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Preface

This volume features selected and peer-reviewed contributions from the Interna-
tional Conference on Health Care Systems Engineering (HCSE). This conference
provides an opportunity to discuss operations management issues in health care
delivery systems. The emphasis is on quantitative methods for the analysis, design
and management of health care systems.

The participants are faculties, students and medical doctors from several dis-
ciplines. The main objective is fostering the collaboration between operations
management scientists and clinicians.

Scientists and practitioners have the opportunity to discuss about new ideas,
methods and technologies for improving the operation of health care organizations.
The event emphasizes the research in the field of health care systems engineering
developed in close collaboration with clinicians.

The conference took place in Milan, Italy, between the 22nd and the 24th of
May 2013 in the San Raffaele Hospital. A limited number of papers was selected
under a double-blind review process. I would like to thank all of the Scientific
Committee and the 43 anonymous reviewers for the selection of the works. In total,
24 papers are included in the conference proceedings. Each paper was presented at
the conference and discussed with experts from the clinical field.

I would like to express my deep gratitude to our invited speakers, Dr. Gianlorenzo
Scaccabarozzi for agreeing to address the conference on the “Emerging Needs and
Future Perspectives of Italian Home Care Providers”, and Prof. Xiaolan Xie with
the topic of “Mathematical Modeling of Healthcare Engineering Problems”. Their
contributions are perfectly in line with the aim of the conference which tries to show
the two facets of the same game: problems and related solutions.

I would like to thank all the speakers, authors and discussants of the papers
together their accompanying persons for their participation to HCSE.

I gratefully acknowledge the Organizing Committee: Riccardo Dodi, Nicla
Frigerio, Ettore Lanzarone, Elettra Oleari, Giulia Pedrielli, Alberto Sanna and
Semih Yalcindag.
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vi Preface

My hope is that this conference will serve as a forum for researchers, academics
and clinicians in the broad area of health care systems engineering to discuss their
most recent research findings and to provide them with opportunities for technology
transfer.

Milan, Italy Andrea Matta
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Chapter 1
Home Care Services Delivery: Equity Versus
Efficiency in Optimization Models

Paola Cappanera, Maria Grazia Scutellà, and Filippo Visintin

Abstract Home Care Services (HCS) delivery is a quite recent and challenging
problem motivated by the ever increasing age of population and the consequent need
to reduce hospitalization costs. Integer Linear Programming (ILP) models have been
recently proposed in [5] to formulate a very general HCS problem, with the aim at
balancing the operator workload. In fact, in Home Care setting “equity” criteria
are crucial to guide the decisions. “Efficiency” criteria, i.e., the minimization of
the operating costs, are essential as well. The aim of this paper is thus to compare
equity criteria versus efficiency criteria in HCS. Preliminary computational results
on a set of real instances are presented and analysed. Specifically, two alternative
“balancing” objective functions are compared via optimization and simulation, by
showing their impact on diverse relevant Quality of Service indicators, including
cost indicators.

1.1 Introduction

Nowadays, the ever increasing average age of population, at least in industrialized
countries, and the increased costs for the consequently required care, compel the
medical care units to offer Home Care Services (HCS) in an attempt to limit costs.
Elderly people have in fact varying degrees of need for assistance and medical
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treatment, and it may be advantageous to allow them to live in their own homes
as long as possible. In addition, medical treatments carried out at patients home
impact favorably on their quality of life. Therefore, HCS are a cost-effective and
flexible instrument in the social system.

Interestingly, in Home Care setting the minimization of the operating costs, that
is a common objective of the stakeholders (either private or public) providing the
service, is not the only objective to be taken into account to guide the Home Care
decisions. In fact, another objective typically used in HCS is the balancing of the
utilization factor among the operators, where the operator utilization factor is the
total workload of the operator in the considered planning horizon over his/her
maximum possible workload. In order to achieve this objective, one possibility
is to maximize the minimum operator utilization factor. Hereafter this balancing
objective function will be referred to as maxmin. Anyway, an alternative balancing
function may be defined, which consists in minimizing the maximum operator
utilization factor. This alternative function will be indicated as minmax. Both
formulations have been proposed in [5]. In the context of assignment decisions in
HCS, the maxmin criterion has been also investigated in [9].

The aim of this paper is to compare the two balancing objective functions in
an extensive way. Specifically, maxmin and minmax are compared both via an
optimization approach and also via a simulation experimentation performed on a
set of real HCS instances, by showing their impact on diverse relevant Quality of
Service (QoS) indicators. This set of QoS indicators includes the mean operator
utilization factor over the considered planning horizon, the corresponding range, i.e.
the difference between the maximum and the minimum operator utilization factors,
and the daily variation of the operator utilization factor. In addition, in order to
provide a hint about the influence of such equity measures on the HCS efficiency,
QoS indicators related to the operated service time and the operator travelled time
are also investigated.

The results of the preliminary computational experiments are very interesting.
In fact, they show that the maxmin criterion is able to return more balanced HCS
solutions, in the sense that the difference between the maximum and the minimum
operator utilization factors is smaller than the one returned by minmax. The maxmin
criterion is also preferable in balancing the operator traveling time and service time.
This is true not only by looking at the overall planning horizon, which is a week
in our experiments, but also at a daily level. Such stronger equity achievements
are obtained for not too high a price in the increased mean operator utilization
factor, mean operator service time and mean operator traveling time. On the other
hand, the minmax criterion appears to be more suitable for the minimization of
the operating costs since it always returns solutions with the smaller total travelled
time.

The achievements above have been shown first in a deterministic setting,
via optimization, and then confirmed by the simulation experiments, where the
robustness of the computed HCS solutions against travel time and service time
variability has been evaluated.
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The plan of the paper is the following. In Sect. 1.2 we introduce the HCS
problem, and describe the two alternative objective functions maxmin and min-
max [5]. In Sect. 1.3 we describe the HCS dataset, and present the computational
campaign. Then, in Sect. 1.4 preliminary computational results are presented and
commented. Observations about future researches conclude the paper.

1.2 The HCS Problem

In this paper we address a relevant optimization problem arising in HCS. Given a
planning horizon W , which is a week in the considered experiments, a set of patients
with an associated care plan, i.e. weekly requests each of them demanding a specific
ability or skill to be operated, and a set of operators also characterized by a specific
skill, the problem asks to schedule the patient’s request during the week, assign the
operators to the patients by taking into account the compatibility between request
and operator skills, and determine the tour each operator has to perform in every
day of the week. Each tour must start at the operator’s premises and come back to
the operator’s premises.

Specifically, the care plan associated with patient j specifies the type and, for
each type, the number of visits required by j in the planning horizon W . Two
types of visits are considered: ordinary requests (requiring an ability or skill 1),
and palliative requests (requiring an ability or skill 2). Accordingly, it is assumed
that each operator has skill 1 or skill 2, and that a hierarchical structure of the skills
exists, such that an operator with skill 2 can work all the requests, whereas operators
with skill 1 can work only requests of skill 1.

In the considered HCS problem the scheduling of the patient requests in W , the
operator assignment and the routing decisions are offered through a new modelling
device, called pattern. We assume in fact that the patient’s requests are operated
according to a set P of a priori given patterns. Specifically, for each pattern p ∈ P
we define p(d) = 0 if no service is offered at day d, while it is p(d) = 1 or p(d) = 2
if a visit of skill 1 or 2, respectively, is operated according to pattern p on day d.
Only one visit per day can be operated. Several pattern generation approaches can
be proposed to generate a subset P of patterns rather than considering the entire set
of all possible patterns. The motivation to generate a good but limited set of patterns
stems from the fact that the cardinality of P influences the size of the resulting
optimization models. In this paper we refer to a flow pattern generation approach,
which is based on the solution of an auxiliary network flow problem, and which
proved to be very effective in selecting a small number of patterns of good quality,
according to the results in [5].

Given the input data above, the studied HCS problem consists in assigning a
pattern from P to each patient j, so scheduling the requests of j, expressed by his/her
care plan, during the planning horizon (care plan scheduling), in assigning operators
to each patient j, for each day where a request of j has been scheduled (operator
assignment), and in determining the tour of each operator for each scheduled
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day (routing decisions). In addressing these three groups of decisions, the skill
constraints, that is the compatibility between the skills associated with the patient’s
requests and the skills of the operators, have to be taken into account as well as other
relevant Quality of Service requisites.

Observe that the Home Care context under investigation involves joint assign-
ment, scheduling and routing decisions over W . In the state-of-the-art literature
Home Care problems are usually solved in cascade: first the operators are assigned
to the patients; second, the schedule of each operator is determined. Some optimiza-
tion models that extend Vehicle Routing Problem (VRP) formulations have been
proposed, but generally they deal with a daily planning horizon. To the best of our
knowledge there are only three exceptions [2, 6, 10]. However, no exact approach
is proposed there to solve the overall problem, but two-stage solution approaches
are presented. In fact, in the literature tailored metaheuristic approaches are usually
proposed to solve Home Care problems rather than exact approaches.

On the other hand, as outlined before, here the Home Care problem is solved by
jointly addressing assignment, scheduling and routing decisions over W , by suitably
generalizing the VRP, and specifically the Skill VRP [3, 4], from which it inherits
the skill based structure.

New Integer Linear Programming (ILP) formulations have been proposed in [5]
to formulate the stated HCS problem, by considering two balancing objective func-
tions, and preliminary computational results have been reported in a deterministic
setting. Let O denote the set of the operators available in W , while Od be the subset
of the operators available on day d, for each d in W . Let ti j denote the traveling
time from patient i to patient j along the link (i, j) of the logistics network, with A
denoting the link set. Finally, let t ′j be the service time at patient j, and Dt indicate
the workday length of operator t. Then the maxmin objective function can be defined
as follows:

max m
Dtd = ∑

(i, j)∈A

(ti j + t ′j) · xtd
i j , ∀d ∈W,∀t ∈ Od

∑
d∈W

Dtd

|W |·Dt
≥ m, ∀t ∈ O,

where |W | is used to denote the width of the planning horizon W . The decision
variables xtd

i j take value 1 if the operator t travels along (i, j) on day d, and 0
otherwise. Therefore, Dtd represents the workload of operator t on day d, expressed
as the sum of the service times and the traveling times on day d. m is an auxiliary
variable which, in a standard way, is introduced to linearize the objective function. In
fact, m estimates from below the utilization factor of each operator, expressed as the
weekly workload of the operator over his/her maximum possible workload in W : by
maximizing m, then the model maximizes the minimum operator utilization factor.
In a similar way we define the alternative balancing objective function minmax: in
such a case, we minimize the auxiliary variable m which, now, estimates from above
the utilization factor of each operator.
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The aim of this paper is to enhance the computational results in [5] by performing
a deeper comparison of the criteria maxmin and minmax, also investigating their
impact on efficiency indicators. In the simulation setting, the robustness of the HCS
solutions returned by the two balancing criteria will be stressed under scenarios of
service time and traveling time variability. This will be the subject of the next two
sections.

1.3 The HCS Dataset

The real data used in this work have been provided by one of the largest Italian
public medical care unit operating in the north of Italy, and they have been already
used in [8]. The HCS instances are characterized by a geographical area which
comprises five or eight municipalities where patients are located. In regards to the
patients, we selected 2 weeks in the time period (2004–2008), i.e. a week in January
2006 (hereafter denoted by January 2006) and a week in April 2007 (hereafter
denoted by April 2007), and we then selected subsets of patients with a care profile
in that week. Specifically, for the January 2006 week, patients are 40 or 60, whereas
for the April 2007 week, patients are 50 or 80. Patient’s demand had been computed
by looking at the scheduling implemented by the provider: specifically, for each
skill, the requested number of visits in our instances is set equal to the real number of
visits performed by operators of that particular skill. This choice is supported by the
fact that the provider never used operators with skill different from the skill required
by a visit. As already indicated, two skills are considered for operators and patient’s
requests: ordinary, corresponding to skill 1, and palliative, corresponding to skill
2. The geographical area under consideration is characterized by 11 operators and a
subset of them is selected in our instances according to the number of patients: when
the number of patients is 40, 4 operators are chosen; when the patients are 50 or 60,
the number of operators is fixed to 5, while for 80 patients 6 operators are selected.
In all the instances only one operator of skill 2 (with workday duration equal to
6 h) is selected, while the remaining operators are all characterized by a workday
duration of 8 h and skill 1. For a given combination of number of municipalities,
number of patients and number of operators, three instances are generated by
randomly selecting the desired number of patients among the available patients.
The instances are thus identified by a string reporting the following fields separated
by a “-” character: the week, the number of municipalities, the number of patients,
the number of operators, the instance identifier in the group (i.e. 0, 1 or 2) and the
objective function used which can be maxmin or minmax. As an example “Jan06-
5-40-4-0-maxmin” refers to a week in January 2006, 5 municipalities, 40 patients,
4 operators, instance number 0 and maxmin objective function. Summarizing, for
each of the 2 weeks, 2 values for the number of municipalities are combined with 2
values for the number of patients and for each of these combinations 3 instances are
generated, thus giving rise to 12 instances for each week. The resulting 24 instances
are run with the 2 alternative objective functions.
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In all the generated instances, the traveling times ti j have been computed via
Google Maps for the inter-municipalities distances, while they have been set
equal to 3 min for the intra-municipalities distances, consistently with the provider
indications. Furthermore, according to the medical care unit indications, the service
time has been fixed to 30 min (i.e. t ′j = 30 min).

The 48 optimization runs have been performed on a AMD Opteron(tm) Dual
Core Processor 246 (CPU MHz 1991.060). The solver is CPLEX 12.4 with a time
limit of 12 h and a memory limit for the branch and bound tree of 1 GB. On the
other hand for the simulation experiments, which are based on a discrete event
simulation model integrated with the optimization models, VBA has been used as
the integration environment, and Rockwell Arena13 as the simulation platform.
Referring to the simulation length, we performed 30 simulations runs for each
instance, which is a fairly large number [7]. In total we thus performed 1,410
simulation runs.

1.4 Computational Results

1.4.1 Optimization Results

Tables 1.1 and 1.2 report a comparison between the solutions obtained with the two
alternative objective functions in terms of some QoS indicators: (1) the Coefficient
of Variation CV , which measures the day-by-day variability of the operator utiliza-
tion factor; (2) WeeklyST; (3) WeeklyTT; and (4) WeeklyWT . The last three indicators
refer respectively to the service time, the travelling time, and the workload of the
operator in W , over his/her maximum possible workload. Therefore, WeeklyWT
represents the operator utilization factor. For each quality indicator the mean value
computed over the operators and the width of the range between the maximum value
of the indicator and the minimum value of the indicator are given respectively as
“Mean” and “Range” columns. For the traveling time, the percentage of the total
travel time with respect to the total working time is also given in column “All”. For
all the quality indicators except for CV , mean values are given as percentage.

To provide a more formal definition of CV , let Dt be the average daily workload

of operator t, i.e. Dt = ∑|W |d=1 Dtd/|W | and denote with S(Dt) the standard deviation
of the daily workload of operator t. Then the Coefficient of Variation of operator t
is defined as follows:

CVt =
S(Dt)

Dt
.

In Tables 1.1 and 1.2, the “Mean” and “Range” columns under the multicolumnsCV
refer, respectively, to the mean value of CVt over t, and to the difference between
the maximum and the minimum of such values over t.

The data in Tables 1.1 and 1.2 correspond to the best solutions given by the
optimization solver within the given time limit; these solutions are very close to
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Table 1.1 January 2006 – optimization results (values in % except for CV )

CV WeeklyST WeeklyTT WeeklyWT

Mean Range Mean Range Mean Range All Mean Range

Jan06-5-40-4-0-maxmin 1.06 0.34 18.75 2.50 7.80 2.28 7.87 26.55 0.26
Jan06-5-40-4-0-minmax 1.46 0.53 18.65 0.42 3.90 0.13 3.90 22.54 0.54
Jan06-5-40-4-1-maxmin 0.99 0.69 18.85 4.17 7.95 1.17 7.96 26.80 3.63
Jan06-5-40-4-1-minmax 1.17 1.14 18.85 5.42 6.91 2.46 6.89 25.76 6.79
Jan06-5-40-4-2-maxmin 1.06 0.63 17.92 5.42 7.70 0.92 7.72 25.61 4.63
Jan06-5-40-4-2-minmax 1.15 1.19 17.92 5.42 6.84 0.79 6.82 24.76 6.21
Jan06-5-60-5-0-maxmin 1.09 0.59 21.83 12.92 8.38 1.42 8.35 30.21 12.92
Jan06-5-60-5-0-minmax 1.39 1.07 21.83 17.92 8.84 3.71 8.88 30.68 19.79
Jan06-5-60-5-1-maxmin 1.15 0.88 20.75 18.75 7.78 1.63 7.73 28.53 19.13
Jan06-5-60-5-1-minmax 1.51 1.28 20.75 21.25 7.88 2.54 7.85 28.63 22.46
Jan06-5-60-5-2-maxmin 1.14 0.54 20.92 3.33 7.88 2.88 7.98 28.79 0.54
Jan06-5-60-5-2-minmax 1.37 0.36 20.92 3.33 6.64 3.29 6.76 27.56 0.21
Jan06-8-40-4-0-maxmin 0.97 0.61 20.42 2.92 10.34 2.94 10.42 30.75 0.07
Jan06-8-40-4-0-minmax 1.03 0.96 20.31 1.25 6.92 1.29 6.89 27.23 0.33
Jan06-8-40-4-1-maxmin 0.93 0.84 20.52 17.08 9.33 0.10 9.33 29.85 17.03
Jan06-8-40-4-1-minmax 1.06 0.74 20.52 27.08 8.47 7.17 8.46 28.99 31.96
Jan06-8-40-4-2-maxmin 1.13 0.39 19.06 8.75 7.79 3.42 7.92 26.85 5.33
Jan06-8-40-4-2-minmax 1.25 0.54 19.06 12.50 6.66 3.67 6.76 25.72 11.71
Jan06-8-60-5-0-maxmin 1.04 0.34 22.83 5.42 10.66 1.72 10.71 33.50 3.69
Jan06-8-60-5-0-minmax 1.12 0.87 22.83 6.67 9.11 4.46 9.13 31.94 8.68
Jan06-8-60-5-1-maxmin 1.21 0.44 21.25 11.25 8.64 1.90 8.70 29.89 9.39
Jan06-8-60-5-1-minmax 1.33 0.72 21.25 16.25 8.15 6.21 8.27 29.40 15.63
Jan06-8-60-5-2-maxmin 1.12 0.56 22.42 14.58 10.54 1.25 10.53 32.96 13.94
Jan06-8-60-5-2-minmax 1.10 1.10 22.42 22.08 9.51 7.25 9.50 31.92 25.82

the optimum ones except for instance Apr07-5-80-6-1. Furthermore, computational
results on instance Apr07-8-80-6-0 are not reported since minmax failed to provide
a feasible solution within the time limit.

The main achievements related to this deterministic scenario can be summarized
as follows. By considering WeeklyWT , i.e. the operator utilization factor, its mean
value for the maxmin criterion is usually greater than the mean value returned by
the minmax criterion, although their difference is often small. On the other hand, the
range of WeeklyWT for the maxmin solutions is almost always substantially smaller
than the one returned by minmax. The same kind of relationship can be observed for
the day-by-day variability of the operator utilization factor. For CV , this relationship
is true also considering the mean values.

Concerning the two main components contributing to the operator workload it
is possible to observe that, whereas the mean percentage service time is about the
same for the two objective functions, the range of WeeklyST is often substantially
smaller for the maxmin solutions. A similar trend, although in a weaker form, can
be observed by considering the range of WeeklyTT . However, as expected, the total
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Table 1.2 April 2007 – optimization results (values in % except for CV )

CV WeeklyST WeeklyTT WeeklyWT

Mean Range Mean Range Mean Range All Mean Range

Apr07-5-50-5-0-maxmin 0.53 0.61 25.42 5.83 8.99 4.51 9.09 34.41 1.32
Apr07-5-50-5-0-minmax 0.68 1.14 25.42 4.58 7.73 3.51 7.84 33.15 2.32
Apr07-5-50-5-1-maxmin 0.59 0.29 25.33 2.92 8.13 3.00 8.20 33.47 0.17
Apr07-5-50-5-1-minmax 0.78 1.05 25.33 2.92 4.81 2.00 4.81 30.14 2.88
Apr07-5-50-5-2-maxmin 0.53 0.46 28.25 10.00 9.69 3.47 9.77 37.94 6.53
Apr07-5-50-5-2-minmax 0.58 0.68 28.25 16.25 7.16 5.58 7.21 35.41 18.03
Apr07-5-80-6-0-maxmin 0.55 0.43 33.19 17.92 11.07 2.58 11.07 44.26 16.42
Apr07-5-80-6-0-minmax 0.89 1.10 33.19 25.42 9.22 5.29 9.21 42.41 28.74
Apr07-5-80-6-1-maxmin 0.48 0.37 33.82 4.17 13.01 4.26 13.13 46.83 0.37
Apr07-5-80-6-1-minmax 0.69 0.41 34.03 16.67 10.64 6.92 10.72 44.67 18.17
Apr07-5-80-6-2-maxmin 0.61 0.60 33.47 13.33 11.78 2.46 11.76 45.25 12.28
Apr07-5-80-6-2-minmax 0.87 1.53 33.47 27.08 9.51 9.00 9.53 42.98 32.19
Apr07-8-50-5-0-maxmin 0.55 0.32 27.42 8.33 11.58 1.67 11.61 39.00 6.67
Apr07-8-50-5-0-minmax 0.69 0.50 27.42 8.33 9.47 2.85 9.57 36.89 6.49
Apr07-8-50-5-1-maxmin 0.59 0.72 26.00 7.50 9.55 4.56 9.41 35.55 8.39
Apr07-8-50-5-1-minmax 0.87 1.20 26.00 10.00 8.12 3.63 8.08 34.12 13.03
Apr07-8-50-5-2-maxmin 0.79 0.34 21.33 2.50 8.19 2.54 8.21 29.53 0.08
Apr07-8-50-5-2-minmax 0.82 0.51 21.33 0.42 4.96 1.24 5.00 26.29 0.87
Apr07-8-80-6-1-maxmin 0.62 0.45 33.26 30.83 13.00 3.44 12.90 46.27 33.03
Apr07-8-80-6-1-minmax 0.70 0.58 33.40 55.42 11.02 15.79 11.01 44.43 64.81
Apr07-8-80-6-2-maxmin 0.64 0.62 31.39 27.08 12.55 6.72 12.33 43.94 32.56
Apr07-8-80-6-2-minmax 0.89 0.71 31.39 33.33 10.04 4.67 9.91 41.43 37.79

traveling time spent by the operators during the week is usually smaller in the
solutions returned by the minmax criterion.

Therefore, as already outlined, in a deterministic setting and for the tested
instances, maxmin appears to be preferable in balancing the operator percentage
traveling time and the operator percentage service time, and therefore the operator
utilization factor. This is true not only by looking at the overall planning horizon,
but also at a daily level. Such stronger equity achievements are obtained for not too
high a price in the increased average quality indicators. On the other hand, minmax
always returns solutions with the smaller total travelled time for the operators.
Therefore, it appears to be more suitable for the minimization of the operating costs,
which are measured here in terms of travelling costs.

1.4.2 Simulation Results

The simulation model reproduces the activities of the operators for each day of
the week. However, now the travel times ti j and the service times t ′j are realization
of random variables. Concerning their randomness, since the provider did not
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collect data relevant to service and travel times, we could neither use empirical
distributions, nor fit theoretical distributions to real data. Hence, to randomize these
times we have multiplied the standard values of the service and travel times by
numbers randomly sampled from triangular distributions (called TRIA), according
to the formulas below, where N denotes the set of the patients:

t̃ ′ j = t ′j •TRIA(0.9,1,1.1), ∀ j ∈ N
t̃i j = ti j •TRIA(0.8,1,1.5), ∀(i, j) ∈ A.

The use of triangular distributions is coherent with the recommendations of [7],
who suggest using finite distributions to avoid sampling excessively large and
meaningless times. In addition, triangular distributions have been successfully
applied by [1] to model travel times in a similar setting.

The simulation experiments have been conducted with a threefold aim:

• To verify whether the randomness of the service and travel times can lead to
overtime, and therefore to additional costs for the provider; observe that overtime
could happen especially in case of not evenly balanced workload among the
operators, during the week and/or across the days;

• To understand if maxmin and minmax lead to solutions that significantly differ in
terms of overtime;

• To determine how the randomness of travel and service times impacts on the
quality indicators presented in Sect. 1.4.1.

Referring to the first point, for each of the 23 instances and for both maxmin and
minmax, we have calculated the mean values and the standard errors, across the
30 replications, of the total weekly overtime. Hence, for each instance, we have
performed a one-sided independent t-test to ascertain whether the mean value (M),
across 30 replications, of the weekly overtime (AllWeeklyOT) could be considered
significantly larger than zero. In other terms, we have tested the alternative hypothe-
sis H1 : M(AllWeeklyOT)> 0 against the null hypothesis H0 : M(AllWeeklyOT)= 0.
For all these tests we were not able to reject the null hypotheses at a significance
level α = 0.05. It led us to conclude that for all the instances the overtime is never
significantly different from zero, regardless of the objective functions considered.
Actually, even in the worst case (i.e. considering the maximum of the individual
replication maxima values), the overtime is smaller than 4 min/week. This fact
implies that both objective functions allow avoiding undesirable daily workload
peaks that would lead to overtimes. It is worth to observe, however, that for the
investigated instances the operator utilization factor is rather small (see Tables 1.1
and 1.2), and therefore overtimes may be difficult to emerge. Since the overtime
is always very close to zero for the tested instances, the comparison between the
overtimes associated with maxmin and minmax is not meaningful.

It does make sense, instead, to assess the impact that the time randomness
may have on the system performance. We have thus calculated, for all the quality
indicators in Sect. 1.4.1, the mean, the standard deviation and the 95% two-sided
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Fig. 1.1 Confidence intervals for the range of daily variability
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Fig. 1.2 Confidence intervals for the range of weeklyTT
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Fig. 1.3 Confidence intervals for the total percentage traveling time
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Fig. 1.4 Confidence intervals for the range of operator utilization factor
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confidence intervals for the mean. Due to space constraints, hereafter we shall
present only the results related to the range of CV , weeklyTT and weeklyWT, by
adopting a graphical representation. A graph is provided also for AllWeeklyTT .
Specifically, each graph refers to one indicator and presents, for each instance and
for both the maxmin (1 – dashed lines) and minmax (2 – regular lines) objective
functions: (i) the mean value of the indicator (M); and (ii) the upper (UB) and lower
(LB) bound of the confidence intervals for the mean.

Concerning this last point of the simulation study, the main achievement is that,
by observing the equity and the efficiency indicators of the system in a stochastic
environment, and calculating the confidence intervals for each indicator, the same
trend already observed in a deterministic setting appears to be confirmed also in the
presence of randomness of travel and service times, as shown in the figures below.

1.5 Future Research

It is worth pointing out that the ones presented in this paper are preliminary
results of a study that will be expanded in several ways, especially regarding
the simulation experiments. Firstly, the simulation model will be used to assess
the robustness of the HCS solutions returned by the optimization models, against the
times randomness, in settings characterized by higher resource utilization levels. In
these settings, in fact, deviations of the times from their expected values likely cause
overtimes and can even prevent operators to ultimate their daily tours. Second, the
simulation model will be used to test the output of optimization models developed
in context where patients can be visited only in certain time windows. In these
contexts, in fact, the times randomness in addition to lead to overtime, can prevent
the operators to match their appointments. Finally, the simulation model will be
used to study the performance of systems where patient-operator mismatches can
occur, thereby determining the need to dynamically reschedule the tours of one or
more operators.
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Chapter 2
Redesigning Organ Allocation Boundaries
for Liver Transplantation in the United States
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Divya Srinivasan, and Keith Melancon

Abstract Geographic disparities in access to and outcomes in transplantation
have been a persistent problem widely discussed by transplant researchers and
the transplant community. One of the alleged causes of disparities in the United
States is administratively determined organ allocation boundaries that limit organ
sharing across regions. This paper applies mathematical programming to construct
alternative liver allocation boundaries that achieve more geographic equity in access
to transplants than the current system. The performance of the optimal boundaries
were evaluated and compared to that of current allocation system using discrete
event simulation.

2.1 Introduction

Existing studies of organ transplant report various disparities in access to and
outcomes in transplantation. Disparities have been found in terms of race, socioe-
conomic status, insurance type and the location of candidate’s residency. While

N. Koizumi (�) • R. Ganesan • C.-H. Chen • N. Waters • D. DasGupta • D. Nicholas
A. Patel • D. Srinivasan
George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
e-mail: nkoizumi@gmu.edu; rganesan@gmu.edu; cchen9@gmu.edu; nwaters@gmu.edu;
ddasgupt@masonlive.gmu.edu; dnichol4@masonlive.gmu.edu; apatelh@masonlive.gmu.edu;
dsriniv2@masonlive.gmu.edu

M. Gentili
University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
e-mail: mgentili@unisa.it

K. Melancon
George Washington University Hospital, 2150 Pennsylvania Avenue,
NW, Washington, DC 20037, USA
e-mail: jmelancon@mfa.gwu.edu

A. Matta et al. (eds.), Proceedings of the International Conference on Health Care
Systems Engineering, Springer Proceedings in Mathematics & Statistics 61,
DOI 10.1007/978-3-319-01848-5__2, © Springer International Publishing Switzerland 2014

15

mailto:nkoizumi@gmu.edu
mailto:rganesan@gmu.edu
mailto:cchen9@gmu.edu
mailto:nwaters@gmu.edu
mailto:ddasgupt@masonlive.gmu.edu
mailto:dnichol4@masonlive.gmu.edu
mailto:apatelh@masonlive.gmu.edu
mailto:dsriniv2@masonlive.gmu.edu
mailto:mgentili@unisa.it
mailto:jmelancon@mfa.gwu.edu


16 N. Koizumi et al.

these disparities tend to coexist, disparity associated with candidates’ locations or
“geographical disparity” is the first and foremost discussed. Researchers worldwide
have repeatedly confirmed that the likelihood of receiving a transplant as well as
pre- and post- transplant mortality rates vary significantly from region to region
[1–10]. Geographic disparity in transplant access in the US has been a persistent
issue ever since organ allocation became a regulated process in 1984 under the
National Organ Transplant Act (NOTA). As the most important act in the history
of US transplantation, NOTA created the Organ Procurement and Transplantation
Network (OPTN), a public-private network of regional organ allocation offices
known as Organ Procurement Organizations (OPOs) [6]. NOTA also authorized
the Department of Health and Human Services (HHS) to contract with the United
Network for Organ Sharing (UNOS) as the only administrative entity to govern the
OPTN. At first, all organs were distributed within each OPO’s service area (ibid) in
order to limit cold ischemia time (CIT), i.e. the interval between organ retrieval and
the time of transplantation during which an organ is preserved in a cold perfusion
solution. Allocation of organs within each OPO was solely based on the length of
time that each candidate had spent waiting for an organ since initial referral. In
response to the concern that the waiting time varied significantly by OPO, HHS
introduced a new regulation known as the “Final Rule” (42 CFR Part 121) in 1998
to “assure that allocation of scarce organs will be based on common medical criteria,
not accidents of geography” (HHS, 1998b) (ibid).

As per the directives of the Final Rule, the allocation mechanism for a number
of vital organs has been rectified to address the criterion of medical necessity. For
liver allocation, HHS revised the Code of Federal Regulations legislating organ
allocation process and, in 2002, the Model for End-Stage-Liver-Disease (MELD)
scoring system was launched as a way to prioritize the candidates with a higher
medical urgency. Since then, the harvested adult livers had been distributed, in
principle, based on the algorithm summarized in Fig. 2.1. Thus the current organ
allocation system consists of three hierarchical, geographic levels: the OPOs (a.k.a.
the Donor Service Areas), the UNOS regions and the National level.

While several changes in allocation rules have been introduced to address
discrepancies, transplant researchers still report that a number of key elements that
determine equity in transplantation vary significantly depending on the location of a
patient. This study thus developed a mathematical programming model to redesign
liver allocation boundaries. The optimal boundaries were derived to maximize
geographic equity in access to a transplant while maintaining efficiency in outcomes
in transplantation. The model was also used to analyze which existing “kidney-only”
transplant centers could be activated to improve the current liver allocations. Finally,
discrete event simulation was applied to evaluate the performance of the optimal
boundaries in comparison to that of the existing boundaries.

The primary data used for the analyses is UNOS’s Standard Transplant Analysis
and Research (STAR) Dataset that records clinical, administrative, demographic and
locational information of over 40,000 adult liver transplant candidates and recipients
who appeared on the wait list between 2003 and 2010.
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Status 1 patients refer to those with fulminant liver failure with a life expectancy without
a liver transplant or less than 7 days. 

Within each category of patients (i.e. Status 1, MELD scores ³ 15, MELD score < 15), 
a liver is offered, in principle, in the descending order of first MELD score and then
waiting time.  

Extra points are added to the MELD score for those patients whose blood type is 
compatible to that of the available liver and those with specific clinical circumstances 
such as Hepatocellular Carcinoma (HCC). 

Donated
liver

Patients in
OPO

Status 1 patients 

Patients in
the UNOS
region

Patients in
the OPO

Status 1
Patient in
the US

Non-status 1
Patients in
the US

Non Status 1 patients 

Patients in
the UNOS
region

Fig. 2.1 Current liver allocation system

2.2 Model Description

2.2.1 Mathematical Model

The mathematical programming approach has the twofold objective of: (i) identi-
fying optimal locations for liver transplant centers and (ii) identifying new OPO
boundaries that replace existing OPO’s boundaries, which are mainly defined by
political issues. Two mathematical models are proposed to achieve these objectives.
Both models are described next, but, due to the current page limit, we present the
mathematical formulation of only the second model.

The first model (Model 1) addresses the problem of: (a) selecting a fixed number
p of transplant centers to be opened among a possible set of candidates and (b)
associating a subset of donor hospitals (that define the organ acquisition area of
the center) and a subset of counties (that define the service area of the center)
with each opened transplant center. The model ensures that each donor hospital
and each county are associated with exactly one transplant center. Moreover, the
distance between a donor hospital and the associated transplant center is such
that the corresponding travel time is within the CIT of the organ, and finally, the
distance between the centroid of a county and the associated transplant center is not
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greater than a predefined maximum threshold. The proposed model is similar to the
mathematical model proposed by Bruni et al. [11] in that each selected transplant
center is associated with an acquisition area and a service area. However, unlike
Bruni’s model, we consider an additional set of constraints to ensure that, for each
opened transplant center, the ratio between the available organs (coming from the
associated acquisition area) and the total number of recipients (coming from the
associated service area) is greater than or equal to a fixed threshold α. The objective
function of the model is the minimization of the total distance between the set of
donor hospitals and the associated transplant centers plus the total distance between
the county centroids and the associated transplant center.

Model 2 addresses the problem of clustering a set of transplant centers that are
selected for activation (as a result of Model 1) into a predefined number of clusters.
Each cluster represents an OPO. The resulting OPOs are defined so that they are
balanced both in terms of the supply/demand ratio of organs and in terms of total
number of transplant centers that belong to the OPO. The boundary of each OPO is
determined by the union of the service areas associated with the transplant centers
that belong to the OPO. Hence, one important constraint to take into account when
defining the cluster is contiguity of the service areas. To achieve this aim, Model
2 takes a graph G= (V,E) as an input where each vertex i∈V is associated with
a transplant center and there is an arc (i,j)∈E between vertex i and vertex j if the
corresponding service areas have a common border. Two weights are associated with
each vertex i of this graph: wi and hi representing, respectively, the total supply and
the total demand associated with the transplant center represented by the vertex. A
super vertex s is added to the graph and is connected with each vertex of the graph by
the set of arcs (s,i), ∀ i∈V. Hence, the resulting graph is such that the total number
of vertices is equal to p+ 1 and the total number of arcs depends on the solution
returned by Model 1.

Model 2 looks for a spanning tree Ts of G rooted in s such that the total number
of children of the root is equal to the total number of clusters that need to be defined.
In this way, the vertices of each subtree Ti rooted at vertex i (i.e., one of the children
of the supervertex s) represent the set of transplant centers that belong to the cluster.
Connection of the subtree ensures contiguity of the service area associated with the
cluster. Moreover each subtree is such that the ratio between the sum of the weights
wi associated with the vertices of the subtree and the sum of the weights hi associated
with the vertices of the subtree is greater than or equal to a predefined threshold α .
The objective function of the model is the minimization of the maximum number of
vertices in each of the resulting subtrees, ensuring that the resulting clusters are also
balanced in terms of total number of transplant centers that belong to them.

Let O={1,2, . . . , l} be the index set of the clusters that need to be defined. Then
the proposed formulation is a Miller-Tucker-Zemlin (MTZ) formulation [12] where
we considered the following set of variables:

• Variable yik is a binary variable that is equal to one if vertex i∈V belongs to
cluster k∈O and is equal to 0 otherwise;
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• Variable xijk is a binary variable that is equal to one if arc (i,j)∈E, that connects
vertices i and j in the cluster k, is selected to be in the spanning tree and is equal
to 0 otherwise;

• Variable ui, defined on each vertex i∈V, assigns a label to each vertex of the
graph. In particular, such a labeling ensures any directed arc that belongs to the
optimum spanning tree goes from a vertex with a lower label to a vertex with a
higher label.

Hence, variables yik are used to define the clusters, while variables ui and xijk are
used to define the final spanning tree.

The resulting Model 2 is the following:

minmax

(
∑
i∈V

yik

)
(2.1)

∑
(s, j)∈E

xs jk = 1 ∀k ∈ O (2.2)

∑
k∈O

∑
(i, j)∈E

xi jk = 1 ∀ j ∈V, j �= s (2.3)

∑
k∈O

xi jk ≤ 1 ∀(i, j) ∈ E (2.4)

xi jk ≤ yik ∀(i, j) ∈ E, i �= s,∀k ∈ O (2.5)

yik ≤ ∑
(i, j)∈E

xi jk ∀i ∈V, i �= s,∀k ∈ O (2.6)

us = 0 (2.7)

1≤ ui ≤ p ∀i ∈V, i �= s (2.8)

(p+ 1)xi jk + ui− u j +(p− 1)x jik ≤ ∀(i, j) ∈ E, i �= s,∀k ∈O (2.9)

∑
k∈O

yik = 1 ∀i ∈V, i �= s (2.10)
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∑
i∈V,i�=s

wiyik ≤ α ∑
i∈V,i�=s

hiyik ∀k ∈ O (2.11)

∑
i∈V,i�=s

yik ≥ 1 ∀k ∈ O (2.12)

The objective function [1] minimizes the maximum cardinality of the resulting
clusters. Constraints [2] ensure that the total number of children of the root s is
equal to the total number of clusters that need to be defined. Constraints [3] ensure
that each vertex has exactly one entering arc. Each arc can be associated with at
most one cluster, which is ensured by constraints [4]. Constraints [11] and [12] are
logical constraints linking the binary variables. The spanning tree is defined by the
classical MTZ constraints [13, 5]. Constraints [6] ensure that each vertex belongs
exactly to one cluster. The structure of the cluster is defined by constraints [14]
and [15]. In particular, each cluster must not be empty (constraints [15]) and total
supply/demand ratio at each cluster must be greater than or equal to a predefined
threshold α (constraints [14]).

Our model extends a handful of studies [11, 14, 16, 17] that investigate optimal
boundaries for organ allocation using a mathematical approach. Most previous
models [14, 16, 17] are based on a set covering mathematical formulation of
which feasible sets are represented by all possible regional configurations resulting
from different clusters of OPOs. This approach tends to be computationally very
demanding. The MTZ formulation we proposed for Model 2 solves a constrained
version of a spanning tree problem. This approach enabled us to solve the problem
to optimality through the available commercial solvers, Cplex and Gurobi, in a
reasonable amount of time. In this study, all mathematical formulations were coded
in AMPL and solved using CPLEX 11 and Gurobi 5.1 on a 2.4GHz Intel Core2
Q6600 processor.

2.2.2 Discrete Event Simulation

A discrete event simulation (DES) was run to evaluate the performance of the
boundaries developed by the mathematical model. The key events and the param-
eters used to frame the simulation were: (i) patient arrival rate; (ii) length of time
registered as a transplant candidate; (iii) rates of death and drop-out while waiting
for an organ; (iv) rate of candidates receiving a transplant and (v) liver arrival rate.
Both livers and patients enter the system with certain characteristics used in “match-
run”, the process to match a donor to a recipient. Those characteristics included
blood type, MELD score and the category and age.

The usefulness of DES in evaluating organ allocation policies/scenarios is
already well established [13, 15, 18, 19]. In fact, DES-based simulation software,
SAM (Simulated Allocation Model), was developed by the Scientific Registry of
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Transplant Recipients (SRTR) and has been used by UNOS to evaluate the impacts
of various organ allocation policy alternatives. However, SAM and other existing
DES models does not allow for the explicit consideration of geography thereby
limiting the simulation of the impacts of boundary changes. Our study developed
a simulation model that simulates various allocation boundary scenarios in a more
direct and overt manner.

The first task of the baseline simulation modeling was to generate recipient and
donor data. As described above, each OPO is comprised of a set of counties, each
of which is identified using a unique FIPS code. Each county is characterized by the
historical patterns of recipient and donor counts per year and the arrival rates per
day of the year, which also follows the historical proportions. Using the historical
numbers and proportions from 2003 to 2009, the simulation was able to generate
both recipient and donor data for 2010, which was then validated using the actual
data from 2010.

The next step was to allocate organs to recipients using the current UNOS and
OPO boundaries and using the new OPO boundaries obtained from Model 2. First,
candidates waiting as of January 1st 2010 were generated from the actual STAR
data. This data was used to initialize the simulation of liver allocation. Livers were
then allocated using the current system of allocation in which Status 1 patients
were given the top priority followed by patients with MELD> 15 and MELD< 15
(Fig. 2.1). The performance metrics were the waiting time for transplants for status
1, MELD< 15 and MELD> 15 transplant recipients and the geographical disparity
measured in terms of the mean squared error, which is calculated as the deviation
of the supply/demand ratio of the OPOs from the mean supply/demand ratio. Since
there were about 12,000 candidates in the waitlist on Jan 1st 2010 and about 10,000
candidates joined the list in 2010, the supply/demand ratio for 5,000 donors in 2010
is about 0.23. After accounting for death while waiting (12.8 %), the supply/demand
ratio is about 0.25 (including both waiting list and new candidates in 2010). The
simulation was written and run in MATLAB.

2.3 Results

2.3.1 Results of the Mathematical Model

The Model 1 analysis revealed that opening additional 103 liver transplant centers at
kidney-only transplant centers, while ensuring equity in terms of provided service,
would marginally increase the efficiency in liver transplantation of the current
system. In contrast, the result suggested that opening 61 new liver programs at
existing kidney-only transplant centers while keeping 62 of the existing 123 liver
transplant centers can substantially reduce waiting time and graft failure.

Model 2 clustered the existing 123 transplant centers into 58 OPO clusters.
Figure 2.2 shows the current OPO boundaries in color and the new OPO boundaries
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Fig. 2.2 Current (in color) and optimal (in yellow lines) OPO boundaries

suggested by the model in yellow lines. The resulting boundaries differ considerably
from the actual boundaries although, in several OPOs, the boundaries coincide with
actual boundaries fairly well.

2.3.2 Results of the Discrete Event Simulation

Figure 2.3 presents the actual and the simulated numbers of recipients per county
arranged in ascending order in OPO #12 in 2010, which was randomly picked
among other OPO’s. The figures show a great deal of similarity, which was verified
using the Kolmogorov-Smirnov test for equality of the probability distributions.
Likewise, every OPO’s recipients and donors were simulated for each county, and
the characteristics described above were assigned.

Following the common simulation practice, 30 simulations were run to obtain
the performance metrics of the current allocation scheme under each set of the
OPO boundaries. Our simulation analysis indicates that it leads to sufficiently tight
confidence interval for the estimation. Figures 2.4 and 2.5 show the distributions of
the (a) number of counties per OPO, (b) donor counts or supply of liver per OPO, (c)
candidate counts or demand of liver per OPO, and (d) supply/demand ratio per OPO
for both the current and the new OPO boundaries respectively. Comparison of (b),
(c) and (d) in the two figures reveals that, under the current boundaries (Fig. 2.4),
there are several OPOs in which the supply/demand ratio was disproportionately
higher than that in other OPOs. This is one of the primary causes of geographical
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Fig. 2.3 Actual and simulated number of recipients per county for OPO #12 in 2010

disparity. With the new boundaries (Fig. 2.5), the number of instances of such
a disproportionate supply/demand ratio is less frequent due to the balancing of
supply/demand ratios across OPOs.

Table 2.1 indicates that the distribution of the supply/demand ratio is statistically
more uniform with the new OPO boundaries. The mean supply/demand ratio is
much closer to the total supply/demand ratio of 0.25 under the new boundaries. The
standard deviation of the ratios dropped in the new boundary supporting the claim
that the new OPOs have a more uniform supply/demand ratio. The mean square
error, which is the mean of the squared deviation of errors (error in ratio of OPO
i= supply/demand ratio of OPO i – mean supply/demand ratio of all OPOs) was
also 15 % less with the new boundaries.

Table 2.1 presents waiting time for a transplant under the current and the new
OPO boundaries. Waiting time is presented for each severity category, i.e., for status
1, MELD <15 and MELD >15. As the table shows, mean and median wait time
decreased with the new boundaries, most of which is attributable to the wait time
among status 1 and MELD< 15 candidates. Mean and median wait time slightly
improved for the MELD> 15 category of candidates. However, neither the mean
nor the standard deviation was statistically significantly different from that obtained
under the existing boundaries. In terms of the number of transplants, MELD> 15
candidates had the highest number of transplants, accounting for about 85 % of the
recipients of the 5,000 donors appeared in 2010. One can conclude that the new
OPO boundaries are successful in alleviating geographic disparity while reducing
wait time significantly among status1 and MELD< 15 candidates.
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Fig. 2.4 Current boundaries: (a) number of counties per OPO, (b) supply per OPO, (c) demand
per OPO, and (d) supply/demand ratio per OPO

Figures 2.4 and 2.5 shows that some of the new OPOs are larger containing more
counties. The observation corresponds to the map in Fig. 2.2 in which some of the
new OPOs are larger, especially in the mid-west region of the US.

2.4 Conclusions

Mathematical programming was used to derive new liver allocation boundaries that
maximize geographic equity in access to liver transplant. Our study extended past
studies on this topic by introducing MTZ formulation, which enabled us to solve
the problem of optimality through the available commercial solvers in a reasonable
amount of time. Our study is also different from past studies in that the performance
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Fig. 2.5 New boundaries: (a) number of counties per OPO, (b) supply per OPO, (c) demand per
OPO, and (d) supply/demand ratio per OPO

of new boundaries was evaluated dynamically using discrete event simulation. The
boundaries derived from the mathematical model differed significantly form the
current boundaries and our simulation results confirmed that the new boundaries
could achieve a more equal supply demand ratio across OPOs and reduction in
waiting time.

We note several directions for future research. First, it would be interesting to
explore different equity measure definitions both for Model 1 and Model 2 in order
to take into account additional aspects such as those considered by Kong et al. [14]
and by Demirci et al. [16]. We are also interested in exploring the possibility of
adapting our Model 2 to solve the problem of clustering the OPOs into UNOS
regions so that the final allocation system represents the hierarchical system as
presently implemented.
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Table 2.1 Performance metrics

Performance metric
Current OPO
boundaries

New OPO
boundaries

Percentage
change (%)

Increase/
decrease

Waiting time for Transplant
(in days)

Status 1
Median 1 1 0.1 Same
Mean 2.3 1.4 39.1 Decrease
Standard deviation 4.8 2.4 50.0 Decrease
MELD<15
Median 1,139 940 17.5 Decrease
Mean 1,211 1,073 11.4 Decrease
Standard deviation 944 831 12.0 Decrease
MELD>15
Median 300 278 7.3 Decrease
Mean 508 506 0.4 Decrease
Standard deviation 561 572 −2.0 Increase
Geographical disparity
Supply/demand ratio among 58

OPO
Median 0.2700 0.2034 24.7 Decrease
Mean 0.2801 0.2453 12.4 Decrease
Standard deviation 0.1442 0.1330 7.8 Decrease
Maximum 0.6479 0.5803 10.4 Decrease
Mean squared error 0.0204 0.0174 15.0 Decrease

References

1. Ashby, V.B., Kalbfleisch, J.D., Wolfe, R.A., Lind, M.J., Port, F.K., Leichtman, A.B.: Geo-
graphic variability in access to primary kidney transplantation in the United States, 1996–2005.
Am. J. Transplant. 7(2), 1412–1423 (2007)

2. Barshes, N.R., Becker, N.S., Washburn, W.K., Halff, G.A., Aloia, T.A., Goss, J.A.: Geographic
disparities in deceased donor liver transplantation within a single UNOS region. Liver Transpl.
13, 747–751 (2007)

3. Brown, K.A., Moonka, D.: Liver transplantation. Curr. Opin. Gastroenterol. 20(3), 264–269
(2004)

4. Brown, R.S., Lake, J.R.: The survival impact of liver transplantation in the MELD era and the
future of organ allocation and distribution. Am. J. Transplant. 5(2), 203–204 (2005)

5. Ellison, M.D., Edwards, L.B., Edwards, E.B., et al.: Geographic differences in access to
transplantation in the United States. Transplantation 76(9), 1389–1394 (2003)

6. Institute of Medicine Committee on Organ Procurement and Transplantation Policy: Organ
Procurement and Transplantation: Assessing Current Policies and the Potential Impact of the
DHHS Final Rule. National Academic Press, Washington, DC (1999)

7. Morris, P., Monaco, A.P., et al.: Geographic disparities in access to organ transplantation
in France, United States, United Kingdom, Spain and Australia, Transplantation. Forum 76,
1383–1406 (2003)

8. Roberts, J.P., Dykstra, D.M., Goodrich, N.P., Rush, S.H., Merion, R.M., Port, F.K.: Geographic
differences in event rates by model for end-stage liver disease score. Am. J. Transplant. 6,
2470–2475 (2006)



2 Redesigning Organ Allocation Boundaries for Liver Transplantation... 27

9. Tonelli, M., Kalbfleisch, J.D., Manns, B., Culleton, B., et al.: Residence location and likelihood
of kidney transplantation. CMAJ 175(5), 478–482 (2006)

10. Yeh, H., Smoot, E., Schoenfeld, D.A., Markmann, J.F.: Geographic inequity in access to livers
for transplantation. Transplantation 91(4), 479–486 (2011)

11. Bruni, M.E., Conforti, D., et al.: A new organ transplantation location-allocation policy: a case
study of Italy. Health Care Manag. Sci. 9, 125–142 (2006)

12. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling
salesman problems. J. ACM 7(4), 326–329 (1960)

13. Davies, R., Rodrick, P.: Planning resources for renal services throughout UK using simulation.
Eur. J. Oper. Res. 105(2), 285–295 (1998)

14. Kong, N., Schaefer, A.J., Hunsaker, B., Roberts, M.S.: Maximizing the efficiency of the US
liver allocation system through region design. Manag. Sci. 56(12), 2111–2122 (2010)

15. Levine, G.N., McCullough, K.P., Rodgers, A.M., Dickinson, D.M., Ashby, V.B., Schaubel,
D.E.: Analytical methods and database design: implications for transplant researchers. Am. J.
Transplant. 6(2), 1228–1242 (2006)

16. Demirci, M.C., Schaefer, A.J., Romeijn, H.E., Robert, M.S.: An exact method for balancing
efficiency and equity in the liver allocation hierarchy. INFORMS J. Comput. Spring 24(2),
260–275 (2012)

17. Stahl, J.E., Kong, N., Shechter, S.M., Schaefer, A.J., Roberts, M.S.: A methodological
framework for optimally reorganizing liver transplant regions. Med. Decis. Making 25(1),
35–46 (2005)

18. Shechter, S.M., Bryce, C.L., Alagoz, O., Kreke, J.E., Stahl, J.E., Schaefer, A.J., et al.: A
clinically based discrete-event simulation of end-stage liver disease and the organ allocation
process. Med. Decis. Making 25(2), 199–209 (2005)

19. Thompson, D., Waisansen, L.: Simulating the allocation of organs and transplantation. Health
Care Manag. Sci. 7, 331–338 (2004)



Chapter 3
A Routing Problem for Medical Test Sample
Collection in Home Health Care Services

Y. Kergosien, A. Ruiz, and P. Soriano

Abstract Health care organizations are increasingly turning towards home care
solutions to provide services to the population under their jurisdiction. Among these
services, medical test sample collection (in particular blood and urine) is a highly
demanded service by medical doctors. Providing this type of service clearly requires
efficient coordination and planning of appointments for patients and healthcare
personnel. This management involves the solution of a type of vehicle routing
problem that is very complex given the large number and particular nature of the
constraints that need to be considered: personnel schedules, patients preferences,
maximum transport delay for some blood samples, etc. In this paper, we propose
an integer linear programming formulation and different metaheuristics to solve this
special vehicle routing problem. Experimental results on randomized instances were
performed in order to select the best method to be integrated into a decision support
tool and test it in on real data. This study is the result of collaboration with the
blood collection service of the Center for Health and Social Service of Laval in the
province of Quebec (CSSS-Laval).
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3.1 Introduction

In recent years Health Care organizations everywhere around the world, but more
particularly in developed countries, have increasingly resorted to Home Health
Care (HHC) to provide services for the populations under their care. There are
several reasons motivating this trend: economic factors, hospital congestion, patient
preferences, ageing population, etc. The organizations that provide such Home
Health Care services are however faced with difficult management problems
resulting from this change in practices. In this paper, we focus on one such problem
that arises in the context of a medical test sample collection service at the home
of the patients that is provided by the CSSS1-Laval (Quebec). This service collects
samples from more than 700 patients per week, most of them being blood samples
with occasionally other types of samples such as urine, etc. The service involves
two types of personnel: clerks and nurses. Clerks centralize all sample collection
demands, prepare the planning of the nurses after a scheduling step, and perform
other administrative tasks, i.e. printing the labels required for the sample tubes.
Then the nurses plan their own routes to collect the test samples at the patients
homes. Two types of demands have to be distinguished. The first type deals with
sample collection demands for which the specific date when they should be carried
out is given by the physician (roughly 70 % of demands are of this type). The second
type of demand are those for which there is no specific date given for the collection
but rather a time window in which it should be performed (e.g. several days or
even weeks). Unfortunately, given the present management process the workload is
too large for the service capacity available at the CSSS-Laval, thus the hospital has
to hire additional nurses form private agencies on a day to day basis to meet the
demand. These extra resources are however quite expensive.

The current organization for managing demands is based on a two phase daily
planning process. First the clerks assign the demands that are due to be performed
on the next day to the different nurses on the basis of a predetermined geographical
decomposition of the area covered by the CSSS-Laval into sectors, each sector being
assigned to a given nurse. The nurses then decide which demands of the second type
should be added to their task and performed the next day (among those for which
their time window overlaps the next day’s date). Once these additional demands
have been selected, the nurses then manually build their schedule and route for the
next day. Two main drawbacks of this planning process easily spring to mind. First,
using a predetermined geographical decomposition is far from optimal since the
workloads associated with each sector may vary considerably one from another for
any given day. Secondly, the scheduling task that the nurses have to perform to
generate their routes and schedules is quite difficult as will be detailed later on and
particularly so for nurses that are not trained to solve such problems (a large amount
of information has to be taken into account, both from geographic as temporal point

1Center for Health and Social Services
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of view). In addition, after discussions with the nurses and their supervisors, it
was estimated that their planning tasks required at least 1 h daily, thus significantly
reducing their capacity to collect samples.

The main goal of this study is therefore to develop a methodology capable
of solving the routing/scheduling problem faced by the sample collection service
of CSSS-Laval efficiently and to propose a planning tool implementing such a
methodology in order to automatically compute the route for each nurse. Such a
tool would save time for each nurse enabling them to treat more demands and
could also improve the quality of the routes, therefore reducing or even eliminating
subcontracting costs. The paper is organized as follows. The next section presents
a brief literature review. Section 3.3 details the specific problem considered here
while Sect. 3.4 describes the proposed solution approaches. Some computational
experiments are presented in Sect. 3.5 as well as an overview of the decision tool
developed. Finally, concluding remarks and future research avenues are provided in
the last section.

3.2 Literature Review

Several studies have focused on decision support tools for home care at strategic,
tactical or operational levels. A recent literature review outlining these issues can be
found in [3] and focuses on solving assignment, scheduling and routing problems.
These types of problems have led to several national or international studies. In [4],
the authors study the scheduling and routing of home health care nurses in Alabama
and develop a spatial decision support system. They build a heuristic to construct
the routes of each nurse, taking unavailability into account. Other problems dealing
with staff scheduling/routing in the context of home care are also discussed in [10]
and [1]. The home care routing problem can also be generalized as a municipal
or communal routing problems [6] taking into account scheduling home care, trans-
portation of the elderly, and home meal delivery. In [7], the problem of routing home
health care personnel is studied by considering two types of nurses, part time and full
time, with different hourly costs. The authors define a mixed integer programming
model taking into account lunch breaks and present a basic heuristic with the
objective of minimizing the total cost. A similar problem is tackled in [5] with nurses
having different skills. The objective is not simply to minimize the total cost but a
weighted sum of the total travel time and several penalties, such as the violation of
time windows or of patients preferences. The heuristic developed by the authors for
solving this problem is divided into two parts: build a set of patients to be served
by each nurse and then find an optimal sequencing for each set of patients. A very
similar problem is studied in [8] in a Swedish context, the objective is to minimize
the travel time and the waiting time of patients. The authors solve this problem
using a set partitioning model with two types of variables (some for assigning a staff
member to a schedule, others for assigning a staff member to a visit with a vehicle).
A matching approach is used iteratively for finding a solution. They also describe the
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development of a decision support system called Laps Care to eliminate the manual
planning of home care unit assignments. In [9], the same authors present and discuss
some results and experiences from two local government organizations and from the
use of Laps Care. They conclude to an improvement of operational efficiency and of
the quality of home care services provided to elderly citizens. Other studies [13,18]
have investigated the integration of the periodicity of service delivery within this
type of problems, i.e. some types of care services for the same patient are required
several times over a given period of time. In these cases, the different sessions of care
should all be performed by the same professional, if possible, or by the minimum
number of different persons in order to ensure better patient monitoring and quality
of care. Home health care in times of natural disaster has been studied in [19] and
[17] in cooperation with the Austrian Red Cross. The authors propose a solution
approach based on variable neighborhood search for the daily scheduling of home
health care services. To validate their approach they used real life disaster scenarios.
In [16], the authors study a home care rostering and routing problem in which
one considers that nurses can use different transportation modes (public transport
or car). This multimodal home care scheduling problem is solved using constraint
programming to generate an initial solution and several metaheuristics to improve
upon it. An exact approach to solve long-term home care scheduling problem using
a branch-and-price algorithm is proposed in [11]. The pricing sub-problem consists
in generating a 1-day plan for a nurse and the master problem selects the plans to
construct a global schedule while considering regularity constraint. The method is
able to solve instances up to 44 visits during 1 week. Finally, some recent studies
have considered the synchronization of home care personnel visits to patients:
[2,14,15] or [12]. These aspects bring a new level of complexity since the routes of
each care giver cannot be evaluated independently anymore.

Although the number of studies on home care routing problems continues to
increase, there is no published work to our knowledge that can be used directly to
solve the problem faced by the sample collection services studied in this paper. This
mainly is due to the presence of several characteristics particular to the problem at
hand, namely: the existence of a maximum elapsed time for transportation of some
types of samples, the fact that nurses routes can include several stops at drop off
points where they will leave the samples they have collected up to then (in order
for those samples to be quickly transferred by courier service to the laboratory
for analysis), and finally, that demands can be subcontracted at a cost to external
resources. This study being carried out with the aim of developing tools to solve a
particular and difficult type of vehicle routing problem our focus will concentrate
on solution methodologies.

3.3 Problem Description

Let N be the set of sample demands and let N1 be the subset of fixed date demands
and N2 the one with non-fixed dates. Each demand i is characterized by the location
of the patient’s home, a time window [ei, li] during which the nurse can visit the
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patient to collect the samples, an estimate of the processing time pi required for
collecting the samples, a possible requirement for a specific nurse to make the visit
to that patient, a subcontracting cost Ci if the demand is performed by external
resources, and the list of required tests. For some types of tests included in these
lists there is an additional requirement that the time elapsed between the collection
of the sample and the moment when the test is performed at the laboratory should
not exceed a pre-specified value DMaxi otherwise the test result is useless. These
more critical tests essentially concern blood samples and account for about 20 % of
the total number of demands. In order to satisfy these requirements, several sample
drops off points are scattered all over the city for the nurses to deposit their critical
samples. Then a specialized medical courier service collects the deposited samples
at each drop off point according to a predetermined schedule and delivers them to
the hospital laboratories for analysis. Therefore, the time elapsed before a critical
sample is analyzed can easily be computed using the time of collection, the time of
drops off and the transportation timetable of that specific drop off point. The nurses
must therefore include as many stops at these drop off points as required along their
routes so as to make it possible for the critical blood tests to be carried out within
the required time. Depending on the number of critical samples in their schedule a
nurse’s route may need to include several stops at these drops off points (note that in
the rest of the paper we will refer indifferently to these as laboratories or drop offs).
After collecting a critical sample, a nurse may visit other patients before depositing
her critical samples at a drop off point in order to optimize her route. However, the
nurses have to visit a drop off point with an appropriate transportation timetable to
satisfy the pre-specified maximum elapsed time. The time needed at drop off point
i to drop all the samples is noted by tdi. A set M of nurses is available to serve
all demands. Nurses, denoted by index k with k ∈ M, are characterized by a work
schedule (start time Stak and end time Endk), a route starting point Hk (generally
the nurse’s home) and a route end point Bk (generally the offices of the medical test
sample collection service).

3.4 Solving the Routing Problem

The main idea of the proposed solution approach is to decompose the problem
into daily routing problem. We will therefore determine the routes of the nurses
for only one day at a time (computed the previous day). Obviously, all demands
having a fixed date that are due for the next day need to be included in the routes
or subcontracted. Then the maximum number of demands of the second type will
be included to the routes in order to prevent them from being postponed to another
date as much as possible. We considered planning for a longer horizon such as a
week or even a month, however two factors made this unattractive. First, a longer
planning period complicates significantly the problem to be solved since the number
of demands grows quite fast. But even more problematic, is the fact that demands are
not known a long time in advance. Indeed, most of them are known around 2 days
ahead of time and less which makes planning several days in advance inefficient.
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A solution is represented by the sequence of demands performed by each nurse
as well as the visits at the drop off points. By solving successively this routing
problem day after day, a pseudo load balancing will be achieved. This problem
resembles other vehicle routing problems and transportation problems found in the
literature and in particular the “Multi-TSP with time windows and max profits” but
possesses crucial differences, specifically the critical sample aspect. Therefore, to
the best of our knowledge, none of the solution approaches that have been proposed
in the literature for that problem can be easily adapted to the problem under study
here. The home care sample collection routing problem can be modeled as a mixed
integer linear program, a formulation of which is presented in the Appendix A.

Since in the real problem setting there are in fact several non-comparable
objectives, we optimize a lexicographic objective function based on the following
criteria:

• Minimize subcontracting cost.
• Maximize the number of the demand of the second type weighted by the number

of remaining days ldi.
• Minimize the delays with respect to the patients time windows and the nurses

work schedules (note that delays are bounded).
• Minimize the sum of total distance traveled.

The experiments we carried out showed that the exact solution of the proposed
model by a commercial solver such as Cplex could only be achieved for very small
instances. Since computational times rise very fast with the size of the problem
and since real life instances in our practical setting are rather large, we decided to
concentrate on the development of solution approaches based on meta-heuristics
which have proven their efficiency for solving somewhat similar types of problems.
We therefore developed a tabu search and a variable neighborhood search. Both
meta-heuristics being based on a same set of neighborhood operators, we will first
present their common elements and then each general algorithm.

