the tail, biasing the result. The rightmost part of the plot
should be ignored as well because, if the threshold is too large, not enough points
contribute to the estimate. A horizontal axis was added to the upper part of the plot to
give the percentage of points included in the estimate. This information is extremely
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Fig. 2.10. PCS data shape parameter ξ (vertical axis) as function of the upper threshold (lower
horizontal axis) and the corresponding percentage of point in the subsequently defined tail
(upper horizontal axis)
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useful when it comes to deciding whether one should take seriously some of the
estimates of ξ which appear on the left and right ends of the plot. The central part of
the graph should be essentially horizontal (though not always a straight line) when
the empirical distribution of the data can be reasonably well explained by a GPD.
This is indeed the case in the present situation, and a value of ξ = 0.8 seems to be
a reasonable estimate for the intercept of a horizontal line fitting the central part of
the graph. Also from this plot we see that the particular choice upper=4 we made
for the location threshold gives a tail containing approximately 10% of the sample
points, which gives a sample of size 38 (since the size of the vector PCS.index is
381) for the estimation of the scale and shape parametersλ and ξ which is reasonable.

Our last test of the efficiency of our extreme value toolbox is crucial for risk
analysis and stress testing of stochastic systems suspected to carry extreme rare
events. It addresses the following important question: can we generate random sam-
ples from a generalized Pareto distribution fitted to a data set? The function qgpd
was included in the library Rsafd for the sole purpose of answering this ques-
tion. If X is a vector of numerical values, and gpd.object is a gpd.object, then
qgpd(gpd.object,X) gives the vector of the values computed at the entries
of X, of the quantile function (i.e. the inverse of the cdf) of the GPD whose
characteristics are given by gpd.object. If we recall our discussion in Chap. 1
of the way Monte Carlo samples from a given distribution can be generated if one
can evaluate the quantile function, we see that, replacing the numerical vector X by a
sample from the uniform distribution will give a sample from the desired distribution.
We now show how this is done in the case of the PCS index. The command

> PCSsim <- qgpd(PCS.est,runif(length(PCS.index)))

produces a random sample of the same size as the original PCS data from the GPD
fitted to the data. The plots produced by the following commands are reproduced in
Fig. 2.11.

> par(mfrow=c(1,2))
> plot(PCS[,1],PCS.index)
> plot(PCS[,1],PCSsim)
> par(mfrow=c(1,1))

When the R function plot is called with a couple of numerical vectors with the
same numbers of rows say n, as arguments, it produces a plot of n points whose
coordinates are the entries found in the rows of the two vectors. Putting next to each
other the sequential plots of the original data, and of this simulation, shows that our
simulated sample seems to have the same statistical features as the original data. This
claim is not the result of a rigorous test, but at this stage, we shall consider ourselves
as satisfied! See nevertheless Problem 2.4 for an attempt at quantifying the goodness
of fit.

2.3.4 The Example of the Weekly S&P Returns

The following analysis is very similar to the previous one, the main difference being
the presence of two tails instead of one. We include it in the text to show the details
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Fig. 2.11. PCS original data (left) and simulated sample (right)

of all the steps necessary to perform a complete analysis in this case, i.e. when the
distribution is unbounded both from above and below. We choose the thresholds
designating the end points of the tails from the output of the function shape.plot.
From the results of the command:

> shape.plot(WSPLRet, tail="two")

reproduced in Fig. 2.12 we see that 0.02 and −0.02 are reasonable choices for the
upper and lower thresholds to be fed to the function fit.gpd. So the fundamental
object of the fitting procedure is obtained using the command:

> WSPLRet.est <- fit.gpd(WSPLRet,lower=-0.02,upper=0.02)

Notice also that the shape plots in Fig. 2.12 confirm the differences in the sizes of the
left and right tails: the frequency and the size of the negative weekly log-returns are
not the same as the positive ones. The threshold parameters lower and upper do
not have to be given “opposite” values, i.e. they do not need to have the same absolute
values. This is likely to be the case for symmetric distributions, but it does not have
to be the case in general. Finally, notice that we did not have to set the parameter
one.tail by including one.tail=FALSE in the command because this is done
by default. The above command produced the two plots given in Fig. 2.13.

Both sets of points appear to be essentially in a straight line, so a generalized
Pareto distribution is a reasonable guess. Notice that the two estimates of the shape
parameter ξ are not the same. The estimates obtained from the particular choices of
the threshold parameters lower and upper are ξleft = 0.24 and ξright = −0.01.
If the distribution is not symmetric, there is no special reason for the two values of
ξ to be the same, in other words, there is no particular reason why in general the
polynomial decays of the right and left tails should be identical! As before, we can
check visually the quality of the fit by superimposing the empirical distribution of
the points in the tails onto the theoretical graphs of the tails of the fitted distributions.
This is done with the command:
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Fig. 2.12. Values of the shape parameter ξ for the right tail (top) and left tail (bottom) of the
distribution of the weekly log-returns of the S&P 500 index, as functions of the values of the
thresholds marking the ends of the tails

Fig. 2.13. Mean excess plots for the right/upper tail (top) and left/lower tail (bottom) resulting
from the fit of a GPD distribution to the weekly S&P log-return data
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Fig. 2.14. Plot of the tails of the GPD fitted to the WSPLRet data together with the empirical
tails given by the actual data points, for the upper tail (top) and the lower tail (bottom)

> tailplot(WSPLRet.est,tail="two")

which produces the plots given in Fig. 2.14, showing the results (in logarithmic scale)
for both tails. Using the quantile function qgpd(WSPLRet.est, . ) as before,
we can generate a sample of size N from the fitted distribution with the command:

> WSPLRetsim <- qgpd(WSPLRet.est,runif(N))

APPENDIX: RISK MEASURES: WHY AND WHAT FOR?

The goal of this appendix is to give a more mathematical account of the notion of
measure of risk as it emerged in the development of mathematical models for appli-
cations in the financial and insurance industries.

Historically, and especially in the financial and insurance industries, risk has been
equated to the size of the fluctuations of random outcomes as quantified by the stan-
dard deviations of these outcomes. Markowitz’ mean-variance portfolio theory is the
epitome of such a risk-reward modelling. In line with our introduction of the value
at risk, the modern approach to risk measure is based on efforts to quantify capital
requirements of financial institutions, and risk measures are now used as yardsticks
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for insurance underwriting, to allocate capital, to identify prudent investment strate-
gies and acceptable future net worths. It is now a commonly accepted view that one
should think of a risk measure as a way to estimate the

minimum extra capital which makes the future position acceptable.

Axiomatic Set-Up

The basic objects of the theory are random quantities intended to describe all the
states of nature at a future date (for example the future values of a portfolio). The
possible outcomes of these random variables represent the scenarios which could oc-
cur depending upon market changes and other random events. The set of acceptable
positions and portfolios is decided by the regulator (states of the world requiring
government resources – guarantor of last resort), an exchange or clearing firm, the
investment manager in charge of the portfolio, the board of Directors, etc. For the
purpose of illustration of the importance of heavy tail distributions in the quantifica-
tion of risk, we use a very simple model in order to capture some of the most im-
portant stylized facts needed to make our point. We only consider one period static
models and we denote by Ω the set of all possible outcomes/scenarios. A risk X is a
function onΩ giving the possible valuesX(ω) of a position at the end of the period.
The set A of acceptable risks is a subset of the set of risks satisfying a set of axioms
which will be articulated later, and a risk measure ρ is a function associating a real
number ρ(X) to each riskX . The interpretation of ρ(X) is captured in the following
bullet points:

• If ρ(X) > 0, ρ(X) is the minimum extra cash one has to add to the position (and
invest prudently in the instrument) in order to make the position acceptable;

• If ρ(X) < 0, as much as −ρ(X) can be withdrawn from the position without
making it unacceptable.

With this interpretation in mind, the following theoretical properties become natural:

• Shift Invariance for all real numberm and X

ρ(X +m) = ρ(X)−m

Intuitively, this axiom means that adding cash to a position reduces the risk by
the same amount;

• Monotonicity for all X1 and X2

if X1 ≤ X2 then ρ(X2) ≤ ρ(X1)

Intuitively, this condition means that the higher the value of the asset or portfolio,
the smaller the risk;

• Convexity for all X1 and X2 and real numbers λ1 ≥ 0 and λ2 ≥ 0 such that
λ1 + λ2 = 1,

ρ(λ1X1 + λ2X2) ≤ λ1ρ(X1) + λ2ρ(X2)
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This last axiom has a clear geometric interpretation. Financially speaking, this
axiom has a very important consequence: it implies that a measure of risk sat-
isfying this axiom should encourage diversification as the risk of an aggregate
portfolio (in the left hand side of the above inequality) is lower than the aggrega-
tion of the risks of the individual components (the above right hand side).

In modern textbooks on quantitative risk management, a risk measure satisfying
these four axioms is called a convex risk measure.

First Example

After choosing a benchmark instrument whose returns over the given horizon we
denote R and a set P of probabilities (agent beliefs) on the set Ω of outcomes, for
each (random variable) risk X we set:

ρP(X) = sup
P∈P

EP{−X/R}

The interpretation of ρP(X) is the following: for a given risk X , ρP(X) represents
the worst expected discounted loss computed from an a priori set of beliefs. So-
defined, ρP(X) is a coherent measure of risk.

Second Example: Value at Risk (VaR)

We jump in directly to the formal definition of a mathematical notion of value at risk,
referring to the discussion of Sect. 1.1.3 in Chap. 1 for a discussion of the practical
applications leading to the abstract definition in terms of quantile of a distribution.
Given a probability level p ∈ (0, 1), the value at risk V aRp (at level p and for the
given horizon) of the final net worth X is the negative of the 100p percentile of X

V aRp(X) = − inf{x; P{X ≤ x} > p}

Clearly this measure of risk is given by the amount of capital needed to make the
position X acceptable with probability 1 − p if acceptability is understood as being
positive. Value at Risk is widely used as internal risk control (in accordance with
Basel I), however in practice, it is not clear which probability to use in order to
compute the percentile quantifying the risk: should one use a quantile estimated from
historical data, or should one use a probability model calibrated to be risk neutral?
This is only one of the very many practical problems associated with the use of VaR
as a measure of financial risk.

In order to emphasize the dramatic effect that the choice of a particular distri-
bution can have, we recall the comparison of the percentiles of two distributions
presented given in Chap. 1. Choosing the probability level p = 2.5% for the sake
of definiteness, if a portfolio manager assumes that the P&L distribution is Gaus-
sian, then she will report that the value at risk is 1.96 (never mind the units, just
bear with me), but if she assumes that the P&L distribution is Cauchy, the reported
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value at risk will jump to 12.71. Quite a difference!!! This shocking example il-
lustrates the crucial importance of the choice of a model for the P&L distribu-
tion. As we just proved, this choice is not innocent, and as a consequence, open to
abuse.

VaR Computation from Empirical Data

For the sake of illustration, we give a simple example based on data already analyzed
in this chapter. We shall discuss less stylized and less contrived examples in Chap. 3
next. Even in this simple situation, several avenues are possible:

• One can use empirical VaR given by the empirical estimate of the percentile;
• One can also assume that the portfolio returns are reasonably explained by a Gaussian

model in which case we
– Estimate the mean and the variance of the sample returns;
– Compute the quantile of the corresponding Gaussian cdf;

• Finally, one can also use the tools developed earlier in the chapter to fit heavy tail distri-
butions, in which case we
– Fit a GPD to the returns;
– Compute the quantile of the estimated distribution.

To illustrate the differences between these three procedures on a specific exam-
ple, we choose the weekly S&P 500 log return data already studied in this chap-
ter. The numerical results reported in Table 2.3 were obtained by running the
commands:

> -quantile(WSPLRet,0.01)
> -qnorm(0.01,mean=mean(WSPLRet),sd=sd(WSPLRet))
> -qgpdt(WSPLRet.est,0.01)

Empirical quantile Gaussian model GPD model

V aR0.01 0.05582396 0.0471736 0.0582578

Table 2.3. One week 1% Values at Risk from the S&P 500 index data

Clearly VaR computed under the Gaussian hypothesis is the smallest of the three,
offering the most optimistic vision of the risk over a period of one week. The most
conservative vision is offered by the fit of a GPD to the weekly returns, while the
empirical VaR is reasonable because of the large size of the data set and the presence
of a few crashes. The reader is encouraged to rerun this analysis with data prior to
October 1987 to understand the role of the semi-parametric fitting procedure in the
estimation of the tail of the distribution.

The above example is still rather academic as most practical situations involve
multiple underlying instruments (baskets including stocks, bonds, and derivatives)
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or even aggregations at the fund or company level of the risk profiles of many desks
or business units. The estimation is more difficult in this case. Indeed, as we shall
see in the next chapter, estimating separately the risks of the individual desks or
units does not help much in deciding how to aggregate these risks while integrating
their interdependencies. This is a very touchy business and except for the Gaussian
case for which one can perform analytic computations, not many tools are available
and we will rely on the theory of copulas developed in Chap. 3 and on Monte Carlo
computations. In any case, we want to issue the following warning: Using a Gaus-
sian computation when heavy tails are present GROSSLY UNDERESTIMATES the
value at risk!

Troubling Example

We illustrate the main shortcomings of VaR with an example which, despite its rather
artificial nature, captures well the features of VaR which we want to emphasize. Let
us assume that the short interest rate is zero, that the spread on ALL corporate bonds
is 2%, and that corporate bonds default with probability 1%, independently of each
other. First scenario We assume that 1,000,000 is borrowed at the base rate and
invested in the bond of a single company. In this case:

V aR0.05 = −20,000

in other words, there is no risk. Second scenario Now let us assume that searching
for risk diversification, the same type of investment is set up so that 1,000,000 are
borrowed at the base rate and invested in equal parts in the bonds of 100 different
companies. Then

P{at least two companies default} > 0.18

So P{X < 0} > 0.05 and consequently V aR0.05(X) > 0 and the portfolio now
appears to be risky. In conclusion we see that

• VaR did not detect over-concentration of risk
• VaR did not encourage (in fact, it sometimes discourages) diversification

Summarizing the shortcomings of VaR we see that

• At the intuitive level VaR only captures the minimal size of a “one in a hun-
dred” event, and highlights merely the best of the rare extreme events to be
feared;

• At the mathematical level, VaR is not sub-additive, so VaR is not a convex mea-
sure of risk as it does not encourage diversification.

Conditional Value at Risk (CVaR) and Expected Shortfall (ES)

Despite its popularity, VaR’s not encouraging diversification pushed academics and
some practitioners to design and adopt risk measures free of this shortcoming. The
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natural candidate for taking over VaR is the Expected Short Fall which, while keep-
ing the spirit of VaR in considering only rare losses, takes into account the actual
sizes of these losses, something that VaR does not do. This measure of risk is also
called TailVaR or Tail Conditional Expectation

For a given probability level p, the shortfall distribution is the cdfΘp defined by:

Θq(x) = P{X ≤ x|X > V aRp}. (2.36)

This distribution is just the conditional loss distribution given that the loss exceeds
the Value at Risk at that level. The mean or expected value of this distribution is
called the expected shortfall, and is denoted by ESp. Mathematically, ESp is given
by:

ESp = E{X |X > V aRp} =

∫
x dΘp(x) =

1

q

∫
x>V aRp

x dF (x). (2.37)

It gives the expected loss size given that the loss is more extreme than VaR at the
same level. Defined this way, it fixes most of the problems of VaR

• At the intuitive level, the sizes of the losses are taken into account,
• At the theoretical level it can be proven that it is essentially a coherent measure

of risk.

A good part of risk analysis concentrates on the estimation of the value at risk V aRp
and the expected shortfall ESp of various portfolio exposures. The main difficulty
comes from the fact that the theoretical cdf F is unknown, and its estimation is ex-
tremely delicate since it involves the control of rare events. Indeed, by the definition
of a tail event, very few observations are available for that purpose. More worrisome
is the fact that the computation of the expected shortfall involves integrals which, in
most cases, need to be evaluated numerically.

PROBLEMS

©T Problem 2.1 Explain (in two short sentences) the conflicting conditions which you try to satisfy
when choosing the threshold in fitting a GPD to the tail of a distribution using the POT (Peak
over Threshold) method.

©T Problem 2.2

1. For this first question we assume that X is a random variable with standard Pareto dis-
tribution with shape parameter ξ (location parameter m = 0, scale parameter λ = 1).
1.1. Give a formula for the c.d.f. of X . Explain.
1.2. Derive a formula for the quantile function of X .
1.3. How would you generate Monte Carlo samples from the distribution of X if you only

had a random generator for the uniform distribution on [0, 1] at your disposal?
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2. Give a formula for the density fY (y) of a random variable Y which is equal to an ex-
ponential random variable with mean 2 with probability 1/3 and to the negative of a
classical Pareto random variable with shape parameter ξ = 1/2 (location m = 0 and
scale λ = 1) with probability 2/3. Explain.

3. How would you generate Monte Carlo samples from the distribution of Y ?

©T Problem 2.3 In this problem, we study the loss distribution of a portfolio over a fixed period
whose length does not play any role in the analysis. Loss is understood as the negative part of
the return defined as L = max(−R, 0). We assume that a fixed level α ∈ (0, 1) is given, and
we denote by V aRα the Value at Risk (VaR) at the level α of the portfolio over the period in
question. In the present context, this VaR is the 100(1− α)-percentile of the loss distribution.
This is consistent with the definition used in the text. The purpose of the problem is to derive
a formula for the expected loss given that the loss is assumed to be larger than the value
at risk.

1. For this question, we assume that the loss distribution is exponential with rate r.
1.1. Give a formula for the c.d.f. of L. Explain.
1.2. Derive a formula for V aRα.
1.3. Give a formula for the expected loss given that the loss is larger than V aRα. Recall

that, if a random variable X has density f , its expected value given the fact that X
is greater than or equal to a level x0 is given by the formula

1

P{X ≥ x0}

∫ ∞

x0

xf(x)dx, or equivalently

∫∞
x0

xf(x)dx∫∞
x0

f(x)dx
.

2. For this question, we assume that the loss distribution is the standard Pareto distribution
with shape parameter ξ, location parameter m = 0 and scale parameter λ = 1.
2.1. Give a formula for the c.d.f. of L. Explain.
2.2. Derive a formula for V aRα.
2.3. Give a formula for the expected loss given that the loss is larger than V aRα.

3. The expected short fall (also known as the conditional VaR) at the level α is the expected
loss conditioned by the fact that the loss is greater than or equal to V aRα. The goal of
this question is to quantify the differences obtained when using it as a measure of risk in
the two loss models considered in questions 1 and 2.
3.1. For each α ∈ (0, 1), derive an equation that the rate parameter r and the shape

parameter ξ must satisfy in order for the values of V aRα computed in questions 1.2
and 2.2 to be the same.

3.2. Assuming that the parameters r and ξ satisfy the relationship derived in question 3.1
above, compare the corresponding values of the expected short fall in the models of
questions 1 and 2 and comment on the differences.

©E Problem 2.4 This problem attempts to quantify the goodness of fit resulting from our GPD
analysis of samples with heavy tails.

1. Use the method described in the text to fit a GPD to the PCS index, and generate a Monte
Carlo random sample from the fitted distribution five times the size of the original data
sample.

2. Produce a Q-Q plot to compare graphically the two samples and comment.
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3. Use a two-sample Kolmogorov-Smirnov goodness-of-fit test to quantify the qualitative
results of the previous question. NB: Such a test is performed in R with the command
ks.test. Check the help files for details on its use and the returned values.

4. Same questions as above for the weekly log-returns on the S&P data.

©E Problem 2.5 This problem uses the data set PSPOT included in the library Rsafd. The entries
of this vector represent the daily Palo Verde (firm on peak) spot prices of electricity between
January 4, 1999 and August 19, 2002. Use exploratory data analysis tools to argue that the
tails of the distribution are heavy, fit a GPD to the data, and provide estimates of the shape
parameters.
NB: We usually refrain from talking about the distribution of a financial time series, reserving
fitting a distribution to the returns instead of the entries of the original series. You are asked
to do just that in this problem. Even though an analysis of the returns in the spirit of what is
done in the text would make perfectly good sense, a look at a time series plot of PSPOT shows
a form of stationarity of the data (to be explained later in the book) justifying the analysis
asked of you in this problem.

©E Problem 2.6 This problem requires the data set DSP. The entries of this numeric vector rep-
resent the daily closing values of the S&P 500 index between the beginning of January 1960
and September 18, 2001.

1. Compute the vector of log-returns and call it DSPLRet.
2. We now use the data set MSP. The entries of this numeric vector represent minute by

minute quotes of the S&P 500 on September 10, 1998. Compute the corresponding log-
return vector and call it MSPLRet.

3. Produce a Q-Q plot of the empirical distributions of the two log-return vectors, and com-
ment. In particular, say if what you see is consistent with the claim that the properties of
the daily series are shared by the minute by minute series. Such an invariance property is
called self-similarity. It is often encountered when dealing with fractal objects.

4. Compute the empirical means and variances of the DSPLRet and MSPLRet data. As-
suming that these data sets are Gaussian, would you say that the two distributions are the
same in view of these two statistics?

5. Fit GPDs to the DSPLRet and MSPLRet data, and compare the distributions one more
time by comparing the shape parameters.

©E Problem 2.7 This problem deals with the analysis of the daily S&P 500 index closing values.

1. Create a vector DSPRET containing the daily raw returns. Recall that the raw return on
a given day is the difference between the value on that day and the day before divided
by the value on the previous day. Compute the mean and the variance of this daily raw
return vector.

2. Fit a GPD to the daily raw returns, give detailed plots of the fit in the two tails, and
discuss your results.

3. Generate a sample of size 10,000 from the GPD fitted above. Call this sample SDSPRET,
produce a Q-Q plot of DSPRET against SDSPRET, and comment.

4. Compute the VaR (expressed in units of the current price) for a horizon of 1 day, at the
level α = 0.005 in each of the following cases:
4.1 Assuming that the daily raw return is normally distributed;
4.2 Using the object of class gpd which you created in question 2 to fit a GPD distribu-

tion to the data;
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4.3 Using the Monte Carlo sample SDSPRET you generated.
Explain the differences and the similarities between the three estimates of the VaR so
obtained.

5. Redo the questions above after replacing the vector DSPwith the vector SDSP containing
only the first 6,000 entries of DSP. Compare the results, and especially the VaR’s. Explain
the differences.

©E ©T Problem 2.8 The goal of this problem is to highlight some of the properties of the estimates
obtained with the command fit.gpd when fitting a GPD to a data sample x1, · · · , xn. We
assume that the distribution of the data has two tails (one extending to −∞ and the other
one to +∞), and we are interested in understanding the effect of the choice of the thresholds
lower and upper.
Remember that a distribution with an upper tail is a GPD if its density f(x) is well approxi-
mated in the tail by a function of the form

fξ+,m+,λ+(x) =
1

λ+ξ+
(1 +

x−m

λ+
)
−(1+ 1

ξ+
)

(2.38)

at least when x > m+ for some large enough threshold m+, where λ+ is interpreted as a
scale parameter, and where ξ+ > 0 is called the shape parameter governing the size of the
upper tail. If the distribution has a lower tail, one requires a similar behavior for x < m− for
possibly different parameters m−, λ− and ξ−.

For the purpose of the problem, we assume that the true density of the sample x1, · · · , xn

is given in Fig. 2.15. It is exactly equal to the function fξ+,m+,λ+(x) for x > 2 with
m+ = 2 and some value ξ+ > 0 (to be estimated), and equal to the corresponding func-
tion fξ−,m−,λ−(x) for x < −2 with m− = −2 and some ξ− > 0 (to be estimated as well).

Fig. 2.15. Density of the GPD from which the sample x1, · · · , xn is generated

1. What should you expect from the estimate ξ̂+ given by the function fit.gpd if you use
a threshold upper
1.1. Exactly equal to 2.
1.2. Greater than 5.
1.3. Between 0 and 1.
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2. What should you expect from the estimate ξ̂− given by the function fit.gpd if you use
a threshold lower
2.1. Exactly equal to −2.
2.2. Smaller than −8.
2.3. Between 0 and −1
and in each case, say how the estimate π̂0.01 of the 1 percentile compares to the true
value π0.01.

NOTES & COMPLEMENTS

What distinguishes our presentation of exploratory data analysis from the treatments of similar
material found in most introductory statistics books, is our special emphasis on heavy tail
distributions. Mandelbrot was presumably the first academic to stress the importance of the
lack of normality of the financial returns. See [64, 65], and also his book [66]. He proposed
the Pareto distribution as an alternative to the normal distribution. The theory of extreme
value distributions is an integral part of classical probability calculus, and there are many
books on the subject. We refer the interested reader to [29] because of its special emphasis
on insurance applications. In particular, the discussion given in the Notes & Complements
section of Chap. 1 of a possible mathematical model for the PCS index dynamics fits well in
the spirit of [29].

The Fisher-Tippett theory reviewed in this chapter was enhanced and brought to the level
of a complete mathematical theory in the fundamental works of Gnedenko. Many textbooks
give a complete account of this theory. We refer the reader to the books of Leadbetter, Lind-
gren and Rootzen [63], Resnick [79] and Embrechts, Klüppelberg and Mikosch [29]. This
last reference emphasizes the notion of maximum domain of attraction to delineate which
distributions give rise to block maxima convergence, after proper normalization, toward a spe-
cific GEV distribution. This more modern point of view is also chosen in the more recent
account of McNeil, Frey and Embrechts [72]. There are other reasons why a reader interested
in the applications of the block maxima method should consult this text. Indeed, he or she will
find there a detailed discussion of the effects of dependencies upon the estimates of the shape
of the tail. These dependencies occur in two different and non-exclusive ways: as temporal
correlation already contained in the data, or as artifacts of the overlap of blocks. Both these
issues are addressed and further references to the relevant literature are given.

The block maxima approach to the estimation of extremes has its origin in hydrology
where extreme value theory was used to study and predict flood occurrences. There the shape
parameter ξ is replaced by its negative k = −ξ. The package Rsafd gives the user the option
to choose which parametrization of the GEV distributions and GPD’s he would rather work
with by setting a global variable SHAPE.XI to TRUE or FALSE. We did not mention the
k-parametrization in the text because of our overwhelming interest in financial applications.
Early examples of the use of the block maxima approach in the analysis of financial data were
introduced by Longin in [61]. See the book by Embrechts, Frey and McNeil [28] for more
examples of in the same spirit.

Details on the maximum likelihood fitting of GEV distributions can be found in Hosking
[46] and Hosking, Wallis and Wood [48]. Asymptotic normality was proved by Smith in [89]
in the case ξ > −0.5.
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The method of L-moments seems to have its origin in hydrology. It was introduced by
Hosking, Wallis and Wood in [48], and further developed in [47] and [46]. The probability
weighted moments, introduced by Greenwood and collaborators in [33] were the precursors
of the L-moments. This method of estimation of the parameters of GPD’s and GEV distribu-
tions does not seem to have permeated the insurance and finance literature, and we purposely
chose to include it in our analysis in order to add diversity to our estimation toolbox. More-
over, even if we decide to rely exclusively on maximum likelihood estimators, initializing the
maximization search algorithm with the values of the empirical L-moments has proven to be
an efficient method of increasing the chances of convergence, speeding up this convergence,
and even converging toward a more reasonable local maximum. The derivation of formulae
(2.13)–(2.15) giving the L-moments of a GEV distribution in terms of its natural parameters
can be found in Hosking [46].

Except possibly for the maximum likelihood estimation of GPD’s and GEV distributions,
the material presented in this chapter is not systematically covered in the literature devoted
to insurance and financial applications. This is especially true with the use of L-moments.
See nevertheless the recent work of Seco et al. [70] which may indicate a renewal of interest
for these methods for financial applications. We were made aware of the importance of L-
moments via numerous enlightening discussions with Julia Morrison.

The fundamental result of this chapter is due to Pickands [75] and Balkema and de Haan.
The estimation procedures presented in this chapter rely on the assumption that the data points
x1, · · · , xn are realizations of independent and identically distributed random variables. The
independence assumption is rarely satisfied in real life applications, and especially with series
of financial returns which are of interest to us. However, in many instances, this assumption
is not as restrictive as it may seem. Indeed, for many stationary time series, the exceedances
over increasing levels can be shown to have a limiting Poisson distribution. So it seems that
the independence assumption is restored in the limit of exceedances over high levels. How-
ever, most financial return data exhibit clustering properties captured by ARCH and GARCH
models, and incompatible with the independence assumption. The reader concerned by these
issues is referred to the book of Mc Neil, Frey and Embrechts [72], where further references
to the literature can be found.

A time honored method to estimate the size of power tails is to compute the Hill’s estima-
tor of the exponent α (essentially the inverse of the shape parameter ξ). We purposely chose to
ignore this method of estimation, because of horror stories about the misleading conclusions
one can reach with this estimation method. The interested reader is referred to the textbook
[29] for a discussion of the Hill estimator, and for a series of examples showing clearly its
limitations.

Financial institutions started worrying about risk exposures long before regulators got
into the act. The most significant initiative was RiskMetrics span off by J.P. Morgan in 1994.
Even though the original methodology was mostly concerned with market risk, and limited to
Gaussian models, the importance of Value at Risk (VaR) calculations was clearly presented in
a set of technical documents made available on the web at the URL www.riskmetrics.
com. A more academic discussion of the properties of V aR can be found in the book by C.
Gourieroux and J. Jasiak [42], and the less technical book by Jorion [53]. VaR is one among
many possible ways to quantify a risky exposure to possible adverse moves. The seminal pa-
per of Artzner, Delbaen, Eber and Heath [4] was the first instance of an attempt to formalize
mathematically the notion of financial risk measure. Their original set of axioms included
positive homogeneity stating that for all λ ≥ 0 and X , one should have ρ(λX) = λρ(X),
and a sub-additivity condition slightly weaker than convexity. Risk measures satisfying their

www.riskmetrics.com
www.riskmetrics.com
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four axioms were called coherent risk measures. Because positive homogeneity is not obvi-
ously a natural requirement for a measure of risk, it was gradually abandoned in favor of the
smaller set of axioms given in the text, and which was systematically advocated by Föllmer
and Schied. For a set of axioms to capture properly the desirable properties of a rigorous
risk quantification, some form of convexity or sub-additivity should be included in order for
the risk of a diversified portfolio to be less than the sum of the individual risks. Unfortunately,
VaR does not encourage diversification in this sense. However, Conditional VaR and Expected
Shortfall (at least when the distribution is continuous) do.

A clear exposé of risk measures and their mathematical theory can be found in Foellmer
and Schied’s book [36]. The risk measures discussed in the text are static in the sense that
they are based on models of the sources of risk over a fixed period limited by a fixed horizon,
and that no provision is made to update the quantification of the risk as time goes by. In
this sense they can be viewed as a first generation of risk measures. Very active research is
now dealing with a new generation of risk measures which can capture the time evolution of
risk. Such multi-period models have to deal with very technical consistency issues, and easy
implementations of the first theoretical results which appeared in this area are still a long way.

The R methods used in this chapter to estimate heavy tail distributions, simulate random
samples from these distributions, and compute risk measures are taken from the R package
Rsafd based in part on the library EVANESCE originally developed in S by J. Morrison and
the author.



3

DEPENDENCE & MULTIVARIATE DATA
EXPLORATION

This chapter extends some of the exploratory data analysis techniques introduced in
the case of univariate samples to several variables. In particular, we discuss multi-
variate versions of kernel density estimators. Then we review the properties of the
most important multivariate distribution of all, the normal or Gaussian distribution.
For jointly Gaussian random variables, dependence can be completely captured by
the classical Pearson correlation coefficient. In general however, the situation can be
quite different. We review the classical measures of dependence, and emphasize how
inappropriate some of them can become in cases of significant departure from the
Gaussian hypothesis. In such situations, quantifying dependence requires new ideas,
and we introduce the concept of copula as a solution to this problem. For graphical
and tractability reasons, most of the discussion is focused on the bivariate case. We
show how copulas can be estimated, and how one can use them for Monte Carlo
computations and random scenarios generation. Later in the chapter, we consider
higher dimensional cases and discuss application to large portfolio risk management
and the valuation of baskets of credit derivatives. Finally, the last section deals with
principal component analysis, a classical technique from multivariate data analysis,
which is best known for its use in dimension reduction. We demonstrate its useful-
ness on data from the fixed income markets.

3.1 MULTIVARIATE DATA AND FIRST MEASURE OF DEPENDENCE

We begin the chapter with an excursion into the world of multivariate data, where
dependencies between variables are important, and where analyzing variables sep-
arately would cause significant features of the data to be missed. We illustrate this
point with several numerical examples, but we shall focus most of our attention to
the specific example of the daily closing prices of futures contracts on Brazilian and
Colombian coffee which we describe in full detail in Sect. 3.2.5 below. We reproduce
the first seven rows of the data set to show how the data look like after computing
the daily log-returns.

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-8788-3 3, © Springer Science+Business Media New York 2014
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[,1] [,2]
[1,] -0.0232 -0.0146
[2,] -0.0118 -0.0074
[3,] -0.0079 -0.0074
[4,] 0.0275 0.0258
[5,] -0.0355 -0.0370
[6,] 0.0000 0.0000
[7,] 0.0000 -0.0038

Each row corresponds to a given day, the daily log return on the Brazilian contract
being given in the first column of that row, the log return of the Colombian contract
being given in the second one. As we shall see in Sect. 3.2.5, the original data came
with time stamps, but as we already explained, the latter are irrelevant for the type
of analysis conducted in the first part of this book. Indeed, for the time being, the
dependence of the log-returns upon time does not play any role, and we could shuffle
the rows of the data set without affecting the results of the analysis.

The data set described above is an example of bivariate data. We consider ex-
amples of multivariate data sets in higher dimensions later in the chapter, but in the
present situation, the data can be abstracted in the form of a bivariate sample:

(x1, y1), (x2, y2), . . . . . . , (xn, yn),

which is to be understood as a set of realizations of n independent couples

(X1, Y1), (X2, Y2), . . . . . . , (Xn, Yn)

of random variables with the same joint probability distribution. The goal of this
chapter is the analysis of the statistical properties of this joint distribution, and in
particular of the dependencies between the components X and Y of these couples.
If X and Y are real valued random variables, then their joint distribution is charac-
terized by their joint cdf which is defined by:

(x, y) ↪→ F(X,Y )(x, y) = P{X ≤ x, Y ≤ y}. (3.1)

This joint distribution has a density f(X,Y )(x, y) if the joint cdf can be written as an
indefinite (double) integral:

F(X,Y )(x, y) =

∫ x

−∞

∫ y

−∞
f(X,Y )(x

′, y′) dx′dy′,

in which case the density is given by the (second partial) derivative:

f(X,Y )(x, y) =
∂2F(X,Y )(x, y)

∂x∂y
.

Setting y = +∞ in (3.1) leads to a simple expression for the marginal density fX(x)
of X . It reads:
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fX(x) =

∫ +∞

−∞
f(X,Y )(x, y

′)dy′ (3.2)

and similarly

fY (y) =

∫ +∞

−∞
f(X,Y )(x

′, y)dx′. (3.3)

More generally, in the multivariate case (in dimension k to be specific), the cdf of
the joint distribution of k random variablesX1, · · · , Xk is defined as:

F(X1,··· ,Xk)(x1, · · · , xk) = P{Xi ≤ x1, · · · , Xk ≤ xk},

and whenever it exists, the density is given by the k-th order partial derivative:

f(X1,··· ,Xk)(x1, · · · , xk) =
∂kF(X1,··· ,Xk)(x1, · · · , xk)

∂x1 · · · ∂xk ,

in which case

F(X1,··· ,Xk)(x1, · · · , xk) =
∫ x1

−∞
· · ·
∫ x1

−∞
f(X1,··· ,Xk)(x

′
1, · · · , x′k) dx′1 · · · dx′k.

3.1.1 Density Estimation

The notions of histogram and empirical cdf used earlier can be generalized to the
multivariate setting. Let us discuss the bivariate case for the sake of definiteness.
Indeed, one can divide the domain of the couples (xi, yi) into plaquettes or rectan-
gular bins, and create a surface plot by forming cylinders above these plaquettes, the
height of each cylinder being proportional to the number of couples (xi, yi) falling
into the base. If the lack of smoothness of the one-dimensional histograms was a
shortcoming, this lack of smoothness is even worse in higher dimensions. The case
of the empirical cdf is even worse: the higher the dimension, the more difficult it
becomes to compute it, and use it in a reliable manner. The main drawback of both
the histogram and the empirical cdf is the difficulty in adjusting to the larger and
larger proportions of the space without data points. However, they can still be used
effectively in regions with high concentrations of points. As we shall see later in this
chapter, this is indeed the case in several of the R objects used to code multivariate
distributions.

3.1.1.1 The Kernel Estimator

The clumsiness of the multivariate forms of the histogram is one of the main reasons
for the extreme popularity of kernel density estimates in high dimension. Given a
sample (x1, y1), . . . , (xn, yn) from a distribution with (unknown) density f(x, y),
the formal kernel density estimator of f is the function f̂b defined by:
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f̂b(x, y) =
1

nb1b2

n∑
i=1

K

(
x− xi
b1

,
y − yi
b2

)
(3.4)

where the function K is a given non-negative function of the couple (x, y) which
integrates to one (i.e. a probability density function) which we call the kernel, and
the numbers b1 and b2 are positive numbers which we call the bandwidths. The in-
terpretation of formula (3.4) is exactly the same as in the univariate case. If (x, y)
is in a region with many data points (xi, yi), then the sum in the right hand side of
(3.4) will contain many terms significantly different from 0 and the resulting den-
sity estimate f̂b(x, y) will be large. On the other hand, if (x, y) is in a region with
few or no data points (xi, yi), then the sum in the right hand side of (3.4) will con-
tain only very small numbers and the resulting density estimate f̂b(x, y) will be very
small. This intuitive explanation of the behavior of the kernel estimator is exactly
what is expected from any density estimator. Notice that the size of the bandwidths
b = (b1, b2) regulates the extent to which this statement is true by changing how
much the points (xi, yi) will contribute to the sum.

It is reasonable to take b1 = b2 when the two variables x and y are on the same
scale. However, we will need different bandwidths if the variables are on different
scales and if we do not want to standardize them. More on that later in this chapter.

3.1.1.2 Implementation

There is no function for multivariate histogram or kernel density estimation in the
standard distribution of R, so we added to our library the function kdest which
takes a bivariate sample as argument, and produces an R object (a data frame to
be specific) containing a column for the values of the density estimator, and two
columns for the values of the coordinates of the points of the grid at which the esti-
mate is computed. To be specific, if X and Y are numeric vectors with equal lengths,
the command:

> DENS <- kdest(X,Y)

outputs the values of the two bandwidths used in the smoothing of the couples (xi, yi)
into a surface, produces the plot of the surface proposed as an estimate of the density
of the joint distribution of X and Y , and creates a list DENS with the components:
deltax (resp. deltay) for the mesh of the subdivision of the x-axis (resp. y-axis)
at which the density is actually computed and plotted, gridx (resp. gridy) for
the vector of points of the subdivision on the x-axis (resp. y-axis) and z for the
matrix of computed values. The value z[i,j] is the value of the density estimate at
the point (gridx[i],gridy[j]). By default, the number of points in gridx
and gridy is n=256 but this number can be passed to the function kdest as a
parameter. We illustrate the results of the (bivariate) kernel density estimation with a
couple of examples.

• The first example concerns part of a data set which we will study thoroughly in
the next chapter. The surface plot of Fig. 3.1 is the result of running the command
kdest on two data vectors X and Y derived from the values of indexes computed
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from the share values and the capitalizations of ENRON and DUKE over the
period ranging from January 4, 1993 to December 31, 1993. The well-separated
bumps show clearly that the observations (xi, yi) can be divided into several
subsets which can be discriminated from each other on the basis of the values of
the two variables. This situation is very much sought after in pattern recognition
applications where the goal is to subdivide the population into well-defined, and
hopefully well separated, clusters which can be identified by their local means,
for example.

• Our second example concerns, once more, the daily closing values of the S&P
500 index. The goal is to estimate the joint probability density of the log-return
computed on a period of 5 days on a given day, and the log-return computed on
a period of 15 days ending the same day. The scatterplot of these two variables is
given in the left pane of Fig. 3.2. From a central blob of points two sparse clouds
extend in the direction of the negative x-axis and the positive y-axis. The most
interesting feature of this scatterplot, however, is the following: the large posi-
tive values of the 5 days log-returns follow large negative values of the 15 days
log-returns. Anticipating the discussion of the correlation coefficient introduced
in the next subsection, we suspect there being a negative correlation between the
two returns: indeed computing the correlation between these two variables gives
a value approximately equal to −0.57. The density estimate reproduced in the
right pane shows the central blob of points appearing in the scatterplot fails to
reproduce the trail of isolated points in the scatterplot. As we explained earlier,
we believe that these points are responsible for the significant negative correla-
tion, and it is worrisome to see them ignored by the kernel density estimator.
The problem is very delicate. A smaller bandwidth restores the presence of these
points, but the surface becomes so rough that the density estimate ends up being
less instructive than the scatterplot itself. On the other hand a larger bandwidth

Fig. 3.1. Kernel density estimate for the utility data
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gives a smoother surface, wiping out the signs of possible separate trails of points
away from the center of the distribution. We chose the bandwidth to reach a com-
promise between these extremes, but as we already explained, we lost the trail
of days responsible for the negative correlation. Unfortunately, the serious dif-
ficulties experienced in the analysis of this example are typical of many of the
real-life applications in which one would like to use density estimation.

3.1.2 The Correlation Coefficient

Motivated by the previous discussion of the evidence of a possible linear dependence
between variables, we introduce the correlation coefficient between two random vari-
ables. This theoretical concept and its empirical counterpart are designed to capture
this type of linear dependence. It is the most widely-used measure of dependence
between two random variables. It is called the Pearson correlation coefficient. For
random variablesX and Y it is defined as:

ρP {X,Y } =
cov{X,Y }
σXσY

(3.5)

where the covariance cov{X,Y } is defined by:

cov{X,Y } = E{(X − E{X})(Y − E{Y })} = E{XY } − E{X}E{Y } (3.6)

and where σX and σY denote as usual the standard deviations of X and Y i.e.
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Fig. 3.2. Scatterplot (left) and kernel density estimate (right) for the 5 and 15 days S&P log-
returns

σX =
√
E{(X − E{X})2} =

√
E{X2} − E{X}2 (3.7)

and similarly for σY . If X and Y have a joint density f(x, y) then the definition of
the covariance can be rewritten in terms of a double integral as:
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cov{X,Y } =

∫ ∫
xyf(x, y) dxdy −

(∫
xfX(x)dx

)(∫
yfY (y)dy

)
,

where fX and fY are the marginal densities of X and Y as given by (3.2) and (3.3).
Because of its frequent use, the subscript P is often dropped from the notation, and
the Pearson correlation coefficient is commonly denoted by ρ. The empirical analog
of this measure of dependence is defined for samples x1, . . . , xn and y1, . . . , yn. By
analogy with formula (3.5) it is defined as:

ρ̂{X,Y } =
̂cov{X,Y }
σ̂X σ̂Y

(3.8)

and it is called the empirical correlation between the samples. Here, the empirical

covariance ̂cov{X,Y } is defined by:

̂cov{X,Y } =
1

n

n∑
i=1

(xi − x)(yi − y) =
1

n

n∑
i=1

xiyi − x y (3.9)

where we used the notations x and y for the sample means of x and y defined by:

x =
1

n

n∑
i=1

xi and y =
1

n

n∑
i=1

yi, (3.10)

and where the sample standard deviations σ̂X and σ̂Y are defined by:

σ̂X =

√√√√ 1

n

n∑
i=1

(xi − x)2 =

√√√√ 1

n

n∑
i=1

x2i − x2 (3.11)

and similarly for σ̂Y . Some of the properties of these correlation coefficients are well
known. Others are less so. We review them in order to emphasize the usefulness of
the correlation coefficient, and at the same time to stress its limitations.

3.1.2.1 Properties of the Correlation Coefficient

The most immediate properties of the correlation coefficient are:

• The real numbers ρ and ρ̂ are always between −1 and +1
• ρ = 0 when the random variables X and Y are independent
• ρ = 1 when Y is a linear function of X .

These simple properties have lead to the following usage of the sample correlation
coefficient ρ̂. The samples are regarded as independent when ρ̂ is small, while the
samples are regarded as strongly dependent when ρ̂ is close to 1 or −1. We shall see
below that this practice is okay when the samples come from a multivariate Gaussian
distribution, but it can be very misleading for other distributions.
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The properties listed in the three bullets above are well known. Their intuitive
content is the main reason for the enormous popularity of the correlation coefficient
as a measure of dependence.

What is often overlooked is the fact that the Pearson correlation coefficient is
only a measure of linear dependence between two random variables. In fact, ρ mea-
sures the relative reduction of the response variation by a linear regression. Indeed,
anticipating our upcoming discussion on least squares linear regression, we can use
the following general formula

ρ{X,Y } =
σ2{Y } −minβ0,β1 E{|Y − β0 − β1X |2}

σ2{Y }
to justify this claim. The numerator of the right hand side is the difference between
the variation in the variable Y , and the smallest possible remaining variation after
removing a linear function β0 + β1X , of X . This formula is to be compared to the
formula giving the slope of the least squares regression line of Y againstX in terms
of ρP .
Shocking Remark. We close this section with a very surprising property of the Pear-
son correlation coefficient. Strangely enough, this property is little known despite its
important practical implications, especially in the world of finance. If the marginal
distributions ofX and Y are given, but no information is given on the nature of their
dependence or lack thereof, the possible values of the correlation coefficient ρ are
limited to an interval [ρmin, ρmax]. However, contrary to popular belief, this interval
is not always the whole interval [−1,+1]. There are cases for which this interval is
much smaller, even for frequently-used distributions. See for example Problems 3.10
and 3.18 at the end of this chapter, where the case of lognormal random variables is
analyzed in detail.

3.2 THE MULTIVARIATE NORMAL DISTRIBUTION

We start our analysis of multivariate statistical distributions with the case of the well-
known Gaussian family. All the reasons we gave for the popularity of the univariate
Gaussian distribution still hold in the multivariate case. Moreover, the possible com-
petition from other distribution families disappears. Indeed, the Gaussian family is
essentially the only one for which explicit analytic computations are possible. We
first give an abstract definition and concentrate on the interpretation of the conse-
quences of such a definition. Even though most of the explicit computations done
in the book will be limited to the bivariate case, we start with the general definition
of the multivariate Gaussian distribution because of its widespread use in portfolio
theory where realistic situations involve very large numbers of instruments. Because
of this general setup, the discussion which follows is of rather abstract nature, and
a quick look at the contents of Appendix 1 at the end of the chapter may help with
some of the mathematics.
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One says that k real valued random variables Z1, . . . , Zk are jointly Gaussian,
or that their joint distribution is a multivariate Gaussian distribution, if any linear
combination of Z1, . . . , Zk is a univariate Gaussian (i.e. normal) random variable, in
other words, if for every choices �1, . . . , �k of real numbers, the random variable

ξ = �1Z1 + · · ·+ �kZk (3.12)

is Gaussian. Notice that this definition implies that each individual Zi is itself Gaus-
sian (just set �i = 1 and all the other �js to 0 in which case the linear combination
reduces to Zi). However, it says much more, and it is important to understand how
much more does this definition imply.

According to the standard practice of probability calculus with random vectors
and matrices, which we recall in Appendix 1 at the end of the chapter, we denote by
μ the k× 1 vector of means μi = E{Zi}, and by Σ is the k× k variance/covariance
matrix whose entries are Σi,j = cov{Zi, Zj}. Using the convention introduced in
the appendix, this reads:

E{Z} = μ and ΣZ = Σ.

If we use the notation Z for the k-dimensional vector whose components are the
Zi’s, the above definition is usually encapsulated in the notation:

Z ∼ Nk(μ,Σ)

to signify that the random vector Z has the k-variate Gaussian distribution with
mean vector μ and variance/covariance matrix Σ. Notice that if we denote by L the
k × 1 vector whose entries are the �is, then the linear combination (3.12) defining
the random variable ξ is in fact equal to LtZ, and the computations of Appendix 1
give

ξ ∼ N(μξ, σ
2
ξ ) with μξ = Ltμ, and σ2

ξ = LtΣL.

According to its definition, the entries of the covariance matrix ΣZ are the covari-
ances cov{Zi, Zj}, and consequently, the knowledge of all the marginal (bivariate)
distributions of the couples (Zi, Zj) is enough to determine the entire joint distri-
bution. This particular property is specific to the multivariate Gaussian distribution.
It does not hold for general distributions. Moreover, using again the matrix calculus
developed for random vectors in Appendix 1, we see that:

Z ∼ Nk(μ,Σ) when Z = μ+Σ1/2X and X ∼ Nk(0, Ik) (3.13)

where Ik denotes the k× k identity matrix, and Σ1/2 denotes the square root of the
symmetric nonnegative-definite matrix Σ. See Problem 3.27 at the end of the chapter
for details on the definition and the first properties of this square root matrix. In other
words, starting from a random vector X with independentN(0, 1) components (see
the following remark) we can get to a vector Z with the most general multivariate
Gaussian distribution just by linear operations: multiplying by a matrix and adding a
vector. This simple fact is basic for the contents of the following subsection.



130 3 DEPENDENCE & MULTIVARIATE DATA EXPLORATION

When the variance covariance matrix Σ is invertible, multivariate calculus shows
that the random variables Z1, . . . , Zk have a joint density f(Z1,...,Zk) given by:

f(Z1,...,Zk)(z1, . . . , zk) =
1√

(2π)kdet(Σ)
exp

(
−1

2
[z − μ]tΣ−1[z − μ]

)
.

(3.14)

3.2.1 Important Remark about Independence

If the random variables Zi are independent, then obviously all the covariances
cov{Zi, Zj} are zero when i �= j, and the variance/covariance matrix ΣZ is di-
agonal. The converse is not true in general, even when the random variable Zi’s
are Gaussian! See for example Problems 1.6 and 3.16 for counter-examples. But
the converse is true when the Zi’s are jointly Gaussian! This striking fact highlights
what a difference it makes to assume that the marginal distributions are Gaussian,
versus assuming that the joint distribution is Gaussian. The proof of this fact goes as
follow: if ΣZ is diagonal, then:

1

2
[z − μ]tΣ−1[z − μ] =

(z1 − μ1)
2

2σ2
1

+
(z2 − μ2)

2

2σ2
2

+ · · · · · ·+ (zk − μk)
2

2σ2
k

,

if we denote by σ2
1 , σ

2
2 , . . . , σ

2
k the elements which appear on the diagonal of ΣZ .

So using the definition (3.14) of the multivariate Gaussian distribution and the fact
that the exponential of a sum is the product of the exponentials, this implies that:

f(Z1,Z2,...,Zk)(z1, z2, . . . , zk) = fZ1(z1)fZ2(z2) · · · fZk
(zk),

which in turn implies that the joint cdf is the product of the marginal cdfs, proving
the desired independence property. So the conclusion is that:

For jointly Gaussian random variables, independence
is equivalent to the variance/covariance matrix being
diagonal!

3.2.2 Simulation of Random Samples

We now show how one can use formula (3.13) to generate random samples from a
multivariate Gaussian distribution. To that end, we assume that we are given a k × 1
vector μ of means, and a k × k variance/covariance matrix Σ, and that we want to
generate a sample of sizeN from the distributionNk(μ,Σ). We proceed as follows:

1. We create a k × N -matrix whose columns are all identical, any column being a
copy of the mean vector μ;

2. We generate a sample of size Nk from the standard univariate Gaussian distribu-
tion and reshape this (N × k)× 1 vector into a k ×N -matrix;
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3. We compute a square root for the variance/covariance matrix, then we multiply
each column of the random matrix constructed in Step 2, by the square root of the
variance/covaiance matrix;

4. We add the matrix of means constructed in Step 1 to the random matrix con-
structed in Step 3 above. VOILA!

After Step 2, we have a sample of size N from the k-dimensional Gaussian dis-
tribution whose k components are independent N(0, 1). Step 3 (which is the most
involved) is not needed when Σ = Ik. Its role is to build the dependence among the
k components of the N vectors of dimension k forming the sample. The details of
this random generation algorithm are given in Problem 3.27 at the end of the chap-
ter. There, we show how to compute the square root of a covariance matrix and we
develop the code for a home grown function capable of generating samples from a
multivariate Gaussian distribution. Writing this code is just for the sake of illustra-
tion, since R provides the function rmvnorm whose use we illustrate in Sect. 3.2.4
below.

3.2.3 The Bivariate Case

In the bivariate case we have:

μ =

[
μ1

μ2

]
and Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

Notice that det(Σ) = σ2
1σ

2
2(1−ρ2), so that Σ is invertible if ρ �= ±1, in which case

the joint density can be written as:

f(Z1,Z2)(z1, z2) =
1

2πσ1σ2
√
1− ρ2

exp

(
− 1

1− ρ2

[
(z1 − μ1)

2

2σ2
1

− ρ
(z1 − μ1)(z2 − μ2)

σ1σ2
+

(z2 − μ2)
2

2σ2
2

])
.

This formula shows that, if we know the marginal distributions of Z1 and Z2, in
other words, if we know μ1, σ1, μ2 and σ2, then the joint distribution is entirely
determined by the correlation coefficient ρ. Also, we clearly see from this formula
that when ρ = 0 we have:

f(Z1,Z2)(z1, z2) =
1

2πσ1σ2
exp

(
− (z1 − μ1)

2

2σ2
1

− (z2 − μ2)
2

2σ2
2

)

=
1√
2πσ1

exp

(
− (z1 − μ1)

2

2σ2
1

)
1√
2πσ2

exp

(
− (z2 − μ2)

2

2σ2
2

)

= fZ1(z1)fZ2(z2)

which shows the independence of Z1 and Z2. So we recover the fact that if Z1 and
Z2 are jointly Gaussian, their independence is equivalent to their being uncorrelated.
As we already pointed out, this fact is not true in general, not even when Z1 and Z2

are (separately) Gaussian. See Problems 1.6 and 3.16 for counterexamples.
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3.2.4 A Simulation Example

For the sake of illustration, we consider the case of the distribution of a couple of
(slightly correlated) Gaussian random variablesX and Y , and we generate one sam-
ple of size n = 128 from the joint distribution of (X,Y ). We use the R commands:

> TSAMPLE<-rmvnorm(n=128,mean=rep(0,2),sd=rep(1,2),rho=.18)
> TDENS <- kdest(TSAMPLE[,1],TSAMPLE[,2])

The function rmvnorm is the multivariate analog of rnom. It is designed to gen-
erate multivariate Gaussian samples. We chose the vector [0, 0] for the mean by
using the command rep(0,2) which creates a vector by repeating the number
zero twice, and we used the command rep(1,2) to specify that both components
have standard deviations equal to one. Finally, we decided on the correlation co-
efficient ρ = 0.18 by setting the parameter rho. We could have given the entire
variance/covariance matrix by specifying the parameter cov instead of giving the
vector of standard deviations and the correlation coefficient separately. See the help
file for details. The second command computes a kernel density estimator (with the
default kernel and bandwidth choices) and plots the resulting surface.

Fig. 3.3. Kernel density estimator for a (bivariate) Gaussian sample

The output is given in Fig. 3.3. We see that the unimodality of the density is
violated by the estimate. Increasing the values of the bandwidths would resolve this
problem, at the cost of a looser fit, by somewhat flattening the central bump. The poor
quality of the estimation is to be blamed on the small size of the sample: in general,
the higher the dimension, the larger the sample size needed to get reasonable density
estimates.
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3.2.5 Let’s Have Some Coffee

We use Paul Erdös’ famous quote (often attributed to Alfred Renyi):

A mathematician is a machine for turning caffeine into theorems

as a justification for our interest in the price of coffee. As explained in the abstract
at the beginning of the chapter, we chose to illustrate the analysis of multivariate
distributions with a simple example of two quantities which are obviously correlated.
We use samples of log-returns of Brazilian and Colombian coffee spot prices. The
original data are plotted in Fig. 3.4, which shows the daily prices of coffee in Brazil
and Colombia between January 9, 1986 and January 1, 1999. This plot involves time

Fig. 3.4. Sequential plot of the daily prices of coffee in Brazil and Colombia from January 9,
1986 to January 1, 1999

series objects which we will consider only in Part III of the book. The data of interest
to us in this section are contained in the R objects BCofLRet and CCofLRet. They
are the two columns of a data matrix whose first few rows were reproduced at the
beginning of the first section of this chapter. For each day of the period starting
January 10, 1986 and ending January 1, 1999, we computed the logarithms of the
daily returns from the nearest futures contract active on that day. The scatterplot of
these two variables is given in Fig. 3.5. A close look at this scatterplot shows that
many points are on the vertical axis and on the horizontal axis. This means that quite
often, the price does not change from one day to the next, forcing the log returns
to vanish on these days. The presence of so many of these zeroes indicates that the
probability distributions are singular, in the sense that the cumulative distribution
functions have jumps at 0. These jumps can be a hindrance to the analysis, so we
choose to remove them by removing the zeroes from the data samples.

> NZ <- (BCofLRet != 0 & CCofLRet != 0)
> BLRet <- BCofLRet[NZ]
> CLRet <- CCofLRet[NZ]
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Fig. 3.5. Scatterplot of the daily log-returns of the coffee futures contracts in Brazil and
Colombia from January 10, 1986 to January 1, 1999

The vector NZ created by the first command is a boolean vector with the same length
as BCofLRet and CCofLRet. It is true (equal to TRUE) when both the daily
Brazilian and Colombian log-returns are non-zero. The next two commands show
the power of the sub-scripting capabilities of the R language. BLRet and CLRet are
the vectors obtained by keeping the entries of BCofLRet and CCofLRet whose
indices are those for which the value of NZ is TRUE. The scatterplot of BLRet and
CLRet is reproduced in the left pane of Fig. 3.6.

We shall work with this new bivariate sample from now on, but we should keep
in mind that, if we want to compute statistics of the actual log-returns, we need to
put the zeroes back. The command

> PNZ <- mean(NZ)
> PNZ
[1] 0.4084465

gives the proportion of TRUE’s in the vector NZ, and it should be viewed as an
estimate of the probability not to have a zero in the data. This probability could be
used to add a random number of zeroes should we need to create random samples
from the original distribution starting with samples from the modified distribution.

3.2.6 Is the Joint Distribution Normal?

“Is the joint distribution of BLRet and CLRet Gaussian” is the first question we
address. Our first step is quite mundane: we compare graphically the joint (empir-
ical) distribution of BLRet and CLRet to the distribution of a bivariate Gaussian
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sample which has the same five parameters (i.e. means, standard deviations and cor-
relation coefficient). In order to do so, we first compute these parameters. We use the
commands:

> XLIM <- c(-.4,.3)
> YLIM <- c(-.2,.4)
> Mu <- c(mean(BLRet), mean(CLRet))
> Sigma <- var(cbind(BLRet,CLRet))
> N <- length(BLRet)

We defined the vectors XLIM and YLIM as the limits of the ranges of BLRet and
CLRet, respectively. We use these values each time we want to make sure that
the scatterplot of BLRet and CLRet on one hand and the scatterplot of the sim-
ulated data on the other are on the same scale. As defined, Mu is the mean vec-
tor since it is defined as the vector of the means. Next we use the R function
cbind to bind the columns BLRet and CLRet into one single matrix, then ap-
plying the function var to this data matrix produces the variance/covatiance ma-
trix of the columns. So Sigma is the variance/covariance matrix, and N is the sam-
ple size. We use the R function rmvnorm to generate the desired bivariate sample
(x1, y1), . . . , (xN , yN ) of size N from the bivariate Gaussian distribution with mean
Mu and variance/covariance matrix Sigma.

> CNsim <- rmvnorm(N,mean=Mu,cov=Sigma)
> par(mfrow=c(2,1))
> plot(BLRet,CLRet, xlim=XLIM, ylim=YLIM)
> plot(CNsim,xlim=XLIM, ylim=YLIM)
> par(mfrow=c(1,1))

Notice that we could have used the home-grown function vnorm developed in Prob-
lem 3.27 at the end of the chapter. The results are given in Fig. 3.6. Both scatterplots
comprise an ellipsoidal cloud of points around the origin. Clearly, this cloud seems
to be thinner for the coffee data. However, even if we were to consider that the bulk
of the distribution had been reproduced in a reasonable manner, the presence of iso-
lated points in the empirical coffee data is a distinctive feature which has not been
reproduced by the simulation. This is a clear indication that the joint distribution of
BLRet and CLRet is not Gaussian. There are many reasons. In general, it is because
at least one of the variables, BLRet or CLRet, is not Gaussian. But these variables
could be Gaussian even when the joint distribution is not Gaussian. We now check
that this is not the case by showing that the marginal distributions of BLRet and
CLRet are not univariate Gaussian either.

3.3 MARGINALS AND MORE MEASURES OF DEPENDENCE

Trying to fit a multivariate distribution to a multivariate sample, as we did when try-
ing to fit a bivariate Gaussian distribution to the sample of BLRet and CLRet, may
be trying to tackle all the difficulties at once, and may be overwhelming. So instead,
we opt for the “divide and conquer” approach: we first consider the estimation of the
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Fig. 3.6. Comparison of the empirical scatterplot of the coffee log-returns after the removal
of the zeroes (left) and of the scatterplot of a sample of the same size simulated from a jointly
Gaussian distribution with the same mean and covariance structure (right)

univariate marginal distributions separately, and only after this has been done, do we
consider the issue of dependence. In the case of a bivariate sample from a Gaussian
distribution, this would amount to first estimating the means and the variances of the
two variables separately, and then estimating the correlation coefficient. Since we
are interested in more general distributions, possibly with marginals having heavy
tails, we may not be able to use the correlation coefficient as a way to quantify de-
pendence. So once the identification of the marginals is over, we review the most
commonly used statistics measuring the dependence of two samples, and we prepare
for the concept of copula which will be introduced and analyzed in the next section.

As before, we try to sprinkle the presentation of the mathematical concepts with
numerical examples, and we still use the example of the coffee data for that.

3.3.1 Estimation of the Coffee Log-Return Distributions

We use the graphical tools introduced in Chap. 1. Plotting histograms and kernel
density estimators of BLRet and CLRet would vouch for unimodular distributions,
possibly with extended tails on both sides. The presence of tails which are heavier
than Gaussian is confirmed by the Q-Q plots reproduced in Fig. 3.7. The departures
from the Q-Q lines are a clear indication that the tails are much heavier than the tails
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Fig. 3.7. Q-Q plots (against the Gaussian distribution) of the Brazialian (left) and Colombian
(right) coffee daily log-returns for the period from January 9, 1986 to January 1, 1999 after
removal of the zeroes

of the Gaussian distributions with the same means and variances, suggesting that
fitting generalized Pareto distributions may be appropriate. Since the analysis of the
marginal distribution of the daily log returns of the Colombian coffee is essentially
the same, we only report the R commands used in the analysis for the Brazilian
coffee.

Remark. Similar results would have been obtained with the original log return sam-
ples (prior to the removal of the zeroes) since the zeroes affect only the center of the
distribution and not the tails.

As in the case of our analysis of the S&P 500 daily log-returns, we use the func-
tion fit.gpd to fit a generalized Pareto distribution to both BLRet and CLRet.
This function requires information on the locations of the tails in the form of two pa-
rameters telling the program where to start fitting regular Pareto distributions. We use
the function shape.plot in order to choose the locations of the thresholds. The
command

> shape.plot(BLRet,tail=two)

produce the results given in Fig. 3.8. From these plots we decide that the estimation
of the upper tail could be done to the right of the value 0.04, while the estimation of
the lower tail could be done to the left of the value −0.045. Among other things, this
will guarantee that each tail contains a bit more than 8% of the data, namely more
than 115 points, which is not unreasonable. With this choice we proceed to the actual
estimation of the GPD with the command:

> B.est <- fit.gpd(BLRet, upper = 0.04, lower = -0.045)

The function fit.gpd creates Q-Q plots (reproduced in Fig. 3.9) of excesses over
upper and lower thresholds against the quantiles of a GPD. As we mentioned several
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Fig. 3.8. Estimates of the shape parameters as functions of the thresholds for the right tail (top)
and left tail (bottom) of the distribution of the daily log returns of the Brazilian coffee

times already, if the left parts of these plots are approximately linear, the estimation
of the tails is expected to be good. An extensive discussion of the mathematical
results underpinning these empirical procedures was given in Chap. 2. We check
graphically the quality of the fit with the plots of the tails on a logarithmic scale.

> tailplot(B.est)

The results are given in Fig. 3.10. Given the point patterns, the fit looks very
good. We perform the analysis of the heavy tail nature of the distribution of the daily
log-returns of the Colombian coffee in exactly the same way.

3.3.1.1 First Monte Carlo Simulations

Motivated by the desire to perform a simulation analysis of the risk associated with
various coffee portfolios containing both Brazilian and Colombian futures contracts,
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Fig. 3.9. Checks that the estimation of the distribution of the daily log returns of the Brazilian
coffee by a generalized Pareto distribution is reasonable

we proceed to the Monte Carlo simulation of samples of log-returns using the tools
developed in the previous chapter. The commands:

> BLRet.sim <- rgpd(B.est, length(BLRet))
> CLRet.sim <- rgpd(C.est, length(CLRet))

generate samples BLRet.sim and CLRet.sim of the same sizes as the original
data, and from the GPD’s fitted to the data. To make sure that these samples have the
right distributions, we check that their Q-Q plots against the empirical data are con-
centrated along the main diagonal. This is clear from Fig. 3.11 which was produced
with the R commands:
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Fig. 3.10. Goodness of the fits for the right tail (top) and the left tail (bottom)

> qqplot(BLRet,BLRet.sim)
> abline(0,1)
> qqplot(CLRet,CLRet.sim)
> abline(0,1)

So it is clear that the distributions of the simulated samples are as close as we can
hope for from the empirical distributions of the Brazilian and Colombian coffee
log-returns. Since they capture the marginal distributions with great precision, these
simulated samples can be used for the computations of statistics involving the log-
returns separately. However, they cannot be used for the computations of joint statis-
tics since they do not capture the dependencies between the two log-returns. In-
deed, the simulated samples are statistically independent. This is clearly illustrated
by plotting them together in a scatterplot as in Fig. 3.12. We need to work harder to
understand better the dependencies between the two log-return variables, and to be
able to include their effects in Monte Carlo simulations.
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Fig. 3.11. Empirical Q-Q plot of the Monte Carlo sample against the empirical coffee log-
return sample in the case of the Brazilian futures (left pane) and the Colombian futures prices
(right pane)

Fig. 3.12. Scatterplot of the Colombian coffee log-returns against the Brazilian ones
(left pane), and scatterplot of the Monte Carlo samples (right pane)
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3.3.2 More Measures of Dependence

Because of the limitations of the correlation coefficient ρ as a measure of the
dependence between two random variables, other measures of dependence have
been proposed and used throughout the years. They mostly rely on sample order
statistics. For the sake of completeness, we shall quote two of the most commonly
used: the Kendall’s τ and the Spearman’s ρ. Given two random variables X and Y ,
their Kendall’s correlation coefficient ρK(X,Y ) is defined as:

ρK(X,Y ) = P{(X1−X2)(Y1 −Y2) > 0}−P{(X1−X2)(Y1 −Y2) < 0} (3.15)

provided (X1, Y1) and (X2, Y2) are independent random couples with the same joint
distribution as (X,Y ). Notice that if α and β are positive constants, then

ρK(αX, βY ) = ρK(X,Y ).

In fact a much stronger invariance result holds in the sense that whenever g and h
are monotone increasing functions then

ρK(g(X), h(Y )) = ρK(X,Y ),

as the Kendall correlation coefficient is a measure of the rank dependence between
two random variables. Even though the notation ρK should be used for consistency,
we shall often use the notation τ(X,Y ) because this correlation coefficient is usually
called Kendall’s tau.
The dependence captured by Kendall’s tau is better understood on sample data. Given
samples x1, . . . , xn and y1, . . . , yn, the empirical estimate of the Kendall correlation
coefficient is given by:

ρ̂K(X,Y ) =
1(
n
2

) ∑
1≤i≤j≤n

sign ((xi − xj)(y1 − yj))

which shows clearly that what is measured here is merely the relative frequency with
which a change in one of the variables is accompanied by a change in the same
direction of the other variable. Indeed, the sign appearing in the right hand side
is equal to one when xi − xj has the same sign as yi − yj , whether this sign is
plus or minus, independently of the actual sizes of these numbers. Computing this
coefficient with R can be done in the following way:

> cor(BLRet,CLRet,method=k)
[1] 0.688215

The Spearman rho of X and Y is defined by:

ρS(X,Y ) = ρ{FX(X), FY (Y )}, (3.16)
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and its empirical estimate from sample data is defined as:

ρ̂S(X,Y ) =
12

n(n2 − 1)

n∑
i=1

(
rank(xi)− n+ 1

2

)(
rank(yi)− n+ 1

2

)
.

The value of this correlation coefficient depends upon the relative rankings of the xi
and the yj . However, the interpretation of the definition is better understood from the
theoretical definition (3.16). Indeed, this definition says that the Spearman’s corre-
lation coefficient between X and Y is exactly the Pearson’s correlation coefficient
between the uniformly distributed random variables FX(X) and FY (Y ). This shows
that Spearman’s coefficient attempts to remove the relative sizes of the values of X
among themselves, similarly for the relative values of Y , and then to capture what is
left of the dependence between the transformed variables. We shall come back to this
approach to dependence below. In any case, The Spearman correlation coefficient is
also a measure of rank dependence, and as with the Kendall correlation coefficient, it
is invariant under monotone transformations in the sense that whenever g and h are
monotone increasing functions then

ρS(g(X), h(Y )) = ρK(X,Y ),

and as a particular case we also have ρS(αX, βY ) = ρK(X,Y ) whenever α and β
are positive numbers. In R, Spearman’s rho is computed with the command:

> cor(BLRet,CLRet,method="s")
[1] 0.8356541

Analytic computations of the Spearman and Kendall correlation coefficients are typ-
ically impossible, except in the jointly Gaussian case as usual. Indeed if X and Y
are jointly Gaussian random variables with Pearson correlation coefficient ρ, then
we have the formulae:

ρS(X,Y ) =
6

π
arcsin

ρ

2
, and ρK(X,Y ) =

2

π
arcsinρ. (3.17)

Notice that we did not specify the means and the variances ofX and Y since they do
not affect the Spearman and Kendall correlation coefficients as we noticed earlier. So
for the purpose of the above statement, we might as well assume that X ∼ N(0, 1)
and Y ∼ N(0, 1) without any loss of generality. Figure 3.13 gives the plots of
ρS(X,Y ) and ρK(X,Y ) as functions of ρ. In the left pane of the figure, the plot
coincides almost perfectly with the diagonal (which is superimposed as a dashed
line), suggesting that the value of ρS(X,Y ) is very close to ρ. In fact, from for-
mula (3.17) one can derive the error bound |ρS(X,Y )− ρ| ≤ (1− (3/π))|ρ| which
confirms the graphical evidence.



144 3 DEPENDENCE & MULTIVARIATE DATA EXPLORATION

−1.0 -0.5 0.0 0.5 1.0

−1
.0

-0
.5

0.
0

0.
5

1.
0

Spearman Rho against Pearson Rho

RHO

R
H

O
S

−1.0 -0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

Kendall Rho against Pearson Rho

RHO

R
H

O
K

Fig. 3.13. Spearman (left) and Kendall (right) correlation coefficients against the Pearson
correlation coefficient of two jointly Gaussian random variables

3.4 COPULAS

The first part of this section elaborates on the rationale behind the introduction of
Spearman’s correlation coefficient. As a warm up to the introduction of the ab-
stract concept of copula, we consider first the practical implication of the first of the
two fundamental facts of the theory of random generation as presented in Sect. 1.3.
Because of Fact 1, which reads:

X r.v. with cdf FX( · ) =⇒ FX(X) uniform on [0, 1],

we can transform the original coffee log-return data and create a bivariate sample
in the unit square in such a way that both marginal point distributions are uniform.
Indeed, the above theoretical result says that this can be done by evaluating each
marginal cdf exactly at the sample points. In some sense, this wipes out the depen-
dence of the point cloud pattern, seen for example in the left pane of Fig. 3.6, upon
the marginal distributions, leaving only the intrinsic dependence between the vari-
ables. We use our estimates of the distribution functions of the coffee log-returns as
proxies for the theoretical distributions.

> U <- pgpd(B.est, BLRet)
> V <- pgpd(C.est, CLRet)
> plot(U,V)
> EMPCOP <- empirical.copula(U,V)

The first two commands use the function pgpd from the library Rsafd, to compute
the estimate of the cdf of the GPD, identified by the object of class gpd, at the points
given in its first argument. Figure 3.14 shows the result of the above plot command.
As expected all the data points are in the unit square. Moreover, the first coordinates
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of the points seem to be uniformly distributed on the unit interval of the horizontal
axis, as they should according to Fact 1, which was recalled above. Similarly for the
second coordinates. The fact that the marginal distributions are now uniform is a sign
that the influences of the original marginal distributions have been removed from the
data. The only remaining feature is the way the numbers ui and vi are paired, and
we claim that the dependence between the two log-returns is captured by the way
these couplings are done. The dense point concentration around the diagonal of the
unit square is a consequence of this pairing, and it should be viewed as a graphical
representation of the intrinsic dependence between the two random variates.

Fig. 3.14. Dependence between the coffee log-returns after removing the effects of the
marginal distributions

3.4.1 Definitions and First Properties

We interrupt the analysis of the coffee data to introduce theoretical concepts intended
to capture the dependence between several random variates. The analysis of the cof-
fee data will be continued in Sect. 3.4.4. For the sake of simplicity, we limit ourselves
to the bivariate case. The reader interested in the general multidimensional case can
jump to Sect. 3.4.8 to avoid repetitions.

Definition 1. A copula is the joint distribution of uniformly distributed random vari-
ables.

So if U and V are U(0, 1), the function C defined on [0, 1]× [0, 1] by:

C(u, v) = P{U ≤ u, V ≤ v}
is a copula. Moreover, if X and Y are r.v.’s with cdfs FX and FY , then the joint
distribution of the uniform random variables
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U = FX(X), V = FY (Y )

is called the copula of (X,Y ).

3.4.1.1 First Properties of Copulas

It is straightforward to check that:

• C does not change if one replacesX or Y by non-decreasing functions of X and
Y ;

• The joint cdf of (X,Y ) can be recovered from the copula and the marginal cdfs
via the formula:

F(X,Y )(x, y) = C(FX (x), FY (y));

• C is unique if F(X,Y )(x, y) is continuous (i.e. does not jump).

Moreover:

• C(u, v) is non-decreasing in each variable;
• C(u, 1) = u and C(1, v) = v since the marginal distributions of a copula are

uniformly distributed;
• if u1 ≤ u2 and v1 ≤ v2, then:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u − 1, v1) ≥ 0.

This last inequality formalizes mathematically the fact that a copula is a multivariate
cdf, and as such, it has to satisfy some positivity and monotonicity properties. It is
best understood on a picture!

3.4.2 Examples of Copula Families

� Independent copula The first example corresponds to the case when X and
Y are independent. So from the point of view of measure of dependence, it is
degenerate.

Cind(u, v) = uv,

is the copula of independent random variables.
� Gaussian copula For each ρ ∈ (0, 1) the function defined by:

CGauss,ρ(u, v) =
1

2π
√
1− ρ2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
e−[s2−2ρst+t2]/2(1−ρ2)ds dt

is a copula called the Gaussian copula with parameter ρ. This is the copula of
random variables which, whether or not their marginal distributions are Gaus-
sian, depend upon each other as jointly Gaussian random variables with Pearson
correlation coefficient ρ do. The family of Gaussian copulas is parameterized by
the parameter ρ ∈ (0, 1). Figure 3.15 gives the surface plot of this copula when
ρ = 0.7, i.e. the plot of the graph of the function (u, v) ↪→ CGauss,0.7(u, v),
together with the plot of its density. The fact that the marginals of a copula
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are uniform is clearly seen on this plot. Indeed, the facts C(u, 1) = u and
C(1, v) = v force edges of the surface to be linear (coinciding with the sec-
ond diagonal) and to meet at height 1 above the point (1, 1).

Varying the parameter ρ is a way of controlling the degree of dependence be-
tween the two random variables. Notice that two Gaussian random variables X and
Y may not be jointly Gaussian if their copula is not in the Gaussian family. They
are jointly Gaussian when the copula is from the Gaussian family, in which case the
parameter ρ has a simple interpretation since it is the correlation coefficient of X
and Y . This interpretation is not valid in general. Indeed, if X and Y have Cauchy
marginal distributions, their (Pearson) correlation coefficient does not exist since
Cauchy random variables do not have means or variances . . ., but nevertheless, it
is quite possible for their copula to be in the Gaussian family, i.e. to be equal to
CGauss,ρ for some ρ ∈ (0, 1). However, in this case, the parameter ρ cannot have the
interpretation of correlation coefficient.

If two random variables have the copula CGauss,ρ, monotone increasing func-
tions of these random variables are jointly Gaussian with correlation coefficient ρ.
Consequently, formulae (3.17) give the Spearman and Kendall correlation coeffi-
cients of these random variables. According to our previous discussion, the analytic
formula (3.17) for the Spearman correlation coefficient of jointly Gaussian random
variables, together with the plot in the left pane of Fig. 3.13 confirm the fact often
noticed empirically that the Spearman correlation coefficient of two random vari-
ables with copula CGauss,ρ is very close to ρ. Nevertheless, however similar, they
are different, and contrary to common belief, the Spearman correlation coefficient of
two random variables with a Gaussian copula with parameter ρ, is not equal to ρ.

Fig. 3.15. Surface plot of the Gaussian copula with parameter ρ = 0.7 (right), and of its
density (left)

� For each δ ≥ 1 the function

CGumbel,δ(u, v) = e−[(− log u)1/δ+(− log v)δ ]1/δ

is a copula called the Gumbel (or logistic) copula with parameter δ. The Gumbel
copula family is parameterized by the parameter δ ≥ 1. However this parameter
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does not have as nice an interpretation as the parameter ρ of the Gaussian copula
family. Figure 3.16 gives the surface plot of this copula when δ = 1.5 together
with the plot of its density. As before, varying the parameter is a way of varying
the strength of the dependence between two random variables. This family ap-
pears naturally in the analysis of extreme events, as it is quite often the case that
the copula of random variables with heavy tail distributions is of this family.

Fig. 3.16. Surface plot of the Gumbel copula with parameter δ = 1.5 (right), and of its density
(left)

A complete list of the parametric copula families supported by the library Rsafd
is given in Appendix 2, where the reader will also find the defining formulae together
with some of the most important properties of these families.

3.4.3 Copulas and General Bivariate Distributions

The goal of this subsection is to show how copulas and univariate cdfs come together
to characterize ALL the bivariate statistical distributions.

All the copulas which we consider in this book have a density. In other words,
the copulas C(u, v) we use are differentiable, and the function:

c(u, v) =
∂2

∂u∂v
C(u, v)

is the density of the copula. Notice that since we are dealing with bivariate distri-
butions, we need a second order derivative in order to get a density from its cdf.
Instead of limiting ourselves to distributions with uniform marginals, we can apply
this remark to a general bivariate distribution as well. This leads to some interesting
formulae.

Let us denote by F(X,Y ) the joint cdf of a couple (X,Y ) of random variables,
and let us denote by C(X,Y ) their copula. For the sake of simplicity we momentarily
drop the subscript (X,Y ) from the notation. According to our definition, we have:

F (x, y) = C(FX(x), FY (y)) (3.18)
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if we denote by FX and FY the cdfs of X and Y respectively. We can compute the
joint density f(X,Y ) of X and Y by taking partial derivatives on both sides of (3.18).
We get:

f(x, y) =
∂2

∂x∂y
F (x, y)

=
∂2

∂u∂v
C(FX(x), FY (y))

∂FX(x)

∂x

∂FY (y)

∂y

which gives the following formula for the joint density of X and Y :

f(x, y) = c(FX(x), FY (y)) fX(x) fY (y) (3.19)

in terms of the density of their copula, their marginal cdfs and their marginal densi-
ties. Obviously we used the formulae

fX(x) =
d

dx
FX(x) and fY (y) =

d

dy
FY (y)

giving the densities of X and Y in terms of their respective cdfs. Formula (3.19)
has the following interesting consequence. Contrary to what can be done with the
correlation coefficient (see Problems 3.10 and 3.18 for the striking example of the
lognormal distributions), it is always possible to specify a bivariate distribution by
specifying:

• The marginal distributions
• A copula

without having to worry about the existence of the distribution, Moreover, as formu-
lae (3.18) and (3.19) show, formulae for the components can be used to get formulae
for the cdf and the density of the bivariate distribution. Figure 3.17 shows an exam-
ple where we computed the density of a joint distribution specified by the Gumbel
copula with parameter 1.4, and with the Gaussian distribution N(3, 4) and the Stu-
dent t-distribution t(3) as marginals. A bivariate distribution can be created with the

Fig. 3.17. Surface plot of the density (left) and cdf (right) of the bivariate distribution with
Gumbel copula with parameter 1.4 and marginal distributions N(3, 4) and t(3)
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command bivd, and the function persp.dbivd can be used to produce a 3-d
surface plot of the density of a bivariate distribution. The plot in the left pane of
Fig. 3.17 was obtained with the R commands:

> BIV <- bivd(gumbel.copula(1.4), "norm", "t", c(3,4), 3)
> persp.dbivd(BIV)

The function persp.pbivd produces a surface plot of the cdf of the bivariate
distribution. The plot in the right pane of Fig. 3.17 was obtained with the command
persp.pbivd(BIV). Like in the univariate case, the plots of the two dimensional
cumulative distribution functions are not very instructive, especially for copulas, as
we can see from Figs. 3.15 and 3.16. Indeed, all these copula surface plots show a
tent tied to the segments going from the origin (0, 0) to the points (0, 1) and (1, 0).
It is also tied at the point (1, 1) where its value is always 1, and it is linear on the two
coordinate planes. These properties are mere re-statements of the first properties of
copulas given in Sect. 3.4.1. These constraints are common to all the copula surface
plots, so it is extremely difficult to differentiate between copulas from the plots of
their cdfs. For this reason, one very often uses contour plots to get a sense of the
shape of the distribution and possibly to compare several copulas, or more general
bivariate distributions. The commands:

> par(mfrow=c(1,2))
> contour.dbivd(BIV)
> contour.pbivd(BIV)
> par(mfrow=c(1,1))

were used to produce the plots of Fig. 3.18.
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Fig. 3.18. Contour plot of the density (left) and the cdf (right) of the bivariate distribution with
Gumbel copula with parameter 1.4 and marginal distributions N(3, 4) and T (3)
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3.4.4 Fitting Copulas

Because of the serious difficulties resulting from the lack of data in the tails of the
marginal distributions, copulas are best estimated by parametric methods. In order
to do so, we choose a family of copulas (see Appendix 2 for a list of the parametric
families supported by the library Rsafd) and we estimate the parameter(s) of the
family in question by a maximum likelihood standard estimation procedure. The
function fit.copula which we use below returns an object of class copula,
and creates a contour plot of the level sets of the empirical copula and of the fitted
copula. Since it is so difficult to compare copulas using only their graphs, in order
to visualize the goodness of the fit, we chose to put a selected ensemble of level sets
for the two surfaces on the same plot. Differences in these level curves can easily
be interpreted as differences between the two surfaces. The fitting procedure can be
implemented in the case of the coffee log-return data by the following commands.

> FAM <- "gumbel"
> ESTC <- fit.copula(EMPCOP,FAM)

Recall that EMPCOP was the R object constructed as the empirical copula of the
Brazilian and Colombian coffee daily log-returns. The results are shown in Fig. 3.19.
The level sets of the Gumbel copula fitted to the data are very close to the level sets
of the empirical copula. This graphical check shows that the fit is very good.

Fig. 3.19. Contour plot of the empirical copula with the contours of the fitted Gumbel copula
superimposed
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3.4.5 Monte Carlo Simulations with Copulas

We learned in Chap. 1 how to generate random samples from a univariate distribu-
tion. We introduced and tested a set of tools to do just that, even when the distribution
in question had to be estimated from data, and even when the distribution was sus-
pected to have heavy tails. But as we saw earlier (recall Fig. 3.12) having separate
univariate random samples is not enough if we want to have a realistic rendering of
how the variables in a bivariate sample relate to each other. In this subsection, we
consider the problem of the generation of random samples from a bivariate distribu-
tion, which we assume to be given by its marginal distributions and a copula.

Let us imagine that we have a tool capable of producing bivariate samples from
a copula. We shall not enter into the details of the construction of such a tool, we
shall merely indicate that it can be built by aggregation of one dimensional random
generators for the various conditional distributions. The gory details of such a con-
struction are too technical for this book, so we shall leave them aside. Armed with
such a weapon, it is very simple to generate samples from all the distributions having
this specific copula as their own copula. Indeed, the first components of a random
sample from a copula form a univariate sample uniformly distributed on [0, 1]. So
transforming this sample by computing the quantile function of the first marginal
distribution will turn this uniform sample into a sample from the first marginal dis-
tribution. This is an instance of our favorite method for generating random samples.
Similarly, transforming the second components (which also form a uniform sample,
by definition of a copula) by computing the quantile function of the second marginal
distribution will give a random sample from the second marginal distribution. Now,
by the very definition of the copula, these two univariate samples have not only the
right marginals, but they also have the right copula! So put together, they form a
bivariate sample from the desired bivariate distribution.

We implement this strategy on our example of the coffee log returns. The fol-
lowing set of commands produce a bivariate sample of the same size as the data,
from our estimation of the joint distribution of the coffee log-returns. Remember
that this estimate is comprised of the estimates of the marginal distributions of the
two random quantities together with the parametric estimate of their copula.

> N <- length(BLRet)
> SD <- rcopula(ESTC,N)
> Xsim <- qgpd(B.est, SD$x)
> Ysim <- qgpd(C.est, SD$y)

We review the main steps of the simulation before plotting the results. The function
rcopula produces bivariate samples from the copula whose information is encap-
sulated in the argument ESTC, which needs to be an object of class copula. We
extract the two elements (columns) of SD by means of the dollar signs $ followed by
the lower case x for the first column, and by the lower case y for the second column.
By definition of a copula,SD$x and SD$y are random samples uniformly distributed
over the unit interval. Consequently, the third and fourth commands result in samples
Xsim and Ysim from the GPD’s given by the gpd objects BEST and CEST. This
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is because we compute quantile functions on uniform samples. We already used this
trick several times to generate random samples from a given distribution. But the
situation is quite different from those earlier in that the uniform samples are paired
by the copula used to generate them. So the copula of the resulting bivariate sample
is the copula we started from. The loop is closed, and we have produced a bivariate
sample from the desired distribution. In the same way we produced Fig. 3.12, we can
place the scatterplot of the simulated samples Xsim and Ysim to the right of the
scatterplot of the original samples BLRet and CLRet. The result is reproduced in
Fig. 3.20. The differences with Fig. 3.12 are striking. This plot shows that our model
and the ensuing simulations capture rather well the characteristics of the point dis-
tribution in the plane. As further evidence, the numerical measures of dependence
which we introduced earlier confirm that the results are very satisfactory. This is
clear from the comparison of the values of the Kendall’s tau and Spearman’s rho
statistics computed for the empirical copula (directly from the data) and from the
fitted copula. We reproduce the commands and the results:

> print(ESTC)
Gumbel copula family; Extreme value copula.
Parameters :

delta = 2.98875657681924
> Kendalls.tau(EMPCOP)
[1] 0.6881483

Fig. 3.20. Scatterplot of the Colombian coffee log-returns against the Brazilian ones (left
pane), and scatterplot of the Monte Carlo samples produced with the dependence captured
by the fitted copula (right pane)
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> Kendalls.tau(ESTC, tol = 1e-2)
[1] 0.6654127
> Spearmans.rho(EMPCOP)
[1] 0.8356747
> Spearmans.rho(ESTC)
[1] 0.8477659

3.4.6 A Risk Management Example

Long before they were introduced in the valuation of baskets of debts and loan obli-
gations, risk quantification for large portfolios of instruments with heavy tails was
the main application of copulas in financial risk management. To this day, it remains
the most important application of copulas.

We first describe the simple example of a portfolio of two instruments. Such
an application is clearly limited in scope, but it should not be underestimated. We
generalize it to arbitrary large portfolios at the end of the section. We chose to warm
up with a simple structure for the ease of notation and for the freedom to use a large
set of copula families.

The risk measures which we compute provide values which are orders of magni-
tude different from the values obtained from the theory of the Gaussian distribution.
Relying on the Gaussian theory leads to overly optimistic figures . . . and possibly
to very bad surprises. Fitting heavy tail distributions and using copulas give more
conservative (and presumably more realistic) quantifications of the risk carried by
most portfolios.

In our simple model, the initial value of the portfolio is:

V0 = n1S1 + n2S2

where n1 and n2 are the numbers of units of the two instruments, which are valued
at S1 and S2 at the beginning of the period. Let us denote by S′

1 and S′
2 their values

at the end of the period. Then the new value of the portfolio is:

V = n1S
′
1 + n2S

′
2

and the raw return R over the period is

R =
V − V0
V0

=
n1(S

′
1 − S1) + n2(S

′
2 − S2)

n1S1 + n2S2

=
n1S1

n1S1 + n2S2

S′
1 − S1

S1
+

n2S2

n1S1 + n2S2

S′
2 − S2

S2
= λ1X1 + λ2X2

if we denote by λ1 and λ2 the fractions of the portfolio invested in the two instru-
ments, and by X1 = (S′

1 − S1)/S1 and X2 = (S′
2 − S2)/S2 the raw returns on the

individual instruments.
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3.4.6.1 Value-at-Risk VaRp

We now compute the value at risk of this portfolio. According to the discussion of
Chap. 1, for a given level p, V aRp was defined in relation to the capital needed to
cover losses occurring with frequency p, and more precisely, V aRp was defined as
the 100p-th percentile of the loss distribution. i.e. the solution r of the equation:

p = P{−R ≥ r} = P{R ≤ −r} = FR(−r).

In order to solve for r in the above equation, we need to be able to compute the cdf
of the log-returnR. The latter can be expressed analytically as:

P{−R ≥ r} = P{λ1X1 + λ2X2 ≤ −r}
=

∫ ∫
{(x1,x2);λ1x1+λ2x2≤−r}

f(X1,X2)(x1, x2) dx1dx2

=

∫ +∞

−∞

[ ∫ −r/λ2−λ1x1/λ2

−∞
c(FX1(x1), FX2 (x2))fX2(x2)dx2

]
fX1(x1)dx1

=

∫ 1

0

[ ∫ FX2 (−r/λ2−λ1F
−1
X1

(u)/λ2)

0

c(u, v)dv

]
du

=

∫ 1

0

du
∂

∂u
C(u, v)

∣∣∣∣
v=FX2 (−r/λ2−λ1F

−1
X1

(u)/λ2)

du

where we used several substitutions to change variables in simple and double in-
tegrals. Despite all these efforts, and despite the fact that we managed to reduce
the computation to the evaluation of a single integral, this computation cannot be
pushed further in this generality. Even when we know more about the copula and
the marginal distributions, this integral can very rarely be computed explicitly. We
need to use numerical routines to compute this integral. In fact, we need to run these
routines quite a lot of times to solve the equation giving the desired value of r.

3.4.6.2 Expected Shortfall E{Θp}

We now compute the other measure of risk which we introduced in the Appendix
of Chap. 2. The analytic technicalities of the computation of the expected shortfall
E{Θp} are even more daunting than for the computation of the value at risk V aRp.
Just to give a flavor of these technical difficulties, we initialize the process by:

E{Θp} = E{−R| −R > VaRp}

=
1

p

∫ −VaRp

−∞
−rFR(dr)

=
1

p

∫ +∞

−∞
dx1 fX1(x1)

∫ −VaRp/λ2−λ1x1/λ2

−∞
(λ1x1 + λ2x2)

c(FX1(x1), FX2 (x2)) fX2(x2)dx2
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where we have used the same notation as before. Unfortunately, it seems much more
difficult to reduce this double integral to a single one, and it seems hopeless to try to
derive reasonable approximations of the analytic expression of the expected shortfall
which can be evaluated by tractable computations. Following this road, we ended up
in a cul-de-sac.

Fortunately, random simulation of large samples from the joint distribution of
(X,Y ) and Monte Carlo computations can come to the rescue and save the day.

3.4.6.3 Use of Monte Carlo Computations

We illustrate the use of Monte Carlo techniques by computing the V aRp and the
expected shortfall E{Θp} of a portfolio of Brazilian and Colombian coffee futures
contracts. We solve the problem by simulation using historical data on the daily log-
returns of the two assets. The strategy consists in generating a large sample from the
joint distribution ofX and Y as estimated from the historical data, and computing for
each couple (xi, yi) in the sample, the value ofR. Our estimate of the value at risk is
simply given by the empirical quantile of the set of values ofR thus obtained. We can
now restrict ourselves to the values of R smaller than the negative of the V aRp just
computed, and the negative of the average of these R’s gives the expected shortfall.
This is implemented in the function VaR.exp.sim whose use we illustrate in the
commands below.

> RES <- VaR.sim(n=10000, p=0.01, copula=ESTC, x.est=B.est,
y.est=C.est, lambda1=0.7, lambda2=0.3)

> RES[1]
Simulation size

10000
> RES[2]
VaR Q=0.01
0.1073599
> RES[3]
ES Q=0.01
0.1618901

which produce the value at risk and the expected shortfall over a one-period horizon
of a unit portfolio with 70% of Brazilian coffee and 30% of Colombian coffee.
Notice that the function VaR.sim returns a vector with three components. The first
one is the number of Monte Carlo samples used in the computation, the second is the
estimated value of the VaR while the third one is the estimated value of the expected
shortfall. It is important to keep in mind that these numbers are the results of Monte
Carlo computations, so they will be different each time the function is run, even if
the parameters remain the same (recall the discussion in Chap. 1).
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3.4.6.4 Comparison with the Results of the Gaussian Model

For the sake of comparison, we compute the same value at risk under the assumption
that the joint distribution of the coffee log-returns is Gaussian. This assumption is
implicit in most of the VaR computations done in everyday practice. Our goal here
is to show how different the results are.

> Port <- c(.7,.3)
> MuP <- sum(Port*Mu)
> MuP
[1] -0.0007028017
> SigP <- sqrt(t(Port) %*% Sigma %*% Port)
> SigP

[,1]
[1,] 0.03450331
> - qnorm(p=.01,mean=MuP,sd=SigP)
[1] 0.08096951

For the given portfolio Port, we compute the mean MuP and the standard deviation
SigP of the portfolio return, and VaR given by the model is the negative of the one
percentile of the corresponding Gaussian distribution. We learn that only one percent
of the time will the return be less than 8% while the above computation was telling
us that it should be expected to be less than 10% with the same frequency. One cent
on the dollar is not much, but for a large portfolio, . . . , things add up!

3.4.7 A First Example from the Credit Markets

Our second illustration of the use of bivariate copulas and bivariate distributions will
be developed in Sect. 3.4.9 into a full blown discussion of a realistic application to
credit portfolios and Collateralized Debt Obligations (CDOs). For the time being,
we assume τ1 and τ2 are the times of default of firms A1 and A2 respectively. The
challenge is to compute probabilities of events such as “firm A1 defaults before firm
A2”, or “there are no default before a given time T ”, or any “probability or expec-
tation involving both τ1 and τ2” when the values of firms A1 and A2 depend upon
each other, and consequently, the random variables τ1 and τ2 are dependent. In order
to tackle this problem, not only do we need to know the marginal distributions of τ1
and τ2, but we also need to capture the dependence between τ1 ad τ2. The knowledge
of the correlation coefficient(s) is not enough and we need to use copulas.

In practice, the marginal distributions of the default times are estimated from
historical data, or Credit Default Swaps (CDSs) depending upon the application at
hand. For the sake of illustration, we assume that τ1 ∼ E(0.5) and τ2 ∼ E(0.9). The
estimation of their copulas is a very touchy business (see the Notes and Complements
for a discussion of its role in the collapse of the credit markets) but again, for the
sake of illustration, we shall assume that it is a Gumbel copula with parameter δ =
1.5. The computations of the probabilities mentioned earlier can be done in R as
follows:
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> N <- 5000
> SD <- rcopula(gumbel.copula(1.5),N)
> TAU1.sim <- qexp(0.5, SD$x)
> TAU2.sim <- qexp(0.9, SD$y)
> P1 <- mean(TAU1.sim < TAU2.sim)
[1] 0.9088
> TT <- 1
> P2 <- mean ( (TAU1.sim > TT) & (TAU2.sim > TT))
[1] 0.694

3.4.8 Higher Dimensional Copulas

We now extend our early discussion of bivariate copulas given starting Sect. 3.4.1, to
the general multidimensional case. Unfortunately, a fair amount of repeats is neces-
sary and we apologize for that.

A k-dimensional copula is the joint distribution of k random variables uniformly
distributed over the unit interval [0, 1]. So since we identify distributions and their
cumulative distribution functions, copulas are the functionsC from [0, 1]×· · ·×[0, 1]
into [0, 1] satisfying

C(u1, · · · , uk) = P{U1 ≤ u1, · · · , Uk ≤ uk}

for a set U1, · · · , Uk of U(0, 1) random variables. An important result of the theory
of copulas, known as Sklar’s theorem, states that if F = FX is the joint cdf of
random variablesX1, · · · , Xk with marginals F1 = FX1 , · · · , Fk = FXk

, then there
is a copula C such that

F (x1, · · · , xk) = C(F1(x1), · · · , Fk(xk)), (x1, · · · , xk) ∈ R
k. (3.20)

Moreover, this copula is unique whenever the marginal cdfs are continuous. C is
called the copula ofF or the copula of the random variablesX1, · · · ,Xk. Conversely,
given a k-dimensional copula C and k cdfs F1, · · · , Fk, formula (3.20) defines a
distribution in R

k with marginals F1, · · · , Fk and copula C. A simple consequence
of Sklar’s theorem is that the copula of a set of k random variables X1, · · · , Xk is
given by the formula

C(u1, · · · , uk) = F (F−1
1 (u1), · · · , F−1

k (uk))

where F denotes the joint cdf of the random variables X1, · · · , Xk whose quantile
functions are F−1

1 , · · · , F−1
k .

3.4.8.1 First Properties of Copulas

• C(u1, · · · , uk) is non-decreasing in each variable ui;
• C(1, · · · , 1, ui, 1, · · · , 1) = ui for all i;
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• If u1i ≤ u2i for all i, then:

∑
1≤i1≤2

· · ·
∑

1≤ik≤2

(−1)i1+···+ikC(ui11 , · · · , uikk ) ≥ 0;

• The copula of k random variables is independent of their means (i.e. it does not
change if one adds a number to each random variable);

• Copulas are scale invariant (i.e. they do not change if the individual random
variables are multiplied by positive scalars);

• If ψ1, · · · , ψk are monotone increasing functions, the copula of k random vari-
ables X1, · · · , Xk is the same as the copula of the k random variables ψ1(X1),
· · · , ψk(Xk);

• If the random variables X1, · · · , Xk have a joint density f , and if we denote by
f1, · · · , fk the densities of X1, · · · , Xk respectively, then the copula of X1, · · · ,
Xk has a density c which satisfies

f(x1, · · · , xk) = c(F1(x1), · · · , Fk(xk))
k∏
i=1

fi(xk), (x1, · · · , xk) ∈ R
k,

which can be rewritten as

c(u1, · · · , uk) =
f(F−1

1 (u1), · · · , F−1
k (uk))

f1(F
−1
1 (u1)) · · · fk(F−1

k (uk))
, (u1, · · · , uk) ∈ [0, 1]×· · ·×[0, 1].

The first property is an easy consequence of the fact that C is a cdf, the second prop-
erty merely says that the marginals are uniformly distributed on [0, 1] while the next
inequality (which is easily checked in the case n = 2) expresses the positivity of a
probability distribution function. The next three claims are immediate consequences
of simple properties of cdfs, the last of the three containing the previous two as par-
ticular cases. Finally, the last claim is a consequence of the fact that the density of
a random vector is the multiple cross partial derivative of its distribution function.
The following properties are geared toward future applications to Monte Carlo sim-
ulations with copulas. For the next two bullet points, we assume that the k uniform
random variables on [0, 1], say U1, · · · , Uk, have copula C.

• If 1 ≤ h ≤ k, the function (u1, · · · , uh) ↪→ C(u1, · · · , uh, 1, · · · , 1) is the joint
cdf of (U1, · · · , Uh).

• The conditional cdf of Uh given that U1 = u1, · · · , Uh−1 = uh−1, namely the
function uh ↪→ P{Uh ≤ uh|U1 = u1, · · · , Uh−1 = uh−1} is given by

FUh |U1=u1,··· ,Uh−1=uh−1
(uh) =

∂h−1
u1···uh−1

C(u1, · · · , uh−1, uh, 1, · · · , 1)
∂h−1
u1···uh−1

C(u1, · · · , uh−1, 1, 1, · · · , 1)
.

(3.21)
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3.4.8.2 Examples of High Dimensional Copulas

1. The k-dimensional independent copula Ck,ind is the copula of k independent
uniform random variables. Is is given by:

Ck,ind(u1, · · · , un) = u1 · · ·un
As in the bivariate case, this copula is highlighted for the sake of completeness
as its practical use is minimal.

2. A k-dimensional Gaussian copula is the copula of k jointly Gaussian random
variables. By translation and scale invariance, one can assume that these Gaus-
sian random variables have mean zero and variance one, so that their joint dis-
tribution and hence their copula, are entirely determined by their correlation
matrix, say Σ. So the Gaussian copula with correlation matrix Σ is defined as

CGauss,k,Σ(u1, · · · , uk) = Φk,0,Σ(Φ−1(u1), · · · , Φ−1(uk)), (3.22)

for (u1, · · · , uk) ∈ [0, 1] × · · · × [0, 1], where Φk,0,Σ denotes the (joint)
cdf of the k-dimensional Gaussian distribution with mean vector 0 and vari-
ance/covariance matrix Σ, and as usual, Φ = Φ1,0,1 denotes the cdf of the uni-
variate standard Gaussian distribution. For 0 < ρ < 1, we shall use the notation
CGauss,k,ρ for the k-dimensional Gaussian copula with correlation matrix Σk,ρ
which has ones on the diagonal and ρ everywhere else. We will see that this cop-
ula played a major role in the development of the market of Collateralized Debt
Obligations (CDOs).

3. By analogy with the definition of the Gaussian copula introduced above, the
k dimensional t copula is defined as the copula of a random vector with a k-
dimensional t-distribution. It is defined as

CStudent,k,Σ,ν(u1, · · · , uk) = tΣ,ν(t
−1
ν (u1), · · · , t−1

ν (uk)), (3.23)

for (u1, · · · , uk) ∈ [0, 1] × · · · × [0, 1], where tk,Σ,ν denotes the (joint) cdf of
the k-dimensional Student distribution with variance/covariance matrix Σ and
ν degrees of freedom, and as usual, tν denotes the cdf of the univariate standard
Student distribution with ν degrees of freedom.

3.4.8.3 Archimedean Copulas

The class of Archimedean copulas is based on the notion of Archimedean copula
generator defined as a strictly decreasing convex function ψ : (0, 1] ↪→ [0,∞) satis-
fying ψ(1) = 0. Its pseudo inverse is defined as

ψ[−1](x) =

{
ψ−1(x) if 0 < x < ψ(0)

0 if ψ(0) ≤ x <∞ (3.24)

where ψ(0) is defined as ψ(0) = limt↘0 ψ(t). If ψ(0) = ∞, then the pseudo inverse
ψ[−1] is in fact a true inverse ψ−1 and the generator is said to be strict. The reason
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for the introduction of generator functions as defined above is given by a result due
to Kimberlink stating that if ψ is an Archimedean copula generator, and if we define
the function C by

Cψ(u1, · · · , uk) = ψ[−1](ψ(u1) + · · ·+ ψ(uk)), (3.25)

for (u1, · · · , uk) ∈ [0, 1]× · · · × [0, 1], then C is a copula if and only if the function
ψ[−1] is completely monotone on [0,∞) in the sense that it has derivatives of all
orders which alternate in sign (even order derivatives are positive and odd order
derivatives are negative).

The following are examples of the most commonly used classes of Archimedean
copulas.

1. The k-dimensional Gumbel copula with parameter δ ∈ [1,∞) is the
Archimedean copula associated with the strict generator ψ(u) = (− log u)δ.
Such a copula is sometimes called the logistic copula.

CGumbel,k,δ(u1, · · · , uk) = exp
[− [(− log u1)

δ + · · ·+ (− log uk)
δ]1/δ
]
,

for (u1, · · · , uk) ∈ [0, 1]× · · · × [0, 1].
2. The k-dimensional Clayton copula with parameter β > 0 is the Archimedean

copula associated with the generator ψ(u) = u−β − 1.

CClayton,k,β(u1, · · · , uk) =
[ k∑
i=1

u−βi − k + 1
]−1/β

,

(u1, · · · , uk) ∈ [0, 1]× · · · × [0, 1].

3. The k-dimensional Frank copula with parameter α �= 0 is the Archimedean
copula associated with the generator rank

ψ(u) = − log
e−αu − 1

e−α − 1
.

This generator is strict for k ≥ 3 and α > 0. The Frank copula is given by the
formula

CF,k,α(u1, · · · , uk) = − 1

α
log
[
1 +

∏k
i=1(e

−ui − 1)

(e−α − 1)k−1

]
.

3.4.8.4 Fitting a Copula to Data

In practice, one is given a sample x(1) = (x
(1)
1 , · · · , x(1)k ), · · · , x(n) =

(x
(n)
1 , · · · , x(n)k ) of size n from a k-dimensional distribution, and if the goal is to

estimate the copula of the common distribution of these k dimensional vectors, it is
quite straightforward to generalize to the present general set-up the strategy used in
the bivariate example of the Brazilian and Colombian coffee prices:
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• For i = 1, · · · , k, we estimate the i-th marginal cdfFi from the univariate sample
x
(1)
i , · · · , x(n)i of size n, and denote by F̂i the estimate.

• We create the k-dimensional sample u(1) = (u
(1)
1 = F̂1(x

(1)
1 ), · · · , u(1)k =

F̂k(x
(1)
k )), · · · , u(n) = (u

(n)
1 = F̂1(x

(n)
1 ), · · · , u(n)k = F̂k(u

(n)
k )) of size n.

Notice that for each i = 1, · · · , k, the univariate sample u(1)i , · · · , u(n)i should
be a sample of size n from the uniform distribution U(0, 1). The empirical distri-
bution of the k-dimensional sample u(1), · · · , u(n) is called the empirical copula
of the original sample.

• Even though non-parametric methods (such as kernel density estimation) could
be used at this stage, maximum likelihood estimates computed from a specific
copula family are usually preferred, especially when Monte Carlo simulations
from the fitted copula are needed. So the typical next step is to integrate the
requirements of the analysis and choose a copula family (Gaussian, Gumbel,
Clayton, . . . .), compute the likelihood of the empirical copula for the family in
question, and compute the value of the parameter (ρ̂, δ̂, α̂, · · · ) which maximizes
this likelihood.

3.4.8.5 Monte Carlo Simulations from Multivariate Distributions

Let us assume that the goal is the generation of random samples x(1),x(2), · · · ,x(n)

from a given multivariate distribution. We denote the dimension of this distribution
by k and by x(i)j the j-th component of x(i). Since the distribution in question is
characterized by

• Its marginal cdfs F1, · · · , Fk;
• Its copula C : (u1, · · · , uk) ↪→ C(u1, · · · , uk),
a possible simulation algorithm goes as follows:

• Generate independent samples u(1),u(2), · · · ,u(n) from the k-dimensional cop-
ula C

• Compute x(i)j = F−1
j (u

(i)
j ) for i = 1, · · · , n and j = 1, · · · , k.

Such an algorithm relies on two prerequisites:

• Being able to evaluate the quantile functions F−1
j ;

• Being able to generate random samples from the copula C.

Since we already addressed the first of these two bullet points, we concentrate on the
second.

3.4.8.6 Monte Carlo Simulations from Copulas

The goal is thus to generate independent samples u(1),u(2), · · · ,u(n) from a k-
dimensional copula C. This is particularly easy when C is the copula of a multivari-
ate distribution for which we have random vector generators. We illustrate this claim
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in the case of the Gaussian distribution. The case of the Student distribution can be
treated in the same way.

