

Christof Ebert • Reiner Dumke
Manfred Bundschuh • Andreas Schmietendorf

Best Practices in Software Measurement

Christof Ebert • Reiner Dumke
Manfred Bundschuh • Andreas Schmietendorf

123

Best Practices
in Software Measurement

With 107 Figures and 37 Tables

How to use metrics to improve project
and process performance

Library of Congress Control Number: 2004110442

ACM Computing Classification (1998): D.2.8, D.2.9, K.6.3, C.4, K.6.1, K.1

ISBN 3-540-20867-4 Springer Berlin Heidelberg New York

Christof Ebert
Alcatel
54 rue la Boetie
75008 Paris, France
e-mail: christofebert@ieee.org

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Typesetting: by the authors
Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

Manfred Bundschuh
Fachbereich Informatik
Fachhochschule Köln
Am Sandberg 1
51643 Gummersbach, Germany
e-mail:
manfred.bundschuh@freenet.de

Reiner Dumke
Otto-von-Guericke-Universität Magdeburg
Postfach 4120
39016 Magdeburg, Germany
e-mail: dumke@ivs.cs.uni-magdeburg.de

Andreas Schmietendorf
T-Systems Nova
Postfach 652
13509 Berlin, Germany
e-mail:
andreas.schmietendorf@t-systems.com

Preface

Not everything that counts can be counted.
Not everything that is counted counts.

Albert Einstein

This is a book about software measurement from the practitioner’s point of view
and it is a book for practitioners. Software measurement needs a lot of practical
guidance to build upon experiences and to avoid repeating errors. This book tar-
gets exactly this need, namely to share experiences in a constructive way that can
be followed. It tries to summarize experiences and knowledge about software
measurement so that it is applicable and repeatable. It extracts experiences and
lessons learned from the narrow context of the specific industrial situation, thus
facilitating transfer to other contexts.

Software measurement is not at a standstill. With the speed software engineer-
ing is evolving, software measurement has to keep pace. While the underlying
theory and basic principles remain invariant in the true sense (after all, they are
not specific to software engineering), the application of measurement to specific
contexts and situations is continuously extended. The book thus serves as a refer-
ence on these invariant principles as well as a practical guidance on how to make
software measurement a success.

New fields have emerged in the recent years. We therefore show how software
measurement applies to current application development, telecommunications,
mobile computing, Web design or embedded systems. Standards have emerged
which we use and explain in their practical usage. We look specifically to the gen-
eral measurement standard of ISO 15939 serving as a framework for the underly-
ing measurement processes, the extended version of the product quality standards
ISO 9126 and 14598, the CMM – and recently appearing CMMI – as very suc-
cessful de-facto industry standards for process improvement, or the new approach
on the area of functional size measurement ISO 19761 (COSMIC Full Function
Points standard).

Underlying methodologies and theory have consolidated. It will not be repeated
here, as it can easily be found in reference books, such as [Endr03], [Fent97],
[McGa02], [Wohl00], and [Zuse97].

The book summarizes the experience of the authors in some industrial projects
relating with companies such as Alcatel, Deutsche Telekom, Siemens, Bosch, and
AXA Insurance Company. Some work published in this book has been supported
by the German communities of the Interest Group on Software Measurement in
the German Informatics Society (GI), the “Deutschsprachige Anwendergruppe für

VI Preface

Software-Metrik und Aufwandschätzung” (DASMA), the Canadian community of
Interest Group in Software Metrics (CIM) and the international communities of
the Common Software Measurement International Consortium (COSMIC) and the
European Metrics Association’s International Network (MAIN).

We would like to thank the members of various measurement communities for
their cooperation during our projects and investigations like Grant Brighten, Dan
Campo, Helge Dahl, Jozef De Man, Bryan Douglas, Casimiro Hernandez Parro,
Jack Hofmann, Eric Praats, Manuel Ramos Gullon, Siegfried Raschke, Tian Lixin,
Wu Zhen (Alcatel); Alain Abran, Pierre Bourque, Francois Coallier and Jean-
Marc Desharnais (CIM); Roberto Meli, Pam Morris and Charles Symons
(COSMIC); Günter Büren and Helmut Wolfseher (DASMA); Evgeni Dimitrov,
Jens Lezius and Michael Wipprecht (Deutsche Telekom); Thomas Fetcke, Claus
Lewerentz, Dieter Rombach, Eberhard Rudolph, Harry Sneed and Horst Zuse
(GI); Luigi Buglione, Thomas Fehlman, Peter Hill (ISBSG); David A. Gustafson
(Kansas State University); Geert Poels and Rini van Solingen (MAIN); Annie
Combelles (Q-Labs); Niklas Fehrling, Ingo Hofmann and Willy Reiss (Robert
Bosch GmbH); Ulrich Schweikl and Stefan Weber (Siemens AG); Mathias
Lother, Cornelius Wille and Daniel Reitz (SML@b).

Special thanks go Springer and our editor, Ralf Gerstner, for their helpful coop-
eration during the preparation of this book.

All four authors are available via e-mail to address specific questions that read-
ers might have when working with this book. We welcome such feedback for two
reasons. First, it helps to speed up the sharing of software engineering knowledge
and thus enriches the common body of knowledge. Second, since we anticipate a
next edition, such feedback ensures further improvements.

Many helpful links and continuously updated information is provided at the
Web site of this book at http://metrics.cs.uni-magdeburg.de.

We wish all our readers of this book good success in measuring and improving
with the figures. We are sure you will distinguish what counts from what can be
counted.

Paris, Magdeburg, Cologne, and Berlin Christof Ebert
January 2004 Reiner Dumke
 Manfred Bundschuh

Andreas Schmietendorf

Contents

1 Introduction ...1

2 Making Metrics a Success – The Business Perspective9
2.1 The Business Need for Measurement ..9
2.2 Managing by the Numbers ..13

2.2.1 Extraction ..13
2.2.2 Evaluation..17
2.2.3 Execution...20

2.3 Metrics for Management Guidance ...22
2.3.1 Portfolio Management ...22
2.3.2 Technology Management ..24
2.3.3 Product and Release Planning ...26
2.3.4 Making the Business Case ...27

2.4 Hints for the Practitioner ...29
2.5 Summary ...32

3 Planning the Measurement Process ...35
3.1 Software Measurement Needs Planning ..35
3.2 Goal-Oriented Approaches ..36

3.2.1 The GQM Methodology ..36
3.2.2 The CAME Approach..38

3.3 Measurement Choice ...40
3.4 Measurement Adjustment..42
3.5 Measurement Migration ..43
3.6 Measurement Efficiency..45
3.7 Hints for the Practitioner ...45
3.8 Summary ...47

4 Performing the Measurement Process...49
4.1 Measurement Tools and Software e-Measurement................................49
4.2 Applications and Strategies of Metrics Tools..50

4.2.1 Software process measurement and evaluation50
4.2.2 Software Product Measurement and Evaluation............................51
4.2.3 Software Process Resource Measurement and Evaluation54
4.2.4 Software Measurement Presentation and Statistical Analysis54
4.2.5 Software Measurement Training ...55

VIII Contents

4.3 Solutions and Directions in Software e-Measurement 56
4.4 Hints for the Practitioner ... 61
4.5 Summary ... 62

5 Introducing a Measurement Program... 63
5.1 Making the Measurement Program Useful.. 63
5.2 Metrics Selection and Definition... 63
5.3 Roles and Responsibilities in a Measurement Program......................... 66
5.4 Building History Data ... 68
5.5 Positive and Negative Aspects of Software Measurement 69
5.6 It is People not Numbers! .. 72
5.7 Counter the Counterarguments.. 74
5.8 Information and Participation.. 75
5.9 Hints for the Practitioner ... 76
5.10 Summary ... 79

6 Measurement Infrastructures .. 81
6.1 Access to Measurement Results .. 81
6.2 Introduction and Requirements ... 81

6.2.1 Motivation: Using Measurements for Benchmarking.................... 81
6.2.2 Source of Metrics .. 82
6.2.3 Dimensions of a Metrics Database .. 83
6.2.4 Requirements of a Metrics Database ... 84

6.3 Case Study: Metrics Database for Object-Oriented Metrics.................. 86
6.3.1 Prerequisites for the Effective Use of Metrics............................... 86
6.3.2 Architecture and Design of the Application 87
6.3.3 Details of the Implementation ... 88
6.3.4 Functionality of the Metrics Database (Users’ View) 90

6.4 Hints for the Practitioner ... 93
6.5 Summary ... 94

7 Size and Effort Estimation ... 95
7.1 The Importance of Size and Cost Estimation .. 95
7.2 A Short Overview of Functional Size Measurement Methods 96
7.3 The COSMIC Full Function Point Method ... 100
7.4 Case Study: Using the COSMIC Full Function Point Method 103
7.5 Estimations Can Be Political ... 106
7.6 Establishing Buy-In: The Estimation Conference 107
7.7 Estimation Honesty ... 108
7.8 Estimation Culture... 108
7.9 The Implementation of Estimation .. 109
7.10 Estimation Competence Center ... 111
7.11 Training for Estimation ... 113
7.12 Hints for the Practitioner ... 113
7.13 Summary ... 114

Contents IX

8 Project Control ..115
8.1 Project Control and Software Measurement ..115
8.2 Applications of Project Control ...118

8.2.1 Monitoring and Control ...118
8.2.2 Forecasting ..124
8.2.3 Cost Control...126

8.3 Hints for the Practitioner ...130
8.4 Summary ...131

9 Defect Detection and Quality Improvement ...133
9.1 Improving Quality of Software Systems ...133
9.2 Fundamental Concepts ..135

9.2.1 Defect Estimation ..135
9.2.3 Defect Detection, Quality Gates and Reporting137

9.3 Early Defect Detection ..138
9.3.1 Reducing Cost of Non-Quality ..138
9.3.2 Planning Early Defect Detection Activities.................................140

9.4 Criticality Prediction – Applying Empirical Software Engineering142
9.4.1 Identifying Critical Components ...142
9.4.2 Practical Criticality Prediction...144

9.5 Software Reliability Prediction..146
9.5.1 Practical Software Reliability Engineering..................................146
9.5.2 Applying Reliability Growth Models ..148

9.6 Calculating ROI of Quality Initiatives...150
9.7 Hints for the Practitioner ...154
9.8 Summary ...155

10 Software Process Improvement..157
10.1 Process Management and Process Improvement.................................157
10.2 Software Process Improvement ...160

10.2.1 Making Change Happen ..160
10.2.2 Setting Reachable Targets ...163
10.2.3 Providing Feedback ...166
10.2.4 Practically Speaking: Implementing Change...........................168
10.2.5 Critical Success Factors...169

10.3 Process Management ...170
10.3.1 Process Definition and Workflow Management......................170
10.3.2 Quantitative Process Management...173
10.3.3 Process Change Management ..174

10.4 Measuring the Results of Process Improvements175
10.5 Hints for the Practitioner ...177
10.6 Summary ...179

11 Software Performance Engineering...181
11.1 The Method of Software Performance Engineering181
11.2 Motivation, Requirements and Goals ..183

X Contents

11.2.1 Performance-related Risk of Software Systems 183
11.2.2 Requirements and Aims... 184

11.3 A Practical Approach of Software Performance Engineering 185
11.3.1 Overview of an Integrated Approach 185
11.3.2 Establishing and Resolving Performance Models 185
11.3.3 Generalization of the Need for Model Variables..................... 187
11.3.4 Sources of Model Variables .. 189
11.3.5 Performance and Software Metrics ... 190
11.3.6 Persistence of Software and Performance Metrics 192

11.4 Case Study: EAI .. 193
11.4.1 Introduction of a EAI Solution .. 193
11.4.2 Available Studies... 194
11.4.3 Developing EAI to Meet Performance Needs 195

11.5 Costs of Software Performance Engineering....................................... 198
11.5.1 Performance Risk Model (PRM)... 198

11.6 Hints for the Practitioner.. 199
11.7 Summary.. 201

12 Service Level Management... 203
12.1 Measuring Service Level Management ... 203
12.2 Web Services and Service Management ... 204

12.2.1 Web Services at a Glance .. 204
12.2.2 Overview of SLAs... 206
12.2.3 Service Agreement and Service Provision 207

12.3 Web Service Level Agreements .. 209
12.3.1 WSLA Schema Specification .. 209
12.3.2 Web Services Run-Time Environment 210
12.3.3 Guaranteeing Web Service Level Agreements 211
12.3.4 Monitoring the SLA Parameters.. 212
12.3.5 Use of a Measurement Service .. 213

12.4 Hints for the Practitioner ... 214
12.5 Summary ... 216

13 Case Study: Building an Intranet Measurement Application 217
13.1 Applying Measurement Tools ... 217
13.2 The White-Box Software Estimation Approach.................................. 218
13.3 First Web-Based Approach ... 221
13.4 Second Web-Based Approach... 222
13.5 Hints for the Practitioner ... 223
13.6 Summary ... 223

14 Case Study: Measurements in IT Projects.. 225
14.1 Estimations: A Start for a Measurement Program............................... 225
14.2 Environment .. 226

14.2.1 The IT Organization .. 226
14.2.2 Function Point Project Baseline .. 226

Contents XI

14.3 Function Point Prognosis...229
14.4 Conclusions from Case Study..230

14.4.1 Counting and Accounting ..230
14.4.2 ISO 8402 Quality Measures and IFPUG GSCs231
14.4.3 Distribution of Estimated Effort to Project Phases233
14.4.4 Estimation of Maintenance Tasks..234
14.4.5 The UKSMA and NESMA Standard.......................................235
14.4.6 Enhancement Projects..236
14.4.7 Software Metrics for Maintenance ..237
14.4.8 Estimation of Maintenance Effort After Delivery238
14.4.9 Estimation for (Single) Maintenance Tasks.............................239
14.4.10 Simulations for Estimations...239
14.4.11 Sensitivity analysis. ...241

14.5 Hints for the Practitioner ...241
14.6 Summary ...242

15 Case Study: Metrics in Maintenance...243
15.1 Motivation for a Tool-based Approach ...243
15.2 The Software System under Investigation ...244
15.3 Quality Evaluation with Logiscope ...245
15.4 Application of Static Source Code Analysis..251
15.5 Hints for the Practitioner ...254
15.6 Summary ...256

16 Metrics Communities and Resources ..259
16.1 Benefits of Networking ...259
16.2 CMG..259
16.4 COSMIC..260
16.6 German GI Interest Group on Software Metrics..................................261
16.7 IFPUG ...261
16.8 ISBSG..262
16.9 ISO ..265
16.10 SPEC ...266
16.11 The MAIN Network ..266
16.12 TPC..267
16.13 Internet URLs of Measurement Communities.....................................267
16.14 Hints for the Practitioner and Summary ..268

Glossary..269

Literature ...279

Index ...291

1 Introduction

Count what is countable. Measure what is measurable.
And what is not measurable, make measurable.

Galileo Galilei

The Purpose of the Book

Human performance improvement is essentially unlimited. The fastest time for the
mile was 4.5 minutes in 1865, 4 minutes in 1954, and today it is around 3.6 min-
utes (depending on when you read this introduction). One might expect a 3-minute
mile during this century. Can you imagine how little runners might have improved
if there were no stopwatch or measured track? Unmeasured and unchallenged per-
formance does not improve! And it will not improve if not fostered by – best prac-
tices – in the discipline.

Software development clearly is a human activity and as such is prone to con-
tinuous performance improvements. Software measurement is the approach to
control and manage the software process and to track and improve its perform-
ance.

This book shows how to best use measurement for understanding, evaluating,
controlling and forecasting. It takes a look at how to improve with the numbers.
To measure is simple. To give meaning to numbers and take the right decisions is
the stuff this book is made of. We coined it around what the four authors perceive
as best practices in their respective domains.

Practices need time to mature towards what we perceive as best practices, and
they are continuously challenged by new theories and practices. Are such best
practices timeless? Certainly not in this fast-changing engineering discipline, how-
ever given the long time of maturing and the well-established foundation of soft-
ware measurement since the early work during the 1970s, they face a life time,
which exceeds that of the availability of such a book. They certainly are mostly
invariant against changes of software engineering methods, paradigms, and tools.

Software metrics must provide answers first and foremost. They help in under-
standing how a project is performing compared to the targets. They indicate
whether an organization is doing better or worse compared to a previous period.
However, the needs of practitioners, managers and scientists are not the numbers
but what is behind the numbers.

2 1 Introduction

Software metrics are used in the following ways:
1. to understand more about software work products or underlying processes and

to evaluate a special situation or (statistical) characteristic of software artifacts
for making ad hoc decisions leading to special experiences (e.g., project track-
ing, rules of thumb, assessments and descriptions of situations)

2. to track, evaluate, analyze, and control the software project, product or process
attributes for supporting a continued decision making leading to evaluations
(e.g., project management, process improvement)

3. to estimate, predict or forecast software characteristics in order to keep a
knowledge-based management process leading to general experiences (e.g., es-
timation formulas, development rules and general characteristics)

4. to evaluate work products or processes against established standards and to de-
fine and measure specific characteristics during the software life-cycle for sup-
port of the controlled management process leading to software metrics (stan-
dardized size and complexity measures)

We must not think of researchers who create a metric and users who only apply
it. Metrics are mostly defined and used by exactly the same party. Therefore, the
metrics users must have basic knowledge about the software measurement process
itself. They must know how to build measurements or metrics, how to use the ap-
propriate statistics and how to proof the validity of the measures or metrics.

A very helpful standard was developed in the recent years for implementing the
software measurement process: the ISO/IEC 15939 standard [ISO02, McGa01].
Following this standard we can plan and implement a measurement process based
upon best practices (Fig. 1.1). We initiated a lifecycle for a step-by-step optimiza-
tion of the used resources, the software development process and the product itself
that we also describe in this book.

Different persons will take different messages from using this book. The fol-
lowing examples show what that can mean in practice:

The supplier learns to implement a software measurement process to address
specific project or organizational requirements. He will focus on realistic tar-
gets and how to track and achieve them. He will improve performance based on
quantitative targets to stay competitive.
The acquirer learns to implement a software measurement process to address
specific technical and project management information requirements. He con-
tracts quantitative performance targets (e.g., service level agreements, quality
levels, deadlines) and periodically monitors the supplier’s conformance versus
these agreements.
The contract between an acquirer and a supplier specifies quantitative perform-
ance targets and defines to the necessary degree the software process and prod-
uct measurement information to be exchanged.

Fig. 1.1 shows the scope of ISO 15939 with the feedback and integration as-
pects of the software measurement application.

The layout of this standard was used to structure this book for the presentation
of our practical experiences and approaches in introducing the software measure-

1 Introduction 3

ment process in industrial areas. So, we will start with establishing and sustaining
a measurement commitment as basic precondition for a successful software meas-
urement process implementation in the information technology area.

Introduce
measurement
processes
and practices

Identify
improvement

goals

Establish,
define and

agree metrics

Introduce
measurement
and analysis

Metrics, tools Project data,
Experience DB

Perform the
measurement
process

Plan and
extract metrics

Evaluate,
analyze and
communicate

Execute
corrective

actions

Projects, persons, processes

Introduce
measurement
processes
and practices

Identify
improvement

goals

Establish,
define and

agree metrics

Introduce
measurement
and analysis

Introduce
measurement
processes
and practices

Introduce
measurement
processes
and practices

Identify
improvement

goals

Establish,
define and

agree metrics

Introduce
measurement
and analysis

Metrics, tools Project data,
Experience DB

Perform the
measurement
process

Plan and
extract metrics

Evaluate,
analyze and
communicate

Execute
corrective

actions

Perform the
measurement
process

Plan and
extract metrics

Evaluate,
analyze and
communicate

Execute
corrective

actions

Projects, persons, processes

Fig. 1.1. Implementing a best practices measurement process based on ISO 15939

Many measurement programs fail. Metrics are collected but not used and lots of
data is available but without any meaning behind it. This book tries to pinpoint
common pitfalls and how to avoid them. We target the following measurement-
related risks:

Collecting metrics without a meaning. Measurement must be goal-driven,
therefore we measure to improve. People realize quickly whether their manag-
ers and environment understand what they are doing or not, and they behave
accordingly. Therefore each single metric must have a clear practical applica-
tion or it not only is a waste of effort to collect but may also reduce morale.
Not analyzing metrics. Measuring is easy, but working with the numbers is a
real effort. Often the analysis effort is neglected. Numbers are put into charts
and reports and distributed. This is insufficient, as numbers need profound
analysis. They need to relate to objectives and performance. Metrics must be
actionable or they distort rather than clarify matters.
Setting unrealistic targets. Many managers, like those portrayed in the popular
Dilbert cartoons become so fascinated by measurement – and the perceived ac-
curacy and preciseness – that they pose targets that are entirely driven by the
numbers. Sometimes they are not based on history and experience at all, or they
drive an organization or team to their limits continuously. Dysfunctional per-
formance and burned-out people result, just like what was seen during the dot-
com bubble with the abuse of business metrics to make balance sheets and in-
come statements shine.

4 1 Introduction

Paralysis by analysis. Metrics are used independent of underlying life cycle and
development processes. Often too much information is collected, and organiza-
tions waste time on formalisms and bureaucracy. It is important to understand
that measuring is a key part of engineering and project management – but not a
separate activity done by the accountants.

How this Book Is Organized

The chapters of this book are organized to go from the general to the specific. All
chapters are built around the ISO 15939 software measurement standard (Fig. 1.2).

We first discuss measurement from a business perspective. Chap. 2 brings met-
rics into the business context and provides some examples on the practical usage
of metrics for change management and for portfolio management. This is com-
prised by the need to establish improvement goals (upper left box) and finally to
execute corrective actions (lower right box).

Introduce
measurement
processes and
practices

Identify
improvement goals

Establish, define
and agree metrics

Introduce
measurement and

analysis

Metrics, tools Project data,
Experience DB

Perform the
measurement
process Plan and extract

metrics
Evaluate, analyze
and communicate

Execute corrective
actions

Projects,
persons,

processes

Ch. 2,3,9,10 Ch. 3,7,11,12,14

Ch. 2,4,8,9,15

Ch. 3,5,6,7,13,14

Ch. 4,6,12,13,14,15 Ch. 5,6,7,10,16

Ch. 3,8,9,11 Ch. 4,8,9,15

Ch. 4,6,7,8,9,10,13,14

Introduce
measurement
processes and
practices

Introduce
measurement
processes and
practices

Identify
improvement goals

Establish, define
and agree metrics

Introduce
measurement and

analysis

Metrics, tools Project data,
Experience DB

Perform the
measurement
process Plan and extract

metrics
Evaluate, analyze
and communicate

Execute corrective
actions

Projects,
persons,

processes

Ch. 2,3,9,10 Ch. 3,7,11,12,14

Ch. 2,4,8,9,15

Ch. 3,5,6,7,13,14

Ch. 4,6,12,13,14,15 Ch. 5,6,7,10,16

Ch. 3,8,9,11 Ch. 4,8,9,15

Ch. 4,6,7,8,9,10,13,14

Fig. 1.2. The measurement process and the book's structure

Chaps. 3 and 4 elaborate how the measurement process and its infrastructure
are introduced. Starting a measurement program is very difficult, as it implies cul-
ture change towards visibility and accountability for results. Often measurement
programs fail because middle and senior management is not capable dealing with
the visibility gained and trust needed to make metrics successful. We show in
Chap. 5 how to best manage the cultural changes related to measurement. Any-
body dealing with software measurement must consider the effects of metrics on
the people and the effects of the people on the metrics. Often people are afraid of

1 Introduction 5

“being measured”. Mostly this refusal has to do with a lack of knowledge about
how to measure and what is in it when the numbers are used correctly. If metrics
are used to threaten and punish before building a climate where targets are set re-
alistically and are made achievable, trust will disappear and numbers will be
faked. This explains the cynical behaviors we find in software management car-
toons.

Measurement needs the right tools. Though the tools are not heavy or expen-
sive, counting, presenting and analyzing manually is still common practice. We
show in Chap. 6 what tooling should be used for different questions related to
measurement.

Estimation is still one area in software measurement where many users struggle
mightily – right from the start. It’s introduced in Chap. 7. We also come back to
the people dimension of metrics in this chapter. Project management, and specifi-
cally project control is at the core of Chap. 8. This chapter underlines the relation-
ship between project success and “having the right numbers”. Chap. 9 deals with
quality control and defect detection. It contains lots of practical experience and
rules of thumb on defects, estimation and prediction, all with the objective of ob-
taining the right quality and of reducing the cost of non-quality. It is a chapter that
introduces empirical software engineering through the back door. While this easily
could have been a chapter in its own, we thought it being better to understand if
applied directly to the context of quality improvement.

Chap. 10 generalizes these aspects towards the broad field of process improve-
ment. There has been a lot of misunderstanding about using metrics for process
improvement. The Capability Maturity Model (CMM) has contributed in clarify-
ing quantitative management within software engineering. While many people
thought that metrics for most of us are only about tracking performance, the CMM
underlines the benefits of managing organizational, project and process perform-
ance simultaneously. We try to clarify and explain how to set improvement objec-
tives and how to reach them. Analogously to e-business, we coin the terminology
of e-R&D to underline what measurement, methodologies and management are
really about.

Information technology asks for measurement on performance and service
availability. With Chaps. 11 and 12 we take a practical look into how to set up and
ensure service level agreements and different scenarios. We cover different tech-
nologies, such as integrating applications with Enterprise Application Integration
(EAI) or implementing Web services.

The next three chapters are shaped as case studies. They go back to some im-
portant measurement themes and show in very specific situations what was done
in industry practice. Chapter 13 shows how to build a measurement infrastructure
on an intranet and is directly linked with Chap. 6. Chapter 14 relates to Chaps. 7
and 8 in showing how function points are introduced into the full life-cycle of a
software product. Chapter 15 takes a look into metrics for maintenance. Often we
tend to neglect the fact that a vast majority of our effort in software engineering
goes into enhancing legacy systems. This chapter looks into quality measurement
especially in such situations and thus relates to Chap. 9.

6 1 Introduction

Finally, Chap. 16 summarizes the major software measurement communities
and organizations. URLs are provided for the Internet sites of these organizations.

A glossary and index wrap up the book. The glossary should serve as a baseline
reference for the many terms we use throughout this book. It draws the fine line
between metrics and measurements and has other frequently used terms for con-
sistency reasons.

To ensure enduring value of this book, we keep the information updated at this
book’s Web site at http://metrics.cs.uni-magdeburg.de.

Who Should Read this Book?

If you develop software for a living and if you are interested in the practical as-
pects of measurement, this book will show how you can better understand and
control what you are doing. The book will help you in understanding what meas-
urement means in practical terms. It will also help in selecting what counts from
the perspective of understanding, evaluating, tracking, controlling and forecasting.
We further recommend [Fent97] as a practical introduction providing the mathe-
matical and statistical background of software measurement.

If you manage software projects or organizations, this book will show you what
measurement techniques to select in front of various needs from estimating size
and effort to project and portfolio management. It will also describe the softer
parts of measurement, such as introducing a measurement program or coping with
resistance. [McCo98] is the classic text on how to make your software projects a
success. We highly recommend it. We also recommend [Grad92] as a comprehen-
sive summary what HP did in terms of practical software measurement with focus
on managing projects.

If you are responsible for improving quality, performance, or processes in an
organization, this book will show how to set targets and how to reach them. It in-
troduces the recent tools and environments of making measurement more effi-
cient. We recommend in this domain [Hump89] as the baseline for what process
improvement really means. [ISO00] is the appropriate standard for software mea-
surement and should not be missing on any standards bookshelf in our domain.
[McGa01] explains the usage of this ISO standard. [Jone96], though a little bit
dated, provides a huge set of experience data which you can relate to your own
measurements to have some initial benchmarking.

If you are engaged in software engineering research, the book will show what’s
ongoing out there, what’s working and what not, and how it relates to specific
needs the practitioners still expect to be answered by an improved body of knowl-
edge. [VanS00] and [Zuse97] are good introductory textbooks on the scientific
background of software measurement. We recommend them for those who want to
engage into empirical research.

For all of you the book provides lots of practical hints and concrete examples.
Any single entry to this book comes from practical work in industry and has been
validated in front of real-world requirements.

1 Introduction 7

Authors

Christof Ebert (christofebert@ieee.org) is Director, Software Coordination and
Process Improvement of Alcatel in Paris, France. He drives R&D innovation and
improvement programs within Alcatel. His current responsibilities include estab-
lishing shared software platforms and leading Alcatel’s global CMM/CMMI pro-
grams (which means a great deal of measurement). A senior member of the IEEE,
Dr. Ebert lectures at the University of Stuttgart and serves as a keynote speaker
and on program committees of various software engineering conferences. Since
the end of 1980s, he has been an educator, researcher and consultant in software
measurement. He is a member of the editorial board of the Journal of Systems and
Software and is IEEE Software associate editor-in-chief. He serves on the board of
the German Interest Group on software metrics within the German Informatics
Society (GI). For this book he worked especially on Chaps. 2, 5, 8, 9 and 10.

Reiner Dumke (dumke@ivs.cs.uni-magdeburg.de) has studied mathematics and
worked as a programmer and systems analyst. He holds a PhD on the operational
efficiency of large-scale database systems. Since 1994, he has been a full profes-
sor in software engineering at the University of Magdeburg. His research interest
is in software measurement, CAME tools, agent-based development methods, e-
measurement and distributed complex systems. He is the leader of the German In-
terest Group on software metrics within the German Informatics Society (GI) and
he works as a member of the COSMIC, DASMA, MAIN, IEEE and ACM com-
munities. He founded the Software Measurement Laboratory (SML@b) at the
University of Magdeburg. He is coeditor of the Metrics News Journal and the pub-
lisher and editor of more than 30 books about programming techniques, software
metrics, metrics tools, software engineering foundations, component-based soft-
ware development and web engineering. More information about the projects and
teaching is found at http://ivs.cs.uni-magdeburg.de/~dumke. Prof. Dumke pro-
vided Chaps. 3, 4, 7 and 13.