3.4.1 Neighborhood Operators

The algorithms are based on two types of neighborhood operators. The first one is
an insertion operator. This operator has three types of possible moves: a demand
belonging to a route may be inserted into another route or in another place if moved
within the same route, a demand belonging to the set of subcontracted demands
may be inserted into a route, and a demand belonging to a route may be removed
and added to the set of subcontracted demands. For each type of move, all positions
in a route are tested.

The second type of neighborhood operator is a swapping operator. This operator
has two types of possible moves: a demand belonging to a route may be exchanged
with another one in the same or a different route, and a demand belonging to the set
of subcontracted demands may be exchanged with a demand belonging to a route.
For the latter case, we consider that it is possible to perform a null exchange in
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which no demand is removed from the routes. This was permitted so as to prevent
the set of subcontracted demands to always have the same size.

Whatever the neighborhood operator used, only feasible solutions are considered
in the neighborhood. Thus, for each move (insertion, deletion or exchange), the
resulting solution is tested to check if all constraints are satisfied (time window at
patient’s home for each demand, maximum transportation delay, etc.). When
a demand with critical tests has to be inserted or removed, then the required stop
at a drop off point associated with this demand is also inserted or removed (note
that a swap is equivalent to performing both an insertion and deletion step). In the
case of insertions, the demand is first inserted and then, if the insertion of a drop
off point is required, the best location in the route is selected. This best location,
according to the objective function, must keep the solution feasible and therefore
takes into account the transportation timetables at the drop off points.

After performing these types of moves, the other drop off points of the changed
routes may no longer be adequate. Thus, after each change of the current solution,
we apply a post-optimization on each route that has changed. This post-optimization
procedure consists of two steps. The first step tests if the stop at each one of the drop
off points in the route is still necessary, otherwise the drop off point is removed from
the route. This step eliminates useless drop off points, e.g. it may be more efficient
when two demands with critical tests are close enough in the route to drop off their
samples at the same drop off point. The second step consists in changing each drop
off point in the route in order to improve the objective function. The main idea is to
test the drop off points one by one and try to find one closer than the one presently
included while maintaining the solution feasible.

Due to the maximum elapsed time for critical tests and the transportation
timetable of each drop off point, the optimal time to perform a sample collection
may not necessarily be as soon as the nurse arrives at a patient’s location. Indeed, it
may be more efficient to wait some time before collecting a sample from a patient
in order to achieve a better synchronization with the courier transportation schedule
of a drop off point that is closer to the planned route. However, given that a route
may have several drop off points it may be quite difficult to evaluate the optimal
starting times efficiently. In addition, it is difficult in practice to justify to nurses
that they should sometimes stay idle for a given time duration when arriving in front
of a patient house before collecting the samples there in order to improve the overall
efficiency of their routes. Thus we decided to neglect these possible economies and
instead solved the problem with the assumption that each patient is collect as soon
as possible (no idle waits).

3.4.2 Algorithms

3.4.2.1 Initial Solution

The initial solution, common to all methods, is built by inserting demands in the
routes one by one, according to their priorities, at their best possible position given
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the demands already present in the route. Priority is given to the first type of
demands – i.e. fixed date – (ordered by decreasing size of the time window available
to visit the patient), then to the second type of demand (ordered by the number of
remaining days until the end of the time window specified to perform the collection).
If a demand cannot be inserted, then it is added to the set of subcontracted/postponed
demands. When a demand with critical tests is inserted, a drop off point is also
inserted if necessary and the post-optimization procedure is applied (as described
above).

3.4.2.2 Tabu Search

The tabu search developed to solve this problem has a classical structure: from an
initial solution, the algorithm moves from a current solution to another solution by
searching neighborhoods while avoiding those that are currently tabu until some
stopping criterion is met. The previous two types of neighborhood operators were
tested resulting in two TS variants: TS1 using the Insert neighbourhood and TS2 the
Swap neighbourhood. Both variants use as tabu list the list of demands that were
recently moved. The list length is fixed which implies that a demand cannot move
again during a given number of iterations corresponding to the size of the tabu list.
The stopping criterion is a maximum number of iterations without improvement
to the best solution found. We also included the classical aspiration criterion that
allows moving a demand which is tabu if this move strictly improves upon the best
solution found.

3.4.2.3 Variable Neighborhood Search

The general structure of the variable neighborhood search (VNS) used to solve
this problem is described below. The algorithm uses all neighborhoods previously
defined here above except “Insert a demand belonging to a route into the set of
subcontracted demands”, since this operator is not necessary.

• Sbest ← Generate Initial Solution (same initial algorithm as previously)
• k← 1
• While a pre-specified number of cycles without improvement is reached,

repeat:

– S′ ← Shake using the kth operators and starting at Sbest .
– S′′ ← VND2 by starting at S′.
– If f (S′′)< f (Sbest) then

2The general structure of the variable neighborhood decent (VND) used to solve this problem is
classic. At the end of the algorithm, the best solution found cannot be improved with respect to any
of the four tested neighborhood operators.
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• Sbest ← S′′
• k← 1

– Else

• k← k+ 1

3.5 Computational Experiments and Overview of the Tool

In order to test the proposed algorithms, we generated three groups of instances.
The first group is a set of small and rather simple instances composed of 10, 15, 20,
and 25 demands, with respectively 6, 9, 12, and 16 fixed day demands. The number
of nurses is either 1 or 2, and the number of drop off points ranges from 0 to 2. In
the case where the number of drop off points is equal to 0, none of the demands
involves critical samples, otherwise the number of demands with critical samples is
set to 20 % of the total number of demands. These small instances were generated
to enable us to obtain optimal solutions by solving the MILP formulation with the
Cplex and then compare them with the ones obtained by the heuristic algorithms.
The instances of the second group are instances inspired by the case study with
CSSS-Laval and having similar size to the real instances. The number of demands
is equal to 150, 175, 200, 225 and 250 with respectively 90, 105, 120, 135 and 150
fixed day demands. For all instances, the number of demand with critical samples
is also set to 20 % of the total number of demand, the number of drop off points is
set to 5 and the number of nurses varies between 10 and 20. Finally, the last group
consists of five real instances that represent a normal week. For these instances we
obtained the historical data and decisions made by our partners at CSSS-Laval. This
groups of instances is detailed later.

All of the tests were performed on an Intel(R) Core (TM) i7-3610QM CPU
running at 2.30 GHz and with 8.00 Gb of RAM. All codes were programmed in
C++. Preliminary experiments were carried out on a small subset of the instances
in order to determine the strategic values for the heuristic algorithms parameters:
the size of the tabu list for the TS1 and TS2 algorithms were set at 65 % of the total
number of demands, and the number of iterations without improvement with respect
to the best solution were set at 1,000. The number of iteration without improvement
for the VNS was set at 500. These two last parameters were selected in order for
the algorithms to be able to solve real sized instances in a few minutes so that they
could be usable within a practical decision support tool.

Table 3.1 presents the results on the small instances. Each line represents a set of
10 instances. The first three columns indicate the size of the instance: the number
of patients, the number of nurses and the number of drop off points/laboratories
(recall that if this value is equal to 0 then it means there are no critical samples
in that setting). The ILP column represents the percentage of instances for which
Cplex found the optimal solution (solution times were limited to a maximum of 1 h).
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Table 3.1 Results on the small instances

Set of instances ILP Better than ILP

#Patient #Nurse #Laboratory % optimal TS1 (%) TS2 (%) VNS (%)

10 1 0 100 100 90 70
15 1 0 100 80 100 60
15 2 0 100 60 20 20
20 1 0 100 80 100 50
20 2 0 100 20 30 20
25 2 0 20 80 80 30
10 1 1 100 90 90 90
15 1 1 60 100 100 60
15 2 1 10 90 90 20
20 1 2 0 100 100 70
20 2 2 0 100 100 100
25 2 2 0 100 100 100

In the case where Cplex did not solve to optimality, we used the best solution found
by Cplex after 1 h in order to compare the results. The last three columns indicate,
for each algorithm, the proportion of instances for which the algorithm found the
optimal solution or a better solution than the one returned by Cplex (when optimality
was not proven).

These results show that when there are critical samples and therefore the
constraint requiring to drop some samples off at a laboratory during a route is
present, Cplex is much less successful. The tabu search algorithms seem to be more
efficient than the VNS algorithms. They do not always find the optimal solution but
are the ones that obtain the best solutions most of the time. It should also be noted
that they are extremely fast with solution times below 2 s in general.

Table 3.2 presents the results on the second set of instances. Each line represents
10 instances. The number of patients, the number of nurses and the number of drop
off points are indicated in the first columns. To give a better idea about which
method is the most efficient, we measured the percentage of instances for which
each method found the best solution among all tested methods. The solution times
for each method are also given in the Table 3.2. Objective values of each criterion
are reported in Appendix B.

One can observe first that TS1 is clearly the fastest of the three algorithms
compared, however the quality of the solutions it produces is also clearly inferior.
These results show that the insertion operator is less powerful than the swap
operator, the solution space is not explored widely enough. Now when comparing
the two best performing algorithms, TS2 and VNS, TS2 seems to have the upper
hand since on the basis of these results it obtains slightly better results overall
and also exhibits shorter running times. The methods could therefore be ranked
as follows: TS2>VNS>>TS1. Since the TS2 algorithm seems to be the best
compromise between solution quality and computing time, we used this algorithm
to integrate within the decision support tool and to perform the tests on the real data.
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Table 3.2 Results

Set of Instances TS1 TS2 VNS

#Patient #Nurse #Laboratory % best CPU (s) % best CPU (s) % best CPU (s)

150 10 5 0 0.9 40 33.9 60 52.4
150 15 5 30 2.5 60 40.8 10 62.6
150 20 5 80 2.9 10 51.2 10 65.7
175 10 5 0 1 40 47.8 60 64.5
175 15 5 0 1.6 70 61.3 30 84.5
175 20 5 60 4.3 10 60 30 91.5
200 10 5 0 1.9 80 60.5 20 73.5
200 15 5 10 2.2 50 71.9 60 104.2
200 20 5 30 6 40 96.2 30 119.9
225 10 5 0 2.8 80 77.2 20 86.1
225 15 5 0 2 20 67.5 80 124.1
225 20 5 20 5.3 60 109.9 20 158.4
250 10 5 0 4.1 100 108.4 0 100
250 15 5 0 2.1 40 101.5 60 146.3
250 20 5 0 5.1 40 126.6 60 187.6

Table 3.3 Results

Monday Tuesday Wednesday Thursday Friday

Number of demands 165 151 169 144 122
Number of fixed day demands 128 99 114 101 66
Number of demands with critical tests 37 29 45 40 41
Number of nurses 7 7 6 7 7

The real data was collected from one “normal” work week in December 2011.
A total of 751 demands were performed by 7 nurses who worked each the 5 days
of the week except for one which was absent on the Wednesday. Some details about
the real data are reported in Table 3.3.

The hours during which the nurses usually do their routes and collect the samples
are from 7 am until 12 pm. We used the same hours without considering the time
that could be saved by using the decision support tool. We therefore simulated
the decisions proposed by the proposed algorithm and solution procedure on the
data of this same week using the same conditions of work and then compared the
results obtained in reality with the ones produced by the TS2 algorithm. Figure 3.1
represents, for each day of the week, the number of demands performed by the
nurses and the number of demands that needed to be subcontracted (in red). The
histogram on the left corresponds to what was done in reality while the right one
illustrates the results obtained using the decision support tool.

The first important observation is that the number of subcontracted demands
was equal to 112 for the real week compared to 31 when using the TS2 algorithm.
The reduction in subcontracted demands represents 10.8 % of the total number of
demands during the week. In the solution proposed by the TS2 algorithm all the
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Fig. 3.1 Results on real instances

demands that need to be subcontracted happen on the Friday. This is due to the
fact that we are missing some information regarding the second type of demands
that were performed that week. Indeed, we did not have the information regarding
the time window during which they needed to be performed. We hence considered
that they had to be done between Monday and Friday of that week which explains
why all such demands that could not be fitted in the routes earlier in the week were
concentrated and subcontracted of the Friday. We want to point out that this decision
of forcing the decision support tool to perform all second type demands during the
week is almost surely a more stringent requirement than what reality imposed since
some of those demands may have had end dates for their time windows later than
that Friday and could therefore have been postponed to the following week (thus
reducing the costs of subcontracting). Finally we also noticed that because of the
geographical decomposition, the workload of the nurses varied quite significantly
from day to day, resulting in a far less than optimal use of the sample collection
service resources. The number of non-worked hours over all nurses is estimated at
around 5 % of the total working time.

3.6 Conclusion

In collaboration with a home care medical test sample collection service in Quebec,
we have studied a specific vehicle routing problem that arises in the course of
their operations. We have developed two meta-heuristics to solve this problem
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and integrated the best one in a decision support tool for planning the demands
to be performed each day and the routes to be followed by each nurse to carry
out the planned sample collections. In addition to a significant gain in time for
the planning of nurses’ routes, the tool also allows the organization to: increase
the traceability of the samples it collects therefore improving the quality of the
tests performed, improve the monitoring of the work carried out by the home care
nurses, and also makes data entry easier, faster, and less prone to errors. The tool
also enables the organization to save about 1 h per day per nurse of clerical work
by automating the route production process, which is currently done manually by
the nurses themselves. This saved time could therefore be used to increase the
collection capacity of the nurses and further reduce the need for subcontracting. On a
research perspective, one possibility that seems very appealing is to develop a hybrid
algorithm combining the TS2 and VNS algorithms in order to improve further the
performance of the decision support tool. A second avenue we are pursuing is to
extend this approach to more general home health care settings (e.g. longer planning
horizon, continuity of care, multiple care professionals, etc.).

Appendix A

We represent the problem using a complete graph G(V,E). The set of vertices V is
obtained as the union of three different sets: all test demands (N), the starting and
ending points for each nurse route (D), and all combinations of a laboratory/drop off
point with one of its specific pick up times according to its transportation schedule
(C). Each laboratory is thus represented by several vertices in the graph, one vertex
for each pick up time. The weight of an arc (i, j) ∈ E represents the travel time di j

for going from vertex i to vertex j. We also introduce parameter HV to represent a
large real number and an indicator parameter LTi for each demand i, that assumes
value 1 if the demand i is a critical test, 0 otherwise.

Variables

• ∀i, j ∈V , ∀k ∈M : xk
i j

{
1 if nurse k travels from node i to j,
0 otherwise,

• ∀i ∈ N = N1∪N2 : ti : arrival time at patient’s home.
• ∀i ∈ C, ∀k ∈M : tk

i : arrival time of nurse k at drop off point with pick up time
equal to HR j.

• ∀i ∈ N/LTi = 1, ∀ j ∈C, ∀k ∈M : a f f k
i j

⎧⎨
⎩

1 if i is droped at laboratory/pick
up time j by nurse k,

0 otherwise,
• ∀k ∈M : Retk : delay of nurse k (overtime work).
• ∀i ∈ N : Latei : lateness for demand i.
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Constraints

∀i ∈ N : ∑
k∈M

∑
j∈V/i�= j

xk
ji ≤ 1 (3.1)

∀i ∈V/D,∀k ∈M : ∑
j∈V/i�= j

xk
ji = ∑

j∈V/i�= j

xk
i j (3.2)

∀k,k′ ∈M/k �= k′ : ∑
i∈V/i�=Bk

xk
iBk

= 1 ; ∑
i∈V/i�=Bk′

xk
iBk′ = 0 (3.3)

∀k,k′ ∈M/k �= k′ : ∑
i∈V/i�=Hk

xk
Hki = 1 ; ∑

i∈V/i�=Hk′
xk

Hk′ i = 0 (3.4)

∀k ∈M : ∑
i∈C

xk
Hki = 0 (3.5)

∀i ∈C,∀k ∈M : ∑
j∈C/i�= j

xk
i j = 0 (3.6)

∀i ∈ N,∀k ∈M\Ii : ∑
j∈V/i�= j

xk
i j = 0 (3.7)

∀i ∈ N,∀ j ∈ N/i �= j : ti + pi+ di j ≤ t j +HV.

(
1− ∑

k∈M

xk
i j

)
(3.8)

∀i ∈ N,∀ j ∈C,∀k ∈M : ti + pi+ di j ≤ tk
j +HV.(1− xk

i j) (3.9)

∀i ∈C,∀ j ∈ N,∀k ∈M : tk
i + tdi+ di j ≤ t j +HV.(1− xk

i j) (3.10)

∀i ∈ N,∀k ∈M : xk
Hki.(Stak + dHki)≤ ti (3.11)

∀i ∈ N,∀k ∈M : ti + pi+ diBk ≤ Endk +Retk +HV.(1− xk
i j) (3.12)

∀i ∈C,∀k ∈M : tk
i + tdi+ diBk ≤ Endk +Retk +HV.(1− xk

i j) (3.13)

∀k ∈M : Retk ≤MaxRetk (3.14)

∀i ∈ N : ei. ∑
k∈M

∑
j∈V/i�= j

xk
ji ≤ ti ≤ li +Latei (3.15)

∀i ∈ N : ti ≤ (li +MaxLatei). ∑
k∈M

∑
j∈V/i�= j

xk
ji

(3.16)

∀i ∈ N : Latei ≤MaxLatei (3.17)

∀i ∈ N/LTi = 1 : ∑
k∈M

∑
j∈C

a f f k
i j = ∑

k∈M
∑

j∈V/i�= j

xk
ji (3.18)
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∀i ∈ N/LTi = 1,∀ j ∈C,∀k ∈M : a f f k
i j ≤ ∑

l∈V/l �= j

xk
l j +

tk
j − ti
HV

(3.19)

∀i ∈ N/LTi = 1,∀ j ∈C,∀k ∈M : a f f k
i j ≤ ∑

l∈V/l �=i

xk
li (3.20)

∀i ∈ N/LTi = 1,∀ j ∈C,∀k ∈M : HR j.a f f k
i j− ti ≤ DMaxi (3.21)

∀i ∈ N/LTi = 1,∀ j ∈C,∀k ∈M : tk
j ≤ HR j +HV(1− a f f k

i j)

(3.22)

Constraints (3.1) indicate that each node can be visited at most once. Con-
straints (3.2) ensure the continuity of routes. The start and end points of each
route are set through Constraints (3.3)–(3.5). Constraints (3.6) are not essential
but can reduce the number of variables by prohibiting two consecutive drop off
points. Constraints (3.7) specify the possible requirements/preferences for specific
nurses for a patient. The traveling times between two points are represented by
the Constraints (3.8)–(3.10). The work schedules are taken into account through
Constraints (3.11)–(3.13) with a delay (overtime work) that is allowed but bounded
by Constraints (3.14). Constraints (3.15) and (3.16) define the time windows
of each demand. Lateness is also allowed but bounded by Constraints (3.17).
Constraints (3.18)–(3.20) ensure that if a critical test is performed by a nurse, the
sample has to be dropped off during the route of that nurse but after it has been
collected. Constraints (3.21) and (3.22) imply that the time elapsed between the
collection of a critical sample and the moment when it is tested at the laboratory
does not exceed a pre-specified length of time DMaxi.

Objective Function

Min

(
α ∑

i∈N
Latei +β ∑

k∈M

Retk−θ

(
∑

i∈N2

1
ldi

(
∑

k∈M
∑

j∈V/i�= j

xk
ji

))

+Ω

(
∑

i∈N1

Ci

(
1− ∑

k∈M
∑

j∈V/i�= j

xk
ji

))
+ϑ ∑

k∈M
∑
i∈V

∑
j∈V/i�= j

di j.x
k
i j

)

The weights (Ω >> θ >> α ≥ β > ϑ ) were chosen in order to have a
lexicographic optimization of the following criteria:

1. Minimize subcontracting cost.
2. Maximize the number of the demand of the second type weighted by the number

of remaining days ldi.
3. Minimize the delays with respect to the patients time windows and the nurses

work schedules (note that delays are bounded).
4. Minimize the sum of total distance traveled.
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Appendix B

Table 3.4 Results TS1

Set of instances TS1

Number of Number of Sum of Total travel
#Patient #Nurse #Laboratory subcontracted demands postponed demands delays distance

150 10 5 9 47.2 279.7 1,632.4
150 15 5 3.2 6.4 207.4 2,149
150 20 5 3 2 19.4 1,786.3
175 10 5 19.1 58.1 308.7 1,604.7
175 15 5 3.1 26.1 337.8 2,238.8
175 20 5 3 2.6 80.6 2,203.4
200 10 5 27.6 70.2 300.8 1,560.1
200 15 5 6.6 42.9 381.6 2,272.7
200 20 5 4 5.4 215.2 2,620
225 10 5 35.9 79.9 328.4 1,479.7
225 15 5 11 64.6 433.8 2,307.6
225 20 5 4.1 15.1 348.3 2,691.9
250 10 5 46.6 91.1 332.4 1,477.8
250 15 5 18.8 80.5 452.9 2,275
250 20 5 5.1 37.6 437.3 2,761.6

Table 3.5 Results TS2

Set of instances TS2

Number of Number of Sum of Total travel
#Patient #Nurse #Laboratory subcontracted demands postponed demands delays distance

150 10 5 6.8 42.1 278.9 1,529.7
150 15 5 3.1 6.8 216 2,107.4
150 20 5 3 2.2 21.6 1,933.5
175 10 5 14.6 54.7 318.1 1,492.2
175 15 5 2.3 22.4 315.1 2,152.9
175 20 5 3 2.9 86.5 2,316.5
200 10 5 21.6 68.1 319.3 1,440.5
200 15 5 4.9 37.4 386.6 2,161.4
200 20 5 3.8 6.3 192.2 2,576
225 10 5 31.4 81.7 342.5 1,453.1
225 15 5 8.7 58.5 410.5 2,166
225 20 5 3.6 14.7 334.2 2,631.7
250 10 5 40.5 91.9 379.9 1,388.2
250 15 5 14.1 73.8 479.1 2,143.2
250 20 5 4.9 33.6 412 2,666.3
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Table 3.6 Results VNS

Set of instances VNS

Number of Number of Sum of Total travel
#Patient #Nurse #Laboratory subcontracted demands postponed demands delays distance

150 10 5 6.4 44.8 239 1,530.6
150 15 5 3.2 9.6 142 2,070.1
150 20 5 3 2 24.4 1,871.5
175 10 5 14 59.6 258.1 1,507.6
175 15 5 2.4 25.6 263.9 2,148.3
175 20 5 3 3.5 84.8 2,263.9
200 10 5 24 75 272.2 1,535.2
200 15 5 4.5 41.8 324.3 2,152.4
200 20 5 3.8 9.1 112.7 2,422.1
225 10 5 35.9 86.6 309 1,546.4
225 15 5 7.9 63.6 343.6 2,189.5
225 20 5 3.7 16.9 243.4 2,578.8
250 10 5 51.5 96.5 271.3 1,554.5
250 15 5 12.9 79.9 387.5 2,155.1
250 20 5 4.6 34.8 334.1 2,629.6
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Chapter 4
A Two-Stage Approach for Solving Assignment
and Routing Problems in Home Health Care
Services

Semih Yalçındağ, Andrea Matta, Evren Şahin, and J. George Shanthikumar

Abstract Human resource planning in Home Health Care (HHC) services is a
critical activity that may also affect the quality of the delivered care. The assignment
of the patient to operators together with their routing in the served territory are
relevant problems that service providers have to deal with on a daily frequency.
These problems can be either solved with a two-stage approach or with a simul-
taneous approach. The simultaneous approach enables to hold both assignment and
routing decisions at the same time, however solving this problem is computationally
difficult. The two-stage approach is the easier way of solving the assignment
and routing problems, but an estimation of travel times is required to properly
decompose the simultaneous approach into the two stages. This paper presents
a new method to estimate operator travel times based on the Kernel Regression
technique. Estimation is made on the basis of the operator travel times observed
from previous periods. Numerical results based on realistic problem instances show
that the proposed estimation method performs better than the classical Average
Value method and that the whole approach is promising to construct realistic
schedules.
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E. Şahin
Laboratoire Génie Industriel, Ecole Centrale Paris, 92 295 Châtenay-Malabry Cedex, France
e-mail: evren.sahin@ecp.fr

J.G. Shanthikumar
Krannert School of Management, Purdue University, West Lafayette, IN 47907, USA
e-mail: shanthikumar@purdue.edu

A. Matta et al. (eds.), Proceedings of the International Conference on Health Care
Systems Engineering, Springer Proceedings in Mathematics & Statistics 61,
DOI 10.1007/978-3-319-01848-5__4, © Springer International Publishing Switzerland 2014

47

mailto:semih.yalcindag@polimi.it
mailto:semih.yalcindag@ecp.fr
mailto:andrea.matta@polimi.it
mailto:evren.sahin@ecp.fr
mailto:shanthikumar@purdue.edu


48 S. Yalçındağ et al.

4.1 Introduction

Home Health Care (HHC) service is an alternative to the conventional
hospitalization and consists of delivering medical, paramedical and social services
to patients at their homes. The development of the HHC concept can be attributed
to ageing of populations, social changes in families, increase in the number of
people with chronical diseases, improvements in medical technologies, advent of
new drugs and governmental pressures to contain health care costs [8]. The goal
is to help patients to improve or keep their best clinical, social and psychological
conditions.

Human resource planning in HHC services is a critical activity which the quality
of the provided care depends on. From the admission of the patient, the service
provider has to decide which operators will follow the patient during his stay as
well as the detailed care delivery plan.

The resource assignment problem refers to the decision of which operators will
take care of which patients. The operator routing problem specifies the sequence in
which the patients are visited on a daily basis. To obtain the routes for operators,
the assignment lists of operators and therefore the travel times between assigned
patients should be known. The routing decision can either be held simultaneously
with the assignment decision or it can be done just after the assignment procedure.
In other words, the assignment and routing problems can be solved with two main
approaches. The first one is solving them independently by a two-stage procedure
where the output of the assignment problem is integrated as an input to the routing
problem of each individual operator (Traveling Salesman Problem, TSP). The
second approach aims at solving them simultaneously in a single model (Vehicle
Routing Problem, VRP).

The literature available on the assignment and routing problems in HHC services
has been enriched by recent works [6, 11]. Here we present some of the existing
works. Akjiratikarl et al. [1] generate daily schedules by using the VRP with
time windows. They focus on the determination of routes for each operator while
minimizing the total distance traveled. Hertz and Lahrichi [5] propose two mixed
integer programming models for assigning operators to patients. The objective is
to balance the operators workloads. Trautsamwieser et al. [10] develop a model for
the daily planning of the HHC services. The goal of the work is securing the HHC
services in times of natural disasters. They develop the daily scheduling model as
a VRP with state-dependent breaks. The objective of the model is minimizing the
sum of travel times and waiting times, and also the dissatisfaction levels of the
patients and health care operators. Lanzarone et al. [7] develop different assignment
models to balance the operators’ workloads considering several peculiarities of
HHC services like the operators skills, the geographical areas of patients and
operators, and the stochastic patient requests. Yalcindag et al. [12] propose a two–
stage approach for assignment and routing decisions in HHC organizations. Their
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main goal is to analyze the interaction between the assignment and routing processes
where travel times between patients are estimated based on average values in the
assignment phase.

Current literature mainly focuses on the simultaneous decisions of the
assignment and routing problems. Although the simultaneous approach is
theoretically the best alternative, it falls into the category of the NP-Hard problems.
Due to this complexity, in the existing works either a heuristic solution method is
adopted or very small instance sets are used to solve the developed models. Actually,
heuristics are the only way to manage complexity in real applications where
hundreds of patients receive the care service delivered by a single organisation.

The simultaneous approach is mainly based on the geographical locations of
patients and aims to minimize the total traveling times of operators. However, in
the HHC services there are other patient attributes that should be considered while
trying to minimize travel times of operators such as patients’ skill requirements, care
profiles, special service requests etc. In these cases, the simultaneous approach may
not be able to take into account such patient attributes or it could be computationally
harder. Furthermore, each professional can construct the routing based on his
(her) specific skills. These operator specific criteria can be hardly modeled in a
mathematical programming model.

In order to cope with the problem complexity and special structure of the HHC
services, this paper proposes a two-stage procedure for short-term planning of
human resources. With this procedure, first the assignment problem needs to be
solved and then, with the obtained patients lists and travel times between patients,
the routes for each individual operator needs to be constructed. In this procedure,
since the routing process is held independently and exact distances between patients
are not available at assignment level, estimation of operator travel times is required
to be able to solve the assignment problem. In the work of Yalcindag et al. [12],
travel times are estimated based on average values. Although this is a intuitive
approach, more accurate travel time estimation method is necessary to obtain results
close to the ones the simultaneous approach provides. In particular, inaccurate esti-
mations may create infeasibilities between the two stages (e.g., operator availability
constraints in the routing problem) in addition to workload unbalancing and high
travel times. Estimation is made on the basis of the operator travel times observed
from previous periods in order to try capturing the specific operator behaviour. This
paper partially addresses the stated problem by considering travel time minimization
as the only criterion to construct the routes for the operators. The proposed estimator
is assessed on a set of numerical cases.

The rest of the paper is organized as follows. The assignment and routing
models are described in Sect. 4.2. In Sect. 4.3, the two-stage approach and travel
time estimation methods are presented. In Sect. 4.4, the simultaneous approach is
presented. Computational experiments are reported in Sect. 4.5. Finally, concluding
remarks and future research directions are presented in Sect. 4.6.
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4.2 Problem Definition

The assignment problem of the HHC services is used to determine which operators
will provide the service to which patients, whereas the routing problem is used
to decide the visiting sequence of patients for each operator. The problem can be
defined on a complete directed network G = (N,A), having n nodes where each
node i corresponds to a patient.

In this work, we assume that the assignment and routing processes are held within
a single category of operators (nurse or doctor) with same professional capabilities.
In practice, operators are usually divided into several districts (as groups) based
on their main skills and geographical areas to serve. A single district for a single
planning period (e.g. day or week) is assumed.

Models are proposed under continuity of care where the newly admitted patient
has to be assigned to only one principal operator in the set Ω of all operators. Each
operator k, with k ∈ Ω = {1, . . . ,K}, has one main skill that is used to handle a set
of patients. The main skill refers to the patients for which the operator is best suited
to care. For sake of simplicity, operators have no patient allocated from previous
periods. Each operator k is assumed to have a deterministic capacity ak, which is the
maximum amount of time that the operator can accomplish according to his (her)
working contract. In particular, it is also assumed that operators can handle excess
load with respect to their capacities (i.e., overtime is allowed).

In the following sections, we present the details of the two-stage and simultane-
ous approaches to solve the assignment and routing problems.

4.3 Two-Stage Approach

In this section we provide details about the decomposed assignment and routing
problems and also the travel time estimation methods.

4.3.1 Assignment Model

The considered assignment problem consists in matching operators with patients in
a way that the utilization rates of operators (defined as the ratio between the actual
workload of the operator and his (her) capacity) are balanced and the total traveling
time of operators is minimized.

Each patient i (with i = 1, . . . ,n) has deterministic demand λi (expressed in
amount of time) which denotes the total amount of the care volume needed by the
patient. The demand of patient i is calculated as follows:

λi = (τi + si) fi (4.1)
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where si is the service time required by the patient, τi is the estimated travel time to
reach the patient and fi is the frequency of visits required by patient i.

The assignment problem is formulated as follows:

min h+ γ
K

∑
k=1

yk (4.2)

s.t.
K

∑
k=1

xik = 1 ∀i (4.3)

yk =
n

∑
i=1

τixik ∀k (4.4)

wk =
n

∑
i=1

λixik ∀k (4.5)

h≥ wk

ak
∀k (4.6)

xik ∈ {0,1} ∀i,k (4.7)

wk ≥ 0 ∀k (4.8)

yk ≥ 0 ∀k (4.9)

where variable xik takes the value 1 if the patient i is assigned to the operator k and 0
otherwise. The decision variable wk is a continuous variable and is used to calculate
the total workload of operator k. The decision variable yk denotes the total travel
time of operator k and γ is a parameter between 0 and 1. The auxiliary variable, h,
is used to estimate the maximum utilization rate of the operators from above.

Equation (4.3) implies that all newly admitted patients must be assigned to
only one operator. Equation (4.4) calculates the total travel time of each operator
k. Equation (4.5) defines the total workload of each operator k. Inequality (4.6)
expresses the maximum utilization rate h, which is minimized in the objective
function (4.2) together with the penalized sum of travel times.

4.3.2 Travel Time Estimation Methods

Since in the two-stage approach the routing problem is solved after the assignment
problem, at the time of the assignment decision the visiting sequences of patients
are not known. In this section we provide details on how to build the travel time
functions. We adopt a non parametric method to estimate travel times from real data
observations. The reason is due to the distribution-free property of non parametric
methods and the asymptotic convergence of some estimators. In particular, Kernel
Regression (KR) is used to estimate the travel time functions. Remind that, in this
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paper, we only consider the geographical locations of patients without taking into
account their other attributes.

In the literature, only Average Values (AV) are used to estimate travel times.
Thus, in the following section, in addition to the proposed method based on KR, we
also describe the existing AV method.

4.3.2.1 Average Value Approach

The estimate of the travel time related to a patient is calculated as the weighted
average travel time to reach his (her) home from all other patients, including also
the common health care center. In such a case, the weights can be assumed to be
proportional to the care volume required by each patients (frequency of required
visits). Thus, the following estimator τ̄i is used:

τ̄i =

∑
j �=i

w jti j

∑
j �=i

w j
(4.10)

where ti j denotes the traveling time from patient i to j, (i, j) ∈ A and wj is the weight
related to the patient j.

Since average values are used to calculate the time to reach a patient, this can
result in high travel times in comparison with the optimal travel times that are
obtained with the simultaneous approach.

4.3.2.2 Kernel Regression Technique

KR is a non-parametric regression technique that does not require a predetermined
(e.g. linear) form as the predictor is built with the information derived from the
existing data [13]. KR exploits the correlations existing among the observations
by assuming a radial basis function explaining the data. Since HHC patients have
spacial relationship between each other (i.e., locations, skill requirements, etc.), KR
can be adopted to estimate the travel time to visit a set of patients located in a
geographical area.

KR technique estimates the expectation of the outcome variable Y (i.e., total
travel time of operator) conditional on the random variable X (i.e., patient locations,
care profiles), E(Y |X). Than main reason for using KR is that it imposes few
restrictions on the functional relationship between the covariates X and the outcome
variable Y . This relationship can be shown with the following simple model:

Y = τ(X)+ ε (4.11)

where τ is an unknown function and ε is the error term which is independent and
identically distributed with [0,σ2(X)].
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For our analysis we focus on the Multivariate Kernel Regression since our
response variable Y depends on a vector of exogenous variables X . Thus, we try
to estimate the following conditional expectation:

E(Y |X) = E(Y |x1, . . . ,xd) = τ(X), (4.12)

where X = (x1, . . . ,xd)
T and d is the dimension of the covariate X .

To estimate the unknown function we use the Nadaraya-Watson estimator [13]:

τ̂(x) =
∑m

p=1 K
(

Xp−x
h

)
Yp

∑m
p=1 K

(
Xp−x

h

) , (4.13)

where K(.) is a d dimensional kernel function and h is the bandwidth array. With
this approach, the function τ is estimated with a locally weighted average by using
the kernel as a weighting function. The selection of the bandwith value is relevant
as it affects the smoothness of the predictor. Several methods are available in the
literature to select an optimal value for h.

The kernel function, K(.), is chosen as the widely applied Gaussian Kernel,

K(x) =
1√
2π

e−(1/2θ)x2
, (4.14)

where θ represents the correlation coefficient.
In our context, τ̂ is indicating the estimation of the total travel time function of

any operator k and in the remainder of this work it is denoted as τ̂k. In particular,
Xk is used to denote the attributes (in this study only geographical locations) of the
patients assigned to the operator k. The outcome variable Yk is used to express the
total travel time of operator k to reach the assigned patients. Xk and Yk values are
used to estimate the total travel time function, τ̂k.

To test the accuracy of the proposed KR technique, we first run an experiment
to compare the predictor in Eq. (4.13) with the observed total travel times. In
the experiment, we randomly generate five patients in a geographical area and
the TSP model is used to calculate the optimal route to visit them accordingly to the
travel time minimization criterion. This total travel time represents one (out of m)
observation on which the predictor is constructed. To do this, we use different sizes
of historical data (i.e, m = 25,35,50,100, . . .) to study the behavior of the predictor
as the number of observations increases. At each generation, the five patients are
randomly sampled with a triangular distribution between 0 and 100 and the mode
equal to 40.

For each data set we calculate τ̂ on the basis of the m observations. Then
the predictor is used to estimate the travel times for 100 new data sets randomly
generated out-of-sample. For these new data sets the TSP model is used to obtain the
optimal total travel times. These last are used as benchmark to study the accuracy of
the estimator. The error between the estimated values and the optimal TSP values are
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Fig. 4.1 Box-plot for the error between of the estimated and optimal travel times (100 samples)

shown on the box-plot in Fig. 4.1. As it can be seen, as the number of observations
in the history increases, the predictor provides better estimates. Similar results were
obtained by repeating the experiment with 6, 7 and 8 patients visited in the route.
Obviously, the predictor performance deteriorates as the number of patients in the
route increases.

The following section provides details on how the two travel time estimation
alternatives can be considered in the assignment phase.

4.3.3 Use of Travel Time Estimators in the Assignment
Problem

One of the most important point while solving the assignment problem is how to
incorporate estimated travel times into the mathematical model. As far as the AV
approach, it can be done simply by calculating the average travel times over all
patients with Eq. (4.10) and plugging this value into Eq. (4.4) where the total travel
time of each operator is calculated.

For the KR estimate, since the regression function is fitted to calculate directly
the total travel time of an operator, it is more complex than the AV approach. To
incorporate this into the current setting, two different approaches can be followed.
A proper approach is to enumerate all possible assignment combinations for all
operators and to estimate the related travel times using the KR functions. This can
be done off-line, i.e., before the assignment problem is solved. Since the procedure
may not be easy in practice, an heuristic approach can be applied as alternative to
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solve the assignment problem. Indeed, it is very practical to embed the KR function
in an heuristic approach such as genetic algorithm, tabu search, etc. In this way,
first the heuristic selects (with some specific rules) assignments and then the KR
function is executed to get the travel time estimate from which the objective function
is calculated. This is repeated for several iterations until an exit condition is satisfied.

In this paper, a genetic algorithm is adopted to solve the assignment problem
using KR for the estimation of travel times. The implemented heuristic solves the
same assignment problem formulated in Eqs. (4.2)–(4.9).

4.3.4 Routing Model

At routing phase, a TSP model is used to create the routes for all operators in the
considered planning period. With the patients lists obtained from the assignment
phase, K independent TSP models are solved and the visiting sequences for all
operators are determined. In other words, the output of the assignment phase is
incorporated into the routing phase and the routes of all operators are obtained from
the solution of the TSP models.

As the TSP model, we use the conventional formulation proposed by Dantzig
et al. [4] with the objective of minimizing the total traveling time of each operator.

4.4 Simultaneous Approach

To be consistent with the modeled assignment problem, we need to formulate the
VRP with the same objective function that balances the trade-off existing between
workload balancing and total travel times. The problem has been formulated using
the models proposed in [3, 9]. Two consecutive VRP models are solved to balance
the total travel times of operators. In the first model, we find an upper bound on the
maximum tour length. With the solution from this model, we solve a second VRP
problem where the objective is minimizing the total travel times of all operators. As
a result, the routes are constructed in a way that the total travel times of the operators
are minimized according to the balancing purposes.

Balancing the total travel times of all operators can be considered as the
balancing the total workloads of all operators when the service times required from
each patient are assumed to be equal.

4.5 Computational Study

In this section we analyze and compare the proposed travel time estimation method
with the AV approach. The travel time estimation alternatives are tested on three
different instance groups, A, B, C. In the first instance group (A), locations of 15
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Table 4.1 Results with instances from groups A and B (15 patients)

Group Number T(AV ) T(KR2) T(V RP) %�AV %�KR2

A 1 639.14 604.14 601.73 6.2 0.4
2 630.45 601.49 593.73 6.2 1.3
3 662.00 619.06 614,58 7.7 0.7
4 696.48 669.99 668.40 4.2 0.2
5 666.86 637.02 609.88 9.3 4.5

B 1 882.73 715.62 703.97 25.4 1.7
2 860.82 784.83 737.32 16.8 6.4
3 847.01 769.86 718.74 17.6 7.1
4 873.38 855.82 734.01 19.0 16.6
5 876.83 792.34 739.71 18.6 7.1

Table 4.2 Results with instances from group C (56 patients)

Group Number T(AV ) T(KR2) T(KR1) %�AV−KR2

C 1a 139.04 105.58 128.69 31.7
2 141.46 108.96 127.62 29.8
3 139.47 94.49 129.65 47.6
4 151.31 100.08 130.04 51.2
5 147.90 105.14 127.77 40.7
6 147.62 112.09 127.51 31.7
7 135.81 109.18 127.55 24.4
8 138.21 113.82 124.62 21.4

aThe original real instance

patients are randomly sampled from a triangular distribution between 0 and 100 and
the mode equal to 40. In the second instance group (B), patients are generated based
on the grouping (clustering) structure. Here, 3 subsets of 15 patients (5 patient for
each subset) are used. Each subset is located in a different geographical area and
within each subset patients are located closely to each other. In the third group (C)
we generate instances with 56 patients based on real data provided by an Italian
HHC provider.

All of the presented results are obtained for a single planing period (e.g., day) for
a single district. Small sized instances (A and B) are executed with three identical
operators whereas the instances based on real setting (C) are solved with seven
identical operators.

In all the experiments the historical data are randomly generated according to
the instance type and the TSP is used to calculate the optimal travel times for
building the KR predictor. In particular, bandwidth values, h, are used as the optimal
values [2].

Small instances (A and B) are executed on both assignment and routing methods
(two-stage and simultaneous (VRP) approach) whereas due to computational
difficulties larger instances (C) are only solved for the two-stage approach. All of
the results obtained with three instance groups are presented in Tables 4.1 and 4.2.
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In the tables, the total travel time of all operators obtained in the two-stage
approach with the AV and KR methods are shown with T(AV ) and T(KR2) notations,
respectively. At the same way, the total travel time in the simultaneous approach is
denoted with T(VRP). T(AV ) and T(KR2) values are obtained by solving several
(as the number of operators) independent TSP models with the outputs obtained
from the assignment stage and summing the results of each TSP models. Since we
use a genetic algorithm for solving the assignment problem, T(KR2) values are the
average values resulting from five replications of the algorithm.

The percentage differences in Table 4.1 between the VRP approach and the two-
stage approach with the two estimation methods are denoted with �AV and �KR2

calculated as follows:

�. =
|T (.)−T (VRP)|

T (VRP)
(4.15)

The results in Table 4.1 show that, if the patients are randomly scattered in the
region (instance type A), the slight difference between AV and KR methods does
not seem to justify the proposed approach. In particular, the two-stage approach
has similar performance as the simultaneous approach. When the KR is used the
differences with the VRP are quite small except for the instance 4-B.

In the other instance group (B) where patients are concentrated on specific
locations, the two-stage approach with KR method is able to provide better solutions
than the AV method. Thus, it seems from the reported numerical results that the KR
technique performs better when the patients are located close to each other in some
specific areas as it happens in the real case. To support this idea we test another
instance set based on real data (C).

In the group C, one instance is directly generated from the real data with 56
patients distributed over 7 cities. By using the same patients, other seven instances
are generated where, in each instance, the patients are randomly spread over the
cities. The results of these instances are presented in Table 4.2.

The percentage differences on the total travel times between the two-stage
approach with KR and AV methods are shown as �AV−KR2 and calculated with
Eq. (4.15) by replacing T(VRP) value with T(KR2) value. As it can be seen from
Table 4.2, the two-stage method with KR approach provides up to 51.2 % lower
total travel times with respect to the AV approach.

The table also reports KR1 representing the total travel times estimated by the
KR method from the solution of the assignment problem. T(KR1) values are used
to test the accuracy of the proposed predictor with respect to the value obtained by
the TSP approach, T(KR2). Since we use the historical data with only 100 weeks to
estimate the regression function, the observed differences between the KR1 and KR2

are slightly high. But, according to the considerations made in relation with Fig. 4.1,
these differences can be reduced with the use of a larger number of historical data.
Indeed, if one data corresponds to 1 day the KR can be successfully applied with
hundreds of historical observations.
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4.6 Conclusions

In this work, we propose a new travel time estimation method and we analyze the
performance of this estimator with respect to the existing method. The results show
how the proposed estimation method is used in a two-stage approach to decompose
a complex problem.

We conclude that the proposed travel time estimator is performing good enough
when patients are distributed in a special way (clustered). In particular, we also
observe that even with a scattered distribution of patients our approach is providing
lower total travel times in comparison to the existing approach.

We also compare the results of the two-stage approach with the simultaneous
approach (VRP) and observe that, for the tested instances with few patients, the
two-stage approach is able to provide very similar total travel times as the VRP
approach provides.

The results reported in this paper suffer of a limited experimentation, thus they
have to be confirmed on a larger design of experiments.

An on-going activity is to analyze the decomposition process of the assignment
and routing problems in more details and try to compare the solutions with the VRP
approach for larger instances according to the real framework. Another on-going
activity is the improvement of the proposed travel time estimator to handle with
more complex cases where more patient attributes are considered.
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Chapter 5
Applying the Cardinality–Constrained
Approach in Health Care Systems: The Home
Care Example

Ettore Lanzarone and Giuliana Carello

Abstract Many approaches are applied to deal with uncertainty in health care
optimization problems. However, a recently proposed technique, namely, the
cardinality–constrained approach, is only marginally applied in health care. This
approach accounts for a given degree of uncertainty with a reasonable computational
effort, providing a trade-off between computational time and robustness. In this
paper, we apply such approach to the nurse-to-patient assignment problem under
continuity of care arising in home care services. A linear programming model is
developed for solving the problem, and the robustness is included in the formulation
according to the cardinality–constrained approach. The overall robust model is
applied to a Home Care provider operating in Italy, in order to evaluate its capability
of reducing the costs related to nurses’ overtimes, and to compare the results both
with the real practice of the analyzed provider and with previously developed
approaches. Relevant benefits are achieved by applying the proposed model in
the practice, and results suggest that such benefits could be also achieved in other
optimization problems within the health care domain.

5.1 Introduction

Uncertainty is a key feature of many health care optimization problems, which
cannot be neglected and may have a significant impact on the problem solu-
tion. In locating emergency vehicles, uncertainty is associated to the availability
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of ambulances [1], while in planning and scheduling operating room theaters
uncertainty is mainly related to the duration of surgery [2]. Uncertainty also occurs
in managing home care (HC) services, where sudden variations in the amount of
service required by patients, which is in general highly variable, are the most critical
and frequent random events.

Different approaches are usually applied to deal with uncertainty in optimization
problems, such as probabilistic models, stochastic optimization approaches, and,
more recently, the cardinality–constrained approach proposed in [3]. This accounts
for a certain degree of uncertainty (which can be tuned) with a reasonable
computational effort, providing a trade-off between needed computational time and
robustness.

Although the approach seems to match many health care optimization problems,
to the best of our knowledge it has not been often applied in this field so far (only
four papers with keyword health care that cite [3] were found in March 2013
through a search on ISI web of knowledge and Scopus).

In this paper, we present an application of the cardinality–constrained approach
to the nurse-to-patient assignment problem under continuity of care in HC. The
approach can be easily applied to the problem and proved to produce good quality
solutions with a reasonable computational effort. Therefore, it is also worthy of
being tested on other health care optimization problems.

5.1.1 Home Care Service

HC consists of delivering medical, paramedical and social services to patients at
their domicile rather than in hospital. This leads to a significant improvement in the
quality of life for patients, as they continue to live at their home, and to considerable
cost savings for the entire health care system, as hospitalization costs are avoided.
Moreover, HC is a relevant and growing sector in western countries, due to the
population aging, to the increasing of chronic pathologies, to the introduction of
innovative technologies, and to the pressure of governments to contain health care
costs.

Many resources are involved in delivering HC services, including nurses, other
operators, support staff and material resources. In addition, the presence of peculiar
constraints, such as the continuity of care and the operator risk of incurring burnout,
makes the HC resource planning different from the planning problems arising in
other health care systems.

Continuity of care means that a HC provider assigns only one nurse to each
patient, called reference nurse, and the assignments are kept for a long period.
This is an important quality indicator since patients are always cared for by the
same nurse, instead of continuously developing new relationships, and potential
loss of information among operators is avoided. However, continuity of care limits
the flexibility of the service, and some providers do not adopt it to increase the
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operational efficiency. In general, for a good balance between quality and flexibility,
the continuity of care should be preserved at least for critical patients (e.g., palliative
patients) or patients with particular needs.

5.1.2 Literature Review

The literature about HC management can be mainly divided into two groups:
the first one deals with daily schedule of visits and routing of nurses, and the
second one deals with staff planning and management from a mid-term and
long-term perspective. The nurse-to-patient assignment is related to the mid-term
management. Different features may be considered, such as the continuity of care
and the uncertainty in patients’ demands.

Nurse-to-patient assignment has been rarely studied as a stand alone problem
(i.e., not considering the scheduling [4]) and, to the best of our knowledge, the
assignment problem taking into account the continuity of care is only marginally
addressed in the literature [5–7]. Besides, continuity of care is often considered
as an objective rather than a strict requirement [8]. If continuity of care is not
considered, the assignment problem turns out to be an assignment of operators to
visits rather than to patients, in which the aim is to jointly optimize the operator-
to-visit assignment and the scheduling and routing problem [9, 10]. In districts
with a limited territorial extension (e.g., in Europe), the impact of travel times on
scheduling and routing is not very significant; hence, assignment and scheduling
problems are separately solved since the joint optimization requires a significant
computational effort and, consequently, reduces the length of the considered time
horizon.

As mentioned, uncertainty inherently arises in HC due to unpredictable changes
in patients’ needs. In [11] it is managed by representing the whole system as a
Markov chain and developing admittance policies for patients.

The nurse-to-patients assignment problem, in which both continuity of care and
demand uncertainty are considered, has been rarely addressed in the literature.
The problem was tackled with stochastic programming [6] and with analytical
policies [7]. However, both these approaches proved limited even if they improve
the quality of the assignment with respect to those actually applied by the HC
structures. The stochastic programming approach is based on scenario generation
and, due to the high number of patients and the associated demand variability,
requires to include a very high number of scenarios. Only a limited number of
them can be consequently considered for a computationally acceptable solution.
Therefore, a high expected value of perfect information (EVPI) and a low value of
the stochastic solution (VSS) are obtained [6]. The analytical policies are related
to strict assumptions regarding, e.g., the shape of workload probability density
functions, the number of assignable patients, and the number of periods in the
planning horizon [7].
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With the cardinality–constrained approach, we aim at exploiting the potentialities
of a linear programming model rather than an analytical approach, without the
necessity of generating scenarios.

5.2 Robust Assignment Model

We consider the problem of assigning a set of patients P to a set of nurses I over a
time horizon T divided into a set of time slots. Three continuity of care requirements
are considered:

• Hard continuity of care: patients must be assigned to only one reference nurse for
the entire time horizon. These patients are partitioned into two subsets Pa

c and Pn
c .

Patients in Pa
c are already under treatment and assigned at the beginning of the

time horizon, and they keep their assignment. Patients in Pn
c start their treatment

at the beginning of the time horizon, and they are not yet assigned.
• Partial continuity of care: the reference nurse can be changed from time slot to

time slot. However, each reassignment is penalized by a cost γ to keep the number
of reassignments limited. As for the previous case, these patients are partitioned
into two subsets Pa

pc and Pn
pc. Patients in Pa

pc are already under treatment at the
beginning of the time horizon, while patients in Pn

pc start their treatment at the
beginning of the time horizon.

• No continuity of care: patients can be assigned to more than one nurse even in the
same time slot and the assignments can be changed from a time slot to another
without penalties (set Pnc).

The division in districts is taken into account: a parameter mi j is given for each
nurse i ∈ I and patient j ∈ P, which is equal to 1 if nurse i operates in the district of
j, and 0 otherwise.

The amount of working time required by patient j ∈ P in time slot t ∈ T is an
uncertain parameter r jt , with expected value r̄ jt and maximum value r̄ jt + r̂ jt . Each
nurse i ∈ I has an amount of available working time per time slot vi, and overtime
must be paid if vi is exceeded. The overtime cost depends on its amount. A set of
overtime levels Li are defined for each nurse i ∈ I, and two parameters are given for
each level l ∈ Li: a threshold Δ l

i and a cost per time unit cl for each overtime unit
above vi +∑l−1

k=1 Δ k
i and below vi +∑l

k=1 Δ k
i .

The problem consists of assigning all of the patients to the nurses, according to
the required continuity of care, with the aim of minimizing the overtime costs and
the number of reassignments for patients with partial continuity of care.

The problem is modeled as follows. A binary variable x ji is defined for each
patient j ∈ Pa

c ∪Pn
c and nurse i ∈ I (x ji = 1 if j is assigned to i during the whole time

horizon, and 0 otherwise). Similarly, a binary variable ξ t
ji is defined for each patient

j ∈Pa
pc∪Pn

pc, nurse i∈ I and time slot t ∈ T (ξ t
ji = 1 if nurse i is in charge of patient j

during time slot t, and 0 otherwise). The assignments of patients to reference nurses
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before the considered time horizon are described with parameters x̃ ji (x̃ ji = 1 if j ∈P
is initially assigned to i ∈ I, and 0 otherwise). Furthermore, a binary variable yt

j is
introduced for each patient j ∈ Pa

pc ∪Pn
pc (yt

j = 1 if the assignment of patient j is
changed from time slot t− 1 to time slot t, and 0 otherwise). Finally, the fraction
of time needed by j ∈ Pnc in time slot t ∈ T provided by nurse i ∈ I is represented
by a continuous variable χ t

ji ∈ [0,1]. The overtime assigned to each nurse i ∈ I in

time slot t ∈ T is described by a continuous variable wl
it for each level l ∈ Li, which

represents the extra workload related to cl .
The objective function aims at minimizing the overtime costs and the number of

reassignments: these two parts are both relevant, as the first one reduces the burnout
risk, while the second one guarantees a suitable quality of provided service.

min

⎧⎨
⎩∑

i∈I
∑
t∈T

∑
l∈Li

(
clw

l
it

)
+ γ ∑

j∈Pa
pc∪Pn

pc

∑
t∈T

yt
j

⎫⎬
⎭ (5.1)

subject to:

∑
i∈I

mi jx ji = 1, ∀ j ∈ Pa
c ∪Pn

c (5.2)

∑
i∈I

mi jξ t
ji = 1, ∀ j ∈ Pa

pc∪Pn
pc, t ∈ T (5.3)

∑
i∈I

mi jχ t
ji = 1, ∀ j ∈ Pnc, t ∈ T (5.4)

∑
j∈Pa

c ∪Pn
c

r jt x ji + ∑
j∈Pa

pc∪Pn
pc

r jtξ t
ji + ∑

j∈Pnc

r jt χ t
ji ≤ vi + ∑

l∈Li

wl
it , ∀i ∈ I, t ∈ T (5.5)

0≤ wl
it ≤ Δ l

i , ∀i ∈ I, t ∈ T, l ∈ Li (5.6)

x ji ≥ x̃ ji, ∀i ∈ I, j ∈ Pa
c (5.7)

yt
j ≥ ξ t

ji− ξ t−1
ji , ∀t ∈ T \ {t1}, j ∈ Pa

pc∪Pn
pc, i ∈ I (5.8)

yt1
j ≥ ξ t1

ji − x̃ ji, ∀ j ∈ Pa
pc, i ∈ I (5.9)

Constraints (5.2)–(5.4) guarantee that each patient is assigned to a suitable nurse;
constraints (5.5) compute nurse workloads and overtimes for each level; constraints
(5.6) set the thresholds for the overtime workload; constraints (5.7) guarantee that
patients in Pa

c do not change their assignment at the beginning of the time horizon;
constraints (5.8) and (5.9) compute the number of reassignments.

To deal with uncertainty in constraints (5.5) we apply the cardinality–constrained
robust model proposed in [3]. The basic idea of the approach is that only a subset of
the uncertain parameters are likely to assume their maximum value simultaneously.
The approach provides solutions which are feasible even if at most Γ uncertain
parameters assume their worst possible value (i.e., the maximum value) rather than
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their expected value. As the solution must be feasible for any choice of Γ parameters
for each constraint, the subset which represents the worst possible case is selected.
The impact is then computed exploiting duality properties, yielding to a linear
formulation.

We apply the cardinality–constrained approach to the proposed formulation by
including, for each nurse and time slot, three subsets Sit

c , Sit
pc and Sit

nc of patients
assigned to i (with Sit

c ⊆ Pa
c ∪Pn

c , Sit
pc ⊆ Pa

pc ∪Pn
pc, and Sit

nc ⊆ Pnc), whose demand
charged to nurse i in time slot t is equal to the maximum treatment time r̄ jt + r̂ jt .
Cardinality is constrained as at most Γ i

c , Γ i
pc and Γ i

nc patients (with Γ i
c , Γ i

pc and Γ i
nc

integer) are assumed to belong to these subsets, respectively. The charged demand
of all other patients is the expected value r̄ jt .

The robustness is taken into account considering the worst possible charge for
each nurse i at each time slot t in constraints (5.5). As example, for patients requiring
hard continuity of care, the term ∑ j∈Pa

c ∪Pn
c

r jt x ji is replaced with:

∑
j∈Pa

c ∪Pn
c

r̄ jt x ji + max
Sit

c |Sit
c ⊆Pa

c ∪Pn
c ,

|Sit
c |=Γ i

c

⎧⎨
⎩ ∑

j∈Sit
c

r̂ jt x ji

⎫⎬
⎭

Let us denote the maximum related to a given solution {x∗} with β it
c (x
∗,Γ i

c , t):

β it
c (x
∗,Γ i

c , t) = max
Sit

c |Sit
c ⊆Pa

c ∪Pn
c ,

|Sit
c |=Γ i

c

⎧⎨
⎩ ∑

j∈Sit
c

r̂ jt x
∗
ji

⎫⎬
⎭

This is computed for each nurse i and time slot t by solving the following linear
programming problem:

(Pβ it
c ) = max ∑

j∈Pa
c ∪Pn

c

r̂ jt x
∗
jiz

t
ji (5.10)

∑
j∈Pa

c ∪Pn
c

zt
ji ≤ Γ i

c (5.11)

0≤ zt
ji ≤ 1, ∀ j ∈ Pa

c ∪Pn
c (5.12)

where zt
ji ∈ [0,1] are continuous variables which represent the choice of the elements

in subset Sit
c . The associated dual problem is:

(Dβ it
c ) = min ∑

j∈Pa
c ∪Pn

c

πc
jit +Γ i

c ζ c
it (5.13)

ζ c
it +πc

jit ≥ r̂ jt x
∗
ji, ∀ j ∈ Pa

c ∪Pn
c (5.14)

πc
jit ≥ 0, ∀ j ∈ Pa

c ∪Pn
c (5.15)

ζ c
it ≥ 0 (5.16)
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where ζ c
it are the dual variables associated with (5.11), and πc

jit the dual variables
associated with zt

ji ≤ 1 (5.12).

Optimal values (Pβ it
c ) and (Dβ it

c ) coincide and, therefore, the maximum can be
replaced by ∑ j∈Pa

c ∪Pn
c

πc
jit +Γ i

c ζ c
it adding the following variables and constraints to

the model:

ζ c
it +πc

jit ≥ r̂ jt x ji, ∀i ∈ I, j ∈ Pa
c ∪Pn

c , t ∈ T

ζ c
it ≥ 0, ∀i ∈ I, t ∈ T

πc
jit ≥ 0, ∀i ∈ I, j ∈ Pa

c ∪Pn
c , t ∈ T

The same idea is applied to ∑ j∈Pa
pc∪Pn

pc
r jtξ t

ji and ∑ j∈Pnc r jt χ t
ji, thus obtaining the

robust cardinality–constrained version of the model.
In this way, each feasible solution remains feasible if any subset of at most Γ i

c ,
Γ i

pc and Γ i
nc patients, respectively, require the highest number of visits.

5.3 Real Case Analysis

Computational tests are run in order to evaluate the applicability of the proposed
approach to a real HC provider. The quality of the solutions and their impact when
applied to realistic scenarios are taken into account.

The analysis is conducted on the same HC provider already studied in other
papers dealing with assignment techniques under continuity of care [6, 7], so as to
compare the outcomes of the proposed model with other approaches. Furthermore,
a patient stochastic model to estimate the future patients’ demands is available
for this provider [12]. The considered HC provider operates in the north of Italy,
covering a region of about 800 km2, with about 1,000 patients assisted at the same
time by about 50 nurses. The provider includes three independent divisions, and
the analysis is carried out for the nurses of the largest one. The division consists
of six districts and the analysis is carried out in four of them where more than one
nurse is present (Table 5.1). The assignments are planned considering the districts as
independent.

Table 5.1 Analyzed districts

Name of the district Code of territory Skill of the nurses Number of nurses

NPA A Non-palliative 8
PA A Palliative 3
NPB B Non-palliative 4
NPC C Non-palliative 5
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Table 5.2 Analyzed instances

Type of continuity for palliative Γ values Robust solution Non-robust solution

C 1 Conf. A Conf. E
2 Conf. B Conf. E

random 80% C 1 Conf. C Conf. F
and 20 % PC 2 Conf. D Conf. F

5.3.1 Experimental Setup

We consider data related to 26 weeks from April to September 2008 [6, 7]. The
model is applied according to a rolling approach, and each time slot t is 1 week. An
initial assignment of nurses is computed at the initial week (named week 0) con-
sidering all patients as newly admitted ones, while the successive assignments are
provided on a rolling basis: at the beginning of each week, newly admitted patients
are included in the mix and discharged patients are excluded. For each rolling week,
the planning horizon includes the considered week and the next seven ones (T = 8).
The assignments computed for the first horizon week are then kept, and the model
is solved again for the next rolling week taking into account the information about
patients assigned in the previous rolling weeks. This is consistent with the policy
of the analyzed HC service provider, where assignments are mainly decided at the
beginning of each week on a weekly basis. The initialization at week 0 is obtained
neglecting the robustness (i.e., all patients require the expected demand r̄ jt ).

The reassignment penalty γ is assumed equal to 2.5, and 10 overtime levels are
considered (l = 1, . . . ,10), with cl = l ∀l and Δ l

i = 0.1vi ∀i, l.
The number of patients in charge at each week and their features are taken from

the historical data of the provider (considering real arrivals of new patients and
real discharges), while patients’ demands are estimated with the stochastic model
proposed in [12]. The expected demand r̄ jt and the maximum demand r̄ jt + r̂ jt of
each patient are taken from an empirical probability density function given by such
stochastic model (maximum value r̄ jt + r̂ jt is taken neglecting the right tail of the
distribution with probability 0.1).

The continuity of care requirement for each patient is determined based on
his/her characteristics. Patients belong to 15 different care profiles (CPs) [12] and
the type of continuity of care required by each patient is once decided according to
the CP when the patient is first considered. For non-palliative patients, low intensity
CPs require no continuity of care, middle intensity CPs partial continuity of care,
and high intensity CPs hard continuity of care. Two different configurations are
taken into account for palliative patients: either they all require hard continuity of
care, or they require hard or partial continuity according to a random choice: each
palliative patient is randomly considered requiring hard continuity of care (with
probability 0.8) or partial continuity (with probability 0.2).

Two levels of robustness are considered, either Γ i
c = Γ i

pc = Γ i
nc = 1,∀i or Γ i

c =

Γ i
pc = Γ i

nc = 2,∀i. Moreover, also the case in which the robustness is neglected is
studied (Table 5.2).