In order to generate samples u(1),u(2), · · · ,u(n) from the k-dimensional Gaus-
sian copula with correlation matrix Σ, we

• Generate independent samplesx(1),x(2), · · · ,x(n) from the k-dimensional Gaus-
sian distribution Nk(0,Σ);

• Apply the standard Gaussian cdf Φ to each component x(i)j of each of the x(i)’s,

namely we compute u(i)j = Φ(x
(i)
j ).

It is also possible to generate samples for copulas by successive simulations of con-
ditional densities. While theoretically simple, this strategy is typically unfeasible in
practice. However, it happens to be manageable for most of the Archimedean Cop-
ulas when k is small (k = 2 or k = 3) and for general values of k when explicit
formulas can be derived or numerical inversion of the marginal cdf’s is feasible. This
is indeed the case for the Clayton copula. We do not give the details as they are be-
yond the scope of the book. Finally, we notice that the use of the Laplace transform
has been proposed as a tool for Monte Carlo sample generation from a copula. It was
successfully implemented in the case of high dimensional Gumbel copulas.

3.4.8.7 VaR and Expected Short Fall Computations by Monte Carlo Simulations

If the portfolio comprises a large number k of assets, if we denote by X1, · · · , Xk

the individual raw returns over a period of lengthΔt, and if we denote by λ1, · · · , λk
the relative weights of the individual stocks in the portfolio, then the Monte Carlo
strategy can be implemented in the following way.

As explained in the previous subsection, success relies on two prerequisites. The
first one is the estimation of the marginal distributions Fj of the k individual stocks
(we denote by F̂j the estimates), and the second one is the estimation of the copula
C of the returns. So if the estimate Ĉ is from a family for which we have a random
generator, then we can generate sample u(1),u(2), · · · ,u(n) from the k-dimensional
copula Ĉ, and set x(i)j = F−1

j (u
(i)
j ) for i = 1, · · · , n and j = 1, · · · , k. Monte Carlo

samples R(i) of the portfolio return are then created via the formula

R(i) = λ1x
(i)
1 + · · ·+ λkx

(i)
k , i = 1, · · · , n.

The value at risk of the portfolio is given by the empirical quantile. More precisely,
it is obtained by ordering the returns

R(1) < R(2) < · · · < R(n)

and by using V̂ aRp = −R(1+[np]) as estimate. Here and in the following we use the
notation [x] for the integer part of x and we assumed 0 < p < 1. Once the value
at risk is estimated, the expected shortfall is estimated by replacing the conditional



164 3 DEPENDENCE & MULTIVARIATE DATA EXPLORATION

expectation entering in its definition by the corresponding empirical analog. In other
words

ÊSp = − 1

[np]

[np]∑
i=1

R(i)

3.4.8.8 Testing the Procedure with Real Data

If Ret is a matrix of daily log returns with one row per day and one column per
stock, the following commands can be used to compute the one-day value at risk at
the level 0.01 by the Monte Carlo procedure described above.

> Nstock <- dim(Ret)[2]
> Port <- rep(1/Nstock, Nstock)
> Mu <- apply(Ret,2,mean)
> Sig <- var(Ret)
> Ret.est <- NULL
> for (I in 1:Nstock) Ret.est <-c(Ret.est,fit.gpd(Ret[,I]))
> SD <- rmvgaussian.copula(Nsim, Sigma = Sig)
> for (I in 1:Nstock) SD[,I] <- qgpd(Ret.est[[I]],SD[,I])
> Port.sim <- SD %*% Port
> VaR <- - quantile(Port.sim, probs=.01)

We can compute the expected shortfall with the commandES <- - mean(Port.
sim < - VaR). As before, we can compare the results with the results we would
obtained under the assumption that the joint distribution of the daily log-returns is
Gaussian, and as before, we would find that the VaR computed under the Gaussian
assumption offers an overly optimistic picture of the risk of the portfolio as quanti-
fied by VaR.

3.4.9 Multi Name Credit Derivatives and CDOs

In this final subsection, we document the role of copulas (and especially the Gaussian
copula) in the pricing of a special form of the (in)famous Collateralized Debt Obli-
gations (CDOs for short). CDOs are financial contracts written on the cumulative
losses of a portfolio of credit sensitive instruments (loans, mortgages, bonds, CDSs,
. . .). The premise of the creation of these new securities is the idea that aggregation
and slicing into tranches lead to new securities with ratings and probabilities of de-
fault more favorable than from those of the original members of the pool. This secu-
ritization process was promoted as a clever way to produce parts whose values sum
up to more than the value of the whole. Does this sound too good to be true? The
collapse of the credit markets gives a clear answer.
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In order to define precisely these securities, we introduce the notation we use for
the major components of these new securities.

• First, the maturity T . For single tranche synthetic CDOs, T is typically 5, 7, or
10 years, T = 5 offering most liquidity.

• Then we denote by {1, 2, · · · , k} the k obligor names included in the portfolio
and by {τ1, τ2, · · · , τk} the default times of these obligors,

• We also denote by Ni the nominal and by Ri the recovery rate for obligor i, so
that (1 −Ri)Ni represents the loss given default of obligor i

We denote by N(t) the total number of defaults occurring before or at time t and by
L(t) the cumulative losses at time t in the credit pool:

L(t) =
∑
τi≤t

Ni(1−Ri). (3.26)

In most of the discussion that follows, we concentrate on homogeneous portfolios
maintained by the Dow Jones, and we assume that the portfolio is homogeneous in
the sense that all the nominals Ni, as well as the recovery rates, do not depend upon
i. In such a particular case, bothNi andRi can be removed from the definition of the
cumulative loss, since for the sake of simplicity, we normalize the cumulative loss to
a maximum of 1. Under such a simplifying assumption we have:

L(t) =
N(t)

k
(3.27)

which gives the relative number of defaults occurring before time t.
Independently of the actual definition of the cumulative loss L(t), the losses

are organized in tranches defined by their end points called attachment points 0 <
K0 < K1 < · · · < KM < 1. Attachment points can be tailor made to the needs of
investors. In the case of the Dow Jones indexes underlying the liquid single tranche
synthetic CDOs, they are standardized as follows:

• K1 = 3%, K2 = 6%, K3 = 9%, K4 = 12% and K5 = 22%
for the Dow Jones iTraxx Europ Index

• K1 = 3%, K2 = 7%, K3 = 10%, K4 = 15% and K5 = 30%
for the Dow Jones CDX North American Index

Tranche names are mostly standard:

• Equity Tranche 0 = K0 ≤ L(T ) ≤ K1

• J-th Mezzanine Tranche KJ ≤ L(T ) ≤ KJ+1

• Senior Tranche KM−1 ≤ L(T ) < KM

• Super Senior Tranche KM ≤ L(T )
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Originally, CDOs were written on customized portfolios chosen to match specific
credit exposures, and one of the major problems was to choose the names, the at-
tachment points Kj , and the spreads of each tranche to achieve desired ratings for
the notes.

The following figure shows a typical sample realization of the change over time
of the (relative) cumulative loss on a credit portfolio (Fig. 3.21).

Fig. 3.21. Sample loss function of a credit portfolio

3.4.9.1 Single Tranche Synthetic CDOs

The first generation of CDOs gave a quantum leap to the popularity of instruments
written on large credit portfolios. However, like CLOs and CBOs, their structures
were quite complicated, often involving the creation of special entities like SPVs,
and because of their customized nature, they did not offer much liquidity. The second
generation of CDOs is based on indexes (typically the CDX indexes in the US and
the ITRAX indexes in Europe). The indentures of the contracts are much simpler,
and their liquidity is much improved. In this section, we concentrate on the single
tranche synthetic CDOs.

3.4.9.2 Single Tranche Synthetic CDO Mechanics

The contract involves a protection buyer and a protection seller. As in the case of
CDS contracts, the protection buyer pays regular coupons (typically every 3 months)
until maturity or until the nominal of the tranche is wiped out by the losses incurred
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by the portfolio, whichever comes first. In exchange for these regular coupon
payments, the protection seller will compensate the protection buyer for the losses
of the tranche.

The following tables reproduce bid and ask quotes on the 4th and 5th series of
the CDX-IG tranches on December 19, 2006.

IG4 0–3 % 3–7 % 7–10 % 10–15 % 15–30 %
5-year 38 1/4–39 1/4 106–112 26–32 11–16 6–7 1/2
7-year 51 3/8–52 1/8 244–254 47–54 26–32 8 1/2–11
10-year 57 1/2–59 1/8 598–617 118–126 58–66 16–22

IG5 0–3 % 3–7 % 7–10 % 10–15 % 15–30 %
5-year 41 1/4–42 1/4 107 1/4–112 26–29 11–14 6 1/2–9 1/2
7-year 54 3/4–55 5/8 290–300 45–51 27–31 7–10
10-year 61 3/4–62 3/4 685–705 118–124 61–66 17–21

The interpretation of these figures is the following.
We explain the meaning of these quotes by explaining in detail the cash flows

associated with one of these tranches. We choose the super-senior tranche with at-
tachment points 15 and 30% on the 5-year CDX-IG index series 4. Let us assume
that this tranche traded for 7 basis points. In this case, the protection buyer is to pay
0.07% of the notional per year (in quarterly coupon payments made in arrear). In
return, she will be compensated for any losses on the portfolio during the 5 years
that are between 15 and 30% of the principal. The losses are computed from the
portfolio underlying the index at the original time of the trade.

The quotes for the all the other tranches are defined similarly except for the equity
tranche for which the buyer of protection pays an upfront fee and a spread of 500
basis points per year. The published quotes give the bid and ask for the upfront fee
expressed as a percent of the notional. The percent of the notional that the protection
buyer of the equity-tranche has to pay on December 19, 2006 was between 38.25 and
39.25 % for 5-year protection.

The index is also quoted to indicate the cost of buying full protection against all
k = 125 names.

3.4.9.3 Stochastic Models

As we already explained, we assume for the sake of simplicity that the recovery
rates Ri are deterministic and equal to each other (this is a reasonable assumption
for homogeneous credit baskets). So in order to model the cumulative losses of a
credit portfolio, we only need to model the default times τ1, τ2, · · · , τk. These are
non-negative random variables whose joint distribution can be given by the joint
default cdf

F (t1, t2, · · · , tk) = P{τ1 ≤ t1, τ2 ≤ t2, · · · , τk ≤ tk}, (t1, t2, · · · , tk) ∈ [0,∞)k
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or equivalently by the joint survival function

S(t1, t2, · · · , tk) = P{τ1 > t1, τ2 > t2, · · · , τk > tk}, (t1, t2, · · · , tk) ∈ [0,∞)k

One possible way to characterize this joint distribution is to first identify the marginal
default cdfs or equivalently the marginal survival functions

Fi(t) = P{τi ≤ t}, Si(t) = P{τi > t}, t ∈ [0,∞), i = 1, 2, · · · , k

and put them together with the help of a copula C(u1, u2, · · · , uk), in which case
we get:

F (t1, t2, · · · , tk) = C(F1(t1), F2(t2), · · · , Fk(tk), (t1, t2, · · · , tk) ∈ [0,∞)k.

3.4.9.4 Default Models

A first approach to understand the statistics of the times of default τi is to view
them as the first times the firms stop being solvent. Modeling the joint evolution of
the k values of the firms and tracking these times of defaults go under the name of
structural approach to default modeling. Figure 3.22 gives an example.

Fig. 3.22. Sample of 20 Monte Carlo scenarios of the default times of 50 firms in the structural
approach

However, reduced form models based a simple factor models have gained popularity
because of the ease with which they can be defined and calibrated. Typically, one
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chooses a vector Y of a small number of factors, and conditioned on the value of
Y, we assume that the default times τi are independent. So the dependencies be-
tween the defaults appear through the common factors Y. The term structures of
conditional default probabilities are then given by

F
(i)
Y (t) = P{τi ≤ t|Y}

We now describe the simplest possible way to model the state of the portfolio at
maturity T by means of the Gaussian copula introduced by Dr Li. This approach is
based on the knowledge of

• Marginal/individual default probabilities {p1, p2, · · · , pk} by time T of the oblig-
ors;

• A copula C(u1, u2, · · · , uk) for default dependency.

The individual probabilities of default

pi = P{τi ≤ T }, i = 1, 2, · · · , k

can be inferred from the CDS spread curves of the individual firms. CDS stands for
Credit Default Swap. These instruments are liquidly traded and the estimation of the
pi’s is not regarded as a serious obstacle. Once the copula is chosen, Monte Carlo
simulations can be structured in the following way:

• Draw uniform samples (U1, U2, · · · , Uk) from the k-dimensional copula C;
• For each i, obligor i survives (i.e. does not default beforeT ) if and only ifUi ≤ pi

In particular,

• The probability of no default is given by

P{Ui ≤ pi, for all i ≤ k} = C(p1, p2, · · · , pk)

• The probability that none of the first h obligors default

P{Ui ≤ pi, for all i ≤ h} = C(p1, · · · , ph, 1, · · · , 1)

The rationale for the choice of a Gaussian copula for C is based on Merton’s theory
of default in which the logarithm of the value of the assets of a firm is assumed to
be Gaussian, and default occurs by time T if the value of these assets drops below
a solvency threshold. If these logarithms L̃(i) are modeled with a common factor Y
and idiosyncratic noise components εi such that

L̃(i) =
√
ρY +

√
1− ρεi, i = 1, 2, · · · , k,

Y and εi 1 ≤ i ≤ k being independent N(0, 1) random variables, and ρ a positive
number, then the correlation matrix Σ to be used in the copula has
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• 1 on the diagonal
• ρ off the diagonal

in other words,

Σ =

⎡
⎢⎢⎢⎢⎢⎣

1 ρ · · · · · · ρ
ρ 1 ρ · · · ρ
...

. . .
...

ρ · · · · · · 1 ρ
ρ · · · · · · ρ 1

⎤
⎥⎥⎥⎥⎥⎦

This Gaussian copula model was referred to as the market standard in the early
2000s and it was credited to Dr Li. Part of its popularity was due to the fact that
it was depending upon a single parameter model ρ which could be implied for each
tranche from market quotes, in complete analogy with the implied volatility of equity
options. For this reason, these tranche dependent correlation parameters were called
implied correlations, and the notion of correlation smile was observed and studied.
As a result, trading CDOs was called trading correlation. We give a simple example
for the purpose of illustration. We generate a sample of 5,000 Monte Carlo simula-
tions of a credit portfolio of 125 firms and count, for each scenario, the number of
defaults in the portfolio over a period of one year. We assume that the default times
of the firms are all exponentially distributed with rate 0.3 and have a Gaussian copula
with parameter ρ = 0.7. Our choices for the parameters were made for pedagogical
reasons.

> Nsim <- 5000
> Nfirm <- 125
> LAMBDA <- rep(0.3,Nfirm)
> SD <- rmvgaussian.copula(Nsim,d=Nfirm,rho=0.7)
> TAU <- array(0,dim=c(Nsim,Nfirm))
> for(I in 1:Nfirm) TAU[,I] <- qexp(SD[,I],LAMBDA[I])
> NDefault <- apply(TAU<TT,1,sum)
> hist(NDefault,nclass=35, probability=TRUE, col="blue",

main="Number of Defaults")
> Prob <- mean(NDefault == 0)
[1] 0.1834

This computation shows that in one year (TT=1) one should expect no default in
the portfolio with probability 18%. The histogram of the Monte Carlo sample is
reproduced in Fig. 3.23

Important Remark. The above discussion suggests that Monte Carlo simulation
was the right approach to credit portfolio understanding and valuation. However, it
is very important to emphasize that defaults are relatively rare (even in periods of
economic downturn) and the probabilities of multiple defaults are small. Simulation
of rare events (i.e. events with small probabilities) is a typical instance of situation
where plain Monte Carlo simulations fail. Dedicated simulation methods involving
importance sampling and other sophisticated re-weighting procedures need to be
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Fig. 3.23. Histogram of the Monte Carlo sample of numbers of defaults in the portfolio

used in order to reduce the variance of the Monte Carlo estimators. See the Notes &
Complements at the end of the chapter for references on the subject.

3.5 PRINCIPAL COMPONENT ANALYSIS

Dimension reduction without significant loss of information is one of the main chal-
lenges of data analysis. The internet age has seen an exponential growth in the re-
search efforts devoted to the design of efficient codes and compression algorithms.
Whether the data are comprised of video streams, images, and/or speech signals, or
financial data, finding a basis in which these data can be expressed with a small (or
at least a smaller) number of coefficients is of crucial importance. Other important
domains of applications are cursed by the high dimensionality of the data. Artificial
intelligence applications, especially those involving machine learning and data min-
ing, have the same dimension reduction problems. Pattern recognition problems are
closer to the hearts of traditional statisticians. Indeed, regression and statistical clas-
sification problems have forced statisticians to face the curse of dimensionality, and
to design systematic procedures to encapsulate the important features of high dimen-
sional observations in a small number of variables. Principal component analysis as
presented in this chapter, offers an optimal (in the least squares sense) solution to
these dimension reduction issues.
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3.5.1 Identification of the Principal Components of a Data Set

Principal component analysis (PCA, for short) is a data analysis technique designed
for numerical data (as opposed to categorical data). The typical situation that we
consider is where the data come in the form of a matrix [xi,j ]i=1,...,N,j=1,...,M of
real numbers, the entry xi,j representing the value of the i-th observation of the j-
th variable. As usual, we follow the convention of labeling the columns of the data
matrix by the variables measured, and the rows by the individuals in the population
under investigation. Examples are plentiful in most data analysis applications. We
give below detailed analyses of several examples from the financial arena.

As we mentioned above, theN members of the population can be identified with
the N rows of the data matrix, each one corresponding to an M -dimensional (row)
vector of numbers giving the values of the variables measured on this individual. It
is often desirable (especially when M is large) to reduce the complexity of the de-
scriptions of the individuals and to replace the M descriptive variables by a smaller
number of variables, while at the same time, losing as little information as possible.
Let us consider a simple (and presumably naive) illustration of this idea. Imagine
momentarily that all the variables measured are scores of the same nature (for exam-
ples they are all lengths expressed in the same unit, or they are all prices expressed
in the same currency, . . .) so that it would be conceivable to try to characterize each
individual by the mean, and a few other numerical statistics computed on all the
individual scores. The mean:

xi· =
xi1 + xi2 + · · ·+ xiM

M

can be viewed as a linear combination of the individual scores with coefficients
1/M, 1/M, . . . , 1/M . Principal component analysis, is an attempt to describe the
individual features in the population in terms of M linear combinations of the orig-
inal features, as captured by the variables originally measured on the N individuals.
The coefficients used in the example of the mean are all non-negative and sum up to
one. Even though this convention is very attractive because of the probabilistic inter-
pretation which can be given to the coefficients, we shall use another convention for
the linear combinations. We shall allow the coefficients to be of any sign (positive as
well as negative) and we normalize them so that the sum of their squares is equal to
1. So if we were to use the mean, we would use the normalized linear combination
(NLC, for short) given by:

x̃i· =
1√
M
xi1 +

1√
M
xi2 + · · ·+ 1√

M
xiM .

The goal of principal component analysis is to search for the main sources of vari-
ation in the M -dimensional row vectors by identifying M linearly independent and
orthogonal NLC’s in such a way that a small number of them capture most of the vari-
ation in the data. This is accomplished by identifying the eigenvectors and eigenval-
ues of the covariance matrix Cx of the M column variables. This covariance matrix
is defined by:
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Cx[j, j
′] =

1

N

N∑
i=1

(xij − x·j)(xij′ − x·j′), j, j′ = 1, . . . ,M, (3.28)

where we used the standard notation:

x·j =
x1j + x2j + · · ·+ xNj

N

for the mean of the j-th variable over the population of N individuals. It is easy to
check that the matrix Cx is symmetric (hence diagonalizable) and non-negative defi-
nite (which implies that all the eigenvalues are non-negative). One usually rearranges
the eigenvalues in decreasing order, say:

λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0.

The corresponding eigenvectors are called the loadings. In practice we choose c1
to be a normalized eigenvector corresponding to the eigenvalue λ1, c2 to be a nor-
malized eigenvector corresponding to the eigenvalue λ2, . . . , and finally cM to be a
normalized eigenvector corresponding to the eigenvalue λM , and we make sure that
all the vectors cj are orthogonal to each other. This is automatically true when the
eigenvalues λj are simple. See the discussion below for the general case. Recall that
we say a vector is normalized if the sum of the squares of its components is equal to
1. If we denote byC theM×M matrix formed by theM column vectors containing
the components of the vectors c1, c2, . . . , cM in this order, this matrix is orthogonal
(since it is a matrix transforming one orthonormal basis into another) and it satisfies:

Cx = CtDC

where we use the notation t to denote the transpose of a matrix or a vector, and where
D is the M × M diagonal matrix with λ1, λ2, . . . , λM on the diagonal. Notice
the obvious lack of uniqueness of the above decomposition. In particular, if cj is a
normalized eigenvector associated to the eigenvalue λj , so is −cj! This is something
one should keep in mind when plotting the eigenvectors cj , and when trying to find
an intuitive interpretation for the features of the plots. However, this sign flip is easy
to handle, and fortunately, it is the only form of non uniqueness when the eigenvalues
are simple (i.e. nondegenerate). The ratio:

λj∑M
j′=1 λj′

of a given eigenvalue to the trace of Cx (i.e. the sum of its eigenvalues) has the inter-
pretation of the proportion of the variation explained by the corresponding eigenvec-
tor, i.e. the loading cj . In order to justify this statement, we appeal to the Raleigh-
Ritz variational principle from linear algebra. Indeed, according to this principle, the
eigenvalues and their corresponding eigenvectors can be characterized recursively in
the following way. The largest eigenvalue λ1 appears as the maximum:
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λ1 = max
x∈RM ,‖x‖=1

xtCxx

while the corresponding eigenvector c1 appears as the argument of this maximization
problem:

c1 = arg max
x∈RM ,‖x‖=1

xtCxx.

If we recall the fact that xtCxx represents the quadratic variation (empirical vari-
ance) of the NLC’s xtx1·, xtx2·, . . . , xtxN ·, λ1 can be interpreted as the maximal
quadratic variation when we consider all the possible (normalized) linear combina-
tions of the M original variables. Similarly, the corresponding (normalized) eigen-
vector has precisely the interpretation of this NLC which realizes the maximum vari-
ation.

As we have already pointed out, the first loading is uniquely determined up to a
sign change if the eigenvalue λ1 is simple. If this is not the case, and if we denote
by m1 the multiplicity of the eigenvalue λ1, we can choose any orthonormal set
{c1, · · · , cm1} in the eigenspace of λ1 and repeat the eigenvalue λ1, m1 times in the
list of eigenvalues (and on the diagonal of D as well). This lack of uniqueness is not
a mathematical difficulty, it is merely annoying. Fortunately, it seldom happens in
practice! We shall assume that all the eigenvalues are simple (i.e. non-degenerate)
for the remainder of this discussion. If they were not, we would have to repeat them
according to their multiplicities.

Next, still according to the Raleigh-Ritz variation principle, the second eigen-
value λ2 appears as the maximum:

λ2 = max
x∈RM ,‖x‖=1,x⊥c1

xtCxx

while the corresponding eigenvector c2 appears as the argument of this maximization
problem:

c2 = arg max
x∈RM ,‖x‖=1,x⊥c1

xtCxx.

The interpretation of this statement is the following: if we avoid any overlap with
the loading already identified (i.e. if we restrict ourselves to NLC’s x which are
orthogonal to c1), then the maximum quadratic variation will be λ2 and any NLC
realizing this maximum variation can be used for c2. We can go on and identify in
this way all the eigenvalues λj (having to possibly repeat them according to their
multiplicities) and the loadings cj’s.

Armed with a new basis of RM , the next step is to rewrite the data observations
(i.e. the N rows of the data matrix) in this new basis. This is done by multiplying
the data matrix by the change of basis matrix (i.e. the matrix whose columns are the
eigenvectors identified earlier). The result is a newN×M matrix whose columns are
called principal components. Their relative importance is given by the proportion of
the variance explained by the loadings, and for that reason, one typically considers
only the first few principal components, the remaining ones being ignored and/or
treated as noise.
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3.5.2 PCA with R

The principal component analysis of a data set is performed in R with the function
princomp, which returns an object of class princomp that can be printed and
plotted with generic methods. Illustrations of the calls to this function and of the
interpretation of the results are given in the next subsections in which we discuss
several financial applications of PCA.

3.5.3 Effective Dimension of the Space of Yield Curves

Our first application concerns the markets of fixed income securities which we will
introduce in Sect. 4.8. The term structure of interest rates is conveniently captured
by the daily changes in the yield curve. The dimension of the space of all possible
yield curves is presumably very large, potentially infinite if we work in the idealized
world of continuous-time finance. However, it is quite sensible to try to approximate
these curves by functions from a class chosen in a parsimonious way. Without any a
priori choice of the type of functions to be used to approximate the yield curve, PCA
can be used to extract, one by one, the components responsible for the variations in
the data.

3.5.3.1 PCA of the Yield Curve

For the purposes of illustration, we use data on the US yield curve as provided by
the Bank of International Settlements (BIS, for short). These data are the result of
a nonparametric processing (smoothing spline regression, to be specific) of the raw
data. The details will be given in Sect. 5.4, but for the time being, we shall ignore
the possible effects of this pre-processing of the raw data. The data are imported into
an R-object named us.bis.yield which gives, for each of the 1,352 successive
trading days following January 3rd 1995, the yields on the US Treasury bonds for
times to maturity

x = 0, 1, 2, 3, 4, 5, 5.5, 6.5, 7.5, 8.5, 9.5 months.

We run a PCA on these data with the following R commands:

> dim(us.bis.yield)
[1] 1352 11
> us.bis.yield.pca <- princomp(us.bis.yield)
> plot(us.bis.yield.pca,main="Proportions of the Variance

Explained by the Components")

The results are reproduced in Fig. 3.24 which gives the proportions of the variation
explained by the various components. The first three eigenvectors of the covariance
matrix (the so-called loadings) explain 99.9% of the total variation in the data. This
suggests that the effective dimension of the space of yield curves could be three. In
other words, any of the yield curves from this period can be approximated by a linear
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Fig. 3.24. Proportions of the variance explained by the components of the PCA of the daily
US yield curves

combination of the first three loadings, the relative error being very small. In order
to better understand the far reaching implications of this statement we plot the first
four loadings.

> X <- c(0,1,2,3,4,5,5.5,6.5,7.5,8.5,9.5)
> par(mfrow=c(2,2))
> plot(X,us.bis.yield.pca$loadings[,1],ylim=c(-.7,.7))
> lines(X,us.bis.yield.pca$loadings[,1])
> plot(X,us.bis.yield.pca$loadings[,2],ylim=c(-.7,.7))
> lines(X,us.bis.yield.pca$loadings[,2])
> plot(X,us.bis.yield.pca$loadings[,3],ylim=c(-.7,.7))
> lines(X,us.bis.yield.pca$loadings[,3])
> plot(X,us.bis.yield.pca$loadings[,4],ylim=c(-.7,.7))
> lines(X,us.bis.yield.pca$loadings[,4])
> par(mfrow=c(1,1))

The results are reproduced in Fig. 3.25. The first loading is essentially flat, so a com-
ponent on this loading will essentially represent the average yield over the maturities.
Note that, contrary to what one could have expected, this first loading is always neg-
ative. But if we recall a remark we made on the non-uniqueness of the eigenvectors,
a possible change in sign can be expected. Because of the monotone and increasing
nature of the second loading, the second component measures the upward trend (if
the component is positive, and the downward trend otherwise) in the yield. This sec-
ond factor is interpreted as the tilt of the yield curve. The shape of the third loading
suggests that the third component captures the curvature of the yield curve, whether
positive or negative. Finally, the shape of the fourth loading does not seem to have
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Fig. 3.25. From left to right, top to bottom, sequential plots of the first four US yield loadings

an obvious interpretation. It is mostly noise (remember that most of the variations in
the yield curve are explained by the first three components). These features are very
typical, and they should be expected in most PCA’s of the term structure of interest
rates.

The fact that the first three components capture so much of the yield curve may
seem strange when compared to the fact that some estimation methods, which we
discuss later in the book, use parametric families with more than three parameters!
There is no contradiction there. Indeed, for the sake of illustration, we limited the
analysis of this section to the first part of the yield curve. Restricting ourselves to
short maturities makes it easier to capture all the features of the yield curve in a
small number of functions with a clear interpretation.

Important Remarks.

1. PCA is most often used to study the daily changes in the yield curve, as opposed
to the yield curves themselves. From a statistical point of view, working with
differences over time helps resolve possible non-stationary issues which could
plague the estimation of the covariance matrix given by its empirical counterpart
(3.28). The next example gives an illustration of the procedure and of the inter-
pretation of the results in terms of changes over time in the curves. In particular,
even though the first component (i.e. the most important factor) will still be es-
sentially flat, the interpretation will be that its impact on the actual yield curve
is a parallel shift.

2. Most modern data sets provide measurements for a large number of variablesM ,
and the order of magnitude of this number is often comparable to the number
of observations N . In such situations, the estimation of the covariance matrix
by the empirical covariance matrix (3.28) may be problematic given that the
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number of parameters estimated is proportional to M2, and a modicum of care is
needed in the statistical interpretation of the results. Prompted by applications to
genomics, a very active branch of statistical research has developed to provide
robust statistical estimation procedures to handle situations when the number of
variables is larger than the number of observations. We shall not dwell on this
issue here, but the reader should be cautioned of the dangers to run PCA when
M ∼ N .

3.5.4 Swap Rate Curves

Swap contracts have been traded publicly since 1981. As of today, they are some of
the most popular fixed income derivatives. Because of this popularity, the swap mar-
kets are extremely liquid, and as a consequence, they can be used to hedge interest-
rate risk of fixed income portfolios at low cost. The estimation of the term-structure
of swap rates is important in this respect and the PCA which we present below is the
first step toward a better understanding of this term structure.

3.5.4.1 Swap Contracts and Swap Rates

As implied by its name, a swap contract obligates two parties to exchange (or swap)
some specified cash flows at agreed upon times. The most common swap contracts
are interest rate swaps. In such a contract, one party, say counter-party A, agrees to
make interest payments determined by an instrument PA (say, a 10 year US Trea-
sury bond rate), while the other party, say counter-party B, agrees to make interest
payments determined by another instrument PB (say, the London Interbank Offer
Rate – LIBOR for short). Even though there are many variants of swap contracts, in
a typical contract, the principal on which counter-party A makes interest payments
is equal to the principal on which counterparty B makes interest payments. Also, the
payment schedules are identical and periodic, the payment frequency being quarterly,
semi-annually, . . ..

It is not difficult to infer from the above discussion that a swap contract is equiv-
alent to a portfolio of forward contracts, but we shall not use this feature here. In this
section, we shall restrict ourselves to the so-called plain vanilla contracts involving
a fixed interest rate and the 3 or 6 months LIBOR rate.

We will not attempt to derive here a formula for the price of a swap contract,
neither will we try to define rigorously the notion of swap rate. These derivations
are beyond the scope of this book. See the Notes & Complements at the end of the
chapter for references to appropriate sources. We shall use only the intuitive idea of
the swap rate being a rate at which both parties will agree to enter into the swap
contract.
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3.5.4.2 PCA of the Swap Rate Daily Changes

Our second application of principal component analysis concerns the changes in
the term structure of swap rates as given by the swap rate curves. As before, we
denote by M the dimension of the vectors. We use data downloaded from Data
Stream. It is quite likely that the raw data have been processed, but we are not
quite sure what kind of manipulation is performed by Data Stream, so for the
purposes of this illustration, we shall ignore the possible effects of the pre-processing
of the data. In this example, the day t labels the rows of the data matrix. The
latter has M = 15 columns, containing the swap rates with maturities T con-
veniently labeled by the times to maturity x = T − t, which have the values
1, 2, . . . , 10, 12, 15, 20, 25, 30 years in the present situation. We collected these data
for each day t of the period from May 1998 to March 2000, and we rearranged the
numerical values in a matrix R = [ri,j ]i=1,...,N, j=1,...,M . Here, the index j stands
for the time to maturity, while the index i codes the day the curve is observed.

The data are contained in the R object swap. We perform the PCA on the daily
changes in the swap rate curve with the commands:

> dim(swap)
[1] 496 15
> DS <- diff(as.matrix(swap))
> swap.pca <- princomp(DS)
> plot(swap.pca, main= Proportions of the Variance

Explained by the Components")
> YEARS <- c(1,2,3,4,5,6,7,8,9,10,12,15,20,25,30)
> par(mfrow=c(2,2))
> plot(YEARS,swap.pca$loadings[,1],ylim=c(-.6,.6))
> lines(YEARS,swap.pca$loadings[,1])
> plot(YEARS,swap.pca$loadings[,2],ylim=c(-.6,.6))
> lines(YEARS,swap.pca$loadings[,2])
> plot(YEARS,swap.pca$loadings[,3],ylim=c(-.6,.6))
> lines(YEARS,swap.pca$loadings[,3])
> plot(YEARS,swap.pca$loadings[,4],ylim=c(-.6,.6))
> lines(YEARS,swap.pca$loadings[,4])
> par(mfrow=c(1,1))

The command DS <- diff(as.matrix(swap)) turns the data frame swap
into a matrix to which the diff operator can be apply to replace each column by
the result of its differentiation to which the PCA is then applied. Figure 3.26 gives
the proportions of the variation explained by the various components, while Fig. 3.27
gives the plots of the first four eigenvectors.

Looking at Fig. 3.27 one sees that the first and most important factor will create
a parallel shift while the second one will produce a tilt of the curve, and the third
factor will attempt to bend the curve to create a curvature.
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Fig. 3.26. Proportions of the variance explained by the components of the PCA of the daily
changes in the swap rates for the period from May 1998 to March 2000
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Fig. 3.27. From left to right and top to bottom, sequential plots of the eigenvectors (load-
ings) corresponding to the four largest eigenvalues. Notice that we changed the scale of the
horizontal axis to reflect the actual times to maturity

APPENDIX 1: CALCULUS WITH RANDOM VECTORS AND MATRICES

The nature and technical constructs of this chapter justify our spending some time
discussing the properties of random vectors (as opposed to random variables) and
reviewing the fundamental results of the calculus of probability with random vectors.
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Their definition is very natural: a random vector is a vector whose entries are random
variables. With this definition in hand, it is easy to define the notion of expectation.
The expectation of a random vector is the (deterministic) vector whose entries are
the expectations of the entries of the original random vector. In other words,

if X =

⎡
⎢⎣
X1

...
Xn

⎤
⎥⎦ , then E{X} =

⎡
⎢⎣
E{X1}

...
E{Xn}

⎤
⎥⎦ ,

whenever these expectations exist. Notice that, if B is an n-dimensional (determin-
istic) vector then:

E{X +B} = E{X}+B. (3.29)

Indeed:

E{X +B} =

⎡
⎢⎣
E{X1 + b1}

...
E{Xn + bn}

⎤
⎥⎦ =

⎡
⎢⎣
E{X1}+ b1

...
E{Xn}+ bn

⎤
⎥⎦ = E{X}+B

where we used the notation bi for the components of the vector B. The notion of
variance (or more generally of second moment) appears somehow less natural at
first. We define the variance/covariance matrix of a random vector to be the (deter-
ministic) matrix whose entries are the variances and covariances of the entries of the
original random vector. More precisely, if X is a random vector as above, then its
variance/covariance matrix is the matrix ΣX defined by:

ΣX =

⎡
⎢⎢⎢⎣

var(X1) cov(X1, X2) · · · cov(X1, Xn)
cov(X2, X1) var(X2) · · · cov(X2, Xn)

...
...

...
...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)

⎤
⎥⎥⎥⎦ , (3.30)

In other words, on the i-th row and the j-th column ofΣX we find the covariance of
Xi andXj . For the purposes of this appendix, we limit ourselves to random variables
of order 2 (i.e. for which the first two moments exist) so that all the variances and
covariances make perfectly good mathematical sense. Note that this is not the case
for many generalized Pareto distributions, and especially for our good old friend the
Cauchy distribution.

The best way to look at the variance/covariance matrix of a random vector is the
following. Using the notation Zt for the transpose of the vector or matrix Z, we
notice that:
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[X − E{X}][X − E{X}]t =

⎡
⎢⎣
X1 − μ1

...
Xn − μn

⎤
⎥⎦ [X1 − μ1, . . . , Xn − μn]

=

⎡
⎢⎢⎢⎣

(X1 − μ1)
2 (X1 − μ1)(X2 − μ2) · · · (X1 − μ1)(Xn − μn)

(X2 − μ2)(X1 − μ1) (X2 − μ2)
2 · · · (X2 − μ2)(Xn − μn)

...
...

...
...

(Xn − μn)(X1 − μ1) (Xn − μn)(X2 − μ2) · · · (Xn − μn)
2

⎤
⎥⎥⎥⎦

if we use the notation μj = E{Xj} to shorten the typesetting of the formula. The
variance/covariance matrix ΣX is nothing more than the expectation of this random
matrix, since the expectation of a random matrix is defined as the (deterministic) ma-
trix whose entries are the expectations of the entries of the original random matrix.
Consequently we have proven that, for any random vector X of order 2, the vari-
ance/covariance matrix ΣX is given by the formula:

ΣX = E{[X − E{X}][X − E{X}]t}. (3.31)

Notice that, if the components of a random vector are independent, then the vari-
ance/covariance matrix of this random vector is diagonal since all the entries off the
diagonal must vanish due to the independence assumption.

Some Useful Formulae

If X is an n-dimensional random vector, A is an m×n deterministic matrix, and B
is an m-dimensional deterministic vector, then:

E{AX +B} = AE{X}+B (3.32)

as can be checked by computing the various components of the m-dimensional vec-
tors on both sides of the equality sign. Notice that formula (3.29) is merely a partic-
ular case of (3.32) when m = n and A is the identity matrix. In fact, formula (3.32)
remains true when X is an n × p random matrix and B is an m × p deterministic
matrix. By transposition one gets that

E{XA+B} = E{X}A+B (3.33)

holds wheneverX is an n×p random matrix and A andB are deterministic matrices
with dimensions p×m and n×m respectively. Using (3.32) and (3.33) we get:

ΣAX+B = AΣXAt (3.34)

A proof of this formula goes as follows:

ΣAX+B = E{[AX +B − E{AX +B}][AX +B − E{AX +B}]t}
= E{[A(X − E{X})][A(X − E{X})]t}
= E{A[X − E{X}][X − E{X}]tAt}
= AE{[X − E{X}][X − E{X}]t}At

= AΣXAt.
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Similar formulae can be proven for the variance/covariance matrix of expressions of
the form AXB +C when X is a random vector or a random matrix and when A,
B and C are deterministic matrices or vectors whose dimensions make the product
meaningful.

Warning: Remember to be very cautious with the order in a product of matrices. Just
because one can change the order in the product of numbers, does not mean that it
is a good idea to do the same thing with a product of matrices, as the results are in
general (very) different:

the product or matrices is not commutative!!!

APPENDIX 2: FAMILIES OF COPULAS

There are many parametric families of copulas, and new ones are created every
month. For the sake of completeness, we review the families of bivariate copulas
implemented in the library Rsafd. They can be organized in two main classes.

� Extreme value copulas are copulas of the form

C(x, y) = exp

[
log(xy) A

(
log(x)

log(xy)

)]
,

where A : [0, 1] → [0.5, 1], is a convex function satisfying max(t, 1 − t) ≤
A(t) ≤ 1 for all t ∈ [0, 1].

� Archimedean copulas are copulas of the form

C(x, y) = φ−1

[
(φ(x) + φ(y))A

(
φ(x)

φ(x) + φ(y)

)]
,

where φ(t) is convex and decreasing on (0, 1) (called the Archimedean genera-
tor), and A is as above.

We now list the most commonly used parametric families of copulas:

• Bivarate Normal, "normal"
> normal.copula(rho)

C(x, y) = Φρ
(
Φ−1(x), Φ−1(y)

)
,

0 ≤ ρ ≤ 1, where Φ−1 is the quantile function of the standard normal distribu-
tion, and Φρ is the cdf of the joint distribution of two jointly Gaussian standard
random variables with correlation ρ > 0.
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• Frank Copula, "frank"
> frank.copula(delta)

C(x, y) = −δ−1 log

(
η − (1− e−δx)(1− e−δx)

η

)

0 ≤ δ <∞, and η = 1− e−δ.
• Kimeldorf–Sampson copula, "kimeldorf.sampson"

> kimeldorf.sampson.copula(delta)

C(x, y) = (x−δ + y−δ − 1)−1/δ,

0 ≤ δ <∞.
• Gumbel copula, "gumbel"

> gumbel.copula(delta)

C(x, y) = exp
(
− [(− log x)δ + (− log y)δ

]1/δ)
,

1 ≤ δ <∞. This is an extreme value copula with the dependence function

A(t) = (tδ + (1− t)δ)1/δ.

• Galambos, "galambos"
> galambos.copula(delta)

C(x, y) = xy exp
([

(− log x)−δ + (− log y)−δ
]−1/δ

)
,

0 ≤ δ <∞. This is an extreme value copula with the dependence function

A(t) = 1− (t−δ + (1− t)−δ)−1/δ.

• Hüsler–Reiss, "husler.reiss"
> husler.reiss.copula(delta)

C(x, y) = exp

(
−x̃ Φ

[
1

δ
+

1

2
δ log

(
x̃

ỹ

)]
− ỹ Φ

[
1

δ
+

1

2
δ log

(
ỹ

x̃

)])

0 ≤ δ < ∞, x̃ = − log x, ỹ = − log y, and Φ is the cdf of the standard normal
distribution. This is an extreme value copula with the dependence function

A(t) = t Φ

[
δ−1 +

1

2
δ log

(
t

1− t

)]
+ (1 − t) Φ

[
δ−1 − 1

2
δ log

(
t

1− t

)]

• Twan, "twan"
> twan.copula(alpha, beta, r)
This is an extreme value copula with the dependence function

A(t) = 1− β + (β − α) + {αrtr + βr(1− t)r}1/r ,
0 ≤ α, β ≤ 1, 1 ≤ r <∞.
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• BB1, "bb1"
> bb1.copula(theta, delta)

C(x, y) =
(
1 +
[
(x−θ − 1)δ + (y−θ − 1)δ

]1/δ)−1/θ

θ > 0, δ ≥ 1. This is an Archimedean copula with the Archimedean generator

φ(t) =
(
t−θ − 1

)δ
.

• BB2, "bb2"
> bb2.copula(theta, delta)

C(x, y) =
[
1 + δ−1 log

(
eδ(x

−θ) + eδ(y
−θ) − 1

)]1/θ
,

θ > 0, δ > 0. This is an Archimedean copula with the Archimedean generator
φ(t) = eδ(t

−θ−1) − 1.
• BB3, "bb3"

> bb3.copula(theta, delta)

C(x, y) = exp

(
−
[
δ−1 log

(
eδx̃

θ

+ eδỹ
θ − 1

)]1/θ)
,

θ ≥ 1, δ > 0, x̃ = − log x, ỹ = − log y. This is an Archimedean copula with the
Archimedean generator φ(t) = exp

{
δ (− log t)θ

}− 1.
• BB4, "bb4"

> bb4.copula(theta, delta)

C(x, y) =

(
x−θ + y−θ − 1−

[(
x−θ − 1

)−δ
+
(
y−θ − 1

)−δ]− 1
δ

)− 1
θ

θ ≥ 0, δ > 0. This is an Archimedean copula with the Archimedean generator
φ(t) = t−θ − 1 and the dependence functionA(t) = 1− (t−δ + (1− t)−δ)−1/δ

(same as for B7 family).
• BB5, "bb5"

> bb5.copula(theta, delta)

C(x, y) = exp

(
−
[
x̃θ + ỹθ − (x̃−θδ + ỹ−θδ

)−1/δ
]1/θ)

,

δ > 0, θ ≥ 1, x̃ = − log x, ỹ = − log y. This is an extreme value copula with
the dependence function

A(t) =
[
tθ + (1− t)θ − (t−δθ + (1− t)−δθ

)−1/δ
]1/θ

.

• BB6, "bb6"
> bb6.copula(theta, delta)
This is an Archimedean copula with the generator

φ(t) =
[− log

(
1− (1− t)θ

)]δ
θ ≥ 1, δ ≥ 1.
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• BB7, "bb7"
> bb7.copula(theta, delta)
This is an Archimedean copula with the generator

φ(t) =
(
1− (1− t)θ

)−δ − 1, θ ≥ 1, δ > 0.
• B1Mix, "normal.mix"

> normal.mix.copula(p, rho1, rho2)

C(x, y) = p CGauss,ρ1 (x, y) + (1− p)CGauss,ρ2 (x, y),

0 < p, ρ1, ρ2 < 1.

PROBLEMS

©T Problem 3.1 Assuming that you have access to a random generator for the multivariate Gaus-
sian distribution, explain how you would generate Monte Carlo samples

(x
(1)
1 , x

(2)
1 , x

(3)
1 ), · · · , (x(1)

n , x(2)
n , x(3)

n )

from the 3-dimensional Gaussian copula with correlation matrix

Σ =

⎡
⎣ 1 ρ ρ
ρ 1 ρ
ρ ρ 1

⎤
⎦

where ρ ∈ (0, 1) is given.

©T Problem 3.2 From the formula of the Gaussian copula CGauss,ρ with parameter ρ ∈ (0, 1).

1. Compute the limit C0(u1, u2) = limρ↘0 CGauss,ρ(u1, u2)
2. Say if C0(u, v) a copula and if yes, which one? Explain the intuition behind this result.

©T Problem 3.3 Let us assume that X is a random variable uniformly distributed over the unit
interval [0, 1] and let us define the random variable Y by:

Y = 1− |2X − 1|

1. What is the distribution of Y ?
2. Compute the covariance cov{X, Y } of X and Y .
3. Are X and Y independent? Explain why.

©T Problem 3.4 Let us assume that the random variables X1 and X2 represent the daily log-
returns of two financial securities, and let us consider the log-return X = 0.4X1 + 0.6X2

of a portfolio invested 40/60% in these securities. The goal of this problem is to compute the
daily VaR of the portfolio at the level 1%.

1. We first assume that we know the cumulative distribution function (c.d.f. for short) F1 of
X1, the c.d.f. F2 of X2 and that we have a random generator for the copula C of X1

and X2. Saying that we know a c.d.f. means that we either have an analytic expression
in closed form for its values, or that we have a program which can evaluate numerically
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values of this function. The goal of this first question is to give a procedure to compute
a Monte Carlo approximation of the desired VaR based on a Monte Carlo sample of size
N = 10,000. Describe in a small number of short bullet points the steps you would take
to do just that.
NB: No more than four to six bullet points of one or two sentences each suffice.

2. We now assume that X1 and X2 are jointly Gaussian and that we know the parameters
μ1, μ2, σ1, σ2 and ρ of their joint distribution. Under this assumption, describe a shorter
procedure to compute the exact value of the VaR without using Monte Carlo methods.

©T Problem 3.5 1. Let C denote the 2-d cdf of the uniform distribution over the unit square
[0, 1] × [0, 1]. Is C a copula? If yes, which copula? We now assume that X1 and X2

are standard Gaussian random variables, i.e. each of them follows the standard normal
distribution N(0, 1), and we denote by C their copula.

2. Are X1 and X2 jointly Gaussian? Explain your answer.
3. Compute the 10%-tile of the random variable max(X1, X2) assuming that C(0.5, 0.5) =

0.1.
4. Compute the probability that X2 ≥ X1 assuming that C is symmetric in the sense that

C(u1, u2) = C(u2, u1) for all u1, u2 ∈ [0, 1].

©T Problem 3.6 We assume that we have access to a random generator for the multivariate Gaus-
sian distribution. Let us also assume that we are given a bivariate data sample

(x
(1)
1 , x

(2)
1 ), · · · , (x(1)

n , x(2)
n )

of observations of random variables X1 and X2.

1. Assume that X1 and X2 are jointly Gaussian and describe in a small number of short
bullet points the steps you would take to
1.1. Estimate the joint distribution of X1 and X2;
1.2. Compute analytically (i.e. with classical functions and the above estimate) an esti-

mate of the 5% quantile of X1 +X2;
1.3. Compute an estimate of the 5% quantile of X1+X2 by a Monte Carlo computation.

2. Assume now that X1 is Cauchy with location parameter 0 and scale parameter 1, that X2

is exponential with rate 1 and that their copula is the Gaussian copula with parameter
ρ = 0.7. Explain in detail how you would compute an estimate of the 5% quantile of
X1 +X2 by a Monte Carlo computation. You can assume that functions computing the
quantiles of the Cauchy and the exponential distributions are available, but you can also
derive formulas for these functions.

©E Problem 3.7 This problem is based on the data contained in the data set UTILITIES included
in the library Rsafd. It is a matrix with two columns, each row corresponding to a given day.
The first column gives the log of the weekly return on an index based on Southern Electric stock
daily close and capitalization, (we’ll call that variable X), and the second column gives, on
the same day, the same quantity for Duke Energy (we’ll call that variable Y ), another large
utility company.

1. Compute the means and the standard deviations of X and Y , and compute their correla-
tion coefficients.

2. We first assume that X and Y are samples from a jointly Gaussian distribution whose
parameters are equal to the estimates computed in question 1. Using the assumption of
joint normality, compute the 2-percentiles of the variables X + Y and X − Y , and
compute the empirical estimates of these percentiles.
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3. Fit generalized Pareto distributions (GPDs) to X and Y separately, and fit a copula of
the Gumbel family to the data.

4. Generate a sample of size N (number of rows of the data matrix UTILITIES) from the
joint distribution estimated in question 3.
4.1 Use this sample to compute the same statistics as in question 1 (i.e. means and

standard deviations of the columns, as well as their correlation coefficients), and
compare the results to the numerical values obtained in question 1.

4.2 Compute, still for this simulated sample, the two percentiles considered in question
2, compare the results, and comment.

©E Problem 3.8 This problem is based on the data contained in the data set SPFUT. The first
column gives, for each day, the log return of a futures contract which matures 3 weeks later,
(we’ll call that variable X), and the second column gives, on the same day, the log return of
a futures contract which matures 1 week later (we’ll call that variable Y ).

1. Compute the means and the standard deviations of X and Y , and compute their correla-
tion coefficients.

2. We first assume that X and Y are samples from a jointly Gaussian distribution with
parameters computed in part 1. For each value α = 25%, α = 50% and α = 75%,
compute the q-percentile with q = 2% of the variable αX + (1− α)Y .

3. Fit a generalized Pareto distribution (GPD) to X and Y separately, and fit a copula of
the Gumbel family to the empirical copula of the data.

4. Generate a sample of size N (where N is the number of rows of the data matrix) from the
joint distribution estimated in question 3.
4.1. Use this sample to compute the same statistics as in question 1 (i.e. means, standard

deviations, as well as their correlation coefficients), and compare to the numerical
values obtained in question 1.

4.2. Compute, still for this simulated sample, the three percentiles considered in question
2, and compare the results.

©S Problem 3.9 Let us assume that (x1, y1), (x2, y2), · · · · · · , (xn, yn) represent the historical
weekly log returns of two assets as measured over a period of 5 years. Let us also assume that
you hold a portfolio invested in these two assets, 40% of your portfolio being invested in the
first asset, and 60% in the second.

1. There are several ways to compute (from the data at hand) the V aR0.01 of your portfolio
over 1 week period. Describe in detail three possible ways, making sure that they are
different, and explaining clearly the various steps of these three procedures.

2. If someone were to suggest that you estimate the mean μ̂ and the variance σ̂2 of the log
return of your portfolio so that you could be sure that your log return belongs to the
interval

[μ̂− 3σ̂, μ̂+ 3σ̂]

with probability at least 99%, what kind of assumption would this someone be working
under, and which of the three computations of question 1 would this someone be clos-
est to?

©S Problem 3.10 1. Construct a vector of 100 increasing and regularly spaced numbers start-
ing from 0.1 and ending at 20. Call it SIG2. Construct a vector of 21 increasing and
regularly spaced numbers starting from −1.0 and ending at 1.0. Call it RHO.

2. For each entry σ2 of SIG2 and for each entry ρ of RHO:
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• Generate a sample of size N = 500 from the distribution of a bivariate Gaussian
vector Z = (X,Y ), where X ∼ N(0, 1), and Y ∼ N(0, σ2), and the correlation
coefficient of X and Y is ρ. Create a 500 × 2 matrix Z holding the values of the
sample of Z;

• Create a 500 × 2 matrix EXPZ, with the exponentials of the entries of Z (the distri-
butions of these columns are lognormal);

• Compute the correlation coefficient, call it ρ̃, of the two columns of EXPZ
3. Produce a scatterplot of all the points (σ2, ρ̃) so obtained. Comment.

©T Problem 3.11 This elementary exercise is intended to give an example showing that lack of
correlation does not necessarily mean independence!
Let us assume that X ∼ N(0, 1) and let us define the random variable Y by:

Y =
1√

1− 2/π
(|X| −

√
2/π)

1. Compute E{|X|}
2. Show that Y has mean zero, variance 1, and that it is uncorrelated with X .

©T Problem 3.12 Let X and Y be continuous random variables with cdfs FX and FY respec-
tively, and with copula C. For each real number t, prove the following two equalities:

1. P{max(X,Y ) ≤ t} = C(FX(t), FY (t))

2. P{min(X,Y ) ≤ t} = FX(t) + FY (t)− C(FX(t), FY (t))

©T Problem 3.13 Suppose X1 and X2 are independent N(0, 1) random variables and define
X3 by:

X3 =

{
|X2|, if X1 > 0
−|X2|, if X1 < 0

1. Compute the cdf of X3. Say if X3 is Gaussian.
2. Compute P{X2 +X3 = 0}.
3. Is X2 +X3 Gaussian? Is (X2, X3) jointly Gaussian?

©T Problem 3.14 Let us assume that X1, X2 and X3 are independent N(0, 1) random variables
and let us set

Y1 =
X1 +X2 +X3√

3
and Y2 =

X1 −X2√
2

1. Compute cov(Y1, Y2).
2. Compute var(Y1Y2).

©T Problem 3.15 Let us assume that X is a random variable uniformly distributed over the unit
interval [0, 1] and let us define the random variable Y by:

Y = |2X − 1|
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1. What is the distribution of Y ?
2. Compute the covariance cov{X, Y } of X and Y .
3. Are X and Y independent? Explain why.
4. What can you say about the copula of X and Y ? Describe its plot?

©T Problem 3.16 The purpose of this problem is to provide another instance of the fact that lack of
correlation does not imply independence, even when the two random variables are Gaussian!!!
We assume that X , ε1 and ε2 are independent random variables, that X ∼ N(0, 1), and that
P{εi = −1} = P{εi = +1} = 1/2 for i = 1, 2. We define the random variable X1 and
X2 by:

X1 = ε1X, and X2 = ε2X.

1. Prove that X1 ∼ N(0, 1), X2 ∼ N(0, 1) and that ρ{X1, X2} = 0.
2. Show that X1 and X2 are not independent.

©T Problem 3.17 The goal of this problem is to prove rigorously a couple of useful formulae for
Gaussian random variables.

1. Show that, if Z ∼ N(0, 1), if σ > 0, and if f is any function, then we have:

E{f(Z)eσZ} = eσ
2/2

E{f(Z + σ)},

and use this formula to recover the well known fact, whenever X ∼ N(μ, σ2), it holds:

E{eX} = eμ+σ2/2

2. We now assume that X and Y are jointly-Gaussian mean-zero random variables and that
h is any function. Prove that:

E{eXh(Y )} = E{eX}E{h(Y + cov{X,Y })}.

©T Problem 3.18 The goal of this problem is to prove rigorously the theoretical result illustrated
by the simulations of Problem 3.10.

1. Compute the density of a random variable X whose logarithm logX is N(μ, σ2). Such
a random variable is called a lognormal random variable with mean μ and variance σ2.
Throughout the rest of the problem we assume that X is a lognormal random variable
with parameters 0 and 1 (i.e. X is the exponential of an N(0, 1) random variable) and
that Y is a lognormal random variable with parameters 0 and σ2 (i.e. Y is the expo-
nential of an N(0, σ2) random variable). We shall assume that (logX, log Y ) is jointly
Gaussian even though the results remain true without this assumption. Finally, we use the
notation ρmin and ρmax introduced in the last paragraph of Sect. 3.1.2.

2. Show that ρmin = (e−σ − 1)/
√

(e− 1)(eσ2 − 1).
3. Show that ρmax = (eσ − 1)/

√
(e− 1)(eσ2 − 1).

4. Check that limσ→∞ ρmin = limσ→∞ ρmax = 0.

©T Problem 3.19 Let us assume that X1 and X2 are two positive random variables which we
assume to be independent and having the same distribution. Say why the expectation

E

{
X1

X1 +X2

}

exists and compute its value.
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©T Problem 3.20 In this problem, we consider the daily rates of exchange pEUR/USD, pGBP/USD and
pEUR/GBP between three currencies, the Euro (EUR), the US dollar (USD), and the British
pound (GBP). The meaning of these spot rates of exchange is the following: pXXX/YYY gives the
currency YYY value of one unit of currency XXX. Our goal is to study the joint distribution of
the log-returns of these three rates.

1. Give an equation that pEUR/USD, pGBP/USD and pEUR/GBP must satisfy if the model does not
allow for arbitrage, by which we mean a way to make free money without risk. What is
the corresponding no-arbitrage relationship between the log-returns which we denote by
the letter r with the appropriate subscript?

2. Assuming that you are provided with daily observations of these three rates of exchange
over the last N = 500 trading days, explain in a few bullet points how you would simulate
M = 1,000 Monte Carlo samples from the joint distribution of the three log-returns?

3. We now consider the returns of the portfolio comprising a units of EUR/USD, b units of
GBP/USD and c units of EUR/GBP.
3.1. Write a formula for the expected return of the portfolio as a function of a,b,c,

pEUR/USD, pGBP/USD, rEUR/USD and rGBP/USD.
3.2. If you had to ask for a single number to capture the correlation structure of the

random variables, which one would it be? Remember that all you want to estimate
is the expected return of the portfolio.

©T Problem 3.21 If C denotes the copula of the two random variables X and Y , prove that the
Spearman correlation coefficient ρS(X,Y ) is given by the formula

ρS(X,Y ) = 12

∫ 1

0

∫ 1

0

uvC(u, v) dudv − 3.

One will assume that the cdfs are continuous and strictly increasing.

©E Problem 3.22 Assuming that you are given the bivariate sample

(x
(1)
1 , x

(2)
1 ), · · · · · · , (x(1)

n , x(2)
n )

of size n from a given bivariate distribution, describe in a few bullet points how you would
generate N = 10,000 Monte Carlo samples from the 2-dimensional distribution which has
the same copula as the data, the exponential distribution with rate 1 for its first marginal, and
the classical Pareto distribution with shape parameter ξ = 0.5, location parameter m = 0,
and scale parameter λ = 1 for its second marginal.

©S Problem 3.23 The data needed for this problem are contained in the data frame TC comprising
two columns named X and Y respectively. You do not have to know where these data come
from, but for the sake of definiteness, you can think of X as giving the temperature fluctuation
around the average temperature at a given location, and Y as giving the price of a physical
commodity for delivery near this location.

1. Say if the tails of the distribution of X are heavy (explain your answer) and describe which
steps you would take if you were asked to fit a distribution to the data in the vector X.
NB: you do not have to actually take these steps, just describe what you would do.

2. Same question for the vector Y.
3. Compute the Pearson, Kendall and Spearman correlation coefficients between X and Y

and comment on the numerical values so obtained.
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4. Create a new data set in the form of a two-column matrix with the rows of the original
data matrix TC for which the value of X is smaller than −5.48, i.e. for which X < −5.48,
and compute the same three correlation coefficients as before for the columns of this new
data set.

5. Compare the two sets of correlation coefficients and comment.

©S Problem 3.24 1. For each ρ = 0, 0.05, 0.1, 0.15, . . . , 0.9, 0.95, 1.0, generate a sample of
size N = 2,000 from the bivariate Gaussian copula with parameter ρ, and call this
sample SD. Each such sample can be viewed as a Nx2 matrix, the first column being
called SD$x and the second column SD$y. For each of these samples:
1.1. Transform the columns SD$x and SD$y in such a way that they become samples

from the standard normal distribution.
1.2. Compute the Pearson, Kendall and Spearman correlation coefficients of the samples

so obtained, and store these values.
1.3. Give a plot of the Pearson correlations coefficients against the values of ρ and ex-

plain what you find.
1.4. Give plots of the Spearman and Kendall correlation coefficients against the corre-

sponding values of ρ. Comment your results.
1.5. Redo the same thing by transforming the columns SD$x and SD$y in such a way

that they become samples from the standard Cauchy distribution, recompute all the
correlation coefficients as before, produce the same plots, and explain the differ-
ences.

2. For each β = 1, 1.5, 2, 2.5, . . . , 19, 19.5, 20, generate a sample of size N = 2,000 from
the bivariate Gumbel copula with parameter β, and call this sample SD. As before, each
such sample can be viewed as a Nx2 matrix, the first column being called SD$x and the
second column SD$y. For each of these samples:
2.1. Transform the columns SD$x and SD$y in such a way that they become samples

from the standard normal distribution.
2.2. Compute the Pearson, Kendall and Spearman correlation coefficients of the samples

so obtained, and store these values.
2.3. Give a plot of the Pearson correlations coefficients against the values of β and com-

ment.
2.4. Give plots of the Spearman and Kendall correlation coefficients against the corre-

sponding values of ρ. Comment your results.
2.5. Redo the same thing by transforming the columns SD$x and SD$y in such a way

that they become samples from the standard Cauchy distribution, recompute all the
correlation coefficients as before, produce the same plots, and explain the differ-
ences.

©S ©T Problem 3.25 Let a, b, and c be real numbers satisfying a < c < b. We say that a random
variable X has the triangular distribution with range parameters a and b and mode c, fact
which we denote by X ∼ Δ(a, b, c), if it has the distribution function

FX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x < a
(x−a)2

(b−a)(c−a)
if a ≤ x ≤ c

1− (b−x)2

(b−a)(b−c)
if c < x ≤ b

1 if b < x

.
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In this problem we assume that X ∼ Δ(a, b, c) and we set β = (c− a)/(b− a).

1. Compute the density fX and sketch its graph.
2. Compute the quantile function, F−1

X .
3. Construct an algorithm that generates samples from the Δ(a, b, c) distribution.
4. We now assume that Z ∼ Δ(0, 1, β) and we define the random variable Y by Y =

a+ (b− a)Z. Show that Y ∼ Δ(a, b, c).
5. Set α = 1%, let β1 and β2 be real numbers satisfying 0 < β1 < β2 < 1,

and let Z1 ∼ Δ(0, 1, β1) and Z2 ∼ Δ(0, 1, β2). Which is larger, V aRα(Z1) or
V aRα(Z2)?

6. Recall that the (bivariate) Gumbel copula with parameter δ is given by

Cδ(x, z) = exp

(
−
[
(− log(x))δ + (− log(z))δ

]1/δ)
,

where 1 ≤ δ < ∞. Let us assume that the two random variables X and Z considered
above have a Gumbel copula with parameter δ, and define the random variable W by

W =
FX(Y ) + FY (X)

2
.

6.1. Identify the Gumbel copula C1 with parameter δ = 1.
6.2. What can you say about the dependence between X and Y in this case?
6.3. Show that for δ = 1 the random variable W has a triangular distribution and give

its parameters.

©E Problem 3.26 The data to be used for this problem are contained in the data set Power08.
It is a numeric matrix with 366 rows and 2 columns, the names of the rows being the days
of the quotes. Each column gives the price of 1 MWhr of electricity to be delivered during a
specific hour of the day: the first column gives the price for a 5–6 pm delivery and the second
column for the 12–1 pm delivery. The data is viewed as a sample of n = 366 independent
observations from a bivariate distribution, the joint distribution of the prices of P1 and P2 of
1 MWhr during these two periods of the day.

1. Fit a bivariate distribution to the data. Explain the steps you take and why you take them.
2. Assume that an oracle tells you that the distribution of P1 is log-normal and the distribu-

tion of P2 is exponential. Under these conditions
2.1. Estimate the parameters of these marginal distributions
2.2. Provide a new estimate of the joint distribution of P1 and P2 taking the information

given by the oracle into account.
3. Assuming that you need to purchase a fixed quantity of electricity every day, either be-

tween 12 and 1 pm, or between 5 and 6 pm, and that you are indifferent in which of these
two periods you buy it, an energy provider offers you the option to acquire electricity
at the lower price each day. To be specific, for each MWhr, you purchase the electricity
at the price P2 and buy from the energy provider an option which pays (P2 − P1)

+.
Before showing some interest in the deal (and negotiating the premium) you want to com-
pute (a) the probability that on any given day, the option will be exercised; (b) the
expected minimum price E{P1 ∧ P2} per MWhr purchased; (c) the expected pay-off
E{(P2 − P1)

+} per MWhr purchased. For each of the three quantities a), b) and c)
above, propose three estimates based on
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3.1. The price data contained in Power08;
3.2. The bivariate distribution fitted in question 1 above;
3.3. The bivariate distribution fitted in question 2 above.

NB: The notation x+ stands for the maximum of x and 0 while x ∧ y stands for the
minimum of the numbers x and y.

©S ©T Problem 3.27 The first question concerns the computation in R of the square root of a
symmetric nonnegative-definite square matrix.

1. Write an R-function, call it msqrt, with argument A which:
• Checks that A is a square matrix and exits if not;
• Checks that A is symmetric and exits if not;
• Diagonalizes the matrix by computing the eigenvalues and the matrix of eigenvec-

tors (hint: check out the help file of the function eigen if you are not sure how to
proceed);

• Checks that all the eigenvalues are nonnegative and exits, if not;
• Returns a symmetric matrix of the same size as A, with the same eigenvectors, the

eigenvalue corresponding to a given eigenvector being the square root of the corre-
sponding eigenvalue of A.

The matrix returned by such a function msqrt is called the square root of the matrix A
and it will be denoted by A1/2.
The second question concerns the generation of Gaussian random vectors in R. In other
words, we write an R function to play the role of the function rnorm in the case of multi-
dimensional random vectors. Such a function does exist in the R distribution. It is called
mvrnorm. The goal of this second question is to understand how such a generation
method works.

2. Write an R-function, call it vnorm, with arguments Mu, Sigma and N which:
• Checks that Mu is a vector, exits if not, and otherwise reads its dimension, say L;
• Checks that Sigma is an LxL symmetric matrix with nonnegative eigenvalues and

exits, if not;
• Creates a numeric array with N rows and L columns and fills it with independent

random numbers with the standard normal distribution N(0, 1);
• Treats each row of this array as a vector, and multiplies it by the square root of the

matrix Sigma (as computed in question 1 above) and adds the vector Mu to the
result;

• Returns the random array modified in this way.
The array produced by the function vnorm is a sample of size N of L-dimensional ran-
dom vectors (arranged as rows of the matrix outputted by vnorm) with the Gaussian
distribution with mean Mu and variance/covariance matrix Sigma. Indeed, this function
implements the following simple fact reviewed during the lectures.
If X is an L-dimensional Gaussian vector with mean 0 and covariance matrix given by
the L× L identity matrix (i.e. if all the L entries of X are independent N(0, 1) random
variables), then:

Y = μ+Σ1/2X

is an L-dimensional Gaussian vector with mean μ and variance/covariance matrix Σ.
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NOTES & COMPLEMENTS

This chapter concentrated on multivariate distributions and on dependence between random
variables. The discussion of the various correlation coefficients is modelled after the standard
treatments which can be found in most multivariate statistics books. The originality of this
chapter lies in the statistical analysis of the notion of dependence by way of copulas. The latter
are especially important when the marginal distributions have heavy tails, which is the case in
most financial applications as we saw in Chap. 2. The recent renewal of interest in the notion of
copula prompted a rash of books on the subject. We shall mention for example the monograph
[73] of R.B. Nelsen, or the book of D. Drouet Mari and S. Kotz [68]. We refer the interested
reader to their bibliographies for further references on the various notions of dependence and
copulas.

The Rmethods used in this chapter to estimate copulas and generate random samples from
multivariate distributions identified by their copulas are from the library Rsafd. They were
originally developed for the library EVANESCE [15] by J. Morrisson and the author. This
library was included in the Splus public-domain library safd, and the S+FinMetrics
module of the commercial distribution of SPlus.

Comprehensive presentations of the credit markets and the mechanics of CDOs before
2005 can be found in the textbooks [27, 59, 86]. The popular press has offered analyses
of the role of the Gaussian copula in the pricing of CDOs and the misunderstanding of
its limitations. From the realistic journalistic accounts we selected Felix Salmon’s WIRED
Magazine article Recipe for Disaster: the Formula that Killed Wall Street and the Financial
Times piece The Formula that felled Wall Street by Sam Jones. Dedicated Monte Carlo al-
gorithms for the computation of rare events involving multiple defaults are developed in the
articles [16, 17].

To the best of my knowledge, the first attempt to apply principal component analysis to the
yield curve is due to Litterman and Scheinkmann [60]. Rebonato’s book [77], especially the
short second chapter, and the book [2] by Anderson, Breedon, Deacon, Derry, and Murphy,
are good sources of information on the statistical properties of the yield curve. Discussions
of interest rate swap contracts and their derivatives can also be found in these books. The
reader interested in a discussion of the mathematical models of the fixed income markets with
developments in stochastic analysis including pricing and hedging can consult the book by
Carmona and Tehranchi [18].

An application of PCA to variable selection in a regression model is given in Problem 5.25.
The decomposition of a data set into its principal components is known in signal analysis

as the Karhunen-Loève decomposition, and the orthonormal basis of principal components
is called the Karhunen-Loève basis. This basis was identified as optimal for compression pur-
poses. Indeed, once a signal is decomposed on this basis, most of the coefficients are zero or
small enough to be discarded without significantly affecting the information contained in the
signal. Not surprisingly, the optimality criterion is based on a form of the entropy of the set
of coefficients. PCA is most useful for checking that data do contain features which are sus-
pected to be present. For this reason, some authors suggest to remove by regression the gross
features identified by a first PCA run, and to then run PCA on the residuals. PCA has been
successfully used in many applications, especially in signal and image analysis.
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PARAMETRIC REGRESSION

This chapter provides an introduction to several types of regression analysis: sim-
ple and multiple linear, as well as simple polynomial and nonlinear. In all cases we
identify the regression function in a parametric family, hence the title of the chapter.
We introduce the idea of robustness, and we illustrate the concept with a parallel
comparison of the least squares and the least absolute deviations regression meth-
ods. Even though we introduce regression from a data smoothing point of view, we
systematically interpret the results in terms of statistical models, and we derive the
statistical inference and diagnostic tools provided by the theory underpinning the
statistical models. The chapter ends with a thorough discussion of the parametric
estimation of the term structure of interest rates based on the Nelson-Siegel and
Swensson families. As before, we try to work from examples, introducing theoretical
results as they become relevant to the discussions of the analyzes which are used as
illustrations.

4.1 SIMPLE LINEAR REGRESSION

Although multiple linear regression is ubiquitous in economic and in econometric
applications, simple linear regression does not play a very central role in quantitative
finance. Nevertheless, its mathematical theory and inferential results are important
enough to compel us to present them, even if the conclusions drawn from its use in
practical financial applications are not always earth-shattering. As in earlier chapters,
we choose particular data sets to illustrate the statistical concepts and techniques
which we introduce. In the first part of this chapter we choose to work with the
values of an energy index, as they relate to the values of several utilities, but as a
disclaimer, it is important to emphasize that this choice was made for illustration
purposes only. Most financial data come naturally in the form of time series, and the
serial dependencies contained in the data may not be appropriate for some forms of
regression analysis. With this in mind, the reader should be prepared to have a critical
attitude toward the results produced by the algorithms introduced in this chapter.
Case in point, after examining residual patterns, we abandon the original form of our
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first regression, and switch to a form of the data more amenable to regression. The
reason for our choice is to understand the theoretical underpinnings of a regression
model, so it is purely didactic.

The original index data were computed following the methodology and data used
by Dow Jones to produce its Total Market Index. Our goal is to investigate to which
extent two large companies can influence the index of an entire economic sector. We
chose the energy/utility sector because of its tremendous growth in the second half
of the 1990s. However for obvious reasons, we will stay away from what happened
during the California energy crisis and after ENRON’s bankruptcy.

4.1.1 Getting the Data

A very convenient way to store data in an R object is to use the structure of data
frame. Whether the data set is already part of the R distribution or it has been read
from a disk file, or downloaded from the internet (see the introduction to R at the
end of the book for details), one way to make a data set available to the current R
session is to attach the data frame using the R function attach whose main
purpose is to make sure that the values stored in the columns of the data frame can
be manipulated by R commands using their names without having to refer to the
name of the data frame. We use the data set UTIL.index included in the library
Rsafd.

> head(UTIL.index)
ENRON.index DUKE.index UTILITY.index

01/04/1993 135.0000 104.2857 99.94170
01/05/1993 135.3714 103.5714 99.49463
01/06/1993 132.8571 104.2857 99.86034
01/07/1993 130.7143 103.5714 98.70023
01/08/1993 126.8000 101.8000 97.93630
01/11/1993 127.5143 101.8000 98.69736

As always in a data.frame object, the first row contains the names of the column
variables, which in the case at hand, are the indexes computed from the share values
and the capitalizations of ENRON and DUKE Energy, and a utility index computed
from all the publicly traded large utilities. The left most column contains the names
of the row variables, which in the present situation, are the dates of the quotes. As
we can see, they cover the year 1993. I chose this year in order to stay away from
the speculative period of the late 1990s during which the energy sector heated up
to unhealthy levels. The dimensions (i.e. the number of rows and the number of
columns) of the data frame can be obtained with the R generic command dim. For
example, the result of the command:

> dim(UTIL.index)
[1] 260 3
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tells us that the data frame UTIL.index has 260 rows and 3 columns. Manipulating
the numerical vectors forming the rows and the columns of the data frame can
be done by subscripting as we did before. For example, the command UTIL.
index[,3] gives the numeric vector with length 260 formed by the entries of
the third column of the data frame. Since this column has a name, we may want to
use its name UTILITY.index in order to make the text of the commands more
meaningful. This can be done as UTIL.index$UTILITY.index is a valid alter-
native to UTIL.index[,3]. However, this method of extracting columns leads to
lengthy and cumbersome commands. As explained above, a solution to this quandary
is offered by the command attach. After running the command

> attach(UTIL.index)
[1] 260 3

using UTILITY.index will not trigger and error message, and the three columns
of the data frame UTIL.index can be accessed by their names.

4.1.2 First Plots

It is always a good idea to look at graphical representations of the data whenever pos-
sible. In the present situation one can split the graphic window in two columns and
place a scatterplot of the UTILITY.index variable against the ENRON.index
variable on the left entry of this 1 by 2 matrix of plots, and the scatterplot of the
DUKE.index and the UTILITY.index variables on the right. This is done with
the commands:

> par(mfrow=c(1,2))
> plot(ENRON.index,UTILITY.index)
> plot(DUKE.index,UTILITY.index)
> par(mfrow=c(1,1))

The last command resets the graphics window to a 1 by 1 matrix of plots for subse-
quent use. The results are shown in Fig. 4.1.

Plots of this type (one variable against another) are called scatterplots. They
are very convenient for getting a feeling of the dependence/independence of two
variables, as we saw in Chap. 3. When the data frame contains more than two vari-
ables, it is possible to get all these 2 by 2 plots simultaneously with the command
pairs

> pairs(UTIL.index)

The result is shown in Fig. 4.2. The plots on the diagonal entries of this matrix of
plots are not given for an obvious reason: they would be un-informative since all the
points would have to be on the main diagonal.
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Fig. 4.1. Scatterplot of UTILITY.index against ENRON.index (left) and of
UTILITY.index against DUKE.index (right) of the UTIL.index data set

4.1.3 Regression Set-Up

As expected, the scatterplots give strong evidence of relationships between the values
of the utility index and the two other variables. Indeed, the points would be scattered
all over the plotting area if it weren’t for these relationships. Regression is a way to
capture these dependencies, and we proceed to fix the notation which we will use
when setting up a regression problem.

The general form of the (simple) regression set-up is given by observations

y1, y2, . . . . . . , yn

of one variable, which we call the response variable (think for example of the
n = 260 values of the utility index in the case discussed in this section), and of
observations:

x1, x2, . . . . . . , xn

of an explanatory variable, which we call the regressor. For the sake of definiteness,
we first consider the case of the n = 260 values of the index computed from the
values of ENRON shares and capitalization. Regression is the search for a functional
relationship of the form:

y ≈ ϕ(x)
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Fig. 4.2. Matrix plot of the pair scatterplots of the variables in the UTIL.index data frame

so that the actual observations satisfy:

yi = ϕ(xi) + error term, i = 1, . . . , n

where the error term is hopefully small, but most importantly unpredictable in a
sense which we will try to make clear later on.

Warning. The regressor variable is sometimes called the independent variable to be
consistent with the terminology dependent variable often used for the response. We
believe that this terminology is very misleading and we shall refrain from using it.

The regression terminology is well established and quite extensive, and we shall
conform to the common usage. For example, we talk of

• Simple linear regression when we have only one regressor and when the depen-
dence is given by an affine function of the form ϕ(x) = β0+β1x. The regression
problem is then to estimate the parameters β1 giving the slope of the regression
line, and β0 giving the intercept, and possibly some statistical characteristics of
the error terms (sometimes call noise) such as its variance for example;

• Simple nonlinear regression when we have only one regressor and when the de-
pendence is given by a general (typically nonlinear) function ϕ;

• Simple spline regression when we have only one regressor and when the depen-
dence is given by a function ϕ constructed from spline functions;
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• Multiple regression (whether linear or nonlinear) when we have several regres-
sors which we usually bind in a vector of explanatory variables.

Coming back to our utility index example, and trying to explain the values of the util-
ity index (representing the entire energy sector) from the values of the ENRON and
DUKE indexes, we can choose the entries of column variable UTILITY.index
for the values of yi and

• Looking at the scatterplot in the left pane of Fig. 4.1, we can decide to choose
the entries of ENRON.index for the values of xi and perform a simple lin-
ear regression of UTILITY.index against ENRON.index, searching for real
numbers β0 and β1 and a regression function ϕ of the form ϕ(x) = β0 + β1x;

• Alternatively, looking at the scatterplot in the right pane of Fig. 4.1, we can de-
cide that the variable DUKE.index better explains the changes in the response
UTILITY.index, and perform a simple linear regression of the response vari-
able UTILITY.index against the regressor DUKE.index;

• Finally, suspecting that a cleverly chosen combination of the values of the vari-
ables ENRON.index and DUKE.index could provide a better predictor of
the values of UTILITY.index, we could decide to opt for a multiple linear
regression of the response variable UTILITY.index against both variables
ENRON.index and DUKE.index. In this case, we would choose to view the
entries of the variable ENRON.index as observations of a first explanatory
variable x(1), the entries of DUKE.index as observations of a second explana-
tory variable x(2), bundle these two explanatory variables into a bivariate vector
x = (x(1), x(2)) and search for real numbers β0, β1 and β2 and a function ϕ of
the form:

y = ϕ(x(1), x(2)) = β0 + β1x
(1) + β2x

(2).

We do just that in this chapter. Notice that we purposely restricted ourselves to linear
regressions. Indeed, the shapes of the clouds of points appearing in the scatterplots of
Figs. 4.1 and 4.2 are screaming for linear regressions, and it does not seem reasonable
to embark on a search for nonlinear regression functions for the data at hand.

Going through the program outlined by the first set of bullets will keep us busy
for the next two chapters. Despite the classification introduced by this terminology,
regressions are most often differentiated by the specifics of the algorithms involved,
and regression methods are frequently organized according to the dichotomy para-
metric versus nonparametric regression methods which we shall define later on.

Coming back to the general set-up introduced in this subsection, we outline
search strategies for the regression function ϕ. A standard approach is to associate a
cost to each admissible candidate ϕ, and to choose the candidate (hopefully it will
exist and be defined unambiguously) which minimizes this cost. Even though there
are many possible choices we shall concentrate on the two most common ones:

L2(ϕ) =
n∑
j=1

[yj − ϕ(xj)]
2 (4.1)
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and:

L1(ϕ) =

n∑
j=1

|yj − ϕ(xj)|. (4.2)

Since both cost functions are based on the sizes of the differences yi − ϕ(xi), the
resulting function ϕ provides the best possible fit at the observations xi. Given a
family Φ of functions ϕ, and given the data, the function ϕ ∈ Φ which minimizes
L2(ϕ) over Φ is called the least squares regression over Φ, and the function which
minimizes L1(ϕ) over Φ is called the least absolute deviations regression over Φ.
We shall often use the abbreviations L2 and L1 regression respectively, but the reader
should be aware of the fact that the alternative abbreviations LS and LAD are also
used frequently in the literature, and we may be using them from time to time. We
first consider cases for which Φ is a set of linear functions.

Remark. But first, it is important to emphasize that this L2/L1 duality is not new.
We already encountered it in introductory statistics for the solution of the simpler
problem of the statistical estimation of the location of a data sample. Indeed, given a
sample x1, x2, . . . , xn of real numbers, the classical estimates of the location given
by the sample mean x and the sample median π̂0.5 are known to be the solutions of
the minimization problems:

x = argmin
m

n∑
i=1

|xi −m|2

and

π̂0.5 = argmin
m

n∑
i=1

|xi −m|

respectively. As we are about to see, least squares simple linear regression and least
absolute deviations simple linear regression are mere generalizations of the two loca-
tion estimation problems just mentioned. We shall revisit this example in Sect. 4.2.2
below.

4.1.4 Simple Linear Regression

As explained in the introduction, the set-up is given by input data of the form

(x1, y1), . . . , (xn, yn)

where:

• n denotes the sample size,
• The xi’s denote the observations of the explanatory variable
• The yi’s denote the observations of the response variable,

and the problem is to find a straight line (whose equation will be written as y =
β0 + β1x) summarizing the data as faithfully as possible. For the purposes of the
present discussion we limit ourselves to the two cost functions introduced earlier.
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4.1.4.1 Least Squares (LS) Simple Regression

We first consider the case of the least squares regression and we illustrate its use in
the case of the utility indexes data. We shall see later that R has powerful methods for
performing least squares linear regression, but for the time being, we shall restrict
ourselves to the function lsfit in order to emphasize the parallel with the least
absolute deviations regression method l1fit.

Fig. 4.3. Least squares regression of the utility index against the ENRON index (left) and the
DUKE index (right)

The plots of Fig. 4.3 were obtained with the commands:

> UEl2 <- lsfit(ENRON.index,UTILITY.index)
> UDl2 <- lsfit(DUKE.index,UTILITY.index)
> par(mfrow=c(1,2))
> plot(ENRON.index,UTILITY.index)
> abline(UEl2)
> plot(DUKE.index,UTILITY.index)
> abline(UDl2)
> par(mfrow=c(1,1))
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The function lsfit produces objects of class lsfit containing all the information
necessary to process the results of the regression. The function abline adds a line
to an existing plot. It is a very convenient way to add a regression line to a scatterplot.
In particular, the intercept β0 and slope β1 of the regression lines can be extracted
from the object produced by lsfit by using the extension $coef.

> UEl2$coef
Intercept X
79.22646 0.1614243

> UDl2$coef
Intercept X
59.00217 0.4194389

As already explained, we chose to use the R function lsfit to emphasize the paral-
lel with the least absolute deviations regression and the function l1fit provided in
the library Rsafd for that purpose. The use of lsfitwill eventually be abandoned
when we come across the more powerful method lm designed to fit more general
linear models.

4.1.4.2 Least Absolute Deviations (LAD) Simple Regression

For the sake of comparison, we produce the results of the least absolute deviations
regression in the same format. We shall often use the abbreviation LAD or L1 for
least absolute deviations while least squares is usually abbreviated as LS or L2. The
plots of Fig. 4.4 were obtained with the commands:

> UEl1 <- l1fit(ENRON.index,UTILITY.index)
> UDl1 <- l1fit(DUKE.index,UTILITY.index)
> par(mfrow=c(1,2))
> plot(ENRON.index,UTILITY.index)
> abline(UEl1)
> plot(DUKE.index,UTILITY.index)
> abline(UDl1)
> par(mfrow=c(1,1))

The graphical results seem to be very similar, and we will need to investigate further
to understand the differences between these two regression methods. As before we
can print the coefficients of the regression lines:

> UEl1$coef
Intercept X

77.92709 0.1706265
> UDl1$coef
Intercept X
53.98615 0.4706897
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Fig. 4.4. Simple least absolute deviations regressions of the utility index on the ENRON index
(left) and on the DUKE index (right)

We notice that the coefficients produced by the least absolute deviations regression
are different from those produced by the least squares regression. Nevertheless, it is
difficult at this stage to assess how serious these differences are, and how statistically
significant they may be. More on that later.

4.1.5 Cost Minimizations

In a simple linear regression problem, the least squares regression line is given by its
slope β̂1 and intercept β̂0 which minimize the function:

(β0, β1) ↪→ L2(β0, β1) =

n∑
i=1

(yi − β0 − β1xi)
2. (4.3)

This function is quadratic in β0 and β1, so it is easily minimized. Indeed, one can
compute explicitly (in terms of the values of x1, . . . , xn and y1, . . . , yn) the partial
derivatives of L2(β0, β1) with respect to β0 and β1, and setting these derivatives to
zero gives a system of two equations with two unknowns (often called the first order
conditions in the jargon of optimization theory) which can be solved. The solution is
given by the formulae:

β̂1 =
cov(x, y)

σ2
x

and β̂0 = y − cov(x, y)
σ2
x

x. (4.4)
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Recall that the empirical means x and y were already defined in (3.10) of Chap. 3,
as well as cov(x, y) and σx which were defined in (3.11). This is in contrast with
the LAD regression for which we cannot find formulae for the optimal slope and
intercept parameters. The least absolute deviations regression line is determined by
the values of the intercept β̂0 and the slope β̂1 which minimize the function:

(β0, β1) ↪→ L1(β0, β1) =

n∑
i=1

|yi − β0 − β1xi|. (4.5)

Unfortunately, one cannot expand the absolute value as one does for the squares,
and solving for vanishing derivatives cannot be done by closed-form formulae in
this case. Nevertheless, it is relatively easy to show that the function (β0, β1) ↪→
L1(β0, β1) is convex and hence, that it has at least one minimum. But because it
is not strictly convex, uniqueness of this minimum is not guaranteed, and as in the
classical case of the median, we may have entire intervals of minima. Efficient algo-
rithms exist to compute the minima of L1(β0, β1). They are based on a reduction of
the problem to a classical linear programming problem. But the lack of uniqueness
and the lack of explicit formulae is still a major impediment to widespread use of the
L1 method.

4.1.6 Regression as a Minimization Problem

This subsection does not contain any new technical material, and as a consequence,
it can be skipped on a first reading. Its prose is intended to shed some light on the
importance of optimization in statistical estimation, and to use this opportunity to
highlight some of the nagging problems coming with the territory.

The approach to regression which we advocate in this section is based on the idea
of smoothing of a cloud of points into a curve that captures the main features of the
data. In this spirit, a simple regression problem can be formulated in the following
way. We start from observations:

(x1, y1), . . . . . . , (xn, yn),

and we try to find a function x ↪→ ϕ(x) which minimizes a loss or penalty, say L(ϕ),
associated to each specific choice of the candidate ϕ. This candidate can be picked

in a specific class of functions, say Φ, e.g. the set of affine functions of x when we
consider linear regression, the set of polynomials when we deal with a polynomial
regression problem later in this chapter, . . .. What distinguishes parametric regres-
sion from nonparametric regression is the fact that the class Φ can be described
in terms of a small number of parameters. For example, in the case of simple linear
regression, the parameters are usually chosen to be the slope and the intercept, while
in the case of polynomial regression the parameters are most often chosen to be the
coefficients of the polynomial. See nevertheless Sect. 4.6.3 later in this chapter. We
shall use the notation θ for the parameter used to label the candidate (i.e. the set
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Θ = {θ} replaces the set Φ = {ϕ} via a correspondence of the type θ ↔ ϕθ . In the
case of simple linear regression this amounts to setting:

θ = (β0, β1) and ϕθ(x) = β0 + β1x.

Notice that the present discussion is not limited to the case of a single scalar regressor
variable. Indeed, the regression variables xi can be multivariate as when each ob-
served value of xi is of the form xi = (xi,1, . . . , xi,p). As explained earlier, the
parameter θ is likely to be multivariate. In the discussion above the regression prob-
lem always reduces to minimization of a function of the form:

θ ↪→ L(θ). (4.6)

This problem does not have a clear-cut answer in general. We say that the problem
is well posed if there exists at least one value, say θ0 ∈ Θ, such that:

L(θ0) = inf
θ∈Θ

L(θ). (4.7)

When (as is often the case) Θ is a subset of a vector space, then the problem is often
well posed when the loss function (4.6) is convex. Moreover, there is a unique value
of θ realizing the minimum (4.7) whenever the loss function (4.6) is actually strictly
convex.

4.1.6.1 The Search for a Minimum

As we saw in the case of least squares regression, the search for an optimal value
of the parameter θ is usually replaced by the search for values of θ at which all the
partial derivatives of the function L vanish. In other words one looks for solutions of
the equation:

∇L(θ) = 0 (4.8)

where the notation ∇ is used for the gradient, i.e. the vector of partial derivatives.
Notice that this equation is in fact a system of k-equations when θ is k-dimensional,
since in this case the gradient is made of k partial derivatives and Eq. (4.8) says that
all of them should be set to 0. A solution of (4.8) is called a critical point. Such a
strategy for the search of a minimum is reasonable because, if

θ0 = arg inf
θ∈Θ

L(θ)
is a point at which the minimum is attained, and if the function θ ↪→ L(θ) is differ-
entiable, then all the partial derivatives of L vanish for θ = θ0. Unfortunately, the
converse is not true in the sense that there might be critical points which are not so-
lutions of the minimization problem. Indeed, the gradient of L vanishes at any local
minimum, (or even at any local maximum for that matter) even if it is not a global
minimum, and this is a source of serious problems, for there is no good way to find
out if a critical point is in fact a global minimum, or even to find out how good or
bad a proxy it can be for such a global minimum.
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To make matters worse, one is very often incapable of solving Eq. (4.8). Indeed
except for the very special case of least squares linear regression (see the previous
subsection for a re-cap of all the formulae derived in this case), it is not possible to
find closed form formulae for a solution, and one is led to compute numerical ap-
proximations by iterative procedures. As is often the case, stability and convergence
problems plague such a strategy.

4.2 REGRESSION FOR PREDICTION & SENSITIVITIES

Regression is often performed to explain specific features of the existing (i.e. al-
ready collected) data. This involves looking at the values of the response variables
given by the evaluation of the regression function ϕ(x) for values of the regressor(s)
contained in the data set, and searching for an interpretation of the differences (also
called residuals) between the observed values yi and the values ϕ(xi) provided by
the regression function. However, regression is also often used for prediction pur-
poses. The functional relationship between the response and the regressor variables
identified by the regression function ϕ, is taken advantage of to predict what the re-
sponse would be for values of the regressor(s) for which the responses have not yet
been observed. Filling in missing data appears as an intermediate situation between
these two uses of regression.

4.2.1 Prediction

We give a first informal presentation of the notion of prediction operator. We shall
make this concept more precise later in the book. The purpose of a prediction op-
erator is to produce the best reasonable guess for a random quantity. It is a good
idea to have in mind the least squares error criterion as a measure of how reasonable
a guess can be. So such a prediction operator, say P , will take a random variable,
say Y , into a number P (Y ) which serves as its best guess. In the absence of any
other information, and if one uses the least squares criterion, the operator P is given
by the expectation operator in the sense that P (Y ) = E{Y }. That is, the number
m = E{Y } is the number for which the criterion E{|Y −m|2} is minimum. Other
criteria lead to other prediction operators. It is a very intuitive fact (with which we
have been familiar since our first introductory statistics class) that, in the absence
of any extra information, the best (in the least squares sense) predictor of a random
quantity is its expected value. We shall revisit (and prove) this statement in the next
subsection.

We are interested in prediction when partial information is available. Apart from
the fact that we will thus work with conditional expectations instead of the usual
expectations, nothing should be different. If the information x is available, we shall
denote a prediction operator by Px. As explained above, we should think of Px(Y )
as the best predictor of the random variable Y in the presence of the information x.
The following properties are imposed on such an operator:
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• Px(Y ) should be a linear function of Y
• If Y is not really random, and it is known that Y = y for a given number y, then

one should have Px(Y ) = y.

Obviously, the expected valued (conditioned on the information x) is a prediction
operator which satisfies these properties. But many other operators are possible. Very
often, we will also demand that Px(Y ) = 0 whenever Y represents a noise term, and
this is often modeled as Y having mean zero. For most of the applications discussed
in this book, the prediction operators will be given by expectations and conditional
expectations.

We will still use the data on the utility indexes for illustration purposes, but
we will concentrate for the next little while, on the analysis of the dependence of
UTILITY.index upon DUKE.index. So for the time being, we might as well
forget that we also have the variable ENRON.index to explain the values of the
overall utility index.

For an example of prediction based on regression results, let us imagine that back
in January 1994, we looked into our crystal ball, and we discovered that the stock of
DUKE energy was going to appreciate in a dramatic fashion over the next 2 years.
The DUKE index would increase accordingly and this would presumably imply a
significant increase in the utility index as well. But how could we quantify these
qualitative statements. To be more specific, could we predict the value of the utility
index if we knew that the value of the DUKE index was 150?

Using the results of the regressions performed earlier, one needs only to compute
the value of β0 + β1x for x = 150 and β0 and β1 determined by each regression.
We compute predictions both for the least squares and the least absolute deviations
regressions.

> NEWDUKE <- 150
> PRED2 <- UDl2$coef[1]+UDl2$coef[2]*NEWDUKE
> PRED2

121.918
> PRED1 <- UDl1$coef[1]+UDl1$coef[2]*NEWDUKE
> PRED1

124.5896

One can see that the two predictions are different and deciding which one to trust
is a touchy business. We cannot resolve this issue at this stage, especially since we
cannot talk about confidence intervals yet. Nevertheless, even though we do not have
the tools to justify the claims we are about to make, and in order to shed some light on
the reasons why the results are different, we do venture the following explanations:
The value of the explanatory variable for which we seek a value of the response
variable, i.e. 150, is far from the bulk of the data from which the regression lines
were constructed. Indeed the values of the explanatory variable ranged between 101
and 128 during the year 1993. Predictions that far from the available data can be very
unstable.
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4.2.2 Introductory Discussion of Sensitivity and Robustness

Before relying on the results of a regression for decision making, it is a good idea to
understand how stable and/or reliable the coefficients of a regression are. In each case
(i.e. for the least squares and least absolute deviations regressions) we investigate
the sensitivity of the values of the slope and the intercept when variations in the
observations are present (or introduced). We shall also illustrate the sensitivity of
our predictions.

A (simple) linear regression is said to be significant when the results of the
regression confirm the influence of the explanatory variable on the outcome of the
response, in other words when the slope is determined to be nonzero. When this is
not the case, the regression line is horizontal and the value of the explanatory variable
has no effect on the response, the latter being merely explained by the measure of
location given by the intercept. We shall introduce the notion of robustness by first
discussing this case.

For a set of n real numbers y1, . . . , yn, the most common measure of location is
the sample mean:

y =
1

n

n∑
i=1

yi.

As we already pointed out in Sect. 4.1.5, the sample mean y is the solution of a least
squares minimization problem since:

y = argmin
m

n∑
i=1

|yi −m|2.

In other words, the sample mean is to the location problem what the slope and the
intercept of the least squares regression line are to the (simple) linear regression
problem.

Next to the sample mean, the median also enjoys great popularity. Bearing some
annoying non-uniqueness problems when n is even (problems which are solved by
agreeing on a specific convention), the median π̂0.5 is an element of the data set
which splits the data into two subsets of approximately the same size. Like the mean,
it also appears as the solution of a minimization problem since:

π̂0.5 ∈ argmin
m

n∑
i=1

|yi −m|.

In other words, the sample median is to the location problem what the slope and
the intercept of the least absolute deviations regression line are to the (simple) linear
regression problem. We claim that the median is much less sensitive than the mean to
perturbations or errors in the data, and we illustrate this fact on the following simple
example. Let us consider the data:

y1 = 1.5 y2 = 0.7 y3 = 5.1, y4 = 2.3, y5 = 3.4.
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The mean of this sample is:

y = (y1 + y2 + y3 + y4 + y5)/5 = (1.5 + 0.7 + 5.1 + 2.3 + 3.4)/5 = 13/5 = 2.6

while the median is obtained by first ordering the data:

y(1) = 0.7 < y(2) = 1.5 < y(3) = 2.3 < y(4) = 3.4 < y(5) = 5.1

and then picking the mid-value π̂0.5 = 2.3. Let us now assume the value y5 = 3.4
is erroneously recorded as y5 = 13.4. In this case the new mean is increased by 2
since:

y = 1.5 + 0.7 + 5.1 + 2.3 + 13.4)/5 = 23/5 = 4.6

while the value of the median does not change! In fact the median will not change
as long as the changes do not affect the number of values greater than the median.
This feature is extremely useful in the case of undesirable erroneous measurements,
and/or uncontrollable perturbations of the data. Indeed, it is plain to see that the mean
can be made arbitrarily large or small by appropriately changing a single measure-
ment! With this introductory example in mind, we compare the robustness of the
least squares regression to the least absolute deviations regression.

4.2.3 Comparing L2 and L1 Regressions

As in the case of the discussion of the robustness of the measures of location (mean
and median) we try to quantify (or at least visualize) the effects that perturbations of
the data have on the regression lines.

In order to do so, we create a new data set, say NEWUTIL.index, by modifying
the first 20 entries of UTILITY.index. We then perform simple least squares and
least absolute deviations regressions of this new index against the DUKE index, and
we compare the resulting regression lines to the lines obtained with the original data.
The results are given in Fig. 4.5. They were produced using the following commands:

> GOOD <- 21:260
> NEWUTIL.index <- c(UTILITY.index[-GOOD]-10,

UTILITY.index[GOOD])
> NUDl2 <- lsfit(DUKE.index,NEWUTIL.index)
> NUDl1 <- l1fit(DUKE.index,NEWUTIL.index)
> par(mfrow=c(1,2))
> plot(DUKE.index,NEWUTIL.index)
> abline(UDl2,lty=4)
> abline(NUDl2)
> plot(DUKE.index,NEWUTIL.index)
> abline(UDl1,lty=4)
> abline(NUDl1)
> par(mfrow=c(1,1))

The first command defines the row numbers for which we are not going to change the
value of UTILITY.index. The second command actually creates the new utility
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index by concatenating two vectors with the R function c. The first vector is formed
by the first 20 entries of UTILITY.index from which we subtract 10, while the
second vector is formed by the remaining entries of UTILITY.index which we
leave untouched. Notice how we used the subscript -GOOD to extract the entries
whose row numbers are not in GOOD. The next two commands perform the least
squares and the least absolute deviations regressions of the new utility index against
the old DUKE index, and the remaining commands produce the plots of Fig. 4.5. We
used the parameter lty to draw the original L2 and L1 regressions as dash lines.

The differences between the two regression methods are clearly illustrated on
these plots. The L2 line changed dramatically while the L1 line remained the same.
As in the case of the median, changing a small number of values did not affect the
result of the L1 fitting/estimation procedure. This robustness of the least absolute de-
viations regression can be extremely useful. Indeed, there are times when one wants
the estimations and predictions to change with changing data, however, with noisy
data, it is generally not a good idea to use estimation and prediction procedures which
are too sensitive to small changes, mostly because the latter are very likely due to the
noise, and for this reason, they should not have an overly dramatic impact on the
outcome.

Fig. 4.5. Left: simple least squares regression of the modified utility index against the DUKE
index, with the original least squares regression line superimposed as a dashed line. The two
lines are very different. Right: same thing for the least absolute deviations regressions. The
two lines are identical!
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We can also compare the effects of data perturbations on the performance of the
predictions produced by the regressions. If we revisit the prediction of the value of
the utility index when the DUKE index reaches the value 150, we now find:

> NEWDUKE <- 150
> NPRED2 <- NUDl2$coef[1]+NUDl2$coef[2]*NEWDUKE
> NPRED2

128.8155
> NPRED1 <- NUDl1$coef[1]+NUDl1$coef[2]*NEWDUKE
> NPRED1

124.5896

from which we see that the L1 prediction does not change while the L2 prediction
goes from 121.9 to 128.8. As we already explained, it is difficult to assess how
bad such a fluctuation is, but at a very intuitive level, it may be comforting to see
that some prediction systems do not jump all over the place when a few data points
change! More on that later when we discuss statistical inference issues.

We now proceed to illustrate the differences between L1 and L2 regression meth-
ods with the coffee data. See also the Notes & Complements at the end of the chapter
for references to textbooks devoted to the important aspects of robustness in statisti-
cal inference.

4.2.4 Taking Another Look at the Coffee Data

We revisit the case of the coffee daily price data already considered in the previous
chapters. A scatterplot of the daily log-returns of the two commodities shows that
there is a strong dependence between the two, and that a linear relation may hold.
We compute the least squares and the least absolute deviations regressions of the
Brazilian coffee daily log-returns against the Colombian ones and plot the regression
lines so-obtained.

> plot(CLRet,BLRet)
> BCL2 <- lsfit(CLRet,BLRet)
> BCL1 <- l1fit(CLRet,BLRet)
> abline(BCL2)
> abline(BCL1,lty=3)

We give the results in Fig. 4.6. The least absolute deviations regression captures the
upward trend of the cloud of points more faithfully than the least squares regression.
The few low values of the Brazilian coffee seen on days the Colombian coffee had
a large return (i.e. the few points on the middle right part of the scatterplot) are
influencing the results of the least squares regression, pulling the regression line
down. On the other hand, these points do not seem to have much influence on the
least absolute deviations regression line. We shall explain this extra sensitivity of the
least squares regression and the robustness of the least absolute deviations regression
later when we revisit this issue in the context of the statistical distribution theories
associated with these two different types of regression, and when we bring into the
picture the tails of the distributions of the variables involved in the regression.
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Fig. 4.6. Least squares and least absolute deviations regressions of the Brazilian daily log-
returns against the Colombian daily log-returns

Very Important Remark. It is crucial to understand the differences between the
regressions performed on the utility indexes and the regressions of this subsection.
The latter are computed from log-returns, and the features of these transformed data
are very different from the statistical features of the raw price data. Indeed, these
raw prices show strong dependencies among themselves, say from day to day, and
regression with this type of data is a very touchy business. We warn the reader against
the pitfalls of this trade. These regressions will be called time series regressions later.
This important remark will be revisited in Sect. 4.3.2 below.

4.3 SMOOTHING VERSUS DISTRIBUTION THEORY

So far, our approach to regression was based on a smoothing philosophy, and our
discussion did not rely upon any statistical assumption or principle. For this reason, it
belongs more in a course on computer graphics, or on function approximation, than
a statistics course. To remedy this, we assume the existence of a statistical model
for the roughness and/or uncertainty in the data. More precisely we assume that the
values x1, . . . , xn and y1, . . . , yn are observed realizations of n random variables
X1, . . . , Xn and Y1, . . . , Yn. The main assumption of a regression model is not
about the overall distributions of the response variables Y1, . . . , Yn, but rather, their
conditional distributions with respect to the explanatory variablesX1, . . . ,Xn, hence
their names.
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4.3.1 Regression and Conditional Expectation

Since it happens very often in practice that the observations x1, . . . , xn are in fact
realizations of random variables X1, . . . , Xn, it is more convenient to consider the
observations (xi, yi) as realizations of couples (Xi, Yi) of random variables having
the same joint distribution. The conditional expectation of any of the random vari-
ables Yi given the value of the corresponding Xi becomes a deterministic function
ofXi. In other words, if one knows that the random variableXi has the value x, then
the conditional expectation of Yi given Xi = x is a function of x which we could
denote by ϕ(x). Notice that this function of x does not depend upon the index i,
since we assume that the joint distributions of all the couples (Xi, Yi) are the same.
This function is called the regression function of Y against X , and the values y1,
. . . , yn can be viewed as (noisy) observations of the (expected) values ϕ(x1), . . . ,
ϕ(xn).

It is reasonable to expect the function ϕ to be nonlinear in general. Nevertheless,
when the joint distribution of the (Xi, Yi) is Gaussian, the functionϕ is linear (affine,
to be precise) and linear regression is fully justified in this case.

As we have already seen, the goal of regression analysis is to quantify the way
the values of the response variable are influenced by the values of the explanatory
variables (if there is any influence at all). In other words, given the values x1, . . . , xn
of the explanatory (random) variables, we assume that the means of the respective
response variables are of the form ϕ(x1), . . . , ϕ(xn). More precisely, we assume:

E{Yi|Xi = xi} = ϕ(xi), i = 1, . . . , n.

Still another form of the same assumption is to postulate that for i = 1, . . . , n, given
that Xi = xi, we have:

Yi = ϕ(xi) + εi, (4.9)

for some mean-zero random variable εi. We shall further assume that all the random
variables εi have the same variance, say σ2, and that they are uncorrelated. As we
have seen in the R tutorial, such a sequence {εi}i=1,...,n is called a white noise. In
fact, more than merely assuming that the εi’s are uncorrelated, we shall assume most
of the time that they are independent. Recall that

• Choosing the number of explanatory variables determines if the regression is
called a simple regression or a multiple regression;

• Choosing if the function ϕ is to be restricted to a limited class of functions which
are determined by the choice of a small number of parameters as opposed to be
allowed to be of a general type, determines if the regression is called a parametric
regression or a nonparametric regression;

• In the case of parametric regression, deciding whether or not the function ϕ
should be linear determines if the regression is called a linear regression.



4.3 Smoothing Versus Distribution Theory 219

Once these choices have been made, choosing the distribution of the noise terms εi
completely determines the statistical model and makes statistical inference possible.

As before, we shall use the comparison of the least squares (simple linear) re-
gression to the least absolute deviations (simple linear) regression as an illustrative
example, but one should keep in mind that the conclusions of this discussion are not
restricted to these two particular regressions.

4.3.2 Maximum Likelihood Approach

Specifying the common distribution of the noise terms εi makes it possible to write
down the joint distribution of the response variables Y1, . . . , Yn. Recall that we
assume that the εi are independent and that consequently, the response variables Y1,
. . . , Yn are, conditionally on the knowledge of the valuesXi = xi of the explanatory
variables, independent, with means ϕ(xi), and with the same variance σ2 as the εi’s.
Given the fact that, in the statistical jargon, the likelihood function of the model, say
L(y1, . . . , yn), is nothing but the joint density f(Y1,...,Yn)(y1, . . . , yn) of the observed
responses Y1, . . . , Yn, specifying the distribution of the noise terms εi determines
the likelihood function of the model. Notice that the likelihood function also depends
upon the values of the means ϕ(xi) and the variance σ2. These dependencies will be
emphasized or de-emphasized depending on the goal of the computation.

Next, we re-derive the least squares and the least absolute deviations regression
procedures as instances of the general maximum likelihood approach.

4.3.2.1 Simple Least Squares Regression Revisited

In this subsection we assume that the noise terms εi are independent and normally
distributed:

εi ∼ N(0, σ2)

where the common variance σ2 is assumed to be unknown. In this case we have:

L2(β0, β1, σ
2) = L(β0, β1, σ2, y1, . . . , yn)

= f(Y1,...,Yn)(y1, . . . , yn)

= fY1(y1) · · · fYn(yn)

=
1√
2πσ2

e−[y1−(β0+β1x1)]
2/2σ2 · · · 1√

2πσ2
e−[yn−(β0+β1xn)]

2/2σ2

=
1√
2π

nσ
−ne−

1
2σ2

∑n
i=1[yi−(β0+β1xi)]

2

where we used the independence of the observation variables Yi to claim that the
joint density of the Yi’s was the product of the individual densities, and we used the
specific form of the Gaussian density. From this expression it is plain to see (even
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without computing the partial derivatives of the objective function) that maximiz-
ing the likelihood of the observations y1, . . . , yn given the values x1, . . . , xn of
the explanatory variables, is equivalent to minimizing the sum of square errors. So
the slope β̂1 and the intercept β̂0 of the least squares regression line appear as the
maximum likelihood estimators of the parameters β1 and β0 of the model. As a con-
sequence, results from the inference theory of normal families can be applied. In
particular one obtains:

• Confidence intervals for the true slope (from which we can test if the slope is
zero or not, and in so doing, assess the significance of the regression);

• Confidence intervals for the true intercept;
• Joint confidence regions (typically ellipsoids) for the couple (β0, β1) of parame-

ters;
• Maximum likelihood and unbiased estimates of the noise variance σ2 and corre-

sponding confidence intervals;
• Coefficient of determination R2 giving the proportion of the variation explained

by the regression,

and much more. All the statistical properties of normal families can be used for in-
ferential purposes. This abundance of tools is due to the fact that we assumed that
the noise terms εi were mean zero, i.i.d. and normally distributed. Some of the sta-
tistical diagnostics mentioned above can be obtained from the output of the function
ls.diag which takes as argument any object created with the function lsfit.
We shall see more of the statistical inference tools provided by R when we discuss
linear models and the function lm.