Manfred Bundschuh (manfred.bundschuh@freenet.de) has worked as banker,
teacher and IT consultant in Hamburg; he has been the quality manager in AXA
Service AG in Cologne for over 20 years. In 1983 he was appointed professor for
software engineering and project management at the University of Applied Sci-
ences (http://www.gm.fh-koeln.de/~bundschu) in Cologne and supervised more
than 220 students. M. Bundschuh lectures for various organizations and has pub-
lished more than 40 papers (some in books) and 9 books (3 as copublisher). He is
president of the Deutschsprachige Anwendergruppe für Softwaremetrik und Auf-
wandschätzung (DASMA). His hobbies are traveling, reading and astronomy, ar-
cheology and philosophy. He worked on Chaps. 5, 7, 14 and 16.

Andreas Schmietendorf (andreas.schmietendorf@t-systems.com) holds aca-
demic degrees in technical computer science, telecommunications and general in-
formatics from the TFH Berlin, FHTW Berlin and HTW Dresden (Universities of

8 1 Introduction

Applied Science). He holds MS and PhD degrees in computer science from the
University of Magdeburg. Since 1993 he has worked as a consultant for system
and software development in the information technology department of Deutsche
Telekom AG. Currently he is the leader of a group for integration solutions and
chief architect for the development center in Berlin. His main research interest is
in software performance engineering, component software development and soft-
ware measurement. He is an active member in the German society of computer
science (GI), the Central Europe Computer Measurement Group (CECMG) and
the German interest group on software metrics and effort estimation (DASMA).
He lectures at the University of Magdeburg and FHTW Berlin (University of Ap-
plied Science). Dr. Schmietendorf’s attention was directed to Chaps. 6, 11, 12 and
15.

2 Making Metrics a Success – The Business
Perspective

When the smoke clears,
the thing that really matters to senior management is the numbers.

Donald J. Reifer

2.1 The Business Need for Measurement

It is eight o’clock in the morning. You are responsible for software engineering.
On your way to the company building you run into your CEO. He inquires on the
status of your current development projects. No small talk. He wants to find out
which projects are running, about their trade-offs, the risks, and whether you have
sufficient resources to implement your strategy. He is interested whether you can
deliver what he promises to the customers and shareholders – or whether you need
his help. That’s your chance! Five minutes for your career and success!

Sounds familiar? Maybe it is not the CEO but a key customer for a self-
employed software engineer. Or perhaps you are a project manager and one of the
key stakeholders wants to see how you are doing. The questions are the same as is
the reaction if you have not answered precisely and concisely.

Is there sufficient insight into the development projects? If you are like a major-
ity of those in IT and software companies, you only know the financial figures.
Too many projects run in parallel, without concrete and quantitative objectives
and without tracking where they are with respect to expectations. Project propos-
als are evaluated in isolation from ongoing activities. Projects are started or
stopped based on local criteria, not by considering the global trade-offs across all
projects and opportunities. Only one third of all software engineering companies
systematically utilize techniques to measure and control their product releases and
development projects [Meta02, CIO03, IQPC03] (for project control see also
Chap. 8).

No matter what business you are in, you are also in the software business.
Computer-based, software-driven systems are pervasive in today’s society. In-
creasingly, the entire system functionality is implemented in software. Where we
used to split hardware from software, we see flexible boundaries entirely driven
by business cases to determine what we best package at which level in which
component, be it software or silicon.

10 2 Making Metrics a Success – The Business Perspective

The software business has manifold challenges, which range from the creation
process and its inherent risks to direct balance sheet impacts. For example, the
Standish Group’s Chaos Report annually surveys commercial and government in-
formation technology (IT) projects. They found that only 26% of the projects fin-
ished on time and within budget, a staggering 28% were cancelled before delivery,
and of the remaining projects, which finished late and/or over budget, they only
delivered a fraction of the planned functionality [Stan02].

Software metrics ensure that the business is successful. They help to see what is
going on, and how one is doing with respect to forecasts and plans. And they ulti-
matively guide decisions on how to do better.

Success within a software business is determined and measured by the degree
the software projects and the entire product portfolio contribute to the top line
(e.g., revenues) and to the bottom line (e.g., profit and loss). Late introduction of a
product to market causes a loss of market share; cancellation of a product before it
ever reaches the market causes an even greater loss. Not only is software increas-
ing in size, complexity and percentage of functionality, it is increasing in contribu-
tion to balance sheet and P&L statements.

Software metrics do not distinguish first-hand between IT projects, develop-
ment projects or maintenance projects. The approach is the same. Most techniques
described in this book can be applied to different types of software engineering,
software management and IT management activities.

We portray the measurement process as an inherent part of almost any business
process (Fig. 2.1). It consists of the three steps that were already introduced in Fig.
1.1:

extract information (metrics) for a specific need
evaluate this information in view of a specific background of actual status and
goals
execute a decision to reduce the differences between actual status and goals

ExecuteExtract Evaluate

BusinessBusiness
ProcessProcess

Objectives,
Strategy

Status,
Environment

Decisions
New Prioritization

Updated Plans

ExecuteExecuteExtractExtract EvaluateEvaluate

BusinessBusiness
ProcessProcess

Objectives,
Strategy

Status,
Environment

Decisions
New Prioritization

Updated Plans

Fig. 2.1. The measurement control loop consists of three dedicated steps: extraction of in-
formation, evaluation and execution of subsequent decisions (see also Fig. 1.1)

2.1 The Business Need for Measurement 11

This process is a closed control loop, and we insist that it must be closed by
means of the third step, that is, execute decisions based on the information col-
lected. There is no use in extracting information and only recording it for potential
further usage. If metrics are not used on the spot, if they are not analyzed and
evaluated, chances are high that the underlying data is invalid. Without the pres-
sure to have accurate metrics available, collection is done without much care.
Where there is no direct use for information, the information is useless and so is
the effort behind the collection.

If done properly, there are many benefits to metrics, such as
visibility of project and process performance
improved predictability
accountability for results due to verifiable commitments
maximized value generation of the engineering investments
transparent, fair and repeatable decisions on funding of projects
optimized balance of content, technology, risk and funding
improved interfaces and communication between engineering and busi-
ness/sales/marketing management
harmonized decision-making of product technology and content with business
needs
efficient and effective resource allocation
fewer redundant projects and fewer overlaps
outsourcing and supplier monitoring
simplified and transparent cancellation of projects.

On the cost side we found that a metrics program – similar to other controlling
activities – costs some 0.3–1% of related engineering (or IT) effort. If the size of
the organizational unit where metrics are introduced is 100 persons, one should
budget approximately a half person-year for metrics collection and analysis. Dur-
ing the introduction phase the effort needed may almost double, due to training
and communication needs and due to introducing templates, collection mecha-
nisms or tools. Where there are intranet portals, access to metrics and project in-
formation can be provided with low effort, which will over time further reduce the
running cost of metrics collection. The effort for evaluation and execution natu-
rally will not decrease, as this is a management responsibility, starting from the
level of an individual engineer who, for instance, wants to improve their own per-
formance and thus looks into her productivity or the quality of her deliverables.

Metrics must be goal-oriented. Since metrics drive management decisions on
various levels, they are directly linked to respective targets. Fig. 2.2 shows this re-
lationship with different stakeholder needs and which benefits they achieve by us-
ing metrics. Each group naturally has their own objectives, which are not neces-
sarily aligned with each other, and they need visibility how they are doing with
respect to their own goals. On the senior management level, certainly metrics re-
late to business performance. A project manager needs timely and accurate infor-
mation on a project’s parameters. An engineer wants to ensure she delivers good
quality and concentrates on the team’s objectives (see also Chap. 3).

12 2 Making Metrics a Success – The Business Perspective

There is some additional literature around taking a business perspective on
software. Most looks into examples and case studies to generalize principles
[Deva02, Benk03, Reme00]. Some look into dedicated tools and techniques and
their application, such as project control and management [Royc98, McGa01] (see
also Chap. 8), management of global development projects [Eber01] or knowledge
management in R&D projects [Auru03]. A good introduction to the topic of busi-
ness cases for software projects is provided by Reifer [Reif02]. A special issue of
IEEE Software summarizes the state of the practice of “software as a business”
[Mill02].

Metrics

Engineers:
Immediate access to team planning and progress
Get visibility into own performance and how it can be
improved
Indicators that show weak spots in deliverables
Focus energy on software development (instead of
rework or reports)

Project Management:
Immediate project reviews
Status and forescasts for

quality, schedule and budget
Follow-up of action points
Reports based on consistent

raw data

Senior Management:

Easy and reliable visibility
on business performance
Forecasts and indicators
where action is needed
Drill-down into underlying
information and commitments
Flexible resource refocus

Metrics

Engineers:
Immediate access to team planning and progress
Get visibility into own performance and how it can be
improved
Indicators that show weak spots in deliverables
Focus energy on software development (instead of
rework or reports)

Project Management:
Immediate project reviews
Status and forescasts for

quality, schedule and budget
Follow-up of action points
Reports based on consistent

raw data

Senior Management:

Easy and reliable visibility
on business performance
Forecasts and indicators
where action is needed
Drill-down into underlying
information and commitments
Flexible resource refocus

Fig. 2.2. Metrics depend on stakeholder needs. Their goals of what to control or improve
drive the selection and effective usage of metrics

This chapter introduces the business perspective of software measurement. It
looks into IT control, project control, and portfolio management techniques. Sec-
tion 2 proceeds with a global introduction on managing by the numbers. We struc-
ture the entire measurement and management process into three parts, namely ex-
traction of information, evaluation and execution. We will not discuss here how
metrics are selected, as this is specific to the objectives and goals of a specific
process or an application area. We will come back to this question during the other
chapters of this book.

Section 3 provides some concrete application areas on how management deci-
sions are guided by software metrics. We have selected areas with very different
underlying management objectives to underline the broad scope where metrics are
used. In this section we introduce to portfolio management, which is a methodol-
ogy of increasing relevance to simultaneously manage a set of different products
or projects. We will look into managing technology change and disruptive tech-
nology introduction. We also show how product and release planning are guided

2.2 Managing by the Numbers 13

by metrics. These few examples should indicate the necessity of good metrics to
manage the software business. Finally, Sect. 4 summarizes how to make metrics a
success and how to be successful with metrics.

2.2 Managing by the Numbers

2.2.1 Extraction

The first step of any measurement process is to collect the right information.
Measurement is not so much about collection of numbers but rather about under-
standing what information is necessary to drive actions and to achieve dedicated
goals. Extraction therefore means to derive measurement needs from the objec-
tives of the respective entity, to specify how the metrics are collected and then to
extract this information from operational activities. This includes available and
needed resources, skills, technologies, reusable platforms, effort, objectives, as-
sumptions, expected benefits and market share or market growth. A consistent set
of indicators must be agreed upon, especially to capture software project status in-
formation.

Metrics selection is goal-oriented (see also Chap. 3). An initial set of internal
project indicators can be derived from the Software Engineering Institute’s (SEI)
core metrics [Carl92]. They simplify the selection by reducing the focus on project
tracking and oversight from a contractor and program management perspective.
Obviously additional indicators must be agreed to evaluate external constraints
and integrate with market data.

Often the collected metrics and resulting reports are useless and only create ad-
ditional overhead. In the worst case they hide useful and necessary information.
We have seen reports on software programs with over 50 pages full of graphs, ta-
bles and numbers. When asked about topics such as cost to complete, expected
cost of non-quality after handover, or time to profit they did not show a single
number. Sometimes they are even created to hide reality and attract attention to
what is looking good. Be aware that metrics are sometimes abused to obscure
and confuse reality!

A good starting point is to identify how the projects and activities are viewed
from the outside. Ask questions that impact the organization’s and thus your own
future. What is hurting most in the current business climate? Are deadlines ex-
ceeded or changed on short notice? Is the quality level so poor that customers may
move to another supplier? Are projects continuously over budget? Is the amount
devoted to the creation of new and innovative technology shrinking due to cost of
poor quality, rework, testing and maintenance? Who feels this pain first in the
company? Which direction should the product portfolio take? What exactly is a
project, a product or a portfolio? Is this what sales and marketing communicate?
Where does management get information from? Is it reliable and timely? What
targets and quarterly objectives drive R&D?

14 2 Making Metrics a Success – The Business Perspective

To make metrics a success, more is needed than just facts. It’s necessary to
look at opportunistic and subjective aspects. What role and impact do you have in-
side the enterprise? Who benefits most from the projects, and who creates the
most difficulties for the projects? Why is that? What could you do to help this per-
son or group or customer?

Fig. 2.3 shows this goal-driven relationship between business goals, concrete
annual targets or objectives on an operational level to dedicated indicators or met-
rics. Goals cannot be reached if they are not quantified and measured. Or as the
saying goes, managers without clear goals will not achieve their goals clearly. We
show in Fig. 2.3 concrete instances of objectives and metrics. Naturally, they
should be selected based on the market situation, the maturity and certainly the
priorities in the projects.

To make the right assessments and decisions, the necessary information must
be collected up-front. Which factors (or targets, expectations, boundary effects)
impact the investment? How did the original assumptions and performance indica-
tors evolve in the project? Is the business case still valid? Which assets or im-
provements have been implemented? Which changes in constraints, requirements
or boundary conditions will impact the projects and results? Are there timing con-
straints, such as delays until the results are available, or timeline correlations?

Often indicators are available but are not aggregated and integrated. For in-
stance, a quality improvement program measures only defects and root causes, but
fails to look into productivity or shortened cycle times. Or in a newly created sales
portal only access and performance information is known, while sales figures or
new marketing mechanisms are left out of the picture. Fig. 2.4 shows how this ag-
gregation is implemented in the various levels of an organization

Goal

Increase
productivity

Reduce
development
elapse time and
improve schedule
adherance

Improve quality

Processes,
technology and
people

Concrete objectives

Reduce cost of engineering over
Sales by x% within 3 years

x months for generic platform
y months for application project
z weeks for new service
< x% delay on schedule

Improve field failure rate by x%
Reduce cost of non-quality by y%

New technology: tbd
Innovation: tbd
People: tbd

Metrics

Effort spent, project size
Productivity

Elapse time
Delivery accuracy/predictability
Feature completeness
Budget adherance

Number of failures
Cost of non-quality
Efficiency during validations

Usage of new technology
Average age of products
Patents and license income

Goal

Increase
productivity

Reduce
development
elapse time and
improve schedule
adherance

Improve quality

Processes,
technology and
people

Concrete objectives

Reduce cost of engineering over
Sales by x% within 3 years

x months for generic platform
y months for application project
z weeks for new service
< x% delay on schedule

Improve field failure rate by x%
Reduce cost of non-quality by y%

New technology: tbd
Innovation: tbd
People: tbd

Metrics

Effort spent, project size
Productivity

Elapse time
Delivery accuracy/predictability
Feature completeness
Budget adherance

Number of failures
Cost of non-quality
Efficiency during validations

Usage of new technology
Average age of products
Patents and license income

Fig. 2.3. Metrics are derived from business goals

2.2 Managing by the Numbers 15

Projects aggregate information on a dashboard level, for instance, showing per-
formance of milestones versus the planned dates, or showing the earned value at a
given moment (for dashboards, see also Chaps. 4 and 8). This helps to examine
those projects that underperform or that are exposed to increased risk. Project
managers would look more closely and examine how they could resolve such de-
viation in real time within the constraints of the project. All projects must share
the same set of consistent metrics presented in a unique dashboard. Lots of time is
actually wasted by reinventing spreadsheets and reporting formats, where the pro-
ject team should rather focus on creating value.

Fortunately, such a dashboard need not be time-consuming or complex. Metrics
such as schedule and budget adherence, earned value, or quality level are typical
performance indicators that serve as “traffic lights” on the status of the individual
project. Only those (amber and red) projects that run out of agreed variance
(which, of course, depends on the maturity of the organization) would be investi-
gated and further drilled down in the same dashboard to identify root causes.
When all projects follow a defined process and utilize the same type of reporting
and performance tracking, it is fairly easy to determine status, identify risks and
resolve issues, without getting buried in the details of micromanaging the project.

A standardized project dashboard is easy to set up and will not incur much op-
erational cost. It builds on few standard metrics that are aggregated and repre-
sented typically in an intranet accessible format to facilitate drill-down. It lever-
ages on existing project management and collaboration tools from which it draws
its raw data (e.g., schedule information, milestones, effort spent, defects detected,
etc.). It is self-contained and easy to learn. Key information is collected in a single
repository with access control to protect especially the consolidated information.
Having such a dashboard in place will ensure that project issues remain on the ra-
dar screen of the stakeholders at their convenience. By fostering early risk man-
agement, it will once and for all take away the “I didn’t see that coming” response.

Performance monitoring is key. Standard metrics must be collected from each
project and then consolidated for all the projects to evaluate the portfolio’s align-
ment with business objectives and performance requirements (Fig. 2.4). For the
senior management levels the same information is further condensed into a score-
card that relates different businesses to the annual objectives. Scorecards should
be balanced [Kapl93] to avoid local optimization of only one target.

Combining and aggregating the raw data creates useful management informa-
tion. For instance, a product with a new technology should be looked at from dif-
ferent angles. By using Linux instead of a proprietary operating system one might
not only look into skills and introduction cost, but also into financial health of the
packaging company or liability aspects in the medium-term. It is necessary to ex-
tract indicators from all operational areas and assess them in combination [Kapl93,
Hitt95].

As an example, let us look at different ways to measure success or returns from
software engineering activities. Obviously there are operational figures that point
to benefit calculation, such as phase durations in the product life cycle, time to
profit, time to market, cycle time for single processes, maintenance cost, cost of
non-quality, cycle time for defect corrections, reuse rate, or license cost and reve-

16 2 Making Metrics a Success – The Business Perspective

nues. Another dimension that is often neglected is improvements in productivity
or people, such as cost per engineer, learning curves, cost per employee (in differ-
ent countries), cost evolution, output rates per engineer or capital expenses per
seat.

Enter-
prise

Cash flow
Shareholder value
Operations cost

Cash flow
Shareholder value
Operations cost

Division
Cost reduction
Sales, Margin
Customer service

Cost reduction
Sales, Margin
Customer service

Product Line /
Department

Sales, cost reduction
Innovative products
Level of customization

Sales, cost reduction
Innovative products
Level of customization

Projects
Lead time
Cost
Quality
Resources

Lead time
Cost
Quality
Resources

Enter-
prise

Cash flow
Shareholder value
Operations cost

Cash flow
Shareholder value
Operations cost

Division
Cost reduction
Sales, Margin
Customer service

Cost reduction
Sales, Margin
Customer service

Product Line /
Department

Sales, cost reduction
Innovative products
Level of customization

Sales, cost reduction
Innovative products
Level of customization

Projects
Lead time
Cost
Quality
Resources

Lead time
Cost
Quality
Resources

Fig. 2.4. Metrics are aggregated following the organizational needs. On project level focus
is on dashboards, while on division or enterprise level it is on scorecards

From these indicators one can select the few that reflect the assumptions of the
original business case for the underlying products. They will help to further trace
and predict costs and benefits. Indicators should be translated into the “language”
of the projects or stakeholders to allow seamless extraction from regular project
reviews without much overhead. Fig. 2.5 provides an example of how the same
overarching dimensions of quality, productivity, deadlines, and employees are
translated into different metrics depending on the perspective taken. An internal
process view necessarily looks more into how processes can be improved, while
the external perspective takes more a service- or product-related perspective. Of-
ten this is underlined by the type of agreements or contracts in the different client
schemes of business processes.

Often, forward-looking figures need some education, to be consistent in esti-
mating cost at completion of a project or following up earned value. Such a
“dashboard” or status report compiles exactly those figures one need when com-
paring all projects. Try to automate the reporting, because for the project manager
it is a useless – because overly aggregated – report. He should not be charged with
such an effort.

Once the necessary indicators are aggregated and available in one central re-
pository or from a single portal, it is easy to generate reports covering the entire
set of activities, projects, products or departments. Frequently asked queries are
accessible online to save time and effort. Such reports, for instance, provide a list
of product releases sorted to their availability. They can show average delays or

2.2 Managing by the Numbers 17

budget overheads. One can single out projects with above-average cost and com-
pare with their earned value, or one can portray products according to revenues,
market shares and life cycle positioning. This reduces the effort to identify out-
liers, which need special treatment.

Let us look at the scenario of deciding whether a project should be stopped be-
fore its planned end. This is typically a difficult situation, not only for the project
manager and the people working on the project, but because many organizations
consider a stopped project a failure. Well, it might be from a financial perspective,
but it will be an even bigger failure if it is not finished. Only few deal with such
“failure” constructively, learn their lessons, and work on the next project. We will
look at the decision from a higher-level perspective. There are costs after the deci-
sion to stop, such as ongoing infrastructure write-offs, leasing contracts and relo-
cation costs. Often these cost are close to the cost of bringing the project to the in-
tended end, which implies a delivery. On the other hand, opportunistic factors
should be considered, because the engineers could work on other projects that
generate more sales.

 Quality Productivity Deadlines Employees
Internal
process

view

Fault rate

Fault density

Cost per fault

Root causes

FP /
Person year

FP /
Calendar
month

Tool usage

Percentage of
work products
within the 10%
time frame

Skills

Willingness

Overtime

Absence

External
customer

view

Customer
satisfaction

Delivered
product quality

Functionality

Cost per
feature

Delivery
accuracy of
final product
to contracted
date

Satisfaction
with contact
persons (sales,
after sales,
engineers)

Fig. 2.5. Different stakeholder viewpoints determine how goals are translated internally and
externally

2.2.2 Evaluation

After indicators and relevant project and marketing tracking information have
been agreed upon and are available, evaluation of this information starts. This in-
cludes cost versus benefits, business case evaluation, usefulness of the results
from projects, market readiness – all as future scenarios in terms of opportunities
and risks. Such evaluation happens continuously and for the totality of projects.
Even if product lines are not related technically or perhaps they even address fully

18 2 Making Metrics a Success – The Business Perspective

different markets, it makes sense to evaluate mutual dependencies or synergies,
such as resource consumption or asset generation.

Certainly a monthly exercise for products or a yearly exercise for portfolios as
was done historically in many companies is far too coarse and falls behind the
facts. Even the monthly or quarterly exercises preceding budget cycles and agree-
ments turn out to be illustrative rather than guiding. On the project-level a weekly
reassessment of assumptions should be a best balance of effort and benefits. On
the level of products and portfolios, a monthly reassessment still allows one to ac-
tively steer the evolution reflecting market changes. If projects change or deviate
from the agreed objectives or if the risk level gets higher and the chances that the
project manager can recuperate within the project get smaller, it is time to reevalu-
ate and realign the project and portfolio with reality.

It is crucial to simultaneously evaluate cost and benefits or trade-offs between
objectives. Regarding cost, the following questions could be addressed: Where are
the individual elements of the portfolio (i.e. the products, product releases or pro-
jects) with respect to cost and cost structure? Is cost evolution following the ap-
proved plans and expectations? Is cost structure competitive (e.g., the share of test
effort of the total development cost)? How is the evolution of the entire cost struc-
ture (e.g., is the trend going in a direction that allows sustainable growth)? Are the
different elements of engineering cost under your control or are they determined
from outside? Are all operational cost elements appropriately budgeted (e.g., cov-
ering maintenance, service, product evolution, corrections)?

We do the same for the benefits. Do the components of the portfolio follow the
original assumptions? Is one investment better than others? Why is this the case?
Which factors impact benefits? Which revenue growth relates to certain decisions
or changes that have been implemented? What are the stakeholders’ benefits from
the IT or the R&D, both financially (e.g., return on assets (ROA), return on capital
employed (ROCE)) as well as operationally (e.g., value generation for customers’
businesses, market expectations, competitive situation)? What are the major im-
pacts on performance and capacity to grow? How do internal processes and inter-
faces influence innovativeness, capability to learn or improvements?

Today “time to profit” is more relevant than “time to market” when evaluating
benefits from different software projects. A delayed market entry in the world of
Internet applications as well as other software solutions immediately reduces ROI
dramatically. Entry levels for newcomers are so low and the global workforce is
growing so fast that the market position is never stable. Even giants like Microsoft
feel this in times of open source and an overwhelming number of companies who
all want to have their own piece of the pie. As a rule of thumb one can consider
that in a fast-changing market – as is the case for many software applications and
services – a delay of only three months impacts revenues by 20% because of being
late and the related opportunistic effects such as delays of subsequent releases.

We will look at an example with only five software projects in the portfolio that
can be influenced (Fig. 2.6). We will first use the classic picture of a portfolio
[Benk03], which is very easy to utilize for software engineering projects. Obvi-
ously we need to consider market information to avoid the case in which engineer-
ing projects are judged by an engineering perspective only. The matrix shows the

2.2 Managing by the Numbers 19

projects in three dimensions, namely the market share, the market growth and the
internal – still expected – net present value of the investment (the size of the bub-
bles). The idiomatic denominations of “stars” or “cash cows” is the standard vo-
cabulary and relates to the perceived potential of a certain matrix element.

Fig. 2.6 suggests that projects 4 and 5 need more support while project 1 should
be stopped. It is also evident that this portfolio is not healthy: it is not sustainable
because in no area there is a benefit from high market share and high market
growth. In the case of smaller companies who do not know their exact market po-
sition, other indicators could be used to indicate their position. Market growth
should be used in any case, as it provides an external view on the business evolu-
tion.

lo
w

M
ar

ke
ts

ha
re

hi
gh

low Market growth high

1
54

2

3

Stars

Problem children

Cash cows

Dogs

Target area

lo
w

M
ar

ke
ts

ha
re

hi
gh

low Market growth high

1
54

2

3

Stars

Problem children

Cash cows

Dogs

Target area

Fig. 2.6. A simple set-up of a portfolio layout for different software products

Often it is necessary to derive from several of the above-mentioned analysis
techniques and the resulting timelines even-more-distant representations of the
portfolio matrix just to play with the impact of different alternatives. This holds
not only when deciding on technology frameworks or product-line content but
also if the company serves and depends on a few customers (or suppliers) whose
future one might want to assess in order to make more informed project and port-
folio analyses for the company’s future.

Evaluating software engineering projects is only valid if all projects and possi-
ble decisions around those projects are portrayed in the same larger picture. The
prominent review approach is still that project reviews are done in isolation for
each project. This is necessary to judge whether the project will deliver versus the
agreed assumptions at project start. But they must be accompanied by a look to the
totality of the projects. Often there are ripple effects caused by shared resources,
suppliers, technology or platforms. A good way to relate such dependent man-
agement decisions in multiproject constraints is to hierarchically cluster the pro-

20 2 Making Metrics a Success – The Business Perspective

jects based on mutual dependencies or synergies. Such cluster analysis takes away
the risk of overly fast aggregation and the comparison of apples to pears.

We will look at another example to see how software engineering decisions de-
pend on market evolution (Fig. 2.7). We portray five different product lines or
clusters of related products and product releases. The matrix in Fig. 2.7 shows all
five product-lines in three dimensions, namely revenue growth, market growth,
and net present value of investments (size of circles). The picture shows that prod-
uct line 1 should be cashed in with a reduced budget, product line 2 needs to be
reduced, product line 3 needs increased investments, product line 4 can stay as it
is, and product line 5 should be sold or killed.

-50% -20% 0 20% 50%

ne
ga

tiv
e

R
ev

en
ue

gr
ow

th
ra

te
po

si
tiv

e

negative Market growth rate positive

1

5

4

2

3

50%

20%

0

-20%

-50%

Target area

-50% -20% 0 20% 50%

ne
ga

tiv
e

R
ev

en
ue

gr
ow

th
ra

te
po

si
tiv

e

negative Market growth rate positive

1

5

4

2

3

50%

20%

0

-20%

-50%

Target area

Fig. 2.7. A portfolio map to help in deciding to which software engineering projects to allo-
cate scarce resources

2.2.3 Execution

After having extracted the necessary information and having evaluated the pro-
jects comprehensively, it is time to decide and to execute the decisions. Manage-
ment means to actively take decisions and implement changes. The implications
on different managerial levels are comparable. Whether it is on the project or the
portfolio level, decisions need to suit the proposed scenarios. For instance, if risks
grow beyond what the project can handle, it is time to reconsider features and pro-
ject scope. Maybe incremental deliveries can help with coping too big a scope and
not manageable size or duration.

If the value and benefits from a product release turn out to be below the stan-
dard expected return on the investments (e.g., current interest rates for this risk

2.2 Managing by the Numbers 21

level), they should be cancelled. Only those projects and products should remain
in the portfolio that represent the biggest value and shortest time to returns. A cer-
tain percentage of the software budget should always be reserved for new projects
and new technology to avoid being consumed by the legacy projects and products
and becoming incumbent.

Different alternatives for decisions result from the previous two steps (extrac-
tion and evaluation). You decide only on this basis, as you otherwise invalidate
your carefully built tools. Decisions should be transparent to influence behaviors
and maintain trust and accountability. Particularly if projects are going to be can-
celled it is important to follow an obvious rule set so that future projects can learn
from it. For instance, if there is insufficient budget, a project is immediately
stopped or changed instead of dragging on while everybody knows that sooner or
later it will fail. Basic decision alternatives include doing nothing, canceling the
project or changing the project or the scope of the project.

Don’t neglect or rule out any of these three basic options too early. Different
options should be further broken down in order to separate decisions, which have
nothing to do with each other. For instance, whether and which new technology is
used in a project should not depend on the supplier. Each decision brings along
new risks and assumptions that one need to factor into the next iteration of the
evaluations. If one of the key assumptions turns out to be wrong or a major risk
materializes, it is the time to implement the respective alternative scenario.

To ensure effective execution on project and product level, software measure-
ment should be closely linked and integrated in the company’s product life-cycle
management (PLM). Typical software life cycles might follow IEEE 1074 or
IEEE 12207 [ISO97a, ISO97b]. They have in common a gating process between
major phases based on defined criteria. These gates enforce evaluating the overall
status (both commercial and technical) and deciding on whether and how to pro-
ceed with the project [Wall02]. PLM is the overall process that governs a product
or service from its inception to the end of its life in order to achieve the best pos-
sible value for the business of the enterprise and its customers and partners.

We will illustrate the dependencies with an example. Fig. 2.8 shows a simpli-
fied product life cycle in the upper part. It consists of mentioned decision gates
and between them, four individual phases. For each of the four phases the lower
part of the picture shows some indicators that are relevant in order to derive the
subsequent go/no-go decisions.