5 Cardinality–Constrained Approach for Home Care 69

5.4 Results

The model has been implemented with OPL 5.1 and solved with CPLEX; computa-
tional tests have been run on a PC equipped with CPU Intel Core i7 1.73 GHz and
6 GB of RAM. A stopping condition on the gap is set so as to limit the computational
time (1 % for configurations A and C; 4 % for configurations B and D). No stopping
condition is set for the non-robust configurations E and F.

Table 5.3 shows the computational time, the objective function and the number
of reassignments for patients with partial continuity of care. Results are expressed
in terms of minimum, maximum and average values among the weeks from 1 to 25;
week 0 is excluded as it refers to the non-robust initialization.

Results show that, with the adopted gaps, computational times are reasonable
for any configuration. The objective function increases with the values of Γ i

c , Γ i
pc

and Γ i
nc due to both the overtime costs and the number of reassignments, as the

demand of the worst scenario increases and more robust solutions are selected. The
overtime cost is significantly affected by the degree of robustness of the solution, as
the maximum demands of patients belonging to Sit

c , Sit
pc and Sit

nc have an impact on
the overall workload.

Then, the question arises on how a robust solution behaves if no patients require
the maximum amount of care. For evaluating the behavior of the solutions with
respect to the expected demands, the assignments are applied assuming that each
patient is requiring the expected demand r̄ jt . The obtained overtime costs are
reported in Table 5.4 in terms of minimum, maximum and average values among
the weeks from 1 to 25.

It can be seen that robustness determines an increase of overtime costs. How-
ever, it is worth noting that, when considering the expected demands, the robust
assignment is not significantly penalized with respect to the optimal non-robust
counterpart. Indeed, overtime expected costs are always lower than the double of
the non-robust case.

Table 5.3 Computational time in seconds, objective function and number of reassignments

Computation time Objective function Num. of reassignments

Configuration Min Max Average Min Max Average Min Max Average

A 5 115 31 59.3 157.1 98.4 0 4 0.8
B 4 7,339 505 177.7 484.5 299.6 0 8 1.2
C 5 987 83 101.6 265.6 168.2 0 4 0.8
D 4 7,580 644 181.7 579.9 349.0 0 6 1.2
E 1 3 2 3.9 27.8 13.6 0 1 0.1
F 1 2 2 3.9 27.8 13.4 0 1 0.0
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Table 5.4 Overtime cost from the objective function and overtime cost recomputed with the
expected demands

Overtime cost Overtime expected cost

Configuration Min Max Average Min Max Average

A 59.3 149.6 96.4 7.9 35.6 16.5
B 175.2 482.0 296.6 6.3 43.4 20.5
C 99.1 265.6 166.2 7.5 42.1 20.3
D 179.2 564.9 346.0 8.3 41.6 20.9
E 3.9 27.8 13.4 3.9 27.8 13.4
F 3.9 27.8 13.3 3.9 27.8 13.3

Table 5.5 Executed mean overtime cost per nurse: minimum, maximum and average values
among the weeks from 1 to 25

Sample paths Real execution

Configuration Min Max Average Min Max Average

A 0.00 9.90 1.85 0.25 16.27 4.55
B 0.00 9.24 1.80 0.07 13.29 4.55
C 0.00 10.98 1.51 0.10 13.59 3.72
D 0.00 9.46 1.55 0.41 11.53 3.95
E 0.00 13.35 2.17 0.64 16.12 5.81
F 0.01 11.79 2.30 0.92 19.16 5.94

5.4.1 Execution of the Assignments

Each obtained solution is applied to 10 sample paths (generated with the same
procedure of [6, 7]) and to the real historical patients’ demands.

The quality of the solutions is analyzed in terms of the mean overtime cost per
nurse. This is obtained at each week as the ratio between the total cost of the district
(computed with the same levels cl = l and thresholds Δ l

i = 0.1vi) and the number
of nurses in the district. This indicator is directly taken for the execution with the
historical demands, while for the sample paths the analyzed indicator is the average
at each week among the paths. Hence, for each configuration and district, the result
is the list of average costs over the weeks in two cases: executed with the historical
demands or averaged among the sample paths (Table 5.5). We remark that planned
costs, reported in Table 5.4, refer to the entire planning horizon (8 weeks), while
for the execution only the first week of the planning horizon is extracted from each
rolling week.

Results show that robust solutions perform better than their non-robust counter-
parts, both for sample paths and real data; thus, robustness provides the desired cost
savings. To give an idea of the obtained cost savings, we can assume that one unit of
cost corresponds to about 15 euros. Considering that the 4 districts include 20 nurses
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(see Table 5.1) and that the observed period refers to 25 weeks, each cost reduction
of 1 unit corresponds to a global saving of 7,500 euros in the period. As example,
comparing solution C with the corresponding non robust solution F, a global cost
saving of 16,650 euros is observed for the real execution, and of 5,925 euros for the
average among the paths.

Considering the detail of each district, the main benefits are obtained in districts
NPA and PA both in terms of average and maximum values. A low benefit is
observed in district NPC and hardly any benefit in district NPB. Then, it seems that
larger benefits are obtained in the presence of critical patients with higher demands
(i.e., palliative patients) or many nurses.

It must be stressed that non robust models are always solved to optimality, while
an optimality gap is accepted for the robust counterparts. A robust, even if sub-
optimal, solution computed in reasonable time is able to improve the solution upon
its optimal non-robust counterpart on the considered case study.

Finally, if compared to other methodologies applied to this instance [6, 7], the
cardinality–constrained approach is able to solve problem in a lower computational
time (while including the stochasticity with the scenario generation of the stochastic
programming approach requires huge computational times) with few assumptions
on the demands (while the analytical approach based on stochastic ordering requires
to introduce many assumptions on the shape of the density functions).

5.5 Discussions and Conclusions

In this paper, we apply the robust cardinality–constrained approach proposed in
[3] in the health care area and, in particular, to the nurse-to-patient assignment
in HC services under continuity of care. HC is chosen because of its novelty
within the health care domain and the high randomness related to the workload
amount, which is strongly higher than in other services. Thanks to this approach,
the deterministic assignment model is easily modified to take into account the
uncertainty in patients’ demands, without the necessity of assuming probability
density functions or deriving a relevant number of stochastic scenarios.

The proposed model has been tested on a set of generated instances and on
historical data, and it provides good quality solutions in terms of overtime costs.
The application of the cardinality–constrained approach to HC is then promising.
Moreover, due to the general characteristics of HC within the health care domain,
the obtained benefits could extend to other health care problems.

The main limit of the proposed approach is that patients are not allowed to have
a demand for visits lower than the expected value r̄ jt , while in the real practice some
patients have a demand lower than the expected value. Such limit could be overcome
by introducing different levels of demand for each patient rather than the two ones
considered in this work; this will be the aim of our future work.
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Chapter 6
Synchronization Between Human Resources
in Home Health Care Context

Maria Di Mascolo, Marie-Laure Espinouse, and Can Erdem Ozkan

Abstract This paper deals with the scheduling and routing problem in a Home
Health Care structure, when synchronization is needed between two types of
human resources, and time windows are considered for patients and caregivers.
Our objective is to minimize the total waiting time of caregivers between patients.
We give a mathematical formulation of this problem as a mixed integer linear
program. We present some experiments in order to analyze the execution time and
test the capability of the MILP to solve the problem in real cases, within reasonable
execution times, to measure the impact of the proportion of synchronized visits, and
to analyze the average workload of an operator.

6.1 Introduction

Home Health Care (HHC) is defined as medical and paramedical services delivered
to patients at home. It helps patients to maintain and improve their life conditions.
HHC have seen a significant evolution in France, as well as in several other
countries. Among the reasons of this development, we can cite economic factors,
ageing of populations, increase in the number of people with chronic diseases,
congestion of the hospitals, improvements in medical technologies, and choices of
the patients.

Due to its numerous specificities (resources mobility, human resources with
specific skills and constraints, importance of the quality of service, uncertainties,
. . . ), HHC has become a particularly important application area for Industrial
engineering. In this paper, we are interested in the scheduling and routing problem
of HHC staff (i.e. deciding which human resource visits which patient at what time).
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We focus on the case when two human resources are required at the same time for
some cares. This synchronization between resources occurs for example when a
nurse and an auxiliary nurse are simultaneously required for a patient who needs
help to get in or out of bed.

This paper is organized as follows: we define our problem in Sect. 6.2, and
discuss of related work in Sect. 6.3. Section 6.4 proposes then a mathematical
formulation for our problem as a mixed integer linear programming model, and
some experiments are presented in Sect. 6.5.

6.2 Problem Description

As pointed out in [1–4], the synchronization, in HHC context, between the visits of
the different stakeholder is a difficult and crucial problem.

Here a pair wise synchronization is studied between nurses and auxiliary nurses.
The coordination of human resources corresponds to the pair wise synchronization
constraints for multiple traveling salesman problem formulation. Synchronization
implies temporal constraints.

Furthermore, hard constraints as working hours of human resources and time
windows of patients must be taking into account. Time windows of patients
represent either wishes of the patient or medical constraints.

In this study, short term planning is treated. Per time period considered, each
patient must have exactly one visit. For this visit either a nurse is required or an
auxiliary nurse is required or a nurse and an auxiliary nurse are required.

Our objective is to minimize the total waiting time of operators between patients.
This objective is very important in practice. Indeed, the nurses and auxiliary nurses,
besides the medical tasks also have preparatory tasks and administrative tasks to
realize. It is thus important that the nurses and the auxiliary nurses have time at the
beginning and at the end of a tour to realize these tasks and for that they should
not waste too much time waiting between patients. Let us note that this waiting
time is all the more important within the framework of this study as, on one hand,
windows of patients are considered and, on the other hand, synchronization between
the nurses and the auxiliary nurses are taken into account. As far as we know, in the
literature, this objective is never used as an objective function.

We propose a Mixed Integer Linear Programming Model, and the data used for
the tests is inspired by real data and is created in a random way.

6.3 Literature Review

In the literature, several issues are considered while dealing with resource planning
of HHC, such as the resource dimensioning, partitioning of a territory into districts,
allocation of resources to districts, assignments of care providers to patients, or the
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visits and the resource scheduling and routing. The most frequently treated issue is
the last one, routing and scheduling. Readers can refer to Yalçındağ et al. [5] for
a review of papers addressing the scheduling and routing problem as a Travelling
Salesman Problem (TSP) or Vehicle Routing Problem (VRP) in the HHC context.

We focus here on the papers addressing the problem of coordination between
human resources.

There are some papers considering “shared visits” [6–8]. They all consider
human resources with the same qualifications, who should sometimes be more than
one for some visits.

Here, we are more especially interested with papers dealing with synchronization
constraints between human resources who have different qualifications.

Bredström and Rönnqvist [1] develop a general branch and price algorithm for
routing and scheduling problem with time windows. The problem is formulated as a
set partitioning problem, considering synchronization constraints. LP relaxations
are used in order to solve the problem. In [2], they go further by considering
both synchronization and precedence constraints as temporal constraints. They use
a multi criteria objective function, minimizing preferences, travelling time, and
maximal workload difference, and propose a heuristic to solve their model.

Kergosien et al. [3] propose an integer linear programming model and propose
some technical improvements to solve the routing problem in HHC context. They
consider the problem under the constraint of synchronization, disjunction (some
operators cannot work together), time windows for operators and patients, and
continuity of care. They formulate the problem as a multiple traveling salesman
problem with time windows with some additional constraints with the objective of
minimizing total travelling distance. They test the model on randomly generated
instances with Cplex solver. Results show that the proposed integer linear program
is not able to deal with instances of real size.

More recently, Rasmunssen et al. [4] consider four temporal constraints. They
formulate the problem as a set partitioning problem, and develop visit clustering
schemes for home care personnel, in order to explore how much they decrease run
times, and how much they compromise optimality. They propose LP-based branch
and price framework. The algorithm is tested with real life problem instances.
Results show that visit clustering schemes decrease the execution time significantly
but cause a loss of quality for a few instances. Furthermore they outline that visit
clustering schemes allow finding solutions that could not be solved to optimality.

Note that all these papers dealing with synchronization or shared visits use total
travelling cost/distance as objective function. Some of them [1, 2, 4] consider a
multi objective function, considering also visit time preference for [1], referential
operator for [2, 4], number of uncovered visits for [4], and workload difference for
[2]. None of them considers the same objective as ours, namely minimization of
the total waiting time of operators between patients, although it is very important in
practice, as explained above. As far as the constraints are concerned, these papers
take into account most of the constraints that a HHC center has to deal with in
practice, as we also do in our problem.
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6.4 Model Description

6.4.1 Assumptions and Notations

• Operators: We consider two kinds of operators: nurses and auxiliary nurses and
assume that there are N nurses and M auxiliary nurses. We denote by IN the set
of nurses, and by IM the set of auxiliary nurses.

We assume that nurses and auxiliary nurses might have different working
hours.

Nurses and auxiliary nurses can take care of a patient related to their
qualification. All the nurses have the same qualification, and all the auxiliary
nurses have the same qualification.

Each operator has to start/finish his/her work at Home Health Care Center
(HHCC), which is denoted by 0 when it is the starting point, and by d when it is
the ending point.

• Patients: There are P patients, needing each exactly one visit per time period
considered. Among them, there are PN patients who need a care by a nurse,
PAN patients who need a care by an auxiliary nurse, and PS patients who
need a simultaneous care by a nurse and an auxiliary nurse (synchronization
of two different operators). We denote by IPI the set of patients that need a
care by a nurse: IPI = {1, . . . ,PN}, by IPAN the set of patients that need a
care by an auxiliary nurse: IP AN = {PN + 1, . . . , PN +PAN}, by IPsync the
set of patients that need a simultaneous care by a nurse and an auxiliary nurse:
IP sync = {PN +PAN + 1, . . . , PN +PAN +PS} and by IP the set of all the
patients (IP= IPNI ∪ IPAN ∪ IPsync )

Each patient has a time window within which the operator(s) has to arrive at the
patient’s house. Duration of care for each patient and travelling time between each
patient are fixed. Note that for these parameters, HHCC is considered as a patient.

6.4.2 Problem Formulation as Mixed Integer Linear
Programming Model

6.4.2.1 Indexes

n: 1, . . . , N, for nurses
m: 1, . . . , M, for auxiliary nurses
i: 1, . . . , P for patients
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6.4.2.2 Parameters

[an,bn]: Working hours of nurse n, n∈ IN
[cm,dm]: Working hours of auxiliary nurse m, m∈ IM
[ei,li]: Time window of patient i for the arrival time, i∈ IPsync ∪ IPN ∪ IPAN ∪ {0,d}
Di: Duration of care for patient i, i∈ IPsync ∪ IPN ∪ IPAN ∪{0}
T ij: Travelling time between patient i and patient j, i∈ IPsync ∪ IPN ∪ IPAN ∪{0};
j∈ IPsync ∪ IPAN ∪ IPN ∪{d}
A: Big number with A≥max

m,n
{an,cm}

B: Big number with B≥max
m,n
{bn,dm}

6.4.2.3 Decision Variables

Nurses

Xni j =

{
1 i f nurse n takes care o f patient j immediately a f ter patient i
0 otherwise

∀i ∈ IPsync∪IPN∪{0} ;∀ j ∈ IPsync∪IPN∪{d} ; i �= j;∀n ∈ IN

tnj: Arrival time of nurse n to the house of patient j.

∀ j ∈ IPsync∪IPN∪{0,d} ;∀n ∈ IN

Auxiliary Nurses

Y mi j =

{
1 i f auxiliary nurse m takes care o f patient j immediately a f ter patient i
0 otherwise

∀i ∈ IPsync∪IPAN∪{0} ;∀ j ∈ IPsync∪IPAN∪{d} ; i �= j;∀m ∈ IM

smj: Arrival time of auxiliary nurse m to the house of patient j.

∀ j ∈ IPsync∪IPAN∪{0,d} ;∀m ∈ IM

Waiting Time

Qnij: Waiting time of nurse n between patient i and patient j.

∀i ∈ IPN ∪ IPsync∪{0} ;∀ j ∈ IPN ∪ IPsync∪ {d} ; i �= j;∀n ∈ IN

Smij: Waiting time of auxiliary nurse m between patient i and patient j.

∀i ∈ IPAN ∪ IPsync∪{0} ;∀ j ∈ IPAN ∪IPsync∪ {d} ; i �= j;∀m ∈ IM
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6.4.2.4 Mathematical Formulation

min∑
n

∑
i

∑
j

Qni j +∑
m

∑
i

∑
j

Smi j

Subject to:

∑
n

∑
i

Xni j = 1 ∀n ∈ IN;∀i ∈ IPsync∪IPN∪{0} ; ∀ j ∈ IPsync∪IPN ; i �= j

(6.1)

∑
m

∑
i

Y mi j = 1 ∀m ∈ IM;∀i ∈ IPsync∪IPAN∪{0} ; ∀ j ∈ IPsync∪IPAN; i �= j

(6.2)

∑
j

Xn0 j = ∑
j

Xn jd = 1 ∀ j ∈ IPN∪IPsync; ∀n ∈ IN (6.3)

∑
j

Y m0 j = ∑
j

Y m jd = 1 ∀ j ∈ IPAN∪IPsync; ∀m ∈ IM (6.4)

Xn0d = 0 ∀n ∈ IN (6.5)

Y m0d = 0 ∀m ∈ IM (6.6)

∑
j

Xni j = ∑
k

Xnki. ∀i ∈ IPsync∪IPN ; j ∈ IPsync∪IPN∪{d} ;

k ∈ IPsync∪IPN∪{0} ; i �= j; i �= k; ∀n ∈ IN (6.7)

∑
j

Y mi j = ∑
k

Y mki ∀i ∈ IPsync∪IPAS; j ∈ IPsync∪IPAS∪{d} ;

k ∈ IPsync∪IPAS∪{0} ; i �= j; i �= k;∀m ∈ IM (6.8)

li ∗∑
j

Xni j ≥ tni ≥ ei ∗∑
j

Xni j ∀i ∈ IPN ∪ IPsync;

j ∈ IPN ∪ IPsync∪ {d} ; i �= j; ∀n ∈ IN
(6.9)

li ∗∑
j

Y mi j ≥ smi ≥ ei ∗∑
j

Y ni j ∀i ∈ IPAN ∪ IPsync;

j ∈ IPAN ∪IPsync∪ {d} ; i �= j; ∀m ∈ IM
(6.10)

tn j +(1−Xni j) ∗ li ≥ tni +(Di +T i j)∗Xni j

∀i ∈ IPsync∪IPN∪{0} ; ∀ j ∈ IPsync∪IPN∪{d} ; i �= j; ∀n ∈ IN. (6.11)
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sm j +(1−Ymi j) ∗ li ≥ smi +(Di +T i j)∗Ymi j

∀i ∈ IPsync∪IPAN∪{0} ; ∀ j ∈ IPsync∪IPAN∪{d} ; i �= j; ∀m ∈ IM (6.12)

tn0 ≤ tn j +A∗
(

1−∑
i

Xni j

)

i ∈ IPN∪IPsync; ∀ j ∈ IPN∪IPsync∪{d} ; i �= j; ∀n ∈ IN (6.13)

sm0 ≤ sm j +A∗
(

1−∑
i

Y mi j

)

i ∈ IPAN∪IPsync; ∀ j ∈ IPAN∪IPsync∪{d} ; i �= j; ∀m ∈ IM (6.14)

tnd ≥ tn j ∀n ∈ IN; ∀ j ∈ IPN∪IPsync∪{0} (6.15)

smd ≥ sm j ∀m ∈ IM; ∀ j ∈ IPAN∪IPsync∪{0} (6.16)

tn0 ≥ an ∀n ∈ IN (6.17)

sm0 ≥ cm ∀m ∈ IM (6.18)

tnd ≤ bn ∀m ∈ IM (6.19)

smd ≤ dm ∀m ∈ IM (6.20)

∑
n

tn j−∑
m

sm j = 0 ∀ j ∈ IPsync (6.21)

tn j− (tni +Di +T i j)≤ Qni j +B∗ (1−Xni j)

∀i ∈ IPN ∪ IPsync∪{0} ; ∀ j ∈ IPN ∪ IPsync∪ {d} ; i �= j; ∀n ∈ IN (6.22)

sm j− (smi +Di +T i j)≤ Smi j +B∗ (1−Ymi j)

∀i ∈ IPAN ∪ IPsync∪{0} ; ∀ j ∈ IPAN ∪IPsync∪ {d} ; i �= j; ∀m ∈ IM
(6.23)

Xni j ∈ {0,1} ∀i ∈ IPsync∪IPN∪{0} ; ∀ j ∈ IPsync∪IPN∪{d} ; i �= j; ∀n ∈ IN
(6.24)

Y mi j ∈ {0,1} ∀i ∈ IPsync∪IPAN∪{0} ; ∀ j ∈ IPsync∪IPAN∪{d} ;

i �= j; ∀m ∈ IM (6.25)



80 M. Di Mascolo et al.

tn j ∈ R+∪{0} ∀ j ∈ IPsync∪IPN∪{0,d} ; ∀n ∈ IN (6.26)

sm j ∈ R+∪{0} ∀ j ∈ IPsync∪IPAN∪{0,d} ; ∀m ∈ IM (6.27)

Qni j ∈ R+∪{0} ∀i ∈ IPN ∪ IPsync∪{0} ;

∀ j ∈ IPN ∪ IPsync∪ {d} ; i �= j; ∀n ∈ IN (6.28)

Smi j ∈ R+∪{0} ∀i ∈ IPAN ∪ IPsync∪{0} ;

∀ j ∈ IPAN ∪IPsync∪ {d} ; i �= j; ∀m ∈ IM (6.29)

Our objective is to minimize the sum of waiting times of operators between
patients. We must remember that waiting time of each resource at HHCC is not
considered. This occurs in two different ways. First, an operator starts his/her work
at HHCC and waits before visiting a patient. Second, an operator finishes his/her
work at HHCC before ending working time. We do not deal with these two cases,
because a resource can spend the waiting time at HHC with paper works.

Constraint sets (6.1) and (6.2) ensure that each patient j that needs a care from
a nurse (resp. an auxiliary nurse) is visited by only one nurse (resp. an auxiliary
nurse).

Constraint sets (6.3) and (6.4) ensure that each nurse (resp. an auxiliary nurse)
has to leave HHCC and return to HHCC. Constraint sets (6.5) and (6.6) avoid that
an operator visits only {0,d} that corresponds to HHCC, making sure that each
operator works.

Constraint sets (6.7) and (6.8) ensure that if a nurse (resp. an auxiliary nurse)
enters a patient’s house, he/she has to leave it.

Constraint sets (6.9) and (6.10) ensure that each operator can arrive at a patient’s
house respecting his/her time window.

Constraint sets (6.11) and (6.12) formulate arrival time to the patients. Here we
deal with the duration of care and travelling time of an operator between two patients
that he/she takes care of, considering that these two patients are visited one after the
other one.

Constraint sets (6.13) and (6.14) make sure that if an operator visits patient j,
his/her arrival time will be greater or equal to the arrival time to HHCC. When an
operator does not visit a patient, his/her arrival time to this patient will be zero.
Constraint sets (6.15) and (6.16) force arrival time of operators to HHCC at the end
of the day to be greater or equal than the arrival time to any patient j. Constraint sets
(6.13), (6.14), (6.15) and (6.16) also force each operator to start/finish at HHCC. We
need these constraints for our objective.

Constraint sets (6.17) and (6.18) ensure that each operator can start his/her work
after his/her beginning of working time. Constraint sets (6.19) and (6.20) ensure that
each operator has to finish his/her work before his/her ending of working time.
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Constraint sets (6.21) are for the patients who need a simultaneous care by a nurse
and an auxiliary nurse (synchronization between two different operators). Constraint
sets (6.21) force two different operators to arrive to the patients at the same time.

Constraint sets (6.22) and (6.23) formulate the waiting time of operators between
two patients that he/she visits consecutively.

Constraint sets (6.24) and (6.25) force decision variables to take binary values.
Constraint sets (6.26), (6.27), (6.28) and (6.29) ensure that decision variables take
positive real number values.

6.5 Experiments

6.5.1 Data Generations

The data, namely working hours of operators, time windows of patients, duration
of care and travelling time, is generated from a real case of the region Rhône-Alpes
in France: Grenoble HHCC. This specific case is one of the biggest of this region.
Our objective is to test the limits of MILP and show that our MILP is capable to
solve a real and big case. The data is generated according to the answers collected
by a survey done during the regional project “OSAD” [9] and, more particularly, the
interviews done with Grenoble HHCC.

Operators: We need to determine beginning and end of working hours for each
operator (nurses and auxiliary nurses). The data generation for nurses and auxiliary
nurses is the same in nature. We define two cases in order to deal with the working
hours of part time operators. Each generated operator belongs either to the first case
or to the second case. The choice between these cases depends on a random number
between 0 and 1. If the random variable belongs to [0, 0.5], the operator belongs to
the first case, else it belongs to the second case.

Case 1: For each operator belonging to case 1, we determine the beginning of his/her
working hours, while the end of his/her working hours is fixed to 300 min. The
beginning of working hours of each operator is determined according to a random
number which is between 0 and 1. To avoid short working hours, we give 40%
chances to start at 0 min, 30% chances to start at 60 min, 20% chances to start at
120 min, 10% chances to start at 180 min.

Case 2: For each operator belonging to case 2, we determine the end of his/her
working hours, while the beginning of his/her working hours is fixed to 0 min.
The end of working hours is determined by a random variable which is between
0 and 1. As in case 1, in order to avoid short working hours, we give different
chances for the end of working hours: Each operator has 10% chances to finish
at 120 min, 20% chances to finish at 180 min, 30% chances to finish at 240 min,
40% chances to finish at 300 min.
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Patients: We can group the patients within three categories, according to the
required care giver: first, patients needing a care by a nurse; second, patients needing
a care by an auxiliary nurse, and third, patients needing a simultaneous care by
a nurse and an auxiliary nurse. The data generation of each patient is the same
in nature. As data, we need the time window of the operator arrival time, and the
duration of care for each patient.

Time window of arrival is composed of the following data: the earliest arrival
time and the latest arrival time. They are determined as follows: the value of the
earliest arrival time depends on a random number between 0 and 1. It can be 0, 30,
60, 90 or 120, and each one has an equal probability of 0.2.

The latest arrival time is determined in a different way: we first determine the
length of the time window. This length is added to the earliest arrival time, in order
to calculate the latest arrival time. The length of time window depends on a random
variable between 0 and 1. It can be 60, 90, 120, 150 or 180 min and each one has an
equal probability of 0.2.

Duration of care ranges between 20 and 180 min. The majority of cares take
45 min. We decide to determine the care duration as follows: we suppose that we
have three different intervals for care duration. The first interval of care duration is
between 20 and 35 min. 8% of the considered patients belong to this interval. The
second one is between 35 and 55 min. 84% of the patients belong to this second
interval. The third interval is between 55 and 180 min 8% of patients belong to this
interval.

The care duration belonging to each of these intervals is determined by a uniform
random number between the limits of the interval in question.

Travelling Time: We define an area for the locations of patient’s house and
HHCC. We consider a Cartesian coordinate system which is limited between 0
and 40 km for x axis and between 0 and 40 km for y axis. This area is inspired
from Grenoble HHCC. We suppose that the area takes place in the positive side of
the coordinate plane. Each patient (including HHCC) is defined as a point in the
Cartesian coordinate system in two dimensions (x, y). We suppose that HHCC is
located in the middle of the coordinate system, which is the point (20, 20). The
location of each patient is determined randomly by generating one random number
between 0 and 40 for each axis x and y.

Note that the travelling distance between each location corresponds to the
travelling time. The travelling time between each patient, and between each patient
and HHCC is calculated as the Euclidian distance between two points of the plane
with Cartesian coordinates (x1, y1) and (x2, y2).

Instances Generation: In order to create the test problems, we create pools of
operators and patients. We have two operator pools; a nurse pool containing 20
nurses and an auxiliary nurse pool containing 20 auxiliary nurses.

We have three patient pools, according to the required care giver. First pool is
formed by 16 patients needing a care by a nurse; second pool is composed of 16
patients needing a simultaneous care by a nurse and an auxiliary nurse, and the third
pool is formed by 16 patients needing a care by an auxiliary nurse.
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Each operator and patient in each pool has a reference number. For each instance,
a random number is generated in order to choose the operators and patients
according to the reference number. Selection of operators (i.e. nurses and auxiliary
nurses) and patients (three different categories according to the required care giver)
is done separately.

For the experiments, we define the size of the problem as (number of nurses,
number of auxiliary nurses, number of patients, and percentage of synchronized
care). For example, instance (5, 5, 20, 30%) means that we randomly chose 5 nurses
(resp 5 auxiliary nurses) among the 20 within the nurse pool (resp. the auxiliary
nurse pool), and 20 patients among the 3*16 patients within the three patient pools.
These 20 patients are chosen by considering the wished percentage of synchronized
care, which means here that 30% of these 20 patients belong to the second pool
(patients needing a simultaneous care by a nurse and an auxiliary nurse)

6.5.2 Results

We first analyze the execution time and test the capability of the MILP to solve the
problem of the HHCC in the Rhône Alpes region, within reasonable execution times,
second we measure the impact of the proportion of synchronized visits for the 40
patients’ problem size. Next we analyze the average workload of an operator. The
percentage of his/her time spent taking care of patients, the percentage of his/her
time spent travelling and percentage of his/her time spent in HHCC.

These experiments are done by taking into account the following information:
number of operators, working hours of operators, number of patients, time windows
of patients, duration of care and travelling time.

ILOG on CLPEX 12.2 OPL STUDIO is used to solve the test problems. The
resolution time is limited to 1 h for ILOG. The experiments have been conducted
with CPU 3 GHz, 4 Go of RAM and Windows 7 (64 bits).

6.5.2.1 Analysis of Execution Times

We note that according to the generated data, an operator works on average 240 min.
The time horizon is 300 min. That means that an operator works on average 80%
of the time horizon. Table 6.1 shows the test problem sizes, the number of instances
solved within 1 h, and minimum, maximum and average execution times of solved
instances.

For the instances (5, 5, 20, 30%), 80% of instances are solved within 1 h. 70%
of instances are solved within 5 min while 10% of them are solved in more than
15 min. We increase the size of the problem and for the instances (10, 10, 30, 33%).
40% of instances are solved in 10 min and 10% of instances are solved in more
than 50 min. The instances are solved on average within 18 min. Lastly we test the
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Table 6.1 Number of instances solved within 1 h for different problem sizes and
execution times of instances in minutes

Execution time in minutes

Problem size

Percentage of instances
solved within 1 h Minimum Maximum Average

(5, 5, 20, 30%) 80 0.6 16.4 3.5
(10, 10, 30, 33%) 70 2.9 57.9 17.3
(20, 20, 40, 30%) 90 2.5 32.3 13.9

Table 6.2 Number of
instances solved within 1 h
for different proportion of
synchronized visits

Problem size
Percentage of instances
solved within 1 h

(10, 10, 30, 33%) 70
(10, 10, 40, 30%) 0
(10, 10, 40, 20%) 10
(10, 10, 40, 10%) 80
(15, 15, 40, 30%) 20
(15, 15, 40, 20%) 70
(15, 15, 40, 10%) 100

instances (20, 20, 40, 30%), and 90% of instances are solved in less than 1 h, 20% of
instances are solved within less than 5 min while the rest of them are solved between
10 min and 33 min. The average execution time is 14 min.

6.5.2.2 Impact of the Proportion of Synchronized Visits
on the Execution Times

We tested several examples and, as we could expect, we observed that the impact
of this proportion is really important. For example, as shown in Table 6.2 when we
consider the example (10, 10, 30, 33%) and we try to increase the number of patients
to 40, we observe that the proportion of synchronized visits has to be reduced until
10% in order to solve successfully those instances. Finally for the instances with
15 nurses, 15 auxiliary nurses and 40 patients, 20% of synchronized visits can be
solved successfully within 1 h.

Note that the proportion 10% of synchronized visits is the proportion that is
usually used in the literature. So we can conclude that the proposed MILP is able to
solve the problems with until 40 patients in the conditions of the literature.

6.5.2.3 Analysis of the Average Workload of Operators

In order to analyze the workload of operators, three indicators are determined:

• % duration of care on working hours
• % travelling time on working hours
• % time spent in HHCC on working hours
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Table 6.3 Values of three indicators for different size of the problems

(5, 5, 20, 30%) (10, 10, 30, 33%) (20, 20, 40, 30%)

Instances Max Min Average Max Min Average Max Min Average

% duration of care on
working hours

63 44 49 49 36 44 29 26 28

% travelling time on
working hours

26 21 23 20 18 19 29 26 28

% time spent in HHCC
on working hours

35 11 27 46 31 36 63 57 58

As it can be seen in Table 6.3, the time spent at patients’ house on average
decreases while increasing the size of the problem. The time spent on average for
travelling first decreases and then increases while increasing the size of the problem.
The range of this indicator is really small for each size. The time spent in HHCC on
average is significantly increased while number of operators and patients increase.
This can be explained because of the significant increase in the number of operators.

6.6 Conclusion and Future Research

In this study, we proposed a mathematical formulation for the problem coordination
of human resources in home health care context. We tested the limits of the Mixed
Integer Linear Programming. As a result, the MILP is able to solve different sizes
of problems within 1 h. But a heuristic is required for bigger sizes of the problem.
We measured the impact of the proportion of synchronized visits. As a result, the
proportion of synchronized visits impacts the number of instances solved within 1 h
because it affects the number of visits as well. For the problems with 40 patients,
number of instances solved within 1 h is increased while reducing the proportion of
synchronized visits. The average workload of an operator is analyzed.

For future works, material resource planning can be added to the problem. In
this work we dealt with short term planning. Our problem can be extended to the
midterm planning so that care continuity is considered. Stochasticity can be included
into data generation as demand of patients, duration of care or working hours of
operators.
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Chapter 7
Simulation-Based Analysis of Patient Flow
in Elective Surgery

Dario Antonelli, Giulia Bruno, and Teresa Taurino

Abstract The reduction of waiting lists and length of stay in hospitals, together
with an efficient utilization of system capacity is the challenge facing healthcare
systems today. In an elective surgery department, as operations can be scheduled
in advance, this goal is generally achieved by maximizing the utilization index of
the operation theatres. Nevertheless, operations are only one of the many activities
performed during patient flow inside hospital and these activities interact with each
other. The optimization of any single stage of the process is pointless without
an efficient management of the entire routing from admission to dismissal. The
paper presents a thorough analysis of the patient flow in an elective surgery
ward using data gathered in a large hospital in Italy. Data, derived from log files
and questionnaires, together with solutions proposed by healthcare managers, are
considered. A model is then built and validated, its parameters are defined, and a
variety of experiments are simulated in order to select the solution that improves the
performance of the system. The solutions are discussed and refined in the light of
corresponding production management approaches.

7.1 Introduction

Health-care resources are getting more and more expensive. The administrators
of health-care facilities are constantly faced with the difficult task of balancing
the achievement of quality standards of health with the appropriate allocation of
resources [1]. Cutting the waiting lists and the length of stay in hospital is therefore
an important managerial goal for modern healthcare systems because it increases the
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perceived quality of care and frees resources [2]. In elective surgery departments,
system administrators can maximize managerial performance parameters only
partially, as not all arrivals can be scheduled. The external performance indexes
are the waiting time and the waiting list which both impact on the perceived
quality. The internal performance indexes are the throughput time (time from
arrival to dismissal), bed occupancy, dismissal rate and resources utilization rate.
Operations management techniques show the correlations among internal and
external parameters [3]. However hospital manager often prefer to adopt a more
intuitive approach, trying to get the full occupation of beds and the maximum
utilization of every resource. To this aim, several different tactics have been adopted:
use of priority levels in the discipline of the waiting list, scheduling of patient
arrival, increasing the utilization of operation theatres by reducing idle times and
the redesign of the procedures for patient accommodation on wards. It is worth
noting that changing this procedure is yet another way to discipline the waiting list
after the patient has been hospitalized.

In present study, Discrete Event Simulation (DES) is applied to simulate the
effects of interventions on pre-hospitalization and on bed allocation for an elective
surgery department in an Italian hospital. The main factors influencing patient flow
are extracted and analyzed in order to find key solutions for the improvement of the
system’s performance. The results are discussed by using analogies with the PULL
(demand driven) production processes.

7.2 Problem Description

The case study considered in this work regards a large hospital in Italy. Just
one division is taken into account for the current analysis: an elective surgery
department. In management terms, it is a process with scheduled arrivals.

In order to optimize system performances, strategies proposed by the hospital
management were simulated through experiments and were compared, extending a
method already applied in a former study [4].

Simulated experiments were conducted by following prescribed formal stages:
system observation, data collection, model implementation, run and validation,
output analysis.

Several practical issues arose during the experiment such as errors in the
collected data, high variability of system parameters, and self-adjusting behavior
of personnel.

It is important to bound the analyzed case study on the type of patient considered,
the inpatient. An inpatient is “admitted” to the hospital and stays overnight or for
an indeterminate time. An early selection of inpatients from the outpatients could
considerably reduce the waiting time. Thus, as diagnostic is not an exact science, it
is unavoidable that triage admits some outpatients, too.
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An important performance index, directly perceived by every patient, is related to
the length of the waiting time before hospitalization. In order to improve this issue,
it is possible to adopt different tactics:

• Queue discipline based on priority rules (already adopted).
• Improve the scheduling of patient arrival.
• Increase the utilization of surgery rooms.
• Redesign the procedures for the accommodation in wards beds.

Also patient scheduling was adopted by many hospitals but not everywhere [5].
Scheduling is effective only when the scheduled system is deterministic or with
low variability. This is not the case as recovery times display a variance equivalent
to the mean times. Therefore the ward under analysis uses a flexible scheduling
in which it is scheduled only the date from which the patient should be ready for
hospitalization, with the results of the diagnostic exams. Starting from that date, the
actual hospitalization will occur as soon as a bed is actually free.

Alternatively pre-hospitalization analysis are a way to hospitalize patients just in
time for the operation, saving beds [6].

Another improvement would be to cluster beds in two groups: standard stay
patients and long terms patients. These latter delay the admission of new patients to
surgery. The relative size of the two groups can be reallocated based on the demand
[7]. Experiments on the actual patients are not advisable therefore it was decided to
have recourse to simulated experiments.

Several approaches could be used to model and optimize patient flow: Markov
and semi-Markov models, queuing theory, solved analytically or by discrete event
simulation [8, 9]. Queuing theory models are usually based on some simple assump-
tions such as exponential inter-arrival and service time. However, for complex
real-world systems, DES models are more flexible and adaptable [10, 11]. The
model of the patient flow takes the form of a queuing network with G/G/m servers,
there are m workstations in the server, the queue, intended as the waiting list, is
virtually unlimited and the inter-arrival times and the process times follow a general
distribution.

7.3 Elective Surgery Department

7.3.1 A Description of the Case Study

In the considered Elective Surgery Department, data were collected from different
sources: the recovery logs (made anonymous) in the year 2008, integrated by
inormation gathered through a questionnaire filled by hospital personnel.
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When a surgery date is scheduled, the patient may be required to undertake
pre-operatory analysis, such as laboratorial samples, cardiovascular and respiratory
tests. Regular patients have a priority discipline for their waiting in queue. A triage is
performed to assign a priority order to each single patient, with descending priorities
A, B, C and D.

It is also important to state that patients ranked as B, C and D sometimes
receive this designation because they must still undertake prior examinations before
hospitalization that are mandatory for the surgical procedure. This forces them to
wait longer before admission.

There is another category of patients, named urgent patients. Urgent patients
arrive from other Wards as they have to submit to a surgical operation as a
consequence of other diseases that were treated non surgically. They obviously don’t
have to undergo examinations as they are already hospitalized.

After entering the hospital, all patients are treated equally, disregarding their
queuing priority and the surgeries follow the rule of First In First Out.

Whenever entering the hospital, a patient is allocated to a bed occupying this
resource until the end of its recovery. It is clear that a patient only enters after there
is a free bed.

During hospitalization, visits and examinations can be executed on patients
(especially on patients A since the others had time to undergo examinations during
the waiting). As a consequence of the analysis some patients are treated without
recurring to surgery. Some patients may undergo complications during the surgery
requiring, then, a second intervention that is executed as soon as possible. This is
the only case in which the FIFO rule for the access to the operation theatre is not
respected.

The previously described system was represented by means of a Process Flow
Diagram that is reported in Fig. 7.1.

The process flow follows the vertical line from the top to the bottom, circles
represent operations or activities, arrows represent transfers and the delay symbols
represent waiting times according to the ASME (American Society Mechanical
Engineering) symbology [12].

7.3.2 Data Collection

In the ward there are, totally, 24 beds, equally divided between the two genders. One
of these beds is usually reserved for urgent patients. In the ward there is a single
surgery room (also called operation theatre), and surgeries are only performed on
Monday, Wednesday and Friday. According to the managerial staff, the estimated
amount of surgeries performed in a week is 15.

The data collected from the log files of the ward cover the months of January and
March 2008 for a total of 112 patients (i.e., patients that enter the hospital in those
2 months). From the logs it’s possible to gather the percentage of patient types that
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Fig. 7.1 Process Flow
Diagram of the elective
surgery department

Table 7.1 Basic statistics
about the patients

Number of
patients Patient type Percentage (%)

112 All 100
65 Regular A 58.0
32 Regular B 28.6
2 Regular C 1.79
1 Regular D 0.89
12 Urgent 10.7
112 First surgery 100
9 Second surgery 8.03
1 Third surgery 0.89
109 Released 97.3
2 Deceased 1.79
1 Transferred 0.89

arrived at the hospital, the number of operation they needed and the way patients
got out the hospital. All these data are reported in Table 7.1. Since there are only
three patients that belong to patient types C and D, and thus the number is not
significant to model their distribution, they are considered as assigned to class B.
The only patient that needed the third surgery was not modeled as a case a part from
the others, but was included in the patients that needed two surgeries. An outlier
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Table 7.2 Means and
standard deviation of time
spent by patients (in days)

Time Mean S.D.

WT1 26.2 35.8
WT2 4.33 4.86
WT3 0.46 1.93
RT 5.95 5.23
HT 10.7 8.46

Table 7.3 Means and
standard deviation of time
spent by patients (in days)

Type A Type B Urgent

Times Mean S.D. Mean S.D. Mean S.D.

WT1 18.2 23.8 49.2 46.9 – –
WT2 4.14 3.64 3.6 3.49 7.82 10.9
WT3 0.78 2.48 – – – –
RT 5.86 5.25 4.71 4.09 9.82 6.78
HT 10.9 7.00 8.31 6.78 17.6 15.8

patient that presents a waiting time before the second surgery of 89 days has been
considered as an error of data entry and removed since it seems unfeasible that a
patient remains for such a long time in the considered ward. The total number of
considered patients is thus 111.

From the log data it’s also possible to gather the times patients spent in the
process. Particularly, the following times are analyzed: the waiting time before
hospitalization (WT1), the waiting time from hospitalization to first surgery (WT2),
the waiting time from first until second surgery (WT3), the recovery time (RT), and
the total time spent inside the hospital (HT, equal to the sum of the three previous
times). The derived mean and standard deviation of such times for the considered
111 patients are reported in Table 7.2.

A further analysis of these data is done in order to see differences in behaviors of
patients based on their typology. The mean values and standard deviations of times
for each type of patients are reported in Table 7.3.

Regarding WT1, there is a strong difference among the behavior of patients
belonging to the three categories. As a matter of fact, urgent patients usually do
not wait until entering the hospital, while patients A wait on average 18 days and
patients B wait on average 49 days. Also the waiting for surgery (WT2) is quite
different among the categories, and interestingly patients B usually wait less than
the others (only 3.6 days on average), while urgent patients wait more than twice the
time of patients B. This can be due to the fact that patients B have a long wait time
before the hospitalization, which they can use to perform some examinations, thus
saving time for when they are inside the hospital. On the contrary, urgent patients
come directly to the hospital, and thus probably have to perform other kinds of
analysis before being allowed to the operation.

For WT3 we do not have enough cases to differentiate among the three
categories, having only 11 patients needing the second surgery, all of type A. The
differences for RT are similar to the ones of WT2.



7 Simulation-Based Analysis of Patient Flow in Elective Surgery 93

7.4 Simulation of the Process

7.4.1 Process Workflow

The process described in Fig. 7.1 has been modeled using the Rockwell Arena
software [13] to perform the simulation. To assign the distribution of waiting times
and patients’ arrivals, data obtained by the hospitals were exploited to find the
expression that best estimates data distributions. The Kolmogorov-Smirnov (K-S)
test [14] is applied to select the best distribution.

The best probability distribution function that fits the arrival rate of patients is
the Exponential distribution with mean equal to 0.53.

In the simulation, a priority level is randomly assigned to each patient in order
to reflect proportions found in data (i.e., 58% of type A, 31% of type B and 11%
of Urgent). Once the patient is assigned a type, it enters in a queue representing
the waiting until there is an empty bed (WT1). The queue is of Lowest Attribute
Value type, i.e., the precedence is given to patients with the lowest priority value,
according to the real procedure in which patients of type A (i.e., priority level 2)
have the precedence over patients of type B (i.e., priority level 3), and urgent patients
(i.e., priority level 1) have the precedence over both of them.

Since all patients went through surgery, all of them spend some time waiting
for the surgery room (WT2). The distributions that best fit the delays for surgery
depending on patient type are reported in Table 7.4 (first column). Then, a decisional
process sends some patients (7% of cases) to the second operation, represented
by the delay process in which a patient waits for the second operation. The
data distribution follows the expression 0.5+ 11*BETA(0.802, 0.757). Finally, all
patients perform a recovery step before leaving the hospital. From interviews to
domain experts it appears that the distribution of recovery time is independent from
the patient type. Therefore we put together all the values to provide an estimation
of the distribution; the retrieved expression is−0.5+GAMM(3.11, 2.07). Table 7.4
reports the time distributions adopted in our simulation.

7.4.2 Simulation parameters

A simulation of the workflow of the process was executed with parameters’ values
reported in Table 7.5. The Warm up period was chosen using the Welch method.

Table 7.4 Process times distribution for each patient type

Patient type WT2 distribution WT3 distribution RT distribution

Type A −0.5+WEIB(5.02, 1.3) 0.5+ 11*BETA
(0.802, 0.757)

−0.5+GAMM
(3.11, 2.07)

Type B −0.5+LOGN(4.22, 4.5) “ “
Urgent −0.5+WEIB(6.96, 0.76) “ “
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Table 7.5 Simulation
parameters

Parameter Value

Number of replications 100
Warm-up period 730 days
Replication length 3,650 days

Table 7.6 Average values of
obtained results for the
standard case

Field
Real average
value

Standard simulation
average value 95%
confidence interval

WT1 26.16 1.44± 0.11
WT2 4.33 4.41± 0.01
WT3 0.46 0.43± 0.005
RT 5.95 5.93± 0.01
HT 10.74 10.77± 0.13
Waiting patients – 2.71± 0.22
Bed utilization rate 0.85 0.88± 0.001
Busy bed 20.4 20.28± 0.07

The obtained results in term of 95% confidence intervals for average values of
WT1, WT2. WT3, RT, HT, number of waiting patients in the queue, bed utilization
rate and number of busy beds are reported in Table 7.6 compared with real average
values. The half-widths of the confidence intervals for average values suggest that
an acceptable level of convergence is reached after 100 replications.

All of the values obtained in the simulation are coherent with the real data, except
the waiting time WT1, that in the simulation is significantly lower. This is due to the
fact that when a patient asks for a schedule, the admission date is not calculated by
analyzing the current waiting list only, but adding a further 2 weeks to the date in
order to allow the patient to perform some pre-operation exams. Thus, the length of
this time depends not only from current resources or from organization of the ward,
but also from the management rules of patients.

7.5 Proposal of Improvement

In the simulation of the ward, i.e., in the current state, the bed utilization rate is, on
average, less than 90%; particularly, the utilization rate is in the range 0.88± 0.03.
The objective of the ward’s managers is to increase the utilization rate of beds to a
value close to 0.95. Thus, we performed a simulation by changing the arrival rate to
reach the desired utilization rate, in order to evaluate effects on waiting queues. As
can be seen from Table 7.7, this change causes a sudden increase of waiting times.

The desired utilization rate is reached by decreasing the average time between
arrivals from a value of 0.53 days (less than two patients a day) to a value of 0.49
days (more than two patients a day). Simulation results show that the average time
spent to wait for a bed (WT1) strongly increases from 0.84 to 6.30 days with an
average number of waiting patients of almost 13. In the last column of Table 7.7
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Table 7.7 Average values of
obtained results for the case
with more patients

Field Average value Range average

WT1 6.30 (2.40, 16.31)
WT2 4.42 (4.27, 4.57)
WT3 0.43 (0.36, 0.49)
RT 5.94 (5.81, 6.05)
HT 10.78
Waiting patients 12.87 (4.77, 34.30)
Bed utilization rate 0.96 (0.92, 0.99)
Busy bed 22.01 (21.24, 22.69)

range values for average obtained in replications are given. Thus, the problem
becomes how to meet the manager objective without having such a worsening of
performance.

The main point is that, if the ward is considered equivalent to a production line,
buffers are not allowed (i.e., patients cannot be hospitalized without available beds).
Therefore the ward corresponds to a pull system: the admittance of a new patient is
based on the system status (availability of beds). Pull systems suffer from variability
and unfortunately present case has high variability, as can be seen in Table 7.3. In
industrial management, if a system displays an high variability it can be buffered by
increasing the capacity, the WIP or the waiting time. Increasing the capacity (beds)
has a direct cost. WIP increasing in this case is unfeasible because it corresponds to
adopt an office-based surgery that has been excluded a priori for inpatients. The last
way is by increasing the total cycle time that is the exact opposite to the objective
of ward’s managers.

To improve the system with no additional costs, another way exists: by address-
ing efforts directly to the reduction of variability on waiting times before surgery
(WT2), for example by reducing the number of exams done during the hospital-
ization by increasing the pre-hospitalization activities. This operation involves a
reorganization of the admission and recovery process and can be done by reinforcing
a pre-hospitalization process. Infact, trying to anticipate some examinations before
the admission to the ward can reduce the waiting time inside the hospital.

To simulate this scenario, the variance of waiting time before the first surgery
(WT2) has been reduced by considering a process organization that admits exclu-
sively Urgent patients and patients with a pre-hospitalization period (B patients)
and by considering waiting time before the surgery equal to real average values.
Table 7.8 reports results obtained by this simulation, which shows a consistent
reduction of patients’ waiting time and of queue length.

7.6 Conclusion

In this work an engineering approach is used to provide a process parameterization
in order to reach managerial objectives of beds utilization. A simulation of the new
process is done to test proposed parameters. Simulation results shows that small



96 D. Antonelli et al.

Table 7.8 Average values of
obtained results for the case
after re-organization

Field Average value Range average

WT1 2.39 (1.05, 5.72)
WT2 4.06 (4.02, 4.09)
WT3 0.43 (0.36, 0.49)
RT 5.94 (5.82, 6.05)
HT 10.44
Waiting patients 4.88 (2.09, 12.02)
Bed utilization rate 0.92 (0.89, 0.96)
Busy bed 21.26 (20.56, 22.01)

variation on the average value of inter-arrival times cause significant variations
on waiting times. So a solution to find a compromise between bed utilization and
waiting times is provided and simulated. The idea is to reduce variance on waiting
times before surgery with a reorganization of the admittance process, placing
more emphasis on the pre-hospitalization phase. On the basis of his/her objectives
and requirements, the healthcare manager is provided with better guidance for an
informed choice.
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Chapter 8
Optimizing Efficiency and Operations
at a Large California Safety-Net Endoscopy
Center: A Modeling and Simulation Approach

Lukejohn W. Day, David Belson, Maged Dessouky, Caitlin Hawkins,
and Michael Hogan

Abstract Improvements in endoscopy center efficiency, especially in safety net
hospitals, are needed, but scant data are available. A time and motion study
was performed and a discrete simulation model constructed to assess changes
in scheduling, staffing models, and the pre- and post-procedure process and its
impact on several performance measures in a safety net hospital endoscopy center.
Decreasing the endoscopy appointment time from 60 to 45 min led to a 21% rise in
the number of procedures performed per week, but unfortunately increased patient
wait time by 42% while further reductions in appointment times led to even more
significant queuing. However, increasing the number of pre-procedure nurses from
1.5 to 2 resulted in a 22% increase in the number of procedures performed per week
and increased provider, nurse and procedure room utilization with minimal impact
on patient wait time. Further increases in nurse staffing resulted in no significant
changes to measured outcomes. Increasing the number of endoscopists by one
each half day resulted in procedure volume rising, but there was a concomitant
rise in patient wait time and nurse utilization exceeding capacity. A significant
improvement in performance metrics was created by moving patient appointments
from afternoon to morning appointments. In this simulation at 45 and 40 min
appointments procedure volume rose by 23 and 34% respectively, all utilization
metrics increased and patient time spent in the endoscopy center declined by 17
and 13%. Thus the combination of minor, cost-effective changes such as reducing
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appointment times, minimizing and standardizing recovery time, and making small
increases in pre-procedure ancillary staff maximized endoscopy center efficiency
across a number of performance metrics. The simulation made it possible to identify
which changes were desirable and to what extent.

8.1 Introduction

There has been a dramatic rise in the request for gastrointestinal (GI) specialty care,
and in particular endoscopic services, over the last decade. At the same time, access
to GI care in the safety net healthcare system is limited. Such disparity highlights the
need for creative and innovative ways to increase access to GI care for underserved
patient populations. A method to address this inequality is to develop more efficient
endoscopy centers that can provide increased endoscopic services while at the same
time maximize patient and provider satisfaction.

There is a dearth of information on the study of efficiency in endoscopy centers.
Of the scant literature available there are varying conclusions about how to improve
endoscopy center efficiency with no clear consistent message. Some studies have
focused on altering staffing specifically focusing on the endoscopist [1, 5, 14]
and utilizing more staff in the pre-procedure process [5]. While such changes
improve physician efficiency and utilization, it does so at impairing non-physician
staff utilization, sub-optimizing facility utilization and increasing patient length
of stay [14]. Using simulation modeling others have discovered that identifying
bottlenecks in patient recovery [3, 13], reducing room turnover time [6], mod-
ifying the patient arrival schedule [1, 7, 11] or reengineering the scheduling of
patients [4, 12] can improve efficiency and decrease patient time in the endoscopy
center. However, there are a number of limitations to these studies; they are small,
examine efficiency solely from a physician perspective, and all are set in either an
ambulatory endoscopy center or tertiary referral service. Given these deficiencies
and with changes to the U.S. healthcare system, with more underserved patients
being cared for, it is imperative to better understand safety net endoscopy centers
and to improve efficiency within them.

Our objective was to conduct a time and motion study of clinic work and use
this data in simulation modeling to study changes in scheduling, staffing models,
facility changes and changes in the pre- and post-procedure process in a safety
net hospital endoscopy center. The simulation objective was to understand the
bottlenecks limiting the endoscopy center’s current operational performance and,
in turn, to identify opportunities to improve patient throughput while balancing
resource utilization and patient wait times.
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8.2 Methods

8.2.1 Study Design, Setting and Population

We conducted a time and motion study of the San Francisco General Hospital
and Trauma Center (SFGH) endoscopy center and performed discrete simulation
modeling to assess proposed changes to the endoscopy center with respect to
specific performance and efficiency metrics. The study was conducted between
November 2011 and May 2012. The SFGH endoscopy center provides subspecialty
care for the safety net healthcare system of the City and County of San Francisco.

The SFGH endoscopy center performs colonoscopies and upper endoscopies as
well as other advanced procedures in an ethnically diverse patient population. The
majority of the endoscopy center’s time is devoted to performing colonoscopy and
upper endoscopies (EGD) (89.0% of procedure volume) with a no show rate of
17.7%. SFGH is a teaching hospital for the University of California, San Francisco’s
medical school that has three GI fellows and one surgical resident rotating through
the GI Division each month.

Prior to constructing a discrete event simulation model, multiple days of direct
time observations and interviews were conducted to identify patient flow, key
parameters and process attributes. Time was spent shadowing physicians, nurses,
and support staff at the endoscopy center in order to develop an understanding of
the work flow.

The SFGH endoscopy center has four distinct workflow processes: check-in, pre-
procedure, procedure and recovery (Fig. 8.1). A patient’s visit begins at check-in
after which patients move to a waiting room where they remain until called to the
pre-procedure room. Patients complete the pre-procedure process in a dedicated pre-
procedure space (maximum of three beds). In situations where a procedure room is
available and no prepared patients are waiting to begin a procedure, pre-procedure
activities are conducted in the procedure room. From the pre-procedure process, a
patient then moves to a procedure room. At the conclusion of the procedure, patients
either recover in the recovery room (maximum three beds), or if a recovery bed is
unavailable then patients are kept in the procedure room. Once in the recovery room,
patients stay for at least 30 min as required by state regulations. Patients are held in
the recovery room until a ride home arrives to sign them out.

Observation and timing of the processes was done to provide a statistically
significant picture of operations. Arrival times were collected from the hospital’s
appointment scheduling system. The pre-procedure process was quantified using a
paper form that nurses completed. Procedure data was collected from the time of
endoscope insertion and removal, as documented in procedure and nursing notes.
Recovery data was collected from time stamps present on discharge paperwork.
Observation and use of the SFGH endoscopy center’s electronic record keeping
system provided 278 patient arrival times, 257 procedure times and 257 recovery
times.
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Fig. 8.1 Process model of the SFGH endoscopy center developed for discrete simulation modeling

8.2.2 Discrete Simulation Modeling

The discrete event simulation model was programmed using Process Simulator
(Process Simulator is a Microsoft Visio add-on software from ProModel Corpo-
ration, 556 East Technology Ave., Orem) software based on the diagram shown
in Fig. 8.1. The simulation included process times using probability distributions
derived from clinic time observations. Patients often arrive before their appointment
time and this earliness was also modeled as a probability distribution based on clinic
observation. After arrival, the patient goes through a sequence of processes which,
if busy, result in a queue of patients waiting. Each process is defined by a process
time distribution that was determined through time measurements. The check-
in, in room recovery, and recovery time process distributions were represented
by a triangular distribution. The process time distributions for the pre-procedure
and procedure processes followed a lognormal distribution and varied based on
procedure type. The endoscope cleaning process required a discrete amount of time
for decontamination and reprocessing. There was a certain probability that a patient
did not show up to their scheduled appointment (i.e. no-show). There was also a
probability that a patient did not require sedation and could therefore exit the system
prior to being routed to the recovery room process step. All probability distributions
were checked to assure a high confidence of fit between the modeled distributions
and the distributions observed in the clinic.
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Various scenarios were run and outcomes measured. The first outcome measured
was overall time in the system spent by each patient. The percent of the patient’s visit
that was spent waiting was tracked to understand how much waiting was occurring
due to bottlenecks. Total throughput was also tracked. Resource utilization rates
including procedure room utilization, nurse utilization, and provider utilization were
all calculated based on use and availability. Utilization was computed as the hours a
resource was in use divided by the available hours for the resource.

Validation included the following to ensure the simulation was accurate:

• Parameters were verified by expert opinion.
• The workflow diagram’s logic was verified by the providers.
• An assumptions document was developed and maintained for review by the

providers during regular meetings to discuss updates to the model.
• The outcome results were verified with those experienced within the actual

system.
• A separate analysis was conducted to ensure that the system was operating

properly on Tuesdays, the most tightly scheduled day.
• Simulation animation was inspected by model developers and the providers at

the endoscopy center to check that the patients were following the proper flow of
events and queuing at various points.

All the parameters and distributions were based on historical data and Minitab was
used to determine the distributions from the historical data.

After validation of the base case model was completed, several scenarios were
studied. The primary scenarios included altering the patient appointment schedule
from 60 to 45-, 40-, 35- and 30-min. appointment slots and assessing outcomes.
For the shorter appointment slot schedules, limited resources were added to avoid
extreme amounts of queuing. Also, changes to room availability through the adding
of additional resources (i.e. endoscopists and nurses) were assessed.

8.2.3 Ethical Considerations

Our study was a quality improvement project and no personal health information
was collected at any time. Thus formal institutional review was not required per
the policy of the University of California San Francisco Committee on Human
Research.

8.3 Results

8.3.1 Baseline Endoscopy Center Data

Utilizing data from the time and motion study, baseline arrival patterns as well as
pre-procedure, procedure and recovery room times were determined. Patients with
the latest scheduled appointment times arrived earliest; for example patients with
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afternoon appointments (after 1 PM) arrived 179 min earlier for their appointment
compared to patients scheduled at 8 AM who arrived 28 min earlier. Little variation
was noted in the pre-procedure time regardless of the planned procedure, although
EGD/colonoscopy required more time (31.2 min). Very little variation was noted
with recovery room time and required 34.6 min if recovery occurred in the
recovery room. Procedure time itself differed significantly depending on the
type of procedure performed with EGD requiring 9.5 min, colonoscopy 28.5 min
and combined procedures requiring 36.4 min. The mean number of procedures
performed per week was 53.8. Patients spent 2.3 h at the endoscopy center with
22.3% of that time spent waiting.

In order to determine the optimal scenario(s) that would increase throughput,
optimize utilization and minimize patient wait time a series of simulation models
were run (Table 8.1). Scenarios included revising the endoscopy appointment times
and weekly endoscopy schedule, increasing the number of nurses and providers,
standardizing recovering room time and subsequently a combination of these
scenarios.

8.3.2 Revision of Endoscopy Schedule

The first scenario examined a revised endoscopy schedule using shorter appointment
times. When appointment time was decreased to 45 min (from 60 min) there was a
20.9% rise in the number of procedures performed/week with both patient time
in the endoscopy center increasing to 3.2 h and percentage of time waiting rising
to 41.2%. Additionally, there was a rise in overall utilization with the greatest
rise noted in procedure room utilization. At shorter appointment times of 40 and
35 min the model was not sustainable without additional resources to serve patients;
at these times there was queuing of patients in the pre-procedure area as the day
progressed to the point where a significant number of patients would not have had
their procedures performed by the end of the day. If the appointment was decreased
further to 30 min the simulation was not feasible since the appointment time was
nearly identical to the procedure times and a queue built up infinitely.

An additional change was to the overall weekly schedule. Given that patient’s
preferred earlier appointment times and the endoscopy center had been closed on
Wednesdays – a half day of endoscopy appointments was moved from Friday
afternoon to Wednesday morning. This change (compared to baseline) meant
volume slightly increased to 55.7 procedures/week and procedure room utilization
rose. Moreover, we found that when appointment times were shortened under
this scenario to 45 and 40 min intervals there was a steady rise in procedures
performed/week (an almost one-third increase) as well as improved procedure room
and nursing utilization. However, these changes did so at a cost of increasing the
number of hours a patient spent in the endoscopy center and increased patient wait
time by 32.6 and 46.0% respectively when compared to baseline.
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8.3.3 Human Resources Expansion

The next area explored was to improve endoscopy center operational efficiency by
adding human resources. The number of staff dedicated to the pre-procedure area
was modeled to determine if such changes improved efficiency. The addition of 0.5
nurses to the pre-procedure area (from 1.5 to 2) resulted in no significant differences
in outcomes when compared to baseline data. Yet, by increasing the number of
pre-procedure nurses to 2 with an appointment time of 45 min resulted in a 21.3%
increase in the number of procedures performed per week, rises in provider (20.8%),
nurse (39.0%) and procedure room (19.3%) utilization, with minimal impact on
patient wait time. There was no significant change in performance outcomes with
more than two nurses in the pre-procedure area.

The number of providers that performed endoscopic procedures during the
week was also varied; one additional endoscopist was added to each half-day of
endoscopy. With appointment time held constant, procedure volume increased by
23.1% but it did so at a cost of increasing nursing utilization beyond capacity to over
100%. The results were similar if appointment times were lowered less than 60 min.