4.3.2.2 Simple Least Absolute Deviations Regression Revisited

We now assume that the noise terms εi have a double exponential distribution (also
called Laplace distribution) given by the density:

fεi(x) =
1

2λ
e−|x|/λ

for some variance-like scale parameter λ > 0 which is assumed to be unknown.
A computation similar to the computation done earlier in the Gaussian case gives:

L1(β0, β1, λ) = L(β0, β1, λ, y1, . . . , yn)
= f(Y1,...,Yn)(y1, . . . , yn)

= fY1(y1) · · · fYn(yn)

=
1

2λ
e−(1/λ)|y1−(β0+β1x1)| · · · 1

2λ
e−(1/λ)|yn−(β0+β1xn)|

=
1

2n
λ−ne−(1/λ)

∑n
i=1 |yi−(β0+β1xi)|

where as before, we used the independence of the variables Yi to claim that the joint
density of the Yi’s was the product of the individual densities, and the specific form
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of the density of the double exponential distribution. From this expression we see
that, maximizing the likelihood of the observations y1, . . . , yn given the values x1,
. . . , xn of the explanatory variables, is equivalent to minimizing the sum of absolute
deviations. This implies that the slope β̂1 and the intercept β̂0 of the least absolute
deviations regression line appear as the maximum likelihood estimators of the pa-
rameters β1 and β0 of the model in which the noise terms have a double exponential
distribution.

Unfortunately, the usefulness of this result is limited. Indeed, there are no closed
formulae for the estimators, and double exponential families do not have a distribu-
tion theory as developed as that of the normal families. As a consequence, we need to
use approximations each time we need a confidence interval, a test, . . . These approx-
imations are usually derived theoretically from asymptotic results or from Monte
Carlo simulations. The latter can be computer intensive and in any case, it is difficult
if not impossible to control the extend of the errors produced by the approximations.

Nevertheless, this result sheds light on the robustness of the least absolute de-
viations regression as compared to the least squares regression. Indeed, the Laplace
distribution of the noise has thicker tails (since for large values of |x|, the exponential
of a negative multiple of |x| is significantly larger than the exponential of a negative
multiple of x2) and consequently, the model allows for larger values of the error
terms εi. In other words, the LAD regression will be more tolerant of points far away
from the regression curve ϕ(x), while the LS regression will try harder to get the
regression curve ϕ(x) to be closer to these points.

4.3.2.3 When Can or Should We Perform a Regression?

In this subsection, we elaborate on the Very Important Remark at the end of Sect. 4.2.
In order to allow for statistical inference, the (simple) regression set-up requires that
the data (x1, y1), . . . , (xn, yn) form a sample of observations from identically dis-
tributed random couples (X1, Y1), . . . , (Xn, Yn) having the same joint distribution.
To be more specific, the statistical models made explicit in this section in order to
derive expressions for the likelihood function are based on the following premises:

the residuals ri = yi − ϕ(xi) given by the differences between the observa-
tions yi of the responses and the values ϕ(xi) of the regression function at
the observed explanatory variables, are realizations of independent identi-
cally distributed random variables.

The top pane of Fig. 4.7 gives the sequential plots of the residuals of the least squares
regression of ENRON.index against DUKE.index while the bottom pane gives
the sequential plots of the residuals of the least squares regression of BLRet against
CLRet. These sequential plots were produced with the commands:

> plot(EDL2$residuals, type="l")
> plot(BCL2$residuals, type="l")

Both residual sequences have mean zero by construction. However, our experience
with i.i.d. sequences of mean zero random variables (recall the Introductory Session
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to R reproduced in Appendix) tells us that if the bottom plot could be accepted as
the plot of a white noise (this is the terminology we use for i.i.d. sequences of mean
zero random variables), this is certainly not the case for the plot on the top! In fact,
if we were to compute the auto-correlation function (acf for short) of the utility
index residuals, we would see strong correlations which are inconsistent with the
assumptions of the regression set-up. At this stage, the reader should bare with us
since we are slightly ahead of ourselves. Indeed, the notion of acf will be introduced
and explained in Chap. 6, while regression diagnostics will be presented later in this
chapter.

The statistical model (4.9) is based on a sequence (εi)i of uncorrelated noise
terms. Since the residuals can be considered as proxies for these noise terms, we
could expect them to be uncorrelated as well. We shall see later in this chapter that
this is not the case, and we shall compute explicitly the Pearson correlation coeffi-
cient between residuals. While the pattern of the residuals of the coffee log-returns
regression appears to be normal (though one can suspect the presence of heavy tails),
the serial dependence of the residuals of the top pane of Fig. 4.7 is not consistent
with the premises of the statistical set-up of a regression problem as restated above.
Not only does the distribution of the couple of random variables DUKE.index and
ENRON.index change over time, but the couples actually observed day after day
are not independent. These two facts were part of the reasons which pushed us into
studying the log-returns of the coffee data instead of the original raw data of the

Fig. 4.7. Sequential plot of the residuals of the simple least squares regression of ENRON’s
index against DUKE’s index (top) and of the Brazilian coffee daily log-returns against the
Colombian coffee daily log-returns (bottom)
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index values. So as announced earlier, we stop using the utility data in its original
form. From now on, for the purposes of regression analysis of the energy indexes,
we replace the actual indexes by their log-returns.

> UtilLRet <- diff(log(UTILITY.index))
> EnronLRet <- diff(log(ENRON.index))
> DukeLRet <- diff(log(DUKE.index))

Recall that as explained earlier, the difference can be undone by a cumulative sum,
and the logarithm can be inverted with an exponential function. In this way, conclu-
sions, estimations, predictions, etc., concerning the log-returns can be re-interpreted
as conclusions, estimations, predictions, etc. for the original index values. But be-
fore we switch gear and embark on the multiple regression journey, it is important to
summarize the main differences between the two regression procedures we discussed
so far.

4.3.2.4 When Should We Use Least Absolute Deviations?

Advantages of the least squares regression:

• Existence and uniqueness of the estimators β̂0 and β̂1;
• Existence of explicit formulae for the estimators β̂0 and β̂1;
• Fast and reliable computations;
• Existence of a distribution theory leading to convenient statistical inferences, e.g.

exact confidence intervals, tests.

Drawbacks of the least squares regression:

• Sensitivity to outliers and extreme observations.

Advantages of the least absolute deviations regression:

• Existence of the estimators β̂0 and β̂1 and reasonable computational algorithms;
• Extreme robustness to one type of outlier.

Drawbacks of the least absolute deviations regression:

• Lack of uniqueness of the estimators β̂0 and β̂1;
• Lack of a convenient distribution theory: the estimators, the tests, the confidence

intervals, etc., have too often to be computed by lengthy Monte Carlo methods.

So to summarize:

• If the complexity of the computations and/or the computing time is an issue one
may want to use least squares regression;

• On the other hand if robustness is important then it is likely that the least absolute
deviations regression will give more satisfactory results.
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4.4 MULTIPLE REGRESSION

Back to the analysis of our utility data. If our goal is to explain the overall utility
index UTILITY.index using all the information at our disposal, we may want to
use both individual indexes, namely ENRON.index and DUKE.index, together
in the same formula. As explained earlier, from now on we work with the log-returns
instead of the original time series data, and restricting ourselves to linear – affine to
be more specific – functions, we may seek a relationship of the form

UtilLRet = β0 + β1 ∗ EnronLRet+ β2 ∗ DukeLRet+ noise.

This is the epitome of a multiple linear regression model.

4.4.1 Notation

As before, we denote by n the sample size and we assume that the observations come
as n pairs

(x1, y1), . . . . . . , (xn, yn),

where the last component yi is the response variable whose value we try to explain
from the values of the explanatory variables, i.e. the components of xi. The main
difference is that we now allow the explanatory variable xi to be a vector of p dif-
ferent scalar explanatory variables xi,1, . . . , xi,p. In the case of the utility data, the
response variable should be y = UtilLRet, and the bivariate explanatory variable
(so p = 2) is now x = (EnronLRet, DukeLRet).

As in the case of simple linear regression, the R functions lsfit and l1fit
can still be used to perform the regression in the sense of least squares and in the

sense of least absolute deviations respectively. One simply needs to bind the p ex-
planatory “column” variables into an n × p matrix with the command cbind. For
example, the following commands:

> UtilLRetS <- cbind(EnronLRet,DukeLRet)
> UEDls <- lsfit(UtilLRetS,UtilLRet)
> UEDl1 <- l1fit(UtilLRetS,UtilLRet)

perform the least squares and the least absolute deviations linear regression of the
utility index log-return against the ENRON and DUKE log-returns. As before, one
can argue that these two regressions are the results of maximum likelihood estima-
tions of the coefficients of the regression “planes” when the noise terms are assumed
to be normally and double-exponentially distributed, respectively. Again, inferential
tools are not as developed in the case of the least absolute deviations regression, and
for this reason, we shall mostly concentrate on the least squares method. See never-
theless the Notes & Complements at the end of this chapter for further information.
Although diagnostic tools have been added to the function lsfit, statistical infer-
ence is best done with the powerful function lm which we now introduce.
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4.4.2 The R Function lm

As explained in our comparison of the least squares and least absolute deviations
regressions, linear models come with a distribution theory providing exact tests of
significance, confidence intervals, . . ., when the error terms are assumed to be in-
dependent and identically distributed (i.i.d. for short) and normally distributed. Be-
cause of its weak distribution theory, we shall momentarily refrain from using the
least absolute deviations regression, and even though statistical inference can be per-
formed with the function lsfit, we shall start using the more powerful function
lm provided by R. The regression objects produced by lm are the result of least
squares regression, and the statistical estimates, confidence intervals, p-values, . . .
are based on the assumption that the error terms εi are i.i.d. N(0, σ2), for some un-
known σ > 0. The command lm gives an implementation of the most general linear
models defined below in Sect. 4.5, but it is still worth using it even in the restrictive
framework of plain linear regression.

1. We shall give many examples of uses of the method lm and the reader is invited
to carefully read the help file. Resuming the analysis of the utility data, we first
perform the least squares regression of the utility index daily log-return against
the ENRON daily log-return. This could have been done with the command:

> UeL2 <- lsfit(EnronLRet,UtilLRet)

but we do it now with the command:

> Ue <- lm(UtilLRet ˜ EnronLRet)

Notice that the argument of the function lm is a formula stating that the vari-
able UtilLRet which appears on the left of the tilde, has to be expressed as a
function of the variable EnronLRet which appears on its right. The function
lm has an optional argument which can be set by the parameter data. It is very
useful when the variables are columns in a data frame. It gives the name of the
data frame containing the variables. The object produced by such a command
is of class lm. Contained in the object Ue which we just created, we find the
estimated slope 0.0784, and the estimated intercept 0.0001, values which could
have been obtained with the function lsfit. The numerical results extracted
from the lm object Ue by the command summary(Ue) are very detailed. They
contain the coefficients of the simple linear model:

UtilLRet = 0.0001 + 0.0784× EnronLRet+ ε,

but also extra information on the model. In particular, they include estimates of
the variances of the slope and the intercept (which can be used to compute confi-
dence intervals for these parameters), and a p-value for tests that the parameters
are significantly different from 0 (i.e. tests of significance of the regression). We
discuss the well known R2 coefficient in the next subsection.

2. Similarly, instead of using the command:

> UdL2 <- lsfit(DukeLRet,UtilLRet)
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one now use the R command:

> Ud <- lm(UtilLRet ˜ DukeLRet)

in order to perform the simple least squares linear regression of UtilLRet
against DukeLRet. In this case the linear model is:

UilLRet = −0.0001 + 0.5090× DukeLRet+ ε

as we can see by reading the values of estimated slope and estimated intercept
from the summary of the lm object Ud.

3. To perform the multiple least squares linear regression of UtilLRet against
the variables EnronLRet and DukeLRet together, we use the function lm in
the following way:

> Ued <- lm(UtilLRet˜EnronLRet+DukeLRet)

The plus sign “+” in the above formula should not be understood as a sum, but rather
as a way to get the regression to use both variables EnronLRet and DukeLRet.
The estimated coefficients can be read off the summary of the lm object Ued. The
fitted model is now:

UtilLRet = −0.0001 + 0.0305× EnronLRet+ 0.4964× DukeLRet+ ε.

4.4.3 R2 as a Regression Diagnostic

We will now discuss the well known R2 coefficient which is used to quantify the
quality of a regression. This number gives the proportion of the variance explained
by the regression. In the case of a simple least squares regression, it is defined by the
formula:

R2 = 1− SSE

TSS
(4.10)

where

SSE =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − β̂0 − β̂1xi)
2 (4.11)

is the sum of squared residuals from the regression, called the sum of squared errors,
and where:

TSS =

n∑
i=1

(yi − y)2 (4.12)

represents the total sum of squares. Notice that SSE is always smaller than TSS
– hence their ratio is always between 0 and 1 – since SSE is the smallest sum of
squared errors when we try all the possible lines while TSS is the smallest sum of
squared errors when we only try horizontal lines!

The closer R2 to 1, the better the regression. R2 is often called the coefficient
of determination of the regression. It is not difficult to imagine possible generaliza-
tions of this coefficient to the case of least absolute deviations regression. We shall
consider some of these generalizations in the problems at the end of the chapter.



4.4 Multiple Regression 227

In the three least squares regressions performed earlier, the values of the R2

coefficients were

• 0.0606 in the case of UtilLRet against EnronLRet;
• 0.5964 in the case of UtilLRet against DukeLRet;
• 0.6052 in the case of UtilLRet against both variables EnronLRet and

DukeLRet.

By comparing the R2 values in the cases of the first and second bullets, one could
conclude that the variable EnronLRet is a far worse predictor than DukeLRet
when it comes to explaining the overall sector log-returns UtilLRet. Indeed, the
former has a much smaller value of R2 (0.0606) than the latter (0.5964). In our
zealous attempt to show that the raw index data were inappropriate for direct re-
gression analysis, we departed from our tradition, and we performed the regression
analysis of the log-returns without plotting the data first. It is time to change that.
The scatterplots given in Fig. 4.8 will help us understand the values of the R2. The
striking differences between the scatterplots explain the difference between the two
R2 scores. Indeed, a quick look at the scatterplot in the left pane of Fig. 4.8 shows
that there does not seem to be any functional relation between the values of the util-
ity index log-returns and ENRON’s log-returns. On the other hand, the scatterplot
contained in the right pane of the figure where the dependence of UtilLRet upon
DukeLRet is visualized, shows that the data is reasonably well suited for a linear
regression.

Fig. 4.8. Scatterplot of the utility index daily log-returns against ENRON’s daily log-returns
(left) and DUKE’s daily log-returns (right)
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However, the most interesting remark prompted by the numerical values of R2

is the following. Despite the fact that, as expected, the R2 value of 0.6052 obtained
with multiple regression is larger than the values of R2 obtained with simple re-
gressions, the improvement does not seem to be significant. It seems that adding an
extra explanatory variable does not help much with explaining the response. This
is presumably due to the fact that when it comes to explaining the fluctuations of
UtilLRet, the information carried by EnronLRet is most likely already con-
tained in DukeLRet for the most part. We shall discuss this issue in more details
later.

4.5 MATRIX FORMULATION AND LINEAR MODELS

We will now expand on the notion of linear model alluded to in our discussion of the
R function lm. The statistical formulation of the simple linear regression problem is
based on the model:

yi = β0 + β1xi + εi, i = 1, . . . , n,

which can be rewritten in matrix notation as:

Y = Xβ + ε (4.13)

provided we set:

Y =

⎡
⎢⎣
y1
...
yn

⎤
⎥⎦ , X =

⎡
⎢⎣
1 x1
...

...
1 xn

⎤
⎥⎦ , ε =

⎡
⎢⎣
ε1
...
εn

⎤
⎥⎦ , and β =

[
β0
β1

]
.

Similarly, the multiple linear regression model:

yi = β0 + β1xi,1 + · · ·+ βpxi,p + εi, i = 1, . . . , n

can be recast in the same matrix formulation (4.13) provided we set:

Y =

⎡
⎢⎣
y1
...
yn

⎤
⎥⎦ , X =

⎡
⎢⎣
1 x1,1 · · · x1,p
...

...
...

1 xn,1 · · · xn,p

⎤
⎥⎦ , ε =

⎡
⎢⎣
ε1
...
εn

⎤
⎥⎦ , and β =

⎡
⎢⎢⎢⎣
β0
β1
...
βp

⎤
⎥⎥⎥⎦ .

4.5.1 Linear Models

We promote the notation introduced above to the rank of definition by stating that
we have a linear model when:

Y = Xβ + ε (4.14)
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where:

• Y is a (random) vector of dimension n;
• X is an n× (p+ 1) matrix (called the design matrix);
• β is an (p+ 1) – dimensional vector of parameters;
• ε is a mean zero random vector of uncorrelated errors with common (unknown)

variance σ2.

From now on, we will assume that the design matrix X has full rank. Since in all
practical applications we have more observations than explanatory variables (i.e. n >
p) this assumption merely says that the rank of X is p+ 1.

Normal Linear Models: When the individual error terms εi are assumed to be jointly
normal we have:

ε ∼ Nn(0, σ
2In)

and consequently:
Y ∼ Nn(Xβ, σ2In).

Since the noise term of a linear model is of mean 0, one has:

E{Y} = Xβ. (4.15)

since E{ε} = 0. Notice also that, since all the components εi are assumed to have
the same variance σ2, the variance/covariance matrix of ε is in fact σ2 times the
n×n identity matrix In. Finally, since changing the expectation of a random variable
does not change its variance, we conclude that the variance/covariance matrix of the
observation vector Y is also σ2In. Hence:

ΣY = Σε = σ2In. (4.16)

4.5.2 Least Squares (Linear) Regression Revisited

The purpose of least squares linear regression is to find the value of the (p + 1)-
dimensional vector β of parameters minimizing the loss function:

L2(β) =

n∑
i=1

[yi − β0 − β1xi,1 − · · · − βpxi,p]
2

=

n∑
i=1

[yi − tXiβ]
2

= ‖Y −Xβ‖2 (4.17)

where we use the notation ‖ · ‖ for the Euclidean norm of an n-dimensional vec-

tor, i.e. ‖y‖ =
(∑n

i=1 y
2
i

)1/2
. Notice that we are now using the notation β for the

parameter which we called θ in our general discussion of Sect. 4.1.6. As announced
earlier, there is a unique solution to the above problem (although we need to use the
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full rank assumption to rigorously justify this statement) and this solution is given
by an explicit formula which we give here without proof:

β̂ = [XtX]−1XtY. (4.18)

A two-line proof of this result can be given if one is familiar with vector differential
calculus. Indeed, the minimum β̂ can be obtained by solving for the zeroes of the
gradient vector of the loss function L2(β) as given by (4.17), and this can be done in
a straightforward manner. The interested reader is invited to consult the references
given in the Notes & Complements at the end of this chapter.

4.5.2.1 Properties of β̂

The following list summarizes some of the most important properties of the least
squares estimator β̂. The first property is a simple remark on formula (4.18), while
the other ones rely on the distribution properties of the linear model (4.14).

• β̂ is linear in the sense that it is a linear function of the observation vector Y;
• β̂ is unbiased in the sense that it is equal on the average to the true (and un-

known) value of β, whatever this value is. Mathematically this is expressed by
the formula E{β̂} = β;

• The variance/covariance matrix of this estimator can be computed explicitly. It is
given by the formula Σβ̂ = σ2[XtX]−1;

• β̂ is optimal in the sense that it has minimum variance among all the linear unbi-
ased estimators of β.

4.5.2.2 Properties of the Fitted Values Ŷ

The formula giving β̂ implies that the fitted values are given by:

Ŷ = Xβ̂ = X[XtX]−1XtY = HY

if we introduce the notation

H = X[XtX]−1Xt.

As for the parameter estimate(s), the fitted value(s) are linear in the observations,
since the vector Ŷ of fitted values is obtained by multiplying a matrix and the vec-
tor Y of observations of the response variable. The matrix H plays an important
role in the analysis of the properties of least squares regression. It is called the hat
matrix or the prediction matrix since the formula Ŷ = HY tells us how to trans-
form the observations Y into the values Ŷ predicted by the model. We shall see
below that the diagonal elements hi,i enter in an explicit way into the variance of
the raw residuals, but for the time being we shall stress that the hi,i’s measure the
influence of the corresponding observation: a large value of hi,i (since the hi,i are
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never greater than 1, a large value means a value close to 1) indicates that the corre-
sponding observation plays a crucial role in the computation of the resulting value of
β̂ and consequently, greatly influences the interpretation of the results. This notion
of influential observation has to be carefully distinguished from the notion of outly-
ing observation discussed below. Indeed, there is nothing wrong with an influential
observation, it should not be disregarded, but should simply be looked at carefully in
order to understand why some of the results of the regression are what they are.

We display the following formula for future reference.

Ŷ = Xβ̂ = HY ε̂ = Y − Ŷ = [In −H ]Y. (4.19)

In order to differentiate them from the modified residuals which we introduce later
on, the components ε̂i of the vector ε̂ defined above are called the raw residuals
since:

ε̂i = ŷi − yi. (4.20)

They were merely called residuals up to now.

4.5.2.3 Properties of the Residuals

The properties of the raw residuals ε̂i are summarized in the following bullet points:

• The ε̂i’s are mean zero, E{ε̂} = 0;
• Their variance/covariance matrix is given by the formula Σε̂ = σ2[In −H ];
• In particular

– The ε̂i’s are correlated;
– They do not have the same variance since σε̂i = σ

√
1− hi,i.

We use the notation hi,j for the (i, j)-th entry of the hat matrix H . It is important
to reflect on the meaning of these statements. Indeed, given the fact that the ε̂i come
as candidates for realizations of the actual error terms εi, one could expect that they
form a white noise. But we just learned that this is not the case. This fact was already
mentioned when we compared the residuals of the time series regression of the utility
index with the residuals of the regression of the coffee log-returns. Indeed, there
are at least two good reasons why the plot of the raw residuals should not look
like a white noise! First the variance of ε̂i changes with i, and second, the ε̂i’s are
correlated. Any plot of the raw residuals should show these facts.

Notice that even though the dependence of the ε̂i may look shocking at first, it
should not be surprising since after all, the ε̂i’s are computed from β̂ instead of from
the (deterministic) true value β which is not available, and also the estimator β̂ is a
function of all the observations yj , and consequently of all the error terms εj . This is
the source of this unexpected correlation between the residuals.
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4.5.2.4 Estimator of the Variance σ2

We first introduce the notation:

R2
0 = ‖Y −Xβ̂‖2 =

n∑
i=1

[yi − β̂0 − β̂1xi,1 − · · · − β̂pxi,p]
2 (4.21)

for the minimum sum of squared residuals (i.e. the minimum value of the loss func-
tion L2(β)). In the notation used in our discussion of the simple least squares linear
regression, this quantity was denoted by SSE and called the sum of squared errors.
The variance parameter σ2 is estimated by:

σ̂2 =
1

n− p− 1
R2

0

=
1

n− p− 1
‖Y −Xβ̂‖2

=
1

n− p− 1

n∑
i=1

[yi − β̂0 − β̂1xi,1 − · · · − β̂pxi,p]
2.

As usual, the normalization of R2
0 is done by division after subtracting the number

of parameters (p + 1 in our case) from the number of observations. This correction
is included to make sure that σ̂2 is an unbiased estimator of the variance σ2.

4.5.2.5 Standardized Residuals ε̂′i

In order to resolve the issue of heteroskedasticity (i.e. fluctuations in the variance) we
would like to divide the raw residuals by their standard deviations. In other words,
we would like to use:

ε̂i

σ
√

1− hi,i
,

but since we do not know σ we instead use:

ε̂′i =
ε̂i

σ̂
√
1− hi,i

(4.22)

The ε̂′i so defined are called the standardized residuals. Obviously, they are mean
zero and have unit variance, but there is still a lot of correlation between them.

4.5.2.6 Studentized Residuals ε̂∗i

In order to circumvent the problem caused by the serial correlation of the residuals
considered so far, another type of residual was proposed. The ε̂∗i defined below are
called the studentized residuals. For each i = 1, . . . , n, we
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• Remove the observation (xi, yi);
• Fit a linear model (by least squares) to the remaining (n− 1) observations;
• Call ŷ(i) the prediction of the response for the value xi of the regressor.

Notice that the value of the error term εi does not enter into the computation of the
new residual yi − ŷ(i), so we would hope that these new residuals are de-correlated.
In any case, we set:

ε̂∗i =
yi − ŷ(i)√

var{yi − ŷ(i)}
. (4.23)

These studentized residuals should look like white noise and a reasonable diagnostic
for the fit of a linear model is to check how this materializes. As defined, the stu-
dentized residuals require enormous computer resources, since the computation of
each single ŷ(i) requires a linear regression! Fortunately, the set of all the studen-
tized residuals can be computed from one single linear regression and a few updates.
Indeed, simple arithmetic can be used to derive the following formula:

ε̂∗i =

√
n− p− 1

n− p− ε̂′i
2 ε̂

′
i

linking the standardized residuals to the studentized ones. Despite the existence of
a function ls.diag, which can be used with an object created by the function
lsfit, there is no convenient way to produce the residual diagnostics from an ob-
ject created by the function lm. For this reason, we provided a simple wrapper called
lm.diag, which does just that. Its use is illustrated in Sect. 4.5.2.8 below.

4.5.2.7 More Residual Diagnostics

A standard way to gauge the goodness of fit of a regression model is to use graph-
ical diagnostics. For example if a plot of the standardized or studentized residuals
(whether it is a sequential plot, or a plot against the fitted values or the observa-
tions) shows values outside the range [−2,+2], one should suspect that something
is wrong. Either the model is not appropriate for the data, or if the model is reason-
able, the observations responsible for these extreme residual values do not belong.
These observations are usually called outliers. It is a good practice to try to identify
the potential outliers and if one has faith in the model, to re-fit a regression after the
outlying observations have been removed.

4.5.2.8 Revisiting the Analysis of the Utility Indexes

We use the utility data to illustrate how to produce the suite of regression diagnostics
in R. They are created with the commands

> Ue.diag <- lm.diag(Ue)
> Ud.diag <- lm.diag(Ud)
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Fig. 4.9. Sequential plot of the hi,i in the case of the simple regression of utility index daily
log-returns against ENRON’s daily log-returns (top) and against DUKE’s daily log-returns
(bottom)

Figure 4.9 gives the plots of the influence measures (i.e. the diagonal entries of the
hat matrix) in the case of the simple regression of UtilLRet against EnronLRet
and DukeLRet, respectively. These numerical vectors are extracted from the diag-
nostic objects by means of the extension · · ·$hat. In preparing Fig. 4.9, we did not
rely on the usual plot function to produce the plots of the vectors Ue.diag$hat
and Ud.diag$hat. Instead, we used time series plots in order to have the dates
appear on the horizontal axes. We shall learn how to do that in R when we introduce
the timeSeries objects in Chap. 6. It is clear from this plot that in both cases, the
Winter season and the period spanning the end of Summer and early Fall are most in-
fluential. Notice nevertheless that the scales of the vertical axes are not the same, and
taking this fact into account, one sees that a few days in November are extremely in-
fluential in the regression of the utility index log-returns against DUKE’s log-returns.
As we shall see in the later part of the book, departure from normality can be an in-
dication of the existence of significant dependencies among the residuals, so it is
always a good idea to check the Q-Q plots of the standardized and the studentized
residuals against the quantiles of the normal distribution. We give these Q-Q plots
in Fig. 4.10. Significant departure from normality seems to be present. The numer-
ical vectors containing the standardized residuals and the studentized residuals can
be extracted from the R diagnostic objects by means of the extensions · · ·$stdres
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Fig. 4.10. Q-Q plots of the standardized residuals (left) and the studentized residuals (right) of
the multiple least squares regression of the utility daily log-returns against both ENRON and
DUKE daily log-returns

and · · ·$studres respectively. The Q-Q plots of Fig. 4.10 were created with the
commands:

> qqnorm(Ued.diag$stdres)
> qqnorm(Ued.diag$studres)

This plot shows that the residuals exhibit heavy tails.

4.5.3 Confidence and Prediction Intervals

4.5.3.1 Confidence Interval

In statistics, we typically estimate parameters, and predict (future) random outcomes.
In the set up of simple least squares linear regression from a data set (x1, y1), · · · ,
(xn, yn), if we consider the prediction of the response variable for a new value x0
of the explanatory variable, the number μ = β0 + β1x0 can be considered as a
new parameter of the model, and the inferential theory of Gaussian families gives
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a confidence interval for μ. For example, the end points of a 100α% confidence
interval for μ are given by

μ̂± tn−2, 1+α
2

√
σ̂2

(
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)
,

where tk,γ denotes the γ-quantile of the t-distribution with k degrees of freedom,
and

x̄ =
1

n

n∑
i=1

xi and σ̂2 =
1

n− 2

n∑
i=1

(yi − ŷi)
2.

Remember that when n is large, say n ≥ 50, the t-distribution with n degrees of
freedom is very close to the standard Gaussian distribution and using quantiles of the
Gaussian distribution would provide reasonable approximate confidence intervals.
Notice that the estimate

μ̂ = β̂0 + β̂1x0.

of the parameter is the same as the least squares prediction Ŷ0 of the random variable
Y0 whose conditional expectation is given by

Ŷ0 = E{Y |X = x0} = β̂0 + β̂1x0

4.5.3.2 Prediction Interval

However, the random variable Y0 we are trying to predict is of the form

Y0 = μ+ ε0

ε0 being a random variable independent of β̂0 and β̂1, providing an extra source of
noise. Consequently, an interval covering the true value of Y0 with probability at
least α should be larger than the confidence interval for μ, leading to the notion of
prediction interval for this prediction

Ŷ0 ± tn−2, 1+α
2

√
σ̂2
(
1 +

1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)
,

4.5.4 First Extensions

The formalism of linear models is so general that the theory can be applied to many
diverse situations. We consider two such applications in this subsection. Many more
will be discussed later in the chapter. Since the applications considered in this section
will not be used in the sequel, this section can be skipped in a first reading.
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4.5.4.1 Weighted Regression

Each diagonal entry of the hat matrix H gives an indication of the influence of the
corresponding measurement. It is sometime desirable to decrease (resp. increase)
the influence of a given measurement on the final regression result. This can be done
by means of a minor change in the way each individual measurement actually con-
tributes to the value of the loss function. Let us consider for example the weighted
sum of squares:

L(w)
2 ϕ =

n∑
i=1

wi|yi − ϕ(xi)|2. (4.24)

for some predetermined set of nonnegative weights wi. In order to avoid large con-
tributions to the overall loss, any function ϕ minimizing this loss function will try
very hard to have a value ϕ(xi) very close to yi for the indices i for which the weight
wi is large. On the other hand, if a weight wi is smaller than the bulk of the other
weights, then the fit may be loose without causing much damage to the overall value
of the loss.

The computations involved in the minimization of the weighted loss function
L(w)
2 are of the same complexity as the computation of the minimum of the corre-

sponding unweighted least squares loss function L2. For this reason, it is possible in
R to specify a set of weights and expect as result the regression function ϕ minimiz-
ing the weighted loss function L(w)

2 .

Example. Let us imagine that one tries to explain the variable UtilLRet by the
variable DukeLRet by giving more importance to the days when the ENRON index
is larger than the DUKE index. One can use simple least squares linear regression
using the variable ENRON.index/DUKE.index as a set of weights. This would
be accomplished by the R commands:

> WEIGHTS <- (ENRON.index/DUKE.index)[-1]
> TstUtil.lm <- lm(UtilLRet ˜ DukeLRet, weights=WEIGHTS)

Note the [-1] in the first command. It is there because of a fact we encountered
each time we computed returns: the vectors UtilLRet and DukeLRet are one
unit shorter than the vectors ENRON.index and DUKE.index as the computation
of the log-returns was not possible for the first entry of these vectors.

Remark. Because of the parallel that we drew between the least squares regression
and its robust cousin, the least absolute deviations regression, it would be natural to
consider a weighted loss function of the form:

L(w)
1 ϕ =

n∑
i=1

wi|yi − ϕ(xi)|, (4.25)

and by analogy with the weighted least squares regression to have the weighted least
absolute deviations regression function be the result of the search for the function ϕ
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minimizing L(w)
1 . Unfortunately, this minimization is quite involved and weighted

least absolute deviations regression is rarely an option: the function l1fit does not
offer the possibility to include weights in the regression.

4.5.4.2 Seemingly Unrelated Regressions (SUR)

Let us assume that for each j = 1, . . . , J we fit a multiple linear regression model

Y(j) = X(j)β(j) + ε(j)

to the sample
(x

(j)
1 , y

(j)
1 ), . . . , (x(j)

n , y(j)n )

where the explanatory variables x(j)
i all have the same dimension k = p+1. In such

a situation, one performs the J regressions in sequence, independently of each other.
However, it happens in many financial applications that the explanatory variables are
the same for all the regressions. In this case the model can be rewritten as:

Y(j) = Xβ(j) + ε(j)

and it can be ran in R by binding all the response vectors into a n × J response
matrix. According to the theory developed earlier, each parameter vector β(j) can be
estimated by ordinary least squares, and the results are given in matrix form by:

β̂
(j)

= [XtX]−1XtY(j).

Now comes the interesting part of this subsection. Even though the response vari-

ables Y (j)
i and Y (j′)

i′ are uncorrelated if they come from two different observations
(i.e. if i �= i′), we now assume that, the responses associated to the same observa-
tion are correlated. In other words, we assume the existence of a variance/covariance
matrix Γ = [γj,j′ ]j,j′=1,...,J such that:

cov{Y (j)
i , Y

(j′)
i } = γj,j′ , j, j′ = 1, . . . , J, i = 1, . . . , n, (4.26)

or in vector form, ΣYi = Γ for all i = 1, . . . , n. As we already pointed out, this as-
sumption is quite realistic in many financial applications. For example it holds when
the response variables Y (j)

i are the log-returns of J stocks in the same economic
sector, and when the explanatory vectors xi are observations of vectors of economic
factors driving the dynamics of the share prices of the public companies in the sector.
A linear model specified this way is called a set of seemingly unrelated regressions,
or SUR for short. The usual ordinary least squares approach is not appropriate be-
cause of the dependence among the response variables. In order to understand why,
we rewrite the model in the standard form of a linear model with a scalar response
variable. In order to do so, we bind the response vectors Y(j) into a (nJ)×1 column
vector Ỹ, the noise vectors ε(j) into a (nJ)×1 column vector ε̃, the parameters β(j)
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into a (kJ) × 1 column vector β̃, and we create the new design matrix X̃ as the
(nJ)× (kJ) matrix with J copies of X on the diagonal:

Ỹ =

⎡
⎢⎣
Y(1)

...
Y(J)

⎤
⎥⎦ , ε̃ =

⎡
⎢⎣
ε(1)

...
ε(J)

⎤
⎥⎦ , β̃ =

⎡
⎢⎣
β(1)

...
β(k)

⎤
⎥⎦ , X̃ =

⎡
⎢⎢⎢⎣
X 0 · · · 0
0 X · · · 0
...

...
...

0 0 · · · X

⎤
⎥⎥⎥⎦ .

With these notation, the SUR model reads:

Ỹ = X̃β̃ + ε̃

but the ordinary least squares estimate

ˆ̃
β(j) = [X̃

t
X̃]−1X̃

t
Ỹ

is presumably not the best estimate. Indeed, even when the noise terms are Gaussian,
this estimate does not coincide with the maximum likelihood estimator. This is due
to the fact that the above least squares estimate is based on the assumption that the
variance/covariance matrix of the noise vector ε̃ is a multiple of the (nJ) × (nJ)
identity matrix InJ , and this is not the case in the present situation. Indeed, this vari-
ance/covariance matrix is not diagonal as a simple computation shows. It is in fact
equal to what is called the Kroenecker product of the matrix Γ and the n×n identity
matrix In. We shall not pursue the analysis any further. We refer the interested reader
to the Notes & Complements section at the end of the chapter for references.

4.5.5 Testing the CAPM

We now present the Capital Asset Pricing Model (CAPM for short) as an illustration
of the linear regression techniques introduced in this chapter.

We consider a market economy containing N financial assets, and we denote by
Rjt the log-return on the j-th asset on day t. For the purposes of the present dis-

cussion, we assume the existence of a market portfolio, and we denote by R(m)
t its

log-return on day t. Finally, we also assume the existence of lending and borrowing
at the same risk-free rate which we denote by r, and which we assume to be deter-
ministic. The Sharpe-Lintner version of the CAPM states that the excess return (over
the risk-free rate) of each asset j is, up to noise, a linear function of the excess return
of the market portfolio. In other words, for each j:

R̃jt = αj + βj
˜
R

(m)
t + εjt

where the noise sequence {εjt}t is uncorrelated with the market portfolio return. We
use a tilde to denote the returns in excess of the risk-free rate:

R̃jt = Rjt − r j = 1, 2, . . . and
˜
R

(m)
t = R

(m)
t − r. (4.27)



240 4 PARAMETRIC REGRESSION

One of the claims of the CAPM theory is that, if one uses excess returns, the intercept
αj appearing in the linear regression equation (4.27) should be zero. In other words,
the regression lines should all go through the origin, whatever the choice of the asset.
Notice that the same model can be used for small portfolio returns Rjt instead of
individual stock returns.

For each stock, a least squares regression will provide estimates for the slope βj
and the interceptαj . The estimate β̂j is given by a normalized form of the covariance
between the j-th asset (or the j-th portfolio) and the market portfolio: this is known
as the investment beta for the j-th asset. It measures the sensitivity of the return to
variations in the returns of the market portfolio. So assets (or portfolios) with a β̂j
greater than one are regarded as risky, while those with β̂j smaller than one are much
less sensitive to market fluctuations. The validity of CAPM depends upon

• The existence of a significant linear relationship (so we shall look at the R2);
• A zero intercept (so we shall test the hypothesis that αj = 0);
• Uncorrelated normally distributed error terms (which we shall check by means

of a residual analysis);
• All of this being stable (which we shall check by testing the constancy of the

beta’s over time).

4.5.5.1 Empirical Tests

In order to test the CAPM, we consider the daily returns on five stocks of one of
the utility subindexes of the Dow Jones Industrial Average. We use the S&P 500
index as a proxy for the market portfolio, and we use the yield on the 13 weeks T-
bill (see Sect. 4.8 for the definition of this instrument) as a proxy for the risk-free
rate of borrowing from which the excess returns are computed. In the late 1990s,
gas and electricity trading became an important source of revenues. Deregulation
raised high expectations, and speculative trading overshadowed hedging and risk
management. Energy companies experienced growth throughout this period. Things
changed dramatically in 2000. The California crisis and Enron’s bankruptcy ignited
a sudden reversal in trading activity, and a spectacular downfall for the sector. So
we divided the data into the period starting 01/01/1995 and ending 01/01/1999, and
the period starting 01/01/1999 and ending 01/01/2003. Figure 4.11 shows the results
of simple linear regressions of the American Electric Power (AEP) weekly excess
returns against the market excess returns over the first period on the left, and over the
second period on the right. In each case we plotted both the least squares and least
absolute deviations regression lines. The beta of the second period is much bigger
than the beta of the first period, which is consistent with our interpretation of a risky
stock in terms of the size of its beta. Only looking at this plot may not show this fact.
Indeed it is partially masked by the fact that the scales on the vertical axes are not
the same. See Tables 4.1 and 4.2 for the exact values of the least squares estimates of
the betas. In the case of the first period, the shape of the cloud of points is different,
and the robust estimate of βAEP is greater.
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Fig. 4.11. Least squares (solid line) and least absolute deviations (dashed line) regressions of
the American Electric Power (AEP) weekly excess returns against the market excess returns
for the period starting 01/01/1995 and ending 01/01/1999 (left) and for the period starting
01/01/1999 and ending 01/01/2003 (right)

AEP DUKE PCG SO TXU
Estimate Estimate Estimate Estimate Estimate
(p-value) (p-value) (p-value) (p-value) (p-value)

Intercept 0.0009(0.4604) 0.0015(0.2826) 0.0011(0.5233) 0.0008(0.5691) 0.0011(0.4286)
Slope 0.1861(0.0050) 0.1563(0.0326) 0.0127(0.8893) 0.2520(0.0010) 0.1762(0.0176)

Table 4.1. Intercept and slope estimates, and corresponding p-values (in parentheses) for the
least squares regression tests of the CAPM for a set of five electric companies over the period
starting 01/01/1995 and ending 01/01/1999

Figure 4.12 shows the results of the same linear regression analysis in the case
of Texas Utilities (TXU). The results are qualitatively the same.

Next we test the null hypothesis of a zero intercept in the case of five of the
largest electric companies in the Dow Jones Utility Index. We reproduce the intercept
estimates and the p-values of the t-test in Tables 4.1 and 4.2 for the two periods. In
all cases, the test statistic could not reject the null hypothesis of a zero intercept.
However, looking carefully at the estimates of the betas shows clearly that these
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AEP DUKE PCG SO TXU
Estimate Estimate Estimate Estimate Estimate
(p-value) (p-value) (p-value) (p-value) (p-value)

Intercept −0.0009 −0.0010 −0.0029 0.0021 −0.0027
(0.7621) (0.7307) (0.5813) (0.3492) (0.5840)

Slope 0.4982 0.1563 0.4294 −0.0184 0.4834
(0.0000) (0.0000) (0.0180) (0.8074) (0.0052)

Table 4.2. Intercept and slope estimates, and corresponding p-values (in parentheses) for the
least squares regression tests of the CAPM for a set of five electric companies over the period
starting 01/01/1999 and ending 01/01/2003

Fig. 4.12. Least squares (solid line) and least absolute deviations (dashed line) regressions
of the Texas Utilities (TXU) weekly excess returns against the market excess returns for the
period starting 01/01/1995 and ending 01/01/1999 (left) and for the period starting 01/01/1999
and ending 01/01/2003 (right)

betas change from one period to the next. But the academic literature is populated
with many papers arguing that the model should be rejected on the basis of empirical
tests of this type. See the Notes & Complements for further discussion of the issue.
In any case, our numerical results show that the stability of the betas over time (and
consequently the choice of the periods over which one should estimate them) can
become a serious issue. In order to avoid this difficult challenge, and in order to
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satisfy the pundits debating the validity of the model, we generalize the CAPM to
time varying betas in Chap. 7, and we apply the filtering theory developed in that
chapter to estimate these changing betas.

4.6 POLYNOMIAL REGRESSION

After a short excursion into the realm of multivariate regression, we turn our attention
back to simple regression (i.e. one real-valued explanatory variable x) and we force
the regression function ϕ to be a polynomial. In other words, we restrict ourselves to
regression functions of the form:

ϕ(x) = β0 + β1x+ β2x
2 + · · ·+ βpx

p (4.28)

for some integer p ≥ 1 and unknown parameters β0, β1, . . ., βp. This type of regres-
sion generalizes the simple linear regression which we saw earlier, since the latter
corresponds to the case p = 1. As such it appears as a very attractive way to re-
solve some of the shortcomings we noticed. Unfortunately, polynomial regression
can be very poor, especially when it comes to prediction of the response for values
of the explanatory variables outside the range of the data. So our advice is to avoid
its use unless one has VERY GOOD REASONS to believe that the model (i.e. the
true regression function ϕ) is indeed a polynomial.

4.6.1 Polynomial Regression as a Linear Model

Even though a polynomial of degree p is a nonlinear function of the variable x when
p > 1, it can be regarded as a linear function (affine to be specific) of the variables x,
x2, . . ., and xp. So, we could fit a linear model to the data as long as the observations
x1, x2, . . ., xn on the single univariate explanatory variable x are replaced by n
observations of x and its powers which we collect together in a design matrix:

X =

⎡
⎢⎣
1 x1 x

2
1 · · · xp1

...
...

...
...

1 xn x
2
n · · · xpn

⎤
⎥⎦

But we should not have to do that, R should do it for us. The R command used for
polynomial regression is:

lm(response ˜ poly(regressor,degree))

to which we may want to add the data.frame by setting the parameter data.

4.6.2 Example of R Commands

We use the data set FRWRD containing the values in US $ of the 36 Henry Hub
natural gas forward contracts traded on March 23rd 1998. We use those prices as
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observations of our response variable, and we use the index of the delivery month
of the forward contract as explanatory variable. For the sake of simplicity we use
the integers 1, 2, . . . , 36. This example may not be representative of most regression
problems, for, in general, the explanatory variable does not take values in a regular
deterministic grid. We chose it for the sake of illustration: natural gas forward curves
have a strong seasonal component which distinguishes them from most of the other
commodity forward curves. Figure 4.13 gives the results of several polynomial re-
gressions of the forward prices against the month indexes. We used degrees 3, 6 and
8 respectively. The plots were produced with the R commands:

> plot(1:36,FRWRD,main="Polynomial Gas Forward Curves")
> lines(1:36,fitted(lm(FRWRD˜poly(1:36,3))))
> lines(1:36,fitted(lm(FRWRD˜poly(1:36,6))),lty=3)
> lines(1:36,fitted(lm(FRWRD˜poly(1:36,8))),lty=6)
> legend(locator(1),c("Degree=3","Degree=6","Degree=8"),

lty=c(1,3,6),bty="n")

The estimates fitted to the response variable are extracted from the lm object by the
function fitted. The points corresponding to the fitted values have been joined by
straight line segments by the R function lines. This produces a continuous curve
and gives the impression that the plot of the polynomial is actually given, even though
we only plotted broken lines between the fitted points. More on the properties of this
function lines later at the end of this chapter.

None of the polynomial fits given in Fig. 4.13 is very good. Indeed, the forward
prices do not seem to be a polynomial function of the month of maturity, and it would
take a much higher degree to get a satisfactory fit throughout the 36 months period.

4.6.3 Important Remark

Polynomial regression, as we just introduced it, is a particular case of the estimation
of the regression function ϕ when the latter is known to belong to a specific vector
space. In the present situation the vector space is the vector space of polynomials of
degree at most p. This space has dimension p + 1. Indeed, the special polynomials
1, x, x2, . . ., xp form a basis for this space, since any polynomial of degree at most
p can be decomposed in a unique way as a linear combination of these particular
(p + 1) polynomials. So any element of this vector space is entirely determined by
(p + 1) numbers, the coefficients of the decomposition in this basis. This is why
polynomial regression is a particular case of parametric statistics, and this is how
we recast this seemingly nonlinear simple regression into the framework of a linear
multivariate regression. But vector spaces have many different bases. In fact, one
of the very nice features of vector algebra is the option to change basis. Indeed, re-
expressing a problem in a different basis may sometimes make it easier to understand
and to handle.

Since what matters to us is the function ϕ and not so much the way in which it is
parameterized, or the specific basis in which one chooses to decompose it, it should
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not matter how R handles the linear model set up to perform a polynomial regression.
In fact, even though we like to think of the particular basis {1, x, x2, . . . , xp} when
we introduce a polynomial of degree at most p, there is no reason why R should work
with this particular basis. In other words, there is no reason why the R function poly
could not create the design matrix X by expressing the polynomial candidate for the
regression function in a different basis of the same vector space of polynomials. In
fact, this is exactly what it does. This is R internal politics which we should not have
to be concerned with. More on this subject later in the appendix at the end of this
chapter when we discuss R’s idiosyncrasies.

4.6.4 Prediction with Polynomial Regression

Whether it is for speculative reasons or for hedging future price exposures, owners
and operators of gas fired power plants are often involved in long term contracts with
maturities going far beyond the longest maturity appearing in the publicly available
forward curve data. They are not the only ones to do that, and some amateurs can
be burned at this game. The California electricity crisis is full of instances of such
mishaps. In any case, the prediction of the forward prices for very long maturities is
a challenge, and we show why one should not use polynomial regression in the case
of natural gas. Having fitted a polynomial to the existing curve, it is straightforward
to compute the value of this fitted polynomial for any time to maturity. Let us assume
for example that we want to compute the prediction of the price of a 4 year time-to-
maturity forward contract (i.e. a forward contract maturing in 48 months) or 6 year

Fig. 4.13. Scatterplot of the prices on March 23rd, 1998 of the 36 traded natural gas forward
contracts, together with the results of three different polynomial regressions
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time-to-maturity forward contract (i.e. a forward contract maturing in 72 months).
We create the object FPOLY of class lm by running the polynomial regression as a
linear model as we did earlier, and we use the generic method predict to get the
actual predictions. The values of the explanatory variable(s) for which the predictions
are computed are passed to the function predict through the parameter newdata
which needs to be an object of class data.frame. The following commands give
a first example of the steps which need to be taken to do just that.

> x <- 1:36
> FPOLY <- lm(FRWRD˜poly(x,8))
> F48PRED <- predict(FPOLY, newdata=data.frame(x=c(48)))
> F48PRED
[1] -271.0561
> F72PRED <- predict(FPOLY, newdata=data.frame(x=c(72)))
> F72PRED
[1] -42482.44

Something is obviously wrong, these numbers should not be negative, and in any
case, they should not be so large. In order to illustrate how bad the situation is, we
compute the values of the fitted polynomial for all the monthly maturities ranging
from 0 to 48 months, and we superimpose these values on the scatterplot of the
values of the forward prices for the first 36 months.
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Fig. 4.14. Prediction of the price of a 48 month natural gas forward contract using the best of
the polynomial regressions done on March 23rd, 1998
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> TIME <- 1:48
> FPRED <- predict(FPOLY, newdata=data.frame(x=1:48))
> plot(TIME,FPRED, type="l",

main="Polynomial Gas Forward Price Prediction")
> points(x,FRWRD)
> abline(h=0,v=0)

The resulting plot is reproduced in Fig. 4.14. The scale of the values for the times to
maturity larger than 3 years is so large that the original part of the forward curve is
dwarfed to the point of looking like a horizontal straight line. We use this example to
emphasize one more time how inappropriate it can be to try to predict the response
for values of the explanatory variable(s) too far outside the range of the data.

Back to the Very Important Remark. Before we close this subsection, we come
back to one of the important features of the prediction procedure used above. We used
the generic method predict which was able to extract all the necessary informa-
tion contained in the object FPOLY of class lm and compute the desired predictions.
This is very simple and very convenient, but unfortunately, the prediction was done
in a black box, without any indication on how the prediction was actually computed.
This is somehow in contradiction with the spirit of our approach to data analysis.

As we saw earlier when we computed predictions from linear regression mod-
els, predictions can be obtained by plugging the values of the explanatory vari-
able(s) for which the predictions are desired, into the formula giving the regression
function estimate ϕ̂. In the present situation, a command of the form
sum(COEFS*(48(̂0:8))) should do just that for a time to maturity of 48 months,
provided the 9 coefficients of the polynomial are stored in the components of the
vector COEFS. Indeed we have:

sum(COEFS*(48ˆ(0:8)))=COEFS[1]*48ˆ0+COEFS}[2]*48ˆ1
+....+COEFS[9]*48ˆ8

which is the desired evaluation of the value of the polynomial for the value 48 of the
explanatory variable x. A naive attempt to compute the predictions ϕ̂(48) and ϕ̂(72)
with this plugging strategy would give:

> COEFS <- coef(FPOLY)
> NPRED48 <- sum(COEFS*(48ˆ(0:8)))
> NPRED48

[1] -4.461495e+12
> NPRED72 <- sum(COEFS*(72ˆ(0:8)))
> NPRED72

[1] -1.118850e+14

Clearly, these naive predictions are way off. Something went wrong without our
noticing it. We revisit this issue in the appendix at the end of the chapter, and we give
detailed explanations for the reasons of this unexpected behavior of the coefficients
of the regression. The guilty party is the function poly used by lm to transform the
(nonlinear) polynomial regression into a linear regression by replacing a polynomial
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by the sequence of its coefficients. Indeed, instead of using the basis 1, x, x2, · · · ,
x8, the function poly chose to decompose polynomials of degree at most 8 in a dif-
ferent basis. For reasons which we do not want to get into, R chose to construct the
design matrix X in a special basis of orthogonal polynomials instead of the canonical
basis 1, x, x2, · · · , x8. Indeed such a design matrix is better conditioned for numer-
ical computations, inversions, . . . , and more efficient and robust algorithms can be
used to compute the elements of the linear model so designed. However, at the risk
of facing unstable or inefficient computations, the user can always force R and the
function poly to work with the canonical polynomial basis. This can be done by
setting the parameter raw to TRUE as illustrated below.

> FPOLY <- lm(FRWRD˜poly(x,8, raw=TRUE))
> COEFS <- coef(FPOLY)
> SPRED48 <- sum(COEFS*(48ˆ(0:8)))
> SPRED48
[1] -271.0561
> SPRED72 <- sum(COEFS*(72ˆ(0:8)))
> SPRED72
[1] -42482.44

As expected, we recovered the predictions computed by the black box method
predict.

4.6.5 Choice of the Degree p

The choice of degree p is a particular case of the delicate problem of the choice of
the dimension of a model. A larger degree (in general a large number of explanatory
variables) leads to a smaller sum of squares errors and a largerR2, which is desirable.
The case of polynomial regression is a good example with which to illustrate this
fact. If the sample is of size n, for most data sets, it is possible to find a polynomial
of degree n + 1 going through all the points and, consequently, providing a ZERO
sum of squares!!! But if the data is noisy (i.e. if the variance σ2 of the noise is not
0) the fit provided by this polynomial of degree n+ 1 is very unsatisfactory: we are
fitting the noise, and this is not desirable.

In fact, too large of a degree will produce absurd predictions, especially if the
model is used to predict values of the response variable for values of the regressor
outside the range of the data. The general principle is:

BE PARSIMONIOUS.

Criteria (mostly of an intuitive nature) have been designed to help with the choice
of dimension of a linear model (and in particular with the degree of a polynomial
regression). The most popular of them seem to be based on principles of information
theory and entropy measures. R provides several of them, but to our astonishment, the
most popular seems to be the (in)famous AIC which stands for Akaike Information
Criterion. Its use is widespread despite well-documented flaws. We will reluctantly
conform to the common practice and shall mention its use throughout.
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4.7 NONLINEAR REGRESSION

We have already encountered several examples of simple regression for which the
regression function ϕ(x) was a nonlinear function of the explanatory variable x.
However, in all these cases, the estimation of ϕ was based on the solution of a linear
model. We now consider examples of models which cannot be reduced to linear
models. We shall apply the techniques developed in this section to the constructions
of yield curves used by the various Central Banks all over the world.

We present the main ideas of nonlinear regression on an example, and we use the
same type of illustration as in our discussion of polynomial regression: as before we
use the analysis of commodity forward curves as a test bed. The explanatory variable
is again the index of the month of delivery for a forward contract, and for the sake of
simplicity we use the integers 1, 2, . . . , 18 which we put in a vector x. The response
variable y is now the forward price of a crude oil contract. The two specific examples
we analyze below are from a period (pre-2000) when the price of a barrel of crude
oil was much smaller than in the late 2000s! The main difference with the natural gas
forward curve considered earlier is the lack of seasonality. Typical crude oil forward
curves can be either increasing (we say that they are in contango) or decreasing (in
which case we say that they are in backwardation). But in any case, they are almost
always monotone with significant curvature.

4.7.1 A First Model

We propose to fit the forward quotes with a function of the form:

y = ϕθ(x) = F∞
x+K

x+ 1
, (4.29)

where the constant F∞ has the interpretation of an asymptotic forward price while
K is a positive constant. Economic theory justifies the existence of a limiting price
F∞ representing the cost of production. We use the notation θ = (F∞,K) for the
parametrization of the regression function ϕθ . We choose the parametric form (4.29)
because the forward curve is in contango when K < 1 and in backwardation when
K > 1, and obviously flat when K = 1. Least squares regression can be used to
determine the values of the parameter θ = (F∞,K) which minimize the sum of
squares, giving:

θ̂ = arg inf
θ

∑
i

|yi − ϕθ(xi)|2.

Obviously, these functions ϕθ are nonlinear. But they form a specific family param-
eterized by the two-dimensional parameter θ, and given the observations (xi, yi)
contained in the data, one can try to use a minimization procedure to look for the
optimal θ. This can be done using the R function nls whose call is similar to a call
to lm in the sense that a formula and possibly a reference to the data frame used
are required. In the present situation the formula will have to be nonlinear. It should
read:
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y ˜ FINF*(x+K)/(x+1)

if we use the R objects FINF and K for the parameters F∞ and K , respectively. We
perform the nonlinear regression with the command:

> Ffit <- nls(y ˜ FINF*(x+K)/(x+1), start=c(FINF=17,K=.1))

Should the explanatory and response variables be columns of a data frame, the name
of this data frame should be passed to the function nls by setting the parameter
data. The function nls relies on an iterative optimization routine, and this makes
it somewhat unpredictable. So, it is always a good idea to initialize the optimization
by providing reasonable values for the parameters. The initial values for the param-
eters are passed with the argument start. We chose to initialize F∞ to 17 because
looking at the scatter plot of (x, y), it appears that this value is in the range of the
asymptotic value of the forward price. Also, since the forward curve seems to be in
contango, we start K with a value smaller than 1. The numerical results produced by
the command above can be viewed using the command summary

> summary(Ffit)
Formula: y ˜ (FINF * (x + K))/(x + 1)

Parameters:
Value Std. Error t value

FINF 17.631500 0.0338120 521.4560
K 0.790918 0.0139659 56.6321

Residual standard error: 0.143233 on 32 degrees of freedom
Correlation of Parameter Estimates:

FINF
K -0.672

or they can be plotted with the commands:

> plot(x,y,main="Crude Oil Forward Curve")
> lines(x, fitted(Ffit))

As before, we use the function fitted to extract the fitted values from the nls
object Ffit. The results are given in the left pane of Fig. 4.15.

Fig. 4.15. Crude oil forward curves produced by nonlinear regression
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4.7.2 Transformation of the Variables

As we are about to see in the next subsection, the above model will be abandoned
because it cannot give a reasonable account of some of the forward curve shapes
which appear on a regular basis. We kept it anyway because of its simplicity and
because of the following thought-provoking remark. Notice that:

ϕθ(x) = F∞
x+K

x+ 1
= F∞

(
1 + (K − 1)

1

x+ 1

)
,

so that if we set z = 1/(x+ 1), then the model (4.29) can be rewritten as:

y = β0 + β1z

if we set β0 = F∞ and β1 = F∞(K − 1). So it should be possible to obtain the
results of the nonlinear regression used earlier with a simple linear regression of the
response variable y against the explanatory variable z, and a simple transformation
of the estimates of the slope and intercept to get back to estimates of the original
parameters F∞ and K . Recall that maximum likelihood estimates of transformed
parameters can be obtained by transforming the maximum likelihood estimates of the
parameters, so our strategy is consistent when our nonlinear least squares estimates
are maximum likelihood estimates, and this typically is the case when the noise terms
form a Gaussian white noise. This transformation idea can be implemented in R in
the following way:

> z <- 1/(x+1)
> LFit <- lm(y˜z)
> LFINF <- coef(LFit)[1]
> LFINF

17.63148
> LK <-1+ coef(LFit)[2]/LFINF
> LK

0.7909179

So the linear regression provides exactly the same estimates for the parameters F∞
andK . This is a beautiful example of a situation where a clever transformation of one
of the variables reduces the complexity of the problem. However, it is important to
keep in mind that recovering the same values for the estimates is not the whole story.
Indeed, both the function nls and the function lm provide a suite of test statistics,
confidence intervals and regions, and regression diagnostic tests, and the correspon-
dence between these goodies is not so clear any more. Let us give an example for
the sake of illustration. The function lm returns the correlation coefficient between
the estimates of the slope β1 and the intercept β0. However, the significance of this
number for the correlation between the parameters of interest F∞ andK , is anyone’s
guess, because these parameters are nonlinear functions of β0 and β1.
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4.7.3 A Second Model

The right pane of Fig. 4.15 gives an example of crude oil forward curve in back-
wardation, also produced by nonlinear regression. The data are from April 16, 1998.
We originally tried to fit a curve from the parametric family of functions ϕθ given
by (4.29) but the results were very poor. Because it can only play with two parame-
ters, the fitting procedure could not match the curvature of the forward curve on that
day. So we decided to introduce a third parameter to give the fitting procedure more
leeway. Implementing the nonlinear regression from the parametric family:

y = ϕθ(x) = F∞
x+K1

x+K2

with the command:

> Ffit<-nls(y˜FINF*(x+K1)/(x+K2),start=c(FINF=17,K1=2,K2=1))

we obtained the results reproduced in the right pane of Fig. 4.15. This confirms the
general philosophy that more parameters produce a better fit. But as we explained
earlier, following this trend too systematically can lead to disaster, especially in the
presence of random noise (which is not obvious in the present situation).

Nonlinear regression is a very touchy business, and it should not be practiced
without a license!

4.8 TERM STRUCTURE OF INTEREST RATES: A CRASH COURSE

The size and level of sophistication of the market of fixed income instruments in-
creased dramatically over the last 20 years, and it has become a prime test bed for
financial institutions and academic research. The fundamental object to model is the
term structure of interest rates. We approach it via the prices of treasury bond issues.
Models for these prices are crucial for pricing the important swap contracts and liquid
derivatives such as caplets, swaptions, etc., quantifying and managing financial risk,
and setting monetary policy. In this section, we restrict ourselves to Treasury issues
to avoid having to deal with the possibility of default. The highly publicized defaults
of counties (such as the bankruptcy of Orange County in 1994), of sovereigns (like
Russia defaulting on its bonds in 1998) and the ensuing ripple effects on worldwide
markets have brought the issue of credit risk to the forefront. We discuss some of the
models and instruments of the credit markets in our discussion of the credit markets
and CDOs in Chap. 3.

In order to be in a position to tackle some of the fundamental statistical issues of
the bond markets, we need a crash course on the mechanics of interest rates and the
fixed income securities. However, in order to make our life easier, we assume that
all the bonds used are default free, that there have no embedded options, no call or
convertibility features, and we ignore the effects of taxes and transaction costs.
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4.8.1 Zero Coupon Bonds

We first introduce the time value of money by valuing the simplest possible fixed
income instrument. It is a financial instrument providing cash flow with a single
payment of a fixed amount (the principalX) at a given date in the future. This date is
called the maturity date. If the time to maturity is exactly n years, the present value
of this instrument is:

PX(n) =
1

(1 + r)n
X. (4.30)

So this formula gives the present value of a nominal amount X due in n years time.
Such an instrument is called a discount bond or a zero coupon bond. The positive
number r is referred to as the (yearly) discount rate or spot interest rate for time to
maturity n, since it is the interest rate which is applicable today (hence the termi-
nology spot) on an n-year loan. Formula (4.30) gives a one-to-one correspondence
between bond prices and interest rates. More generally, at any given time t, we de-
note by P (t, t +m) the price of a zero coupon bond with unit principal and time to
maturity m, or maturity date T = t+m. This price can be expressed in terms of an
interest by the formula:

P (t, t+m) =
1

(1 + r(t, t+m))m
, (4.31)

where r(t, t + m) is the yearly spot interest rate prevailing at time t for time of
maturity T = t+m. We assumed implicitly that the time to maturity τ = T − t is a
whole number of years. This definition can be rewritten in the form:

log(1 + r(t, t+ τ)) = − 1

τ
logP (t, t+ τ)

and considering the fact that log(1 + x) ∼ x when x is small, the same definition
gives the approximate identity:

r(t, t+ τ) ∼ − 1

τ
logP (t, t+ τ)

which becomes an exact equality if we use continuous compounding. We use the
Greek letter τ for the time to maturity τ = T − t. This formula justifies the terminol-
ogy discount rate for r. Considering payments occurring in m years time, the spot
rate r(t, t + τ) is the single rate of return used to discount all the cash flows for the
discrete period from time t to time t+m. As such, it appears as some sort of com-
posite of interest rates applicable over shorter periods. Moreover, this formula offers
a natural generalization to continuous time models with continuous compounding of
the interest. In this case, it reads:

P (t, T ) = e−(T−t)r(t,T ). (4.32)
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4.8.2 Coupon Bearing Bonds

Treasury Bills are the perfect example of zero coupon bonds. They are issued and
sold at auctions on a regular basis. Their maturities are shorter than 1 year, and they
may not be very useful when it comes to understanding bonds with much longer
maturities. Most Treasury bonds carry coupons. In general, what is called a bond (or
a coupon bearing bond), is a regular stream of future cash flows. To be more specific,
a coupon bond is a series of payments amounting to C1, C2, . . ., Cm, at times T1,
T2, . . ., Tm, and a nominal payment X at the maturity date Tm. X is also called the
face value, or principal value of the bond. The bond price at time t should be given
by the formula:

P (t) =

m∑
j=1

CjP (t, Tj) +XP (t, Tm). (4.33)

This all purpose formula can be specialized advantageously, for in most cases, the
payments Cj’s are coupon payments made at regular time intervals. Coupon pay-
ments Cj are most often quoted as a percentage c of the face value X of the bond.
In other words, Cj = cX . This percentage is given as an annual rate, even though
payments are usually made every 6 months in the US, or different frequencies de-
pending upon the country. It is convenient to introduce a special notation, say ny,
for the number of coupon payments per year. For example, ny = 2 for coupons paid
semi-annually. If we denote by r1, r2, . . ., rm the interest rates for the m periods
ending with coupon payment dates T1, T2, . . ., Tm, then the present value of the
bond cash flow is given by the formula:

P =
C1

1 + r1/ny
+

C2

(1 + r2/ny)2
+ · · ·+ Cm

(1 + rm/ny)m

=
cX

ny(1 + r1/ny)
+

cX

ny(1 + r2/ny)2
+ · · ·+ cX +X

ny(1 + rm/ny)m
. (4.34)

Note that we divided the rates rn by the frequency ny because the rates are usually
quoted in years. Formulae (4.33) and (4.34) are often referred to as the bond price
equations. An important consequence of these formulae is the fact that on any given
day, the value of a bond is entirely determined by the discount curve (i.e. the available
sequence of discrete observations of the function T ↪→ P (t, T ) on that day).

Remarks.

1. Reference to the present date t will often be dropped from the notation when
no confusion is possible. Moreover, instead of working with the absolute dates
T1, T2, . . ., Tm, which can represent coupon payment dates as well as maturity
dates of various bonds, it will be often more convenient to work with the times
to maturities, which we denote by τ1 = T1 − t, τ2 = T2 − t, . . ., τm = Tm − t.
We will use whatever notation is more convenient for the discussion at hand.

2. Unfortunately for us, bond prices are not quoted as a single number. Instead, they
are given by a bid-ask interval. We ignore the existence of this bid-ask spread in
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most of the discussion that follows, collapsing this interval to a single value by
considering its midpoint only. We shall re-instate the bid-ask spread in the next
section when we discuss the actual statistical estimation procedures.

3. Formula (4.33) shows that a coupon bearing bond can be viewed as a composite
instrument comprising a zero coupon bond with the same maturity Tm and face
value (1+ c)X/ny, and a set of zero coupon bonds whose maturity dates are the
coupon payment dates Tj for 1 ≤ j < m and face value cX/ny. This remark
is much more than a mere mathematical curiosity. Indeed, the principal and the
interest components of some US Treasury bonds have been traded separately un-
der the Treasury STRIPS (Separate Trading of Registered Interest and Principal
Securities) program since 1985.

4.8.3 Constructing the Term Structure by Linear Regression?

In principle, formula (4.33) above can be used to recover the prices of the zero
coupon bonds in terms of the coupon bonds quoted on the market. Indeed, let us
assume for example that on a given day t, we have access to the prices Pi(t) of
n instruments whose future cash flows are given by payments Ci,j at the times
T1 < T2 < · · · < Tm. Notice that we assume that the payments are made at the
same time Tj (instead of the auction anniversary dates). In this case, formula (4.33)
can be rewritten in the form:

Pi(t) =

m∑
j=1

Ci,jP (t, Tj),

which shows that the vector P (t, · ) of the prices of the zero coupon bonds can be
recovered from the vector P (t) of the quoted coupon bonds Pi(t) when the matrix
C = [Ci,j ]i,j is invertible, in which case we have:

P (t, · ) = C−1P (t).

Once the zero coupons are determined for T = Tj , one produces a full term structure
T ↪→ P (t, T ) by mere linear interpolation. Unfortunately, the coupon payments
of the coupon bearing bonds priced on the market do not take place on the same
dates, and the resulting matrix C is practically never invertible. A way to overcome
this problem is to assume that the prices observed on the market are in fact noisy
perturbations, and to assume that in fact:

Pi(t) =

m∑
j=1

Ci,jP (t, Tj) + εi, i = 1, . . . , n

and to extract the coefficients P (t, Tj) by an ordinary least squares multiple regres-
sion. This procedure is hardly ever used in practice and we shall not discuss it any
further.
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4.8.4 Clean Prices & Duration

Formulae (4.33) and (4.34) implicitly assumed that t was the time of a coupon
payment, and consequently, that the time to maturity was an integer multiple of
the time separating two successive coupon payments. Because of the nature of the
coupon payments occurring at isolated times, the prices given by the bond pricing
formula (4.33) are discontinuous, in the sense that they jump at the times the coupons
are paid. This is regarded as an undesirable feature, and systematic price corrections
are routinely implemented to remedy the jumps. Since the bond price jumps by the
amount cX/ny at the times Tj of the coupon payments, the most natural way to
smooth the discontinuities is to adjust the bond price for the accrued interest earned
by the bond holder since the time of the last coupon payment. This notion of ac-
crued interest is quantified in the following way. If the last coupon payment (before
the present time t) was made on date Tn, then the accrued interest is defined as the
quantity:

AI(Tn, t) =
t− Tn

Tn+1 − Tn

cX

ny
, (4.35)

and the clean price of the bond is defined by the requirement that the transaction
price be equal to the clean price plus the accrued interest. In other words, if Tn ≤
t < Tn+1, the clean price CP (t, Tm) is defined as:

CP (t, Tm) = PX,C(t, Tm)−AI(t, Tn)

where PX,C(t, Tm) is the transaction price given by (4.33) with the summation start-
ing with j = n+1. Notice that in all cases, the price of a bond appears as a multiple
of its nominal value X . Since the role of the latter is merely a multiplicative factor,
we shall assume, without any loss of generality that X = 1 from now on.

The maturity of a zero coupon bond measures the length of time the bond holder
has invested his money, but it is desirable to have an analog for the case of coupon
bearing bonds. Since such a bond can be viewed as a sequence of individual pay-
ments, a natural proxy could be the expected maturity of all these payments. This is
the concept of duration proposed by Macaulay. For the sake of simplicity, we give
its definition when the maturity is equal to an integer multiple of the length of time
between two consecutive coupon payments. The duration at time t of a bond with
annual coupon payment C, nominal value X = 1, and time to maturity m is given
by the formula:

DC(t,m) =
C

1 + YC(t,m)
+ 2

C

(1 + YC(t,m))2
+ · · ·+m

1 + C

(1 + YC(t,m))m
,

(4.36)

where YC(t,m) is the yield of the bond, i.e. the number such that we can write the
price PC(t,m) of the bond in the form:

PC(t,m) =
1

(1 + YC(t,m))m
. (4.37)

The following two properties of the Macaulay duration fit well with the intuition
behind the above definition. The duration of a bond is always smaller than its actual
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maturity. Moreover, the duration of a zero coupon bond (corresponding to the case
C = 0) is equal to the actual maturity of the bond.

The concept of duration plays an important role in the immunization of fixed
income portfolios, but a discussion of the details would take us far beyond the scope
of this book. We shall limit the use of the duration to the weighting of various bond
prices in the least squares term structure estimation procedures which we discuss
below.

4.8.5 The Three Different Forms of Term Structure

The above discussion was aimed at identifying the one-to-one correspondence be-
tween the prices of discount bonds and some interest rates. Recall that we assume
that X = 1. We also hinted at the fact that, when the compounding frequency was
increasing without bound, the interest compounding formula

P (t, T = t+m) =
1

(1 + r(t, t +m)/n)nm

converged toward its continuously compounded analog

P (t, T = t+m) = e−Y (t,t+m)(T−t).

This formula can easily be inverted to give:

Y (t, T ) = − 1

T − t
logP (t, T ).

The continuously compounded interest rate Y (t, T ) prevailing at time t for the ma-
turity T is sometimes called the yield, and the curve t ↪→ Y (t, T ) is called the yield
curve. Practitioners use still a third way to capture the term structure of interest rates.
It requires the notion of instantaneous forward rate which we shall only define in the
continuous case. The instantaneous forward rate f(t, T ) prevailing at time t for the
date of maturity T is defined by:

f(t, T ) = −
d
dT P (t, T )

P (t, T )
= − d

dT
logP (t, T ). (4.38)

This definition implies that:

P (t, t+ τ) = e−
∫ τ
0
f(t,t+u)du (4.39)

and in terms of the spot rate or yield:

Y (t, t+ τ) = − 1

τ

∫ τ

0

f(t, t+ u)du. (4.40)

Even though we shall not use this fact, it is easy to see that this relation can be
inverted to express the forward rates as a function of the spot rates:
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f(t, T ) = r(t, T ) + (T − t)r′(t, T ). (4.41)

So on any given day t, the term structure of interest rate can be given by any one
of the following three curves:

x ↪→ P (t, t+ x)

x ↪→ Y (t, t+ x)

x ↪→ f(t, t+ x)

We shall take advantage of this convenience when it comes to estimating the term
structure from available data.

4.9 PARAMETRIC YIELD CURVE ESTIMATION

This section reviews the methods of yield curve estimation used by some of the cen-
tral banks which report to the Bank for International Settlements (BIS for short).
Apart from the U.S. and Japan, most central banks use parametric estimation meth-
ods to infer smooth curves from daily quotes of prices of bonds and other liquid
interest rate derivatives. Caplets and swaptions are most frequently used, but for the
sake of simplicity, we shall limit ourselves to bond price data.

We postpone the discussion of nonparametric methods to the next chapter. The
use of parametric estimation methods is justified by the principal component analysis
performed in Chap. 3. There, we showed that the effective dimension of the space
of yield curves is low, and consequently, a small number of parameters should be
enough to describe the elements of this space. Moreover, another advantage of the
parametric approach is the fact that one can estimate the term structure of interest
rates by choosing to estimate first the yield curves, or the forward curves, or even the
zero coupon curves as functions of the maturity. Indeed, which one of these quantities
is estimated first is irrelevant: once the choice of a parametric family of curves and of
their parametrization has been made, the parameters estimated from the observations,
together with the functional form of the curves, can be used to derive estimates of
the other sets of curves. We shall most often parameterize the set of forward rate
curves, and derive formulae for the other curves (yields curves and discount bond
curves) by means of the relationships made explicit earlier in formulae (4.38), (4.40)
and (4.41).

On any given day, say t, one uses the available values of the discount factors
to produce a curve x ↪→ f(t, x) for the instantaneous forward rates as functions of
the time to maturity x. For the sake of notational convenience, we shall drop the
reference to the present t in most of our discussions below. In this section, we limit
ourselves to the fitting of a parametric family of curves to the data. We shall re-
visit this problem in Sect. 5.3 of Chap. 5 when we discuss nonparametric smoothing
techniques based on splines.
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4.9.1 Estimation Procedures

In this section we restrict ourselves to the two most commonly used curve families:
the Nelson-Siegel and the Swensson families. We refer to Problem 4.12 for an illus-
tration of the use of a third exponential family. For the sake of simpler notation, we
drop the current date t from the notation.

4.9.1.1 The Nelson-Siegel Family

This family is parameterized by a 4-dimensional parameter θ = (θ1, θ2, θ3, θ4). It is
defined by:

fNS(x, θ) = θ1 + (θ2 + θ3x)e
−x/θ4 (4.42)

where θ4 is assumed to be strictly positive, and as a consequence, the parameter
θ1, which is also assumed to be strictly positive, gives the asymptotic value of the
forward rate. The value θ1 + θ2 gives the forward rate today, i.e. the starting value
of the forward curve. Since this value has the interpretation of the instantaneous
(short) interest rate rt prevailing at time t, it is also required to be positive. The
remaining parameters θ3 and θ4 are responsible for the so-called hump. This hump
does exist when θ3 > 0, however, it is a dip when θ3 < 0. The magnitude of this
hump/dip is a function of the size of the absolute value of θ3, while θ3 and θ4 govern
the location, along the maturity axis, of this hump/dip. Once the four parameters
have been estimated, a formula for the zero-coupon yield can be obtained by plain
integration from formula (4.40). We get:

YNS(x, θ) = θ1 + (1− e−x/θ4)− θ3θ4e
−x/θ4 . (4.43)

A formula for the discount factor can be deduced by injecting the yield given by this
formula into PNS(x) = e−xYNS(x). The Nelson-Siegel family and these formulae
are used in countries such as Finland and Italy to produce yield curves.

4.9.1.2 The Swensson Family

To improve the flexibility of the curves and the fit, Swensson proposed a natural ex-
tension to the Nelson-Siegel’s family by adding an extra exponential term which can
produce a second hump/dip. This extra flexibility comes at the cost of two extra pa-
rameters which have to be estimated. The Swensson family is generated by mixtures
of exponential functions of the Nelson-Siegel type. To be specific, the Swensson
family is parameterized by a 6-dimensional parameter θ, and defined by:

fS(x, θ) = θ1 + (θ2 + θ3x)e
−x/θ4 + θ5xe

−x/θ6. (4.44)
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As before, once the parameters are estimated, the yield curve can be estimated by
plain integration of (4.44). We get:

YS(x, θ) = θ1 − θ2θ4
x

(1 − e−x/θ4) + θ3θ4

[
θ4
x
(1− e−x/θ4)− e−x/θ4

]

+ θ5θ6

[
θ6
x
(1− e−x/θ6)− e−x/θ6

]
. (4.45)

The Swensson family is used by the Central Banks of many countries including
Canada, Germany, France and the UK.

4.9.2 Practical Implementation

Enough talk, let’s see how all these ideas work in practice.

4.9.2.1 Description of the Available Data

On any given day t, financial data services provide, for a certain number of bond
issues, the times to maturity xj = Tj − t, the coupon payments and their frequen-
cies, and various pre-computed quantities. We used data from Data Stream. For
the purposes of illustration, we chose to collect data on German bonds. These in-
struments are very liquid and according to BIS, the Deutsche Bundesbank uses the
Swensson’s extension of the Nelson-Siegel family to produce yield curves. As an
added bonus, the coupons on the instruments we chose are paid annually, which
makes numerical computations easier.

4.9.2.2 The Actual Fitting Procedure

Let Bj be the bond prices available on a given day t. Let Bj(θ) be the prices
one would get using formula (4.33), with zero coupon values computed from for-
mula (4.39) when the forward curve is given by the element of the parametric family
of forward curves determined by the parameter θ. Then our estimate of the term
structure of interest rates is given by the zero-coupon/yield/forward curve corre-
sponding to the (vector) parameter θ̂

∗
which minimizes the quadratic loss function:

L(θ) =
∑
j

wj |Bj −Bj(θ)|2 (4.46)

for a given set of weights wj which are usually chosen as functions of the duration
(4.36) and the yields to maturity. The dependence of the loss function upon the pa-
rameters θ appears to be complex and extremely nonlinear. In any case, this least
squares estimation procedure is very much in the spirit of the nonlinear regression
discussed in Sect. 4.7. As explained earlier, fitting the parameters depends upon del-
icate optimization procedures which can be very unstable and computer intensive.
For this reason we will give only a limited sample of results below.
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Remarks.

1. Many Central Banks do not use the full spectrum of available times to matu-
rity. Indeed, the prices of many short-term bonds are very often influenced by
liquidity problems. For this reason, they are often excluded from the compu-
tation of the parameters. For example each of the Bank of Canada, the Bank
of England and the Deutsche Bundesbank consider only those bonds with a re-
maining time-to-maturity above 3 months. The French Central Bank also filters
out the short term instruments.

2. Even though it appears less general, the Nelson-Siegel family is often preferred
to its Swensson relative. Being of a smaller dimension, the model is more robust
and less unstable. This is especially true for countries with a relatively small
number of issues. Finland is one of them. Spain and Italy are other countries
using the original Nelson-Siegel family for stability reasons.

3. The bid-ask spread is another form of illiquidity. Most central banks choose the
mid-point of the bid-ask interval for the value ofBj . The Banque de France does
this for most of the bonds, but it also uses the last quote for some of them. Sus-
picious that the influence of the bid-ask spread could overwhelm the estimation
procedure, the Finnish Central Bank uses a loss function which is equal to the
sum of squares of errors where the individual errors are defined as the distance
from B(j, θ) to the bid-ask interval (this error being obviously 0 when B(j, θ)
is inside this interval).

4. It is fair to assume that most Central Banks use accrued interests and clean prices
to fit a curve to the bond prices. This practice is advocated in official documents
of the Bank of England and the US Treasury.

5. Some of the countries relying on the Swensson family, first fit a Nelson-Siegel
family to their data. Once this 4-dimensional optimization problem is solved,
they use the argument they found, together with two other values for θ5 and θ6
(often 0 and 1), as initial values for the minimization of the loss function for
the Swensson family. Even then, these banks opt for the Swensson family, only
when the final θ5 is significantly different from 0 and θ6 is not too large! This
mixed procedure is used by Belgium, Canada and France.

4.9.3 R Experiments

The following R code can be used to compute values of the forward rate function in
the Nelson-Siegel model. The graphs of Fig. 4.16 were produced with the commands:

> THETA <- c(.07,-.03,.1,2.5)
> XX <- seq(from=0,to=30,by=1/12)
> FORW <- fns(XX,THETA)
> YIELD <- yns(XX,THETA)
> par(mfrow=c(1,2))
> plot(XX,FORW,type="l",ylim=c(0,.25))
> title("Example of a Nelson Siegel Forward Curve")
> plot(XX,YIELD,type="l",ylim=c(0,.25))



262 4 PARAMETRIC REGRESSION

> title("Example of a Nelson Siegel Yield Curve")
> par(mfrow=c(1,1))

Finally, the price BNS(θ) of a coupon bond can be computed from its coupon rate
COUPON, the accrued interest AI, the time to maturity LIFE given in years, and the
parameters THETA of the Nelson-Siegel family, using the function bns, whose code
implements the various formulae derived in this subsection. In order to illustrate the
use of this function we chose the example of the German bond quotes available on
May 17, 2000. After some minor reformatting and editing to remove the incom-
plete records, we created the data frame GermanB041700 included in the library
Rsafd. Its main purpose is to offer a testbed for the nonlinear fit of the Nelson-
Siegel family.

> head(GermanB041700)
Issue Coupon Maturity Price Intrst.Yield Redemp.Yield Accrud.Intrst Life

1 1992 8.00 2002 105.28 7.60 5.202 7.67 2.04
3 1993 6.75 2003 104.37 6.47 5.158 6.47 3.04
5 1999 3.75 2009 90.43 4.15 5.135 1.07 8.72
7 G3 3.00 2010 77.00 3.90 6.080 0.12 10.46
9 G4 3.00 2010 77.00 3.90 6.080 0.12 10.46
11 G5 3.00 2010 77.00 3.90 6.080 0.12 10.46

We compute and minimize the loss (4.46) in the case of the Nelson-Siegel
parametrization. We shall denote it by LNS(θ). It is given by the formula:

LNS(θ) =
∑
j

wj |Bj −BNS(j, θ)|2. (4.47)

The parameters THETA[j] are obtained by minimizing the sum of square devia-
tions (4.47). Since we do not know what kind of weights (if any) are used by the
German Central Bank, we set wj = 1. We use the R function optima to perform
the minimization of the sum of square errors which we compute for each candidate
parameter set THETA with the homegrown function BondSSE defined below.

> BondSSE <- function(x)
{

sum((Price-bns(COUPON=Coupon,AI=Accrud.Intrst,LIFE=Life,THETA=x)$price)ˆ2)
}
> GB.fit <- optim(par=as.numeric(c(0.07,-0.03, 0.10,2.50)),

fn=BondSSE, gr=NULL, method = "L-BFGS-B",
lower=c(0,-Inf,-Inf,0), upper=c(Inf,Inf,Inf,Inf))

> GB.fit
$par
[1] 0.00000000 -0.03701645 -0.01441902 9.00320236
$value
[1] 221.5779
$counts
function gradient

117 117
$convergence
[1] 0

We visualize the quality of the resulting term structure of bond prices with the
plots in Fig. 4.17.
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Fig. 4.16. Example of a forward curve (left) and a yield curve from the Nelson-Siegel family
with parameters θ1 = 0.07, θ2 = −0.03, θ3 = 0.1 and θ4 = 2.5

The plot in the right pane of Fig. 4.17 was produced with the commands:

> plot(Price,bns(COUPON=Coupon,AI=Accrud.Intrst,LIFE=Life,
THETA=GB.fit$par)$price,ylab="")

> title("Nelson-Siegel fitted Bond Prices against actual Prices")
> abline(0,1)

The results are surprisingly good given the poor nature of the data as exempli-
fied by the scatterplot of the bond prices against the times to maturity given by the
variable Life reproduced in the left pane of Fig. 4.17.

4.9.4 Concluding Remarks

The results reported above show an extreme variability in the estimates at the short
end of the curve. This confirms the widely-admitted fact that the term structure of
interest rates is more difficult to estimate for short maturities. This is one of the
reasons why many central banks do not provide estimates of the term structure for
the left hand of the maturity spectrum.

All in all it seems clear that the various estimates are stable and reliable in the
maturity range from 1 to 10 years.
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Fig. 4.17. Scatterplot of the bond prices against time to maturity (left) and comparison with
the prices from a fitted bond curve from the Nelson-Siegel parametric family (right)

APPENDIX: CAUTIONARY NOTES ON R IDIOSYNCRACIES

The specific features of R which we describe in this appendix can be sources of
headaches for first time users.

R and Polynomial Regression

We use a controlled experiment to illustrate an important point made in the text.

The Experiment

We generate a set of observations (xi, yi) for which the values of x are uniformly
distributed between 0 and 100 and the values of y are, up to a noise which is normally
distributed with variance one, given by the polynomial function:

y = ϕ(x) = 50− 43x+ 31x2 − 2x3.

The R commands to do that are:

> x <- runif(100,0,100)
> y <- 50 - 43*x + 31*xˆ2 -2*xˆ3 + rnorm(100)

Given the construction of x and y, we expect that a polynomial regression (using
a polynomial of degree 3) of the variable y against the variable x will recover the
exact coefficients we started with. Well, let’s see:

> xylm <- lm(y ˜ poly(x,3))
> xylm
Call:
lm(formula = y ˜ poly(x, 3))
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Coefficients:
(Intercept) poly(x, 3)1 poly(x, 3)2 poly(x, 3)3

-465738.7 -4798444 -2052599 -358566.4

Obviously, the coefficients given in the R summary are not what we expected!

So What Is Wrong?

It turns out that the estimated coefficients printed out by the program are the coef-
ficients obtained in the decomposition of the function ϕ in a basis of 4 orthogonal
polynomials which are NOT the polynomials 1 = x0, x, x2 and x3. As we explained
in the section on polynomial regression, the internal manipulations of the program
can be done in any basis. It turns out that, for reasons of numerical efficiency and
stability, R chose to work with a basis of orthogonal polynomials different from the
natural basis {1, x, x2, x3} which is often called the canonical basis. As explained
in the text, it is always possible to force R to construct the design matrix and compute
the regression coefficients in the canonical basis, by using the function poly with
the parameter raw set to TRUE. In the present situation, this gives

> xylmT <- lm(y ˜ poly(x,3,raw=TRUE))
> xylmT
Call:
lm(formula = y ˜ poly(x, 3, raw=TRUE))
Coefficients
(Intercept) poly(x,3,raw=TRUE)1 poly(x,3,raw=TRUE)2 poly(x,3,raw=TRUE)3
49.95 -42.99 31.00 -2.00

which is what we expected!

Is There Something Wrong with the Function lines?

The function lines is a convenient graphical tool which can be used to produce a
continuous curve by joining points on a graph. But as we are about to see, a careless
call to this function can produce unexpected results. We use the ethanol data set
from the R distribution to make our point. These data, though non-financial, are very
well suited for the illustration we have in mind. They contain 88 measurements of the
variable NOx giving the concentration of Nitric Oxide in a series of tests of a single-
cylinder automobile engine. The regressor variables used to predict the response are
the compression ratio C and the equivalence ratio E. We use the following commands
to produce a scatterplot together with a smooth curve giving the general trend in the
data. We shall come back to the function loess.smooth in the next chapter on
nonparametric regression. It does not play a significant role here.

> attach(ethanol)
> dim(ethanol)
88 3
> names(ethanol)
"NOx" "C" "E"
> plot(NOx˜E)
> lines(loess.smooth(E,NOx))
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Notice that, in order to illustrate the various forms of the various ways scatterplots
can be performed, we fed the formula NOx∼E to the generic function plot. This
form plot(y∼x) corresponds to the wording plot y against x. The result is shown
in Fig. 4.18. Now, from the appearance of the result, one might think that a similar
result could be obtained with a polynomial regression of high enough degree. We
could do that by first computing the fitted values and then by joining these fitted
values by straight line segments. After all, we have used this trick several times
already. Using the commands:
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Fig. 4.18. Scatterplot of the ethanol data set

> plot(E,NOx)
> lines(E, fitted(lm(NOx ˜ poly(E,8))))

we get the results reproduced in Fig. 4.19.
Obviously, something went wrong. The results are nothing near what we ex-

pected! To explain this apparent anomaly, we notice that, in our previous calls to the
function lines, the values of the first components of the points to be joined were
always in increasing order. On the other hand, if we look at the values of the current
explanatory variable E we see that this is not the case.

> E
1 2 3 4 5 6 7 8 9

0.907 0.761 1.108 1.016 1.189 1.001 1.231 1.123 1.042
.....................................................
.....................................................
79 80 81 82 83 84 85 86 87 88

1.18 0.795 0.99 1.201 0.629 0.608 0.584 0.562 0.535 0.655
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Fig. 4.19. Example of the WRONG use of the function lines

Now that we understand what is going wrong, can we find a solution to this problem?
The answer is YES of course! We simply need to re-order the points so that the E
– values are in increasing order. We can use the R function order to find the order
of the entries of the vector E, and we can use this order to subscript the vectors
containing the coordinates of the points. The following commands show how one
can do all this.

> RKS <- order(E)
> EE <- E[RKS]
> NN <- NOx[RKS]

> par(mfrow=c(1,2))
> plot(E,NOx)
> plot(EE,NN)
> par(mfrow=c(1,1))

The plot is reproduced in Fig. 4.20. We can now try again to smooth the data cloud
and use the function lines once more.

> plot(EE,NN)
> lines(EE, fitted(lm(NN ˜ poly(EE,8))))

The results are reproduced in Fig. 4.21, and this time, our expectations are met.



268 4 PARAMETRIC REGRESSION

0.6 0.8 1.0 1.2

1
2

3
4

E

0.6 0.8 1.0 1.2

EE

N
O

x

1
2

3
4

N
N

Fig. 4.20. Clearly, ordering the data does not affect the scatterplot
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Fig. 4.21. Correct use of the function lines on the polynomial regression of degree 8 of the
ethanol data

PROBLEMS

©E Problem 4.1 1. Can the plot appearing in the left pane of Fig. 4.22 be the plot of the raw
residuals of a linear least squares regression? Explain why.
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Fig. 4.22. Possible residuals from least squares simple linear regressions

2. The right pane of Fig. 4.22 gives the sequential plot of the raw residuals of a multiple
least squares linear regression. What can you say about the diagonal entries hi,i of the
hat matrix?

3. Say if the line in Fig. 4.23 is a least squares regression line or a least absolute deviations
regression line and explain why.
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Fig. 4.23. Possible least squares simple linear regression

4. The same scatterplot appears on both sides of the Fig. 4.24. The response variable ap-
pears on the vertical axis and the explanatory variable on the horizontal axis. Sketch
(your best guess of) the graph of the least squares polynomial regression of degree 2 on
the left, and of the least absolute deviations polynomial regression of degree 2 on the
right. Explain the differences between the two sketches if any, and explain why you did
what you did.
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Fig. 4.24. Scatterplots of the same sample of points

©E Problem 4.2 1. Can the plot appearing below be the plot of the raw residuals of a linear
least squares regression? Explain your answer.
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Assuming they are raw residuals of a linear least squares regression, say which feature
of the data could have produced such residuals, and propose a fitting procedure which,
when applied to the residual data, would produce residuals with smaller variance and
more in line with what is expected from the residuals of a linear least squares regression.

2. Assuming now that (x1, y1), · · · , (xn, yn) is a bivariate sample and β̂0, β̂1, and σ̂2 are
the maximum likelihood estimators of the intercept, slope and noise variance of a least
squares simple linear regression performed on these data,
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2.1 Explain what is understood by “the regression is significant”.
2.2 Recall the definition of the R2 and explain (at least qualitatively) how its value

relates to the significance of the regression.

©T Problem 4.3 A ski resort operator has determined that on any given year, the P&L Pi at the
end of the winter season (April 15) is, up to an additive noise term, a linear function of the
snow pack, say Si as measured in Snow Water Equivalent (SWE) on December 31 of the
previous year. In other word, it is given by a relation of the form:

Pi = β0 + β1Si + εi

where the εi are independent identically distributed mean zero Gaussian random variables
with common variance σ2, and β0, β1 and σ2 are constants. We assume that the last 15 years
for which the resort operator has data are coded by i = 1, 2, · · · , 15. The least squares simple
linear regression on the 15 years worth of data gave the estimates

β̂0 = 1.5, β̂1 = −0.1, and σ̂2 = 0.12.

1. What should the resort operator expect for the P&L of the season if on December 31 the
Natural Resource Conservation Service announces that the snow pack measurement was
S = 3.6.

2. Explain how you would determine the end points of an interval which would contain the
future value of the P&L with probability 95%. Should this interval be computed as a
confidence interval or a prediction interval? Explain the difference, and the reasons of
your choice.

©T Problem 4.4 According to the CAPM theory, the daily excess return R on a given stock is
related to the excess return R(m) of the market portfolio by a simple linear model of the form

R = α+ βR(m) + ε

where ε is a mean zero Gaussian random variable with variance σ2 and α, β and σ2 are
constants.

1. We first assume that an oracle announced that the true values of the parameters are

α = 0.05, β = −0.1, and σ2 = 0.09.

Assuming that, on a given day, R(m) = 1.5,
1.1. What would be your estimate of R?
1.2. For such an estimate, should you compute a confidence interval or a prediction in-

terval? Explain your answer. How would you compute such a 98 % interval for the
true value of R?

1.3. How would you compute the daily 1 % VaR?
2. Having no luck getting an oracle to help, you perform a simple linear least squares re-

gression from data collected over the last n = 252 days in order to obtain estimates of
the same 1 % VaR. Let

(r
(m)
1 , r1), (r

(m)
2 , r2), · · · · · · , (r(m)

n , rn)

be the values of the excess returns of the market portfolio and the stock obtained over this
period, denote by α̂, β̂ and σ̂2 the estimates obtained for the parameters of the model,
and by e1 = r1−α̂−β̂r

(m)
1 , · · · , en = rn−α̂−β̂r

(m)
n the corresponding raw residuals.
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2.1. How could you get the variance/covariance of the raw residuals?
2.2. How would you change the computation of the interval of question 1.2? How does

the width of the interval change compared to question 1.2?
2.3. How would you estimate the daily 1 % VaR in the present situation?

©T Problem 4.5 Assume that a simple linear model of the form

Y = β0 + β1X + ε

is used to explain the P&L (profits and losses) Y from the value of an index X . As usual, ε is
a mean zero Gaussian random variable with variance σ2, and β0, β1 and σ2 are constants.

1. We first assume that an oracle announced that the true values of the parameters are

β0 = 0.5, β1 = −0.05, and σ2 = 0.09.

Given that X = 5 on a given day:
1.1. What would be your estimate of Y ?
1.2. For such an estimate, should you compute a confidence interval or a prediction in-

terval? How would you compute such a 98 percentile interval for the true value of
Y ? The 99 % quantile of standard normal distribution is 2.326.

1.3. How would you compute the daily 1 % VaR?
2. Let us now assume that having no luck trying to access an oracle, we perform a simple

linear least squares regression from data collected over the last n = 252 days. Let

(x1, y1), (x2, y2), · · · · · · , (xn, yn)

be the values of the indexes and subsequent P&Ls, denote by β̂0, β̂1 and σ̂2 the least
squares estimates of the parameters of the model, and by r1 = y1−β̂0−β1x1, · · · , rn =
yn − β̂0 − β1xn the corresponding residuals.
2.1. How could you get the variance/covariance of the residuals?
2.2. How would you change the computation of the interval of question 1.2? How does

the width of the interval change compared to question 1.2?
2.3. How would you estimate the daily 1 % VaR in the present situation?

©E ©T Problem 4.6 Each year, the first quarter (Q1) profit and loss (P&L) in millions of local
currency, say Y , of a Northern Europe aluminum producer is given by a formula of the form

Y = β0 + β1X + ε

where X is the price on the first trading day of the month of January of that year of the forward
Natural Gas contract with April delivery at the nearest city gate, ε is a mean zero Gaussian
random variable with variance σ2 , and β0, β1 and σ2 are constants.

1. We first assume that the Chief Risk Officer (CRO) of the company has access to an oracle
who tells her that the true values of the parameters are

β0 = 1, β1 = −0.125, σ2 = 0.36.

We shall consider two scenarios:
• The January price of the natural gas contract for April delivery is x0 = 4.1
• Due to damage to a pipeline, the price of the same contract is x0 = 16.7
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How should the CRO compute the 1 % VaR for the Q1 P&L at the end of the first trading
day of January in each of these two scenarios?

2. Let us now assume that the CRO does not have access to the oracle. She performs a
simple linear regression from data (x1, y1), (x2, y2), · · · · · · , (xn, yn) collected over the
last n = 15 years, and let us assume that the minimum of the observed xi’s is 2.5 while
the maximum is 12.8. The CRO performs a simple linear regression and obtains estimates
β̂0, β̂1 and σ̂2 for the parameters of the model.
2.1. Given the assumption stated above, which regression method should the CRO use?
2.2. Explain how in each of the two scenarios considered above, the VaR should change.

©E Problem 4.7 The purpose of this problem is to analyze the data contained in the data set
STRENGTH. The first column gives the fracture strength X (as a percentage of ultimate tensile
strength) and the second column gives the attenuation Y (the decrease in amplitude of the
stress wave in neper/cm) in an experiment on fiberglass re-inforced polyester composites.

1. Is a linear regression model reasonable to describe the data?
2. Perform a linear least squares regression of attenuation against strength, deter-

mine the estimated intercept, the estimated slope and estimate the variance of the noise.
3. Plot the fitted values of attenuation against the corresponding actual values of

attenuation, compute the coefficient of determination (the famous R2), and as-
sess the relevance of the linear model. Compute the predicted values of the variable
attenuation for the values x = 20, x = 50 and x = 75 of strength.

4. Compute the raw residuals and plot them against the fitted values of the attenuation
together with a qqnorm plot of these raw residuals. Comment on the results.

5. Same question as in 2 and 3 (with the exception of the computation of R2) for the least
absolute deviations regression instead of the least squares regression.

©E Problem 4.8 The purpose of this problem is to perform a regression analysis of the 35 Scottish
hill races data contained in the data set hills.

1. Produce the scatterplot of the variable time against the variable climb, and superim-
pose the least squares regression line of time against the variable climb. Repeat the
same thing for time against dist. For each of these regressions, compute the R2, and
compare their values. Compute the raw residuals and produce their normal Q-Q plot.
Comment.

2. Go through the same steps as in the question above using the least absolute deviations
method instead, and an analog of R2 appropriate for this type of regression. Compare
the results so obtained to the results of the least squares regression.

3. Using the result of the regression of time against dist, compute both in the case of
the least squares regression and in the case of the absolute deviations regression, the
predictions of the record times for a marathon (i.e. the value 26.2 for the variable dist).

4. For this question, we suppose that the information for one of the races was entered incor-
rectly. Create a new data set, call it Thills, with an erroneous information for the run
Lairig Ghru. Use:
Lairig Ghru 28.0 2100 92.667
instead of
Lairig Ghru 28.0 2100 192.667 In other words, create a new vector Tdist
identical to dist but change the 11-th entry of the vector time and create a new vector
Ttime with the new value 92.667. On the scatterplot of time against dist, super-
impose the least squares regression line of time against dist, and of Ttime against
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Tdist. Create a new scatterplot of time against dist, and superimpose on this new
scatterplot the least absolute deviations regression line of time against dist, and of
Ttime against Tdist. Explain what you see, compare the regression coefficients, and
explain.

5. Perform the multiple least squares regression of time against dist, and climb, com-
pute the R2, and compare its value to the values of R2 found for the simple least squares
regressions of time against dist, and time against climb. Explain the results. Com-
pute the raw residuals and produce their normal Q-Q plot. As in the case of R2, compare
the result to the Q-Q plots of the simple least squares regressions.

©E Problem 4.9 The purpose of this problem is to perform a first analysis of a classical data set
contained in the data file BASKETBALL. The intended analysis is very much in the spirit of
the previous problem.

1. We first use simple regression techniques.
1.1. Use least squares simple linear regression to explain the number of points scored by

a player as given by the variable points in terms of the variable
height.

1.2. Similarly, use least squares simple linear regression to explain points in terms of
the variable minutes giving the time played per game.

1.3. Use least squares simple linear regression to explain points in terms of the values
of age obviously giving the age of the player.

1.4. Use regression diagnostics to compare these regressions and rank the variables
height, minutes and age according to their ability to predict the variable
points.

2. Use a least squares multiple regression to explain the values of the variable points in
terms of height and minutes. Similarly use a least squares multiple regression to
explain points in terms of height, minutes and age. Does the inclusion of age in
the regression improve the performance of the model?

3. Redo question 1 with least absolute deviations regression instead of least squares regres-
sion. Compare the results and comment on the (possible) differences.

©E Problem 4.10 The goal of this problem is to analyze the data set MID1. Denote the first and
second columns by X and Y respectively. We want to compare the least squares and least
absolute deviations polynomial regressions of degree 3 of the values of Y against the corre-
sponding values of X . In other words, we want to compare the real numbers β0, β1, β2 and
β3, which minimize the criterion:

C2(β0, β1, β2, β3) =

134∑
j=1

|Y [j] − β0 − β1X[j] − β2X[j]2 − β3X[j]3|2

as well as a measure of the goodness of the fit of your choice to those obtained from the
minimization of the criterion:

C1(β0, β1, β2, β3) =
134∑
j=1

|Y [j]− β0 − β1X[j]− β2X[j]2 − β3X[j]3|.

In this problem, one is expected to use the R functions lsfit and l1fit, not the
function lm.



Problems 275

1. Give the commands needed to perform these two regressions, run these commands and
give the resulting coefficients β0, β1, β2 and β3 and the optimal values of the criteria in
both cases. In particular, explain how you construct the design matrix and compute the
fitted values in both cases.

2. Give, on the same plot, the scatter plot of the values of X and Y, the graph of the least
squares polynomial regression and the graph of the absolute deviations polynomial. Say
which of these two regressions looks better to you and explain why the method you prefer
performed better.

©E Problem 4.11 The purpose of this problem is to analyze a classical example of nonlinear re-
gression which can be found in most textbooks discussing the subject.

The data, which are not of a financial nature, are contained in the data frame Puromycin
included in the R distribution. They contain three variables pertaining to a specific set of
biomedical experiments on cells which were either treated or untreated with the drug
Puromycin (this information is given by the third variable state). The response variable y
is the initial velocity vel of the reaction while the explanatory variable x is the enzyme con-
centration given in the first column conc. It is expected that the regression function ϕ(x) will
be given by the so-called Michaelis-Menten relationship:

y = ϕ(x) = Va
x

x+K
,

where the constant Va has the interpretation of an asymptotic velocity while K is a constant.

1. Attach the data frame Puromycin to your R session and extract the rows corresponding
to the treated cases. Perform a nonlinear regression of the velocity y against the enzyme
concentration x, starting with initial values Va = 200 and K = 0.1 for the parameters.

2. Give the values of the estimates obtained for the parameters Va and K, and plot, on the
same graph, the original data points of the “treated” sub-sample together with a broken
line going through the points fitted by the nonlinear regression.

©E ©T Problem 4.12 In this problem we introduce a new exponential family (called the general-
ized Vasicek family) to parameterize the term structure of interest rates. For each value of the
4-dimensional parameter θ = (θ1, θ2, θ3, θ4) we define the function YGV (x,θ) by:

YGV (x,θ) = θ1 − θ2θ4
1− e−x/θ4

x
+ θ3θ4

(1− e−x/θ4)2

4x
(4.48)

where θ4 is assumed to be strictly positive.

1. Derive an analytic formula for the instantaneous forward rates and write an R function
fgv to compute their values. Mimic what was done in the text in the case of the Nelson-
Siegel family to give an interpretation to the roles of the parameters θi’s, and plot the
graphs of three of these forward curves for three values of the parameter θ which you
will choose to illustrate your comments on their interpretation.

2. Derive an analytic formula for the prices of the zero coupon bonds when the term struc-
ture of interest rates is given by the yield curve (4.48) and write an R function bgv to
compute the values of the zero coupon bonds. Plot the zero coupon curves corresponding
to the three values of θ chosen above in question 1.

3. Using this new function family, estimate the term structure of interest rates (as given by
the zero coupon curve, the forward curve and the yield curve) for the German bond data
used in the text.
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NOTES & COMPLEMENTS

The least squares method is a classic of statistical theory and practice. Its sensitivity to ex-
treme features of the data is well documented and the need for robust alternatives is widely
accepted. The least absolute deviations method is the simplest example of a robust method of
statistical estimation. Understanding the sensitivity of the estimation procedures to extreme
measurements or outliers is a very important part of statistical inference, and an industry was
developed on this basis. We refer the interested reader to the books of P.J. Huber [49] and
Rousseeuw and Leroy [82] and the references therein. Realizing the importance of robust
methods of estimation, R proposes a library of functions which can be used with the commer-
cial distribution.

Complements to the tools of multivariate regression analysis and the theory of linear mod-
els, as introduced in this chapter, can be found in most multivariate analysis statistical text-
books. We refer the interested reader to the classical books of Montgomery and Peck [69],
Mardia, Kent, and Bibby [67], or Chap. 14 of Rice’s book [54] for an elementary exposition.
Examples of R analyses with the function lm are given in [94].

Complements on seemingly unrelated regressions (SUR) can be found for example in the
introductory econometric textbook of Ruud [84]. The CAPM was developed by Sharpe and
Lintner after the pioneering work of Markowitz on the solution of the mean-variance optimal
portfolio selection problem. An exposé of this theory can be found in any textbook on finan-
cial econometrics. We refer the interested reader to, for example, [42] or [13]. Most empirical
tests of the model rely on market indexes as proxies for the market portfolio. The composition
and the weights used in the computations of the market indexes have many features which
vary over time (membership, capitalization of the members, . . .), and such features have been
argued to be the main reason for the empirical rejection of CAPM. See for example the en-
lightening discussion by Roll in [80].

Our presentation of nonlinear regression is pretty elementary and it remains at an intuitive
level. Nonlinear regression can be very technical, and the reader interested in mathematical
developments, and especially the differential geometric aspects of likelihood maximization,
is referred to Amari’s book [1] or to the monograph [3] written in French by Antoniadis,
Berruyer and Carmona. Nonlinear regression with R is explained in detail in Chap. 10 of
Chambers’ book [21], from which we borrow the classic example treated in Problem 4.11.