Especially for software engineering projects, it is important to consider mutual
dependencies (Fig. 2.4). At the top is the enterprise portfolio, which depicts all
products within the company and their markets and respective investments. Fur-
ther down one details a product-line or product cluster view, which is aligned with
platform roadmaps and technology evolution or skill building of engineers. For
each product there should be a feature catalogue across the next several releases
covering the vision, market, architecture and technology. From such product
roadmap a technology roadmap is derived, which allows one for instance to select
suppliers or build partnerships. It also drives the individual roadmaps of releases
and projects, which typically have a horizon of a few months up to a maximum

22 2 Making Metrics a Success – The Business Perspective

one year. On the project level, these decisions are implemented and followed
through to success.

• Market analysis
• Business plan
• Business case
• Capital expenses
• Risk assessment
• Trade-off analysis

(time, cost, content,
benefits, ROI)

• Competitive info

• Effort estimation
• Make, buy, reuse,

outsourcing
• Supplier selection
• Licence cost
• Budget plans
• Risk management

• Progress control,
tracking, oversight

• Trade-off analysis
(time, cost, content,
benefits, ROI)

• Cost to complete
• Release criteria
• Maint. cost and risk
• Sales assumptions

• Sales feedback
• Maintenance cost
• Cost/benefit of

extensions
• Repair vs.

replacement
• Customer service

(training, etc.)
• Competitive info

Business case Project definition Project start

Marketing, elicitation, analysis, specification Engineering Operations, maintenance

Maintenance

• Market analysis
• Business plan
• Business case
• Capital expenses
• Risk assessment
• Trade-off analysis

(time, cost, content,
benefits, ROI)

• Competitive info

• Effort estimation
• Make, buy, reuse,

outsourcing
• Supplier selection
• Licence cost
• Budget plans
• Risk management

• Progress control,
tracking, oversight

• Trade-off analysis
(time, cost, content,
benefits, ROI)

• Cost to complete
• Release criteria
• Maint. cost and risk
• Sales assumptions

• Sales feedback
• Maintenance cost
• Cost/benefit of

extensions
• Repair vs.

replacement
• Customer service

(training, etc.)
• Competitive info

Business case Project definition Project start

Marketing, elicitation, analysis, specification Engineering Operations, maintenance

MaintenanceBusiness case Project definition Project start

Marketing, elicitation, analysis, specification Engineering Operations, maintenance

Maintenance

Fig. 2.8. During each phase of the product life cycle dedicated indicators are used. Product
development can be stopped at each of the gates

2.3 Metrics for Management Guidance

2.3.1 Portfolio Management

Portfolio management is the collection and evaluation of product and project in-
formation and the decision based on the totality of all projects in order to maxi-
mize their value for the enterprise. This includes the following aspects (Fig. 2.9):

building an inventory of the overall software engineering assets in terms of
products, reusable software, ongoing projects and their opportunities, employ-
ees, etc.
continuous evaluation of new opportunities in comparison with ongoing activi-
ties
combined evaluation of static and dynamic assets (e.g., platforms, tools versus
skills and customers)
deciding which resources will be allocated in the (near) future to which assets
and opportunities

2.3 Metrics for Management Guidance 23

Portfolio management in software projects means assessing all projects con-
tinuously and in totality. It is not a project review and should, in fact, not be mixed
with regular tracking and oversight. It means that costs and benefits, contents and
roadmaps, threats, risks and opportunities are evaluated comprehensively in order
to implement a coherent strategy. It is independent of the size of the enterprise. To
simplify the definition: Portfolio management is the project management of the to-
tality of all projects, services or product releases.

ExecuteExtract Evaluate

Portfolio
Management

Business
objectives,
Strategy

Project Status,
Environment

Market

Go/No-Go
Prioritization

Updated Plans

ExecuteExecuteExtractExtract EvaluateEvaluate

Portfolio
Management

Business
objectives,
Strategy

Project Status,
Environment

Market

Go/No-Go
Prioritization

Updated Plans

Fig. 2.9. Three steps towards portfolio management following the measurement control
loop in Fig. 2.1

Good portfolio management will help to allocate resources in the best possible
way, to reduce the number of projects to what is effective and to improve the
communication between projects, departments, and functional areas in the com-
pany. It also allows management to pull the emergency brake earlier, if necessary.
It will normally save around 5 10% of the software engineering budget as the
people work on the projects that provide the biggest yield [Meta02, CIO03].

What is the difference between portfolio management and project manage-
ment? Project management means doing the project the right way. Portfolio man-
agement means doing the right projects.

The major bridge from portfolio management to projects and vice versa is the
business case. It summarizes – before the launch of the project – the technical,
marketing and commercial inputs to make a decision on a business proposal and to
later follow up against key assumptions. A business case combines three elements,
a business vision or concept of a solution, a concrete and quantitative value propo-
sition and a commercial or marketing positioning.

Is there a difference between managing an IT portfolio (e.g., internal applica-
tions and business processes) from managing the portfolio of software engineering
projects and products? The questions one asks and the applied techniques are defi-
nitely the same. Are scarce resources allocated to the right activities? Are the
short- and medium-term targets well balanced? Do they line up with the strategy

24 2 Making Metrics a Success – The Business Perspective

and with the way the enterprise now earns and will make money in the future?
What could engineering or IT do to make the enterprise more profitable? These
questions apply across the entire scope of software engineering activities.

What is different is the ways one can interfere and impact decisions. The inter-
faces are certainly different as is the proximity to the customers and markets. If
one is engaged in the engineering of products (e.g., embedded systems, applica-
tions, solutions, etc.), one will influence the product strategy, the feature roadmap,
the technology mix, the software processes and their interfaces to business proc-
esses. For internal applications and services (i.e., IT activities) you influence busi-
ness processes and their automation, integration, cost or service levels.

Portfolio management looks on today’s decisions and their impact on the evolu-
tion and value of the portfolio in the future. Previous investment is only consid-
ered to learn from results, not to judge because of the amount of money that has
been invested. Many errors in making assumptions and decisions can be avoided
when looking into previous similar situations and scenarios. However, the invest-
ment decisions of today consider only the required further investment and effects
in future. What is already paid is “sunk” cost.

If challenged with deciding to discontinue a software engineering project, look
into what is still required for completion and compare this with the returns from
sales once the project is finished. Compare this project with other projects in the
software portfolio and evaluate their individual costs and benefits as of today to
see which is underperforming. Future investment and returns are always dis-
counted into “present value” to allow for comparison from today’s perspective.

2.3.2 Technology Management

How can software measurements be effectively used for technology management?
We will apply the above-mentioned steps of extraction, evaluation and execution
to the decision-making process of introducing new or even disruptive technolo-
gies.

First, you need to extract data that describes what the technology means for you
and your business. Running with each new technology because of its hype is cer-
tainly not the answer. And it is expensive too. The major question to ask in this
first step is, what are the new or disruptive technologies. Many enterprises or
R&D departments have only vague answers. A good indicator to identify such
“hot” technologies is to simply check what provides the most confrontations and
disputes inside the company. Do the software people dispute on a technology with
marketing? Do customers challenge the sales or technology people with proposals
that were not yet included in the roadmap?

The second step naturally is the evaluation. What are the impacts of this spe-
cific technology? Are there alternative technologies to which it should be com-
pared?

Similar to the case with the product portfolio, you also need to picture the
products and markets that are addressed in a spectrum of different technologies.
Questions are rarely as simple as asking whether one would introduce Java or a

2.3 Metrics for Management Guidance 25

specific framework or tool, and they should not be asked in such isolated mode. It
is better to identify what the technologies mean in a specific environment and in
the context of other technologies. At what speed do they evolve? How much en-
ergy do other companies or leading players put into it?

For instance, open source development and especially Linux or Eclipse became
a major effort with companies like Sun and IBM engaging hundreds of people in
it, and educating their sales forces what that means for the future of software engi-
neering. For what will these technologies substitute? Are there examples from
one’s own past or that are externally available that indicate how a similar technol-
ogy change came up and evolved?

Finally, the third step is to decide on the technologies. What will be the answer
to this new technology? One possible answer, which might be the safe side regard-
ing risk and cost, is to decide firmly to wait for one period or one year. This is le-
gitimate to avoid being consumed by continuous fads. Or one might decide for a
very small and limited pilot project to see how a dedicated service might relate to
the application development.

Take as an example Web services, which initially were exaggerated. However,
after a two-year period with shaping of major standardization bodies and industrial
groups, it re-emerged as a more solid technology, with early applications being
available for trial and for linking to one’s own infrastructure. Which market or
customer or user needs the technology first? How much would they be willing to
pay for it? How is a new feature positioned? Which investments are devoted to it?
Which type of pilots or experiments? When do you expect what concrete results or
further decision points?

We have summarized in Fig. 2.10 how different points within the life-cycle tra-
jectory of a technology would yield different evaluations and decisions. We dis-
tinguish the typical four distinct phases that characterize the technology life cycle
[Bowe95]. For each of these phases we apply a different strategy.

Starting from the experimental or “hype” phase (point 1), the technology can
evolve on different tracks. If it appears with many open questions or unresolved
constraints (e.g., Web services; points 1 and 2), one should take enough time to
not bet on the wrong horse. This is at times difficult, because the engineers might
be very excited. However, one can spend the engineering money only once, and
do not want to engage into the war of the big companies who only drive their pro-
prietary formats. If the technology change and its impact are very fast and deter-
mined (e.g. embedded mobile applications), one should find the own position be-
fore the market and the customers conclude that the company is not in this field
(points 2 and 3).

Often such legacy behavior happens to leaders in a technology because all their
focus is on improving the existing technology and fine-tuning its application,
rather than on questioning it in favor of newer technology. Finally, each technol-
ogy will reach the point where retreat is in order (point 4). To miss this exit point
is also expensive because one must provide skills and resources for maintenance,
thereby taking them from innovations. Product lines that are in such situation have
too many old products and lots of branches in their roadmaps. That is how the dif-
ferent techniques of portfolio management will help. An evaluation of where you

26 2 Making Metrics a Success – The Business Perspective

are with respect to market position, market growth, revenues or age of products
gives a good indicator of how much priority to give for a new technology.

Engineering cost or investment
(cumulative, over time)

Pe
rfo

rm
an

ce
 o

r b
en

ef
its

1. experimentation (learning curve, investment, low pay-off => decide next steps)
2. growth (benefits grow fast, market positioning happens => invest if in favor)
3. saturation (technology applied by many players, efficiency improvements

=> reduce investments depending on market position, get out returns)
4. end of life (technology becomes a legacy => manage maintenance, phase-out)

Lo
w

Be
ne

fit
s

or
hi

gh
M

ar
ke

ts
ha

re

low Growth high
Engineering cost or investment

(cumulative, over time)

Pe
rfo

rm
an

ce
 o

r b
en

ef
its

Engineering cost or investment
(cumulative, over time)

Pe
rfo

rm
an

ce
 o

r b
en

ef
its

1. experimentation (learning curve, investment, low pay-off => decide next steps)
2. growth (benefits grow fast, market positioning happens => invest if in favor)
3. saturation (technology applied by many players, efficiency improvements

=> reduce investments depending on market position, get out returns)
4. end of life (technology becomes a legacy => manage maintenance, phase-out)

Lo
w

Be
ne

fit
s

or
hi

gh
M

ar
ke

ts
ha

re

low Growth high

Fig. 2.10. Portfolio management and technology management

2.3.3 Product and Release Planning

Projects do not run independently; they influence each other in various dimen-
sions. For instance, they share skills from the same resource pool and they com-
pete for the best skills with all other projects. They might build on each other, es-
pecially in product-line architectures or in multirelease contracts. They might
reuse common components or frameworks, or they simply address the same cus-
tomers, both internally and externally.

In particular, product lines and multirelease dependencies ask for transparent
and consistent roadmap management of the overarching evolution of all products
and projects in the enterprise. We can consider this yet another interface between
project and business management. We already explained the hierarchical depend-
encies between portfolio, product line, product release and individual project. A
dependable release roadmap and excellent project management are critical success
factors for good portfolio management.

Dependable means that agreed-upon milestones, contents or quality targets are
maintained as committed. For instance, within a product-line architecture the un-
derlying generic product, platform or components, upon which many customiza-
tion products build, must be on time and provide the agreed contents. Otherwise
there will be numerous ripple effects. Naturally, project management techniques
differ between a generic and an application product. While the platform has to

2.3 Metrics for Management Guidance 27

build in resource buffers, the application product can easily work with feature pri-
oritization and time boxing.

Organizations on the capability maturity model’s (CMM) initial level 1 have
rarely a chance to be successful in portfolio management (see also Chap. 10).
Most of their projects run in firefighting mode, and predictability is not known.
With each project being managed ad-hoc and without learning effects, scalability
between projects does not exist. What exists are dependencies of the form that re-
sources are taken away from a project to satisfy more urgent needs in another pro-
jects. This, however, is done in a rather chaotic way. Such organizations first need
to improve their project management.

The following steps during setting up a release roadmap will help to improve its
predictability [Eber03a]:

Identify similarities and dependencies across markets and technologies.
Evaluate existing functionality depending on customer value, cost structure
(e.g., capital investments, operational cost, recent changes in cost structure,
new revenue sources, opportunistic factors), complexity in development and
maintenance, extendibility or internal life-cycle cost.
Describe and maintain a functional (based on contents) roadmap for each of the
product lines that is also mapped to the major customers or markets. A com-
mercial off-the-shelf (COTS) requirements management tool will help to main-
tain different views on the same underlying evolution paths and feature cata-
logues.
Describe and follow the own technology roadmap. It should describe within de-
fined and agreed steps what functions should arrive and what their dependen-
cies are. Identify clear evolution tracks within specification, architecture and
roadmap documents. Determine dependencies, cost/investment, priorities and
major milestones. Try to have a modular architecture, which for allows splitting
of features or merging related customer needs.
Decide on and make explicit within the entire company which products, plat-
forms, features or even markets are active, which are on their phase-out and for
which you have effectively stopped support. Agree on communication strate-
gies with marketing and sales so that engineers in a customer meeting would
confuse the picture with their own opinions. Implement migration roadmaps
that allow the customers to move from one release to the next.
Introduce a full incremental or iterative approach spanning the product defini-
tion and engineering processes. To achieve time-to-profit targets it is key to
stay predictable and conform to project plans.

2.3.4 Making the Business Case

A business case presents a business idea or proposal to a decision maker. It should
essentially prove that the proposal is sufficiently solid and that it fits economically
and technically to the company’s strategy. It is part of a more general business
plan and emphasizes on costs and benefits, financing the endeavor, technical
needs, feasibility, market situation and environment and the competition. It is cre-

28 2 Making Metrics a Success – The Business Perspective

ated early in the product life cycle and serves as the major input before a decision
for investment is taken.

Many projects and products fail simply because the business case was never
done or it was not done correctly. The key to a successful business case is that it
connects well the value proposition with the technical and marketing concept and
with the market evolution and the company’s potential. Lacking on one of these
four dimensions invalidates the entire business case.

The business case consists of the following elements:
1. summary
2. introduction (motivation of the business proposal, market value, relationship to

existing products, solutions or services, own capabilities and capacity)
3. market analysis (market assumptions, industry trends, target market and cus-

tomers, volume of the target market, competitors, own positioning, evaluation
of these assumptions by strengths, weaknesses, opportunities and threats)

4. marketing plan (marketing contents, sales strategies)
5. business calculation (sales forecasts, profit/loss calculation, cash flow, financ-

ing the expenses, business risk management, securities, present value of in-
vestments, evaluation of assumptions)

6. operations plan (customer interfaces, production planning, supply chain, sup-
pliers, make versus reuse versus buy, platforms and components to be used,
service needs, management control, quality objectives and quality manage-
ment)

7. project and release plan (resources, skills, milestones, dependencies, risk man-
agement)

8. organization (type of organization, management structure, reporting lines,
communication)

9. attachments with details to above chapters.

A business case has to prove that the proposed concept fits both technically and
commercially to the enterprise. It is part of the business plan and is created before
the launch of a product development. Preparing the software business case con-
sists of several steps:
1. Coin a vision and focus. What is the message you want to get across? What will

be different with the proposed product or solution? Use language that is under-
stood by decision-makers and stakeholders, which means being concise and
talking about financial and marketing aspects more than technology. Focus on
what you are really able to do.

2. Analyze the market environment and commercial situation. How will you sell?
How much? To whom? With what effect? For improvement projects identify
the symptoms of poor practice and what they mean for your company (e.g., cost
of non-quality, productivity, cycle time, predictability). Quantify the costs and
benefits, the threats and opportunities. For IT projects you should consider that
the IT direct cost is only the tip of the iceberg. The true value proposition is in
the operational business processes.

3. Plan the proposed project. Show how it will be operationally conducted, with
what resources, organization, skills and budgets. What are the risks and their

2.4 Hints for the Practitioner 29

mitigation? What suppliers? Perform a reality check on your project. Does the
combined information make sense? Can you deliver the value proposed in step
1? How will you track the earned value? What metrics and dashboard will be
utilized?

How does the business case relates to software measurement and metrics? The
business case is quantitative by nature. It builds upon assumptions and proposi-
tions, which must be evaluated from different perspectives on the validity, consis-
tency and completeness. This is where software metrics come into the picture.
They provide for instance the guidance for performing a feasibility study. They re-
late expected volume or size of the project to effort and schedule needs and thus
indicate whether the proposed plan and delivery dates are viable. Fig. 2.11 shows
an example for such a feasibility study. Different project scenarios are portrayed
for a given size and productivity. The curves represent respective time and cost for
a size and productivity following the Raleigh equation provided in the picture
[Putn03]. The example indicates that for a given (estimated) size, the target cost
and dates are not feasible. Setting up the project to reach either the schedule or
budget limitations is presented by dots 2 and 3, respectively. It is impossible with
the given productivity and constraints to achieve both schedule and budget targets.
Obviously one solution would be to “improve productivity” (dot number 5). How-
ever, this is not something that can be done over night. It would only indicate poor
management if such unrealistic assumptions are taken. Only by adjusting project
contents, thus reducing size, allows to stay in the allowed targets, while having a
feasible project (dot number 4).

Software metrics guide in the risk analysis and later in risk management. They
indicate uncertainties and together with software engineering techniques guide the
risk mitigation. For instance, knowing that requirements change with 2 3% per
month is a starting point for planning releases and incremental deliveries.

2.4 Hints for the Practitioner

Your indicators should satisfy some simple criteria:
Sustainable. The metrics must be valid and useful over some period of time.
They should be portrayed and compared over time. Often markets show cyclic
behaviors, which can only be assessed if the same indicators are followed up
for several years.
Timely. The indicators must be available literally on a push-button approach.
They must be valid and consistent with each other. If market data is one month
old and quality reports arrive only half-yearly, this makes no sense. If cost to
complete is derived monthly and you have project reviews on weekly basis, de-
cisions are not consistent.
Meaningful. The indicators should provide exactly the information you ask for.
They should be aggregated to the level useful to make decisions. To avoid
overloading occasional readers there should be few numbers with concise ex-

30 2 Making Metrics a Success – The Business Perspective

planations. Further details should be drilled down from your portals and ware-
houses.
Goal-oriented. Metrics must be oriented to address concrete objectives. They
are only created and reported if there is a specific need and decision you want
to take based on these metrics.
Balanced. Look into all directions that are or will be relevant for your business.
Most reporting has some blind spots. Often they appear at interfaces between
processes, such as cost of an engineering activity or net present value of a plat-
form with its evolution. Knowing about them is a first step to removing them.
Starting from goals, it is easy to see why goals and metrics cannot and must not
be separated.

Target
duration

Numbered dots
represent different
project scenarios

1

2

3

150KStmts (Prod=14)
150 KStmts (Prod=15)

Cost limit

Duration

Effort/cost

0

5

100 KStmts (Prod=14)

4

Size

Effort ~

Productivity * Duration

3

43Feasible area for projects

Target
duration

Numbered dots
represent different
project scenarios

1

2

3

150KStmts (Prod=14)
150 KStmts (Prod=15)

Cost limit

Duration

Effort/cost

0

5

100 KStmts (Prod=14)

4

Size

Effort ~

Productivity * Duration

3

43

Size

Effort ~

Productivity * Duration

3

43Feasible area for projects

Fig. 2.11. Example for a project feasibility study with different scenarios related to allowed
cost and time (duration) limits following the Raleigh relationship [based on Putn03]

Good objectives or goals should be “smart”. Smart goals are (and the first letters
obviously show why we call them “smart”):

specific (or precise)
measurable (or tangible)
accountable (or in line with individual responsibilities)
realistic (or achievable)
timely (or suitable for the current needs)

Here are some practical reporting hints:
First, summarize in your reports all your results from a business perspective (an
“executive summary”). Keep it short and to the point. Indicate conclusions and
actions to be taken. Do not talk in this summary about the technology, as eve-
rybody trusts your technology competence – and they will probe further any-
way once they go to the details.

2.4 Hints for the Practitioner 31

Always distill the value proposition to monetary numbers. Your management
normally does not like what is not tangible and not traceable. They want to see
the impact of a decision in money values.
Distinguish clearly between capital expenses (e.g., licenses, hardware within
your products) and project cost (e.g., persons, infrastructure). Often these
means come from different sources or budgets; sometimes they are taxed dif-
ferently. Certainly they appear in different sections in your profit and loss
statement (P&L) and balance sheet.
Review figures carefully and repeatedly. Many good ideas were killed too early
because their presentation was superficial and included obvious errors. A small
error in calculating metrics or a wrong underlying assumption will make all
your efforts invalid.
The metrics and numbers will mean different things to different persons. If you
provide numbers, ensure that they are accompanied with precise definitions.
That is simple with today’s online intranet technology, however, equally neces-
sary for your presentations. Have a short definition in small letters on the same
sheet, if the numbers are not well known in your company. Frequently presen-
tations are distributed further or even beyond your reach. Often something is
copied or sent out of context, and thus having the explanations on one sheet
avoids unnecessary questions.
Use industry standards as far as possible. Today many figures have standards
and agreed-upon definitions that can easily be reused [McGa01, Reif02,
Kapl93].

There are several techniques around for evaluating health of software engineering
projects. We look at both business analyses as well as more technical assess-
ments.

Break-even-analysis. When will accumulated costs and benefits or returns
match each other? From when onwards will there be positive cash flow?
Investment analysis. Which investment will provide most returns in the short-
term? Common techniques include ROI, ROA and ROCE.
Value analysis. Which benefits will occur in the future and what is their net
present value compared to outstanding investments? Which of several alterna-
tive decisions will generate the most value? This technique is often used to as-
sess the risk level of technology decisions.
Sensitiveness. What are the effects of project- and product-related parameters
that are under your control (e.g., resource allocation to projects, technologies to
be utilized, content of projects, make versus reuse versus buy decisions for
components and platforms)?
Trend analysis. What is the evolution of impacts over time? Are there cyclic
effects that with some delay change the entire picture? Portraying current deci-
sions and their future impacts over time is necessary prior to platform or prod-
uct-line decisions.

32 2 Making Metrics a Success – The Business Perspective

2.5 Summary

Introducing a complete and hierarchically consistent measurement program is not
easy and often takes several years. It asks for training, communication, shared be-
liefs and values, and accountable engineering processes. Though there is no im-
mediate need of heavy tools and methods, the effort to continuously manage a
complex portfolio requires the intensive and sustainable cooperation of the differ-
ent stakeholders, such as engineering, product management and marketing.

It is unrealistic to assume that all these methods and approaches would be in-
troduced to the company or department on a “push-button” approach. It is there-
fore better to introduce the three elements of portfolio management in steps. “First
things first” means in this context that portfolio management should be applied
first to the top 20% of the projects or products. A good question to ask is, which
are the products or projects on which one would bet the future of the company?

Utilize the metrics and evaluation processes first “in vitro”. That is, introduce
necessary changes stepwise and don’t confuse and overload the project managers
with too much new reporting and assessments at one time. Many indicators might
look interesting, however, maybe just a few standard tracking elements combined
with market data will help to get transparency across the portfolio.

The three steps of the measurement process (extract, evaluate, execute)
should be introduced in just that order. First, look into the available data and
how to achieve or improve visibility. Set up an inventory of all the projects, assets
and proposals for capital investment. Add to this list, and following the same
structure break down all the current actuals per project or proposal and the respec-
tive targets in terms of quality, effort, total cost, deadlines, sales and profit expec-
tations.

Link to the underlying business cases. Introduce simple yet effective project
tracking metrics to have an aligned project follow-up. Stop ad hoc project reports
where each one has a different layout. This is unnecessary cost to produce and to
read.

Start with the major or critical projects to pilot such dashboards and track the
metrics versus estimations, expectations and commitments. Better to have fewer
metrics and thorough follow-up than huge telephone books without any insight
where you are.

Take firm decisions and execute them in the weeks after. Do not delay the can-
cellation of a project, if there is no longer a belief in its success. Always execute
what brings the company closer to its targets, such as maximizing the value of the
assets, improving the ROI from all investments, reducing the age of products, de-
creasing maintenance efforts or improving quality and customer satisfaction. Hold
the project managers accountable for achieving their commitments. Hold the
product managers accountable to achieving the business case and underlying as-
sumptions. Even if you are not successful in the first attempt, reassess the assump-
tions of the business case after the project is finished in order to learn from it.

Feedback is the key to benefiting from measurements. Metrics being only col-
lected in so-called data cemeteries are of no use. They result in useless overheads.

2.5 Summary 33

If there is one single message from this chapter, than it is to actually use metrics.
Using metrics means to analyze and evaluate them, to draw conclusions, to base
decisions on facts and to communicate the metrics and the consequences resulting
from metrics. Pro-active usage of course is better than analyzing after the facts.
Good measurement programs result in good estimation and planning. They result
in good predictions. And they drive sound decision-making – away from the cha-
otic fire-fighting behaviors of so many managers.

The described metrics-based management approach asks for a close link from
engineering tasks and expenses to business objectives and the overall strategy of
the company. Cost, benefits, technologies or capital investments are assessed and
decided in combination. The R&D portfolio and investment is part of the overall
portfolio and is thus subject to the same rules for evaluation. It is certainly helpful
and ensures transparency if the portfolio information is closely linked with the
product catalogues and product release information. Do not establish a full new
reporting scheme and instead ensure that appropriate security mechanisms and ac-
cess rights are established to control who gets visibility.

Fig. 2.12 shows in a simple yet effective intranet portal how a drill-down would
start from the enterprise level to the individual portfolios (e.g., business areas,
product lines) to the level of project management with specific progress tracking
and details on content, responsibilities, plans and so on.

Product release portal

Enterprise
level
(entry point)

Project view

Por
tfo

lio
vie

w

Product status summary

Project
dashboard
(drill-down)

Product release portal

Enterprise
level
(entry point)

Project view

Por
tfo

lio
vie

w

Product status summary

Project
dashboard
(drill-down)

Fig. 2.12. Example of a portfolio portal, which allows zooming from a product summary
into single engineering projects and their respective project status information

The numbers, which are utilized, will be questioned from all angles, because so
much depends on them. Often (and unfortunately) software management will be
reduced to the numbers alone. As this is normal given the relevance of well-
founded decisions, this should be accepted and any figures that are provided must
be provided with utmost care. What is released is public.

Someone who is able to generate numbers on the spot and off the top of his
head might be a genius, but they are rare. Normally he has just invented them and
has so far been lucky not to get burned. As a consumer do not accept such figures;
ask for the context. Do not just quote them, as you will suddenly be the source.

34 2 Making Metrics a Success – The Business Perspective

Managing with metrics consists of three individual steps, namely to extract in-
formation, to evaluate this information and to execute decisions on the future of
the projects. These three steps need to be done continuously. To facilitate smooth
and continuous data collection and aggregation without generating huge overheads
extraction should be highly automated and accessible from intranet portals (Fig.
2.12). If constraints or assumptions are changing, the evaluation must be changed.

Metrics properly applied first of all help to set objectives and to provide a
mechanism to track progress towards these objectives. They will help the com-
pany or software department or business manager to obtain visibility and to im-
prove, not only for the CEO or analyst or customer, but also for oneself.

Metrics have a positive business case. The introduction cost (for the first
year) can account for 1 2% of the total R&D or IT effort. Later they will account
for 0.25 1% of the effort. This effort is primarily due to evaluating the metrics.
Collection should be automated. Due to better visibility and more accurate estima-
tions and thus less delays, the immediate savings can be in the range of more than
5% of the R&D or IT spending. Some companies reported up to 10 20% savings
due to introducing technical control and a software measurement program
[Kütz03].

What value can one achieve for the customers? First, they are offered more
choices and better-tailored solutions from the different product lines or business
units. Having aligned product life-cycle processes and consistent visibility of
status and results of all products inside the portfolio, sales and marketing initia-
tives are more pro-active. Milestones and gating decisions are feasible and visible.
The effects of underlying assumptions are known and can be adjusted to changing
business needs. New applications are faster to market once they have been devel-
oped before for another market.

What does this mean for the company? Measurement is a cultural change.
Too often software engineers and management only realize the value of measure-
ment when some unfortunate event has occurred. Projects are failing, product
quality is below all expectations, deliveries are delayed, or teams realize that they
will never meet the objectives. The culture change means to build upon visibility
and accountability. People should make realistic commitments and are later held
accountable for achieving them. Visibility means trust. The figures are not “made
up” for reports, they are a normal (self-) management tool. Not providing visibility
or not delivering committed results is the failure. Deviations that are out of a
team’s or a project’s own control are flagged in due time to allow resolution on
the next higher level. Accountability also means to set realistic and measurable
objectives. Objectives like “reduce errors” or “improve quality by 50%” are point-
less. The objective should be clear and tangible, such as “reduce the amount of
late projects by 50% for this year compared to the previous year”. These objec-
tives must end up in a manager’s key performance indicators. Goals that are
measured will be achieved!

3 Planning the Measurement Process

In physical science a first essential step in the direction of learning any subject
is to find principles of numerical reckoning and methods for

practicably measuring some quality connected with it.
Lord Kelvin

3.1 Software Measurement Needs Planning

Usually the software measurement process is embedded in software engineering
processes and depends on the environmental characteristics such as

the estimation of the next or future product components, process aspects and re-
source levels for keeping a successful continuous project in the software devel-
opment ([Aher03], [Dumk02b] and [NASA95])
the analysis of artifacts, technologies and methods in order to understand the
appropriate resources for the software process ([Dumk99b], [Dumk02a] and
[Wang00])
the structuring of the software process for planning the next steps including the
resource characteristics ([Dumk97], [Dumk03b] and [Kene99])
the improvement of techniques and methodologies for software development as
software process improvement ([Aher03], [Dumk01], [Eber03b], [Eman98],
[Garm95], [Muta03] and [Warb94])
the control of the software process, including the analysis of the product quality
aspects and their relationships ([Dumk01], [Eber03b], [Eber97b], and [Kitc96])

As such software measurement needs planning like any other project activity.
Otherwise the risk is high that resources are not available or skills and tools are in-
sufficient.