8.3.4 Minimizing Recovery Room Time

The next simulation examined minimizing patient time in the recovery room. Two
simulations were tested: (1) limiting recovery room time to 30 min (minimum
required by state regulations) and (2) not allowing patients to recover in a procedure
room. In either simulation at 60 min appointment times there were no significant
differences with respect to outcomes when compared to baseline data. But when
limiting recovery room time and changing the appointment time to 45 min, proce-
dure volume increased to 67.6 procedures/week, but wait time increased by 13.1%.
Similar results occurred in the model when patients were only allowed to recover in
the recovery room.

8.3.5 Simultaneous Changes Incorporated into Endoscopy
Center Models

Using the insight learned from above, a number of scenarios were examined
with multiple changes tested (Table 8.2). Simultaneous changes included reducing
appointment time to 45 min, increasing the number of pre-procedure nurses, mini-
mizing recovery room time and expanding the hours of the endoscope re-processor
to increase equipment usage (in order to make shorter appointment times feasible).
The first endoscopy center scenario (appointment time of 45 min, 2 pre-procedure
nurses, recovery room time of 30 min, and extending the endoscope re-processor’s
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day by 30 min) resulted in a 21.6% increase in procedures performed per week,
17.4%, drop in the patient’s time in the endoscopy center, and no significant
change in patient wait time. A second endoscopy center scenario incorporated
the same changes except appointment time was lowered to 40 min and endoscope
reprocessing hours were extended by 1 h. There was a steep rise in procedure
volume, further reduction of patient time in the center and wait times remained
unchanged.

The above changes were then combined with a half-day of Friday afternoon
endoscopy appointments moved to Wednesday morning. In this scenario the number
of procedures performed rose significantly in conjunction with provider, nursing
and procedure room utilization improving, and patient time in the endoscopy center
decreasing. For example, in simulations at 45 and 40 min appointment times’
procedure volume rose by 23.4 and 34.2%, and patient time spent in the endoscopy
center declined by 17.4 and 13.0% respectively.

Finally, the same changes were also incorporated into a scenario whereby one
additional provider was made available on each half day of endoscopy. Again,
procedure volume markedly increased by 39.6 and 46.7% for simulations at 45
and 40 min appointment times with overall provider utilization increasing to its
highest levels. However, nursing utilization exceeded capacity in both of these
simulations. Furthermore, as appointment times were shortened patient wait time
steadily increased to where patients spent nearly a third of their time in the
endoscopy center waiting.

8.4 Discussion

Through observation and a time and motion study we found that a large, diverse
safety net hospital endoscopy center has weekly operational patterns, although
variable, that are consistent and predictable. Our simulation model provides insight
into operational changes that are beneficial. We found that patient throughput as
well as provider and nursing utilization are increased with only simple changes such
as decreasing endoscopy appointment times (to a point), realigning the endoscopy
schedule with patient preferences and minimizing the recovery room and pre-
procedure processes. Additional improvements in throughput are possible but only
with adding costly human resources, over utilizing nurses and having unacceptable
wait times.

Our study is not the first to conduct a time and motion study or employ simulation
modeling in the endoscopy center; however there is sparse and disparate literature
on this topic. Some studies have used only a qualitative approach [15], conducted
solely a time and motion study [5], incorporated only one endoscopic procedure
in their models [1] or limited their simulations to just one component of the
endoscopy center process [6]. In addition, these studies are limited by their setting
in that all of them examined large tertiary hospitals or a private setting or included
endoscopy centers outside of the U.S. Our study has strengths compared to the
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available literature in that we examined multiple processes and procedures in the
endoscopy center, utilized multiple scenarios that quantitatively studied their impact
on a number of critical outcomes in an endoscopy center and we are the first to
use such methods to examine efficiency and change in a large safety net hospital
system. We involved all clinical staff in developing and testing changes while other
studies generally utilized GI data and worked on it separately from providers and
staff.

Similar to other studies, our study highlights the importance of two key areas in
the endoscopy center: pre-procedure and recovery room processes. With respect to
the pre-procedure process, no clear evidence exists on how to improve this process
with only scant expert opinions available [8, 12]. A number of factors influence
this process including obtaining vitals, placing intravenous catheters, completing
paperwork, patient changing, and in some cases the use of interpreting services.
The majority of these tasks center on nursing/medical assistant roles [5] and in
most cases these tasks are fixed and difficult to streamline. Previous work in the
operating room has realized this challenge and some work has demonstrated that
parallel processing of tasks among staff members can lead to a dramatic reduction
in operating room pre-procedure and room turnover time [2, 10]. In this same light,
we modeled an increase in the pre-procedure personnel in order to utilize this
strategy of parallel processing which to date has not been modeled in endoscopy
centers. We noted an increase in procedure volume by 14.6 procedures/week (mean
increase of 730 procedures/year) while at the same time significantly improving
nursing, provider and room utilization and maintaining patient wait time constant.
Other potential improvements in the pre-procedure process, but difficult to model,
may focus on patient education for patient preparedness, prior communication with
patients who do not speak English, and education programs aimed at improving the
pre-procedure process for staff.

Another vital step in improving endoscopy center efficiency is the recovery room;
specifically limiting recovery room time increases efficiency. Grossman modeled
an ambulatory surgery center and demonstrated that recovery room time was the
main bottleneck. In fact, a 50% reduction in recovery room time increased the
number of patients per room per day and shortened the overall length of stay for
patients. Similarly, in our study by limiting recovery to the recovery room (which
reduces procedure room turnover time) and limiting recovery time to 30 min (a
reduction of 13.3%) we observed an increase of 14.3 procedures/week with no
harm to overall patient wait time. However, there is no clear method on how to
address or improve this bottleneck. Aside from increasing the physical space of the
recovery room (which is quite costly in a resource limited environment) the only
specific intervention proposed to reduce this time has been sedation related. The use
of Propofol or only using one sedating medication compared with two medications
has been demonstrated to help not only reduce sedation time, but overall recovery
time as well [9]. Further research on strategies aimed at improving the endoscopy
recovery process is warranted.

Lastly, unlike previous work, our simulations/changes did not solely focus on
maximizing the efficiency of endoscopists. Of the limited work on this topic,
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all studies have focused on two key outcomes: increasing patient throughput and
improving physician efficiency. However, only focusing on physician efficiency
doesn’t translate into overall efficiency for the endoscopy center. Rex et al clearly
illustrated this concept by showing that increasing patients served and physician
utilization did so at a cost of the endoscopy center being sub-optimized with
increased patient length of stays and decreased non-physician staff utilization [14].
Our model echoed this point whereby in several scenarios adding an endoscopist did
increase patient volume but did so at a detriment to overutilization of the nursing
staff, increased patient time in the endoscopy center, and increased patient wait time
(ranging from a third to almost half of a patient’s visit). Also, adding additional
endoscopists is a costly option (mean salary of $321,575/year) especially in resource
limited areas such as public hospitals. On the other hand, personnel such as nursing,
medical assistants, or extending endoscope re-processor’s hours, which can impact
processes before and after a procedure, are far less costly and in our simulations not
only provided improvements in volume and provider efficiency but did so in a more
balanced approach.

Our study setting occurred in a safety net hospital and may not be generalizable
to other endoscopy centers. However, our model has much strength in that it demon-
strates that with only small changes to resource assignments one can dramatically
improve patient volume and other performance metrics and can be done so in a cost-
effective manner. Also, by using time and motion studies and building a simulation
model of an endoscopy center one can evaluate potential changes with a tool not
currently being used in GI services. Lastly, we did not model other possible, but
more complex changes, such as assessing the impact of same day bowel preparation
which may increase the desirability of afternoon appointments, scheduling complex
procedures at the end of the day as is done in surgery [4], scheduling a mix of
procedures that vary by time throughout the day, or evaluating the impact of changes
to arrival “earliness” as occurred in our patient population.

8.5 Conclusions

Through observation of the workflow and analysis of the results of a simulation
model we illustrate that weekly patient flow patterns are predictable and simulation
modeling provides insight into what changes are feasible and how they are beneficial
to an endoscopy center. Relatively straight forward changes such as reducing
appointment times, standardizing recovery room time and slightly increasing
ancillary staff in the pre-procedure area significantly improves endoscopy center
efficiency without substantially increasing costs nor changing procedure times.
By balancing pre and post procedure capacity a continuous work flow is created
and patient waiting is reduced. Thus, more patients can be seen – a critical need
at safety net hospitals. More costly changes such as increasing the number of
endoscopists can improve procedure volume but this may result in overutilization
of other resources and increase waiting for patients. Overall, we discovered better
understand patient flow responses to operational changes and to a simulation model
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can be used to develop cost effective solutions. Thus, we recommend the use of this
modeling tool to increase the capacity of GI patient services, particularly in a safety
net setting.
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Chapter 9
Analysis of Gastroenterology
(GI) Clinic: A Systems Approach

Xiang Zhong, Jie Song, Jingshan Li, Susan M. Ertl, and Lauren Fiedler

Abstract This paper is devoted to the analysis of the gastroenterology (GI) clinic at
the University of Wisconsin Medical Foundation (UWMF). First, the work flow at
the GI clinic is studied. Then a Markov chain model is developed and then extended
to non-Markovian case to evaluate patient length of stay and staff utilization.
The model is validated by the data observed in the clinic. It is shown that the
model can provide accurate estimation of system performance. Finally, using such a
model, what-if analysis is carried out and different patient check-out processes are
investigated.

9.1 Introduction

This study is conducted at a gastroenterology (GI) clinic owned and operated by
University of Wisconsin Medical Foundation (UWMF) in Madison, Wisconsin. The
goal of this work is to develop a quantitative model to analyze patient flow in the GI
clinic, evaluate its performance, and propose recommendations for improvement.
To accomplish this, a Markov chain model characterizing the work flow in the
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existing GI clinic has been developed and validated by comparing with the results
observed in the clinic. Using the justified model, what-if analysis has been carried
out to evaluate the impacts of different configurations of the system.

Patient flow in hospitals and clinics has attracted substantial research effort. Most
of the analytical studies use queueing theory models (see, for instance, reviews [3]
and [7], and representative papers [1, 4–6]). However, many models oversimplify
the flow process (such as representing all activities within a patient room by a single
server) in order to make the analysis tractable. Many details may be ignored so that
the sophisticated behavior of the system may not be characterized sufficiently. In
addition, almost all the research on GI modeling addresses the clinic issues except
that a case study at the Medical Center of University of California at San Diego
is reported in [2], which introduces a simulation model of work flow in endoscopy
testing procedures rather than GI clinic visits. Therefore, to study the patient flow in
GI clinic, developing an efficient analytical method is of importance. Since the work
flow in the GI clinic represents a typical clinic process, such a method will not only
be useful for one particular division, but also can be applied to other departments or
clinics. This paper is intended to contribute to this end.

The remainder of the paper is structured as follows: In Sect. 9.2, the operations
in the GI clinic are described and an analytical model is formulated. Section 9.3
presents the analysis method for system performance. Section 9.4 is devoted to
what-if analysis. Finally, conclusions are given in Sect. 9.5.

9.2 System Modeling

9.2.1 Work Flow Description

The current GI clinic has the following configuration: There are ten exam rooms
in total and every two exam rooms are assigned to one care provider group,
which consists of a clinician (physician (MD), physician assistant (PA), or nurse
practitioner (NP) and one registered nurse (RN) or a medical assistant (MA)).

Within the GI clinic, patient visits primarily fall within two categories: office
visit (OFV) and consult visit (CON). The OFV visit type is used for patients who
have frequent visits to a GI specialist due to a chronic GI illness requiring frequent
clinician care. The CON visit type is used for patients who are new to the GI service,
often referred by other physicians (most frequently primary care). Consult visits are
scheduled for a longer duration than office visits. The office visits and consult visits
are distributed throughout the daily schedule based on demand, provider preference
and office efficiency.

A typical visit to the GI clinic includes the following steps (see Fig. 9.1):

• Patient checks-in at the reception desk; the receptionist notifies the RN or MA,
and the patient is seated in the waiting room.
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Fig. 9.2 Structural model of GI work flow

• The patient is escorted from the waiting room to the exam room by the RN or
MA. The RN or MA collects basic information from the patient, obtains vitals,
prepares paperwork, and records information into the electronic health record
(EHR). This step is referred to as patient rooming.

• The clinician enters the exam room, assesses and diagnoses the patient condition,
and develops a treatment plan.

• To discharge the patient, the RN or MA prepares the after visit summary
(AVS) and follow-up instructions. The RN or MA then explains next steps and
instructions to the patient and schedules any future clinic visits or procedures.
The procedures typically include colonoscopy, endoscopy, MRI and CT Scan,
etc. If such future procedure appointments are needed, additional documentation
is required after the appointment.

• Finally, the patient leaves the clinic.

9.2.2 Structural Modeling

Since each provider group works independently, we focus our study on one provider
group only. In this case, the work flow can be simplified into a serial process which
includes patient waiting for rooming, patient rooming (information collection,
vital check, paperwork, reporting, etc.), patient waiting for clinician, clinician
examination and diagnosis, patient waiting for check-out, and check-out (including
possible follow-up appointment scheduling, additional paperwork or instruction,
etc.). Finally, the patient leaves the clinic. Such a work flow is illustrated in Fig. 9.2,
where the circles represent the services, and the rectangles characterize patient
waiting for the next service.

Within each exam room, only one patient is permitted at a time. Thus, simulta-
neous operations in the exam room are impossible. Moreover, since most of the
patients arrive around their scheduled appointment time, the number of patients
waiting for the exam rooms will be limited. Therefore, a finite capacity of waiting
area can be assumed for patients waiting for rooming. Usually, assuming a capacity
of 10 is more than enough.
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Since the differences in service time among clinicians (such as MD, PA or NP)
are small, the clinician types are not differentiated here. In this paper, MD or PA or
NP are all referred to as clinicians, and RN or MA are referred to as clinical staff. To
make the analysis tractable, we also group all the patient types into one, where the
service time is calculated through weighted average. Such simplifications have been
verified by simulation experiments, from which it is shown that the long run average
length of stay based on these simplifications does not lead to much deviation.

9.2.3 Assumptions and Problem Formulation

To analyze such processes, the following assumptions are introduced to address the
services, clinicians and clinical staffs (i.e., resources), and their interactions.

1. The following processes in the patient flow, from the start to the end, are labeled
as 1–6, respectively: (1) patient waiting for rooming; (2) patient rooming/clinical
staff visit; (3) patient waiting for clinician service; (4) clinician examination and
diagnosis; (5) patient waiting for check-out; (6) clinical staff checking-out the
patient.

2. The number of rooms assigned to one provider is M, where M = 2 in the current
model. If a patient arrives while all the exam rooms are occupied, he/she needs
to wait in the lobby. The maximum capacity of waiting lobby is Q. In this study,
we select Q = 10.

3. The number of staffs is defined by N = {n1,n2}, representing the number of
clinical staffs and clinicians, respectively. In the current setting, n1 = n2 = 1.

4. The patients arrive at the clinic based on their scheduled appointments, but
with some variations. The inter-arrival time of the incoming patients follows
exponential distribution with parameter λ .

5. There are three provider services in each exam room, RN/MA rooming, clinician
visit, and check-out, denoted as services 1, 2, and 3, respectively. It is assumed
that the corresponding services for each room are identical, and are exponentially
distributed with cycle time τi, i = 1,2,3, i.e., the corresponding processing rates
are ci =

1
τi

, i = 1,2,3.
6. The staff allocation for each process is denoted as θi, i = 1,2, . . . ,6. The current

configuration is {θ1, . . . ,θ6} = {r0,r1,r0,r2,r0,r1}, where r0 implies that no
resource is needed, and r1 and r2 represent that the required resources are clinical
staff and clinician, respectively.

7. Sometimes two services may require the same type of resource. In this case,
priority is assigned to a later service, i.e., the check-out service has higher priority
compared with the initial visit. If a patient needs to be discharged and another
patient is waiting for rooming, the RN or MA will discharge the first patient and
then room the next. There is no interruption of the ongoing service.

The problem to be addressed is: Under assumptions (1)–(7), develop a method
to evaluate the patient length of stay and staff utilization as functions of system
parameters in the GI clinic and investigate the impacts of improvement strategies.
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9.3 Performance Analysis

9.3.1 State Space

To study this problem, a Markov chain model has been developed. Let S = {s1, s2,
s3, s4, s5, s6} denote the system state, where si represents the number of patients
in stage i, i = 1, . . . ,6, i.e., s2 = m indicates that there are m patients in process 2
(rooming). The following constraints characterize the feasible states:

• s1 ≤ Q, queue length constrain,
• s2 + s3 + s4 + s5 + s6 ≤M, room number constraint,
• s2 + s6 ≤ n1, clinical staff resource constraint,
• s4 ≤ n2, clinician resource constraint.

In addition, for any feasible state, we have

• s3 > 0 only when s4 = n2 (the clinician is busy);
• s5 > 0 only when s2 + s6 = n1 (the clinical staff is busy);
• s1 > 0 only when ∑6

i=2 si = M (all the rooms are occupied) or s2 + s6 = n1 (the
clinical staff is occupied).

Therefore, the number of feasible states, K, is reduced. In the current GI clinic,
we have 79 feasible states. The steady state probability for a feasible state Sk, k =
1, . . . ,K, is then defined as

Pk = P(sk
1,s

k
2,s

k
3,s

k
4,s

k
5,s

k
6), k = 1,2, . . . ,K.

9.3.2 Transitions

For a feasible state S j, there may exist a transition from another feasible state Sk to
S j triggered by one of the following events: (1) patient arrival; (2) patient rooming
finishes; (3) clinician examination finishes; and (4) patient checks-out. Note that
such events cannot occur simultaneously. Then, for a feasible state Sk, the rates
going out of Sk and going into Sk can be written as μk

out and μk
in, respectively (the

detailed derivation of them can be found in Zhong et al. (2012)). Then, the balance
equations can be written as:

μk
in = μk

out , k = 1,2, . . . ,K. (9.1)

Next, introduce matrix Φ , where for k = 1, . . . ,K, j = 1, . . . ,K, Φ(k, j) defines
the transition rate from state Sk to S j, k �= j. Note that Φ(k, j) can only take one of
the values of c1, c2, c3, or λ . Then,

Φ(l, l) =−
K

∑
j=1

Φ(l, j), l = 1,2, . . . ,K.
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Thus, a transition matrix Φ with dimension K×K and rank K− 1 is obtained. By
taking the first K− 1 columns of Φ and a normalization condition

K

∑
l=1

Pl = 1, (9.2)

we construct a new matrix Γ , where

Γ (l, j) = Φ(l, j), l = 1, . . . ,K, j = 1, . . . ,K− 1,

Γ (l,K) = 1, l = 1, . . . ,K. (9.3)

Then introduce vectors X and Y such that

X = [P1,P2, . . . ,PK ],

Y = [0, . . . ,0,1].

We obtain the balance equation as

XΓ = Y. (9.4)

Therefore, the steady state probabilities can be obtained by solving the balance
equation, i.e.,

X = YΓ−1. (9.5)

Since we consider an irreducible Markov chain with finite number of states, there
always exists a unique steady state solution.

9.3.3 Patient Length of Stay and Staff Utilization

Since the throughput and the average number of patients in the system can be
evaluated by summing up all the states that the patient leaves and stays in the clinic,
respectively. By Little’s Law, the patient length of stay, Ts, can be obtained.

Theorem 1. Under assumptions (1)–(7),

Ts =
c3 ∑K

l=1 Plsl
6

∑K
l=1

(
Pl ∑6

j=1 sl
j

) . (9.6)

In addition to patient length of stay, the staff utilizations ρi, i = 1,2, can be
calculated as
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Corollary 1. Under assumptions (1)–(7),

ρclinical sta f f =
K

∑
l=1

Pl(s
l
2 + sl

6), (9.7)

ρclinician =
K

∑
l=1

Pls
l
4. (9.8)

9.3.4 Extensions to Non-exponential Scenarios

First, based on extensive numerical experiments using simulations, we verify that
the patient length of stay is practically independent of the distribution type, but
primarily depends on the mean and CVs of the inter-arrival time and service times,
when such CVs are between 0 and 1. In practice, most of these CVs are less than 1.
Next, if the scheduled inter-arrival time is long enough, and there is no variability in
service time (i.e., CVi = 0), then the patient length of stay can be calculated by the
total service time. Thus, we define such a length of stay as

T f ix
s =

3

∑
i=1

1
ci
. (9.9)

Then the length of stay can be adjusted based on T f ix
s by the CVs of service times

and inter-arrival time. Specifically, we define

CVe f f =
∑3

i=1
CV 2

i
ci

∑3
i=1

1
ci

, (9.10)

and we hypothesize that there exists a linear relationship of lengths of stay between
CV = 0 and 1 based on numerical investigations. In other words, we propose
empirical formulas to calculate the patient length of stay in the system when both
inter-arrival time and service times are non-exponential, T non−exp

s , as follows:

T cv
s = CVe f f (T

exp
s −T f ix

s )+T f ix
s , (9.11)

T non−exp
s = CVarrival(T

cv
s −T f ix

s )+T f ix
s , (9.12)

where CVarrival is the CV of patient inter-arrival time and the length of stay under
exponential assumptions is denoted as T exp

s .

Remark 1. Under different inter-arrival time and service time distributions, the staff
utilization will be the same, since it depends on the number of patients and the
average service time. Therefore, the staff utilization will not be affected by the
distribution types and CVs.
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Table 9.1 Model validation

LOSactual (min) LOSsimulation (min) LOSmodel (min) �1 (min) �2 (min) ε1 ε2

53.28 55.27 54.16 −0.88 1.11 −1.65 % 2.01 %

9.3.5 Model Validation

The model introduced above has been validated by comparing with the results
observed in the current GI clinic. In addition, a discrete event simulation model has
been developed to emulate the process. Let LOSactual , LOSsimulation and LOSmodel

denote the lengths of stay obtained by data collection, simulation, and analytical
model, respectively. Introduce

�1 = LOSactual−LOSmodel,

�2 = LOSsimulation−LOSmodel,

ε1 =
LOSactual−LOSmodel

LOSactual
·100%,

ε2 =
LOSsimulation−LOSmodel

LOSsimulation
·100%,

to illustrate the differences of analytical result compared with the observed and
simulated ones.

The results of such comparisons are shown in Table 9.1. As one can see, the
differences between them are very small. Therefore, the model is validated and can
be used for further analysis.

9.4 What-If Analysis

Using the validated model, what-if analysis has been carried out to investigate the
impact of parameter changes. Table 9.2 summarizes all the scenarios in what-if
analysis.

Note that the 50 % clinical staff availability is intended to model the scenario
where one clinical staff is supporting two clinicians, so that roughly 50 % of the
clinical staff’s effort is devoted to each one. In this case, the model discussed above
is still applicable with the modification that the rate of rooming and discharging
patient should be decreased by half, i.e., c′1 =

c1
2 , and c′3 =

c3
2 . This implies that the

patient may stay at the previous state after finishing it, due to the unavailability of the
clinical staff. In addition, the last scenario is a combination of all parameter changes
in scenarios 1–3. Below, the detailed results of these scenarios are introduced.
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Table 9.2 What-if scenarios

Scenario Category Description

1 Staffing model 50 % clinical staff availability or
two clinical staffs per clinician

2 Demand change Increase demand by 10 or 30 %
3 Room configuration One or three exam rooms per clinician
4 Service times Change service times of clinical staff or

clinician by 10 %
5 Combined scenarios Add one room or one clinical staff

and increase demand by 30 %

Table 9.3 Staffing model: clinical staff per clinician

50 % availability Two clinical staffs

From To Changes (%) From To Changes (%)

LOSmodel (min) 54.16 117.7 117.32 54.16 48.22 −10.9
ρclinical sta f f (%) 43.95 81.14 84.61 43.95 21.99 −49.97
ρclinician (%) 47.06 43.44 −7.69 47.06 47.09 0.06

9.4.1 Staffing Model

First, we investigate the impact of changes in the current staffing model. Instead
of having one clinical staff to assist one clinician, we investigate the case of one
clinical staff supporting two clinicians (i.e., 50 % clinical staff availability for each
clinician), and the case of two clinical staffs for each clinician. The results are
summarized in Table 9.3.

These results show that a clinical staff of 50 % availability is definitely not
enough. However, the case of two clinical staffs for one clinician is also not
necessary. Therefore, the current staffing model of one clinical staff for one clinician
can well accommodate the current demand.

9.4.2 Demand Change

Next, we check the effects of patient demand change on system performance. The
current inter-arrival time of 45 min is dictated by the clinic scheduling system. We
test the system with the same structural model, but with decreased inter-arrival times
(from 45 to 41 min, a 10 % increase in demand; and to 34.6 min, a 30 % increase in
demand).

As shown in Table 9.4, if the demand is increased by 10 %, the increase in patient
length of stay is 7.29 %, which is not favorable, but still can be accommodated.
However, it can be found that the current GI Clinic does not have the capability
to accommodate a 30 % demand surge, since the patient length of stay under
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Table 9.4 Demand increase

10 % 30 %

From To Changes (%) From To Changes (%)

LOSmodel (min) 54.16 58.11 7.29 54.16 70.32 29.85
ρclinical sta f f (%) 43.95 48.14 9.53 43.95 56.06 27.56
ρclinician (%) 47.06 51.54 9.52 47.06 60.02 27.54

Table 9.5 Room configuration

One exam room Three exam rooms

From To Changes (%) From To Changes (%)

LOSmodel (min) 54.16 81.92 51.26 54.16 51.22 −5.43
ρclinical sta f f (%) 43.95 42.77 −2.68 43.95 43.99 0.09
ρclinician (%) 47.06 45.79 −2.77 47.06 47.11 0.11

this setting increases substantially. In addition, both clinical staff and clinician
utilizations are increased by about 30 %. Although more patients can be served,
it results in excessive wait times for the patients and substantial over-time work for
the providers. More capacity and resources are needed in this scenario.

9.4.3 Room Configuration

In the current clinic setting, each provider group is assigned to two rooms. Here we
change the number of rooms to 1 and 3. The results are shown in Table 9.5.

It is shown that dropping one room increases patient length of stay by 51.26 %,
which indicates that one room is not enough and causes a long wait for rooming.
By adding one more room, the patient length of stay is decreased by 5.43 %, which
is not significant. Therefore, the current setting of two rooms per provider group is
reasonable.

9.4.4 Service Times

The change in service times of clinical staff and clinician are also investigated.
Suppose the service times of the clinical staff and clinician can be decreased by
10 %. The resulting performance is shown in Table 9.6.

As one can see, decreasing the service time of either the clinical staff or the
clinician would have similar impact on system performance, due to their similar
workload in the current system setting. It is observed that the clinician and the
clinical staff may ask the patient the same questions repeatedly during their visits.
Therefore, if possible, improving coordination between the clinician and the clinical
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Table 9.6 Service times decreased by 10 %

Clinical staff Clinician

From To Changes (%) From To Changes (%)

LOSmodel (min) 54.16 51.66 −4.62 54.16 51.17 −5.52
ρclinical sta f f (%) 43.95 39.57 −9.97 43.95 43.98 0.07
ρclinician (%) 47.06 47.08 0.04 47.06 42.38 −9.95

Table 9.7 Combination scenarios: increase demand by 30 %

Add a room Add a clinical staff

From To Changes (%) From To Changes (%)

LOSmodel (min) 54.16 61.265 13.12 54.16 54.02 −0.26
ρclinical sta f f (%) 43.95 56.896 29.46 43.95 25.65 −41.64
ρclinician (%) 47.06 60.858 29.32 47.06 61.04 29.71

staff to decrease duplicate work could help to reduce staff service time. In addition,
some of the paperwork and information patients with frequent visits can be prepared
prior to the visit. Thus, there exist some opportunities to reduce service time without
sacrificing care quality and patient satisfaction.

9.4.5 Combined Scenarios

Finally, we study the scenario that multiple parameters may change. In this scenario,
the demand is increased by 30 %, and at the same time, one more room is added, or
one more clinical staff is added in the system.

When only demand is increased (see Table 9.4), a 30 % demand surge leads to a
roughly 30 % increase in patient length of stay. However, such an increase will be
shrunk to 13 % when an additional room is introduced (Table 9.7). Similarly, if an
additional clinical staff is added, the length of stay will not increase, but decrease
by 0.26 %. Therefore, additional clinical staff would be needed to accommodate the
high volume of patients.

9.5 Conclusions

In this paper, an analytical model is developed to study the work flow in the
gastroenterology (GI) clinic of University of Wisconsin Medical Foundation. The
patient length of stay and utilization of the staff are evaluated. What-if analysis
is carried out to investigate the impacts of different configurations of workforce
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and resources. The results of this work could provide hospital/clinic professionals a
quantitative tool to evaluate current system performance, investigate the effects of
different configurations, and to predict care service efficiency for future plans.
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Chapter 10
Operating Room Joint Planning and Scheduling

Niccolò Bulgarini, David Di Lorenzo, Alessandro Lori,
Daniela Matarrese, and Fabio Schoen

Abstract In this paper we suggest a mixed approach in which medium term
planning for surgery is combined with short term scheduling of resources. Com-
bining scheduling with planning has the beneficial effect of producing feasible
schedules for the next week taking into account waiting lists. Experiments per-
formed with real data from the Careggi Hospital in Florence support the evidence
that a significant improvement of waiting list management can be obtained this way.

10.1 Introduction and Motivation

Surgery activities play a major role in hospital and clinic operations. This is due
not only to the importance society gives to health care, but also to the reason
that surgery generates a significant component of revenues, accounting for almost
a half of hospital resource costs [21, 27]. Within surgery activities management,
new technologies and advances in surgery techniques on one hand, and the aging
of populations on the other makes operations handling an even more challenging
topic.

Specifically, optimized surgical operations are needed to reduce costs, while
ensuring high quality service to patients. This leads to the formulation and the study
of new optimization problems that can be effectively solved by means of Operations
Research tools and techniques. Within this context, two decision layers can be
identified: (i) strategical planning must be conducted to handle relatively long-term
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resource optimization that meets deadlines and aggregated resource requirements;
(ii) detailed scheduling is needed to effectively support daily operations and
management decisions.

Traditionally, planning and scheduling problems have been solved using a cas-
cading approach, due to their computational complexity. Moreover it often happens
in many organizations that planning and scheduling fall under the responsibility of
different managers. This separation leads to suboptimal solutions that may severely
affect resources capacity. This paper investigates health care resource allocation
problems using mathematical programming methods. Specifically, we propose a
new joint operating room planning and scheduling formulation to show the benefits
such approach gives both in terms of strategical long-term decisions and day by day
resource allocations.

The proposed approach is capable of generating a suggested schedule which from
one side is feasible w.r.t. operating room and surgeon availability and from the other
considers the effect of current decisions on future waiting lists.

The paper is organized as follows: in Sect. 10.1.1 we review related approaches to
planning and scheduling resource allocation problems. We describe the experimen-
tal settings of our work in Sect. 10.2. Section 10.3 reports the problem formulation
and details the ratio behind a joint strategical and tactical approach. Section 10.4
reports computational results and a performance analysis.

10.1.1 Survey of Related Contributions

Detailed literature reviews on operating room planning and scheduling have been
published by Cardoen et al. [6] and [12]. Lamiri et al. [17] solve planning problems
with uncertainties by a column generation approach. Guinet et al. [13] develop a
planning model and a heuristic which allocates patients to resources, taking also
into account post-operation bed availabilities, to be later assigned by a scheduling
procedure. Lamiri et al. [19] propose algorithms and models taking also into account
emergency cases. Agnetis et al. [1] propose a long-term planning model which
takes into consideration both the quality of solution and the hospital’s management
organizational issues. Also in [32] a similar planning model is solved by a three-
phase heuristic algorithm.

Scheduling problems have been addressed in [5], where branch-and-price and
column generation are used to schedule surgeries and nurse times, reducing the
peak loads for the staff. In [16] a row/column generation algorithm is applied over
a MILP model, and uncertainty is taken into consideration. Min et al. [24] consider
the surgery scheduling problem across patients with different priorities. Santibanez
et al. [30] propose a scheduling model which takes into account further real-world
constraints. Some authors have developed scheduling models that also consider
post-surgery constraints like bed availability (see for example Augusto et al. [2]).
In [22] two MILP formulations are presented to address the problem of balancing
patient queue lengths among different specialties. Ghazalbash et al. [11] propose
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a scheduling model which handles many elements like equipments, post-surgery
cleaning time, surgeons, nurses and specialists; since the scheduling is done day by
day, the problem is simple enough to be solved exactly. Herring and Herrmann [15]
present a scheduling model based on similar assumptions as our own, since they
consider the more realistic situation where every day new surgeries are released;
surgeries may be postponed, incurring into a penalty. Marques et al. [23] show
a scheduling model that has been tested using real data from a Lisbon hospital.
Similarly to our approach, the surgeries are divided in classes, some of which have
hard constraints, like being scheduled in the first week.

Solving both the scheduling and planning problems together gives the best
solution in terms of quality, but imposes drawbacks in terms of computational
resources, so additional heuristics are usually needed. A review about integration
of planning and scheduling in supply chain systems is available in [25]. Riise et al.
[28] and Fei et al. [10] solve both problems using heuristics. In [29] an heuristic is
used to plan and schedule surgeons, anesthetists and nurses. A genetic algorithm is
proposed in [7] to solve the integrated scheduling and planning problem minimizing
the “makespan”. In [31] the analysis is extended to multisite, multiproduct and
multipurpose batch plants using an augmented Lagrangian method. Such method
is also used in [20] to solve a large scale integration problem.

In literature a distinction is usually made between block-scheduling and open-
scheduling models: block-scheduling [1,4,5,8,22,30,33] refers to additional model
constraints forcing the same specialty surgeries to be operated only in specific time
blocks (e.g. cardiac surgeries take place every day from 8 am up to 2 pm, orthopedic
surgeries from 2 to 8 pm, etc.). Of course this distinction is valid only if multiple
specialty surgeries are taken into account.

Uncertainties in surgical times and in the set of surgeries to be performed
encourage researchers to use robust optimization techniques to solve such problems.
The model proposed by Denton et al. [9] also handles pre and post surgery
operations under uncertainties. Lamiri et al. [18] propose a planning model and
algorithm which handles emergency surgeries, which are unknown during the
planning phase. In [3] and [4] a scheduling model that handles uncertainties in the
surgery lengths is analyzed. In [14] and [8] several heuristics for robust scheduling
are studied, and surgery durations are stochastically modeled. In a similar work [33]
robustness is taken into consideration, and the portfolio effect has been considered
to manage the uncertainties.

10.2 Experimental Setting

Our experiments were based on data collected during the period January 1st, 2010
to August 31st, 2010 on the surgical unit of the Neurology Department of Careggi
Hospital in Florence (Italy). The ward is specialized in surgery of the skull and of
the spine. The data we used was originally collected by a Master degree student [26]
and successively revised by our team.
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The choice of this Department was originally motivated by the small size of
the unit and the interesting patient mix. The analysis was based exclusively on
elective surgeries, and we adopted the Departmental policy of reserving part of one
of the operating rooms’ time for urgency and emergency. Two operating rooms are
available in this department, with 12 h per day availability of OR 1 (from Monday
to Friday) and 6.5 daily hours availability for OR 2.

We collected data on all surgeries performed in the observation period; we
observed data pertaining a total of 523 surgical operations. For each of these, we
recorded:

• The “release date”, i.e. the time (expressed in weeks) the patient asked for surgery
• The effective date in which surgery took place (again, we recorded this data in

weeks)
• The “class” of the patient. Patients in Tuscany are grouped into three classes:

class A, requiring surgery not later than 30 days after arrival, class B, with a
60 days maximum allowed, and class C patients which need to be operated not
later than 90 days after arrival

• The code of the main surgical operation performed
• The name of the main surgeon who operated the patient
• A Boolean field specifying whether a special purpose equipment (a brightness

amplifier, in the situation analyzed) was required
• The operating room used by the patient

We choose to represent dates as weeks, in order to be prepared for the planning
phase, which is based on weeks, and in order not to have too detailed data. As a
consequence, we artificially associated to class A a period of 4 weeks, 8 for class
B and 12 for class C. This way, we imposed stricter deadlines on the scheduling
and planning phases; this was deliberate, not only in order to simplify the planning
phase, but also in order to try to “squeeze” as much as possible operations in the
shortest compatible period of time. During the observed period, a total 300 class A,
75 class B and 148 class C patients were operated.

The time required by each operation was obtained from the surgical documents;
on average, each operation took 181.45′ (with a median of 175′, quartiles at 120′ and
240′) and a standard deviation of 84.66′. Splitting the data according to the class, a
median of 180′ was observed for class A patients, while class B and C ones were
characterized respectively by a median of 160′ and 175′ respectively.

In the experiments reported in this paper, we assumed that the surgeon was pre-
assigned to the patient, even if the model allows for much more flexibility. We
adopted a quite conservative assumption for what concerns the time availability of
each surgeon: after having observed the list of surgeries performed by each of the 13
surgeons available, we decided to give each surgeon a weekly time availability equal
to the effective time spent in surgery in that week. We did not impose any restriction
on day by day availability, apart from that obtained by the OR availability and by the
total weekly time allotted. This choice was a consequence of the real data available
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for our simulations. Of course, if the day by day availability of every resource were
known (as it happens here for the operating rooms), it would be very easy to include
them in the proposed model, and surely the resulting schedules would turn out to be
even more realistic.

For what concerns the OR’s, we first listed all surgical codes and checked
whether a surgery of a specific type had always been performed in OR 1 or in OR 2.
From this analysis, for some types of surgery, we pre-assigned the operating room,
while for others we left this choice to the scheduler/planner. This way, the OR was
pre-assigned in 51 % cases, while a choice remained to be made in 49 % operations.
In a future set of experiments, we will perform a similar generalization for the choice
of the surgeon.

Finally, a total of 267 surgeries (51 % of the total) required a special equipment.

10.3 Joint Scheduling and Planning

In order to optimize planning and scheduling, we developed a mixed integer linear
programming model which captured most of the characteristics of the situation.
We choose to solve this model, which is quite of a large scale, by means of an
exact algorithm (CPLEX), as the CPU time required was considered acceptable; we
are currently developing and testing a fast heuristic method which will be used in
place of the exact one for larger size problems, as those which we will study when
exporting this first set of experiments to the whole hospital.

Our choice, in developing the model, was to build a joint model for planning
and for scheduling, guided by our feeling that trying to base tactical and strategical
decisions on a single model would lead to better choices, both in term of the
objective function to be optimized and in terms of feasibility. In fact, from one side,
scheduling without any planning consideration, which is a common practice in many
organizations, has a natural tendency to “follow the emergency”, overlooking the
overall objective of giving appropriate treatment to all patients. A pure scheduling
approach is in general too myopic and typically generates schedules which satisfy
quite well the constraints for class A patients, but at the expense of very long
delays on patients with less strict deadline. Of course if we could schedule for a
long period, taking into account the whole current waiting list, this could lead to a
very good service to patients and an optimal usage of resources; however it is well
known that scheduling is a very hard computational task and when the number of
“jobs” (patients) and potentially conflicting resources (operating rooms, surgeons,
special equipments) becomes large, no exact method is viable and most heuristic
approaches deliver a moderately good solution.

On the other hand, many methods are based on two phases: first a pure planning
problem is solved, where resources are aggregated in families and conflicts are not
taken into account. Secondly, given the plan for the first week, a schedule is built
trying to allocate all patients according to the results of planning. This approach
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has a high risk of generating either infeasible schedules, as it might be impossible
to satisfy all arising resource conflicts, or it might generate a costly solution, with
frequent recourse to overtime.

The approach we present in this paper is an attempt to obtain a feasible schedule
for the short term, typically 1 week, and the plan of the following periods.

10.3.1 A Mathematical Programming Model

In our model we can thus distinguish two types of variables and constraints, those
related to the scheduling phase and those concerning the planning one. Let W =
{0,1, . . . ,T} be the set of planning periods (weeks) and assume that period 0 is
composed of G days (usually between 5 and 7). We will use the subscript w to
denote planning periods (weeks) and d to denote scheduling ones (days). A pure
planning model could be represented as follows:

min Planning obj function (10.1)

∑
w∈W,r∈O(p)

xp,w,r = 1 ∀p ∈ P (10.2)

∑
p∈P:Needs(s,p)

Durp ∑
r∈O(p)

xp,w,r ≤ Avails,w + sls,w ∀s ∈ S∪E,w ∈W (10.3)

∑
p∈P

Durpxp,w,r ≤ Availr,w + slr,w ∀r ∈ O(p),w ∈W (10.4)

xp,w,r ∈ {0,1} p ∈ P,w ∈W,r ∈ O(p) (10.5)

slr,w ≥ 0 r ∈ P∪E∪O,w ∈W (10.6)

In the above model, P,S,E,O are, respectively, the sets of patients, surgeons,
special equipments, operating rooms; Durp is the surgery length for patient p and
Avails,w is the time availability of resource s in week w. Variable xp,w,r is a Boolean
with value 1 if and only if patient p will undergo surgery in week w in the operating
room r. Variable slr,w is a non negative real which contains the amount of extra time
required in week w from resource r (overtime for surgeons, rooms, equipments).
With O(p) we denoted the (sub-)set of OR’s compatible with the surgical operation
needed by patient p; the Boolean parameter Needs(s, p) indicates whether patient p
needs the resource (either surgeon or equipment) s.

Constraint (10.2) forces all patients to be scheduled for operations between now
and the time horizon T and allocates one of the compatible OR’s to the patient;
constraint (10.3) limits the total resource consumption for all patients planned for
a specific week which require a specific resource (either a surgeon or a special
equipment). Analogously, constraint (10.4) limits the time allocated to all surgeries
in a specific OR to the time available, during that week, in the specified OR.
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The objective function can have many different forms, but typically includes
penalties for late surgery and penalties for extra time required for some resources.

The scheduling model adds to the above schema, a set of variables and constraints
needed to obtain a feasible schedule for the first week (number 0). In order to build
the scheduling model, a set of additional variables are required. Let yp,d,r be a binary
variable with value 1 if and only if patient p is operated on day d (week 0) in room
r; Sp,d is the start time of this operation (in minutes). δp1,p2 is a binary variable with
value 1 if patient p1 is scheduled before patient p2; Cd,r is a non negative variable
which represents the last operating time in room r of day d, i.e., the finish time of
the lat surgery performed in that day. Finally, ScSl is variable totally analogous to
sl, but specific for the scheduling period. Let C be the set of potentially conflicting
pairs of patients. Conflict might arise either because they share the same surgeon or
the same equipment.

min Scheduling obj function (10.7)

∑
d

yp,d,r = xp,0,r ∀ p ∈ P,r ∈O(p) (10.8)

∑
r∈O(p1)

yp1,d,r + ∑
r∈O(p2)

yp2,d,r ≤ 1+ δp1,p2 + δp2,p1 ∀d,(p1, p2) ∈C (10.9)

yp1,d,r + yp2,d,r ≤ δp1,p2 + δp2,p1 + 1

∀d, p1, p2 ∈ P,r ∈ O(p1)∩O(p2) (10.10)

Sp2,d ≥ Sp1,d +Durpδp1,p2−M(1− δp1,p2)

∀d,(p1, p2) ∈C (10.11)

Cd,r ≥ Sp,d +Durpyp,d,r−M(1− yp,d,r)

∀d, p ∈ P,r ∈O(p) (10.12)

Cd,r ≤ Availr,d +ScSld,r ∀d,r ∈ O(p) (10.13)

In this model, constraint (10.8) force the linkage between the planning variables
x of week 0 with the scheduling variable y – in fact these constraints impose that,
if and only if planning prescribes operation in week 0, one and only one of the
schedule variables associated to the patient will assume value 1. Constraint (10.9)
requires that if two patients are possibly in conflict one another, then either they
undergo surgery in different days (or weeks) or one of the two must precede the
other; constraint (10.10) is exactly the same as the previous one, for each operating
room. Equation (10.11) is a conflict resolving constraint, stating that if patient p1

precedes patient p2, than the start time of p2 should follow the finish time of p1; M
is a “sufficiently large” constant (e.g., the time availability on day d). The last two
constraint respectively define the maximum completion time on each room for each
day and the extra time required for each resource in each day.
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The objective function we used in our model had the following form:

∑
w∈W,p∈P,r∈O

Penalty(w−Releasep,Classp)xp,w,r+ (10.14)

K ∑
r∈S∪O∪E
w∈{1,...,T}

slr,w +K ∑
d,r∈O

ScSld,r (10.15)

where (10.14) is a penalty term depending on the delay between the time of arrival
of the patient and the time the operation is scheduled, (10.15) are two penalties
associated with extra time required during the planning and scheduling periods for
all resources.

More specifically, for a patient of class Classp arrived in week v and planned
for operation in week w, whose class prescribed an operation within Δ weeks, the
penalty is defined as

Penalty(w− v,Classp) =

{
α(w− v) if w− v≤ Δ
β (w− (v+Δ))2 otherwise

with α = 0.1 and β = 100 for the three classes of patients. This way, a strong penalty
is given if the maximum allowed time is exceeded; however, a slight penalty is
imposed even for on-time schedules, in order to prefer earlier operation dates in
any case. These constants can be changed in order to augment or to diminish these
effects, resulting in possibly different schedules.

The remaining parts of the objective functions contain costs associated to the
violation of constraints on resource time availability. In our experiments we tried dif-
ferent values of K in order to analyze the trade-off between scheduling/planning and
resource consumption. In the experiments reported in this paper, we used K = 500.

Before concluding this section, we would like to recall a particularly important
point: the aim of this model is to find a good schedule for the first week, taking into
account the effect that this week’s decisions might have on the following week plans.
However, when applied in practice, during week 0 new patients will arrive which
were not considered; thus the whole model should be repeated, in week 1, with a
dataset consisting of all patients, except those scheduled in week 0 and including
the new patients arrived during week 0. In our experiments we adopted this “rolling
horizon” view and performed several optimization runs in order to obtain a complete
schedule for a sufficiently long period of time.

10.4 Experimental Results

We performed several experiments with the available data in order to find a
good combination of the parameters used in the model definition. We observed a
significant robustness in the choice of the penalty parameters, as quite similar results
are obtained even when significantly varying their orders of magnitude.
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Fig. 10.1 Delay statistics – number of patients vs delay (in weeks). (a) Delay statistics for the
whole dataset. (b) Delay statistics for class A patients. (c) Delay statistics for class B patients.
(d) Delay statistics for class C patients

In Fig. 10.1a–d we report a comparison between the “as-is” situation and the
results of the optimized schedules. In each of the figures on the horizontal axis we
report the delay (in weeks) with respect to the planned due date; in the vertical axis
we report the number of patients which, in the real situation and in the optimized
ones, were scheduled for surgery with a specific delay. The first of the figures reports
the histograms relative to the whole data set (with the exception of the last 4 weeks
which were not included in the statistics in order to eliminate some tail effect), while
the other three figures report similar plots for class A, B and C patients respectively.

In all figures we compare the results of the real schedules used in the hospital
with those obtained with our joint planning and scheduling algorithm as well as
the results obtained by means of a myopic scheduling strategy, obtained by simply
scheduling in the best possible way only a single week at a time, without any
consideration on the effect that this policy has on the planning of the following
weeks. It is quite immediate to see that both optimized schedule are more beneficial
than the actual system in use, as they strongly reduce the vast majority of delays.

Some delays reported (and some which are not reported, as they fall outside the
displayed range) are still quite large, but they are the consequence of the starting
state of the system, in which many patients, who already had accumulated very
large delays, where in the waiting list.

When comparing the myopic scheduling policy with the optimized planning &
scheduling one, the interpretation of the results require some interpretation. If we
look the overall picture, we see that with the pure scheduling approach a large
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number of additional patients can be scheduled for operation with no delay. The
following table reports the average delays (in weeks) obtained during the simulation
and compared with the real data. The results in the table are a consequence of the fact

Average delays Class A Class B Class C Total
Real 1.97 6.20 5.21 3.60
Pure scheduling 0.43 2.50 8.40 2.98
Planning+Scheduling 1.35 3.30 3.06 2.16

that, in giving weights to different delays in the objective function, we chose to use
the same penalties for all patients. Having the freedom to change these weights gives
the planner a lot of flexibility and, for example, augmenting the penalty for class A
patients will produce schedules in which more class A patients will be scheduled on
time, while not deteriorating the service provided to other patients in a significant
way.

This data confirms the fact that following the most urgent cases has a beneficial
effect on these ones at the expense of a severe worsening in the quality of service for
other patients, while taking into account planning improves the overall performance
while not deteriorating significantly the performance on class A patients.

The analysis of different choices of the weight on the resulting schedules is
outside the scope of this paper and will be the subject of a future publication.

Concerning resource consumption, even with all the restrictions already
described in the experimental settings, the results here obtained are based on
quite small constraint violations (i.e., with very small recourse to extra time). In
particular, the extra time observed in our simulation were only due to some extra
time requested to a few surgeons in just 6 days (in the 30 week scheduling horizon),
ranging from a 5 min extra time request to a maximum of 65 min. In the myopic
scheduling simulation, no extra time was required in the 30 weeks.

10.5 Conclusions

These were the first experiments performed in order to check whether the idea of
scheduling in the short time without disregarding the medium term consequences
was a practical and useful one. Although the situation analyzed is relatively simple
and the amount of scenarios analyzed quite limited, we are quite confident that
the approach has been proven to be useful. The capacity of scheduling with a
planning objective included into consideration helps in balancing the workload of
the surgery, anticipating non urgent surgeries in order to have more flexibility on the
future usage of precious resources. While the idea of “looking far” in the planning
horizon is not new, our proposal for a rolling horizon approach which takes into
account scheduling, planning as well as resource overuse is new in the surgical
operation literature. The model we used was an exact one and, as the number of
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OR’s and patients increases, it is sure that the time required to solve it, even within
a reasonable tolerance with respect to the optimum, will increase exponentially.
Thus it will become necessary to switch to an heuristic approach in order to be
able to solve real size scheduling and planning problems. However, the aim of this
paper was that of providing confidence on the correctness of the approach. We think
that this objective has been obtained and thus it is now reasonable to invest in the
implementation of a fast heuristic to be applied to large scale instances.
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Chapter 11
Risk-Aware Scheduling of Elective Surgeries

Gabriella Dellino, Carlo Meloni, and Marco Pranzo

Abstract This paper addresses Operating Room scheduling problems in elective
surgery. In particular, we study a model for determining the surgical schedule when
uncertainty on surgery duration is taken into account in order to consider and
evaluate the risk of overtime and the possible waste of operating time. Surgical
cases are selected from the waiting lists according to several parameters, including
surgery duration, waiting time and priority class of the operations. We apply the
proposed approach to the operating theatre of a public, medium-size hospital in
Italy, using Mathematical Programming formulations and Monte Carlo simulations,
assuring the scalability of the approach on larger hospitals.

11.1 Introduction

The operating theater (OT), consisting of several operating rooms (ORs), is one of
the most critical resources in a hospital because it has a strong impact on the quality
of health service and represents one of the main sources of costs (surgical teams,
equipment etc.). Given the patients’ waiting list and various information on OT
characteristics and status, OT planning problems consist in deciding the schedule
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of surgeries in a given time horizon, with the aim of optimizing several performance
measures such as OR utilization, throughput, surgeons’ overtime, lateness etc. [2,7–
9, 12].

Surgical cases are usually carried out in OR sessions, i.e., uninterrupted time
blocks (typically, half day or a full day). In the management policy usually referred
to as block scheduling, each OR session is devoted to a specific surgical discipline.
This organizational solution is often preferred, since performing the same discipline
in a given room during a given time span typically simplifies the physical handling
of equipment and/or materials. A more flexible solution is the open scheduling
policy [3], in which no pre-specified session-to-discipline assignment exists, so
two cases corresponding to different disciplines can be scheduled in the same OR
session. This paper focuses on the block scheduling policy. Thus, surgical planning
in operating theaters can be seen as involving three distinct decision steps:

(i) Deciding the surgical discipline that will be performed in each OR session;
(ii) Selecting elective surgeries to be performed in each OR session;

(iii) Sequencing surgeries within each OR session.

Problem (i) is often referred to as the Master Surgical Scheduling Problem
(MSSP), and returns the Master Surgical Schedule (MSS). Problem (ii) determines
the Surgical Case Assignment (SCA), and is therefore denoted as Surgical Case
Assignment Problem (SCAP). Problem (iii) outputs the detailed calendar of elective
surgeries for each session. Literature on all three above decision levels is wide and
growing, and it has thoroughly been reviewed by several researchers [1, 15, 16].

The three above decision problems have been addressed by a multiplicity of
approaches. Research focused on either all three levels concurrently, two of them,
or even single problems. Some approaches have been designed to fit specific issues
that may or may not be present in various real-life settings. In this paper we
focus on SCAP considering uncertain durations of surgeries. Our assumptions are
similar to those proposed by Agnetis et al. [1], who design a deterministic model
for MSSP and SCAP, on the basis of the current state of the waiting list. Their
approach consists in concurrently defining the MSS and the list of surgical cases
to be performed during each OR session over the planning horizon, whereas we
consider the MSS as given and focus our analysis on the SCAP.

The main contribution of this paper is to assess the risks of overtime and
possible waste of operating time in each operating session associated with an OR
plan obtained through a deterministic optimisation model. This analysis allows
to evaluate the impact of uncertainties in the surgical times when the solution
of the deterministic model is implemented. The role played by the variability in
surgery times in creating delays, resources waste and non-compliance in health
care is documented in the literature, but is often ignored in OR planning and
scheduling systems. Completely ignoring this kind of variability, i.e., using the
basic assumption of deterministic times, could be unrealistic and rather optimistic
from the start, generating schedules that promise more than can be delivered to both
customers and managers of the health care system [5, 6].
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The analysis conducted in this study yields two main advantages: it evaluates
the risk associated with a specific OR plan, and gives sufficient information
to take suitable decisions in the operational plan to limit risks and/or reduce
costs; e.g., using overtime or processing additional case surgeries. Based on these
considerations, the output of this analysis provides a more realistic view of a specific
OR plan performance. Moreover, it could suggest and justify some improvements in
the planning system to take into account the risks associated to the times variability
in the assignment process.

The remaining sections are organized as follows: Sect. 11.2 introduces the
addressed problem; Sect. 11.3 describes the setting adopted in our computational
experiments and reports on the results obtained. Section 11.4 draws some conclu-
sions, outlining perspectives for future research.

11.2 Problem Description

The aim of this work is to design a decision support tool for the risk assessment in
elective surgical planning. We assume that the MSS is given. The OT management
provided us with the MSS currently adopted by the hospital; therefore, only the
SCAP has to be solved. Note that, once a MSS is determined, it identifies which OR
sessions are assigned to each surgical discipline; so, a distinct SCAP can be solved
for each discipline independently from the others.

Following [1], we associate a score Kis to each surgical case i of discipline s,
defined as Kis = Pis(W −Ris), where Pis denotes the nominal surgery duration, W
corresponds to the maximum allowed waiting time for the least urgent surgeries (as
prescribed by regional regulations), and Ris is the slack time, i.e., days to the due
date. To assign elective surgeries to OR sessions, we maximize the score associated
to the selected surgeries, accounting for their priority class as well as for their
duration. Let Qs be the number of OR sessions assigned to surgical discipline s
by the actual MSS, and Ths the duration of the h-th OR session of discipline s,
h = 1, . . . ,Qs. We introduce the binary decision variables xish such that xish = 1 if
the i-th surgery of discipline s is assigned to the h-th OR session of discipline s,
otherwise xish = 0. Then, the optimization problem can be formulated as follows:

max∑
s

∑
h

∑
i

Kis · xish (11.1)

∑
h

xish ≤ 1 ∀i,s (11.2)

∑
i

Pis · xish ≤ Ths ∀s,h (11.3)

xish ∈ {0,1} ∀i,s,h (11.4)

where constraint (11.2) guarantees that each surgery is performed at most once,
while constraint (11.3) sets a maximum duration for the surgical cases assigned to
the same OR session.
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When addressing this problem, the surgery duration is commonly supposed to
be deterministic and known in advance, based on estimates provided by surgeons:
in fact, for each surgical case in the waiting list, a nominal (i.e., fixed) duration
is specified (Pis). However, the whole surgical process is affected by uncertainty,
so different surgical durations can be observed in practice. This may result in
OR underutilization, if surgeries last less than expected, or overtime, if the actual
surgery duration is higher than planned; both cases lead to inefficiencies in the OT
management, and may significantly affect the patients’ service level. Therefore,
it is important to evaluate the risk associated to a deterministic planning. To this
aim, we propose a statistical analysis on the surgical records for each discipline.
More specifically, for each type of surgery appearing in the surgical records—coded
according to the classification of surgical procedures International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-9-CM, [11])—we collect the
actual duration of each surgical case over a period of 1 year; then, we fit a probability
distribution on these data and estimate its parameters.

In this way, for each surgical case, we associate a probability distribution to its
surgical duration. Then, we run Montecarlo simulations to derive several realiza-
tions of surgical durations for a given surgery. We now plug these alternative obser-
vations into the solution of the deterministic formulation (11.1)–(11.4) for SCAP, to
evaluate the possible variation of the makespan related to each filled OR session.

Evaluating the solution obtained by the deterministic planner on a set of alter-
native scenarios enable us to assess the related risk of overtime/underutilization of
each OR session. More specifically, once the SCA has been generated, this solution
is implemented in a number replicates of the instance under study taking into
account the possible surgery times variability. The results of this simulation enables
to conduct a probabilistic analysis to estimate the distribution of the makespan of
the OR sessions associated with the specific SCA solution. This analysis allows
the decision maker to evaluate specific risk measures including the probability of
meeting specific targets on the SCA performance.

11.3 Computational Experiments

This section describes the computational experiments that we ran for the OT of a
medium-size Italian hospital in Tuscany. We first present our experimental setting
(Sect. 11.3.1); then, we discuss the results obtained.

11.3.1 Experimental Setting

The hospital’s OT performs elective surgeries for the following disciplines: general
surgery, paediatric surgery, otolaryngology, urology and gynaecology. For the sake
of brevity, our experiment focuses on a single surgical discipline; namely, general
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surgery. Nevertheless, since the SCAP can be solved separately for each discipline,
our risk assessment method is equally applicable to any surgical discipline, without
affecting the results obtained for the other disciplines.

Model (11.1)–(11.4) is solved using CPLEX 12.4 on a 1.8 GHz Intel Core i7
with 4 GB of RAM. Based on a preliminary experimental campaign, we truncate
the solver after 5 min of computation; the optimality gap w.r.t. the best solution
found is on average 0.7%. From a computational viewpoint, we work with 1-min
temporal grain and, compared to [1], we do not discretize time in 15-min time units.

The hospital provided us with the surgical records associated to 1,470 cases from
general surgery performed in the last months. Based on the MSS adopted by the
hospital, Qs = 13 OR sessions are assigned to general surgery (s = gs) in 1 week.
In particular, there are 10 full-day sessions, each lasting 10 h (so Ths = 600 min,
for h = 1, . . . ,10), 2 morning sessions, each lasting 6 h (i.e., Ths = 360 min, for
h = 11,12), and one afternoon session, lasting 4 h (i.e., Ths = 240 min, for h = 13).
From each OR session capacity we leave a planned buffer time for possible delays
and/or uncertainties affecting surgery duration: we considered two buffer time
values; namely, 0.1Ths and 0.2Ths (s = gs, h = 1, . . . ,13).

Several researches in the literature suggest that surgical duration usually follows
a lognormal distribution [13, 14, 17]; alternatively, it may follow a Weibull dis-
tribution [4, 5, 10]. For this reason, we selected these two families of probability
distributions in our tests: for each surgery type, we fitted both distributions to
our data, and identified their parameters (mean and standard deviation for the
lognormal distribution, scale and shape parameters for the Weibull distribution)
through Maximum Likelihood Estimation (MLE). Further, we used our data from
surgical records to estimate a truncation point cutting the right tail off: in fact,
using a truncated probability distribution appears reasonable, since surgical duration
higher than a given threshold will (almost) never occur. Validating both models
supported the hypothesis that surgical duration follows a lognormal distribution for
almost all surgical classes in general surgery.

We use information collected through our statistical fitting for quantifying risk
associated to the deterministic SCAP on a number of test instances. In particular,
we build M = 10 test instances by sampling (with replacement) N = 300 surgeries
from the historical data provided by the hospital. Each instance represents a possible
realization of the waiting list that can be given as input to solve the SCAP. Once a
deterministic solution is obtained, it is evaluated on stochastic surgical durations
sampled from the corresponding distribution; i.e., for each surgery included in
the SCAP solution, we replace its nominal duration by a set of (say) nt =
1,000 stochastic realizations extracted from the estimated probability distribution
associated to that surgical case. We repeat this procedure for each of the M test
instances.

Notice that, in general, surgical duration for each class can be characterized by a
different distribution. This would prevent us to identify a closed-form expression of
the distribution for the proposed risk assessment procedure.
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Fig. 11.1 Histogram of OR sessions occupancy rate for different buffer time values: 0.1Ths
(dashed curve) and 0.2Ths (solid curve)

11.3.2 Results

As discussed in Sect. 11.2, we ran our Montecarlo simulations to derive nt alterna-
tive scenarios of actual surgery duration for the SCAP deterministic solution. Based
on the simulation outcomes, we measured the occupancy rate of each OR session
in the M instances, w.r.t. the maximum capacity of each OR session. The results
obtained are summarised in Fig. 11.1.

Figure 11.1 shows the histogram plot associated to the OR sessions occupancy
rate, including both buffer time values. The vertical line at x = 100 corresponds
to full occupancy rate; lower values imply underutilization of ORs, while higher
values denote overtime. This plot provides an overview on OR utilization, including
all the M instances and for all the OR sessions. This figure, reporting aggregated
data, effectively describes the type of variability associated with the use of a
deterministic planner when surgical times are affected by uncertainty. Note that the
curve associated to a higher buffer time is shifted to the left w.r.t. the other curve,
showing higher exposure to OR underutilization. On the other hand, comparing
the two curves to the right of the vertical line, we note that overtime occurs more
frequently when the buffer time is smaller, thus underlining that such a buffer is
not big enough to deal with possible delays in surgery duration. When the risk of
overtime is very high, and the expected delays are significant, the OT management
may decide to postpone some surgical cases to the next working days. This would
help to save additional costs to the hospital and further inconvenience to patients,
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Fig. 11.2 Box plots on a sample test instance (# 1), with a buffer time of 0.1Ths

which would have resulted instead from a deterministic planning. The overall
behavior described may suggest the decision maker to intervene in different ways: to
adequately arrange overtime; to make ORs readily available when not in use, and to
adopt techniques to reduce the variability of surgical times [5,6]. On the other hand,
the scheduler may consider some changes to the models in use so that they can
take into account the variability of the surgical times. However, these observations
suggest a compromise between modeling improvements and the efforts dedicated to
reduce that variability.

A deeper look into a single instance (say, instance #1) is provided by Figs. 11.2
and 11.3. These two figures provides box plots of surgical duration (expressed in
minutes) for the Qs OR sessions allocated to s = gs; the former is based on a buffer
time of 0.1Ths, while the latter uses a buffer time of 0.2Ths. The tick horizontal lines
denote the capacity Ths of each OR session h = 1, . . . ,13.

These two figures show the information that the decision maker can use to
evaluate how to organize resources and activities within the surgical block. On
the basis of his/her aversion to overtime, the decision maker will be willing to
use a certain level of buffer time in the optimization model; this choice has direct
consequences on the possibility of OR underutilization.
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Fig. 11.3 Box plots on a sample test instance (# 1), with a buffer time of 0.2Ths

11.4 Conclusions

This paper is devoted to assess risks of overtime and possible waste of operating
time associated with an OR plan obtained through a deterministic model for the
SCAP. The proposed analysis allows to evaluate the impact of uncertainties in
surgery times when implementing the solution of the deterministic model. A critical
issue in applying our method relies on the availability of surgical records to provide
accurate estimations of the statistical distributions for surgical times. Moreover, a
careful preprocessing might be required, to manage possibly wrong or incomplete
data records. This approach is equally scalable to larger hospitals, whose OT size
may impact on the optimization methods adopted to solve the OR planning problem.