The Bank of International Settlements (BIS for short) provides information on the method-
ologies used by the major central banks to estimate the term structure of interest rates in their
respective countries. It also provides data and samples of curve estimates upon request. The
Nelson-Siegel family was introduced by Nelson and Siegel in [74] and the Swensson’s gener-
alization was proposed by Swensson in [91]. The use of cubic splines was proposed by Vasicek
and Fong in [93]. We learned of the estimation of the term structure of interest rates using the
Vasicek exponential family proposed in Problem 4.12 from Nicole El Karoui in a private con-
versation. The methods reviewed in this chapter are used by Central Banks for econometric
analysis and policy making. Fixed income desks of investment banks are more secretive about
the methods they use to estimate and calibrate the term structure of interest rates.
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LOCAL AND NONPARAMETRIC REGRESSION

This chapter is devoted to a class of regression procedures based on a new paradigm.
Instead of searching for regression functions in a space whose elements are
determined by a (small) finite number of parameters, we derive the values of the
regression function from local properties of the data. As we shall see, the resulting
functions are given by computational algorithms instead of formulae in closed forms.
As before, we emphasize practical implementations over theoretical issues, and we
demonstrate the properties of these regression techniques on financial applications:
we revisit the construction of yield curves, and we study a non-parametric regression
alternative to the Black-Scholes formula for the pricing of liquid options.

5.1 REVIEW OF THE REGRESSION SETUP

Although we have already worked in the regression framework for an entire chapter,
we thought it would be useful to review once more the general setup of a regression
problem, together with the notation used to formalize it. This will give us a chance
to stress the main differences between the parametric point of view of Chap. 4 and
the nonparametric approach of this chapter.

The general setup is the same as in our discussion of multiple linear regression.
We have a sample of n observations

(x1, y1), . . . . . . , (xn, yn)

where for each i = 1, 2, . . . , n, xi is a vector of p numerical components which we
arrange in a row xi = [xi,1, xi,2, . . . , xi,p], and yi is a real number. The components
of the xi’s are the observed values of the p scalar explanatory variables, while the
yi’s are the observed values of the corresponding response variable.

The xi’s can be deterministic: this happens when they are chosen by design.
In this case, we assume that the yi’s are noisy observations of the values of a deter-
ministic function x ↪→ ϕ(x) which is to be estimated from the observations. But
the xi’s can also be realizations of random vectors Xi (which are usually assumed
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to be independent), in which case the yi’s are interpreted as realizations of random
variables Yi so that the (x1, y1), . . . , (xn, yn) appear as a sample of realizations
of random couples (X1, Y1), . . . , (Xn, Yn). For the sake of notation, we will use
the notation (X, Y ) for a generic couple (random vector, random variable) with
the same joint distribution. The statistical dependence of the Y -component upon the
X-component is determined by the knowledge of the (common) joint distribution
of the couples (Xi, Yi). This distribution sits in (p + 1) dimensions, and it can
be a very complicated object. It is determined by the marginal distribution of the
p-variate random vector X (which sits in p dimensions), and the conditional dis-
tribution of Y which gives, for each possible value of X , say x, the conditional
distribution of Y given that X = x. Instead of considering the whole condi-
tional distribution, one may want to consider first the conditional mean (i.e. the ex-
pected value of this conditional distribution) and this leads to the analysis of the
function:

x ↪→ ϕ(x) = E{Y |X = x} (5.1)

which is called the regression function of Y against X . The graph of the function
x ↪→ y = ϕ(x) captures graphically the properties of such a regression. It is a
one-dimensional curve when p = 1, a 2-dimensional surface when p = 2, and it
becomes a hypersurface more difficult to visualize for larger values of the number p
of explanatory variables.

In this chapter, except possibly for requiring that the functionϕ is (at least piece-
wise) smooth, nothing is assumed on the structure of ϕ (as opposed to the linearity,
or polynomial character assumed in Chap. 4). In particular, we do not restrict the
function ϕ to families of functions which can be characterized by a small number of
parameters. This is what differentiates nonparametric regression from the parametric
regression procedures seen in the previous chapter.

We first consider the univariate case p = 1. In this case, one can view the search
for the regression function ϕ, as a search for a graphical summary of the dependence
between the two coordinates of the couples (x1, y1), . . . , (xn, yn) which are usually
visualized as a cloud of points in the plane. In this way, the graph of ϕ appears as
a scatterplot smoother. We review the most frequently used nonparametric scatter-
plot smoothers in Sect. 5.3, and we illustrate their use in the construction of yield
curves in Sect. 5.4. When we compare nonparametric smoothing to the parametric
techniques introduced in Chap. 4, the main novelty is the notion of local averages.
Indeed, in all the regression procedures considered so far, including polynomial re-
gression, when computing the value ϕ(x) of the regression function for a given value
of x, each single observation (xi, yi) contributes to the result, whether or not xi is
close to x. This lack of localization in the x variable when averaging the yi’s is a
source of many difficulties which the nonparametric smoothers are able to avoid.

This shortcoming due to the lack of localization in the x-variable is not uni-
versally shared by all parametric regression techniques. Natural splines regression
is a case in point. Regression with natural splines is very popular in computer
graphics. It is an integral part of parametric regression because it can be recast
in the framework of the linear models of Chap. 4. However, because of their local
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character, natural splines share many of the properties of the nonparametric scatter-
plot smoothers, and we decided to include them in this chapter. We briefly explain
how to use them in Sect. 5.2 below.

We illustrate the use of natural splines and nonparametric smoothers on the
same FRWRD data set on which we tested polynomial regression in Chap. 4. Recall
Fig. 4.13. The last three sections of the chapter are devoted to the analysis of the mul-
tivariate case p > 1. We first introduce the kernel method which is recommended for
small values of p. Then we discuss projection pursuit and other additive procedures
designed to overcome the curse of dimensionality. For lack of time and space, we
chose to ignore the tree-based regression methods, referring the interested reader to
the references in the Notes & Complements at the end of the chapter.

5.2 BASIS EXPANSION REGRESSION

The contents of this section could be part of a discussion of parametric as well as
nonparametric regression.

5.2.1 Natural Splines as Local Smoothers

This subsection deals only with the univariate case p = 1. While still an integral
part of parametric regression, natural splines offer a regression procedure satisfying
the localization requirement formulated above. A spline of orderm+1 is a function
constructed from a subdivision of the range of x values. The points of this subdivision
are called knots. This function is equal to a polynomial of degree m+ 1 in between
two consecutive points of the subdivision, and at each knot, all the left and right
derivatives of order up to m match. This guarantees that the function is in fact m
times continuously differentiable, discontinuities occurring possibly in the (m+ 1)-
th derivative, and only at the knots, but nowhere else. In most cases, this cannot be
detected by the human eye. Given the knots, the splines of a given order form a
finite dimensional vector space. Consequently, if we choose a basis for this linear
space, each such spline function can be decomposed on this basis, and hence, it is
entirely determined by a finite number of parameters, namely the coefficients in such
a decomposition. It should now be clear that the discussion of polynomial regression
given in Chap. 4 applies, and one can recast this type of regression within the class
of linear models.

We refrain from discussing the details of the constructions of natural spline bases,
restricting ourselves to a couple of illustrative examples. R has a fast implementation
of a cubic natural splines regression. The typical form of the R command needed to
run a natural splines regression is:

ns.fit <- lm(response ˜ ns(regressor, df=DF), data=DATA)

As in the case of polynomial regression, natural splines regression is performed
by the generic lm method, after the data have been massaged by the specific



280 5 LOCAL AND NONPARAMETRIC REGRESSION

function ns. Completely in analogy with the function poly, the function ns gen-
erates a design matrix from the basis of cubic splines associated with the specified
sequence of knots and boundary conditions. In the case of natural cubic splines, the
functions are taken to be linear (polynomial of degree 1) to the left of the smallest
knot, and to the right of the largest knot. When the parameter df is supplied, the
function ns chooses (df − 1) knots at suitably chosen empirical quantiles of the
xi’s. The knots can also be supplied with the optional parameter knots if the user
so desires.

We illustrate the use of natural splines on the gas forward data used earlier to test
polynomial regression. Recall Fig. 4.13 in Chap. 4. The results are given in Fig. 5.1.
This plot was produced by the following R commands:

> x <- 1:36
> plot(x,FRWRD,main="Natural Splines")
> lines(x,fitted(lm(FRWRD˜ns(x,df=5))))
> lines(x,fitted(lm(FRWRD˜ns(x,df=8))), lty=3)
> lines(x,fitted(lm(FRWRD˜ns(x,df=15))), lty=6)

As seen from Fig. 5.1, the natural splines regression is much more local than a
plain polynomial regression. Indeed, with a large enough number of knots, it does
a reasonable job of staying very close to the data throughout. Also, it is clear that
the higher the number of knots, the tighter the fit, even at the price of losing some
smoothness in the regression function.

Like all regression methods, natural splines can be used for prediction purposes.
Indeed, the linear model used to fit a natural splines regression model, can also be
used to predict the response for new values of the explanatory variable. But like
in the case of polynomial regression, this application needs to be restricted to new
values of the explanatory variable which are within the range of the data, for the
same disastrous results can be expected outside this range.

5.2.2 Feature Function Expansions

We now consider a natural generalization of polynomial and natural spline regres-
sion. It is based on the same rationale, and as we are about to see, its implementa-
tion is the same, irrespective of the dimension d of the explanatory variable x. The
premise of the method is a finite set {ϕ0, ϕ1, · · · , ϕp} of functions of the explana-
tory variable x which are called feature functions, and the ansatz that the regression
function ϕ is of the form

ϕ(x) =

p∑
j=0

βjϕj(x) (5.2)

for a set of coefficients β0, β1, · · · , βp. The set of feature functions {ϕ0, ϕ1, · · · , ϕp}
is often chosen to be a basis of a vector space of functions, hence the alternative
terminology basis functions for the ϕis, in which case the unknown parameters βj
are the coefficients of the decomposition of the regression function ϕ onto this basis.
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Fig. 5.1. Natural spline regressions with 5, 8 and 15 degrees of freedom, for the natural gas
forward data which were used to illustrate polynomial regression in Chap. 4

For example, the set of feature functions {ϕ0, ϕ1, · · · , ϕp} happens to be the natural
basis of polynomials of degree at most p in the case of polynomial regression since
ϕi(x) = xi, while even though we did not give explicit formulas for the functionsϕi
in the subsection above, we explained that it was a basis of natural spline functions
constructed from the choice of the knots in the case of natural splines regression.
We now explain how the power of the linear models (and of the function lm) can be
unleashed to determine least square estimates of the parameters βj .

In order to do so, we assume that we are given a sample of n observations

(x1, y1), (x2, y2), . . . . . . , (xn, yn)

where the explanatory variables x1,x2, . . . ,xn are d-dimensional. In other words,
each xi is a d-vector of the form xi = (xi,1, . . . , xi,d) while the response variables
y1, y2, . . . , yn are univariate (i.e. scalar). As usual, we use bold face letters x to
emphasize that we are dealing with a multivariate explanatory variable which we
sometimes call an explanatory vector to emphasize that its dimension d can be greater
than one. We can then form the n× (p+ 1) matrix X

Xi,j = ϕj(xi), i = 1, · · · , n, j = 0, · · · , p (5.3)

by evaluating the feature functions at the values of the observations of the explana-
tory variables. Since the regression function is expected to satisfy yi = ϕ(xi) + εi
for realizations of independent (or at least uncorrelated) noise terms εi, and since
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ϕ(xi) =

p∑
j=0

βjϕj(xi) =

p∑
j=0

Xi,jβj , i = 1, · · · , n

the matrix X appears as the design matrix of the linear model whose solution provides
estimators β̂0, β̂1, · · · , β̂p minimizing the least squares criterion

n∑
i=1

∣∣∣∣yi −
p∑
j=0

βjϕj(xi)

∣∣∣∣
2

.

So computing the design matrix X given by (5.3) and running a linear model (for
example using the R function lm), we obtain estimates β̂0, β̂1, · · · , β̂p of the coeffi-
cients and as a consequence, the estimate

x ↪→ ϕ̂(x) =

p∑
j=0

β̂jϕj(x)

of the regression function ϕ. The broad appeal of this regression method has many
sources: it benefits from an intuitive rationale, the power of the numerical imple-
mentations of linear models, and the flexibility provided by the choice of the feature
functions. While they may still suffer from the curse of dimensionality discussed in
detail later in the chapter, Monte Carlo versions have been proposed for the pricing
of American options on large baskets of interests, and became very popular in the
financial industry.

Basis function expansions are very popular methods of regression at the bound-
ary between parametric and non-parametric regression. The most ubiquitous are the
expansions in natural splines discussed in the previous subsection, the Fourier exp-
ansions and the wavelet expansions. See the Notes & Complements at the end of the
chapter for references.

5.2.2.1 Control of the Error

Assuming that the regression function ϕ belongs to a specific function space, and
assuming that the feature functions ϕ0, ϕ1, · · · , ϕp have been chosen, the best ap-
proximation of ϕ by a linear combination of the ϕjs, in the least squares sense, is the
orthogonal projection of ϕ onto the linear subspace generated by the ϕjs. Estimating
the error incurred by replacing the unknown function ϕ by its orthogonal projection
is a well studied problem in approximation theory and numerical analysis. Rates of
convergence have been derived, especially when the ϕj are part of a complete or-
thonormal system of the function space. Coefficients β̂0, β̂1, · · · , β̂p determining the
orthogonal projection of ϕ can be obtained in algorithmic fashion in theory, and the
estimation of these coefficients from a sample (x1, y1), (x2, y2), . . . . . . , (xn, yn) of
observations is the only source of statistical errors. The theory of linear models pre-
sented in Chap. 4 provides controls for the expected mean squared error.
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Remark 1. The strategy described in this subsection is tailored to situations when
we do not have a priori information quantifying the relative sizes of the observation
errors. If we know (or have reasonable guesses for) the measurement errors, we can
include weights in the above least squares regression and choose the coefficients β0,
β1, · · · , βp as minimizers of the weighted least squares criterion:

n∑
i=1

wi

∣∣∣∣yi −
p∑
j=0

βjϕj(xi)

∣∣∣∣
2

5.3 NONPARAMETRIC SCATTERPLOT SMOOTHERS

As the use of the word scatterplot suggest, we are now back to the univariate case
p = 1. Scatterplot smoothers can be viewed as nonparametric regression procedures
for univariate explanatory variables, the idea being to represent a cloud of points
(x1, y1), . . ., (xn, yn) by the graph of a function x ↪→ y = ϕ(x). As explained
earlier, the terminology nonparametric is justified by the fact that the function ϕ is
not expected to be determined by a small number of parameters. In fact, except for
a mild smoothness requirement, this regression function will not be restricted to any
specific class.

We review some of the most commonly used scatterplot smoothers, and we
give the precise definitions of those implemented in R. We restrict ourselves to the
smoothers used in applications discussed in this book and the problem sets. For the
sake of illustration, we compare their performance on data already used in our dis-
cussions of the polynomial and natural spline regressions.

5.3.1 Smoothing Splines

We begin our review of scatterplot smoothers with smoothing splines. This choice
was made to emphasize the similarities and differences with the natural splines dis-
cussed above. The idea behind the smoothing splines procedure is common to many
applications in signal and image processing: it relies on regularization. To be specific,
the scatterplot smoother ϕ is obtained by minimizing the objective function:

L(ϕ) =
n∑
i=1

wi|yi − ϕ(xi)|2 + λ

∫
|ϕ(m)(x)|2 dx (5.4)

for some constant λ > 0 called the smoothing parameter, for an integerm giving the
order of derivation, and for a set of weightswi which are most often taken to be unity.
As usual, we use the notation ϕ(m)(x) to denote the m-th derivative of the function
ϕ. The desired scatterplot smoother is the function x ↪→ ϕ(x) which minimizes the
cost function L(ϕ), i.e. the argument of the minimization problem:

ϕ = argmin
f

L(f).
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The goal of the first term in the objective function (5.4) is to guarantee the fit to
the data, while the second term tries to ensure that the resulting scatterplot smoother
is indeed smooth. The order of derivation m has to be chosen in advance, and the
parameter λ balances the relative contributions, to the overall cost, of the lack of fit
and the possible lack of smoothness. As defined, the minimizing functionϕ does not
seem to have any thing to do with splines. But surprisingly enough, it turns out that
the solution of the optimization problem (5.4) is in fact a spline of order m+ 1, i.e.
an m times continuously differentiable function which is equal to a polynomial of
degree m + 1 on each subinterval of a subdivision of the range of the explanatory
variable x. In particular, it has the same local properties as the regression by natu-
ral splines. R gives an implementation of this scatterplot smoother for m = 2, in
which case the resulting function ϕ is a cubic spline. The name of the R function is
smooth.spline. The smoothing parameter λ appearing in formula (5.4) can be
specified through the value of an optional smoothing parameter spar in the interval
(0, 1]. When the parameter spar is specified, the actual value of λ used in (5.4) is
λ = r2563spar−1 where r is a constant computed from the values of the explanatory
variables xi’s. Alternatively, the balance between the fit and smoothness terms of
formula (5.4) can be controlled by setting the parameter df which stands for num-
ber of degrees of freedom, and which is essentially given by the integer part of the
real number:
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Fig. 5.2. Examples of smoothing splines with smoothing parameters λ = 0.001, λ = 0.0001
and λ = 0.00001
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n
(max xj −min xj)

3

λ
(recall that n stands for the sample size). If neither of these parameters is specified,
the function smooth.spline chooses λ by cross validation. The plots appearing
in Fig. 5.2 were created with the commands:

> x <- 1:36
> plot(x,FRWRD,main="Smoothing splines")
> lines(smooth.spline(x,FRWRD,spar=.3))
> lines(smooth.spline(x,FRWRD,spar=.5),lty=3)
> lines(smooth.spline(x,FRWRD,spar=.7),lty=6)

The value of the smoothing parameter was determined from the numerical value
passed to the argument spar from the rules detailed above. Notice that the smaller
this parameter, the closer the scatterplot smoother is to the points (since the
fit contribution is more important) and that the larger this parameter, the smoother the
resulting curve (since the smoothing contribution dominates the objective function).

5.3.2 Locally Weighted Regression

A quick review of the least squares paradigm for linear regression shows that the
values of ϕ(x) depend linearly on the observed responses yi. Indeed, the optimal
function for the least squares criterion happens to be of the form:

ϕ(x) =

n∑
i=1

wi(x)yi,

where each weight wi(x) depends upon all values xj of the explanatory variable.
As explained in the introduction, one of the goals of nonparametric smoothers is to
keep this form of ϕ(x) as a weighted average of the observed responses yi, while at
the same time choosing the weights wi(x) to emphasize the contributions of the yi’s
corresponding to xi’s which are near the value x at which the function ϕ is being
computed.

A first implementation of this idea is given by the R function loess. This scat-
terplot smoother depends upon a parameter called span which gives the proportion
of observations included in the neighborhood of each point. In practice, reasonable
span values range from 0.3 to 0.5. Let us denote by k this number of points. For
each x at which one wishes to compute the function ϕ(x), we denote by N(x) the
set of the k nearest values xi of the explanatory variable, and by d(x) the largest
distance between x and the points of N(x). In other words:

d(x) = max
xi∈N(x)

|x− xi|.

To each xi ∈ N(x) we associate the weight

wx(xi) =W

( |x− xi|
d(x)

)
(5.5)



286 5 LOCAL AND NONPARAMETRIC REGRESSION

where the weight function W is defined by:

W (u) =

{
(1− u3)3 if 0 ≤ u ≤ 1
0 otherwise,

and we choose for ϕ(x) the value of the weighted least squares regression line for
the k points (xj , yj) for which xj ∈ N(x) and for the weights wx(xj) defined
in (5.5).

We illustrate the use of the loess function on the gas forward data on which we
already tested several regression procedures. The results are given in the left pane of
Fig. 5.3. This plot was produced with the following R commands:

> plot(x,FRWRD,main="Loess Regression")
> lines(x,fitted(loess(FRWRD˜x,span=.4)))
> lines(x, fitted(loess(FRWRD˜x)),lty=3)

We set the value of the smoothing parameter span to 0.4 for the sake of definiteness,
but as before, varying this value leads to plots similar to those of Figs. 5.1 and 5.2, the
smaller the value of span the closer the loess regression to the original data points,
and the larger the value of span the smoother the loess regression curve. As in most
cases, the smoothing parameter has a default value which is used by the program
when the value of the parameter is not set in the call to the function. However, the
results can be pretty bad when using the default value of the smoothing parameter
and experimenting with several values of the smoothing parameter is always a useful
sanity check. . .
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Fig. 5.3. Left: loess regression using 0.4 (solid line) and the default value of the parameter
span (dotted line). Right: robust smooth given by lowess

5.3.3 A Robust Smoother

There is still another scatterplot smoother based on the same idea of local linear re-
gression. It is a robust form of the weighted local linear regression given by the func-
tion loess described above. It is called lowess. Given a number of neighboring
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data points, this function performs locally a robust regression to determine the value
of the function ϕ(x). The use of this robust scatterplot smoother is illustrated in the
right pane of Fig. 5.3. We produced this plot with the following R commands:

> plot(x,FRWRD,main="Lowess Regression")
> lines(lowess(x,FRWRD,f=.6))
> lines(lowess(x,FRWRD,f=.3),lty=3)
> lines(lowess(x,FRWRD,f=.1),lty=6)

The optional parameter f gives the proportion of neighboring points used in the local
robust regression. We used three values, f= 0.6, f= 0.3 and f= 0.1. The function
lowess does not return an object of a specific class from which we extract the fitted
values with the generic function fitted. It merely returns, in the old-fashioned
way, a vector of x-values containing the values of the explanatory variable, and a
vector of y-values containing the values fitted to the response variable. As before, we
use the function lines to produce a continuous graph from discrete isolated points.
Here, each of the values which are joined by straight lines to produce these three
curves were obtained by averaging 12, 10 and 3 neighboring values of the response
variable, respectively. This explains why these curves change from very smooth (and
not fitting the data very well) to rather ragged, and why they give the impression
of a broken line. We included the present discussion of the function lowess for
the sake of completeness only. Indeed, since robust regressions are more computer
intensive than least squares regressions, the lowess procedure can be very slow
when the sample size n is large. For this reason, we do not recommend its use for
large data sets.

5.3.4 The Super Smoother

The super smoother function supsmu is our last example of a scatterplot smoother
before we start our long discussion of the kernel method. It is based on the same
idea as the function loess, but its implementation has been optimized for compu-
tational speed. The main difference is the fact that the span (or equivalently the size
k of the neighborhoodN(xj)) is now chosen by a form of local cross validation as
a function of each xj . Because of its computational speed, it is part of the projec-
tion pursuit algorithm which we present in detail later in this chapter. Calls to the
function supsmu, and objects returned by these calls, have the structure described
above in the case of the function lowess, so we refrain from illustrating them with
examples.

5.3.5 The Kernel Smoother

As with the other scatterplot smoothers, the idea of the kernel smoother is to rely
on the observed responses to neighboring values of x to predict the response ϕ(x).
The only difference is that, instead of relying on a limited number of observations
yi of the response, the local character of the averaging is realized by a weighted
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average of all the observed values yi, the weights being decreased with the distance
between x and the corresponding value xi of the explanatory variable. To be more
specific, the weights are computed by means of a kernel function x ↪→ K(x), and
our good old enemy, the smoothing parameter. The latter is called bandwidth in the
case of the kernel method and is denoted by b > 0. By now, we should be familiar
with the terminology and the notation associated with the kernel method. Indeed, we
already introduced them in our discussion of kernel density estimation. We give a
lucid account of the relationship between the applications of the kernel method to
density estimation and to regression in the Appendix at the end of the chapter. The
actual formula giving the kernel scatterplot smoother ϕ(x) is:

ϕ(x) = ϕb,K(x) =

∑n
i=1 yiK

(
x−xi

b

)
∑n

j=1K
(
x−xj

b

) . (5.6)

Notice that the formula giving ϕ(x) can be rewritten in the form:

ϕ(x) =

n∑
i=1

wi(x)yi (5.7)

provided we define the weights wi(x) by the formula:

wi(x) =
K
(
x−xi

b

)
∑n
j=1K

(
x−xj

b

) . (5.8)

Understanding the properties of these weights is crucial to understanding the very
nature of kernel regression. These properties will be clear once we define what we
mean by a kernel function. Recall that a nonnegative function x ↪→ K(x) is called a
kernel function if it is integrable and if its integral is equal to 1, i.e. if it satisfies:

∫ +∞

−∞
K(x) dx = 1,

in other words, if K is a probability density. The fact that the integral of K(x) is
equal to one is merely a normalization condition useful in applications to density
estimation. It will not be of any consequence in the case of applications to regression
sinceK always appear simultaneously in the numerator and the denominator: indeed,
as one can easily see from formulae (5.7) and (5.8), multiplyingK by a constant does
not change the value of the regression function ϕ as defined in (5.6). But in order to
be useful, the kernel K(x) has to take relatively large values for small values of x,
and relatively small values for large values of x. In fact, it is also often assumed that
K is symmetric in the sense that:

K(−x) = K(x)

and that K(x) decreases as x goes from 0 to +∞. The above symmetry condition
implies that:
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Kernel function Formula

box Kbox(x) =

{
1, if |x| ≤ 0.5

0 otherwise

triangle Ktriangle(x) =

{
1− |x|, if |x| ≤ 1

0 otherwise

parzen Kparzen(x) =

⎧⎪⎨
⎪⎩

(9/8) − (3/2)|x|+ x2/2, if 1/2 ≤ |x| ≤ 3/2

3/4− x2, if |x| ≤ 1/2

0 otherwise

normal Knormal(x) =
√
2π

−1
e−x2/2

Table 5.1. Table of the four kernel functions used by the R function ksmooth

∫ +∞

−∞
xK(x) dx = 0 (5.9)

which will be used in our discussion of the connection with kernel density estima-
tion in the Appendix. Recall Fig. 1.19 from Chap. 1 which gives the graphs of the
four kernel functions used by the R density estimation method. They are also some
of the most commonly used kernel functions when it comes to regression. Notice
that the first three of them vanish outside a finite interval, while the fourth one (the-
oretically) never vanishes. Nevertheless, since its computation involves evaluating
exponentials, it will not come as a surprise that such a kernel can be (numerically)
zero because of the evaluation of exponentials of large negative numbers: indeed
for all practical purposes, there is no significant difference between e−60 and 0, and
exponents which are that negative can appear very often! The R function ksmooth
gives an implementation of the univariate kernel scatterplot smoother. The value of
b is set by the parameter bandwidth. The kernel function K is determined by the
choice of the parameter kernel. Four possible choices are available for the param-
eter kernel, box being the default. Explicit formulae are given in the Table 5.1.
The option triangle gives the triangular function found in Fig. 1.19, the parzen
option gives a function proposed by Manny Parzen, who was one of the early propo-
nents of the kernel method. Notice that this kernel replaces the cosine kernel used in
density estimation. Finally the choice normal selects the Gaussian density function.
We give the formulae for these functions in Table 5.1.

Except for the kernel function box, which leads to the crudest results, the other
three kernels give essentially the same results in most applications. The situation is
different when it comes to the choice of bandwidth parameter b. Indeed, the choice
of the bandwidth is the Achilles heel of kernel regression. This choice can have an
enormous impact, and the results can vary dramatically: small values of b give rough
graphs which fit the data too closely, while too large a value of b produces a flatter
graph. By experimenting with the choice of bandwidth, one can easily see that as b
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tends to ∞, the graph of the kernel smoother converges toward the horizontal straight
line with intercept at the level of the mean y of the observed responses yj . A rigorous
proof of this is the subject of Problem 5.3. As we explained earlier, the regression
becomes meaningless in this limiting case since the explanatory variable does not
have any influence on the value of the prediction of the response variable.

We conclude this subsection with a short discussion of the R implementation of
the univariate kernel smoother. As already mentioned during our discussion of his-
tograms and density estimators, both R and S have a command ksmooth for the
implementation of univariate kernel regression. They take the same parameters, and
when they do work, they produce the same results. However, because the R imple-
mentation was optimized for numerical speed, it is based on a different algorithm
(presumably a fast Fourier transform) which at times, typically for extremely small
values of the bandwidth, gives NAs where the algorithm used in the S implementa-
tion still gives finite numbers. In particular, if we run the commands

> plot(x,FRWRD,main="1-D Gaussian Kernel Regression")
> lines(ksmooth(x,FRWRD,"normal",bandwidth=1))
> lines(ksmooth(x,FRWRD,"normal",bandwidth=3),lty=3)
> lines(ksmooth(x,FRWRD,"normal",bandwidth=10),lty=5)

in R and in S-Plus, the plot corresponding to the value 0.01 of the bandwidth
will not appear in R as the values of the kernel smoother are mostly NAs. To il-
lustrate this claim, Fig. 5.4 provides the results obtained in R (left) and S-Plus
(right).

More on the kernel scatterplot smoother later in Sect. 5.5 when we discuss the
multivariate case and the kernel regression method.
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Fig. 5.4. Effect of the choice of bandwidth on the result of a kernel smoother in R (left) and in
S-Plus (right)
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5.4 MORE YIELD CURVE ESTIMATION

Given our newly acquired knowledge of scatterplot smoothers and nonparametric
curve estimation, we revisit the problem of estimation of the term structure of interest
rates, as given for example by the instantaneous forward interest rate curves, which
was originally tackled in Sect. 4.9 by means of parametric methods.

5.4.1 A First Estimation Method

The first procedure we present was called iterative extraction by its inventors, but it
is known on the street as the bootstrap method. We warn the reader that this use of
the word bootstrap is more in line with the everyday use of the word bootstrap than
with the standard statistical terminology.

We assume that the data at hand consist of coupon bearing bonds with maturity
dates T1 < T2 < · · · < Tm and prices B1 < B2 < · · · < Bm. The so-called
bootstrap method seeks a forward curve which is constant on each of the intervals
[Tj, Tj+1). For the sake of simplicity, we assume that t = 0. In other words, we
postulate that:

f(0, T ) = fj for Tj ≤ T < Tj+1 j = 1, . . . ,m− 1

for a sequence {fj}j of deterministic rates to be determined recursively by calibra-
tion to the observed bond prices. Let us assume momentarily that f1, . . . , fj have
already been determined, and let us describe the procedure for identifying fj+1. If
we denote by Xj+1 the principal of the (j + 1)-th bond, by {tj+1,i}i the sequence
of coupon payment times, and by Cj+1,i = cj+1/ny the corresponding payment
amounts (recall that we use the notation cj for the annual coupon rate, and ny for
the number of coupon payments per year), then the bond’s price at time t = 0 can be
obtained by discounting all the future cash flows associated with this bond:

Bj+1 =
∑
tj+1,i<Tj

P (0, tj+1,i)
cj+1Xj+1

ny
(5.10)

+P (0, Tj)
(∑

Tj<tj+1,i≤Tj+1
e−(tj+1,i−Tj)fj+1 cj+1Xj+1

ny
+e−(tj+1,i−Tj)fj+1Xj+1

)
.

Notice that all the discount factors appearing in this formula are known since, for
Tk ≤ t < Tk+1 we have:

P (0, t) = exp

[
−

k∑
h=1

(Th − Th−1)fh − (t− Tk)fk+1

]

(recall formula (4.39) linking the price of the zero coupon bond to the instantaneous
forward rate) and all the forward rates are known if k ≤ j. Consequently, rewriting
(5.10) as:
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Bj+1 −
∑

tj+1,i≤Tj
P (0, tj+1,i)

cj+1Xj+1

ny

P (0, Tj)

=
cj+1Xj+1

ny

∑
Tj<tj+1,i≤Tj+1

e−(tj+1,i−Tj)fj+1 + e−(tj+1,i−Tj)fj+1 ,

and noticing that the left hand side can be computed, and that the unknown forward
rate fj+1 appears only in the right hand side, this equation can be used to determine
fj+1 from the previously evaluated values fk for k ≤ j.

Remark. Obviously, the forward curve produced by the bootstrapping method is
discontinuous, since by construction, it jumps at all the input maturity dates. These
jumps are the source of an artificial volatility: this is the main shortcoming of this
method of estimation. Several remedies have been proposed to alleviate this prob-
lem. The simplest one is to artificially increase the number of maturity dates Tj to
interpolate between the observed bond (or swap) prices. Another proposal is to add
a smoothness penalty which will force the estimated curve to avoid jumps. This last
method is in the spirit of the smoothing spline estimation method which we dis-
cuss now.

5.4.2 A Direct Application of Smoothing Splines

For the purposes of this subsection we use the data contained in the R data frame
USBN041700. These data comprise the quotes on April 17, 2000 of the outstanding
US Treasury Notes and Bonds. Figure 5.5 gives the plot of the redemption yield as a
function of the time to maturity, together with the plot of the smoothing spline. This
plot was created with the following commands:

> plot(LIFE,INT.YIELD,main="Smoothing Spline .... Yields")
> lines(smooth.spline(LIFE,INT.YIELD))

The (smooth) yield curve plotted in Fig. 5.5 is unusual because it has two humps,
but despite this unusual feature, it can still be regarded as a reasonable yield curve.

5.4.3 US and Japanese Instantaneous Forward Rates

Even though we stated in Sect. 4.9 that the yield curves and forward rate curves
published by the US Federal Reserve and the Bank of Japan were computed using
smoothing (cubic) splines, they are not produced in the simplistic approach described
above. The instantaneous forward rate curve produced on a given day t is the function
x ↪→ ϕ(x) which minimizes the loss function:

LJUS(ϕ) =
n∑
i=1

wi|Pi − Pi(ϕ)|2 + λ

∫
|ϕ′′(x)|2 dx, (5.11)

where ϕ′′(t) stands for the second derivative of ϕ(t), the Pi’s are the prices quoted
for the outstanding bonds and notes available on day t, and the Pi(ϕ)’s are the prices
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Fig. 5.5. Plot of the US Treasury notes and bonds redemption yields on April 17, 2000 together
with the smoothing spline

one would get from pricing the bonds and notes on the forward curve given by ϕ
using the fundamental pricing formula (4.33) in which the discount factors are com-
puted from the forward curve given by ϕ. As in the parametric case, the weights wi
are chosen as functions of the duration of the i-th bond. See Sect. 4.9 for details.

The curve construction based on the minimization of the objective function
LJUS(ϕ) defined in (5.11) is reminiscent of smoothing splines regression. The dif-
ference lies in the fitting part |Pi − Pi(ϕ)|2, which replaces the usual |yi − ϕ(xi)|2.
Instead of directly comparing the observation yi to the values ϕ(xi) of the regres-
sion function, we compare the price Pi of a bond to the theoretical price Pi(ϕ) that
it would have if the function ϕ gives the true values of the instantaneous forward
rate curve. This difference is enough to prevent us from directly using the R func-
tion smooth.splines, and it explains why the example we gave in Sect. 5.4.2
was for the construction of a yield curve x ↪→ ϕ(x) from observations yi of the
yields ϕ(xi).

5.5 MULTIVARIATE KERNEL REGRESSION

Multivariate kernel regression is a typical example of multivariate nonparametric
nonlinear regression, but it can also be viewed as a high dimensional generaliza-
tion of the procedure described in the subsection on the kernel scatterplot smoother,
and especially the discussion of the function ksmooth. Indeed, most of what we
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said then, can be generalized to the case where the dimension p of the explanatory
variables is not necessarily equal to 1. Indeed, formula (5.6) can be used in the form:

ϕ(x) = ϕb,K(x) =

∑n
j=1 yjK

(
x−xj

b

)
∑n

j=1K
(

x−xj

b

) , (5.12)

provided the function x ↪→ K(x) is a kernel function in p dimensions, in the sense
that it is a nonnegative function of p variables which integrates to one.

The simplest example of a p-dimensional kernel function is given by a function
of the form:

K(x) = k(dist(x, 0)) (5.13)

for some nonnegative and non-increasing function d ↪→ k(d) of one variable, and
some choice of a notion of distance from the origin in p dimensions. Possible choices
for this notion of distance include the usual Euclidean norms in R

p:

dist(x, 0) =

⎛
⎝ p∑
j=1

x2j

⎞
⎠

1/2

or dist(x, 0) =

⎛
⎝ p∑
j=1

wjx
2
j

⎞
⎠

1/2

or non-Euclidean norms such as:

dist(x, 0) =
p∑
j=1

|xj | or dist(x, 0) = sup
j=1,...,p

|xj |.

These choices are popular because of their convenient scaling properties. With the
exception of the Euclidean distance computed with different weights wj for the dif-
ferent components xj of the explanatory vector x, all these kernel functions share the
same shortcoming: all the components of the explanatory vector are treated equally,
and this may be very inappropriate if the numerical values are on different scales.
Indeed, in such a case, the value of the distance is influenced mostly (if not exclu-
sively) by the variables having the largest values. We illustrate this point with a short
discussion of an example which we will study in detail in the later part of this chap-
ter. Let us imagine, for example, that the first explanatory variable is an annualized
interest rate. Its values are typically of the order of a few percentage points. Let us
also imagine that the second explanatory variable is a time to maturity. If for some
strange reason this second variable is expressed in days instead of years, its values
will quite often be in the hundreds, and a distance of the type given above will ignore
the small changes in interest rate, and be sensitive only on the differences in matu-
rity. A change in unit in one of the variables can dramatically change the qualitative
properties measured by these notions of distance, and consequently strongly affect
the results of the kernel regression. This effect is highly undesirable. We discuss
below alternative choices of kernel functions which can overcome this difficulty, as
well as a standardization procedure which re-scales all the explanatory variables in
an attempt to balance their relative contributions to the regression results.
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Another very popular class of kernel functions is given by direct products (some-
times called tensor products) of one dimensional kernel functions. Indeed, if K1,
K2, . . . , Kp are one-dimensional kernel functions (possibly equal to each other),
then the function:

K(x) = K(x1, x2, . . . , xp) = K1(x1)K2(x2) · · ·Kp(xp) (5.14)

is obviously a p-dimensional kernel function. For these kernel functions, the weight
multiplying the i-th response yi is proportional to:

K

(
x− xi
b

)
= K1

(
x1 − xi,1

b

)
K2

(
x2 − xi,2

b

)
· · ·Kp

(
xp − xi,p

b

)

and from this expression one sees that there is no harm in choosing different values
for the p occurrences of the bandwidth b in the right hand side. In other words, it is
possible to choose p different bandwidths b1, b2, . . ., bp, one for each component of
the explanatory variable. This feature of the direct product kernels makes them very
attractive. In some sense, normalizing the scalar explanatory variables and using one
single bandwidth amounts to the same thing as using different bandwidths for the
components of the explanatory vector. See Sect. 5.5.2 for an example of standardiza-
tion before running a kernel regression.

We now recast some of the most important properties of kernel regression as
elementary remarks which also apply to the one dimensional case of the kernel scat-
terplot smoother ksmooth discussed earlier.

• The kernel regression estimate ϕ(x) is a linear function of the observations. In-
deed, the definition formula (5.12) can be rewritten in the form:

ϕ(x) =

n∑
i=1

wi(x)yi,

where the weights wi(x) are defined by:

wi(x) =
K
(
x−xi

b

)
∑n

j=1K
(

x−xj

b

) .

Notice that these weights are nonnegative and sum up to one. Because the kernel
function is typically very small when its argument is large and relatively large
when its argument is small, the weight wi(x) is (relatively) large when x is
close (i.e. similar) to the observation xi and small otherwise. This shows that
the kernel regression function ϕ given by (5.12) is a weighted average of the
observed values yi of the response (and hence it is linear in the yi’s) with weights
which favor the responses to the values xi close to the value x of the explanatory
variables at which we try to compute the regression function.
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• The choice of bandwidth is a very touchy business. Many proposals have been
made for an automatic (i.e. data driven) choice of this smoothing parameter.
Whether one uses the results of difficult asymptotic analyses to implement boot-
strap or cross validation procedures or simple rules of thumb, our advice is to
be wise and to rely on experience to detect distortions due to a poor choice of
bandwidth.

• As explained earlier, it is tempting to use a separate bandwidth for each explana-
tory variable. This is especially the case when the kernel function is of the prod-
uct type given in (5.14) and when the dynamic ranges of these variables are very
different. For example, if a variable is expressed in a physical unit, changing the
unit system may dramatically change the range of the actual values of the mea-
surements, and small numbers can suddenly become very large as a consequence
of the change of units. Accordingly, the influence of this variable on the compu-
tation of the kernel regression can increase dramatically. This undesirable effect
is often overcome by normalizing the variables. See details in the discussions of
the practical examples presented in Sect. 5.5.2 below.

• The sample observations of the explanatory vector form a cloud of points in the
p-dimensional Euclidean space R

p. The larger the dimension p, the further apart
these points appear. Filling up space with points is more difficult in higher dimen-
sions, and in any given neighborhood of a point x ∈ R

p, we are less likely to find
points from the cloud of sample observations when p is large. This fact is known
as Bellman’s curse of dimensionality. When the number n of observations is not
excessively large, the kernel regression has proven to be very powerful when the
number of explanatory variables (i.e. the number p) is reasonably small, typically
2 or 3. How small this number should be obviously depends upon the sample size
n, and the more observations we have, the larger the number of explanatory vari-
ables we may include. This form of Bellman’s curse of dimensionality can easily
be illustrated by heuristic arguments, but it can also be quantified by rigorous
asymptotic results which show that n should grow exponentially with p. This is
a serious hindrance.

5.5.1 Running the Kernel in R

When p = 1 the kernel regression is implemented by the scatterplot smoother
ksmooth described in the Sect. 5.3.5. Unfortunately, there is no R function imp-
lementing the multivariate kernel regression. We propose to use the home-grown
function kreg for the purposes of this book.

Since this function can be called quite often in a typical application, the user
needs to be aware of the fact that computer times can be unexpectedly long when
the sample size n and/or the dimension p of the explanatory variables are large. The
output of the function kreg is a list containing the input variables and a variable
ypred. A call to the function kreg of the form

> PRED <- kreg(X,Y,kernel=triangle,b=.4)
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returns a variable PRED$ypred containing the values ŷi = ϕ(xi) of the fitted val-
ues for the values of the regressor variable in the set of observations if the argument
xpred is missing. When this argument is set to a vector of possible values of the
explanatory variable/vector, as in the example:

> PRED <- kreg(X,Y,xpred=GRID,kernel=triangle,b=.4)

then PRED$ypred contains the values of this regression function ϕ for the specific
values of the explanatory variables/vectors contained in the argument xpred. In
other words, the latter is equal to the observations by default.

In the two dimensional case, one may be interested in computing ϕ over a grid
of points for plotting purposes. One can generate such a surface plot by setting the
parameter PLOT to TRUE by adding PLOT=T in the call to the function kreg. The
surface is computed by default over a grid of 256 × 256 regularly spaced points
between the minima and the maxima of the two explanatory variables. This grid can
also be user specified.

5.5.2 An Example Involving the June 1998 S&P Futures Contract

This experiment is based on high frequency data on the S&P 500 index introduced
and first manipulated in Chap. 6. For the sake of definiteness, we chose to work with
the June 1998 futures contract for which we collected ALL the transaction records.
Then for each of the 59 trading days between March 15, 1998 and June 8,
1998 we computed

• Six indicators at 12:00 pm (noon) for the morning transactions;
• The same six indicators for the afternoon transactions;

the goal of the experiment being to predict the values of the afternoon indicators
from the knowledge of the morning ones. The 6 morning indicators are stored in a
59 × 6 matrix which we call MORN.mat and the corresponding afternoon values
are stored in another 59 x 6 matrix which we call AFT.mat. These indicators
were computed from the high frequency tick-by-tick data of all the quotes taking
place in the morning and afternoon sessions, respectively. We shall describe later in
Sect. 6.1.6 of Chap. 6 some of the tools we used to compute these indicators. For the
time being, a quick explanation of what these indicators are will suffice. The first
indicator is called range. It represents the difference between the highest quote and
the lowest quote of the morning. The next indicator is called nbticks. It gives the
number of transactions during the session, whether it is the morning or afternoon
session. The third indicator gives the standard deviation of the log-returns between
two successive transactions (and computed ignoring the length of the time interval
separating these transactions), while the next two indicators give the volatility ratio
volratio and the quantile slope l2slope which we will define rigorously in the
Notes and Complements at the end of the chapter. Finally, the last indicator gives the
mean separation time between two consecutive transactions. It is called ticksep.
Printing the first five rows of the data matrix of our six morning indicators, we get:
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> MORN.mat[1:5, ]
range nbticks vol volratio l2slope ticksep

[1,] 4.8 199 9.68800e-08 0.0584073 298.328 7.12836
[2,] 6.5 199 1.01720e-07 0.0763445 293.569 6.36461
[3,] 5.1 200 6.59284e-08 0.0206114 299.409 7.00117
[4,] 4.5 200 7.13838e-08 0.0376023 317.831 6.59341
[5,] 8.8 207 1.06649e-07 0.0456482 334.903 6.62047

Obviously:

the six indicators are not on the same scale.

As a solution we propose to

standardize the explanatory variables.

As we already pointed out, this procedure is ubiquitous in nonlinear and nonparamet-
ric regression, and in classification. The R-function scale does just that. We shall
use it in two different ways. First, with only one single parameter the numeric matrix
MORN.mat. In this case, the functionscale returns a matrix, say NORMMORN.mat
obtained by subtracting the column means from their corresponding columns, and
by dividing the (centered) columns so-obtained by their root-mean-square. This is
exactly what the doctor ordered!

> NORMMORN.mat <- scale(MORN.mat)

Since the column means and standard deviations which are used by the function
scale to center and re-scale the columns will be needed in the sequel, we show
how they can be computed in R. We do this with the function apply.

> MEANMORN <- apply(MORN.mat,2,mean)
> MEANMORN

range nbticks vol volratio l2slope ticksep
8.68474 203.389 1.46168e-07 0.0707302 309.809 5.74796

The R function apply was designed to compute a given function on the rows
or the columns of an array. So, the first command applies the function mean to
each column (second dimension appearing as the second argument of the func-
tion apply). Similarly, one compute the vector SDNORM of the column standard
deviations.

> SDMORN <- apply(MORN.mat,2,sd)
> SDMORN

range nbticks vol volratio l2slope ticksep
3.288790 3.969787 8.634e-08 5.299e-02 10.11494 0.540103

We can use the function apply to check that we did exactly what we intended to
do by computing the means and the variances of the columns of the standardized
matrix.
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> apply(NORMMORN.mat,2,mean)
range nbticks vol volratio l2slope ticksep

-1.05e-16 4.82e-16 2.59e-16 2.83e-17 3.46e-16 1.27e-15
> apply(NORMMORN.mat,2,var)

range nbticks vol volratio l2slope ticksep
1 1 1 1 1 1

This shows that we succeeded in turning the explanatory variables into variables with
empirical mean zero and empirical variance one.

We now consider the problem of the prediction of the afternoon value of the
volatility ratio at noon, i.e. when our information consists of the values of the six
morning indicators. We shall see in Sect. 5.6 how to use the set of all 6 indicators
as regressors, but because our sample size is only 59, we cannot hope to use ker-
nel regression with more than 2 regressors (and even that may be a bit of a stretch).
Based on the intuition developed with least squares linear regression, when it comes
to the prediction of the values of AFT.mat[,4], a sensible way to choose two
explanatory variables out of the six morning indicators should be to find those morn-
ing indicators with the largest correlation with AFT.mat[,4]. However, basing
our choice on this criterion alone could lead to disaster. Indeed, while trying to
maximize the correlation with the response, we also need to make sure that the
correlation between the two regressors which we choose is as small as possible.
Indeed, if they carry the same information, they will be equally correlated with
AFT.mat[,4], but the two of them together will not be more predictive than any
single one of them taken separately. We do not dwell on this problem here. We sim-
ply refer to Problem 5.19 for an attempt to use Principal Component Analysis to
find uncorrelated variables summarizing efficiently the information in the set of six
variables. For the purposes of the present discussion, we restrict ourselves to choos-
ing MORN.mat[,4] and MORN.mat[,5], hoping that it is a reasonable choice.
Recall that MORN.mat[,4] is the morning value of the volatility ratio whose after-
noon value we try to predict, and that MORN.mat[,5] is some form of measure of
the average rate at which the transactions occur during the morning.

The left pane of Fig. 5.6 contains a three-dimensional scatterplot of the 59 obser-
vations of these three variables, while the right pane contains the two dimensional
horizontal projection given by the 2-d scatterplot of the two explanatory variables.
The three dimensional scatterplot is obtained by putting vertical bars over the points
of the 2-d scatterplot of the explanatory variables, the heights of these bars being
equal to the corresponding values of the response variable.

The two-dimensional scatterplot of the explanatory variables shows that the
points are reasonably well spread throughout the rectangular region of the plot.
Notice that the two plots of Fig. 5.8 would look exactly the same if we had used
the normalized indicators instead of the raw ones, the only changes being in the axis
labels. At this stage, it is a good idea to check for the presence of isolated points
far from the bulk of the data. Indeed as we have seen in our discussion of linear
regression, the latter are very influential, and they often distort the results of the
regression. We do not have such distant points in the present situation. The three



300 5 LOCAL AND NONPARAMETRIC REGRESSION

Afternoon Vol against Morning Vol and Rate
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Fig. 5.6. Bar scatterplot of the afternoon volatility ratio AFT.mat[,4] against the morning
volatility ratio MORN.mat[,4] and the arrival rate MORN.mat[,5] (left), and 2-d Scatter-
plot of MORN.mat[,4] and MORN.mat[,5] (right)

dimensional plot shows that, except perhaps for the observations on the far right, lin-
ear regression could be a possibility. Consequently, we perform a (bivariate) linear
least squares regression. The results are shown in Fig. 5.7, and they do not confirm
the early suspicion that a linear regression could do the trick.

As we are concerned about the effect of the two measurements with extreme
values of MORN.mat[,4], we redid the analysis after removing measurements in
rows 30 and 51 Clearly, it is very difficult to visualize why the regression plane
would be pulled up or down simply due to the presence of these two observations.
For observations to have influence only on the responses to neighboring observations,
it is best to use kernel regression. So we perform a few kernel regressions to get a
better sense of the response surface. The results are given in Fig. 5.9. Instead of
using the function kreg described earlier in the text, we used a special purpose
function designed for the computation and plot of two-dimensional kernel regression
surfaces. This function is called twoDkreg and its main goal is to produce a surface
plot, providing a graphical tool in the search for a reasonable bandwidth. For the
sake of illustration, we used three different values of the bandwidth: the first one is
presumably too small because the surface is too rough, the last one is presumably too
large because the surface is too smooth, and presumably, as Goldilocks would say,
the middle one is just right. The plots of Fig. 5.9 were produced with the commands:

> twoDkreg(cbind(NORMMORN.mat[,4],NORMMORN.mat[,5]),
AFT.mat[,5],B=c(.3,.3),X1NAME="NormMornVolRatio",
X2NAME="NormMornRate",YNAME="AftVolRatio")

> twoDkreg(cbind(NORMMORN.mat[,4],NORMMORN.mat[,5]),
AFT.mat[,5],B=c(.5,.5),X1NAME="NormMornVolRatio",
X2NAME="NormMornRate",YNAME="AftVolRatio")

> twoDkreg(cbind(NORMMORN.mat[,4],NORMMORN.mat[,5]),
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Afternoon Vol against Morning Vol and Rate
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Fig. 5.7. Linear regression of the afternoon volatility ratio AFT.mat[,4] against the morn-
ing volatility ratio MORN.mat[,4] and the morning rate of arrival MORN.mat[,5] of the
transactions
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Fig. 5.8. Bar scatterplot of the afternoon volatility ratio AFT.mat[,4] against the morn-
ing volatility ratio MORN.mat[,4] and the arrival rate MORN.mat[,5] (left), and 2-D
Scatterplot of MORN.mat[,4] and MORN.mat[,5] (right) after removing two extreme
measurements
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Fig. 5.9. Kernel regressions of the afternoon volatility ratio AFT.mat[,4] against the morn-
ing volatility ratio MORN.mat[,4] and the morning rate of arrival MORN.mat[,5] of the
transactions in the original data matrix MORN.mat. We used a two dimensional Gaussian
kernel with the bandwidths b = 0.3, b = 1 and b = 2 from left to right respectively

AFT.mat[,5],B=c(2,2),X1NAME="NormMornVolRatio",
X2NAME="NormMornRate",YNAME="AftVolRatio")

Given a value of the morning volatility ratio and a value of the morning rate, the
prediction/estimate of the corresponding afternoon volatility ratio is obtained by first
scaling these two values by subtracting the means (which can be found in the appro-
priate entries of MEANMORN) and dividing then by the standard deviations (which
can be found in the appropriate entries of SDMORN) and reading off the value of the
regression surface over the point of the plane given by the values of these scaled
explanatory variables.

If we need to compute values of the regression function (i.e. predictions) for a
large number of values of the explanatory variables, we pool these values in a matrix
with the same number of columns as MORN.mat and we scale this matrix before
we apply the computation of the kernel regression. However, we should now use
the function scale with three parameters, the matrix of explanatory variables to be
scaled, and two parameters, center and scale which are vectors with one entry
for each explanatory variable. The value of center determines how column cen-
tering is performed: the j-th column of the matrix to be scaled has the j-th entry of
the vector center subtracted from it. In our previous use of the function scale,
the parameter center was not specified, and consequently, its default value TRUE
was used. When the parameter center is missing or equal to TRUE, the centering
is done by subtracting the column means (omitting NAs). Note that no centering is
done if center is FALSE. The value of the parameter scale determines how col-
umn scaling is performed after centering. If scale is a numeric vector with length
equal to the number of explanatory variables, then each column is divided by the
corresponding entry of the vector scale. In our first use of the function scale,
the parameter scale was not specified, and hence its default value was used. This
default value is the boolean TRUE. Whenever this is the case, scaling is done by di-
viding the centered columns by their root-mean-square, and if the parameter scale
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is equal to the boolean FALSE, no scaling is done. We shall see more of the function
scale in the forthcoming analysis of option pricing by non-parametric methods.

5.6 PROJECTION PURSUIT REGRESSION

In their original proposal, the creators of the projection pursuit algorithm suggested
writing the regression function ϕ(x) of a model y = ϕ(x) + ε in the form:

ϕ(x) = α+

m∑
j=1

φj(aj · x). (5.15)

Remember that we are working in the usual regression setting:

(x1, y1), (x2, y2), . . . . . . , (xn, yn)

where the explanatory variables x1,x2, . . . ,xn are p-dimensional. In other words,
each xi is a p-vector of the form xi = (xi,1, . . . , xi,p) while the response vari-
ables y1, y2, . . . , yn are univariate (i.e. scalar). As usual, we use bold face letters x
to emphasize that we are dealing with a multivariate explanatory variable which
we sometimes call an explanatory vector to emphasize that its dimension can be
greater than one. The idea of the projection pursuit algorithm is to fight the curse of
dimensionality inherent with large values of p, by replacing the p-dimensional ex-
planatory vectors xi by suitably chosen one-dimensional projections aj · xi, hence
the term projection in the name of the method. We now explain how the estimation
of the quantities α, and φ1(a1 · x), . . ., φm(am · x) appearing in formula (5.15)
is performed. The projection pursuit algorithm is based on an inductive procedure
in which residuals are recomputed and fitted at each iteration, and for the purposes
of the present discussion, one should think of the observed values yi as the start-
ing residuals, i.e. the residuals of order zero. Each time one of the terms in the sum
appearing in the right hand side of (5.15) is estimated, the actual estimates are sub-
tracted from the current values of the residuals, providing in this way a new set of
residuals from which we proceed to estimate the next term in (5.15). This recursive
fitting of the residuals justifies the term pursuit in the name of the method.

The constant α is naturally estimated by the mean of the observations of the
response:

α̂ = øy =
1

n

n∑
i=1

yi.

This sample mean is subtracted from the observations (i.e. the residuals of order
zero) to get the residuals of order one. Next we proceed to the estimation of the first
direction a1 and the first function φ1. Because of computational considerations, it
is important to choose a specific procedure capable of selecting the best function φ
for each choice of direction given by the unit vector a. R does just that by choosing,
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for each candidate a, the function φa given by the super-smoother algorithm (imple-
mented as the function supsmu) obtained from the scatterplot of the projections of
the data points {xi}i=1,...,n on the direction a, i.e. the values of the scalar products
a · xi, and the corresponding values yi of the response y (or the current residuals if
we are in the middle of the recursive fitting procedure).

The creators of the projection pursuit algorithm proposed to fit recursively the
residuals (starting from the values of the response variable) with terms of the form
φaj (aj ·x) and to associate to each such optimal term a figure of merit, for example
the proportion of the total variance of the response actually explained by such a term.
In this way, the whole procedure would depend upon only one parameter. One could
choose this tolerance parameter first (typically a small number) and one would then
fit the response and successive residuals until the figure of merit (i.e. the proportion
of the variance explained by φaj (aj · x)) dropped below the tolerance parameter.
This would automatically take care of the choice of the orderm of the model (5.15).

Remark 2. Formula (5.15) is reminiscent of formula (5.2) for the basis (or feature)
expansion least squares regression discussed earlier in the chapter. The main dif-
ference is the fact that, in the case of projection pursuit, the choice of the feature
functions ϕj is driven by the data. This endogenous determination of the feature
functions is more in the spirit of modern machine learning than traditional nonpara-
metric regression.

5.6.1 The R Function ppr

Projection pursuit regression is implemented in R by the function ppr. A typical
call to this function looks like:

data.ppr <- ppr(x,y,nterms,max.terms)

where x is the n× p matrix of the n observations of the p explanatory variables and
y is the n× 1 vector of corresponding responses. Equivalently, the function ppr can
be called with a formula, say of the form y x1+x2+ .... +xp if x1, x2, · · · ,
xp are the names of the p explanatory variables, in lieu of the parameters x and y. tt
nterms and max.terms are integers whose values correspond to the number m of
ridge functions in the decomposition (5.15) and the largest of the values of m tested
by the program.

Had R implemented this algorithm in the way we described it, the proportion
of the total variation in the response explained by the successive models obtained
by increasing the number m of ridge functions would always be decreasing. Unfor-
tunately, things are not that simple, and what we just described is not exactly the
algorithm implemented in R.

When the arguments nterms and max.terms are set and the function ppr
is run, the program does pretty much what we just described for m increasing from
1 to max.terms, and the sequential plot of the vector data.ppr$gofn would
be decreasing if one could plot it at this stage. However, R does not stop after this
forward pass over the data. It recomputes fitted models for m = max.terms− 1,
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m = max.terms − 2, . . ., m = nterms in this reverse order. For each value of
m in this range, the program runs an optimization procedure to find simultaneously
all the aj appearing in the model (5.15). Unfortunately, minimization procedures are
not always reliable, especially when the dimension is large and the function is not
convex. Their results depend strongly on the initializations. Here is what R is actually
doing in order to initialize this minimization. For each value of m (varying from
max.terms−1 down to nterms) the program considers the unit direction vectors
â1, . . ., âm+1 found to be optimal in the model fitted previously with m + 1 terms,
and it computes the variances of the values fitted by the super-smoother algorithm
supsmu:

σ2
j =

1

n

n∑
i=1

φâj
(âj · xi)2.

Notice that there is no need to subtract the mean in order to compute the variance
because we already subtracted the mean øy of the response and after that the response
(whether it is the actual response or the residual at a given stage of the recursion)
is always centered. The minimization algorithm is then initialized with the m unit
vectors âj1 , . . ., âjm where the indices j1, . . ., jm are chosen in such a way that
the variances σ2

j1 , . . ., σ2
jm are the m largest among the m + 1 variances σ2

1 , . . .,
σ2
m+1. The rationale for this choice is simple. The relative size of the variance σ2

j

is an indication of how important the contribution of âj (and of the corresponding
function φâj ) is. In this way, for each value of m, R finds a model of the form:

ϕ(x) = øy +
m∑
j=1

φam,j
(am,j · x). (5.16)

However, the set {am,1, . . . ,am,m} of unit vectors in the fitted model of order m,
is not necessarily equal to the set of the first m vectors {am+1,1, . . . ,am+1,m} of
the set of unit vectors in the fitted model of order m + 1. Even though it turns out
that the plot of data.ppr$gofn is very often decreasing, it can increase at times,
even though this is not the rule in general, as there is absolutely no reason why the
proportion of the variation explained should be a decreasing function of m when
computed in this way.

As a final remark, we mention the way in which R normalizes the functions φj
appearing in the decomposition of the model (5.15). If one introduces the notation:

βj = σj =

√√√√ n∑
i=1

φâj (âj · xi)2, ϕj =
1

σj
φâj , (5.17)

then obviously the model (5.15) can be rewritten in the form:

ϕ(x) = øy +
m∑
j=1

βjϕj(aj · x) (5.18)

and in this form, the contribution of each of the functionsϕj can be viewed as having
mean 0 and variance 1.



306 5 LOCAL AND NONPARAMETRIC REGRESSION

5.6.1.1 Running the R Function ppr

As usual, if in doubt, get help on the function ppr by typing:

> help(ppr)

For a projection pursuit regression, the function ppr should be called at least twice.
The first call to the projection pursuit function should be of the form:

> data.ppr <- ppr(x,y,nterms,max.terms)

where x is the n×pmatrix of the n observations of the p explanatory variables and y
is the n×1 vector of corresponding responses. It is recommended to choose a value of
max.terms no larger than 10 (and significantly smaller if your data set is not large
enough) and of nterms (which in any case should be smaller than max.terms)
small for the first run, typically 1 or 2. Then, one should run the command

> plot(data.ppr$gofn)

to produce the plot of the goodness of fit figure of merit for the decompositions in n
terms attempted by ppr for n = nterms, n = nterms + 1, · · · , n = max.terms.
The plotted value should be 0 for the values n < nterms. This plot is usually de-
creasing abruptly, before stabilizing. We should then choose for nterms as small
a value of n as possible, while at the same time lowering the value of this figure of
merit as significantly as possible. The next step is to rerun the function ppr with
nterms equal to the value of n chosen in this way, making sure that we keep the
same value for max.terms.

> data.ppr <- ppr(x,y,nterms=n,max.terms)

Prediction from a projection pursuit model fitted to data is done with the generic
method predict in a standard way:

> data.ppr.pred <- predict(data.ppr,newdata=xpred)

where xpred is a matrix with the same number of columns as x, and containing
one row for each of the vectors of explanatory variables for which a prediction (or
regression estimate) is desired.

5.6.2 ppr Prediction of the S&P Afternoon Indicators

We revisit the analysis of the S&P indicators which was performed earlier in
Sect. 5.5.2 with the help of kernel regression. This will lead to a first comparison
of the performance of the two regression methods. We use the same notation, and
since the introduction of the projection pursuit regression was motivated by prob-
lems with a large number of explanatory variables, we use for the prediction of any
given afternoon indicator, the entire set of 6 morning indicators. Again, we choose to
predict the volatility ratio. The projection pursuit regression is performed using the
following R commands:
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> PPR1 <- ppr(MORN.mat,AFT.mat[,4],nterms=1,max.terms=10)
> plot(PPR1$gofn, type="l",

main="PPR of AftVolRatio against the 6 Morning Indicators")

The plot of the figure of merit PPR1$gofn is reproduced in Fig. 5.10.
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Fig. 5.10. Sequential plot of the figure of merit of the projection pursuit regression of the
afternoon volatility ratio from the 6 S&P 500 morning indicators

From this plot, it seems that 8 should be the best choice, but given the small num-
ber of observations (n = 59) and the relatively high dimension of the explanatory
variables (p = 6), a more reasonable choice is 4. So we re-run the projection pursuit
algorithm with the command:

> PPR1 <- ppr(MORN.mat,AFT.mat[,4],nterms=4,max.terms=10)

Since the number of graphical tools is very limited when the number of explanatory
variables is greater than 2 (see nevertheless the help file for a discussion of the tools
provided to plot graphs of the functions φj ) we decided to output the numerical
figures of merit of this regression. We compute the relative sum of squares (analog
of the 1 − R2 of the linear models) and the actual sum of the squares of the raw
residuals.

> PPR1$gof
[1] 0.01400715

> sum((PPR1$fitted.values - AFT.mat[,4])ˆ2)
[1] 0.01393516

These figures look very good. They should be compared to the corresponding figures
which we would have obtained if we had applied other methods such as the kernel
regression of the previous section or the neural network regression discussed in the
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Notes & Complements at the end of the chapter. For the sake of comparison with the
results of the kernel method which we used earlier, we perform projection pursuit
regression using only the two morning indicators used earlier.

> PPR2 <- ppr(MORN.mat[,4:5],AFT.mat[,4],nterms=1,
max.terms=10)

> plot(PPR2$gofn, type="l",
main="PPR of AftVolRatio against 2 Morning Indicators")

The plot of the figure of merit PPR2$gofn is reproduced in Fig. 5.11.
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Fig. 5.11. Sequential plot of the figure of merit of the projection pursuit regression of the
afternoon volatility ratio against 2 of the 6 S&P 500 morning indicators

From this plot, it seems that 7 should be the best choice. Notice that the choice
of 7 for the number of ridge functions is more reasonable than earlier because of the
number of regressors is only 2.

> PPR2 <- ppr(MORN.mat[,4:5],AFT.mat[,4],nterms=7,max.terms=10)
> PPR2$gof
[1] 0.02764523

This figure of merit is not as good as the number obtained earlier with the six exp-
lanatory variables, but it is much better than the one obtained with the kernel method
for the value of the bandwidth we deemed reasonable. Indeed, computing the sum of
square errors between the observations and the fitted values for the kernel regression
with our choice of bandwidth would lead to much higher sums of square errors. In
fact in order to get comparable values for the figure of merit of the regression, we
would need to lower the bandwidth to values we rejected by fear that the result of
the kernel regression would merely be the result of fitting the noise.
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Despite the apparent superiority of projection pursuit, we would not recommend
to give up the kernel regression solely on the basis of a comparison of the sums
of square errors. Indeed, for pedagogical reasons, and for the sake of argument, we
give in Fig. 5.12 the regression surface produce by this two-dimensional projection
pursuit regression.
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Fig. 5.12. Surface plot of the regression surface given by the two dimensional projection pur-
suit algorithm in the case of the morning and afternoon S&P data

The plot was produced with the R commands:

> n <- 50
> GRIDX <- seq(from=min(MORN.mat[,4]), to=max(MORN.mat[,4]), length=n)
> GRIDY <- seq(from=min(MORN.mat[,5]), to=max(MORN.mat[,5]), length=n)
> xmat <- rep(GRIDX, n )
> ymat <- rep(GRIDY, each = n)
> zmat <- predict(PPR2,cbind(xmat, ymat))
> persp3d(GRIDX,GRIDY,zmat, aspect=c(1, 1, 0.5),

col = "lightblue", xlab = "MORN.mat[,4]",
ylab = "MORN.mat[,5]", zlab = "Pred")

We see from the plot reproduced in Fig. 5.12 that the regression surface is not as
smooth as the one obtained in Fig. 5.9. Did we fit the noise or did the projection
pursuit regression actually capture features that the kernel was oblivious to? The
convoluted nature of the response surface evidenced by Fig. 5.12 is presumably an
indication that we got a smaller sum of square errors at the cost of noise fitting, and
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that predictions from this regression could be unstable and unreliable. Moreover the
special form of the response surface is worth noticing. Indeed, we chose a different
perspective to evidence the structure of a projection pursuit regression surface as a
superposition of surfaces which are constant in one direction (hence the name ridge
functions). This special feature is clearly seen in Fig. 5.12.

Comparing the relative performance of the kernel and the projection pursuit reg-
ression methods is desirable. But one should not attempt to compare the results pro-
duced by following too closely the implementation prescriptions which we gave in
this chapter. Indeed, the steps suggested for the implementation of the projection
pursuit will very likely produce a good fit because the order of the model is based on
an in sample criterion involving the sum of square errors between the actual obser-
vations and the fitted values. However, using the projection pursuit regression model
obtained in this way for the prediction of the response to new values of the explana-
tory variables (which is often called out of sample testing) may not be a very good
idea, since we are not sure that we did not over-fit the model to get a smaller sum of
square errors.

On the other hand, the prescriptions we used to choose the bandwidth of the
kernel regression were not driven by the desire to get a small sum of square errors.
So, we should not be surprised if the regression surfaces obtained in this way do not
fit the data as well. Much smaller bandwidth values would be needed for that. The
rationale for not choosing the bandwidth too small comes from the desire to use the
regression model for prediction purposes.

In short, we suggested implementing the projection pursuit algorithm to have a
reasonable fit to the data, while we gave recommendations for the choice of kernel
bandwidth with the prediction of future response values in mind. These goals may
be incompatible, and fair comparisons may be difficult. Quantifying how well a reg-
ression model fits the data is relatively easy: just look at the sum of square errors.
Quantifying the predictive value of a regression model is more complicated: one
possible way to do it is to fit a regression model to a training sample and quantify
the prediction power of the method by using such a model on a different data set.
This strategy is explained in the next paragraph, and we will use it in the section on
option pricing and in numerous problems.

5.6.3 More on the Comparison of the Two Methods

The question of the comparison of the performance of several nonparametric reg-
ression/prediction procedures is very delicate. Because they are based on statistical
models with a solid theoretical foundation, the parametric regression methods (and
especially the linear models) came with inferential tools for residual analysis. In the
nonparametric world, the corresponding tools are only asymptotic (i.e. applicable
when the sample size goes to ∞) and for this reason, they cannot be of much practical
use for finite samples. As a consequence, practical common sense recipes are used
instead. Since nonparametric methods can only be competitive when the sample size
is relatively large, one often has the possibility of separating the data into two subsets,
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one used for training purposes, i.e. to fit a regression model, and the other one for
testing purposes, i.e. to compare the figures of merit of several methods or several
parameters, . . . . See the next section for an example. In financial applications, this
is implemented in the form of back testing. In our specific example, after finding the
kernel and the bandwidth, or the order and the parameters of the projection pursuit,
using the June 1998 contract, we could use a different contract to test and compare
the relative performances of the different methods or sets of parameter choices.

Confidence intervals offer a convenient way to quantify the accuracy of statistical
estimates. In regression problems, confidence intervals are replaced by confidence
bands, or sausages, containing the regression curves or surfaces. The computations
needed to produce reliable confidence regions are usually very intensive. The most
successful ones seem to have come out of bootstrap-like methodologies, but they are
beyond the scope of this book.

5.7 NONPARAMETRIC OPTION PRICING

The goal of this section is to implement and compare several nonparametric methods
of option pricing. We use real market data to compare the numerical performance of
the various methods. After a couple of subsections devoted to introductory material
on classical option pricing theory, the data are described in Sect. 5.7.2, and the details
of the experiment are given in Sect. 5.7.3. The long Sect. 9.2.1 is not intended as a
crash course on option pricing but merely as a convenient introduction to the mathe-
matical theory of no-arbitrage option pricing, justifying the nonparametric approach
used in this section.

5.7.1 Nonparametric Pricing Alternatives

Because of the shortcomings of the Black-Scholes formula illustrated above, we re-
sort to nonparametric techniques to price liquid options. We choose options on the
S&P 500 because on any trading day, there are a large number of options traded with
various times to maturity and strikes. We shall consider two competing approaches.
The second one will rely partly on the Black-Scholes formula, but the first one is
fully nonparametric.

5.7.1.1 Fully Nonparametric Pricing

In this approach, we do not make any assumption on the functional relationship
between the measurable variables S (current price of the underlying asset),K (strike
price of the option), τ (time to maturity), and r (short interest rate), which we con-
sider as explanatory variables, and the price C of the corresponding (European call)
option which we regard as the response variable. So if we bind together the four
explanatory variables into a row X = [S,K, τ, r] and if we set Y = C for the re-
sponse variable, then we are in the classical setting of (multiple) regression, and we
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can use any of the techniques seen so far to explain and predict the price Y from the
knowledge of X . The goal of the first part of our experiment is to implement and
compare the results of the kernel method and the projection pursuit regression in this
setting.

5.7.1.2 Semi-parametric Option Pricing

By definition of the implied volatility, the knowledge of the value of an option is
equivalent to the knowledge of its implied volatility. Indeed one can go from one
to the other by evaluation of Black-Scholes formula (9.1). So instead of pricing the
option by computing its values in US dollars via this formula, we first derive the
implied volatility, and then we evaluate Black-Scholes formula. Next we argue that
this implied volatility is a specific function of a smaller number of variables, and we
attempt to derive this functional dependence by a nonparametric regression, typically
a kernel regression since after reducing the number of variables, the dimension is
presumably not an issue any longer. This approach is called semi-parametric because
it is a combination of a purely nonparametric approach (using the kernel to predict
the implied volatility) and a parametric strategy (characterizing the implied volatility
by a small number of parameters and computing the Black-Scholes formula.

5.7.2 Description of the Data

The data are contained in the two R objects TRGSP and TSTSP. As you might
guess from their names, these two data matrices are intended for training and testing
purposes respectively. Each data file contains six columns, each row corresponding
to an option. The meanings of these columns are as follows:

1. SP for the price of the index
2. KK for the strike price of the option
3. TAU for the time to expiration (in days)
4. RR for the spot interest rate
5. ISIGMA for the implied volatility
6. CALL for the price of the (European call) option

We chose to use repeated letters KK and RR instead of K and R, respectively, because
R reserves some of the single letter names for protected objects. Also, you should not
assume that the row numbers of the data frames have much to do with the dates at
which these quotes were in force. The third column gives the time to maturity which
is the length of time τ = T−t between the time of maturity T and the time t at which
the quote was given. The actual dates t and T are not given in the data sets, only their
differences is. For the sake of definiteness, all the quotes are from 1993, and some of
the options expire in 1994. In particular, using sequential plots (like those given by
the function tsplot) would not make much sense in the present situation.

Warning. The values of TAU found in the third column are given in days. In most
applications, they need to be expressed in years before they can be used in the for-
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mulae as values of τ = T −t. This change of units should be done by dividing all the
entries of this column by 252. This is the average number of trading days in 1 year.

5.7.3 The Actual Experiment

For the purposes of this experiment, we wrote two simple R functions, bscall
which computes the price of a European call option from the Black-Scholes for-
mula (9.1), and isig which computes the implied volatility by inverting the same
Black-Scholes formula. Notice that both functions require that the parameter TAU
which stands for the variable τ be given in years, while the third columns of TRGSP
and TSTSP give the numbers of days until maturity. We choose the convention
of 252 trading days per year to convert the number of days in years. In order to
make sure that this function does what it is supposed to do, one can use it with
the arguments SP, KK, TAU, RR, and ISIGMA, and check that one does indeed
recover the last columns of the training TRGSP and testing TSTSP data matrices
respectively.

In order to check that the sixth column is equal to the result of the function
bscall when applied to the first five columns, we compute the range (i.e. the two-
dimensional vector whose entries are the minimum and maximum of the original
vector) of the difference and we check that its entries are equal to 0, at least up to
small rounding errors due to the fact that the Black Scholes formula cannot be inv-
erted exactly, and to the fact that the computation of the implied volatility is merely
the result of a numerical approximation.

> data(TRGSP)
> BSTRG <- bscall(TAU=TRGSP[,3]/252,K=TRGSP[,2],S=TRGSP[,1],

R=TRGSP[,4],SIG=TRGSP[,5])
> range(TRGSP[,6] - BSTRG)
[1] 0 0
> data(TSTSP)
> BSTST <- bscall(TAU=TSTSP[,3]/252,K=TSTSP[,2],S=TSTSP[,1],

R=TSTSP[,4],SIG=TSTSP[,5])
> range(TSTSP[,6] - BSTST)
[1] 0 0

5.7.3.1 Fully Nonparametric Regression

In this first part, we use the function kreg to predict the option prices in the testing
sample TSTSP using as explanatory variables the current price of the underlying
index, the strike price, the time to maturity, and the current value of the short interest
rate. Obviously, we do not use the implied volatility, that would be cheating! In other
words, we use the training data in TRGSP to determine the regression function which
we then use to predict the prices of the options contained in TSTSP. We also compute
the raw sum of square errors which we call SSE1 and a per-option error. We shall
use them later to compare the performance of this four dimensional kernel regression
with the other methods explained above.
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Fully Fledged Kernel. Since the function kreg uses only one bandwidth, we need
to standardize the explanatory variables before running a multidimensional kernel
regression. Also, we take this opportunity to emphasize the modicum of care needed
to standardize a testing sample from the results of the normalization of the train-
ing sample. In other words, we need to standardize the regressor variables using the
means and the standard deviations of the observations of the regressor variables con-
tained in the training sample. This is a typical source of error when one first enters
the business of nonparametric prediction. We follow the steps outlined in Sect. 5.5.2.
Even though we use the function scale to standardize the regressors in the train-
ing sample in one single command, we also compute the means and the standard
deviations of the explanatory variables because we will need them to standardize the
testing sample.

X1 <- cbind(TRGSP[,1],TRGSP[,2],TRGSP[,3],TRGSP[,4])
MEANX1 <- apply(X1,2,mean)
MEANX1
[1] 441.91861365 439.84700000 50.33720000 0.03030124
SDX1 <- apply(X1,2,sd)
SDX1
[1] 6.538843e+00 2.248005e+01 2.532073e+01 8.098422e-04
SX1 <- scale(X1)
apply(SX1,2,mean)
[1] 5.049048e-16 8.992398e-16 -1.141206e-16 -1.491684e-15
apply(SX1,2,var)
[1] 1 1 1 1

We now normalize the entries of the testing sample by using the same normalization
as in the normalization of the training sample. Notice that, for the sake of conve-
nience, the second and third commands use the fact that the training sample is larger
than the testing sample.

XPRED1 <- cbind(TSTSP[,1],TSTSP[,2],TSTSP[,3],TSTSP[,4])
SXPRED1 <- scale(XPRED1,center=MEANX1,scale=SDX1)
apply(SXPRED1,2,mean)
[1] 0.555335926 0.075311219 -0.002338005 0.639329493
apply(SXPRED1,2,var)
[1] 0.2279553 0.9240326 0.8392511 0.1225965

Notice that the columns of the standardized testing sample do not have mean zero
and variance one. This is due to the fact that we have to use the means and standard
deviations of the columns of the training sample if we want to pretend that we are
going to predict the response for the individual elements of the testing sample, one by
one, without assuming that we know the whole sample. Once this standardization is
out of the way, we are ready to run the kernel regression. We use the Gaussian kernel
function by setting the parameter kernel to gaussian in the command below. The
results would be qualitatively the same if we use another kernel function. The choice
of bandwidth is even more delicate than before. Indeed, it is not possible to eye-ball
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this choice by looking at plots of the regression surfaces obtained for different values
of the bandwidth. A possible approach is to use the default value proposed by the
program. This value is derived from mathematical results aiming at the identification
of optimal choices for the bandwidth. Such mathematical results have been proved
in the limit of sample sizes going to infinity. They give specific prescriptions for the
choice of the optimal bandwidth in the univariate case, the multivariate case being
handle by a scaling correction. Another possibility would be to implement a form of
cross-validation. However, for the sake of simplicity, we use the default value. Using
this bandwidth we get:

YPRED1.kreg <- kreg(SX1,TRGSP[,6],xpred=SXPRED1,
kernel=gaussian,b=.05)

YPRED1 <- YPRED1.kreg$ypred
SSE1 <- sum((YPRED1 - TSTSP[,6])ˆ2)
SSE1
[1] 635.652
sqrt(SSE1/length(YPRED1))
[1] 1.127521

Projection Pursuit. The implementation of projection pursuit is simpler because we
do not have to standardize the explanatory variables. As before, we use the option
data from TRGSP as a training sample to which we fit the regression model, which
we then use to predict the prices of the options of the data set TSTSP. As before,
we use as explanatory variables the current price of the underlying index, the strike
price, the time to maturity, and the current value of the short interest rate. And as
before, we compute the sum of square errors which we now call SSE2, as a figure
of merit.

YPRED2.ppr <- ppr(TRGSP[,1:4],TRGSP[,6],nterms=1,max.terms=10)
plot(YPRED2.ppr$gofn,type="l",

main="PPR for the 4 Explanatory Variables")

The plot of YPRED2.ppr$gofn suggests using any integer between 2 and 9 for
the number of terms to include in the pursuit. We choose 2 to be parsimonious, and
we rerun the algorithm accordingly.

XPRED2 <- as.matrix.data.frame(TSTSP[,1:4])
YPRED2 <- predict(YPRED2.ppr,newdata=XPRED2)
SSE2 <- sum((YPRED2 - TSTSP[,6])*(YPRED2 - TSTSP[,6]))
SSE2
[1] 133.9494
sqrt(SSE2/length(YPRED2))
[1] 0.5175895

The above result shows a very significant improvement. It is a clear proof of the
difficulties the kernel has when it has to handle high dimensions. Comparing the two
fully nonparametric methods confirms the fact that the projection pursuit has a better
control of the curse of dimensionality.



316 5 LOCAL AND NONPARAMETRIC REGRESSION

5.7.3.2 Semi-parametric Estimation

The prediction methods used above are based on a brute force approach, using only
the raw data, and no particular knowledge of the specifics of the actual problem at
hand. We now inject some finance into the statistical mix, and as we are about to see,
this is going to take us a long way.

The price of the option is now derived from a prediction of its implied volatility,
by computing the function bscall. Here we follow the market practice which fa-
vors implied volatility over price. However, the thrust of the financial input that we
mentioned above is in the way we predict the implied volatility. Instead of blindly
mining the four dimensional training sample, we use a two dimensional explana-
tory vector made of financially meaningful variables: the time to maturity τ , and the
moneynessM = er(T−t)S/K . As before, r is the short interest rate, S is the current
price of the underlying asset, and K is the strike price of the option. This ratio M
is called the moneyness of the option because it compares the index futures price
er(T−t)S to the strike K . For this reason, the option is said to be in the money when
M > 1, out of the money when M < 1 and at the money when M = 1. Note that,
in the computation of the moneyness M , the time to maturity τ = T − t has to be
expressed in years because the spot interest rate r is quoted annually.

At this stage, it is not important which nonparametric regression we use to predict
the implied volatility from these two explanatory variables. Indeed, in two dimen-
sions, similar figures of merit can be achieved if we choose the smoothing parameters
appropriately. We decided to use the kernel method for the sake of definiteness.
In order to complete the program described above, we first compute the moneyness
for each of the options of the training and testing samples.

TRGM <- exp(TRGSP[,4]*TRGSP[,3]/252)*TRGSP[,1]/TRGSP[,2]
TSTM <- exp(TSTSP[,4]*TSTSP[,3]/252)*TSTSP[,1]/TSTSP[,2]

Next, we play the same standardization game to prepare for the kernel regres-
sion/prediction. Since this is not the first time that we are going through this exercise,
we limit ourselves to giving the R commands.

XX3 <- cbind(TRGSP[,3]/252,TRGM)
MEANXX3 <- apply(XX3,2,mean)
SDXX3 <- apply(XX3,2,sd)
SXX3 <- scale(XX3)
apply(SXX3,2,mean)

TRGM
-1.786882e-17 -1.978569e-15
apply(SXX3,2,sd)

TRGM
1 1

Now that we are done with the standardization of the training sample, we normalize
the testing sample explanatory variables by using the means and standard deviations
computed from the training sample.
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XXPRED3 <- cbind(TSTSP[,3]/252,TSTM)
SXXPRED3 <- scale(XXPRED3,center=MEANXX3,scale=SDXX3)
apply(SXXPRED3,2,mean)

TSTM
-0.002338005 0.085645044
apply(SXXPRED3,2,sd)

TSTM
0.9161065 0.9754558

For the sake of illustration, we give the scatterplots of the normalized regressor vari-
ables in Fig. 5.13. As expected, the points of the training sample cover the region we
expect a standardized bivariate normal sample would cover. On the other hand, it ap-
pears that the options of the testing sample come in three very distinct subgroups ac-
cording to the values of the time to maturity. This should not be too bad of a problem
given the fact that, each point in the testing sample seems to be well surrounded by a
large number of points of the training sample. That will certainly help the kernel re-
gression to do its job. Finally, we compute semi-parametric predictions of the option
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Fig. 5.13. Scatterplots of the standardized explanatory variables in the training sample (left)
and the testing sample (right)
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prices of the testing sample (i.e. the entries in the column CALL in TSTSP) by first
computing the kernel prediction of the implied volatility, and then by plugging these
predictions into the Black-Scholes formula. We compute the sum of square errors as
before, and we call it SSE3. As before, we choose to work with the Gaussian kernel
function, hoping that this will prevent divisions by 0 in our tests, and as before, the
choice of the bandwidth is the crucial difficulty to overcome. Fortunately, the fact
that we are working with a two dimensional regressor vector makes it possible to
visualize the properties of the regression surface. So for the purposes of this project,
we limit ourselves to the simplest method of all: we compare the plots of the regres-
sion surfaces for several values of the bandwidth, and we pick the bandwidth leading
to the most reasonable implied volatility surface. This procedure relies heavily on
our past experiences: it is more of an art form than a quantitative approach, however,
it will be good enough here. To illustrate some of the features leading to our choice,
we reproduce in Fig. 5.14, the regression surfaces computed above a common grid
of points in the (TAU,M)-plane, for three values of the bandwidth. The regression
for the largest of the three bandwidths is too smooth and misses many of the features
of the regression surface visible when the bandwidth is equal to 0.1, while the re-
gression for the smallest of the two bandwidth is too rough, including effects which
are presumably only due to noise. After extensive experimentation with the value of
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Fig. 5.14. Regression of the implied volatility on the time to expiration and the moneyness.
From left to right, kernel regression surfaces for the bandwidths b = 0.01, b = 0.1 and
b = 1.0

the bandwidth, we decided that b = 0.033 was a reasonable choice. According to
the semi-parametric strategy outlined above, once the bandwidth has been chosen,
we predict the implied volatilities of the testing sample by nonparametric regression,
and we plug the predictions so-obtained into the Black-Scholes formula in order to
obtain the semi-parametric predictions of the option prices. Finally, we compute the
sum of square errors as before.

YPRED3.kreg <- kreg(SXX3,TRGSP[,5],xpred=SXXPRED3,
kernel=gaussian,b=0.0032)

ISIGMAPRED <- YPRED3.kreg$ypred
YPRED3 <- bscall(TAU=TSTSP[,3]/252,K=TSTSP[,2],S=TSTSP[,1],

R=TSTSP[,4], SIG=ISIGMAPRED)
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SSE3 <- sum((YPRED3 - TSTSP[,6])ˆ2)
SSE3
[1] 129.5386
sqrt(SSE3/length(YPRED3))
[1] 0.5089964

Next we compare the performance of the different methods used to predict the price
of the (European call) options on the S&P 500, and we comment on the differences
in the results of the various methods.

5.7.4 Numerical Results

We first compare the results of the three methods by comparing the sums of squares
SSE1, SSE2, and SSE3 obtained with our implementations (i.e. for the particular
choices of the smoothing parameters which we made) of the three methods. Obvi-
ously, the semi-parametric method gives much better results.
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Fig. 5.15. Scatterplot of the predicted call prices against the actual prices. Left: 4- dimen-
sional kernel regression. Center: projection pursuit regression. Right: semi-parametric regres-
sion based on the kernel prediction of the implied volatility and the Black-Scholes formula

As a last attempt to compare the predictions given by the three regression proce-
dures, we plot the predicted values against the actual prices of the call options in the
testing sample. The three plots are given in Fig. 5.15. They confirm the conclusions
based on the numerical scores of merit compared earlier: the semi-parametric regres-
sion based on the 2-dimensional kernel gives the best results, and the 4-dimensional
kernel is the worst because the points are scattered further away from the diago-
nal. Also, this plot shows that the kernel underestimates the highly priced options. It
would be interesting to go back to the data and try to explain why.

As mentioned earlier, Problems 5.21 and 5.22 give examples of situations for
which the conclusions are slightly different.
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5.7.4.1 State Price Density

According to the discussion leading to (9.3), we have:

CT,K(t, S) = e−r(T−t)
E{fK(ST )|St = S} = e−r(T−t)

∫
fK(s′)p(s′)ds′

for some density p(s′), where we use the notation fK(x) = (x−K)+ = max{x−
K, 0} for the pay-off function of the European call option. The density p(s′) plays
such an important role that it is given a special name: the state-price density. Its imp-
ortance comes from the fact that it can be used to price any kind of European con-
tingent claim with the same maturity. Indeed, if an option pays the amount f(ST ) at
maturity T , simple arbitrage arguments tell us that its price at time t should be given
by the risk neutral expectation:

e−r(T−t)
E{f(ST )} = e−r(T−t)

∫ ∞

0

f(s′)p(s′) ds′.

Using the fact that:

∂fK(x)

∂K
=

{−1 if K < x
0 if x < K

and
∂2fK(x)

∂K2
= δx(K)

where δx denotes the Dirac delta function at x, and allowing ourselves to interchange
the derivatives and the integration, we get:

∂2CK,T (t, s)

∂K2
= e−r(T−t) ∂2

∂K2

∫
fK(x)p(x) dx

= e−r(T−t)
∫
∂2fK(x)

∂K2
p(x) dx

= e−r(T−t)
∫
δx(K)p(x) dx

= e−r(T−t)p(K).

This shows that all other variables being fixed momentarily, the state price density is
proportional to the second derivative of the call price when viewed as a function of
the strike price, more precisely:

p(K) = er(T−t) ∂
2CK,T (t, s)

∂K2
. (5.19)

We propose to compute the state price density in each of the following cases:

1. S = 445, r = 3%, τ = 21/252,
2. S = 445, r = 3%, τ = 45/252.

In order to avoid to reproduce too large a number of R commands, we summarize
some of the steps in words. First we choose a grid of values of the strike K and the
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Fig. 5.16. Graphs of the estimates of the state price densities (thin line) together with the
corresponding lognormal density of the Black-Scholes theory (thick line). In both cases, we
assumed that the underlying was S = 445 and that the short rate was r = 3%. The left pane
is for options with 21 days to maturity, while the right pane is for options with 45 days to
maturity

underlying S over which we compute the density. We choose a regular grid SEQK
of 1,024 points between K = 400 and K = 500. In each case, we compute the
moneyness with the prescribed values of S, r, and τ , and each of the values of K
in the grid. We then standardize the constant τ and the vector of these values of the
moneyness using the means and standard deviations of the training sample. We put
the result in a matrix called SSPD. Once this is done, we compute the predictions of
the implied volatilities and the corresponding call prices, and finally, we compute the
second derivative, as approximated by the second difference (properly normalized by
the size of the grid step which we called DELTAK).

SPD.kreg <- kreg(SXX1,OTRGSP[,5],xpred=SSPD,
kernel=gaussian,b=.033)

SPDSIGMA <- SPD.kreg$ypred
SPDY <- bscall(TAU=rep(21/252,NP),K=seq(from=400,to=500,

length=NP),S=rep(445,NP),R=rep(.03,NP),SIG=SPDSIGMA)
DENS2 <- diff(SPDY,differences=2)/(DELTAKˆ2)

The plots are given in Fig. 5.16. In each case, we plot of the state price density and
we superimpose the theoretical state price density suggested by the Black-Scholes
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pricing paradigm (as used in our derivation of the Black-Scholes formula). Many in-
teresting facts can be derived from these plots. We mention just a few to illustrate the
interpretation of our results. Let us concentrate on the left plot of Fig. 5.16. For this
maturity of 21 days, the fact that the Black-Scholes density is below the empirical
estimate on the left and right most parts of the graph, implies that the options in the
money (both puts and calls) are underpriced by the Black-Scholes formula. Notice
that this underpricing becomes an overpricing for the longer maturity of 45 days.

APPENDIX: KERNEL DENSITY ESTIMATION & KERNEL REGRESSION

This appendix represents an excursion away from the practical bent of this chapter.
We revisit the topic of density estimation, elucidating its strong connections with the
nonparametric regression methods. We first start with an informal motivation.

The kernel regression is, as any other regression method, a way to estimate the
value of the regression function:

x ↪→ E{Y |X = x}.

Since the above right hand side is an expectation, it can be computed (at least in
theory) as a sum when the distribution of Y is discrete, or as an integral when the
distribution of Y has a density. In this case:

E{Y |X = x} =

∫
yfX=x(y) dy

if we denote by fX=x(y) the conditional density of Y given that X = x. By the def-
inition of conditional probability, the conditional density appearing in this formula
is given by the ratio:

fY |X=x(y) =
f(X,Y )(x, y)

fX(x)

of the joint density f(X,Y ) of X and Y to the (marginal) density fX of X . Conse-
quently, the regression function can be rewritten as:

E{Y |X = x} =

∫
y
f(X,Y )(x, y)

fX(x)
dy =

1

fX(x)

∫
yf(X,Y )(x, y)dy (5.20)

since the denominator (which does not depend upon y) can be pulled out of the inte-
gral. From these formulae it seems reasonable to expect that being able to estimate
densities should lead to regression estimation procedures.

As we stated earlier, the purpose of this appendix is to shed some light on
the intimate relationship between the kernel density estimation method presented
in Chaps. 1 and 3, and the kernel regression method presented in this chapter. The
present discussion is an aside of conceptual interest, and it can be skipped in a first
reading. To set the stage, we come back to the regression setting defined by a sample:
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(x1, y1), . . . . . . , (xn, yn)

and for the sake of simplicity, we assume that the regressor variables are univari-
ate (i.e. p = 1). It should be obvious that the following discussion also applies to
the general case p ≥ 1 without any change. We proceed to the estimation of the
regression function by estimating the two densities entering the formula by the ker-
nel method. First we estimate the density fX(x), and in order to do so we choose a
kernel function K and a bandwidth b > 0. We get:

f̂X(x) =
1

nb

n∑
j=1

K

(
x− xj
b

)
(5.21)

for the kernel estimate of the density fX(x). Next we work on the estimation of
the joint density f(X,Y )(x, y) and we choose a tensor product kernel K̃(x, y) =
K(x)k(y) for some symmetric kernel k in the y variable, and a bandwidth b′ which
can be equal to or different from b, it will not matter in the end. In doing so we get:

∫
yf(X,Y )(x, y)dy =

∫
y

1

nbb′

n∑
j=1

K

(
x− xj
b

)
k

(
y − yj
b′

)
dy

=
1

n2bb′

n∑
j=1

K

(
x− xj
b

)∫
y k

(
y − yj
b′

)
dy (5.22)

and if we compute the integral appearing in the right hand side of (5.22) using the
substitution z = (y − yj)/b

′ we get:

∫
yk

(
y − yj
b′

)
dy =

∫
(b′z + yj)k(z)b

′dz

= b′2
∫
zk(z)dz + b′yj

∫
k(z)dz

= b′yj (5.23)

if we use the facts that
∫
k(z)dz = 1, by definition of a kernel, and

∫
zk(z)dz = 0,

because of our symmetry assumption. Plugging formula (5.23) into formula (5.22)
we get: ∫

yf(X,Y )(x, y)dy =
1

nb

n∑
j=1

yjK

(
x− xj
b

)
(5.24)

Finally, plugging formulae (5.21) and (5.24) into the expression (5.20) defining the
regression function, we obtain:

E{Y |X = x} =

∑n
j=1 yjK

(
x−xj

b

)
∑n

j=1K
(
x−xj

b

) (5.25)
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which is exactly the formula giving the kernel regression estimate. In other words,
the kernel regression is consistent with the notion of kernel density estimation. In
fact, if one agrees to use formula (5.21) as a density estimator, then the definition of
the regression function forces on us formula (5.25) as the only reasonable regression
estimate!!

PROBLEMS

©T Problem 5.1 The National Automobile Dealers Association (NADA) hired a statistician to de-
velop a used car pricer to estimate the price a used car will sell at a dealer auction. NADA has
an extensive data base of auction prices, and the statistician is expected to deliver a program
which, given the Make, Model and Color of a given car, pulls out all the records of sales of
cars of the same Make, Model and Color from the data base, and create a four dimensional
regression model where the response variable is the sale price, and the four explanatory vari-
ables are (1) the model year of the car, (2) the mileage of the car, (3) a score (number between
0 and 1) reporting the general condition of the car, (4) the equipment level of the car (an
integer between 0 and 100 computed from a proprietary algorithm) reporting the extras such
as AC, Automatic Transmission, electric windows, navigation system, . . . .

If the contract of the statistician stipulates that, given the Make, Model and Color, the
price estimate should be computed from the above four explanatory variables by a kernel
regression, what should the first step of the pricer algorithm be?

©T Problem 5.2 The central administration of a multi-campus state university purchased 500
identical cars for its campus operations. Three years later, these cars were sold in a series
of auctions at prices p1, p2, · · · , p500. At the times of the sales, the mileages of these cars
were m1, m2, · · · , m500 respectively. One month later, it is discovered that the car company
from which the fleet of cars were purchased had offered for free a 501-th car at the time of the
original sale, and that this car had been assigned to the ombudsman’s office, and hardly ever
used during the 3 years. The mileage m501 of this car, and all the other mileage figures are
expressed in miles.

1. It is suggested to guess the price that this car will fetch at an auction by using a kernel
regression with a triangular kernel. Given that

m501 = 9, 500 and min
i=1,··· ,500

mi = 41, 000

what is the smallest bandwidth which can be used in order for the computation to be
possible.

2. Assuming that it is eventually decided to use the box kernel instead, and assuming that
the mileages m1, m2, · · · , m500 form a sample uniformly distributed over the interval
[41,000, 52,000], what is the smallest value of the bandwidth for which the expected
number of sold cars entering the computation of the estimate is at least 100?

©T Problem 5.3 The mathematical results which you are asked to prove in this problem were
evidenced numerically in the two problems above. Given a kernel function K and n couples
(x1, y1), . . ., (xn, yn) of real numbers, compute the limits:
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lim
b↘0

ϕb,K(x) and lim
b↗∞

ϕb,K(x)

of the kernel smoother when the bandwidth goes to 0 or ∞.
You can choose one of the four kernel functions given in the text (pick your favorite) or

you can try to give this proof for a general kernel function if you feel comfortable enough.

©T Problem 5.4 Given two functions f and g their convolution f ∗ g is the function defined by the
formula:

[f ∗ g](x) =
∫ +∞

−∞
f(y)g(x− y) dy

1. Use a simple substitution to check that f ∗ g = g ∗ f .
2. Prove that:

Ktriangle = Kbox ∗Kbox

and that:
Kparzen = Ktriangle ∗Kbox.

Recall the definitions of these kernels given in Table 5.1.
3. Use R to plot the four kernel functions given in Table 5.1. Explain your work, and try to

create the plots without using any mathematical formula.

©T Problem 5.5 1. Let K denote a density function in p dimensions, and for each positive num-
ber b > 0 let us set:

Kb(x) = b−pK(
1

b
x), x ∈ R

p.

Now we assume that we have a sample (x1, y1), · · · , (xn, yn) where xi ∈ R
p and yi ∈ R

for i = 1, · · · , n. For any x ∈ R
p, determine the real number m minimizing the function

m ↪→
n∑

i=1

Kb(x− xi)|m− yi|2

and explain how the kernel regression can be viewed as a weighted least squares
regression.

2. We now study the behavior of the kernel estimator when one of the observations moves
away from the data without bound. For the sake of simplicity we shall assume that p = 1.
Fix i ∈ {1, · · · , n} and explain how the regression curve at any given point x ∈ R

changes if
2.1 We replace the measurement (xi, yi) by (xi, yi ± c) and let c → ∞.
2.2 We replace the measurement (xi, yi) by (xi ± c, yi) and let c → ∞.

3. You were asked to develop a nonparametric pricer for call options using the (current)
value S of the underlying asset, the strike κ, the time to maturity τ and the short interest
rate r as explanatory variables. Assuming that you already implemented a nonparametric
kernel regression method with kernel function K, bandwidth b, response variable P (the
price of the option) and these four explanatory variables, how would you respond to the
request for the estimation of the “Deltas” of the options? FYI: the Delta of an option is
the derivative (sensitivity) of the price of the option P with respect to the value S of the
underlying.

©T Problem 5.6 We work with a sample (x1, y1), · · · , (xn, yn) where xi ∈ R
p and yi ∈ R

for i = 1, · · · , n and we assume that k is an integer between 1 and n. We investigate the
non-parametric regression method known as the k-nearest neighbors (k-NN) which, for any
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x ∈ R
p, proposes the value ϕk(x) equal to the average of the responses yi for which the

explanatory vector or variable xi is one of the k nearest neighbors of x when how “near” xi

is of x is given by the Euclidean distance ‖xi − x‖ =

(∑p
j=1 |xi,j − xj |2

)1/2

.

1. Show that the k-NN regression is equal to a weighted sum the values of the response
variable by showing that

ϕk(x) =

n∑
i=1

wi(x)yi

for a specific set of weights wi(x) for which you are expected to give a formula. Compute
these weights and the value of the regression function in the case p = 1, n = 5,

{(xi, yi)}1≤i≤5 is given by {(1, 5), (7, 12), (3, 1), (2, 0), (5, 4)}

for x = 4 and k = 3.
2. Compute

lim
k↘1

ϕ(x) and lim
k↗n

ϕ(x)

and explain in words what happens to the regression curve/surface when k decreases to
1, and when it increases to n.

3. Let us assume that p = 1 and that the values xi form an equidistant regular grid xi =
x0 + iΔx. Give values of k and b > 0 so that, if x is not too close to one of the grid
points, the weights of the k-NN regression and of the kernel regression with the box kernel
and bandwidth b are the same. Recall that the box kernel is the function

K(x) =

{
1/2 if |x| ≤ 1

0 otherwise.

4. Let us now assume n = 100, that the values x1, · · · , xn of the explanatory variable are
uniformly distributed over the interval [41, 52], and that x = 10.5, and that we want to
use a k-NN regression with k = 10. What is the probability that the k-NN regression
gives the average of the values of the response variable corresponding to the values of xi

satisfying xi ≤ 45.

©T Problem 5.7 Figure 5.7 gives the goodness of fit plot of a projection pursuit. Remember that
such a plot gives the relative sum of square errors as a function of the number of ridge func-
tions included in the pursuit. If you had to run projection pursuit on the same data, how many
ridge functions would you include in your projection pursuit? Explain your answer.
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©T Problem 5.8 We consider the function ϕ of three real variables x1, x2 and x3, defined by

x ↪→ ϕ(x) = 8x1(x2 + x3).

for all x = (x1, x2, x3) ∈ R
3

1. Find two three dimensional vectors a1 = (a1,1, a1,2, a1,3), a2 = (a2,1, a2,2, a2,3) so
that the equality

ϕ(x) = ϕ1(a1 · x) + ϕ2(a2 · x)
holds true for all x = (x1, x2, x3) ∈ R

3 if the functions ϕ1 and ϕ2 are defined by

ϕ1(z) = 2z2 and ϕ2(z) = −2z2 for z ∈ R.

2. Let us assume that x1 = (x1,1, x1,2, x1,3), · · · ,xn = (xn,1, xn,2, xn,3) is a set of
n = 512 points in R

3 and that y1, · · · , yn are n real numbers satisfying

yi = 4xi,1(xi,2 + xi,3) + εi, i = 1, · · · , n

where the εi are realizations of n = 512 independent identically distributed Gaussian
random variables with mean 0 and variance 0.04. Assuming further that you are attempt-
ing a projection pursuit regression of the responses yi against the explanatory variables
xi,1, xi,2 and xi,3, sketch the plot of the goodness of fit (gofn) you would get if you were
to do a projection pursuit regression with possible numbers of ridge functions varying
from nterms=1 to max.terms=10. Give the number nterms of ridge functions you
would choose, and explain what kind of ridge functions ϕi you expect the program will
find.

©E ©S ©T Problem 5.9 The goal of this problem is to illustrate one of the most important feature
of the projection pursuit regression: its ability to detect interactions between the regressor
variables. We first show that the function f(x1, x2) = x1x2 is easily written in the form used
by the projection pursuit algorithm.



328 5 LOCAL AND NONPARAMETRIC REGRESSION

1. Determine μ, β1 and β2 so that the identity:

x1x2 = μ+

2∑
j=1

βjφj(a
t
jx)

holds for all xt = [x1, x2] with at
1 = [1, 1], at

2 = [1,−1], φ1(t) = t2 and φ2(t) = −t2.
2. Create data vectors X1 and X2 of length n = 512 and with entries forming independent

samples from the uniform distribution U(−1,+1) over the interval [−1, 1]. Create the
vector Y according to the formula:

Y = X1 ∗X2 + ε,

where ε = {εj}j=1,...,512 is a Gaussian white noise (i.e. a sequence of independent
identically distributed normal random variables with mean zero) with standard deviation
σ = 0.2. Give a scatterplot of Y against X1, and of Y against X2.

3. Run the projection pursuit algorithm to regress Y on X1 and X2 with a number of
terms between min.term= 2 and max.term= 3. Produce scatterplots to visualize
the graphs of the functions φj(t) found by the algorithm (if in doubt, read the on line
help file for the function ppt). Does that fit with the results of the computations done in
question 1 above? Finally, do a scatterplot of Y versus Ŷ and another scatterplot of the
residuals versus Ŷ and comment.
NB: recall that we use the notation t to denote the transpose of a vector or a matrix.

©T Problem 5.10 1. Let us assume that x1 = (x1,1, x1,2), · · · ,xn = (xn,1, xn,2) is a set of
n = 512 points in R

2, and that y1, · · · , yn are observations of n real random variables
Y1, · · · , Yn satisfying

Yi = 6xi,1xi,2 − 3x2
i,1 + εi

where the εi are n independent identically distributed Gaussian random variables with
mean 0 and variance 0.04. Let us also assume that an operator unaware of the relation-
ship between the xi’s and the yi’s performs a projection pursuit regression of the yi’s
against the xi’s. What do you expect the order of the model (i.e. the number of ridge
functions used), the direction vectors aj and the ridge functions ϕj will be? Explain your
answers.

2. For this second question, we assume that the relationship between the xi’s and the yi’s
is of the form

yi =
1

εi
e−3x2

i,1x
6xi,1

i,2

where the εi’s are realizations of n independent identically distributed random variables.
Propose a transformation of the data and a distribution for the εi such that the trans-
formed problem is equivalent to that of question 1.

©T Problem 5.11 1. Let us assume that x1 = (x1,1, x1,2), · · · ,xn = (xn,1, xn,2) is a set of
n = 512 points in R

2, and that y1, · · · , yn are n real numbers satisfying

yi = 4xi,1xi,2 + εi, i = 1, · · · , n

where the εi are n independent identically distributed Gaussian random variables with
mean 0 and variance 0.04. Let us also assume that an operator unaware of the relation-
ship between the xi’s and the yi’s performs a projection pursuit regression of the yi’s
against the xi’s. What do you expect the order of the model (i.e. the number of ridge
functions used), the direction vectors aj and the ridge functions ϕj will be? Explain your
answers.
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2. For this second question, we assume that the relationship between the xi’s and the yi’s
is of the form

yi = 4xi,1xi,2εi, i = 1, · · · , n
where the εi’s are n independent identically distributed random variables. We now
assume that the operator can only perform linear regressions. How should the explana-
tory and response variables be transformed in order to rewrite the problem as a linear
regression, and what should the common distribution of the εi’s be for the least squares
estimates of the parameters of the transformed problem to be maximum likelihood esti-
mators?

©E Problem 5.12 The data set GEYSER gives the characteristics of 222 eruptions of the “Old
Faithful Geyser” during August 1978 and 1979. The first column gives the duration (in min-
utes) of the eruption and the second column gives the time until the following eruption (in
minutes). Make sure that the R object you use has 222 rows and 2 columns.

1. Perform a least squares linear regression of the second column on the first and assess the
significance (or lack thereof) of the regression. Give an interpretation to your results.

2. Perform several kernel regressions (say 5) using the normal kernel with ksmooth and
varying values for the bandwidth in order to see the two extreme regimes (very small
bandwidths and very large bandwidths) discussed in the text. Choose the value of the
bandwidth which you find most reasonable, and compare the resulting regression curve
to the result of part 1.

©E Problem 5.13 Create a vector TIME containing the integers ranging from 1 to the number of
entries in the vector SHIP.

1. Compute the least squares regression line and the least absolute deviations regression
line of SHIP versus TIME and superimpose these two lines onto the scatterplot of TIME
and SHIP. Compare the ways in which these lines account for the upward trend in the
data and explain the differences.

2. The purpose of this question is to fit a more general polynomial (i.e. of degree possibly
greater than 1) to the SHIP data. Perform polynomial regressions of degrees 2, 4, 6, and
8 successively, plot the results, and choose the value of the degree which seems the most
reasonable.

3. The purpose of this question is to use natural splines to smooth the data SHIP. Vary the
number of degrees of freedom (i.e. the parameter df). Use the values 2, 6, 10, 14 and
18 for the number of degrees of freedom and for each of them fit a natural spline to the
data. Explain how the smoothed curve changes with the value of the number of degrees
of freedom and choose the one which seems the most reasonable.

4. Finally we smooth the SHIP data using a kernel smoother ksmooth with a normal
kernel function. Use the values 1, 5, 20, 50 and 125 for the bandwidth, and for each
of these values, superimpose the graph of the kernel scatterplot smoother on the ac-
tual scatterplot of the original data. Explain how the smoothed curve changes with the
bandwidth.