This chapter considers the aspects if planning a software measurement process,
including the different models, approaches and standards. The first part describes
the usefulness of current measurement paradigms based on the literature in this
area. The discussion of measurement planning is supported through an industrial
example of the evaluation of customer satisfaction, which was investigated in a
project at the Deutsche Telekom.

At first the analysis of a concrete project needed the identification of the meas-
urement goals, from it derived the measurement aspects and finally the usable

36 3 Planning the Measurement Process

measures and evaluation methods. Interviews with project members assisted in
that matter. To derive the specific benchmark goals we used goal-oriented meas-
urement approaches, which are explained, in the next section.

3.2 Goal-Oriented Approaches

Goal-oriented approaches address special aspects, characteristics or intentions of
the software process, product or resources. Typical examples in software engineer-
ing are usability engineering, performance engineering (Chap. 11) or security en-
gineering. Other approaches choose a special aspect, like maintenance costs, de-
veloper productivity or error proneness. The general characteristics of these
approaches are to define a strategy for achieving the considered goal(s). In follow-
ing we describe a general methodology for goal-directed analysis and evaluation
as a very practical method.

3.2.1 The GQM Methodology

Goal-Question-Metric (GQM) is a concept of how to proceed during measurement
and was created by Basili and Weiss 1984. Measurement is necessary to control
the software development process and the software product. The basic idea of
GQM is to derive software measures from measurement questions and goals. The
GQM method was originated by Basili and Weis as a result of both practical ex-
perience and academic research. By now, GQM has proven its quality in the prob-
lems of metrics selection and implementation (see especially [VanS00]). Meas-
urement’s main task is making understanding of the specific process or product
easier for the user. Successful improvement of software development is impossi-
ble without knowing what your improvement goals are and how they relate to
your business goals. The most difficult question is how to define particular im-
provement goals in terms of business goals or with respect to particular project
needs. Measurement provides the means to identify improvement goals. By apply-
ing measurement to a specific part of the process, problems within the process can
be identified for which improvement goals can be defined. Currently, software
process improvement (SPI) is one of the most used goal. Several improvement
models, methods and techniques are available, divided into two major classes.

Top-down approaches, which are based on assessment and benchmarking. For
example: the Capability Maturity Model (CMM), the CMM Integrated
(CMMI), the Software Process Improvement and Capability detErmination
(SPICE), BOOTSTRAP (see [Aher03], [Eman98], [Muta03] and the detailed
descriptions in Chaps. 5, 9 and 10),
Bottom-up approaches, mainly apply measurement as their basic guide for im-
provement; an example of this type of approach is GQM.

3.2 Goal-Oriented Approaches 37

It is possible, and often very useful, to combine two approaches, for example,
GQM with CMM or CMMI. For simplicity we will stick here to the term CMM
(capability maturity model), though recognizing that integrated CMM, CMMI,
will replace the CMM over the next years. In this context we will not see a differ-
ence. Generally speaking, the CMMI gives even more attention to measurement.

A capability maturity model (that is, CMM or CMMI) helps organizations to
improve the maturity of their software process and in that way decrease the level
of risk in performance. Process maturity suggests that you can measure only
what is visible. Using both CMM and GQM thus gives a more comprehensive and
complete picture of what measures will be the most useful. GQM answers why we
measure an attribute, and CMM tells us if we are capable of measuring it in a
meaningful way.

Goal-oriented measurement points out that the existence of explicitly stated
goals is of the highest importance for improvement programs. GQM presents a
systematic approach for integrating goals to models of the software processes,
products and quality perspectives of interest, based upon the specific needs of the
project and the organization. In order to improve a process you have to define
measurement goals, which will be, after applying the GQM method, refined into
questions and then into metrics that will supply all the necessary information for
answering those questions. The GQM method provides a measurement plan that
deals with the particular set of problems and the set of rules for interpretation of
the obtained data. The interpretation answers whether the project goals were at-
tained. The GQM approach provides a framework involving three steps [VanS00]:
1. Set concrete goals for your change, performance improvement, project behav-

iors, or visibility (e.g., to improve customer satisfaction or productivity).
2. Ask questions how goals would be achieved (e.g., specific changes), or what

effect you would see when the goals are achieved (e.g., concrete operational re-
sults).

3. Determine metrics that show that goals are achieved (e.g., defects after hand-
over, effort for a standardized maintenance requirement).

Fig. 3.1 shows the different aspects and intentions used in the application dur-
ing the three steps of the GQM approach.

The GQM methodology contains four phases, which we explain in following:
The planning phase, during which the project for measurement application is
selected, defined, characterized and planned, resulting in a project plan.
The definition phase, during which the measurement program is defined (goal,
questions, metrics and hypotheses are defined) and documented.
The data collection phase, during which the actual data collection takes place,
resulting in collected data.
The interpretation phase, during which the collected data is processed with re-
spect to the defined metrics into measurement results, which provide answers to
the defined questions, after which goal attainment can be evaluated.

Fig. 3.2 shows the topology of the GQM components considering the intentions
of the ISO 15939 standard.

38 3 Planning the Measurement Process

In Table 3.1 we show an example of a GQM hierarchy adapted from [Fent97] in
his original self-documented manner. Another example is discussed in Chap. 2.
Achieving higher granularity within the GQM approach is defined in the CAME
approach discussed in the next section.

Goal

Question1 Question2

Metric1 Metric2 Metric3

MetricA MetricB MetricC

Process
phase

Check on
consistency

and completeness

GQM
definition

Process
and product
modelling

Fig. 3.1. The GQM approach

Goal

Question

Metric Measurement

Answer

Goal attainment

Collected Data

P
la

nn
in

g

Data Collection

Definition Interpretation

Planning

Fig. 3.2. The GQM methodology

3.2.2 The CAME Approach

The following approach was developed in an academic environment but was ap-
plied to different industrial measurement projects like software reuse (Deutsche

3.2 Goal-Oriented Approaches 39

Telekom), object-oriented development (Alcatel), evaluations of customer satis-
faction (Deutsche Telekom) and embedded system development (Siemens AG).
We will discuss this approach to demonstrate the detailed aspects of the software
measurement planning process. We assign the acronym CAME three meanings to
meet the requirements of software measurement. The CAME aspects are defined
in a layer model, which is described in Fig. 3.3

Table 3.1. GQM example

 Goal Questions Metrics
How much does the inspection
process cost?

Average effort per KLOC
Percentage of the re-inspections

Plan

How much calendar time does
the inspection process take?

Average effort per KLOC
Total KLOC inspected

What is the quality of the in-
spected software?

Average faults detected per KLOC
Average inspection rate
Average preparation rate

To what degree did the staff
conform to the procedures?

Average inspection rate
Average preparation rate

Monitor
and
control

What is the status of the in-
spection process?

Average lines of code inspected
Total KLOC inspected

How effective is the inspec-
tion process?

Defect removal percentage
Average faults detected per KLOC

Improve

What is the productivity of the
inspection process?

Average effort per fault detected
Average inspection rate
Average preparation rate
Average lines of code inspected

The CAME strategy is addressed in the background of measurement intentions
and stands for

Community. the necessity of a group or a team that is tasked with and has the
knowledge of software measurement to install software metrics. In general, the
members of these groups are organized in metrics communities such as our
German Interest Group on Software Metrics (Chap. 16).
Acceptance. the agreement of the (top) management to install a metrics pro-
gram in the (IT) business area. These aspects are strongly connected with the
knowledge about required budgets and personnel resources (Chap. 5).
Motivation. the production of measurement and evaluation results in a first
metrics application that demonstrates the convincing benefits of the metrics ap-
plication. This very important aspect can be achieved by the application of es-
sential results in (world-wide) practice that are easy to understand and that
should motivate the management. One of the problems of this aspect is the fact
that the management wants to obtain one single (quality) number as a summary
of all measured characteristics (Chap. 2).
Engagement. the acceptance of spending effort to implement the software
measurement as a permanent metrics system (with continued measurement, dif-
ferent statistical analysis, metrics set updates, etc.). This aspect also includes

40 3 Planning the Measurement Process

the requirement to dedicate personnel resources such as measurement teams,
etc.

CAME Strategy

CAME Framework

CAME Tools

Fig. 3.3. The CAME approach

The CAME framework itself consists of the following four phases ([Fent97],
[McGa01] and [Zuse97]):

Choice. the selection of metrics based on a special or general measurement
view on the kind of measurement and the related measurement goals (as a set of
metrics) based on goal-directed approaches, which we discuss in Chap. 10,
Adjustment. the measurement characteristics of the metrics for the specific ap-
plication field (as measurement characteristics of the metrics) as we describe in
Chaps. 5 and 9,
Migration. the installation and integration of the measurement approach in the
software development process (as application of the metrics in a measurement
and controlling process), discussed by examples in Chaps. 8, 10 and 14,
Efficiency. the automation level as construction of a tool-based measurement
(as implementation of the measurement process) for which we provide exam-
ples in Chaps. 4, 6 and 13.

The phases of this framework are explained in the following sections, including
the role of the CAME tools. As an example, we use the experiences in a project
with Deutsche Telekom for the evaluation of customer satisfaction relating to
Telekom software products and processes [Dumk00a].

3.3 Measurement Choice

Goal-oriented measurement starts with the question “What do we want to
achieve?” However, practically building a measurement system involves the fol-
lowing two additional questions “What is necessary to measure?” and “What is
feasible to measure?” Obviously, we only want to measure what is necessary. But,
in most software engineering areas, this aspect is unknown (especially for modern
software development paradigms or methodologies).

In order to stick to the traditional form of customer satisfaction evaluation, we
implemented the following three methods:

3.3 Measurement Choice 41

The customer satisfaction index (CSI) by Mellis (see in [Simo98]) as
 n

 CSI = (Wi × Zi) ,

 i=1

with Wi as feature weight for feature i, and Zi as satisfaction value for the fea-
ture i. The CSI considers the weights of the evaluation features. It can serve as a
yardstick for the comparison of current with past test results for the same prod-
uct/project or for the comparison of the examined product/project with others.
The weighted total satisfaction [Scha98] considers likewise the satisfaction and
the weights of the evaluation features:

 22 n

Zges = ((EZik – (|EZik – Wik |/ 7)) / n) / 22

 k=1 i=1

with EZik as satisfaction of customer i with feature k, and Wik as the weighting
of feature k by the customer i.
The customer satisfaction index by Simon [Simo98] is given as

 n

CSI = 1/n Zi
 i=1

with Zi as satisfaction value for feature i.

For the measurement of the customer satisfaction, we have chosen or defined as
a first approximation one metric for one empirical criterion. Table 3.2 includes a
general description of this kind of mapping.

The investigations of the mapping between satisfaction aspects and metrics are
denoted by adjustment of the metrics values related to different ordinal values of
the traditional customer satisfaction evaluation. Therefore, we have defined a set
of aspects for the traditional empirical evaluation. These criteria and the optional
software metrics for mapping are shown in Fig. 3.4 (based on [Dumk99a]).

On the other hand, it is necessary to map the possible metrics values to the ordi-
nal scale of the empirical criterion. We have chosen a unified ordinal scale for the
empirical criterion from 1 (worst) to 5 (best) of the customer satisfaction level (CS
level). This aspect is at most indeterminate in our approach. Hence, its tool sup-
port requires high flexibility for the adjustment or tuning of the measurement
process of the customer satisfaction determination. Based on this first step of
mapping software metrics to the empirical aspects of customer satisfaction, we
have defined a default mapping table in order to determine the customer satisfac-
tion based on the different intervals of the metrics values.

42 3 Planning the Measurement Process

Software metrics Model Multi-attribute measurement
of the customer satisfaction Model Evaluation

Calculation
model

Product metrics

architecture metrics
- component metrics
- conf iguration metrics
- data base metrics

run-time metrics
- task metrics
- data handling metrics
- human interf ace metrics

documentation metrics
- manual metrics
- dev elopment metrics
- marketing metrics

Process metrics

management metrics
- project metrics
- conf iguration metrics
- SQA metrics

life cycle metrics
- phases metrics
- milestone metrics
- workf low metrics

CASE metrics
- method metrics
- paradigm metrics
- tool metrics

Resources metrics

personnel metrics
- skill metrics
- communication metrics
- productiv ity metrics

SW resources metrics
- paradigm metrics
- perf ormance metrics
- replacement metrics

hardware metrics
- reliability metrics
- perf ormance metrics
- av ailability metrics

Measure
characteristics

Product

- f unctionality
- reliability
- usability
- efficiency
- modify
- transf erability
- design
- ergonomics
- warranty
- price-perf ormance ratio

Process

- consulting
- amount of contract
- project management
- quality management
- at the data fixed
- work atmosphere
- tranparency

Resources

- teamwork
- prof essional compentence
- complaint management
- support

Calculation
model

Customer
saticfaction

Measurement
mappingSoftware metrics Model Multi-attribute measurement

of the customer satisfaction Model Evaluation

Calculation
model

Product metrics

architecture metrics
- component metrics
- conf iguration metrics
- data base metrics

run-time metrics
- task metrics
- data handling metrics
- human interf ace metrics

documentation metrics
- manual metrics
- dev elopment metrics
- marketing metrics

Process metrics

management metrics
- project metrics
- conf iguration metrics
- SQA metrics

life cycle metrics
- phases metrics
- milestone metrics
- workf low metrics

CASE metrics
- method metrics
- paradigm metrics
- tool metrics

Resources metrics

personnel metrics
- skill metrics
- communication metrics
- productiv ity metrics

SW resources metrics
- paradigm metrics
- perf ormance metrics
- replacement metrics

hardware metrics
- reliability metrics
- perf ormance metrics
- av ailability metrics

Measure
characteristics

Product

- f unctionality
- reliability
- usability
- efficiency
- modify
- transf erability
- design
- ergonomics
- warranty
- price-perf ormance ratio

Process

- consulting
- amount of contract
- project management
- quality management
- at the data fixed
- work atmosphere
- tranparency

Resources

- teamwork
- prof essional compentence
- complaint management
- support

Calculation
model

Customer
saticfaction

Measurement
mapping

Fig. 3.4. The empirical criteria and the possible metrics for mapping

3.4 Measurement Adjustment

The adjustment is related to the experience (expressed in values) of the measured
attributes for the evaluation. The adjustment includes the metrics validation and
the determination of the metrics algorithm based on the measurement theory
([Fent97] and [Zuse97]).

The steps in the measurement adjustment are
the determination of the scale type and (if possible) the unit
the determination of the favorable values (as thresholds) for the evaluation of
the measurement component, e.g., by discussion in the development or quality
team, analyzing the examples in the literature, using of the thresholds of the
metrics tools, considering the results of appropriate case studies

3.5 Measurement Migration 43

the tuning of the thresholds (see [Endr03] and [Wohl00]) as approximation dur-
ing the software development from other project components, the application of
a metrics tool for a chosen software product that was classified as a good
the calibration of the scale (as transformation of the numerical scale part to the
empirical part) depends on the improvement of the knowledge in the problem
domain. This step can require some kinds of experimentation (see [Erdo02],
[Juri01a] and [Sing99]).

In our example of the evaluation of customer satisfaction we can establish the
following scale types:

Nominal scale. ISO 9000 certification
Ordinal scale. CMMI evaluation, programmer experience, etc.
Ratio scale. the mean time (MT) metrics above and some of the time related es-
timations.

The adjustment must be based on the experience in the given IT area and
should improve during the evaluations of the customer satisfaction.

3.5 Measurement Migration

This step describes the installation of the mentioned measurement process. An ex-
ample of this process integration is shown in Fig. 3.5. COSAM stands for cus-
tomer satisfaction measurement and represents the distributed architecture for this
approach. The main migration steps based on the COSAM approach are

Configuration. The installation of the different components of the COSAM
tool by choosing one the evaluation version shown in Fig. 3.5.
Adjustment. The mapping of different metrics values to the appropriate level
of customer satisfaction (CS) based on experiences and feedback received.
Experiences. The given knowledge about the typical thresholds of the metrics
values in the considered IT area.

The process of measurement and evaluation itself were supported by the fol-
lowing COSAM components or processes:

Customer survey. The definition of the weights of every customer satisfaction
criteria by the customer himself.
Evaluation. The selection of the kind of execution the customer satisfaction
through one of the given CS indexes.
Acquisition values of metrics. In the case of metric-based CS evaluation, the
project manager should record the given metrics values as shown in Fig. 3.5.

44 3 Planning the Measurement Process

Table 3.2. Mapping of metrics to the empirical criteria

Empirical
Criterion

Appropriate Software
Metric or Measure

Examples of
Adjustment

Product-based evaluation
Functionality Traceability measure as relation between

specified requirements and the given require-
ments in the problem definition

60%: 1; >60 70%:2;
>70 80%: 3; >80 90%:
4; >90 100%: 5

Reliability Mean Time To Failure (MMTF) Unit: hours
Usability Completeness of the documented product

components
Percentage

Efficiency Performance of response time of the consid-
ered systems

Unit: second

Modify “Neighborliness” costs of maintenance Unit: Euro
Transferabil-
ity

Portability as relation between the effort of
new development and the effort for transfor-
mation and adaptation

0.33: 1; >0.33 0.4: 2;
>0.4 0.55: 3;
>0.55 0.75: 4; >0.75: 5

Design Topology equivalence of the designed screens Percentage
Ergonomics The level of the help support as number of

online-documented system components
Percentage

Warranty Guarantee of software components in years 0.5: 1; >0.5 1: 2;
>1 2: 3; >2 4: 4; >4: 5

Price-
performance

Price level of the software related to the cur-
rent market level

Percentage

Process-based evaluation
Consulting Mean Time To Repair (MTTR) Unit: hours
Amount of
the contract

ISO 9000 assessment/certification No: 1, 2, 3; yes: 4 and 5

Project man-
agement

Capability maturity model evaluation CMM level = CS level

Quality man-
agement

ISO 9000 assessment/certification No: 1, 2, 3; yes: 4 and 5

Complaint
management

Frequency of complaints per week Unit: weeks

At the date
fixed

Average deviation from milestone dates Unit: days

Support Availability of service in percent of the used
cases

Percentage

Work atmos-
phere

Environmental factor as relation between
working hours without any break to the total
working hours on the day

0: 1; >0 0.25: 2;
>0.25 0.5: 3;
>0.5 0.75:4; >0.75 1: 5

Resource-based evaluation
Teamwork Provision of time as relation between the spent

time to the necessary time for communication
of every team member

Percentage

Professional
competence

Years of experience as level of developer skills 0: 1; >0 1: 2; >1 3: 3;
>3 5: 4; >5: 5

3.6 Measurement Efficiency 45

configuration

customer
survey

adjustment

evaluation

experiences

acquisition
values of metrics

QA administrator

Customer

QA representative

Project manager

Fig. 3.5. The user profile of the COSAM tool

3.6 Measurement Efficiency

This step includes the instrumentation or the automation of the measurement
process by tools. It requires analyzing the algorithmic character of the software
metrics and the possibility of the integration of tool-based “control cycles” in the
software development or maintenance process. In most cases, it is necessary to
combine different metrics tools and techniques related to the measurement phases.
The COSAM tool was implemented as a distributed system in order to perform a
Web-based system application.

The COSAM tool enables variations in traditional customer satisfaction evalua-
tion by choosing the empirical aspects and the evaluation method. It also allows a
metrics-based evaluation. The measurements are manually collected (Fig. 3.6).
Based on this record, we can carry out the customer satisfaction evaluation by us-
ing one of the three implemented evaluation methods. The COSAM tool is avail-
able for downloading at

 http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/.

3.7 Hints for the Practitioner

Goal-directed measurement approaches should look to following practical experi-
ences:

Goal-oriented approaches address special aspects, characteristics or intentions
to the software process, product or resources. Typical examples in software en-

46 3 Planning the Measurement Process

gineering are usability engineering, performance engineering or security engi-
neering.
GQM presents a systematic approach for integrating goals to models of the
software processes, products and quality perspectives of interest based upon the
specific needs of the project and the organization.
Since process maturity suggests that you can measure only what is visible, us-
ing both CMM and GQM gives a more comprehensive and complete picture of
what measures will be the most useful.

Fig. 3.6. The COSAM screen for metrics value recording

Furthermore, the CAME approach helps to determine your software measure-
ment level itself. Based on the metrics list on the left side in Fig. 3.6, you can see
what areas of the software product, process or resources are measured or evaluated
by the chosen metrics. But, you can also see, which areas of your software devel-
opment are out of control. On the other hand, you can consider the metrics (scale)
level explicitly. The main intentions and experience of the CAME approach for
the practitioners are:

The CAME approach considers both sides of software measurement: the de-
tailed measurement process (methods, metrics and scales) and the measurement
process environment (strategy, motivation and installation).
Considering also the both sides of software metrics application, that is, the nu-
merical metrics side and the empirical goal side.
Investigating the scale characteristics of the metrics or measures carefully in
order to obtain the correct answers of the goal-based questions.
Integrating the different kinds of measurement methods in the process that
should be managed.
Aggregating the different intentions and measurement tools in your measure-
ment concept or approach.
Constructing a profound architecture of metrics databases or measurement re-
positories.

3.8 Summary 47

3.8 Summary

Goal-oriented approaches are well-established methods of constructive and suc-
cessful improvement in the IT area and address special aspects, characteristics or
intentions of the software process, product or resources. They can be used in dif-
ferent granularities: as a small aspect of product or process improvement or as a
complex set of criteria for managing and controlling some of the IT processes
themselves.

The CAME framework description showed the step-by-step planning of the in-
stallation of a software measurement process in the chosen environment of cus-
tomer relationships including a prototypical implementation of this approach. The
structure of the metrics selection and analysis should be helpful for appropriate
adaptation in chosen process areas.

In general, the CAME approach supports the characterization of the metrics or
measurement level and helps to understand the necessary steps or activities for
improving, managing or controlling the different IT processes. Some levels of the
measurement characterization are the following:

the measurement of only few product artifacts
the consideration of basic product and process aspects
the orientation of resource efficiency
the dominance of the ordinal measurement as a simple kinds of ranking

Most of all, goal-oriented approaches are meaningful way in order to achieve
measurable success and quality in the IT area.

4 Performing the Measurement Process

A science is as mature as its measurement tools.
Louis Pasteur

4.1 Measurement Tools and Software e-Measurement

The efficiency of the software measurement process depends on the level of auto-
mation by tools. The importance of metrics tools is as obvious as the tool support
in the different disciplines of software engineering. The purpose of determining
the performance of the software process is to produce and collect the measurement
data supported by so called metrics tools. Therefore, in this chapter we describe
the current situation in the area of metrics tools and an outlook on future evolu-
tion. The first section includes an overview of some metrics tools and the current
situation in the area of software e-measurement. Fig. 4.1 gives an overview of
software tools, where CASE stands for computer-aided software engineering and
CARE means computer-aided reengineering.

We choose the notion of computer assisted software measurement and evalua-
tion (CAME) tools for identifying all the kinds of metrics tools in the software life
cycle [Dumk97]. CAME tools are tools for modeling and determining the metrics
of software development components referring to the process, the product and the
resource. Presently, the CAME tool area also includes the tools for model-based
software components analysis, metrics application, presentation of measurement
results, statistical analysis and evaluation.

In general, we can establish CAME tools for classification, for component
measurement, for process or product measurement and evaluation, as well as for
training in software measurement. The application of CAME tools is based on the
given measurement framework (see [Dumk96a], [Dumk96b], [Dumk96c],
[Oman97], [Zuse97], Chaps. 3 and 6). The integration of CAME tools in the tool-
based environments in the software engineering cycle is given in Fig. 4.1. On the
other hand, CAME tools can be classified according to the degree of integration in
software development environments such as integrated forms, external coupling
forms and stand-alone metrics tools.

We will describe some classes of CAME tools based on the tool investigations
in the Software Measurement Laboratory at the University of Magdeburg
(SML@b) during the last ten years.

50 4 Performing the Measurement Process

4.2 Applications and Strategies of Metrics Tools

CAME tools are useful in all areas of software engineering such as software prod-
uct evaluation, process level determination and the measurement of the quality of
the resources. We provide here a list of metrics tools for these different aspects in
software development and maintenance (for the detailed description of these tools
see [Dumk96a], [Smla03] and http://ivs.cs.uni-magdeburg.de/sw-eng/us/CAME/).
Naturally such selection of tools is subjective and non-exhaustive.

CASE Tools

CAME Tools

CARE Tools

Specification

Program Code Redocumentation

Respecification

Backward EngineeringForward Engineering

Fig. 4.1. Tool support during software development, maintenance and reengineering

4.2.1 Software process measurement and evaluation

The following CAME tools are used and tested in the SML@b [Smla03]. They are
helpful for application during the measurement of the software process phases,
components and activities.

AMI Tool (France). The tool name means the Application of Metrics in Indus-
try. The AMI tool is based on the GQM approach and gives an evaluation based
on the “classical” CMM method. The tool is very helpful for generating a
GQM-based measurement plan.
CHECKPOINT (USA). This estimation/feasibility tool uses a lot of experience
implicitly. One of the used size measure is function points. A lot of helpful pro-
ject information is executed and printed based on many input parameters such
as product, process and resource characteristics.
COSTAR (USA). The COSTAR tool supports the software estimation based on
the COCOMO II approach. The execution is based on different variants of
components and size measures.

4.2 Applications and Strategies of Metrics Tools 51

SLIM Palm Tool (University of Magdeburg, Germany). This CAME tool im-
plements the software lifecycle management (SLIM) formula for the Palm
computer. It is an example of the appropriateness of handhelds for the applica-
tion of useful CAME tools.
SOFT-ORG (Germany). This tool helps to define a general enterprise-based
measurement model as the essential basic for a successful metrics application.

Fig. 4.2 shows the layout of the COSTAR tool, which supported the cost estima-
tion during the earlier phases of software development based on the COCOMO II
approach. Other cost estimation tools are discussed in Chaps. 6, 7, 11, 13, and 14.

Fig. 4.2. Layout of COSTAR cost estimation based on COCOMO II

4.2.2 Software Product Measurement and Evaluation

In this section we consider the different phases during the software development
relating to efficient CAME tool support. We will choose only a few examples to
demonstrate the essential aspects.
Requirement analysis and specification:

RMS (Germany). The reading measuring system (RMS) supports the analysis
of the quality of documentation by using some of the text quality and readabil-
ity metrics.
Function Point Workbench (Australia). The FPW supports all the steps of the
IFPUG 4.x evaluation and can be considered as the main used FP tool with a
large background of measurement experience.

52 4 Performing the Measurement Process

SOFT-CALC (Germany). This CAME tool supports the cost estimation for dif-
ferent point-based approaches such as function points, data points and object
points. The SOFT-CALC tool is compatible to SOFT-ORG.
COSMOS (Netherlands). COSMOS stands for cost management with metrics
of specification and realizes an evaluation of different programming and formal
specification languages such as LOTOS, Z, etc. The tool has a good variance in
metrics definition, adjustment and calibration.

Software design:
MOOD (Portugal). The MOOD concept as metrics for object-oriented design
implements an evaluation of object-oriented class libraries based on the well-
established object-oriented software metrics.
Metrics One (USA). This Rational tool supports the measurements of unified
modeling language (UML) diagrams by counting a lot of aspects from and be-
tween the basic charts and components of an UML-based software specifica-
tion.
SmallCritic (Germany). This Smalltalk measurement and evaluation tool sup-
ports essential object-oriented metrics during the software development itself.

Program evaluation:
CodeCheck (USA). CodeCheck implements code measurement based on lan-
guage parsing. The price for this high flexibility is the greater effort for learn-
ing its application.
QUALMS (UK). This quality analysis and measurement tool supports the code
measurement including varieties of statistical data exploration.
DATRIX (Canada). This CAME tool implements code measurement for C,
C++, etc. and is based on a large experience in practice.
LOGISCOPE (USA). LOGISCOPE supports code measurement including
quality evaluation of large-scale software. Against to the static metrics-based
evaluation, this tool supports the dynamic testing including the essential cover-
age metrics.
PC-METRIC (USA). This small tool is very helpful for code measurement
based on the Halstead and McCabe measures and has a high stability in the
measurement results.
PMT (University of Magdeburg, Germany). (This Prolog measurement tool
supports the software measurement of Prolog programs by using new kinds of
descriptive metrics.
MJAVA (University of Magdeburg, Germany). This CAME tool implements
the object-oriented measurement of Java-based metrics including Chidam-
ber/Kemerer metrics.

Fig. 4.3 shows one of the methods of code evaluation by the LOGISCOPE tool
using the Kiviat diagram. This tool includes variants of code visualization (flow
graph, call graph, etc.), Further on LOGISCOPE evaluates software systems based

4.2 Applications and Strategies of Metrics Tools 53

on a complex quality model, which must be carefully considered in order to keep
the correct or appropriate intentions of the tool customer.

Now, we continue the list of CAME tools that are available and useful in the
different phases of the software development process (for more details see Chap.
6).

Fig. 4.3. Code evaluation by the LOGISCOPE metrics tool

Software testing:
LDRA (UK). This testbed includes a complex test environment applicable for
different programming languages and supports the user by flexible program
visualization.
STW-METRIC (USA). The software test workbench implements a concept of
statistical analysis and test support and is a component of general software ana-
lyzing and evaluation system.

Software Maintenance:
Smalltalk Measure (University of Magdeburg, Germany). This Smalltalk exten-
sion by code measurements executes the size and complexity metrics for every
class, application or system level in the Smalltalk system itself.

54 4 Performing the Measurement Process

COMET (University of Magdeburg, Germany). The CORBA measurement tool
supports the measurement of object-oriented Java applications including the
CORBA components.
Measurement Aglets (University of Magdeburg, Germany). This set of meas-
urement agents supports the measurement of distributed Java code by Java
agents themselves as aglets.