The output of the analysis suggests different actions to the decision maker,
mainly related to the following issues: overtime administration, management of
operating rooms become available throughout an OR session; methods to reduce
surgical times variability. Further, the analysis can motivate some changes in the
optimization models in order to exploit the variability of surgical times in the
planning phase.

The results of this study highlight the significant impact uncertainty has on OR
planning and scheduling, motivating the need for a decision support tool explicitly
accounting for stochastic components affecting the planning activity. A set of easy-
to-read indicators could be included to summarize the results in a compact and
effective way, thus facilitating OT management decisions. Future research directions
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will also cover risk assessment methods in OR planning, introducing adequate risk
indicators and identifying a trade-off between modeling improvements and efforts
dedicated to uncertainty management.
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Chapter 12
Investigating the Relationship Between
Resources Balancing and Robustness
in Master Surgical Scheduling

Carlo Banditori, Paola Cappanera, and Filippo Visintin

Abstract In this paper: (i) we present a MIP model to address the Master Surgical
Scheduling problem; (ii) we discuss the impact of different resources balancing
strategies upon the schedule’s efficiency and robustness. Each balancing strategy
is associated with a different objective function. The resources whose utilization is
balanced are the Operating Rooms and the post-surgical beds. The MIP model is
solved considering deterministic values for the surgical times and length of stays.
The schedule robustness against the variability of both these times is assessed via
discrete event simulation.

12.1 Introduction

The Operating Theatre (OT) is one of the most critical functional area in a hospital.
In fact, it drives most of the hospital admissions and it is responsible for most of
its costs [1]. Optimizing the OT operations, is therefore a primary concern for an
increasing number of hospitals. One of the most challenging problem that hospitals
need to face in this regard is the planning and scheduling of surgical activities.
Such a problem is usually solved in cascade, addressing three intertwined sub-
problems [2]: (i) the case mix planning, (ii) the master surgical scheduling (MSS)
and (iii) the patients scheduling. In this paper we focus on the MSS problem.
This problem consists, essentially, in: (i) determining the specialty (or specialties)
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to assign to each operating room (OR) and session in each day of the planning
cycle; and (ii) specifying the number and the typologies of surgeries that should be
performed in each OR/session [3]. Solving a MSS problem is, indeed, remarkably
complex. It requires, in fact, considering a wide set of issues (e.g. the expected
surgical times and the expected length of stay (LoS)), constraints (e.g. resources
availability, management of waiting lists), and the priorities, often conflicting, of
the stakeholders (management, patients, surgeons, staff). Ideally, a MSS should be:
efficient, robust and balanced.

Firstly, it should allow for obtaining a high patient throughput and high resource
utilization thus to increase revenues, contain costs, and reduce waiting times
(efficiency). Secondly, it should be easy to implement, i.e. the natural deviations
of surgical time and LoS from their expected values should not cause schedule
disruptions and, consequently, patients’ dissatisfaction (robustness). Finally, the
MSS should lead to a balanced distribution of the daily workload across the different
ORs. A balanced solution, in fact, determines a fair distribution of workload among
the OT staff (nurses, surgeons, etc.) and positively affects the employee satisfaction.
These objectives, however, can be conflicting. A higher efficiency, for example, can
lead to a lower robustness. When the resources utilization is very high, in fact, if a
surgery lasts more than its expected duration, surgical teams might be requested to
work overtime. Similarly, if a patient occupies a post-surgical bed (hereinafter bed)
for a number of days exceeding the expected LoS, there might be no available beds
to accommodate the patients scheduled for the following days, which could lead to
surgery cancellations and/or postponement.

In this study, starting from a Mixed Integer Programming (MIP) model we
developed in a previous work [4], we define new objective functions that allow
to obtain efficient, robust and well-balanced MSSs. The MSS robustness against
the surgical times and patients’ LoS is assessed via simulation. Optimization and
simulation models are then jointly used to investigate the relationships between
efficiency, robustness and balancing.

The remainder of the paper is organized as follows: in Sect. 12.2 we provide a
brief overview of the literature. In Sect. 12.3 we illustrate the main characteristics
of the MSS problem and the specific aspects we have addressed. In Sect. 12.4 we
describe both optimization and simulation models. In Sect. 12.5 we present the
preliminary results of the study and finally, in Sect. 12.6, we draw out conclusions
and outline the direction of our future research efforts.

12.2 Literature Review

The surgical scheduling problem has been the object of a relevant number of
contributions in recent years [5–7]. Such a problem has been modeled using
different mathematical techniques, mainly mathematical programming, and solved
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through exact or heuristic approaches considering different objective functions
[5, 6]. For example, Blake et al. [8] propose a MIP model to provide a MSS
where the undersupply of OR time to the surgical specialties with respect to fixed
target is minimized. Santibáñez et al. [9], instead, solve their MIP model using
different objective functions, specifically the minimization of the deviation among
scheduled and target throughput and the minimization of bed utilization (the latter
with the extent to balance such an utilization). Several studies, however, are based
on deterministic data. Other authors, instead, take into explicit consideration the
impact that the variability either of surgical time or LoS may have on the MSS
implementation. Specifically, Zhang et al. [10], Van Oostrum et al. [3] take into
account the variability of surgical time whereas Belien et al. [11] consider the
LoS variability. To the best of our knowledge, both sources of variability are
considered only in our previous work [4] where, however, the relationships among
efficiency, robustness and resource balancing are not investigated. With this paper
we specifically address this literature gap.

12.3 Problem Addressed

The problem we address in this study is characterized by the following features.
First, we consider three resources: (i) ORs, whose opening time is divided into

time slots; (ii) beds, which can be organized in different wards, each accommodating
different types of patients; (iii) surgical teams, whose availability is defined in
terms of time slots per week. Since scheduling a surgery requires the simultaneous
availability of an adequate amount of these three resources, we have categorized the
cases in the hospital waiting lists into surgery groups according with the required
surgical team, surgical time and LoS. Each surgery group, thus, includes all the
procedures requiring a surgical team of the same specialty and are characterized by
similar surgical time and LoS.

Second, we assume that the mix of scheduled surgeries, in terms of short/long
surgical time and/or LoS, i.e. the intensity care level, should reflect the one of
the waiting lists. By doing so we avoid leaving an excessive amount of resource
consuming and “complex” cases in the waiting list which would make the planning
process more difficult in the following periods.

Finally, the decisions we address concern:

1. The assignment of surgical specialties to ORs and time slots
2. The determination of the amount of procedures in each surgery group to be

scheduled in each time slot

with the aim to maximize the patient throughput, minimize the expected overtime
and cancellations, and balancing the daily workload of the ORs.
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12.4 Models Description

Here the optimization and the simulation models are described.

12.4.1 Optimization Model

In order to obtain efficient and robust solutions, the objective function of the
optimization model includes, besides a term for the throughput maximization, other
two terms that aim to level respectively the daily utilization of ORs and beds. The
rationale of these terms is that if the daily utilization profiles of the ORs and the
beds are nicely balanced there should be always enough idle resources to absorb
the unexpected peaks caused by the variability of surgical time and LoS [11]. Two
different balancing strategies are tested, giving rise to as many objective functions.

Let us define the following sets and parameters:

D The set of days of the planning horizon, indexed by d
D̃ The set of days in D in which ORs are open
W The set of weeks of the planning horizon, indexed by w
T The set of time slots, indexed by t
O The set of ORs, indexed by o
B The set of bed types, indexed by b
S The set of surgical specialties, indexed by s
K The set of surgery groups, indexed by k
G The set of intensity care levels, index by g
M A suitably big constant
Hodt The available time of OR o, on day d and time slot t
Fbd The number of beds of type b available on day d
Lsw The availability of surgical team s for week w, expressed in number

of time slots
sk The specialty of surgery group k
fk The bed type required by surgery group k
gk The intensity care level to which the surgery group k belongs
γk The average surgery duration of surgery group k
β k, αk The average numbers of days of hospitalization, before and after

surgery, required by surgery group k

Gg,Gg
The maximum and the minimum percentage of procedures with an
intensity care level g that can be scheduled

U ,U The upper and the lower threshold on the total ORs utilization
W1, W2, W3 The weights used in the objective functions.
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Then let us define the following variables:

xsodt Binary, 1 if specialty s is assigned to OR o on day d and time slot t, 0
otherwise

ykodt The number of procedures of surgery group k assigned to OR o on day d in
time slot t

Furthermore, let us define the following auxiliary variables:

zbd The number of beds of type b occupied on day d
uodt The utilization of OR o, on the day d and time slot t
vbd The utilization of beds of type b, on day d.

Using these variables and parameters, we can state the feasibility set as follows:

∑
s∈S

xsodt ≤ 1 ∀o ∈ O,∀d ∈ D̃,∀t ∈ T (12.1)

∑
o∈O

xsodt ≤ 1 ∀s ∈ S,∀d ∈ D̃,∀t ∈ T (12.2)

∑
k∈K:sk=s

ykodt ≤Mxsodt ∀s ∈ S,∀o ∈ O,∀d ∈ D̃,∀t ∈ T (12.3)

∑
k∈K

γkykodt ≤ Hodt ∀o ∈ O,∀d ∈ D̃,∀t ∈ T (12.4)

∑
k ∈ K : fk = b
o ∈ O, t ∈ T

min(|D|,d+βk)

∑
d′=max(1,d−αk)

ykod′t = zbd ∀b ∈ B,∀d ∈ D (12.5)

zbd ≤ Fdb ∀b ∈ B,∀d ∈ D (12.6)

∑
o∈O,t∈T

7w

∑
d=7w−6

xsodt ≤ Lsw ∀s ∈ S, ∀w ∈W (12.7)

G
g ∑

k ∈ K,o ∈ O
d ∈ D, t ∈ T

ykodt ≤ ∑
k ∈ K : gk = g

o ∈O,d ∈D, t ∈ T

ykodt ≤ Gg ∑
k ∈ K,o ∈O
d ∈D, t ∈ T

ykodt ∀g ∈G (12.8)

uodt =

∑
k∈K

γkykodt

Hodt
∀o ∈ O,∀d ∈ D̃,∀t ∈ T (12.9)

vbd =
zbd

Fdb
∀b ∈ B,∀d ∈ D̃ (12.10)

U ≤

∑
o ∈ O,d ∈ D̃,

t ∈ T

uodt

|O| ∣∣D̃∣∣ |T | ≤U (12.11)
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xsodt ∈ {0,1} ∀s ∈ S,∀o ∈ O,∀d ∈D,∀t ∈ T (12.12)

ykodt ∈ N ∀k ∈ K,∀o ∈ O,∀d ∈D,∀t ∈ T (12.13)

Two alternative objective functions are considered. For both of them specific
variables and constraints are defined. The first one (12.14) minimizes the maximum
ORs (u) and beds (v) daily utilizations, i.e.:

min W1u+W2v−W3 ∑
k ∈ K,o ∈ O
d ∈ D, t ∈ T

ykodt (12.14)

uodt ≤ u ∀o ∈ O,∀d ∈ D̃,∀t ∈ T (12.15)

vbd ≤ v ∀b ∈ B,∀d ∈ D̃ (12.16)

The second objective function (12.17) minimizes the gaps between the maximum
and the minimum values of ORs and beds daily utilizations: as before, u and
v represent the maximum daily utilizations of ORs and beds, whereas u and v
represent the minimum values of such utilizations.

min W1
(
u− u

)
+W2

(
v− v

)
−W3 ∑

k ∈ K,o ∈ O
d ∈ D, t ∈ T

ykodt (12.17)

u≤ uodt ≤ u ∀o ∈ O,∀d ∈ D̃,∀t ∈ T (12.18)

v≤ vbd ≤ v ∀b ∈ B,∀d ∈ D̃ (12.19)

Both the objective functions are composed of three terms, whose relative
importance can be set by means of weights. The first and the second term of both
the objective functions are the balancing terms. The former acts on ORs utilizations
while the latter on beds’ ones. The third term of both the objective functions
maximizes the number of scheduled cases.

In order to make a fair comparison between the strategies and to avoid trivial
solutions (if W3 <<W1 and W3 <<W2), the average ORs utilization over the
planning horizon is bound in a range (12.11).

A brief description of the constraints follows. Constraints (12.1) guarantee that
at most one surgical specialty can be assigned to a given OR in each time slot of the
planning horizon. Constraints (12.2) assure that in each time slot a given specialty
cannot occupy more than one OR. Constraints (12.3) bind together assignment (x)
and scheduling variables (y). Constraints (12.4) state that the total time consumed
by all the procedures scheduled in a given OR, in each time slot, cannot exceed the
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available OR time. Constraints (12.5) and (12.6) respectively compute the number of
beds of each type occupied in each day and limit it to the bed availability. Constraints
(12.7) control the surgical teams availability in each week. Constraints (12.8) are the
mix constraints with respect to the intensity care level and control that for each level
the number of scheduled procedures falls inside the pre-defined range. Constraints
(12.9) and (12.10) compute the utilization factor respectively of each OR in each
time slot and of each bed type in each day over the planning horizon. Constraints
(12.12) and (12.13) define the bound on the variables. Constraints (12.15) and
(12.16), that are considered when the objective function (12.14) is used, compute
the maximum values of daily utilization of OR and beds. Finally Constraints (12.18)
and (12.19), that are instead considered when the objective function (12.17) is used,
compute both the maximum and the minimum values of daily utilization of OR
and beds.

12.4.2 Simulation Model

As pointed out in Sect. 12.1, the effectiveness of the two strategies in terms of
robustness is assessed via simulation. Specifically, we have used a discrete-event
simulation model that works as follows: the model reads the schedule produced
in the optimization phase, generates a number of entities equal to the number of
surgeries planned for the planning horizon and links each entity with its surgery
group. Hence, for each simulated day a number of entities equal to those planned
for the day enter in the system. These entities seize the ORs and beds they have been
assigned in the MSS, and release them after a time that is randomly sampled from
the empirical distributions of surgical time and LoS associated with their surgical
group. The model, thus, keeps track of the actual duration of the surgical sessions
and of the number of occupied beds, as well as of the overtime and overbooking that
may occur.

12.5 Computational Results

In this section we present the preliminary results of our study. The section is
organized in three subsections. In the first one we give a brief description of the
assumptions and the data considered in this experimental campaign. In the second
and third subsection we show, respectively, the results of the optimization and
of the simulation study. The optimization model has been coded in AMPL and
solved through the IBM ILOG CPLEX solver (version 12.4). For all the analyzed
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scenarios we have bounded the computational time to 30 min; solutions of very
good quality are always obtained within such a time limit. The simulation model,
instead, has been created with Rockwell Arena (version 13.9) and integrated with
AMPL via VBA.

12.5.1 Input Data

The experimental campaign presented upon here is based on real data coming from
one leading Italian hospital. In particular, we have considered:

• Elective surgery;
• A planning horizon of 14 days (2 weeks);
• Daily surgical sessions, i.e. one time slot in each day;
• 12 surgical specialties and 39 surgery groups;
• 4 interchangeable ORs and 47 beds;
• For each OR, a daily opening time equal to 690 min for 5 days per week;
• A percentage of low care intensity surgeries in the waiting list ranging from 30%

to 40%;

Referring to this latter point, we have considered as low care intensity surgeries
the so-called day surgeries, i.e. those surgeries for which the patients occupy a bed
only for one day (the one they undergo a surgical procedure).

The weights in the objective functions are hierarchically set. Specifically, in
order to obtain robust solutions the balancing terms are prioritized with respect
to the throughput maximization term. Furthermore, since overbooking is more
undesirable then overtime, balancing beds’ daily utilization is prioritized with
respect to balancing ORs daily utilization. Hence we have that W2>>W1>>W3.

12.5.2 Optimization results

The performance of the two objective functions has been tested in correspondence
with different OT workload. Specifically, through constraints (12.11), we have
considered five different OR utilization ranges (70–75%, 75–80%, 80–85%, 85–
90%, 90–95%) giving rise to 5×2= 10 different scenarios. For each scenario
we report (Table 12.1) the number of scheduled surgeries (N), the percentage of
scheduled low care intensity surgeries (%LC) as well as the mean values of the
surgical time (ST) and LoS (LOS) of the surgeries scheduled in the MSS. Finally
we report the values of the mean (M), the standard deviation (Sd), the maximum
(Max) and the range (Rng), calculated across the 10 working days, of both the ORs
and beds daily utilizations.
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As can be observed:

• For each scenario the daily beds utilizations are perfectly balanced
(Sd(Beds)= 0); however, in correspondence with the same OT workload, the
Max(Beds) values obtained with the min(max) strategy are lower than the ones
obtained with the min(range) one;

• ORs are less balanced (Sd(ORs)> 0) than beds. In correspondence with each
OT workload the min(range) strategy performs better than the min(max) one.
Moreover the former strategy leads to lower maximum values of daily ORs
utilization than the latter one. This fact can be justified as follows: the min(range)
objective function assumes the minimum daily range value (Rng(Beds)= 0) in
correspondence with different level of beds mean utilization. Therefore the solver
is free to choose the solution that minimizes the daily range of ORs utilization.
With the min(max) strategy, instead, the solution that minimizes the maximum
daily bed utilization is clearly more penalized with respect to the ORs balancing,
making substantially useless the effects of the second term;

• For each strategy, the higher the OT workload, the higher the number of
scheduled surgeries. However, among the two strategies, the min(range) one
seems to be the most efficient. This can be due to the fact that the min(max)
strategy, in order to keep low the maximum daily bed utilization, chooses
surgeries characterized by an higher surgical time (LOS is essentially bound by
the constraint (12.8)), causing a lower efficiency.

12.5.3 Simulation Results

In this section we show the results of the simulation study. For each scenario we have
performed |I|= 30 simulation runs and recorded the overtime and the overbooking.
Overtime occurs when the difference between the duration of the surgical session
in a OR and its available time is positive. Similarly, overbooking occurs when the
number of hospitalized patients on a given day exceeds the number of available
beds. For both overtime and overbooking we have calculated the mean values over
the 30 replications as follows:

M(OV T ) =

∑
o ∈ O,d ∈ D̃
t ∈ T, i ∈ I

max
(

0; ∑
k∈K

γ̂kiykodt −Hodt

)

|O| ∣∣D̃∣∣ |T | |I|

M(OVB) =

∑
b ∈ B,d ∈ D̃

i ∈ I

max(0; ẑbdi−Fbd)

|B|∣∣D̃∣∣ |I|
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with i indicating the i-th replication, γ̂ki the value assumed in the i-th replication
by the surgical time of the case belonging to surgical group k and ẑbdi the value
assumed in the i-th replication by the number of hospitalized patients in beds
of type b, on day d. To assess the schedule robustness we have calculated the
mean and the max values of both the overtime and the overbooking. The mean
values (M(OVT), M(OVB)) allow us to understand the mean difference between
the available resources and those actually needed to implement the MSS. The max
values (Max(OVT), Max(OVB)), instead allow us to understand what happened in
the worst case scenario. This latter information is very relevant as well. Extremely
high overtime values, in fact, may be unacceptable for the OT staff and, in case
of day surgery, make impossible to dismiss the last patients before the end of the
day. In the same way extremely large overbooking would determine a number
of cancellations which could seriously hamper patients satisfaction. In Table 12.2
we report the mean (M), the standard error of the mean (SEM), the third quartile
(Q3) and maximum (Max) for OVT and OVB. Even if not explicitly reported in
Table 12.2 we have performed several independent t-test to compare the mean values
of the different indicators across scenarios. For the most relevant tests hereafter we
show both the p-value (p) and the effect size (r).

Looking at Table 12.2, it is possible to notice that for each OT workload level,
min(range) strategy has obtained a M(OVT) value that is significantly lower than
the value achieved with the min(max) one (p< 0.05); in addition the r is always
higher than 0.51, which indicates a fairly large effect [12]. Similar considerations
can be made for the Max(OVT) value, except for the scenario 10 where Max(OVT)
for min(range) is higher than for min(max). This fact however, is certainly due to an
exceptionally large value of the surgical time characterizing the scenario 10 worst
case. Indeed, if we compare Q3(OVT) of scenario 5 and 10 we can notice that the
former is bigger than the latter. With regard to the overbooking, instead, min(range)
strategy has obtained M(OVB) values that are significantly higher than the values
achieved with the min(max) one (p <0.05 and r > 0.31), in correspondence with
each OT workload level; similar considerations can be made for Q3(OVB) and
Max(OVB) values.

Instead, by comparing the results of optimization (Table 12.1) and simulation
(Table 12.2), it is possible to observe that:

• The minimum values of Max(OVT), M(OVT) and Q3(OVT) are obtained in cor-
respondence with the scenarios in which the Max(ORs) is minimum (scenarios
1, 6, 7, 8). In addition when Max(ORs) exceeds a threshold value (approximately
80%), M(OVT) becomes significantly higher than 0 (p< 0.05 and r > 0.8) and
tends to grow with Max(ORs). However similar values of M(OVT) are obtained
in scenarios characterized by different Max(ORs), Rng(ORs) and Sd(ORS), e.g.
scenarios 3 and 9 (p> 0.5). This might be due to the fact that if all of the ORs are
close to their maximum utilization (low Rng(ORs) and Sd(ORs)), the resulting
overall overtime will be probably greater than the case in which some ORs are
empty (high Rng(ORs) and Sd(ORs)), even if the maximum utilization is higher
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than in the first case. Finally, it seems there is no clear relationship between
the OVT and number of scheduled surgeries nor between the OVT and the bed
utilization.

• There is a relationship between OVB and beds utilization. For each sce-
nario, in fact, the higher the bed utilization (M(Beds)=Max(Beds)), the higher
M(OVB) and Max(OVB). However, if M(Beds) is smaller than a threshold
value (approximately 80%), then, there is not overbooking i.e., M(OVB)= 0
(p <0.05 and r > 0.31) and Max(OVB)= 0. In addition, the higher the number
of scheduled surgeries, the higher M(OVB) and Max(OVB). Nonetheless, if the
number of scheduled surgeries is smaller than a threshold value (around 270)
no overbooking occurs. On the contrary, it seems that there are no relationships
between overbooking and ORs utilization.

12.6 Conclusions and Future Research

In this paper we have presented the preliminary results of a study aiming at
investigating the relationships among efficiency, balancing and the robustness for
the MSS problem.

In particular we have analyzed the MSSs produced by a MIP model in correspon-
dence with two different objective functions: min(max), min(range). Each objective
function incorporates a different strategy to balance the daily utilizations of two key
resources: beds and ORs. In particular min(max), minimizes the maximum daily
utilization value, while min(range), minimizes the difference between the maximum
and the minimum daily utilization values. The obtained schedules, characterized by
different efficiency and balancing levels, have been then simulated. The simulation
allowed us to compute the overtime and overbooking associated with each schedule
and to assess the relevant robustness. Specifically, the min(range) strategy seems to
be the most efficient, i.e. for each OT workload level it schedules more surgeries
than the min(max) one. In fact, although both strategies lead to a perfect beds daily
utilization balancing, the mean bed utilization for min(range) strategy is higher
than for min(max) one. Min(range) leads to a better ORs utilization balancing: its
maximum values and ranges are lower than the one obtained with the min(max)
strategy. Simulation has then revealed that min(max) strategy produces more robust
schedules with respect to overbooking. On the contrary the min(range) strategy
guarantees a more balanced workload between the different ORs and more robust
solutions with respect to overtime. We can thus conclude that to obtain robust
solutions it is better to focus on keeping low the maximum daily values of the
resources utilizations rather than trying to reduce the gap between their maximum
and minimum values. Instead, reducing the utilization range, is essential to obtain
a balanced ORs workload. Unfortunately, in this study we have not obtained both
these positive effects. For these reasons our future research efforts will be focused on
testing objective functions (i) incorporating different balancing strategies for the two
considered resources and (ii) investigating different weight (W1, W2, W3) settings.
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Chapter 13
Expert’s Evaluation of Innovative Surgical
Instrument and Operative Procedure
Using Haptic Interface in Virtual Reality

G. Thomann, D.M. Pan Nguyen, and J. Tonetti

Abstract In the domain of designing innovative products in the medical field,
investigations are often oriented towards communication between actors and needs
comprehension. In the DESTIN (DEsign of Surgical/Technological INnovation)
project, User Centered Design methodology with concrete experiments is applied.
Researchers propose experimentation in operating room for innovative products and
new adapted surgical procedures co-evaluation. In this paper, they intend to evaluate
the usage of the product in a virtual environment using a 3D haptic feedback system.
Researchers not only propose a better ergonomic situation of the physician in front
of the operating screen, but also increase the performance of the simulator in order
to allow the manipulation of the innovative surgical instrument developed. We used
virtual reality environment and the manufactured prototype with the aim to validate
the new surgical procedure and the innovative designed surgical instrument.

13.1 Research Context

The development of new technologies in medicine can significantly improve the
effectiveness. On the contrary, the use of more complex systems tends to make
the practice of medicine more difficult. In particular, this complexity reinforces
the importance of preoperative planning and postoperative monitoring. New tech-
nologies in informatics and virtual reality allow physicians to better interpret the
enormous amount of information that is provided by the imaging systems or therapy
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systems [1]. Specifically, virtual reality allows better understanding, better planning
and better work through visualization of three-dimensional images of anatomy and
pathology. In addition, virtual reality can help the practitioner through the stages of
diagnosis, therapy, and postoperative monitoring.

The main aim of DESTIN project (Design of Surgical-Technological INnovation)
is to propose a new process approach focused on this specific context: How to
create a new operative surgical procedure and coupled with an innovative surgical
instrument when a new medical approach is imagined?

The specific surgical application we are working on addresses thoraco-lumbar
fracture. The current “classical” procedure is carried out with the patient in the prone
position under general anesthesia. The surgeon performs a posterior open approach
through a 15 cm large incision. The posterior vertebral arch is exposed. Pedicle
screw entry points are chosen by direct visual control and they are fixed to the
vertebrae. Rods are placed to connect the pedicle screws together. Prone placement
added with rod-screw connection provides reduction of the trauma deformity and
durable stability Thus, vertebrae are preventing from moving while bone healing
and graft fusion takes place.

The new surgical procedure proposed by the surgeon consists in inserted the rod
inside the pedicular screws in MIS (Minimally-Invasive Surgery). Thus, new little
incisions should allow the insertion of the rod in the three pedicle screws.

In this context, researchers, designers and the medical staff regularly work in
the real operating room. This work was very effective but time consuming. It
necessitates heavy organization and management (mainly in the hospital), creation
of mannequins, manufacturing of many prototypes, etc.

To facilitate this organization by maintaining the essential experimental aspects,
we create a CATIA CAD model of the virtual operating room. It integrates
patient, medical equipment and surgical instruments. In this virtual environment,
the surgeon has to manipulate the virtual surgical instrument on the virtual patient’s
spine (the spine has been modeled in a compatible format as the CATIA environment
and integrated in a mannequin placed on the operative table). The goal of this
exercise is to provide information to the designers for the validation of the innovative
surgical instruments during the design process. At the same time, it also allows
surgeons to perform the operative procedures with haptic feedback as in the real
operative case.

The difficulties in this research concern the ability to sufficiently represent
the virtual environment for the co-validation of the medical procedure and the
innovative surgical instrument.

Supposing that surgeons can manipulate the virtual innovative surgical instru-
ment using a 3D-Haption© haptic system in the virtual operating room, the research
questions can be summarized as follow:

– How to modify the configuration of the virtual reality room and the physical
interface for a better immersion of the physician in the virtual environment?

– Which are the optimal dimensions of the virtual surgical instruments for a better
manipulation feedback using the 3D-Haption© haptic system?
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To answer these questions, this research methodology is proposed:

– Research some ergonomic references in the surgery domain and compare them
to our virtual reality room organization,

– Secondly design and link a new physical interface to the arm of the 3D-Haption©
haptic system,

– Modify the virtual model and to compare the surgical intervention feedback with
the real one.

In this article, we firstly present the User Centered Design methodology we use
during our study. Then we focus on the virtual reality and ergonomic applications
and research in the surgical field. This first step allows us to analyze the general
situation in the world. From this work, we propose modifications and adaptations of
our current virtual operating room and 3D-Haption© haptic system user interface.

Next, we present the first results of the manipulation in virtual environment and
conclusions concerning its efficiency related to the situation in real situation.

13.2 User Centered Design

User Centred Design (UCD) is considered as one of the cornerstones theories about
user involvement. UCD, as a design approach, was first time introduced in NF EN
ISO 9241-210: Human-Centred Design Processes for Interactive Systems [2]. The
main issue is how to involve, integrate and consider the end-user and its require-
ments throughout the product design process. This ISO 13407 model proposes
technical points the project must encompass to be considered as human centred:
1 – a certain knowledge of the end-users: their tasks and of their environment – 2 –
an active participation of these end-users, the clear understanding of their needs and
the requirements linked with the tasks – 3 – an appropriate distribution of the end-
users/technological functions – 4 – an iterative design solution – 5 – the intervention
of a multidisciplinary designing team. This is necessary to better interpret the end-
user, its knowledge and how-know: human factors, information architecture, design,
quality, marketing, etc.

The UCD cycle is decomposed into six main steps (Fig. 13.1). It is an iterative
cycle (step 2–5) which ends when the system answers the end-user requirement
(step 6).

To better understand this UCD design steps, Jokela et al. propose another
interpretation of this NF EN ISO 9241-210 UCD Process. They explain more
concretely how it can be applied on a project and suggest a new UCD process model
[3]. Another important issue in UCD is how identifying and selecting relevant end-
users in the development work. In practice it is commonly possible to involve only a
limited number of users, and therefore it is very important to define criteria in order
to select the most “representative users” to centre the design on their requirements
and expectations.
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Fig. 13.1 The six steps of the UCD cycle

13.3 Virtual Reality, Ergonomics and Their Application
in Surgical Field

13.3.1 Virtual Reality and Application to the Surgical Field

Virtual Reality (VR) is an interactive immersive data-processing simulation in real
or imaginary environments. Currently, the technology of VR was applied in many
different fields such as: formation by simulator (driving vehicles, aerospace), design
of products, the simulation of surgery, meteorology . . .

In the surgical field, the laparoscopy is a procedure which requires surgeons to
observe the surgical intervention on a monitor and requires acquisitions of new
competences. This Minimally Invasive Surgery (MIS) differs from the open surgery
by the fact that the surgeon operates through small incisions and uses specific
instruments as scalpel, grips, nets, etc. [4]. In spite of its many advantages (faster
recovery of the patients, less damage with healthy tissues and smaller scars, less
pain and less need for drugs), the MIS requires a long time training eyes-hands
coordination.

Researches developing the haptic control feedback device can be found in [5–7].
To follow the user intentional movements, by interaction between hand and device,
high powerful haptic devices must be able to produce force feedback. Consequently,
it is essential to closely examine the human touched and the constraints of
application during the construction of these devices. A haptic interface with 4
degrees of freedom of freedom was designed by Guiatni et al. to compare it with
devices commercially available [4]. This device has the capacity to offer force
feedback in all the degrees of freedom available during the MIS procedure.
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In our case, researchers, designers and physicians work together on the develop-
ment of a virtual environment to simulate a MIS operation on the spinal column.
The goal is to create a complete virtual surgical environment integrated surgical
instruments, haptic feedback, the operating room and the necessary parts of the
anatomy.

13.3.2 Ergonomics in the Surgical Field

Ergonomics is based on design models of machines and tools that optimize the
performance of users. In our case, the aim of ergonomics consists on improving
the simulation conditions in virtual reality surgery environment: creating a better
immersion for surgeons by finding the factors that influenced its comfort during
operations in the operating room. For example the optimum ergonomic position of
the monitor was defined according to various sources in the literature [8–11]. The
monitor was at a distance of 0.6 m apart from the subjects’ eyes. The monitor height
(from the middle of the screen to the ground) was between the operating surface
and eyelevel height, and the monitor was inclined (to a maximum of 15◦) as by
the subjects. Moreover the optimal operating surface height was 80% of the elbow
height and the table was positioned in 20◦ tilt. [12].

In Gurvinder Kaur [13], researcher conducted a test to find the height of the
ergonomics table in the minimally invasive surgery. In this study, the height of
the table has an effect on the upper joint movements of the shoulders, arms and
wrist during laparoscopy. Table height should vary from 65 to 90 cm from the floor.
The surgeon should be able to adjust the table corresponding to his/her height in
order to bring upper joint movements to the minimum position with the resultant
less discomfort in the shoulder, back elbow and the wrist. After analyzing the ratio
between the surgeon’s height with the height of the operating table, it was assumed
that the height of the operating table should be calculated as follows:

Table Height = Surgeon’s Height × 0.49

The ideal posture for the MIS is supposed in the literature [14] and [15]. The arms
are slightly removed, retroversion, and turned inward at the level of the shoulder
(abduction <30◦). The elbows are bent at about 90–120◦ of flexion. This position
leads to the maximum force to be applied for a maximum duration. The head is
slightly bent with an angle of between 15 and 45◦.

Through this study literature, we find that the virtual reality technology plays
an important role in many areas. In particular, the applications of VR technique
in surgical simulation have been developed to provide better and better ergonomic
solutions which satisfy users. Through these studies, we can better consider the
virtual reality room and design the components that give a better immersion for the
surgeons. Thus, we can improve the ergonomics in surgical simulation by changing
haptic interface, the position of the surgeon and his posture.
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13.4 Related Works

13.4.1 The Human Machine Interface

The practitioner manipulated the haptic arm using the 3D-prining machine handle
(Fig. 13.2). The position of the physician was not comparable to the real operating
room environment and the conditions of experimentation not ideal:

– The surgeon was not in front of the screen and the posture position not
comfortable.

– The 3D-printing handle material was different than the final product’s one.

Moreover, the idea is to use the same surgical instrument on mannequin in
operating room and during the simulation.

Through ergonomics studies, we can better consider the virtual reality room and
design the components that can make a better immersion of the practitioner.

13.4.2 The Surgeon Posture and Position

To perform the simulation with haptic sensation as in real surgical environment, we
adapted and modified the haptic interfaces as well as the position of surgeon:

– Setting the table height corresponding to the surgeon’s height. We chose table
height is equal to 0.49 of surgeon’s height [14]. Notice that it is now possible to
adjust at real time the position of table?

Fig. 13.2 Picture of the 3D-prining machine handle at the end of the haptic arm
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Fig. 13.3 The instrument tightened by the piece is tied to the haptic arm

– Adjusting the distance between the screen and the surgeon’s position. Normally,
this distance is 0.60 m, but with the giant screen in Virtual Reality room at our
laboratory; we chose the distance of 1.5 m.

Changing position as well as the posture of the surgeon: the surgery is always
in front of the screen. We improve ergonomics in surgery simulation by changing
haptic interfaces handle. In order that the surgeon can use the haptic arm in the
operating simulation as in reality, we thought to create an intermediate mechanical
piece to hang the surgical instrument prototype (Protige) at the end of the haptic
arm. The objectives of this adaptation are to give the surgeon a real sensation when
holding the real instrument Protige and then to carry it in a direction parallel to the
spine’s main axis.

Before the mechanic piece was fabricated, we carried out a numerical simulation
to ensure the strength, deformation and constraints of the piece to work properly
when it tightened the surgical instrument .We divided the simulation into two cases:

– Test the strength of the piece under the Protige’s effort when the simulator is
running maximum the instrument.

– Test the tightness of the piece under the load of the screws so it could tight well
Protige.

The intermediate piece of aluminum has been made at our workshop by
Numerical Control of Machine Tools (Fig. 13.3). We observe the 90◦ modification
orientation compared to the previous 3D-prining machine handle (Fig. 13.2).
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Fig. 13.4 The translation of Protige parallel with the spine position

13.4.3 Testing the Haptic Sensation During the Insertion
of the Rod Inside Screws’ Holes

Concerning the simulations, the previous virtual surgical instruments dimensions
never allows the insertion of the rod inside the pedicle screws head. The main
objective of this activity is to find optimal dimensions of the virtual surgical
instruments and verify the friction sensation when inserting the rod into the holes
of the pedicle screws head. Using a simplified virtual model, we test different
manipulation situations (Fig. 13.4): changing screws holes diameters and rod
diameters. We modified the diameter of the pedicle screw hole from 6 to 9 mm.
We also used different rod diameters: from 4 to 6 mm.

To simplify the simulation with many different cases, we use a simple model of
the spine. Of course, the positional parameters between screws and spine are similar
than in MIS procedure.

We ran several simulations with different views (“multiple views” on IFC CATIA
software). So we set up a kind of viewpoints allowing the surgeon to use more
isometric views, each vignette characterizing a different spatial view.

User moves the virtual instrument over the screws and we set the test duration up
to 1 min to validate the feasibility of the procedure phase. Five trials are conducted
for each case. The experimental duration for each case were taken in order to
determine the levels of difficulty in inserting the rod into the holes. A test was
considered successful if the positioning time of the rod through the holes did not
exceed 1 min. We got the test results with different cases (see an extraction of the
results in Table 13.1). Simulation is recorded by video to analyze the results as well
as confirmation of results.

We have tested a maximum of the possible experimental conditions. Depending
of the trauma cases, the physician has to use two or more screws inside the body.
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Table 13.1 Results of the trials (in duration time)

Rod diameter Duration of the trials (s) Mean Duration of the trials (s) Mean
(mm) Screws’ hole: 8 mm (s) Screws’ hole: 9 mm (s)

4 8 7 6 4 10 7 12 8 7 4 7 7,6
4,5 60 50 120 90 60 76 5 7 8 8 9 7,4
5 Not possible 5 8 9 8 7 7,4
5,5 Not possible 10 8 8 11 9 9,2

Table 13.2 Conclusion for one specific configuration: extraction from the complete
table. Hole of the screws: 8 mm/diameter of the rod 4 and 4.5 mm

Number of screws Duration of the trials (s)

Rod diameter (mm) 1 2 3 1 2 3 4 5 Mean (5)

4 OK OK OK 8 7 6 4 10 7
4.5 diff. imp. imp. 60 90 120 50 60 76

We asked the user to test the virtual insertion of the rod in 1, 2 and 3 screws. An
extraction of the complete results is presented in Table 13.2.

“OK” means that the corresponding experiment is working well. For example,
inserting a 4 mm diameter rod through 3 pedicle screws’ holes of 8 mm takes less
than 10 s. Inserting a 4.5 mm diameter rod through one pedicle screw hole of 8 mm
takes more than 1 min. We qualified this situation as difficult (diff.). Finally, it is
impossible (imp.) for the user to insert the 4.5 mm diameter rod through two or
more pedicle screw holes of 8 mm.

The complete experiment shows that the 9 mm pedicle screws’ holes always
allow the insertion of the rod from 4 to 5.5 mm. For the 8 mm pedicle screws’
holes, they are compatible only with the 4 mm rod diameter (insertion through 3
screws) and 4.5 mm rod diameter (insertion through 1 screw). One of the reasons
that prevent this insertion is the precision of the collision detection between parts
using the IFC CATIA software coupled with the haptic device. It doesn’t allow the
relative movements between rode and holes even if the rod’s diameter is smaller than
screws’ holes. Moreover, the durations of the trials depend of the user’s experience.

13.5 Conclusion

In this study, we not only propose a better ergonomic situation of the physician
in front of the operating screen, but also increase the calibration of the simulator in
order to allow the manipulation of the real innovative surgical instrument developed.

We used virtual reality environment and the manufactured prototype with the
aim to validate the new surgical procedure and the innovative designed surgical
instrument. For that, an adaptation piece has been designed, manufactured and
manipulated. This adaptation has really increased the real sensation of the user in
front of the virtual reality screen.
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Moreover, the disposition of the experimental room and the user has evolved.
The modification of the model and the different trials with different users allow
researchers to find parameters which influence the quality of physical sensation.
This activity will allow

– Designers to propose tools and models more realistic for effective simulations
during the design process. In consequences, design choices can be more precise.

– Physicians to quickly evaluate and validate an adapted operative procedure.

These experiments with users and researchers give us some qualitative results.
The next step will be the evaluation of the complete virtual environment (with
different dimensional models) with numerous expert surgeons to:

– Validate the design of the surgical instrument.
– Quantify the sensations of the experts.

The surgical instruments developed are generally composed of multiple mobile
parts. One of the future objectives will be to work on the possibility to manipulate
all the parts of the product in virtual reality. This objective imposes the integration
of multiple cameras and markers in the experimental room.
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Chapter 14
A Robust Optimization Approach
for the Operating Room Planning Problem
with Uncertain Surgery Duration

Bernardetta Addis, Giuliana Carello, and Elena Tànfani

Abstract This paper deals with the Surgical Case Assignment Problem (SCAP)
taking into account the variability pertaining patient surgery duration. In particular,
given a surgery waiting list, a set of Operating Room (OR) blocks and a planning
horizon, the decision herein addressed is to determine the subset of patients to be
scheduled in the considered time horizon and their assignment to the available OR
block times. The aim is to minimize a penalty associated to waiting time, urgency
and tardiness of patients. We propose a robust optimization approach for the SCAP
with uncertain surgery duration, which allows to exploit the potentialities of a
mathematical programming model without the necessity of generating scenarios.
Tests on a set of real-based instances are carried on in order to evaluate the
solutions obtained solving different versions of the problem. Besides the value of
the penalty objective function, the solution quality is also evaluated with regards
to the number of patients operated and their tardiness. Furthermore, assuming
lognormal distribution for the surgery times, we use a set of randomly generated
scenarios in order to assess the performance of the proposed solutions in terms of
OR utilization rate and number of cancelled patients.
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14.1 Introduction and Related Work

In the last decades the increase of hospital costs have led health care managers to
improve hospital organization, by optimizing resources and increasing operational
efficiency. The crucial role that surgery departments play within hospitals has
been raising an increasing number of research studies aimed at planning Operating
Room (OR) activities. This is due both to the significant costs of development and
management of surgical facilities and to the impact that surgical activities have on
the demand for hospital services and on waiting times [14]. Exhaustive literature
reviews on operating room planning and scheduling are reported in [2] and [6],
where the authors analyze in detail different topics related to the problem settings
and summarize significant trends in research and possible areas for future research.

In this paper we deal with the OR planning problem assuming a block scheduling,
also known as closed block planning approach. This means that, in a given planning
period, each specialty receives a number of OR blocks (usually half-day or full day
length), in which it schedules its surgical cases [17]. Note that the OR planning
and scheduling problem, within the framework of a block scheduling approach,
can be viewed as made up of three phases/sub-problems related to three different
levels of decisions [14]. In the first phase, the number, type and opening hours of
the available ORs, as well as the OR capacity assignment among surgical groups
or specialties are determined at a strategic level. Then, a cyclic timetable, denoted
“Master Surgical Schedule” (MSS), is constructed on a medium term stand point to
define the tactical assignment of specialties to days and ORs. The MSS must then be
updated whenever the total amount of OR time assigned to each specialty changes.
The last phase, which may be called operational “surgery process scheduling”, is
composed by two sub-problems referred as “advance scheduling” and “allocation
scheduling” problem, respectively [8]. The first sub-problem (1 week to 1 month),
called Surgical Case Assignment Problem (SCAP) solves a planning phase by
assigning a surgery date and OR to each patient scheduled to be operated over
the planning horizon. The second sub-problem, called Surgical Case Scheduling
Problem (SCSP) solves a scheduling phase which determines the sequence of
surgeries in each OR and day.

Efficient OR planning and scheduling is further complicated by the inherent
variability of the duration of the surgical cases, which usually decreases the OR
utilization level [15]. Accurate modeling of operating time and procedure time
distributions has been recognized as an important factor in effective planning and
scheduling systems [11].

In the following, we set our analysis at an operational level and we focus our
attention on the problem of determining the assignment of patients to OR blocks,
i.e. the SCAP, assuming that patient operating times are random variables that
follow lognormal distributions as usually recommended to represent operating time
variability, see [5, 9].

Recently, [3] deals with the surgery process scheduling and manages the
uncertainty in operating times using a two-stage stochastic model with recourse,
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including in the objective function the patient waiting times and the OR idle time and
overtime. They compare different heuristics and also analyze the influence of patient
sequencing inside the OR blocks. [18] builds a mathematical program considering
probabilistic constraints to represent the uncertain duration of surgery procedures.
The proposed model shows how to optimize OR utilization without increasing
overtime and cancellations. [7] proposes different heuristics for the robust surgery
loading problem, aimed at maximizing the utilization of operating theater and
minimizing the overtime risk by introducing planned slack times. [10] develops a
stochastic programming model with recourse and a sample average approximation
method to obtain an optimal surgery schedule with the aim of minimizing patient
costs and OR overtime costs. [4] develops a two-stage stochastic model with binary
decision variables and simple recourse to deal with both block scheduling and open
scheduling strategies. The model determines the surgeries assignment to ORs by
minimizing the maximum cost associated with uncertain surgery duration. In [13] a
two-level framework is proposed. In the first level, a MIP model finds a deterministic
solution for the OR planning problem. In the second level, the variability of surgery
duration is taken into account by means of individual chance constraints for each
OR block and a robust solution is achieved by iteratively adding safety slacks to the
first level deterministic model solutions.

In this paper, we propose a robust optimization approach to solve the SCAP with
uncertain surgery duration, with the aim of minimizing a penalty function associated
to waiting time, urgency and tardiness of patients. The robustness of solutions is
achieved by applying the approach proposed in [1], which allows to exploit the
potentialities of a linear programming model without the necessity of generating
scenarios. The formulations of different versions of the problem are proposed
and computational tests over a set of real life based instances are presented and
compared in order to evaluate the different versions in terms of computational effort
and solution quality. Besides the behaviour of the penalty objective function, the
solution quality is also evaluated with regards to the number of patients operated and
their tardiness. Moreover, assuming lognormal distributions for the surgery times,
a set of randomly generated scenarios is used in order to compare the proposed
solutions in terms of OR utilization rate and number of rescheduled patients.

The remainder of this paper is organized as follows: in Sect. 14.2 we introduce
the problem under investigation and we give the different versions formulations.
In Sect. 14.3, the results on a set of real-based randomly generated instances
are reported and compared. Finally, in Sect. 14.4 conclusions and future research
directions are given.

14.2 Problem Description and Models

In the following we concentrate our analysis on the so called Surgical Case
assignment Problem (SCAP). The problem consists in determining the assignment
of a set of elective patients I to a set J of OR blocks in a considered planning
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horizon D. We assume a block scheduling approach and focus on a single surgical
specialty. Note that the solution approach herein presented could be easily adapted
for considering more than one specialty. The set J of OR blocks assigned to the
specialty and their distribution during the planning horizon are given: each block is
described by an operating room and a day. More precisely, a weekly based pattern
describes blocks availability: according to such pattern, a set of days D j ⊂ D is
given for each block j, which represents the set of day indexes in which block
j is available. The available total time of each time block j, i.e. the OR block
length, is denoted as γ j . We consider also the case where overtime is allowed. In
particular, δ represents the amount of overtime allowed for a given block, while
Δ is the maximum number of blocks which can have overtime in the considered
planning horizon. For each patient i, let denote with wi the number of days which
the patient has spent in the waiting list, i.e. the waiting time at the beginning of
the planning horizon. Moreover, a maximum waiting time li and a corresponding
urgency parameter ui are set for each patient i. If the patient has spent wi days
in the waiting list, he/she must have surgery before day ddi = li −wi, otherwise
he/she is considered tardy. The surgery time for each patient i is a random variable
t̃i that follows a lognormal probability distribution F(t̃i). The mean and standard
deviation parameters are equal to ti and t̂i, respectively. The problem consists in
selecting a subset of patients to be scheduled in the considered planning horizon
and to assign them to OR blocks, while guaranteeing that the capacity of each block
is not exceeded. The objective function aims at minimizing the overall penalty due
to delay in serving the patients. As proposed in [12] it takes into account both
the urgency and waiting time of scheduled and not scheduled patients. Moreover,
the novelty of the objective function herein used is to consider also possible due
date violation and patients tardiness.

The problem can be formulated using the following sets of variables:

• xd
i j ∈ {0,1}= 1 if patient i is assigned to block j in day d ∈ D j

• vd
j ∈ {0,1}= 1 if overtime is assigned to block j in day d

• od
j ≥ 0 amount of overtime in block j of day d ∈D j

The objective function is formulated as follows:

min ∑
i∈I

∑
j∈J

∑
d∈Dj

([dui]+ [(wi + d− li)
+]ui)x

d
i j + (14.1)

∑
i∈I

([wi + |D|+ 1]ui+[(wi + |D|+ 1− li)
+]ui)(1−∑

j∈J
∑

d∈Dj

xd
i j),

where (wi + d− li)+ = max{wi + d− li,0} is the patient tardiness. The first term
represents the penalty for the scheduled patients. For each patient i the penalty
depends on the day of the planning horizon when the surgery is executed. Note
that the number of waiting days is weighted by the patient urgency parameter ui,
in order to schedule first the more urgent patients. Besides, a penalty is given if the
patient due date is violated, i.e. if (wi + d− li)+ > 0. The second term is associated
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with the penalty of the unscheduled patients given by the sum of the total number of
waiting days and the patient tardiness. Also for the unscheduled patients the waiting
time and the tardiness are weighted by the urgency parameter ui.

The set of constraints is the following:

∑
j∈J

∑
d∈Dj

xd
i j ≤ 1 ∀i ∈ I (14.2)

∑
i∈I

t̃ix
d
i j ≤ γ j + od

j ∀ j ∈ J, ∀d ∈D j (14.3)

od
j ≤ δvd

j ∀ j ∈ J,d ∈ D j (14.4)

∑
j∈J

∑
d∈Dj

vd
j ≤ Δ (14.5)

Constraints (14.2) ensure that each patient is operated at most once. Con-
straints (14.3) are the stochastic capacity constraints for each block forcing either
the total time in block j of day d to be lesser than or equal to the maximum available
time γ j or variable od

j to be strictly positive. Constraints (14.4) and (14.5) limit,
respectively, the amount of overtime for each block j and day d, and the resulting
number of overtime blocks to be less than the a priori fixed values δ and Δ.

The deterministic version (DM) of model (1)–(5) is obtained using for each
patient i a deterministic surgery time. In particular the mean parameter ti of the
distribution F(t̃i) of the surgery duration random variables is used as expected
surgery time, then constraints (14.3) are replaced by

∑
i∈I

tix
d
i j ≤ γ j + od

j ∀ j ∈ J, ∀d ∈ D j (14.6)

In order to deal with uncertainty in the model (1)–(5) we apply a robust opti-
mization approach [1] which allows exploiting the potentialities of a mathematical
programming model without the necessity of generating scenarios.

According to the approach proposed in [1], assuming that random variables (in
our case surgery times) may vary in a given interval [a− â,a+ â], uncertainty is
dealt with in such a way to guarantee than any solution is feasible if, for each
constraint (OR block capacity), at most Γ variables assume their maximum value
and all the others assume the central value of the uncertainty interval. To apply in
our case, we firstly assume that the “maximum value” we want to protect from is
equal to ti + t̂i, where t̂i is the standard devition parameter of the F(t̃i) distribution,
and that the central value is ti. Therefore, for each block, a subset S of patients,
who require their maximum surgery time, such that |S| = Γ , is chosen among the
patients assigned to the block. Among all the possible subsets, the one having the
worst impact on the capacity constraint is chosen, and the solution is forced to be
feasible for this subset:

∑
i∈I

tix
d
i j + max

S⊂I:|S|=Γ

{
∑
i∈S

t̂ix
d
i j

}
≤ γ j + od

j ∀ j ∈ J, ∀d ∈ D j (14.7)
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The value maxS⊂I:|S|=Γ

{
∑i∈S t̂ixd

i j

}
can be computed for each block j and each

day d solving the following Linear Programming model (β jd):

(β jd) =max

(
∑
i∈S

t̂ix
d
i j

)
zi (14.8)

∑
i∈I

zi ≤ Γ (14.9)

0≤ zi ≤ 1 ∀i ∈ I (14.10)

Let denote with ζ jd the dual variables associated to constraints (14.9) and with
π jd

i the dual variables associated to the right hand side of constraints (14.10). The
dual of (β jd) problem can be formulated as follows:

minΓ ζ jd +∑
i∈I

π jd
i (14.11)

ζ jd +π jd
i ≥ t̂ix

d
i j ∀i ∈ I (14.12)

ζ jd ,π jd
i ≥ 0 (14.13)

The optimal values of objective functions (14.8) and (14.11) coincide. Thus,
constraints (14.3) can be linearized, by replacing them with (14.16), (14.19) and
(14.20), thus obtaining the following complete robust model (RM) formulation:

min∑
i∈I

∑
j∈J

∑
d∈Dj

([dui]+ [(wi + d− li)
+]ui)x

d
i j+

∑
i∈I
([wi + |D|+ 1]ui+[(wi + |D|+ 1− li)

+]ui)(1−∑
j∈J

∑
d∈Dj

xd
i j) (14.14)

∑
j∈J

∑
d∈Dj

xd
i j ≤ 1 ∀i ∈ I (14.15)

∑
i∈I

tix
d
i j +Γ ζ jd +∑

i∈I

π jd
i ≤ γ j + od

j ∀ j ∈ J, ∀d ∈ D j (14.16)

od
j ≤ δvd

j ∀ j ∈ J, d ∈ D j (14.17)

∑
j∈J

∑
d∈Dj

vd
j ≤ Δ (14.18)

ζ jd +π jd
i ≥ t̂ix

d
i j ∀ j ∈ J, ∀i ∈ I (14.19)

ζ jd ,π jd
i ≥ 0 ∀ j ∈ J,∀d ∈D j, ∀i ∈ I (14.20)

xd
i j ∈ {0,1} ∀ j ∈ J,∀d ∈D j, ∀i ∈ I (14.21)
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Both for the deterministic (DM) and robust (RM) formulation of model
(14.1)–(14.5), a version in which overtime is not allowed, i.e. δ = Δ = 0, is
formulated and denoted in the following as DM-no and RM-no, respectively. In
particular, DM-no model is obtained by replacing in model DM constraints (14.6)
with ∑i∈I tixd

i j ≤ γ j, while RM-no model is obtained by replacing constraints (14.16)

in RM model with ∑i∈I tixd
i j +Γ ζ jd +∑i∈I π jd

i ≤ γ j.

14.3 Experimental Tests

The four formulations above introduced are tested and compared in order to evaluate
the applicability of the proposed approach both in terms of computational effort and
quality of the obtained solutions. First we tested our models on instances in which
the average and standard deviation parameters of the surgery time distributions
are taken from real life data. The obtained optimal solutions are compared with
respect the number of operated patients, with the aim of evaluating the impact of
allowing overtime and of different values of Γ , and thus different levels of required
robustness. After this first analysis, the obtained assignments of patients to OR
blocks are evaluated on a set of 100 randomly generated scenarios. This second
series of computational results is aimed at studying the behavior of the proposed
solutions in terms of utilization rate and number of cancelled patients. The instances
are generated from two real data based waiting lists partially derived from [13]. Each
waiting list is a different collection of patients who wait for surgery and should
be scheduled (leading to a set I). The first waiting list is composed by 20 patients
(|I|= 20), while the second by 40 (|I|= 40). For each patient i the urgency class and
the elapsed waiting time (wi) are based on real life data. In the following we refer to
an already validated prioritisation system based on five urgency classes [16]. Each
patient urgency class is associated with a maximum waiting time li expressed in
days, that is the maximum number of days that a patients can wait before surgery
without deteriorating his/her clinical conditions. The maximum waiting time of each
patient i contributes in defining the urgency coefficient (ui) which represents the
speed at which the clinical need is assumed to increase along with the passing of
time. In particular, for each patient i the urgency coefficient is stated by the ratio
between the maximum waiting time of the least urgent class and his/her maximum
waiting time.

According to the data herein used five urgency classes are defined with maximum
waiting time l set at 8, 30, 60, 180 and 360 days, respectively, and corresponding
urgency coefficients u equal to 45, 12, 6, 2, 1. For each patient the due date parameter
ddi can be derived as ddi = li−wi, by combining urgency and waiting time.

For each waiting list, we generated eight instances by assigning different surgery
times to patients. Real data surgery time were derived from [7]. In particular, we
selected eight different specialties, for each specialty different types of surgery are
given, and for each of these types average surgery time, standard deviation and
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percentage of this type over the total number of surgeries are given. Using these
percentages we randomly assigned the types of surgery to the set of patients I,
obtaining as result an average surgery time (ti) and a standard deviation (t̂i) for each
patient i. Each instance represents the combination of a waiting list and a surgery
specialty. Each instance is named n_s, where n is the number of patients (|I|), and s
is the specialty index used for the surgery times generation.

For the instances with 20 patients we considers an availability of two OR blocks
per week, scheduled on Monday and Wednesday, while for the instances with 40
patients we assume to have three blocks per week, on Monday, Wednesday and
Friday. Each block j has a capacity 6 h (γ j = 360). The maximum allowed overtime
per block is equal to 2 h (δ = 120), while during the planning horizon at most Δ =
� 1

3 |J|� overtime blocks are allowed to use overtime. We consider a 7 days time
horizon, corresponding to 1 week.

For each instance we generated 100 different random realizations. In each
realization, for each patient i the surgery time t̃i is randomly generated using a
lognormal distribution F(t̃i) with average surgery time ti and standard deviation t̂i. In
particular, to avoid too short surgery times, we truncate the lognormal distribution
at a minimum value equal to max(ti− t̂i,30). If ri is the random generated number
following the lognormal distribution, the surgery time assigned to patient i will be:
t̃i = max(ri, ti− t̂i,30).

The deterministic and robust models, both with (DM and RM) and without
(DM-no and RM-no) overtime availability are tested on the set of instances
described above. The models have been implemented with AMPL and solved with
CPLEX 12.2.0.0 on a Intel Xeon CPU E5335 (2 quad core cpus at 2 GHz). We set
a 2 h time limit. All the considered instances have been solved to optimality within
the time limit, while many of them have been solved in shorter computational time.
Solving the (DM) model requires few seconds, while the computational time may
significantly vary for the robust version. However, the required CPU time is never
above 1 h and a half. The objective function increases with the increasing value
of Γ , as a more robust solution is required and therefore a larger subset of patients
requires the maximum surgery time. However the objective function is constant after
a certain value, that can differ for different instances. As the results tend to stabilize
for Γ ≥ Γ ∗, or at least the variations are meaningless, we report the values only for
Γ ≤ Γ ∗. The stabilized values are denoted with ‘-’.

Allowing overtime reduces the overall penalty for both models (DM and RM).
In Table 14.1 the behavior of the optimal solutions in terms of operated and not

operated patients is given. For each instance in the first column (max) the upper
bound of the number of patients who can be operated is also reported. Such value
is computed by maximizing the number of operated patients without considering
patient penalities, while guaranteeing that the available time is not exceed. In the
following columns three values are reported for each value of Γ : the number of
operated patients (y), the number of patients operated after their due date (y>) and
the number of non operated patients whose due date has been exceeded (n>).

Results show that if robustness is not required (DM and DM-no) the number of
operated patients is quite close to the maximum possible. The number of operated
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patients usually decreases with the increasing values of Γ , while it increases if
overtime is allowed. Note that the set of operated patients is different for different
values of Γ , and, in general, the set of operated patients for Γ = n is not a subset
of those operated for Γ = n− 1: the subsets may be completely different. Overtime
always improves the solutions: it allows either to increase the number of operated
patients or to reduce the number of patients operated after their due date.

The behavior of the proposed solutions on a set of 100 randomly generated
scenarios is described in Table 14.2 and in Table 14.3. In particular in Table 14.2 the
operating room utilization rate is given, while in Table 14.3 the average minimum
number of cancelled patients for each block is reported. Concerning the case in
which no overtime is allowed, results show that the operating rooms are well
exploited in case no robustness is required: the utilization rate is about 100% for
DM-no case, while the rate decreases when the value of Γ increases, as longer
surgery time are considered for at least a subset of patients. The rate may fall to
about 70% for most of the instances, but it is always above 50%. Allowing overtime
increases significantly the utilization rate. On the other hand, with small values
of Γ the number of cancelled patients is significant, while it decreases if the value of
Γ increases. The selected assignment is almost completely respected for Γ ≥ 4. Note
that introducing overtime does not have a strong impact on the number of cancelled
patients, although this value decreases a little for all instances (Table 14.3).

By properly tuning the value of Γ a tradeoff between the utilization rate and the
number of cancelled patients can be obtained. In fact, from the hospital management
point of view, smaller values of Γ are preferable, as they guarantee a higher
utilization rate. However, such values impact on the solution robustness, as it is
shown by the higher number of cancelled patients. From the perceived quality of
service point of view, instead, higher values of Γ are better as they guarantee that
the OR schedule is respected and no patients must be delayed from the plan and
rescheduled. Besides, it is worth noting that an utilization rate below 100% means
that there is some operating room capacity not utilized. Such available OR time,
rather than being a loss for the system, could allow to manage emergency cases
and/or reschedule cancelled patients, without changing the planned OR schedule.

14.4 Conclusions and Further Developments

We presented an approach based on robust optimization to deal with the Operating
Room Planning problem in which surgery times are uncertain parameters. Waiting
time, urgency and due date of patients are considered. The goal of the problem is
to minimize the penalty associated with waiting time and tardiness of patients. The
possibility of allowing overtime is considered as well, and its impact is evaluated.
The proposed models have been tested on a set of real life based instances. The
impact of different levels of required robustness is compared. Besides, we tested
the obtained solutions on a set of randomly generated realistic scenarios assuming
lognormal distributions for surgery duration. Results show that the proposed robust
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models can be used, as the required computational time is compatible with the
weekly schedule. Furthermore, the obtained robust solutions behave well when
tested on the scenarios: in fact they reduce the number of cancelled patients w.r.t.
the deterministic and non robust case. Although the robust solutions may produce
an utilization rate below the 100%, nevertheless by properly tuning the value of Γ ,
which represents the level of robustness required, or the degree of risk accepted,
a good tradeoff between hospital productivity and quality of service provided to
patients can be achieved. Future works will be devoted to perform a more extensive
computational analysis by varying the number of patients in the waiting list to be
operated on and considering different values of overtime. As future development,
the impact of different objective functions has to be studied, as well as an online
procedure which re-assigns the patients to be rescheduled and deals with the
emergency cases.
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Chapter 15
The Methodological Approach to Process
Analysis for Robotic Surgical Procedures:
The Experience of SAFROS and I-SUR Projects

Riccardo Dodi, Elettra Oleari, and Alberto Sanna

Abstract This work presents two methodological approaches followed for two
distinct contexts of surgical robotics. The IRIS Unit of Fondazione Centro San
Raffaele (Milano, Italy) is involved in two research projects related to robotic
surgery, dealing with different purposes, procedures and technologies, thus requir-
ing different approaches to knowledge formalization and process analysis. The first
project, SAFROS – Patient Safety in Robotic Surgery, aims to improve patient safety
for robotic surgery and a systemic approach has been adopted, in order to take
into account several aspects related to the surgical procedure, from the device to
the process itself and the whole environmental organization. The second project,
I-SUR – Intelligent Surgical Robotics, aims at automatizing three basic surgical
gestures with specific procedural constraints and targets. A goal-based approach
has been chosen to analyze the process, extrapolate the operational workflow and
setting the requirements for the underlying technological system. Both in SAFROS
and I-SUR, safety for the patient and acceptability for the surgeons, considered as
“final users” of such innovations, have taken a key role for the approach to process
improvement.

15.1 Introduction

Nowadays, hospitals represent structures that are ever increasingly complex and
are expected to provide a diversified range of services. Hospital functions are wide
ranging and must evolve simultaneously to a world that develops always faster from
the technological point of view [1].
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The present work will describe the experience gained in surgical process analysis
by the IRIS Unit – eServices for Life and Health (Fondazione Centro San Raffaele,
Milano) within two different EU co-funded research project. During last years, IRIS
Unit has worked on several projects involving IT for wellbeing and healthcare.
The aim is to develop technological services to provide and manage real-time and
personalized health data. The ultimate goal is to disseminate awareness toward the
personal health status and to develop a proper healthcare culture to improve it and
improve hospital, clinical and surgical processes.