©E Problem 5.14 This problem is concerned with the data set VINEYARD.

1. Superimpose (on the same plot) the scatterplot of NB and LUGS90, the graph of the
polynomial regression of LUGS90 on NB with a polynomial of degree 3, and the graph of
the polynomial regression (still of degree 3) of the column of 50 measurements obtained
by removing the first row and the last row from LUGS90 on the column of 50 values
obtained by removing the first row and the last row from NB.
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2. Redo the same thing with a natural spline regression with degree of freedom df = 5.
3. Again, redo the same thing with smoothing spline regression.
4. Still redo the same thing, but with the kernel regression smooth with normal kernel

function and a bandwidth equal to 5.
5. Compare the results obtained in questions 1 and 2 to the results obtained in questions 3

and 4. Explain which features of the regression algorithms are responsible for the differ-
ences.
Among the other regression methods seen in the text, which methods would give results of
the type obtained in questions 1 and 2 and which methods would give results of the type
obtained in question 3 and 4?

©E Problem 5.15 The purpose of this problem is to analyze the data set ROCK with the goal to
illustrate the inner workings of the R implementation of the projection pursuit regression alg-
orithm. The data consist of 48 measurements on 4 cross-sections of each of 12 oil-bearing
rocks. Our goal is to predict the permeability y from the other 3 measurements (the total area,
the total perimeter and a measure of roundness of the pores in the rock cross section).

1. Run the projection pursuit algorithm to perform such a prediction.
2. Assess the quality of the fit by computing the sum of square residuals.
3. Produce the plots of the first three additive terms in the projection pursuit regression

formula and give the 2-D scatterplots of the response against the fitted values and the
residuals respectively.

©E Problem 5.16 The purpose of this problem is to analyze some of the features of the basket-
ball data introduced in Problem 4.9. The first two questions are an attempt to evaluate the
predictive value of a variable (age in the present situation).

1. Use projection pursuit to regress points against height, minutes and age. Redo
the regression without using the variable age and compare with the previous result.

2. Similarly, use projection pursuit regression to explain the number of assists per game
as given by the variable assists in terms of the explanatory variables height,
minutes and age. Compare with the result obtained without using the predictor vari-
able age.

3. Choose (at random if possible) 10 players, create a new data set, say BTST (for Basket-
ball TeST sample), with these 10 rows and another data set, say BTRG (for Basketball
TRaininG sample) with the remaining 86 players. Keep only the columns corresponding
to the variables height, minutes and points. Use projection pursuit regression to
fit a model to the training sample BTRG and use the coefficients of the model to predict the
values of the variable points for the values of the variables height and minutes of
the 10 players used to create the test sample BTST. Compute and note the residual sum
of squares for these 10 predictions

©E Problem 5.17 Given the names X1, X2, X3 and Y of the four columns of the data set MIND, the
goal is to regress the last variable Y against the first three columns using projection pursuit.

1. Determine the best order for the model.

2. Run a model of the order determined in question 1 and give the (directional) unit vectors
found by the program. Comment.
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3. Plot the functions ϕ found by the program. Can you make a guess at the functional
dependence of Y upon X1. X2 and X3?

©E Problem 5.18 The goal of this problem is to mimic the volatility ratio prediction experiment
described in the text in order to predict the afternoon value of the volatility indicator. The data
needed for this problem are contained in the data matrices MORN.mat and AFT.mat used
in the text.

1. Give the two dimensional scatterplot of the morning volatility and arrival rate indicators.
Plot a three-dimensional scatter plot of these two explanatory variables together with the
afternoon volatility indicator, plot the result of the least squares linear regression, and
explain the results by identifying overly influential data points.

2. Plot the regression surfaces obtained by kernel regression (use the kernel function
gaussian and three bandwidths which you will choose carefully after standardizing
the explanatory variables), and confirm the explanations given in question 1 above.

3. Remove the excessively influential measurements identified earlier, recompute the ker-
nel regression on the remaining data, plot the new regression surface, and compute the
residual sum of squares.

4. Perform a projection pursuit analysis of the reduced data set, plot the projection pursuit
regression surface, compute the new residual sum of squares and compare them both with
the results obtained in question 3 above.

©E Problem 5.19 The goal of this problem is to demonstrate the use of principal components
analysis in the selection of a minimal informative set of explanatory variables. We use data
sets SMORN.mat and SAFT.mat included in the library Rsafd.

1. Use the kernel method to regress the afternoon volatility ratio (third column of the data
matrix SAFT.mat) against the six variables of SMORN.mat, and compute the sum of
square errors. (NB: explain your bandwidth choice).

2. Perform a principal component analysis of the SMORN data set and compute the vector
of the daily values of the two most important components PC1 and PC2. Use the kernel
method to regress the afternoon volatility ratio against PC1 and PC2, and compute the
sum of square errors. Again, you will need to justify your choice of bandwidth. Compare
with the sum of square errors found in question 1, the sum of square errors found in the
experiment with the kernel method described in the text. Comment.

©E Problem 5.20 This problem is a sequel to Problem 5.19. It uses the data contained in the ma-
trices SMORN.mat and SAFT.mat containing the six indicators computed for the September
S&P 500 futures contract from the mornings and afternoons transactions of the period ranging
from June 1, 1998 to September 5, 1998.

1. Use the regression function computed with the kernel regression of the afternoon volatil-
ity ratio of the modified June contract data (fourth column of SAFT.mat) against the
morning volatility ratio and rate of arrival indicators of the same modified June contract
data (fourth and fifth columns of SMORN.mat) to predict the afternoon volatility ratios
given in the fourth column of SAFT.mat from the morning volatility ratio and rate of
arrival indicators of SMORN.mat. Compute the sum of square errors.
In other words, use the June contract data as training sample and the September contract
data as testing sample.

2. Redo the same thing using as explanatory variables the first two (linear combinations)
principal components of the six indicators found in the PCA analysis of the June matrix
data done in Problem 5.19. Comment.
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©E Problem 5.21 The goal of this problem is to perform the option pricing analysis described in
the text on a different data set. We consider a training sample of 5,000 trades of European call
options on the S&P 500 index which took place in 1993, and we consider a testing sample of
500 different trades which took place the same year. The data are contained in the data sets
TRGSP and TSTSP included in the library Rsafd.

1. Perform the analysis described in the text and compute the three figures of merit, espe-
cially the squared error per option.

2. Compare the performances of the three prediction procedures on the testing sample. Com-
ment on the differences with the results reported in the text. Hint: when dealing with the
semiparametric method, use the scatterplots of the explanatory variables as a guide.

©E Problem 5.22 Like Problem 5.21 above, the present problem aims at the implementation on a
different data set, of the option pricing analysis described in the text. We are still considering
European call options on the S&P 500 index, but the data are more recent since we are using
quotes from the year 2000. Also, the samples are larger and more importantly, selected at
random. The data are contained in the data sets TRGSP2000 and TSTSP2000 included in
the library Rsafd.

1. Perform the analysis described in the text and compute the three figures of merit, espe-
cially the squared error per option.

2. Compare the performances of the three prediction procedures on the testing sample. Com-
ment on the differences with the results reported in the text, and the results of the experi-
ment conducted in Problem 5.21 above. As before, use the scatterplots of the explanatory
variables as a guide to understand and possibly explain the differences.

©E Problem 5.23 This problem illustrates the use of temperature data, and especially the numbers
of Heating Degree Days and the numbers of Cooling Degree Days (HDD and CDD for short),
to predict the price of a commodity. The idea for this problem has its origin in a claim found
in the introductory article written by Geoffrey Considine for the Weather Resource Center of
the Chicago Mercantile Exchange website.

We first describe the data. They are contained in the data set CORNTEMP included in the
library Rsafd. It is a 642 × 3 – data frame of numbers. Each row corresponds to a month,
starting from January 1960 (the first row), and ending December 1998 (the last row). The first
column gives the official price a farmer could get for a bushel of corn in Iowa that month.
This variable is called MCorn for Monthly Corn price. The second column gives the monthly
average heating degree days in Des Moines as measured at the meteorological station of the
airport. Heating Degree Days (HDD’s) and Cooling Degree Days (CDD’s) are discussed in
details in Chap. 6. For the purposes of the present problem it is enough to know that the higher
the temperature, the larger the number of CDD’s and the smaller the number of HDD’s, and
the cooler the temperature, the larger the number of HDD’s and the smaller the number of
CDD’s. So we expect large numbers of CDD’s and small numbers of HDD’s in the summer
months, and correspondingly, large numbers of HDD’s and small numbers of CDD’s in the
winter months. For each month of the period under consideration, the entry of the second
column of the data matrix was computed by summing up the HDD’s of the month in question,
and dividing the total by the number of days in the month. This variable is called MDMHDD
for Monthly Des Moines HDD. The third column gives the monthly CDD averages for Des
Moines. Its entries were computed in a similar way. This variable is called MDMCDD.

The goal of the problem is to predict the price of corn offered to Iowa farmers in November
(resp. December) each year, from the the knowledge of temperatures in Des Moines during the



Problems 333

summer of that same year (or possibly previous years) as captured by the average numbers of
CDD’s and HDD’s.

1. For each year between 1960 and 1998,
• Extract the November price of corn in Iowa;
• Choose and compute regressor variables involving the values of MCorn, MDMHDD

and MDMCDD up to (and possibly including) July of the same year but not later. You
are allowed to use up to four variables (but remember that, as we repeated over and
over, the smaller this number the better).

Once this is done, regress the November price of corn in Iowa on the regressor variables
you chose according to the rules of the second item above. You are expected to perform
three regressions, at least one of them being linear, and at least one of them being non-
parametric. For each of these regressions, you need to give the list of the steps you take,
and the parameters you use, so that your results can be reproduced. Also, in each case
you will compute the proportion of the variance of the response variable explained by the
regression.

2. Same question as above, replacing the November price of corn by the December price,
and the July limit by August.

©E Problem 5.24 The data to be used for this problem are contained in the data frame PPRICE
for which each row corresponds to a particular date.

� The first column contains the values of a variable named GasSpot which gives the spot
price of natural gas on that date.

� The second column contains the values of a variable named SDTemp which gives the
average temperature in San Diego over the 31 days preceding the date in question.

� The third column contains the values of a variable named PPower which gives the av-
erage over the 5 days preceding the date in question, of the spot price of firm on peak
electric power at the Palo Verde station.

� Finally, the fourth column contains the values of a variable named FPower which gives
the average over the 2 weeks following the date in question, of the spot price of firm on
peak electric power at the Palo Verde station.

Form a data frame TRG with the first 250 rows of PPRICE. The entries of TRG correspond
to the period from 2/4/1999 to 2/3/2000. You shall also need to form a data frame TST with
the last 80 rows of PPRICE. The entries of TST correspond to the period from 7/13/2001 to
11/9/2001. We avoid the period in between because of the extreme volatility of the natural gas
and power prices. This does not mean that we are not interested in studying periods of high
volatility, quite the contrary. It is merely because the economic fundamentals were not the only
driving force during this crisis period.
The goal of the problem is to predict the values of the average price of (firm on peak) electric
power over the next 2 weeks from past values of explanatory variables such as the weather (as
quantified by the average temperature in San Diego), the price of natural gas, and possibly
past values of the price of electricity at the same location. We use the data in TRG as a training
sample to fit a regression model, and we compute the predictions given by such a model for
the data in the testing sample TST.
Warning. The variable PPower should not be used in the first four questions. Moreover, for
all the predictions considered below, the figure of merit should be the square root of the mean
squared error.
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1. Fit a least squares linear regression model for FPower against GasSpot and SDTemp
using the data in TRG, use this model to predict the values of FPower in TST from the
corresponding values of the explanatory variables, and compute the figure of merit.

2. Same question with least absolute deviations linear regression instead.
3. Same question using projection pursuit. Explain your work.
4. Same question using kernel regression. Again make sure that you explain all the steps you

take, and justify your choice of kernel function and bandwidth.
5. Fit a least squares linear regression model for FPower against GasSpot, SDTemp and

PPower using the data in TRG, as before, use the fitted model to predict the values of
FPower in TST from the corresponding values of the three explanatory variables, and
compute the figure of merit.

6. Same question with least absolute deviations linear regression instead.
7. Same question using projection pursuit.
8. Compare the numerical results obtained with the various methods, and explain why they

could have been expected.

©E Problem 5.25 The data to be used in this problem are contained in the data frame CRUDE
containing a numerical matrix with 3,325 rows and 12 columns, and the numeric vector COma
of length 3,325.

In both data structures, each row corresponds to a date, the first one being 4/18/1989,
and the last one being 8/12/2002. Each row of the vector COma contains the average of the
crude oil spot price over the period of 5 days starting on (and including) the date indexing
the row. Each row of the matrix CRUDE gives the prices of the 12 futures contracts of crude
oil as traded the day before. Form a data frame TRGCRUDE and a vector TRGCOma with the
first 2,500 rows of CRUDE and COma respectively. You shall also need to form a data frame
TSTCRUDE and a vector TSTCOma with the last 825 rows of CRUDE and COma respectively.

The goal is to predict the values of the average spot price over the next 5 days from the
prices of the crude oil futures contracts traded the day before, by fitting a regression model
to the training data contained in the data sets TRGxxx, and using the model to compute
predictions for the values of the response in the testing sample TSTCOma.
Warning. For all the predictions considered in this problem, the figure of merit should be
the square root of the mean squared error. It is very important that you explain your work in
detail. In particular, explain your choices for the order of the models, the kernel functions,
and the bandwidths you use.

1. Fit a least squares linear regression model for COma against the 12 explanatory variables
given by the prices of the futures contracts the day before using the data in TRGCRUDE
and TRGCOma, use this model to predict the values of COma in TSTCOma from the cor-
responding values of the explanatory variables, and compute the figure of merit.

2. Fit a projection pursuit regression model for COma against the 12 explanatory variables
given by the prices of the futures contracts the day before using the data in TRGCRUDE
and TRGCOma, use this model to predict the values of COma in TSTCOma from the cor-
responding values of the explanatory variables, and compute the figure of merit.

3. Perform the PCA of the data in TRGCRUDE, plot the first four loadings, give the propor-
tions of the variance they explain, and compute the first two principal components.

4. Fit a one dimensional kernel regression model for COma against the first principal com-
ponent using the data in TRGCRUDE and TRGCOma, use this model to predict the values
of COma in TSTCOma from the corresponding values of the explanatory variables, and
compute the figure of merit.
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5. Fit a two dimensional kernel regression model for COma against the first two principal
components using the data in TRGCRUDE and TRGCOma, use this model to predict the
values of COma in TSTCOma from the corresponding values of the explanatory variables,
and compute the figure of merit.

6. Compare the numerical results obtained with the various methods, and explain why they
could have been expected.

©T Problem 5.26 Spread options are popular financial instruments. They are ubiquitous in the
commodity markets. Some of the most popular spread options are traded as spark spread,
crack spread, and calendar spread options. Typically, a spread option is written on the spread
(the difference) between two underlying prices or indexes. For spark spread option, the und-
erlyings are electricity and natural gas. Natural gas is widely used to generate electricity, so
it is natural to expect that electricity and natural gas prices are highly correlated. For these
reasons, the spark spread option is a useful instrument for hedging the risks of electricity
generation.

Assume T is the maturity time of the option. The electricity price at maturity is XT , and
the natural gas price at maturity is YT . Then the payoff of a zero-strike spread option is
max(XT −αYT , 0) where α is a pre-determined factor (called Heat Rate in the case of spark
spread options) specified in the contract. For the sake of definiteness, we will use α = 10 in
this problem. On any given day, say today, the factors affecting spread option prices are:

• The current electricity price x;
• The current price of natural gas, say y;
• The time to maturity T .

In this problem, we assume zero interest rate, i.e. r = 0. We use the data contained in the two
R objects TRGSS and TSTSS. These two data matrices are intended for training and testing
purposes respectively. In the data files, each row corresponds to one trading day. Each data
file has eight columns. The first two columns give the electricity and natural gas prices on that
day. The next six columns give prices of zero-strike options with times to maturity 2 months,
4 months, 6 months, 8 months, 10 months, and 12 months respectively.

1. Fit a regression model to the option prices in the training sample TRGSS. Use as exp-
lanatory variables the current prices of the two underlying assets and the time to maturity.
Use this regression model to predict the option prices in the test sample TSTSS and
compute the sum of squared errors as figure of merit. Implement three different regression
methods: linear regression, kernel regression and projection pursuit. For each of them
explain in detail all the steps you take, compute the figure or merit, compare the results
and comment.

2. We assume that at maturity, XT and YT are log-normal random variables, more precisely,
exponentials of jointly Gaussian random variables with standard deviations σ1, σ2 and
Pearson correlation coefficient ρ. In such a situation, the option price is given by the
following Margrabe formula

S(x, y, T ) = xΦ(d+)− αyΦ(d−)

d± =
ln( x

αy
)± σ2

2
T

σ
√
T

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2

(5.26)

where we use the notation Φ for the cumulative distribution function of the standard
normal (Gaussian) distribution. In real life, electricity and natural gas prices do not
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necessarily have the joint distribution of correlated log-normal random variables. We
introduce the notion of implied correlation to account for this fact. It is defined in analogy
with the implied volatility of options on single-underlying interests. Specifically, for a
given option quoted on the market, and assuming that all the other parameters x, y, T ,
σ1, and σ2 are known and fixed, it is defined as the value of the parameter ρ such that
the price given by Margrabe formula equals the market price of the option. The implied
correlation is a popular method to quote spread option prices.
For the purpose of this problem, assume that σ1 = 0.6 and σ2 = 0.3. The implied
correlation can be calculated in the following way:
(i) For each option price, assuming that the values of x, y, T and α are known, the

unique value of the effective volatility σ appearing in Margrabe’s formula can be
calculated by inverting the Black-Scholes type formula in the same way we compute
the implied volatility of a standard European call option. Compute these values for
all the options in the traning and testing samples. You can use the Rsafd function
isig used in the text;

(ii) Solve for ρ in the formula σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2 and use the solution to com-
pute for each of the options in the training and testing samples the implied correla-
tion of the option.

Fit a regression model to the implied correlation calculated from the data in the training
sample TRGSS. Use as explanatory variables the current prices of the two underlying
interests and the time to maturity. Predict the implied correlation for each option in the
test sample TSTSS, and from this implied correlation, compute the option price using
Margrabe formular. As before, use successively a linear regression, a kernel regression
and a projection pursuit regression explaining in detail all the steps you take. Compare
the results to the results of the previous question and comment.

©E Problem 5.27 The data set SUBSP to be used for this problem is a single column containing
1,000 rows giving the daily returns on a sub-index of the S&P 500 index (the Electronic
Equipment subindex, to be specific) during the period beginning January 1993 and ending
December 31, 1996. In other words, the first row gives the closing on January 4, 1993, the
second row the closing on January 5, 1993 . . . . . . and finally the last row contains the values
of the subindex at the closing bell on Tuesday December 31, 1996. The markets are open
approximately 250 days each calendar year so that SUBSP contains 4 years worth of daily
quotes.

The goal is to produce a forecasting for the future changes in the index. We shall use the
first 3 years for training of our prediction system and we shall test them on the last year.

1. Construct a kernel regression using the first 750 daily values of the sub-index to pre-
dict the 5-day move in the future (i.e. the variable which on day I has the value
SUBSP[I+5]-SUBSP[I]) using only the past changes over the last day, the last week,
the last 3 weeks and the last 12 weeks (i.e. the variables which on day I have the values
SUBSP[I]-SUBSP[I-1], SUBSP[I]-SUBSP[I-5], SUBSP[I]-SUBSP[I-15]
and SUBSP[I]-SUBSP[I-60]). Use this kernel regression model to predict the next
245 values of the 5 day increment in the index (i.e. the same response variable SUBSP
[I+5]-SUBSP[I] for I=751,....,995) and compute the sum of the squares of the
errors made.

2. Compute the same sum of square errors using now the latest value of the 5-day increment
available (i.e. SUBSP[I]-SUBSP[I-5]) instead of the kernel prediction and compare
to the result of question 1. Any comment?
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©E Problem 5.28 The data needed for this problem are contained in the data frames CO2TRG and
CO2TST. CO2TRG contains information on the European call options traded in 2008 on EUA
futures contracts (EUA stands for European Union Emission). Each row corresponds to one
transaction. The first column gives the volume of the transaction (i.e. the number of options
transacted at once), the second column gives the value of the underlying futures contract on
which the option is written, the third column gives the time to maturity in years, the fourth
column the strike of the option, and the last column gives the actual price at which the option
was bought or sold. The data frame CO2TST contains the same information for the European
call options transacted in 2009.

For each of the following questions, you are expected to use the data contained in CO2TRG
as a training sample and the data contained in CO2TST as a testing sample, very much in the
spirit of the discussion of nonparametric option pricing of Sect. 5.7 of the text.

1. Use CO2TRG to build a projection pursuit model (you will need to explain which exp-
lanatory variables you choose to use), and predict the prices of the options in CO2TST
without using the fifth column of CO2TST. Compute the mean square error per option
associated with your model.

2. Use CO2TRG to build a kernel regression model and predict the prices of the options
in CO2TST without using the fifth column of CO2TST. You need to explain which ex-
planatory variables you choose, how you compute them in order to include them in the
model, and how you choose the bandwidth(s). Compute the mean square error per option
associated with your model

3. Compare the numerical performances of the two models and explain why you think they
are what they are.

©E Problem 5.29 This problem uses the timeSeries Options.ts contained in the library Rsafd.
For each day of the period ranging from January 4, 1996 to December 12, 1999, its last col-
umn gives the value of the VIX, while each of the 26 consecutive pairs of columns comprising
the 52 first columns, gives the log-moneyness and the price on that day, of an option on the
S&P500. These options have the same maturity which was chosen to match the maturity used
to compute the VIX index. Negative log-moneyness corresponds to put options, positive val-
ues of the log-moneyness to call options. The goal of the problem is to reverse engineer by
regression, the construction of the VIX index as a weighted average of call and put prices with
weights depending upon the log-moneyness.

1. Construct a matrix of explanatory variables with N = 1,000 rows and p = 6 columns,
say X such that the entries of X[,1] give the prices of the options whose log-moneyness
are closest to 1, X[,2] the prices of the options whose log-moneyness are closest to 2,
X[,3] to 3, X[,4] to −1, X[,5] to −2 and finally X[,6] to −3.

2. Regress the VIX index against the 6 explanatory variables comprising X. Use first a lin-
ear regression and then a projection pursuit regression. In each case, compute the mean
squared error, compare the results of the two regressions and comment.

3. Run a kernel regression and compare the results.
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NOTES & COMPLEMENTS

The use of natural splines was proposed as a transition step from the set of fully parametric
regression procedures presented in the previous chapter into a set of local regression methods
leading to the nonparametric procedures discussed in this chapter. Besides natural splines, R
also offers an implementation of B-splines . See the classic text by de Boor [26] for details
on the zoology of the various families of splines. We recommend using these splines as an in-
vestigation tool, possibly as a coding device in additive models, but we encourage the user to
be extremely careful using the results of spline regressions for prediction purposes, too many
pitfalls are to be avoided. The rationale behind the definition of the smoothing splines is com-
pletely different from the typical search for a regression function in a parametric family. The
fact that the argument of the minimization of the penalty function used to defined smoothing
splines is indeed a spline is highly nontrivial. It is a result of Kimberdoff and Whaba that the
solution of this optimization problem is in fact a spline of order m+ 1.

The scatterplot smoothers described in the chapter have been chosen to illustrate the no-
tion of locality in regression. Their main role is to prepare for the introduction of the multi-
variate nonparametric methods which occupy the rest of the chapter.

The so-called bootstrap method of estimation of the instantaneous forward-rate curve was
introduced by Fama and Biss in [34]. Details on the implementations used by the Japanese and
US Central Banks to produce their yield curves can be found in the comprehensive document
[37] made available by the Bank of International Settlements.

Regression methods based on basis or feature function expansions are extremely powerful,
especially when fast numerical algorithms are available for the computations of the decom-
positions onto the basis or feature functions. This is the case for Fourier expansions based on
the famous Fast Fourier Transform (FFT) algorithm, wavelet expansions and wavelet packet
expansions. Readers interested in applications of wavelets to statistics and finance are referred
to the books of Wickerhaüser [97], Bruce and Gao [12], Carmona, Hwang, and Torresani [14],
Gençay, F. Selçuk, and B. Whitcher [39], and Nason [71] for example. As explained in the
text, while the statistical properties of regressions based on expansions do suffer from the
curse of dimensionality, the complexity of their implementations is essentially immune, exc-
ept possibly for the evaluation of the feature/basis functions ϕj , to increase in the dimension
of the explanatory variable x. This is one of the reasons why these methods were combined
with Monte Carlo methods to compute prices of American options on large baskets of under-
lying instruments. The resulting pricing algorithms are widely used in the financial industry.
They are known under the name of Longstaff Schwarz algorithm because of the seminal paper
[62], which followed an attempt in the same spirit by Van Roy and Tsitsiklis [83].

Multi-dimensional kernel regression is very appealing because of the simplicity and clar-
ity of the principle on which it is based: the algorithm mines the data to find records of the
explanatory (vector) variable which are similar to the point at which the regression is being
computed, and it returns a weighted average of the responses according the weights being pro-
portional to the measures of similarities. Rigorous mathematical results can be proven on the
desirable properties of this regression method. In particular optimality of the kernel function
and of the bandwidth choices can be proven, but these results are unfortunately asymptotic
in nature, i.e. valid only in the limit n → ∞ of large sample sizes. Despite the simplicity of
the rationale behind the kernel method, the mathematical proofs remain very technical. They
have to deal with a subtle balance between the errors due to the bias and the variance of the
estimator. Indeed, sampling from the conditional distribution of the response for neighboring
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values of the explanatory variable introduces a bias which, contrary to the case of the para-
metric methods seen in the previous chapter, cannot be avoided in the present situation. The
reader interested in the mathematical analysis of the kernel regression as well as other non-
parametric regression methods is referred to the book of Haerdle [43] and Hastie, Tibshirani,
and Friedman [45].

The projection pursuit algorithm was originally proposed by Friedman and Stuetze in
1981 in a short article in the Journal of the American Statistical Association. The implemen-
tation of the general idea of projection pursuit is not limited to regression problems. It has
seen applications to density estimation, classification and pattern recognition problems. More
recently, a variation on the same idea was re-discovered, and it gained a lot of attention in the
signal processing and image analysis communities: this new flavor of projection pursuit was
proposed by Mallat and Zhang. It was called matching pursuit, but the idea remains the same.
We limited our discussion to projection pursuit regression as it is implemented in R.

Neural networks were very popular in the late 1980s, especially in statistical pattern recog-
nition circles. The R library nnet contributed by Venables and Ripley contains an implemen-
tation of the so-called feed-forward neural networks. See Sect. 11.4 of their book [94]. For
the sake of simplicity they restrict their discussion to the case of one single hidden layer. For-
mally, such a regression/prediction procedure models the dependence of the response variable
y upon the explanatory variables x by a function of the form:

y ≈ ϕweights(x) = φout

(
α+

p∑
j=1

win,out,jxj +
nbunits∑

j=1

w2,jφin

(
αj +

p∑

=1

w1,
x


))

(5.27)

which is best understood in the light of the following comments:

• The numbers αk play the roles played by the intercepts in linear regression. As in the
case of linear regression, they can be subsumed by introducing a dummy input unit, which
contains the number 1 irrespective of the observation, and adding weights for the outputs
of this unit;

• The activation functions φout and φin are usually the same (typically the logistic function)
but it happens quite often that the output activation φout is chosen to be linear;

• The p weights win,out,j are used for the direct links between the input units and the output
units;

• The p weights w1,
 are used for the links between the input units and the units in the
hidden layer while the weights w2,j are used for the links between the units in the hidden
layer and the output unit.

A neural network of the type given by formula (5.27) is fit to the data (x1, y1), . . ., (xn, yn) by
choosing the number of units in the hidden layer, the type of activation functions and possible
direct links and most importantly by choosing the weights. This choice is usually made by
solving the optimization problem:

arg min
weights

n∑
i=1

|yi − ϕweights(xi)|2. (5.28)

In other words, for each possible choice of a set of weights we compute the fitted values
ϕweights(xi) of all the observations in the training sample, and the figure of merit given in
formula (5.28) for this set of weights is the sum of the square discrepancies with the actual
observed values yi’s. The optimal set of weights should minimize this sum of square errors.
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Unfortunately, as experience shows, this minimization problem is very difficult because of the
existence of many local minima and many of which are not satisfactory because they lead to
poor predictions.

Because of the delicate optimization behind the fit of a neural net to data, implementations
are difficult to come by. Venables and Ripley provide a function nnet to train a feed-forward
one layer neural networks. A generic call to this function should look like:

> x.nnet <- nnet(X,Y,size=NB,Wts=W0,rang=R,linout=B,
skip=BB,maxit=MAXIT)

where the parameters have the following meaning.

• X is the n× p design matrix, one row per observation in the training sample (whose size
is denoted by n) and one column per explanatory variable;

• Y is the n× 1 vector of the values of the response variable in the training sample;
• size gives the number of units in the hidden layer;
• Wts is the optional set of weights used to initialize the optimization;
• When the argument Wts is missing, the optimization procedure is initialized with random

weights in the range [−R,+R] where the number R is given as the parameter rang.
• linout is a boolean variable which, when set to TRUE, will force the output activation

function φout to be linear or affine;
• skip is a boolean variable which when set to TRUE will force the existence of direct

links from the input units to the output unit(s).

We found neural network regression difficult to use because of the difficulties in the choice of
network and the search for parameters, and we chose not to discuss it in the text because of its
poor performance compared to the other methods presented in the book. The advent of cheap
fast computer with large memory prompted a new wave of interest in neural network among
the machine learning community. The use of new forms of neural nets with an increased
number of layers goes often under the name of deep learning.

The section on nonparametric option pricing and state price density estimation was ins-
pired by Yacine Ait-Sahalia’s Ph.D. thesis, and we use part of his data for illustration. The pa-
per [51] is the first article we know of, where options are systematically priced from historical
data using (modern) nonparametric regression procedures including neural networks. The later
contribution [85] of Ait-Sahalia and Lo concentrated on the use of the kernel method. Their
reason for choosing the kernel over the other nonparametric regression procedures comes from
their desire to price more general contingent claims with (possibly) very complex payoff func-
tions. Indeed, the kernel regression is more amenable to the estimation of the second derivative
of the regression function with respect to the strike price. We decided to add the use projection
pursuit for the sake of comparison.

Some very popular nonparametric regression methods have not been mentioned in the
text. The k-nearest neighbors method is one of them. See Problem 5.6. It is very similar in
spirit to the kernel regression when one uses the box kernel. Indeed in both cases the value
of the regression function at a given point is given by the average of the observed responses
for a set of neighboring explanatory vectors. The difference is only in the definition of these
neighboring points: we choose all the points within a certain distance (given by the value of
the bandwidth) in the case of the kernel regression independently of their number, while we
choose the k-nearest points in the case of the k nearest neighbors regression. The smoothing
parameter is now the number k of neighbors involved in the averaging. Numerical results
are very similar, and like in the case of the kernel method, nonparametric density estimation
can also be done by the k nearest neighbors method. However, adjusting implementations to
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allow for categorical explanatory variables appears to be easier with the k nearest neighbors
method. The interested reader is referred to Silverman’s book [88] for a detailed account of
the k nearest neighbors method in the context of density estimation, and to Kohonen’s book
[57] for artificial intelligence and machine learning applications.

Classification and clustering can be viewed as regression problems for which the response
variable can only take finitely many values. All the nonparametric methods discussed above
can be adapted to solve classification problems. However, because they offer intuitive inter-
pretations, tree based methods remain the most appealing classification procedures. R offers a
set of methods to manipulate trees for regression and classification, based on the fundamental
work of Breiman, Friedman, Olshen, and Stone [9]. As in the case of regression, classification
suffers from the curse of dimensionality, and principal component analysis is viewed as a rea-
sonable technique for reducing the dimension of the explanatory vectors. Alternatives based
on coding and computing efficiency arguments have been proposed, for example wavelet pack-
ets. The interested reader is referred to Wickerhauser’s book [97] for details. Finally, we close
with a reference to a recent attempt to bring ideas and techniques for data mining and machine
learning that were developed in the artificial intelligence community under the umbrella of
mathematical statistics. These techniques go under the name of boosting and bagging and
they are intended to combine several classification or regression algorithms into a single, bet-
ter performing one. This might seem like an impossible dream, but it does happen in some
cases, and theoretical arguments can be given to justify such seemingly unrealistic expecta-
tions. See, for example, the book of Witten and Frank [98], and the graduate text by Hastie,
Tibshirani, and Friedman [45].
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TIME SERIES MODELS:
AR, MA, ARMA, & ALL THAT

Time series are ubiquitous in everyday manipulations of financial data. They are
especially well suited to the nature of financial markets, and models and methods
have been developed to capture time dependencies and produce forecasts. This is the
main reason for their popularity. This chapter is devoted to a general introduction to
the linear theory of time series, restricted to the univariate case. Later in the book, we
will consider the multivariate case, and we will recast the analysis of time series data
in the framework of state space models in order to consider and analyze nonlinear
models.

6.1 NOTATION AND FIRST DEFINITIONS

The goal of time series analysis is to analyze data containing finite sequences of
measurements, each coming with a time stamp, these time stamps being ordered in
a natural fashion. The purpose of the analysis is to quantify the dependencies across
time, and to take advantage of these correlations to explain the observations at hand,
and to infer properties of the unobserved values of the series.

We have already encountered many instances of time series (recall, for exam-
ple, the coffee futures data as plotted in Fig. 3.4). In most cases, we transformed the
data to reduce the serial correlation to a minimum, and we used statistical techniques
completely indifferent to the order of the data: in this way, we did not use any possi-
ble serial dependence in the data. It is now time to investigate the various ways one
can model this dependence, and take advantage of the properties of these models.
However, there was one instance where we had to deal with the effect of the depen-
dencies over time of the data entries. This was the case of the utility indexes, whose
data we reproduce now.

ENRON.index DUKE.index UTILITY.index
01/04/1993 135.0000 104.2857 99.94170
01/05/1993 135.3714 103.5714 99.49463
01/06/1993 132.8571 104.2857 99.86034

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-8788-3 6, © Springer Science+Business Media New York 2014
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01/07/1993 130.7143 103.5714 98.70023
...... ...... ...... ......

12/28/1993 166.4571 125.0000 107.15202
12/29/1993 170.7429 123.9429 106.75023
12/30/1993 169.3143 124.2857 106.12351
12/31/1993 165.7143 121.0857 104.95227

The first column gives a set of dates, some form of daily time stamps, while the next
three columns contain the numerical values of the three indexes on these dates. This
is the typical structure of time series data which we consider in this chapter and the
next.

6.1.1 Notation

Most statistical problems deal with data in the form

x0, x1, . . . , xn. (6.1)

In the regression applications considered so far, the order in which the observations
were collected did not play any role. We are now interested in applications for which
the order of the xi’s plays a crucial role in the interpretation of the data, as well as in
the definition of the inferential problems we consider.

In the applications we are considering now, the label n of the observation xn
corresponds to a time stamp, say tn, giving the time at which the measurement was
taken. As always, it is convenient to view the observations (6.1) as realizations of ran-
dom variablesX0, X1, . . . , Xn which we shall sometimes denoteXt0 , Xt1 , . . . , Xtn

when we want to emphasize the role of the time stamps. These n + 1 random vari-
ables will most often be regarded as a subset of a (possibly infinite) sequence {Xt}
of random variables. The xi’s (and hence the Xi’s) can be scalars as in this chapter,
in which case we talk about univariate time series, or vectors as in the next chapter,
in which case we talk about multivariate time series. As before, we try to use regular
fonts for scalars and bold-face fonts for vectors.

Most of this chapter is devoted to the analysis of time series models. A model is
a set of prescriptions for the joint distributions of the random variables (or random
vectors in the multivariate case)

Xi1 , Xi2 , . . . , Xik

for all possible choices of the finite ordered sequence i1 < i2 < · · · < ik of time
stamps. These joint distributions are completely determined by the model in some
cases, while in other cases, only partial information is provided by the prescriptions
of the model.

6.1.2 Regular Time Series and Signals

Regular time series are sets of measurements taken at regular time intervals. In
other words, the time stamps {tj}j=0,1,...,n are of the form tj = t0 + jΔt for
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j = 0, 1, . . . , n. Such a sequence of times is determined by its start t0, its length
n+ 1, and the time interval Δt between two successive times. Note that, instead of
giving the sampling interval Δt, one can equivalently give the sampling frequency,
or the time of the final measurement. Once the time sequence has been defined, one
can then give the sequence of corresponding measurements separately. This charac-
terization of the sequence of time stamps of a regular time series by three characteris-
tics is fundamental in the time series packages implemented in most of the statistical
software computer packages.

Figure 6.1 gives an example of such a regular time series. It is a speech signal
which we created by recording the short sentence “how are you”, digitizing the
sound file, and collecting the resulting numerical values in an R numerical vector
which we called HOWAREYOU. Figure 6.1 was produced with the command:
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Fig. 6.1. Plot of the sound “How Are You” digitized at 8,000 Hz

plot(HOWAREYOU,type="l",main="Speech Signal HOWAREYOU")

In such a plot, the time stamps used to label the elements of the signal are simply
successive integers starting from one. They are referred to as INDEX in the plot. This
should be contrasted with what comes next.
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In part because of their frequent occurrence in applications to signal analysis (as
traditionally performed by electrical engineers), regular time series are often called
signals. The library stats of R provides objects of class ts to manipulate signals,
but we shall not use them.

6.1.3 Calendar and Irregular Time Series

Most of the financial time series do not have the good taste to be regular in the sense
given above. They differ from the regular time series discussed above in several
ways, and mostly by the fact that the time stamps are given by dates and times, thus
their name calendar time series. Even though calendar time series are particular
cases of a larger class of irregular time series, they will be the only ones considered
here. Oftentimes, these data are daily, and gaps due to weekends and holidays create
irregularities. Figure 6.2 gives the daily closing prices of the S&P 500 index on the
New York Stock Exchange (NYSE for short) for the period ranging from January 3,
1950 to August 20, 2010.
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Fig. 6.2. timeSeries plot of the daily closing values of the S&P 500 index produced by
the command plot(DSP.ts)

Here is a (very) small subset of the data used to produce the plot.

Date Open High Low Close
..... ..... ..... ..... .....

17-Sep-01 1092.54 1092.54 1037.46 1038.77
10-Sep-01 1085.78 1096.94 1073.15 1092.54
7-Sep-01 1106.40 1106.40 1082.12 1085.78
6-Sep-01 1131.74 1131.74 1105.83 1106.40
5-Sep-01 1132.94 1135.52 1114.86 1131.74
4-Sep-01 1133.58 1155.40 1129.06 1132.94
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31-Aug-01 1129.03 1141.83 1126.38 1133.58
30-Aug-01 1148.60 1151.75 1124.87 1129.03
29-Aug-01 1161.51 1166.97 1147.38 1148.56
28-Aug-01 1179.21 1179.66 1161.17 1161.51
..... ..... ..... ..... .....

As we can see, the time stamps can be very irregularly spaced at times. As illustrated
in this snapshot, the regularity of the measurements can be affected by unexpected
events. However, the scale of a typical plot of a multi-year data series would not
allow us to see the gaps due to weekends and holidays and extraordinary market
closure events.

6.1.4 Creating and Plotting timeSeries Objects in R

The manipulation of calendar time series in R in done via objects of class
timeSeries. These objects contain a slot positions for the time stamps,
and a slot data for the actual values of the numerical measurements. Typically,
positions is a vector of dates or dates and times, while data is a numerical ma-
trix with one row for each entry of the vector positions. One creates an object
of class timeSeries with the constructor function timeSeries whose use is
illustrated below. The numeric vector of the weekly values of the S&P 500 index
was used earlier in Chap. 2 when we computed the weekly returns on the index. We
make it into a timeSeries object by attaching the time stamps giving the weeks
of the measurements. We first create the vector SPWEEKS of dates with the function
timeSequence, and we bundle this vector of dates with the vector WSP of closing
values into a timeSeries object WSP.ts which we then plot with the command
plot. All this is done with the following commands:

SPWEEKS <- timeSequence(from = "1950-01-03",
by = "week",length.out = 3163)

WSP.ts <- timeSeries(positions=SPWEEKS,data=WSP)
plot(WSP.ts)

The generic method plot can be used with timeSeries objects. The resulting
plot is given in Fig. 6.3. At this scale, it is difficult to differentiate this plot from the
plot of the daily closing values of the index.

6.1.5 High Frequency Data

The widespread availability of high frequency data changed the landscape of finan-
cial data analysis, and spurred for better or worse the development of high frequency
trading. Our discussion of the morning and afternoon indicators in Chap. 5 on non-
parametric regression was a first example involving high frequency data. Here, we
consider another example more in line with the current discussion of time series.

High frequency data are the result of a different data collection process: a record
is added to the data file each time a new transaction takes place. These data are also
called transaction data, or tick data. They offer a unique insight into actual trading
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Fig. 6.3. timeSeries plot of the weekly closes of the S&P 500 index produced by the
command plot(WSP.ts)

processes and market microstructure. In this subsection, we study the most impor-
tant features of high-frequency time series data, identifying striking differences with
lower-frequency data, and introducing new tools and new methods tailored to the
new challenges presented by this new type of data.

Tick-by-tick data are available for liquid futures contracts, and in this section,
we consider the example of a futures contracts on the S&P 500 index for the sake of
illustration. Here is the way the data of the September 1998 contract look like.

“date” “time” “close”
19971008 14:53:38 1,013.20
19971017 10:59:16 986.00
19971027 10:02:13 960.00
19971103 10:28:51 968.00
19971105 09:08:44 975.00
19971106 10:59:21 969.00
19971124 12:52:52 986.90
19971209 10:58:18 1,015.00
19971210 09:22:05 1,005.70
19971224 09:27:21 968.00

. . . . . . . . .

We notice that the time stamps can be very sparse. This is due to the fact that these
trades occurred on days very far from the maturity of the contract: speculators are
actively trading contracts closer to delivery! However, the situation changes dramat-
ically when we look at the data later in the life of the contract. Indeed, one sees that
not only the transactions are more frequent, but also that a large number of transac-
tions appears to happen simultaneously since they have the same time stamp. Given
the fact that each row contains only one number besides the date and time, we shall
assume that this number is the price at which the transaction was settled, not a bid
or ask price. This information is not always given by the data provider, and the data
analyst may be forced to make this sort of assumption. One of the unexpected sur-
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prises with high-frequency financial data is the fact that the notion of price is not
clearly defined. Strangely enough, there are many reasons for that. The first one is
clear from the data reproduced below: different values can be quoted with the same
time stamp, so what is the price at that time?

“date” “time” “close”
. . . . . . . . .
19980804 11:05:00 1,103.50
19980804 11:05:00 1,103.00
19980804 11:06:00 1,102.80
19980804 11:06:00 1,102.60
19980804 11:06:00 1,102.50
19980804 11:06:00 1,102.40
19980804 11:06:00 1,102.20
19980804 11:06:00 1,102.00
. . . . . . . . .
19980804 11:06:00 1,102.50
19980804 11:06:00 1,102.40
19980804 11:06:00 1,102.20
19980804 11:06:00 1,102.00
19980804 11:07:00 1,101.70
. . . . . . . . .

Whether one looks at this particular portion of the data set or not, it happens very
often that, many seconds do not appear because there is no transaction at these times.
Another idiosyncrasy of high-frequency data is the fact that the bid and ask prices
do not make sense all the time. Indeed, when the frequency is high enough, the time
interval between two transactions is so small that the price cannot move out of the
bid-ask spread, muddying both the definition of the notion of price and of bid-ask
spread at the same time. We avoid this issue by considering that the tick value given
by the data provider is the settlement price.

The data discussed above are included in the library Rsafd. They are contained
in the data frame SPsep98 whose top we reproduce below:

head(SPsep98)
date time close

1 19971008 14:53:38 1013.2
2 19971017 10:59:16 986.0
3 19971027 10:02:13 960.0
4 19971103 10:28:51 968.0
5 19971105 09:08:44 975.0
6 19971106 10:59:21 969.0

This data frame has three columns. The first one, named date, gives the date of the
quote. Notice the format! The second column, named time, gives the time of the
day at which the quote was provided, and finally, the third column, named close
gives the actual quote (so we assume).

In order to create an object of class timeSerieswith these data, we first create
a vector of positions with the days and times given in the first two columns of the
data frame. We first use the function makeDate with the column date, specifying
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the format from which the date should be read in the parameter in.format. In this
case, the upper case “Y” indicates that the first four characters should be understood
as the year, the lower case “m” indicates that the next two characters should be un-
derstood as an integer giving the month of the year, and the lower case “d” indicates
that the last two characters should be understood as an integer giving the day of the
month. The command using the function timeDate gives another example of for-
matted reading, more in the unix style this time. In any case, its output is a vector
which can be used as a vector of positions for an object of class timeSeries. The
extra parameter units in the constructor timeSeries is used to specify a name
for the numerical values of the data component of the time series.

SPsep98day <- makeDate(SPsep98[,1],in.format="Ymd")
SPsep98POS <- timeDate(paste(SPsep98day,SPsep98[,2]),
format = "%Y-%m-%d %H:%M:%S")
SPsep98.ts <- timeSeries(positions=SPsep98POS,
data=SPsep98[,3], units="Sep98")
head(SPsep98.ts)

Sep98
1997-10-08 14:53:38 1013.2
1997-10-17 10:59:16 986.0
1997-10-27 10:02:13 960.0
1997-11-03 10:28:51 968.0
1997-11-05 09:08:44 975.0
1997-11-06 10:59:21 969.0
plot(SPsep98.ts)

The corresponding timeSeries plot is reproduced in Fig. 6.4.
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Fig. 6.4. timeSeries plot of the high frequency quotes of the S&P 500 futures contract
maturing on September 1998 as produced by the command plot(SPsep98.ts)
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This plot shows clearly the specific features of the data which we identified ear-
lier. The left part of the plot contains only a few transactions, and because the plotting
program interpolates linearly between points, we see an artificial piecewise linear
pattern for the price of the futures contract. The right part of the plot is more typical
of volatile financial time series.

Remark on Quantized Ticks. Price changes from one transaction to the next are
quoted in multiples of tick size. This tick size varies from one exchange to another.
Typical values are (or used to be) one 8th and one 16th of a dollar. This practice
is obsolete on a certain number of exchanges. For example, all New York Stock
Exchange (NYSE) and New York Mercantile Exchange (NYMEX) stocks are traded
in decimals since January 29, 2001. Nevertheless, practitioners should be aware of
the fact that high-frequency data, and especially historical high-frequency raw data
which has not been pre-processed, quite often take only discrete values: this can
introduce numerical artifacts, and in particular spurious correlation.
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Fig. 6.5. Histogram of the fractional part of the June 15, 1998 quotes of the S&P 500 Septem-
ber 1998 futures contract. The discrete nature of the data shows clearly

We illustrate this fact with the S&P 500 data considered in this subsection. We
computed the fractional parts of the transaction prices (obtained by removing the
integer parts to the actual prices), and we plotted their histogram in Fig. 6.5. The
quantification effect appears clearly.

6.1.6 TimeDate Manipulations

It is very easy to develop specific functions satisfying the needs of most time series
data analysis. In particular, the library Rsafd contains a certain number of “home
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grown” functions which we wrote to make timeDate manipulations easy. Among
them, the functions begday and noon extract the beginning of a given day, and
noon of the same day. In other words, given a timeDate, the first function ex-
tracts the day, and returns a timeDate including hours, minutes and seconds of the
beginning of that same day.

The following commands illustrate the algebraic manipulations on timeDate
objects, and show how one can extract subsets of a time series.

DAY <- timeDate("08/12/1998")
SP081298 <- SPsep98.ts[seriesPositions(SPsep98.ts)

>= DAY & seriesPositions(SPsep98.ts)<DAY+24*3600]
plot(SP081298)

and the resulting plot is reproduced in Fig. 6.6.
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Fig. 6.6. Plot of 1 day extracted from the timeSeries object SPsep98.ts

One could as well extract three consecutive days instead of one.

SPDAYS <- SPsep98.ts[seriesPositions(SPsep98.ts)>=DAY
& seriesPositions(SPsep98.ts)<DAY+3*24*3600]

plot(SPDAYS)

and the resulting plot is given in Fig. 6.7. As explained earlier, the plotting function
performs a linear extrapolation to join the last quote of 1 day to the first quote of
the following day. However, the scale of the horizontal axis is uniform throughout
the time domain and no special shaded vertical bar is produced (like in S-Plus) to
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Fig. 6.7. Plot of the short timeSeries object obtained by extracting three consecutive days
from the timeSeries object SPsep98.ts

warn the casual reader that the part of the plot in these bars does not correspond to
actual quotes.

Working with regular time series is very convenient for many reasons, not the
least being the fact that we can take advantage of all the tools we introduce in this
book. For this reason, in order to avoid the technical difficulties inherent to the anal-
ysis of irregular time series, we consider only models for regular time series, and
when we fit these models to real data, we implicitly assumed that the actual data
has already been aligned, and act as if the time series data were regular. However,
one should keep in mind that aligning a time series comes at a cost: the clear loss
of information in time periods with high activity, and the introduction of undesired
artifacts in periods of low trading activity.

6.2 TIME DEPENDENT STATISTICS AND STATIONARITY

Now that we know the type of data amenable to practical time series analysis, we
turn to the discussion of the first properties of the theoretical models. Throughout
this section we assume that we are given such a theoretical model {Xt}t for a time
series.
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6.2.1 Statistical Moments

The mean function μX is defined as the (deterministic) function of time given by:

t ↪→ μX(t) = E{Xt}.
Similarly, we define the variance function varX (resp. the standard deviation function
σX ) as the (deterministic) function of time given by:

t ↪→ varX(t) = var{Xt} = E{(Xt − μX(t))2},
(resp. t ↪→ σX(t) =

√
varX(t) = E{(Xt − μX(t))2}1/2).

Even though these statistics can capture some of the time dependent features of the
series, they do not carry any information on the way individual random variables
entering the series depend upon each other. With this in mind, we consider statistical
moments involving several Xt’s simultaneously. The auto-covariance function γX
is defined as the (deterministic) function of two instants given by:

γX(s, t) = cov{Xs, Xt} = E{(Xs − μX(s))(Xt − μX(t))}.
As one would expect, the auto-correlation function ρX is defined as the (determin-
istic) function of two instants given by:

ρX(s, t) = cor{Xs, Xt} =
E{(Xs − μX(s))(Xt − μX(t))}

σX(s)σX(t)
.

We shall also use the notion of partial auto-correlation function. Its definition is
best understood in the framework of stationary time series once the notion of linear
prediction has been introduced. So stay tuned if you want to know more about partial
auto-correlation functions.

The above concepts are limited to moments of orders one and two. They have
been regarded as sufficient for quite some time, and many time series analysis tools
have been designed to study models only on the basis of their first two moment func-
tions. There are several reasons for that: first, these moments characterize entirely
the Gaussian models. Moreover, their attractiveness is increased by the fact that the
least squares methods only depends upon these moments. Unfortunately they are
not sufficient to handle nonlinearities for which the use of higher order moments is
required. Despite the fact that the importance of non-Gaussian and nonlinear time
series is increasingly recognized, we shall not discuss these matters any further in
this chapter. See the Notes & Complements at the end of the chapter for references.

6.2.2 The Notion of Stationarity

Stationarity is a crucial property of stochastic processes and time series models. It
will be a sine qua non condition for the implementation of most estimation and
prediction algorithms. The notion of stationarity can be described in the following
manner.
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6.2.2.1 Mathematical Definitions

A time series model for {Xt}t is said to be stationary if all its statistics remain un-
changed after time shifts, i.e. if they are the same as the statistics of {Xt0+t}t for
all possible choices of t0. This notion of stationarity is sometime called strong sta-
tionarity. The first obvious consequence of stationarity is that the mean function of a
stationary time series is constant. The same holds for the variance and the standard
deviation functions. Moreover, the auto-covariance function, and consequently the
auto-correlation function as well, are functions of the difference between its argu-
ments. This means that:

μX(t) = μX , varX(t) = σ2
X , σX(t) = σX , and γX(s, t) = γX(t− s),

(6.2)

for some constants μX and σX , and for some function of one variable for which we
still use the notation γX .

There is a weaker notion of stationarity which will be useful in the sequel. A time
series model is said to be weakly stationary if its mean function is constant, and its
auto-covariance function is a function of the difference of its arguments. Obviously, a
stationary series (in the strong sense given above) is necessarily weakly stationary as
implied by formula (6.2). However, the converse is not true in general. In a nutshell,
(strong) stationarity means that the moments of all orders are invariant under time
shifts, while weak stationarity merely requires that the moments of order 1 and 2 are
shift invariant.

Remark. Despite this fact, the two notions of stationarity coincide for Gaussian time
series models, i.e. when all the finite dimensional marginal distributions are multi-
variate Gaussian. Indeed, a multivariate Gaussian distribution is entirely determined
by its mean vector and its variance/covariance matrix, which in turn is determined
by the covariances of the random variables taken two by two.

6.2.2.2 Linear Prediction and Partial Auto-Correlation Function (PACF)

Building a model for time series data is a required step in the prediction of future
values. So, once a model for {Xt}t has been chosen, in many practical applications
the goal is to produce, for a given time t (which we shall refer to as the present time),
predictions for the (future) values of the outcomes xt+1, xt+2, . . . of the random
variables Xt+1, Xt+2, . . .. Obviously, these predictions should be non-anticipative
in the sense that they should be based solely on the (present and past) observations
xt, xt−1, . . .. In other words, we are not allowed to use a crystal ball to look into the
future when it comes to predictions!

Given the observations X0 = x0, X1 = x1, . . ., Xt = xt up to the present
time t, and a mean zero random variable Z, we shall use the notation E(m)

t (Z) for
the best prediction of Z by linear combinations of the m values xs − μX for t −
m+ 1 ≤ s ≤ t. In other words, when viewed as a function of the random variables
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Xt−m+1 − μX , Xt−m+2 − μX , . . ., Xt − μX , E(m)
t (Z) is the linear combination

α1(Xt−m+1 − μX) + α2(Xt−m+2 − μX) + · · ·+ αm(Xt − μX) which minimizes
the quadratic error:

E{‖Z−α1(Xt−m+1−μX)+α2(Xt−m+2−μX)+ · · ·+αm(Xt−μX)‖2}. (6.3)

Notice that, in the Gaussian case (i.e. in the case of (jointly) Gaussian time series
models), this prediction operator is given by the conditional expectation:

E
(m)
t (Z) = E{Z|Xt, Xt−1, . . . , Xt−m+1}.

The best linear predictor E(m)
t (Z) is a linear combination of the Xt−m+1 − μX ,

Xt−m+2 − μX , . . ., Xt − μX , so it belongs to the linear space generated by these
random variables. Moreover, since E(m)

t (Z) minimizes the quadratic error (6.3), it

minimizes the distance between Z and this linear space. Consequently,E(m)
t (Z) can

be viewed as the orthogonal projection of the random variableZ onto the linear space
generated by the random variables Xt−m+1 − μX , Xt−m+2 − μX , . . ., Xt − μX .
In fact, as we shall see in the sequel, this interpretation as an orthogonal projection
is a great help when it comes to guessing and proving the properties of the best
linear prediction operator E(m)

t . The first instance is the following: because of the

properties of orthogonal projections,Z−E(m)
t (Z) is orthogonal to all of theXj−μX

and consequently:

E{(Z−E(m)
t (Z))(Xj−μX)} = 0, j = t−m+1, t−m+2, . . . , t−1, t.

The random variable Z − E
(m)
t (Z) is often referred to as an innovation because it

represents, in a minimal way, the information needed to produce the outcome of Z ,
which cannot be given by linear combinations of the past values Xt−m+1 − μX ,
Xt−m+2 − μX , . . ., Xt − μX .

We shall use the notation Et without the superscript (m) when m = t, in other
words, when we use the entire available past to construct the prediction. This special
prediction operator will be used extensively in Chap. 7 when we discuss filtering.

With the notion of best linear predictor at hand, it is now easy to define the
partial auto-correlation coefficients. The k-th partial auto-correlation coefficientφk,k
is defined as the last coefficient in the linear combination givingE(k)

t (Xt+1). In other
words, if:

E
(k)
t (Xt+1 − μX) = αk(Xt − μX) + α1(Xt−1 − μX) + · · ·+ α1(Xt−k+1 − μX)

then we set φk,k = α1. In this way, one sees that the partial auto-correlation co-
efficient φk,k measures the correlation between Xt+1 and Xt−k+1 (or equivalently,
between Xt and Xt−k because of stationarity) after adjustment for the intermediate
lagged variables.

Because the best linear predictor is an orthogonal projection, our knowledge of
Euclidean geometry tells us that it can be computed in terms of inner products. In
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this way one can prove that the partial auto-correlation coefficient φk,k is given by
the formula:

φk,k = Γ−1
X,kγX,k, (6.4)

where the k × k matrix ΓX,k and the k-dimensional vector γX,k are defined by:

ΓX,k = [γX(i− j)]i,j=1,...,k γX,k = [γX(1), γX(2), . . . , γX(k)]t. (6.5)

This equivalent form of the definition of the partial auto-correlation function is
preferable because it is immediately amenable to estimation. Indeed, if we assume
momentarily that we know how to estimate the auto-covariance function γX from
given data x0, . . . , xn, see the discussion leading to (6.8) below, then the sequence
{φk,k}k of partial auto-correlations will be estimated by the sequence {φ̂k,k}k
given by:

φ̂0,0 = 1 and φ̂k,k = Γ̂−1
X,kγ̂X,k, (6.6)

where the k × k matrix Γ̂X,k and the k-dimensional vector γ̂X,k are computed from
the estimate γ̂X of the auto-covariance function via the formulae (6.5). The empirical
estimate γ̂X will be defined in the next subsection.

The notion of partial auto-correlation function may seem obscure at this stage,
but please, bear with me for a short while: soon we shall give an enlightening inter-
pretation of the partial auto-correlation function in terms of auto-regressive models
of increasing orders fitted to the time series.

6.2.2.3 Time Averages as Statistical Estimates

One of the main consequences of the stationarity of a time series is the fact that the
theoretical moments introduced earlier can be computed (or at least estimated) by
time averages. Indeed, when stationarity holds, the moment empirical estimates (see
formulae (6.7) and (6.8) below) are time averages which converge when the number
of terms used in the sum increases without bound. The existence of these limits is
a good sign since it gives stability of the empirical estimates, but unfortunately the
limits they converge to can still be random, and they can change with the particular
realization of the time series. Fortunately, there are many situations in which these
limits are not random. Time series with this property are called ergodic. Roughly
speaking, ergodicity allows us to replace space averages such as expectations, co-
variances, . . ., by time averages. Ergodicity is a very subtle mathematical property
and it is difficult to check that a given set of numbers x1, . . . , xn is a sample realiza-
tion from an ergodic time series model. For this reason, we shall take ergodicity for
granted in the sense that, whenever we find that a time series model is stationary, we
shall implicitly assume that it is also ergodic. While we may not be able to justify
this assumption in practice, it is fair to say that without it, we wouldn’t be able to do
much!

In practice, if x1, . . . , xn are observations from a time series model {Xt} which
we assume to be stationary, then we use the time average
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μ̂X = x̄ =
1

n

n∑
i=1

xi (6.7)

as empirical estimate of the mean μX . As explained above, the stationarity of the
series implies that:

lim
N→∞

1

N

N∑
i=1

Xi = μ̃X

almost surely, i.e. for all typical sequences of observations, where μ̃X is a random
variable. Moreover, ergodicity implies that the object μ̃X (which was thought to be
random) is in fact a deterministic number which is just the true value of the mean
μX of the series. This is the justification for the use of the time average (6.7) as an
estimate of the mean. Similarly, the auto-covariance function γX(h) is estimated by
time averages of the form:

γ̂X(h) =
1

n

n−|h|∑
i=1

(xi − x̄)(xi+|h| − x̄), (6.8)

which are defined both for positive and negative lags h as long as −n < h < n. It is
important to notice that the larger the lag absolute value |h|, the smaller the number of
terms in the above sum. If we were to compute a confidence interval for the estimate
γ̂X(h) we would see that this interval grows very fast with |h|. As a consequence,
it is wise to restrict the estimation of the auto-covariance function to lags which are
small compared to the sample size n. In R, you can specify this maximum number of
lags for which the auto-covariance function is estimated. If you don’t, the program
uses a multiple of the logarithm of n as a proxy. Indeed this number is usually much
smaller than the sample size. Notice also that we divide by n while there are only
n − |h| terms in the summation. This departure from the standard definition of the
empirical auto-covariance function becomes irrelevant for large samples, since when
n is large, dividing by n or n−|h| does not make much difference, especially with the
limitation we imposed on the size of |h|. Moreover, dividing by n guarantees that the
function γ̂X is nonnegative definite, a mathematical property of crucial importance
for spectral theory. Since we shall not address spectral theory issues in these lectures,
we do not go any further down this avenue.

As one could expect, the estimate of the sample auto-correlation function is de-
fined by:

ρ̂X(h) =
γ̂X(h)

γ̂X(0)
, −n < h < n. (6.9)

The distribution theory of the estimators μ̂X , γ̂X and ρ̂X is well understood in the
case of Gaussian time series, and confidence intervals and tests can be derived for
these estimates. In the general case of possibly non-Gaussian series, only approx-
imate tests are available. We discuss some of them in our discussion of the white
noise series below.
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6.2.3 The Search for Stationarity

The success of time series analysis depends strongly upon the satisfaction of two
somewhat independent conditions. First one needs to massage the data into a station-
ary time series, and second, model the resulting stationary time series and estimate
the parameters of the model.

In this subsection, we consider the first of these two objectives. Unfortunately,
there is no universal recipe to turn a given time series into a stationary one, and
experience will have to lead the analyst in this endeavor. For the record, we re-
view several of the most commonly used procedures. We first discuss general strate-
gies in an abstract setting, postponing the implementation of these ideas to the next
subsection.

Statistical tests are required to quantify the extent to which a search for station-
arity is successful. As a general rule, tests are not very powerful when the alternative
hypothesis is too general. So rather restrictive alternative hypotheses are used in the
commonly used tests for stationarity. We discuss the basic form of these tests at the
end of Sect. 6.3.7. They are known under the name of Dickey-Fuller tests, or unit-
root tests.

6.2.3.1 Removing Trends and Seasonal Components

We first consider the issues connected with the analysis of the mean. We already
mentioned that it is common practice to subtract the mean μX , and model the series
Xt − μX instead of Xt. This is especially convenient when the mean function t ↪→
μX(t) is constant, since in this case, μX can easily be estimated. However, we cannot
expect to be able to do that in general. Fortunately, it happens quite often that the
mean function depends upon time in a manner which can be identified. Let us assume
for example that the random variables Xt, the observations of which produced the
data xt, can be reasonably well described, by an equation of the form:

Xt = Tt + St +Rt, (6.10)

where both Tt and St are deterministic, andRt is random and mean zero. So in other
words, the mean μt = μX(t) is decomposed into the sum of two components Tt
and St to which we want to give specific interpretations. Typically, we assume that
Tt is a deterministic monotone (increasing or decreasing) function of t, that St is
a deterministic periodic function of t, and Rt is a mean-zero stationary time series.
The function t ↪→ Tt is called trend, and t ↪→ St seasonal component while clearly,
{Rt}t is called the remainder.

Several simple techniques can be used to identify the deterministic components
Tt and St. If we momentarily rename the stationary time series Rt by εt, Eq. (6.10)
becomes

Xt = μt + εt, (6.11)
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which is exactly the type of equation amenable to regression analysis. Indeed, regres-
sion techniques are the methods of choice for the identification of the deterministic
components μt appearing in (6.11), and as we saw in our first examples dealing with
energy indexes, if it is understood that the noise term εt can exhibit a significant
dependent structure. Moreover, the fact that we expect the regression function μt to
be the sum of a monotone function and a periodic function which we would like
to identify separately will force us to use specific regression methods which we did
not discuss yet. We did not discuss monotone regression, nor did we discuss Fourier
methods of regression, so we will not elaborate on how these two components are
usually identified. We shall merely refer to the help file of the R function stl which
we use extensively for that purpose.

6.2.3.2 Stabilization of the Variance

Setting X̃t = Xt − μX(t), it is always possible to write a time series as the sum
of a deterministic function plus a mean-zero time series since Xt = μX(t) + X̃t.
If the function μX(t) can be estimated from the data, (see examples below) it can
be subtracted from the original data, and our modeling efforts should concentrate on
the mean-zero time series X̃t. It happens frequently that the standard deviation varies
significantly with time, and since a local variance is more difficult to estimate than a
local mean function, this may be a serious hurdle.

Variance stabilization transformations are ways to correct for these variations
when the variance function is an explicit function of the mean in the sense that
varX̃(t) = ϕ(μX̃(t))2σ2 for some constant σ > 0, and a known function ϕ. In
such a case, it is easy to show that the variance of the time series Yt = ψ(X̃t) is
essentially constant and equal to σ2 if the function ψ is such that ψ′(μ) = 1/ϕ(μ).
The time series {Yt}t is more likely to be stationary, and in any case, it is more
amenable to analysis than the original series. One will also demand that the function
ψ be invertible in order to be able to return to X̃t (and Xt) after analysis of the time
series {Yt}t.

Examples of variance stabilization transformations include the function ψ(μ) =
log(μ) (which is often used in the analyses of time series of financial returns) and
the function ψ(μ) =

√
μ. According to the discussion above, the transformation

ψ(μ) = log(μ) is recommended when the variance varies like the square of the
mean (i.e. ϕ(μ) ∼ μ), while the transformation ψ(μ) =

√
μ is recommended when

the variance varies like the mean (i.e. ϕ(μ) ∼ √
μ) as we find in many situations

involving the Poisson distribution.

6.2.3.3 The Use of Differentiation

If μ(t) is a constant function, a mere differentiation should make it disappear. This
intuition from calculus can be implemented in the case of time series by introducing
the analog of the differentiation operator. We shall use the suggestive notation ∇ for
this operator. At the model level, ∇ is defined by:
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∇Xt = Xt −Xt−1 (6.12)

and for a (finite) data set x = (x0, x1, . . . , xN ), the (first) difference y = ∇x is
given by y = (x1 − x0, x2 − x1, . . . , xN − xN−1). Notice that yt is defined for
t = 1, 2, . . . , N while xt is defined for t = 0, 1, 2, . . . , N ! It is now time to give some
respectability to a practice we have used several times already: taking differences to
turn a non-stationary time series into a stationary one. Recall that the typical instance
is the computation of the log-returns of a financial time series. So we elevate this
example to the rank of definition: we shall say that a time series is integrated of
order 1, or that it has one unit-root, if its difference is stationary. We shall use the
notation I(1) for the class of these time series.

In the same way a simple difference can kill a constant term, two successive
differences will get rid of a linear trend (a function μ of the form μ(t) = at +
b). Iterating the definition (6.12) of the first difference operator, we find definition
formulae for the higher order difference operators. For example, the second order
difference operator is given by:

∇2Xt = ∇[∇X ]t = [∇X ]t − [∇X ]t−1 = Xt −Xt−1 − (Xt−1 −Xt−2)

= Xt − 2Xt−1 +Xt−2.

More generally, by successive applications of the difference operator one can remove
any kind of polynomial trend! This remark makes it plain how useful the higher order
difference operators can be. To keep up with the definition introduced above, we say
that a time series is integrated of order p, or that it has p unit-roots, if its p-th order
difference is stationary, and we denote the class of time series with this property by
I(p). In other words:

{Xt}t ∈ I(p) means that {∇pXt}t is stationary

Obviously, the notation I(0) will be used for stationary time series. We use the no-
tation ∇ to conform with the conventions used in most of the textbooks on time
series analysis, and to emphasize the analogy with the differentiation of functions of
a (continuous) variable t.

6.2.4 The Example of the CO2 Concentrations

We choose to illustrate the discussion of the search for stationarity with the classical
example of the concentration of CO2 above the Mauna Loa volcano in Hawaii. The
data comprise monthly measurements. They range from March 1958 to December
2008. These data are contained in a data set CO2 included in the Rsafd library.
The values contained in the numeric vector CO2 represent monthly concentrations
adjusted to represent 2,400 h on the 15th day of each month. Units are parts per mil-
lion by volume (ppmv) expressed in the 2003A SIO manometric mole fraction scale.
We construct a timeSeries object co2.ts which we plot using the following
commands.
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POS <- timeSequence(from="1958-03-01",
to="2008-12-01", by="month")

co2.ts <- timeSeries(positions=POS,data=as.vector(CO2),
units="CO2")

plot(co2.ts)

The plot is reproduced in Fig. 6.8. Notice that the distribution of the R version you
are using may already contain data sets with the name CO2. Installing the library
Rsafd should mask these data sets. The numeric vector seriesData(co2.ts)
is a matrix with only one column, but as a matrix, its rows and its columns can have
names. Even though it is not a requirement, we will make a habit of choosing for
the row names of the data matrix of a timeSeries object, strings of characters
representing the actual dates of the measurements (i.e. the dates which appear as
entries of the vectorseriesPositions), and for the column names, the character
strings used in the parameter units.
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Fig. 6.8. Plot of the timeSeries object created for the analysis of CO2 concentrations

This plot reveals an upward trend and a cyclic behavior whose period seems to
be 12 months (none of these remarks should come as a surprise). The first step of
the analysis is to identify and remove the trend and seasonal components. R provides
a function to do just that. It is called stl. Unfortunately, it cannot be used with
timeSeries objects, so we wrote a wrapper called sstl whose usefulness we
proceed to illustrate. The following R commands were used to produce the plots
contained in the following three figures.

co2.stl <- sstl(co2.ts,FREQ=12,TWIND=0.2,TDEGREE=1)
plot(co2.stl$trend)
plot(co2.stl$sea[1:120])
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plot(co2.stl$rem)

The function sstl returns a list of three timeSeries objects named trend, sea
and rem for the trend, seasonal and remainder components respectively. We set the
parameter FREQ to 12 because our data are monthly and we expect yearly cycles
in the data fluctuations. The parameters TWIND and TDEGREE give respectively,
the size of the sliding window (as a proportion of the total length of the series),
and the degree of the smoothing function used in loess involved in the regression
procedure extracting the seasonal component. The plots produced by the three plot
commands above are given in Figs. 6.9–6.11, respectively.
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Fig. 6.9. Plot of the trend timeSeries object created by the function sstl for the CO2

concentration data

The true seasonal component is possibly smoother than the periodic time series
co2.stl$sea. However, for the purpose of the present analysis, we shall use this
seasonal component despite its undesirable roughness.

Assuming that the remainder time series is stationary seems like a reasonable
assumption, and despite the lack of quantitative evidence, we shall assume that this
is indeed the case.

We shall come back to this example and continue its analysis after we introduce
the auto-regressive and moving average models.
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Fig. 6.10. Plot of the first 10 years (i.e. 120 first entries) of the seasonal timeSeries object
created by the function sstl for the CO2 concentration data. Notice that by construction, the
mean of this component is zero
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Fig. 6.11. Plot of the remainder timeSeries object created by the function sstl for the
CO2 concentration data
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6.3 FIRST EXAMPLES OF MODELS

We review the most commonly used examples of time series models. We start with
the fundamental example of a white noise which we encountered several times al-
ready, and which will serve as a crucial building block for the more sophisticated
models studied in this chapter.

6.3.1 White Noise

A finite sequence
w0, w1, . . . . . . , wn

of real numbers is said to form a white noise if they are observations from a (pos-
sibly infinite) sequence of independent and identically distributed (i.i.d. for short)
mean zero random variables, say {Wt}t. Such a sequence is obviously stationary
and μW = E{Wt} = 0 by definition. Also, if s �= t we have:

cov{Ws,Wt} = E{WsWt} = 0

because of the independence assumption. Consequently:

γW (h) =

{
σ2 if h = 0
0 otherwise

(6.13)

where σ2 denotes the common variance of the random variablesWt.

6.3.1.1 Simulation

We summarize the discussion presented in the introductory session to R reproduced
in an appendix at the end of the book. We generate a numeric vector of length N =
1,024 of realizations of independent Gaussian random variables with mean 0 and
variance σ2 = 4 with the R- command WN <- rnorm(1024,0,4). We give the
plot of this white noise sequence in Fig. 6.12 which also contain a separate plot of
the first 70 entries of this white noise vector. The top pane shows the entire vector
of length 1,024, while the bottom pane zooms into a sub-vector of length 70. The
appearance of this second plot is of a much smoother looking curve. This shows that
the wiggly nature of the plot, as well as its roughness, depends strongly upon the
scale used to look at the series.

6.3.1.2 Testing for White Noise

The need to check that the residuals of a fitted model form a white noise is going
to be a nagging problem recurring throughout the remainder of the book. For the
purposes of the present discussion, we assume that these residuals form a stationary
series. We tackle the problem of the serial correlation with a graphical tool first (see
first bullet point below), and then, with a quantitative test in the third bullet point. We
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Fig. 6.12. Gaussian white noise time series with variance σ2 = 4

also discuss the issue of identification of the marginal distribution of the individual
terms in the second bullet point.

• The first available tool is graphical. In the same way Pavlov’s dogs adjusted their
behaviors, we should develop the reflex of plotting the auto-correlation function
of any time series we bump into. The estimate which we can compute from the
data makes sense when the time series is stationary, but its plot may be useful
even when the time series is not. The following R commands can be used to
compute and plot the auto-covariance function and the auto-correlation function
of the white noise time series created earlier.

WNacov <- acf(WN,40,type="covariance")
WNacor <- acf(WN,40,type="correlation")

The results are given in Fig. 6.13. The looks of the two plots are identical. After all,
the values of these two functions differ only by a scaling factor: the common vari-
ance of all the entries of the series. In other words, these two plots only differ through
the scales on the vertical axis. Indeed the auto-correlation function is normalized to
start from the value 1 for lag 0. Notice also the presence of a band around the hor-
izontal axis of the auto-correlation function. It gives approximate 95% confidence
limits. These limits should not be taken too seriously. The confidence interval is only
approximate: it is given as a tool to identify the values which are not significantly
different from 0. Let us emphasize once more that, precisely because of the defini-
tion (6.8) of the estimated auto-covariance function (and auto-correlation function as
well) it is not reasonable to compute the estimates for too large a value of the lag.
Indeed, for the estimate to be useful, it needs to be based on a summation containing
as many terms as possible. And since this number of terms is limited by the value of
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the lag, a compromise has to be reached. In this example we chose to compute and
plot the acf coefficients for 40 lags. The maximum number of lags for which these
functions are computed is usually chosen as a multiple of the logarithm of the length
of the time series. Since the auto-correlation function of a white noise is non-zero
only for lag zero, the confidence band should contain all the values except for the
first one. This visual test is useful in detecting obvious correlations.

• Plotting a histogram (and a density estimate) of the entries of the series should be
done to check for normality. In fact as we saw in the first chapter, a Q-Q plot is
preferable. Such a plot could give an indication that the marginal distribution is
Gaussian, and hence that the series entries could actually be independent (which
is, as we know, much stronger than uncorrelated). Even though this graphical test
could be complemented by a goodness of fit test (such as a χ2 or a Kolmogorov-
Smirnoff test), it will only give information on the marginal distribution: it is very
difficult to test for joint normality of all the marginal distributions! If the normal-
ity of the marginal distributions were to be rejected, the apparatus introduced in
the first chapter would be needed to fit GPD’s.

• There are several powerful tests for the white noise hypothesis. The most com-
mon ones come under the name of portmanteau tests. They are based on the fact
that, under the null hypothesis of a Gaussian white noise, appropriately weighted
sums of the squares of the estimates of the auto-correlation function should fol-
low a χ2 distribution. R has one such test, but unfortunately, it is buried in the
residual analysis of the fit to an ARIMA model. See Sect. 6.4.2 below for details.

6.3.1.3 Warning: The Different Forms of White Noise

There are many instances in which the terminology white noise is used even though
the i.i.d. assumption is violated. In these instances, one merely demands that (6.13)
holds in order for the series to be called a white noise. The reason for this confusing
practice is that this weaker assumption is enough to justify most of the least squares
procedures. In order to better understand what is at stake here, let us introduce clear
definitions for the various forms of white noise. A time series {Wt}t is said to be a
white noise if it satisfies the properties given in the two bullets which follow:

• The Wt are mean-zero i.e. E{Wt} = 0 for all t;
• They have the same variance and they are uncorrelated:

– In the strong sense, i.e. when all the Wt’s are independent;
– In the weak sense, i.e. when E{WtWs} = 0 whenever s �= t.

In this chapter, and in most of the remainder of the book, all the white noise time
series will be assumed to be white noise series in the strong sense, i.e. with indepen-
dent terms, even if in practice, we only check for the weak form of the white noise
definition. We shall revisit this convention later in the last chapter when we discuss
the so-called ARCH models. Hopefully, at that time, we shall be able to shed enough
light on this problem to clear up some of the remaining ambiguities.
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Fig. 6.13. Autocovariance (top) and autocorrelation (bottom) functions of a white noise time
series

For a statistical analysis, reaching a white noise (in the strong sense) is the end
of the modeling road. Indeed, the statistician massages the data to extract signifi-
cant component, after significant component, . . . . . . until she gets residuals forming
a white noise. Then she is done, unless of course these residuals still contain some
structure which can be identified and extracted. This is only possible if this residual
white noise is a white noise in the weak sense, not in the strong sense. But of course,
one should not expect this task to be easy: after all, for all of its tools, linear anal-
ysis cannot go beyond a weak white noise. Extracting substance from its guts will
require skill and finely-sharpened tools. We will give examples in our analysis of the
ARCH/GARCH and stochastic volatility models later in Chap. 8.
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6.3.2 Random Walk

In our introductory session to R, a random walk was defined as the integral of a white
noise, and we used the R function cumsum to construct a sample of a random walk
from a sample of a white noise. At the level of the models, we say that {Xn}n is a
random walk if there exists a white noise {Wt}t such that:

Xn = X0 +W1 +W2 + · · ·+Wn , (6.14)

in other words, if the whole sequence {Xn}n≥0 is determined by X0 and the induc-
tion formula Xn+1 = Xn +Wn+1. Usually, X0 is assumed to be independent of
the entire white noise sequence {Wt}t. Notice that μX(n) = E{Xn} = E{X0} for
all n. However, even though the mean function is constant, the random walk is not
stationary. Indeed:

var{Xn} = var{X0}+ var{W1}+ · · ·+ var{Wn}
+ 2cov{X0,W1}+ · · ·+ 2cov{X0,Wn}+ 2cov{W1,W2}+ · · ·
+ 2cov{W1,Wn}+ · · · · · ·

= var{X0}+ nσ2,

which is obviously changing with n. Notice that the independence of the terms ap-
pearing in (6.14) guaranteed the fact that the variance of the sum is equal to the sum
of the variances. Keep in mind that this is not true in general. Even though the ran-
dom walk is not stationary, its first difference is. IndeedXt−Xt−1 =Wt is a white
noise (and hence is stationary). So {Xt}t ∼ I(1). As we already mentioned, these
processes are also called root one processes for reasons we shall discuss below.

6.3.2.1 Random Walk with Drift

It happens quite often that the log-returns of market indexes have a small positive
mean over significantly long periods of time. This remark is consistent with our
discussion of the Samuelson’s model for stock prices and stock indexes given in
Sect. 5.7, and it justifies the introduction of the model

Xn+1 = μ+Xn +Wn+1 (6.15)

dubbed random walk with drift, the mean μ = E{Xn+1 − Xn} being called the
drift. Summing both sides of (6.15) for different values of n, we obtain the analog of
(6.14)

Xn = X0 + nμ+W1 +W2 + · · ·+Wn , (6.16)

which shows that a random walk with drift is equal to a pure random walk (i.e.
without a drift) plus a linear function with slope equal to the drift μ.

Random walk and random walk with drift models are not stationary. Their acf’s
decay very slowly. This behavior is very different from the fast decay of the acf’s of
the stationary models which we study in this book.
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6.3.3 Auto Regressive Time Series

The random walk model satisfies the induction equation:

Xt = Xt−1 +Wt

giving the value of the series at time t in terms of the preceding value at time t−1 and
a noise term. This shows that Xt is a good candidate for a (least squares) regression
on its past value Xt−1. We now define a large class of time series with this property.

A mean-zero time seriesX = {Xt}t is said to be auto-regressive of order p (with
respect to a white noise W = {Wt}t) if:

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p +Wt (6.17)

for some set of real numbers φ1, φ2, . . ., φp. More generally, we say thatX = {Xt}t
is auto-regressive of order p if there exists a number μX (which will necessarily be
the common mean of the random variables Xt) such that the series {(Xt − μX)}t is
auto-regressive of order p in the sense given above. In any case, we use the notation
X ∼ AR(p). AR models are very important because of their simplicity, and because
of the efficient fitting algorithms which have been developed. We shall give several
example of their usefulness.

6.3.3.1 Identification of the Coefficients

We explain how to estimate the coefficients of a stationary autoregressive model
when the order of the model is known. See the next subsection for a discussion
of several possible ways to determine the order of the model. So we momentarily
assume that we know the order of the autoregressive model, and we present a general
strategy on a specific example: for the sake of definiteness, we assume that the order
of the autoregressive series is equal to 2, and we try to estimate the coefficients of
the model. Since the model is of the form:

Xt = φ1Xt−1 + φ2Xt−2 +Wt, (6.18)

our goal is to estimate the values of φ1 and φ2 and possibly of the variance of the
noise Wt. Multiplying both sides of this definition by Xt and taking expectations
we get:

E{X2
t } = φ1E{XtXt−1}+ φ2E{XtXt−2}+ E{XtWt}

= φ1E{XtXt−1}+ φ2E{XtXt−2}+ φ1E{WtXt−1}
+ φ2E{WtXt−2}+ E{WtWt}

after re-injecting formula (6.18) into the last expectation of the first equality. First, we
notice that E{WtXt−1} = 0 and E{WtXt−2} = 0 because Xt−1 and Xt−2 depend
only on the past values Wt−1, Wt−2, Wt−3, . . . which are independent of Wt. Next
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we rewrite the remaining expectations in terms of the auto-covariance function γX .
We get:

γX(0) = φ1γX(1) + φ2γX(2) + σ2 (6.19)

if we denote by σ2 the variance of the white noise. Next, multiplying both sides of
(6.18) by Xt−1 and taking expectations we get:

E{XtXt−1} = φ1E{Xt−1Xt−1}+ φ2E{Xt−2Xt−1}+ E{WtXt−1}
or, in terms of the auto-covariance function γX :

γX(1) = φ1γX(0) + φ2γX(1), (6.20)

where, as before, we used the fact thatE{WtXt−1} = 0 which holds becauseWt and
Xt−1 are uncorrelated (remember that Xt−1 is a function of the Ws for s ≤ t− 1).
Finally, multiplying both sides of (6.18) by Xt−2 and taking expectations as before,
we get:

E{XtXt−2} = φ1E{Xt−1Xt−2}+ φ2E{Xt−2Xt−2}+ E{WtXt−2}
or, equivalently:

γX(2) = φ1γX(1) + φ2γX(0) (6.21)

since E{WtXt−2} = 0 as well. Summarizing what we just did, assuming that we
know the first few values of the auto-covariance function, the numbers γX(0), γX(1)
and γX(2) to be specific, we derived a system of three equations, (6.19)–(6.21), from
which we can solve for φ1, φ2 and σ2. These equations are called the Yule-Walker
equations of the model. It is straightforward to solve them, even in the general case
of a model of order p, since these equations form a linear system of (p+1) equations
with (p + 1) unknowns. The solution of this system provides a way to compute the
coefficients φi and σ2 of the models in terms of the first p+ 1 values γX(0), γX(1),
· · · , γX(p) of the auto-covariance function γX . Replacing these theoretical values
by estimates γ̂X(k) computed as explained earlier, one obtains estimates φ̂i and σ̂2

of the parameters of the model. This method is very easy to implement, and in fact,
it is the standard way to fit an auto-regressive model to sample data once the order
has been determined.

6.3.3.2 Finding the Order

In some sense, estimating the order of an AR is a special case of the estimation of the
dimension of a linear model. So no one will be surprised if the method of choice
for such an estimation is based on a parsimonious balance between a quantitative
measure of fit to the data, and the dimension of the proposed model (typically the
number of parameters needed). When fitting general models, as in the case of linear
models, information criteria are most commonly used. We shall abide by the rule
and use a form of the AIC criterion. However, despite its rather universal character,
the AIC criterion is subsumed by more powerful tools in specific cases. As we are
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about to explain, theoretical properties of the partial auto-correlation function will
identify features to look for in order to make sure that an autoregressive model is
appropriate, while at the same time, giving us a sharp estimate of the order of the
model. Moreover, when we try to fit a moving average model in next subsection, we
will see that a vanishing auto-correlation function will be an indication for a moving
average model, and the lag at which it vanishes will provide a sharp estimate of the
order.

As we are about to see, the best tool for identifying the order of an AR series is
the partial auto-correlation function.

6.3.3.3 Using the Partial Auto-Correlation Function to Find the Order

The concept of auto-regressive process can be used to enlighten the definition of
partial auto-correlation function. Indeed, the definition (6.17) of an auto-regressive
process and the definition (6.3) of the best linear prediction operator say that the
partial auto-correlation coefficient φk,k is the last coefficient obtained when one tries
to force an AR(k) model on {Xt}t (whether or not {Xt}t is an auto-regressive
process). For this reason, if X ∼ AR(p), we should have:

φk,k = 0

whenever k > p. This property has very important practical implications, for, if one
tries to find out if a time series x0, . . . , xn is a sample from an AR(p), and if one
can estimate the partial auto-correlation coefficients φk,k’s from the data, these es-
timates should be zero (or essentially zero), whenever k is greater than the order
p. This property will be used to suggest auto-regressive models with a specific or-
der. Remember that, according to (6.4)–(6.6), γX and γ̂X completely determine the
partial acf’s {φkk}k and {φ̂kk}k respectively.

In R, the partial auto-correlation function is computed by including the option
’’partial’’ in the command acf. This option instructs the program to evaluate
formula (6.6).

6.3.3.4 Prediction

Let us assume that the time series {Xt}t is an AR(p) process for which we know
the order p, the coefficients φ1, . . ., φp and the variance σ2 of the noise. Let us also
assume that we have observed the outcomesXs = xs of the series up to now, i.e. for
s ≤ t. Our goal is to predict the future valuesXt+1, Xt+2, . . . of the series. We shall
denote by X̂t+1|t = Et(Xt+1), X̂t+2|t = Et(Xt+2), . . . these predictions. Recall
the notation Et( · ) for the prediction operator introduced earlier. As we already
mentioned, it could be interpreted as the conditional expectation given the informa-
tion of all the past observations up to and including time t, or as the orthogonal
projection onto the linear space generated by all the random variables known at that
time. In any case, rewriting the definition of the AR(p) model as:
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Xt+1 = φ1Xt + · · ·+ φpXt−p+1 +Wt+1

and applying the prediction operator to both sides of the definition we get:

X̂t+1|t = φ1Xt + · · ·+ φpXt−p+1

sinceEt(Wt+1) = 0 by the very definition of a white noise, and sinceEt(Xs) = Xs

if s ≤ t. Similarly, rewriting the definition as:

Xt+2 = φ1Xt+1 + φ2Xt + · · ·+ φpXt−p+2 +Wt+2

and applying once more the prediction operator to both sides, we get:

X̂t+2|t = φ1X̂t+1|t + φ2Xt + · · ·+ φpXt−p+2

= φ1(φ1Xt + · · ·+ φpXt−p+1) + φ2Xt + · · ·+ φpXt−p+2

= (φ21 + φ2)Xt + (φ1φ2 + φ3)Xt−1 + · · ·+ φ1φpXt−p+1.

This procedure can be repeated at will, and we can compute the prediction X̂t+k|t
for any prediction horizon k. Such a prediction appears as a linear combination of
the p most-recently observed values of the series with coefficients computed induc-
tively from the coefficients of the model. Also, because these predictions are given
by explicit formulae, one can compute a confidence interval for each of them. Unfor-
tunately, these predictions converge very fast toward the mean of the series, zero in
the present situation. So predictions will be uninformative (i.e. plainly equal to the
mean) for long prediction horizons.

The recursive formulae giving the predictions for all the finite horizons are easy
to program. However, we will not need to write such a program as they are imple-
mented in R by the generic function predict. We illustrate its use, together with
the anti-climatic convergence of the prediction toward the mean of the signal, in
Sect. 6.5.3 when we discuss options on the temperature.

6.3.3.5 Monte Carlo Simulations & Scenarios Generation

Random simulation should not be confused with prediction. For example, it would
be unreasonable to add a white noise to a series of predicted values to create a Monte
Carlo sample from the series. Proceeding in this way may seem silly, but it is a
common error with novices.

For the sake of the present discussion, we assume as before that we know the or-
der and the parameters of the model, as well as the values of Xt, Xt−1, . . ., Xt−p+1,
and that we would like to generate N Monte Carlo sample scenarios for the values
of Xt+1, Xt+2, . . ., Xt+M .

The correct procedure is to generate N samples of a white noise time series of
length M , say {Ws}s=t+1,...,t+M , with variance σ2, and then to use the parameters
φ1, φ2, . . ., φp and the definition of the AR(p) model to generate samples of the AR
model from these N samples of the white noise. In other words, for each of the N
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given samples W (j)
t+1, . . ., W (j)

t+M of the white noise, we generate the corresponding
Monte Carlo scenarios of the series (which we denote with a tilde) by computing
recursively the values X̃(j)

t+1, . . ., X̃(j)
t+M from the formula:

X̃
(j)
t+k = φ1X̃

(j)
t+k−1+φ2X̃

(j)
t+k−2+ · · ·+φpX̃(j)

t+k−p+W
(j)
t+k, k = 1, 2, . . . ,M,

for j = 1, 2, . . . , N , given the fact that the “tilde”s over theX’s (i.e. the simulations)
are not needed when the true values are available, i.e. X̃(j)

t+k−p = Xt+k−p whenever
k ≤ p.

This simulation procedure is very easy to implement. R does it as part of a more
general procedure called arima.sim which can be used for more general ARIMA
models. We give the details of its use later in Sect. 6.4.2.

6.3.4 Moving Average Time Series

A time series X = {Xt}t is said to be a moving average time series of order q (with
respect to a white noise W = {Wt}t) if:

Xt =Wt + θ1Wt−1 + θ2Wt−2 + · · ·+ θqWt−q (6.22)

for some real numbers θ1, θ2, . . ., θq . In such a case we use the notation X ∼
MA(q).

While the definition formula of an AR process was recursive, the definition for-
mula (6.22) is explicit in terms of the white noise, and as a consequence, some prop-
erties of the MA time series can be derived easily from the very form of this formula.

• MA series are stationary. This is an immediate consequence of the stationarity
of the white noise and the fact that Xt bears to (Wt,Wt−1, . . . ,Wt−q) the same
relation as Xt+t0 to (Wt+t0 ,Wt+t0−1, . . . ,Wt+t0−q);

• The auto-covariance function and the auto-correlation function of an MA(q) se-
ries vanish for lags greater than q. Indeed, the definition formula (6.22) shows
that Xt+s only depends upon Wt+s, Wt+s−1, . . ., Wt+s−q . Consequently, if
t+s−q > t (i.e. if s > q), this set of white noise terms is disjoint from the set of
terms on which Xt depends. This shows that in this case, the random variables
Xt+s and Xt are independent and γX(s) = cov{Xt+s, Xt} = 0.

As we stated earlier, this last property will be instrumental in the identification
of the order of the model.

6.3.4.1 Prediction and Simulation

Simulation of an MA process is trivial. Indeed it is straightforward to follow the
definition of the process to generate the values of the desired samples of the MA
from the samples of the white noise. The prediction problem is more delicate, and we
shall not dwell on it here because of its technical nature. Nevertheless, anticipating
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a little bit what comes next, we would simply say that, if it were possible to invert
an MA model and rewrite it as an AR model (quite likely with different coefficients)
then one could use the procedure reviewed above in the case of AR processes. This
off-the-wall idea, is not too far-fetched, and it is worth keeping it in mind when one
reads the section on invertibility.

6.3.4.2 A Simulation Example

Even though the auto-correlation function is a powerful tool in itself, it is often very
instructive to visualize the serial correlations in a graphical way. We illustrate this
fact with the simple example of a simulated MA(2) series. The following R – com-
mands create a sample of size 1,024 from a normally distributed moving average
time series with coefficients θ1 = θ2 = 1 and unit noise variance σ2 = 1. This
simulation is a naive implementation of the definition of a moving average process.
We shall see later in this chapter, that R offers more powerful simulation methods for
general ARIMA processes.

SNOISE <- rnorm(1026)
MA2 <- SNOISE[1:1024] + SNOISE[2:1025] + SNOISE[3:1026]
plot(SNOISE[1:1024], type="l")
plot(MA2,type="l")

The plots are reproduced in Fig. 6.14. The moving average series appears to be
smoother than the white noise. As we pointed out in the Simulation part of Sect. 6.3.1,
a comparison based on the roughness or smoothness of the series can be very mis-
leading when series are plotted with different time scales. Fortunately, this is not the
case here, and this impression is real. The plot of the auto-correlation function of the
MA2 series is given by the R-command:

acf(MA2)

The result is given in Fig. 6.15. It confirms what we already learnt: the auto-
correlation function of an MA(2) time series vanishes after lag 2. Figure 6.16 shows
four scatterplots. It was produced with the command:

lag.plot(MA2,lags=4,layout=c(2,2))

From left to right and top to bottom, they show the scatterplots of all the possible
values of the couples (Xt, Xt−1), the couples (Xt, Xt−2), the couples (Xt, Xt−3),
and finally the couples (Xt, Xt−4) which can be formed from the data. Obviously,
the point pattern in the first scatterplot indicates that any two successive entries in
the series are correlated. The second scatterplot shows that a significant dependence
still exists between entries two time lags apart. However, this dependence does not
seem to be as strong. On the other hand, the circular patterns characteristic of the last
two scatterplots suggest that there should be no correlation between entries three and
four time units apart. This confirms what we learned from the serial correlations in a
moving average process.
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Fig. 6.14. White noise SNOISE (top) and a serially correlated MA(2) series (bottom) con-
structed from SNOISE
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Fig. 6.15. Auto-correlation function of the serially correlated series MA2
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Fig. 6.16. Lag-plot of the series MA2 showing the serial dependence

6.3.5 Using the Backward Shift Operator B

The definitions given above (as well as the computations to come) provide another
justification for the introduction of the backward shift operator B. If X is a time
series, then BX is the time series which is equal to Xt−1 at time t. In other words,

BXt = Xt−1.

The operator B so defined is called the backward shift operator. For the record we
notice that the differentiation operator ∇ can be rewritten in terms of the backward
shift operator. Indeed, we have:

∇ = I −B,

which follows from the fact that ∇Xt = Xt −Xt−1 = IXt − BXt = (I − B)Xt,
if we denote by I the identity operator which leaves the time series unchanged. Ap-
plying the operatorB twice to the time series X , we get:

B2Xt = BBXt = BXt−1 = Xt−2.
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By induction, we get that BkXt = Xt−k. The definition (6.17) of an auto-regressive
time series of order p can be rewritten in the form:

φ(B)Xt =Wt (6.23)

where the function φ is the polynomial defined by:

φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p. (6.24)

Similarly, the definition (6.22) of a moving average time series of order q can be
rewritten in the form:

Xt = θ(B)Wt (6.25)

where the function θ is the polynomial defined by:

θ(z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q. (6.26)

The forthcoming analysis of auto-regressive and moving average time series relies
heavily on the properties of these polynomials.

6.3.6 Linear Processes

The definitions of autoregressive and moving average models seem to indicate that
these models are very different. This first impression is somewhat misleading, for in
fact they are both members of the same family of linear models which we are about
to define. Again, we restrict ourselves to the case of mean-zero time series for the
sake of a simpler presentation. A mean-zero time series X = {Xt}t is said to be a
linear process if there exists a white noise W = {Wt}t such that the representation:

Xt =
∞∑

j=−∞
ψjWt−j (6.27)

holds for some (possibly doubly infinite) sequence {ψj}j of real numbers satisfying∑
j |ψj | < ∞. Restated in a developed form, the definition of a linear process says

that:

Xt = · · · · · ·+ ψ−2Wt+2 + ψ−1Wt+1 + ψ0Wt + ψ1Wt−1 + ψ2Wt−2 + · · · · · ·

and the condition imposed on the |ψj |’s is only here to guarantee that this doubly
infinite sum has a meaning. Notice that the fact that this doubly infinite series con-
verges is not a trivial fact, for the sequence of white noise terms Wt is not bounded
in general, and consequently, multiplying it by a summable sequence may not be
enough to give a meaning to the sum. It is only because of the independence of the
terms of the white noise series, that the above definition of Xt is meaningful.

Linear processes are stationary by construction. Indeed, shifting the time indices
for X amounts to shifting the time indices for the white noise and, since a time
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shifted white noise is still a white noise, the shifted version of X bears to the shifted
white noise the same relationship as X bears to the original white noise W , so its
distribution is the same. A particularly interesting class of linear processes is given
by the processes for which ψj = 0 whenever j < 0. These processes are called
causal. They are characterized by the fact that they are functions of the past of the
white noise. Indeed, they are of the form:

Xt = ψ0Wt + ψ1Wt−1 + ψ2Wt−2 + · · · · · · .
In particular, we see that any moving average time series is causal since it is of this
form by definition, the sum being in fact a finite sum.

6.3.6.1 Auto Covariance Function (ACF)

The computation of the auto-covariance function of a linear process goes as follows:

γX(k) = E{XtXt−k} = E

⎧⎨
⎩
(

+∞∑
i=−∞

ψiWt−i

)⎛
⎝ +∞∑
j=−∞

ψjWt+k−j

⎞
⎠
⎫⎬
⎭

=

+∞∑
i=−∞

+∞∑
j=−∞

ψiψjE{Wt−iWt+k−j}

= σ2
∑

−∞<i,j<+∞
t−i=t+k−j

ψiψj

= σ2
+∞∑
i=−∞

ψiψk+i (6.28)

Despite its apparent complexity, formula (6.28) can be extremely useful when it
comes to actually computing the auto-covariance functions of the AR, MA and
ARMA models.

Obviously, one can use formula (6.28) to compute the auto-covariance function
of a MA(q) process just by inspection. Indeed one sees immediately that γX(k) will
be zero whenever |k| > q. Otherwise the value of γX(k) is given by formula (6.28)
where the summation is only taken from i = 0 to i = q − |k|.

It is also possible to use formula (6.28) to obtain a closed-form formula for the
auto-covariance function of AR(p) and ARMA(p,q) models when p is small.

6.3.7 Causality, Stationarity and Invertibility

Recall that in this section, we concern ourselves with time series X = {Xt}t whose
definition relies on a white noise series W = {Wt}t.

We noticed that MA(q) time series were stationary and causal by definition. What
about the AR(p) series? In order to answer this question we consider first the partic-
ular case p = 1 for the sake of illustration. Iterating the definition we get:
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Xt = Wt + φ1Xt−1

= Wt + φ1(Wt−1 + φ1Xt−2)

= Wt + φ1Wt−1 + φ21Xt−2.

We can continue the procedure, using the definition to replace Xt−2. We get:

Xt = Wt + φ1Wt−1 + φ21(Wt−2 + φ1Xt−3)

= Wt + φ1Wt−1 + φ21Wt−2 + φ31Xt−3

and reiterating the substitution n times we get:

Xt =Wt + φ1Wt−1 + φ21Wt−2 + · · ·+ φn1Wt−n + φn+1
1 Xt−n−1.

At this stage we would like to take the limit n → ∞, and get a representation of the
form:

Xt =Wt + φ1Wt−1 + φ21Wt−2 + · · ·+ φn1Wt−n + · · · (6.29)

which would guarantee, if the above infinite sum converges, that the time series X
is linear (thus stationary) with a causal representation. The above sum is convergent
when |φ1| < 1, while it diverges in the case |φ1| > 1. This result is due to the
geometric nature of the sequence of coefficients of the shifted white noise. In the
case φ1 = 1, Xt is a random walk, and we know that we cannot have stationarity.
The case φ1 = −1 is the same because the minus sign can be absorbed in the white
noise term.

The above result is quite general when restated appropriately. In full generality
it says that, an AR(p) time series is stationary and causal when the infinite series
(6.29) converges. In fact, it can be proved mathematically that this is the case when
the (complex) roots of the polynomial φ(z) = 0 lie outside the unit disk of the
complex plane (i.e. are of modulii greater than 1).

To check that this is not different from what we just saw in the case p = 1, notice
that in this case the polynomial φ(z) is given by φ(z) = 1 − φ1z, and consequently
there is only one root, since there is only one root of the equation 1 − φ1z = 0,
namely the number z = 1/φ1. We saw earlier that the series was stationary and
causal if and only if |φ1| < 1. This is the same thing as |1/φ1| > 1, which is the
condition given in terms of the roots of the polynomial φ(z).

When it makes sense, formula (6.29) is called the moving average representa-
tion (or MA representation) of the autoregressive process X . The existence of this
moving average representation can be understood in the following light. If we use
the definition of an AR(p) time series in the form φ(B)Xt = Wt, we can formally
write:

Xt =
1

φ(B)
Wt

and this would be the desired representation if the rational fraction 1/φ(z) (which is
just the inverse of a polynomial) could be written as an infinite power series (i.e. a
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series in powers of z). Indeed, if we revisit one more time the case p = 1, we see
that φ(z) = 1− φ1z and so:

1

φ(z)
=

1

1− φ1z
= 1 + φ1z + φ21z

2 + · · ·

and, even though we shall not try to justify it, the root condition introduced earlier
guarantees that the series converges.

The definition of causality states that Xt can be expressed as a function of Wt

and its past valuesWt−1,Wt−2, . . .. Trying to give symmetric roles to the two series
X = {Xt}t and W = {Wt}t, one may wonder when Wt can be expressed as a
function ofXt and its past valuesXt−1, Xt−2, . . .. If this is the case, we say that the
time series X is invertible.

Recall that, according to its definition, a time series X is an AR(p) if it has the
representation:

Xt − φ1Xt−1 − φ2Xt−2 − · · · − φpXt−p =Wt.

This form of the definition says that an AR(p) series is always invertible in the
sense of the above definition. What about moving average series? You have proba-
bly already noticed a form of duality between auto-regressive and moving average
properties. This duality is real as we are about to see one more time. The situa-
tion of moving average processes with respect to invertibility is the same as the
situation of auto-regressive processes with respect to causality. In order to see that
clearly, we consider the simple case of q = 1. The definition of an MA(1) series is
Xt =Wt + θ1Wt−1. It can be rewritten as:

Wt = Xt − θ1Wt−1.

Iterating this definition, we replace Wt−1 and we get:

Wt = Xt − θ1(Xt−1 − θ1Wt−2) = Xt − θ1Xt−1 − θ21Wt−2

and if we play the same substitution game over and over we get:

Wt = Xt − θ1(Xt−1 − θ1Wt−2) = Xt − θ1Xt−1 − θ21Xt−2 − · · · (6.30)

the sum of this infinite series making sense only when |θ1| < 1. When this is the case,
formula (6.30) is called the auto-regressive representation (or the AR representation)
of X . As in the case of moving average representations, this result is quite general.
It applies to all the moving average processes as long as the coefficients are such that
the above series converges, and this is indeed the case when all the (complex) roots
of the characteristic polynomial θ(z) are outside the unit disk (i.e. are of modulus
greater than 1).

Let us show the duality in action one more time. If we rewrite the definition of a
MA(q) time series as Xt = θ(B)Wt, then the method used above (in the particular
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AR(p) MA(q)

Stationarity
causality |z| > 1 if φ(z) = 0 Always

Invertibility Always |z| > 1 if θ(z) = 0

Table 6.1. Table of the invertibility, causality and stationarity properties illustrating the duality
between the auto-regressive and moving average processes

case of a MA(1) model) to show invertibility of the model, can be viewed as a way
to rewrite the left hand side of:

1

θ(B)
Xt =Wt

as an infinite series in positive powers of B. When this infinite series can be derived
as a convergent infinite expansion, it provides an AR-representation on which the
invertibility condition appears clearly (Table 6.1).

Remarks.

1. The need for the statistical estimates provided by time averages was convenient
for justifying the importance of stationarity. At this stage of the analysis, it is
practically impossible to justify the fuss about causality and invertibility: why
would we care so much about the fact thatXt is a function of the past values of the
noise, and why would we need to know that the noise Wt is in turn a function of
the past values of the observed series. The importance of these issues will become
clear in Chap. 7 when we consider partially observed systems, and filtering issues.
For the time being, the reader will have to take our word for it: these matters are
of crucial importance in practical applications.

2. Notice that adding a constant to a model can have very different effects depending
on the model in question. For example, adding a constant term to a regression
amounts to adding an intercept. Adding a constant to the equation of a moving
average model merely changes the constant mean of the series. On the other hand,
adding a constant term to the equation of an auto-regressive model adds a linear
drift, i.e. a linear function of time to the series.

6.3.7.1 Unit Root Test

Let us assume that the logarithms of a stock price follow either one of the two models

Xt = φ1Xt−1 +Wt

Xt = φ0 + φ1Xt−1 +Wt

for some strong white noise {Wt}. Testing whether the log-price is a random walk
is testing the null hypothesis H0 : φ1 = 1 against the alternative H1 : φ1 < 1.
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Notice that when, φ0 = 0, this alternative guarantees a stationary time series. Such
a test is called a unit-root test. Given observations x1, . . . , xn of the log-prices, the
least squares estimates of φ1 and of the variance σ2 of the white noise are given in
either model by:

φ̂1 =

∑n
i=1 xixi−1∑n
i=1 x

2
i−1

, and σ̂2 =
1

n− 1

n∑
i=1

(xi − φ̂1xi−1)
2 (6.31)

where we set x0 = 0 by convention. The quantity:

DF =
φ̂1 − 1√
σ̂2

(6.32)

is called the Dickey-Fuller test statistics. Its distribution converges when the sample
size n grows indefinitely, and the limit can be identified both in the case φ0 = 0 and
in the case φ0 �= 0, leading to tests of the hypothesis H0 against H1. Problem 6.11
is devoted to a direct Monte Carlo computation of the critical values of the test. The
library Rsafd contains a function DF.test performing unit root tests on numeric
vectors and univariate timeSeries objects. Its use is illustrated in the next sub-
section below.

6.3.8 ARMA Time Series

A time seriesX = {Xt}t is said to be an auto-regressive moving average time series
of order p and q if there exists a white noise W = {Wt}t such that:

Xt − φ1Xt−1 − · · · − φpXt−p =Wt + θ1Wt−1 + · · ·+ θqWt−q (6.33)

for some real numbers φ1, . . ., φp, and θ1, . . ., θq. In such a case we use the notation
X ∼ ARMA(p, q). Using the shift operatorB this definition can be rewritten in the
form:

φ(B)Xt = θ(B)Wt

for the polynomials φ(z) and θ(z) defined above in formulae (6.24) and (6.26) re-
spectively. Since one can formally write:

Xt =
θ(B)

φ(B)
Wt and

φ(B)

θ(B)
Xt =Wt

one sees why the stationarity and causality properties only depend upon its auto-
regressive part, and its invertibility only depends upon its moving average part. More
precisely:

• The ARMA(p, q) series is stationary and causal if all the (complex) roots of
φ(z) have modulii greater than 1;

• TheARMA(p, q) series is invertible if all the (complex) roots of θ(z) have mod-
ulii greater than 1,
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since the use of the polynomials φ(z) and θ(z) shows that we have the stationarity
and the causality of the ARMA(p, q) series if we can prove the stationarity and
causality of itsAR(p) part, while we have the invertibility of theARMA(p, q) series
if we can prove the invertibility of its MA(q) part.

Remark. By definition, the unit-root test introduced earlier was appropriate for AR
models. An extension to ARMA models was proposed. It goes under the name of
augmented Dickey-Fuller test. The function DF.test of the library Rsafd pro-
vides an implementation whose use we now illustrate.

TST <- DF.test(rnorm(1024))
TST$p.value
[1] 0.01

In fact, the series is so stationary that the function DF.test gives a warning stating
that the p-value is in fact smaller than the output!