4.2.3 Software Process Resource Measurement and Evaluation

The following CAME tools are helpful for application during the measurement of
the software resources components and activities.
Productivity:

SPQR/20 (USA). The software productivity and quality research tool estimates
the size based productivity based on twenty parameters.
And the other tools above

Performance:
Foundation Manager (USA). This tool addresses the testing of network per-
formance and availability with a comfortable visualization.
SPEC JVM Benchmark (USA). This CAME tool uses the technique of simula-
tion of the performance characteristics of chosen resource configurations.

Usability:
COSAM (University of Magdeburg, Germany). This customer satisfaction
measurement tool supports the evaluation of the customer satisfaction based on
process, product and resource metrics (see 3.3).
DOCTOR HTML (USA). This Web metrics tool produces an evaluation of
Web sites including the appropriateness of the resources like the Web browser
acceptability.

4.2.4 Software Measurement Presentation and Statistical Analysis

In order to analyze and evaluate the software measurement results, the following
CAME tools are helpful for application during these activities.

Excel (USA) and other similar spreadsheet programs (e.g., from StarOffice or
OpenOffice). This well-established spreadsheet tool can be used for data pres-
entations and analysis. Other common office spreadsheet tools work equally
well.
SPSS (USA). This statistical package for the social science is a data exploration
tool including the essential statistical methods and should be used for careful
data analysis and explorations.

4.2 Applications and Strategies of Metrics Tools 55

4.2.5 Software Measurement Training

The following CAME tools are helpful for learning und understanding the phases,
components and activities of software measurement including their theoretical
background.

METKIT (UK). The metrics tool kit represents a European initiative for meas-
urement education and training. The most components are tutorials for learning
the software measurement theory and practice.
ZD-MIS (Germany). This Zuse Drabe measurement information system is ad-
dressed to the metrics education based on the measurement theory including
more the 1500 analyzed software metrics and references.

The following Fig. 4.4 shows the layout of the Zuse Drabe MIS tool, which is
very helpful for learning the basic characteristics of metrics aspects, scales and
metrics validity [Zuse97].

Fig. 4.4. Layout of the Zuse Drabe measurement information system

The tools of the University of Magdeburg can be downloaded at:
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/.
The CAME tools should be embedded in a software measurement framework that
includes the software process characteristics and their assessment and control. In
order to use CAME tools efficiently, some rules should be kept in mind that we
define in the following manner. The present CAME tools are not a suitable means
of complex software evaluation. They are mostly based on existing assessment
methodologies such as the Function Point method. The applied metrics must be

56 4 Performing the Measurement Process

algorithmic. The selection of a software measurement tool should be influenced by
the following considerations:

The tool should be designed specifically for the respective software/hardware
platform.
The philosophy of the CAME tool should be applied carefully. The tool-
specific conception of modeling, presentation and metrics evaluation should not
be violated.
Both hardware and software platforms are subject to a highly dynamic devel-
opment process.

Specific parameters of the software development environment should be known
to ensure correct and complete input information for the CAME tool. A profound
analysis of the empirical aspects such as effort and costs is an imperative precon-
dition for the proper use of any selected CAME tool (for the right use of the right
metrics tool).

4.3 Solutions and Directions in Software e-Measurement

Software e-measurement means the application of the World Wide Web in order
to support software measurement processes, activities and communities. In the fol-
lowing we describe some first solutions and future potentials. An analysis of the
current situation in the Web shows that in some research areas like physics or
chemistry we can find many Web-based measurement examples and activities.
Fig. 4.5 includes such a service, where the user could participate at the measure-
ment and evaluation process of e-learning tools [Emea03].

Fig. 4.5. Example of an e-measurement service

4.3 Solutions and Directions in Software e-Measurement 57

The current approaches in the area of the e-measurement could be classified in the
following manner:
1. The use of the World Wide Web for the presentation and exploration of any

measurement data, such as in biology, in physics, in chemistry, in finance, etc.
([NIST03])

2. The measurement of the Web itself considering the frequency of use, the usabil-
ity, the web site quality and complexity of the Web application (e. g. for the no-
tion “Web measurement“ the Web search tools show more than two million
links) ([Econ03], [Mend02], [Webm03b])

3. The application of the Web for every kind of intention and activity for the
measurement and evaluation of software systems in the sense of software e-
measurement.

In order to consider the third point we will describe the essential Web tech-
nologies. The kinds and different approaches of Web technologies are very broad
and do not permit a summary. But, we will look to the appropriate technologies
for software e-measurement (for details see [Dumk03a], [Muru01] or [Thur02]):

The basic intention of the Web consists of referencing (multimedia) Web pages
by the URI (Unified Resource Identifier) building a Web content. Current Web
systems are mostly document-oriented systems like information systems and
multimedia presentations, etc. So we can implement Web-based presentations
as tutorials or information systems based on the Synchronized Multimedia In-
tegration Language (SMIL).
Dynamic Web site generation is a special technique of Web site presentation
(using CGI, DOM, DHTML, JavaScript, PHP, etc.). This technology is helpful
in order to implement ad hoc information services or different business proc-
esses. On the other hand, large data and knowledge bases are useful for infor-
mation resources on different areas of education, business, administration and
science (as technology see JDBC, ADO, MySQL, XML or XSLT).
The Semantic Web combines the Web documents in a logical manner so that
really knowledge management is possible (with the methodologies of data min-
ing, text mining and Web mining). Key technologies in this area are RDF,
DAML, OIL or WebIN.
A special kind of Web applications is Web services supported by ASP, JSP,
JMS, WSDL, SOAP, UDDI, Sun ONE, etc. Based on a simple unified imple-
mentation technology, Web services are very helpful for customers (see BPEL
and ebXML). The information and the user context for these services are
founded in existing Web portals in different networks, infrastructures and ser-
vice providers.
Further technologies support the mobility, like WML, WIDL, MIDlets, GSM and
UMTS. Methodologies on this area are the general availability (as ubiquitous
computing) or the more widespread distribution of software applications (as
pervasive computing).
The flexibility and the usability of Web systems were improved by the applica-
tion of software agents and their technologies (see, for example, Aglets, JATlite,

58 4 Performing the Measurement Process

Grasshopper, ACML, JavaSpace or JDMK). Web agents implement many op-
erational features that run in the “background” of Web applications or that sup-
port Web analysis and controlling.
Last but not least, currently operational Web systems are implemented more
and more, including different functionalities for measurement, problem identi-
fication and controlling devices or machines. Technologies for implementing
such operational features are Jini, MUML, etc.

The use of software measurement can range from a simple measurement of a
situation to supporting the quality assurance to full process control and improve-
ment. Fig. 4.6 shows some different dimensions for the levels of software e-
measurement.

full Web-based
(virtual)

dynamic support

static support

documents semantic
Web

operational
Web systems

measurement/
evaluation

quality assurance

process controlling
and improvement

eMeasurement

Web
Technologies

Measurement
Context

Fig. 4.6. Dimensions of the software e-measurements

The realization of e-measurement in the World Wide Web leads to many kinds
of infrastructures that combine the application, the consulting, the communication
and the information ([Dumk01], [Dumk03a], [Loth02b] and [Wink03]). The fol-
lowing e-measurement areas are intended:

The application of software measurement in the IT area does not have an ap-
propriate implementation in many companies. Therefore, the creation and the
hosting of e-measurement communities should be helpful in order to improve
this current situation.
Services or measurement realization and the presentation of the measurement
results are meaningful supports and could be provided by special companies on

4.3 Solutions and Directions in Software e-Measurement 59

the Web. Further, the collaboration on the Web between companies could pro-
duce some new kinds or levels of e-measurement services.
Based on the incremental Web use and the technologies of mobility, software
quality assurance can be supported by e-quality services. This means that the
software quality process would be divided in subprocesses and subcomponents
that are available in the Web.
In order to support the implementation of measurement processes, e-
measurement consulting could be helpful. These kinds of services include con-
sulting during the measurement planning, the measurement performance and
the measurement exploration processes.
Especially, the comparison of measurement results between companies or the
discussion about measurement results could be supported by some kinds of e-
experience and/or e-repositories in the World Wide Web.
Fundamental knowledge about software measurement is an essential part of a
successful software measurement process. Hence, some kinds of measurement
e-learning would be helpful managing these tasks.
Finally, services for certifying the quality or performance of IT areas that is
present in the Web leads to e-certification in the Web.

In the following, we will discuss some existing initiatives or services on the
Web that considers the new kinds of e-measurement intentions.

e-Communities for software measurement. Let us briefly discuss some ex-
amples to show how communities are working. A more comprehensive summary
of metrics communities is provided in Chap. 16. The ISERN (International soft-
ware engineering research network) is an example of a measurement community
[Endr03]. This research network includes some of the leading companies or re-
search centers in the area of empirical software engineering. Many initiatives and
experiments were realized in this community. The International Network of Met-
rics Associations (MAIN) is the European community for software metrics, and
DASMA is the German partner in this area (see especially Chap. 16). The
SML@b is one of the academic research centers [Smla03]. The information, con-
ference planning and motivation are essential tasks realized in these communities.

e-Experience and e-repositories. These kinds of measurement services are
based on realized measurements and help the user for decision making in their IT
area. The SML@b includes a small set of general experiment descriptions that are
helpful for analogous use in one’s own IT environment. The service of the Soft-
ware Engineering Institute (SEI) at Carnegie Mellon University is helpful for
structuring the measurement approach and choosing the appropriate software met-
rics. Fig. 4.7 shows the Web sites of these experience resources.

Measurement e-learning. Another essential aspect concerns the support of e-
learning in the area of software measurement. Most of these current solutions in-
clude support for the organization of courses (participation and examination).
Only a few real e-learning solutions are known currently. So, the course in Soft-
ware Engineering at the University of Magdeburg was supported, for example, by
training implemented as Java applets (http://se.cs.uni-magdeburg.de/). Other ex-

60 4 Performing the Measurement Process

amples are given in the virtual SML@b [Smla03]. Fig. 4.8 shows a tutorial for
learning the GQM method (http://ivs.cs.uni-magdeburg.de/sw-eng/us/java/GQM/).

Upper left: http://ivs.cs.uni-magdeburg.de/
sw-eng/us/experiments

Upper right: http://www.visek.de/

Left: http://www.sei.cmu.edu/

Upper left: http://ivs.cs.uni-magdeburg.de/
sw-eng/us/experiments

Upper right: http://www.visek.de/

Left: http://www.sei.cmu.edu/

Fig. 4.7. Examples of e-experience and e-repository

Fig. 4.8. Example of measurement e-learning in the SML@b

4.4 Hints for the Practitioner 61

Fig. 4.9. Web site measurement by WebSpector

e-Measurement services. Finally, Web services themselves could be very help-
ful for supporting the software measurement areas and processes. Some of these
current solutions are

The service of downloadable metrics tools, e. g. at the NASA/Goddard Soft-
ware Engineering Laboratory (SEL) in Maryland using WebME [Webm03a]
The tool-based service of Web analysis and evaluation, e.g. with the WebSpec-
tor, which allows Web site analysis for chosen frequencies. Fig. 4.9 shows the
layout of this metrics tool [Loth03b].

4.4 Hints for the Practitioner

Metrics tool application should be guided by the following reasoning and goals:
The efficiency of the software measurement process depends on the level of
automation of the tools. That means you should try to achieve a complete tool-
basic solution for your measurement process. But, you must consider the differ-
ent methodological and platform-related requirements of these CAME tools
carefully.
Metrics tools should cover the whole software measurement process, starting
with establishing measurement, and continuing by planning, performing the
measurement and exploring the results for process, product and resource
evaluation. This aspects help you for embedding the measurement in the soft-
ware development environments for assessing, improving and controlling the
origin IT processes.
The philosophy of the metrics or CAME tool should be applied in the proper
order. The applied CAME tools should be embedded compatible in a software
measurement framework
Specific parameters of the software development environment should be known
to ensure correct and complete input information for the CAME tool. A pro-
found analysis of the empirical aspects such as effort and costs is an imperative

62 4 Performing the Measurement Process

precondition for a proper use of a selected CAME tool (for the right use of the
right metric tool).

The use of the features of e-measurement should be arranged in the following
manner:

Software e-measurement means the application of the World Wide Web in or-
der to support software measurement processes, activities and communities.
Therefore, future applications include the software measurement combined
with new technologies such as pervasive, mobile and ubiquitous computing. In-
form you about the actual trends and perspectives timely.
e-Measurement leads to integrated architectures including e-learning, the e-
community and measurement activities and services themselves. You should be
oriented to other partners, companies and coworkers for the conception, instal-
lation and using these new kinds of measurement systems based on different
roles in the Web.
e-Measurement implies a great deal of potential for initiatives and successful
cooperation in the area of software measurement. Are motivated and interested
for participation at this future.

4.5 Summary

Performing the measurement process includes using effective measurement tools.
The efficiency of the software measurement process depends on the level of auto-
mation by tools. This chapter has given a short description about these CAME
tools.

We primarily addressed new technologies and concepts for measurement tools
based on the World Wide Web. Our overview of e-measurement includes visions
and existing solutions and should motivate further activities in this area.

5 Introducing a Measurement Program

The best engineers or scientists don’t work for a company,
 a university or a laboratory; they really work for themselves.

Watts S. Humphrey

5.1 Making the Measurement Program Useful

Software metrics can perform four functions (see also Chap. 1). They can help us
to understand more about software work products or underlying processes. They
can be used to evaluate work products or processes against established standards.
Metrics can provide the information necessary to control resources and processes
to produce the software. And they can be used to predict attributes of software en-
tities in the future.

To make your measurement program really useful, we need to talk not only
about technical factors and processes, like most chapters of this book. It’s impor-
tant to realize that measurement success is also determined by soft factors. We
will in this chapter look first into selecting and defining appropriate metrics. Sec-
tion 3 describes the underlying roles and responsibilities in a measurement pro-
gram. We will then investigate about positive and negative aspects of software
measurement and provide some guidance for counteracting counterarguments dur-
ing introduction of a measurement program. We conclude with practical guidance
for a stepwise introduction of a measurement program, describing also the time
horizons to consider.

5.2 Metrics Selection and Definition

The very first step of selecting and introducing appropriate measurements must
start with a useful and accurate definition. A measurement is no end in itself, but a
way to achieve and monitor achieving an objective. Any metrics definition must
therefore explicitly state the objective, directly linked to external business objec-
tives, and the attribute of the entity being measured. The problem with many soft-
ware metrics is that they are typically not described in business terms and are not
linked or aligned to the needs of the business. While traditional business indicators
look on revenue, productivity or order cycle time, their counterparts in software

64 5 Introducing a Measurement Program

development measure size, faults or effort. Clearly both sides must be aligned to
identify those software product or process metrics that support business decisions.

One of the first steps towards relating the many dimensions of business indica-
tors was the Balanced Scorecard concept (see Chap. 2) [Kapl92]. The link to soft-
ware metrics is given by investigating the operational view and the improvement
view of the balanced scorecard. Questioning how the operational business can stay
competitive yields critical success factors (e.g., cost per new/changed functional-
ity, field performance, maturity level).

Relating the current actual project situation (e.g., project duration, delivered
quality or project cost for an average set of requirements) to the best-of-practice
values in most cases motivates a process improvement program. Keeping these re-
lationships from business objectives towards critical success factors to operational
management and finally to software processes in mind ensures that customer-
reported defects are not seen as yet another fault category and percentage to be
found earlier, but within the broader scope of customer satisfaction and sustained
growth.

A project-specific measurement plan links the generic metrics definition to
concrete projects with their individual goals and responsibilities. Additional met-
rics to be used only in that project are referred to in the measurement plan. The
measurement plan is linked to the quality plan to facilitate alignment of targets.

Often terminology must be reworked and agreed upon with different parties to
ensure proper usage of terminology. The good news with metrics definitions is
that they ask for precision. It is basically impossible to sustain a “fluffy defini-
tion”, and many past improvement programs indicated that with the metrics pro-
gram a lot of other terminology and process imprecision could be cleaned up
[Hump89, Grad92].

Try to use one consistent metrics template that provides both definition and
concrete usage in typical project situations (Table 5.1).

Each metric definition should ensure consistent interpretation and collection
across the organization. Capturing precise metrics information not only helps with
communicating the rationale behind the figures but also builds the requirements
for automatic tools support and provides basic material for training course devel-
opment.

Most tracking metrics cover work product completion, open corrective action
requests, and they review coverage to identify and track the extent to which devel-
opment and quality activities have been applied and completed on individual
software deliverables (see Chap. 8, Fig. 8.3, Fig. 8.4, Fig. 8.5). These metrics pro-
vide visibility to buyers and vendors about the progress of software development
and can indicate difficulties or problems that might hamper the accomplishment of
quality targets.

Progress during design activities can be tracked based on effort spent for the re-
spective processes on the one side and defects found on the other hand. Especially
defect-based tracking is very helpful for reaching high-level management attention
because this is the kind of decision driver that accompanies all major release deci-
sions.

5.2 Metrics Selection and Definition 65

When effort is below plan, the project will typically be behind schedule be-
cause the work simply is not getting done. On the other hand, design might have
progressed but without the level of detail necessary to move to the next develop-
ment phase. Both metrics should be reported weekly and can easily be compared
with a planning curve related to the overall estimated effort and defects for the two
phases. Of course, any design deliverables might also be tracked (e.g. UML de-
scriptions); however, these come often late in the design process and are thus not a
good indicator for focusing management attention.

Table 5.1. Metrics template

Template entry Explanation
Unique identifier Name and identifier of the metric
Description Brief description of the metric
Motivation and
benefits

Relationships to goals or improvement targets, such as quality fac-
tors, business goals or tracking distinct improvement activities;
every metric should be traced to business objectives at organiza-
tional level and to the goals and risks at program level

Definition A concise and precise calculation and extraction algorithm
Measurement scale The underlying scale (e.g., normal, ordinal, rank, interval, absolute)
Underlying raw
data

Raw data and other metrics used to calculate this metric (e.g., met-
rics primitives used for calculating the metric or indirect metrics)

Tools support Links and references to the supporting tools, such as databases,
spreadsheets, etc.

Presentation and
visualization

References to report templates; e.g., chart or table type, combination
with other metrics, visualization of goals or planning curves

Reporting fre-
quency

Describes how often the metric is extracted, evaluated or reported

Cost of the metric Covering one-time introduction and continuous collection effort
Analysis methods Proposed/allowed statistical tests and analyses (including a valida-

tion history if applicable)
Target, control lim-
its and alarm levels
for interpretation

Control limits for quantitative process management (e.g., release cri-
teria, interpretation of trends)

Configuration con-
trol

Links to storage of (periodically collected) metrics

Distribution control Determines visibility and how a valid report is accessible (e.g.,
availability date, audience, access control)

Training In case that a dedicated training is available or necessary for using
this metric

Example A real project case showing how the metric and the presentation
look in practice

66 5 Introducing a Measurement Program

5.3 Roles and Responsibilities in a Measurement
Program

The introduction of software metrics to projects has to follow a stepwise approach
that must be carefully coached. Each new metric that needs tools support must be
piloted first in order to find out whether definitions and tools descriptions are suf-
ficient for the collection. Then the institutionalization must be planned and
coached in order to obtain valid data. Independent of the targets of a measurement
program, it will only be taken seriously if the right people are given responsibility
for it [McGa01, Fent97] (see Chap. 7 for roles in the estimation process). For that
reason the following three roles are recommended (Fig. 5.1).
1. Metrics responsibles for the projects serve as a focal point for engineers and

the project management of the project. They ensure that the metric program is
uniformly implemented and understood. The role includes support for data col-
lection across functions and analysis of the project metrics. The latter is most
relevant for project managers because they must be well aware of progress, de-
viations and risks with respect to quality or delivery targets. By creating the
role of a project’s metric responsible we guaranteed that the responsibility was
clearly assigned as of project start, while still allowing for distributed (func-
tional) metrics collection.

2. A small central metrics team coordinates metrics and project control beyond
locations. It ensures that rationalization and standardization of a common set of
metrics and the related tools and charts is accelerated. A key role of such metric
team is consistent education across the company. This includes training to pro-
ject managers and project teams on effectively using metrics. Upon building a
company-wide metrics program and aligning processes within the software
process improvement activities, the creation of a history database for the entire
organization is important to improve estimates. It also maintains metrics defini-
tions and related tools.

3. Optionally local metrics teams are introduced in each location or division of a
distributed organization. They serve as focal points for all metrics-related ques-
tions, to synchronize metrics activities, to emphasize commonality and to col-
lect local requirements from the different projects. Besides being the focal point
for the metrics program in a single location they provide training and coaching
of management and practitioners on metrics, their use and application. In addi-
tion they ensure that heterogeneous tools are increasingly aligned or that tools
and forms for data collection and analysis are made available to the projects
and functional organization.

This structure guarantees that each single change or refinement of metrics and
underlying tools as well as from projects can be easily communicated from a sin-
gle project to the whole organization. Use of teams should, however, be done cau-
tiously. While a team has the capability to take advantage of diverse backgrounds
and expertise, the effort is most effective when there are not more than three peo-
ple involved in a distinct task. Larger teams spend too much time backtracking on

5.3 Roles and Responsibilities in a Measurement Program 67

metrics choices. We also found that when potential users worked jointly to de-
velop the metrics set with the metrics support staff, the program was more readily
accepted.

The related measurement process is applicable in the day-to-day project envi-
ronment (see Chap. 8, Fig. 8.2). It is based on a set of defined metrics and sup-
ports the setting up and tracking of project targets and improvement goals:
1. Based on a set of predefined corporate metrics, the first step is to select metrics

suitable for the project.
2. The raw data is collected to calculate metrics. Be aware of the operational sys-

tems that people work with that need to supply data. If the data is not available
easily chances are high that the metric is inaccurate and people tend to ignore
further metrics requests. People might then comply with the letter of the defini-
tion but not with the spirit of the metric.

3. Metrics are analyzed and reported through the appropriate channels. Analysis
includes two steps. First, data is validated to make sure it is complete, correct,
and consistent with the goals it addresses. Do not assume that automatic metrics
are always trustworthy; at least perform sample checks. The real challenge is
the second step, which investigates what is behind the metrics. Some conclu-
sions are straightforward, while others require an in-depth understanding of
how the metrics relate with each other. Consolidating metrics and aggregating
results must be done with great caution, even if apples and apples might fit
neatly, so to speak. Results are useless unless reported back to the people who
make improvements or decisions.

4. Finally, the necessary decisions and actions are made based on the results of the
analysis. The same metrics might trigger different decisions based on the target
audience. While senior management may just want to get an indication how
well the improvement program is doing, a process improvement team will care-
fully study project and process metrics to eliminate deficiencies and counteract
negative trends.

senior
management

project
manager 2

team leader
quality

engineer

line
reporting

metric data

middle
management

metrics
responsible

responsible for
setting up a
measurement plan
and for data
collection and
analysis

project
manager 1

finance /
accounting

senior
management

project
manager 2

team leader
quality

engineer

line
reporting

metric data

middle
management

metrics
responsible

responsible for
setting up a
measurement plan
and for data
collection and
analysis

project
manager 1

finance /
accounting

Fig. 5.1. Roles and responsibilities within a metrics program

68 5 Introducing a Measurement Program

5.4 Building History Data

Project management as well as tracking portfolio information or improvement pro-
jects needs a wealth of historic data. Only what has been collected in the past pro-
jects can be utilized to draw conclusions for the current and new projects. Having
an accurate history database of past projects helps to identify risks during launch
and along the project, thereby improving estimations, assessing feasibility of pro-
ject proposals and identifying which processes are suboptimal.

Building history data is time consuming. It takes many projects to complete in
order to have a sufficiently comprehensive set of key performance metrics from
finished projects in order to make valid judgments on new projects. Different
needs require different amounts of history data. Simple project tracking can actu-
ally be done without much own history data. It is just necessary to accurately track
the progress versus commitments. Project tracking thus is the first step in building
history data. Agree on standard metrics and set up a dashboard for the ongoing
projects. After some ten finished projects you will obtain the first set of history
data to use for the second step.

Estimating future work builds upon this initial history data. Naturally, the con-
fidence and granularity of the estimates depends on the accuracy and details col-
lected in the first step. If only project size and effort are collected, do not expect to
estimate quality or cost. There are ways to predict quality based on incomplete
raw data such as size information which we explain in Chap. 7.

A third step comprises managing projects and processes quantitatively. This in-
cludes activities such as statistical process control (SPC) as well as empowering
every engineer towards resolving process issues on the spot. Measurement, like
process maturity, grows first from chaotic ad hoc behaviors to organizational
competence and further on back to projects and individuals.

Data quality is a major need while building the history database. It comprises
dimensions such as accuracy (i.e., recorded values conform to actual values),
completeness (i.e., information comprises all projects and sources), consistency
(i.e., recorded information when compared does not show discrepancies or errors)
and timeliness (i.e. metrics and history data are available on the spot when
needed).

Data quality depends on the actual usage of the metrics and history information.
What may be considered good data in one case for a specific project or process
need may not be sufficient in another case. While an effort estimate in person-
weeks is sufficient for a feasibility study of a new project or evaluation of a port-
folio, it is clearly not enough for tracking the project internally.

Data quality comes at a cost. Usually the first need is to ensure that the same in-
formation is only collected once. For instance, precision can always be aligned to
needs, but storing the precision of the original data certainly helps to reuse history
data in the future when your needs may have evolved. While defect tracking in a
CMM Level 1 organization might only look into avoiding critical defects after de-
livery to a customer, more mature organizations follow through the totality of de-
fects created per phase or detected per verification and validation activity. Having

5.5 Positive and Negative Aspects of Software Measurement 69

gained such experiences these organizations start to address deviations from tar-
gets early in the development process thus effectively moving defect detection to-
wards the phase that generated the defect. At the end of this growth is effective de-
fect prevention.

Having more data recorded than presented helps in adjusting reports to the
stakeholders’ and users’ specific needs. The project manager is interested to see
all his milestones and how they are with respect to original commitments. A senior
executive might be interested in seeing how much anticipated delays or budget
overruns there are in her portfolio. A process manager might want to know how
well estimates and predictions correlate with actually achieved reality.

To improve data quality and ensure that metrics usage is evolving, we recom-
mend frequent reviews of the contents of the history database. This should be done
before each major reporting cycle, as well as when a project is finished. The
owner of the raw data per project should be the project manager. Her role com-
prises having accurate project information. She is in the best position to judge the
quality of all reported information of her own project. The project manager can
trigger dedicated corrective actions at any point during her project if some infor-
mation is missing or invalid. This is hardly possible after the end of the project.

Too often, measurement is used to record the past, instead of anticipating the
future. A history database is a means to stimulate forward looking. It is not sup-
posed to be a metrics graveyard or repository for the sake of audits. One way to
ensure forward-looking measurement is to make strategy reviews, performance
indicators and annual objectives depend directly on actual metrics. This will
stimulate the question: do we have metrics in place that will serve as early warn-
ing indicators of future problems? Metrics will be asked to indicate whether pro-
jects are doing well or not, or whether organizations are doing better or not. From
a portfolio management perspective metrics will be asked that can signal future
opportunities.

Once management perceives the dashboard and project metrics as reliable,
there is a natural transition towards using measurements in the daily decision-
making processes. We found in industrial settings that, depending on the educa-
tion of management and maturity of the organization (if not management), it can
take months until they would use the metrics. Basing key performance indicators
on the metrics and setting up annual targets in line with business needs will accel-
erate usage. No reasonable manager will agree to objectives without a baseline. If
it takes several months and still no progress is seen, the failure is either due to
wrong attitude or incompetence, which must change from the top.

5.5 Positive and Negative Aspects of Software
Measurement

Tracy Hall et al. [Hall01] show in an interesting empirical study of 13 groups of
developers, 12 groups of project managers and 4 groups of senior managers in 11
associations, done between October 1999 and March 2000, positive and negative

70 5 Introducing a Measurement Program

opinions of these interviewed relating to the use of IT metrics. Their joint result is
that many of the positive aspects are more beneficial for the project mangers than
for the developers, manifest in the declaration of a developer: “if any of us came
up with a workable approach to metrics we’d become very rich.“

Table 5.2 shows that the overwhelmingly positive perception of measurement
cited by developer groups was that measurement data allows progress to be
tracked (69%) and that it improves planning and estimation (38%).

Table 5.2. Perceived general positive aspects of software measurement

Percentage of groups Benefits of software measurement
Developers Project

managers
Senior
managers

P1 Know whether the right things are being
done

23 25 50

P2 Finding out what is good and what is bad 23 58 50
P3 Identify problems 8 42 25
P4 Support/improve planning and estimating 38 25 25
P7 Track progress 69 58 50
P8 Makes what you‘re saying more substantial 15 8 50
P9 Provides feedback to people 8 25 25

Project managers and senior manager have a more positive view of IT metrics
(Table 5.3). Project managers favor the use of IT metrics for estimation purposes
(P1, P2, P7) and for the identification of specific problems (P3).

Table 5.3. Favorite aspects of software measurement

Percentage of groups Favorite aspects of software measurement
Developer Project

managers
Senior
managers

B1 Can target effort into things (that are) not do-
ing so well

8 8 25

B4 A check that what you are doing is right 15 17 50
B5 People can not argue 8 25 0
B6 The confidence they give 8 17 50

Three negative aspects of software measurement were mentioned from 38% of
the developers:

Developers are often not informed/do not know if and how the measured data
are used.
There is no feedback about the measured data
Data collection is time consuming for the developers (which was also con-
firmed by 67% of the project managers). It is interesting that this insight did not
lead to the requirement for automatic measurement.

Tables 6.3 and 6.4 demonstrate that 23% of the developers dislike the extra ef-
fort for data collection and the rather scarce presentation of the results. About 60%

5.5 Positive and Negative Aspects of Software Measurement 71

of the project managers said that they had difficulties in identifying and collecting
the data for the correct software measure. A quarter of them added that software
measures do not always measure what you want them to measure. Senior mangers
mostly found the following negative aspects (Table 5.4):

Data collection detracts from the main engineering job.
It is difficult to collect, analyze and use the right measures.
Software measurement must be used for the right reason.