Activities belonging to the robotic surgery area hold a large spectrum of field
of research. For instance, new ICT methods have been developed to continuously
detect the operating room activities, for the realistic simulation of surgical oper-
ations on anatomical models, monitor the surgical robot performance, update the
organ position and shape and to identify potential safety risks with comparisons
between planned and real situations. Another important activity is to assess the
applicability of the current training methods for surgery to robotic surgery and
develop new specific training methods for this last class of interventions.

As previously said, both the considered projects are focused on one of the fastest
growing fields of interest in surgery: robotic assisted procedures. The project for
“Patient SAFety in RObotic Surgery” (SAFROS) addresses the design of innovative
tools and definition of methods capable to improve patient safety, not only focusing
on the technological aspect but also embracing the entire surgical workflow. The
project for “Intelligent SURgical Robotics” (I-SUR), instead, develops general
methods for cognitive surgical robots that combine sensing, dexterity and cognitive
features in order to carry out autonomously simple surgical actions, namely
puncturing, cutting and suturing.

The key role of IRIS Unit in both projects emprises both the analysis of the
surgical procedures taken into account and the collection of the requirements for
the innovative technology chosen by the consortium to improve the current state-
of-the-art. Deciding the methodological approach to face with the issues introduced
by the scopes of the project is a crucial step. In fact, it is mandatory to have a clear
idea on how to set up the work and optimize the extrapolation of the results. In this
context, a relevant role is taken by the translation of the surgical knowledge in a
logic/mathematic formalization in order to be understood by non-medical-educated
professionals and then to be easily re-translated as input for a robotic system.

The Sect. 15.2 of this work presents the objectives of the two projects, which
approaches and results are better detailed separately in the following Sects. 15.3 and
15.4. At the end, conclusions are drawn and possible future perspective discussed in
Sect. 15.5.

15.2 Objectives

The requirements analysis plays a key role in both projects: thanks to this step
the most significant goals can be outlined and are identified the proper addressing
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features of project’s solutions. Because of this, exploiting a modeling approach is
especially helpful during this first phase of analysis, in order to outline a consistent
and well-structured methodological framework.

Concerning SAFROS (European Union Seventh Framework Program FP7/2007–
2013 under grant agreement n. 248960), the modeling aspect reflects the re-
engineering process of a surgical procedure which is studied in risks terms. Thanks
to such an approach, the risks embedded in the operational workflow are identified
and ranked. This lays the basis for the implementation of project’s solutions capable
to guarantee an improvement in safety care of the patient, addressing proper safety
criteria through the introduction of new technologies and a methodological safety
culture [2].

For I-SUR (European Union Seventh Framework Program FP7/2007–2013 under
grant agreement n. 270396), the approach is slightly different because the automa-
tion of the three surgical actions required the identification of the development of
a new technological and methodological system acting from the preoperative phase
to the completion of the task and the possible critical aspects of such innovation.

15.3 SAFROS: Modeling Robotic Surgical Procedures
Through the Risk Analysis Approach

The primary goal of SAFROS is to develop new methods and tools to improve
patient safety. Researches carried out during the project aimed at identifying
proper metrics in order to assess the safety level achieved with project solutions
and pointing out methods capable to correctly address these requirements. The
methodology applied to support this analysis is divided into three different levels:
product safety analysis, process safety analysis and organizational safety analysis.
This framework is an effective tool to achieve the project objective considering the
developed technologies first singularly (product safety), then widening the scope
of the research towards their integration into a surgical workflow (process safety)
and finally studying their impact onto an organizational level (organizational safety)
[2]. What follows is the description of the modeling applied in the context of the
process safety analysis of a reference robotic surgical procedure: Robotic-assisted
laparoscopic radical prostatectomy (RALP) [3, 4].

The process safety methodological level consists of a systemic approach which
evaluates the effects of the interaction of SAFROS products and their impact on the
various phases of a robotic surgical intervention, also including the operating room
environment (i.e.: the surgical staff) and patient related information as influencing
factors. In fact, with the increasing deployment and sophistication of equipment
within robotic surgery, technological failures are more likely to occur and are added
to the inherent risks of the procedure. The scope of the analysis is to identify
and prioritize the entirety of process-related criticalities, to provide a basis to
discuss the ways in which solutions could directly impact on the surgical process
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Table 15.1 Schema of the simplified Failure Mode and Effect Analysis applied

Activities Related risk [RR] Cause Effects Criticality index [CI]

O Occurrence S Severity O × S

Fig. 15.1 Risk matrix (Adapted from [2])

and mitigate the found risks. Among the different existing techniques for risk
management in healthcare, a simplified version of the Failure Mode and Effect
Analysis1 (FMEA) has been chosen. The analysis was carried out by a team
composed of a facilitator and various process owners, in order to benefit from added
values derived from different professionals profiles and experiences. When needed,
the work was supported by site visits during real interventions and interviews with
OR personnel (e.g., expert robotic surgeons, anesthetists, nurses). The starting point
was a detailed analysis of the pre-operative and intra-operative phases of the RALP
procedure and of all the most important Related Risks (RR). Then, the cause and
effects linked to each critical step were listed (see Table 15.1).

After this, a Criticality Index (CI) of each outlined risk was obtained by
multiplying the estimated frequency of occurrence (O, 4 point rating scale) by the
expected severity of the damage towards the patient (S, 5 point rating scale) and
framed in a Risk Matrix as exemplified in Fig. 15.1 [2].

The analysis led to an accurate schematization of the robotic procedure workflow
(see Fig. 15.2) and the definition of the risks related to its pre-operative and
intra-operative phases with particular attention given to causes and effects of
each RR.

In the following Table 15.2 is summarized an extract of the results of the
described research: for the most critical surgical steps the embedded risks are
described and evaluated according to their resulting criticality index (CI) []. The
results derived from the procedural risks selection and ranking allowed to identify
a group of safety indicators strictly linked to the surgical scenario and widely

1FMEA is a proactive risk assessment tool used to identify potential vulnerabilities in complex,
high-risk processes and to generate remedial actions before the process results in adverse
events [5].
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Fig. 15.2 The RALP workflow

applicable to different robot-assisted procedures. To name a few: accuracy of task
execution, overall operative time, adequacy of the internal workspace, the need
of coordination skills, . . . (for more details see [2]). Combining these medical
indicators with the merely technical specifications of the project innovative tools,
allowed on the one hand to mirror the surgical safety requirements in a safety
driven technological design of the SAFROS solutions. On the other, in such a
way was moved the first step towards a comprehensive quantitative and qualitative
assessment of the reachable improvement of patient safety.

15.4 I-SUR: A Goal-Based Approach Targeted
to Automated Surgery

If designing and controlling a robotic tool for surgery is a very highly demanding
task, the automation of a surgical gesture introduces even more challenging issues
concerning the required imaging, sensing and control system to be applied. The first
step to approach this problem regards the collection of all the information about the
surgical knowledge of the target gestures (puncturing, suturing and cutting) in order
to formalize the environment and the tasks themselves in mathematical models and
develop a reasoning mechanism for the identification of pre and post conditions
of the actions and their execution [6]. The procedural methodology is displayed in
Fig. 15.3. The Puncturing task has been selected as the most promising one (in terms
of feasible mid-term results and efficacy) and thus better analysed and modelled. As
reference case study, the consortium has chosen the Percutaneous Cryoablation of
Kidney Tumours, which consists of freezing the neoplastic tissue with gas injected
by a specific probe [7].

The Goal Model [8] has been chosen as mathematical formalization of the
selected procedures because it facilitates the translation from surgical to technical
requirements in terms of state diagram, operative sequence, identification and
managing of critical steps, design of sensing and monitoring activities. Interviews
with worldwide renowned professional surgeons were conducted in Milano (San
Raffaele Hospital) and Verona (General Hospital G. B. Rossi), to collect medical
information about the three tasks. Then the Goal Model has been created and
validated for each surgical action. Starting from all the elements of this model
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Fig. 15.3 The I-SUR methodology chosen for the requirement collection

Fig. 15.4 State diagram for the “Needle extraction” macro-phase of the Puncturing task

[9, 10], i.e. Domain (entities and events), Goals (the main objectives of the surgical
actions), Operations and Adaptations, a State Diagram has been inferred to synthe-
sizes all possible ways through which the operations can be performed to satisfy
the defined goals and sub-goals. Four sequential macro-phases can be identified,
namely Initialization (planning phase of surgical action and tool trajectories starting
from patient-specific characteristics), Insertion (heading of the needle to the skin,
penetration and heading to the target point in the tumor), Cryoablation (standard
cycles of freezing-thawing) and Extraction (getting the needle out and reach the
initial position); a schematization of the last phase is represented in Fig. 15.4.
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By analyzing the state diagram, it has been possible to gain the medical
knowledge embedded in the task in order to obtain the mechanisms of surgical
reasoning. These are the bases of the planning action and allow the surgeon to decide
how to execute the operation, being aware of possible problems or errors which
occur during the intra-operative execution and taking the respective adaptations to
face them.

The a priori medical knowledge and the analysis of the state diagram allow
identifying some constraints and parameters about surgical action execution to be
monitored and controlled. These data will be acquired through the sensing system
during the pre- and intra-operative phases: the sensing devices have to cooperate to
provide the robotic system with accurate information in order to build a feasible,
optimal plan of the required operation and autonomously execute it. In Table 15.3,
any information to be controlled by the sensing system during the robotic execution
of Percutaneous Kidney Cryoablation is collected. For each event to detect, or
condition to monitor, the needed quantitative entities has been identified and a real or
Boolean variable can be derived by combining them. Tolerances and thresholds for
such variables have been collected during structured interviews and virtual/practical
experiments involving expert surgeons and radiologists. These data will feed the
reasoning mechanism, controlling the state transition of the system, branches and
adaptation paths.

Moreover, analyzing the state diagram some branches can be found, i.e. devia-
tions from the nominal behavior, which represent dangerous events of the procedure
and need appropriate adaptation paths to return back to the nominal one. For each
branch, an event regulating the transition to a state or another one can be identified.
Such event generation depends on a specific condition or evolution of the system,
i.e. a specific configuration of a definite set of variables.

The definition of the thresholds for the whole procedure represents the linchpin
of the reasoning for preoperative assessment. The interviews with surgical staff were
useful to extrapolate these values, which can be exploited as constraints for the intra-
operative reasoning module. Since most of procedures require standard thresholds,
sometimes the clinician has to adapt the therapy because of the peculiar anatomic
configuration of the patient. For instance, the standard accuracy required for needle
placement is around 3–4 mm, but in case of small lesions (e.g. ∅ 10 mm) this value
should be inferior.

The strong potentiality of this approach is represented by the development of
a reliable mathematic formalization starting from the analysis of the key points
of the procedure, i.e. what are the objective and how to reach them, in terms of
efficient surgical outcomes and patient safety. Then, a feasible operational model
has been obtained. Thanks to its modularity, simply adapting the therapy-specific
macro-phase (Cryoablation module) it can be potentially extended and applied to
several procedures similar to the chosen case study, e.g. biopsies, nephrostomies,
treatments of renal cysts and so on; in general, to any puncture, injection, extraction
or drainage performed with a rigid needle that requires high accuracy, leading to
a reduced operative time (e.g. emergency) and bleeding risk through a minimally
invasive approach. Finally, a patient-specific procedure can be obtained through the
instantiation of the operational model by analysing the pre-operative data. Surgeons,
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Table 15.3 Procedural constraints and parameters identified for Kidney Cryoablation

Event Entity (attribute) Variable Bound

Target missed Tumor center Distance_to_target 3–4 mm
Needle tip

Forbidden
region
touched

Needle tip Distance_to_fr 10 mm

FR surface
Tumor not

covered
Tumor volume Coverage_percentage 0%

Iceball volume (math model)
Needle trapped Needle stress Needle_trapped (Yes/no)

Needle temperature
Time

Move robot
from “rest”
to “init” and
vice versa

Needle tip Distance_to_patient 50 mm

Skin surface
Minor

adjustments
after
insertion

Needle tip Distance_to_skin 10 mm (tool-
dependent)

Skin surface
Insertion area Skin surface Insertion_error_pos 5 mm
Insertion angle Needle orientation Insertion_error_deg 5◦

Longitudinal body axis

radiologists and clinicians play a key role in the whole process and the development
of the technological device needs to run in parallel with a strong, continuous
interaction based on input-validation feedbacks.

15.5 Discussions and Future Perspectives

In the previous sections, two different methodological approaches to face with
innovative technologies for robotic surgery have been analysed, reporting the
experience gained in two different projects. The modelling approach has been a
key element to complement the analysis both from a global point of view, such
in the case of the entire surgical process, and from a more detailed one as for the
automation of a surgical gesture.

Regarding SAFROS, the methodology developed and the applied risk analysis
have allowed a systemic sectioning of the entire process of study. In this way, a
holistic view of the objectives of the project has been guaranteed and it has been
possible to develop well addressing solutions, capable to overcome the current
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limits and inherent risks of both technology and procedures. As yet anticipated
in [2], the extendibility of the proposed modeling approach to other surgical or
medical specialties is one of the most promising prospects resulting from this
research project. This hypothesis is also supported by the satisfactory results of
the present work and by the flexibility inherent of modeling through analysis of
risk.

For what concerns I-SUR, instead, a goal-based approach has been a useful
tool to analyze the as-is process and obtain a preliminary version of the state
diagram which the robotic system will be asked to follow. This approach led to the
collection of a set of requirements, constraints and other parameters to instantiate
such model and obtain a safe, feasible and reliable automatic execution. Up to
now (Project Month n. 24), the consortium used this information to design system
components, i.e. robotic tool, control algorithms, sensing system, surgical interface
and artificial organs; once integrated together, an assessment and validation of this
new technology will be possible.

Patient safety is one of the main issues in the development of technological
solutions in the surgical world, and in robotics for surgery as well. A correct method-
ology and modeling approach allows integrating safety constraints and requirements
from the beginning of the research process, making them an integral part of the
objectives to be pursued and the corresponding solutions to be implemented.
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Chapter 16
A Whole-System Approach to Identify
the Sources of Variation in Patient Flow

Nasim Arbabzadeh, Mohsen A. Jafari, and Kian Seyed

Abstract The main objective of this paper is to develop a quantitative framework
to identify the main sources of variation in patient flow. Since 1983, under Health
Care Financing Administration (HCFA)’s system, generally referred to as the
Prospective Payment System (PPS), each hospital inpatient is classified into one
of around 500 Diagnosis-Related Groups (DRGs), and the hospital is paid the
amount that HCFA has assigned to each DRG. In other words, irrespective of what
the hospital charges for, it will be paid only a fixed price for each DRG through
major reimbursement plans. Therefore, it is logical to expect that by reducing the
within DRG discrepancies, hospitals can cut cost and improve patient safety and
satisfaction. In order to reach this goal the first step is to identify the main sources
of variations. In this paper, we apply classical quality/process control tools and well
known data mining methods to determine significant factors affecting the patient
sequence among tens or hundreds of potential factors.

16.1 Introduction

During their hospital stay, patients may experience redundant steps and procedures
that may lead to unnecessary excessive expenses, lower Quality of Care (QoC)
and customer dissatisfaction. The excessive costs are often covered by hospitals
or paid by individual patients since insurance companies have standard payment
plans ranging from the infamous charge master or fee-for-service (FFS) price list
to bundled payment systems such as diagnosis-related groups (DRGs), with various
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forms of “discounts off charges” and “per diems” somewhere in between [1, 2].
Regardless of who pays for these excessive and unnecessary expenses, the adverse
societal impacts and negative business consequences are immense. In this paper, we
focus on the patient flow process in a hospital with DRG based payment system for
its inpatient claims.

Renewed focus on quality measurement and improvement and on medical-
error reduction has heightened interest in paying for performance, rather than just
reimbursing providers for services rendered. Private Pay for Performance (P4P)
programs for hospitals usually pays bonuses as an incentive above the agreed-upon
reimbursement rate. A more rational reimbursement system, which rewards quality
of care rather than simply doing more to patients, is the short-term goal of paying
for performance. The longer-term goal is also to make the health care system more
efficient. It has become clear that under existing reimbursement structures, current
market forces are insufficient to ensure either higher-quality or more-cost-effective
care [2]. P4P programs can be seen as additional incentives for hospitals to seek
to improve their patient flow processes which can be attained through our variation
reduction framework.

Since 1983, under Health Care Financing Administration (HCFA)’s system,
generally referred to as the Prospective Payment System (PPS), each hospital
inpatient is classified into one of around 500 Diagnosis-Related Groups (DRGs),
and the hospital is paid the amount that HCFA has assigned to each DRG. Thus all
hospitals treating all patients who fall into a particular DRG may charge whatever
they charge based upon their patients’ courses of treatment, but each will be paid
the same. One limitation to this methodology is that individual DRG categories
often combine subgroups of patients with predictably different expected resource
costs. HCFA has repeatedly improved the DRG definitions since 1984; in fact a
new DRG system, called Medicare Severity DRGs (MS-DRGs), was adopted in
October 1, 2007 which replaced 538 DRG system with 745 new MS-DRGs [1].
This enhancement, while necessary, does not fully account for differences in illness
severity associated with substantial disparities in providers’ costs.

The fact is only a part of these disparities is attributed to the patient profile
including his/her demographics, medical history, medication, physical exams, and
so on; these are uncontrollable factors in patient flow. There are also controllable
factors that influence patient’s experience from hospital admission to discharge.
These include, but not be limited to, the order of treatments patient receives, medical
procedures, current medications, received resources including physicians, nurses,
technicians, transporters, and administrative work. These sources of variability
could severely impact patient safety, QoC, professional satisfaction, and hospital
revenue. The potential reduction in costs and increase in QoC and patient safety
and satisfaction will be too rewarding to ignore. All these tools become handier
especially when the regular normal operation of hospital is affected by an external
incident varying from highway crashes to earthquakes and terrorist attacks. It’s
in such situations that having a managed patient flow can be of great help to the
hospital management to increase patient care and lower the number of fatalities.
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This article is organized as follows. Section 16.2 presents the literature survey.
In Sect. 16.3 we present the formulation of our problem. The data to test our
procedure and the results of applying our methodology are discussed in Sect. 16.4.
Conclusions are presented in the final section.

16.2 Literature Survey

A number of researchers have used queueing models to study various aspects of the
patient flow process. McClean et al. (2005) use phase-type distributions to carry out
model-based clustering of patients using the time spent by the patients in hospital.
They cluster patients into classes on the basis of the number of phases involved.
Cadez et al. (2003) presented a new methodology for exploring and analyzing
navigation patterns on a web site [3]. They partition site users into clusters such
that users with similar navigation paths through the site are placed into the same
cluster. Their proposed method clusters users by learning a mixture of first-order
Markov models using the Expectation-Maximization algorithm. In this paper, we
have used their proposed model to cluster patient sequences in the hospital.

16.3 Technical Approach

Patient flow is not a single datum but a pattern or a sequence of steps. Unlike
classical statistics where singular or array of data is used, we need to work with
flow patterns and ordered data. In this paper, we use a mixture of first-order Markov
models to model patient flow. Each patient is admitted to an inpatient floor with an
initial diagnosis determined by the admitting physician. After patient is discharged,
her chart is reviewed by coders and a DRG is assigned based on the primary
(definitive final diagnosis) and other diagnoses together with treatments, resources
and procedures utilized towards treating patient’s condition during her stay. For
each DRG certain level of resources (treatments, diagnostic tests, procedures, etc.)
are assigned and required. From admission to discharge, a patient goes through
a sequence of steps both in terms of her condition and the utilized resources,
treatments and procedures. Throughout this paper we will refer to this sequence
of steps as patient flow vector and denote it by

−→
S i which is defined as follows:

−→
S i = [Si1,Si2, · · · ,Si j, · · · ,Sin]

′, i = 1,2, · · · ,m and j = 1,2, · · · ,n (16.1)

where
−→
S i is a n× 1 ordered vector with jth element, Sij, as the state of patient i

at step j (j= 1, 2, . . . , n). Sij takes on values (sij) from among N (n= 1, 2, . . . ,
N) possible patient states. Therefore the sequence [Si1,Si2, · · · ,Sij, · · · ,Sin]′ indicates
that patient i first was at state si1, then si2, and so on. In our model, the last state
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is always xn, which is “discharged” state. The nature and definition of these states
can be different according to the level of granularity of the problem, i.e. the level of
detail at which patient flow is observed. They can be as aggregated as generic states
that any patient may go through during a hospital stay (like admission, inpatient
floor stay, and discharge), or they can be very detailed including all the steps in each
of the above mentioned high level states.

As we mentioned earlier there can be several sources of variability that are
intrinsic to all healthcare delivery systems. We have categorized these sources into
three groups:

(i) Unique characteristics of each patient (patient profile), including demograph-
ics, medical history and other health conditions upon admission.

−→
X i defines

these characteristics:
−→
X i = [Xi1,Xi2, · · · ,Xik, · · · ,Xip]

′, i = 1,2, · · · ,m and k = 1,2, · · · , p (16.2)

where
−→
X i is a p× 1 vector whose kth element, Xik, represents the kth

explanatory variable quantifying the kth characteristic of patient i.
(ii) Hospital resources, including medical and non-medical (overhead) staff {direct

(nurse, tech, doctor) and indirect (unit secretary, housekeeping) labor and
overhead labor}, major equipment, units and their functionalities (hospital
factor). We denote by

−→
Z i these characteristics:

−→
Z i = [Zi1,Zi2, · · · ,Zi1, · · · ,Ziq]

′, i = 1,2, · · · ,m and l = 1,2, · · · ,q (16.3)

where
−→
Z i is a q× 1 vector whose lth element, Zil, represents the lth explana-

tory variable quantifying the lth hospital resource on patient i. Depending on
the attribute which they quantify, Xi and Zi can be of both types of explanatory
variables: continuous or categorical.

(iii) Random noise denoted by ε i which are assumed to be i.i.d. random variables
with mean zero and standard deviation i. There are always un-assignable
causes, which are usually grouped under random noise. Since random noise
is statistically un-controllable, it is imperative to reduce its effect as much as
possible. Any significant reduction in un-controllable variations will increase
“process capability” and improve the process, which will in turn lead to
significant cost reductions.

Furthermore, we assume that reentry of patient i to the hospital is a new
admission with an updated

−→
X i vector due to the new set of treatments that he

received during his most recent stay. Then a historical data set of size m, containing
m vectors of

−→
S ,
−→
X i, and

−→
Z defines patient paths, patient characteristics and hospital

resources of m observed patients categorized under a specific DRG during a given
time interval.

We intend to determine the number of clusters defined on the basis of sampled
data collected on

−→
S . We also intend to link

−→
X , and

−→
Z to

−→
S in order to determine

significant factors that lead to clusters within a DRG. Finally by controlling the
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important attributes and reducing their variation we expect to see a reduction in
the variations inherent in the patient flow process. Sections 16.3.1, 16.3.2, 16.3.3,
16.3.4, and 16.3.5 explain the steps of our algorithms in details.

16.3.1 Data Collection

With the current practices and adoption of EMR technology it is safe to assume that
there are sufficient medical and personal data on patients, which can be mined and
inferences can be made from. For example, CPT (Current Procedural Terminology)
and HCPCS (Healthcare Common Procedure Coding System) codes are numbers
assigned to every task and service a medical practitioner may provide to a patient
including medical, surgical and diagnostic services. In principle, the data supporting
CPT codes exist in hospitals (either collected real time using RFID or other RTLS
technologies, or with some time lags entered by medical staff). Only in rare cases,
the above data categories are all in a single database and is easily accessible; in
majority of hospitals they are scattered in different databases, and data transfer and
data fusion will be necessary. The data accessibility problem, however, is outside of
the scope of this article. We will assume that this data exists and can be accessed for
patient samples at different times.

16.3.2 Brainstorming

This step requires expert opinion to extract, filter, and transform data into mean-
ingful quantifiable variables that we can further feed into our statistical engine.
For this purpose, we should build multidisciplinary teams whose members will
bring different perspectives and knowledge about the problem [4]. It is important to
ensure that the core team and extended members include individuals that have direct
contact with the process. The team should be brought together to hold brainstorming
sessions for two important tasks:

1. Defining the state space of patient flow vector (
−→
S ): Medical judgment should

be used to construct states, which both exhibit the necessary independence and
make sense in terms of the delivery of care. A state space must be constructed
in a manner that results in state definitions, which are mutually exclusive and
collectively exhaustive [5]. This is essential to ensuring that Markov modeling of
patient flow is valid.

2. Quantifying vectors of patient profile and hospital resources (
−→
X , and

−→
Z ): To

perform this task, one must try to identify as many potential variables as possible.
One of the well-known tools to identify the potential causes of an event is the
fishbone diagram also known as Ishikawa diagram or cause-and-effect diagram
[6]. In this diagram, causes are usually grouped into major categories to identify
these sources of variation.
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Finally, we need to translate these potential causes into quantifiable random
variables of either continuous or categorical type. The easiest case is when there
are only two classes, such as variable gender with classes of “male” or “female”.
Examples for categorical type are gender, severity of illness, and nurse’s level of
expertise.

16.3.3 Sequence Clustering

At this step, we apply a mixture of fist-order Markov models to model patient flow
sequences. We assume that the flow of each patient in the data set,

−→
S i, is generated

independently (the traditional i.i.d. assumption). Statisticians refer to such a model
as a mixture model with R components (R is the number of clusters). We apply
Expected Maximization (EM) method to train our Once the model is trained, we
can use it to assign each patient to a cluster or fractionally to the set of clusters.
A mixture model for

−→
S with R components has the form:

p
(−→

S
∣∣∣θ)= ∑R

r=1 p
(

cr

∣∣∣θ).pr

(−→
S
∣∣∣cr,θ

)
(16.4)

where cr is the cluster assignment for a given patient, p(cr|θ ) is the marginal

probability of the rth cluster (∑rp(cr|θ )= 1) and pr

(−→
S
∣∣∣cr,θ

)
is the statistical

model describing the distribution for the variables for patients in the rth cluster,
and denotes the parameters of the model. We further assume that each model
component is a first-order Markov model capturing the sequence of steps taken by
a patient to some degree. Then, the EM method is used to train the parameters
of the mixture model with known number of components R, given training data

dtrain =
{−→

S 1,
−→
S 2, · · · ,−→S M

}
such that the following equation holds:

θ ML = argmaxθ p
(

dtrain

∣∣∣θ)= argmaxθ ∏M
i=1 p

(−→
S i

∣∣∣θ) (16.5)

θ ML are the maximum likelihood or ML estimates of the model parameters.
In this paper, we have used Microsoft Sequence Clustering algorithm (SQL

Server Analysis Services or SSAS) to carry out the sequence analysis. Microsoft
SQL Server provides us with the membership assignment of each patient. Therefore,
having a training data set of size M, we can run the sequence clustering algorithm
and obtain the vector of class memberships, denoted by

−→
Y , as follows:

−→
Y = [Y1,Y2, · · · ,YM]′ (16.6)

where Yi is the class membership of patient i, and can accept values of 1, 2, . . . , R.
Later, we will feed this vector into the Variable Selection module.
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16.3.4 Variable Selection

In this step, we will use a well-known classifier, namely random forest, to identify
the most important variables which significantly affect the patient flow sequences.
Random forest (or random forests) is an ensemble classifier that consists of many
decision trees and outputs the class that is the mode of the class’s output by
individual trees [7]. The data-set used for training comes in records of the form
(
−→
Q ,
−→
Y ) for each data-point, where

−→
Q denotes a vector of observed characteristics

(also referred as features or factors) and
−→
Y denotes a group label (also called target

variable). In our application,
−→
Q is a (p+ q)× 1 vector of

[−→
X p×1−→
Z q×1

]
which contains

the information of patient profile and hospital resources, i.e. the explanatory
variables, and

−→
Y is the vector of class memberships, i.e., the output of the sequence

clustering algorithm.
In order to perform the classification task we will use the randomForest package

available in R software [8]. The input to the software will be feature vector
−→
Q (p+q)×1 =

[−→
X p×1−→
Z q×1

]
and vector of class memberships

−→
Y .

Random forests can be used to rank the importance of variables. There are two
criteria based on which the Breiman’s random forest calculates the importance of
variables: Gini importance which calculates the mean Gini gain produced by Qi

over all trees, and permutation accuracy importance which is the mean decrease in
classification accuracy after permuting Qi over all trees. The variable importance
plot gives a relative ranking of significant features, and absolute values of the
importance scores should not be interpreted or compared over different studies. We
consider, the first B variables as the most important variables where B< p+ q. We

will refer to the vector of important variables as
−→
Q
′
B×1 =

[−→
X
′
p′×1−→

Z
′
q′×1

]
, and define

−→
X
′
i, and

−→
Z
′
i as follows:

−→
X
′
i =

[
Xi1,Xi2, · · · ,Xik, · · · ,Xip′

]′
, i = 1,2, · · · ,m and k = 1,2, · · · , p′ (16.7)

−→
Z
′
i =

[
Zi1,Zi2, · · · ,Zi1, · · · ,Ziq′

]′
, i = 1,2, · · · ,m and l = 1,2, · · · ,q′ (16.8)

where p≤ p’, and q≤ q’.

16.3.5 Monitoring and Controlling Important Variables

Monitoring and controlling of important variables is the last step in our model. In the
previous steps we established a relationship between patient flow sequences and
process attributes, and identified those attributes that affect the patient flow process
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significantly. In this step we investigate how and why these attributes affected patient
flow. For this purpose, questions must be asked to find the assignable causes of
variations and then a proper corrective action must be taken to eliminate them. To
maintain the gained improvement and be able to detect future assignable variations,
advanced statistical tools such as single-variable or multivariate control charts can
be used. Using control charts is an ongoing activity over time to bring continuous
improvements to the process.

16.4 Numerical Experimentation

In this section, we illustrate the performance of our algorithm using a simulated data
set. For confidentiality reasons and also for the lack of sufficient real data at this
time, we will demonstrate our model using simulated data. But the data generation
will closely mimic the true real life process. We assume that patient flow sequences
of cases under DRG type xxx can at most have six steps (N= 6). Seven factors have
been identified as the potential causes of variation two of which are patient profile-
related attributes (p= 2), and five are hospital resources (q= 5). The definitions of
these variables can be found in Appendix.

To simulate expert opinion correctly, we assume to have a priori knowledge
that Z1, Z2, and Z5 are the significant variables and the rest of the attributes may
not affect patient sequences significantly. Furthermore, we assume that we are
given expert opinion on particular relationship between process attributes (Z1, Z2,
and Z5) and patient flow (

−→
S ). According to this prior knowledge, we know that

exhaustively there exist 13 distinct patient sequences. It means that, assuming the
patient flow process is a stable and stationary process without any chaotic behaviors,
the expected path of a given patient falls into the set of 13 sequences. We model this
relationship with a multinomial logit function regressing the transition probabilities
on the value of significant attributes. The model is given by:

P
(

Si j =W
∣∣∣Si( j−1) =V

)
= f (Z1,Z2,Z3) ;W,V = 1,2, · · · ,N (16.9)

where P(Sij =W|Si(j− 1) =V) is the probability that patient i is in state W at step j,
given that he was in state V at step j-1. This definition comes from our assumption
that the patient transfer between states follows a Markov model. f is a multinomial
logit function, and is defined as follows:

P
(

Si j =W
∣∣∣Si( j−1) =V

)
= eβW

0 +βW
1 z1+βW

0 z2+βW
0 z5/1+∑N

w=1eβ w
0 +β w

1 z1+β w
0 z2+β w

0 z5

W = 1,2, · · · ,N− 1 (16.10)

P
(

Si j =W
∣∣∣Si( j−1) =V

)
= 1/1+∑N

w=1eβ w
0 +β w

1 z1+β w
0 z2+β w

0 z5 ,W = N (16.11)
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Fig. 16.1 Variable importance plot, case I- incomplete data set

We estimate the parameters of the logit model (
−→
β

w
=
[
β w

0 ,β
w
1 ,β w

2 ,β
w
3

]
). To

generate a simulated data set, we start with an initial set, d(initial) =
{−→

S ,
−→
X ,
−→
Z
}

,

and use the logit model to estimate the transition probabilities matrix as a function
of significant attributes. In our example, the initial set included only 3 distinct
sequences out of the set of 13 original sequences. Then, we keep fine-tuning the
parameters by adding new sequences until no further improvement is gained in
our estimations and the built model completely captures the original relationship
between

−→
S and

−→
X ,
−→
Z . The variable importance plot can verify this gradual

improvement.
Following the above approach, at each iteration a training data set of 1,000

cases was generated and fed into the statistical engine. Figures 16.1 and 16.2
show the variable importance plots for two cases: case I- an incomplete data set
including 7 distinct sequences, case II- a complete data set including all the13
distinct sequences.

As it can be seen in Fig. 16.1, if the incomplete data set is fed into the engine,
we would mistakenly be led into the conclusion that either the set of variables Z2,
Z3, and Z5, according to the permutation accuracy importance, or the variables Z2,
X1, and X2, according to Gini importance, were the significant factors affecting
the patient flow sequences. While if the complete data set is fed into the algorithm
according to both measures of variable importance, Z1, Z2, and Z5 are correctly
identified as the most important variables. The values of importance measures for
X1, X2, Z3, and Z4 are close to zero meaning that relatively speaking their effects
on patient flow are trivial.
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Fig. 16.2 Variable importance plot, case II- complete data set

In summary, by using the random forest classifier we have been able to identify
the significant factors that truly impact patient flow. With this valuable information,
the hospital management should focus his efforts and money to improve these
attributes, which can consequently improve and facilitate patient flow in the
hospital. Finally, to maintain the acquired improvements, the use of multinomial
or multiattribute control charts is suggested to constantly monitor and control
the important attributes and be alerted if a disturbance occurs in the patient flow
process [9].

Note that in our example all the important variables are hospital resource-related
attributes. In case a patient profile attribute is identified as a significant variable
one should use other alternative solutions to control the process. One solution
would be the use of robust optimization methods to control such a process since
we cannot control or change statistical distributions of patient profile attributes into
our favor [10].

16.5 Conclusions

In this paper, we have proposed a novel framework to identify the sources of
variations in the patient flow process. The main idea is that by reducing the
variations of these single processes we will be able to reduce the variation of patient
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sequences. Our simulated results show that having a statistically large historical
data set, the classifier can correctly determine the important variables, which truly
had relationships with patient sequences. We further suggest the use of statistical
control charts to maintain the gained improvements. The hospital management can
use this valuable information to improve the quality of its patient flow process
which consequently improve patient and staff satisfaction and results in a better
cost management.

A.1 Appendix

Patient profile variables are as follows:

Patient’s age, X1 =

⎧⎪⎪⎨
⎪⎪⎩

1, 0≤ age < 15
2, 15≤ age < 30
3, 30≤ age < 50
4, 50≤ age

Patient’s gender, X2 =

⎧⎨
⎩

1, Female,
2, Male,
3, Intersex.

Hospital resource-related variables are:

Care taker’s level of expertise: Z1 =

⎧⎨
⎩

1, Licensed Practical Nurse
2, Registered Nurse
3, Advanced Practice Nurse

Work shift of the nurse, Z2 =

⎧⎨
⎩

1, Morning shi f t,
2, Evening shi f t,
3, Night shi f t.

The doctor’s ranking: Z3 =

{
1, Physician,
0, Physician assistant.

Availability of bedside monitoring tools: Z4 =

{
1, Available,
0, Otherwise.

X_Ray machine types: Z1 =

⎧⎨
⎩

1, Type M1 maintained monthly,
2, Type M2 maintained semiyearly,
3, Type M3 maintained yearly.
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Chapter 17
A Broader View on Health Care System
Design and Modelling

Catherine Decouttere and Nico Vandaele

Abstract Many rigorous models have been developed to support health care
system design. However, embedding these models in a broader stakeholder based
framework, will substantially enhance the societal and human impact. Moreover,
the acceptance of the proposed health care system (re)design suggestions will be
more evident. Building on the model of an NMR scanning department, we propose
an integrated health care design approach to support the modelling, the stakeholder
analysis, the generation of alternative scenario’s and the final design choice.

17.1 Introduction

The initial goal of a health care system, is not only to address the medical needs of
individuals but also involves other factors affecting their well-being. An important
underlying factor is patient satisfaction, which has been measured indirectly by
capturing the patient experience [1]. The three main goals of a health system,
as considered by the WHO, [2, 3] are: health improvement, responsiveness and
fairness in financial contribution. The responsiveness of a health system has been
put forward as a general concept designating the way individuals are treated and the
environment in which they are treated. This responsiveness has been characterized
by a common set of measurable domains. A first component, which involves ethical
considerations, is called “respect for persons”. It is built on the following pillars:
respect for dignity, respect for individual autonomy and respect for confidentiality.
A second component is called “client orientation”. It includes prompt attention to
health needs, basic amenities, access to family and community support, clarity of
communication and choice of institution and individual providing care.
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From a modelling point of view, health care systems have typically been
approached by a limited selection of tangible performance dimensions such as
technical capacity, waiting times, cost of care [4].

Starting from the performance measures of a national health system [3], the
goals for subsystems and individual organizations, e.g. hospitals, can be derived.
This results in a set of performance indicators which encompasses the more
diverse aspects of patient experience, health improvement and fairness of financial
contribution. It is clear that some inherently conflicting goals need to be brought
into balance, which is why an integrated approach for design and modelling of the
health care system is proposed. The challenges faced by today’s health care systems
are two-fold, either emerging from the demand side or the supply side. On the one
side (the demand/receiving side) there are broader, more dynamic and advanced
patient aims: the comfort of the patient, the exchange of information, the possibility
of quick response and waiting times, the experience of patient rooms, the delivery
and availability of drugs, the relation with the caregivers (nurses, physicians,) and
the role of information towards patient and relatives, and many more. On the other
side, the use of health care resources (the system/supply side) experiences also more
and more the pressure of efficiency: government budgets, scarce skilled resources,
logistics expenses, increased regulations, extremely expensive equipment, consider-
able environmental impact and production of hazardous outputs, etc. Also it became
clear that the adoption of a newly designed health care system depends on the
support it gets from the key stakeholders involved, e.g. the medical staff. All of
these contribute on top of the issues raised from the demand side, among others, to
a very complex design problem [5].

Typically the modelling of a health care system has been directed in a bottom up
way: adding more and more incremental improvements to the operational models
under study [6, 7]. In this paper we look at the health care design problem in a
more top down way: from a design point of view and not from a modelling point of
view as a starting point for our analysis. Health care systems need to excel on both
technical, economic, and a vast amount of human and social aspects. Due to the
multitude of stakeholders involved, it is a challenge to identify improvements for an
existing health care system or to design radically new health care systems leading
to an overall better societal, economic and technical performance. A patient-centred
design approach, instead of a disease-centred one, is expected to deliver such radical
steps forward [8]. Since there are a large amount of stakeholders in the health care
system, and significant budgets involved, radical changes cannot be realised by one
entity alone. A group-decision will preceed the adoption of a new system.

The starting point is a good understanding of the different stakeholders involved:
understanding what their needs are, the strength of these needs, how well they are
being served with the actual solutions, and what they will be needing more in the
future. Through stakeholder analysis and user research, as part of a human-centred
design approach, these insights can be gathered [9]. For complex systems with a
diversity of stakeholders such as most health care systems, we additionally apply
elements from the customer value chain approach [10]. It allows us to identify the
stakeholders and to map the impact of each stakeholder on the design elements
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of the health care system, which will eventually boil down to a bundle of product
and service issues. Our approach builds further on the insights more widely known
as value analysis, which also integrates the customer point of view in regular
commercial relationships as for instance in [11].

Narrowly defined, on the operational and incremental level an innovative health
care system can be designed or improved from the observed functional patient
need for care and other stakeholder’s requirements, which will be a combination
of both technical opportunities and economic feasibility. We suggest a broader but
complementary approach which is essential for more breakthrough innovations of
the health care system. The seminal point here is both the mission of the supplying
organization and the stakeholder’s impact on functional, emotional, financial and
decision making level as defined earlier. The supplying organisation is, e.g. a
hospital, where the specific health care subsystem, for instance an emergency unit, is
present. The mission statement and the values, define the position the organization
wants to claim in the balancing exercise between economic, technical and human
relevance. The translation of the mission fits in the multidimensional goals for the
health care system design. It results in system innovations based on stakeholders’
needs and the strengths and potential of the organization. Therefore, the evaluation
of a product/service innovation as part of a new health care system requires a
multidimensional approach, which is able to reflect this strategic alignment. In the
next section we introduce the example of an NMR scanning unit as to illustrate our
approach. Section 17.3 describes the integrated stakeholder approach built up from
both the demand and supply side of the health care system. Section 17.4 concludes
the paper.

17.2 Case Study: Redesign of NMR Scanning Unit

To illustrate the general idea of Sect. 17.1, we build upon an example from our own
past research, which deals with an effort to improve patient waiting times for a NMR
scanning department. In the sequel we review the case shortly. More in depth details
can be found in [12].

17.2.1 Initial Flow Model

The objective was to improve patient waiting times (backlog times) as the hospital
envisioned the patient lead time as primary key performance indicator for a
sustainable customer service and thus preserving the long term success of the
hospital. This objective was put forward without questioning about the impact
of various stakeholders. Like in many (re)design projects, it turned out that the
suggestions for operational improvements were valid but hardly implemented and
suffered from resistance of particular stakeholders.
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Fig. 17.1 The flow model
approach

Fig. 17.2 The flow model of
the NMR department

Both the supply side and the demand side have been modelled by use of a
queueing model as can be seen in Fig. 17.1. From Fig. 17.2 it can be understood
that the demand side consists of a patient flow represented by six classes. The flow
originates from both recommendations from physicians as well as from patient’s
own initiatives. Each class represents a family of scans with similar technological
characteristics:

1. Skull/foot/ankle SFA
2. Lumbal spine LS
3. Cervical spine CS
4. Shoulder/hip SH
5. Knee/wrist/elbow KWE
6. Rest (neck, breast, etc.) REST

Related to the supply side, per class, several scans are grouped to form a batch
for which a general setup is performed after which each patient undergoes his scan.

The overall objective was to minimize the aggregate weighted lead time over all
classes as a function of the six group sizes. The arrival process was modelled by
use of generally distributed inter-arrival times wherefore field data were collected
to obtain first and second moments. The same accounts for the setup and process
times. The modelling details can be seen in Fig. 17.3.
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Fig. 17.3 The flow model details of the NMR department

The outcome was that the by taking proper measurements and appropriate
managerial decision making in terms of batch sizing, the patient backlog could
be reduced from two weeks to one week and that the waiting times on the day
of scanning was about 1 h. The suggested improvements were not implemented,
the question remains why? Clearly, this queueing model did not take into account
the various stakeholder issues which made a proper implementation difficult. This
will be discussed in the next subsections. It should be clear that our queueing
approach can be replaced by any predicting (forward) flow modelling approach.
In the literature, simulation and systems dynamics are popular alternatives [4].

17.2.2 From Stakeholders Needs to the Design Problem Setting

The stakeholders for the NMR scanning process were identified based on a
stakeholder diagram which has been proven to be well understood in the health
care environment [13], it can therefore be applied for stakeholder identification and
participatory (re)design involving the medical staff.

Subsequently the stakeholders were mapped according to their role in the service,
either on the supply side (care giving) or on the demand side (care receiving) as
shown in Fig. 17.4. The service which is delivered by the NMR system is providing
information from radiologist to the doctor or GP and to the patient and his or her
close relatives. For each of the stakeholders, the nature of interaction during the
NMR scanning process is determined following a customer value chain analysis
[10]: functional, financial or decision making as shown in Fig. 17.5.
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Fig. 17.4 Stakeholder mapping derived from stakeholder diagram

Fig. 17.5 The stakeholder interaction diagram for the NMR design problem

It becomes clear that some stakeholders will be crucial for the effective imple-
mentation and proper functioning of the health care system, as they will interact
directly with the system and will experience its performance during the delivered
service. These stakeholders involve the patients, doctors and nurses. Other stake-
holders will have a financial interaction with the system and do not necessarily take
part in direct interaction. They will set restrictions to the system design in terms of
investments and cost of operation e.g. the insurance companies or social security
bodies in general. A third kind of stakeholder are those with a strong decision
power on the system design in terms of approving or rejecting a certain solution
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by the use of laws, rules or standards. They act as gatekeepers for the system design
and their aim can be the controlled acceptance of new technology with respect to
ethics or safety. The national health security organization is an example of this.
Stakeholders can interact on several levels at the same time, e.g. a patient interacts
on the functional and the financial level, but usually not on the decision level.
From this point on, the user research can be carried out. It will involve a mix of
qualitative research methods such as patient observations and interviews, in order
to gain empathy with the patients and other stakeholders involved. The resulting
insights deliver additional information to the technical data from the process.

In product design, a human-centred approach usually starts from the user needs,
usually the end-user, and takes a selection of other stakeholders into account.
The user is preferably actively involved from the earliest stages in the design
process, the idea generation phase throughout the concept definition and product
development, for concept testing and prototype validation [14]. When designing
a complex product/service system such as a health care system, a lot of different
stakeholders’ needs must to be taken into account simultaneously and conflicting
requirements need to be solved in the new service design [15].

At this point we notice that the patient’s decision power is sometimes quite
low compared to that of other stakeholders: medical staff, procurement managers,
nurses, family members of the patient, hospital board, governmental regulators
among others. As it is reflected in some of the WHO’s common set of domains
[2], such as “choice of care provider” and “respect for autonomy”, the patient’s
decision power is expected to become more important in future health care systems.
However, the impact of the patient on the functioning level of the health care system
is very high: most of the KPI’s for improvement of health and responsiveness of the
system are directly related to the patient.

The result of the user research will reveal the patient needs and stakeholder
insights to induce a holistic system design. The design process should actively
involve the stakeholders from the demand side and the supply side, and is based
on design thinking and participatory design [16, 17].

17.2.3 From Mission to Design goals

As declared in the hospital’s mission statement and institutional values,1 the hospital
under investigation strives for the highest quality treatment and care. Its central
values are patient kindness and safety. The engagement towards the patient comes
down to enhancing the patient’s quality of life on both physical and psychological
level, taking into account the uniqueness of each patient. Furthermore, the hospital
values the interaction with the supporting environment of the patient, i.e. his family

1http://www.jessazh.be/over-jessa/algemeen/mission-statement

http://www.jessazh.be/over-jessa/algemeen/mission-statement
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Fig. 17.6 The multi-dimensional KPI’s of the NMR design problem

and other caregivers. Logically, these elements are fully in line with the WHO’s
common health care system goals, but furthermore, they inspire the organization in
its daily operations.

The engagement from the hospital towards its employees, including doctors
focuses on creating a motivating working climate with room for self fulfillment.

The analysis of these means and beliefs as stated by the hospital, leads to a set of
high level aggregate KPI’s for system innovation, such as the redesign of the NMR
process, as depicted in Fig. 17.6. This figure is an adaptation of a methodology
developed for R&D portfolio management [18].

17.3 Health Care System Design via an Integrated
Stakeholder Approach

When we go down the road to the modelling effort behind the (re)design of
the system, we end up with rigorous modelling from Fig. 17.3 fully embedded in
the multi-dimensional design approach as depicted in Fig. 17.6. The KPI’s for the
design problem will be related to stakeholder’s needs and will generate ideas for
improved or new NMR systems. The integration is visualized in Fig. 17.7.

On the three main dimensions of KPI’s, each system concept is represented by
a set of inputs, limited resources, and outputs, desired outcomes. The flow model
calculates the relation between a subset of inputs and outputs from the technology-
pillar. The other inputs and output variables are the result of design activities. Many
of the human-related outputs will be measured by qualitative techniques from user
research and concept testing.
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Fig. 17.7 The integrated NMR design problem

Fig. 17.8 The integrated health care design problem

Note that even the original flow model’s objective of minimizing aggregate lead
time is only one aspect, part of the technical main goal of improving health. Also the
NMR equipment described by capacity, utilization and availability, is a myopic and
limited view of the NMR supply side and part of the health improvement main goal.

At this point we can expose an overview of the broader health care system design
and modelling process we propose. All steps are visualized in Fig. 17.8. The start
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is the current health care system were user and stakeholders insights and possibly
new technology, offer opportunities for improvement along the diverse KPI’s. The
decision making stakeholders put the limits to the solution space. The development
of new system concepts is followed by testing with the stakeholders, in short
iterative cycles, each time improving the concept. The technological modelling is
used as partial knowledge to model input and output characteristics of the health care
system concepts. The iterative design/model process step continues until a satisfying
validated system is reached, called a scenario. Each scenario is characterized by its
set of input and output variables. A number of scenarios are constructed, possibly
very diverse in the solution they offer to the design problem. We argue that a scenario
building methodologies can be useful here (see for instance [19] for a nice example).

As a single design will unlikely be championing on all dimensions, we expect a
couple of designs to be top of class and thus candidates for implementation. At this
point, a multi-criteria ranking method can be of great value to give insight into the
multiple dimensions of the decision problem. With the additional help of effective
infographics techniques, the final choice is usually made on the basis of a group
decision which can even take additional elements into account to make the ultimate
choice.

17.4 Conclusions

In this paper we revisited the (re)design of an NMR service system. The experience
showed a very weak willingness to implement the model based suggestions for
improvement. A major reason was the ignorant exclusion of major stakeholders
in the design process. Therefore a broader approach is put forward based on
stakeholder analysis and user-centred design. Based on this analysis, more mind
expanding design propositions can be put forward which will then be dealt with by
a multi-criteria decision method in order to select the best design. Additionally, the
early involvement of key stakeholders in the design process can lead to better fitting
designs and a higher willingness to implement the new service system. In this way
we believe that health care system design will have a much higher probability of
reaching the full-fledged implementation benefits for all stakeholders involved.

Future research enholds more formalization of the proposed approach and
application of the methodology to other health care system design problems of
which we have two in mind. One on the laboratory operations where samples
have to be analysed and turned into information back to the primary process from
which the samples were drawn (examples: clinical labs in hospitals and labs in
pharmaceutical companies). Here the challenge is to avoid a sole focus on lean lab
operations as to serve a predetermined customer service level. Another application
deals with the staffing decisions in an emergency department, where obviously
multiple stakeholders have their stake.
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Chapter 18
Epidemic State Estimation with Syndromic
Surveillance and ILI Data Using Particle Filter

Taesik Lee and Hayong Shin

Abstract Designing effective mitigation strategies against an influenza outbreak
requires an accurate prediction of a disease’s future course of spreading. Real time
information such as syndromic surveillance data and reporting of influenza cases
by clinicians can be used to generate an estimate of the current state of spreading
of a disease. Syndromic surveillance data is immediately available compared to
clinical reports that require data collection and processing. On the other hand,
syndromic data is less credible than the clinically confirmed case reports. In this
paper, we present a method to combine immediately-available-but-highly-uncertain
syndromic surveillance data with credible-but-time-delayed clinical case report
data. This problem is formulated as a non-linear stochastic filtering problem and
solved by a particle filtering method. Our experimental results on a hypothetical
pandemic scenario show that state estimation is improved by utilizing both data
sets than when using only one of them, but the amount of improvement depends
on relative credibility and length of delay of clinical case report data. This result is
explained with a preliminary analysis for a linear, Gaussian case.

18.1 Introduction

Designing optimal containment and mitigation strategies upon an epidemic outbreak
is of critical interest. The first step to designing a containment strategy is to
detect an outbreak of an epidemic and to predict the future course of spreading
of the disease. The magnitude and speed of the spread of an epidemic need to be
accurately estimated for public health authorities to develop mitigation strategies.
The capability to accurately predict the future course of an epidemic influenza is a
key to effective real-time decision making.
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Prediction of the future course of disease spread requires a high-fidelity disease
spread model that, given a current state of the spread of an epidemic, produces
quantitative estimates on how quick and severe it will be. Largely, there are two
approaches to model the spreading of an epidemic disease: equation-based models
and simulation-based models. Once we have a high-fidelity model for disease
spreading, we can build a variety of containment strategies into the model and assess
their effectiveness.

Quality of the prediction of an epidemic spread depends also on what we know
about the current state of the system. Information on the current state – i.e., how
many people have been exposed and infected as of today – is fed into an epidemic
model to identify the most likely scenario for the disease progress. If an estimate on
the current state is wrong, the prediction by even the most accurate epidemic model
will be wrong, leading to suboptimal responses. This paper addresses the problem of
state estimation for the spread of an epidemic influenza using a nonlinear stochastic
filtering technique.

A traditional source of information for the current epidemic state is Influenza-
Like-Illness(ILI) data from a government health agency such as Center for Disease
Control and Prevention (CDC) [3]. ILI refers to a medical diagnosis of a possible
influenza case. ILI data are gathered from healthcare providers as patients with
relevant symptoms visit hospitals and clinics. This data is used as an indicator for
the number of people infected with an epidemic flu. Although ILI data have some
uncertainty [6], it is generated from reports by physicians based on their medical
diagnosis, and thus can be considered a reasonably reliable indicator for the spread
of a flu. That said, there is one important shortcoming when using ILI data for
estimating a current state of disease spread. Generally, it takes 1–2 weeks to gather
and process data from a large surveillance network [1, 4, 6]. This 1–2 week’s lag
makes ILI data outdated by the time it is released. It does not provide a real-time
information on the current state of an epidemic.

Another source of disease spreading information is syndromic surveillance
data, which is recently getting significant attentions from research community
[1, 2, 4, 7, 12]. Examples of syndromic surveillance data includes school or work
absenteeism, over-the-counter drug sales, search engine queries as well as clinical
data [5]. With proper tools and systems, syndromic surveillance data can be made
available in almost real-time, which offers an advantage for making timely state
estimation. However, this data is based on the “syndromes,” including population’s
behavioral responses, and thus it has lower credibility than ILI data.

This paper proposes a method that can combine reliable-but-time-delayed ILI
data with less-reliable-but-real-time syndromic surveillance data to improve the
accuracy of estimation of an epidemic state. As the two sets of data compliment
each other, it is expected that combining the two will enhance estimation outcomes.
One of the tools commonly used for epidemic state estimation and prediction is a
recursive Bayesian state estimation technique [6,8,11,12]. Bayesian state estimation
assumes some knowledge on an underlying dynamic model, and recursively updates
the degree of belief in system states by using sequentially available observation
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data. For example, [12] uses a modified stochastic SIR model as a system model
along with an observation model based on [4], and formulates a Bayesian filtering
problem. Our method also uses a recursive Bayesian state estimation. Specifically,
we use particle filtering, a stochastic nonlinear filtering technique, to estimate the
size of infected population in a community when both ILI data and syndromic data
are available.

18.2 Epidemic Model

We consider a hypothetical outbreak of an epidemic, where two streams of obser-
vation information – syndromic surveillance data and ILI data – arrive sequentially.
Syndromic surveillance data is assumed to be immediately available but with high
uncertainty, while more reliable ILI data are delayed by a certain time lag.

We use a stochastic version of an equation-based epidemic model to describe
the spreading dynamics of an epidemic. Equation-based epidemic models typically
divide the population into a few compartments, and express the rate of increase
of each compartment by a set of non-linear ordinary differential equations. One of
the simplest models is the S-I-R model, where S, I, and R represents susceptible,
infectious, and recovered compartments. [12] presents a stochastic version of the
basic S-I-R model, which incorporates stochastic fluctuations:

ds
dt

=−β isν +σqξ ;
di
dt

= β isν − γi−σqξ +σγζ ; r = 1− s− i (18.1)

where s, i, and r are the sizes of each compartment normalized by the total
population. β represents the rate of infectious contacts, and γ is the recovery
rate, which is an inverse of an average infectious period for the disease. ν , σqξ
and σγζ are introduced to account for heterogeneity and stochasticity. ξ and ζ
are uncorrelated, white Gaussian noises with zero mean and a unit variance. For
the purpose of discussions in this paper, we simplify (18.1) by assuming that the
parameters in the model – β ,ν,σq,γ, and σγ – are all known constants.

By defining a state vector x = [s, i]T , we have a discretized, state-space model for
(18.1):

{
sk+1

ik+1

}
=

[−β iksν
k

(β iksν
k − γik)

]
Δ t +

[
σqξ
(−σqξ +σγζ )

]
Δ t (18.2)

Parameters in (18.2) assume constant values: β = 0.3,γ = 0.1,ν = 1.0, and σq =
σγ = 0.001.1

1We also tested cases with σq = σγ = 0.005. Results from those cases are similar to when σq =
σγ = 0.001, and not included due to the limited space.
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Fig. 18.1 Relationship between syndromic surveillance data (solid box) and ILI data (dotted box)

For a measurement model, we follow [12] to assume:

z = b ji
ς j +σw, jη j (18.3)

where j is an index to indicate different types of measurement data. For simplicity,
we also assume that b j and ς j are known constants, η j is independent Gaussian
noise with a unit variance, and σw, j is a known constant.

For measurement model (18.3), index j = 1 denotes syndromic surveillance data
and j = 2 for ILI data. We assume b j = 1 and ς = 1.0 for j = 1, 2. σw,1 and σw,2 are
used to represent reliability of the two data sets. σw,1, for syndromic surveillance
data, is set to 0.05, while σw,2 is varied in the range of 0.0005–0.1 to depict the
relative difference in reliability between the 2.

We assume that measurement data arrive with a fixed interval Δm, with each type
of data having an interval of 2Δm, arriving in an alternating sequence. An arrival
pattern for measurement data is shown in Fig. 18.1. ILI data have a fixed time-delay
of LΔm. Suppose that, at t = tNOW , zk is a measurement from ILI data reported
at the kth sequence. zk corresponds to the system state [s, i] at time tk, which is
(tNOW −LΔm).

Equations (18.1) and (18.3) serve as a system model and a measurement model
for particle filter formulation of our problem.

18.3 Problem Formulation and Particle Filter
Implementation

In this section, we briefly discuss the basics of standard particle filter technique, and
present its modification to handle out-of-sequence measurement(OOSM) data. For
more details on particle filter and OOSM particle filter, see [9, 10].

Particle filter is a recursive Bayesian filter that is particularly useful for non-
linear, non-Gaussian problems. This technique is commonly used for estimating
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the state of a dynamic system where the state variables are not directly observable.
A series of measurement data are combined with a known system model to update
belief on the true state of the system.

To formally describe the technique, consider a system whose dynamics is
described by the following system model: xk = fk−1(xk−1)+vk−1. xk denotes a state
vector at time index k, fk−1 is a possibly non-linear and time-varying function, and
vk−1 represents process noise. Suppose for this system a set of observable variables,
zk are measured, and zk is related to xk by the following observation model:
zk = hk(xk)+wk, where hk is a possibly non-linear and time-varying function, and
wk denotes measurement noise.

Let z0:k denote a series of measurement data up to k, then a recursive Bayesian
filtering seeks to construct a posterior pdf p(xk|z1:k) as an estimate for the true state
of the system. This is done in two stages – prediction and update. Suppose we know
a posterior pdf at k− 1, i.e. we know p(xk−1|z1:k−1). Prediction stage computes the
distribution of system state at k given z1:k−1 based on our knowledge of the system
model. In the update stage, a posterior density p(xk|z1:k) is computed as a product
of p(xk|z1:k) and p(zk|xk).

Particle filter carries out these steps by using a sample representation for a
posterior density p(xk|z1:k) as follows:

p(xk|z1:k)�
Ns

∑
i=1

ω i
kδ (xk− xi

k) (18.4)

where δ (x− xi) is 1 for x = xi and 0 otherwise. ω i
k is a weight assigned to sample

xi
k, and Ns is the number of samples (i.e., particles). Following the principle of

importance sampling, ω i
k can be written in a recursive form:

ω i
k ∝ ω i

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

0:k−1,z1:k)
(18.5)

where q(·) is an importance density, from which the samples xi
k are drawn.

Out-of-sequence measurements (OOSMs) refer to measurement data that arrive
with delay such that they represent the system state at some point in the past. Let
tk denote actual time instant for the kth measurement zk. When tk > tk−1, zk is
in sequence, and when tk < tk−1, then it is out of sequence. OOSM particle filter
provides a means to update importance weight ω i

k upon an arrival of an out-of-
sequence measurement, zk.

Suppose we have a series of in-sequence measurement data, z1:k−1, and at k, an
out-of-sequence data zk arrives. Let a and b denote the time indices right before and
after zk. That is, tb < tk < ta and a = b+1. [9] shows that the joint posterior density
p(x0:k|z1:k) can be written in the following recursive form:

p(x0:k|z1:k) = p(x0:k−1|z1:k−1)× p(xa|xk)p(xk|xb)p(zk|xk)

p(xa|xb)p(z1:k)
(18.6)
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With (18.6), we now have a weight update equation similar to (18.5).

ω i
k ∝ ω i

k−1
p(zk|xi

k)p(xi
k|xi

a,x
i
b)

q(xi
k|xi

0:k−1,z1:k)
(18.7)

It was shown in [9] that the optimal importance density function is
p(xi

k|xi
a,x

i
b,z

i
k). However, sampling form this optimal importance function is quite

difficult, and [9] suggests p(xi
k|xi

a,x
i
b) as a tractable approximation. This choice of

importance function reduces (18.7) to ω i
k ∝ ω i

k−1 p(zk|xi
k).

It turns out that for our problem, we have a more straightforward implementation
for the above OOSM particle filter framework. Here, we depart from the OOSM
particle filter algorithm of [9] and propose a modified version for two reasons.
First, applying [9] requires sampling from p(xi

k|xi
a,x

i
b,zk) or from its approximation

p(xi
k|xi

a,x
i
b). Neither is straightforward in our case due to the nonlinearity present

in the system model (18.1). Secondly, unlike general OOSM cases discussed in [9],
we assume a known and fixed amount of lag LΔm for the OOSMs. This eliminates
concerns for having to store the entire history of particles throughout filtering time
horizon. With the assumption of fixed lag, we only need to store particle history
from tNOW to (tNOW −LΔm).

A basic idea behind our OOSM particle filter approach is the following: when
we obtain a measurement for a past state, the best thing to do is to go back and
re-compute from the past point as if a set of in-sequence measurement data are
arriving. We call this approach a roll-back-and-update scheme. Our roll-back-and-
update scheme is described using Fig. 18.1. Suppose we have a posterior density
p(xk−1|z1:k−1) as a set of weighted particles {xi

k−1,ω
i
k−1}. We also have a past

history of particles back to xi
k−5. That is, at k− 1 (t = tk−1), we have updated

particles {xi
k−5,ω

i
k−5}, {xi

k−3,ω
i
k−3} and {xi

k−1,ω
i
k−1} using zk−5, zk−3 and zk−1.

Without the presence of OOSM data, this is exactly what we would get with a
standard particle filter. Now at k (t = tNOW ), we obtain an OOSM data zk. If we
ignore the previously computed xi

k−3 and xi
k−1 and set us back to tNOW −LΔm, we

simply have another instance of standard particle filtering: we have {xi
k−5,ω

i
k−5}

and a series of in-sequence measurements {zk,zk−3,zk−1}. xi
k−5 is propagated to find

xi
k−4, its weight ω i

k−4 is updated using zk, and the process continues to k− 3. Thus,
we can re-compute for each particle to update {xi

k−1,ω
i
k−1}. This process continues,

repeatedly updating a portion of history of the particles from k− 4 to k− 1.
A procedure of the algorithm used in this paper is summarized below:

• {xi
k−1,ω

i
k−1}Ns

i=1 is given, and zk arrives
• If zk is a syndromic surveillance data (i.e., an in-sequence measurement)

- Use a standard particle filter to compute {xi
k,ω

i
k}Ns

i=1

(continued)
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(continued)

• Else if zk is a clinical case report data (i.e., an out-of-sequence measure-
ment)

- From the stored particle history, retrieve {xi
k−L−1,ω

i
k−L−1}

- Given an in-sequence measurement {zk,zk−L+1,zk−L+3, . . . ,zk−1}, exe-
cute a standard particle filter to update {xi

k,ω
i
k}, {xi

k−L+1,ω
i
k−L+1},

{xi
k−L+3,ω

i
k−L+3}, . . . , {xi

k−1,ω
i
k−1}

- Sample xi
k using (18.2), and set ω i

k = ω i
k−1 to obtain {xi

k,ω
i
k}Ns

i=1

18.4 Experimental Results and Discussion

Our experiments have been motivated by a few simple questions: given two sets
of observation data – immediately-available-but-highly-uncertain data and credible-
but-time-delayed data, which one would yield a better state estimation? Will the
answer depend on the amount of delay? Would it be always better to use both sets
of data than using only one, and if so, how much?