TST <- DF.test(co2.ts)
TST$p.value
[1] 0.7766632

which is certainly not a surprise given the rapidly increasing nature of the series.

6.3.9 ARIMA Models

A time series {Xt}t is said to be an ARIMA process if, when differentiated finitely
many times, it becomes an ARMA time series. More precisely, one says that {Xt}t
is an ARIMA(p, d, q) if its becomes an ARMA(p, q) after d differences. So using
the notation introduced earlier:

X ∼ ARIMA(p, d, q) ⇐⇒ ∇dX ∼ ARMA(p, q).

Recall that the operator∇ = I−B is the first difference operator. Equivalently, using
the definition of ARMA processes in terms of polynomials in the shift operator B
we see that:

X ∼ ARIMA(p, d, q) ⇐⇒ φ(B)(I −B)dX = θ(B)W

for a white noise W and polynomials φ and θ.

6.4 FITTING MODELS TO DATA

The purpose of this section is to take advantage of the theoretical properties derived
in the first part of the chapter in order to identify models appropriate for given time
series data, and to fit these models to data.
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6.4.1 Practical Steps

We now summarize the steps recommended for fitting the models we discussed in
this chapter.

6.4.1.1 Searching for Stationarity

The first step of a time series analysis is the identification and the removal of the
trend and seasonal components. We should

1. Transform the data into a stationary time series if needed:
• Remove trends (regression);
• Remove seasonal components;
• Differentiate successively;

2. Check if the data form a white noise, in which case model fitting is over.

We shall see in the last chapter that some forms of white noise in the weak sense are
still amenable to model fitting, but for the purposes of this chapter, reaching a white
noise is our stop criterion.

Once we transformed the original data into what we believe to be a stationary
time series, one visualizes the serial correlation by computing and plotting the auto-
correlation function. If its values vanish after a finite lag, then we fit a moving av-
erage model of order given by the last lag with a non zero correlation. If not we
proceed to fitting an auto-regressive model.

6.4.1.2 Fitting an AR

In order to fit an AR model we follow the steps given below:

1. Computation of the AIC criterion and the partial auto-correlation function to de-
termine the order of the model;

2. Estimation of the auto-regression coefficients and of the variance of the noise by
solving the Yule-Walker equations;

3. Computation of the residuals and testing for white noise to decide if the model
fitting is complete or if it needs to be pursued further.

Even though this method is used by default in R, solving the Yule-Walker equations
is not the only way to estimate the coefficients of an AR model. For example, R offers
the option to use Burg’s method as an alternative. This method is based on spectral
and information theoretic arguments. We shall not discuss it here.

6.4.1.3 Fitting an MA

In order to fit an MA model we follow the steps given below:

1. Computation of the auto-correlation function and checking that it vanishes after
some lag;
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2. Confirmation of the order of the model with the AIC criterion;
3. Estimation of the moving average coefficients by maximum likelihood;
4. As always, computation of the residuals and testing for white noise to decide if

the model fitting is complete or if it needs to be pursued further.

If the order of the model has already been determined, R has a method for determin-
ing the coefficient of the model. We shall see how to use this function below.

6.4.1.4 Fitting an ARMA

In order to fit an ARMA model it is recommended to follow the steps:

1. Attempt to fit an AR model to the data and computation of the residuals;
2. Attempt to fit an MA model to the residuals of the AR model fitted first, or to the

original data if the AR fit was not deemed satisfactory;
3. Using the AR-order p and the MA-order q determined by steps 1 and 2 above, fit

of an ARMA(p,q) model by maximum likelihood;
4. Analysis of the residuals and testing for white noise.

6.4.1.5 Fitting an ARIMA

If the search for stationarity is done by successive differentiations, and if an ARMA
model is fitted to the result, then we have fitted an ARIMA model, the order of which
is the triplet (p, d, q) of integers, p standing for the order of the AR component, d for
the number of differences computed to get to stationarity, and q for the order of the
MA component.

So like Mister Jourdain was producing prose without knowing it, we have been
fitting ARIMA models by first differentiating a time series until we reached a sta-
tionary series, and then fitting an ARMA model to the result.

6.4.2 R Implementation

We illustrate the prescriptions given above with the analysis of a couple of simple
examples.

6.4.2.1 Example of an AR-Analysis

In order to illustrate how one fits an AR model, we revisit the example of the CO2

concentration data. Remember that, after extraction of a trend and a seasonal compo-
nents, we were left with a stationary looking remainder time series co2.stl$rem
which we now try to model. As shown in Fig. 6.17, the plot of the auto-correlation
function of co2.stl$rem produced by the function acf decays at first, but does
not want to vanish for large lags. Fortunately, it does not show periodic serial depen-
dence between successive entries of the series, typically with period 12, which would
have been a strong indication that the seasonal component was not removed entirely.
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Since this acf-plot does not seem to vanish after a specific lag, it does not point to-
ward a moving average model, and it is reasonable to attempt to fit an auto-regressive
time series first. A first attempt to fit an auto-regressive model should look like:
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Fig. 6.17. Plot of the auto-correlation function of the timeSeries co2.stl$rem as produced
by the command acf(co2.stl$rem)

co2.ar <- ar(co2.stl$rem)
co2.ar
Call:
ar(x = co2.stl$rem)
Coefficients:

1 2 3 4 5 6
0.5914 0.1571 -0.0277 0.0514 -0.0018 -0.0301

7 8 9 10 11 12
0.0147 0.0226 0.0436 0.0000 0.0406 0.0848

13 14 15 16 17
-0.0387 -0.0277 -0.0605 -0.0405 -0.0691

Order selected 17 sigmaˆ2 estimated as 0.0812

R provides a powerful function ar to fit auto-regressive models. Using the command
ar with the time series as only parameter gives the program total carte blanche
for the choice of the order of the model. From a look at the output co2.ar of
the program we see that the order 17 was chosen. In order to understand why, we
plot the partial auto-correlation function with the command acf(co2.stl$rem,
type="partial"). The result is shown in Fig. 6.18.
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Fig. 6.18. Plot of the partial auto-correlation function of the timeSeries co2.stl$rem as
produced by the command acf(co2.stl$rem,type="partial")

First, one clearly sees that the plot of a partial auto-correlation function produced
by the function acf with the option type="partial" is very different from the
plot of the mere auto-correlation function produced by the function acf without
specifying the option type="partial". Moreover, one sees that, except for one
bar barely sticking out of the confidence band, all of the partial auto-correlation
values in the confidence band after lag 17, explaining why the program chose such
a value for the order of the model. However, it appears that not many partial auto-
correlation values are significantly different from zero after lag 2, and it may be more
parsimonious to work with an AR(2) model, especially given the relatively small
length of the data. Despite a poor readability due to the scale of the first values, this
is confirmed by the plot of the AIC reproduced in Fig. 6.19. Remember that the AIC
is a form of universal criterion used to determine the order of a model. Again, we
understand why the program chose the order 17, but we also see why working with
order 2 could be better. So we decide to fit an AR(2) model to the remainder term.

myco2.ar <- ar(co2.stl$rem,order=2)
myco2.ar
Call:
ar(x = co2.stl$rem, order.max = 2)
Coefficients:

1 2
0.6407 0.1517

Order selected 2 sigmaˆ2 estimated as 0.08483

To convince ourselves that this was the right thing to do, we produce a sequential
plot of the residuals of the model and their auto-correlation function Notice that we
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Fig. 6.19. Sequential plot of the AIC (Akaike Information Criterion) for the AR model for the
remainder series co2.stl$rem
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Fig. 6.20. Sequential plot of residuals of the AR(2) model for the remainder series
co2.stl$rem as given by the command plot(myco2.ar$resid)

compute the auto-correlation function of the vector of residuals starting with index
3. Indeed, because we work with an AR(2) model, the first two residuals are NAs,
and their presence would crash the function acf (see title of Fig. 6.21).

We learn from the discussion of the statistical properties of the residuals of a lin-
ear model that raw residuals are heteroskedastic and that they are serially correlated.
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Fig. 6.21. Auto-correlation function of the residuals of the AR(2) model given by the com-
mand acf(myco2.ar$resid[3:length(myco2.ar$resid)])

However, a look at the above plot seems to indicate that the auto-correlation func-
tion of these raw residuals is not much different from the auto-correlation of a white
noise, and for the time being, we will consider that this is a sign that our statistical
modeling is complete. Remember, this will not be the case when we stop restricting
ourselves to linear models.

A natural application of our modeling effort is to use our fitted model to pre-
dict future values of the CO2 concentration. We discussed earlier how to compute
such predictions in the general case of AR(p) models and we explained that, unfor-
tunately, predictions do converge very fast toward the mean of the series (zero in
the present situation of a remainder time series) when they try to look too far ahead
in the future. Let us see a practical illustration of these ideas in the specific case at
hand. In R, we use the generic function predict to compute predictions from a
model. In particular, if we want to predict one year worth of monthly values of the
CO2 remainder time series we do:

myco2.pred12 <- predict(myco2.ar,
newdata=seriesData(co2.stl$rem),n.ahead=12)

myco2.pred12
$pred
Time Series:
Start = 611
End = 622
Frequency = 1

CO2_rem CO2_rem CO2_rem CO2_rem CO2_rem CO2_rem
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-0.427262 -0.371504 -0.313034 -0.267114 -0.228821 -0.197321
CO2_rem CO2_rem CO2_rem CO2_rem CO2_rem CO2_rem

-0.171329 -0.149896 -0.132221 -0.117645 -0.105624 -0.095711

$se
Time Series:
Start = 611
End = 622
Frequency = 1
[1] 0.29126 0.34592 0.38272 0.40524 0.41996 0.42967 0.43615
[8] 0.44050 0.44344 0.44543 0.44677 0.44768

The output of the functionpredict is a list with a component$pred for the values
of the desired predictions, and $se for the estimations of the prediction errors. We
may want to plot the predictions so-obtained with the command plot(myco2.
pred12$pred). The results are reproduced in Fig. 6.22. Note the need for the
parameter newdata which has to be a vector or a matrix. Note also that the result
is not a timeSeries object (hence the labels on the x-axis). To confirm what
we mentioned several time on the anti-climatic lack of content of longer horizon
predictions, we can compute the predictions for 10 years worth of remainder values
(using the value n.ahead=120). The result is plotted in Fig. 6.23. The plot was
produced with the commands

plot(myco2.pred120$pred)
abline(h=mean(seriesData(co2.stl$rem)))
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Fig. 6.22. Prediction of the values of the next 12 months for the AR(2) model fitted to the
CO2 remainder component
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Fig. 6.23. Prediction of the values of the next 120 months for the AR(2) model fitted to the
CO2 remainder component
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Fig. 6.24. Prediction of the errors on the predictions of the next 12 months for the AR(2)
model fitted to the CO2 remainder component

Note the rapid convergence toward the mean. We can also plot the prediction errors
using the command plot(myco2.pred120$se). The results are reproduced in
Fig. 6.24. We see that the estimates of the prediction errors are increasing fast before
stabilizing near a steady asymptotic level.
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6.4.2.2 Fitting a Moving Average Model

Instead of using a real life time series for which we never know whether or not a
model is appropriate, we illustrate the fitting procedure with a simulated time series.
In this case, we know in advance what to expect. We could use the series MA2 con-
structed earlier by bare hands, but in order to illustrate the simulation capabilities
of R we choose to construct a brand new series. We use the function arima.sim
to simulate a sample from an MA(4) model and we immediately compute the em-
pirical estimate of the auto-correlation function of the time series generated in
this way.

MA4 <- arima.sim(1024,model=list(ma=c(-.5,-.25,.1,.6)))
plot(MA4,type="l")
acf(MA4)

In R, ARIMA models are given by specifying a parameter called model. The
latter is a list. Its ar component gives the coefficients φi of the AR-polynomial φ(z)
while the componentma gives the values of the coefficients θj of the MA-polynomial
θ(z). We give further details below. The two plots are given in Fig. 6.25. The values
of the auto-correlation function do not seem to be significantly different from zero
after lag 4. This is consistent with a moving average model of order 4. Naturally,
we then try to fit an MA(4) model. If we assume that we only know the order of the
moving average (and not the actual coefficients), we fit a univariate MA(4) model
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Fig. 6.25. Top: Moving Average (of order 4) simulated series. Bottom: Corresponding auto-
correlation function. Notice that it is vanishing for lags larger than 4
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with the R function arima which will be discussed in the next subsection. Printing
the results gives the following output:

MA4FIT <- arima(MA4,order=c(0,0,4))
MA4FIT
Call:

arima(x = MA4, order = c(0, 0, 4))

Coefficients:
ma1 ma2 ma3 ma4 intercept

-0.4941 -0.2300 0.0542 0.6328 -0.0138
s.e. 0.0247 0.0292 0.0284 0.0249 0.0300

sigmaˆ2 estimated as 0.9975:
log likelihood = -1454.41, aic = 2920.82

The object returned by the function arima contains the information about the
model, together with the value of the AIC criterion, the maximum value of the log-
likelihood as computed, the estimates of the coefficients (those at which the max-
imum of the likelihood was attained) and the corresponding standard errors. The
experiment is satisfactory in the sense that as expected, the estimated coefficients are
reasonably close to the actual coefficients used to generate the MA sample.

6.4.2.3 Fitting an ARIMA Model

If we already know the order of an ARIMA model, in other words, if we know the
three integers (d for the order of differentiation, p for the auto-regressive order and
q for the moving average order), then it is easy to fit an ARIMA model by maxi-
mum likelihood. The R function arima will do that for us if we give the argument
order=c(p,d,q). The output is an arima model object. Besides the input param-
eters, it has an attribute called model. The latter is a list with ar and ma components
which give the φ and θ coefficients of the ARMA part of the model. See the appendix
at the end of this chapter for a discussion of the sign conventions used by R.

Remark. Clearly, the function arima requires the knowledge of the order of the
model. It cannot be used to fit an ARIMA model if one does not already know the
order (p, d, q), it can only be used to fit an ARIMA model of a specific order.

6.4.2.4 Diagnostics

One of the most insidious mischiefs of powerful computer statistical packages is the
fact that it is always possible to fit a model to data, even when the model in question
is not appropriate. So it is a good practice, once a model is fitted, to run diagnostics
in search of confirmation. For example, after fitting anARMA(2, 1) model to a time
series TS, the resulting model can be diagnosed by the R function tsdiag.

> TS.fit <- arima(co2,order=c(2,0,1))
> tsdiag(TS.fit)
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Unfortunately, diagnostics for time series fits are not as developed in R as they are
in S-Plus. In particular, the generic function tsdiag does not return numerical
statics. It merely plots the standardized residuals, the autocorrelation function of the
residuals, and the p-values of the LjungBox version of the portmanteau test for all
lags up to the value of the parameter gof.lag.

6.4.2.5 Simulation

R offers a function to effortlessly produce samples of ARIMA time series. This func-
tion is called arima.sim. The parameters of the model need to be provided each
time the function is called. These parameters should be in the form of the output of
the function arima.

SIM <- arima.sim(model, n=100, innov=NULL, n.start=100)

The parameter n gives the length of the series to simulate, while n.start gives
the number of generated values to discard. The use of n.start is desirable if we
want to make sure that the simulation is representative of an equilibrium situation.
By default, the function arima.sim uses a normal random sequence created with
the function rnorm as a sample for the white noise from which the sample of the
ARIMA model is created. When the innov parameter is provided, the simulation
is not based on such a normal random sequence. Instead, the sequence innov is
used for that purpose. This is especially useful if we want to repeat simulations with
different features while keeping the same source of randomness, but it is also conve-
nient if we want to simulate series with a non-Gaussian white noise with heavy tails.
We can use the simulation techniques developed in Chap. 2 to simulate samples from
a heavy tail distribution, and use such a sample as the parameter innov.

Other parameters can be used. The interested reader is invited to check the help
file of the function arima.sim. See our analysis of the Charlotte temperature be-
low for an illustration of the use of simulation for Monte Carlo computations of
probabilities and expectations.

6.4.2.6 Prediction

In the general case of an ARIMA model, like in the particular case of AR models,
predictions of the future values are computed with the generic function predict.
A typical call to this function has the form:

> PRED <- predict(fit, n.ahead = 6)

where the object fit is of class arima, i.e. has been created by the function
arima, and where n.ahead is the number of consecutive future values of the se-
ries to be predicted, starting from the end of the series. The object PRED is a list
containing a vector PRED$pred of length n.head for the actual predictions, and a
vector PRED$se for the estimates of the standard errors of the predictions. See the
analysis of the temperature at Charlotte NC for an example.
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6.5 PUTTING A PRICE ON TEMPERATURE

There is a renewal of interest in temperature time series in many economic sectors.
We believe that this current wave is mostly due to the great excitement caused by
the growing use of weather derivatives for risk management, by the prospect of large
speculative profits, and presumably by the mystery surrounding the difficult pricing
issues associated with these instruments. A better understanding of the statistics of
these series will help dissipate this mystery. This is what we attempt to do in this
section.

Our goal is to develop an understanding of the statistics of these time series
which would be appropriate for the pricing of meteorological derivatives. Options
on heating and cooling degree days are actively traded on the over the counter (OTC
for short) market. Moreover, as of September 22nd 1999, the Chicago Mercantile
Exchange (CME, for short) started offering futures contracts on monthly indexes
computed from the cumulative HDD’s and CDD’s in three cities, as well as options
on these futures contracts. Contrary to our use of non-parametric regression to price
options on the S&P 500 index, we shall not attempt to price temperature options
in the same direct way. Price discovery is too much of a challenge in these mar-
kets, price data are too scarce, and illiquidity problems are muddying the water too
much for us to take a chance at this touchy business. But before we actually start
addressing the pricing issues, we devote the following two subsections to the intro-
duction of the terminology and notation needed for the analysis of these financial
instruments.

6.5.1 Generalities on Degree Days

Temperature data are readily available, especially on the internet. For a very large
number of locations, usually US meteorological stations (near or at airports), daily
temperatures are provided free of charge. The information is given in the form of a
high and a low for each day. We use the standard notation MinT and MaxT for
the minimum and the maximum temperatures on a given day. These temperatures
are expressed in Farenheit degrees. From these, one usually computes the so-called
average temperatureAvgT defined as:

AvgT =
MinT +MaxT

2
. (6.34)

This definition may not correspond exactly to the intuitive notion we have of the
average temperature on a given day. Nevertheless, it is the quantity which is used
to define the important concepts of heating degree day (HDD for short) and cooling
degree day (CDD for short). On each given day, say t, the heating degree day
HDDt is defined as the number:

HDDt = (65−AvgTt)
+ = max{65−AvgTt, 0}. (6.35)
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The intuitive notion of heating degree day is simple: this number tells us by how
many degrees one should heat on day t in order to keep the temperature at a minimum
level. The threshold at which one does not need to heat any longer is (arbitrarily) set
at the level 65. Apparently, this is the temperature at which the furnaces used to
be turned on. But let’s face it, the notion of temperature at which one should start
the heater is very subjective: residents of Southern California and Minnesota may
not agree on the choice of this threshold. In any case, the value of 65 is generally
accepted, and it is used in all degree days computations. We shall accept it as is.
Formula (6.35) says that HDDt = 0 on days where the average temperature (as
given by AvgTt) is greater than 65, and that on the other days, HDDt is equal to
the amount by which the average temperature falls under 65. Similarly, the cooling
degree day CDDt is defined as the number:

CDDt = (AvgTt − 65)+ = max{AvgTt − 65, 0}, (6.36)

and its intuitive interpretation is similar. Some daily temperature services provide
daily values for AvgT , HDD and CDD along with the values of MinT and
MaxT .

Given a time period P , which can be a month, or a summer, or any other kind of
pre-specified time period, the cumulative numbers of degree days for this period are
defined as:

HDD(P ) =
∑
t∈P

HDDt and CDD(P ) =
∑
t∈P

CDDt.

As we shall see shortly, these quantities are the underlying indexes on which the
temperature futures and option contracts are written.

6.5.2 Temperature Options

There are many kinds of weather related financial instruments. We already mentioned
catastrophic bonds when we discussed the PCS index in Chap. 2. In this section, we
concentrate on options on the temperature. We motivate their introduction with a few
simple examples chosen only for the sake of illustration. Gas retailers are bound to
lose money during mild winters because of low demand. Notice also that extremely
cold winter can also be the source of losses since, tied by delivery contracts, the gas
retailer may have to buy gas at a prohibitive price on the spot market to satisfy an un-
expectedly high demand. Similarly, electric power utility companies suffer from cool
summers because of lower demand, but they also suffer from too hot a summer when
they are forced to purchase electricity on the spot market to satisfy an unexpectedly
high demand. The highly speculative and volatile nature of the electricity spot mar-
ket, especially in the de-regulated markets, has been a source of great concern both
for users and producers. So it seems natural to expect that gas producers and retail-
ers will try to protect themselves against warm winters, and electricity producers will
try to protect themselves against cool summers. They are the naturals for a market
which brings together the banking and the insurance sides of the financial industry.
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The instruments we discuss below have been the most popular derivatives since the
inception of this market in the late 1990s. Even though we mentioned only energy
providers as naturals for this market, the astute reader will reckon that any business
exposed to weather risk (and according to some estimates this may represent up to
70% of the economy) should benefit from the existence of a liquid market for such
instruments.

Futures contracts on monthly cumulative degree days have been introduced by
the CME, but because of the small volume, we shall restrict our attention to the OTC
market. There, the buyer of an option will receive the amount ξ = f(DD) at the
end of the period P , the pay-off function f being computed on the cumulative index
DD = HDD(P ) for the HDD seasons or DD = CDD(P ) for the CDD seasons.
A CDD season typically starts May 15 and ends September 15. It can also start
June 15. The HDD season starts November 15 (December 15 in some cases) and
ends usually March 15. The remaining months are called the shoulder months, and
the lack of underlying instruments during these months is a peculiarity of the OTC
weather market.

6.5.2.1 Examples of Pay-Off Functions

Here are some examples of pay-off functions which have been used in the over the
counter markets. Figure 6.26 gives the plots of two of the most popular pay-off func-
tions.

Call with a Cap. For these options, the pay-off ξ = f(DD) is of the form:

ξ = min{α(DD −K)+, C}. (6.37)

The graph of the pay-off function f is given on the left pane of Fig. 6.26. The buyer
of such an option pays the up-front premium at the signature of the contract, and if
DD > K at the end of the strike period, the writer (seller) of the option pays the
buyer the nominal pay-off rate α times the amount by which DD exceeds the strike,
the overall payment being limited by the cap C. The values of US$ 2,500.00 and
US$ 5,000.00 have been quite commonly used for the pay-off rate α, while typical

DD

C

K

ξ=f(DD)

DD

F

K

ξ=f(DD)

Fig. 6.26. Pay-off functions of a call with a cap (left) and a put with a floor (right)
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values of the cap C are US$ 500,000.00 or US$ 1,000,000.00. See real life examples
later in the text and in the problems at the end of the chapter.

The option is said to be at the money when the strike K is near the historical
average of DD, and out of the money when K is far from this average. As far as we
know, most of the options written so far have been deep out of the money: buyers are
willing to give up some upside for some downside protection.

There is no agreement on what is a reasonable period over which to compute
the so-called historical average. Where to strike an option? Some recommend to
use no more than 10–12 years in order to capture recent warming trends (urbaniza-
tion, global warming, . . .), while others suggest to use longer periods to increase the
chances of having a stable historical average.

Example. The marketing department of my favorite cruise line has known for quite
some time that the summer sales suffer when the Spring is warm in the North East
of the US. People do not suffer from cabin fever which usually follows cold winters,
and they tend not to rush to warmer horizons for their summer vacations. So Royal
Caribbean will want to buy an out of the money call on Spring CDD’s, possibly with
a cap since after all, it will sell a minimum number of cruises no matter what.

Put with a Floor. For these options, the pay-off ξ = f(DD) is given by:

ξ = min{α(K −DD)+, F}. (6.38)

The graph of the pay-off function f is given on the right pane of Fig. 6.26. In ex-
change for the premium, the buyer of such an option receives, at the end of the strike
period, ifDD < K , α times the amount by which the strike exceedsDD, the overall
payment being limited by the floor F .

Example. In order to hedge the risk that a warm winter hampers its sale numbers, a
heating oil provider will buy a put on HDD’s over the winter season.

Collar. Buying a collar contract is essentially equivalent to being long a call with a
cap and short a put with a floor. More precisely, the pay-off is given by:

ξ = min{α(DD −Kc)
+, C} −min{β(Kp −DD)+, F}. (6.39)

The graph of the pay-off function f is given in Fig. 6.27. It is possible to adjust all the
parameters α, β, C, F,Kc,Kp for the premium to be zero. Since there is no up-front
cost to get into one of these contracts, this form of collar is quite popular.

Example. In order to protect its revenues against the possible losses of a mild Winter,
a local Gas Company will get into a collar contract with no up-front payment. It will
pay the counter party if the Winter is cold (which is not a problem since it will enjoy
the income from gas sales) and the counter party will pay the Gas Company if the
Winter is warm (offsetting the losses due to slow gas sales).
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Fig. 6.27. Pay-off function of a collar

The weather derivatives introduced above can be viewed as European vanilla op-
tions, if we view them as written on an underlying of the formHDD(P ) orCDD(P ).
But it might be easier to view them as written on the temperature AvgTt as under-
lying. In this case, they are more of the Asian type than of the European type since
the payoff is computed on the average of the underlying number of daily degree days
over a period ending at maturity. For this reason, pricing may be more difficult in
this case.

It is clear that a good understanding of the underlying is necessary before we
attempt to price some of these derivatives. In any case, the time evolution of the
temperature underlying indexes is very different from the time evolution of the in-
dexes and the stock prices considered so far. This is a strong indication that Samuel-
son’s geometric Brownian motion model is not appropriate, and that we need a better
grasp of the statistics of the underlying index before we can proceed to the analysis
of these derivatives.

6.5.3 Statistical Analysis of Temperature Historical Data

Temperature options are written on a non-financial underlier, so the classical models
of option pricing need to be revisited in order to understand the dynamics of these
new derivatives. We propose to illustrate the major issues by the detailed analysis
of the statistical properties of the temperature at a given meteorological station. We
chose the location of Charlotte, NC for the sake of illustration and for reasons to be
uncovered later.

Because of the numerous examples of weather derivatives discussed in the text
and the problem sets at the end of this chapter and the following one, the library
Rsafd contains several temperature data sets. They are stored as objects of class
timeSeries containing a slot for the time stamps and a slot for the actual temper-
ature data. These timeSeries objects are usually named after the location where
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the temperature measurements were taken, with an extension .ts. Recall that creat-
ing a timeSeries object can be done with the constructor function timeSeries
as illustrated earlier in the chapter. Note that the object Charlotte.ts contains
the daily minimum, maximum and average temperatures from January 1, 1961 to
March 31, 1999. So the timeSeries object Charlotte.ts is multivariate (tri-
variate to be specific).

head(Charlotte.ts)
MinT MaxT AvgT

1961-01-01 35 55 45
1961-01-02 28 52 40
1961-01-03 29 43 36
1961-01-04 22 52 37
1961-01-05 24 58 41
1961-01-06 25 59 42
plot(Charlotte.ts[1:1800,])

The purpose of the command plot(Charlotte.ts[1:1800,) is to plot the
first 1,800 entries of the series. This amount of data is enough to highlight the peri-
odicity in the data, and not too much to clutter the plot. The result is reproduced in
Fig. 6.28. When applied to a multivariate timeSeries object, the generic function
plot tries to plot all the components of the time series (i.e. all the columns of the
data matrix seriesData).
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Time Series Plot of Charlotte.ts[1:1800]

Fig. 6.28. Daily average temperature at Charlotte NC



404 6 TIME SERIES MODELS: AR, MA, ARMA, & ALL THAT

We concentrate on the daily average temperature (i.e. the third column of
Charlotte.ts) and to visualize the seasonality of the data more clearly, we plot
only the first 10 years of the data.

par(mfrow=c(2,1))
plot(Charlotte.ts[,3])
plot(Charlotte.ts[1:3650,3])
par(mfrow=c(1,1))

The results of these plots are reproduced in Fig. 6.29.
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Fig. 6.29. Daily average temperature at Charlotte NC for the whole data set (top) and for the
first 10 years (bottom)

6.5.3.1 Identifying and Removing the Seasonal Component

The first order of business is to identify and remove the trend and seasonal compo-
nents in the data. As in the case of the analysis of the CO2 concentration data, we
use the function sstl to identify and extract these components.

Charlotte.stl <- sstl(Charlotte.ts[,3],TWIND=0.75)

Note that we used TWIND=0.75 instead of TWIND=0.05 as before in the case of
the CO2 data. The sliding window used to compute the trend and the seasonal com-
ponent by successive smoothings has length TWIND times the length of the series.
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But since the period is now 365 instead of 12, the window has to be much larger in
order to cover enough periods hence our choice of the value for TWIND. We plot
separately the resulting three component produced by the function sstl (Fig. 6.30).

60
.0

60
.5

61
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Time Series Plot of Charlotte.stl$trend

Fig. 6.30. Trend component of the daily average temperature at Charlotte NC, as produced by
the command plot(Charlotte.stl$trend)

The trend component identified by the function sstl is upward (almost two degrees
over a period of 40 years), fact which could be linked to global warming, but possibly
to other reasons. The increase in the baseline level of the temperature seems to start
in the mid-1970s as the curve is flat on the left part of the plot. There are many
reasons for such a break: it could have been produced by a change in location of
the measuring station, or a change in urbanization around the station, or . . .. We
know that such a case has been made for Charlotte, and this is why we chose this
example. Some traders claim that they made significant profits taking advantage of
this knowledge. It is important to keep in mind that this sort of uncertainty about
information concerning the data collection often remained private, and suspicions
about the nature of the data hindered transparency and altogether hurt the market
of temperature derivatives. Looking at the second component of Charlotte.stl
partially plotted in Fig. 6.31, we notice that the seasonal component identified by the
function sstl is not very smooth.

One could wish for a smoother seasonal component as it is very likely that many
of the irregularities are noise artifacts, or features that should be modeled as part of
the stationary remainder component. For the sake of definiteness, we shall accept the
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Fig. 6.31. Part of the seasonal component of the daily average temperature at Charlotte NC,
as produced by the command plot(Charlotte.stl$sea[1:1200])

seasonal component identified by the function sstl and refrain from constructing a
smoother seasonal component (Fig. 6.32).
Finally we plot in Fig. 6.32 the remainder term which we treat as a stationary time
series and try to model as an auto-regressive process.

6.5.3.2 Analysis of the Serial Correlations

As explained in the text above, in order to detect and identify the possible serial cor-
relations present in the data, the first step is to compute and plot the auto-correlation
function of the series. This plot of the auto-correlation function is given in Fig. 6.33.

It shows significant serial correlations. But since this auto-correlation function
does not seem to vanish after a finite number of lags, we should not try to fit a
moving average model, so we first try to fit an auto-regressive model.

6.5.3.3 Could an AR Model Do the Trick?

We fit an auto-regressive model to the data (the remainder term, to be specific), and
we check that the order chosen by the program is reasonable using the commands:

ChAR <- ar(Charlotte.stl$rem)
ChAR$order
[1] 8
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Fig. 6.32. Remainder component of the daily average temperature at Charlotte NC, as pro-
duced by the command plot(Charlotte.stl$rem)
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Fig. 6.33. Auto-correlation function of the remainder component of the daily average temper-
ature at Charlotte NC, as produced by the command acf(Charlotte.stl$rem)
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Fig. 6.34. AIC criterion for the remainder component of the daily average temperature at
Charlotte NC (left) and partial auto-correlation function (right)

plot(ChAR$aic, main="AIC Criterion")
acf(Charlotte.stl$rem,type="partial")

Given the relatively small number of years used in the fit, the order 8 chosen by the
function ar looks suspiciously large. In order to avoid over-fitting, we double check
for reasons leading to the choice of such a large order by plotting the AIC and the
partial auto-correlation function. The plots of the AIC criterion and of the partial
auto-correlation function reproduced in Fig. 6.34 are consistent with the choice of 8
for the order of the model. However, despite the fact that a careful look at the plot of
the AIC confirms that the minimum is attained for the order 8 (fact which is rather
difficult to see on the plot given in the left pane of Fig. 6.34 because of the large
scale of the first few values) the plot also shows that the major relative drop occurs
before the value 4 of the argument. This suggests that an AR(3) model could be
appropriate. In order to confirm this guess, we checked once more the partial auto-
correlation function in the right part of Fig. 6.34. Except for a minor blip for lag 8,
the partial auto-correlation function vanishes for lags greater than or equal to 4, so 3
is the right order, and in an effort to use a more parsimonious model, on the basis of
these two plots, we choose to fit an AR(3)

MyChAR <- ar(Charlotte.stl$rem, order =3)

imposing the order to the function ar by setting the parameter order to 3. We
assess the goodness of the fit by looking at the raw residuals shown in Fig. 6.35. Even
though consistent with a white noise time series, looking at it is not sufficient. Using
Q-Q plots and tools reviewed in the first chapter of the book, one easily convince
ourselves that these residuals look pretty much Gaussian. But most importantly, the
plot of the auto-correlation function reproduced in Fig. 6.36 looks very much like
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Fig. 6.35. Sequential plot of the raw residuals of the AR(3) model fitted to the remainder
component of the daily average temperature at Charlotte NC
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Fig. 6.36. Auto-correlation function of the raw residuals of the AR(3) model fitted to the
remainder component of the daily average temperature at Charlotte NC

the plot of the auto-correlation function of a white noise: it seems that all the serial
correlation in the data was captured by theAR(3) model. It looks like with are done
with the modeling part!
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6.5.3.4 Application to Temperature Options

Let us now imagine that in early 1999, we were interested in buying protection
against a hot 1999 summer. So let us assume that we did just that by buying a call
option on CDD’s for the period covering July and August 1999 with a given strike
K . How could we have used the analysis done so far to quantify the risk/reward pro-
file of such a purchase? This analysis requires that we look n = 153 days ahead in
the future.

Our first reaction should be to take the prediction formulae developed for AR
models, and use them to predict the summer values of the remainder term, add the
predictions of the trend and the seasonal component to obtain a prediction for the
actual daily temperatures, from which we could finally compute a prediction for
the number of cooling degree days and the pay-off of the option. Unfortunately,
this approach is non-sensical. This strategy has at least two fatal flaws. First, the
prediction horizon is too long for the actual predictions of the remainder term to
be significantly different from zero. Indeed, as we saw earlier, the predictions of the
future values of an AR model converge exponentially fast toward the mean. But most
importantly, we need predictions for nonlinear functions of the daily temperatures,
and computing a nonlinear function of a prediction can lead to unexpected results.

We choose to illustrate this last point with a revisit of the Black-Sholes formula.
As explained in Chap. 5, the price C = CT.K(t, S) at time t when the value of the
underlying stock is S, of call option with strike K and maturity T is given by the
expectation

CT.K(t, S) = e−r(T−t)
E{(ST −K)+} (6.40)

where r denotes the short interest rate (assumed to be deterministic and constant) and
where ST is a log-normal random variable. To be specific, ST is the exponential of
a Gaussian random variable with mean μ̃ = logS+(r− σ2/2)(T − t) and variance
σ̃2 = σ2(T − t) where σ is the (implied) volatility. Under these assumptions the
prediction of ST (as computed at time t) is

ŜT = eμ̃+σ̃
2/2 = Se(r−σ

2/2)(T−t)eσ
2(T−t)/2 = Ser(T−t)

which is often called the forward price. Now, since the present value of the pay-off
of the option is e−r(T−t)(ST −K)+, replacing the unknown (future) value ST of the
stock at maturity by its prediction ŜT = E{ST } would give the value e−r(T−t)(ŜT−
K)+ = e−r(T−t)(E{ST } − K)+ which amounts to interchanging the expectation
and the positive part function x ↪→ x+, and this gives the wrong value!

However, and despite the fact that we may not be able to use these predictions of
pricing and risk management purposes, we still go over the steps leading to predic-
tions for the future values of the temperature at Charlotte NC. Our goal is to extend
the last year of average daily temperature data by the values of the predictions of the
next 153 daily average temperatures given by the model.
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Fig. 6.37. Predictions for the AR(3) model fitted to the remainder component of the daily
average temperature at Charlotte NC

As defined earlier in the chapter, prediction is a linear operation, so we can pre-
dict separately the future values of the trend, seasonal and remainder components,
and add them up to obtain predictions for the future values of the daily average
temperature.

We first produce predictions from our AR(3) model for the remainder term.

ChPred <- predict(object=MyChAR, newdata=
seriesData(Charlotte.stl$rem), n.ahead = 153)

LL <- length(seriesData(Charlotte.stl$rem))
RemPred <- c(seriesData(Charlotte.stl$rem)[(LL-364):LL],

ChPred$pred)
TODAY <- seriesPositions(Charlotte.stl$rem)

[length(seriesPositions(Charlotte.stl$rem))]
TODAY

GMT
[1] [1999-03-31]

TOMORROW <- timeDate("1999-04-01",format="%Y-%m-%d")
POS <- c(seriesPositions(Charlotte.stl$rem)[(LL-364):LL],

timeSequence(from=TOMORROW,length=153,by="day"))
ChPred.ts <- timeSeries(positions=POS,data=RemPred)
plot(ChPred.ts)

The first command is the most important. It produces the desired predictions in the
form of a numeric vector. The role of the other commands is to produce an object
of class timeSeries with the right time stamps. The plot of these remainder pre-
dictionsl is given in Fig. 6.37. Next, we compute predictions of the trend component.
The trend being a deterministic function, the predictions of future values are not
given by expectations computed in a statistical model fitted to data. They are ob-
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Fig. 6.38. Predictions for the trend component of the daily average temperature at
Charlotte NC

tained by extrapolation, extending the function 153 points in the future. But since
we do not really know the true values of the trend (what we have is only an estimate
provided by the function sstl), we proceed by smoothing the current estimate by
natural splines, and then using the function predict for the linear model providing
the natural splines smoothing.

TREND <- seriesData(Charlotte.stl$trend)
LL <- length(TREND)
XX <- (LL-364):LL
TREND.ns <- lm(TREND[XX] ˜ ns(XX,df=6))
TrendPred <- c(TREND[XX],predict(TREND.ns, newdata=

data.frame(XX=(LL+1): (LL+153))))
plot(TrendPred,type="l")
title("Last Year of the Trend and 153 Predictions")

The plot of the trend predictions is given in Fig. 6.38.
Finally we compute the predictions of the seasonal component. This is clearly the
easiest of the three steps. Indeed, because of the periodicity of the seasonal compo-
nent, the extrapolation is given by the values one period earlier.

SEA <- seriesData(Charlotte.stl$sea)
SeaPred <- c(SEA[(LL-364):LL],SEA[(LL-364):(LL-364+152)])
plot(SeaPred,type="l")
title("Last Year of the Seasonal Component and 153 Predictions")

The plot of the predictions of the seasonal component is given in Fig. 6.39.
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Fig. 6.39. Predictions for the seasonal component of the daily average temperature

As explained earlier, we need to add the predictions of the trend and the seasonal
components to the predictions of the remainder component to obtain the temperature
predictions.

TempPred <- TrendPred + SeaPred + RemPred
TempPred.ts <- timeSeries(positions=POS,data=TempPred)
plot(TempPred.ts)

The result is given in Fig. 6.40.

6.5.3.5 Monte Carlo Computations Within the Fitted Model

If one is interested in computing the probability that a given option will actually be
exercised, or computing the present value of an expected payoff, because one cannot
interchange prediction (an expectation) and a nonlinear function of the underlying,
we need to resort to Monte Carlo computations of approximations of these probabil-
ities and expectations.

Let us first review the main steps in the Monte Carlo estimation of the probability
that the option will end up being exercised. This is the probability that the number
CDD(P ) is greater than or equal to the strike K . A Monte Carlo estimate of this
probability can be computed in the following way:

• Choose a large number of scenarios, say N = 10,000;
• Use the AR model fitted to the remainder component to generateN samples x(j)t ,

x
(j)
t+1, . . ., x(j)T where t corresponds to March 31st, 1999, and T to August 31st,

1999, and j = 1, 2, . . . , N ;
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Fig. 6.40. Predictions for the AR(3)-based model fitted to the daily average temperature in
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• Add to each of these simulation scenarios, the predictions/extrapolations of the
trend and the seasonal component to obtain N scenarios of the temperature in
Charlotte starting from March 31st, 1999, and ending August 31st, 1999;

• For each single one of theseN scenarios, compute the number of CDD’s between
July 1st and August 31st;

• Compute the number of times this total number of CDD’s is greater that the strike
K , and divide by N .

The above procedure is very versatile. Not only can it be used to estimate probabili-
ties, but it can also be used to estimate expected values. For example, if a tick rate is
agreed upon (say α = $5,000 per degree day) one can estimate the expected amount
the writer of the option will have to pay to the buyer of the option. As before, we can
generate a large number of Monte Carlo scenarios for the temperature, compute the
pay-off of the option for each of these scenarios, and compute the average (over the
scenarios) of the cost to the writer. Similarly, one can compute the expected amount
the buyer of the option will receive. In fact, given the choice of utility functions for
the buyer and the seller of the options, one can compute the expected terminal util-
ities for both of them, and these numbers should give a good indication of what the
writer would be willing to sell the option for, and of what kind of premium the buyer
would be willing to pay in order to get the protection provided by the option.
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PROBLEMS

©T Problem 6.1 Let us assume that {Wt}t is a variance-one white noise, and let us consider the
time series {Xt}t defined by:

Xt = Wt + (−1)t−1Wt−1.

Compute the mean and auto-covariance functions of the time series {Xt}t. Is this time series
stationary? Say why.

©T Problem 6.2 1. Let us assume that the random variable W is N(0, 1). Compute the values of
the moments:

E{W }, E{W 2}, E{W 3}, E{W 4}, E{W 5}, E{W 6}.

2. Let us now assume that W is N(0, σ2). Determine (as functions of σ) the values of the
same moments.

3. Let us assume that {Wt}t=0,...,N is a Gaussian white noise with variance σ2, and for each
α ∈ R, let us define the time series {Xt}t=0,...,N by the formula:

Xt = αWt +W 3
t , t = 0, . . . , N. (6.41)

Compute the mean, variance and auto-covariance functions of the time series
{Xt}t=0,...,N . Is it stationary?

4. Obviously, Xt strongly depends upon Wt, however, find a value of α for which Wt and Xt

are uncorrelated?

©T Problem 6.3 Let us assume that θ ∈ (−1,+1) is known, that {Wt} is a Gaussian white noise
with variance one, and that {W ′

t} is a Gaussian white noise with variance θ2. Show that the
MA(1) time series {Xt}t defined by Xt = Wt + θWt−1 and the time series {Yt}t defined
by Yt = W ′

t + 1
θ
W ′

t−1 have the same auto-covariance functions. Do they have the same
auto-correlation functions?

©T Problem 6.4 1. Find the AR representation of the MA(1) time series

Xt = Wt − 0.4Wt−1

where {Wt}t is a Gaussian white noise with variance σ2.
2. Find the MA representation of the AR(1) time series

Xt − 0.2Xt−1 = Wt

where, as before, {Wt}t is a Gaussian white noise with variance σ2.

©T Problem 6.5 Let us consider the ARMA time series {Xt}t defined by:

Xt − 0.6Xt−1 = Wt − 0.9Wt−1

where {Wt}t is a white noise with variance one.

1. Rewrite the model using the shift operator B.
2. Is the model stationary? Say why.
3. Is the model invertible? Say why.
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4. Express the model in an MA representation if it exists.
5. Express the model in an AR representation if it exists.

©T Problem 6.6 For each of the following ARMA(1,1) models:

(i) Xt −Xt−1 = Wt − 1.5Wt−1

(ii) Xt − 0.8Xt−1 = Wt − 0.5Wt−1

for which we assume that {Wt}t is a N(0, σ2) white noise,

1. Rewrite the model using the backward shift operator B and determine the polynomials
φ(B) and θ(B).

2. Check if the model is stationary and/or invertible. Explain your answers.

©T Problem 6.7 Let us assume that {Wt}t is a white noise process with mean 0 and variance
σ2 = 1. Consider the time series {Xt}t defined by:

Xt + 0.4Xt−1 = Wt − 2.5Wt−1 +Wt−2.

1. Rewrite the model using the backward shift operator B.
2. Is the time series invertible? Say why.
3. Does an auto-regressive representation exist? If yes, give it.
4. Is the time series stationary (causal)? Say why.
5. Does a moving average representation exist? If yes, give it.
6. Is the time series {Yt}t defined by Yt = (−1)tXt stationary? Explain your answer.

©T Problem 6.8 Let us assume that the time series {Xt}t is defined by:

Xt − 2Xt−1 +Xt−2 = Wt − 0.3Wt−1 − 0.5Wt−2

where {Wt}t is a N(0, σ2) white noise.

1. Rewrite the model using the shift operator B.
2. Is the time series stationary? Say why.
3. Is the second difference Dt = (1−B)2Xt stationary? Say why.
4. Compute the auto-covariance function of the second difference Dt.

©T Problem 6.9 We assume that the data x0, x1, . . . , xn satisfy

xt = φ0 + xt−1, t = 1, 2, . . . , n, (6.42)

where φ0 �= 0 is a real constant. Note that these data are purely deterministic.

1. Find an expression for x1, x2, . . . , xn in terms of x0 and φ0.
2. Compute the sample mean x̄ := 1

n

∑n
i=1 xi, the sample second moment 1

n

∑n
i=1 x

2
i , and

the sample variance 1
n

∑n
i=1(xi − x̄)2, again as a function of x0, φ0 and n.

3. For each fixed lag h = 1, 2, . . . , n− 1, find an expression for the sample autocorrelation
ρ̂(h) (as before as a function of x0, φ0 and n).

4. Show that ρ̂(h) → 1 as n → ∞ for each fixed h, x0 and φ0.

©T Problem 6.10 The goal of this problem is to show that the difference operator ∇ preserves
stationarity. We assume that the time series {Xt}t is stationary.

1. Compute the mean function m∇X(t) and the variance function var∇X(t) in terms of the
mean μX and variance σ2

X of the original series {Xt}t and its covariance function γX(h).
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2. For each lag h ≥ 0 compute the covariance cov{∇Xt+h,∇Xt} in terms of the statistics
of the original series used in question 1.

3. Explain why the sequence {∇Xt}t is also stationary. As always, we use the notation ∇
for the difference operator ∇St = St − St−1 = (1 − B)St, and the notation B for the
back-shift operator BSt = St−1 for any function or series {St}t.

4. Prove by induction that for each integer p ≥ 1, the sequence {∇pXt}t is stationary.

©E ©S Problem 6.11 The goal of this problem is to use Monte Carlo simulations to compute
the critical values of the Dickey-Fuller unit-root test described in the text, and to use the
results to test real log-price data for stationarity. We assume that the time series {Xt}t
is of the form Xt = φ1Xt−1 + Wt for some strong white noise {Wt}t with unknown
variance σ2.

1. Generate a sample of size N = 5,000 from the standard normal distribution and use it to
compute a sample of the same size for the time series {Xt}t with σ2 = 1 and φ1 = 1.

2. For each n = 1, 2, . . . , N compute the values of the estimates φ̂1 and σ̂2, and of the
Dickey-Fuller statisticDF (given by formulae (6.31) and (6.32) in the text) from the sample
of size n formed by the first n entries of the sample of size N generated in question 1 for
{Xt}t. Produce a sequential plot of the estimates of φ1 and σ2 and check that they do
converge toward their true values (1 for both of them.)

3. We now fix N = 1,000 and NS = 500. Repeat the steps above NS times to produce NS
independent samples of size N . Collect the results in a numerical matrix with N rows and
NS columns which you call XX. For each n = 100, 110, 120, . . . , 1,000 compute the val-
ues of the quantiles of the sample of size NS given by the n-th row of the matrix XX for the
values q = 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.96, 0.97, 0.98,
0.99, and organize the results in a numerical matrix with 91 rows and 15 columns which
you call QQ.

4. Produce a sequential plot of each of the columns of QQ and check that each quantile con-
verges as n grows indefinitely. It is in this sense that the distribution of the Dickey-Fuller
statistic converges.
From now on we use the quantiles given by the last row of the matrix QQ as a proxy for
the critical values of the unit-root test. The goal of the last question is to investigate the
stationarity of the daily prices of the Calpine stock contained in the data set CPN, as well
as its log returns CPNLRet.

5. In each case, compute the Dickey-Fuller statistic DF , and give the p-values of the unit-
root tests. Is the random walk assumption rejected at the level 1%? Compute the p-values
given by the implementation of the augmented Dickey-Fuller test provided by the function
DF.test of the library Rsafd and compare the results.

©E Problem 6.12 1. Compute and plot the auto-correlation function of the numeric vector RW
contained in the library Rsafd, and discuss the dependence (or lack thereof) between its
successive entries.

2. Compute the first difference (i.e. with lag k = 1), call it WN, and address the same question
of the dependence of the successive entries. Compare the results with those obtained for
the series RW. Are your observations consistent with the claim: “the series RW was created
as the cumulative sum of the entries of a white noise series”?

3. This question deals with the timeSeries object HS.ts included in the library Rsafd.
The data give the values of the daily closing values of the Hang Seng Index of Hong Kong
Stock Prices from January 2, 1987 to June 25, 2003. Go through the steps of the analysis
of questions 1. and 2. for the series HS.ts and compare the results. What does that tell
you about the Hang Seng index?
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©T Problem 6.13 The goal of this problem is to complete the analysis of the Random Walk with
Drift model introduced in Sect. 5.4.2 of the text. Changing slightly the notation (to replace the
time index n by t) we assume that {Xt}t≥0 satisfies

Xt = μ+Xt−1 +Wt, t = 1, 2, . . . ,

where the constant μ is called the drift, where X0 = x0 is known (non-random) constant,
and where the random variables W1,W2, . . . are independent and identically distributed with
mean 0 and variance σ2.

1. Show that Xt = x0 + μt+
∑t

i=1 Wi for t ≥ 1.
2. Compute the mean, variance, and auto-covariance functions of {Xt}t.
3. Is {Xt}t stationary? Say why.
4. Derive a simple expression for the process {∇Xt} in terms of {Wt}t, and compute its

auto-covariance function. As usual, ∇ denotes the (first) difference operator satisfying
∇St = St − St−1 = (1−B)St and B is the back-shift operator such that BSt = St−1

for any function or series St in t.
5. Is the process {∇Xt} stationary? Say why.
6. Choose x0 = 1.5, μ = 0.5, and n = 128, and assume that the white noise is Gaussian.

Generate a sample w1, . . . , wn of length n of {Wt}t, compute and plot the corresponding
sample x0, x1, . . . , xn of {Xt}t, and explain how you can read the values of x0 and μ off
the graph. Give the scatterplot of the vector of the values x1, . . . , xn against the vector of
the values x0, . . . , xn−1 and explain what you see.

©E ©S Problem 6.14 1. Set the seed of the random generator to 14, generate a realization of
length 1,024 of a N(0, 1) white noise {Wt}t=1,...,1,024, and generate the corresponding
realization of the AR(3) time series {Xt}t=1,...,1,024 satisfying X0 = X−1 = X−2 = 0
and:

(1− 0.07B − 0.02B2 − 0.3B3)Xt = Wt, t = 1, 2, . . . , 1,024.

2. Fit autoregressive models of orders up to 9 and produce the corresponding AIC. Choose
the best model according to this criterion, determine the coefficients and forecast the next
16 values of the time series. Produce a plot of the predictions together with an approximate
95% confidence interval for these predictions.

3. With the same white noise series as before (which you can regenerate by resetting the seed
to 14), generate a realization of length 1,000 of the ARMA(3,4) process Xt defined by:

(1− 0.07B − 0.02B2 − 0.3B3)Xt = (1− 0.4B − 0.3B2 − 0.2B3 − 0.05B4)Wt.

4. Fit autoregressive models of orders up to 9 to the data generated in question 3, and produce
the corresponding AIC values. What is the best model suggested by this criterion? Com-
ment. Fit such a model, and as before, forecast the next 16 values of the time series and
produce a plot of the predictions together with an approximate 95% confidence interval
for these predictions.

5. Ignoring the suggestion of AIC, fit an AR(3) model and compute the estimated residuals.
Fit moving averages models (of orders up to 5) to the time series of estimated residuals and
choose the best one. Use the ARMA model so-obtained to forecast the next 16 values of
the original time series and produce a plot of the predictions together with an approximate
95% confidence interval for these predictions. Compare the results with those obtained in
part 4.
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Problems 6.15 and 6.16 use the data contained in the data set Reno.ts included in the
library Rsafd as an object of class timeSeries. It gives the daily average temperature in
Reno from March 1st 1937 to November 8, 2001.

©E Problem 6.15 The purpose of this problem is to perform a simple regression analysis of the
Reno CDD’s option discussed in the text.
1. Compute for each year in the period from 1961 to 2001 inclusive, the yearly cumulative

number of CDD’s in Reno from June 1st to September 30th. Compute the average of these
yearly indexes over the last 15 years of this period, and call this average K.
From now on we consider a European call option with strike K computed above (i.e. at the
money), with rate α equal to US$ 5,000 per degree day, and cap US$ 1,000,000, written
on the cumulative number of CDD’s in Reno from June 1, 2002 to September 30, 2002.

2. Use the data at hand and a simple linear regression to explain the dependence of this yearly
CDD index upon the year of the computation, and use this model to give an estimate of the
value of the yearly CDD index in Reno for the period covered by the option. Give a 95%
prediction interval for this prediction.

3. Use this model to estimate the probability that the option described in the text is exercised.
4. Estimate the expected loss to the writer of the option (i.e. the party selling the option), and

estimate the amount of reserve (in US$) the writer of the option should have in order to
cover her losses 95% of the time.

©E Problem 6.16 Follow the steps of the analysis of the daily temperature in Charlotte given in
Sect. 6.5 of the text to fit a model to the daily temperature in Reno, use this fitted model and
follow the prescriptions given in the text to provide new answers to the questions 2 and 3 of
Problem 6.15 above.

©E Problem 6.17 In the last few years correlation swaps have been touted as the right tool to
hedge or gain exposure to the correlation between stocks. Note that this form of correlation
trading is different from what traders on a credit desk do when they trade correlation by taking
positions in CDO tranches.

The data to be used for this problem are contained in the data set CorrSwap.ts, an
object of class timeSeries whose data slot is a matrix whose first column gives the clos-
ing values of BNP Paribas stock and the second column gives the closing values of Deutsche
Bank stock. We denote by LL the length of this time series, i.e.
LL=length(seriesPositions(CorrSwap.ts)).
1. Compute the log returns of both stocks.

We choose L = 252 for the length of a sliding time window, denote by T the set of time
stamps in seriesPositions(CorrSwap.ts)[(L+1):LL], and for each time t ∈
T , denote by W(t) the window of length L ending at t, namely the set of the L most recent
(including date t) entries in CorrSwap.ts$pos relative to t.
1.1. For each time t ∈ T , compute the Pearson correlation coefficient of the vectors of

log-returns in W(t), and create with these data, a timeSeries object which you
call Pearson.ts.

1.2. For each time t ∈ T , compute the Kendall correlation coefficient of the vectors of
log-returns in W(t), and create with these data, a timeSeries object which you
call Kendall.ts.

1.3. For each time t ∈ T , compute the Spearman correlation coefficient of the vectors of
log-returns in W(t), and create with these data, a timeSeries object which you
call Spearman.ts.

1.4. Plot the three correlation coefficient time series on the same graph and comment.
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2. For each t ∈ T , we consider a fourth correlation index based on the notion of copula.
• Fit a GPD distribution to the BNP log-returns in the window W(t)
• Fit a GPD distribution to the DBK log-returns in the window W(t)
• Use the fitted marginals and estimate the parameter of a Gumbel copula for the joint

distribution of the log-returns
and create with these parameter estimates, a timeSeries object which you call
Delta.ts.

3. For the purpose of this question we define a correlation swap through its cash flows as
follows: the owner at time t of a correlation swap with time to maturity L and strike K
will receive max{CC[t + L] − K, 0} from, and pay max{K − CC[t + L], 0} to the
counter-party of the contract, at the time t+ L of maturity of the contract. Here, CC[s] is
a correlation index computed from the log-returns of BNP and DBK in a window of length
L ending at time s. For the sake of simplicity, we assume that interest rate is 0, in other
words, we ignore discounting. We will consider four different cases for the correlation index
underlying the contract:
(i) The correlation index is computed as the Pearson correlation coefficient;

(ii) The correlation index is computed as the Kendall correlation coefficient;
(iii) The correlation index is computed as the Spearman correlation coefficient;
(iv) The correlation index is computed as the maximal likelihood estimate of the coefficient

of the Gumbel copula fitted with the procedure described above.
For each day t starting with the 50-th element of T , and ending with LL− L, let us assume
that you own a correlation swap with a time to maturity L and strike K = Kt given by the
average

Kt =
1

50

∑
t′∈W′(t)

CC[t′]

where W ′(t) is the window of the last 50 days t′ before and including t, for which the
correlation index CC[t′] was computed.
Explain how this position would have done over time, i.e. compute the cumulative profits
and losses for all these swaps, and compare the results for the four cases described above.

NOTES & COMPLEMENTS

The random walk and its continuous time analog were introduced at the very beginning of the
twentieth century by Bachelier as a model for the stock market. Indeed, a time series plot of
a sample from a random walk looks very much like a typical stock chart, and the fact that the
increments of the random walks are independent is a good proxy for the expected efficiency
of markets. The classical theory of linear processes with the AR, MA, ARIMA techniques
presented in this chapter, is often associated with the names of Box and Jenkins who made the
theory and the practice of these models popular through a series of books. See for example [8].
We refer the reader interested in the extensions of this theory to Priestley’s book [76] for an
introduction to nonlinear time series analysis, and to Rosentblatt’s book [81] for an extensive
discussion of the identification problems which can be handled with the use of higher order
statistics.

Unit root tests and cointegration are important fixtures of econometric theory and practice,
and our sketchy presentation does not do justice to their importance. The reader is referred to
the financial econometrics books [13] by Campbell, Lo and McKinlay, [42] by Gourieroux and
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Jasiak, and to the book [99] of Zivot and Wang for examples of Splus experiments which can
easily be adapted to the Rsafd library. The R packages tseries and urca offer specialized
functions for the unit root Dickey-Fuller test and co-integration tests. The function DF.test
implementing the unit root Dickey-Fuller test in the library Rsafd is a mere wrapper around
the function add.test of the library tseries.

An important component of stationary time series and signal analysis was purposely ig-
nored in this chapter: spectral analysis. The latter is based on the mathematical theory of the
Fourier transform, and it offers a dual perspective on the properties of signals and time series.
One of its cornerstones is the Shannon sampling theorem for band-limited signals. For details
on the sampling theorem and for the spectral analysis of the linear processes studied in this
chapter, we refer the interested reader to standard textbooks such as [10] for example. We
chose to stay in the time domain, and consequently ignore the frequency domain, not only to
avoid the idiosyncrasies of complex analysis, but also to keep the treatment of causality and
nonanticipativeness at a simple and intuitive level. R has an extensive set of powerful tools to
analyze time series and signal series objects from this point of view, including the package
Rwave implementation in R of the Splus library Swave developed as a companion to the
book [14].

Many charting time series analysis tools have been developed with trading systems in
mind. They usually go under the name of technical analysis, and they are based on indicators
giving buy and sell signals from the behavior of various moving averages. These last two
words are the only commonality with our presentation of the linear time series models.

Despite growing recognition of its importance, the weather market is still not a part of
mainstream finance. We proposed the analysis of temperature options as a striking illustra-
tion of the theory presented in this chapter because we believe that temperature options offer
an example of financial engineering at its best. The interplay between statistical modeling,
mathematical analysis, financial risk management, and Monte Carlo computations makes it
the epitome of financial engineering case studies. While proofreading the manuscript of this
book, I discovered the collective monograph [5], and I highly recommend it to anyone trying
to understand the weather market. Also, I noticed at the same time that a chapter on weather
derivatives was added to a recent edition [50] of Hull’s book. These two publications are a
clear indication of the growing respectability of the weather market among the business and
academic communities. The reader interested in statistical analysis for climate research is re-
ferred to the book [95] by von Storch and Zwiers.
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MULTIVARIATE TIME SERIES,
LINEAR SYSTEMS AND
KALMAN FILTERING

This chapter is devoted to the analysis of the time evolution of random vectors. The
first section presents the generalization to the multivariate case of the univariate time
series models studied in the previous chapter. Modern accounts of time series anal-
ysis increasingly rely on the formalism and the techniques developed for the analy-
sis of general stochastic systems. Even though financial applications have remained
mostly immune to this evolution, because of its increased popularity and its tremen-
dous potential, we decided to include this alternative approach in this chapter. The
tone of the chapter will have to change slightly as we discuss concepts and theories
which were introduced and developed in engineering fields far remote from financial
applications. The practical algorithms were developed mostly for military applica-
tions. They led to many civil and technological breakthroughs. Here, we present the
main features of the filtering algorithms, and we use financial examples as illustra-
tions, restricting ourselves to linear systems.

7.1 MULTIVARIATE TIME SERIES

Multivariate time series need to be introduced and used when significant dependen-
cies between individual time series cannot be ignored. As an illustration, we discuss
further the weather derivative market, and some of the natural issues faced by its
participants. An active market maker in these markets will want to hold options writ-
ten on HDD’s and/or CDD’s in different locations. One good reason for that may
be the hope of taking advantage of the possible correlations between the weather
(and hence the temperature) in different locations. Also large businesses with sev-
eral units spread out geographically are likely to want deals structured to fit their
diverse weather exposures, and this usually involves dealing with several locations
simultaneously. Think for example of a chain of amusement parks, or a large retailer
such as Wal-Mart or Home Depot: their weather exposures are tied to the geographic
locations of the business units, and an analysis of the aggregate weather exposure
cannot be done accurately by considering the locations separately and ignoring the
correlations. As we are about to show, the simultaneous tracking of the weather
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in several locations can be best achieved by considering multivariate time series.
We discuss a specific example in Sect. 7.1.4 below.

The goal of this section is to review the theory of the most common models of
multivariate time series, and to emphasize the practical steps to take in order to fit
these models to real data. Most of the Box-Jenkins theory of the ARIMA models
presented earlier can be extended to the multivariate setting. However, as we shall
see, the practical tools become quite intricate when we venture beyond the auto-
regressive models. Indeed, even though the definition of moving average processes
can be generalized without change, fitting this class of models becomes even more
cumbersome than in the univariate case. As a side remark we mention that R does
not provide any tool to fit multivariate moving average models.

In terms of notation, we keep using the convention followed so far in the book:
as a general rule, we use bold face characters for multivariate quantities (i.e. vectors
for which d > 1) and regular fonts for univariate quantities (i.e. scalars for which
d = 1). In particular, throughout the rest of this section, we shall use the notation
X = {Xt}t to denote a multivariate time series. In other words, for each time stamp
t, Xt is a d-dimensional random vector.

7.1.1 Stationarity and Auto-Covariance Functions

Most of what was said concerning stationarity extends without any change to the
multivariate case. This includes the definition and the properties of the shift operator
B, and the derivative (time differentiation) operator ∇. Remember that stationarity
is crucial for the justification of the estimation of the statistics of the series by time
averages. The structure of the auto-covariance/correlation function is slightly differ-
ent in the case of multivariate time series. Indeed, for each value k of the time lag,
the lag-k auto-covariance is given by a matrix γ(k) = [γij(k)]i,j defined by:

γij(k) = E{X(i)
t X

(j)
t+k} − E{X(i)

t }E{X(j)
t+k}.

In other words, the quantity γij(k) gives the lag-k cross-correlation between the i-th

and j-th components of X, i.e. the covariance of the scalar random variables X(i)
t

and X(j)
t+k.

7.1.2 Multivariate White Noise

As in the case of univariate series, the white noise series are the building blocks of
the time series edifice. A multivariate stationary time series W = {Wt}t is said to
be a white noise if it is:

• Mean-zero (i.e. E{Wt} = 0 for all t);
• Serially uncorrelated

– Either in the strong sense, i.e. if all the Wt’s are independent of each other;
– Or in the weak sense, i.e. if E{WtW

t
s} = 0 whenever s �= t.
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The equality specifying the fact that a white noise needs to be mean zero is an
equality between vectors. If d is the dimension of the vectors Wt, then this equal-
ity is equivalent to a set of d equalities between numbers, i.e. E{W (i)

t } = 0 for

i = 1, . . . , d. As usual, we use the notation W (i)
t for the i-th component of the vec-

torWt. On the other hand, the last equality is an equality between d×dmatrices, and
whenever s �= t, it has to be understood as a set of d×d equalities E{W (i)

t W
(j)
s } = 0

for i, j = 1, . . . , d.
This is exactly the same definition as in the scalar case in the sense that there is

complete de-correlation in the time variable. But since the noise terms are vectors,
there is also the possibility of correlation between the various components. In other
words,

at each time t, the components of Wt can be “correlated”.

Hence, in the case of a white noise, we have

γi,j(k) = E{W (i)
t W

(j)
t+k} = γi,jδ0(k)

where δ0(k) is the usual delta function which equals 1 when k = 0 and 0 when
k �= 0, and γ = [γi,j ]i,j=1,...,k is a time independent variance/covariance matrix for
a d-dimensional random vector. Using the jargon of electrical engineers we would
say that the components are white in time and possibly colored in space.

7.1.3 Multivariate AR Models

A d-dimensional time series X = {Xt}t is said to be an auto-regressive series of
order p if there exist d × d matrices A1, A2, . . ., Ap and a d-variate white noise
{Wt}t such that:

Xt = A1Xt−1 +A2Xt−2 + · · ·+ApXt−p +Wt. (7.1)

As before we ignored the mean term (which would be a d-dimensional vector in the
present situation) by assuming that all the components have already been centered
around their respective means. Notice that the number of parameters is now pd2 +
d(d + 1)/2 since we need d2 parameters for each of the p matrices A and we need
d(d + 1)/2 parameters for the variance/covariance matrix ΣW of the white noise
(remember that this matrix is symmetric so that we need only d(d+1)/2 coefficients
instead of d2!). Except for the fact that the product of matrices is not commutative,
AR models can be fitted in the same way as they are fitted in the univariate case,
for example by solving the system of Yule-Walker linear equations obtained from
the empirical estimates of the auto-covariance function and the consistency relations
with the definition (7.1). In fact as we are about to see, fitting auto-regressive models
with the R function ar can be done with multivariate time series in exactly the same
way it is done with univariate series.
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7.1.3.1 Fitting Multivariate AR Models in R

Before fitting a multivariate AR model we plot the auto-correlation function with
the same command acf as in the univariate case. In order to give an illustration,
we use the example of multivariate timeSeries object TEMPS.ts included in
the library Rsafd. We shall show how to create such a tri-variate time series from
univariate timeSeries objects in Sect. 7.1.4 below.

> acf(TEMPS.ts)
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Fig. 7.1. Auto-correlation functions of the 3-variate time series of original temperature data

The acf plot is reproduced in Fig. 7.1. The output is a 3 × 3 matrix of 9 plots (the
“acf” of a d-variate time series produces a d × d matrix of plots) of the quantities
γi,j(k) for the various lags k when the subscripts i and j stand for the indices of
the components of the multivariate time series. These plots are full in the sense that
the correlations are very high and decay very slowly. This is not due to the existence
of strong statistical dependencies between the individual time series or the different
lags, but instead to the existence of strong deterministic seasonal components which
overwhelmed the computations of the estimates. We shall show in Sect. 7.1.4 how
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to remove the seasonal components and create a stationary 3-variate timeSeries
object TEMPS with the remainder terms, time series to which we can reasonably try
to fit an AR model. Before doing so, we produce the “acf” plot with the command:

> acf(TEMPS)
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Fig. 7.2. Auto-correlation functions of the 3-variate time series of temperature remainders

The result is given in Fig. 7.2. We can now fit an AR model with the command:

> TEMPS.ar <- ar(TEMPS)

The order chosen by the fitting algorithm can be printed in the same way. The order
chosen for the three city temperature remainders analyzed below is 5. The order
was chosen because of the properties of the AIC, but as in the univariate case, the
computation of the partial auto-correlation functions should be used to check that the
choice of the order is reasonable.

> TEMPS.ar$order
[1] 5
> pacf(TEMPS)
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The partial auto-correlation function can be obtained with the R function pacf or
with the generic functionacf provided we add the parametertype to "partial"
as in acf(TEMPS,type="partial"). Figure 7.3 shows that this value is indeed
reasonable.

7.1.3.2 Prediction

Except for the technical complexity of the computations which now involve matri-
ces instead of plain numbers, our discussion of the univariate case applies to the
multivariate case considered in this section.

For example, if Â1, Â2, . . ., Âp and Σ̂W are the estimates of a d-dimensional
AR(p) model (i.e. the parameters of a model fitted to a d-variate data set), then at
any instant t (by which we mean at the end of the t-th time interval, when we know
the exact values of the outcome Xs for s ≤ t), the prediction of the next value of the
series is given by:
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Fig. 7.3. Partial auto-correlation functions of the 3-variate time series of temperature
remainders
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X̂t+1 = Â1Xt + Â2Xt−1 + · · ·+ ÂpXt−p+1. (7.2)

One can similarly derive the prediction of the value of the series two steps ahead, or
for any finite number of time steps in the future.

X̂t+k = Â1X̂t+k−1 + Â2X̂t+k−2 + · · ·+ ÂpX̂t+k−p (7.3)

where we ought to replace the prediction X̂s by the observed value Xs whenever
available, i.e. when s ≤ t. As in the univariate case, when the time series is stable,
the longer the horizon of the prediction, the closer it will be to the long term aver-
age of the series. We shall illustrate this fact on the numerical example we consider
below.

For implementation purposes, the R generic function predict can be used in
the multivariate case as well. The only difference is that for multivariate predictions,
the generic function predict does not compute estimates of the prediction errors,
returning NAs for these error estimates.

7.1.3.3 Monte Carlo Simulations & Scenarios Generation

As in the univariate case, random simulation should not be confused with prediction.
For the sake of the present discussion, let us assume that we have the values of the
vectors Xt, Xt−1, . . ., Xt−p+1 at hand, and that we would like to generate a specific
number, say N , of Monte Carlo scenarios for the values of Xt+1, Xt+2, . . ., Xt+M .

The correct procedure is to generate N samples of a d-dimensional white noise
time series of length M , say {Ws}s=t+1,...,t+M , with the variance/covariance
matrix Σ̂W , and then to use the parameter estimates Â1, Â2, . . ., Âp and the re-
cursive formula (7.1) giving the definition of the AR(p) model to generate samples
of the AR model from these N samples of the white noise. In other words, for each
of the N given samples W(j)

t+1, . . ., W(j)
t+M of the white noise, we generate the cor-

responding Monte Carlo scenarios of the series by computing recursively the values

X̂
(j)

t+1, . . ., X̂
(j)

t+M from the formula:

X̂
(j)

t+k=Â1X̂
(j)

t+k−1+Â2X̂
(j)

t+k−2+ · · ·+ÂpX̂(j)

t+k−p+W
(j)
t+k, k=1, 2, . . . ,M

(7.4)

for j = 1, 2, . . . , N , given the fact that, like in the prediction case, the “hats” over
the X’s (i.e. the simulations) are not needed when the true values are available.

7.1.4 Back to Temperature Options

We come back to temperature data and temperature options to give a concrete
example of the practical use of multivariate time series fitting.
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7.1.4.1 Hedging Several Weather Exposures

Let us assume for the sake of illustration, that most of the summer revenues of a com-
pany selling thirst quenchers come from sales in Des Moines, Portland and Cincin-
nati. Clearly, an unusually cool summer in these cities would hurt the company’s
revenues, so the chief risk officer decided to approach a financial institution looking
for a solution to mitigate the possible losses linked to such a weather exposure. One
can imagine that this financial institution offers to sell the three call options whose
characteristics are given in Table 7.1.

Option #1 Option #2 Option #3

Underlying series CDD’s in Des Moines CDD’s in Portland CDD’s in Cincinnati
Period June, July & August June, July & August June, July & August
Strike 830 420 980
Rate US$5,000 US$5,000 US$5,000
Cap US$1,000,000 US$1,000,000 US$1,000,000

Table 7.1. Characteristics of the three call options offered in lieu of risk mitigation

A naive approach to the valuation of this protection would be treating the three op-
tions separately, performing three times the analysis outlined in our discussion of
temperature options at a single location. This is definitely not a good idea, for it
ignores the obvious dependencies between the three temperature series. In order
to avoid this shortcoming, we propose to analyze the temperatures in these three
different locations simultaneously. We read the temperature data from these three
cities: Cincinnati (more precisely the meteorological station at Covington airport),
Des Moines, and Portland into three time series. These time series are included in
the library Rsafd as timeSeries objects Covington.ts, DesMoines.ts
and Portland.ts. As explained in the previous chapter for univariate time se-
ries, and earlier in this chapter in the case of multivariate time series (recall Fig. 7.1
and the ensuing discussion), the auto-correlation function should not be computed
on the original time series because of the spurious effects produced by deterministic
trends and seasonal components. So we apply the function sstl separately to re-
move the three trend and seasonal components of each of the three time series. Once
this is done, we bind the three remainder series into a 3-dimensional series which we
proceed to model. Notice that the function merge can only bind two timeSeries
objects at a time, so we need to use it twice.

> CVG.stl <- sstl(Covington.ts)
> DM.stl <- sstl(DesMoines.ts)
> PDX.stl <- sstl(Portland.ts)
> TEMPS <- merge(CVG.stl$rem, DM.stl$rem)
> TEMPS <- merge(TEMPS,PDX.stl$rem)

As in the case of univariate series, we first look for serial correlations by com-
puting and plotting the auto-correlation function. We already explained how to fit
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a multivariate auto-regressive model to this tri-variate time series. We gave the R
commands, we computed the order of the fitted model, and we plotted the partial
auto-correlation function as a check. We now show how to use this model in order
to estimate the probabilities and expectations we need to compute to understand the
risks associated with the purchase of the three options described in Table 7.1. As
in the univariate case, we use Monte Carlo techniques to estimate, for example, the
probability that at least one of the three options will be exercised. We choose this
simple problem for the sake of illustration. Indeed, this probability is not of much
practical interest. It would be more interesting to associate a cost/penalty/utility
to each possible temperature scenario, and to compute the expected utility over
all the possible scenarios. In any case, this probability can be computed in the
following way:

• Choose a large number of scenarios, say N = 10,000;
• Use the fitted model to generate N samples x(j)

t , x(j)
t+1, . . ., x(j)

T where t corre-
sponds to March 31st, 1999, and T to August 31st, 1999, j = 1, 2, . . . , N , and
each x

(j)
t+s is a three dimensional vector representing the temperature remainders

in the three cities, on day t + s for the j-th scenario. Remember that according
to the explanations given above, this is done by generating the white noise first,
and then computing the x

(j)
t+s inductively from formula (7.4).

• Add the mean temperatures and the seasonal components to each of the three
components to obtainN scenarios of the temperatures in Covington, Des Moines,
and Portland starting from March 31st, 1999, and ending August 31st,
1999;

• For each single one of these N tri-variate scenarios, compute the number of
CDD’s between June 1st and August 31st in each of the three cities;

• Compute the number of times at least one of the three total numbers of CDD’s is
greater that the corresponding strike, and divide by N .

7.1.4.2 The Case of a Basket Option

Instead of purchasing three separate options, similar risk mitigation can be achieved
by the purchase of a single option written on an index involving the temperatures in
the three locations. The simplest instruments available over the counter are written
on an underlying index obtained by computing the plain average, or the sum, of the
indexes used above for the three cities. In other words, we would compute the total
number of CDD’s in Des Moines over the summer, the total number of CDD’s in
Portland over the same period, and finally the total number of CDD’s in Cincinnati
in the same way, add these three numbers, and compare this aggregate index to the
strike of the option. In other words, instead of being the sum of the three separate pay-
offs, the pay-off of the option is a single function of an aggregate underlying index.
Such options are called basket options. Obviously, the averages could be weighted

averages instead of plain averages, the analysis would be the same. Modeling the sep-
arate underlying indexes simultaneously is a must in dealing with basket options. It
would be unreasonable, borderline suicidal, not to include the dependencies between
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these indexes in the model. Fortunately, the Monte Carlo analysis presented above
can be performed in exactly the same way. For each of the N tri-variate scenarios
generated above, one compute the numbers of CDD’s in each of the three locations,
and add them up together: this is the underlying index. It is then plain to decide if the
option is exercised, or to compute the loss/utility associated to such a scenario for
the three locations, . . . and to compute probabilities of events of interest or desired
expectations, by averaging over the scenarios.

7.1.5 Multivariate MA & ARIMA Models

This subsection is included for the sake of completeness only. None of the concepts
and results presented in this subsection will be used in the sequel (including the
problems).

A d-dimensional time series X = {Xt}t is said to be a moving average series
of order q if there exist d × d matrices B1, B2, . . ., Bq and a d-variate white noise
{Wt}t such that:

Xt = Wt +B1Wt−1 +B2Wt−2 + · · ·+BqWt−q

for all times t. As before we ignored the mean term (which would be a d-dimensional
vector in the present situation) by assuming that all the components have already
been centered around their respective means. As in the case of a multivariate AR
model, the number of parameters can be computed easily. This number of parameters
is now qd2 + d(d + 1)/2. As in the univariate case, fitting moving average models
is more difficult than for auto-regressive processes. It can be done by maximum
likelihood, but the computations require sophisticated recursive procedures and they
are extremely involved. This is the reason why R does not provide a function (similar
to ar) to fit multivariate moving average time series.

A d-dimensional time series X = {Xt}t is said to be an ARMA(p,q) time series
if there exist d × d matrices A1, A2, . . ., Ap, B1, B2, . . ., Bq, and a d-variate white
noise {Wt}t such that:

Xt −A1Xt−1 −A2Xt−2 − · · · −ApXt−p = Wt +B1Wt−1 + · · ·+BqWt−q

Finally, as in the univariate case, an ARIMA(p,r,q) time series is defined as a time
series which becomes an ARMA(p,q) after r differentiations.

7.1.5.1 Prediction and Simulation in R

Contrary to the univariate case, R does not provide any function to produce random
samples of multivariate ARIMA time series. It does not have a function to compute
predictions of future values from a general multivariate ARIMA model either. How-
ever, the generic function predict can still be used with objects of class ar even
when the latter are multivariate.
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7.1.6 Cointegration

The concept of cointegration is of crucial importance in the analysis of financial
time series. We define it in the simplest possible context: two I(1) time series. See
the Notes & Complements at the end of the chapter for details and references.

Two unit-root time series are said to be cointegrated if there exists a linear combi-
nation of its entries which is stationary. The coefficients of such a linear combination
are said to form a cointegration vector. For example, it has been argued that yields of
different maturities are cointegrated.

Example. We first discuss an academic example for the purpose of illustration. Let
us consider two time series {X(1)

n }n=1,...,N and {X(2)
n }n=1,...,N defined by:

X(1)
n = Sn + ε(1)n and X(2)

n = Sn + ε(2)n , n = 1, . . . , N

where Sn = S0 +W1 + · · · +Wn is a random walk starting from S0 = 0 con-
structed form the N(0, 1) white noise {Wn}n=1,...,N , and where {ε(1)n }n=1,...,N and

{ε(2)n }n=1,...,N are two independentN(0, 0.16) white noise sequences which are as-

sumed to be independent of {Wn}n=1,...,N . Since the time series {X(1)
n }n=1,...,N

and {X(2)
n }n=1,...,N are of the type random walk plus noise, they are both integrated

of order 1, and in particular, non-stationary. However, the linear combination:

X(1)
n −X(2)

n = ε(1)n − ε(2)n , n = 1, . . . , N

is stationary since it is a white noise with distribution N(0, 0.32). The random walk
{Sn}n is a common trend (though stochastic) for the series {X(1)

n }n and {X(2)
n }n,

and it disappears when we compute the difference. Cointegration is the state of sev-
eral time series sharing a common (non-stationary) stochastic trend, the remainder
terms being stationary.

To emphasize this fact, we consider the case of two models of the same type
random walk plus noise, but we now assume that the random walks are independent.
More precisely, we assume that {X(1)

n }n=1,...,N and {X(2)
n }n=1,...,N are defined by:

X(1)
n = S(1)

n + ε(1)n and X(2)
n = S(2)

n + ε(2)n .

for two random walks S(1)
n = S

(1)
0 +W

(1)
1 + · · ·+W

(1)
n and S(2)

n = S
(2)
0 +W

(2)
1 +

· · · + W
(2)
n starting from S

(1)
0 = 0 and S(2)

0 = 0 respectively, constructed from

two independent N(0, 1) white noise series {W (1)
n }n=1,...,N and {W (2)

n }n=1,...,N

of size N = 1,024, and where as before the two independent white noise sequences
{ε(1)n }n=1,...,N and {ε(2)n }n=1,...,N have theN(0, 0.16) distribution, and are indepen-

dent of {W (1)
n }n=1,...,N and {W (2)

n }n=1,...,N . As before, the time series {X(1)
n }n

and {X(2)
n }n are both of the type random walk plus noise, but their trends are inde-

pendent, and no linear combination can cancel them. Indeed it is easy to see that all
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the linear combinations of {X(1)
n }n and {X(2)

n }n are of the type random walk plus
noise. Indeed:

a1X
(1)
n + a2X

(2)
n = a1S

(1)
n + a1ε

(1)
n + a2S

(2)
n + a2ε

(2)
n

= Sn + ε

where {Sn}n is the random walk starting from S0 = a1S
(1)
0 + a2S

(2)
0 constructed

from the N(0, a21 + a22) white noise Wn = a1W
(1)
n + a2W

(2)
n and εn = a1ε

(1)
n +

a2ε
(2)
n is a N(0, 0.16a21 + 0.16a22) white noise. So for the random walk plus noise

series {X(1)
n }n and {X(2)

n }n to be cointegrated, the random walk components have
to be the same. Problem 7.7 is devoted to the illustration of these facts on simulated
samples.

7.1.6.1 Testing for Cointegration

Two times series {X(1)
n }n and {X(2)

n }n, are cointegrated if neither of these series
is stationary, and if there exists a vector a = (a1, a2) such that the time series
{a1X(1)

n + a2X
(2)
n }n is stationary. As we already mentioned, such a vector is called

a cointegration vector.

• Testing for cointegration is easy if the cointegration vectora = (a1, a2) is known
in advance. Indeed, this amounts to testing for the stationarity of the appropriate
time series {a1X(1)

n + a2X
(2)
n }n. This can be done with a unit root test. à la

Dickey-Fuller.
• In general, the cointegration vector cannot be zero, so at least one of its com-

ponents is non-zero. Assuming that for example that a2 �= 0 for the sake of
definiteness, and dividing by a2, we see that the series {(a1/a2)X(1)

n +X
(2)
n }n

has to be stationary, or equivalently (if we isolate the mean of this stationary
series):

X(2)
n = β0 + β1X

(1)
n + εn (7.5)

for some mean-zero stationary time series {εn}n. Formula (7.5) says that in
order for two time series to be cointegrated, a form of linear model with sta-
tionary errors should hold. But as we have seen at the beginning of Chap. 4,
linear regression for time series is a very touchy business! Indeed, the residuals
are likely to have a strong serial auto-correlation, an obvious sign of lack of in-
dependence, but also a sign of lack of stationarity. In such a case, one cannot
use statistical inference and standard diagnostics to assess the significance of the
regression. In the particular example treated in Chap. 4, we overcame these diffi-
culties by considering the log-returns instead of the raw indexes. In general, when
the residuals exhibit strong serial correlations, it is recommended to replace the
original time series by their first differences, and to perform the regression with
these new time series.
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This informal discussion is intended to stress the fact that testing for cointegra-
tion is not a simple matter. The interested reader is encouraged to consult the Notes
& Complements at the end of the chapter for references.

7.2 STATE SPACE MODELS: MATHEMATICAL SET UP

A state-space model is determined by two equations (or to be more precise, two
systems of equations). The first equation:

Xn+1 = Fn(Xn,V n+1) (7.6)

describes the time evolution of the state Xn of a system. Since most of the physical
systems of interest are complex, it is to be expected that the state will be described
by a vector Xn whose dimension d = dX may be large. The integer n labels time
and for this reason, we shall use the labels n and t interchangeably. Models are often
defined and analyzed in continuous time, and in this case we use the variable t for
time. Most practical time series come from sampling of continuous time systems. In
these situations we use the notation tn for these sampling times. Quite often tn is of
the form tn = t0 +nΔt for a sampling intervalΔt. But even when the sample times
are not regularly spaced, we shall still use the label n for the quantities measured,
estimated, computed, . . . at time tn.

For each n ≥ 0, Fn is a vector-valued function (i.e. a function taking values in
the space R

d of d-dimensional vectors) which depends upon the (present) time n,
the (current) state of the system as given by the state vector Xn, and a system noise
V n+1 which is a (possibly multivariate) random quantity. Throughout this chapter
we shall assume that the state equation (7.6) is linear in the sense that it is of the
form:

Xn+1 = FnXn + V n+1 (7.7)

for some d × d matrix Fn and a d× 1 random vector V n+1. The system matrix Fn
will be independent of n in most applications. The random vectors V n are assumed
to be mean zero and independent, and we shall denote by ΣV their common vari-
ance/covariance matrix. Moreover, the noise term V n+1 appearing in (7.6) and (7.7)
is assumed to be independent of all the Xk for k ≤ n. This is emphasized by our use
of the index n+ 1 for this noise term.

Notice that, except for a change in notation, such a linear state space system with
state matrix constant over time, is nothing but a multivariate AR(1) model! Nothing
very new so far. Except for the fact which we are about to emphasize below: such
an AR(1) process may not be observed in full. This will dramatically enlarge the
realm of applications for which these models can be used, and this will enhance their
usefulness.

The second equation (again, to be precise, one should say the second system of
equations) is the so-called observation equation. It is of the form:

Yn = Gn(Xn,Wn). (7.8)
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It describes how, at each time n, the actual observation vector Yn depends upon the
state Xn of the system. Notice that in general, we make several simultaneous mea-
surements, and that, as a consequence, the observation should be modeled as a vector
Yn whose dimension dY will typically be smaller than the dimension d = dX of
the state Xn. The observation functionsGn are RdY -valued functions which depend
upon the (present) time n, the (current) state of the system Xn, and an observation
noise Wn which is a (possibly multivariate) random quantity. Throughout this chap-
ter we shall also assume that the observation equation (7.8) is linear in the sense that
it is of the form:

Yn = GnXn +Wn (7.9)

for some dY × dX matrix Gn and a dY × 1 random vector Wn. As for the
system matrix, in most of the applications considered in this chapter, the observation
matrices Gn will not change with n, and we will denote by G their common value.
The random vectors Wn modeling the observation noise are assumed to be mean
zero, independent (of each other) identically distributed, and also independent of the
system noise terms V n. We shall denote by ΣW their common variance/covariance
matrix.

The challenges of the analysis of state-space models are best stated in the follow-
ing set of bullet points:

At any given time n, and for any values y1, . . . ,yn of the observations
(which we view as realizations of the random vectors Y1, . . . ,Yn), find
estimates for:

• The state vector Xn at the same time. This is the so-called filtering problem;
• The future states of the system Xn+m form > 0. This is the so-called prediction

problem;
• A past occurrence Xm of the state vector (for some time m < n). This is the

so-called smoothing problem.

Note that as usual, when we say estimate, we always worry that an estimate does not
have much value if it does not come with a companion estimate of the associated
error, and consequently of the confidence we should have in these estimates.

Remark. Linearization of Nonlinear Systems In many applications of great prac-
tical interest, the observation equation is of the form

Yn = Φ(Xn) +Wn (7.10)

for some vector-valued function Φ whose i-th component Φi(x) is a nonlinear func-
tion of the components of the state X. This type of observation equation (7.10) is in
principle not amenable to the theory presented below because the function Φ is not
linear, i.e. it is not given by the product of a matrix with the vector X. The remedy is
to replace this nonlinear observation equation by the approximation provided by the
first order Taylor expansion of the function Φ:

Φ(Xn) = Φ(Xn−1) +∇Φ(Xn−1)[Xn −Xn−1] +HOT ′s,
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where we encapsulated all the higher order terms of the expansion into the generic
notationHOT ′s which stands for “Higher Order Terms”. If we are willing to ignore
the HOT ′s, which is quite reasonable when ‖Xn − Xn−1‖ is not too large, or if
we include them in the observation noise term, then once in this form, the observa-
tion equation can be regarded as a linear equation given by the observation matrix
∇Φ(Xn−1). This linearization idea is at the basis of what is called the extended
Kalman filter.

7.3 FACTOR MODELS AS HIDDEN MARKOV PROCESSES

Before we consider the filtering and prediction problems, we pause to explain the
important role played by the analysis of state space systems in financial economet-
rics. This section provides a general discussion somewhat of an abstract nature, and
it can safely be skipped by the reader only interested in the mechanics of filtering
and prediction.

7.3.1 Factor Models

Attempts at giving a general definition of factor models are usually hiding their in-
tuitive simplicity. So instead of shooting for a formal introduction, we shall consider
specific examples found in the financial arena. Let us assume that we are interested
in tracking the performance of dY financial assets whose returns over the n-th time
period we denote by Y1,n, Y2,n, . . ., YdY ,n. The assumption of a d-factor model is
that the dynamics of these returns are driven by d economic factors X1, X2, . . .,
Xd which are also changing over time, possibly in a random manner. So we denote
by X1,n, X2,n, . . ., Xd,n the values of these factors at time n. The main feature of
a linear factor model is to assume that the individual returns Yi,n are related to the
factors Xj,n by a linear formula:

Yi,n = gi,1,nX1,n + gi,2,nX2,n + · · ·+ gi,d,nXd,n + wi,n (7.11)

for a given set of (deterministic) parameters gi,j,n and random residual terms wi,n.
Grouping the dY returns Yi,n in a dY -dimensional return vector Yn, grouping the d
factors Xj,n into a d-dimensional factor vector Xn, grouping the noise terms wi,n
in a dY -dimensional observation vector Wn, and finally grouping all the parame-
ters gi,j,n in a dY × d matrix Gn, we rewrite the system of equations (7.11) in the
vector/matrix form:

Yn = GnXn +Wn

which is exactly the form of the observation equation (7.9) of a linear state-space
model introduced in the previous section. In analogy with the CAPM terminology,
the columns of the observation matrix Gn are called the betas of the underlying
factors.
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7.3.2 Assumptions of the Model

Most econometric analyses rely heavily on the notion of information: we need to
keep track at each time n of the information available at that time. For the purposes
of this section, we shall denote by In the information available at time n. Typically,
this information will be determined by the knowledge of the values of the return
vectors Yn, Yn−1, . . . and the factor vectors Xn, Xn−1, . . . available up to and
including that time. In order to take advantage of this information, the properties of
the models are formulated in terms of conditional probabilities and conditional ex-
pectations given this information. To be more specific, we assume that, conditionally
on the past information In−1, the quantities entering the factor model (7.11) satisfy:

• The residual terms Wn have mean zero, i.e. E{Wn|In−1} = 0
• The variance/covariance matrix ΣW of the residual terms does not change with

time, i.e. var{Wn|In−1} = ΣW
• The residual terms Wn and the factors Xn are uncorrelated:

E{XnW
t
n|In−1} = 0.

It is clear that the residual terms behave like a white noise, and for this reason, it is
customary to assume directly that they form a white noise independent of the random
sequence of the factors.

Remarks.

1. There is no uniqueness in the representation (7.11). In particular, one can change
the definition of the factors and still preserve the form of the representation.
Indeed, if U is any invertible k × k matrix, one sees that:

Yn = GnXn +Wn = GnU
−1UXn +Wn = G̃nX̃n +Wn

provided we set G̃n = GnU
−1 and X̃n = UXn. So the returns can be

explained by the new factors given by the components of the vector X̃n. Not
only does this argument show that there is no hope for any kind of uniqueness
in the representation (7.11), but it also shows that one can replace the original
factors by appropriate linear combinations, and this makes it possible to make
sure that the rank of the matrixGn can be equal to the number of factors. Indeed,
if that is not the case, one can always replace the original factors by a minimal
set of linear combinations with the same rank.

2. The aggregation of factors by linear combinations does have advantages from
the mathematical point of view, but it also has serious drawbacks. Indeed, some
of the factors may be observable (this is, for example, the case if one uses interest
rates, or other published economic indicators in the analysis of portfolio returns)
and bundling them together with generic factors, which may not be observable,
may dilute this desirable (practical) property of some of the factors.
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7.3.3 Dynamics of the Factors

One way to prescribe the time evolution of the factors is by giving the conditional
distribution of the factor vector Xn given its past values Xn−1, Xn−2, . . ..

A typical example is given by the ARCH prescription which we will analyze in
Chap. 8. This model is especially simple in the case of a one-factor model, i.e. when
d = 1. In this case, the dynamics of the factor are prescribed by the conditional
distribution

Xn|Xn−1, Xn−2, . . . ∼ N(0, σ2
n) with σ2

n = α0 +

p∑
i=1

αiX
2
n−i. (7.12)

In the present chapter, we restrict ourselves to linear factor models for which the
dynamics of the factors are given by an equation of the form:

Xn = FnXn−1 + V n (7.13)

for some d× d matrix Fn (possibly changing with n) and a d-variate white noise V
which is assumed to be independent of the returns Y. In other words, the conditional
distribution of Xn depends only upon its last value Xn−1, the latter providing the
conditional mean FnXn−1, while the fluctuations around this mean are determined
by the distribution of the noise V n. Given all that, we are now in the framework of
the linear state-space models introduced in the previous section.

Remarks.

1. As we shall see in Sect. 7.6 on the state-space representation of time series, it
is always possible to accommodate more general dependence involving more of
the past values Xn−2, Xn−3, . . . in Eq. (7.13). Indeed, increasing the dimension
of the factor vector, one can always include these past values in the current factor
vector to reduce the dependence of Xn upon Xn−1 only.

2. Factors are called exogenous when their values are dependent upon quantities
(indexes, instruments, . . .) external to the system formed by the returns included
in the state vector. They are called endogenous when they can be expressed as
functions of the individual returns entering the state vector. There is a mathe-
matical result that states that any linear factor model can be rewritten in such a
way that all the factors become endogenous. This anti-climatic result is limited
to the linear case, and because of its counter-intuitive nature, we shall not use it.

7.4 KALMAN FILTERING OF LINEAR SYSTEMS

This section is devoted to the derivation of the recursive equations giving the opti-
mal filter for linear (Gaussian) systems. They were discovered simultaneously and
independently by Kalman and Bucy in the late 1950s, but strangely enough, they are
most of the time referred to as the Kalman filtering equations.
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7.4.1 One-Step-Ahead Prediction

To refresh our memory, we restate the definition of the linear prediction operator
originally introduced in Chap. 6 when we discussed partial auto-correlation func-
tions. Given observations Y1, . . ., Yn up to and including n (which we should think
of as the present time), and given a random vector Z with the same dimension as
Y, we denote by En(Z) the best prediction of Z by linear combinations of the Ym

for 0 ≤ m ≤ n. Since “best prediction” is implicitly understood in the least squares
sense, En(Z) is the linear combination α1Y1 + · · · + αnYn which minimizes the
quadratic error:

E{‖Z − (α1Y1 + · · ·+ αnYn)‖2}.
The best linear predictionEn(Z) should be interpreted as the orthogonal projection
of Z onto the span of Y1, . . ., Yn. Unfortunately, in some applications, it may not
be natural to restrict the approximation to linear combinations of the Yj’s. If we lift
this restriction and allow all possible functions of the Yj’s in the approximation,
then En(Z) happens to be the conditional expectation of Z given the knowledge of
the Ym for 1 ≤ m ≤ n. Notice that all the derivations below are true in both cases,
i.e. whether En(Z) is interpreted as the best linear prediction or the conditional
expectation. In fact, when the random vectors Z and Ym for m ≤ n are jointly
Gaussian (or more generally jointly elliptically distributed), then the two definitions
of En(Z) coincide. For these reasons, we shall not insist on which actual definition
ofEn(Z) we use. For the sake of definiteness, we shall assume that the observations
and the state vectors are jointly Gaussian and we shall understand the notationEn as
a conditional expectation.

The strength of the theory developed in this section is based on the fact that it
is possible to compute the best one-step-ahead predictions recursively. More specifi-
cally, if the best prediction X̂n of the unobserved state Xn (computed on the basis of
the observations Ym for 1 ≤ m ≤ n− 1) is known, the computation of the next best
guess X̂n+1 requires only the knowledge of X̂n and the new observation Yn. Well,
this is almost true. The only little lie comes from the fact that, not only should we
know the current one-step-ahead prediction, but also its prediction quadratic error as
defined by the matrix:

Ωn = E{(Xn − X̂n)(Xn − X̂n)
t}.

7.4.2 Derivation of the Recursive Filtering Equations

We now proceed to the rigorous derivation of this claim, and to the derivation of the
formulae which we shall use in the practical filtering applications that we consider
in this text. This derivation is based on the important concept of innovation. The
innovation series is given by its entries In defined as:

In = Yn − En−1(Yn).

The innovation In gives the information contained in the latest observation Yn

which was not already contained in the previous observations. The discussion which
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follows is rather technical and the reader interested in practical applications more
than theoretical derivations can skip the next two pages of computations, and jump
directly to the boxed recursive update formulae.

First we remark that the innovations In are mean zero and uncorrelated (and
consequently independent in the Gaussian case). Indeed:

E{In} = E{Yn} − E{En−1(Yn)} = E{Yn} − E{Yn} = 0

and a geometric argument (based on the properties of orthogonal projections), gives
the fact that In = Yn − En−1(Yn) is orthogonal to all linear combinations of
the Y1, . . ., Yn−1, and consequently orthogonal to In−1, In−2, . . . which are par-
ticular linear combinations. In other words, except possibly for the fact that they
may not have the same variance/covariance matrix, the In form an independent
(or at least uncorrelated) sequence, and they can be viewed as a white noise of
their own.

We now proceed to the computation of the variance/covariance matrices of the
innovation vectors In. Notice that En−1(Wn) = 0 since Wn is independent of the
past observations Y1, . . ., Yn−1. Consequently, applying the prediction operator
En−1 to both sides of the observation equation we get:

En−1(Yn) = En−1(GXn) + En−1(Wn) = GEn−1(Xn) = GX̂n

and consequently:

In = GXn +Wn −GX̂n

= G(Xn − X̂n) +Wn.

Wn is independent of Xn by definition, moreover, Wn is also independent of X̂n

because the latter is a linear combination of Y1, . . ., Yn−1 which are all independent
of Wn. Consequently, the two terms appearing in the above right hand side are
independent, and the variance/covariance matrix of In is equal to the sum of the
variance/covariance matrices of these two terms. Consequently:

ΣIn = GE{(Xn − X̂n)(Xn − X̂n)
t}Gt + E{WnW

t
n}

= GΩnG
t +ΣW . (7.14)

This very geometric argument also implies that the operatorEn which gives the best
linear predictor as a function of Y1, . . ., Yn−1, and Yn can also be viewed as the
best linear predictor as a function of Y1, . . ., Yn−1 and In. In particular this implies
that:

X̂n+1 = En−1(Xn+1) + E{Xn+1|In}
= En−1(FXn + V n+1) + E{Xn+1I

t
n}Σ−1

In
In

= F X̂n + E{Xn+1I
t
n}Σ−1

In
In, (7.15)

where we computed the conditional expectation as an orthogonal projection, and
where we used the fact that En−1(V n+1) = 0 since V n+1 is independent of Y1,
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. . ., Yn−1, and Yn. Note that we assume that the variance/covariance matrix of the
innovation is invertible. Also, note that:

E{Xn+1I
t
n} = E{(FXn + V n+1)[(Xn − X̂n)

tGt +Wt
n]}

= E{FXn(Xn − X̂n)
tGt}

= FE{(Xn − X̂n)(Xn − X̂n)
t}Gt

= FΩtG
t, (7.16)

where we used the facts that:

1. V n+1 is independent of Xn, X̂n and Wn;
2. Wn is independent of Xn; and finally
3. E{X̂n(Xn − X̂n)

t} = 0.

At this stage, it is useful to introduce the following notation.{
Δn = GΩnG

t +ΣW
Θn = FΩnG

t (7.17)

Notice that (7.14) shows that the matrix Δn is just the variance/covariance matrix
of the innovation random vector In. The matrix ΘnΔ−1

n which appears in several of
the important formulae derived below is sometimes called the “Kalman gain” matrix
in the technical filtering literature. This terminology finds its origin in the fact that
using (7.16) and (7.17), we can rewrite (7.15) as:

X̂n+1 = F X̂n + ΘnΔ
−1
n In. (7.18)

This formula gives a (recursive) update equation for the one-step-ahead predictions,
but hidden in the correction term ΘnΔ

−1
n It, is the error matrix Ωn. So this update

equation for the one-step-ahead prediction of the state cannot be implemented with-
out being complemented with a practical procedure to compute the error Ωn. We do
that now.

Ωn+1 = E{(Xn+1−X̂n+1)(Xn+1−X̂n+1)
t}

= E{Xn+1X
t
n+1}−E{Xn+1X̂

t

n+1}−E{X̂n+1X
t
n+1}+E{X̂n+1X̂

t

n+1}
= E{Xn+1X

t
n+1} − E{X̂n+1X̂

t

n+1}
because:

E{Xn+1X̂
t

n+1} = E{X̂n+1X
t
n+1} = E{X̂n+1X̂

t

n+1}.
Consequently:

Ωn+1 = E{(FXn + V n+1)(FXn + V n+1)
t}

− E{(F X̂n +ΘnΔ
−1
n In)(F X̂n +ΘnΔ

−1
n In)

t}
= FE{XnX

t
n}F t + E{V n+1V

t
n+1}

− FE{X̂nX̂
t

n}F t +ΘnΔ
−1
n E{InItn}Δ−1

n Θtn

= F (E{XnX
t
n} − E{X̂nX̂

t

n})F t +ΣV +ΘnΔ
−1
n Θtn

= FΩnF
t +ΣV +ΘnΔ

−1
n Θtn,
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where we used the facts that:

1. V n+1 is independent of Xn;
2. In is independent of (or at least orthogonal to) X̂n;
3. The matrix Δn is symmetric since it is a variance/covariance matrix.

For later reference, we summarize the recursion formulae in a box:

X̂n+1 = F X̂n +ΘnΔ
−1
n (Yn −GX̂n)

Ωn+1 = FΩnF
t +ΣV −ΘnΔ

−1
n Θtn

Recall the definitions (7.17) for the meanings of the matrices Δt and Θt.

7.4.2.1 Writing an R Function to Do Just That

The R function kalman from the Rsafd library computes the one-step-ahead pre-
diction using the above recursive formulas. Its code reads:

kalman <- function(FF,SigV,GG,SigW,Xhat,Omega,Y)
{

Delta <- GG %*% Omega %*% t(GG) + sigW
Theta <- FF %*% Omega %*% t(GG)
X <- FF%*%Xhat + Theta%*%solve(Delta)%*%(Y-GG%*%Xhat)
Om <- FF%*%Omega%*%t(FF) + SigV

- Theta%*%solve(Delta)%*%t(Theta)
Ret <- list(xpred = X, error=Om)
Ret

}

The following remarks should help understand the features of this R function.

1. As we already mentioned, the transpose of a matrix is obtained by the function
t, so that t(A) stands for the transpose of the matrix A.

2. The inverse of a matrix A is given by solve(A) (see the online help for the
explanation of this terminology).

3. R has a certain number of reserved symbols which cannot be used as object
names if one does not want to mask the actual R objects. This is the case for
the symbols t, c, . . . which we already encountered, but also for F which means
FALSE. For this reason we used the notation FF for the system matrix. Similarly
we used the notation GG for the observation matrix.

4. A call to the function kalman must be of the form:

> PRED <- kalman(FF,SigV,GG,SigW,Xhat,Omega,Y)

and the R object PRED returned by the function is what is defined on the last
line of the body of the function. In the present situation, it is a list with two
elements, the one-step-ahead prediction for the next state of the system, and the
estimate of the quadratic error. These elements can be extracted from the list by
PRED$xpred and PRED$error respectively.



444 7 MULTIVARIATE TIME SERIES, LINEAR SYSTEMS AND KALMAN...

5. The above code was written with pedagogy in mind, not efficiency. It is not
optimized. In particular, the inversion of the matrix Delta, and the product
of the inverse by Theta are computed twice. This is a waste of computer re-
sources. This code can easily be streamlined, and made more efficient, but we
refrained from doing so for the sake of clarity.

7.4.3 Filtering

We now show how to derive a recursive update for the filtering problem by deriving
the zero-step-ahead prediction (i.e. the simultaneous estimation of the unobserved
state) from the recursive equations giving the one-step-ahead prediction of the unob-
served state. From this point on, we use the notation:

Ẑn|m = Em(Zn)

for the (n − m) step(s) ahead prediction of Zn given the information contained
in Y1, . . ., Ym. With this notation, the one step ahead prediction analyzed in the
previous subsection can be rewritten as:

X̂n+1 = X̂n+1|n.

For the filtering problem, the quantity of interest is the best prediction:

X̂n|n = En(Xn)

of Xn by a linear function of the observations Yn, Yn−1, . . ., Y1. As in the case of
the one-step prediction, we cannot find recursive update formulae without involving
the update of the error covariance matrix:

Ωn|n = E{(Xn − X̂n|n)(Xn − X̂n|n)t}.

The innovation argument used earlier gives:

En(Xn) = En−1(Xn) + E{XnI
t
n}E{InItn}−1In

= X̂n + E{Xn(G(Xn − X̂n) +Wn)
t}Δ−1

n In

= X̂n +ΩnG
tΔ−1

n In

and computingΩn as a function of Ωn|n we get:

Ωn = Ωn|n +ΩnG
tΔ−1

n GΩtn.
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We summarize these update formulae in a box for later references:

X̂n|n = X̂n +ΩnG
tΔ−1

n (Yn −GX̂n)

Ωn|n = Ωn −ΩnGΔ
−1
n GΩtn.

Remark. Later in the text, we will illustrate the use of the filtering recursions on
the example of the “time varying beta’s” version of the CAPM model for which the
observation matrix G changes with n. A careful look at the above derivations shows
that the recursive formulae still hold as long as we replace the matrix G by its value
at time n. The above R function needs to be modified, either by passing the whole
sequence {Gn}n of matrices as parameter to the function, or by adding the code
necessary to compute the matricesGn on the fly whenever possible. This will appear
natural in the application that we give later in the chapter.

7.4.4 More Predictions

Using the same arguments as above we can construct all sorts of predictions.

7.4.4.1 k-Steps-Ahead Prediction of the Unobserved State of the System

Let us first compute the two steps ahead prediction.

X̂n+2|n = En(Xn+2) = En(FXn+1 + V n+2)

= FEn(Xn+1)

= F X̂n+1|n

with the notation of the previous subsection for the one-step-ahead prediction. We
used the fact that V n+2 is independent of the observations Ym with m ≤ n. The
above result shows how to compute the two-steps-ahead prediction in terms of the
one-step-ahead prediction. One computes the three steps ahead prediction similarly.
Indeed:

X̂n+3|n = En(Xn+3) = En(FXn+2 + V n+3)

= FEn(Xn+2)

= F X̂n+2|n = F 2X̂n+1|n

Obviously, the k-steps-ahead prediction is given by the formula:

X̂n+k|n = F k−1X̂n+1|n (7.19)
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and the corresponding error

Ωn+k|n = E{(Xn+k − X̂n+k|n)(Xn+k − X̂n+k|n)t}

is given by the formula:

Ωn+k|n = F k−1Ωn+1|n(F k−1)t.

Notice that Ωn+1|n was denoted by Ωn+1 earlier in our original derivation of the
one-step ahead prediction. We summarize these results in a box for easier reference.

X̂n+k|n = F k−1X̂n+1|n
Ωn+k|n = F k−1Ωn+1|n(F k−1)t.

7.4.4.2 k Steps Ahead Predition of the Observations

Finally, we remark that it is also possible to give formulae for the k-steps-ahead
predictions of the future observations. Indeed:

Ŷn+1|n = En(Yn+1) = En(GXn+1 +Wn+1)

= GEn(Xn+1)

= GX̂n+1|n

because Wn+1 is independent of all the Ym for m ≤ n. More generally:

Ŷn+k|n = GF k−1X̂n+1|n (7.20)

and if we use the notation

Δ(k)
n = E{(Yn+k − Ŷn+k|n)(Yn+k − Ŷn+k|n)t}

for its prediction quadratic error, it follows that:

Δ(k)
n = GF k−1Ωn+1|n(GF k−1)t.