Table 5.4. Perceived general negative aspects of software measurement

Percentage of groups General negative aspects of software measurement
Developers Project

managers
Senior
managers

N3 Hard to measure what you want to measure 15 25 0
N6 Do not know how or if the data is being used 38 8 0
N7 No feedback from the data 38 8 0
N8 Detracts from the main engineering job 8 8 50
N10 Difficult to collect, analyze and use the right

measures
23 58 50

N11 Time consuming to collect the data 38 67 25
N12 They must be used fort the right reason 15 33 50
N13 There must be integrity in the data 15 17 25
N17 They can be used against people 0 0 25

A quarter of them commented that measurement should not be used against
people. It is interesting that none of the other two groups identified this issue. We
can speculate on a variety of reasons for this. Maybe developers and project man-
agers had not experienced measurement being abused and so it did not occur to
them as a problem. Or – most often the case – senior managers have not been edu-
cated on practical measurement (i.e., not being exposed to this book) and fear the
metrics as a pointer to previous decisions, thus creating an accountability that they
don’t like.
The least favorite rated aspects were (Table 6.5)

Poorly presented data (50% of senior managers and 23% of developers)
Difficult to compare data across systems or projects (25% of project leaders
Poor quality data (25% of project leaders)
Can be misunderstood (25 % of senior managers)
Not used enough (25 % of senior managers)

All positive aspects fell into the following three categories:
Assessment (P1, P2, P3)
Planning (P4, P7)
Decision support (P8)

72 5 Introducing a Measurement Program

All negative aspects fell into the following three categories:
Implementation (N6, N7, N12, N13)
Time and effort (N8, N11)
Measurement immanent difficulties (N10)

This book practically explains how the mentioned disadvantages or risks per-
ceived with the use of metrics can be best handled and mitigated in order to make
your measurement program a success.

Table 5.5. Least favorite aspects of software measurement

Percentage of groups Least favorite aspects of software measurement
Developers Project

managers
Senior
managers

L1 Extra work 23 8 0
L3 Difficult to compare data across systems or

projects
0 25 0

L4 Can be misunderstood 15 8 25
L5 Not used enough 8 17 25
L6 Poorly presented data 23 17 50
L7 Data too abstract to use easily 15 17 0
L8 Poor quality data 15 25 0

5.6 It is People not Numbers!

An effect often overlooked in establishing a measurement program is the impact
on the people involved. Software is developed by engineers, and not by machines.
Although introducing metrics means a cultural change to typically all involved
parties, the focus is too often only on tools and definitions. If faults, efficiency or
task completion are measured, it is not some abstract product that is involved, it is
the practitioners who know that they will be compared. Staff at all levels are suffi-
ciently experienced to know when the truth is being obscured.

Introducing measurement and analysis will change behavior – potentially in
dysfunctional ways. Knowing the benefits of metrics for better project manage-
ment or for steering the course of improvement initiatives does not at all imply
that people will readily buy into the decision to be measured. To clearly explain
the motivation from the beginning and to provide the whole picture is better than
superficial statements about project benefits.

The result of lacking acceptance can lead to a general behavior of resistance in
different forms, such as

passive resistance
work (only) on order
active resistance

We thus recommend collecting several behavioral arguments – in addition to
some slogans – that can readily help you to oppose resistance, as e.g., in Table 5.6.

5.6 It is People not Numbers! 73

It must be said explicitly that there is an immense interdependency between
motivation and acceptance. Hence a major success factor for the implementation
of measurement and estimation is the construction of a motivational system. It
should have the goal to positively influence the staff for active cooperation and,
last but not least, to identify the individual processes or techniques. The three most
important pillars of such a motivational system are information, training and par-
ticipation – the so-called king’s road for introduction of innovations. This recom-
mendation cannot be stressed enough.

Table 5.6. Fighting resistance

Resistance … Fighting resistance:
is naturally and unavoidable! expect resistance!
can often not be seen at a glance! find resistance!
has many causes! understand resistance!
discuss the hesitations, not the arguments! confront resistance!
there is not only one way to fight resistance! manage resistance!

Plan to position metrics from the beginning as a management tool for im-
provement and state that one of the targets is to improve efficiency in the competi-
tive environment. Make explicit what the results will be used for. When used for
competition and benchmarking, first stimulate that people work with their meas-
urements and start improving. For instance if faults are counted for the first time
over the life cycle, establish a task force with representatives from different levels
to investigate results from the viewpoint of root cause analysis and criticality re-
duction. Educate your senior management. Uneducated managers tend to use met-
rics without reasoning about context. If there are many defects in a software com-
ponent, they would conclude that the designer doesn’t know his job. More often,
however, the valid conclusion is that a specific piece of software is error-prone
because of high complexity or many changes in the past.

Restricted visibility and access to the metrics helps in creating credibility
among practitioners especially in the beginning. For instance, progress or defects
for an individual engineer is not the type of information to be propagated across
the enterprise. It is often helpful to change perspective towards the one providing
raw data: is the activity adding value to her daily work? Statistical issues might
not automatically align with emotional priorities. Remember especially with met-
rics that their perception is their reality.

Good communication is necessary in every business to be successful and to re-
duce friction, whether it is from engineer to manager, manager to engineer, or en-
gineer to engineer. It is easy for software to be relegated to a low priority in a
company focused on other technologies in its products. Software engineers need to
speak out clearly and be heard and understood by management. Both sides need to
learn how to address each other’s real needs. Management does not care for
techno-babble, while engineers are easily bored with capitalization or depreciation
questions regarding their software.

74 5 Introducing a Measurement Program

5.7 Counter the Counterarguments

A typical killer argument is “lack of time” (“we have to do more important things“
or “we must reach the deadline“). The answer to this is threefold [Bund00a].
1. In our experience, even for larger IT projects, an estimate can be done in a cou-

ple of days. Medium and smaller projects can normally be estimated within half
a day or a day (with the aid of a competence center). This is a small effort com-
pared to the whole project size. Only for large IT projects (more than 100 per-
son years), might this effort be double or triple. Normally, an IT project should
have the necessary and current information for measurement and estimation
readily available. If this is not the case see point 3. In any case compared to the
overall project effort the effort for the estimation is negligible.

2. If there is truly a lack of time, it has to be stated that there are (time) problems
in a very early stage of that project. Thus the project leader should be asked if
he should not stop the project before starting it, since experience shows that
time will become scarcer during the project progress. It is a high risk to not
quantify the project size.

3. The effort for the measurement and estimation increases significantly when the
project team has to search for the necessary documentation or they cannot find
it since it does not exist. The detection of such deficits allows management to
bring the quality of projects to an acceptable level. This is much the same as the
statement that the necessary documentation is not up to date or is not complete.
This shows that measurement and estimation have a quality assurance function
as a side effect. The effort for fixing such deficits is erroneously accounted as
estimation effort. In reality it is a neglected documentation task. This again fos-
ters the prejudice that estimation takes too much effort.

Further obstacles for the dissemination of software measurement and estimation
are deficits in usability, relevance, end user efficiency and the poor presentation of
software metrics. Other obstacles are lack of discipline and the chaotic nature of
many IT organizations.

In many organizations the dissemination of estimation methods that are used in
one department fails in other departments because of the “not invented here“ syn-
drome. This syndrome exists internationally and leads to the habit that nobody is
responsive, or that valuable ideas are ignored or repulsed in order to use politically
correct but less valuable estimations.

On the other hand, the newest trends in software development are copied, and
the newest propagated innovation is blindly adapted. The existence of a realistic
and positive effect on the performance, however, is not evaluated. The demand to
deliver software solutions faster and cheaper also leads to a tendency to start with
a “quick and dirty“ programming approach before the requirements of the end us-
ers are understood correctly. This again leads to lower product quality.

Acceptance problems can also be solved by experts in the domain who have
done it before (i.e. consultants). At the beginning their assistance is a conditio sine
qua non to start quickly and effectively with the right concept for estimation. On

5.8 Information and Participation 75

the other hand, problems will arise if their assistance is too great: the staff might
feel that the management does not have enough confidence in their staff. The good
thing is that management listens more readily to consultants (gurus) than to their
own staff. There is the additional danger that too much knowledge will be lost to
the organization if it is not transferred to the employees before the consultants
leave. This is mostly neglected for time- and cost-saving reasons.

5.8 Information and Participation

Success with software measurement demands that project leaders and project team
members get frequent and timely information about the goals and the effects of the
implementation of measurement. For this reason a competence center can, e.g.,
publish its own newsletter, which regularly informs readers about the actual work
of the competence center. It can also use the estimation training sessions to inform
the participants about actual measures.

It is also important that experiences are exchanged with other organizations in
order not to become mired in one’s own problems. The participation in confer-
ences like the annual SEPG conferences, local SPIN meetings, or those organized
by DASMA or the MAIN Network – the joint European IT metrics organizations
– offers the opportunity to learn from other organizations that face the same prob-
lems or that are a step ahead. This allows one to participate and benefit from other
experiences, see positive examples or help to avoid errors reported from third par-
ties. Often useful contacts can be made that might lead to an exchange of experi-
ences with partners between such conferences.

The next logical step on the way to acceptance is participation. The goal of par-
ticipation is the creation of widespread cooperation of all involved persons leading
to active teamwork. Hence it is of immense importance to not blindly import exist-
ing processes. Instead, elaborate an adaptation according to the requirements of
the own organization and in dialogue with the involved staff. This can typically be
done with a neutral (external) consultant together with the staff in a pilot project.
These staff members will be the promoters of the new methods in one’s organiza-
tions. Fig. 5.2 presents some highlights of problems during the implementation of
an estimation and measurement program.

Besides acceptance problems there are a number of other challenges associated
with the implementation of estimation and measurement. The focus should be that
processes are measured, not persons. If one does not follow this rule the motiva-
tion of the staff will be undermined and honesty of estimation cannot be fostered.
Measurement and estimation should be integrated into the software lifecycle. Oth-
erwise the necessary tasks will be regarded as overhead. The most important of all
measures is support from management. Lack of support from managers will allow
the project leaders to neglect the necessary tasks for measurement and estimation.
It will thus help to delay the implementation process.

76 5 Introducing a Measurement Program

Implementation Problems

Acceptance
• Information
• Participation

Measurement of Processes, not of Persons
Integration in Software-Lifecycle
Measurement is Necessary, no Overhead
Management Support

Implementation Problems

Acceptance
• Information
• Participation

Measurement of Processes, not of Persons
Integration in Software-Lifecycle
Measurement is Necessary, no Overhead
Management Support

Implementation Problems

Acceptance
• Information
• Participation

Measurement of Processes, not of Persons
Integration in Software-Lifecycle
Measurement is Necessary, no Overhead
Management Support

Fig. 5.2. Implementation problems

5.9 Hints for the Practitioner

Metrics are the vehicle to facilitate and reinforce visibility and accountability. The
following key success factors could be identified during the introduction:

Metrics start with improvement goals. Goals must be in line with each other
and on various levels. The business strategy and the related business goals must
be clear before discussing lower-level improvement targets. From the overall
business strategy those strategies and goals must be extracted that depend on
successful software development, use and support. Size or defect metrics alone
do not give much information; they become meaningful only as an input to a
decision process. This is where the balanced scorecard approach comes in and
helps in relating the measurement program to specific corporate goals [Kapl93].
Business goals must be broken down to project goals and these must be aligned
with department goals and contents of quality plans.
Motivate measurements and project control with concrete and achievable
improvement goals. Unless targets are achievable and are clearly communi-
cated to middle management and practitioners, they will clearly feel metrics as
yet another instrument of management control. Clearly communicated priorities
might help with individual decisions.
Start small and immediately. An initial timetable is provided in Table 5.7.
This timetable indicates that setting up a measurement program consists of a lot
of communication and training. Kick-off meetings with management, project
teams or practitioners ensure that metrics are understood and used consistently.
Especially senior management needs good training to avoid they abuse metrics
for penalizing – before understanding what to effectively gain with this new
visibility. It is definitely not enough only to select goals and metrics. Tools and
reporting must be in line, and all of this takes its time. It must, however, be
clearly determined what needs to be measured instead deciding based on what
can be measured.

5.9 Hints for the Practitioner 77

Actively use metrics for daily decision making (e.g., for project control).
Data collected at phase end or on monthly basis is too late for real-time control.
Avoid statistical traps. Metrics have individual scales and distributions that
determine their usage and usefulness. Avoid showing average values, which of-
ten compensate the good, the bad and the ugly. For instance, making an average
across all delivery dates necessarily balances nicely the ugly delays with those
that were severely overestimated. Both is bad from a performance management
perspective. In such case showing quartiles makes much more sense. In other
cases we advice showing not only a mean value but also the maximum and
minimum values. Often a scatterplot already reveals the real message behind
the numbers.

Table 5.7. Timetable for setting up a metrics program

Activity Elapsed
time

Duration

Initial targets set up 0 2 weeks
Creation and kick-off of metric team 2 weeks 1 day
Goal determination for projects and processes 3 weeks 2 weeks
Identifying impact factors 4 weeks 2 weeks
Selection of initial suite of metrics 5 weeks 1 week
Report definition 6 weeks 1 week
Kick-off with management 6 weeks 2 hours
Initial tool selection and tuning 6 weeks 3 weeks
Selection of projects/metric plan 6 weeks 1 week
Kick-off with project teams/managers 7 weeks 2 hours
Collection of metric baselines 7 weeks 2 weeks
Metric reports, tool application 8 weeks Continuously
Review and tuning of reports 10 weeks 1 week
Monthly metric-based status reports within projects 12 weeks Continuously
Application of metrics for project tracking and process
improvement

16 weeks Continuously

Control and feedback on metric program 24 weeks Quarterly
Enhancements of metric program 1 year Continuously

Determine the critical success factors of the underlying improvement pro-
gram. The targets of any improvement program must be clearly communicated
and perceived by all levels as realistic enough to fight for. Each single process
change must be accompanied with the respective goals and supportive metrics
that are aligned. Those affected need to feel that they have some role in setting
targets. Where goals are not shared and the climate is dominated by threats and
frustration, the metrics program is more likely to fail.
Provide training both for practitioners, who after all have to deliver the ac-
curate raw data, and for management who will use the metrics. The cost and
effort of training often stops its effective delivery. Any training takes time,
money and personnel to prepare, update, deliver or receive it. Good training is
worth the effort. If metrics are not used for decision-making or wrong decisions
are taken, the cost is higher than that of training. Training can be class-room or

78 5 Introducing a Measurement Program

e-learning. In any case it should include lots of concrete project examples pref-
erably from your own projects. Use external consultants where needed to get
additional experience and authority.
Establish focal points for metrics in each project and department. Individual
roles and responsibilities must be made clear to ensure a sustainable metrics
program. This is small effort but very helpful to achieve consistent use of met-
rics and related analysis.
Define and align the software processes to enable comparison of metrics.
While improving processes or setting up new processes, ensure that the related
metrics are maintained at the same time. Once estimation moves from effort to
size to functionality, clearly the related product metrics must follow.
Collect objective and reproducible data. Ensure that the chosen metrics are
relevant for the selected goals (e.g., tracking to reduce milestone delay) and ac-
ceptable for the target community (e.g., it is not wise to start with productivity
metrics). If metrics are only considering what is measurable but do not stimu-
late improvements they will be used for hiding issues and creating fog.
Get support from management. The enduring buy-in of management can
only be achieved if the responsibility for improvements and the span of neces-
sary control are aligned with realistic targets. Since in many cases metrics be-
yond test tracking and faults are new instruments for parts of management, they
must be provided with the necessary training.
Avoid abuse of metrics by any means. The objective is to get control on pro-
ject performance, not to assign blame. Metrics must be “politically correct” in a
sense that they should not immediately target persons or satisfy needs for per-
sonal blame. Metrics might hurt but should not blame.
Communicate success stories where metrics enabled better monitoring or cost
control. This includes identifying metrics advocates that help in selling the
measurement program. Champions must be identified at all levels of manage-
ment, especially at senior levels, that really use metrics and thus help to support
the program. Metrics can even tie in an individual’s work to the bigger picture
if communicated adequately. When practitioners get feedback on the data they
collect and see that it is analyzed for decision-making, it gives them a clear in-
dication that the data is being used rather than going into a data cemetery.
Slowly enhance the metrics program. This includes defining “success crite-
ria” to be used to judge the results of the program. Since there is no perfect
metrics program, it is necessary to determine something like an “80% avail-
able” acceptance limit that allows declaring success when those metrics are
available.

Do not overemphasize the numbers. Having lots of numbers and no reasoning
will not keep you in business; it’s useless overhead. It is much more relevant what
they bring to light, such as emerging trends or patterns. After all, the focus is on
successful projects and efficiency improvement and not on metrics.

5.10 Summary 79

5.10 Summary

There are a number of positive and negative aspects associated with measurement
and estimation. Regarding these can help to motivate the employees for better ac-
ceptance. Management support and clear guidelines are a prerequisite for a posi-
tive estimation culture and estimation honesty. A roadmap for successful imple-
mentation of measurement and estimation should start with building the
foundations followed by strategic planning for implementation and establishment
of the processes. The strategic plan should comprise frequently asked questions
about the effort and the right moment for estimation as well as the pros and cons
for centralized and decentralized measurement and estimation.

The implementation of measurement and estimation faces many acceptance
problems. There are a lot of killer arguments to be countered, e.g., lack of time
and too much effort for estimation. Additionally there are a lot of accompanying
obstacles hindering the implementation process. The “not invented here” syn-
drome is a well known example. The advice from the experts is to solve all these
problems using the king’s road for introduction of innovations: overall informa-
tion, sound training and participation of all involved persons. An alternative would
be the counsel of experts.

Lacking acceptance fosters all kind of resistance damaging the process of
implementation. This resistance has to be expected, found, understood, confronted
and managed. Acceptance can be gained via correct information policy and ex-
change of experiences with metrics organizations or business partners. Participa-
tion creates cooperation and motivation. Many metrics organizations and experts
offer trainings and certifications. Awareness has to be fostered for the insight that
measurement and estimation are necessary and no overhead. Management assis-
tance plays an important role for the success of the implementation process. There
exist a lot of known positive and negative aspects of measurement that can be used
for setting up measures to support the measurement and estimation program. Es-
timation conferences are not only beneficial for team-building but also give useful
hints for risk-management. Estimation honesty can be fostered by motivation and
stressing the benefits of measurement and estimation. Given all this positive pre-
requisites supported by clear goals an estimation culture can evolve. This is a
time-consuming process.

The crucial part of a measurement and estimation program is the process of
implementation. It starts with the definition of the goals and information. A stan-
dard process has to be defined and pilot projects have to be found. Training and
motivation have to be organized, awareness and expertise to be created. Planning,
budgeting, scheduling and resource coordination have to be performed and struc-
tures, processes, methods and tools have to be defined in order to establish prece-
dence. Accompanying measures for support of the implementation process are the
discussion of frequently asked questions, e.g., effort, cost and timing, centralized
or decentralized measurement and estimation. The overall experience is that there
are only a few technical challenges for successful implementation of measurement
and estimation, but many psychological challenges.

6 Measurement Infrastructures

In God we trust.
All others bring data.
W. Edwards Deming

6.1 Access to Measurement Results

The use of metrics in the development of industrial software is gaining impor-
tance. Metrics are particularly suited to qualitative and quantitative assessment of
the software development process, of the resources used in development and of
the software product itself. However, software metrics can only be used effec-
tively if the requisite measurements are integrated into the software development
process and if these measurement values are taken at regular intervals. An effec-
tive software measurement process produces an extensive series of measurements
and thus the need for efficient measurement data management, which must include
the contexts to enable discourse on the measurements that are taken as well as to
provide extensive evaluation options.

It should also be possible to store the results of validation of a measurement as
a new experience within the database. In this context it is possible to use a simple
structure based on a file system, a standard portal solution, an explicit developed
metrics database system or, finally, an experience factory. After a short introduc-
tion of the International Software Benchmarking Standards Group (ISBSG) ap-
proach we show possible sources of metrics, requirements of a metrics database
and an implementation of a real system of a metrics database (called metricDB).
The metricDB project focused on an application for metrics management in ob-
ject-oriented software development.

6.2 Introduction and Requirements

6.2.1 Motivation: Using Measurements for Benchmarking

One important activity in context of software measurement access is benchmark-
ing. Benchmarking is used internally to a company for comparing projects and ex-
ternally for comparing best practices. There are several databases that allow open

82 6 Measurement Infrastructures

access to benchmarking data, such as the ISBSG International Repository
(http://www.isbsg.org). The goal of the ISBSG is to provide a multi-organizational
repository of software project data. The ISBSG grows, maintains and exploits two
repositories of software project metrics:
1. Software Development and Enhancement
2. Software Maintenance and Support

The ISBSG approach considers different project data, such as the functional
size of a specific software solution, information about the development project it-
self (elapsed time, team size, required resources) or information about the used
technologies for implementation.

By mid-2003, this benchmarking repository contained more than 2000 projects.
The repository can be used for a minimal fee and provides the following services:

The repository itself can be used as an alternative to one’s own metrics data-
base.
Contribution of one’s own realized project benchmarks
Comparison of submitted projects with others of the same class within the re-
pository
The Benchmark and other reports about the content of the repository

6.2.2 Source of Metrics

Metrics tools mostly address the original source of software metrics data. These
tools support different kinds of software modeling, measurement and evaluation.
We can establish the following storage techniques and structures for the metrics
values:

Some tools present the metrics value in a fleeting manner only in the evaluation
moment.
Most tools produce a metrics value file with some explanations or in a simple
value-divided-by-delimiter form.
The metrics values are stored for two evaluations for some tools to compare
two variants (an old and a new/modified one).
Some tools support a file hierarchy for the project-related storage of the code
metrics data; an append technique helps to combine different measurements of
different project parts to compare the different evaluated aspects.
Some tools have a lot of facilities for the presentation and analysis of the met-
rics data, but the final values are hidden from the user.
In some tool classes there exists a data-handling tool with the possibility of de-
tailed analysis of the metrics data.

The examples above demonstrate some interesting aspects of software metrics
data storage and handling but are mainly oriented to a special measurement area
(process or code evaluation) or to a special environment (platform or language re-
lated). Fig. 6.1 shows the possible sources of software metrics according to
[Evan94a].

6.2 Introduction and Requirements 83

6.2.3 Dimensions of a Metrics Database

Fig. 6.2 summarizes possible aspects for design and implementing a metrics data-
base ([Folt98]). Industrial acceptable metrics databases are constructed based on
some chosen aspects in every dimension of the above model.

Software Development
Organization

Software
Project

Software
Artifacts

Software
Analyzer
(Parser)

Code, Design
Artifacts

Utilities Project Database
(e.g. metricDB)

Project Data (e.g. Fault Metrics,
Customer Satisfaction)

Development Enviroment Data
(e.g. Maturity Metrics)

Fig. 6.1. Sources for a metrics database (adapted from [Evan94a])

Database characteristics:
kind of used database model (relational, object-relational, hierarchical/XML-
based and so on)
architecture (layer, kind of possible access, components)
user concept (query language, GUI, provided services)
security and safety (access control, etc.)
quality (consistency, redundancy, performance)

Data characteristics:
kind of value (number, flag, text)
metadata (precision, tolerance, accuracy, unit, domain)
structure and type (aggregation level)
source (measurement, statistical operation, default setting)

System characteristics:
stand-alone (data analysis, decision support)
embedded system (controlling, management)
distributed systems (client/server, mobile)
Web-based solution (portal, Web services)

Input types:
measured value
output from a specific tool
prediction or estimation

84 6 Measurement Infrastructures

Output types:
kind of values
input for specific tools
statistical report

Metrics characteristics:
single measured value (interval, ratio scaled)
estimated value (nominal, ordinal scaled)
predicted value (by formula, by experience)
multi value (tuple, set, tree, tensor)

Measurement characteristics:
model-based measurement
direct measurement
prediction/estimation

Application characteristics:
part of management systems
source of assessments
part of control systems
source of education

Metrics characteristics Measurement characteristics

Application characteristics

Kind of outputs

Kind of inputs

Data base characteristics

Data characteristics System characeristics

Software Metrics Data Base
06.12.2003 - v5

Fig. 6.2. Aspects of a metrics database

6.2.4 Requirements of a Metrics Database

All software development projects should always have the special requirements of
future users of the information system as their starting point. Additional require-
ments relate to the adaptability of the application to new situations, the use of dif-
ferent procedural models for software development and possibly also the use of
different metrics sources. The target of the metrics database is to cater to the needs
of different users and, in particular, to make it easier to control the quality and cost
of software projects (independently from the used procedure). In a workshop with
potential customers (e.g., project managers) of the metrics database, requirements

6.2 Introduction and Requirements 85

were identified and used as a starting point for data and function modeling. These
requirements are summarized below (see also Chaps. 5, 8 and 9):

The effort involved in using and maintaining/administration of a metrics data-
base must be kept to a minimum, which results in the need for extensive auto-
mation.
It must be possible to map the procedure (e.g., functional or object-oriented de-
velopment) that is selected for a concrete software development project in the
metrics database. It must also be possible to configure the created software arti-
facts (diagrams, documents, source texts) and to assign measurements that are
taken of them.
Different user types must be served with project-specific rights. Planning cur-
rently involves application administrators (creating new projects), the project
manager/developer (use of prefabricated evaluations) or academic staff who
can subject the metrics to statistical analysis using external tools such as SPSS.
It should include automatic problem detection in software development on the
basis of exceeded, configurable threshold values in addition to offers of solu-
tion alternatives. It should be possible to store different threshold values (exter-
nal, company- and project-specific experiences) in the system.
It should allow for presentation of metrics flow and comparison with other pro-
jects by means of graphs and control diagrams.
It should include an “experience database” for project development and control,
effort estimation, productivity/efficiency and (indirect) cost control.
It should incorporate automation of part of effort estimation (as in the present
version, e.g., the object point method according to Sneed) in order to estimate
effort and perform historical costing at different phases of the project.
It should allow users to check qualitative modeling or implementation criteria
by using validated metrics, for example, maintainability, compliance with the
object-oriented paradigm and stability of an object model in the face of change.
The system must be able to incorporate new metrics and their interpretations
into the database relatively easily. To this end, an internal adaptable metrics
catalogue should be defined to which it must be possible to interactively map
the results produced by measuring tools.
It should allow for the possibility of integrating evaluations that are not imple-
mented on the basis of the standard functions offered by the application, such
as an Excel or SPSS analysis.
It should also be possible for users to transfer analyses to their specific docu-
ments (e.g., OpenOffice) via file referencing or file embedding mechanisms
(e.g., DotGNU, web services, clipboard).
Easy access through intranet.

86 6 Measurement Infrastructures

6.3 Case Study: Metrics Database for Object-Oriented
Metrics

6.3.1 Prerequisites for the Effective Use of Metrics

The objective to develop a database management system for object-oriented met-
rics followed a whole range of preliminary activities. It was necessary to select
metrics especially for object-oriented software development from the large num-
ber of metrics proposed in the academic discourse (see also Chaps. 3 and 5).

Attributes for measurement selection

Effectiveness answers the question as to the degree to which a selected
metric can meet company objectives, such as reducing error rates. Here it
may be suitable to apply the Goal-Question-Metric (GQM) Method accord-
ing to Basili et al.

Feature coverage. It must be possible to apply the selected metrics to as
many results and software artifacts that are produced during development
as possible (e.g. models, program code, documentation) and to all phases of
development.

Effort minimization. Executing continual measurements within the soft-
ware life cycle requires the use of measurement tools that are able to make
metrics largely automatically available from measured software artifacts.

Empirical evaluation. As there is often no experience to build upon when
a software metric is first introduced, it is sensible to adopt the “initial set-
tings” (i.e., threshold values), which are suggested in the measurement
tools or in the relevant literature.

Data protection and security. Metrics must not be used to draw conclu-
sions about person-related data.

Scale features (nominal, ordinal, interval, ratio) of the metrics in use de-
fine the information content of the data used and the statistical analysis
methods and mathematical operations that can be executed on them.

For an iterative life cycle (e.g., Unified Process [OMG01]) this results in 4
measurement points per cycle/increment/iteration, whereby often 3 5 cycles are
run so that a total of 12 20 measurement points should normally be available in a
development project. Besides creating stable general conditions with a binding
procedural model, further standardization such as defining standard development
technologies and the introduction of programming standards was necessary to en-

6.3 Case Study: Metrics Database for Object-Oriented Metrics 87

able individual projects to be compared. When using metrics, it is also important
to standardize the methods and tools that are to be used for software development.
For example, it would not have been recommendable to introduce metrics tools for
model and source code metrics before the tools used in development had been de-
clared as standards that were binding throughout the company.

6.3.2 Architecture and Design of the Application

The main components of the application are the database server (MS SQL Server
or MySQL), a Web server (e.g., Apache or Internet Information Server), a Win-
dows-based administration client and a Web client based on a standard browser
(e.g., Mozilla).

Fig. 6.3 shows the current software architecture of the metricDB application.
The Web server contains the HTML files and the relevant Java applets from the
application, which are downloaded to the Web client via HTTP. The database is
accessed from the Java applet via the JDBC driver, which runs as middleware on
the Web server. At the core of the application is the database, set up as a relational
database management system.

Client (Browser)

JDBC Server

Crystal Report Web
Engine

Web Server

HTML

ASP Request
(possibility of

dyn. Web pages)

JD
BC

 D
riv

er
 T

yp
e

3

ODBC-Driver

RDBMS-Database
Server

Network Connect

Power Builder
DLL's

Admin-Client
(Windows)

HTML-Files
Java-Applets

Applets

Fig. 6.3. Software architecture of the application

Despite the resulting paradigm inconsistency between the object-oriented ap-
plication and database management based on the relational model, the following
factors influenced the choice of the system:

Proven database management technology with extensive tool support and offer-
ing standard interfaces such as Open Database Connectivity (ODBC) and Java
Database Connectivity (JDBC).
Possibility of using the database contents under standard tools such as Excel
and SPSS for statistical data analysis via the ODBC interface.

88 6 Measurement Infrastructures

Infrastructure, for example, for software distribution or appropriate centralized
backup procedures is available in the company.
To a high degree the administration client under Windows and the Web clients
both execute update-intensive operations, which make the use of Online Ana-
lytical Processing (OLAP) or data warehouse technologies doubtful.