We first generate a true state sequence, x0:T using (18.2) with the initial state
[s∗0, i

∗
0] = [0.99,0.01]. Measurement data is then generated according to (18.3).

Syndromic surveillance data and ILI data arrive each with a measurement interval
Δm = 10Δt . Figure 18.2 shows an example of true system state i(t) and the two
measurement data. In this example, measurement noise for syndromic surveillance
σw,1 = 0.05 and for ILI, σw,2 = 0.005. (For the rest of this paper, we use σsynd and
σILI instead of σw,1,σw,2.) ILI data, denoted by ‘∗’, has a lag of 50 time units.

For an initial prior, we use a uniform distribution such that i0 ∼ U(0,2i∗0) and
s0 = 1− i0. The number of particles Ns is 300, and particles are resampled at all
steps. A typical example of particle filtering results is shown in Fig. 18.3. On the
left, we use syndromic surveillance data (‘×’) only, and in the middle, only ILI data
(∗) with lag= 50 is used. Shown on the right is the estimation result when both
syndromic surveillance data and ILI data are used together.

Comparing the left and middle plots, we can see that the relative uncertainty of
syndromic surveillance data (σsynd = 0.05 > σILI = 0.005) manifests as a wider
range of particle distribution, i.e., larger variance of a posterior density, even when
ILI data has a non-trivial lag. When comparing the first two plots and the rightmost
plot, it is not readily visible whether such improvement exists when both sets of data
are used. To make these comparisons quantitative, we measure RMSE value taken
over a trajectory:

RMSE =
√

meank{(itrue
k − îk)2} (18.8)
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Fig. 18.2 An example of a trajectory of true state i(t) (solid line) and the two measurement data
(‘+’ for syndromic surveillance data and ‘∗’ for ILI data). ILI data arrives with a lag of 50 time
units

Fig. 18.3 Particle filter estimates a posterior density of true state p(xk |z1:k) as an approximate
density represented by a set of particles. At each k, ik of a set of resampled particles (equal weights)
are plotted along the vertical direction, and their mean value, îk is denoted by a circle. Solid line
shows a true trajectory of i(t). Filtering results are shown for: (Left) syndromic surveillance data
only, σsynd = 0.05; (Middle) ILI data with lag = 50, σILI = 0.005 (note that data points have been
shifted to indicate their actual measuring point); (Right) both syndromic surveillance and ILI data

We vary the amount of lag {0, 10, . . . , 140}, and test 6 levels of σILI = {0.001,
0.002, 0.005, 0.01, 0.02, 0.05} while fixing σsynd at 0.05. We run 20 replications
for each set of parameter values to obtain average RMSE over the replications. For
each case, we evaluate average RMSE under (1) using syndromic surveillance data
only, (2) using ILI data only, and (3) using both sets of data. Results are shown in
Fig. 18.4.
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Fig. 18.4 Average RMSE as a function of lag in the ILI data: σs = σi = 0.001;σsynd = 0.05;σILI =
0.001,0.002,0.005 (top left to right), 0.01, 0.02, 0.05 (bottom left to right); dotted line for a case
where only syndromic surveillance is used, dashed line for ILI only, and solid line for both sets of
data

Across all levels of σILI , the average RMSE displays a consistent pattern, and
we can make the following few observations.2 First, when using only ILI data
(dashed line), average RMSE monotonically increases. An intuitive explanation
for this monotonic increase is that for a given level of uncertainty, value of such
measurement information decreases as their acquisition is more delayed.

Second, the monotonic increase observed in the average RMSE seems to
approach a certain limit. This is particularly visible in the last subplot of Fig. 18.4.3

Again, we may offer an explanation based on intuition. A very large measurement
lag would make measurement information obsolete, and at an extreme, it will be
equivalent to having no (useful) measurement data at all. In this case, we will be left
with a system model only, and our estimation of system states will be as good as
the system model (its process noise). Thus, the average RMSE would approach to a
limit, which depends on the underlying process noise.

Third, the average RMSE when using the both measurement data stays below
the RMSE curves for single data case. While this is also rather expected – state
estimation using both data is better or at least as good as that of using only

2Dotted lines in six subplots of each figure are identical since it is not a function of σILI . They
remain to be more or less constant along the x-axis (lag) since it is not a function of lag either.
Slight variations visible in Fig. 18.4 are due to non-systematic causes.
3This asymptotic behavior is more visible in the cases of σq =σγ = 0.005, which was not presented
due to space limitation.
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Fig. 18.5 Average RMSE as a function of σILI for a fixed lag: σs = σi = 0.001;σsynd = 0.05; lag =
0,20,40 (top left to right), 60, 80, 100 (bottom left to right); dotted line for a case where only
syndromic surveillance is used, dashed line for ILI data only, and solid line for both sets of data

one set of data –, a closer examination suggests a more interesting behavior.
It approaches to the RMSE curve of ILI-only when the lag goes to zero and to the
syndromic-surveillance-only curve when the lag becomes very large. We also note
that the difference between min{RMSEsynd,RMSEILI} and RMSEsynd+ILI seems
to be maximized where the two RMSE curves of individual-data intersect. A
following hypothesis for this observation is possible: when the value of one of
the two sets of measurements dominates the other, benefit of using both sets of
measurement diminish and its state estimation is no better than when using the
superior measurement data. Using both measurement is most rewarded when the
two individual measurements have comparable value.

Figure 18.5 presents the same experimental results along σILI axis for a fixed lag.
It displays the same pattern observed in Fig. 18.4. As σILI gets small, the average
RMSE using both data sets (solid line) approaches ILI-only curve, and vice versa.
The benefit of using both sets of data appears to be maximized when the two RMSE
curves of individual data case intersect.

Recall that the first motivating questions for our work was “given immediately-
available-but-highly-uncertain data and credible-but-time-delayed data, which one
would yield better state estimates?” The experimental results suggest that it depends
on relative uncertainty and an amount of delay, which is reasonable to expect. The
second question was “would it be always better to use both sets of data than using
only one?” The answer seems to be not always so. It is advantageous to use both sets
of data when they have comparable values. Otherwise, it is only as good as using
measurement data of a higher value.
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All these results seem to indicate that there is a systematic mechanism behind the
patterns observed in the above figures. It certainly warrants further investigations
using analytic models to support the observations and conjectures mentioned above.
Below, we present a brief sketch on our preliminary analysis. While it needs further
extension and refinement, it shows a promising pathway to a precise analysis for
future work.

Consider the following simple model where we attempt to compute a posterior
density for a state variable x, p(x|z1,z2), given two types of measurements, z1 and z2.
For now, we assume a normal distribution for its prior, p(x), and likelihood, p(z1|x)
and p(z2|x). That is, p(x) = N(μ0,σ2

0 ), p(z1|x) = N(x,s2
1), and p(z2|x) = N(x,s2

2).
Let β0 denote a precision of N(μ0,σ2

0 ), i.e., β0 = 1/σ2
0 . Likewise, b1 = 1/s2

1 and
b2 = 1/s2

2.
A posterior density of x given a measurement z1 is written as p(x|z1) ∝

p(z1|x)p(x). Since we assume a normal prior and normal likelihood, we know
the posterior is also a normal density, N(μ1,1/β1), where β1 = b1 + β0 and μ1 =
(b1z1 + β0μ0)/β1. Precision of a posterior is improved by adding the precision of
a measurement, and its mean is an average of the prior mean and measurement
weighted by relative precision of each. Similarly, p(x|z2) ∝ N(μ2,1/β2) where
β2 = b2 +β0 and μ2 = (b2z2 +β0μ0)/β2.

When both measurement data are given, a posterior density can be written as a
factorized form: p(x|z1,z2) ∝ p(z1|x,z2)p(z2|x)p(x) = p(z1|x)(z2|x)p(x). Note the
conditional independence between z1 and z2 (i.e., z1 ⊥ z2|x) is used in the second
step. p(x|z1,z2) is a product of three normal densities, and it is straightforward to
see that it is a normal density N(μ12,1/β12) with β12 = b1 +b2 +β0. Thus, we have
the following results for the simple model:

σ2
1 = 1/β1 =

1
b1 +β0

=
1

1/s2
1 + 1/σ2

0

; σ2
2 = 1/β2 =

1
b2 +β0

=
1

1/s2
2 + 1/σ2

0

σ2
12 = 1/β12 =

1
b1 + b2 +β0

=
1

1/s2
1 + 1/s2

2 + 1/σ2
0

For a fixed value of s1 and σ0, we can compute σ2
12,σ

2
2 ,σ

2
1 by varying s2.

Figure 18.6 shows a plot of σ12,σ2,σ1 as a function of s2.
Now, let index 1 and 2 represent the syndromic surveillance data and ILI data,

respectively. σ2
1 is then a posterior variance given syndromic surveillance data only,

and σ2
2 for ILI data only. σ2

12 is a posterior variance when both sets of data are given.
Then, Fig. 18.6 is analogous to Fig. 18.5, and we see that the behavior observed in
the experimental results is almost exactly reproduced in Fig. 18.6. Using the formula
for σ2

1 ,σ
2
2 ,σ

2
12, it can be further shown that the benefit of using both sets of data

is maximized when σ1 = σ2, which is consistently observed in Figs. 18.4–18.5.
Hence, with some reservations on the assumptions made in the simplified model,
we see that the behavior exhibited by RMSEsynd+ILI curve is a logical consequence
of combining two sets of data within a Bayesian framework.
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Fig. 18.6 σ12(solid), σ2(dashed), σ1(dotted) as a function of s2

18.5 Conclusion

We study a problem of estimating current epidemic state by combining syndromic
surveillance data and ILI data through particle filtering. The two sets of data
compliment each other: syndromic surveillance data is immediately available but
contains large noise while more reliable ILI data is delayed by some lag in its
reporting process. Our experimental results show that using both sets of data is
advantageous only when informative value of the two data sets is comparable.
Preliminary analysis on a linear, Gaussian case suggests that this behavior is a
logical consequence of using a Bayesian stochastic filtering framework. Considering
there is a possible trade-off between timeliness and credibility of clinically validated
surveillance data, appropriate design of surveillance data collection and processing
is a valid optimization problem. We believe that understandings and insights as well
as the state estimation method presented in this paper will aid in such decision
makings for public health authorities.
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Chapter 19
A Decision-Making Approach Supporting
Hospital Drug Logistics

Anna Corinna Cagliano, Sabrina Grimaldi, and Carlo Rafele

Abstract The use of innovative technologies to improve the hospital drug
management process, and in particular its part concerned with logistics, needs
to be supported by appropriate decision-making models basing their assessments
on both technological issues and the characteristics of healthcare organisations. The
frameworks existing in literature are sometimes too complicated to guide towards
clear solutions, especially when scarce and/or qualitative information is available.
This work presents a new decision-making approach in order to provide hospital
managers with a simple but complete tool assisting in the selection of adequate
technologies to make drug logistics more efficient. Its first application to some of
the most diffused technologies is discussed.

19.1 Introduction

The today’s hospital mission of providing patients with an increased level of service
is faced with a very limited amount of resources, especially economic ones. In such
a context, a careful organisation of material, equipment, and information flows is
crucial to improve the healthcare performance while reducing costs [1]. In particular,
the logistics of drugs plays an important role because the associated purchasing and
managing expenditures have a high impact on budgets.

However, the hospital drug management process is currently affected by sig-
nificant limitations such as insufficient warehouse spaces, high inventory values,
expired products, ward demand that greatly exceeds the real needs, and reduced
time spent on clinical activities by healthcare operators [2, 3]. The awareness that
this process is still far from being optimised has induced national and international
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healthcare organisations to find and test alternative ways to improve drug logistics
[4]. In particular, a great variety of technologies, here intended as devices and
procedures provided within the healthcare system as it delivers health services [5],
have been introduced, many of them inspired by Just In Time (JIT) principles that
are already well-known in the manufacturing industry.

The use and dissemination of innovative healthcare technologies need to be
supported by appropriate evaluation models relying on an in-depth understanding
of their advantages and disadvantages and on a comparison with the peculiar
characteristics of the organisations at issue. Many conceptual frameworks existing
in literature can be useful to this purpose but they may be either too complicated to
guide towards clear solutions or not enough based on empirical evidence.

This work proposes a novel decision-making framework in order to provide
hospital managers with a simple approach assisting in a preliminary selection of
adequate technologies to make drug logistics more operationally and economically
efficient. The paper also discusses its application to a context that does not
implement any of the advanced solutions available for stocking, distributing, and
administering drugs. Then, benefits and limitations as well as future research
directions are highlighted.

19.2 The Hospital Drug Management Process

Drug management in hospitals is a cross-functional process that includes all the
activities from prescription to administration [6]. It starts with the physician’s
prescription in the patient record and its subsequent transcription in the medication
record. Every day nurses check the availability of the required drugs on the
medication cart and pick the missing ones from the ward inventory. After patient
identification, nurses read the associated treatment in the medication record, find
the necessary drugs on the cart, and administer them. In parallel to the clinical part
of the drug management process, nurses and administrative staff periodically check
the level of ward inventory, request products to the hospital pharmacy, receive and
stock them, and manage expiration dates. The hospital pharmacy in turn prepares
and delivers the products requested by wards, monitors its level of inventory, and
orders and receives drugs from suppliers.

This hospital drug management process suffers from several criticalities. Drugs
are often stocked without a precise codification and a same product may be placed
in multiple inventory positions, thus determining an inefficient space utilisation
and making it difficult to apply a First-In-First-Out (FIFO) rule. A poor control
over actual consumption, together with the unpredictability affecting healthcare
demand, causes high inventory levels both at wards and in hospital pharmacies, with
considerable holding costs, obsolescence risk, and an ultimate negative effect on the
hospital service level. In addition, drug requesting to the hospital pharmacy is usu-
ally performed independently from prescription and administration and quantities
are determined based on personal experience and knowledge and not on formalised
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inventory management models. Furthermore, nurses tend to be overly involved in
logistics duties reducing the time available for clinical activities [7]. Finally, a
number of errors related to prescription, transcription, interpretation of treatments,
distribution from the hospital pharmacy to wards, and administration may originate
from a not optimised drug management process [8]. Adverse drug events (ADEs)
are connected to incorrect drug handling in the whole drug management process,
being the 70–80% of clinical risk related to therapy prescription, transcription, and
administration and the remaining 20% influenced by the preparation and distribution
of drugs.

Therefore, a process re-engineering aimed at rationalising the flow of materials
and replacing a high level of inventory with an enhanced availability of accurate
information can benefit hospitals from both the organisational and the medical
perspectives.

19.3 Main Technologies for Improving Hospital
Drug Logistics

Literature proves that the JIT philosophy is particularly suitable to overcome the
weaknesses of the logistics part of the hospital drug management process [9].
Table 19.1 presents the most diffused technologies to ensure the so-called “five

Table 19.1 Main technologies for hospital drug logistics

Technology Definition Reference

Kanban Systems Mobile cabinets that are periodically
replenished to their maximum level of
stock based on actual consumption

[7]

Automated Dispensing Cabinets
and Carts

Cabinets whose drawers are opened through
operators’ electronic identification. Carts
equipped with laptops and barcode or
Radio-frequency identification (RFID)
readers

[10]

Computerised Physician Order
Entry Systems

Physicians’ prescriptions are recorded on
laptops or palmtops and may be associated
with patients by scanning their
identification wristbands

[6]

Unit Dose Drugs are packed in single doses, each of them
identified by a barcode

[11]

Personalised Dose The pharmacy combines the single doses of
drugs in packages containing the therapy
for each patient according to medical
prescriptions

[3]

Automated Patient
Identification

Wristbands equipped with barcodes or RFID
tags worn by patients and nurses to allow
their identification

[12]
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rights”, that is the right drug, to the right patient, at the right time, in the right dose,
and in the right way. They will be used to illustrate the developed decision-making
framework.

19.4 A Decision-Making Framework to Assess
Technologies for Drug Logistics

In order to assist in a first selection of technologies supporting the hospital
drug management process the authors, in collaboration with a panel of clinical
(physicians and nurses) and engineering (logistics and information systems) experts
from a number of Local Healthcare Agencies in Northern Italy, developed an
approach taking into account not only pure technological features but also specific
elements concerning the hospital environment. The following sections describe the
proposed framework as well as the results of its first application.

19.4.1 The Proposed Framework

The framework to assess technologies is founded on comparison aspects and
weights expressing the importance of each aspect. To be more precise, four different
aspects are considered: each of them is further detailed in sub-aspects (for a total of
23 sub-aspects) that can be more easily estimated by people working in healthcare
organisations. A review of the existing literature suggested taking into account
technological and organisational requirements, economic factors, and the impacts
of the reduction of clinical errors. Following the list of aspects and sub-aspects.
The latter were determined based on the knowledge and experience of the panel of
experts.

• Information technology: adaptability to existing technology systems (I1), trace-
ability of information (I2), rapidity of implementation (I3), independence from
suppliers’ technical support (I4) [12].

• Organisational: easiness of implementation (O1), physician time reduction (O2),
nursing time reduction (O3), space reduction and order (O4), reversibility of
technological solutions (O5) [13].

• Economic: limited investment (E1), rapid return of the investment (E2), inde-
pendence from suppliers’ financial solidity (E3), reduction in drug consumption
(E4), reduction in ward inventory (E5), reduction in expired products (E6),
reduction in operational staff (E7), significant reduction in premium (E8) [13].

• Risk management: prescription (R1), understanding, and transcription of thera-
pies (R2), management of ward cabinets (R3), therapy preparation (R4), patient
identification (R5), therapy administration (R6) [8, 13].
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Table 19.2 Rating scale for the semi-quantitative analysis

Rating scale No impact Low negative
impact

Medium negative
impact

High negative
impact

\ − −− −−−
No impact Low positive

impact
Medium positive

impact
High positive

impact
\ + ++ +++

Table 19.3 Weights of aspects

Information
technology Organisational Economic

Risk
management

Scenario 1 0.25 0.25 0.25 0.25
Scenario 2 0.1 0.20 0.30 0.4
Scenario 3 0.1 0.1 0.3 0.5

Since no specific and complete data about experiments on this issue are currently
available from Italian healthcare institutions, the comparison between candidate
technologies for the drug management process is performed by using both a
qualitative and a semi-quantitative approach.

The aim of the first analysis is making a qualitative assessment of the effects
technologies may have on the considered comparison aspects. This allows a
preliminary differentiation among technologies and their potential applications. To
be more precise, a “Yes” assessment means a positive impact of a technology on a
specific sub-aspect, a “No” assessment means a negative impact of a technology on
a sub-aspect, and an “Indifferent” assessment indicates that a technological solution
does not impact a given sub-aspect (see the application of the framework, first part
of Tables 19.4 and 19.5).

Once the qualitative assessment is complete, the analysis is detailed by associat-
ing a semi-quantitative evaluation of the impact to each technological solution and
sub-aspect (see the application of the framework, second part of Tables 19.4 and
19.5) according to the symbols in the rating scale presented in Table 19.2.

Thus, the more positive the impact of a technology on the aspects included in
the proposed decision-making approach, the higher its score. Similarly, the more
negative the impact, the lower its score. An indifferent assessment expresses that
the introduction of a new technology does not change the existing situation.

Then, in order to allow a robustness analysis of the results, weights are assigned
to the four aspects in the framework. As an example, Table 19.3 shows three
possible scenarios. In the first scenario all the weights are set equal to 25%,
while in the other two ones more importance is given to the Economic and Risk
management aspects due to the attention these issues are recently receiving in
healthcare environments [13].

In order to keep the method as simple as possible, the score of a technology in
each comparison aspect is calculated by adding up positive and negative symbols
in the related sub-aspects. Each symbol is associated with a value ranging from +1
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to +3 according to the number of plus signs, in case of a positive impact, and with
a value from −1 to −3 according to number of minus signs, in case of a negative
impact. An indifferent assessment is associated with the value 0. The score thus
obtained is multiplied by the weight corresponding to the aspect. Finally, the total
score of a technology is obtained by adding up its weighted scores for all the aspects
of the framework.

Of course, although the structure of the decision-making approach is general,
the values assumed by the qualitative and semi-quantitative assessments and by the
weights are strictly related to the peculiar characteristics of the drug logistics process
where it is applied as well as to the process phases supported by the technologies
under investigation.

19.4.2 First Application of the Framework

As a first test, the developed decision-making approach was applied to a hospital in
Northern Italy where none of the technologies for improving hospital drug logistics
introduced in Sect. 19.3 were in use. Thus, the primary aim of such hospital was
having a preliminary understanding of what of these solutions could be potentially
suitable.

Tables 19.4 and 19.5 present the qualitative and semi-quantitative assessments.
According to the data and information collected and processed, the Kanban
technology turns out to be the dominant choice in each of the scenarios pre-
sented in Table 19.3 as far as the Information Technology, Organisational, and
Economic aspects are concerned. Unit Dose, Personalised Dose, and Automated
Patient Identification report negative values in the Information Technology and
Organisational aspects. This means that the implementation of such systems may
initially generate disadvantages/problems and/or inefficiencies associated with their
use. As regards the Risk Management aspect, the scores obtained in Table 19.5 are
more homogeneous: Personalised Dose reveals to be the dominant technology in
each scenario followed by Computerised Physician Order Entry Systems and Unit
Dose. Unlike in the previous aspects, the Kanban technology turns out to be the
worst solution compared to the other drug management systems.

Table 19.6 highlights the total scores of the different technologies in the three
scenarios. Scenario 1 shows that the Kanban technology is the dominant one: this is
due to the weights that are equal in each aspect. Instead, Personalised Dose, Com-
puterised Physician Order Entry System, and Automated Patient Identification total
nearly the same values, therefore they can be regarded as comparable. Automated
Dispensing Cabinets and Carts as well as Automated Dispensing Cabinets with
Drawers appear to be outclassed by the other technologies. Looking at scenario
2 and scenario 3, the Kanban technology is no more the dominant solution but
Personalised Dose reports the highest score. Unit Dose and Computerised Physician
Order Entry Systems can be considered as equivalent. The situation of Automated
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Table 19.6 Summary of the comparisons among single technologies

Technology Scenario 1 Scenario 2 Scenario 3

Kanban Systems 7 6.5 6
Automated Dispensing Cabinets and Carts 2 2.6 2.8
Automated Dispensing Cabinets with Drawers 3.25 4.3 4.9
Computerised Physician Order Entry Systems 4.75 5.9 6.7
Unit Dose 3.5 5.9 6.8
Personalised Dose 4.75 7.3 8.3
Automated Patient Identification 4.25 5.3 6.1

Table 19.7 Summary of the comparisons among technology mixes

Technology mix Scenario 1 Scenario 2 Scenario 3

Computerised Physician Order Entry
Systems+Kanban+Automated Patient
Identification

16 17.7 18.8

Automated Dispensing Cabinets and
Carts+Computerised Physician Order Entry
Systems+Automated Patient Identification

11 13.8 15.6

Automated Dispensing Cabinets with
Drawers +Computerised Physician Order Entry
Systems+Automated Patient Identification

12.25 15.5 17.7

Computerised Physician Order Entry
Systems+Unit Dose+Automated Patient
Identification

12.5 17.1 19.6

Computerised Physician Order Entry
Systems+ Personalised Dose+Automated
Patient Identification

13.75 18.5 21.1

Dispensing Cabinets and Carts and Automated Dispensing Cabinets with Drawers
does not change compared to scenario 1: they are again dominated by the other
technologies.

The assessment of individual technologies helps understand and compare their
strengths and weaknesses but the assessment of combinations of them is even more
important when choosing among possible solutions because each technology covers
just a partial phase of the drug management process and a complete control over it
implies adopting more than one technology.

For this reason, the possibility of combining together single technologies was
explored (Table 19.7). Again to keep the approach simple, semi-quantitative scores
for combinations of technologies were obtained by summing up the scores of the
single technologies in the mix. According to the collected data, the mix of the
Computerised Physician Order Entry Systems, Kanban, and Automated Patient
Identification technologies emerges to be the best option for the Information
Technology, Organisational, and Economic aspects. This emphasises the fact that
such mix is quite interesting from different points of view. The other four tech-
nology mixes report very similar scores in these aspects and reveal comparable
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characteristics. The main reason why the mix of the Computerised Physician Order
Entry Systems, Kanban, and Automated Patient Identification technologies is the
dominant solution is the fact that the Kanban technology does not need too many
pieces of information and economical resources and has a low impact on the
organisation of hospital activities.

As far as the Risk Management aspect is concerned, the mix of Computerised
Physician Order Entry Systems, Personalised Dose, and Automated Patient Identi-
fication technologies is the solution that totals the highest score.

Table 19.7 highlights that in scenario 1 the combination of Computerised
Physician Order Entry Systems, Kanban, and Automated Patient Identification
technologies outclasses the other solutions which on the contrary report quite similar
scores. In scenarios 2 and 3 the mix of Computerised Physician Order Entry Sys-
tems, Personalised Dose, and Automated Patient Identification technologies reveals
to be the dominant solution due to the greater importance given to the Economic
and Risk Management aspects. The mix of Computerised Physician Order Entry
Systems, Automated Dispensing Cabinets with Drawers, and Automated Patient
Identification technologies is a dominated solution in scenarios 1 and 2, whereas
in scenario 3, where the weight assigned to the Risk Management aspect becomes
considerable, the difference between its score and the ones of the other solutions
is much reduced. Finally, the mix of Automated Dispensing Cabinets and Carts,
Computerised Physician Order Entry Systems, and Automated Patient Identification
technologies results to be the least interesting option in any scenario.

19.4.3 Analysis of Results

Looking at single technologies, the analysed solutions can be adopted in different
phases of the drug management process. Computerised Physician Order Entry
Systems and Automated Patient Identification can be placed at the two ends of the
process: physician’s prescription and administration by nurses. These two activities
generate the information flow along the process, allow its control, and have a key
role in increasing patient safety. Moreover, Computerised Physician Order Entry
Systems influence inventory and consumption management because they enable
the knowledge of the actual drug demand, which can be used by the hospital
pharmacy to supply wards with an appropriate quantity of materials. However,
such technologies do not ensure the synchronisation between drug demand and
consumption having no impact on the monitoring of stocks from the hospital
pharmacy as far as patients. Computerised Physician Order Entry Systems and
Automated Patient Identification can be introduced with limited financial efforts
but they largely influence physicians’ and nurses’ activities. For this reason,
they need a strong involvement and commitment of personnel in order to avoid
resistance to change that could prevent their successful applications. Finally, these
two technologies are very versatile and can be integrated with other solutions.
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The remaining technologies that have been investigated may be considered as
partially alternative systems for a correct inventory management, with a minor
impact on the reduction of clinical risk.

Two of the studied mixes of technologies can be mentioned: Computerised Physi-
cian Order Entry Systems, Kanban System, and Automated Patient Identification
and Computerised Physician Order Entry Systems, Unit/Personalised Dose, and
Automated Patient Identification. The first mix is relatively simple but is able to
cover all the phases of the drug management process. It supports the management of
the information flow, clinical risk reduction, and the monitoring of ward inventory
by the pharmacy thanks to the Kanban system. Although not directly impacting
on patients, the Kanban approach is a storing alternative to traditional cabinets
that allows a first monitoring of the information flow related to drugs with a very
limited investment. Conversely, the second mix is the most sophisticated one from
a technological point of view but it ensures the best performance in terms of risk
reduction and control of the drug flow from the hospital pharmacy to patients.

The application of the proposed decision-making approach provided the case
hospital with an understanding of the benefits and drawbacks of possible tech-
nologies to improve drug logistics. Its outcomes will support more sophisticated
assessments to choose the specific solutions that should be implemented.

19.5 Discussion and Conclusions

The proposed framework aims to support decision-making about the different
solutions improving hospital drug logistics with respect to multiple comparison
aspects. Being developed by experts working in the healthcare sector and tested
in a hospital, it is particularly appropriate to be applied to real environments.
Also, the approach enables a simple but complete analysis of technologies and is
straightforward and intuitive and, thus, suitable for those situations where scarce
information is available and the use of more complicated approaches would not
be possible. The two phases of the methodology, qualitative and semi-quantitative
analysis, can be applied to extremely different informational contexts, assuring a
great flexibility. The structure of the framework, made up of heterogeneous aspects
and sub-aspects, allows taking into account the main perspectives on the issue and
prevents from neglecting some of them. Finally, assigning weights to comparison
aspects makes possible to give each of them the correct importance, according to
the goals of specific healthcare organisations.

However, the developed approach suffers from some limitations. First, it provides
a semi-quantitative assessment that heavily relies on subjective knowledge and
experience. Second, it just gives a preliminary knowledge about potential technolo-
gies that could be adopted and requires to be used together with more specific and
objective methods to make a final decision. Finally, although its first application
yielded consistent results, it needs a systematic test in multiple situations in order to
identify the necessary refinements. Therefore, future research efforts will be directed
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towards applying the approach to a wide range of hospital cases, including situations
where some technologies to improve drug logistics have been already implemented.
This could bring changes in either the number or the nature of the aspects and
sub-aspects considered by the framework that could ultimately contribute to a more
effective decision-making.

References

1. Landry, S., Philippe, R.: How logistics can service healthcare. Supply Chain Forum Int. J. 5(2),
24–30 (2004)

2. Nathan, J., Trinkaus, J.: Improving health care means spending more time with patients and
less time with inventory. Hosp. Mater. Manag. Q. 18(2), 66–68 (1996)

3. Rafele, C., Grimaldi, S.,: Aspetti organizzativi nella gestione del farmaco in ambito
ospedaliero. In: Agenzia Regionale Socio Sanitaria del Veneto (ed.): Governo del farmaco:
elementi organizzativi e tecnologie. Esperienze a confronto, Il Pensiero Scientifico Editore,
Rome (2009)

4. Mustaffa, N., Potter, A.: Healthcare supply chain management in Malaysia: a case study.
Supply Chain Manag. Int. J. 14(3), 234–243 (2009)

5. Velasco Garrido, M., et al.: Developing health technology assessment to address health care
system needs. Health Policy 94(3), 196–202 (2010)

6. Wentzer, H.S., et al.: Unintended transformations of clinical relations with a computerized
physician order entry system. Int. J. Med. Inform. 76S, S456–S461 (2007)

7. Persona, A., Battini, D., Rafele, C.: Hospital efficiency management: the just-in-time and
Kanban technique. Int. J. Healthcare Technol. Manag. 9(4), 373–391 (2008)

8. Cunningham, T., et al.: Impact of electronic prescribing in a hospital setting: a process-focused
evaluation. Int. J. Med. Inform. 77, 546–554 (2008)

9. Baum, N.H.: ‘Just in time’ means more dimes in your pocket: stocking only what your practice
needs takes careful planning, but offers big savings. (The Bottom Line). Urology Times 34(1),
28 (2006)

10. Paparella, S.: Automated medication dispensing systems: not error free. J. Emerg. Nurs. 32(1),
71–74 (2006)

11. Fontan, J.-E., et al.: Medication errors in hospitals: computerized unit dose drug dispensing
system versus ward stock distribution system. Pharm. World Sci. 25(3), 112–117 (2003)

12. Nanji, K.C., et al.: Overcoming barriers to the Implementation of a pharmacy bar code scanning
system for medication dispensing: a case study. J. Am. Med. Inform. Assoc. 16, 645–650
(2009)

13. Lampe, K., et al.: The HTA core model: A novel method for producing and reporting health
technology assessments. Int. J. Technol. Assess. Health Care 25(2), 9–20 (2009)



Chapter 20
Analyzing the Impact of Lean Approach
in Pharmaceutical Supply Chain

Alberto Portioli Staudacher and Alice Bush

Abstract Pharmaceutical industry is experiencing a time of change because of
several reasons. This time of change has generated new needs as efficiency and
effectiveness. Pharmaceutical Supply Chains need to compete in their industry and
the attention paid to those issues is continuously increasing. Some studies have been
conducted for this research line, but many of them are non-mathematical and non-
numerical studies. The aim of this paper is to present a modeled Supply Chain to
understand how Lean Approach can impact on the Pharmaceutical Supply Chain. In
fact we implemented some Lean practice along the Supply Chain and we measured
the obtained performances.

20.1 Introduction

The Pharmaceutical industry has been defined as the complex of processes, opera-
tions and organizations involved in the discovery, development and manufacture of
drugs and medications [1].

Pharmaceutical Industry today is experiencing a time of change because of
several reasons: reduction of healthcare drug budgets, increased costs to put new
medicines on the market, harder global competition and increased cost along the
Supply Chain [2]. Thus the Pharmaceutical industry is under tremendous pressure
to improve all the related business.

This research field is becoming more and more relevant for all the players
involved in this industry, because the whole Chain needs to be efficient to stay
competitive in the Pharmaceutical industry.
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On the other hand, today to improve performances in terms of effectiveness and
efficiency in a specific Company, working on its internal operations is not enough.
An open issue is to improve performance along all the stages of the Supply Chain.

As a contribution of the new challenges of Pharmaceutical Industry, in this paper
we will present a modeled Pharmaceutical Supply Chain and we will propose the
Lean Approach to answer to the new Industry’s needs.

20.2 Literature Review

In 2012 Narayana, Pati and Vrat published a literature review of Pharmaceutical
Industry showing the major issues of this contest. The authors collected articles
published from 1999 to 2009 and they genereted a classification of these studies
in two general categories : non-behavioural studies (64% of the collected litera-
ture, 304 studies) and behavioural studies (36%, of the collected literature, 304
studies). Considering only the non-behavioural studies, Narayana, Pati and Vrat
highlight that the most addressed issue are The Pricing & Medical Expenditures
contributing with 21.7%, R&D and Supply Chain Management, with 10.1% and
9.2% respectively.

The number of articles about SCM in Pharmaceutical Industry is 34 and it’s
interesting to notice that half of them have been published in the last 2 years of the
considered period, indicating an increasing interest on this topic.

Narayana, Pati and Vrat also show that the case study is the most frequently used
methodology in studying Supply Chain managerial issues in the Pharmaceutical
industry. The second one is mathematical modelling and data analysis. The interest
in the mathematical methodology is increasing in the last years in this particular
sector; this is due to the new need to finding some principles to improve the whole
system [3].

In the United States a Securities and Exchange Commission (SEC) intervened
in the US Pharmaceutical SCs, catalysing the adoption of Information Sharing
Approach along the Chains. This caused a significant inventory reduction along the
Supply Chains for Pharmaceutical products [4]. The distributors used investment
buying to gain higher margins and then the performances along the whole Supply
Chains were un-efficient. The investment buying was replaced with a fee for
service model [5] with inventory management agreements. Indeed Pharmaceutical
distributors receive fees from manufacturers for the distribution services that the
distributors provide.

Other authors investigated the impact of information sharing Approach on
Supply Chain performances (see [6, 7]) showing a significant impact on the
inventory level reduction.

But information sharing is not always applicable; therefore it is interesting to
investigate the impact of alternative approaches.

Lean management represents one of the most effective practices to improve
systems, in general, and to reduce inventory, in particular.



20 Analyzing the Impact of Lean Approach in Pharmaceutical Supply Chain 255

A study carried out by Robert E. Spector [8] represents the Lean implementation
in the Pharmaceutical industry. The performance index measured has been the
inventory turns as it indicates how the company is improving its processes.

Spector concluded that there wasn’t a significant overall improvement. Spector
claimed that the poor results were due to the fact that Lean was implemented in only
one stage of the Supply Chain, rather than at all stages.

In this study we want to deepen the knowledge on the possible impact of adopting
Lean Approach in a Pharmaceutical Supply Chain, and to find a possible explanation
why Lean is not widely implemented at the Supply Chain level.

In particular, we want to understand the impact of adopting Lean at one stage
only, in the Supply Chain, and the impact of adopting Lean at all stages. In order to
do so, we built a simulation model of a typical Pharmaceutical Supply Chain, and
we simulated the impact of two Lean Practices: reducing order and production batch
sizes and focusing on the flow, by adopting a FIFO rule at all stages, rather than a
rule focusing on the single stage efficiency, as, for example, minimum setup.

20.3 The Model

20.3.1 The Modeled Supply Chain

A common Pharmaceutical Supply Chain is composed by Primary Manufacturers,
Secondary Manufacturers, Distributors, Retailers and/or Hospitals [1].

The Primary Manufacturer is in charged to produce the active ingredient (API or
AI). The characterizing processes are chemical synthesis and separation stage. The
secondary Manufacturer add to the Primary Manufacturer’s output the “excipient”,
we can summarize the principals processes as granulation, compression, coating,
quality control and packaging [1] (Fig. 20.1).

Fig. 20.1 The modeled Supply Chain



256 A.P. Staudacher and A. Bush

We focused on the upstream section of this Supply Chain. There are four different
Primary Manufacturers; each one handles a different product line. Every product
line is made by six products and differs, from the others, for the input demand.

Each Primary Manufacturer supplies not only this Supply Chain but also others;
therefore there is an interaction with other products feeding others Supply Chains.
There is no constraint in the availability of raw material. Downstream of the Primary
Manufacturers there is a Secondary Manufacturer processing all products and its
capacity is fully dedicated to this Supply Chain. Downstream of the Secondary
Manufacturer there is a Distributor facing end retailers’ and hospitals’ demand. Each
stage of the Supply Chain is decoupled by an input buffer and an output buffer.

The production stages have set ups to change from a product to another and set
ups are shorter if the two products appertain to the same product line, longer if they
appertain to different product lines. The orders’ processing times are deterministic;
they’re different for each product and for each stage. When orders are queued to
a production stage they’re dispatched with a minimum set-up rule, both for the
Primaries and the Secondary manufacturers. The value of the processing times is
set in order to ensure a saturation index of 89% in stage 1 and 85% in the stage 2.

For the sake of simplicity Production processes have no downtimes due to
failures, lack of information or other causes. The deliveries between the different
stages are carried out by trucks with limited capacity and the transportation times
are deterministic. In the modeled system it’s assumed that the trucks cannot move
unless a minimum quantity of materials to transport is reached, in order to limit the
transportation cost.

As in Chen et al. [9] and Lee et al. [7] we have used the following formula to set
the average final customer demand faced by the Distributor:

Dt = k+ρ ∗D(t−1) + ε ∗ γ

Where:

k Is a nonnegative constant?
Dt Is the demand in period t (t= 1, 2000);
ρ Is the correlation parameter; in this study ρ= 0, 7 (See [7, 9])
ε*γ Variability factor
ε Parameter normally distributed with mean 0 and variance σ2.
γ Experiment parameter; in this study 1≤ γ≤ 2

20.3.2 The Supply Chain Planning Model

The logic that governs each stage is simple: each stage receives an order from the
stage downstream and satisfies it from stock. Each stage decides individually when
to place an order to the stage upstream and the quantity of each order.
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In this model all the stages use an EOQ policy as in Gavirneni et al. [6], Lee et al.
[7], Chen et al. [9], to define when to order and how much to order. The logic used
considers the delivery times and the production lead times together with the demand
faced by the different stages in order to calculate the order batches.

When a customer order arrives to the Distributor, if he has enough availability
of stock fulfills completely the incoming order, otherwise the order is backlogged
and is fulfilled only when there will be enough stock. If the order is satisfied from
stock, a control on the inventory position of this buffer is carried out. If the inventory
position is below the order level, the Distributor places an order to the Secondary
manufacturer. The order is satisfied from the Secondary Manufacturer output buffer
and the inventory position is checked. If it is below the order level, then a production
order is generated and queued at the Secondary Manufacturer stage. Next order
to produce is selected according to the minimum setup rule (setups are sequence
dependent). The production batch size is set equal to 1 week of average demand.

When a production order is manufactured the required material is taken from the
input buffer, and the inventory level checked. If the level is below the order level, an
order is placed to the stage upstream: the output buffer of the Primary Manufacturer
of that product line.

The same mechanism is applied by the upstream stages PM1 (Primary Man-
ufacturer 1), PM2, PM3, and PM4. The production batch size for the Primary
Manufacturers is fixed as 2 weeks of average demand. The Primary Manufacturers’
input buffers are fed up by a Supplier who has an infinite capacity.

For each buffer the inventory position is calculated as follows:

Inventory Position = Stock in the bu f f er+Orders placed to the stage upstream
but not yet arrived−Order received by the downstream stage,but not delivered
yet (Backlogged orders)

20.3.3 Design of Experiment

In this chapter we will present the model’s parameters and the design of the
experiments set up to analyze the impact of Lean Approach on the Supply Chain. In
particular we decided to investigate the impact of set-ups and batch sizes reduction
and the impact of reducing the Lead Time variability.

We adopted a discrete-event simulation study because it allows a detailed
replication of the behavior of the Supply Chain even under complex configurations
and scenarios.

To determine the simulation run length we used the procedure described by Law
and Carson [10]. The initial warm-up period was calculated via Welch procedure
[11]. The simulation run time as been set to 2,000 days with a warm-up period of
500 days those are not considered during the collection of the statistics. For every
tested experiment we made 10 runs with the same parameters but different stochastic
numbers, in order to increase the confidence of the results.
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Table 20.1 Parameters of simulated model

PM1 PM2 PM3 PM4 SM

Order processing time (min) 0.662 0.662 0.662 0.662 0.931
Mean set-up time (min) 20.17 20.17 20.17 20.17 25.17
Production capacity dedicated to the Supply Chain 35% 35% 35% 35% 100%
Daily available time for production (hours) 8 8 8 8 8
Transportation time to downstream stage (hours) 16 16 16 16 8
Minimum number of units to start the truck 150 150 150 150 50

To allow an easier comparison of different experiments, we defined a desired
service level of 96% and for every experiment we set the order level of each buffer
as the minimum quantity in the system to reach this performance target. The most
important output of the simulations is the inventory level as in Gavirneni et al. [6]
and Lee et al. [10].

The following table present the values of the parameters in the Supply Chain
(Table 20.1).

20.3.3.1 Set-Ups and Batch Sizes Reduction

To investigate the impact of making the system more flexible we decreased the set
up times and we reduced the production order batch sizes by the same percentage
so the overall capacity saturation remains the same, but the system becomes more
flexible.

This reduction of set-ups is one of the most important point of the Lean Approach
as depicted by Silva et al. [12]. We have tested set-ups reduction ranging between
20% and 45% to both Primary and Secondary Manufacturers.

We tested the impact of reducing set-ups and batch sizes only at the Primary
Manufacturers, then only at the Secondary Manufacturer and finally to both stages
simultaneously. Finally we investigated the impact of these changes under three
different demand variability condition: low, medium and high.

Plan of the first set of the experiments is depicted in the following table
(Table 20.2).

20.3.3.2 The Impact of Production Order Sequence Practice: FIFO
Versus Minimum Set-Up

The second aspect of Lean Approach we tested is to move the attention from
the single stages to the flow. Minimum set-up practice allows an increasing
performances to the single stage, while FIFO practice allows minimizing Lead Time
variability (see [13, 14]), so the system would be more reliable and more predictable.

We want to highlight that when there are faster and more predictable time
reactions, then Safety Stocks decrease and also the Bullwhip effect decreases.
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Table 20.2 First set of experiments

Variability
Percentage of
reduction PMs

Percentage of
reduction SM

Set-up reduction at PMs only γ= 1 20%/30%/45% 0%
γ= 1.5
γ= 2

Set-up reduction at SM only γ= 1 0% 20%/30%/45%
γ= 1.5
γ= 2

Set-up reduction at PMs and
SM coordinated

γ= 1 20%/30%/45% 20%/30%/45%
γ= 1.5
γ= 2

Table 20.3 Second set of experiments

Variability
Percentage of
reduction PMs

Percentage of
reduction SM

Production order
priority rule

Set-up reduction at PMs
and SM coordinated

γ= 1 20%/30%/45%/
55%/70%/85%

20%/30%/45%/
55%/70%/85%

MINIMUM
SET-UP

Set-up reduction at PMs
and SM coordinated

γ= 1 20%/30%/45%/
55%/70%/85%

20%/30%/45%/
55%/70%/85%

FIFO

The minimum setup rule is set as follow: when the production stage completes
an order, the queued order that causes the shortest setup is processed next. If a
production order has queued for 3 days or more, then it has the priority to be
processed, even if the set-up time isn’t the shortest one.

The plan of the second set of experiment is depicted in the following table
(Table 20.3).

20.4 Results

20.4.1 Set-Ups and Batch Sizes Reduction

First we decreased (−20%/–30%/–45%) the set-ups time and the batch sizes only
for the Primary Manufacturers, leaving the Secondary Manufacturer parameters
unchanged. Then we returned at the base case for the Primary Manufacturers, and
we decreased the set-ups time and batch sizes of Secondary Manufacturer only.

Last we decreased the parameters (set-ups time and batch sizes) simultaneously
both for the Primary Manufacturers and Secondary Manufacturer.

The inventories reduction is referred to the base case.
In the figure below we can see the impact of set-ups and batch sizes reduction to

Supply Chain inventories in a medium variability contest.
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Fig. 20.2 Inventory level reduction in medium variability contest

As we can see in the Fig. 20.2 if we decrease the set-ups time and batch sizes of
the Primary Manufacturers, the Supply Chain inventory level can be reduced up to
13% (for set-ups and batch sizes reduction of 45%). On the other hand if we reduce
the set-ups time and batch sizes of the Secondary Manufacturer, the Supply Chain
inventory level can be reduced until 21% (for set-ups time and batch sizes reduction
of 45%).

Reducing only the Secondary Manufacturer gives a greater benefit, in terms of
total inventory reduction, because it affects the downstream and upstream stages,
while reducing only the Primary Manufacturers influences only the downstream
stages (the upstream supplier has an infinite capacity and a fixed lead time).

It is now interesting to add-up the inventory reduction achieved by PMs only
and the reduction achieved when reducing SM batch sizes and set-ups time, and
compare the result with the actual reduction achieved by reducing set-ups time and
batch sizes of both, PMs and SM.

If the actual reduction is the same, it means that it is possible to sum the effects
of the two actions, if the actual inventory reduction is larger than the sum of the two
single ones, it means that there is a synergetic effect between the two actions.

If the actual result is lower, it means that there is a saturation effect.
The simulation runs show that there is a synergetic effect.
Finally In the figure below we present the impact of the demand variability on

the inventory reduction effect:
Figure 20.3 presents the percentage of the difference between the sum of the

inventory reduction achieved reducing set-ups time and batch sizes of PMs and SM
only, and the inventory reduction achieved by reducing set-ups and batch sizes of
PMs and SM simultaneously.
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Fig. 20.3 Comparison of expected improvement and actual improvement in three variability
contests

Results show that the synergetic effect is higher when demand variability
increases, moving from 2% with low variability to 65% with high variability, when
set-ups time and batch sizes reduction is set at 20%.

When set-ups time and batch sizes reduction increases, the synergetic effect
decreases.

20.4.2 The Impact of Production Order Sequence: FIFO
Versus Minimum Set-Up

In the figure below we can see the impact of Production Order sequence practice:
We noticed that for small set-ups time reduction FIFO rule gives to the whole

system a disadvantage. In-fact the saturation of the system increases (97%) due to
the larger amount of time spent making set-up and the total inventory is higher.

There is a level, decreasing set-ups and batch sizes further, where FIFO is no
longer unfavourable. In fact, as we can see in Fig. 20.4, differences of inventory
reduction between FIFO and Minimum setup aren’t large in the zone between 50%
and 70% of set-ups and batches reduction but even inventory level, in FIFO scenario,
mainly decrease.

This means that reducing set-ups and batch sizes, not only gives a greater
performance to the whole Supply Chain, but it allow to take advantage from the
lead times variability reduction.
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Fig. 20.4 Comparison of two different practice of Production Order sequence practice

20.5 Conclusion

Pharmaceutical Companies are looking for greater efficiency and improving practice
along the Supply Chain is a great opportunity to achieve this.

Many authors investigated the impact of adopting an Information Sharing
approach (see [4]) and showed that it gives interesting advantages, but other
intervenes are possible.

Lean Approach has shown to reduce inventories and lead times, to improve
service level, quality, and, in general, the performance of companies, but, there
is very little research on quantitative analysis of the impact of adopting Lean
Approach, in particular in Supply Chain management, and in Pharmaceutical
industry.

The research work presented in this paper, investigates the impact of adopting
Lean Approach along a Pharmaceutical Supply Chain, through a simulation model,
and a campaign of experiments aimed at measuring and at understanding the impact
of adopting typical actions of Lean: reducing set-ups time and batch sizes, and
looking at smoothing the flow, by reducing lead time variability.

An important element emerged from the analysis is the synergetic effect of the
Lean Approach when it is applied to more than one stage along the Supply Chain.

Reducing set-ups time and batch sizes, not only decreases the inventory level
needed to achieve the desired service level, but it also reduces the absolute effect of
sequence dependent set-ups time.

This allows to move from set-ups orientated sequencing rules to FIFO rule that
gives to the system a strong decrease in lead time variability.
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Different players of the Supply Chain have to operate simultaneously and
coordinately. They also need to use the same practice and the same strategies.
In fact introducing Fifo without bringing set-ups time at the right level make the
performances worse as well as reducing batch sizes only in one stage gives to the
system a very limited benefit.
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Chapter 21
Portable Optokinetic Stimulator for Vestibular
Rehabilitation

Cândida Malça, Fernando Moita, and Inês Araújo

Abstract Based on optokinetic simulation technique, a lightweight, compactness,
portable and low cost device for vestibular rehabilitation is designed and con-
structed. All functions are controlled remotely through a multiplatform connectivity
especially developed for this application. This multiplatform not only allows for
interconnection with different operating systems, but also makes it possible to
control the overall clinical parameters and data acquisition and storage of the trial
on each patient, thus enabling continuous monitoring of their evolution. These and
other advantages are presented and demonstrated throughout this paper.

21.1 Introduction

The optokinetic stimulation is recognized as an effective treatment in vestibular
rehabilitation of patients with vestibular etiology or balance center disorders, e.g.,
unilateral vestibular deficits, vestibular neuritis, Meniere’s disease, labyrinthitis,
labyrinthine fistula, vertebrobasilar insufficiency, presbivertigo, vestibular
paroxysmia, cholesteatoma, acoustic neuroma, bilateral vestibular deficits, elderly
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multi-sensory deficits, central vestibular deficits and visual dependence, among
others [1–5]. The main purpose of this treatment is to induce a conflict neuro-
sensory. The optokinetic nystagmus, induced by a moving optical stimulation,
promotes the retinal slip of the target forcing the oculomotor system to a slow
motion chase followed by a saccadic movement. The sensory stimulation is
therefore promoted to one of the hallways leading to greater efficiency and an
increase in the vestibulo-ocular reflex (VOR) [2, 4–6].

Most of optokinetic stimulators commercially available, e.g. [7–9], present some
drawbacks namely in what concerns: (i) the number of axes of rotation since some
devices only allow two rotational directions, (ii) the impossibility of the patient’s
ocular fixation as the current equipment doesn’t have fixation light spots, which
means that the decreases or inhibition of nystagmus spontaneous present in many
vestibular disorders can’t be worked on and the consequent of increase vestibular
reflex gain reached, (iii) the portability and compactness due to their dimensions
and weight already devices are not portable; and (iv) the acquisition and storage of
the patient’s data, as well as the recording of trial conditions are not available and
existing equipment does not integrate an interface enabling the establishment of the
communication with any operating system and a suitable software to do so.

To overcome these shortcomings a new concept of optokinetic device is devel-
oped and a prototype is built. This low cost, portable and compact system enables:
(i) the independent rotational motion under the three main axes; (ii) the use of one,
two or maximum three adjustable fixation light spots; (iii) that all system features
are controlled remotely; and (iv) the patient’s report database. These advantages
are only possible due to the customized multiplatform interface developed. This
multiplatform interface allows for the interconnection of equipment with different
operating systems from computers to any mobile device available on the market
that has Bluetooth technology. The additional developed software enables the
management and control of overall clinical parameters as well as data reception and
storage of the patient’s trial allowing the continuous monitoring of their evolution.
Each one of these characteristics will be described in the following section and the
device capacities will be demonstrated through the running work underway. Finally,
these results will be presented in the final paper.

21.2 Equipment Description

Figures 21.1 and 21.2 represent the sketch and physical model of the optokinetic
stimulator developed, will be now described the components and functionalities
that integrate the system. The mirror ball (1) sheds light illuminating the whole
area of the room where the trial will take place through the LED coupled to
the articulated arm (3),and its orientation is manually adjustable but the intensity
remotely controlled by the customized multiplatform interface developed and
shown in Fig. 21.3. The light spot fixation is achieved by the laser located at
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Fig. 21.1 Sketch model of the optokinetic simulator developed

Fig. 21.2 Prototype of the
optokinetic simulator
developed

the end of articulated arm (4) whose orientation and intensity are also adjustable.
The articulated arms (3) and (4) are fixed to the cover/box (5) through a support
suitably designed to incorporate two more articulated arms. The mirror ball is
supported by three spheres of equal size (2), which in turn are inferiorly and
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Fig. 21.3 Customized
multiplatform interface
developed prototype

supported laterally and from the bottom by smaller ball bearings. These spheres
receive the rotation motion produced by the electric motors and transmit it to the
mirror ball (1) according to the three possible axes of rotation.

The angular velocity and direction of rotational motion produced by each
motor are controlled individually by each one of the three power drivers, which
in turn are controlled by the microcontroller ATmega328. The microcontroller
board communicates via wireless with the interface management multiplatform
specifically developed for this application. As aforementioned this tool is illustrated
in Fig. 21.3 and allows the interconnection between the optokinetic equipment with
different operating systems from computers to any mobile device available on the
market with Bluetooth interface. Furthermore, this interface allows for the control
of overall clinical parameters as well as for the receipt and storage of data from each
patient’s clinical trial, thus enabling continuous monitoring of their evolution.

21.3 Kinematics of the Optokinetic Equipment

The Optokinetic Stimulator is compact and portable, allowing for the free rotation
around the three axis. The mirror ball is removable and supported by three rubber
balls. This is only possible due to the special geometry and mechanics of the
motorized platforms. Figures 21.4 and 21.5 show lateral and top views of the
optokinetic system.
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Fig. 21.4 Lateral view of the
optokinetic mechanics
geometry

Fig. 21.5 Top view of the
optokinetic mechanics
geometry

Considering the optokinetics mechanics a rigid body described as a subset of
R

3, the individual point movements in the body can be deduced using the general
robotic kinematics mathematics [10].

To rotate the mirror ball with a specific direction and velocity, we need to com-
pute the contribution from each independent motors and the associated rotational
speed, normal to the motor axis, and defined by vector Wm = (wm1,wm2,wm3)T .
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Fig. 21.6 Kinematic diagram
of the omnidirectional mirror
ball transmission (top view)

In order to achieve this, we consider the interfaces among the motor flanges and the
rubber balls sliding frictionless normal to the motor shaft axis. Also, we consider
the coupling among rubber balls and the main mirror working without slippage.

The axis and speed of rotation for the main ball can be specified by a 3D angular
velocity vector W = (wx,wy,wz)T , where:

Angular Speed =
∂angle

∂ t
= |W (t)|=

√
W 2

x +W2
y +W2

z (21.1)

Normalized axis = (wx,wy,wz)/ |W (t)| (21.2)

W is expressed in the world coordinate system, fixed in inertial space and denoted
by (xW , yW , zW ) (see Fig. 21.6).

As we are interested in deriving the angular velocities vector Wm transferred
by motors flanges to the rubber balls, we need to consider the (xB, yB, zB) and
(xb, yb, zb) body coordinate system, fixed in the inertial space and located at the
geometrical center of each ball as represented in Fig. 21.7.

Figure 21.7 represents a lateral view of the body coordinate systems. To obtain
the tangent linear velocity vector vt at point p we start converting the angular veloc-
ity vector W expressed in the world coordinated system to body fixed coordinates.
According to the optokinetic arrangement geometry (Fig. 21.6) two coordinate
rotations are necessary: first, a zW axis rotation, α , is around the geometric center
of the mirror ball and a second rotation, β , is always a 60◦ clockwise rotation about
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Fig. 21.7 Kinematic diagram
of the omnidirectional mirror
ball transmission (lateral
view)

the xW axis. The new mirror ball angular velocity WB related to (xB, yB, zB) body
coordinate system will be:

WB =

⎡
⎣ 1 0 0

0 cos(β ) sin (β )
0 −sin(β ) cos(β )

⎤
⎦
⎡
⎣ cos(α) sin(α) 0
−sin(α) cos(α) 0

0 0 1

⎤
⎦W (21.3)

The point p linear velocity is the cross product of the mirror ball angular velocity
and its distance from the center.

PB = (0,rB,0) (21.4)

vt =WB× pB (21.5)

Because the two body coordinate systems are parallel, the point p linear velocity
referred to rubber ball coordinate system (xb, yb, zb) should be the same. That
way, given Wb, the rubber ball angular velocity vector, and point p distance from
its geometrical center, vt can also be given by:
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pb = (0,−rb,0) (21.6)

vt =Wb× pb (21.7)

Taking (21.5) and (21.7) we can find the solution for Wb:

Wb =

⎡
⎢⎣ − rB

rb
(wx cosα +wy sinα)

0
− rB

rb
(wx sinα sinβ −wy cosα sinβ +wz cosα)

⎤
⎥⎦ (21.8)

Using (21.8) we can calculate vm tangent linear velocity at m point that makes
the contact among motor flanges and rubber balls.

m = (−rb,0,0) (21.9)

vm =Wb×m (21.10)

vm =

⎡
⎣ 0

rB (wx sinα sinβ −wy cosα sinβ +wz cosα)

0

⎤
⎦ (21.11)

As expected, vm has only one component because it is always a tangent vector
parallel to ym axis. Finally, we need to know the angular velocity contribution for
each motor. Taking in to account all the system arrangement geometry, the angular
contribution for each motor will be defined by:

Wm =

⎡
⎣ 0 −0.69 0.40
−0.60 0.34 0.4

0.6 0.34 0.4

⎤
⎦
⎡
⎣wm1

wm2

wm3

⎤
⎦ (

cycles
sec

)
(21.12)

Figure 21.8 illustrates the contribution for each individual motor when the mirror
ball is rotating at constant velocity, 1

4
cycle
sec , around an axis in the plane xz. For

example, when rotating horizontally, rotating axis at 90º or 270º, every motor is
providing equal contribution as expected.

21.4 Mechanisms of Vestibular Recovery

The vestibular rehabilitation through the use of new technologies is a continuously
emerging field with promising advances to treatment. Adaptation of specific
vestibular parameters has been noted after exposure to optokinetic stimulation.
This includes changes in the gain of the vestibulo-ocular reflex in primates,
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healthy individuals and individuals with chronic peripheral vestibular and central
disorder. During small field optokinetic stimulation, activation in cortical areas
related to visual motion processing and control of eye movement are noted, along
with deactivation of parieto-insular vestibular cortex. Neuronal substrates in the
cerebellum and brainstem are also involved in the process of horizontal and vertical
optokinetic stimulation [5, 11–13].

21.4.1 The Portable Optokinetic Stimulator

The Portable Optokinetic Stimulator light is projected all over the visual field (wall,
ceiling and floor), creating effects such as “planetarium” in complete obscurity
(those surfaces must be completely homogeneous, without any reference point).
The light source should have an adjustable and flexible intensity in order to allow
precise focusing on the walls for variable size of the room, and thus a variable
size of the light spots. This equipment allows ocular fixation, reducing or inhibiting
spontaneous nystagmus, which stemmed mainly from peripheral vestibulopathy.

The patient is standing facing the wall at a distance of 2 m and Optokinetic
Portable Stimulator is behind the patient’s head level. The patient is instructed to
look for the bright spots that pass in front of the wall letting the eyes move freely
without moving the head and trying to keep a balance.
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The success of vestibular rehabilitation is to find the direction and speed that
causes greater instability to the patient, and this made by increasing the difficulty
from session to session.

21.5 Work Underway

This study aims to verify the effects of optokinetic exercise. We are carrying out
a program of optokinetic stimulation in patients with balanced disorders. These
patients underwent a total of ten sessions of rehabilitation through optokinetic
exercises, with three weekly sessions lasting 15 min each. To evaluate the success of
vestibular rehabilitation (through the use of a new portable optokinetic stimulator)
a computerized dynamic posturography (CDP) was performed during the exercises
to register the values of deviation from the body center gravity and stability limits.
Dizziness Handicap Inventory (DHI) scale is also being used to assess the degree of
disability that causes imbalance in the sample and it is applied to the sample before
and after the completion of the treatment.

The body posturography device using inclinometer technique and vision is also
being developed in our lab in order to be integrated with the Optokinetic Stimulator.
This new device detects body sway motion using trunk, head and the eye movement
allowing instantaneous relation with optokinetic stimulation [14, 15] (see Fig. 21.9).

Fig. 21.9 The body posturography device using inclinometer technique and vision to measure
eye gaze
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Fig. 21.10 Stages of a Human-Computer-Interface project

With this new equipment it’s possible to measure, the deviation from body grav-
ity centre and the eye movement (optokinetic nystagmus), during the optokinetic
rehabilitation session, allowing to draw conclusions about the improvements and
necessary changes in the rehabilitation strategy.

In the development and design of a medical device interfaces, we must perform
the following steps: analysis and understanding of user needs; preparation of
schematic development and implementation of the prototype and final implemen-
tation; reviewed by users (see Fig. 21.10). At current stage, while testing the
rehabilitation strategy, we are evaluating the design with end users in order to
improve the usability of the device and also collecting data in realistic situations,
to identify all problems that exist in the user interface.

21.6 Conclusion

A new portable, low cost, lightweight and compact optokinetic apparatus for
vestibular rehabilitation is presented here. When compared with current optokinetic
stimulators, this device is characterized for: (i) integrating a LED light and laser
sources with adjustable direction and intensity; (ii) allowing the rotational move-
ment under the three possible axes; and (iii) including a customized multiplatform
interface. The angular velocity and direction of rotation of each of the motors as well
as the intensity of the LED light and laser are controlled remotely by a Bluetooth
interface. The wireless interface also allows the interconnection of equipment
with different operating systems by also enabling control over the general clinical
parameters as well as the receipt and storage of data from each patient’s clinical trial,
thus enabling a continuous monitoring of their evolution. These characteristics are
an added value from both a technical and economical (financial, monetary, business)
perspective.
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Chapter 22
Modeling and Simulation of a French
Extended White Plan: A Hospital Evacuation
Before a Forecasted Flood

Wanying Chen, Alain Guinet, and Angel Ruiz

Abstract As high level emergencies can have serious consequences on hospital
activities, an emergency management plan to face a crisis situation must be specified
and assessed. Even though more and more research is devoted to this area, most
studies are based on academic assumptions and the proposed improvement methods
are difficult to be applied in the real world. This paper addresses the French
Extended White Plan i.e. a hospital evacuation plan facing a flood based on a real life
scenario. First, a global model is built, using linear programming to roughly estimate
the resources needed for an evacuation and to get a lower bound of the evacuation
time. Second, a detail model is proposed in two steps, using the software, ARIS
and SIMIO. In the first step, a frame model, which considers the processes of the
vested interest actors and the information flow among them, is established to get the
sequence of events based on activities from the ARIS diagrams. In the second step,
a simulation model, which integrates the information transmission and the different
activities, is proposed based on the frame model in the SIMIO programme. The
correctness of the detail model has been checked, using the linear model results
and the rationality of the simulation model is verified by various experiments.
Through experiments, the best way to assign the resource has been found and two
organizational improvements have been proposed. With such improvements, 1 h and
18 min is saved in evacuating all the patients and the improvement rate is as high
as 26.2%. Thus, our work can provide some guidelines for managers who work in
hospitals to improve their evacuation management plan.
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22.1 Introduction

Hydrological disasters, triggered by flood or wet mass movement (mudslides), bring
about heavy loss of life and property damage. For instance, in March 2011, Japan’s
tsunami and earthquake, accounted for the biggest amount of money distributed
for disasters in Japan ($210 billion), as well as the most casualties (15,500 deaths
with 7,300 still counted as missing). After Japan, the costliest disaster was the flood
from December 2010 to January 2011, in Australia, which caused a $7.3 billion
loss [1]. In the Asian continent in 2010, hydrological disasters were responsible for
92.9% of disaster victims, the highest number since the 1980s. Extensive floods and
landslides, following heavy monsoonal rains in Southern China affected 134 million
people. Floods and flash floods in Pakistan brought about another 20.4 million
victims. Hydrological disasters are among the most serious disasters worldwide
[2]. Moreover, the impact of those catastrophic floods in Pakistan in July 2010
showed how disaster-risk and poverty are closely interlinked [2]. An effective way
to tackle the serious hydrological disaster consequences is to establish a prudent and
comprehensive emergency management plan.