As before we highlight the final formulae in a box.

Ŷn+k|n = GF k−1X̂n+1|n

Δ(k)
n = GF k−1Ωn+1|n(GF k−1)t.
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7.4.5 Estimation of the Parameters

The recursive filtering equations derived in this section provide optimal estimators,
and as such, they can be regarded as some of the most powerful tools of data analysis.
Unfortunately, their implementation requires the knowledge of the parameters of the
model. Because of physical considerations, or because we are often in control of how
the model is set up, the observation matrixG is very often known, and we shall focus
the discussion on the remaining parameters, namely, the state transition matrix F ,
the variance/covariance matrices ΣV and ΣW of the system and observation noises,
and the initial estimates of the state and its error matrix. This parameter estimation
problem is extremely difficult, and it can be viewed as filtering’s Achilles heel.

Several tricks have been proposed to get around this difficulty, including the pa-
rameters in the state vector being one of them. The present theory implies that this
procedure should work very well when the parameters enter linearly (or almost lin-
early) in the state and observation equations. However, despite the fact that the theory
is not completely developed in the nonlinear case, practitioners are using this trick
in many practical implementations, whether or not the system is linear.

For the sake of completeness we describe the main steps of the maximum like-
lihood approach to parameter estimation in this setup. This approach requires the
computation and optimization of the likelihood function. The latter can be derived
when all the random quantities of the model are jointly Gaussian. This is the case
when the white noise series {V n}n and {Wn}n are Gaussian, and when the ini-
tial value of the state is also Gaussian (and independent of both noise series). So
instead of looking for exact values of the initial state vector and its error matrix, one
assumes that this initial state vector X0 is Gaussian, and we add its mean vector
μ0 and its variance/covariance matrix Σ0 to the list of parameters to estimate. The
computations of the previous subsection showed that the innovations satisfy:

In = Yn −GX̂n

and we also argued the fact that they are independent (recall that we are now restrict-
ing ourselves to the Gaussian case), and we derived recursive formulae to compute
their variance/covariance matrices Δn. The above equation, together with the fact
that one can compute the one-step-ahead predictions X̂n recursively from the data,
allows us to compute the innovations from the values of the observations, and refor-
mulate the likelihood problem in terms of the innovations only. This simple remark
simplifies the computations. Given all this, one can write down the joint density of
the In’s in terms of the observations Yn = yn and the successive values of the ma-
tricesΔn and of the one-step-ahead predictions X̂n which one computes inductively
from the recursive filtering equations. Because of the special form of the multivariate
normal density, the new log-likelihood function is of the form:

−2 logLI1,...,In(Θ) = cst +
n∑
j=1

log det(Δj(Θ)) +

n∑
j=1

Ij(Θ)Δj(Θ)
−1Ij(Θ)

t
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where cst stands for a constant of no consequence, and where we emphasized the
dependence of the innovations Ij and their variance/covariance matrices Δj upon
the vector Θ of unknown parameters, Θ = (μ0, Σ0, F,ΣV , ΣW ). Notice that the
dimension of this parameter vector may be large. Indeed its components are matrices
and vectors whose dimensions can be large. In any case, this log-likelihood function
is a non-convex function of the multi-dimensional parameterΘ and its maximization
is quite difficult. Practical implementations of optimization algorithms have been
used by the practitioners in the field: Newton-Raphson, EM algorithm, . . . are among
those, but no single method seems to be simple enough and reliable enough for us to
discuss this issue further at the level of this text.

7.5 APPLICATIONS TO LINEAR MODELS

Linear models were introduced in Chap. 4 as a convenient framework for linear re-
gression. Their versatility made it possible to apply their theory to several specific
classes of nonlinear regression problems such as polynomial and natural spline re-
gression. We now recast these linear models in the framework of partially observed
state space systems, and we take advantage of the filtering tools developed in this
chapter to introduce generalized forms of linear models, and to tackle several new
problems which could not have been addressed with the tools of Chap. 4.

7.5.1 State Space Representation of Linear Models

Combining the original notation of Sect. 4.5 with the notation introduced in this
chapter for state space models, we give a new interpretation to the multiple linear
regression setup:

yn = Xnβ + εn (7.21)

where {εn}n is a white noise in the strong sense, where Xn = (x1,n, x2,n, . . . , xd,n)
is a d = p+1 dimensional vector of explanatory variables, and β = (β1, β2, . . . , βd)
is a d-dimensional vector of unknown parameters. Notice that we are now using the
lower case n to label the observations, while we were using the lower case i when we
introduced the linear models in Sect. 4.5. The novelty of the present approach is to
interpret equation (7.21) as the observation equation of a state space system whose
dynamics are very simple since they do not change over time. To be more specific,
we consider a state vector Xn always equal to the vector β of parameters. Hence,
the dynamical equation reads:

Xn+1 = Xn. (7.22)

In other words, the state matrix Fn does not change with n, and is always equal to
the d × d identity matrix, while the state noise is identically zero. Setting Gn =
Xn, Eq. (7.21) coincides with the observation equation (7.9) if we set Yn = yn
and Wn = εn. This rewriting of a linear model as a state space model can appear
artificial at times, but it makes it possible to apply the powerful tools of filtering
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theory to these models. We proceed to demonstrate by example some of the fringe
benefits of this reformulation.

7.5.1.1 Recursive Estimation

Recasting linear models as state space models is especially useful when we need
to recompute the least squares estimates of the parameters after an observation is
added. Indeed, if we denote by β̂n the least squares estimate of β computed from
the data (x1, y1), . . ., (xn, yn), then the Kalman recursive filtering equations give
a very convenient way to compute the least squares estimate β̂n+1 as an update of
the previous estimate β̂n using the current observation (xn+1, yn+1). If we use the
notation Kn for the Kalman gain matrix introduced earlier, we get:

β̂n+1 = β̂n +Kn+1(yn+1 − xn+1β̂n), (7.23)

with the corresponding update for the estimated error variance:

Ωn+1 = [I −Kn+1Xn+1]Ωn.

7.5.1.2 Recursive Residuals

Some of the most efficient tests for change in a model are based on the analysis of
the residuals rn = yn−Xnβ̂n. Again, the recursive filtering equations derived in the
previous section make it possible to update these residuals recursively without having
to recompute them from scratch each time a new observation is made available. The
recursive standardized residuals wn are usually defined by the formula:

wn =
yn −Xnβ̂n−1√

1 +Xn(X
t
n−1Xn−1)−1xtn

.

Unexpectedly, the recursive residuals defined in this manner form a sequence of
independent N(0, σ2) random variables. This makes their distribution theory very
easy. These remarkable properties were first identified and used by Brown, Durbin
and Evans who derived a series of useful tests, called CUSUM tests, for the adaptive
detection of changes in a linear model. It appears that R does not have any imple-
mentation of the CUSUM test. Its function cusum serves another purpose.

7.5.2 Linear Models with Time Varying Coefficients

This subsection discusses a generalization of linear models based on the idea intro-
duced in the previous subsection. There, the state equation was trivial because the
state did not change with time. Since filtering theory deals with state vectors varying
with time, it is natural in this context to consider linear models where the parameter
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vector β can change with time. Indeed, the theory presented in this chapter allows to
consider time-varying parameters βn satisfying:

βn+1 = Fβn + V n+1 (7.24)

for some white noise {V n}n and some deterministic matrix F . Writing the corre-
sponding linear model one component at a time as before, we get the same observa-
tion equation as (7.21):

yn = xnβn + εn (7.25)

Notice that the update equation for β̂n is slightly more involved than (7.23), since
we do not have F = I and ΣV = 0 as before.

We give a detailed implementation of this idea in the application to the CAPM
discussed in the next subsection.

7.5.3 CAPM with Time Varying β’s

The Capital Asset Pricing Model (CAPM for short) of Lintner and Sharpe was in-
troduced in Sect. 4.5.5. There we argued that, even when empirical evidence was not
significant enough to reject the zero-intercept assumption of the model, instability
over time of the betas did not always support the model despite its economic sound-
edness and its popular appeal. We now try to reconciliate CAPM with empirical data
by allowing the betas to vary with time. Recall that according to CAPM, we assume
that, at each time t, the excess return R̃j,t of the j-th asset over the risk-free rate r
of lending and borrowing is given, up to an additive noise term, by a multiple of the
excess return R̃(m)

t of the market portfolio at the same time t. In other words, the
CAPM model states that:

R̃j,t = βjR̃
(m)
t + εj,t (7.26)

for some white noise {εj,t}t specific to the j-th asset.

7.5.3.1 Time Varying Reformulation

As we mentioned in Chap. 4, there is empirical evidence that the hypotheses under-
lying CAPM theory do not always hold. And even if one is willing to accept them
for their appealing economic rationale, the estimates of the βj appear to be quite un-
stable, varying with economic factors. Given that fact, we propose to generalize the
CAPM model by allowing the betas to vary with time. For the sake of illustration,
we choose the simplest possible model, and we assume for example that our time-
varying betas follows a random walk. So switching to the notation n for time instead
of t, for each index j, we assume that:

βj,n+1 = βj,n + vj,n+1 (7.27)

for some white noise {vj,n}n with unknown variance σ2
j . Choosing for state at time

n the vector of betas under consideration, i.e. setting Xn = βn, we can rewrite the
various equations (7.27) in a vector form:
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Xn+1 = Xn + V n+1, (7.28)

giving the dynamics of the state. Here the state matrix F is the dX × dX identity
matrix where dX is the number of stocks. For the sake of simplicity, we shall only
consider this model one stock at a time, in which case dX = 1, Xn = βj,n and
V n = vj,n since there is only one value for the index j, and the state matrix F
is the number one. Since the excess returns can be observed, we use (7.26) as our
observation equation. We can do that provided we set Yn = R̃j,n, in which case
dY = 1, we choose Wn = εj,t for the observation noise, and the 1 × 1 matrix

R̃
(m)
t for the observation matrix Gn. Notice that the observation matrix changes

with n. As we pointed out earlier, this is not a major problem. Indeed, even though
the derivation of the recursive filtering equations was done with a time independent
observation matrix G, the same formulae hold when it varies with n, we just have to
use the right matrix at each time step.

So, given an initial estimate for the value of β0, and given an initial estimate
for its prediction error, we can implement the recursive filtering equations derived
in this chapter to track the changes over time of the beta of each stock. Notice that
this assumes that we know the state and observation variances σ2

v and σ2
ε . Further

analysis is proposed in Problem 7.13.
It is important to notice that the estimates of the betas are non-anticipative in

the sense that the estimate β̂n at time n depends only upon the past values of the
observed excess returns, i.e. the values of R̃j,m for m ≤ n and not on the values of
R̃j,m for m > n.

7.5.3.2 Filtering Experiment

For the sake of illustration, we revisit the example of energy companies before and
after the crisis that followed Enron’s collapse. We already discussed in Sect. 4.5.5,
the case of American Electric Power (AEP). We now consider the weekly excess re-
turns of another major electric utility, DUKE Electric Power, over the period starting
01/01/1995, and ending 12/10/2010. Our analysis of a time-dependent CAPM will
shed some light on the effects of the energy crisis, and clearly exhibit facts which
are impossible to uncover in the classical time-independent setup. The data for AEP
weekly excess returns are included in the library Rsafd and the reader is asked to
perform this “time-varying beta” analysis in Problem 7.13.

Figure 7.4 shows the result of the non-anticipative estimation of the time varying
betas by the Kalman filter. It shows that after a couple of years, the filter estimate of
beta starts hovering below the level one, consistent with the fact that the stock was not
considered risky before 2002. But despite the fact that DUKE was one of the very few
energy companies to weather the crisis with little damage, its beta became greater
than one in 2002 implying (according to the commonly admitted interpretation of the
size of the beta) that this stock became risky at that time. This phenomenon is present
for all the companies that were affected by the energy crisis. This is illustrated for
example in Problem 7.13. For the sake of completeness, we give and comment the R
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Fig. 7.4. Non-anticipative estimates of the DUKE time varying betas given by Kalman filtering
over the period starting 01/01/1995 and ending 12/10/2010

code used to produce the results reproduced in Fig. 7.4. We first set up the parameters
of the state space model with partial observations as explained above.

GG <- seriesData(MARKET.wer.ts)
NG <- length(GG)
SIGMAV <- .0001; SIGMAW <- .0001
YY <- seriesData(DUKE.wer.ts)
NY <- length(YY)
FF <- matrix(1,ncol=1,byrow=T)
SigV <- matrix(SIGMAV,ncol=1)
SigW <- matrix(SIGMAW,ncol=1)

The computations of the one-step-ahead predictions are stored in a matrix Xhat as
follows:

Xhat <- matrix(rep(0,N),ncol=1)
Xhat[1] <- .4
Omega <- matrix(rep(0,N),ncol=1)
Omega[1] <- .035
for (n in 1:(N-1))
{

KALMAN <- kalman(FF=FF, SigV=SigV, GG[n], SigW=SigW,
Xhat=Xhat[n], Omega=Omega[n], Y=YY[n])

Xhat[n+1] <- KALMAN$xpred
Omega[n+1] <- KALMAN$error

}

Then the (simultaneous) values of the filter estimate of the unobserved “beta” are
computed, put in a timeSeries object and plotted.
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DELTAn <- GG*Omega*GG + SIGMAW
Xhatnn <- Xhat + Omega*GG*(YY-GG*Xhat)/DELTAn
Omegann <- Omega -Omega*GG*GG*Omega/DELTAn
DUKE_BETA.ts <- timeSeries(positions=

seriesPositions(DUKE.wer.ts),data=Xhat)
plot.timeSeries(DUKE_BETA.ts)

7.6 STATE SPACE REPRESENTATION OF TIME SERIES

As we already noticed, we are only considering state-space models whose dynam-
ics are given by a multivariate AR(1) series. Since some of the components of the
state vector may remain unobserved, we can always add new components to the
state vector without changing the observations. This feature of the partially observed
systems makes it possible to rewrite the equation defining an AR(p) model as an
AR(1)-like equation, simply by adding the componentsXt−1, . . ., Xt−p to the value
of a (new and extended) state at time t. Adding the past values to the current value
of the state enlarges the dimension, and this did not make sense when we were as-
suming that the entire state vector was observed. However, now that the observations
are not necessarily complete, this transformation makes sense. This section takes
advantage of this remark, but not without creating new problems. Indeed, a given
set of observations vectors may correspond to many state space vectors, and conse-
quently, as in the case of the factor models, we should be prepared to face a lack
of uniqueness in the representation of a given stochastic system as a state space
system.

7.6.1 The Case of AR Series

Let us first consider the simple example of an AR(1) model. Let us assume for
example that X ∼ AR(1), and more precisely that:

Xt = .5Xt−1 +Wt.

Switching to the index n, one can write:
{
Xn+1 = 0.5Xn +Wn+1

Yn = Xn

This means that an AR(1) model is equivalent to a state space system described
by the one dimensional (i.e. dX = 1) state vector Xn = Xn, its dynamics being
given by the first of the equations above, the second equation giving the observation
equation with Yn = Xn. Notice that the observations are perfect since there is no
noise term in the observation equation.
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Since this example is too simple to be indicative of what is really going on, we
consider the case of an AR(2) model. Let us assume for example that:

Xt = 0.5Xt−1 + 0.2Xt−2 +Wt (7.29)

for some white noise {Wt}. Switching once more to the notation n for the time
stamp, we rewrite this definition in the form:

[
Xn+1

Xn

]
=

[
0.5 0.2
1 0

] [
Xn

Xn−1

]
+

[
Wn+1

0

]
(7.30)

Indeed, if we look at this equality between two vectors, the equality of the first com-
ponent of the left hand side with the first component of the right hand side gives
back the definition (7.29) of Xn, while the equality between the second components
is merely a consistency relation giving no extra information. Now, if for each time
index n we define the two-dimensional (i.e. dX = 2) random vector Xn by:

Xn =

[
Xn

Xn−1

]
(7.31)

the deterministic matrix F and the random vector V n by:

F =

[
0.5 0.2
1 0

]
and V n =

[
Wn

0

]
,

then Eq. (7.30) becomes:
Xn+1 = FXn + V n+1

which can be viewed as the equation giving the dynamics of the state X. Using
perfect observation, i.e. setting Yn = Xn, which corresponds to G = [1, 0] and
Wn ≡ 0, we see that we can represent our AR(2) series as a state-space model with
perfect observation. We now show how this procedure can be generalized to all the
AR models.

Let us now assume that {Xn}n is a mean-zero time series of the most general
AR(p) type given by the standard auto-regressive formula:

Xn = φ1Xn−1 + · · ·+ φpXn−p +Wn (7.32)

for some set of coefficients φ1, . . ., φp, and a white noise {Wn}n of unknown vari-
ance. For each time stamp n we define the p-dimensional column vector Xn by:

Xn = [Xn, Xn−1, . . . , Xn−p+1]
t.

There is no special reason to define Xn from its transpose, we are merely trying
to save space and make typesetting easier! Using this state vector, we see that we
can derive an observation equation of the desired form by setting Yn = Xn, G =
[1, 0, . . . , 0], and Wn ≡ 0. This is again a case of perfect observation. Finally we
write the dynamics of the state vector Xn in the form of definition (7.32). Adding
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the consistency relations for the remaining components, this equation can be written
in the form:

Xn+1 =

⎡
⎢⎢⎢⎣

Xn+1

Xn

...
Xn+2−p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
φ1 φ2 · · · φp−1 φp
1 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Xn

Xn−1

...
Xn+1−p

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
Wn+1

0
...
0

⎤
⎥⎥⎥⎦

which can be viewed as the state equation giving the dynamics of the state vector
Xn if we define the state matrix F and the state white noise V n by:

F =

⎡
⎢⎢⎢⎣
φ1 φ2 · · · φp−1 φp
1 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎦ and V n =

⎡
⎢⎢⎢⎣
Wn

0
...
0

⎤
⎥⎥⎥⎦ .

7.6.2 The General Case of ARMA Series

We now assume that the time series {Xn}n satisfies:

Xn − φ1Xn−1 − · · · − φpXn−p =Wn + θ1Wn−1 + · · ·+ θqWn−q

for some white noise {Wn}n with unknown variance. Adding zero coefficient terms
if necessary, we can assume without any loss of generality that p = q + 1. Using
the notation introduced in the previous chapter this can be written in a condensed
manner in the form φ(B)X = θ(B)W . Let U be an AR(p) time series with the same
coefficients as the AR – part of X , i.e. satisfying φ(B)U = W . If for example the
moving average representation exists (but we shall not really need this assumption
here) we saw that:

φ(B)U =W is equivalent to U =
1

φ(B)
W (7.33)

and consequently:

X =
θ(B)

φ(B)
W = θ(B)

1

φ(B)
W = θ(B)U

which implies that:

Xn = Un + θ1Un−1 + · · ·+ θqUn−q

= [1, θ1, . . . , θq]

⎡
⎢⎢⎢⎣

Un
Un−1

...
Un−q

⎤
⎥⎥⎥⎦
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which can be viewed as an observation equation if we set:

Yn = Xn, G = [1, θ1, . . . , θq], and Wn ≡ 0

and if we define the state vector Xn as the column vector with p = q+1 row entries
Un, Un−1, . . ., Un−p+1. So we have dY = 1 and dX = p = q + 1. Now that we
have the observation equation, we derive the state equation. Because of its definition
(7.33), the time series U is an AR(p) series and φ(B)U =W can be rewritten in the
standard form:

Un − φ1Un−1 − · · · − φpUn−p =Wn

which is exactly the form we used in the previous subsection to rewrite the AR
series in a state-space form. So using the same procedure (recall that we arranged for
p = q + 1)

Xn+1 =

⎡
⎢⎢⎢⎣

Un+1

Un
...

Un+2−p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
φ1 φ2 · · · φp
1 0 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Un
Un−1

...
Un+1−p

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
Wn+1

0
...
0

⎤
⎥⎥⎥⎦

which can be viewed as the desired state equation giving the dynamics of the state
vector Xn, if we define the matrix F as the p × p matrix appearing in the above
equation, and if we define the noise vectorV n+1 as the p-dimensional column vector
with componentsWn+1, 0,. . ., 0.

Remarks.

1. As we already pointed out, the above representation is not unique.We gave an
algorithmic procedure which works in all cases, but one should keep in mind that
there are many ways to define a state vector and its dynamics, while keeping the
same observations.

2. The above procedure can be implemented (modulo minor technical changes to
accommodate the dimensions) in the case of multivariate time series, providing
a state space representation of multivariate ARMA series.

7.6.3 Fitting ARMA Models by Maximum Likelihood

When explaining the limitations of R in fitting ARIMA models, we said that the
standard way to fit an MA(q) was to use the maximum likelihood method, but that the
computation of the likelihood function was difficult, and that the only practical way
to do so was to use a recursive computation reminiscent of the filtering paradigm.
Moreover, we also said at that time, that we suspected that this was the main reason
why fitting MA models was not implemented in R in the multivariate case. Now that
we have seen the recursive Kalman filters, and that we know how to rewrite ARMA
models in a state space form, it is time to revisit this fitting issue and shed some light
on the matter.
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The only reason for not implementing the maximum likelihood estimation of an
ARMA model is the lack of filtering tools.

Indeed, given the order of an ARMA model, one can

• Use the algorithmic procedure presented in the previous subsection to rewrite the
model as a state space model;

• Follow the step outlined in Sect. 7.4.5 to compute the likelihood of any set of
observations;

• Run our favorite optimization program to solve for the maximum of this likeli-
hood function.

7.7 EXAMPLE: PREDICTION OF QUARTERLY EARNINGS

This section is devoted to a detailed discussion of a specific application of the
recursive filters to the analysis of a financial problem. We show how to use the state
space representations and the recursive filtering equations to analyze a scalar time
series which appears naturally as the sum of trend, seasonal and irregular compo-
nents. Contrary to the strategy adopted in the case of temperature data, we do not
assume that the trend and seasonal components are deterministic, and we do not start
by removing them to reduce the problem to the analysis of a stationary time series.
Instead, we include the trend and seasonal components in a structural model which
we represent as a partially observed state-space model, which we predict using the
recursive filtering equations.

We choose to illustrate this approach with the example of the prediction of the
quarterly earnings of a public company. Figure 7.5 gives the plot of the time series of
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Fig. 7.5. Quarterly earnings per share of General Electric from March 31, 1983 to June 30,
2002
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the quarterly earnings of General Electric starting March 31, 1983 and ending June
30, 2002. Earnings per share used to be published yearly in 1982 and before. This
series is obviously non-stationary. In particular, it shows a significant upward trend
and a seasonal component that cycles every four quarters, or once per year. Moreover,
the scale of this seasonal component seems to fluctuate erratically, possibly getting
larger over time. Since square root and logarithmic transformations do not seem to
resolve the non-stationarity problem, we express the series directly as the sum of a
trend component, a seasonal component and a white noise:

Yn = Tn + Sn + εn (7.34)

where the series {Tn}n models the trend, {Sn}n models the seasonal component,
and {εn}n is a white noise. Because the trend could be suspected to be exponential,
we choose to model the trend as a time series satisfying an evolution equation of the
form:

Tn+1 = φTn + ε
(T )
n+1 (7.35)

where {ε(T )
n }n is a white noise independent of {εn}n, and where the real coefficient

φ is chosen to satisfy φ > 1. The evolution equation of Tn is the equation of an
AR(1), but the assumption we make on the coefficient, namely φ > 1, guarantees
that this AR series is not stationary. Instead of assuming that the seasonal component
is a deterministic periodic function of period 4, we assume that it is a series satisfying
a dynamical equation of the form:

Sn+1 = −Sn − Sn−1 − Sn−2 + ε
(S)
n+1 (7.36)

where {ε(S)n }n is a white noise independent of the two previous ones. The idea be-
hind this choice is that at least in expectation, S should sum up to zero over a com-
plete period of four quarters. All these requirements can be encapsulated inside a
partially observed state-space model in the following way. First we define the state
vector:

Xn = [Tn, Sn, Sn−1, Sn−2]
t

so that dX = 4, and together with the obvious consistency conditions, Eqs. (7.35)
and (7.36) can be used to give the dynamics of the state via the equation:

Xn+1 =

⎡
⎢⎢⎣
Tn+1

Sn+1

Sn
Sn−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
φ 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Tn
Sn
Sn−1

Sn−2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
ε
(T )
n+1

ε
(S)
n+1

0
0

⎤
⎥⎥⎦

which can be viewed as the state equation giving the dynamics of the state vector
Xn, if we define the matrix F as the 4 × 4 matrix appearing in the above equation,
and if we define the noise vector V n+1 as the 4-dimensional column vector with
components ε(T )

n+1, ε(S)n+1,0,0. Formula (7.34) used to define the model can now be
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used to give the observation equation for the one-dimensional observation vector
Yn = yn:

Yn = [1, 1, 0, 0]

⎡
⎢⎢⎣

Tn
Sn
Sn−1

Sn−2

⎤
⎥⎥⎦+ εn

which is of the desired form if we set G = [1, 1, 0, 0] and Wn = εn. The parameters
of the model are the standard deviations σ, σ(T ) and σ(S) of the noise components
introduced above, as well as the parameter φ. The data is not very noisy, the chal-
lenge lies in the fact that the time series is short for the filter to settle down and
have a chance to self-correct possible errors in parameters and initializations. For
the purposes of the present experiment we chose σ = 0.0001, σ(T ) = 0.0001 and
σ(S) = 0.00001, and φ = 1.03 corresponding to an annual growth of about 3 %.
As explained earlier, even more problematic is the choice of initial estimates for the
state and its measurement-error matrix. To obtain the results we report below we
chose X̂0 = [0.05,−0.01, 0.03,−0.01]t and 0.02 times the 4× 4 identity matrix for
the error matrix. Figure 7.6 shows a couple of years of quarterly earnings, together
with the plot of the predictions for a 2-years horizon computed at the end of the third
quarter of 2000. We chose this date to be able to compare the predictions with the
actual data which are superimposed on the same plot. We also give upper and lower
“two-standard-deviations” error bounds for the predictions.
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Fig. 7.6. The left pane gives the plot of the GE quarterly earnings together with the predictions
for the next 2 years of earnings as computed using Kalman filtering at the end of the third
quarter of 2000. The right pane includes the upper and lower 2 standard deviations error
bands

For the sake of completeness, we give and comment the R code used to produce
these results. We first set up the parameters of the state space model with partial
observations as explained above.
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SIGMA <- .0001; SIGMAT <- .0001;
SIGMAS <- .00001; PHI <- 1.03
FF <- matrix(c(PHI,0,0,0,0,-1,-1,-1,0,1,0,0,0,0,1,0),

ncol=4,byrow=T)
SigV <- diag(c(SIGMAT,SIGMAS,0,0))
GG <- matrix(c(1,1,0,0),ncol=4,byrow=T)
SigW <- matrix(SIGMA,ncol=1,byrow=T)
X0hat <- matrix(c(.05,-.01,.03,-.01),ncol=1,byrow=T)
Omega0 <- diag(rep(.02,4))

The computations of the one-step-ahead predictions are stored in a matrix Xhat as
follows:

Xhat <- matrix(rep(0,284),ncol=71,byrow=T)
Xhat[,1] <- X0hat
Omega <- Omega0
for (n in 1:70)
{

KALMAN <- kalman(FF=FF, SigV=SigV, GG=GG, SigW=SigW,
Xhat=Xhat[,n], Omega=Omega, Y=seriesData(GEqeps.ts)[n])
Xhat[,n+1] <- KALMAN$xpred
Omega <- KALMAN$error

}

Finally, the actual predictions of the observations, together with the upper and
lower bounds, are computed and stored in the timeSeries objects GEpred.ts,
GEpredUB.ts, and GEpredLB.ts respectively.

XPRED <- matrix(rep(0,36),ncol=9,byrow=T)
YPRED <- rep(0,8)
YVAR <- rep(0,8)
XPRED[,1] <- Xhat[,71]
MAT <- GG
for (I in 1:8)
{

YPRED[I] <- GG %*% XPRED[,I]
XPRED[,I+1] <- FF %*% XPRED[,I]
YVAR[I] <- MAT %*% Omega %*% t(MAT)
MAT <- MAT %*% FF

}

The plots of Fig. 7.6 were produced with the following commands.

GEpred.ts <- timeSeries(pos=seriesPositions(GEqeps.ts),data=
c(seriesData(GEqeps.ts)[1:70],YPRED),units="PredGEqe")

GEpredUB.ts <- timeSeries(pos=seriesPositions(GEqeps.ts),data=
c(seriesData(GEqeps.ts)[1:70],YPRED+2*sqrt(YVAR)),units="UpperBd")

GEpredLB.ts <- timeSeries(pos=seriesPositions(GEqeps.ts),data=
c(seriesData(GEqeps.ts)[1:70],YPRED-2*sqrt(YVAR)),units="LowerBd")

GEqePredictions <- merge(GEqeps.ts[59:78],GEpred.ts[59:78])
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plot.timeSeries(GEqePredictions)

GEqePredictions <- merge(GEqePredictions,GEpredUB.ts[59:78])
GEqePredictionsWithBounds <- merge(GEqePredictions,

GEpredLB.ts[59:78])
plot.timeSeries(GEqePredictionsWithBounds)

PROBLEMS

©E ©S Problem 7.1 The purpose of this problem is to examine the various ways the components
of a multivariate time series can be dependent. We consider the following AR(1) model for a
bivariate time series {Xt}t=0,1,···:

Xt = AXt−1 +Wt, t = 1, 2, · · ·

where:

X =

[
X

(1)
t

X
(2)
t

]
, and A =

[
0.2 0
0 0.4

]
,

and where {Wt}t is a bivariate Gaussian white noise with variance/covariance matrix

Σ =

[
0.2 0
0 1

]
.

1. Give a condition on the initial random variables X
(1)
0 and X

(2)
0 which guarantees that

all the random variables X(1)
t and X

(2)
s are independent for the various values of t and

s. Explain why. From now on we assume that this condition is satisfied.
2. Explain how one can change some of the entries of the matrix A to make sure that the

time series {X(1)
t }t and {X(2)

t }t are dependent.
3. Setting back the entries of the matrix A to their original values, explain how one can

change some of the entries of the matrix Σ to make sure that the time series {X(1)
t }t and

{X(2)
t }t are dependent.

4. Can you identify the differences in the statistical properties resulting from these two pro-
cedures? You can use simulations if you cannot quantify these differences
theoretically.

The goal of Problems 7.2–7.5 is to quantify various risk exposures associated with tem-
perature basket options similar to the one analyzed in the text. The data needed for these prob-
lems are contained in the timeSeries objects TEMPS1.ts and TEMPS2.ts included in
the library Rsafd.

©E Problem 7.2 This problem uses the data contained in the timeSeries object TEMPS1.ts.
For each day of the period P starting from 09/06/1948 (the first row) and ending 11/08/2001
(the last row) it gives the daily average temperatures recorded at the meteorological stations of
the international airports of Reno (first column), Las Vegas (second column) and Sacramento
(third column). We consider two time periods.

• Period P is the period of the measurements reported in TEMPS1.ts
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• Period P ′ is the period of the option for which one needs to predict the number of heating
degree days. It starts on 12/1/2001 and ends 2/28/2002 inclusive.

We consider a basket option written on the average number of heating degree days over these
three cities. On each given day one computes the average of the three following numbers: the
number of heating degree days in Reno, the number of heating degree days in Las Vegas, and
the number of heating degree days in Sacramento. One then computes the sum of these daily
averages over the period P ′, and one compares this sum to the strike of the option, using the
same rules as usual to compute the pay-off of the option. The purpose of this problem is to
perform a simple regression analysis of such a basket option.

1. For each year in the period from 1961 to 2000 inclusive, compute the yearly index of the
option, compute the average of these yearly indexes over the last 15 years of this period,
and call this average K.
From now on we consider a European call option at the money (i.e. with strike K com-
puted above), with tick α equal to US$5,000 per degree day, and cap US$1,000,000,
written on the cumulative average number of HDD’s in Reno, Las Vegas and Sacramento
from December 1, 2001 to February 28, 2002.

2. Use the linear regression approach introduced in Problem 6.15 to give an estimate of the
underlying index on which the basket option is written, i.e. of the average of the three
numbers of HDD in the cities of Reno, Las Vegas and Sacramento over the period P ′,
and give a 95 % confidence or prediction interval for this prediction.

3. Answer questions 2 and 3 of Problem 6.15 in the present situation.

©E Problem 7.3 Follow the steps of the joint analysis of the daily average temperatures at the
Des Moines, Portland and Cincinnati given in Sect. 7.1.4 of the text, and use the data of the
period P to fit a trivariate model to the daily average temperatures in Reno, Las Vegas and
Sacramento of the timeSeries object TEMPS1.ts. Use this fitted model and follow the
prescriptions given in the text to derive an estimate of the value of the average of the three
numbers of HDD’s in the cities of Reno, Las Vegas and Sacramento over the period P ′, and
to provide new answers to the questions of Problem 7.2 above.

©E Problem 7.4 This problem provides another numerical illustration of the points addressed
in Problems 6.15, 7.2 and 7.3. The data needed for this problem are contained in the
timeSeries object TEMPS2.ts giving the daily average temperatures, starting from
1/1/1972 (the first row) ending 12/31/2001 (the last row) at the meteorological stations of
Newark, La Guardia and Philadelphia. The data have been cleaned in the sense that all the
February 29th’s of the leap years of this period have been removed. For the purpose of the
questions below, we shall use two time periods.

• Period P is the period of the time stamps of the timeSeries object.
• Period P ′ is the period for which you will need to predict the number of cooling degree

days (CDD’s for short). It starts on 5/1/2002 and ends 9/30/2002 inclusive.

1. For the location Newark, and for each year in the period P , compute the yearly CDD
index, i.e. the total number of CDD’s between May 1, and September 30 of that year
(these 2 days being included). Bundle these yearly aggregates into a vector which we
shall call INDEX.

2. Using only the numerical values contained in the vector INDEX
2.1. Compute a prediction for the value of the yearly cumulative number of CDD’s in

Newark for the period P ′.



Problems 463

Newark La Guardia Philadelphia

Number of CDD’s during P ′ 1,325 1,355 1,463.5

Table 7.2. Actual numbers of CDD’s over the period P ′

2.2. Give a 95 % confidence interval for this prediction
2.3. Let us assume that on January 1, 2002, you buy a call option on the number of CDD’s

in Newark over the period P ′, with strike K being equal to the average of the yearly
numbers of CDD’s over the last 15 years, nominal pay-off rate (also called the tick)
$5,000, and cap $1,000,000 for a premium of $400,000. Use the linear model so
fitted to give an estimate of the probability that you will loose money on this deal?

2.4. Compute your profit/loss, should the prediction you computed in part 2.1 be perfect
in the sense that it is equal to the actual number of CDDs which accumulated over
the period P ′.

3. Use the daily data in the period P to fit a model to the average daily temperature
in Newark, and use this estimated model to propose new answers to the questions (a)
through (d) above. Compare the results for each of these questions.

4. Give an estimate and a 95 % confidence interval for the average of the three numbers of
CDD’s in the cities of Newark, La Guardia and Philadelphia over the period P ′,

5. Let us assume that on January 1, 2002, you want to buy a “basket” call option at the
money, on the average of the numbers of CDD’s in Newark, La Guardia and Philadelphia
over the period P ′, with the same tick and the same cap as above. Say how much you
would be willing to buy this option for, and explain why.

FYI: Even though you should not use these numbers in the solutions of the questions above,
the actual numbers of CDD’s over the period P ′ in these three cities are given in Table 7.2.

©E Problem 7.5 The data needed for this problem are contained in the timeSeries object
TEMPS3.ts. The latter gives the daily temperatures, starting from 1/1/1981 (the first row),
and ending 1/11/2010 (the last row) at the meteorological stations of Saint Etienne and Aix en
Provence in France. The data have been cleaned in the sense that all the February 29th’s of
the leap years of this period have been removed. For the purpose of the questions below, we
shall use two time periods.

• Period P is the period of the time stamps of the timeSeries object.
• Period P ′ is the period for which you will need to predict the temperature in these cities.

It starts on 1/15/2010 and ends 1/31/2010 inclusive.

1. For each of the two locations, and for each year in the period P , compute the average
temperature over the period Jan. 15–31, and the number of HDDs over the same period.
Bundle these yearly statistics into two separate matrices, each with two columns and as
many rows as years in the period P: a matrix TEMP for the average temperature, and a
matrix HDD for the number of HDDs.

2. The questions of this first part rely on linear regression.
2.1. Using only the numerical values contained in TEMP, fit a linear model to the yearly

average temperature in Saint Etienne over the period Jan. 15–31, compute a predic-
tion for the value of this variable in 2010, and give a 95 % prediction interval for
this prediction.
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2.2. Using only the numerical values contained in TEMP, fit a linear model to the yearly
average temperature in Aix en Provence over the period Jan. 15–31, compute a pre-
diction for the value of this variable in 2010, and give a 95 % prediction interval for
this prediction.

2.3. Using only the numerical values contained in HDD, fit a linear model to the yearly
number of HDDs in Saint Etienne over the period Jan. 15–31, compute a prediction
for the value of this variable in 2010, and give a 95 % prediction interval for this
prediction.

2.4. Using only the numerical values contained in HDD, fit a linear model to the yearly
number of HDDs in Aix en Provence over the period Jan. 15–31, compute a predic-
tion for the value of this variable in 2010, and give a 95 % prediction interval for
this prediction.

3. Use the daily data originally given in TEMPS3.lts to fit a model to the daily tempera-
ture in both locations, and use your fitted model to propose new answers to the questions
2.1 through 2.4 above. Compare the results for each of these questions. We now consider
a call option (without cap) on the sum over the period Jan. 15–31, 2010, of the numbers
of HDDs in the two cities, with strike given by the mean of this quantity over the last
15 years, and tick 1,000 EUR per HDD.

4. Using ALL the models constructed above which can provide sensible answers, give esti-
mates of
4.1. The probability that the option is exercised;
4.2. The expected pay-off of the option at maturity.

5. Compute for each day of the period P, the sum of the average temperatures in Saint
Etienne and in Aix en Provence, call Y the numeric vector so obtained, and assume that
instead of actually observing the temperatures in the two cities separately, one has access
to the value of Y only, up to a Gaussian noise with variance 2.6 independent each day.
Assuming that the model you fitted in question 3 above is correct, how would you go
about answering the two questions 4.1 and 4.2 if the option was written on the average
temperature in Aix en Provence instead? Assume that the strike is given by the mean of
this quantity over the last 15 years and that the tick is 1,000 EUR per HDD.

©E Problem 7.6 The goal of this problem is to quantify the risks and rewards of some hybrid
derivatives written on temperature and energy commodities. The data are contained in the
data set TempGasNorthGate.ts, a bivariate timeSeries object whose first column
gives the daily average temperature at NorthGate and the second column, the price of the
month ahead contract of natural gas for delivery at NorthGate.

1. We first study the temperature data.
1.1. For each year j ∈ J = {1980, 1981, · · · , 2007, 2008} compute the yearly index

HDD[j] as the sum of the daily HDD’s over the period P comprising the months of
January and February of year j. Compute the average of these yearly indexes over
the last 15 years of this period, and call this average KT .

1.2. Decompose the time series of daily average temperatures at NorthGate into a trend,
a seasonal component, and a remainder which you call TREND, SEA, and REM re-
spectively. Fit an auto-regressive model to REM and report the order and the esti-
mates of the coefficients. Fit a distribution to the residuals.

1.3. Use N = 1,000 Monte Carlo simulations to compute an approximation of the prob-
ability that the cumulative number of HDDs over the period P in 2009 will exceed
KT , in other words, provide a Monte Carlo approximation of the probability

P{HDD[2009] > KT}.
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2. We now analyze the natural gas prices at NorthGate. For the sake of convenience we let
G[t] denote the price of the contract of natural gas on day t. The number KG will denote
the average daily natural gas price over the last 5 years. Compute its value.
2.1. Compute and plot the time series LR of daily log-returns of the natural gas con-

tract. Fit an auto-regressive model to LR and report the order, the estimates of the
coefficients, and fit a distribution to the residuals.

2.2. Use N = 1,000 Monte Carlo simulations to compute an approximation of the ex-
pectation

E{
∑
t∈P

(G[t]−KG)+},

namely the expected cumulative amount by which the daily price overshoots the level
KG over the period P in 2009. The sum appearing in the expectation will be called
the overshoot and we will denote it by OV ER.

3. Assuming that we need to buy gas every day of the period P in 2009, and that we do not
want to pay more than KG on any given day, we enter before December 31, 2008 into a
contract which guarantees the pay-off

PAY OFF [2009] = 1{HDD[2009]>KT}
∑
t∈P

(G[t]−KG)+

at the end of the period P . In other words, assuming that we purchase one unit of gas
everyday, this hybrid derivative guarantees that, if at the end of the month of February
2009, the cumulative number of HDDs over the period P exceeds the strike KT , then we
are paid the overshoot for all the days we had to buy gas at a price higher than the strike
KG.
Use N = 1,000 Monte Carlo simulations and compute approximations of the probability
that the pay-off (at the end of the period P in 2009) is non zero, and the expected pay-off.

4. We now assume that we will need to buy (one unit of) gas every day of period P in 2009
and every day of period P in 2010 as well, and we buy an option which guarantees
the pay-off PAY OFF [2009] if we decide to exercise our option at the end of February
2009, or the pay-off PAY OFF [2010] if we decide not to exercise our option at the end
of February 2009. Clearly, the decision to exercise or not to exercise the option at the end
of February 2009 should be made at that time, i.e. on the basis of information available
at that time. Also, PAYOFF [2010] is defined similarly to PAY OFF [2009], using the
HDDs and the daily prices during the period P of 2010.
Generate N = 1,000 Monte Carlo samples of the temperature and the price of natural
gas at NorthGate over the period ranging from January 1, 2009 to the last day of Febru-
ary 2010. For each scenario n = 1, 2, · · · , 1,000, compute HDD[2009, n] the number
of HDDs over the period P in 2009, HDD[2010, n] the number of HDDs over the period
P in 2010, OV ER[2009, n] the overshoot of the gas price over the period P in 2009,
and OV ER[2010, n] the overshoot over the period P in 2010, Next, compute the payoffs
PAY OFF [2009, n] and PAY OFF [2010, n] using the defining formula given above.

©S Problem 7.7 The purpose of this problem is to illustrate by simulation the cointegration prop-
erties stated in the example given at the beginning of Sect. 7.1.6 of the text.

1. Construct a sample {Wn}n=1,...,N of size N = 1,024 from the normal distribution
N(0, 1), construct the random walk Sn = S0 +W1 + . . .+Wn starting from S0 = 0,

and construct two independent white noise sequences {ε(1)n }n=1,...,N and {ε(2)n }n=1,...,N

from the distribution N(0, 0.16) which are independent of {Wn}n=1,...,N . Give on the
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same figure the plots of the graphs of the time series {X(1)
n }n=1,...,N and {X(2)

n }n=1,...,N

defined by:
X(1)

n = Sn + ε(1)n and X(2)
n = Sn + ε(2)n .

2. Give the plot of the linear combination of {X(1)
n }n=1,...,N and {X(2)

n }n=1,...,N given by
the cointegration vector identified in the text, compare to the previous plot and explain
why it confirms cointegration.

3. Construct two independent samples {W (1)
n }n=1,...,N and {W (2)

n }n=1,...,N of size N =

1,024 from the normal distribution N(0, 1), construct the random walks S(1)
n = S

(1)
0 +

W
(1)
1 + · · ·+W

(1)
n and S

(2)
n = S

(2)
0 +W

(2)
1 + · · ·+W

(2)
n starting from S

(1)
0 = 0 and

S
(2)
0 = 0 respectively, and construct as before two independent white noise sequences

{ε(1)n }n=1,...,N and {ε(2)n }n=1,...,N from the distribution N(0, 0.16) which are indepen-

dent of {W (1)
n }n=1,...,N and {W (2)

n }n=1,...,N . Give on the same figure the plots of the
graphs of the time series {X(1)

n }n=1,...,N and {X(2)
n }n=1,...,N defined by:

X(1)
n = S(1)

n + ε(1)n and X(2)
n = S(2)

n + ε(2)n .

4. Give the plot of the same linear combination of {X(1)
n }n=1,...,N and {X(2)

n }n=1,...,N as
before, compare to the plot obtained in part 2, and explain why there is no cointegration
this time.

5. Give the scatterplot of X(2)
n against X(1)

n , add the least squares regression line, test if the
regression is significant, and give a time series plot of the residuals as well as their acf.
Comment.

©S Problem 7.8 We consider the state-space model given by:{
Xt+1 = FXt + Vt

Yt = GXt +Wt

where the covariance matrices of the white noises {Vt}t and {Wt}t are the identity matrices
and where the other parameters are given by:

F =

⎡
⎣ 0.2 −0.1 3
1 0 0
0 1 0

⎤
⎦ , and G =

[
1 1 0
0 1 1

]
.

We assume that the values of the one step ahead estimates X̂t0 of the state vector, and Ωt0 of
its covariance matrix are given by:

X̂t0 =

⎡
⎣ 1.2
0.3
0.45

⎤
⎦ , and Ωt0 =

⎡
⎣ 1.25 1 1
1 1.25 1
1 1 1

⎤
⎦ .

We also assume that the next five values of the observation vector Y are given by:

Yt0=

[
−0.1

1

]
, Yt0+1=

[
0.3

0.9

]
, Yt0+2=

[
0.47

−0.8

]
, Yt0+3=

[
0.85

−1.0

]
, Yt0+4=

[
0.32

0.9

]
.

For each time t = t0 + 1, t = t0 + 2, t = t0 + 3, t = t0 + 4 and t = t0 + 5, use Kalman
filtering to compute the one step ahead estimates X̂t, its prediction quadratic error Ωt, and
of the next observation vector Ŷt|t−1, and its prediction quadratic error Δ(1)

t−1.



Problems 467

©S Problem 7.9 The goal of this problem is to write R-functions to simulate and visualize the time
evolution of the state and the observation of a linear state-space system of the form:{

Xt+1 = FXt + V t

Yt = GXt +Wt
(7.37)

where both the state vector Xt and the observation vector Yt are of dimension 2, and where
{V t}t and {Wt}t are independent Gaussian white noises with variance/covariance matrices
ΣV and ΣW respectively. As usual we assume that V t and Wt are independent of Xt, Xt−1,
Xt−2, . . .. We shall also visualize the performance of the forecasts derived from the Kalman
filter theory.

1. Write an R-function, say ksim, with parameters F, G, SigV, SigW, X0, Omega0, N and
SEED which:
• Initializes the seed of the random generator of R to SEED;
• Creates a N × 2 array of type numeric containing realizations of the N values

{V t; t = 0, 1, . . . , N − 1} of the white noise and a 2 × (N + 1) array of type
numeric containing realizations of the N + 1 values {Xt; t = 0, 1, . . . , N} of the
state vector Xt of the linear system given by Eq. (7.37) starting with X0 = X0

• Creates an (N + 1) × 2 array of type numeric containing realizations of the N + 1
values {Wt; t = 0, 1, . . . , N} of the observation white noise and uses the values of
the state vector created above to produce an (N +1)× 2 array of type numeric con-
taining realizations of the N + 1 values {Yt; t = 0, 1, . . . , N} of the observations
Yt satisfying the observation equation;

• Assuming that X0 is perfectly known at time t = 0 (this is obviously an unrealistic
assumption but please bear with me, this is merely homework stuff) computes for
t = 1, . . . , N the value of X̂t|t = E{Xt|Y≤t}, X̂t = E{Xt+1|Y≤t} and Ŷt =
E{Yt+1|Y≤t} and return the list of the five N× 2 arrays of type numeric say $xt,

$yt, $hxtt, $hxt and $hyt containing the values of Xt, Yt, X̂t|t, X̂t and

Ŷt for t = 1, . . . , N .
We use the notation Y≤t = {Yt, Yt−1, . . . , Y0} for the set of all the observations
prior to time t. Recall that the notation Et(X) was used for what is now denoted by
Xt|t.

2. Run the R command

> KTST <- ksim(F, G, SigV, SigW, X0, Omega0, N, SEED)

with:

F =

[
0.2 −0.1
1 0.3

]
, and G =

[
1 1
0 1

]
,

SigV =

[
0.2 0
0 1

]
, SigW =

[
1 0
0 0.4

]
, X0 =

[
1.2
0.45

]
and Omega0 =

[
1.25 0
0 1.25

]
,

and finally with N = 125 and SEED = 14.

3. Write an R function, say kanim which, with the appropriate parameters taken from the
list KTST obtained in the previous question, will produce the following three animations.
• Plots on the same graphic window of the successive values of KTST$xt and

KTST$hxtt;
• Plots on the same graphic window of the successive values of KTST$xt and

KTST$hxt;
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• Plots on the same graphic window of the successive values of KTST$yt and
KTST$hyt.

©T Problem 7.10 Find the state-space representation for the following time series models:

1. (1− φ1B)Yt = (1− θ1B)εt
2. Yt = φ1Yt−1 + εt − θ1εt−1 − θ2εt−2

where in both cases, {εt}t denotes a white noise.

©T Problem 7.11 Let {Xt}t be the univariate AR(1) time series:

Xt = φXt−1 + Vt

and let Yt be the noisy observation:

Yt = Xt +Wt

where we assume that {Vt}t and {Wt}t are independent one dimensional Gaussian white
noises with variances σ2

V and σ2
W respectively. Give the best predictions (in the sense of the

expected squared error) for Xt+1, Yt+1 and their variances given the past observations Yt,
Yt−1, . . ..

©T Problem 7.12 Derive a state space representation for the univariate ARIMA(1,1,1) model:

(1− φB)(1−B)Xt = (1− θB)Wt

when {Wt}t is a N(0, σ2) white noise, and identify all the parameters of the model in terms
of φ, θ, and σ2. Recall that (1−B) merely stands for the operation of differentiation.

©E Problem 7.13 Use the data of the weekly excess returns of AEP contained in the timeSeries
object AEP.wer.ts to produce the same results as those reported in Sect. 4.5.5 for DUKE,
by following all the steps of the filtering analysis of the time varying extension of the CAPM
theory described in the text. Compare the beta estimates so obtained to those given in the text
for DUKE. Use the timeSeries object MARKET.wer.ts for the weekly excess returns
of the market portfolio. These excess returns were computed from the weekly returns of the
S&P500 index.

©E Problem 7.14 The data needed for this problem are contained in the timeSeries objects
PEPqeps.ts and IBMqeps.ts giving the quarterly earnings per share of Pepsi Co. and
IBM.

1. Use the Pepsi data and reproduce the filtering analysis done in the text for the DUKE
Energy quarterly earnings.

2. The goal of this second question is to perform the same analysis for IBM.
2.1. Fit a state space model and use it to predict the last 2 years of quarterly earnings

using only the data up to the last quarter of 2000.
2.2. Fit a state space model to the data of the quarterly earnings over the period starting

with the first quarter of 1996, and ending with the third quarter of 2000. Use this
model and Kalman filtering as above to predict the last 2 years of quarterly earnings
using only the data used to fit the model.

2.3. Fit a model to the data up to the last quarter of 1990, and use it to predict the
quarterly earnings of the period 1991–1995 using only the data up to the last quarter
of 1990.
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2.4. Comment on the performance of the prediction in each case.

©T Problem 7.15 The goal of this problem is to use Monte Carlo simulations to quantify the per-
formance and the risk of some hybrid portfolios. The data are contained in the four dimen-
sional timeSeries object ENERGY.ts whose first column gives the daily closing price
of Constellation Energy Group stock (CEG), second column the daily closing price, say NG,
of the nearby Henry Hub natural gas contract, third column the daily close, say SPX, of the
S&P500 index, and finally whose fourth column gives the rate of return on a 3 month Treasury
Bill, which we will use as proxy for the short interest rate. Notice that this last figure is given
in percent. These data span the period from Jan. 2006 to Dec. 2010.

1. Compute the times series LR1 and LR2 of the daily log returns of CEG and NG respec-
tively. Fit a bivariate auto-regressive model to LR1 and LR2. Report the order and the
estimates of the parameters of the model. Call the two unidimensional vectors of residuals
RES1 and RES2 respectively.

2. Fit a joint distribution based on a Gaussian copula to RES1 and RES2: estimate the
marginal distributions of RES1 and RES2, and the parameter of the Gaussian copula.
Having holdings in CEG, and being interested in investing in NG contracts, you decide to
apply the results of the above analysis to quantify the potential risks, profits, and losses
of your portfolio. More precisely, assume that you decided to invest $10,000 in CEG and
$10,000 in NG on Dec. 31, 2010, so that at the start, the proportions of your portfolio
invested in CEG and NG are 50 and 50%. Imagine that each day, you trade without in-
curring any transaction costs and rebalance your portfolio so that the proportions invested
in CEG and NG remain the same, and you hold the same proportions invested in the two
assets throughout the entire year. Also, you should ignore the issues related to weekends,
holidays, . . . . . The goal is to compute, at the end to the year 2011, the expected value, the
median and the 95%-tile of your portfolio.

3. Simulate NbSim=1000Monte Carlo samples of daily CEG and NG in 2011 from the joint
distribution estimated in question 2, and compute the value of your portfolio on Dec. 31,
2011 for each scenario, if the proportions invested in the two assets remain constant. More
specifically, do the following,
3.1. Generate NbSim=1000 Monte Carlo samples of RES1 and RES2 from the joint

distribution based on the Gaussian copula and the marginal distributions you just
fitted. For each residual such a path should have length LL=365.

3.2. Take the samples you just generated as innovations and compute the corresponding
returns of CEG and NG using the fitted bivariate AR model.

3.3. Use these returns to compute the final values of the samples of your portfolio.
3.4. Compute the required statistics.

4. Suppose now that in order to diversify your portfolio you invest in the S&P 500 (SPX) index
as well.
4.1. Fit a multivariate auto-regressive model to the log returns of CEG, NG and SPX.

Report the order and the estimates of the parameters. Call the three residual vectors
ˆRES1, ˆRES2 and ˆRES3.

4.2. In the spirit of question 2. above, fit distributions to ˆRES1, ˆRES2 and ˆRES3 sep-
arately, and propose estimates for the parameter(s) of a Gaussian copula which we
propose to use as their copula. Explain your choices.

4.3. In the spirit of question 3 above, generate NbSim=1000 Monte Carlo samples of
CEG, NG and SPX using the tri-variate distribution you just fitted, and compute Monte
Carlo estimates of the same statistics relative to the value of your portfolio on Dec. 31,
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2011, if you invest $10,000 in CEG, $10,000 in NG, and $10,000 in SPX on Dec. 31,
2010, and hold the proportions 1/3, 1/3 and 1/3 invested in the three assets constant
throughout.

©E Problem 7.16 The goal of this problem is to use Monte Carlo simulations to quantify the per-
formance of the standard Black-Scholes Delta-hedging of an option on the S&P 500 index.
The data needed for this problem are contained in the two dimensional timeSeries object
SP.tswhose first column gives the daily closing prices of the S&P500 index, and second col-
umn the daily closing values of the VIX index between January 2, 2008 and January 31, 2012.
The VIX index is an index computed from the implied volatilities of options on the S&P500.
Its goal is to give a sense of the market implied volatility.

1. Compute the numeric vectors LR1 and LR2 of the daily log returns of the daily S&P500
and the VIX index respectively. We shall freely talk about log-return of the VIX, ignoring
the fact that the VIX is only indirectly traded. Fit a bivariate auto-regressive model of
order 2 to LR1 and LR2. Report the estimates of the parameters of the model. Call the
two unidimensional vectors of residuals RES1 and RES2 respectively, and compute their
(Pearson) correlation coefficient.

2. The purpose of this question is to find an estimate of the joint distribution of RES1 and
RES2 in a form which will allow for the generation of Monte Carlo samples from this joint
distribution. Estimate the marginal distributions of RES1 and RES2, and capture their
dependence with a Gumbel copula.

NB: The Gumbel copula (whose parameter you are expected to determine) does not need to be
the copula of RES1 and RES2! Recall the value you found for their correlation coefficient.

Having purchased an at the money call option on the S&P500 on January 31, 2012, with
maturity 90 days at implied volatility 15.2%, we try to estimate by means of Monte Carlo
computations, the fair value of this option and the cost of hedging due to transaction costs.
For the sake of simplicity, we shall assume that the short interest rate is zero, i.e. r = 0.
By fair value, we mean the expectation of the terminal value of the Delta hedge as given by
Black-Scholes theory when we use the value of the VIX index instead of the constant volatility
prescribed by the theory. By the cost of hedging, we mean the sum of the daily transaction
costs paid to rebalance the hedge: each time we buy or sell a unit of the index, we incur a cost
equal to the so-call spread between the best bid and ask prices, and we shall use a multiple of
the volatility (in our case the value of the VIX index) as a proxy for this spread.

3. The purpose of this question is to set up the Monte Carlo simulations. More specifically, do
the following,
3.1. Generate NbSim=1000 Monte Carlo samples of RES1 and RES2 from the joint

distribution determined by the copula and the marginal distributions you identified
earlier. For each residual such a path should have length LL=90.

3.2. Take the samples you just generated as innovations and generate corresponding sce-
narios for the log-returns of the S&P500 and VIX indexes using the fitted bivariate AR
model.

3.3. Use these log-returns to generate corresponding samples for the actual indexes over
the same period of 90 days ahead of the last day for which we have data.

4. We now compute approximations for the fair value of the option as given by the Monte
Carlo approximation of the expected value of the cost of the hedging portfolio, and for the
transaction costs as given by the Monte Carlo approximation of the expected value of the
cost of crossing the spread each time the hedge is rebalanced.
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4.1. For each Monte Carlo scenario, and for each day t between today (January 31, 2012)
and the maturity T of the option (90 days later) compute the Black-Scholes Delta

Δt = Φ

(
log(St/K)

σt

√
T − t

+
1

2
σt

√
T − t

)

where as usual Φ stands for the cumulative distribution function of the standard Gaus-
sian distribution, St is the price of the underlying (the value of the S&P500 index in
our case) on day t, and σt is the volatility. For each scenario, we use for σt, 0.12 times
the value of the VIX index given by the scenario for that day.

4.2. Compute the Monte Carlo approximation of the expectation

E

[ 90∑
t=1

Δt(St − St−1)

]

where S0 is the value of the S&P500 index on January 31, 2012.
4.3. Compute the Monte Carlo approximation of the expectation

E

[
1

500

90∑
t=1

|Δt −Δt−1|σt

]

Note that the quantity Δ0 can be computed from the same formula as above on January
31, 2012. It is obviously the same for all the Monte Carlo scenarios.

NOTES & COMPLEMENTS

Despite serious technical complications, the linear theory of time series presented in the pre-
vious chapter in the univariate case can be extended to multivariate time series models. A
thorough account can be found in Hamilton’s exhaustive exposé [44]. Cointegration is a con-
cept of great theoretical significance, and it is now an integral part of most econometric theory
textbooks. It was introduced in the seminal work [32] of Engle and Granger. This fundamen-
tal contribution was cited as the main reason to grant the 2003 Nobel prize to these authors.
The interested reader can also consult Johansen’s book [52] for the general statistical theory
of cointegrated time series. Cointegration appears in economic theories as a way to imply
equilibrium relationships between time series. These equilibria are the result of relaxation of
the dynamics toward steady states, and identifying them usually requires long spans of low
frequency data, for some form of ergodicity to take effect. In financial applications, cointe-
gration appears as a way to identify arbitrage opportunities. See for example Sect. 8.6 entitled
Threshold cointegration and arbitrage of Tsay’s book [92]. A complete exposé of cointe-
gration theory would be beyond the scope of this book. Nevertheless, we mention that its
importance is now recognized by the financial engineering community as well as the econo-
metric community, and new research programs have been started to understand and control
better pricing and risk management issues in the presence of cointegrated price series. Spread
options in the energy markets, and basket options in the equity markets are two of the many
examples of instruments naturally written on cointegrated price series. Our interest in these fi-
nancial products drove our attempt to introduce the concept of cointegration, even if we knew
that our short discussion could not do it justice. The textbooks of Chan [22], Tsay [92], and
especially Zivot and Wang [99] can be consulted for examples, error correction forms, and
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statistical tests. R does not have core functions to test for cointegration. The implementation
of the Phillips-Ouliaris co-integration test given by the function count of the library Rsafd
is merely a wrapper over the function po.test of the package tseries. Alternatively, the
package urca also include functions to test for co-integration in multivariate time series.

Even after so many years, the best way to learn about the classical theory of CUSUM tests
is still from the original paper of Brown, Durbin and Evans [11].

The use of linear state-space models in the analysis of time series is now part of the
folklore. Most of the modern textbooks on time series do include at least one chapter on
the state-space models and the powerful results of the filtering theory of partially observed
systems. See for example [10, 44] or [22]. Their use in financial applications has experienced a
similar growth. See for example [55]. A discussion in the delicate estimation of the parameters
of the model, including an application of the EM algorithm, can also be found in the book of
Shumway and Stoffer [87].

The shortcomings of the CAPM model and its failure to pass the empirical tests of its
validity (recall Sect. 4.5.5 of Chap. 4) have been studied extensively. The discussion of this
chapter, especially the use of filtering theory to track the values of a potentially time varying
beta, are borrowed from the book of Gençay, Selçuk and Whitcher, where references to the
extensive literature devoted to the fixing of the CAPM model can be found. The idea of the
application of recursive filtering equations to the prediction of the quarterly earnings of a
company was borrowed from Shumway and Stoffer [87].

Problem 7.16 is a scaled down version of a Monte Carlo study aimed at quantify-
ing the cost of transactions, typically crossing the spread between the best ask and
bid prices when rebalancing at discrete time intervals a portfolio aimed at replicating
the payoff of an option. In the world of Black-Scholes theory, a portfolio replicating
perfectly the pay-off of the option exists: this hedging strategy consists in holding at
each time, a given amount (the so-call Delta of the option) of the underlying interest.
This theoretical result does not hold in practice for many reasons, not the least the fact
that rebalancing the hedging portfolio can only be done at finitely many (discrete)
times. Moreover, Black-Scholes hedging is based on a constant volatility model, so
the first goal of the problem is to use at each rebalancing step, the current sentiment
of the market regarding implied volatility which, according to its very definition, is
best given by the value of the VIX index. Another important source of slippage is
the fact that financial assets cannot be bought and sold at their theoretical price. The
frictions caused by imbalances between supply and demand are captured by an order
book and the minimal cost of a transaction is proportional to the difference between
the best ask and bid prices.. For the purpose of the problem, we do not model the
order book, and use the common belief that this difference (the so-called spread) is
proportional to the implied volatility for which we use the proxy given by the VIX
index.
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NONLINEAR TIME SERIES:
MODELS AND SIMULATION

Most financial time series exhibit nonlinear features which cannot be captured by the
linear models seen in the previous two chapters. In this last chapter, we present the
elements of a theory of nonlinear time series adapted to financial applications. We re-
view a set of standard econometric models which were first introduced in the discrete
time setting. They include the famous, ARCH, GARCH, . . . models, but we also
discuss stochastic volatility models and we emphasize the differences between these
concepts which are too often confused. However, because of the growing influence of
the theoretical developments of continuous time finance in the everyday practice, we
spend quite a significant part of the chapter analyzing the time series models derived
from the discretization of continuous time stochastic differential equations. As ordi-
nary differential equations can be used as framework for time evolution modeling,
their stochastic extensions are adapted to the requirements of modeling uncertainty,
and powerful intuition from analyses of physical and mechanical systems can be
brought to bear. We examine its implications at the level of simulation. The last part
of the chapter is devoted to a new set of algorithms for the filtering of nonlinear state
space systems. We depart from the time honored tradition of the extended Kalman
filter, and we work instead with discrete approximations called particle filters. This
modern approach is consistent with our strong bias in favor of Monte Carlo simula-
tions. We illustrate the versatility of these filtering algorithms with the example of
price volatility tracking.

8.1 FIRST NONLINEAR TIME SERIES MODELS

This introductory section builds on some of the ideas of the linear theory presented
in Chap. 6. It is devoted to the discussion of a couple of nonlinear time series models
based on natural generalizations of classical linear time series models introduced
in that chapter. The first of these two models was inspired by the desire to develop
a time series analog of the so-called fractional Brownian motion whose modeling
potential for financial data was popularized by Benoit Mandelbrot. The second model
is a straightforward generalization of the notion of auto-regressive model.

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-8788-3 8, © Springer Science+Business Media New York 2014
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8.1.1 Fractional Time Series

The process of fractional Brownian motion has a certain number of desirable prop-
erties which are present quite often in financial data. Even though self-similarity
has limited use outside continuous time models, long range dependence is a feature
which most of the linear models analyzed in Chap. 6 do not share. The time series
model introduced here is an attempt to capture this feature.

Definition 1. If p and q are integers and d ∈ (0, 1), we say that the time series {Xt}t
is an ARIMA(p,d,q) series if (I−B)dXt is a stationary ARMA(p,q) time series where
the fractional difference operator (I −B)d is defined by the infinite sum:

(I −B)d = I +

∞∑
j=1

d(d− 1) · · · (d− j + 1)

j!
(−1)jBj . (8.1)

As usual we use the notation B for the backward shift operator. The time series of
the type defined above are called fractional processes or fractional time series. This
definition calls for a few remarks.

• The infinite series in the right hand side of formula (8.1) mimics the Taylor
expansion of the fractional powers:

(1 − z)d = 1 +

∞∑
j=1

d(d− 1) · · · (d− j + 1)

j!
(−1)jzj

which converges for |z| < 1, hence the terminology of fractional differentiation.
• The cases d = 0 and d = 1 appear as limiting cases of the above definition. The

case d = 0 corresponds to the usual stationary ARMA(p,q) model, while the case
d = 1 corresponds to the classical ARIMA(p,1,q) model. Fractional processes
provide a continuum of models interpolating between these extreme cases.

• Fractional time series are asymptotically stationary when d < 1/2. This means
that even though they are not technically speaking stationary, they behave as if
they were in the regime t → ∞. In fact, it is possible to prove that in this case
(i.e. when d < 1/2) the auto-correlation function ρX(h) converges toward zero
like a power for large lags (i.e. when h→ ∞). More precisely:

ρX(h) ∼ h2d−1 as h→ ∞. (8.2)

Notice that 2d − 1 < 0 since d < 1/2. This slow polynomial decay of the acf
is in contrast with what we found in the case of the classical ARMA models for
which the acf either vanishes after some lag (like in the case of the MA series)
or decays at an exponential rate (like in the case of the AR series). The long
range dependence (also called long range memory) is the reason why these mod-
els were introduced. They exhibit persistence while most linear models don’t.
The slow decay of the empirical estimate of the acf is a strong indication that a
fractional model may be relevant.
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• Formula (8.2) can be turned into a method of estimation of the exponent d.
Indeed, at least asymptotically, one should have:

log ρX(h) ∼ β0 + (2d− 1) logh

for some constant β0. Consequently, after estimating the sample acf ρ̂X(h) in the
usual way, a simple linear regression of log ρ̂X(h) against the logarithm log h
of the lag should give a slope equal to 2d − 1, from which one can derive an
estimate of the value of d. Unfortunately, this estimate is very poor in the case of
non-Gaussian time series.

The core R distribution does not have a special function for the estimation and
simulation of the fractional time series defined above. Computation and simulation
of fractional time series can be done by including the package fracdiff. See also
the discussion below of the fractionally integrated GARCH models.

8.1.2 Nonlinear Auto-Regressive Series

The first examples of genuinely nonlinear time series models are provided by the
nonlinear auto-regressive models. Like their linear counterparts, they generalize the
simple model:

Xt = μ+ σWt

to the case where the mean is a function of the past values of the series itself. But
instead of assuming that this function is linear as in the case of the classical AR(p)
models, we shall now assume that it can be any nonlinear function of Xt−1, Xt−2,
. . ., Xt−p. In other words, we shall assume the existence of a deterministic function
μ : Rp ↪→ R such that:

Xt = μ(Xt−1, Xt−2, . . . , Xt−p) + σWt.

However, we shall not limit the nonlinear dependence on the past lags of the se-
ries to the mean term. We shall also allow it in the variance of the series. More
precisely:

Definition 2. If p is an integer, we say that the time series {Xt}t is a nonlinear AR(p)
series if there exist a white noise {Wt}t and two deterministic functions:

μ : Rp � (x1, . . . , xp) ↪→ μ(x1, . . . , xp) ∈ R

and

σ : Rp � (x1, . . . , xp) ↪→ σ(x1, . . . , xp) ∈ R+

such that:

Xt = μ(Xt−1, Xt−2, . . . , Xt−p) + σ(Xt−1, Xt−2, . . . , Xt−p)Wt. (8.3)
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Let us consider the simplest case of a nonlinear AR(1) for the sake of illustration.
Such a series satisfies an equation of the form:

Xt = μ(Xt−1) + σ(Xt−1)Wt

Moreover, if we further assume that the white noise {Wt}t is an N(0, 1) i.i.d. se-
quence, then we see that conditioned on its past, Xt is still normally distributed.
More precisely:

Xt|Xt−1 = N(μ(Xt−1), σ(Xt−1)
2)

which shows that the marginal distribution ofXt is a mixture of normal distributions,
and as such, is likely to have heavy tails and excess kurtosis as proved in Sect. 8.3
below and Problem 8.1.

8.1.3 Statistical Estimation

As before we limit the scope of our discussion to the particular case p = 1. The
general case can be treated exactly in the same way, but the notation become so
cumbersome that we refrain from discussing the general case all together. There are
two ways to approach the statistical estimation of a nonlinear AR model. Either by
parametrization of the unknown functions μ(x) and σ(x) or by appealing directly to
nonparametric techniques.

• Parametric Approach Let us assume that the functions μ and σ are known up
to a parameter θ. This parameter θ can be estimated by the maximum likeli-
hood method when the white noise is Gaussian. Indeed, in this case, the like-
lihood function is the product of normal densities, and its maximization is not
more difficult than in the case of the estimation of the mean and the variance
of a normal sample. The maximum likelihood estimate (MLE for short) is much
more difficult to find in the general case. A reasonable approximation can be
obtained by acting as if the white noise was still Gaussian. The estimate so ob-
tained is usually called the quasi-MLE or the pseudo-MLE. So given a sam-
ple x1, x2, . . . , xT−1, xT of size T , the maximum likelihood estimator θ̂T is
given by:

θ̂T = argmax
θ

logL(x1, . . . , xT |θ)

= argmax
θ

T∑
t=1

log f(xt|xt−1, θ)

if we use the notation f(x|x′, θ) for the conditional density of Xt given that
Xt−1 = x′. Since in general we cannot compute it, we compute instead the
quasi-maximum likelihood estimator θ̂T is given by:

θ̂T = argmin
θ

T∑
t=1

(
1

2
log 2π +

1

2
log σ2(xt−1, θ) +

[xt − μ(xt−1, θ)]
2

2σ2(xt−1, θ)

)

(8.4)
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which is obtained by assuming that the white noise is Gaussian. How difficult
this optimization problem is depends upon the explicit form of the functions
μ( · , θ) and σ( · , θ). But what is remarkable is that, asymptotically, the resulting
estimator has essentially the same desirable properties as in the case of Gaussian
white noise. Indeed, it can be proven that, if {Wt}t is an i.i.d. sequence of mean-
zero variance-one random variables, then the quasi-MLE θ̂T is consistent in the
sense that whatever the true value θ of the parameter is, we have:

lim
T→∞

θ̂T = θ,

and it is asymptotically normal in the sense that the distribution of
√
T (θ̂T − θ)

converges toward a normal distribution with mean zero and a variance given by
the Fisher information matrices which we shall not make explicit here. This last
property makes it possible to derive (asymptotically correct) tests of significance
and confidence intervals for the parameter.

• Nonparametric Approach If we do not know enough about the functions μ(x)
and σ(x), and if we cannot reduce their estimation to estimating one or a small
number of scalar parameters, there is always the possibility of appealing to non-
parametric estimation techniques. In particular, building on the expertise we de-
veloped in Chap. 5, we can solve the estimation problem by choosing a kernel
function K , a bandwidth bT > 0, and for each value of x, computing the esti-
mates:

μ̂T (x) =

∑T
t=2 xtK

(
x−xt−1

bT

)
∑T

t=2K
(
x−xt−1

bT

) (8.5)

and

σ̂2
T (x) =

∑T
t=2 x

2
tK
(
x−xt−1

bT

)
∑T
t=2K

(
x−xt−1

bT

) − μ̂T (x)
2. (8.6)

Notice that we applied the procedure learned in Chap. 5 to the couples (xt−1, xt)
with xt−1 playing the role of the explanatory variable and xt playing the role of
the response variable. Because we are well versed in the theory of kernel estima-
tion, we know that the properties of these estimators depend upon the value of the
bandwidth bT . Hence, we should not be surprised to learn that the consistency
and the asymptotic normality of these estimates will only hold for specific forms
of this dependence. To be specific, the estimates are consistent, i.e.

lim
T→∞

μ̂T (x) = μ(x) and lim
T→∞

σ̂T (x) = σ(x),

whenever T → ∞ in such a way that limT→∞ TbT = ∞. So as the sample size
grows (i.e. as T → ∞) we can take smaller and smaller a bandwidth bT (which
is desirable) but the latter cannot go to zero too fast. Under the same condition
the bivariate distribution of the vector
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√
TbT

([
μ̂T (x)
σ̂2
T (x)

]
−
[
μ(x)
σ2(x)

])

converges toward a bivariate normal distribution with zero mean. This result
shows that even though the kernel estimate converges toward the true value, the
rate of convergence is smaller since it is given by

√
TbT instead of the usual√

T . This is the price to pay for not having to make assumptions on the particular
forms of the functions μ(x) and σ(x). In simple terms, this illustrates a state-
ment we made several times already: the kernel method can be used even when
we do not know much about the functions to estimate, but in order to get the
same precision as parametric methods, it needs more data.

8.2 MORE NONLINEAR MODELS: ARCH, GARCH & ALL THAT

It is now time to investigate the most popular of the nonlinear time series models:
the famous ARCH and GARCH models.

8.2.1 Motivation

As a matter of illustration, we revisit the example of the daily log-returns of the
Brazilian coffee which we considered earlier in Chap. 3. However, the reader should
be aware of the fact that most of what we are about to do or say applies to most
financial time series as well. The plot of the auto-correlation function of these log-
returns is given in the left pane of Fig. 8.1. Obviously, this acf looks pretty much like
the auto-correlation function of a white noise. If, ignoring this warning, we try to fit
an AR model anyway, we get:

> BLRet.ar <- ar(BLRet)
> BLRet.ar$order
[1] 0

which confirms our fear that the series may not carry more information than a white
noise would. We saw in Chap. 3 that the marginal distribution of these daily log-
returns was not Gaussian, and that it had heavy tails. Recall the normal Q-Q plot
comparing the distribution of these daily log-returns to the normal distribution in the
left pane of Fig. 3.7. This remark is crucial at this stage: indeed it is only for Gaussian
time series that the absence of correlation implies independence. So, even though we
have an uncorrelated sequence, it is still possible that significant forms of dependence
between the successive terms of the series exist. Indeed, if the terms of a time series
are not jointly Gaussian, the lack of correlation does not imply independence. The
existence of dependencies is confirmed by the plot of the auto-correlation function
of the square of the time series which we reproduce in the right pane of Fig. 8.1.
Indeed, this plot does not look like the acf of a white noise. Since squares of random
variables are independent whenever the original random variables are independent,
this proves that the original series of daily log-returns was not an independent series.
So, there is still some hope for us to be able to untangle these dependencies.
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Fig. 8.1. Plot of the auto-correlation function of the Brazilian coffee daily log-returns (left)
and of their squares (right)

8.2.2 ARCH Models

The next step is to model the volatility (i.e. the instantaneous standard deviation) as
a random process of its own. There are two main reasons for that. The first one is
that time series plots of these log-returns show that the variance seems to change
over time. This goes under the name of heteroskedasticity. The second is that, as
we already saw, one of the easiest ways to create distributions with heavy tails, is
to mix together Gaussian distributions with different variances. See Problem 8.1 at
the end of this chapter for example. By making sure that the instantaneous standard
deviation is random, we may force the distribution of the log-returns to be a mixture
of Gaussian distributions, and hence to have heavy tails. These two basic ideas are
at the core of the approach taken in the next several sections. First, we introduce
ARCH(p) models. Not surprisingly, ARCH stands for:

Auto-Regressive Conditional Heteroskedasticity

A formal definition is as follows.

Definition 3. A time series {Xt}t is said to be of type ARCH(p) if:

Xt = σtWt
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where {Wt}t is a strong Gaussian white noise (i.e. an i.i.d. sequence of N(0, 1)
random variables), and where σt is a (positive) function of Xt−1, Xt−2, . . . deter-
mined by:

σ2
t = α0 +

p∑
j=1

αjX
2
t−j

with α0 > 0 and αj ≥ 0 for j = 1, 2, . . . , p.

In most of the textbook definitions of the ARCH(p) models, it is not required that
the white noise {Wt}t is Gaussian. However, for the sake of simplicity, we do make
this restrictive assumption. As a warm up, we first consider the simple case of an
ARCH(1) model. In this case we have:

Xt = σtWt and σ2
t = α0 + α1X

2
t−1 (8.7)

which gives inductively:

X2
t = σ2

tW
2
t

= α0W
2
t + α1X

2
t−1W

2
t

= α0W
2
t + α1α0W

2
t−1W

2
t + α2

1X
2
t−2W

2
t W

2
t−1

= α0W
2
t +α0α1W

2
t−1W

2
t +α0α1W

2
t W

2
t−1W

2
t−2+ · · ·+ α0α

n
1W

2
t W

2
t−1 · · ·W 2

t−n

αn+1
1 W 2

t W
2
t−1 · · ·W 2

t−nX2
t−n−1

by successive substitutions using the definition formula (8.7). This series
converges if

• {Xt}t is causal (so Xt−n−1 depends on Ws for s < t− n)
• {Xt}t is stationary (so that E{Xt−n−1} is a constant and hence bounded)
• |α1| < 1

In this case:

X2
t = α0

∞∑
j=0

αj1W
2
t W

2
t−1W

2
t−2 · · ·W 2

t−j

from which we get:

E{Xt} = 0 E{X2
t } =

α0

1− α1

and the final formula:

Xt = σtWt with σt =

√√√√√α0

⎛
⎝ ∞∑
j=0

αj1W
2
t−1W

2
t−2 · · ·W 2

t−j

⎞
⎠
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It is important to notice that:

E{Xt+hXt} = E{E{Xt+hXt|Wt+h−1,Wt+h−2, . . .}} = 0

so that, in the sense of “weak white noise” introduced in Chap. 6, the time series
{Xt}t is a white noise, not a white noise in the strong sense of i.i.d. sequences, but
STILL A WHITE NOISE!!!

8.2.3 GARCH Models

The above discussion of ARCH models can be regarded as a warm up for the intro-
duction of models with a broader appeal in the financial econometric community.

Definition 4. We will say that the time series {Xt}t is GARCH(p,q) if:

Xt = μt + σtWt

where as before, we assume that the noise sequence {Wt}t is i.i.d. N(0, 1), so that
the conditional distribution of X̃t = Xt − μt given X̃t−1, X̃t−2, . . . is N(0, σ2

t )
with:

σ2
t = σ2 +

p∑
j=1

φjσ
2
t−j +

q∑
j=1

θjX̃
2
t−j. (8.8)

Obviously this definition generalizes the notion of ARCH(p) models which can
be recovered by setting q = 0. The term μt should be understood as a mean. It could
be zero (as assumed in the previous subsection) or it could be the result of the fit
of an ARMA model, in which case X̃t should be viewed as the residual time series
after the fit of such a linear time series model. It is sometimes called the regression
term.

The case p = q = 1 of GARCH(1,1) models is by far the most frequently used
model. In such a case, we try to model the time series X̃t as:

X̃t = σtWt

in such a way that the conditional distribution of X̃t given X̃t−1, X̃t−2, . . . is
N(0, σ2

t ) with:
σ2
t = σ2 + φ1σ

2
t−1 + θ1X̃

2
t−1

This formula for the instantaneous variance is screaming for an interpreta-
tion in terms of ARMA(1,1) models!

We address this question next.

8.2.4 Summary

Even though we stated the definitions of ARCH and GARCH models with variance
one strong white noise series, it is easy to see that the main properties of the models
remain true if we only assume that the innovations are only white noise in the weak
sense. In this subsection, we shall only consider weak sense white noise series, and
instead of working in the general case of ARCH(p) and GARCH(p,q) models, we
state results only for the case p = 1 and q = 1.
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The formal way to identify an ARCH(1) time series is to write it first in terms
of its conditional standard deviation, i.e. in the form Xt = σtWt where {Wt}t is
a (stationary) weak white noise with variance one. Then the ARCH(1) prescription
becomes:

σ2
t = α0 + α1X

2
t−1.

which can be rewritten in the form:

X2
t = α0 + α1X

2
t−1 + W̃t

for some new weak white noise series {W̃t}t. This shows that (provided we gener-
alize the definitions to accept weak white noise series)

{Xt}t ∼ ARCH(1) ⇐⇒ {X2
t }t ∼ AR(1).

We now consider the case of GARCH(1,1) series. In this case the determining con-
dition on the conditional variance reads:

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1.

which can be rewritten in the form:

X2
t = α0 + (α1 + β1)X

2
t−1 + W̃t − β1 ˜Wt−1

for some new weak white noise series {W̃t}t. Under the same proviso as before, this
shows that

{Xt}t ∼ GARCH(1,1) ⇐⇒ {X2
t }t ∼ ARMA(1,1).

8.2.5 R Commands

The function garch assumes that the argument is a numeric vector or a univari-
ate timeSeries object with mean zero. In other words, it assumes that the mean
component μt in the definition formula (8.8) has already been identified and sub-
tracted. So typically, we will run the function garch on mean zero time series,
often times on series of residuals. The order of the model is specified by the com-
mand order=c(p,q). We choose to fit a GARCH(1,1) model to the log-returns
of the Brazilian coffee futures contracts (recall Chap. 3) for the sake of illustration.

> BLRet.g <- garch(BLRet,order =c(1,1))

The prescription order = c(1,1) is not needed in the above command as
c(1,1) is the default value for the argument order. The object BLRet.g
returned by this function has the form:
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> BLRet.g
Call:
garch(x = BLRet)
Coefficient(s):

a0 a1 b1
0.0000271 0.1261165 0.8707195

The correspondence between the coefficients a0, a1, .... , aq, b1,
..., bp appearing in the output and the parameters appearing in the definition
formula (8.8) is given by:

� a0 stands for the mean variance σ2

� aj stands for the moving average coefficient θj
� bi stands for φi

The R garch objects can be summarized in still another way. One can use the com-
mand summary(BLRet.g) which produces on the top of the information given
above, an entire set of tests and p-values which we shall not reproduce here.

8.2.6 Fitting a GARCH Model to Real Data

It is now time to consider a first practical example to see why, when and how one
fits a ARCH and/or a GARCH model to data. We use the example of the Dow Jones
Enron index to demonstrate how the concepts introduced so far can be implemented
on real data. At the risk of being accused of nostalgia for the exciting period of
the seemingly endless expansion in the energy trading boom, we chose to restrict
ourselves to the period pre-bankruptcy. The data we used is plotted in Fig. 8.2.
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Fig. 8.2. Time series plot of the index created from the values of Enron’s stock
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Indexes are normalized aggregates of stock prices. Even when the index is com-
puted from a single stock, it differs from the actual stock price in many ways. How-
ever, we should view them as providing essentially the same returns as the stock
price would since they are merely normalized to have a specific value (say 100) on
a given date (January 1, 1992 in this particular instance. The timeSeries object
EnronIndex.ts which we use is included in the library Rsafd.

We use the following R commands to compute the log-returns from the Enron
index, to compute and plot their partial auto-correlation function, fit an AR model,
and plot the AIC criterion. The graphical results are reproduced in Fig. 8.3.

> LRET <- diff(log(EnronIndex.ts))
> acf(LRET,type="partial")
> LRET.ar <- ar(LRET)
> LRET.ar$order
[1] 4
> plot(LRET.ar$aic, type="l")
> title( "AIC criterion for ENRON LRET")
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Fig. 8.3. Auto-correlation function of the log returns computed from the Enron index (left)
and AIC criterion from the fit of an AR model to these log returns (right)

Except for the value at lag 34 (which is much too large to be considered as a possible
order of the model), the partial auto-correlation function is not significantly different
from zero for lags of 5 and above. The AIC has a clear minimum for lag 5. Both
plots points to a model of order 4, which is what was fitted by the function ar.

Remark 1. The fact that we found an AR(4) for a financial log-return time series
could appear as a contradiction with the intuition developed throughout the book
according to which we expect those log-returns to be white noise like, and hence
lead to AR(0) models. Knowing what we know in hindsight of what was actually
driving Enron’s stock price, we should not be surprised by the fact that it behaves
differently than typical stock prices more aligned with an efficient market.
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The time series plot of the residuals of this AR model, together with their Q-Q norm
plot are obtained with the commands:

> plot(LRET.ar$resid)
> RES <- seriesData(LRET.ar$resid)
> qqnorm(RES)

Notice that we had to perform the Q-Q plot on the data of the time series since the
function qqnorm does not accept timeSeries objects as parameters. The results
are shown in Fig. 8.4. If lack of serial correlation is a possibility in light of what
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Fig. 8.4. Time series plot of the residuals of the AR model as fitted to the log returns
computed from the Enron index (left) and their Q-Q plot against the Gaussian distribution
(right)

we see in the left pane of Fig. 8.4, it is clear that too many measurements end up
several standard deviation away from the mean. The marginal distribution of these
residuals is presumably not normal. This is confirmed by the normal Q-Q plot of
these residuals reproduced in the right pane of this figure. This plot shows that the
distribution of the residuals has heavy tails. So even if the AR model was able to
capture the serial correlation contained in the log returns, we cannot be sure that the
residuals are independent, and that there are no serial dependencies left. We settle
this question by computing the acf of the squares of these residuals.

> acf(LRET.ar$resid)
> acf(LRET.ar$residˆ2)

The results are shown in Fig. 8.5. We are now in a rather delicate situation. Indeed,
after transforming the data to stationarity (by first taking their logarithms and then
the difference of the latter), and fitting a time series model (AR(4) to be specific),
we end up with a residual time series with an acf of the white noise type, i.e. of the
form:

1, 0, 0, · · · .
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Should we consider ourselves done? as we did in Chap. 6 when we were restricted
to linear time series models? Or should we try to further analyze the data by digging
into the residual series? Our discussion of the ARCH/GARCH models indicates that
this is a reasonable option at this stage. For this reason, we proceed with the fitting
of a GARCH(1,1) to the residuals of the AR model fitted earlier to the log-returns of
the Enron Index data.
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Fig. 8.5. Auto-correlation function of the raw residuals from the fit of an AR model to the
Enron log-returns (left) and of the squares of these residuals (right)

8.2.6.1 Fitting a GARCH(1,1) Model to ENRON Index Log Return

The function garch does not handle NAs, but the function ar of Rsafd, when
applied to a timeSeries object, produces residuals in the form of a timeSeries
object without NAs, the first order entries, which are bound to be NAs since they
cannot be computed, being removed. As explained in the previous subsection, we fit
a GARCH(1,1) model to the residual series with the following command:

> LRES.g <- garch(LRET.ar$resid)
> LRES.g

Call:
garch(x = LRET.ar$resid)
Coefficient(s):

a0 a1 b1
2.636e-06 4.209e-02 9.494e-01

We do not reproduce here the output of the function garch which gives a trace of
the convergence process of the algorithm. Recall the meaning of the parameters a0,
a1 and b1 given in Sect. 8.2.5. Checking if the serial correlation present in the AR
residuals has been removed by the GARCH model is a reasonable step to take at this
stage. This can be done with the commands:

> acf(LRES.g$resid)
> acf(LRES.g$residˆ2)
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The results are reproduced in Fig. 8.6. These plots of the auto-correlation functions
of the residuals and squared residuals of the fitted GARCH(1,1) model show that the
serial correlation has practically been completely removed. In dealing with ARCH

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Residuals

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Residuals

Fig. 8.6. Plots of the auto-correlation functions of the residuals of the GARCH(1,1) model
fitted to the AR residuals from the Enron log-returns (left), and of their squares (right)

and GARCH models, part of the fitting procedure involves the estimation of the
instantaneous conditional variance, and it is always instructive to take a look at
such an estimate. In R, the fitted values and the estimates of the conditional vari-
ances are returned by the function garch and can be retrieved with the extensions
· · ·$fitted.values and · · ·$sigma.t at the end of the name of the GARCH
object produced by the fitting procedure. These objects are numeric vectors when
the data input is itself a numeric vector, and a timeSeries object when the input
is a timeSeries object. Note that these objects are shorter than the original data
since the first p entries cannot be computed because of the auto-regressive part of
the GARCH model.

The plot of the timeSeries object LRES.g$sigma.t giving the estimate of
the instantaneous conditional standard deviation of the fitted series appears in Fig. 8.7
as the dark continuous line. This estimator is quite realistic and quite accurate. We see
a large peak indicative of the huge growth and the subsequent highly volatile period
corresponding to the crisis of 2000, and regularly spaced smaller peaks reminiscent
of the seasonal nature of the business. So the estimation of the conditional standard
deviation seems to be a powerful tool. It is interesting to compare this estimate to
the result of a pedestrian approach which, on any given day, compute the empirical
standard deviation of the entries of the series in the window containing the entries of
the last 60 days. Notice that this computation is non-anticipative because the sliding
window ends at the time of the computation, i.e. at any given time, we use only
past observations to compute the standard deviation estimate. The plot of this naive
sliding window estimate appears in Fig. 8.7 as the lighter dashed line. Notice that
the results are very similar to the plot of LRES.g$sigma.t obtained by fitting the
GARCH model. The naive estimator is smoother (the peaks are not as sharp) and
lags the GARCH estimator. Both features should be expected given the fact that the
window in which the empirical estimate of the standard deviation is computed is
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Fig. 8.7. Conditional standard deviation as estimated in the fitting of a GARCH(1,1) model to
the AR residuals from the Enron index log-returns together with the estimate of the standard
deviation in a 60 days tailing sliding window

trailing. But given the complexity of the GARCH fitting procedure, this comparison
is rather anti-climatic. Figure 8.7 was produced with the commands

> SIG <- rep(0,LL-59)
> for (I in 60:LL) SIG[I-59] <- sd(RES[(I-59):I])
> SIG.ts <- timeSeries(positions =
seriesPositions(LRET.ar$resid)[60:LL],data=SIG,units=

"roll_sig")
> COMP <- merge(LRES.g$sigma.t,SIG.ts)
> plot(COMP)

One can easily imagine from looking at the left pane of Fig. 8.4 that it is rather
difficult to assess graphically the quality of the fit of the GARCH model. Figure 8.8
shows the scatter plot of the fitted values against the actual values to which the
GARCH model was fitted. It was produced with the commands

> RES <- seriesData(LRET.ar$resid)
> LL <- length(RES)
> FITTED <- seriesData(LRES.g$fitted.values)
> plot(RES[2:LL],FITTED,main="Scatterplot of GARCH

fitted values against Enron AR residuals")

The fact that the points are found on or near the diagonal is a good indication of the
quality of the fit.
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Fig. 8.8. Scatterplot of the fitted values against the actual values to which the GARCH model
was fitted

8.2.6.2 Monte Carlo Simulations

The library Rsafd provides the function sim.garch to generate Monte Carlo
samples from a GARCH model. Here is an example of its use.

> MODEL <- list(sig2=LRES.g$coef[1],ma=LRES.g$coef[2],
ar=LRES.g$coef[3])

> PRESIG <- seriesData(LRES.g$sigma.t)[LL-1]
> PREX <- FITTED[LL-1]
> SIM <- sim.garch(model=MODEL,n.ahead = 1024, n.start = 0,

n.sim = 1, presigmat=PRESIG, preXt=PREX )
> plot(SIM$sigma.t,type="l")

The result is reproduced in Fig. 8.9. Several remarks are in order at this point. The
parameter model specifies the GARCH model to be simulated. It should be a list
whose first element is a number sig2 giving the mean variance σ2 of the model (the
number a0 returned by the function garch), a vector ar of the p coefficients φ1,
· · · , φp (the numbers b1, · · · , bp returned by the function garch), and a vector ma
of the q coefficients θ1, · · · , θq (the numbers a1, · · · , aq returned by the function
garch). Here we use the model fitted to the residuals of the AR model fitted to
the log-returns of the Enron index. The parameter n.ahead gives the length of the
desired simulated scenarios, while n.sim (which is equal to 1 by default) gives the
number of desired scenarios. As in most simulations of time series models, the pa-
rametern.start represents the number of samples which are disregarded. They are
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Fig. 8.9. Simulated stretch of length 1,024 of the conditional standard deviation of the
GARCH(1,1) model fitted to the AR residuals from the Enron log-returns, as an extension
of the in-sample estimate

generated in order for the series to reach a steady state regime in which the dynamics
are stationary/stable. One should experiment and try several values of this parameter
to get a feeling for its effect. In particular, too small a value of this parameter will
produce a sample from a non-stationary time series. This is usually detected because
of significant differences between the first part of the simulation which exhibits non-
stationary behavior, and the later part where the stationary regime is reached, and
the effects of the initial values have been wiped out of the statistics. Obviously, this
parameter is set to 0 when the simulation tries to produce scenarios extending the
time series, in which case one sets the parameters presigmat and preXt to the
vector of the last p values of the fitted conditional standard deviation, and the vector
of the last q fitted values of the time series. This is what we did in the above example.

The output of the function sim.garch is a list of two matrices each with
n.sim rows (one for each Monte Carlo scenario) and n.ahead columns (one
for each time in the future for which we desire to have a scenario. The first ma-
trix is called X.t. It gives the values of the time series. The second matrix is called
sigma.t. It gives the values of the instantaneous conditional standard deviation.

It is always rather difficult to assess the quality of Monte Carlo simulations. In
particular, there is no reason to believe that the simulation appearing in Fig. 8.9 is not
appropriate. However, we may be suspicious of its quality because it does not have
any of the deterministic features (in particular it does not have a significant seasonal
component) which we identified in the data. Next, we expand on this problem.
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8.2.6.3 Simulation Can Be a Touchy Business

A wrong value for the n.start parameter is not the only possible misuse of
the Monte Carlo simulation function sim.garch. Indeed, quite unrealistic sim-
ulated samples can be produced when a deterministic seasonal pattern exists, and the
GARCH model simply believes that it is part of the typical fluctuations of the ran-
dom variance. We illustrate this phenomenon in the case of high frequency trading
intra-day data, and we refer the reader to Problem 8.4 for a similar example in the
case of temperature data.

We use high-frequency data of all the quotes on the stock of IBM throughout the
month of June 1999. We pre-processed the data to produce regularly spaced quotes
to reduce the bid-ask spread and end up with only one single price every 30 s. There
were 22 trading days on that month, so the data became a 22× 779 matrix IBM. For
the sake of the present illustration, we shall only use the first row (i.e. the first trading
day). We fit a GARCH(1,1) model to the log-returns and we plot the estimate of the
conditional standard deviation in the way described above.

> I <- 1
> plot(IBM[I,],type = "l", main="IBM High Frequency (30 s).

on First Day of Trading in June 1999")
> IBMLR <- diff(log(IBM[I,]))
> IBM.g <- garch(IBMLR)
> plot(IBM.g$sigma.t,type="l", main="Conditional

Volatility on that Day")

Figure 8.10 gives the plots produced by these commands. The instantaneous volatil-
ity shows an interesting pattern: high levels in the morning (around 9:30 or 10:00
a.m.), and in the later part of the trading day, with a smaller surge before lunch time.
This pattern is pretty typical, and it can be identified most days, so we would like to
treat it as a deterministic seasonal component. Whether or not it is a deterministic
component, the GARCH fitting procedure, picked it up. So this looks pretty nice,
and it is indeed. The problems arise when we try to use the model fitted in this way,
in order to simulate Monte Carlo samples to be used as possible scenarios of a trad-
ing day. As before, we can use commands of the following type to produce such
scenarios:

> MODEL <- list(sig2=IBM.g$coef[1],ma=IBM.g$coef[2],
ar=IBM.g$coef[3])

> IBM.sim <- sim.garch(model=MODEL,n.ahead = 779,
n.start = 1000)

> plot(IBM.sim$X.t, type="l", main="Simulated GARCH(1,1)
with same parameters as in IBM.g")

> plot(IBM.sim$sigma.t, type="l", main="Conditional
Volatility of the Simulated GARCH(1,1)")

The results are reproduced in Fig. 8.11. There one cannot find the special pattern
of high activity levels at specific times of the day. The simulation algorithm uses
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Fig. 8.10. IBM Quotes Regularly Spaced by 30 s on the first trading day of June 1999 (top)
and estimate of the conditional volatility (bottom) given by a GARCH(1,1) model fitted to the
log-returns

the coefficients estimated for the GARCH(1,1) model, and using them, it produces
a sample which is as stationary as possible. In particular, the simulation algorithm
makes sure that the relative frequencies of the periods with high and low levels of
volatility come with their expected frequencies, say two or three periods of high
volatility per day, for example. However, there is absolutely no reason for the algo-
rithm to try to set these periods of high volatility in the early morning and/or in the
later part of the trading day. Because of stationarity, they appear any time through-
out the day. These deterministic features of the term structure of volatility are not
part of the model which is simulated. This may not be a problem if we are inter-
ested in statistics involving the whole day, but if we care about statistics depending
on the time of the day, the scenarios produced by this particular use of the function
sim.garch become misleading, and possibly useless. Worse than that, they may
end up being very dangerous since they may lead to gross errors.
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8.2.7 Generalizations

ARCH and GARCH models have been generalized in many different directions, and
the menagerie of models available to the data analyst is amazing. This great variety
can be intimidating to the non-specialist. Moreover, because of the anxiety resulting
from this lack of “one size fits all”, and of the difficulties encountered in interpret-
ing and using the results of the fits, many potential users have shied away from the
GARCH methodology in favor of more robust and stable alternatives.
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Fig. 8.11. Simulation of one trading day for IBM high-frequency data (top), and corresponding
instantaneous volatility (bottom)
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8.2.7.1 More Univariate GARCH Models

Because of the high level of complexity of the technicalities of these generalizations,
we shall refrain from discussing here the various forms of GARCH which have been
proposed to accommodate the features missed by the standard ARCH and GARCH
models introduced in this chapter. The following is a very short list of some of the
most popular of these variations on the GARCH theme.

• LGARCH Leverage GARCH
• PGARCH Power GARCH
• EGARCH Exponential GARCH
• TGARCH Threshold GARCH
• CGARCH Component GARCH
• GARCH-M GARCH in the Mean
• FIGARCH Fractionally Integrated GARCH

We refer the interested (or desperate) reader to the Notes & Complements at the end
of the chapter for precise references to textbooks in which these generalizations are
described.

8.2.7.2 Multivariate Models

In the same way AR models were effortlessly generalized to the multivariate setting,
GARCH models can be extended as well, and the fitting methods keep the same
structure. A multivariate time series {Xt}t is said to be a GARCH series if it is of
the form:

Xt = μ+Wt

where

• μ and Wt are d× 1 vectors
• The distribution of Wt conditioned on Wt−1, Wt−2, . . ., can be:

– d-variate normal;
– d-variate Student;

• With d× d variance/covariance matrix Vt satisfying

Vt = A+

p∑
k=1

Ak ∗ [Wt−kWt
t−k] +

q∑
h=1

Bh ∗Vt−k

where
– A, Ak and Bh are symmetric d× d matrices
– * stands for the Hadamard product (entry by entry)
– As usual t stands for the transpose of a matrix/vector
Finally, note that one can replace μ by the result of a regression on exogenous
variables.
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8.3 STOCHASTIC VOLATILITY MODELS

A stochastic volatility (SV) model is based on a couple of independent variance one
white noise series {Wt}t and {ut}t and the defining dynamical equations:

{
Xt = σtWt

log σt = φ0 + φ1 log σt−1 + γut
(8.9)

where φ0, φ1 and γ are constants. We shall assume that |φ| < 1 to guarantee that
the second equation gives a stationary AR(1) time series for the logarithm of the
conditional variance σ2

t . This implies that the time series {Xt}t is stationary since
both series {Wt}t and {σt}t are. Notice that {Xt}t is a (weak) white noise, and that
σ2
t is its conditional variance. So this SV model has a lot in common with the ARCH

and GARCH models discussed in this chapter. But there is a fundamental difference:
the model is driven by two sources of randomness. This innocent looking difference
has dramatic consequences, and this model will behave quite differently from the
ARCH and GARCH models discussed in the previous section.

Remark 2. As stated above, we assume that the two sources of randomness (i.e. the
white noise series {Wt}t and {ut}t) are independent. This assumption is for con-
venience as it makes the mathematical analysis of stochastic volatility models more
tractable. However, as we shall see, it is often desirable to assume that they are neg-
atively correlated to account for the so-called leverage effect discussed later in this
section.

8.3.1 Information Structure

The first problem to consider is related to the presence of two driving white noise
terms, and for that reason, it is specific to the SV models: which is the right no-
tion of past information. At any given time t, should the past information be the
information contained in the past values of the series as encapsulated in X

¯ ≤t−1 =
{Xt−1, Xt−2, . . . , X1}, or in the past values of the series together with the past val-
ues of the volatility (or equivalently the noise driving it) as captured by:

(X
¯ ≤t−1, u¯≤t−1) = {(Xt−1, ut−1), (Xt−2, ut−2), . . . , (X1, u1)}.

This question is not purely academic, it has very practical consequences. For ex-
ample, if one uses the first notion of past information, the corresponding notion of
conditional variance should be:

ht = var{Xt|X
¯ t−1} = var{Xt|Xt−1, Xt−2, . . . , X1} (8.10)

like in the case of the ARCH and GARCH models. On the other hand, if we use
the second notion of past information, then the natural conditional variance to use is
given by:
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σ2
t = var{Xt|(X

¯ ≤t−1, u¯≤t−1)}
= var{Xt|(Xt−1, ut−1), (Xt−2, ut−2), . . . , (X1, u1)}.

Notice that, because of the tower property of conditional expectations we have:

ht = E{σ2
t |X¯ ≤t−1}.

8.3.2 State Space Formulation

Mostly because of the fact that they are driven by two different white noise series,
the stochastic volatility systems fit very naturally in the framework of state space
systems. Indeed the second equation in (8.9) can be written in the form:

xt = 2φ0 + φ1xt−1 + vt

if we set xt = log σ2
t and vt = 2γut, which is exactly the form of a state equation

(with linear dynamics in the present situation). Moreover, the first equation in (8.9)
can be written in the form:

log |Xt| = log σt + log |Wt|
which can be rewritten in the form:

yt = a0 + a1xt + wt

which is a linear observation equation of the state xt, provided we set yt = log |Xt|,
a0 = E{log |Wt|}, a1 = 1/2 and wt = log |Wt| − E{log |Wt|}. So the stochas-
tic volatility model (8.9) rewrites as a linear state space model, and all the estima-
tion/filtering techniques studied in Chap. 7 can be applied. We shall come back to
this important remark later in this chapter when we implement nonlinear filtering
techniques to the continuous time analog of the stochastic volatility models of this
section.

The analysis of AR(1) models done in Chap. 6 implies that:

μx = E{xt} =
φ0

1− φ1
and σ2

x = var{xt} =
σ2

1− φ21

where σ2 is the variance of the white noise of the AR(1) dynamics of xt, i.e. σ2 =
4γ2 if we come back to the parameters of the original dynamical equation (8.9).

8.3.3 Excess Kurtosis

In this subsection we assume that both noise terms are Gaussian. Notice that, because
we assume that the two white noise series are independent, for each integer k ≥ 1
we have:

E{Xk
t } = E{σkt }E{W k

t }
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for all the integers k. This k-th moment will be zero for all odd power k because the
distribution of the noise Wt is symmetric. When k = 2h is even, using the expres-
sions for the Laplace transform (moment generating function) and the moments of
the Gaussian distributions, we find that:

E{X2h
t } = E{ehxt}E{W 2h

t } = ehμx+h
2σ2

x/2
(2h)!

h!2h

In particular, the kurtosis of Xt is given by:

k{Xt} =
E{X4

t }
E{X2

t }2
=
e2μx+2σ2

x 4!
2!22

e2μx+σ2
x

2!
1!2

= 3eσ
2
x

which is strictly greater than 3, proving that SV models exhibit excess kurtosis and
heavy tail distributions.

8.3.4 Leverage Effect

Both GARCH and SV models have been shown to give an account of excess kurtosis
and persistence in financial data. There is still another stylized fact which needs to be
checked against these models: the so-called leverage effect. The latter is attributed
to the fact that large up-moves in the value of a stock are usually accompanied by
decreases in volatility while at the contrary down-moves in the value of a stock are
usually accompanied by surge in volatility. This effect appears as a form of negative
correlation between the changes in prices and the changes in volatility. This is the
way we shall detect the leverage effect in the mathematical models.

� The Case of ARCH Models
Let us assume for example that the time series {Xt}t is ARCH(1), and let us

try to compute the sign of the correlation coefficient between the changes in Xt

and the changes in its conditional variance. At any given time t, we have the in-
formation of the past values of the series, so the probabilities, expectations, vari-
ances, correlations, . . . are computed conditionally on the knowledge of X

¯ ≤t−1 =
{Xt−1, Xt−2, . . . , X1}. We shall emphasize that conditioning by adding a subscript
t − 1 to all the expectations, variances and covariances which we compute. Our
ARCH(1) assumption can be written in the form

Xt =
√
α0 + α1X2

t−1Wt

for some positive coefficients α0 and α1, and we have:

covt−1{Xt −Xt−1, σ
2
t+1 − σ2

t } = covt−1{Xt, σ
2
t+1}
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because Xt−1 and σ2
t are known at time t− 1. Consequently:

covt−1{Xt −Xt−1, σ
2
t+1 − σ2

t } = covt−1{Xt, α0 + α1X
2
t }

= α1covt−1{Xt, X
2
t }

= α1covt−1

{√
α0 + α1X2

t−1Wt,

(α0 + α1X
2
t−1)W

2
t

}
= α1(α0 + α1X

2
t−1)

3/2covt−1{Wt,W
2
t }

= α1(α0 + α1X
2
t−1)

3/2
E{W 3

t }.
The conclusion is that the leverage effect is present in the model only when the noise
distribution is skewed to the left, i.e. when E{W 3

t } < 0.
� The Case of the SV Models

The leverage effect is more difficult to pinpoint in the case of the stochastic
volatility models. As explained earlier, the main difficulty lies in the notion of in-
formation available at time t, and this difficulty is rooted in the presence of several
sources of randomness. Notice that, because we assume that the two noise terms are
independent, we have:

cov{Xt −Xt−1, σ
2
t − σ2

t−1|X¯ ≤t−1, u¯≤t−1} = 0

cov{Xt −Xt−1, σ
2
t+1 − σ2

t |X¯ ≤t−1, u¯≤t−1} = 0.

On the other hand, the conditional covariance:

cov{Xt −Xt−1, σ
2
t+1 − σ2

t |X¯ ≤t−1, u¯≤t−1}
can be different from zero. Here we use the notation ht = var{Xt|X

¯ ≤t−1} already
defined in (8.10) for the conditional variance ofXt given its own past values (exclud-
ing the knowledge of the past values of the noise driving the volatility). The use of
ht as a conditional variance is very natural since we observe the values of X , while
we have no way to guess the values of the noise u in general. Unfortunately, it is very
difficult to handle this quantity mathematically, and proving rigorously the presence
of a negative correlation in SV models is usually very difficult.

8.3.5 Comparison with ARCH and GARCH Models

A SV time series {Xt}t is a martingale difference in the sense that:

E{Xt|X
¯ t−1, u¯t−1} = 0.

It is a weak white noise (recall that we assume |φ1| < 1 to guarantee stationarity).
Concentrating on the series of squares, and computing their auto-covariance function
we get:
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cov{X2
t , X

2
t−s} = E{ext+xt−sW 2

t W
2
t−s} − E{X2

t }2

= e2μx+(1+φs
1)σ

2
x − E{ext}2

= e2μx+σ
2
x(eφ

s
1σ

2
x − 1)

and the auto-correlation function is given by:

ρX2(s) =
cov{X2

t , X
2
t−s}

var{X2
t }

=
eφ

s
1σ

2
x − 1

3eσ
2
x − 1

∼ eσ
2
x − 1

3eσ
2
x − 1

φs1

which prompts the following remarks:

Remarks.