Use of the type-3 JDBC driver permitted a three level client/server architecture
to be implemented in the application on the Internet site. The administration client
was linked directly to the database. Despite producing some disadvantages in
terms of possible scalability, this is acceptable as it requires very few administra-
tors in relation to Web-based users. The architecture we have implemented en-
ables all application components to be executed on one system or, alternatively,
the use of dedicated computer systems as database and Web servers. The number
of administration and Web clients that can be used depends on the performance of
the server systems and the load profiles caused by users.

The application, in particular the database component, was modeled using Ra-
tional Rose. Fig. 6.4 shows the packages that are currently used and that contain
the actual classes or entities. As most packages were described and implemented
through parameterizable classes, this resulted in a highly generic data model, per-
mitting various adjustments to be made within the application. For example,
metadata is used to describe the structural elements (software artifacts) of a pro-
ject, the hierarchic levels (mapping of the concrete procedural model) with, for
example, cycles, phases, segments, activities and the milestones in the temporal
project flow (management view).

On the one hand, this procedure safeguards the option of adapting to various
procedural models in software development, on the other, it allows us to consider
various sources of metrics, related to the defined structural elements. Inherent in a
generic concept of this type is the disadvantage of increased administration effort
for application operations. For this reason, the template technology was used sev-
eral times, storing basic administration work, such as mapping a procedural model
for object-oriented development, in the system.

6.3.3 Details of the Implementation

The computation of aggregate metrics refers at present to effort estimation accord-
ing to object point [Snee96]. The metrics that were imported via Computer Aided
Measurement and Evaluation (CAME) tools and those that had to be input into the
system manually (not measurable) were both used in computation. This is imple-
mented technically via “store procedures”, on the database server. Using these
technologies offers performance advantages but has the disadvantage that it is de-
pendent on the actual database system that is in use, here MS SQL Server.

Within the store procedures the computation formulae for determining object
points are mapped using variables so that the application administrator can assign
the concrete metrics that are to be used from the metrics catalogue stored in the
system. This enables the computation rule to be adapted to whatever metrics the

6.3 Case Study: Metrics Database for Object-Oriented Metrics 89

system offers, thereby achieving independence of the concrete measurement tool
in use. For other aggregate metrics, it is possible to define new store procedures.
Full disclosure of these program parts, which are written in Standard SQL92 (ap-
proximately 80 effective LOC), makes this task relatively easy without the need
for changes to the application itself.

Templates in the application support the transfer of measurements performed
using CAME tools. At present, the application offers templates for the data output
formats of MetricsONE (see also [Numb97]) and RSM (see also Resource Stan-
dard Metrics [RSM98]). The functionality of the templates includes parsing the
output file created by the CAME tools and writing the measurement values it
reads to a temporary file. It is then possible to interactively assign (mapping) the
imported measurement values to the metrics that were mapped to the database via
the defined metrics catalogue. In this way, the basic output format of the CAME
tools can be retained while new versions are adapted to the metrics database by the
application administrator.

Fig. 6.4. Overview of the packages used in the metrics database

Project specification (used

process model)

Classifications

Import of

external data

Metrics catalogue

Documentation of

projects

Administration of users and

configuration

of access rights

Measurements

Evaluation of

quality

Technology specification

90 6 Measurement Infrastructures

In the case of MetricsONE, a comma-separated output file is created. That’s
also a common default for spreadsheet export/import mechanisms. This consists of
a specification of the type of element (package, class, operation, use case) that was
measured, the name of the metric and the actual measurement value. The sequence
of datasets may vary, depending on the measurement tool settings, as it is possible,
for example, to not display certain metrics. This is taken into account by the
parser. The parser works on the basis of the defined keywords.

It would only be possible to import data fully automatically if the definition of
the elements administered in the metrics database were mapped to the output for-
mat of the metrics tool. The necessity of defining a standard interface for metrics
tools became particularly apparent during processing. This standard should con-
tain a generic metrics description, as well as define the grammar used inside the
output file.

6.3.4 Functionality of the Metrics Database (Users’ View)

The metrics database provides mainly an administration view and a project users
view. Most of the functions described in this section are supported by templates in
the metrics database, making administration easier. This means that, for example,
once adjustment to a special procedural model has taken place, this template can
be used for all projects that follow this procedure. Before the information system
can be used for a concrete project, the application administrator must store the
project structure in the database. In addition, the users who work with the applica-
tion must be assigned rights for their specific projects; the templates also support
this.

The following describes the main functions used to set up a project:
Project structure. Here the software artifacts used in the project are defined;
they can be, for example, diagram types according to the UML notation (e.g.,
packages, classes, use case) or simply the source code files that are used.
Types of methodologies. This function is used to map the concrete product or
development life cycle model used (e.g., with Unified Process it is inception,
elaboration, construction and transition, [OMG01]). A template is used to trans-
fer this to configurations that have already been executed.
Life cycle stages. Management usually views projects independently of the
concrete technology used. Typically, milestone plans are used, normally repre-
senting concrete tasks in sequential format. This function enables milestones to
be stored in the system.
CAME tool integration. This function is used to import measurements that
have been taken to the database and has already been mentioned from the
viewpoint of implementation. Here, a definition of where the measurement val-
ues belong must take place. Relevant information includes the project name, the
stage and cycle reached, as well as phase, date of measurement, the measure-
ment tool used and selection of a specific template to import it into the data-
base.

6.3 Case Study: Metrics Database for Object-Oriented Metrics 91

Metrics catalogue. Here, the metrics that are used are assigned to the adminis-
tered project structure. New metrics can also be defined or aggregate metrics
determined. The details that must be specified are the type of metric, the default
tool that was used to import the metric and assignment to a structural element.
Threshold values (the permitted boundaries of a metric) are also defined here.
The metrics database currently contains three types of threshold values: a de-
fault limit, which can be taken from external publications; one that has been
declared mandatory within the company; and one which can be adapted to meet
the needs of specific projects. Any threshold values that are exceeded are
clearly displayed at present on the Web client in red color.

The use of the metrics database (after a specific project instance is available) is
provided by a Web client. The appearance of the application is shown in Fig. 6.5,
the buttons on the left are used to select the requisite application function, which is
then made available within a Java applet.

An exception is selection of the report functionality, which creates tabular and
graphics output using Crystal Reports. For user orientation, the status displays the
function that is currently selected (in Fig. 6.5, Measurements) and the project cur-
rently being viewed (Current Project). The prerequisite for executing individual
application functions is that the user has been assigned the right to do so by the
application administrator.

Fig. 6.5. User interface on the Web client

Project item. This function enables users to assign concrete entries to the pro-
ject structures defined by the application administrator. This includes, for exam-

92 6 Measurement Infrastructures

ple, the project name, the names of the packages used, the files used and the con-
crete class names.

Project implementation. The product or development life cycle stages are
preferably used as navigation structure, e.g., in the case of Unified Process (incep-
tion, elaboration, construction and transition), and the method related to the con-
crete technology used (phase, activity). The start and end of the stages can be en-
tered here, as well as cycles within a stage. When a stage is running, it is assigned
a green check mark. Definition of a cycle after selecting a stage (number of cycle,
start and end of the cycle and a description) is possible.

Project milestones. These correspond to the project milestones that are defined
in the administrator module. They are independent of a concrete technology and
correspond to those, for example, used in MS Project (mapping currently not
available). Current and planned milestones for the entire project can be assigned
here.

Metric intervals. Outputs the metric intervals or threshold values used. The re-
ports always use the “lowest level” of the defined intervals. If a project-specific
threshold value has been defined, this is used; otherwise the one defined within the
company or the one copied from external sources is used.

Measurements. The defined metrics catalogue is administered and the metrics
are assigned to structural elements under the Admin module. Each measurement is
allocated to a stage, a cycle and a phase. Thus there could be, for example, three
measurements within one phase. The dialogue shows which metrics it is possible
to assign to a concrete measurement, how they were recorded (MetricsONE, RSM,
manually – none) or computation of the object points, whereby the previous re-
sults are deleted. The results of a calculation are also written to the database. At
present, the OP computation is executed at project level, but it would make sense
to include calculation for the package level, for example, in later versions. This is
important when tasks in a concrete project overlap, for example, in order to dis-
tribute implementation tasks over several users. Imports of measurements from re-
sult files of the CAME tools used is only possible within the administration client,
as Java applets cannot access the system resources.

Reports. Support is currently provided for the following reports, which are cre-
ated within an Active Server Page by the Crystal Reports used. They can be repre-
sented in either tabular or diagrammatic form. By using a filter over the period
under review (start/end dates), the metrics that are to be output can be restricted. It
is also possible to output the metrics and the aggregate metrics that are actually
measured, and to display all metrics that are measured for one structural element
(software artifact).

Statistics on elements of a project. These reports are used to output the metrics
of a structural element over a defined period, in relation to global project
stages, to the project cycles or to the project phases already run.
Summary of project. This type of report displays metrics in aggregate over
global stages, cycles and phases of the project, with the result that relationships
to individual structural elements of the project are no longer shown. The report
also displays the possible intervals of a metric. If a measured value exceeds

6.4 Hints for the Practitioner 93

this, it is displayed in red, if it does not reach it, in blue, and in black if it is
within the normal range.
Comparison of projects. Because of consistency rules that have to be complied
with, it is only possible to compare the metrics of two projects if they have the
same stage or phase structural elements. In this way it is possible to display the
temporal development of metrics, such as the number of attributes defined by
“public” over the phases of the project that have already run.
Additional reports. Additional reports can be used to watch the entire defined
metrics catalogue (including defined threshold values), the status of the current
project (phases and cycles of the project in relation to concrete timeframes) and
the last measurement performed on a selected structural element.

6.4 Hints for the Practitioner

Before an organization starts with the implementation of a metric database it is
necessary to improve the maturity of the corresponding development process.
Otherwise it’s difficult to associate metrics to life cycle iterations, project activi-
ties, etc. Therefore we recommend to start with simple solutions for the storage of
metrics. The following ways are possible:
1. Individualized storage of software metrics by applying standard office/spread-

sheet tools. Each user stores his respective metrics. This fragmented and ad-hoc
approach is not recommended as huge overheads and inconsistencies are cre-
ated.

2. Use of externally provided repositories, like the ISBSG approach. Storage of
project data like functional size, work effort, error statistics, and so on.

3. Use of a simple storage structure based on a shared file system. We strongly
recommend using a configuration management system on top of such file sys-
tem.

4. Use of a Web-based portal (e.g., Microsoft Share Portal Services or Microsoft
Share Point Team Services) and application of a simple visualization. This type
of access is especially useful for distributed development organizations or in
context of offshore activities. Typically the portal links into operational data-
bases and aggregation mechanisms.

5. Use of a dedicated centralized metrics database, like the proposed solution
within this chapter. The solution should be adaptable to different development
methods, to different development tools and also usable for process, resource
and product metrics. Measuring data should be adopted as automated as possi-
ble into the data base. Manual interfaces are to be avoided. The output forms
should be simple evaluations (bar diagrams, value tables etc.) and are used as
input for the statistical tools. The characteristics of the stored measurement data
should be different in the scale type and of a different life cycle phase. The
metrics database should be distributed and stand-alone, and should allow an in-
teractive use. The platform should be server-based by the use of an application
server and a relational database management system (e.g., Oracle or Microsoft

94 6 Measurement Infrastructures

SQL-Server). Furthermore we recommend the use of Web-based technologies
as user interface. The metrics database should keep the goals of the metrics tool
and controlled experiment evaluation and should deliver experience in distrib-
uted application of metrics based process and product controlling. It should also
be possible to store the results of validation of a measurement as a new experi-
ence within the database, this implies also the use of the metrics database sys-
tem as discussion forum.

In principle, every type of a storage should offer the possibility to further use the
measurement data with external tools like statistical analysis or reporting tools.

6.5 Summary

We have introduced to the needs for software measurement infrastructures. A
common usage scheme for such infrastructures is benchmarking or portfolio man-
agement. We showed with a case study how T-Systems has built such metric data-
base. The approach is visible and can be extended to your own environment. The
current version of the metrics database primarily considers software artifacts.
Planning foresees extending this in the future to include metrics of software de-
velopment organization, e.g. importing metrics for maturity valuation in accor-
dance with the CMM model (Chap. 10). To summarize the results of the current
version, it is a highly adaptable information system that is able to take into consid-
eration the continually changing conditions in software development, such as new
procedural models, new metrics tools and a successive increase in experiences,
and thus meets the needs of investment protection. The easy-to-use Web interface
makes evaluations available to a wide range of users, helping them to gain experi-
ence in the use of metrics and, implicitly, in metric validation.

7 Size and Effort Estimation

What you see is what you see.
Frank Stella

7.1 The Importance of Size and Cost Estimation

Estimating size and cost are one of the most important topics in the area of soft-
ware project management. The dynamics of the software market lead to extended
or new kinds of methods for the estimation of product size or development effort
in the background of cost estimation. Some of these approaches are

the Constructive Cost Model (COCOMO II:2000) based on the size estimation
for the “future” source code with the interesting modifications as constructive
phased schedule and effort model (COPSEMO), the cost estimation of rapid
application development model (CORADMO), the cost estimation of COTS
(COCOTS), the constructive quality estimation model (COQUALMO)
[Boeh00]
the Software Lifecycle Management (SLIM) method based on the estimation of
the system effort in the entire life cycle [Putn03].
These methods are also discussed in the Chaps. 7, 8 and 15.

In this chapter we will primarily consider the functional size measurement
(FSM) methods, currently one of the major topics in the area of cost estimations.
At the beginning we describe some of the well-established FSM methods with
their benefits and weaknesses. Especially we discuss their experience background,
their CAME tool support, and their current status of testing and confirmation.

This chapter is an overview to estimations. It covers both technical aspects (i.e.,
specific estimation methods and their use), as well as the estimation process and
its introduction. The COSMIC Full Function Points (COSMIC FFP) standard ISO
19761 is described including the basic intentions and activities in order to use it in
different kinds of software systems – especially for embedded systems. We will
give a short overview about this approach and demonstrate the steps in order to
consider the feasibility of the FFP application in an industrial environment. Soft
factors are equally captures, since especially estimations are subject to lots of “po-
litical” influences, be it during bidding (i.e., the customer wants the project at
lowest cost, while the supplier at a best match of effort and duration) or internally
during the feasibility study and inception of a project.

96 7 Size and Effort Estimation

7.2 A Short Overview of Functional Size Measurement
Methods

Functional size measurement is of increasing importance for the area of software
development, since it adds engineering methods and principles to it. Fig. 7.1
adapted from [COSM03] shows the general procedure for functional size meas-
urement. As can be seen, there are basically two phases, a mapping phase, where
concepts and definitions are applied to the representation of the software, and an
evaluation phase, where the extracted elements are counted/measured according to
specific rules and procedures. Further investigations that resulted in the proposal
of a generalized structure of functional size measurement were done by Fetcke
[Fetc99].

Mapping

Evaluation

Software to
be measured

Instance of Software
Measurement Model

Size of Software
Measurement Model

Measurement Principle

Concepts and
Definitions

Rules and
Procedures

Fig. 7.1. Measurement principle of functional size measurement

Since the first worldwide publication of Function Points in 1979 a lot of
changes, extensions and alternative approaches to the original version have been
introduced. In Fig. 7.2 (adapted from [Loth01]) important steps of this evolution
can be seen in a timeline, including those methods described in detail below. Ar-
rows between the methods indicate influences and extensions. The latest method
in the figure is the COSMIC Full Function Points approach. Some details of the
history of the COSMIC consortium are mentioned in Chap. 16.
Now we will consider an evaluation of some characteristics of the functional size
measurement methods according to

their suitability for different functional domains
the degree of penetration and the experience background
the tool support
the testing and confirmation
the standardization status and
the validation

7.2 A Short Overview of Functional Size Measurement Methods 97

As could be seen in the overview of functional size measurement methods in
Fig. 7.2 these methods aim to certain software/functional domains. If there is the
need to choose one of these methods, it is important to know if there is a method
that fits the functional domains used. Table 7.1 shows the suitability of the differ-
ent methods to the functional (software) domains according to Morris [Morr02].

DeMarco's
Bang Metric Data Points Object Points ISO FSM

Standards

Feature
Points

3-D Function
Points

Full Function
Points (FFP)

1.0

Function Point
Analysis (FPA)

Function Point
Analysis 3.4

Function Point
Analysis

Function Point
Analysis 4.0

Function Point
Analysis 4.1

Mark II FPA Mark II FPA
1.3.1

COSMIC
FFP 2.0

COSMIC-FFP
2.2 Standard

IBM
1975

Sneed 1989 Sneed 1994DeMarco 1982 ISO1996
and 14143

Jones 1986 Boeing 1991 St.Pierre et al.
1997

Albrecht
1979

Albrecht
1984

IFPUG
1990 IFPUG 1994 IFPUG 1999 COSMIC

2003
COSMIC

1999

Symons 1988 UKSMA 1996

Fig. 7.2. Development of functional size methods

Table 7.1. Methods per functional domain (A/S, ‘Algorithmic/Scientific’, MIS, ‘Manage-
ment Information Systems’, RT, ‘Real-time embedded’, CS, ‘Control Systems’)

Method A/S MIS RT CS
DeMarco's Bang X
Feature Points X
Boeing 3-D X
IFPUG X
Mark II FPA X Potentially
FFPv1 X X
FFPv2 X X X

Table 7.1 shows that data-strong and control-strong systems are covered by the
existing methods. Because of the widespread use and the long-term experience
with Function Points for MIS most tools and experiences are in this domain. Full
Function Points version 1 is the most viable method for real-time embedded and
control systems until the Full Function Points version 2 method is released
[Morr02]. The problem of function-strong systems (scientific and algorithmic) is
not yet solved. This is an area where further research is still required.

Another important criterion for the use of a method is the number of users of
this method and the existing experience background. This is important due to the

98 7 Size and Effort Estimation

fact that only a community can establish a standard and thus enable comparability
(also to software outside their own company) and repeatability.

Furthermore the probability for training opportunities, consulting and continu-
ous improvement of the method itself increases, the larger the community is. An
experience database is important to compare one’s own measurement data with
measurements of others. In the area of functional size measurement there is the In-
ternational Software Benchmarking Standards Group (ISBSG) data base (see
Chap. 16). Table 7.2 shows the degree of penetration of the methods and if there
are data in the ISBSG database available (investigations by Morris [Morr02]).

Following Chap. 3 a method without tool support has only little chance to sur-
vive. Tool support is important for the continuous functional size measurement
application because tools help to handle, store and evaluate the data.

Table 7.2. Penetration and experience background

Method Degree of penetration in users Data in the ISBSG da-
tabase

DeMarco’s
Bang

No importance today No

Feature Points A few users in the US, mostly SPR clients, not
supported anymore

No

Boeing 3-D Very small, rarely used outside Boeing No
IFPUG Most widely used method Yes, dominant
Mark II FPA >50% in UK, only a few users outside UK Yes, rare
FFPv1 Users in Australia, Canada, Europe, Japan and

USA
Yes, very rare

FFPv2 Users in Australia, Canada, Finland, India, Ja-
pan, UK and USA

Yes, rare
 but increasing

Of course, fully automated functional size measurement is desired, but as far as
we know, that problem is not solved yet. The reason for this problem is: Some
items that have to be counted/measured cannot be counted/measured automati-
cally, but there are some approaches to this topic (see also Chap. 3). Thus, tool
support and automatic measurement have to be distinguished. Table 7.3 shows an
overview of tools that can support the application of measurements as well as the
analysis of results. It can be seen that there is tool support for the existing func-
tional sizing methods.

More information about these tools can be found in Dumke [Dumk96a] and
Bundschuh [Bund00a] (see also [Schw00] and [Symo01]). The FPC-Analyzer for
Palm computers, developed at the University of Magdeburg by Reitz [Reit01],
supports the Full Function Points version 1.

An important criterion for the maturity of the methods is if they are tested and
confirmed. MacDonnell [Macd94] investigated if the complete model was tested
using real world data (criteria tested) and if it was evaluated using systems other
than those employed in testing the model (criteria confirmed). Table 7.4 shows
that all the functional size methods considered so far have been tested with real-
world data. Also, most of the methods have been confirmed and thus can be ap-

7.2 A Short Overview of Functional Size Measurement Methods 99

plied. This may be different for other sizing methods, e.g., the alternative ap-
proaches introduced below, which may still be under development and continuous
change.

Table 7.3. Tool support for the methods

Method Tool Support

Data Points PCCALC, SoftCalc
Object Points SoftCalc
Feature Points Checkpoint/KnowledgePlan
IFPUG Checkpoint/KnowledgePlan, PCCALC, ISBSG-Venturi, Function

Points Workbench, COSTAR, FPLive
Mark II FPA MK II Function Points Analyzer
FFPv1 HierarchyMaster FFP, FPC-Analyzer, Palm-FFP
FFPv2 COSMIC Xpert

Table 7.4. Status of testing and confirmation

Method Tested Evaluated

Bang Metric Yes No
Feature Points Yes -
Boeing 3-D Yes -
IFPUG Yes Yes
Mark II FPA Yes Yes
FFPv1 Yes Yes
FFPv2 Yes Yes

Another motivation for the selection of a certain sizing method is its status of
standardization, that is, whether a method is accepted as a standard or not. Meth-
ods that are accepted as international standards will probably have higher maturity
and a higher user acceptance. The following methods were developed through the
ISO as international standards:

Full Function Points version 2.1, ISO/IEC 19761
IFPUG Function Points, ISO/IEC 20926
Mark II Function Points, ISO/IEC 20968 and
NESMA (the Netherlands adaptation of IFPUG Function Points, this method is
not considered here), ISO/IEC 24570.

The validation of functional size measurement methods determines whether the
methods measure what they are intended to measure and how well this is done.
According to Kitchenham and Fenton [Kitc95], for the decision whether a meas-
ure is valid or not it is necessary to confirm the following aspects:

attribute validity (e.g., if the entity is representing the attribute of interest)

100 7 Size and Effort Estimation

unit validity (e.g., appropriateness of the used measurement unit)
instrument validity (e.g., valid underlying model)
protocol validity (e.g., acceptable measurement protocol)

Kitchenham and Fenton found some definition problems with Albrecht Func-
tion Points, for example, that ordinal scale measures are added, which violates ba-
sic scale type constraints. For Mark II function points they state that the measure
can be valid only if Mark II function points are considered as an effort model
rather than as a sizing model. Other interesting work in this area was done by
Fetcke [Fetc00] who investigated IFPUG Function Points, Mark II Function
Points and Full Function Points with respect to the mathematical properties of
dominance and monotony. He found significant differences in the empirical as-
sumptions made by these functional size measurement methods. Among other
things, Fetcke's results are [Fetc00]:

While Mark II Function Points and Full Function Points assume the axiom of
dominance, IFPUG Function Points do not.
The axiom of monotony is assumed by Full Function Points version 2, and by
Mark II Function Points partially. Full Function Points version 1 and IFPUG
Function Points violate this axiom.

As can be seen in this section the area of validation is very important but also
very complex, thus a more detailed discussion is given in [Fetc99] and [Loth02a].

7.3 The COSMIC Full Function Point Method

The COSMIC full function point measurement method (COSMIC-FFP) is a stan-
dardized measure of software functional size as ISO/IEC 19761. The COSMIC-
FFP measurement method involves the application of models, rules and proce-
dures to a given piece of software as it is perceived from the perspective of Func-
tional user requirements (see [Abra01a], [Abra01b] and [COSM03]). The result of
the application of these models, rules and procedures is a numerical “value of a
quantity” representing the functional size of the software, as measured from its
Functional user requirements.

The COSMIC-FFP measurement method is designed to be independent of the
implementation decisions embedded in the operational artifacts of the software to
be measured. To achieve this characteristic, measurement is applied to the FUR of
the software to be measured expressed in the form of the COSMIC-FFP generic
software model. This form of the FUR is obtained by a mapping process from the
FUR as supplied in or implied in the actual artifacts of the software (Fig. 7.3).

Software is bounded by hardware. In the so-called “front-end” direction, soft-
ware used by a human user is bounded by I/O hardware or by engineered devices
such as sensors or relays. In the so-called “back-end” direction, software is
bounded by persistent storage hardware.

7.3 The COSMIC Full Function Point Method 101

Four distinct types of movement can characterize the functional flow of data at-
tributes. In the front-end direction, two types of movement (ENTRIES and
EXITS) allow the exchange of data with the users across a boundary. In the back-
end direction, two types of movement (READS and WRITES) allow the exchange
of data attributes with the persistent storage hardware Fig. 7.4.

Mapping
phase

Functional user requirements
(FUR) in the artifacts of the
software to be measured

FUR in the form of the
COSMIC FFP generic

software model

Functional Size
of the generic

software model

Measurement
phase

COSMIC FFP measurement manual

Measurement context
and COSMIC FFP
software models

Mapping phase,
rules and methods

Measurement
phase rules

and methods

Fig. 7.3. COSMIC-FFP measurement process model

SOFTWARE

Entries

Writes

Reads

Exits

I/O
 H

ar
dw

ar
e

S
to

ra
ge

 H
ar

dw
ar

e

Front-end Back-end
USERS

or
Engineered

Devices

Fig. 7.4. Generic data flow through software from a functional perspective

Different abstractions are typically used for different measurement purposes.
For business application software, the abstraction commonly assumes that the us-
ers are one or more humans who interact directly with the business application
software across the boundary; the I/O hardware is ignored. In contrast for real-
time software, the users are typically the engineered devices that interact directly
with the software, that is, the users are the I/O hardware.

102 7 Size and Effort Estimation

The architectural reasoning of boundaries is given through the software layers
such as tiers, service structures or component deployments. The functional size of
software is directly proportional to the number of its data transactions. All data
movement subprocesses move data contained in exactly one data group. Entries
move data from the users across the boundary to the inside of the functional proc-
ess; exits move data from the inside of the functional process across the boundary
to the users; reads and writes move data from and to persistent storage.

To each instance of a data movement there is assigned a numerical quantity, ac-
cording to its type, through a measurement function. The measurement standard,
that is, CFSU (COSMIC Functional Size Unit), is defined by convention as equiva-
lent to a single data movement. The COSMIC-FFP measurement method consid-
ers the measurement of the functional size of software through two distinct phases:
the mapping of the software to be measured to the COSMIC-FFP generic software
model and the measurement of specific aspects of this generic software model
(Fig. 7.5).

Fig. 7.5. The general method of the COSMIC-FFP mapping process

The increasing number of COSMIC-FFP method applications show the usabil-
ity of this approach for size measurement in several functional domains and thus

7.4 Case Study: Using the COSMIC Full Function Point Method 103

as one of the basics for effort and cost estimation [Abra01a], [Büre99], [Dumk01],
[Dumk03b], [Loth03a].

7.4 Case Study: Using the COSMIC Full Function Point
Method

In the following we describe a feasibility study in order to evaluate the appropri-
ateness of the COSMIC-FFP method in an industrial environment at Bosch
[Loth03a]. The project results described in a feasibility study arose from the ambi-
tion to continually improve the software development processes (in efforts to-
wards a CMM Integration (CMMI) level-3/CMMI level-4 certification), adding
new ideas, measurements and thus new value to the processes. In order to obtain
business data, e.g., effort estimation, critical computer resources, market value and
productivity measurements, the need for a software size measure was recognized.
Lines of code (LOC) have been proven to be insufficient for several reasons, e.g.,
because of the late point of LOC measurements and because they are counter-
productive (especially when software has to be very efficient in order to fit into
the electronic control unit memory). For that reason, another applicable software
size measurement approach to replace LOC had to be identified and tested. The
main project goal was the determination of a functional size measure as a basis for
the improvement of existing effort estimation techniques, for the determination of
the software market value as well as for other business considerations.

The selection of a FSM method is affected by several influencing factors such
as the software’s functional domain and the particularities of the software devel-
opment process. The typical automotive software as considered here can be char-
acterized as real-time, embedded control software. A high ratio of the developed
software results from a so-called variant development (where existing software is
modified/extended or the development is continued in different ways/branches at a
certain point of time) and has specifically a high algorithmic complexity. The
measurement/counting automation, the general tool support and the convertibility
between different sizing methods have not been subject of these selection consid-
erations. The question of objectivity/repeatability of the measurements in the ho-
mogeneous target environment is assumed.

Now, we present the main results of the feasibility study (see [Loth03a] for
more details). We consider that the measurement is divided into a mapping phase
and a measurement phase.

Mapping Phase – Layer (proof of the appropriateness of the (functional)
domain). Since the analyzed piece of software is not characterized by a cli-
ent/server structure and no different levels of abstraction can be identified, the
layer concept cannot be applied. Because of the manner of the software, for single
software components layers are not expected at all within the given application
area. Only if a whole system with several components (client/server) is under in-
vestigation, can layers possibly play a role.

104 7 Size and Effort Estimation

Mapping Phase – Boundary (evidence of suitable structuredness). For sin-
gle software components the boundary can be identified very easily, because the
software under investigation is a self-contained control process. The boundary is
right around the software component. Three areas for data exchange have been
identified: input signals from the CAN bus, output signals to the CAN bus and in-
fluencing parameters from the ROM. Since the value of the parameters directly in-
fluences the functionality of the software under investigation, this part was explic-
itly integrated in the measurements. Fig. 7.6 shows the typical boundary model for
the measured software components in the application area.

Component under
investigation

Input signals
(CAN bus)

I1
I2

. . .

In

Output signals
(CAN bus)

O1
O2

. . .

On

Parameters

P1 P2 P3 P4

Component under
investigation

Input signals
(CAN bus)

I1
I2

. . .

In

Output signals
(CAN bus)

O1
O2

. . .

On

Parameters

P1 P2 P3 P4

Fig. 7.6. Typical boundary model

Mapping Phase – Functional Processes/Trigger/Data Groups (examination
of the necessary scalability). The software component under investigation has
only one functional process that is triggered when the CAN bus contains the ap-
propriate message. This behavior is symptomatic for nearly all components in the
application area, and so most of the components contain only one functional proc-
ess. The grouping of data attributes to data groups will be shown in the measure-
ment phase (Fig. 7.7).

Measurement Phase – Subprocess Identification and Counting (proof of ef-
ficient (tool-based) countability). The available functional description mainly
consists of a hierarchical ordered set of block diagrams. Because of the representa-
tion style of the information in the beginning it is difficult to extract the needed in-
formation for the subprocess identification. With a bit of experience the informa-
tion can be transferred to the following schematic diagram (Fig. 7.8).