The emergency management plan is made up of four phases: mitigation,
preparedness, response, and recovery [3]. Mitigation efforts are intended to keep
dangers from escalating into disasters and to reduce the impact of disasters, thus
reducing loss of life and damage to property if a disaster happens. Preparedness
means that we take measures beforehand, to reduce the impact of disasters on human
beings. The response phase seeks to minimize the consequence of a disaster. The
aim of the recovery phase is how to restore the affected area to its normal state. To
minimize human suffering and deaths is the most important criteria in the emergency
logistic management amongst the numerous objectives, such as minimizing the
economical cost and reducing the impact to the environment [4]. Realizing the
importance of the emergency management plan, many countries have made different
emergency management plans, based on the situations in their own countries. The
French White Plan (Plan Blanc) is the emergency plan for the sudden increase of
activity in a hospital. Moreover, as this activity could affect several hospitals, it is
called An Extended White Plan. Its aim is to organize the rescue resources to cope
with the concentrated number of casualties.

Our work is devoted to studying the part of the French Extended White Plan
dedicated to a hospital evacuation. A hospital evacuation occurs when a threat is
posed to the hospital itself or when the patients in one hospital must be transported
to other hospitals, in the case of an emergency. Our research focus is the hospital
evacuation in which the patients have to be moved to other hospitals before a
forecasted flood. As far as we know, there are very few investigations of the French
Extended White Plan. Our objective is to improve the whole evacuation system
from two aspects: optimize the resource dimensioning and minimize the needed
evacuation time.
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Our paper has made the following scientific contributions:

– The model and the simulation we have done are based on a real scenario. There-
fore the model is well suited to the hospital’s practices and the improvement
methods that we propose can be applied on the ground easily.

– All the cooperation among different departments during the evacuation is taken
into consideration, which is often ignored by other pieces of research.

– The quantitative approach we used guarantees the reliability of our result and the
feasibility of the whole process.

– Our attention is focused on the hospital evacuation, the research of which is
limited, but could inspire other applications.

The remainder of this paper is organized as follows. Section 22.2, briefly, reviews
the related literature. Section 22.3 describes the evacuation problem from the
context of the vested interest actors and activities. A global model and a detailed
model have been formulated separately in Sects. 22.4 and 22.5. In Sect. 22.6, several
experiments have been done to analyze the evacuation process and to identify where
improvements could be made. The conclusion and perspectives can be found in
Sect. 22.7.

22.2 Literature Review

This part is a brief review of the related papers in terms of the research content and
the approach. Optimization model and computer simulation seem to be the two most
popular research approaches to study evacuation problems. As early as 1982, Sheffi
et al. [5] used computer simulation to build a network emergency evacuation model
based on a simulator capable of estimating traffic patterns and evacuation time
on road networks surrounding nuclear power plants. Filippoupolitis [6] presented
a distributed decision support system which consisted of a number of decision
nodes helping evacuees to find the best available outlet in a disaster. A multi-agent
simulation platform for building evacuation was developed to evaluate the proposed
system in various emergency scenarios. Su et al. [7] built a discrete-event computer
simulation model for assessing evacuation programs and provided a comprehensive
idea of evacuation plans for hospital buildings in the event of a possible bomb threat.
Wu et al. [8] proposed a dynamic discrete disaster decision simulation system, which
combined the ARENA simulation model with a geographic information system and
an SQL Server database to simulate evacuation process and resource deployment.
Russo and Vitetta [9] implemented a formulation of the general evacuation problem
in the standard simulation context of a ‘what if’ approach with the consideration of
the transportation system in ordinary conditions.

The researchers studying the evacuation model with optimization tools always
combine the evacuation problem with the ‘facility location problem’ or ‘relief dis-
tribution problem’. All location-evacuation models built for large-scale emergency
situations seek to minimize total evacuation time. Kongsomsaksakul et al. [10]
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proposed a bi-level program based on the Stackelberg game to find the optimal
shelter locations for flood evacuation planning. The upper level problem is a location
model which solves the shelter location. The lower level problem is a combined
distribution and assignment model that deals with the evacuee route choices. Sherali
et al. [11] established a location-allocation model in the event of hurricanes. This
model selects the candidate shelters among a given set of admissible alternatives
and prescribes an evacuation plan which minimizes the total congestion-related
evacuation time. As the evacuees can be regarded as a vehicle or a commodity, it is
understandable that some researchers study the relief distribution and the evacuation
together using the vehicle routing. This methodology simplifies the model and the
solution, but it is not practical in the real world. Different evacuees have different
situations and disruptions are likely to happen to patients during an evacuation
trip. Adding a probability of disruption parameter may be a solution. Odamar
[12] described a hierarchical cluster and route procedure for coordinating vehicle
routing in large-scale post-disaster distribution and evacuation activities. He used
a multi-level clustering algorithm that groups demand nodes into smaller clusters
at each planning level, enabling the optimal solution of cluster routing problems.
Wei [13] proposed a mixed integer multi-commodity network flow model that co-
ordinates logistics support and evacuation activities while maintaining equilibrium
among service rates of medical facilities. Both wounded people and commodities
are categorized into a priority hierarchy, where different types of vehicles are
utilized to serve priority transportation needs. The model is based on a network flow
formulation. Song et al. [14] formulated a location-routing model with uncertain
demands. This model identifies the optimal serving areas and transit vehicle routings
to move evacuees from the affected zone to safe destinations.

To sum up, from a view of the content, it can be found that even though the
papers studying emergency evacuation are abundant, the papers focusing on hospital
evacuation are few. From a view of the approach, the optimization model and
the computer simulation are the more suitable in this field. However, none of the
research on hospital evacuation was based on a real scenario, which led to two
problems: one is to ignore the detail, and the other is to fail to respect the hospital’s
rules and its laws. These two problems make the existing plans and the improvement
methods difficult to put into practice. These gaps have been our main drive: to study
the Extended White Plan and to use the computer simulation and the optimization
model together based on a real scenario.

22.3 Problem Description

The flood situation we intend to study here is that of a dam, located in Commune
Cernon (Jura, France), which, if damaged could rapidly generate a disaster. The
dam is about 103 m tall and 36,000 m long. Its water volume is about 600 million
m3. The speed of the flood is estimated at 20 km/h and the height of the water
is between 1 and 8 m. The Hospital Saint-Joseph/Saint-Luc is located in the
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passage of the potential flood, which, in the event of a breach, would arrive in
5 or 6 h in Lyon and in 8 or 9 h at the Hospital Saint-Joseph/Saint-Luc. Water
in the hospital would rise to between 6 and 9 m. The whole situation would last
approximately 24 h and its overall impact is difficult to estimate. The flood would
affect buildings, infrastructure, electrical and telecommunication networks as well
as water networks. Therefore, the evacuation of all the patients in the Hospital Saint-
Joseph/Saint-Luc, to other unaffected hospitals is necessary. The patients can be
classified into non-autonomous patients, who must be transported with ambulances,
and autonomous patients who can be evacuated with public transportation. This
latter group will not be considered here. According to the requirement of the
Hospital Saint-Joseph/Saint-Luc, the benchmark evacuation time is 5 h (with 6
nurses, 2 coordinators, 12 ambulance teams and 10 stretchers) and the number of
non-autonomous patients evacuated is estimated to be 120.

22.3.1 The Vested Interest Actors

The hospital Saint-Joseph/Saint-Luc is located beside the river Rhone. This hospital
has 1,207 employees and a capacity of 344 beds. In 2011, the number of people who
are treated in the emergency department was 35,767. During the holiday, at night, or
on Saturday and Sunday, 19 physicians are on duty. These hospital employees take
care of autonomous and non-autonomous patients.

Hospices Civils de Lyon (HCL) is a network of hospitals providing expertise in
all disciplines – both medical and surgical. The whole annual budget of HCL is 1.5
billion Euros. It has 23,000 professionals and a capacity of more than 5,400 beds.
SAMU is a health care coordinator in France standing for ‘Service d’Aide Médicale
Urgente’. SAMU controls the response vehicles and ambulances from SMUR
(Service Mobile d’Urgence et Reanimation) which is a ‘mobile intensive care
unit’ (MICU). The tasks of SAMU are as follows: to evaluate the patient’s needs
according to the calls; to find the best care solution for the patient’s requirements;
to dispatch the most appropriate mobile care resource (MICU, Ambulance . . .) to
move the patient to hospital . . . In this project, SAMU decides the destination of
evacuated patients and the assignment of medical vehicles.

22.3.2 The Activities

The emergency committee is the leader of the evacuation and will control the
whole situation. The non-autonomous patient evacuation can be divided into three
main processes: preparing the patients, using stretchers to move the patients in
the Hospital Saint-Joseph/Saint-Luc, and assigning the ambulances to transport
the patients from Hospital Saint-Joseph/Saint Luc to Hospices Civils de Lyon.
Every process consists of several activities. The patient preparation includes the
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preparation of: the list of the patients to be evacuated, the list of places to which
the patients will be moved, the medication that the patients will need during the
evacuation and the clinical history of each patient. Ambulance utilization is similar
to stretcher utilization respectively both outside and inside the hospital. These two
equipment utilization processes involve the demand of the ambulance/stretcher, the
assignment of the ambulance/stretcher and the transportation of the patient needing
the ambulance/stretcher.

22.4 Global Model

In this part, an optimization model is proposed firstly to model the evacuation
globally, mainly for resource dimensioning reasons and also in order to measure
the patient evacuation time.

22.4.1 Optimization Model

As linear programming technique is an exact method, we adopted this optimization
technique to find our resource dimensioning. A linear programme has been built
according to the three aforementioned processes.

The data of this model is:

– T: the number of periods t (in hours)
– M: the number of activities
– Nbpat: the number of non-autonomous patients to evacuate
– Dur (j): the duration of the activity j (by minutes)
– Suc (j): the set of successors of the activity j
– Cap (j,t): the capacity of the resource associated to the activity j (by minutes)

The variables are:

– X (j,t): the number of patients who benefit from the activity j during period t
– S (j,t): the number of patients who wait for the next activity during period t

Model:

Min
T

∑
t=1

X (M, t) .t (22.1)

Subject to

S ( j, t− 1)+X ( j, t)− S ( j, t)≥ X (k, t) ∀k ∈ Suc ( j) ∀ j = 1, . . . ,M− 1
∀t = 1, . . . ,T

(22.2)
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X ( j, t) .Dur( j) ≤ Cap( j, t) ∀ j = 1, . . . ,M ∀t = 1, . . . ,T (22.3)

T

∑
t=1

X (M, t) = Nbpat (22.4)

The objective function endeavors to minimize the sum of two series where each term
of same rank in both series is multiplied. To be minimized, the series X(M,t) has to
be ranked in decreasing order as the series t is in increasing order. So activities
are realized at the earliest. We try to use this dynamic model to find the suitable
resource dimensioning. The constraint (22.2) controls the patient flow. Constraint
(22.3) respects the resource capabilities. Constraint (22.4) defines the number of
patients to be evacuated. Using the software Cplex, we got the needed resources
are: 6 nurses, 12 ambulance teams, 10 stretchers and 2 coordinators. This result
indicates that, according to the policies of the hospital, it will cost at least 5 h to
evacuate 120 non-autonomous patients.

22.4.2 Problem Complexity

Even though the three main processes can be modeled via our linear programming,
several problem complexities lie in our study and make our linear programming
not perfect enough to properly reflect the real world. First, since the evacuation
situations are plagued with uncertainties [15], it is better to use stochastic data,
which can reflect the situation better. With the stochastic data, however, the solution
of the optimization model is difficult to find. Second, the optimization model is
an analytical method which can only represent the as-is system in an aggregated
way and lot of details are omitted. Third, the optimization model cannot achieve the
organization improvement objective effectively in practice. So, it is necessary to find
another suitable approach. The results calculated by the linear program, however,
can be used to check the result obtained by the next approach i.e. to define a lower
bound.

22.5 Detailed Model

Judging from our literature review, the most suitable way to solve problems related
to real-world complex systems is a computer simulation approach [16]. First, a
computer simulation can capture the stochastic data by a user-friendly interface
[17]. Second, unanticipated problems and the sequential or parallel events can be
easily exposed by simulation. Third, the combination of 3-D technology makes
simulation powerful at presenting detailed information, hence helping people to find
the weak points [18]. Fourth, simulation can act as a ‘what if’ tool and will be useful
to support training exercises, performance and impact evaluation [19].
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Fig. 22.1 The process of sending the information in SIMIO

According to our objective and the way proposed by Bradley et al. [20] to
choose a Business process re-engineering (BPR) software, we decided to adopt
two software tools in our detail model. At the beginning, we used ARIS to build a
frame model which can detail the evacuation activities because ARIS is a powerful
communication tool. However, the simulation ability is a weakness in ARIS. SIMIO
is impressing in the previous model, with its simulation ability. So it is adopted to
implement the later simulation work. ARIS, as one of successful products of IDS
Scheer, is widely used for the purpose of business process design and management.
It is powerful in process modeling and provides reliable information flowcharts.
ARIS was chosen to build a frame model which clearly shows the co-operation and
information sharing among the different hospital departments. Our frame model [21]
is made up of 17 processes and 108 activities. Once the frame model is finished, we
intend to use SIMIO to implement the simulation. SIMIO is designed to support the
object modeling paradigm and supports both discrete and continuous systems, along
with large scale applications based on agent-based modeling. These advantages help
us to build a simulation model based on the frame model and display logically
and graphically the characteristic of discrete events in our model. The strong 3-
D simulation effect is useful tool for presenting the result to the practitioners in the
hospital.

Our simulation model consists of two levels. Level One is to show the infor-
mation communication among the vested interest actors. Level Two is to simulate
the evacuation activities. Different trigger events are used here to synchronize these
two levels. Figure 22.1 presents Level One. At the beginning of Level One, six
different activities will happen in chronological sequence. After these six activities,
two activities take place in parallel. A model entity is used to represent the disaster.
Among the six chronological sequence activities, five servers are used to represent
the first five activities separately. The first one is triggering Emergency Management
Plan and assembling the Saint-Joseph/Saint-Luc Emergency Committee (SJSLEC).
The second one is the process of making the list of the patients to be evacuated. The
third one is assessing the needs of those patients and passing it to a SAMU. The 4th
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one is that the SAMU requires the HCL to find available beds for the patients to be
evacuated. The 5th one is the process of making a list of the available places in HCL.
The 6th activity shows the information process from HCL to SAMU and Saint-
Joseph/Saint-Luc. After the information process has been completed, the SAMU
will direct the ambulances and the SJSLEC will plan the utilization of the available
beds in HCL.

22.6 System Improvement

After the correctness of the detail model was checked, several experiments were
launched and from these two proposals for improvements were made.

22.6.1 Experiments

In order to evaluate the performance of the as-is system and find a way to improve
the existing evacuation process, a good design of the experiment is necessary.
The common and normal steps for the experiments are the following [22, 23]:
define the goal of the project, identify and classify the experiment variables and
choose an experiment design. Because our goal is clear enough, we begin with
the second step. A cause-effect diagram can be applied to look for the two kinds
of experiment variables, the dependent variable and the independent variable. The
dependent variables are the total evacuation time and the time used to evacuate
the first patient. The independent experiment variables are the number of nurses,
coordinators, ambulance teams and stretchers. For the third step, a factorial design
experiment has been retained. This experiment allows studying the effect of each
independent variable on the dependent variables, as well as the effects of interactions
between the independent variables and the dependent variables.

Four experiments have been conducted. Every combination of the experiments
ran 20 times and the confidence level has been set to 95%. After calculation, it is
found that the effect of every independent variable is similar. However, the effects
of interactions between the independent variables and the dependent variables are
significantly different. According to the benchmark evacuation time, the minimal
and reasonable resources that we must assign are 6 nurses, 2 coordinators 12
ambulance teams and 10 stretchers. These correspond to the linear model result.

22.6.2 The Improvement Scenarios

After the experiments, two improvement methods have been proposed. As the
material resource and the human resource are limited, we have modified the way
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to use the resource, and thus a first modification was proposed. It was found that the
time to evacuate the first patient appeared too long, and, therefore, we have sought
to solve the problem and proposed the second change.

To further enhance the organization, a change is needed to the practice of
stretcher use. In the basic model, the worker who pushes the stretcher will transport
the patient to the car park and wait for the ambulance until it comes and then he
will go back to the care unit with the stretcher. In the improved model, the worker
will move the stretcher from the care unit to the car park, and then go back to the
care unit to continue the transportation of patients, using a free stretcher from the
car park. As a consequence, the number of stretchers must be increased. The patient
will wait in the car park and be cared for by an employee until he can be transferred
to the ambulance. When the patient is on the ambulance, the stretcher is released
and is left in the car park, for further use.

From the result of the simulation we can find that the time to evacuate the first
patient is too long. If we assign 6 nurses, 2 coordinators, 12 ambulances and 10
stretchers, the time used to evacuate the first patient will be more than 1.4 h. Our
experiment found that not a lot of time can be saved even if more resources are
available. After the analysis, we found that the main reason is that the information
preparation tasks consume a lot of time. To be exact, it takes too much time to make
two lists, the patient list and the available place list. In the as-is model, humans make
the patient list and the placement list. In fact, an appropriate information system can
do this task better and faster than a human. So the second way to improve the system
is to add an information system. The information system can create the patient list
and the placement list automatically and quickly. The Regional Health Agency in
France is beginning to build a web site where each private or public hospital must
specify the number of their available beds twice a day. In the as-is system, it would
take about 10 min to assemble the patient list and 15 min to build the placement
list. With the web information system, it takes just 1 min to create the patient list
and just 5 min to produce the placement list. To evacuate 120 patients, the original
system takes 4.94807 h, our first modification can reduce the time to 4.68333 h
and the second modification further reduces the time to 3.98220 h. When these two
improvements are combined, an overall improvement of 1.29622 h will have been
achieved, with it taking only 3.65185 h to evacuate 120 patients.

22.7 The Conclusion and the Future

This is one of the first papers studying the French Extended White Plan and a
prudent and comprehensive detail model has been made based on a real scenario
in the context where the hospital suffers from a threatening flood and all the patients
must be evacuated. In order to evaluate the needed resources and to ensure the
correctness of the evacuation model, we first used a global linear model and second a
detailed simulation model. The best way to assign the resources and improvements
based on new IT information has been proposed. The results of the experiments
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confirm the idea behind our suggested modifications: that the evacuation time could
be largely reduced. One of the limitations of our research is the reliability and
availability of the data we obtained. All the data we obtained is solely based on
the experience of the people in the hospital. The possibility of an interruption was
not taken into account during the evacuation such as transportation congestion, for
example. In that case, helicopters should be used. In such a case, fuzzy theory will
probably be adopted to get more valuable data and build an extended simulation
model. This work was sponsored by the Rhone-Alps Region.
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Chapter 23
Using Simulation to Analyze Patient Flows
in a Hospital Emergency Department
in Hong Kong

Omar Rado, Benedetta Lupia, Janny M.Y. Leung, Yong-Hong Kuo,
and Colin A. Graham

Abstract This paper presents a case-study of applying simulation to analyze patient
flows in a hospital emergency department in Hong Kong. The purpose of our work
is to analyze the impact of the enhancements made to the system after the relocation
of the emergency department. We developed a simulation model (using ARENA)
to capture all the key relevant processes of the department. Using the simulation
model, we evaluated the impact of possible changes to the system by running
different scenarios. This provides a tool for the operations manager in the emergency
department to “foresee” the impact on the daily operations when making possible
changes (such as, adjusting staffing levels or shift times), and consequently make
much better decisions.

23.1 Introduction

The Prince of Wales Hospital (PWH) is one of the largest public general hospitals
in Hong Kong and the teaching hospital for the Medical Faculty of the Chinese
University of Hong Kong. It provides 1,360 hospital beds, employs around 4,000
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people and operates as the regional hospital of the New Territories East (serving
more than 1.5 million people). In order to provide a good quality of service,
PWH has to best-utilize its resources because of the large number of patients
served and its limited budget due to tight government financial support. One of
the departments facing this challenge head-on is the Emergency Department (ED)
which provides 24-h Accident and Emergency (A&E) services. In preparation for
the growing (and aging) population in Hong Kong, the ED was relocated in October
2010 to accommodate the increasing patients’ demands. Since then, the hospital
management has been trying to enhance the daily operations in the new department.

The ED handles 420 cases a day on average. In the daytime, the department is
internally divided into two independent divisions: the Walking division and the Non-
walking division respectively treating mobile patients (who can walk) and patients
on a trolley or a wheel chair (thus non-walking). After 23:00, the Walking division
is closed and the walking patients are diverted to the Non-walking division until
07:00 (i.e., walking patients and non-walking patients are merged to have the same
treatment procedure.).

Critical patients arriving by ambulance are rushed to the resuscitation rooms and
treated immediately. Otherwise, after registration, patients are assessed by a triage
nurse and classified by category (level of urgency) so as to assign priorities for
receiving treatments. There are five categories of patients: 1(critical), 2(emergency),
3(urgent), 4(standard) and 5(non-urgent). In our work and the rest of this paper, we
put category 5 patients into category 4 as they have the same flow and priority in
real practice and there are only small proportion of category 5 patients. Critically-ill
patients (categories 1 and 2 patients), less urgent walking patients (categories 3 and
4 walking patients) and less urgent non-walking patients (categories 3 and 4 non-
walking patients) follow different procedures of receiving treatments. Critically-ill
patients have the highest priority and category 3 patients have a higher priority over
category 4 patients. Within the same category, patients are seen on a first-come,
first-served (FCFS) basis.

To provide 24-h A&E services, the ED employs different shifts (8 h a shift
including a meal break of an hour and a short break of 20 min) of doctors to cover
the patients’ demands over a whole day. Basically, there are three shifts: morning
(08:00–16:00), evening (16:00 to midnight) and mid-night shifts (00:00–08:00). In
addition, an off-duty doctor is on-call.

As the ED has to handle a large number of patients a day, it must operate at a
very high level of efficiency and quality. Ineffective operations can lead to serious
consequences such as delay of treatments or even death of critical patients. To
guarantee good quality of services, the ED aims to achieve the following service
targets, as recommended by the Hospital Authority of Hong Kong.

1. Critical and emergency patients have to be given immediate care after they are
admitted to the ED.

2. 90% of urgent patients (category 3 patients) have to be seen by a doctor within
30 min after registration.

3. Most patients are expected to be seen within 2.5 h after registration.
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As mentioned, there are a large number of patient visits but the manpower is
insufficient, the ED has the very difficult task of trying to offer a good quality
service (minimizing patients’ waiting times whilst not compromising the required
attention for each patient), and making sure that valuable resources (e.g., doctors’
and nurses’ time and treatment equipment) are well-utilized. Our project team was
asked by the ED to analyze and improve patient flows so as to enhance the quality
of services provided. We adopt a simulation approach to provide the operations
manager in the ED with a set of measurements (e.g., patients’ waiting times and
doctors’ utilization) to assess the department performance and evaluate the impacts
on the daily operations with different policies. Our previous investigations were
reported in [15].

This paper is organized as follows. In Sect. 23.2, we give a literature review
on related work. In Sect. 23.3, we compare the original and the current layouts of
the ED. In Sects. 23.4 and 23.5, we describe our simulation model and present the
results of the tests with different scenarios. Section 23.6 summarizes our work.

23.2 Literature Review

The applications of operations management techniques in the health-care industry
are vast. We refer the reader to [18] for a recent survey. Here we focus on the
applications to operations enhancement, in particular patient flows in emergency
rooms.

In recent years, researchers have successfully built queueing models for analyz-
ing and improving patient flows, and proposing decision strategies and policies in
EDs. Green et al. [9] used a Lag stationary independent period by period queueing
analysis to allocate staff to reduce the number of patients who leave without
being seen. Cochran and Roche [5] presented a spreadsheet implementation of a
queuing network model with split patient flows (accounting for patient categories
of different acuity and arrival patterns and volume), to help reduce patient “walk-
aways” and improve service provision of the ED. Huang et al. [12] considered the
control of patient flow, in which physicians have to choose between seeing patients
right after triage (facing deadline constraints on their time-till-first-service) and
those who are in process but possibly need to return to physicians several times
during their ED sojourn (resulting in feedbacks to the queueing system). They also
proposed and analyzed scheduling policies with two types of costs: queueing costs
incurred per individual doctor visit and congestion costs accumulate over all visits
during patient sojourn-times. Saghafian et al. [20, 21] proposed patient streaming
(based on their likelihood of being admitted to the hospital) and complexity-based
triage (an up-front estimate of patient complexity) for improving operations in
EDs. In both papers, they used a combination of analytic and simulation models
to show the effectivenesses of the policies. While there has been much work
on deriving analytical models for helping operations enhancements in EDs, we
adopt a simulation approach for improving patient flows in the ED of PWH as
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it is easier to examine many “what-if” scenarios with the complex system of
the ED (such as time and category-dependent arrival rates of patients, different
service-time distributions and time-varying staffing levels). And more importantly,
a simulation approach is much convenient for real implementations as practitioners,
who are not necessarily equipped with advanced mathematical and programming
knowledge, can easily understand and make changes in the system within a user-
friendly graphical interface to “foresee” the outcomes, which are basic statistical
performance measures such as maximum and average waiting time of patients and
utilization of staff.

The applications of simulation in the area of health-care management have
been studied for more than half of a century, e.g. [7]; and the academic literature
on simulation in health-care is immense. We refer the reader to [10, 14] for an
overview. In EDs, reported successful cases of applying simulation models were
mainly to improve the efficiencies of daily operations. A major proportion of
work with the use of simulation is staff scheduling. The approaches are mainly to
evaluate process performance with different staff shift schedules, e.g. [8, 19]. Some
papers integrated optimization techniques with simulation. Ahmed and Alkhamis
[1] presented a simulation optimization approach to determine the optimal number
of doctors, lab technicians and nurses required to maximize patient throughput and
to reduce patient time in the system subject to a set of constraints imposed on
budgets, patient waiting time and number of servers. Centeno et al. [4] integrated
simulation (for establishing the staffing requirements for each period) and integer
linear programming to help ED managers optimize staff schedules so as to maximize
utilization within given budgets. Yeh and Lin [22] utilized simulation and a genetic
algorithm to obtain a near-optimal nurse schedule based on minimizing the patients’
queue time. There has also been work on examining queueing priorities by running
simulation experiments. Connelly and Bair [6] developed a simulation model for
system-level investigation of ED operations and to compare a fast-track triage
approach with an acuity ratio triage approach. Other related applications include
policy/decision making. Hoot et al. [11] used simulation of patient flow to predict
near-future ED operational measures and to forecast with several measures of
ED crowding. Lane et al. [16] used simulation to analyze the functioning of
the ED system and the policies with different bed capacity and demand pattern
scenarios. Baseler et al. [2] developed a simulation model to estimate the function of
patients’ time in system and the maximum level of patients’ demand that the system
can absorb.

Although, according to [3], the number of articles related to health-care sim-
ulation or modelling is currently expanding at the rate of about 30 articles a
day, Jahangirian et al. [13] found out that only 8% of the related papers actually
applied simulation to a real problem where real data was used. This proportion is
substantially smaller than the corresponding percentages in the areas of commerce
(49.1%) and defense (39.4%) [13]. This highlights the fact that real implementations
of simulation models in practice in the health-care sector are still rare and we still
need to put more effort on promoting the use of simulation for advancing health-
care management. In this paper, we present a real case of analyzing and improving
patient flows in an ED in Hong Kong with the use of simulation.
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23.3 Comparisons Between the Original
and Current Settings

In October 2010, the ED of PWH was relocated to a new building with a new
layout. Several changes were also made in the new system to accommodate the
growing patients’ demands. In this section, we analyze two major changes in the
operations and compare the efficiencies of the original and current systems. To
make fair comparisons, we present the data of the month of December 2009 (when
operating in the old location) and December 2010 (after relocation). There were
12,945 patient visits in December 2009, and 13,287 visits in 2010, which translate
to around 418 and 429 cases per day respectively. (The reason why we did not
choose the first month after the relocation to make comparisons is that a “warm-up”
period was needed since initially most of the staff needed time to get used to the
new layout, system and settings.) Below, we describe two key changes in layout and
operations and their impacts.

23.3.1 A Closer Sub-waiting Area for Consultation
in the Walking Division

After the relocation of the ED, the waiting area for doctor’s consultation in the
Walking division was moved from the main waiting area to a new sub-waiting area,
which is closer to the consultation rooms than before. This aims to shorten the
walking time of patients. More importantly, this enables the nurses to more easily
notify the patients that they will soon be seen by a doctor, so that they would not
leave the waiting area (e.g. for a meal) while waiting. Consequently, this reduces
the inactivity times of doctors waiting for “missing” patients, and hence reduces the
waiting times of subsequent patients seen.

We compare the net times from triage to consultation for category 4 patients, who
are mostly walking patients, before and after the relocation.

Comparing the data of 2009 and 2010, although there was an increase of 2.64%
in the total number of patient visits, the average net time from triage to consultation
for category 4 patients decreased from 112.91 to 107.77 min (a 4.55% decrease).
This shows that walking patients benefit from the change of the layout of the waiting
area in the Walking division. From Fig. 23.1, we observe the patterns of the net times
from triage to consultation in the 2 months are similar but the one in December 2009
has a heavier tail. The percentage of category 4 patients who had net time from triage
to consultation more than 3 h decreased from 21.57 to 16.01% (a 25.78% decrease).
This indicates the increase in walking time of patients could amplify the waiting
times of patients.
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Fig. 23.1 Net time from triage to consultation for category 4 patients

Fig. 23.2 Average net time from triage to consultation for less urgent patients by arrival time
of day

23.3.2 Consolidation of the Walking and Non-walking
Divisions in Nighttime

Before the relocation, the Walking and Non-walking divisions operated indepen-
dently, each with its own staff and resources. After the relocation, the ED started
to implement the policy that during nighttime (from 23:00 to 07:00) the Walking
division is closed and the walking patients would join the system of the Non-walking
division. It aims to better-utilize the reduced workforce (about half of the workforce
of daytime) due to the low arrival rates of patients in nighttime.

Figure 23.2 depicts the average net time from triage to consultation for less urgent
patients by arrival time of day in 2009 and 2010. From 07:00 to 20:00, the net times
were similar in the 2 months. From 20:00 to 07:00, a significant improvement was
observed. An interesting finding is that patients arriving after 20:00 but before 23:00



23 Using Simulation to Analyze Patient Flows in a Hospital Emergency. . . 295

also benefited from the consolidation of the divisions. We believe it is due to the fact
that some of these patients might need to wait for consultation for more than 3 h so
that they might start consultation after 23:00 and hence benefited from the change.

23.4 Simulation Model

We developed a more detailed model of the new ED to analyze patient flows. As
reported by other researchers, it is very difficult to build analytical models for the
ED as there are many complicating factors in reality (such as time and category-
dependent arrival rates of patients, multiple shift-times of doctors and re-entrant
flows to the many “service stations”of the system). For this reason, we adopt a
simulation approach which facilitates examination of many “what-if” scenarios, and
provide valuable indications as to where the major bottlenecks of the system might
be. It also provides a way to explore possible changes without jeopardizing patient
care. Figure 23.3 depicts the screen-view of our simulation model, built using the
software ARENA.

Our simulation model captures: all relevant treatment processes (triage, consul-
tation, lab tests, etc.), the complexities of intertwining and re-entrant patient-flows,
complicated arrival rates that vary by time and patient category and adjustable staff
deployment (shift, breaks, doctors on reserve). The necessary input parameters/data
are arrival rates, probability distributions of service times, available resources and
schedules of doctors and nurses. To model the non-stationary time-varying arrival

Fig. 23.3 The screen-view of our simulation model in ARENA
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Table 23.1 Actual and simulated net times between services for less urgent
patients

Actual (min) Simulated (min) % error

Registration to triage 7.06 7.02 −0.57
Triage to consultation 85.27 81.76 −4.12

rates of patients, for each patient, his/her arrival time is the arrival time of the
previous patient from the same category plus an interarrival time, which follows an
exponential distribution with arrival rate in the time period of the previous arrival.
We also tackled a challenge that the service-time distributions were not directly
obtainable from the historical data. To resolve the problem, we assume that each
service activity follows a Weibull distribution and develop two meta-heuristics,
Descent Method and Simulated Annealing, to search for a good estimate of the
parameters of the distributions, by considering the available time points in the
data provided. For detailed descriptions of the challenge and parameter estimation
procedure, we refer the reader to [15]. The outputs of the model are the key
performance measures such as patients’ waiting times, queue lengths, utilizations
of doctors, which help us study and understand the performance of the ED.

To validate our simulation model, we presented the model and the simulated key
performance indicators such as queue lengths and waiting times of patients to a
consultant in the ED. He believed the model was sufficient to capture all the key
activities in the ED and those values agreed with his estimations. The simulation
model was also validated by comparing several key statistics as generated by the
model to actual observations. As an illustration, Table 23.1 shows the comparison
between the actual and simulated net times between services for less urgent patients.
More details of the validation of the simulation model are discussed in [15].

23.5 Simulation Results

By running simulations, we have a way to obtain performance measures for the ED
under different scenarios and, thus, to evaluate possible policies and changes in the
system. We used the current arrival rates and the actual staff schedule as the input
parameters for our base case. We did a series of simulation runs to evaluate different
possible scenarios. In this section, we present some key findings.

23.5.1 10% Growth in Patient Arrivals

The population in Hong Kong keeps increasing (with an annual growth of around
1% according to the statistics of 2012 [17]), mainly due to an influx of immigrants.
Moreover, more and more non-immigrant visitors from Mainland China also come
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Table 23.2 Average waiting times of the patients based on the current arrivals and the
simulated scenario (10% growth in patient arrivals)

Current situation
(min)

10% growth
(min) % change

Triage(walking) 10.20 12.66 +24.11
Triage(non-walking) 2.64 3.26 +23.48
Consultation(category 3 walking) 31.11 31.55 +1.41
Consultation(category 4 walking) 236.91 274.81 +15.99
Consultation(category 3 non-walking) 10.71 15.39 +43.69
Consultation(category 4 non-walking) 92.34 149.12 +61.49

to Hong Kong for a better quality of medical treatments. Thus, the demand for
medical services in Hong Kong is expected to have a significant growth in the
coming future. This is of particular concern for the EDs, which are often viewed
as inexpensive clinics by the non-critical patients who visit them.

To study how the growth of patient visits impact on the daily operations in
the ED, we increased the arrival rates of all patient categories by 10% (which
is equivalent to the percentage increase in 3–4 years using the estimated annual
increase of 2.64%) and keep all the capacities and resources at the current levels. We
ran simulations and recorded the waiting times of patients. (In this section, waiting
time for consultation is defined as the total waiting time for the first consultation and
the “follow-up” consultation after extra tests, if needed, for the same patient visit.)

From Table 23.2, we observe that a 10% growth of patient arrivals leads to a big
increase in the waiting times of patients for triage and for consultation. The waiting
times of patients increase mostly more than 20%. As expected, a larger increase in
waiting times is observed for categories 4 patients since a lower priority is given to
them. The 10% growth in patient arrivals leads to an increase in doctors’ utilization,
from 88.44 to 94.3%. Some doctors are overloaded with utilization more than 100%
(i.e. working time is extended). Moreover, it is important to point out that, based on
the above results, the targets of services set by the ED probably cannot be met after
10% growth of patients arrivals.

23.5.2 Adding an Extra Doctor

In order to reduce waiting times of patients, we evaluate the performance of the ED
if an extra doctor is hired, based on the current situation. This activity is useful to
determine the optimal trade-off between the cost of additional workforce and the
services provided.

Before adding an extra doctor to the simulation model, we calculated the utiliza-
tion of every doctor in order to assess which doctors are overloaded. We observe
a significant overuse of the doctors working the afternoon shift in the Walking
division and those for the mid-night shift. Therefore, we simulated the two scenarios
when an extra doctor is added to each of the shift.
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Table 23.3 Average waiting times of the patients for consultation based on the current
situation and the simulated scenario (an extra doctor added to the afternoon shift in the Walking
division)

Current situation
(min)

Doctor added
(min) % change

Consultation(category 3 walking) 31.11 28.02 −9.93
Consultation(category 4 walking) 236.91 188.50 −20.43

Table 23.4 Average waiting times of the patients for consultation based on the current
situation and the simulated scenario (an extra doctor added to the mid-night shift)

Current situation Doctor added % change

Consultation(category 3 walking) 31.11 29.79 −4.24
Consultation(category 4 walking) 236.91 236.06 −0.36
Consultation(category 3 non-walking) 10.71 8.47 −20.92
Consultation(category 4 non-walking) 92.34 49.80 −46.07

Table 23.3 lists the average waiting times of walking patients if we add an
extra doctor to the afternoon shift in the Walking division. Not surprisingly, on
average, the relative time reduction for category 3 patients waiting for consultation
is smaller than category 4 patients’ as category 3 patients have a higher priority. A
significant reduction in average waiting time of categories 4 patients for consultation
is observed.

Alternatively, if we add an extra doctor to the mid-night shift, we observe a
significant reduction in the average waiting times for the patients in the Non-walking
division (see Table 23.4). Surprisingly, although the walking patients are directed
to the Non-walking division for consultation in nighttime, we cannot make any
significant reduction in the waiting times for walking patients after adding an extra
doctor to the mid-night shift. We believe the surprising result is due to the fact that
the consultation is still not fast enough to clear the patients of the lowest priority,
who are category 4 walking patients. Another possible reason is that patients usually
experience longer waiting times during afternoon but not nighttime, which is shown
in Fig. 23.2. It seems that adding an extra doctor to the mid-night shift cannot benefit
the walking patients. Finally, we note that having an extra doctor can contribute to
a decrease in doctors’ utilization from 88.44 to 81.64%.

23.5.3 Shift Planning

Although adding more resources to the ED is the best way to improve the patient
flows, the financial issue is one of the major concerns of the hospital management.
Given limited budgets, one way to improve the patient flows is to best-utilize
the current resources. Therefore, we would like evaluate how the schedules of
the doctors, who are the most valuable resources in the ED, might be changed
to improve the efficiency of the ED. By measuring the utilizations of doctors in
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Table 23.5 Average waiting times of the patients for consultation based on the current
situation and the simulated scenario (reallocation of doctor)

Current situation
(min)

Reallocation
(min) % change

Consultation (category 3 walking) 31.11 27.85 −10.48
Consultation (category 4 walking) 236.91 185.37 −21.76
Consultation (category 3 non-walking) 10.71 20.19 +88.52
Consultation (category 4 non-walking) 92.34 102.03 +10.49

the current scenario, we can find out the doctors with the heaviest and lightest
workloads. They are the doctors in the Walking division and Non-walking division,
respectively, in the afternoon. An interesting scenario would be to assign the doctor
who has the lightest workload to the shift of heaviest workload. (i.e. In the afternoon
shift, extract a doctor in the Non-walking division and assign him/her to the Walking
division). The results are shown in Table 23.5.

As expected, the walking patients benefited from this reallocation. A significant
time reduction in the average waiting times for consultation is observed for walking
patients. However, the average waiting times for consultation for non-walking
patients increase as a doctor is removed from the Non-walking division. The
reallocation of doctor, of course, benefits the majority, but at the same time, hurts
the more urgent minority. To decide whether we should employ this schedule, we
have to determine the optimal trade-off. Simulation is a tool for decision makers to
“predict” how good or how bad a change impacts on the system in order to make the
right balance. We would like to point out that, although there is a large percentage
increase in the waiting time for consultation for category 3 non-walking patients
after this reallocation, the absolute increase (9.48 min) is still small enough to be
within range of the target waiting time set by the Hospital Authority for patients of
this category. Moreover, this increase is comparably much smaller than the absolute
reduction for the category 4 walking patients (51.45 min). As the majority of patients
are category 4 walking patients, a reduction in total average waiting time is expected
after the reallocation. Nonetheless, this balance between benefits to the majority
and urgency of service to those in need is a difficult decision for the hospital
management.

Although we just presented some of the issues examined, the simulation model
could be used by the operations manager in the ED to evaluate many other possible
changes in the system, such as layout, capacities and resources.

23.6 Conclusions

This paper presents a case-study of analyzing patient flows in a hospital emergency
department in Hong Kong. We analyzed the enhancements of the system changes
after the relocation of the ED in October 2010. We also developed a simulation tool
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for the ED to evaluate the impacts on patient flows with different scenarios. The
simulation tool can also throw some light on key issues of decision making for the
operations manager.

Finally, it is important to remark that, in general, it is very difficult (or nearly
impossible) to build a simulation model for an ED to capture all the activities
and events in the system, particularly when key parameters cannot be estimated
directly. However, the inclusion of the major activities and events, as captured
by our simulation model, was already sufficient to let operations managers in
EDs “foresee” the impacts on the daily operations due to possible changes, and
consequently enable them to make much better decisions.
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Chapter 24
Managing a Fleet of Ambulances to Respond
to Emergency and Transfer Patient
Transportation Demands

Y. Kergosien, M. Gendreau, A. Ruiz, and P. Soriano

Abstract Organizations of pre-hospital emergency medical services have as first
mission to provide medical assistance to patients including transport to medical
centers if necessary, and a second one that concerns the transfers of patients
from one medical facility to another one. Most organizations in Canada and in
North-America use two independent fleets to perform these missions. Although
operating two separated fleets seems easier to do, it appears to be less efficient
than an integrated fleet management approach able to deal with both types of
demands. Taking this into consideration, this paper aims to design and evaluate the
performance of three management approaches. This is a very challenging problem,
since it involves solving simultaneously two difficult vehicle routing problems: an
ambulance relocation problem and a dial a ride problem.
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24.1 Introduction

The primary mission of pre-hospital emergency medical services organizations
(EMS) is to provide the first medical assistance and, if required, the transportation
of patients to a medical center. Transportation is performed by paramedic teams
using ambulances that are generally deployed at strategic places to respond as soon
as possible to emergency demands. The territory deserved is divided into areas.
An area is recognized as covered if at least one ambulance can reach any demand
in this area within a prefixed time. When an urgent demand appears, the nearest
available ambulance is sent to the demand’s location. It then may happen that idle
ambulances need to be redeployed to new waiting locations in order to compensate
the void created by the departure of the dispatched ambulance. In addition, most of
EMS organizations carry out another mission, which is to respond to transportation
demands between medical facilities, and sometimes, to or from the patients’ homes.
These transfer demands arrive in real time, but fairly in advance with respect to the
desired patient departure. This slack allows to schedule them to form ambulances’
routes.

Both types of demands, “emergency” and “transfer”, can be performed by
the same teams and ambulances. Nevertheless, Urgences-Santé currently manages
these two types of demands independently by dividing their ambulances into two
fleets and managing them separately. This solution was chosen to simplify the
management of the vehicles, but it appears to be less efficient than an integrated
fleet management approach dealing with both types of demands. Therefore, the
aim of this paper is to assess whether or not an integrated management approach
can lead to better service quality and to a reduction of costs. In this paper, we
first present a management approach to manage efficiently two independent fleets.
Then, we proposed two management strategies considering a single integrated
fleet. The performances of these three models are compared by several simulation
experiments.

This paper is structured as follows. The next section presents a short literature
review. Section 24.3 introduces the problem considered here: the management of an
integrated fleet of ambulances to respond to both emergency and transfer patient
transportation demands. Section 24.4 describes the three management strategies
proposed. Section 24.5 focuses on the simulation experiments and results’ analysis.
Finally, conclusions and further research avenues are provided.

24.2 Literature Review

In the literature, there are two well known families of problems which are
closely related to the dynamic management of the two transportation requests here
described. The first one is named “Dial A Ride Problem” [13]. In this problem, a
set of customer’s transportation demands has to be performed by a set of vehicles
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under various constraints like maximum ride time, vehicle capacity, maximum ride
time constraints, time windows, etc. The problem consists in finding the routes to be
done by each vehicle (sequence of requests to perform) minimizing one or several
criteria like the total distance traveled or mean user ride time. This problem has been
studied both in a static context by Cordeau and Laporte [12] and Parragh et al. [25]
as well as in a dynamic context by Attanasio et al. [3] and Xiang et al. [32]. In
our case, however, ambulances can transport only one patient at a time. The dial a
ride problem (DARP) has been studied in a medical context in [6]. A DARP with
heterogeneous users and vehicles is studied in [24] where different modes (seated,
stretcher and wheelchair) and types of vehicles are considered. The problem studied
in [21] was inspired by a real case of transportation of patients in a hospital complex
in France, where transportations are subject to particular constraints. Among them,
its worth to mention priority of urgent demands, disinfection of a vehicle after
the transportation of a contagion, respect of the type of vehicle needed and the
opportunity to outsource demands to a private company.

The second family of problems concerns the ambulance relocation problem. For
each emergency demand, the choice of an ambulance to be dispatched must be
made. In some cases, a redeployment of ambulances is applied after the dispatching
of an ambulance. Redeployment consists in assigning ambulances to potential sites
to provide adequate coverage and in order to respond as quickly as possible to a
new emergency demand. Several literature reviews have been published over the
past years focusing on both ambulance location and relocation problems [9], and
recently [7]. The problem was first studied in its static and determinist versions
[31] and [11] with one coverage and with multiple coverage have been developed,
like in [14,16] and [15]. Stochastic approaches have also been proposed in [1,5,20]
and [8]. In a dynamic version, two approaches can be found in the literature. The first
one, multi-period, consists in decomposing the day into several periods and apply
a redeployment at the beginning of each period [28] or [4]. Several studies using
simulation have been conducted to test different deployment plans for each period,
either without taking into account the relocation costs between two successive
period [27] or taking them into account [10], or even considering a variation in
the size of the ambulance fleet between periods [26]. The second approach consists
in applying a redeployment according to the evolution of the system’s state, [18]
and [2]. In [23], it was proposed a dynamic programming approach combined with
a Monte Carlo Simulation to determine where the next available ambulance should
be redeployed in order to increase the number of demands reached within a given
lapse of time. Recently, in [29], an approximate dynamic programming formulation
is proposed to solve a dynamic version of the ambulance dispatching and relocation
problem taking into account time-dependent information like variations in the
demand volumes and travel times throughout the course of the day.

To the best of our knowledge, these two families of problems have been always
studied independently in the literature except in one paper [22], where the authors
deal with a problem that has a common feature with our case: the simultaneous
management of emergency transportations and of transfer transportations between
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hospitals. The authors tested different strategies to manage ambulances based on the
selection of waiting points, which can only be the hospitals. However they did not
solve the associated location problem.

The contributions of this is paper to improve the knowledge on the EMS fleet
management problem are twofold. Firstly it proposes three strategies for manag-
ing both separated and integrated fleets. Secondly, it proposes efficient solving
approaches to tackle the two problems underlying the EMS fleet management: the
dial a ride problem and the ambulance relocation problem in a dynamic context.

24.3 Problem Description

A fleet of identical ambulances has to perform two types of transports during a
given planning period. A team composed of two technicians having their own
work time schedule is associated to each ambulance. At the beginning of their
working shift, the team picks an ambulance at a given depot and must return it
to the same depot at the end of their shift. Managing the fleet consists basically
in assigning transportation requests to ambulances, and locating idle ambulances
to standby points in such a way that they will respond as quick as possible to
emergency demands. The whole problem can be divided into two subproblems
(a dial a ride problem and an ambulance relocation problem) where the pool of
ambulances, is shared. To evaluate the performance of a management strategy, we
consider three types of objectives. The first one concerns how the fleet is able
to perform all the transfer demands respecting their required time windows. This
objective is measured by computing the sum of all the transportation delays. A
second objective aims at maximize the total urgent demands covered. The last
objective seeks at minimizing the operating costs, measured by the sum of empty
running of ambulances as well as the technicians’ overtime.

24.3.1 Transfer Patient Transportation Problem

At every moment, the set of transfer transportation demands is known. This set
can change over time due to the arrival of new demands or canceling of existing
demands. Each transfer transportation demand is characterized by:

• An origin point and a destination which are usually a hospital but may also be a
patient’s home,

• A time window that modelizes the earliest time at which the patient is ready to be
transported and the latest time accepted for the beginning of the transportation.
After such a latest time, a delay is incurred.

• A time needed to transfer the patient outside of the ambulance (administrative
tasks, stretcher transportation, etc.) that has to be taken into account for both the
destination and the origin of the transport.
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24.3.2 Ambulance Relocation Problem

When the coverage offered by the available ambulances is not acceptable, a new
relocation plan has to be computed. The problem consists in finding new standby
locations for the ambulances. The potential standby points are known in advance
and are usually strategic locations in the region that should be covered. Also, a
maximum number of ambulances can be assigned to each standby point. The desired
coverage is the same as that defined in [17]: two types of covering constraints in
agreement with the United States EMS Act of 1973. These constraints specify that
all emergency demands must be satisfied by an ambulance within S′ minutes and a
proportion α of the total demand is also satisfied within S minutes (S′> S). Thereby
each zone of the region is characterized by:

• Two sets of potential sites. One represents the potential sites from which an
ambulance can reach all points of the zone within S, and within S′ for the other
set.

• A density of population.
• A probability vector. The probability vector of a zone A gives, for each period, the

probability that the next demand occurs in A. Since this probability can fluctuate
according to the time of day, a day is decomposed into several periods (2 h long
by default).

When an emergency demand occurs, an ambulance should be selected to respond to
this demand. An emergency demand is defined by:

• An intervention time at the scene,
• Whether a transport to a hospital is required or not,
• The hospital destination,
• And a time needed at the hospital to transfer the patient to the hospital staff.

Finally, a minimum time has to be respected between two consecutives redeploy-
ments of a given ambulance in order to avoid to redeploy an ambulance too many
times in a short period.

24.3.3 Performance Evaluation

To evaluate the performance of a given management strategy, we consider the
following criteria related to service quality and costs:

• The elapse time between the arrival of an emergency call and the arrival of the
ambulance at the scene for emergency demands,

• The delays for transfer demands,
• The workload of each team and overtime if any,
• The number of times that ambulances were redeployed or diverted,
• The number of deployments or redeployments,
• And the total distance traveled by empty ambulances.
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24.4 Management Approaches

In order to assess whether or not an integrated management approach may improve
service quality and lead to reduction of costs, this section proposes three manage-
ment strategies. The first one, named Independent management, corresponds to the
dominant strategy that consists in dividing the ambulances into separated fleets,
which will deal with transfer and urgent requests, respectively. The second and third
strategies consider a single fleet to respond to both types of demand. However, the
second strategy, named Reactive integrated fleet management, adopts a pure reactive
approach (i.e. demands are considered at their execution time) whereas the third
one, named Proactive integrated fleet management, uses a proactive scheduling that
consists in deciding the execution date of each transfer demand in order to minimize
the number of ambulances that will be busy simultaneously. The three strategies as
well as the related tools proposed to solve the ambulances relocation and assignment
decisions are described in the next subsections.

24.4.1 Independent Management

This management is based on two fleets: the first one responds to emergency
demands only and the second one responds to transfer demands. Both fleets are
managed independently and the number of ambulances assigned to them is kept
constant during the planning horizon. Strategies to manage each fleet are now
described.

24.4.1.1 Management of the Emergency Requests Fleet

In order to have an adequate coverage at any time, an ambulance redeployment
is computed and applied if and only if not all zones are covered within S and
the last redeployment is not too recent (e.g. more than 15 min ago). Therefore,
after each event like an ambulance becomes available (e.g. a team starts its shift
or an ambulance finishes serving a demand) or becomes unavailable (e.g. a team
finishes its shift or an ambulance is assigned to a demand), a redeployments can
occur. If an ambulance becomes available and no redeployment is needed, two cases
are possible. In the first case at least one zone is not covered within S′; then the
ambulance is sent to the site that maximizes the number of zones that are covered.
Otherwise: the ambulance is sent to the site that maximizes the sum over all doubly
covered zones within S of the probability that the next demand will appear in that
zone. When a new demand occurs, the nearest available ambulance is dispatched.

Redeployment decisions are done by solving an integer linear program based
on [16] and solved by CPLEX. In [16], the ambulance redeployment problem is
modeled with the same types of coverage. The objective function is to maximize the
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sum of the zones that are covered twice within S minutes weighted by the probability
of a new demand occurring in that zone. The covering constraints and the constraints
on the minimum time before redeployment for each ambulance are relaxed to avoid
getting infeasible solutions. However, their violation is strongly penalized in the
objective function. The solution produced indicates the new number of ambulances
that should located at each standby point. Then, the specific instructions for each
ambulance are decided by minimizing the total travel distance. This is done after
solving a min-cost max-flow problem.

24.4.1.2 Management of the Transfer Requests Fleet

To manage the ambulance fleet and the transfer demands, each ambulance is
associated to a route (e.g. a sequence of transfer requests to be performed). Routes
are recomputed by using a fast and efficient tabu search algorithm each time a new
event happens. An event consists in a new request arrival or the cancellation of an
existing request. The initial solution for each execution of the tabu search is the best
solution found at the previous event, with some updates like the new position of each
ambulance, the demands completed since them, etc. When a new demand occurs, it
is included in the route of one ambulance before executing the tabu search in such
a way that the sum of delays is minimized. The tabu search uses a lexicographic
objective function: it first minimizes the sum of transportation delays and crew
overtimes, then the sum of traveled distances.

The tabu search algorithm has a structure as in [19]. A solution is the set of routes
for each ambulance. The stopping criterion is the maximum number of iterations
without improving the best solution found so far. The neighborhood is built by the
CROSS exchange operator, which is particularly well suitable for vehicle routing
problems with time windows [30]. In CROSS, the neighborhood of a solution is
obtained by exchanging all the sub-segments (parts of a route) of all routes. As
in [30], the tabu list contains the objective function values. This way of managing
the tabu condition helps reducing computation time as well as the risk of cycling
between visited solutions, since the likelihood of having two different solutions with
the same objective is very low.

24.4.2 Reactive Integrated Fleet Management

This approach considers a single ambulance fleet responding to both types of
demands. The main idea of this strategy is to consider all the demands, transfer
or urgent, as emergency demands. The “planning” part of the problem (scheduling
of the transfer requests) disappears and only the location and relocation plans need
to be solved.

Whenever a transfer request arrives to the system, it is transformed into a dummy
urgent request that will happen at the patient earliest transportation date. Dummy
emergency demands are then managed like the real emergency demands but, unlike
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them, they can be postponed in some cases that will be described later. To take
into account dummy demands in the ambulance relocation problem, the probability
vector Pt(a) of a zone a, that define the probability that the next demand will arrive
in that zone for each period, is changed according to the Eq. 24.1. For a period t,
this probability is a weighted average of the probability that a new real emergency
demand happens and an average of the probability of a transfer demand occurring
in that zone. The former probability is an average between the probability that
a transfer demand occurs in one of the hospitals belonging to that zone and the
proportion of the transfer demands known in that zone.

Pt(a) = (1−β )Pet(a)+ 0.5β

(
∑
h∈a

Pst(h)+
U(a)
#dmd

)
(24.1)

• β : Proportion of transfer demands (a parameter computed from historical data).
• Pet(a): Probability of a new emergency demand occurring in zone a.
• Pst(h): Probability of a transfer demand occurring at hospital h.
• U(a): Number of transfer demands known from hospitals belonging to zone a.
• #dmd: Total number of transfer demands known.

The fleet management strategy corresponds to the one described in Sect. 24.4.1.1
section. However, in order to avoid situations where too many ambulances will be
occupied by dummy demands, the number of ambulances devoted to these requests
is limited. Beyond this limit, the demands are added to a list of postponed demands.
Once an ambulance becomes available, and if the number of dummy requests being
performing is below the mentioned limit, then an ambulance may assigned to the
first request in the postponed list.

24.4.3 Proactive Integrated Fleet Management

The main idea of this management approach is to improve the previous ones
by anticipating the best dates to perform the transfer demands. Basically, the
proactive management reproduces the strategy in Sect. 24.4.2 without the constraint
which limits the number of ambulances that are responding to transfer demands
simultaneously. The execution dates for transfer requests are calculated in order
to minimize the number of ambulances that will be busy at the same time, and
the sum of transfer transportation delays. These execution dates represent the dates
at which the dummy emergency demands will occur. The new problem consists
then in schedules the transfer demands, and can be modeled as parallel machines
tasks scheduling problem where the tasks are the requests and the machines are
the ambulances. To solve this problem we propose a method that can be seen
as a proactive scheduler for the transfer demands. Processing times of tasks are
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an estimate of the time required to perform the transfer demands obtained by
computing an estimate of the travel time to move to the departure hospital, plus the
travel time, plus the patient transfer time to hospitals staff. The machines have some
periods of unavailability according to ambulance activities and their work schedules.
Once the problem is solved, the solution indicates the execution dates to perform
the transfer demands by sending an ambulance, but the specific ambulances/tasks
assignments are not used to keep additional flexibility. The ambulance that will
be sent will not be the nearest but the one minimizing the deterioration of the
coverages.

We used a tabu search algorithm to solve efficiently this problem. An indirect
encoding of the solutions, based on a sequence of tasks, was used in order to simplify
the method. To build and evaluate an actual solution, each task is placed iteratively
in its best place in the order of the encoding sequence. A partial schedule to the
problem is evaluated by the sum of assignment costs where the cost of assigning
a task i at a date x is given by the Eq. 24.2. The neighborhood is built by a swap
operator and the tabu list contains the objective function values.

cx
i = (1−λ )

y=x+pi

∑
y=x

Wyny +λ delayi(x) (24.2)

• pi: processing time of i.
• Wy: probability that a new emergency demand occurs at time y.
• ny: number of ambulances used at time y.
• delayi(x): delay of i.
• λ : weight applied to two criteria (“coverage degradation” and “transport delay”).

24.5 Numerical Experiments and Preliminary Results

To assess the performance of the described strategies, we designed several simu-
lation experiments. To this end, we developed a generic discrete-event simulation
model. In order to increase the flexibility of the model, we separated the decision
logic from the routines simulating the physical processes (ambulances movements).

To generate realistic instances, we inspired by the real case of the Urgences-
Santé, the EMS organisation in Montreal, Canada. Based on previous published
works, we proposed parameters and probability distributions of random variables.
Some of the main characteristics of this case are now reported. Montreal is divided
into 595 zones. Across the city, there are also the 39 potential sites that can hold up
to 4 ambulances, 2 depots and the 15 hospitals. A total of 153 paramedical teams
were considered. An exponential distribution is used to model the inter-arrival times
between two emergency demands. Depending on the period of the day, the mean of
the exponential distribution varies between 110 and 278 s. The time at call location
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and the time needed at the hospital to take care the patient to the end are generated
using the gamma distribution Gamma(k;θ ) with θ the scale parameter and k the
shape parameter. We assumed that, if no transport to hospital is needed, the time at
call location in minutes is generated with Gamma(28.5;19.5) with a probability of
0.85 and Gamma(6.5;4) otherwise. If a transport to hospital is needed, the time
at call location is generated with Gamma(16.5;7.2) and the time needed at the
hospital with Gamma(42;15). The destination hospital is randomly chosen such as
the nearest hospitals have a strong probability of selection.

We also assumed that the number of transfer demands and their arrival times
follow a combination of two normal distributions, one during the morning and
second one during the afternoon. The probability of selection of the morning’s
normal distribution for the arrival times were considered slightly larger (0.55). If we
note N(μ ;σ2) a normal distribution with a mean μ and a variance σ2, the morning’s
normal distribution and the afternoon’s normal distribution were set respectively
to N(10h;2h) and N(17h;2h). We also assumed that approximately 5 % of the
demands are canceled. The time at which the cancelation is known is randomly
generated at a moment between half an hour after the time where the demand is
known and the latest date for the demand execution. Each transfer demand can start
during a time window. The earliest date is generated between half an hour and 5 h
after the time where the demand is known, using a normal distribution N(2h30;1h).
The size of the time windows is randomly generated between half an hour and
4 h. The probability that the departure or the destination is a hospital is equal to
0.85, but the departure and the destination cannot both be a patient home. The times
need at the places of the departure and the destination are generated using a normal
distribution N(20;7) (minutes).

Based on these assumptions, we generated 20 instances of 7 days covering
5 months. However, our analyses and results are based only on the 5 middle-days to
remove the transitory states of the first and last day. We tested the three management
strategies on all instances. To reduce as much as possible the variance in the
results, the random events were kept exactly the same for all the three management
strategies for a given instance. The results are summarized in Table 24.1. For each
management strategy we report the average of the following indicators over the
20 instances: the number of emergency demands without and with transports, the
average response times, the coverages according to S and S′, the number of transfer
demands, the sum of transport delays and the number of late transfer demands.
We also noted some criteria related to efficiency of the strategy: the number of
diversions, the number of redeployments, the number of ambulances redeployed,
the percentage of ambulances empty travels and the overtime of paramedics.

We can conclude that, regarding the quality of services for emergency and
transfer demands, the results of Independent fleet management are clearly worse
than the ones produced by the other management strategies. However, the fleet
efficiency indicators (number of diversions, average ambulances empty travels and
the overtime of paramedics) are better when using Independent fleet management.
Even if the Reactive fleet management seems a rather simple strategy, it produces
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Table 24.1 Results

Management type

Independent Without planning Robust

Emergency demands
Number of demands without transport 589.1 589.1 589.1
Number of demands with transport 1,762.2 1,762.2 1,762.2
Average response time (R.T.) in sec. 469.5 454.6 446.1
Percentage of demands such that R.T.≤ S 68.8 71.0 73.4
Percentage of demands such that R.T.≤ S′ 85.1 86.9 88.3
Percentage of demands such that R.T.> S′ 14.9 13.1 11.7

Transfer demands
Number of demands 452.2 452.2 452.2
Sum of transport delays in sec. 2,397.7 473.1 661.0
Number of late demands 46.3 3.2 16.0

Ambulances
Number of diversions 2,407.9 2,640.3 2,584.4
Number of redeployments 202.6 182.7 182.8
Number of ambulances redeployed 611.2 585.7 594.7
Percentage of average ambulances empty travels 22.8 24.6 24.5
Average overtime of paramedics 1,521.1 1,593.8 1,709.2

a good balance between the service quality of emergency demands and transfer
demands: both the delays and the coverages are strongly improved with respect to
the Independent fleet management case. Unfortunately, if we decrease the number
of ambulances limited to perform the transfer transports, the coverage is slightly
improved but the transfer transport delays are considerably increased. Finally, the
Proactive fleet management strategy improves the service quality of the emergency
demands but it deteriorates the delays of transfer demands.

24.6 Conclusion

This paper proposes new fleet management strategies to deal with two types of
demands, transfer and emergency demands, in an integrated manner. We showed
that these strategies can improve the quality of the service without increasing the
number of ambulance in the fleet. The proposed Proactive fleet management strategy
is very promising, and it is also simple to implement in a real setting. One of our
future research questions concerns the consideration of the breaks in paramedics
schedules. We also intend to formulate a single model for the two problems (DARP
and relocation problem) as well as integrated solving approach to improve the
results.
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