1. This acf changes signs when φ1 < 0, which is not the case for ARCH(1) models.

2. This acf looks very much like the acf of an ARMA(1,1) model. For this reason,
one should think that a SV model is closer to a GARCH(1,1) model than to a
ARCH(1) model!

8.3.6 The Smile Effect

The smile effect is next on the list of stylized facts which models of financial prices
should capture. This effect is explained in detail in Appendix 9.2, justifying the im-
portant role of implied volatility in our discussion of the nonparametric approach to
option pricing in Chap. 5. We mentioned the analog role of implied correlations in
our discussion of CDOs in Chap. 3.

Because of the existence of smiles in option prices, and the tremendous impact
this discovery had on the everyday trading practices, we think it is important to re-
view their theoretical underpinnings. But before we can define them rigorously, we
need to introduce the notion of implied parameter. which is based on a pricing for-
mula (a pricing algorithm would do as well) providing a one-to-one correspondence
between the price of a financial instrument and certain parameters (short interest rate,
volatility, time to maturity, etc.). This one-to-one correspondence makes it possible
to infer the value of a parameter which needs to be fed to such a formula or algorithm
in order to recover the value of a price actually quoted on the market. Let us consider
for example the case of implied volatility, assuming that we are using Black-Scholes
formula to price options. For each option price quoted on the market, one can take
note of the strike price, the time to maturity, . . ., and we can find which value of
the volatility parameter σ we have to use in the Black-Scholes formula to get the
price actually quoted. This value is called the implied volatility. As explained in Ap-
pendix 9.2, it is not a statistical estimate of the parameter σ, it is a value implied by
a transaction (or a set of transactions).

If on a given day and for a given time to maturity one can observe the prices
of several European call options for different strike prices, the Black-Scholes theory
tells us that the corresponding implied volatilities should be equal to each other.
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But there is strong empirical evidence to the contrary. The implied volatilities of
these options are different. Quite often, if one plots them against the strike prices,
these implied volatilities form a convex curve having a minimum when the option
is at the money, i.e. when the strike price is exactly equal to the current price of the
underlying interest. This curve is called the volatility smile. The implied volatility is
higher when the strike price is above the current price (in this case we say that the
option is out of the money) and when it is below the current price (in this case we
say that the option is in the money).

This empirical fact has prompted analysts and traders to revise the simultaneous
use of a pricing model and a pricing formula (the Samuelson’s log-normal model
and the Black-Scholes formula in the discussion above) when they lead to a contra-
diction of the type we just described. One of the great successes of the stochastic
volatility models was the discovery that they can account for the volatility smile.
Such a derivation would be far beyond the scope of this book, but we could not resist
giving one of the main reasons for the popularity of these models. The interested
reader should consult the Notes & Complements section at the end of the chapter for
references.

8.4 DISCRETIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

Continuous time finance has seen a tremendous growth over the last 40 years. Among
the many abstract concepts brought to bear in the analysis of financial models, mar-
tingales and Ito’s stochastic calculus are the most obscure to the non-mathematically
inclined financial analysts. Any attempt to present Ito’s theory of stochastic integra-
tion, and stochastic differential equations would take us beyond the scope of this
book. In this section, we consider discrete time analogs of the continuous time dy-
namic models most often used in practice and the theoretical literature.

We already encountered one example of Ito stochastic differential equation
(SDE, for short). It is the most famous of all the SDE’s used by the financial com-
munity:

dSt = St[μdt+ σdWt]. (8.11)

It describes the stochastic dynamics of the so-called geometric Brownian motion
introduced by Samuelson as a model for the time evolution of stock prices. More
generally, stochastic differential equations appear in the form:

dXt = μ(t,Xt)dt+ σ(t,Xt)dWt (8.12)

where (t, x) ↪→ μ(t, x) and (t, x) ↪→ σ(t, x) are functions of the time variable t,
and the state variable x. These functions will be deterministic and real valued in the
applications discussed below. But they could very well be vector valued, or matrix
valued, and random as well. Essentially the same theory would apply. For the sake of
the present discussion, one should think ofXt as describing the state at time t of a set
of economic factors. The ′′dt′′ – term has the usual interpretation of an infinitesimal
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change in the time variable t. The ′′dW ′′
t – term tries to play an analogous role

for an infinitesimal random change. Its rigorous definition is very delicate, and far
beyond the scope of this book. The intuitive interpretation of dWt should be that
of an infinitesimal random shock of the white noise type, but since the notion of
continuous time white noise is very intricate, this term has to be understood as the
(stochastic) differential of its antiderivative. Indeed, the latter can be defined more
easily, as a stochastic process with independent increments. This process {Wt}t≥0

is usually called a Wiener process, or a process of Brownian motion since one of its
early use was to model the motion of particles in suspension, investigated by Brown.
Even though Einstein is usually credited for the first development of the theory of
Brownian motion, a growing part of the scientific community is now making a case
that Bachelier should be getting this credit because of his earlier work on the theory
of speculation.

Equation (8.12) is a concise way to describe the dynamics (time evolution) of the
(possibly random) quantityX . The coefficient μ(t,Xt) gives the instantaneous mean
of the infinitesimal increment dXt. The coefficient σ(t,Xt) represents its instanta-
neous standard deviation. So, Eq. (8.12) is not random when σ ≡ 0. In this case, it
reduces to an ordinary differential equation, and it can be analyzed using classical
calculus. Things are much more complicated when σ is not identically zero. How-
ever, we shall not need to get involved in the meanders of Ito’s theory of stochastic
calculus, we shall limit ourselves to discretized versions of these equations, and this
will give us a chance to bridge continuous time finance with the time series analysis
of financial econometrics.

8.4.1 Discretization Schemes

Instead of working directly with a continuous time model, we assume that snapshots
of the system are taken at discrete time intervals. We assume that measurements
take place at regular times tj = t0 + jΔt, and we use the notation X(Δt)

j for the
value Xtj of the (random) variable X at time tj . We sometimes drop the superscript
(Δt) specifying the length of the sampling interval from the notation for the sake of
easier typesetting. This abuse of notation should not create confusion. The sampling
frequency is usually defined as the inverse of the length Δt of the time interval
separating two successive measurements.

8.4.1.1 The Euler Scheme

A natural question is now to identify a discrete time dynamical equation for X(Δt)
j

which would be consistent with the continuous time dynamics given by Eq. (8.12).
This is usually done in the following manner, dropping the superscript (Δt) for no-
tational convenience. We consider the evolution given by the recursive equation:

Xj −Xj−1 = μ(tj−1, Xj−1)Δt+ σ(tj−1, Xj−1)
√
Δtεj (8.13)
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where {εj}j≥1 is an N(0, 1) white noise, and where the initial condition X0 is as-
sumed to be given. A few important remarks are granted at this stage.

Remarks.

1. The (stochastic) differential dXt appearing in the left hand side of (8.12) was
discretized as Xtj − Xtj−1 , while the Xt’s appearing in the right hand side
were discretized as Xtj−1 . This is specific to the Ito’s stochastic integration the-
ory. The stochastic increments dWt should be taken ahead of the instant of the
discretization. This non-anticipative idiosyncratic feature is crucial in financial
applications (unless you own a crystal ball, in which case it should not apply to
you!)

2. The stochastic differential dWt appearing in (8.12) was discretized as
√
Δtεj .

This is a consequence of the fact that the incrementsWt −Ws of a Wiener pro-
cess are mean-zero Gaussian random variables with standard deviations

√
t− s,

and because they are independent of each other when computed over non-
overlapping intervals.

3. If σ is constant, i.e. if σ(t, x) ≡ σ, and μ is linear, say μ(t, x) = φ0 + φ1x,
then Eq. (8.12) is called an equation of the Ornstein-Uhlenbeck type, and it is
plain to see that its discretized form (8.13) defines an AR(1) process. In general
equation (8.13) defines a (possibly nonlinear) auto regressive process of order 1
as defined in Sect. 8.1.2. So we are still in known territory.

4. It should be understood that, even if they both start from the same initial values,
say X0, the solution Xt of the continuous time stochastic differential equation
(8.12), and the solution X(Δt)

j of the recursive equation (8.13) have no reason
to coincide, not even at the sampling times tj = t0 + jΔt. In other words, we

should not expect that Xtj = X
(Δt)
j . But there is a justice, and whenever the

coefficients μ and σ are smooth, and whenever the discretization step Δt tends
to zero, then the difference between these values tends to zero in a controlled
manner. We shall not state a precise mathematical theorem, but obviously, this
result is a clear justification of the extensive use of discrete models to simulate
and approximate continuous time models. In fact, it is possible to show that
continuous time stochastic volatility models can also appear as diffusion limits
of appropriately set up ARCH and GARCH models.

5. Finally, we notice that the recursive form of equation (8.13) is perfectly suited
for Monte Carlo simulations. Indeed, it is very easy to simulate a white noise,
and from white noise samples, it is plain to implement formula (8.13) to generate
samples of Xj .

The discretization given by Eq. (8.13) is known as the Euler scheme. It not the
only way to derive a discrete time approximation to a continuous time evolution.
Other procedures have been introduced to speed up the convergence toward the true
dynamics. But it is nevertheless the simplest one, and we shall use it for that reason.



8.4 Discretization of Stochastic Differential Equations 503

8.4.2 Monte Carlo Simulations: A First Example

In this subsection, we give examples of direct random simulations based on explicit
formulae for the solutions of SDE’s. In particular, these simulations do not use the
Euler’s scheme described earlier. However, due to the fact that they depend upon the
existence of exact formulae, their realm of application remains limited.

As we explain in Appendix 9.2, the form of equation (8.11) is so simple that an
explicit formula can be found for the solution. We restate the form of the solution
given in (9.6):

St = S0e
(μ−σ2/2)t+σWt (8.14)

or more generally as:

St = Sse
[μ−σ2/2](t−s)+σ[Wt−Ws] (8.15)

if we know the value Ss of the solution at time s < t instead of 0. As earlier,
we emphasize the presence of the unexpected term −σ2/2 which should not have
appeared according to the rules of classical calculus. Its presence is forced on us by
the special rules of Itô’s calculus developed in order to accommodate integrals and
differentials with respect to the Wiener process {Wt}t. It is often referred to the Itô’s
correction.

8.4.2.1 Simulation of a Random Variable

In many instances, one is interested in the value of the index at a given time T in
the future. This is for example the case if one is interested in a contingent claim
with European exercise and maturity T . In such a case, formula (8.15) can be used
with s = 0 and t = T . It shows that the random variable ST is log normal with
mean logS0 + T (μ − σ2/2) and variance σ2T , and simulation is plain: generating
samples from this distribution can be done with simple commands. For example, the
R commands:

> N <- 1024; S0 <- 845; MU <- .05; SIG <- .2; TT <- .9
> MUT <- log(S0) + TT*(MU-SIGˆ2/2)
> SIGT <- SIG*sqrt(TT)
> SAMPLE <- rlnorm(N, meanlog=MUT,sdlog=SIGT)

produce a sample of sizeN = 1,024 for ST with T = .9, when S0 = 845, μ = 0.05,
and σ = 20%. The risk manager will be able to use such a sample to compute means,
probabilities, quantiles (such as VaR’s), conditional expectations (such as expected
shortfall) · · · involving S(T ), as we did in the first chapters of the book.

8.4.2.2 Simulation of a Time Series

In other circumstances, for example in the analysis of American options, simulation
of the entire series may be needed. In such a case, instead of relying directly on the
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Euler scheme, one may still use the exact formula (8.15) before calling on random
number generators. This is best achieved at the level of the price logarithms rather
than the level of the prices themselves. Indeed, it is more convenient to simulate
first a sample sequence for the log-prices, and then compute the exponentials of the
numbers so obtained. This is based on the fact that:

logSt = logSs + [μ− σ2

2
](t− s) + σ[Wt −Ws], (8.16)

showing that if the value of the process {logSt}t is known at a given time s,
the knowledge of its value at a later time t is equivalent to the knowledge of the
increment Wt − Ws of the Wiener process. So if we want to generate samples
X0, X1, . . . , XN of log prices Xt = logSt at times tj separated by the time in-
terval Δt, we set X0 = 0, we generate an N(0, 1) white noise ε1, . . . , εN , and we
use the recursive formula:

Xj+1 = Xj + [μ− σ2

2
]Δt+ σ

√
Δtεj+1.

As before, we use the notationXj with j integer, as a short for X(Δt)
j which intends

to represent Xt for t = tj = t0 + jΔt. This is a plain consequence of the formula
(8.16) if we set s = t0 + jΔt and t = t0 + (j + 1)Δt, and if we use the fact that
the increments of {Wt}t over disjoint intervals are independent Gaussian random
variables, and that Wt − Ws ∼ N(0, t − s). The following R code was used to
produce the plot in Fig. 8.12.

> N <- 1024; DELTAT <- 1/365; MU <- .05; SIG <- .2
> DELTAX <- rnorm(1024, mean=DELTAT*(MU-SIGˆ2/2),

sd=SIG*sqrt(DELTAT))
> GBMDATA <- c(1,exp(cumsum(DELTAX)))
> GBM.ts <- timeSeries(positions=timeSequence(

from="2001-01-02",by="days",length=N+1), data=GBMDATA)
> plot(GBM.ts)

After setting the length of the simulated time series and the values of the parameters
Δt, μ and σ, we generate the sequence of the increments Xj+1 − Xj in a vector
which we called DELTAX. This uses the fact that these increments are independent
and normally distributed with mean (μ − σ2/2)Δt and with variance Δt σ2. Then,
we use the R function cumsum to sum these increments in order to recover the Xj

from their increments, and finally, we compute the exponentials giving the desired
prices SjΔt. For plotting purposes, we chose to turn the geometric Brownian motion
numeric vector GBMDATA into a daily time series starting from January 2, 2001.

We shall revisit the problem of the simulation of geometric Brownian motion
in Sect. 8.5.1. There we use an alternative approach based on Euler’s discretization
scheme.
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Fig. 8.12. Result of the simulation of a geometric Brownian motion

8.5 RANDOM SIMULATION AND SCENARIO GENERATION

In this section, we use our newly acquired expertise in discretization of continuous
time stochastic differential equations to prepare a set of scenarios for the purpose
of portfolio risk management even though we do not intend to address the delicate
problem of active portfolio risk management. Because of the pervasive use of sce-
narios in the finance and insurance industries, we show how Monte-Carlo scenarios
can be generated for the purpose of stress analysis, but we leave risk assessment and
decision making under uncertainty untouched.

We assume that the investment portfolio is based on three economic factors which
are monitored on a monthly basis. These factors are the cost of short term borrowing,
the cost of long term borrowing and a stock indicator. The data which we use for the
purpose of estimation are contained in the data set MONTHLY included in the library
Rsafd. It provides monthly quotes (between May 1986 and November 1999) of
the 1 year Treasury Bill yield (which we shall subsequently call the short interest
rate), the 30 years US Government Bond yield (which we shall call the long interest
rate) and the value of the S&P 500 composite index. Note that the 30 years Treasury
Bonds have been retired since we first performed this experiment. These data are
further analyzed in Problems 8.5 and 8.6.

8.5.1 A Simple Model for the S&P 500 Index

As we explained in our discussion of the nonparametric pricing of options in
Appendix 9.2, geometric Brownian motion is the time-honored model for stock price
and financial index dynamics. We follow this tradition in this section. In other words,
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denoting by St the value of the index at time t, we assume that its time evolution is
given by the geometric Brownian motion model proposed by Samuelson, i.e. by the
solution of the stochastic differential equation (8.11) where the constant μ has the
interpretation of a mean rate of growth, while the constant σ > 0 plays the role of
the volatility of the index. In this equation,Wt is a Wiener process, (as introduced to
model the physical process of Brownian motion).

Contrary to the approach followed in Sect. 8.4.2, we ignore the fact that we have
an explicit form for the distribution of St at any given time, and we use a simple
Euler scheme to produce Monte Carlo samples of the time evolution of the index.
This gives us the opportunity to illustrate the use of this discretization scheme in a
setup where we already used direct simulation, allowing for a comparison of the two
methods. But most importantly, the same scheme can be used for much more general
models of the dynamics of the underlying index. So we discretize the (stochastic)
differential equation (8.11) directly, and construct solutions of the discretized forms
of this equation. Equation (8.11) rewrites:

Stj+1 − Stj = Stj [μΔt+ σ
√
Δtεj+1] (8.17)

where {εj}j≥1 is an N(0, 1) i.i.d. white noise. Once more, we see one of the main
curiosities associated with the process of Brownian motion. The increment dWt is
essentially proportional to

√
Δt instead of being proportional to Δt! Dividing both

sides of equation (8.17) by Stj , we get an expression for the raw return RRj over
the period [tj , tj+1]:

1 +RRj =
Stj+1

Stj
= (1 + μΔt) + σ

√
Δtεt+1 (8.18)

which shows that, according to this discretization procedure, the raw returnRRj over
one time period [tj , tj+1] is a normal random variable with mean μΔt and standard
deviation σ

√
Δt.

0 50 100 150

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Monthly S&P500 from 5/1/86 to 11/1/99

Index

M
O

N
T

H
LY

[, 
3]

0 50 100 150

-0
.2

-0
.1

0.
0

0.
1

Index

M
S

P
LR

et

Monthly S&P500 Log-Returns from 5/1/86 to 11/1/99

Fig. 8.13. Sequential plot of the monthly values of the S&P 500 composite index (left), and of
the corresponding log-returns for the same period (right)
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The plot of the monthly values of the S&P 500 index is given in the left pane
of Fig. 8.13. This time series is obviously non-stationary. In the terminology of
Sect. 6.3.2, it is a random walk with drift, and as explained earlier, it is integrated of
order 1, i.e. of type I(1). So it will be more convenient to work with the stationary
time series of raw returns {RRj = Stt+1/Stj}j≥1, or with the stationary time series
{log(1 + RRj)}j≥1 of log-returns. The plot of the log-returns is given in the right
pane of Fig. 8.13. This series looks definitely more stationary, and as such, it is more
amenable to statistical inference.

Figure 8.13 was produced with the following R-commands:

> plot(MONTHLY[,3],type="l")
> title("Monthly S&P500 from 5/1/86 to 11/1/99")
> MSPLRet <- diff(log(MONTHLY[,3]))
> plot(MSPLRet,type="l")
> title("Monthly S&P500 Log-Returns from 5/1/86 to 11/1/99")

while Fig. 8.14 was produced with the following commands:

> mean(MSPLRet)
[1] 0.01080645
> sqrt(var(MSPLRet))
[1] 0.04348982

> hist(MSPLRet,nclass=25,probability=T,col="blue")
> LX <- seq(from=min(MSPLRet),to=max(MSPLRet),length=1000)
> lines(LX,dnorm(LX,mean=.010806,sd=0.04349))

We already argued in Chaps. 1 and 3 that the log-normal model is inconsistent with
some of the empirical statistics computed from daily stock returns. Monthly data do
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not behave much differently. Indeed, the time evolutions given by Eqs. (8.11) and
(8.18) imply that the distribution of the monthly log-return is normal, but unfortu-
nately, this fact cannot be confirmed by even the simplest of the exploratory data
analysis tools such as the histogram. Figure 8.14 shows that the distribution of the
log-returns cannot be Gaussian. This graphical evidence could be complemented by
Q-Q plots against the Gaussian distribution (with the function qqnorm) and tests
of goodness of fit, but we shall not delve on that at this stage, especially since our
intention is to keep the log-normal model given by Eq. (8.11) for the purposes of the
simulation. See nevertheless the discussion of possible extensions at the end of this
section.

8.5.2 Modeling the Short Interest Rate

We now work with the data contained in the first column of the data set MONTHLY.
Figure 8.15 was produced with the following S-commands:
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Fig. 8.15. Time series plot of the monthly values of the short interest rate (left) contained in
the first column of the data set MONTHLY, and of its first difference for the same period (right)

> plot(MONTHLY[,1],type="l")
> title("Short Interest Rate from 5/1/86 to 11/1/99")
> DS <- diff(MONTHLY[,1])
> plot(DS,type="l")
> title("First Difference of the Short Interest Rate

from 5/1/86 to 11/1/99")

One of the advantages of modeling the stock index via its logarithm is that, the
resulting St is always positive, and obviously, this is a desirable feature for a stock
index. Unfortunately, the short interest rate rt cannot be modeled in the same way
with the same success. Instead, we shall model its (stochastic) time evolution by
a mean reverting Ornstein Uhlenbeck process. This model was introduced in the
remark following the definition of the Euler discretization scheme. In the financial



8.5 Random Simulation and Scenario Generation 509

community, this model for the dynamics of the short interest rate is known as the
Vasicek model. It is given by an equation of the form:

drt = −λr(rt − r)dt+ σrdW
(r)(t) (8.19)

where λr, r and σr are positive constants and where W (r)(t) is another Wiener pro-
cess (or process of Brownian motion). If it weren’t for the presence of this Brownian
motion, the equation would read:

drt = −λr(rt − r)dt,

and its solution would be given by an exponential function converging toward r
when t → ∞. This is the relaxation property given by Hooke’s law in physics. In
the present situation, it is perturbed by the (random) kicks σrdW

(r)
t , but the mean

reverting tendency remains, its strength being given by the constant λr .
Equation (8.19) has three parameters, λr , r, and σr which have to be estimated

from the data. This is the object of Problems 8.5 and 8.6 at the end of the chapter. As
before, we use Euler’s scheme, leading to the following finite difference equation:

rtj+1 = rtj − λr(rtj − r)Δt+ σr
√
Δt ε

(r)
j+1 (8.20)

for an i.i.d. N(0,1) strong white noise {ε(r)j }j≥1 which we assume independent of the
white noise {εj}j≥1 driving the stochastic time evolution in our model for the S&P
500 index.

Remark. As already mentioned, the mathematical model for the short term interest
rate given by Eq. (8.19) is known in the financial literature as the Vasicek model.
According to this model, the short interest rates at different times are jointly Gaussian
random variables. This is very convenient because it leads to closed form formulae
for the prices of many fixed income derivatives, including the forward and yield
curve manipulated in Problem 4.12. This fact is the main reason for the extreme
popularity of the model. Nevertheless, this model has annoying shortcomings. One
of the most frequently voiced complains is that, since a normal random variable can
take values ranging from −∞ to +∞, it is quite possible that rtj+1 becomes negative
in any time period. Most practitioners regard this possibility as heretic. However,
some have argued that rt should be viewed as a real interest rate as defined by the
difference between the short rate and the inflation rate, and as such, it could become
negative. But more realistically, the reason why the Vasicek model is reasonable is
the following: normal random variables can take arbitrarily large values indeed, but
with overwhelming probability they remain within three standard deviations from
their means. So if the constants λr giving the rate of mean reversion to the long term
relaxation level, and this relaxation level r are large enough compared to σr, then the
random quantity given by Eq. (8.19) will essentially never be negative.

8.5.3 Modeling the Spread

We now work with the data contained in the second column of the data set MONTHLY.
The plots of Fig. 8.16 were produced with the following R-commands:
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Fig. 8.16. Time series plot of the monthly values of the long interest rate (left) and of its first
difference for the same period (right)

> plot(MONTHLY[,2], type="l")
> title("Long Term Interest Rate from 5/1/86 to 11/1/99")
> DL <- diff(MONTHLY[,2])
> plot(DL,type="l")
> title("First Difference of the Long Term Interest Rate

from 5/1/86 to 11/1/99")

Obviously, the long interest rate could be modeled in exactly the same way as the
short rate. Indeed, Fig. 8.16 shows that most of the features of the short rate rt are
shared by the long rate �t. By looking at the simultaneous plots of the long and
the short interest rates given in Fig. 8.17, we see that they cross rarely, and that the
long interest rate is essentially always higher than the short interest rate. In other
words, their difference (which is usually called the spread in interest rate and which
quantifies the time value of money) is almost always positive.

At this stage of our discussion, it is important to recall the discussion of Sect. 7.1.6.
There, we argued that the time evolutions of the short and long interest rates rt and
�t, could be modeled by I(1) time series, i.e. by non-stationary time series integrated
of order one. However, we insisted that their difference was stationary, i.e. integrated
of order zero, and we used that example as an illustration for the notion of cointegra-
tion. In this section, we still assume that the difference between the long and short
interest rates is stationary. Nevertheless, to make our life easier, we also assume that
both the short and long interest rates are stationary, i.e. I(0) by assuming that λr > 0.
This is a slight departure from the assumptions of Sect. 7.1.6.

For reasons to be discussed later, we decide to model the spread st = �t −
rt instead of the long interest rate �t. As before, we model the (stochastic) time
evolution by a mean reverting Ornstein Uhlenbeck process.

dst = −λs(st − s)dt+ σsdW
(s)
t (8.21)

where λs is a positive number measuring the speed with which st reverts to its long
term average s, andW (s)

t is still another Wiener process. As above, this equation has
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Fig. 8.17. Simultaneous plots of the long and short interest rates (left) and time series plot of
the spread (right) for the same period. Notice that the scales of the vertical axes are different

three parameters, λs, s and σs, which need to be estimated from the data. And again
as before, we shall discretize this equation in the following form:

stj+1 = stj − λs(stj − s)Δt+ σs
√
Δt ε

(s)
j+1 (8.22)

for an i.i.d. N(0,1) random white noise {ε(s)j }j≥1 which we shall assume independent

of the other white noises {εj}j≥1 and {ε(r)j }j≥1.

8.5.4 Putting Everything Together

According to the models presented above, the three economic factors rt, st and St are
independent of each other. Indeed the three equations (8.11), (8.19), and (8.21) are
un-coupled and driven by independent Wiener processes. Obviously, this statement
applies as well to their time-discretizations (8.20), (8.22), and (8.11) as the white
noise sequences are also assumed to be independent.

Because of our discussion in Sect. 7.1.6, using a model without a strong depen-
dence between the short and long interest rate dynamics would not have been ac-
ceptable. Notice nevertheless that cointegration does not necessarily preclude the
independence of rt and st as we have it so far in our model. In any case, the lack
of dependence between the three time evolutions is a serious shortcoming of our
model as it stands, and the remaining part of this section is devoted to possible
improvements.

Minor changes in the equations can remedy this lack of correlation. In order to
model the fact that the spread has a tendency to increase when the short interest rate
decreases to unusually low levels, and that it has a tendency to decrease when the
short interest rate is high, one could for example replace (8.21) by an equation of the
form:

dst = [−λs(st − s0) + μs(rt − r0)]dt+ σsdW
(s)(t) (8.23)

and (8.22) by the corresponding discretization of (8.23). Using this equation intro-
duces a coupling between the dynamics of rt and of st, and consequently, between
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the dynamics of rt and �t. Unfortunately, this modification of the dynamics of st
creates a couple of problems. First, it introduces a new parameter, μs, which may
be difficult to estimate from the data. Second, this monotonic dependence between
st and rt may not hold all the time, and as a consequence, it may lead to erroneous
forecasts in regimes in which this specific relationship between rt and st does not
hold. Thus, we refrain from implementing it. Problem 8.6 is concerned with still an-
other way to build dependencies between the three stochastic differential equations
giving the dynamics of rt, st and �t.
For each integer j ≥ 1 (corresponding to time tj = t0+jΔt), we define the (random)
vector Xj by:

Xj =

⎡
⎣RRjrtj
stj

⎤
⎦ .

With this notation, the stochastic dynamics given above can be rewritten as:

Xj+1 = FXj +B +ΣWj (8.24)

where the constant matrix F is given by:

F =

⎡
⎣0 0 0
0 1− λrΔt 0
0 0 1− λsΔt

⎤
⎦ ,

the constant vector B is given by:

B =

⎡
⎣ μΔt
λrrΔt
λssΔt

⎤
⎦ ,

and the matrix Σ is given by:

Σ =

⎡
⎣σ

√
Δt 0 0

0 σr
√
Δt 0

0 0 σs
√
Δt

⎤
⎦ ,

and finally, where the random noise vector W
¯ t

is defined by:

Wt =

⎡
⎢⎣
εt

ε
(r)
t

ε
(s)
t

⎤
⎥⎦ .

The fact that the matricesF andΣ are diagonal, is the reason why the three equations
are not coupled. So if the three components of the noise term W are independent, the
time evolutions of the three components are statistically independent. As explained
earlier, including non-zero off diagonal terms in the matrices F and/or Σ couples
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the equations and creates dependencies between the time evolutions. Obviously, an-
other possibility is to assume that the components of the noise are dependent. See
Problem 8.5 for details.

The decision to work with Gaussian white noise terms offers a very convenient
way to inject dependencies between the various white noise terms by changing the
off-diagonal terms of the matrix Σ, whose square gives the variance/covariance ma-
trix of the innovations εj , ε

(r)
j and ε(s)j for j fixed. However, as we mentioned earlier,

we know by experience that heavy tails are present, at least in the distribution of εj .
So another avenue for a possible improvement of the performance of Monte Carlo
scenarios would be to keep formula (8.24) for the dynamics of the system, but pro-
duce samples from noise terms generated from a GPD fitted to the residuals of the
S&P 500 index. This is suggested in Problem 8.6 where other possible alternatives
are implemented.

8.6 FILTERING OF NONLINEAR SYSTEMS

The state space models analyzed in the previous chapter are linear. Our goal is now
to extend the recursive filtering procedures to nonlinear models. With this in mind,
we introduce the terminology of hidden Markov models (HMM for short). The lat-
ter form the most popular class of models for partially observed stochastic systems,
and being able to filter them efficiently is of great practical importance. Rather than
attempting to develop the mathematical theory, which would take us far beyond the
scope of this book, we restrict ourselves to the discussion of general features, and
to a thorough presentation of a recently discovered implementation of great com-
putational usefulness. Like the Kalman filter of the linear models, it is based on a
recursive scheme. But since the nonlinearities take us out of the domain of Gaussian
distributions, it is not possible to restrict ourselves to tracking conditional means and
conditional variances. Tracking the full conditional distribution of the partially ob-
served state is done via particle approximations requiring Monte Carlo simulations
of the time evolution of the state, and clever resampling.

8.6.1 Hidden Markov Models

Let us first recall the notation (7.6) and (7.8) introduced earlier for the analysis of
general state space models. We assume that at each time n, the state of a system is
described by a state vectorXn in a state spaceX . In most applications, the state space
is a subset of a Euclidean space RdX where dX stands for the dimension of the state
X, and there is little loss of generality in assuming X = R

dX . It is assumed that the
dynamics of the state vector are given by a Markov chain. Rather than being bugged
down by the intricacies of the general theory of Markov chains, we shall assume
the following convenient form for the dynamics. We assume that the transition from
state Xn to Xn+1 is given by an explicit equation:
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Xn+1 = Fn(Xn,Vn+1) (8.25)

where V = {Vn}n≥1 is a white noise i.i.d. sequence in R
d′ where the dimension

d′ could be different from the dimension dX of the state vector. The functions Fn :
R
dX × R

d′ ↪→ R
dX will be independent of n in all the applications considered in

this chapter. However, it is important to emphasize that we do not assume that they
are linear, as we did in the previous chapter. Nevertheless, we assume that these
functions are known, and that we have a way to compute Fn(x,v) for any couple
(x,v) ∈ R

dX × R
d′ . The states Xn of the system are not directly observable, and

the data with which we have to work, are given in the form of partial observations
Yn derived from the states Xn via a formula of the form:

Yn = Gn(Xn,Wn). (8.26)

Even though the functionsGn are linear (as in (7.9) of the previous chapter) in many
applications, we shall only assume that the noise is additive. In other words, we
assume that the observations are of the form:

Yn = Gn(Xn) +Wn (8.27)

for some (possibly nonlinear) function Gn : RdX ↪→ R
dY and a sequence W =

{Wn}n≥1 of mean zero independent random vectors in R
dY with densities ψ which

we assume to be known.
The challenge is framed in the same way as in the linear case: given an inte-

ger n′ ≥ 1, and observations Y1, . . . ,Yn, we want to guess Xn′ . For the sake of
convenience we shall use the notation Y≤n for the set of n dY -dimensional vectors
Y1, . . . ,Yn.

8.6.2 General Filtering Approach

As explained in the previous chapter, the three main problems of state space models
are (1) data smoothing (n′ < n), (2) filtering (n′ = n), and (3) prediction (n′ > n),
and as before, we concentrate on the filtering and prediction problems.

All the information about the state Xn which one can hope to derive from the
knowledge of the observations Y≤n up to (and including) time n, is contained in the
conditional distribution of Xn given Y≤n which we denote by:

πn( · ,Y≤n) = P{Xn ∈ · |Y≤n}. (8.28)

This conditional distribution obviously depends upon the past observations Y≤n.
We assume that a given sequence Y1 = y1, . . . ,Yn = yn of observations has been
acquired, and we drop the dependence of πn upon Y≤n in the notation. This abuse
of notation should not hinder the understanding of the arguments.

The main result of the theory of stochastic filtering is that given a sequence of
observations y1, . . . yn, . . ., the conditional distributions πn can be computed recur-
sively. In other words, there exists an algorithm:
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πn+1 = ρn(πn,yn+1) (8.29)

which gives πn+1 in terms of πn and the new observation yn+1. This says that the
dependence of πn+1 upon the past observations Y1 = y1, . . . ,Yn = yn is already
contained in the conditional distribution πn, so that, in order to compute πn+1, it is
enough to update the previous conditional distribution πn using the algorithm (8.29)
and the new observation yn+1.

The proof of this beautiful theoretical result is the conclusion of 30 years of in-
tensive research following the original works of Kalman and Bucy on linear systems.
In the case of these linear systems (studied in the previous chapter), if the state white
noise W and the observation white noise V are Gaussian, then the random vectors
Xn and Y≤n are jointly Gaussian, and the conditional distribution of Xn given Y≤n
is also Gaussian. πn being Gaussian, it is entirely determined by its mean vector, say
X̂n, and its variance/covariance matrix, say Ωn. In this case, the algorithm (8.29)
can be rewritten as an update algorithm for X̂n and Ωn:

[
X̂n+1

Ωn+1

]
= ρn

([
X̂n

Ωn

]
,yn+1

)
. (8.30)

Working out the details of this update algorithm, we would recover the update formu-
lae derived in the previous chapter. So what could be viewed as a miracle, can now
be explained. It is only because a Gaussian distribution is completely determined by
its mean vector and its variance/covariance matrix, that the optimal filter could be
given by a recursive update of the mean and the variance. In general, the conditional
distributions πn are not Gaussian, and the update algorithm cannot be reduced to
such a simple form as (8.30).

8.6.3 Particle Filter Approximations

As suggested by the fact that the update algorithm involves the entire conditional
distribution, any practical implementation of the solution to the nonlinear filtering
problem has to be based on an approximation. The idea of the particle approximation
to nonlinear filtering is simple and natural. The basic principle of the particle method
is to approximate the desired distribution πn by the empirical distribution of a sample
of randomly chosen states. There would not be anything special to this idea if it
weren’t for the fact that these approximations can be updated in a very natural way
without affecting the quality of the approximation.

Nothing can be so simple without being deep and powerful! What is remarkable
is the fact that it can be implemented in a recursive manner, as in the case of the
Kalman filter for linear systems.

At each time n we consider a set {xjn}j=1,...,m of m elements of the state space
in which Xn takes its values, and we consider the approximation to the optimal filter:

πn(dx) = P{Xn ∈ dx|Y≤n} ≈ π̂(m)
n (dx) =

1

m

m∑
j=1

δxj
n
(dx)
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given by the empirical distribution of the sample {xjn}j=1,...,m. Choosing m large
enough, and choosing the xjn appropriately, one can make sure that the approxima-
tion is as good as desired. But the main question remains: do we have to recompute
the entire approximation each time we have a new observation, or could it be pos-
sible to update the approximation of πn in an efficient way, and get a reasonable
approximation of πn+1. In other words, can we:

• Compute π̂(m)
n+1 as ρn(π̂

(m)
n ,yn+1)?

• And still have: limm→∞ π̂
(m)
n = πn for each n.

The algorithm which we present now, does just that. To implement it we need two
kinds of particles:

• Those used to simulate P{Xn|Y≤n}

x1n, . . . , x
m
n

• Those used to simulate P{Xn+1|Y≤n}

p1n+1, . . . , p
m
n+1

for the one-step-ahead distribution. At this stage it is important to remember the
fundamental role played by the one-step-ahead prediction in the linear case.

8.6.3.1 One Step Ahead Prediction

To describe and justify the algorithm we assume temporarily that

x1n, . . . , x
m
n

form a random sample from the distribution πn = P{Xn|Y≤n}. If we assume that
v1n, . . . , v

m
n are m independent realizations of the noise Vn (remember that we as-

sume that we know the distribution of the state equation noise terms), and if we
define the new particles p1n+1, . . . , p

m
n+1 by:

pjn+1 = Fn(x
j
n, v

j
n),

in other words by simulating the dynamics given by the state equation, then it is clear
that we have a random sample

p1n+1, . . . , p
m
n+1

from the conditional distribution P{Xn+1|Y≤n}.
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8.6.3.2 Filtering, or Updating

The second step of the algorithm is less obvious. Assuming that we have a sample

p1n+1, . . . , p
m
n+1

from the conditional distribution P{Xn+1|Y≤n = y≤n}, and assuming that a new
observation yn+1 is made available, we compute the likelihoods

αjn+1 = P{Yn+1 = yn+1|pjn}
of the particles pjn+1 given this new observation. These likelihoods can be com-
puted because we assume that we know the distribution of the observation noise, and
we also assume that we can invert the observation equation. More precisely, since
Yn+1 = Gn+1(Xn+1,Vn+1), we must have:

αjn+1 = ψ(Hn+1(p
j
n+1, yn+1)|∂Hn+1

∂y
(Hn+1(p

j
n+1, yn+1)|

provided we denote by ψ the density of the observation white noise, and by Hn+1

the inverse of the functionGn+1 when the state variable is held fixed. In other words,
for Xn+1 given, Yn+1 = Gn+1(Xn+1,Vn+1) ⇔ Vn+1 = Hn+1(Xn+1,Yn+1).
The second step of the algorithm is justified by the following important computation.
By definition of conditional probabilities we have:

P{Xn+1 = pin+1|Y≤n+1 = y≤n+1}

=
P{Xn+1 = pin+1,Yn+1 = yn+1|Y≤n = y≤n}

P{Yn+1 = yn+1|Y≤n = yn} (8.31)

For the sake of notation, we compute separately the numerator and the denominator
of the right hand side. Using again the very definition of conditional probabilities,
and mimicking the classical derivation of Bayes rule, we get:

P{Xn+1=p
i
n+1,Yn+1=yn+1|Y≤n=y≤n}

=P{Yn+1=yn+1|Xn+1=p
i
n+1,Y≤n=y≤n}P{Xn+1=p

i
n+1|Y≤n=y≤n}.

Given the knowledge of Xn+1, formula (8.26) says that the observation Yn+1 de-
pends only upon the observation noise Wn+1 which is independent of all the previ-
ous observations Y≤n. Consequently, the conditioning by the fact that Y≤n = y≤n
can be removed from the first probability in the above right hand side, showing that
this probability is in fact equal to αin+1. Moreover, according to the construction of
the one-step ahead candidates pin+1, we have

P{Xn+1 = pin+1|Y≤n = y≤n} = P{Xn = xin|Y≤n = y≤n} =
1

m

by definition of the fact that x1n, · · · , xmn is a random sample from the conditional
distribution πn = P{Xn|Y≤n = y≤n} of Xn given the knowledge of the past
observations. Putting together these two facts, we get the following expression



518 8 NONLINEAR TIME SERIES: MODELS AND SIMULATION

P{Xn+1 = pin+1,Yn+1 = yn+1|Y≤n = y≤n} =
1

m
αin+1. (8.32)

for the numerator of the right hand side of (8.31). Using similar arguments, we can
develop the denominator:

P{Yn+1 = yn+1|Y≤n = y≤n}

=

m∑
j=1

P{Yn+1 = yn+1|Xn+1 = pjn+1,Y≤n = yn}

P{Xn+1 = pjn+1|Y≤n = yn}

=
m∑
j=1

P{Yn+1 = yn+1|Xn+1 = pjn+1}P{Xn+1 = pjn+1|Y≤n = y≤n}

=

( m∑
j=1

αjn+1

)
1

m
. (8.33)

Now, putting together (8.31), (8.32) and (8.33), we get:

P{Xn+1 = pin+1|Y≤n+1 = y≤n+1} =
αin+1∑m
j=1 α

j
n+1

. (8.34)

This computation suggests that we define xjn+1 by:

xjn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1n+1 with probability
α1

n+1

α1
n+1+...+α

m
n+1

...

pmn+1 with probability
αm

n+1

α1
n+1+...+α

m
n+1

In words, this means that for each j = 1, · · · ,m, the value of the state xjn+1 is ob-
tained by sampling/drawing with replacement from the set {p1n+1, · · · , pmn+1} with
probability αjn+1/(α

1
n+1+ . . .+αmn+1). In doing so, we can be sure, because of for-

mula (8.34), that x1n+1, . . . , x
m
n+1 appear as particles which form a random sample

from the conditional distribution πn+1 = P{Xn+1|Y≤n+1 = y≤n+1}, putting us at
time n+ 1, in the situation we started from at time n. This second step completes at
the level of the random samples, the implementation of the update algorithm (8.29)
for the conditional distributions.

8.6.3.3 Algorithm Summary

We can summarize the algorithm as follows:

1. Initialization: generate an initial random sample of m particles x10, . . . , x
m
0

2. Iteration: for each time step n, repeat the following:
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• Generate independent samples vjn from the distribution of the state noise;
• Compute the values pjn+1 from the formula pjn+1 = F (xjn, v

j
n);

• Given the value yn+1 of the new observation, compute the likelihoods αjn+1;
• Resample the pjn+1s to produce the xjn+1s.

The remainder of this chapter is devoted to the discussion of possible implementa-
tions of this particle filtering algorithm. The applications that we have in mind share
the following features.

• Nonlinear dynamics for the unobserved state;
• Nonlinear observation equation;
• Parameters as components of the state vector;
• Regime switching which can be incorporated in the Markov dynamics of the

partially observed state.

8.6.4 Filtering in Finance? Statistical Issues

Some of the financial applications of filtering can be motivated by a quick look at
the plots in Fig. 8.18 where we show the time evolution of the indexes of a few en-
ergy companies before the crash following the California energy crisis and Enron’s
bankruptcy. One of the time series (obviously Enron) clearly stands out. Is it be-
cause of a change in the mean rate of return? Is it because of a sudden change in the
volatility? Could it be because of the issuance of debt? A change in rating of some
of its debts? A sudden change in other economic factors? Tracking these important
parameters is a natural task that most econometricians, economists, analysts, finan-
cial engineers and traders do on a day-by-day basis. We propose to illustrate the use
of nonlinear filtering techniques to do just that.

The tracking motivation outlined above fits perfectly the statistical theory of so-
called change point problems. Nevertheless, several important differences need to be
pointed out.

• As a general rule, real time computations are not an issue for economic/
econometric applications for which computations can be performed ex ante (i.e.
after the fact, overnight for example). Only highly speculative operations (such
as program trading or energy spot price tracking) require real time computations.

• The filtering approach is very natural when it comes to non-anticipative estima-
tion of some of the parameters needed for scenario generation and risk manage-
ment. Nevertheless, some insight into these issues can easily be gained without
having to introduce the heavy machinery of filtering theory. As we pointed out in
Sect. 8.2.6, standard estimation can be performed in trailing sliding windows, and
classical multivariate analysis tests can be run inside these windows to test for
the equality of rates of mean return or volatility. See the Notes & Complements
at the end of the chapter for a discussion of an application to the subindexes of
the Dow Jones Total Market Index.

• Even when the problem is naturally framed as a problem of parameter estima-
tion, or detection of change in parameters (as opposed to a filtering problem),
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Fig. 8.18. Time series plots of the Enron, Exxon, Duke and Mirant (formally SouthWest)
indexes

particle approximations are still of great value. Indeed, parameter estimation and
hypotheses testing are very often based on the computation of the likelihood
function of the model. This task is unfortunately too difficult in many practical
applications. But according to our discussion of Sect. 7.4.5, it is often possible
to express the likelihood function in a recursive fashion, in terms of the optimal
filter. It is not a surprise to learn that many active researchers have based their
computation of the likelihood (and consequently their estimations and test pro-
cedures) on the particle approximation of the optimal filter. This recursive com-
putation of the likelihood approximation is currently investigated as a leading
candidate for efficient estimation procedures and test statistic computations.

The next subsection is devoted to the detailed analysis of a specific application
chosen for the sake of illustration of the versatility of particle filters.

8.6.5 Application: Tracking Volatility

Stochastic volatility models of continuous time finance are factor models, and most
of them are two-factor models, one of these factors being the volatility in question.
Recall the presentation of the discrete time stochastic volatility models of Sect. 8.3.
The dynamics of the two factors are given by stochastic differential equations of the
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Itô’s type driven by two different Wiener processes. In this section, we consider the
discretizations of these models obtained by Euler’s scheme.

As already explained when we discussed discrete time stochastic volatility mod-
els in Sect. 8.3, the main motivation for the introduction of these models is the smile
effect. The popularity of the stochastic volatility models is deeply rooted in their
intuitive rationale, and the fact that they are capable of producing “smiles” like the
ones encountered in practice.

8.6.5.1 The Model

In analogy with the Samuelson’s framework used for Black-Scholes’ theory, we as-
sume that the dynamics of the underlying asset price are given by a stochastic differ-
ential equation of the form:

dSt = St(μdt+ σtdWt),

but instead of assuming that σt is a positive constant, we assume that σt is in fact
another random quantity which changes with time, and the model is based on the
choice of another stochastic differential equation for the dynamics of this stochastic
quantity. For the sake of definiteness we shall assume that σt satisfies:

dσt = −λ(σt − σ)dt+ γdW̃t (8.35)

for some positive constants λ, σ and γ, and for another Wiener process W̃t providing
the source of the random kicks driving the time evolution of the volatility. If we recall
the discussions of the stochastic models used for the short interest rate and the inter-
est rate spread in Sects. 8.5.2 and 8.5.3, Eq. (8.35) says that the stochastic volatility
evolves as an Ornstein – Uhlenbeck process, and we can reuse the discussion of the
interpretations of the parameters of the model. σ is a mean level of volatility toward
which σt tries to revert. In fact σ would be the deterministic limit of σt for large
values of the time t if it were not for the random kicks given by the Wiener process
W̃t. The constant λ is the rate of mean reversion toward σ, while γ is the volatility of
the volatility σt (volvol in the jargon of the street). So the resulting force dσt acting
on the volatility is an aggregate of a restoring force −λ(σt−σ)dt and a random kick
γdW̃t. The balance between these two terms determines the actual dynamics of the
stochastic volatility model chosen here.

8.6.5.2 Discretization

In order to make the above model amenable to implementation and analysis by the
filtering techniques introduced in this chapter, we discretize the above equations in
order to set up a state space system in the form of a hidden Markov model.

We first consider the equation for the asset price. We choose a sampling inter-
val Δt, times tj = t0 + jΔt forming a regular time grid (we shall set t0 = 0 for
convenience), and we write the dynamical equation given by Euler’s scheme. Mim-
icking the procedure followed in Sect. 8.5.1, we introduce the variable RR for the
raw return over one time period. The Euler discretization scheme gives:



522 8 NONLINEAR TIME SERIES: MODELS AND SIMULATION

RRj =
Stj+1

Stj
− 1 = μΔt+ σt

√
Δtεj+1. (8.36)

Next, we consider Eq. (8.35). Using Euler’s scheme again, we get:

σtj+1 = λσΔt+ (1− λΔt)σtj + γ
√
Δtε̃j+1. (8.37)

Here {εj}j≥1 and {ε̃j}j≥1 areN(0, 1) strong white noise time series independent of
each other.

Remarks.

1. Equation (8.37) is not the only way to discretize the dynamical equation (8.35).
Indeed the latter can be solved explicitely and, as we explained in Sect. 8.4.2,
it is then preferable to discretize the exact solution (as opposed to solving the
discretized equation). If we do that in the present situation, we end up with the
discretization:

σtj+1 = σ + e−λΔt(σt − σ) +

√
γ2

2λ
(1− e−2λΔt)ε̃t+Δt. (8.38)

2. The independence of the white noise terms is not a realistic assumption. Indeed,
the leverage effect discussed earlier would suggest that the two white noise time
series should be negatively correlated. It is not difficult to force this condition
and still develop the filtering apparatus presented below. We refrain from doing
it because this requires adding noise terms to the dynamical equations, and as a
consequence, rather cumbersome notation, and more involved formulae.

8.6.5.3 Setting Up a Hidden Markov Model (HMM)

In the present set up, we can assume that the asset prices are observed, hence so are
the raw returns. However, it is clear that the volatility σt cannot be observed directly.

1. Using the experience gained in rewriting ARMA models as state space models,
one is tempted to choose the observation equation

Yj =
[
1 0
] [RRj−1

σtj

]
(8.39)

which would lead us to choose the state vector Xj and the state noise vector
Vj+1 as:

Xj =

[
RRj−1

σtj

]
, and Vtj+1 =

[
εj+1

ε̃j+1

]
, (8.40)

with state equation:
Xj+1 = F (Xj ,Vj+1) (8.41)
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where the function F is defined by:

F (x,v)=

[
μΔt+x2

√
Δtv1

λσΔt+(1−λΔt)x2+γ
√
Δtv2

]
, if x=

[
x1
x2

]
, v=

[
v1
v2

]
.

Clearly, the observation is partial in the sense that not all the components of the
state vector can be observed. However, the observation is perfect in the sense that
there is no noise coming to perturb the accuracy of the observation. Strangely
enough, this can be a serious handicap, and filtering methods have a harder
time handling perfect observations. As a result, the practitioner adds an artifi-
cial (small) noise to the right hand side of the observation equation (8.39), just
to regularize the problem. We shall not follow this approach here.

2. Another possibility is to choose Xj = σtj for the state of the system, and Yj =
RRj−1 for the observation. Note that we do not use bold characters as both the
state and the observations are univariate, which is a simplification. In any case,
the dynamics of the state are given by

Xj+1 = F (Xj , Vj+1) (8.42)

with
F (x, v) = λσΔt+ (1− λΔt)x + γ

√
Δtv

if we choose the system noise Vj+1 to be ε̃j+1. Accordingly, the observation
equation reads:

Yj = G(Xj ,Wj)

with
G(x,w) = μΔt+ x

√
Δtw

provided the observation noise Wj is chosen to be εj . Notice that the noise is
not additive, i.e. the observation function G(x,w) is not of the form G(x) + w.
However, the function G is still invertible, and as we saw when we derived the
particle filtering algorithm, that’s all we need!

3. The above formulation is quite appropriate for the implementation of the particle
filtering algorithm described in the previous section, as long as we have estimates
of the parameters μ, σ, λ and c = γ2/2λ of the problem. Rather than trying to
estimate them first, and then run the filtering algorithm, we include them in the
state of the system, letting the filter estimate their values dynamically. This idea
is very appealing, and this practice is pretty common in some circles, despite the
fact that it still lacks rigorous mathematical justification. For the sake of simplic-
ity, we only include the parameters λ and c in the state, estimating directly the
parameters μ and σ off line. So the final form of the state space model which
we use to track (stochastic) volatility is given by the following state dynamical
equation:

⎡
⎣σtj+1

λj+1

cj+1

⎤
⎦ =

⎡
⎣σ + e−λjΔt(σtj − σ) +

√
cj(1− e−λjΔt)ε̃j+1

λj
cj

⎤
⎦ (8.43)
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coupled with the observation equation:

Rj−1 = μΔt+ σtj
√
Δtεj .

Notice that the dynamics of the parameters are trivial since their true values do
not change over time. In a particle filtering implementation, the success of the
procedure depends upon the initial random samples λ10, · · · , λm0 and c10, · · · , cm0 .
Indeed, the only changes in λj and cj can occur during the resampling step as
we update their conditional distributions when we compute our new best guess
for the state of the system given a new set of observations. Obviously, the con-
vergence of these estimates toward their true values is not guaranteed, but it
seems to be happening in many applications, giving an empirical justification
for this practice. But to be on the safe side, practical implementations often in-
clude extra noise terms to allow the update steps of the algorithm more freedom
in the search for the true values of these parameters. In such cases the dynamics
of the second and third components of the state are given by equations of the
form:

λj+1 = λj + ε
(λ)
j+1 and cj+1 = cj + ε

(c)
j+1

where {ε(λ)j }j≥1 and {ε(c)j }j≥1 are independent N(0, σ(λ)2) and N(0, σ(c)2)

i.i.d. noise series with small variances σ(λ)2 and σ(c)2 respectively, instead of
the trivial dynamics of equation (8.43). See also the Notes & Complements at
the end of the chapter for references on this approach to adaptive parameter es-
timation.

Remarks.

1. Positivity of σt is not guaranteed in the above model. This prompts us to search
for other stochastic differential equations for the dynamics of σt. We could use
some of the models proposed for the short interest rate because of their positivity.
This is for example the case of the square root model also called CIR model.
Unfortunately, the direct approach (analogous to (8.38)) require random number
generators from the conditional distribution of σtj+1 given σtj whose technical
description would take us beyond the scope of the book.

2. Because of these positivity problems, geometric Ornstein-Uhlenbeck processes
(i.e. exponentials of Ornstein-Uhlenbeck processes) are often used as models for
stochastic volatility.

8.6.5.4 Empirical Results

We implemented the particle filtering algorithm on the third state space systems de-
scribed above. The results of some Monte Carlo experiments are reproduced graph-
ically in Figs. 8.20 and 8.21. Figure 8.19 gives the plot of the price series we gener-
ated to run the filter. We used the values Δt = 0.004, μ = 0.006, λ = 2, c = 0.5,
σ0 = 0.1 and σ = 0.2 for the parameters.
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Figure 8.20 gives the plot of the volatility which was actually used to generate the
price shown in Fig. 8.19 together with two estimates of this instantaneous volatility.
The first one is obtained by the particle filter described above. It tracks the true
volatility reasonably well. The other estimate is the result of the empirical estimation
of the standard deviation in a sliding non-anticipative window of size 30. As we can
see, this naive estimate is too slow to react to changes in the volatility.

Finally, Fig. 8.21 gives another instance of the superiority of the particle filter
over the sliding window naive estimate. In fact the particle filter estimate is always
better for simulated data. It is not clear how to compare the two on real data. Indeed,
we do not know the exact value of the true volatility which drove the price dynamics.

From the many experiments which we ran on this specific application, we found
that the particle filter approximation to the (true) optimal filter

Fig. 8.19. Simulated asset price

• Provides exceptionally good tracking if initial parameters (mean reverting rates,
vol of vol, etc.) in right range;

• Lacks robustness (poor estimation) if initial parameters too far from the true
values;

• Reacts and relaxes faster (in all cases) than the sliding window estimate of the
historical volatility.
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Fig. 8.20. Another example of volatility tracking by particle filtering

8.6.5.5 Possible Extensions

The application considered above can be made more realistic by extending the model
to include more features of real data. As a first possible extension, we should men-
tion that the particle filters can be used without much change to the case of a regime
switching model in which the volatility is a function of a factor changing value over
time in a limited and restricted way, though remaining Markovian. Another possible
generalization is to adjust the filtering model to volatility processes with several time
scales. These multiscale volatility models are very fashionable, and as long as filter-
ing is concerned, they can be handled without much significant change to what we
presented above.

PROBLEMS

©T Problem 8.1 This problem shows once more that a conditionally Gaussian random vari-
able has excess kurtosis. Let us assume that X and σ2 are two random variables and that
X|σ2 ∼ N(0, σ2), i.e. that conditioned on the value of σ2, X is a mean-zero Gaussian
random variable with variance σ2. Prove that:
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Fig. 8.21. Still another example of volatility tracking by particle filtering

E{X4}
var{X}2 = 3

[
1 +

var{σ2}
E{σ2}2

]

proving the claim of excess kurtosis when σ2 is not deterministic.

©T Problem 8.2 This problem shows that (linear) AR(p) time series can lead to (nonlinear) ARCH
models when they have random coefficients.

Let {εt}t be a strong univariate white noise with εt ∼ N(0, 1), and let {φt}t be a
p-variate time series independent of {εt}t, and such that all the φt are independent of each
other, and for each time t, the vector φt = (φt,1, φt,2, . . . , φt,p) is a vector of jointly Gaussian
random variables with mean zero and variance/covariance matrix Σ. We study the time series
{Yt}t defined by:

Yt = φt,1Yt−1 + φt,2Yt−2 + · · ·+ φt,pYt−p + εt.

1. Determine the conditional distribution of Yt given Y≤t−1 by integrating out the φ-random
variables.

2. Assume that the components φt,1, φt,2, . . ., φt,p of φt are independent, and show that at
least in this case, {Yt}t has an ARCH representation.

©T Problem 8.3 This problem addresses the very important issue of the stability of models under
change of sampling frequency. Here is a typical example: assuming that a GARCH(1,1) model
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was found appropriate for some daily financial time series, and assuming that we need now
to look at the end of the week data entries only, could we assume that this time series will
also follow a GARCH(1,1) model, or should we start the model fitting process from scratch
directly on weekly data?
We assume that a series {Yt}t of log-returns has the GARCH(1,1) representation of the form:

Yt = σtε̃t, σ2
t = c+ bσ2

t−1 + aY 2
t−1

where we assume that {ε̃t}t is a strong N(0, 1) white noise, and where the coefficients a, b
and c are such that σ2

t is stationary.

1. Show that the squared log-returns have an ARMA(1,1) representation in the sense that:

Y 2
t = c+ (b+ a)Y 2

t−1 + εt − bεt−1

for some weak white noise {εt} which you should identify. Show that the number α =
E{ε2t} is independent of t and that:

Y 2
t = c(1 + b+ a) + (b+ a)2Y 2

t−2 + ut

with ut = εt + aεt−1 − b(a+ b)εt−2.
2. Compute the number β = E{u2

t} in terms of the numbers a, b and c, and check that it is
independent of t. Show that E{utut−2k} = 0 for all integers k > 1, and that:

E{utut−2}
E{u2

t}
= − b(a+ b)

1 + a2 + b2(a+ b)2
.

3. We now use the process {vt}t defined by:

vt =
1

1− λB2
ut

for some λ ∈ (0, 1) where B stands for the backward shift operator. Show that:

E{v2tv2t−2s} =
λs−1

1− λ2
[λE{u2

t}+ (1 + λ2)E{utut−2}], s ≥ 1.

4. Show that if λ is chosen as the root of the equation:

λ

1 + λ2
=

b(a+ b)

1 + a2 + b2(a+ b)2

which belongs to the interval (0, 1), then the vt with even indices are uncorrelated, i.e.

E{v2tv2t+2s} = 0, s ≥ 1

and that:

E{v22t} =
β

1 + λ2
.
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5. Show that the square Y
2
t of the series {Y t}t defined by:

Y t = Y2t

has an ARMA(1,1) representation, and conclude that the series {Y t}t admits a
GARCH(1,1) representation similar to the original GARCH(1,1) representation of {Yt}t
which we started from.

©E Problem 8.4 The goal of this problem is to give another example of the misuse of the simula-
tion of GARCH models fitted to data with a deterministic seasonal pattern in the instantaneous
variance.

1. We first use the daily average temperatures in La Guardia as encapsulated in the
timeSeries object LaGuardia.ts. Identify the trend and seasonal components,
fit a GARCH(1,1) model to the remainder, and plot the estimate of the instantaneous
conditional variance.

2. In each CDD season, identify the periods of high volatility and the periods of low volatil-
ity. Same question for the HDD seasons.

3. Using the fitted model, simulate a Monte Carlo sample for 5 years worth of temperature
in La Guardia. Do you find the periods of high and low volatility identified in question 2
above? Explain.

4. Redo questions 1, 2, and 3 for the temperature in Las Vegas contained in the time series
LasVegas.ts.

©S Problem 8.5 This problem is based on the data MONTHLY described in Sect. 8.5. Each row
corresponds to a month between May 1986 and November 1999. The first column represents
the values of the short interest rate as given by the 1 year T-bill between, the second column
gives the long interest rate as given by a 30 years US Government Bonds, and the third column
gives the values of the S&P 500 index.

1. Use the equation:
St+Δt − St = St[μΔt + σ

√
Δtεt]

proposed in the text as Eq. (8.22) to model the monthly S&P 500 index values, and esti-
mate the parameters μ and σ from the data. Remember, Δt = 1/12 stands for 1 month.
Explain your work.

2. Similarly, use the data and the equation:

rt+Δt = rt − λr(rt − r)Δt+ σr

√
Δt ε

(r)
t

used in the text as Eq. (8.20) to model the monthly values of the short interest rate, and
estimate the parameters λr, r, and σr . Be imaginative and explain your work.

3. Finally, use the data and the equation:

st+Δt = st − λs(st − s)Δt+ σs

√
Δt ε

(s)
t

used in the text as Eq. (8.22) to model the monthly values of the interest rate spread, to
estimate the parameters λs, s, and σs. Again, explain your work.

4. Assuming that the three white noise sequences {εt}t, {ε(r)t }t, and {ε(s)t }t are indepen-
dent, use the above equations and parameter estimates to generate a 100×120×3 array
containing 100 scenarios of 120 possible monthly values of the short interest rate, the
long interest rate and the S&P 500 index, starting from the last entries of the data in the
file monthly.asc. Call these three sets of 100 scenarios IndepShort, IndepLong
and IndepSP500 respectively.
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5. From the data, compute the variance/covariance matrix of the log-return of the S&P 500,
the first difference of the short interest rate, and the first difference of the spread. Assum-
ing now that the variance covariance matrix of the three white noise sequences {εt}t,
{ε(r)t }t, and {ε(s)t }t is the same as the empirical variance/covariance matrix you just
computed, generate a new set of 100×120×3 array containing 100 scenarios of 120 pos-
sible monthly values of the short interest rate, the long interest rate and the S&P 500 in-
dex. Call these 3 sets of scenarios CorrelShort, CorrelLong and CorrelSP500
this time.

6. From the data, fit a bivariate distribution to the log-returns of the S&P 500, and the
first difference of the short interest rate (use the techniques developed in Chap. 3), and
assuming that the first difference of the long interest rate is independent of the log-returns
of the S&P 500 and the first difference of the short interest rate, generate a new set of
100×120×3 array containing 100 scenarios of 120 possible monthly values of the short
interest rate, the long interest rate and the S&P 500 index. Call these 3 sets of scenarios
CopShort, CopLong and CopSP500 this time.

7. Choose two statistics (numerical function of the outcomes of the S&P 500, the short and
the long interest rates), compute them for the three sets of scenarios generated in ques-
tions 4, 5, and 6, to illustrate the impact of the different notions of dependence included
in the three Monte Carlo simulation procedures.

©T Problem 8.6 In this problem, we assume that the dynamics of a stock are given by Samuelson’s
geometric Brownian motion model, and we assume that the rate of growth μ and the volatility
σ are known.

1. Use formula (8.16) to derive the distribution of the raw returns RRt over a 1-month
period Δt.

2. Compare with the distribution derived from (8.18) given by a blind application of Euler’s
scheme. Comment.

©S Problem 8.7 The goal of this problem is to implement a volatility tracking algorithm based on
the particle filtering of a stochastic volatility model where the dynamics of the volatility are
given by a geometric Ornstein Uhlenbeck process.

1. For the purpose of this question we consider the price of an asset evolving with time
according to a geometric Brownian motion with a stochastic volatility satisfying equation
(8.35) used in the text. Such a process is usually called an Ornstein-Uhlenbeck process.
Explain why, at any given time t, the volatility σt has a positive probability of being

negative. In doing so, you can choose to work directly with the continuous time equation
(8.35) if you feel comfortable, or with its discretized version if you find it more intuitive.

2. Explain why this shortcoming is not shared by the geometric Ornstein-Uhlenbeck model
in which the volatility evolves according to the equation:

dσt = σt[−λ(log σt − μ)dt+ γdW̃t] (8.44)

where λ, μ and γ are strictly positive constants. Again, feel free to choose to work with
the continuous time equation (8.44) or its discretized form.

©E Problem 8.8 You will need to use the timeSeries objects enelret.ts and dynlret.ts in-
cluded in the library Rsafd. Each file contains the daily log return of a large energy company.
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1. Fit an AR model to the part of the time series dynlret.ts corresponding to the period
of the 500 trading days ending January 1, 2001. Use this model to predict the values of
the log return for all the remaining days after January 1, 2001, and compute the sum of
square errors.

2. Same question for the time series enelret.ts
3. Concatenate the two time series in a bivariate time series, fit an AR model to the bivariate

series so obtained for the same period as before, and use this model to predict the values
of the two series following January 1, 2001. Compute the sum of the squares errors and
compare to the previous results. Comment your results.

NOTES & COMPLEMENTS

The data and the proprietary algorithm used to compute the indexes used in this
chapter and throughout the book were graciously provided by Dow Jones.

Mandelbrot was presumably the first one to warn the scientific community of the effects of
the presence of heavy tails and long range dependence in financial time series. A good account
of his work on the subject can be found in [64, 65] and [66]. Nonlinear time series models are
studied with great care and lucidity in the recent graduate textbook [35] by Fan and Yao, where
the interested reader will find many examples of analyzes relying on nonparametric regression
techniques.

Financial time series differ from typical time series in many different ways, but most
noticeably, in the properties of the conditional standard deviation, i.e the so-called volatility.
Persistence (tendency of large changes to be followed by more large changes), are at the root of
the introduction of the ARCH and GARCH models discussed in this chapter. The first ARCH
models were introduced in their simplest form by Engle in 1982, see [30]. This introduction
had far-reaching implications on subsequent developments in financial economics, hence the
award to Engle of the 2003 Nobel prize in economics. ARCH models were later generalized
by Engle and Bollerslev in [31], and Bollerslev [6] who introduced the GARCH models. The
review article [7] is a comprehensive introduction to the early developments of the subject.
Since then, the literature on the subject exploded, and the analysis of these models is now
an integral part of financial econometrics. For more recent developments on these models we
refer the interested reader to the more modern account given in the monograph [41].

One of the major difficulties with the stochastic volatility models is their statistical estima-
tion. Many methods have been proposed and tested: generalized method of moments (GMM
for short), quasi-likelihood method based on Monte Carlo Markov Chain (MCMC for short)
computations and importance sampling, and even the simulated EM (expectation maximiza-
tion algorithm). We chose to recast the SV models in the framework of linear state space
models, and refer to the statistical estimation methods used for these models.

In the second half of the nineties, many books on the applications of Ito’s stochastic calcu-
lus to finance were published. One of the earliest ones, and presumably the best one, was the
short book of Lamberton and Lapeyre [58]. Many followed but they were often technically dif-
ficult and rarely self-contained. We shall only refer to the introductory texts of Michael Steele
[90]. Discretization schemes for stochastic differential equations have been studied in details.
It would have taken us far afield to attempt to review this literature. We limited ourselves to
the Euler scheme because of its simplicity and its intuitive appeal. Further properties of these
schemes and their relations to the ARCH and GARCH and SV models discussed in the text
can be found in the recent text by C. Gourieroux and J. Jasiak [42].
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The continuous time stochastic volatility models have been studied extensively by means
of the properties of the Ito’s stochastic calculus. The names of Heston, and Hull and White
are often attached to these models. See for example the account given in the book [50]. The
analysis of the volatility smile for these models was done rigorously in Touzi and Renault
[78]. For a complete exposé of the facts of continuous time stochastic volatility models from
the point of view of Ito’s stochastic calculus and asymptotic expansions we refer the interested
reader to the excellent monograph [38] by Fouque, Papanicolaou and Sircar.

The abstract form of the equation giving the optimal filter update in the form of a dynam-
ical system is due to Stettner. The update algorithm (8.29) can be viewed as a discrete time
dynamical system in the space of probability distributions. Unfortunately, this space is infinite
dimensional and the analysis of such a dynamical system is very difficult. This dynamical sys-
tem can also be viewed as a discrete time version of the stochastic partial differential equation
derived for the optimal filter of partially observed systems driven by Ito’s stochastic differen-
tial equations. This stochastic partial differential equation is known under the name of Kushner
equation, or Zakai equation, depending on our looking at the update of the (normalized) den-
sity of the optimal filter, or the density of the unnormalized filter. Both are regarded as natural
generalizations of the Ricatti equation giving the update of the Kalman filter in the linear case.
Indeed, even when we look at conditional density functions for the conditional distributions,
the update algorithm appears (because of the infinite dimensionality of the functional space)
as a partial differential equation. Because the coefficients of this partial differential equation
depend upon the observations, they can be viewed as random. These equations were some
of the first stochastic partial differential equations studied, and solving the general stochastic
filtering problem was one of the main impetus in the development of the field of stochastic
partial differential equations.

Unfortunately, the numerical solution of these equations is extremely computer intensive
and, as of today, there is essentially no example of practical problem whose solution can be
computed in real time. The particle method is the first method which stands a real chance at
cracking this nagging problem.

The particle approximation algorithm presented in the text is due to Kitagawa [56]. The
mathematical theory of this approximation (and several variations on this approximation)
was subsequently developed by several probabilists including Del Moral, Guillonnet, Lyons,
Crisan, Le Gland, , Cérou, . . . and many others. Among other things, they proved that at each
fixed time n, the particle approximation π̂

(m)
n converges toward πn as m → ∞.

It is interesting to track the volatility of indexes and sub-indexes when the latter are com-
puted by sectors, and even by subdividing the sectors according to the credit ratings of the
companies comprising the sectors in question. In his 2001 Princeton PhD, M. Sales consid-
ered amon other things the sector “Materials / Mid-Cap’s” of DOW JONES TMI (Total Market
Index) subindexes. He noticed a general increase in volatility in 1999. But if after breaking
the sector into two sub-sectors, say the companies whose bonds are rated “investment grade”,
and the companies whose bonds are rated “non-investment grade” (using for example Moody’s
ratings), then as expected, he noticed an increase in volatility in the non-investment grade sub-
sector, not the investment grade. However, it should be emphasized that the reverse though less
natural, does occur as well. R can be used to obtain simultaneous Likelihood Ratio Tests for
the significance of the differences in mean returns. Unfortunately, similar tests for the com-
parison of the variances of correlated samples are not available, and part of Sales’ PhD was
devoted to the development of such tests.

The application of the particle filter to stochastic volatility tracking was done by A. Pa-
pavasiliou’s as part of her Princeton PhD. The classical (linear) Kalman filter has been applied
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to the construction of commodity forward curves. The estimation of these curves is of cru-
cial importance in energy risk management. The reader interested in energy derivatives may
consult the book of Clewlow and Strickland [24] and the recent review [20] by Carmona and
Coulon. The desire to present the details of one specific form of the particle filtering algo-
rithm, together with a financial application was motivated by their lack of availability in book
form, and the many successful implementations the author developed for the purpose of com-
modity data analysis (e.g. estimation of the convenience yield of crude oil and natural gas.
The reader interested in applications of particle methods in finance is referred to the survey
article [19] by Carmona, Del Moral, Hu and Oudjane.
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APPENDICES

9.1 APPENDIX A: A QUICK INTRODUCTION TO R

This appendix gives a streamlined introduction to the basics of R. Following the
prescriptions given in this appendix will take you through an introductory session
intended for readers who are first time users of R. We do not expect that such a
session will turn R-novices into experts. However, it should help beginners feel com-
fortable enough with the language to start practicing with the examples given in
the book.

9.1.1 Starting R Under Mac OS, Windows and Under UNIX

The instructions given below are restricted to versions 2.0 and higher of R. One of the
main attraction of R is its being platform independent. However, the GUI (Graphic
User Interface, pronounced “gooohee”) of a typical R distribution can still change
from one platform to another, and in any case, it is not as sophisticated as for most
commercial applications. But since most every task can be described independently
of the platform, we will limit ourselves to the use of commands typed in the com-
mand window of the application. We take advantage of this universal way to input
and execute commands, and ignore the possible alternatives relying on menu items
and the use of a mouse.

Despite the merits of this discourse on the virtues of platform independence,
I will presumably err on the side of Windows and Mac users since after all,
this book was prepared on a laptops running various versions of their operating
systems.

Finally, even though this textbook does not require prior knowledge of R, because
its previous incarnation was written in conjunction with a S-Plus library, given the
significant number of S users switching to R, we shall sprinkle the text with small
remarks emphasizing the similarities and the differences between the two languages
when appropriate.

R. Carmona, Statistical Analysis of Financial Data in R, Springer Texts in Statistics,
DOI 10.1007/978-1-4614-8788-3 9, © Springer Science+Business Media New York 2014
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9.1.2 Creating R Objects

Typing the command

> X <- 1:16

in the Command Window, creates a vector of length 16 containing the first 16 in-
tegers in increasing order. As in S, the arrow “<-” which is typed by using first the
“less than” key “<” and then the minus sign “-”, is used to assign the instance ap-
pearing on its right hand side to the object on its left. It reads “gets” to avoid the
possible confusion with left arrow key. Whatever is on the left of this “gets” is an
object created by R with the result of the command on the right of the “gets” sign.
If an object with this name already exists, it is automatically replaced. Note that the
same result would be obtained with the command:

> X <- seq(from=1,to=16,by=1)

To understand what the function seq does, we can use the online help by typing:

> help(seq)

Now that we know what the function seq can do for us, we can type:

> help

and notice that, instead of getting a help file of some kind, we get something which
looks more like code. This is a general rule: if one types the name of an R function
or method without parentheses, the system returns the R-code of the function in
question. Only if we add the parentheses, will we see the command be executed (or
an error message returned telling us that we did not provide the parameters expected
by the function). We can experiment further by typing:

> objects()

which lists all the R objects contained in the current workspace, and

> objects

which merely gives its code. Notice that the effect is the same as if we were to use
the command ls which I believe, was kept for compatibility with S. R organizes
objects into workspaces. They are ordered in a hierarchy which can be displayed by
the command search(). The command:

> dim(X) <- c(8,2)

reshapes the one dimensional vector X into a 8 by 2 matrix. The right hand side
c(8,2) creates a vector of length 2 with entries 8 and 2. The function c which
stands for concatenation, is one of the most commonly used core functions. So in
order to save typing and memory space, it was given a name with only one letter.
Typing the command

> class(X)
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will return "matrix". All objects created by R have a class attribute, and this
attribute can be retrieved with the function class. The command:

> Y <- X*X

creates a new R-object, named Y, which is also a 8 by 2 matrix. Its entries are ob-
tained by multiplying X by itself entry by entry. It is important to remember that the
symbol * does not give the usual matrix product. The latter is obtained by sandwich-
ing the * symbol in between % ’s as in:

> Z <- X %*% X

This command gives an error message

> Z <- X %*% X
Error in X %*% X : non-conformable arguments

for one cannot multiply a matrix with 2 columns by a matrix with 8 rows. However,
the commands

> Z1 <- X %*% t(X)
> Z2 <- t(X) %*% X

will produce an 8 by 8 matrix Z1, and a 2 by 2 matrix Z2. Indeed, we used the R
command t(X) which computes the transpose of the matrix X. Notice that both ma-
trices are non-negative definite. This property is characteristic of variance/covariance
matrices of multivariate random vectors, and it plays an important role in multivari-
ate random simulation.

9.1.2.1 Tidying Up, Saving Objects, and Exiting the Workspace

Exiting R can be done at any time with the menu item File � Exit, or by typing the
command q(). In either case, you will be asked if you want to save the contents of
the workspace. Answering YES is equivalent to the command save.image(). In
fact, you do not have to wait for the end of a session to save the workspace. It is possi-
ble to save the workspace to a file at any time with the command save.image().
An image of the workspace will be saved in the current directory/folder under the
name .RData or RData. This image will automatically be restored when the pro-
gram R is launched in this directory/folder. It is also possible to give an alternative
name to this image by specifying a filename (enclosed in double quotes) for the ar-
gument of save.image. Individual objects can be saved with the command save.
This command writes the objects whose names are passed as parameters to a spec-
ified file. The objects can be read back from the file at a later date by using the
function load.

The number of objects created during an R session can be very large, and can
quickly clutter your disk or at least your workspace. In order to save memory, it
is good practice to remove the objects which you will not need again by using the
command rm. For example
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> rm(X,Y)

will delete the objects X and Y if they are in the active workspace.
All the objects saved with the methods described above are written to binary files

which cannot be opened and read by other programs: only R can open and re-use
them. The function dump is a convenient way to produce text representations of the
objects. The function dump needs two parameters; a vector of names of objects to
be found in the workspace, and a file name to dump the representations to. A typical
usage reads:

> dump(c("Z1","Z2"),"mymatrices")

When needed, a dump file like mymatrices can be sourced with the command
source("mymatrices") into another R session.

9.1.3 Random Generation and White Noise

The commands

> WN <- rnorm(1024)
> plot (WN,type="l")

create a vector WN of length 1,024, and produce a sequential plot of the entries of
this vector. The entries of WN are realizations of independent Gaussian (i.e. normal)
random variables with the same distribution N(0, 1). We specified the length of the
random vector but we did not specify the values of the parameters of the distri-
bution. R uses the default values 0 and 1 for the mean and the standard deviation
of the normal distribution. The function plot gives a sequential plot of the vec-
tor WN, by plotting its values against the variable which takes the values 1, 2, . . .,
1,024. Without providing other arguments, the function plot outputs a plain scat-
terplot., i.e. draws a discrete set of isolated points on the plane of the graph. Adding
type = "l" forces the plotting routine to join the successive points of the scatter-
plot by a line segment. This form of the plot is often more instructive than a plain
scatterplot.

NB: A command WN <- rnorm(1024,1.2,4.0) would have created a
sample of 1,024 of realizations of independent identically distributed (i.i.d. for short)
variates from the Gaussian distribution with mean 1.2 and standard deviation 4, in
other words the distribution N(1.2, 16) if we use the standard notation used in the
text. The commands:

> par(mfrow=c(2,1))
> plot(WN,type = "l")
> plot(WN[1:64],type = "l")
> par(mfrow=c(2,1))

divide the graphics window into two subplot areas, one on the top of the other, give
a time series plot of the full WN vector on top, a plot of the first 64 entries of the
vector WN, and reset the graphic window to a single plotting area. The results are
shown in Fig. 9.1. But before we comment on the output, notice how we extracted
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a subvector from a vector, just by providing the range 1:64 of the values of the
indices we wanted to keep in the subvector. In the above command, we did subscript
the vector WN to only keep the set of its first 64 entries. To do so, we specified the
range of the indices we wanted to keep. Subscripting is also conveniently used to
extract sub-matrices of matrices. For example, if X is a matrix, say with 5 rows and 6
columns, the command X[1:3,1:3]will produce the 3 by 3 matrix extracted from
the top-left corner of X. A similar form of subscripting is frequently used to extract
a column or a row, or a set of columns or a set of rows of a matrix. For example,
X[,2] produces a vector equal to the second column of X, X[2:4,] produces a
matrix with three rows and as many columns as X, the three rows of the new matrix
being the rows numbers 2, 3 and 4 of the original matrix X.

We will see that subscripting is a very powerful tool to manipulate objects, and
we will make full use of its versatility in our data analyzes. Coming back to Fig. 9.1,
the top plot shows what we should expect from a white noise: very erratic because
of the lack of correlation of the successive entries of the series. Identifying a white
noise is of crucial importance to a statistician. Indeed, most model fitting efforts
are devoted to the identification and the extraction of organized structures from the
data. This is usually done up until the remainder terms (which we call the residuals)
form a white noise. From that point on, it is unreasonable to try to extract any more
information, and statistical inference should take place at that time, and definitely
before we start trying to fit the noise.

Strangely enough, the bottom plot of Fig. 9.1 looks smoother. The reason is sim-
ple: it is viewed on a very different scale. We plotted one 16th of the data on a plot
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Fig. 9.1. Sequential plot of the full white noise series WN (top) and of the series of its first 64
entries (bottom)
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with the same width! The white noise look which was identified earlier has practi-
cally disappeared. It is important to realize that, looking at the same data at different
scales will leave different visual impressions. Don’t be fooled by this artifact of the
graphic settings used, and always look at the ticks appearing on the axes before
forming an opinion on the characteristics of the data actually plotted.

9.1.4 More Functions and for Loops

The function diff should be viewed as a discrete analog of the operation of dif-
ferentiation for functions of continuous variables. We learned in calculus that the in-
verse operation is integration. The discrete analog is given by the function cumsum.
If we apply it to the white noise vector WN:

> RW <- cumsum(WN)

we get a numeric vector RW which represents a sample of length 1,024 from a ran-
dom walk. The sequential plot of RW (i.e. the plot of the values of RW against the
successive integers) is given in the left pane of Fig. 9.2. Let us now try to create an
object according to the Samuelson’s model for stocks. According to this model, the
time evolution of a stock is represented by the exponential of a random walk (with
a given volatility) with drift given by the rate of appreciation of the stock. More
precisely, we define the objects SIG, MU, TIME and STOCK by:

> DELTAT <- 1/252
> SIG <- .2*sqrt(DELTAT)
> MU <- .15*DELTAT
> TIME <- (1:1024)/252
> STOCK <- rep(0,1024)

for the volatility, the rate of return, the time (expressed in years) and an initial zero
vector for the stock (by repeating 0 as many as 1,024 times with the command rep).
With these objects at hand, one should be able to fill in the entries of the vector
STOCK with the commands:

> for (I in 1:1024) STOCK[I] <- exp(SIG*RW[I]+MU*TIME[I])

This command is typical of the use of the for loops in R. Unfortunately, in R like
in all other implementations of interpreted languages, computations with loops are
very slow, and they should be avoided whenever possible. There is a very simple
way to avoid the above loop. Indeed, most numerical functions in R when applied to
a vector (resp. matrix, array, . . .) will create a vector (resp. matrix, array, . . .) with
entries given by the computations of the function on the entries of the vector (resp.
matrix, array, . . .) passed as argument to the function. So in the above example, the
command:

> STOCK <- exp(SIG*RW+MU*TIME)

will give the same result, and the computations will be much faster. The plot of the
entries of this vector is given in the bottom pane of Fig. 9.2. The latter was produced
with the commands:
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> plot(RW,type="l")
> title("Sample of Size 1024 from a Random Walk")
> plot(TIME,STOCK,type="l")
> title("Corresponding Geometric Random Walk with Drift")
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Fig. 9.2. Sequential plot of random walk sample RW (top) and of the corresponding geometric
random walk with drift (bottom)
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Notice that we use the command plotwith two arguments. We need to pass two
vectors to the command plot. The first one gives the values of the first coordinates
of the points to plot while the second vector gives the second coordinates of these
points. We use the option type="l" to joint the points by straight line segments to
get the visual impression of a continuous curve instead of isolated points. The plots
look very similar, until we notice the difference in scale on the vertical axes.

9.1.5 Importing Data

In most data analysis applications, the data are not created within the statistical pack-
age used for the analysis: they have to be imported. We give several examples as
illustrations. These examples can be used as templates for further applications and
to work out the problems (homework assignments) given in the text.

9.1.5.1 Using Packages

Libraries of packages have been developed to add functionality to the core distribu-
tion of R. Packages are sets of data and R functions bundled together with the intent
to be used as “add-on”s to a session. For the purpose of this book, you will only need
the core distribution of R and the package Rsafd which was developed for use with
this book. The package is loaded into R using the library command:

> library(Rsafd)

In this way, all the functions used in the book, as well as all the data sets used in
the applications, illustrations, and problems become available to your R session. Li-
braries are loaded for the life of a session. In other words, you do not need to unload
them when you exit, but you need to reload them each time you start the program
and you want to use its contents. This shortcoming can be remedied with the use of
the function .First.

9.1.5.2 The Function .First

Each time the program R is started, and even before any command from the user
can be executed, the program looks for a function .First, and if it exists and is
found, R runs it first. So any instruction or command included in such a function will
be executed at the start of the program. This is especially convenient for repetitive
loading of libraries and data sets which are needed on a regular basis. The following
example is clearly self-serving. Typing the command

> .First

at the prompt will let us know if such a function already exists on our system. If it
does, its code is displayed and we can see what it does or does not do. Assuming for
the moment that such a function does not exist, typing the command

> fix(.First)
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opens a window on the desktop. A template for the function .First is proposed.
We only need to type the code in between the two curly brackets. See below for a
more detailed discussion of how to write functions. Let us type

library(Rsafd)
cat("\n Welcome to my world\n\n")

save the content of the window and close it. From now on, each time a new R session
is started, the command library(Rsafd) is executed, followed by a carriage
return, the display of the text “Welcome to my world” followed by two carriage
returns.

9.1.5.3 Attaching a data.frame

> attach(hills)

Doing so makes it possible to use all the variables in this frame by simply referring
to their names. For example, the following commands produce the results shown in
Fig. 9.3.

> plot(climb,time)
> plot(dist,time)

Fig. 9.3. Scatterplot of the record time versus climb (left) from the hills data frame, and
of the time versus the distance variable dist (right)
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9.1.5.4 Importing the Contents of Text Files in R

As an example, we show how to import the text (ASCII) file containing numerical
data into your R session. We assume that the file is called HOWAREYOU.txt. This
data vector is used in Chap. 6 as a mere illustration. For the sake of definiteness we
assume that the file is located in the directory

C:\My Documents\ORF405\book\data.

We give explicit commands as if we were working under Windows, similar com-
mands would work under Unix or Mac OS, obviously after replacing the backward
slashes by forward ones in the file names. We could open the file with a text editor to
check its contents. We show the first seven rows of the file for the sake of illustration.

0.0000000000000000
0.0359678408504965
0.0635196843758394
0.0750752080020106
0.0628095887777292
0.031177878417794
-0.00520235015344319
-0.0294474884975495

Under Windows, we import this file into R with the dialog created by the File �
Import Data � From File, and clicking on the button BROWSE to navigate to the
location where the file is, and selecting it. The full pathname of the file HOWAREYOU
appears, its being an ASCII file also shows, and OK’ing all that allows R to create
an R object called HOWAREYOU in the current data base. The same result could be
obtained with the command:

> HOWAREYOU <- scan("C:\\My Documents\\......\\book
\\data\\HOWAREYOU")

which could also be used under Unix or Mac OS provided the double backward
slashes \\ are replaced by single forward ones /. As the result of the next com-
mand shows, it is a vector of length 5,151 and we can print its first entries using the
command head:

> length(HOWAREYOU)
[1] 5151
> head(HOWAREYOU)
[1] 0.000000 0.035968 0.063520 0.075075 0.062810 0.031178

9.1.5.5 Importing R Dumps

The previous example was concerned with plain text files. Next, we consider the
case of text files produced by R, and containing information about the R-objects they
were issued from. The main feature of this procedure is to be able to port files from
one version of R to another and from one platform to another. For example, files
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created and manipulated under Unix, Linux or Mac OS can be easily read and
manipulated under Windows. R objects can be dumped to a text file with the dump
command (see the help file for details). The format of these text files is such that they
can be read by any other version of R irrespective of the platform. Under Windows,
a text file resulting from dumping R objects should be open from the dialog created
by File � Open, or by double-clicking the open folder icon in the task bar. R creates
a script window, and displays the contents of the text file in this window. Hitting the
F10 key, or running the script using the menu item Script � Run F10, is what is
needed to create the desired object. These dumps are text files and as such, they can
be opened and edited with a text editor. We suggest to use the extension .asc or
.R to distinguish these dumps from regular text files for which the extension .txt
is commonly used. Note that all of the data sets used for illustration purposes in the
text, or needed in the problem sets are included in the library Rsafd.

9.1.5.6 Getting Data from the Web via Excel

We now show how to import data into an R session when they were originally pro-
cessed and saved within Excel. For the sake of definiteness we assume that the data
were saved in the form of a .csv file, and for the purpose of illustration we choose to
work with the data of Calpine, an independent power producer whose headquarters
are in San Jose CA.

We import the data in an R object by running the command

> CPN.tab <- read.csv("calpine.csv")

One may have to give the full path name of the file “calpine.csv” depending upon
its location on the disk. With this command, the content on the table saved from the
Excel spreadsheet are imported into a data frame named CPN.tab.

Indeed, typing the command

> class(CPN.tab)
"data.frame"

confirms that this is indeed the format in which it was imported into R. We can
check the dimensions of this data frame and verify that the data have been imported
properly as follows.

> dim(CPN.tab)
[1] 2101 7
> head(CPN.tab)

Date Open High Low Close Volume Adj..Close.
1 27-Jan-05 3.38 3.42 3.33 3.36 5469600 3.36
2 26-Jan-05 3.45 3.45 3.38 3.40 10899700 3.40
3 25-Jan-05 3.30 3.40 3.30 3.37 12769200 3.37
4 24-Jan-05 3.12 3.27 3.10 3.25 9242600 3.25
5 21-Jan-05 3.23 3.23 3.07 3.13 13690600 3.13
6 20-Jan-05 3.01 3.31 3.01 3.24 25324300 3.24
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which displays the top six rows of the data frame. Using the command tail
(CPN.tab) would display the last six rows. Notice that the small row indexes
correspond to the most recent quotes. We shall come back soon to this strange con-
vention. We can extract and plot the daily close prices of Calpine stock.

> CPN.close <- CPN.tab[,5]
> plot(CPN.close,type="l")

The plot is reproduced in the right pane of Fig. 9.4. The plot function produces
a plot of the entries of the vector CPN.close against the integers in increasing
order, the parameter type="l" stating that straight lines should connect the points
of the plot to give the impression of a continuous graph. The remark made above is
confirmed. The increasing dates are running from right to left which is quite unusual.
To conform with the standard convention, we need to reverse the order of the data
using the function rev provided by R,. The data file CPN is included in the library
Rsafd.

> CPN <- rev(CPN.close)

Fig. 9.4. Daily Calpine closing prices as imported from the internet. The data does not appear
in the natural order
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9.1.6 Programming in R: A First Function

When we suspect that a set of R commands will be needed frequently, it is important
to save them, either separately or as part of a workspace. Moreover, it is also possible
to encapsulate these commands in a script-like function which can be saved and re-
used. This is especially true when we can structure the set of commands in order
to take parameters as arguments. We illustrate this point with the example of the
Black-Scholes formula for the price of a European call option. See next appendix
for a thorough discussion. This formula states that the price C at time t when the
underlying asset value is S, of a European call option with maturity T and strike K
is given by the formula:

C = SΦ(d1)−Ke−r(T−t)Φ(d2) (9.1)

where we used the notation

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t. (9.2)

The remaining parameters appearing in these formulae have the following meanings.
r is a numerical constant which stands for the short interest rate, and σ is the annu-
alized volatility at which the option is priced. Also recall that throughout the book,
we use the notation Φ for the cumulative distribution function of the standard normal
distribution. As explained in Chap. 1 computing values of this function in R can be
done with the command pnorm.

Notice that, instead of depending separately upon the date t at which the option
is priced and the date of maturity T , the actual price of the option depends only upon
the difference τ = T − t. The interpretation of this difference is very simple: it is the
time to maturity of the option.

For the sake of illustration, let us compute in R, the price of an option at the
money which matures in 90 trading days when the underlying asset is valued at 100,
the short interest rate is 10% and the option is priced at 20% annualized volatility. We
set up the parameters of our computation by typing the following in the command
window.

> S <- 100
> K <- S
> R <- .1
> SIG <- .2
> TAU <- 90/252

The time spans need to be expresses in years, so we chose to divide 90 by the (ap-
proximate) number of trading days in 1 year in order to assign to the variable TAU
the time to maturity in years. We can now compute the values of the constants d1
and d2 defined above. We choose to do so with the following commands

d1 <- log(S/K) + TAU * (R + SIGˆ2/2)
d1 <- d1/(SIG * sqrt(TAU))
d2 <- d1 - SIG * sqrt(TAU)
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Finally, we assign the price of the option to a variable C by typing the command

> C <- S * pnorm(d1) - K * exp( - R * TAU) * pnorm(d2)

and typing C at the prompt will return the value of the option price as given by the
Black-Scholes formula.

> C
[1] 6.643238

Very likely, we will want to compute many more prices of options. Also, we may
want or need to compute values of the parameters which guarantee a given option
price. For this reason it is convenient to encapsulate the commands used above in
a single script which can be run more efficiently. R has this capability, allowing
us to define home made functions. We can do just that by typing the following in
the command window, or by using the command fix(bscall) which opens a
window in which we can type and edit the code of the function, or even by saving
the text below in a file, say myfunction.txt and then sourcing the file with the
command source(myfunction.txt).

> bscall <- function(TAU=90/252, K=100, S=100, R=.1, SIG=.2)
{
# Parameters: TAU time to maturity in yrs
# K strike
# S current value of the underlying
# R yearly interest rate
# SIG annualized volatility
# Return Black-Scholes call price

d1 <- log(S/K) + TAU * (R + SIGˆ2/2)
d1 <- d1/(SIG * sqrt(TAU))
d2 <- d1 - SIG * sqrt(TAU)
C <- S * pnorm(d1) - K * exp( - R * TAU) * pnorm(d2)
C

}

The following remarks are in order, especially if this is your first R function.

• As defined, the function bscall can be used without any parameters. Indeed,
we chose to give default values to all the parameters, so each time a value is
not specified for a parameter, the default value contained in the definition of
bscall() is used. In particular the call bscall() produces the same result
as bscall(90/252.100.100..1,.2);

• Whatever is found on the same line and to the right of a symbol # is ignored at
run time. This is used to include comments which explain what the function is
doing and what the parameters mean. This is extremely useful when you re-use
a function long after it was originally written;

• Typically, a function in R is a set of commands included in between two curly
brackets. The value of the object present on the last line of the code of the func-
tion is what is returned by a call to the function: hence the last line being C in the
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present situation. A safer practice would be to specify the object returned by the
function with the R function return, and replace the last line of the code of the
function by return(C).

We make extensive use of this function in the examples given in this book.
It is always a good idea to name your functions in such a way that their names

will hint at what the functions are actually doing. Moreover, if you use a name al-
ready used by R, you will (at least temporarily) remove access to this R function. For
example, if you were to create a function c with the command

> c <- function(x){x+1}

you would automatically replace the original concatenation core function c by your
function. Running the command Y <- c(12) would assign the value 13 to Y,
and the command dim(X) <- c(4,4) would now produce an error message.
Fortunately, the concatenation core function c would only be temporarily masked by
your function, and the system would restore it the next time you launch the program.
There was no danger of masking the concatenation function when we computed the
price of an option because we used an upper case letter C and R is case sensitive.

9.2 APPENDIX B: A CRASH COURSE ON BLACK-SCHOLES OPTION

PRICING

This appendix presents the background material which we did not want to include in
the part of the chapter on nonparametric regression devoted to the pricing of options.
This material can be found in any basic textbook on financial mathematics. It is
reproduced here for the sake of completeness.

9.2.1 Generalities on Option Pricing

For the sake of simplicity the following discussion is restricted to plain vanilla op-
tions on an underlying asset which can be thought of as a stock or an index. More-
over, to make our life easier, we use the terminology option when we actually mean
European call option. The problem of pricing European put options can be addressed
in exactly the same way, or can be reduced to the pricing of European call options
because of a parity argument. We leave to the interested reader the easy task of ad-
justing the following discussion to this case. Also, we shall not discuss the pricing
of options with American exercise or the so-called exotic options, such as barrier
options.

An option is a contract which gives the buyer (of the option) the right (but not the
obligation) to purchase at time T (called the expiration or maturity date of the option)
one unit of the underlying asset or instrument at an agreed upon price K (called the
strike price of the option). Such an option is a contingent claim and the contract
unambiguously defines the payoff of the claim. In the situation at hand the payoff
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is a simple function of the price of the underlying asset at expiration. If we use the
notationSt to denote the price of this underlying asset at time t, then the payoff of our
option is given by f(ST ) where the function f is defined by f(x) = max{x−K, 0}.
Indeed, if at time of expiration the price ST of the asset is smaller than K , then the
option is worth nothing. Why would we buy one unit of the underlying for K if we
can get it for less on the open market! Moreover, if the price ST is greater than K ,
then it is clear that one should exercise the option, buy the unit of the underlying for
K and re-sell it immediately on the open market for a profit of ST −K . The graph
of the payoff function is given in Fig. 9.5.

K

K0

f(S)

S

Fig. 9.5. Graph of the “Hockey Stick” function giving the payoff of European call options

We shall use the notation CT,K(t, S) for the price of such an option at time t if
the price (at this time) of the underlying asset is S.

9.2.1.1 Stochastic Models for Asset Prices

Obviously, the value ST of the asset price at maturity cannot be predicted with cer-
tainty, and hence, it is reasonable to model it as the outcome of a random variable.
Under this assumption the payoff is also a random variable, and the value of the op-
tion now depends on the probability that the price ST at expiration is lower than the
strike K , and on the various probabilities of the different ways this price could end
up being greater than the strike. Because of this inherent randomness, it is reasonable
to price the option by expectation, as an average over all the possible future scenar-
ios weighted by their respective probabilities. At any given time t one can observe
the current value of the underlying asset, say S, and consider the expectation of the
payoff (which takes place precisely at time T since we are only considering options
with an European exercise). It is quite clear that, because of the time value of money
(from our discussion of the fixed income markets, we agree that 1 dollar later does
not sound as valuable as 1 dollar now) this expectation should be discounted to give
the current value of this expected payoff. Consequently, one is naturally lead to the
following formula for the price of the option:
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CK,T (t, S) = e−r(T−t)
E{fK(ST )|St = S}. (9.3)

The positive number r > 0 appearing in the exponential in the right hand side stands
for the interest rate. It is assumed to be constant over the life of the option. Finally
the expectation is the expectation of the pay-off fK(ST ) conditioned by the knowl-
edge that at time t the price of the underlying is S (i.e. St = S). This conditional
expectation (like any other expectation) can be a sum when the random variables are
discrete, but in general, it can be computed as an integral if one knows the density of
the random variables in question. In the present situation, the expectation is in fact
a conditional expectation, but this does not change the fact that the expectation can
be computed as an integral: we just have to use the conditional density instead of the
a-priori density. So, if we denote by p( · |S) the density of the random variable ST of
the asset price at time T knowing that St = S, then the expectation in (9.3) can be
computed as:

E{fK(ST )|St = S} =

∫
fK(s′) p(s′|S) ds′. (9.4)

Intuitively, p(s′|S) gives the probability that ST = s′ given the fact that St = S.
This probability density is often called the objective density or the historical density
because it describes the statistics of the price of the asset at time T , as predicted by
historical data. It depends upon many factors which need to be specified.

9.2.1.2 Aside on Dynamical Models

The static models of the statistical distribution of the underlying asset at a fixed given
time are enough to price European call and put options, but they cannot suffice for
the pricing of options whose settlements depend upon the entire trajectories of the
underlying instruments. Even though we will not need the following material in this
chapter, we include it as preparation for the forthcoming discussions in the last chap-
ters of the book. Obviously, this paragraph can be skipped in a first reading.

One of the most popular dynamical models for stock prices is certainly the
so-called geometric Brownian motion model proposed by Samuelson and used by
Black, Scholes and Merton in their ground-breaking work on option pricing in the
early 1970s. The widespread use of their pricing formulae earned Merton and Sc-
holes the Bank of Sweden Prize in Economics in Memory of Alfred Nobel, usually
called the Nobel prize in economics, in 1997. Fisher Black passed away in 1995.
According to this model, the dynamics of the underlying asset price are given by the
stochastic differential equation:

dSt = St[μdt+ σdWt], (9.5)

where the term dWt is a white noise in continuous time (some sort of a mathematical
monstrosity to which one has to give a rigorous meaning). The deterministic constant
μ ∈ R represents the rate of growth of the (logarithmic) return of the stock, while
σ > 0 represents the volatility of the stock (log) return. Because the coefficients
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are constant, the stochastic differential equation (9.5) can be solved explicitly. The
solution is given by:

St = S0e
[μ− σ2

2 ]t+σWt (9.6)

and the unexpected term −tσ2/2 appearing in the exponential is called the Ito cor-
rection. This model is called the geometric Brownian motion model for stock prices.
These technical facts are quoted here as preparation for Sects. 8.4, 8.4.2 and 8.5.1 in
Sect. 8.5.

We now come back to the derivation of a pricing formula for the option. The
important fact is that, conditioned on being equal to S at time t, the asset price at
time T is log-normally distributed with mean logSt + (μ − σ2/2)τ and variance
σ2τ where τ = T − t. In other words:

logST ∼ N(logSt + (μ− σ2/2)τ, σ2τ). (9.7)

This fact is a consequence of the above choice for a dynamical model, but it can also
be postulated independently. In any case, under these conditions, the expectation in
(9.4) can be computed explicitly (see details below for a similar computation).

9.2.1.3 Risk Neutral Pricing

Even though the expectation of formula (9.3) is a very natural candidate for the price
of the option, even in Samuelson’s geometric Brownian motion model, it is not the
correct one! Indeed, if options were priced in this way, market makers would have
arbitrage opportunities making it possible to make a profit starting from nothing. So
since we all know that there is no such a thing as a free lunch, something must be
wrong with the pricing formula (9.3) and the distribution (9.7). In the absence of
arbitrage, and for reasons well beyond the scope of the book, the option can indeed
be priced by discounting an expectation, as long as the expectation is computed
with respect to another log-normal distribution. This new density is called the state
price density, and in the case of the Black-Scholes theory, it is obtained by merely
replacing μ by r. In other words, in order to price an option on an underlying asset,
we act as if the rate of growth of the (log) returns was the short interest rate. This
justifies the name risk neutral probability for this new log-normal density.

9.2.1.4 Black-Scholes Formula

For the sake of completeness, we give the details of the computations leading to the
Black-Scholes formula for the price of the option. This formula will be used in one
of the nonparametric approaches presented below.

Using the explicit form of the density of theN(0, 1) random variable and formula
(9.7), we derive the value of CT,K(t, S) as follows:

CT,K(t, S) =
e−r(T−t)
√
2π

∫ +∞

−∞
f
(
Se(r−σ

2/2)(T−t)eσ
√
T−tz
)
e−z

2/2 dz. (9.8)
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Now, using the fact that f(x) = max{x − K, 0} = (x − K)+ in the case of a
European call option and using the notation:

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t,

we get:

CT,K(t, S) =
e−r(T−t)
√
2π

∫ +∞

−∞

(
Se(r−σ

2/2)(T−t)eσ
√
T−tz −K

)+
e−z

2/2 dz

=
1√
2π

∫ +∞

−∞

(
Se−σ

2(T−t)/2+σ√T−tz −Ke−r(T−t)
)+

e−z
2/2 dz

=
1√
2π

∫ +∞

−d2

(
Se−σ

2(T−t)/2+σ√T−tz −Ke−r(T−t)
)
e−z

2/2 dz

=
S√
2π

∫ +∞

−d2
e−σ

2(T−t)/2+σ√T−tze−z
2/2 dz

−Ke−r(T−t) 1√
2π

∫ +∞

−d2
e−z

2/2 dz

= SΦ(d1)−Ke−r(T−t)Φ(d2),

where we performed the substitution y = z + σ
√
T − t in the first of the two inte-

grals. Recall that we use the notation Φ for the cumulative distribution function of
the standard normal distribution. We summarize this computation in the following
box:

The price at time t of a European call with strike K and maturity T is
given by the formula:

CT,K(t, S) = SΦ(d1)−Ke−r(T−t)Φ(d2) (9.9)

if the price of the underlying risky asset is S at time t.

Notice that, instead of depending separately upon t and T , the conditional density
and the actual price of the option depend only upon the difference τ = T − t. The
interpretation of this difference is very simple: it is the time to maturity of the option.

Figure 9.6 shows plots of the pricesCT,K(t, S) (together with the pricesPT,K(t, S)
of the corresponding European put options) for various times to expiration T − t
when the strike price K , the volatility σ and the interest rate r are fixed. We notice
that when regarded as functions of the underlying price S, the European call and
put values appear as smoothed forms of the original hockey stick pay-off functions.
Moreover,CT,K(t, S) vanishes near small values of S while PT,K(t, S) vanishes for
large values of S.
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Fig. 9.6. Plots of the prices of European call (left) and European put (right) vanilla options
as functions of the underlying price S when all the other parameters are held fixed. We used
the values K = 1, σ = 15%, r = 10% and T − t = 0, 30/252 = 0.1190476, 60/252 =
0.2380952, 90/252 = 0.3571429

9.2.1.5 Historical Volatility, Implied Volatility and the Smile Effect

Since the rate of growth μ of the stock was evacuated from the formula for the price
of the contingent claims, the only parameter from the dynamics of the risky asset
that is entering these formulae is the volatility σ and the problem we wish to discuss
now is the estimation of its value.

In theory, the observation of a single trajectory (realization) of the price should
be enough to completely determine the value of this parameter. This would be true
if the price process St could be observed continuously! Unfortunately this cannot be
the case in practice and we have to settle for an approximation. Given observations
Stj of past values of the risky asset (usually the times tj are of the form tj = t−jδt),
we use the fact that in the Black-Scholes model the random variables log(Stj/Stj+1)
are independent and normally distributed with mean (μ−σ2/2)δt and variance σ2δt.
Consequently, the volatility can be estimated by the formula:

σ̂ =
1

(N − 1)
√
δt

N−1∑
j=0

[log
Stj
Stj+1

− LS]2, (9.10)

where the sample mean LS is defined by the formula:

LS =
1

N

N−1∑
j=0

log
Stj
Stj+1

.

The volatility estimate provided by formula (9.10) is called the historical volatility.
Even though LS provides (at least up to the multiplicative factor δt) an unbiased

estimator of the growth rate μ, this fact is not used since the growth rate μ does not
appear in the Black-Scholes formula of the arbitrage pricing of the claim.
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Fig. 9.7. Values of the price of a European call option as a function of the volatility when all
the other parameters are held fixed. We used the values, T − t = 90/252, r = 10%, S = 1.5
and K = 1

Everything seems to be fine except for the fact that we are now about to encounter
our first shocking evidence that the market does not have the good taste to follow the
Black-Scholes model. This will be the first of a series of rude awakenings.

A quick look at Fig. 9.7, which gives the plot of C = CT.K(t, S) as a function
of σ when all the other parameters (namely r, T , K and S) are held fixed, shows
that C is an increasing function of σ, and consequently, that there is a one-to-one
correspondence between the price of the option, and the volatility parameter σ. For
each value of C, the unique value of σ which, once injected into the Black-Scholes
formula, gives the option price C, is called the implied volatility of the option. This
one-to-one correspondence is so entrenched in the practice of the markets that prices
of options are most of the time quoted in percentage points (indicating a value for
the implied volatility) rather than in dollars (for a value of C).

We now demonstrate the fact that the assumptions of the Black-Scholes model
are in contradiction with market reality. We use quotes from January 6, 1993 (when
the S&P index was at the S = 435.6258 level) on European calls on the S&P 500
index with maturity February 19, 1993, but with different strike prices. In general,
when everything else is fixed, for a given set of strike prices Kj we have the cor-
responding call prices Cj quoted by the market. If the Black-Scholes model was in
force we should expect that these quotes had been computed using formula (9.1)
with a single volatility value for σ, the differences in the quotes being due only to
the differences in the strikes (since the expiration is the same for all these options).
Since given a strike price there is a one-to-one correspondence between option price
and volatility, one should be able to compute the (implied) volatility used to price all
these options. Moreover, plotting the values of these implied volatilities versus the
corresponding strike prices one should expect a flat graph indicative of the unique-
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Fig. 9.8. Plot of the implied volatility values versus the strike prices of call options with
the same maturity on the S&P 500 index. A convex (upward) curve is found instead of the
horizontal line predicted by the Black-Scholes theory. This curve is called the smile

ness of the volatility used to price the options. Figure 9.8 shows that this is certainly
not the case! The volatility plot forms a convex curve which has been called the
volatility smile. This volatility smile is striking empirical evidence of the inadequacy
of the Black-Scholes option pricing formula.

NOTES & COMPLEMENTS

The internet is a great source of information on the open source code project, the language
R, and the many contributed libraries which you can download and use freely to enhance the
working capabilities of the core language.
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volatility, 56, 410, 501, 554
historical, 57, 556
implied, 410, 557
ratio, 297, 299
smile, 500, 558
stochastic, 530

volvol, 521

W
wavelet

expansion, 282
packets, 341

weakly stationary, 357
weekly return, 34
Weibull distribution, 77, 82
weights, 283
well posed, 210
white noise, 49, 51, 367
Wiener process, 501, 503, 506, 509
workspace, 538, 549

Y
yield curve, 249, 257
Yule-Walker equation, 373, 425
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