Measurement Phase – Measurement Summary (evidence of empirical-
based explorability). One functional process has been identified within the com-
ponent under investigation; the final COSMIC FFP size is 19 CFSU.

Summary: All of the considered components under investigation could be
transferred to such a schematic diagram easily. Because of the described proper-
ties and the similarities of the components under investigation, a procedure has
been identified that easily allows the application of the FFP measurement for the

7.4 Case Study: Using the COSMIC Full Function Point Method 105

given specifications. According to widely accepted statements, for a successful
FSM certain conditions must be met, thus knowledge of the functional domain and
the measurement domain is required as well as an adequate source of information.

Now, we will share our effort data. In the beginning of the project we had good
knowledge about the FFP, but were not very experienced in counting FFP in a real
environment. For that reason expertise was built up with help of an FFP expert. In
the area of embedded systems we had no experience. Thus, the notation of the
functional description (mostly as block diagrams) was particularly difficult to un-
derstand.

read from
CAN bus

filter/error
diagnosis quantification validation

output of gas
volume and tank

fill level

condition
generation

Supply tank fill level
and dependent cond.

speed

fill level(s)

raw fill level

error types
and flags

error
identifiers

filter parameters

quantification
parameters

validation
conditions

conditions
after validation

validation
parameters

gas volume

tank fill
level(s)

default value

gas volume
parameters

fill level
parameters

tank fill level
conditions

condition gene-
ration conditions

condition
parameters

USER

STORAGE

Fig. 7.7. Schematic diagram

Proportion of transactions

0

42%

32%

26%

Entry

Exit

Read

Write

Fig. 7.8. Proportion of transactions

106 7 Size and Effort Estimation

Our knowledge increased step-by-step by measuring the given software compo-
nents. Functional definitions (at the end of design phase) were the source of in-
formation for the measurement. The design documents were complete, and thus all
the data required could be found in the documents. As mentioned before, because
of a lack of knowledge with respect to the notation style it was difficult and took a
lot of effort to extract the desired information. Table 7.5 shows the effort spent for
the measurements (which was the effort of two people).

Once again, particularly the understanding of the functional descriptions was
difficult and a lot of effort had to be spent on this task. An FFP counter who is fa-
miliar with the block diagram notation should be able to extract the required in-
formation very quickly (expected mean value: less than one hour per functional
description). The effort will decrease with an increasing number of measurements
(e.g., because of growing experience, trust in necessary decisions, etc.), as can be
seen from our effort data. The recognized, typical measurement scheme should
help to reduce the training time required for new FFP counters, and thus from this
point of view the hurdle to implement a FSM program should be quite low.

Table 7.5. Measurement effort data

Description Effort
Building up the FFP expertise 80 h

Training to understand the functional definitions
(2 persons, 3 days)

40 h

FFP consulting 10 h

including

Measurement of reference software component
(supply tank fill level and dependent conditions)
as first measurement together with measurement
expert (novice in the area of embedded system as
well)

5 h

Measurement of three additional, comparable components consist-
ing of 3, 4 and 10 pages (total)

12 h

The presented approach will encourage users to implement a FSM program.

7.5 Estimations Can Be Political

A great obstacle for the implementation of a fair estimation culture is so-called po-
litical estimations. We call a political estimation any estimate provided with the
prime objective to prove a guess or judgment, while obscuring reality. Especially
in large organizations there may be many reasons for this, e.g., lust for power,
human vanity and others. The following list presents some associated problems
[Bund04].

Estimation is often mistaken for bargaining. Missing historical data often result
in the dictation of unrealistic deadlines.

7.6 Establishing Buy-In: The Estimation Conference 107

The size of the project is often obviously/consciously wrongly estimated
(trimmed estimations).
When cutbacks of the IT project occur(e.g. budgets or deadlines) the estimation
is often erroneously trimmed according to the cutbacks instead of by reducing
the other primary goals (quality, functionality, costs, time).
Voluntary unpaid overtime will be planned but not considered in the estima-
tion.
Goal conflicts often arise from another irrational factor, namely human vanity.
The desire for success and acknowledgement often leads to “turf wars” in the
IT project environment to the end that project leaders must consider power
politics in the environment of their IT project.
There is a widespread prejudice that application systems, software and hard-
ware cost more in the host environment than in client/server (C/S) applications
for software or hardware. This leads to more bargaining in the C/S environment
instead of estimations and thus necessitates more effort to convince manage-
ment that C/S environment costs much the same as the host environment.

A main cause for this underestimation is the fact that often a political estima-
tion is done instead of a realistic one. In reality, the effort of an IT project is often
underestimated in order to gain approval for the initiation and performance of this
IT project. What a crazy world: here the decision makers are not guided by the es-
timations, but the effort estimators are guided by the criteria for decision making.
The practical result is that the effort is not estimated but is determined by bargain-
ing.

Political estimations and project decisions not based on facts definitely ruin
trust in a company. Management and staff should thus avoid these obstacles in or-
der to foster a good estimation culture.

7.6 Establishing Buy-In: The Estimation Conference

Estimations can be done by different individuals and the average of their estima-
tions can be used. But there exists an approved alternative: an estimation confer-
ence. Several persons from the project team (e.g., leaders of parts of the project)
discuss together, how to estimate the estimation object in view of the total IT pro-
ject. This leads to an estimation that is accepted by all involved persons, which is
more objective than the above-mentioned average and hence can be better de-
fended against other opinions. The results may not differ very much, as we found
in some cases [Bund00a].

Another benefit of the estimation conference is that the involved estimators
gain awareness of the uncertainties and possible risks of the IT project. Further-
more they all get the same information. An estimation conference is a team-
building experience. An estimation conference also promotes the estimation cul-
ture in an organization, since it helps to solve acceptance problems by finding a

108 7 Size and Effort Estimation

consensus through discussions in a team. These benefits can often be gained in
only one two-hour estimation conference!

7.7 Estimation Honesty

Estimation is a process that is closely bound up with resistance: not wanting to es-
timate, not wanting to commit oneself, and, last but not least, not wanting to be
measurable. In order to overcome these acceptance problems, estimations should
never and by no means be used in relation to people but only in relation to proc-
esses or products. This is the cause of the question of estimation honesty: one es-
timation for the steering committee, one for the boss and the right (?) one for the
actual user.

Project managers often do not like to estimate because they like to map the
progress of their project. This desire can only be overcome by education and re-
peated information about the benefits of estimation. It is evident for project man-
gers that their acceptance of an estimate is their commitment and that their success
will be measured by achieving this goal. A possible motivation in this case is a fi-
nancial bonus for success.

On the other hand, organizations must clearly express their opinion about the
sense of manipulated estimations or lies on time sheets or unrealistic Gantt charts
or time schedules.

7.8 Estimation Culture

A lasting estimation culture can only be fostered if the estimation process is
clearly defined and transparently performed and thus estimation honesty is pro-
moted. The development of an estimation culture evolves in following phases:
1. Problem. Estimation is not viewed positively.
2. Awareness. Management and staff become increasingly aware of the estima-

tion theme yet do not start to handle it systematically.
3. Transition. Transition from viewing estimation as management task to viewing

it as a team task.
4. Anticipation. Transition from subjective estimation to measuring and use of

metrics and tools.
5. Chances. Positive vision of estimation; everybody is responsible for it.

A good estimation culture can prevent management and project leaders from
playing political games with estimation and promotes motivated and effective pro-
ject teams. A good estimation culture is also a positive vision of estimation, which
is the responsibility of every staff member. Its foundation can be built by sound
training.

7.9 The Implementation of Estimation 109

7.9 The Implementation of Estimation

The implementation of estimation is an innovative project and hence must be
planned and performed like any other IT project. It is the foundation of successful
communication as well as for monitoring and improvement of project manage-
ment processes. As in all innovative projects, the focus has to be directed to accep-
tance problems.

The king’s road to gain acceptance consists of information, training and par-
ticipation of all involved persons, as mentioned at the beginning of this chapter. In
addition, there is need for enough time since awareness for the innovations to be
fostered. If this cornerstone is omitted during the implementation of an IT metrics
program, then it has a good chance, like half of all software metrics initiatives, to
be abandoned early and without success. An IT metrics program is a strategic pro-
ject and not extra overhead, which is only seen as a necessarily evil.

A roadmap for successful implementation of estimation should consider the fol-
lowing stations (Fig. 7.9) [Bund00a].

Get a commitment from IT- and User-Management

Set realistic estimation goals

Start Cost/Benefit-Analysis

Etablieren der Basis für ein
Messprogramm

Voraussetzungen für die
Methodologie und Infrastruktur der

Aufwandschätzung schaffen

Evaluate Tools

Select initial Projects and Teams

Develop Training Programs

Establish Measurement Program
Establish Estimating

Preconditions (Methodology and
Infrastructure)

Analyse, Control, Support Establish Estimating Culture

1. Create neccessary Basics

2. Develop your
Strategy

3. Implement

4. Establish

Get a commitment from IT- and User-Management

Set realistic estimation goals

Start Cost/Benefit-Analysis

Etablieren der Basis für ein
Messprogramm

Voraussetzungen für die
Methodologie und Infrastruktur der

Aufwandschätzung schaffen

Evaluate Tools

Select initial Projects and Teams

Develop Training Programs

Establish Measurement Program
Establish Estimating

Preconditions (Methodology and
Infrastructure)

Analyse, Control, Support Establish Estimating Culture

1. Create neccessary Basics

2. Develop your
Strategy

3. Implement

4. Establish

Fig. 7.9. A roadmap for successful implementation of estimation

1. Building the foundation. Define the goals and propagate them. Define a stan-
dard process. Be informed and gain a market overview. Search for projects with
which to start the metrics initiative,. which are typically the strategic projects
with at least three months duration and more than one person-year of effort, in
order that the implementation of estimation can show the benefits.

110 7 Size and Effort Estimation

2. Strategic planning. Foster the transition by training about estimation, for crea-
tion of awareness and understanding as well as for motivation and expertise.
This is very helpful for knowledge transfer with other users and elimination of
fears of the involved staff. Stay on course: Manage resistance and document
first experiences. Check consistency via inspections. Improve the processes by
development of standards and IT metrics, knowledge transfer and comparison
with other users.

3. Implementation. This is accomplished by planning, and by budgeting, sched-
uling and resource coordination. Establish precedence. Define structure, proc-
ess, methods and tools

4. Establish the concept.

A successful implementation in a large organization with about 500 IT devel-
opers was done over three years by two persons who worked as the competence
center. During this process a method and tools were chosen, and a number of pres-
entations for managers and project leaders were given, an estimation manual was
developed, and about 90 persons visited training sessions. As the result at least
one person in each developer team got a training in function point counting and
estimation. The function point counting of all application systems was performed
in a tool-based manner and with assistance of the competence center. The staff of
the competence center coached all function point counts and assisted the project
leaders in tool-based documentation. For some of these IT projects there already
existed an estimate at this time. In one large project the estimation was repeated
after a year, and hence the requirements creep could be measured.

The analysis of the data enabled the development of a function point prognosis
for the early estimation of function points, which are the basis for estimation using
only the number of inputs and outputs of a new development project. The function
points that are to be counted in the requirements phase can thus be calculated with
a regression formula in advance, with an error of 15% at the time of the project
start. In addition, some Microsoft Excel tools for estimation and data analysis
were developed in order to assist the project leaders. There also were four project
post mortem calculations, which were delivered to the International Software
Benchmarking Standards Group (ISBSG) benchmarking database [ISBS98].

Management support was the most important success factor for the implemen-
tation process. It consisted of several measures. From the beginning on there was
the insight of managers that the implementation of a sound estimation method
would bring an immense benefit for processes and quality of project management.
Additionally, for three years, two persons had enough time (one full time, the
other part time) to gain qualifications and to build up a competence center. This
competence center could always involve the developers and project managers in
meetings and presentations. After a two year break another two part-time employ-
ees joined the competence center.

The three-day training for one person from each group of developers was al-
ways done with external consultants. Manpower bottlenecks in function point
counting were also settled with external consultants.

7.10 Estimation Competence Center 111

The breakthrough of the implementation came with the final function point
counting of all application systems. The achievement of this goal was connected
with 20% of the annual bonus of the managers of each development department.
This led to a huge number of questions from project managers. Experiences in the
British organization were much the same. They were able to increase the produc-
tivity of application development in one year from 11 to 13 function points per
person-month because this goal was also connected with the financial bonus of the
project managers.

Continuing questioning from management increased the awareness of managers
and project managers for estimation. They realized that function point counting
and estimation were more and more integrated in the project life cycle and were
no longer neglected or viewed as overhead. The competence center accompanied
the whole process with many presentations, discussions, reports and work on rou-
tine tasks.

To sum up, there are only few technical challenges for successful implementa-
tion of software measurement, but there are many psychological challenges. The
following pages introduce answers to frequently asked questions from beginners
and discuss the benefits of a competence center.

7.10 Estimation Competence Center

Practical experience demonstrates that it is useful to have central support and
qualified and competent personal for estimation available for the organization.
This is the only guarantee for central collection, documentation and analysis of the
gained estimation experience in order to learn from it. The elaboration of an esti-
mation or metrics database and the development of standards for the improvement
of the knowledge base with tool support are necessary and important measures.

Such a competence center can support the dissemination of experiences through
continuous publication of results, experiences, reports from conferences, knowl-
edge transfer with other organizations and other news about estimation This im-
proves the communication about estimation and fosters acceptance since the staff
feels informed and involved.

The benefits of a competence center are many:
1. Gaining experience in estimation. Experienced experts are always available

in the organization for all questions about estimation. Often certified function
point counters (CFPS, certified function point specialists) are among them.

2. Independent estimations. A competence center is independent of the projects
that are to be estimated.

3. Collection of experiences. Historical data can be collected, and a metrics data-
base and new knowledge can be recognized through the analysis of this data.

However, reasons also exist why estimation should not be done exclusively by
a competence center. Specialists for estimation are a scarce resource and thus
should work as little as possible on projects. On the other side, the project manag-

112 7 Size and Effort Estimation

ers are in closer contact to the problem and thus can better manage the expecta-
tions of the users. This is the reason for the alternative, to qualify individuals de-
centrally for the role of estimation coordinator of a department. These coordina-
tors are then responsible for the organization and elaboration of the estimations
and function point counts of their department, for planning and elaboration of all
necessary measurement of figures and indicators as well as the calculation of met-
rics. They are thus the ideal partners for a small competence center. Table 7.6 and
Table 7.7 show possible role descriptions for a function point coordinator and a
function point counter [Bund04].

Table 7.6. Function point coordinator role description

Role aspect Explanation
Important Interfaces Competence Center
Responsibility Planning of FP counting and FP counting for his department
Coordination Planning and organization of application-, project- and mainte-

nance task counts
Quality Assurance Planning and organization of quality assurance of the FP

counts by the competence center
Tasks Administration of the FP counts of his department: applica-

tions, projects, maintenance tasks
Annual actualization of the application counts and the accord-
ing Function Point Workbench Master Files

Controlling Controlling of FP counts and the FP Workbench
Communication Communication with colleagues, managers and the compe-

tence center
Necessary Knowledge Function Point Courses 1 to 3
Necessary Skills Function Point Workbench

Table 7.7. Function point counter role description

Role aspect Explanation
Important Interfaces Function Point Coordinator
Responsibility FP counting for his Department: application-, project- and

maintenance task counts
Coordination N/A
Quality Assurance N/A
Tasks FP counting and documentation in the Function Point Work-

bench
Controlling N/A
Communication Communication with his function point coordinator
Necessary Knowledge Function Point Courses 1 and 2
Necessary Skills FP counting according to IFPUG 4.1, Function Point Work-

bench

7.11 Training for Estimation 113

7.11 Training for Estimation

Training for estimation occurs primarily through the exchange of experiences, lec-
tures and workshops at congresses of IT metrics associations. Consultants and
trainers are often members of metrics associations and offer training for all aspects
of estimation. Many organizations arrange courses for their staff from these con-
sultants or training institutes.

Estimation is often a part of project management training (sometimes not even
this). The same holds for (the passive training medium) books. An intermediate
approach is interactive learning programs.

The International Function Point User Group (IFPUG),as well as the British
UKSMA, and the Dutch NESMA, (IT metrics organizations), each offer certifica-
tions for various methods (the IFPUG function point method, the Mark II Method
and the NESMA function point method, respectively; see also Chap. 16).

7.12 Hints for the Practitioner

Following questions are frequently discussed in organizations in the context of
implementation of estimation
1. The effort for implementation
2. The right moment for implementation
3. The pros and cons for a competence center

The implementation of estimation in a large organization may take about two
years. To gain estimation experience and integrate estimation into the project
management processes and the consequent introduction of IT metrics for continu-
ing improvement may need another two years.

The cost of an implementation program is often cited as an argument against
systematic and professional estimation. Considering the effort for large projects in
service organizations and administrations it can be said that only one failed IT
project will cost more than all the effort that is necessary to implement and sup-
port sound methods for estimation and software measurement [Jone96].

The right moment for implementing estimation is always too late in practical
life. A favorable moment is when project management processes or the develop-
ment environment change. At this moment the estimation tasks can be integrated
directly. If the quality of software development is to be guaranteed the motto must
be: start any time. Gaining experience and the accompanying learning cycles can
thus be started any time.

The selection of the appropriate method of cost estimation based on size or ef-
fort prediction depends on different aspects and motivations:

Carefully investigate your own background on software sizing. Your experi-
ence in code size or design elements motivates the appropriateness of cost es-
timation method. Different sizing techniques are around, such as lines of code,
Function Points, use cases, etc.

114 7 Size and Effort Estimation

FSM methods are successful if they are defined the functional system model or
the system architecture. But, the quality of estimation was determined through
the experience background for mapping the “points” to the effort or size unit.
An example of experience is described in Chap. 13.
COSMIC-FFP applicability depends on the following experience for a success-
ful migration like considering the domain of software systems (e.g., embed-
ded), using the given experience in FFP application for some well-known ap-
plication domains, and defining the strategic process for the stepwise use of the
FFP method based on the handbook.
A helpful strategy is given by designing tool-based support for FP counting,
aggregation and exploration.
Finally, it also depends on your own empirical background for use of the FFP
method in decision making in different areas of management.

7.13 Summary

In this chapter we presented some recent approaches in cost estimation including
size and effort estimation. The selection of a FSM method is affected by several
influencing factors such as the software’s functional domain and the particularities
of the software development process.

A functional size measurement standard COSMIC FFP is described and dis-
cussed in the application of embedded system development. Functional definitions
(at the end of design phase) are the source of information for the measurement.
The recognized, typical measurement scheme helps to reduce the training time re-
quired for new FFP counters. The essential characteristic of the COSMIC FFP is
the simplicity and flexibility of the application. The success in using this method
is supported by extending the experience base in further industrial applications.

8 Project Control

To really trust people to perform,
you must be aware of their progress.

Watts S. Humphrey

8.1 Project Control and Software Measurement

Project control is defined as a control activity concerned with identifying, measur-
ing, accumulating, analyzing and interpreting project information for strategy
formulation, planning and tracking activities, decision-making and cost account-
ing. As such it is the basic tool for gaining insight into project performance and is
more than only ensuring the overall technical correctness of a project [ISO97a,
ISO97b, ISO02, DeMa82].

Many R&D projects are out of control. Different studies suggest that roughly
75% of all started projects do not reach their original targets [Gart02]. For each
project there is an average sum of roughly 1 Mio Euro that is spent in excess be-
fore the project is terminated – for good or bad. On average a project that is can-
celled takes 14 weeks of the 27 weeks of average project duration. Only half way
through a flawed project is it decided to cancel it. The interesting aspect is, that by
6 weeks before that termination it is clear to all participants that the problem can-
not be cured. That is, in the average cancelled project 20% of time and resources
are completely wasted because people do not acknowledge facts.

Only 25% of all companies periodically review their project progress. Often
projects are even trapped in a vicious circle that the management involved (includ-
ing sales or marketing) are aware of this, and in anticipation keep requirements
overly volatile to negotiate further trade-offs with customers.

We need a way to determine if a project is on track or not. There is a saying
that “you cannot control what you cannot measure”. Because there is little or no
visibility into the status and forecast of projects, it is apparent that some common
baseline metrics need to be implemented for all projects in an organization. Such
core metrics would provide visibility into the current versus planned status of en-
gineering projects, allowing for early detection of variances and time for taking
corrective action. Metrics reduce “surprises” by giving us insight into when a pro-
ject is heading towards trouble, instead of discovering it when it is already there.
Standardized metrics provide management with indicators to control projects and
evaluate performance in the bigger picture.

116 8 Project Control

Many organizations that consider software development as their core business
often have too much separation between business performance monitoring and
evaluation and what is labeled as low-level software metrics [Gart02, Royc98,
Pfle97, McGa01]. Similar to a financial profit and loss (P&L) statement, it is nec-
essary to implement a few core metrics to generate reports from different projects
that can easily be understood by nonexperts. If you maintain consistency across
projects, you can easily aggregate data to assess business performance and to as-
sist with estimating, culminating in a kind of engineering balance sheet. This al-
lows for better predictability of future projects and quantification of the impact of
changes to existing ones.

The basic activities within software project management can be clustered as
tendering and requirements management
estimation and costing
resource management
planning and scheduling
monitoring and reviews
product control

Much has been written on those parts related to classic project management,
however the monitoring aspect is often neglected. We will therefore focus on this
part and call it “project control” to distinguish from other financial control activi-
ties (e.g. corporate budget) [DeMa82]. Often software managers have all technical
background but lack the exposure to management techniques. We will thus look
here to some basic techniques to track and control projects. Most key techniques
in software project control were driven by classic management.

Project control answers few simple questions derived from the following
management activities:

Decision-making. What should I do?

Attention directing. What should I look at?

Performance evaluation. Am I doing good or bad?

Improvement tracking. Am I doing better or worse than last period?

Planning. What can we reasonably achieve in a given period?

Target setting. How much can we improve in a given period?

Project control is a classic control process as we see it in many control systems.
Most important is the existence of a closed loop between the object being con-
trolled, the actual performance metrics and a comparison of targets versus actuals.
Fig. 8.1 shows this control loop. The project with its underlying engineering proc-
esses delivers results, such as work products. It is influenced and steered by the

8.1 Project Control and Software Measurement 117

project targets. Project control captures the observed metrics and risks and relates
them to the targets. By analyzing these differences specific actions can be taken to
get back on track or to ensure that the project remains on track. These actions
serve as an additional input to the project besides the original project targets. To
make the actions effective is the role of the project manager.

Corrective
Actions

Project &
Process ResultsProject Targets

Evaluation

MetricsRisks

Start Finish

Corrective
Actions

Project &
Process ResultsResultsProject Targets

Evaluation

MetricsRisks MetricsRisks

Start Finish

Fig. 8.1. Project control starts with project targets. It extracts metrics and risks and ensures
that corrective actions are taken

In this chapter we show how a software metrics program is introduced to rein-
force and support project control for software projects. Our motivation for build-
ing such a corporate software measurement program is to embed it within the en-
gineering control activities in order to align the different levels of target setting
and tracking activities. The close link of corporate strategy with clearly specified
business goals and with the operational project management ensures the achieve-
ment of overall improvements. We therefore recommend coordinating the metrics
program with a parallel software process improvement initiative to ensure that
goals on all levels correspond with each other. Often though, the metrics program
is actually stimulated by an ongoing process improvement program. Improvement
programs absolutely need underlying and consistent project metrics to follow up
progress of the improvement activities.

The chapter is organized as follows. Section 2 gives a brief introduction to pro-
ject control and how it fits into the framework of project management as the major
tool for decision-making in software project management. Hints for the practitio-
ner and experiences with software metrics introduction that hold especially from
the perspective of organizational learning are provided in Sect. 3. Finally Sect. 4
summarizes this chapter.

118 8 Project Control

8.2 Applications of Project Control

8.2.1 Monitoring and Control

Software projects do not fail because of incompetent project managers or engi-
neers working on these projects; neither do they fail because of insufficient tech-
nology. Primarily they fail because of the use of wrong management techniques.
Management techniques derived and built on experience from small projects that
often do not even stem from software projects are inadequate for professional
software development. As a result, the delivered software is late, of low quality
and of much higher cost than originally estimated [Gart02].

Project control of software projects is a control activity concerned with identi-
fying, measuring, accumulating, analyzing and interpreting project information for
strategy formulation, planning and tracking activities, decision-making, and cost
accounting. Further (perhaps even better known) control activities within software
projects, such as configuration or change control of deliveries and intermediate
working products are not included in this definition.

It is obvious that dedicated management techniques are needed because soft-
ware projects yield intangible products, and often the underlying processes for
creating the products are not entirely understood. Unlike other engineering disci-
plines at universities, software engineering education until recently meant primar-
ily design and programming techniques instead of proper project management.

Fig. 8.2 provides an overview on the measurement process seen from a project
perspective. Four steps are visible in each project, namely selecting metrics, col-
lecting and analyzing them and finally implementing decisions derived from the
metrics analysis. Each of the boxes describes one process step. The responsible for
executing the respective process is described in the upper part of the box. A met-
rics team that is active across all different projects ensures coherence of the meas-
urement program.

The metrics team is instrumental in communicating and training on software
measurement. In less mature organizations it helps in collecting and analyzing
metrics. In more mature organizations it helps to share best practices and advance
in new analysis methods and statistical techniques. It should however never get
trapped into “outsourcing” measurement activities. Implementing effective project
control is the key responsibility of each single project manager.

Several repetitive stages can be identified in project control and the related
measurement and improvement process (see also Fig. 8.2):

Set objectives, both short- and long-term for products and process
Forecast and develop plans both for projects and for departments
Compare actual metrics with original objectives
Communicate metrics and metrics analyses
Coordinate and implement plans
Understand and agree to commitments and their changes
Motivate people to accomplish plans

8.2 Applications of Project Control 119

Measure achievement in projects and budget centers
Predict the development direction of process and product relative to goals and
control limits
Identify and analyze potential risks
Evaluate project and process performance
Investigate significant deviations
Determine if the project is under control and whether the plan is still valid
Identify corrective actions and reward/penalize performance
Implement corrective actions

Improve and
Coach Metrics

Application
Measurement
plan

Select metrics

Metrics team
Quality manager
Project manager

Metrics team

Collect data

Metrics team

Analyze and
report

Project manager

Decide and
take action

Development process

Evaluation procedures

Project plan

Project
targets

Standards
Reporting guidelines

Support
tools

Planning
updates +
tracking

Project Plan
Reporting
Statistics
Proposals

Standard reports
History database
Specific reports

Metrics team

Request for
specific metrics

Request for
specific metrics

Support
Tools,
History
Database

Improve and
Coach Metrics

Application
Measurement
plan
Measurement
plan

Select metrics

Metrics team
Quality manager
Project manager

Metrics team

Collect data

Metrics team

Analyze and
report

Project manager

Decide and
take action

Development process

Evaluation procedures

Project plan

Project
targets

Standards
Reporting guidelines

Support
tools

Planning
updates +
tracking

Planning
updates +
tracking

Project Plan
Reporting
Statistics
Proposals

Reporting
Statistics
Proposals

Standard reports
History database
Specific reports

Metrics team

Request for
specific metrics
Request for
specific metrics

Request for
specific metrics
Request for
specific metrics

Support
Tools,
History
Database

Fig. 8.2. Process overview for an integrated measurement program covering project control
and process improvements

Different control objectives request different levels of metrics aggregation. In-
dividual designers or testers need progress metrics on their level of deliverable
work products and contribution to the project. Group leaders and functional coor-
dinators need the same information on the level of their work area. Department
heads request metrics that relate to time, effort and budget within their depart-
ments.

Project managers on the other hand look much more on their projects’ individ-
ual budgets, schedule and deliverables to have insight in overall performance and
progress. Clearly all users of metrics need immediate insight into the lower and
more detailed levels as soon as performance targets are missed or the projects drift
away from schedule and budget. Easy access to the different levels of information
is thus of high importance.

The single best technology for getting some control over deadlines and other
resource constraints is to set formal objectives for quality and resources in a
measurable way [Royc98, Fent97, Eber96, Star94]. Planning and control activi-
ties cannot be separated. Managers control by tracking actual results against plans

120 8 Project Control

and acting on observed deviations. Controls should focus on significant deviations
from standards and at the same time suggest appropriate ways for fixing the prob-
lems. Typically these standards are schedules, budgets and quality targets estab-
lished by the project plan. All critical attributes established should be both meas-
urable and testable to ensure effective tracking. The worst acceptable level should
be clear although the internal target is in most cases higher.

Control is only achievable if measures of performance have been defined and
implemented, objectives have been defined and agreed, predictive models have
been established for the entire life cycle, and the ability to act is given. The re-
mainder of this section will further investigate examples for each of these condi-
tions (Table 8.1).

Table 8.1. Appropriate metrics are selected depending on the process maturity (CMM
level).

CMM
Level

Maturity descrip-
tion

What it means for metrics

5 Continuous im-
provements are
institutionalized

Control of process changes; assess process innovations and
manage process change; analysis of process and product
metrics; follow through of defect prevention and technology
/ processes changes

4 Products and pro-
cesses are quanti-
tatively managed

Process metrics to control individual processes; quantitative
objectives are continuously followed; statistical process con-
trol; control limit charts over time. Objectives are followed
on process level; control is within projects to immediately
take action if limits are crossed

3 Appropriate tech-
niques are institu-
tionalized

Metrics are standardized and evaluated; formal records for
retrieving project metrics (intranet, history database); auto-
matic metric collection; maintain process database across
projects. Objectives are followed on organizational level

2 Project manage-
ment is estab-
lished

Few reproducible project metrics for planning and tracking
(contents, requirements, defects, effort, size, progress); pro-
files over time for these metrics; few process metrics for
process improvement progress tracking. Objectives are fol-
lowed on project basis

1 Process is infor-
mal and ad hoc

Ad hoc project metrics (size, effort, faults); however, met-
rics are inconsistent and not reproducible.

The influence of metrics definition and application from project start (e.g., es-
timation, target setting and planning) to steering (e.g., tracking and budget control,
quality management) to maintenance (e.g., failure rates, operations planning) is
very well described in the related IEEE Standard for Developing Software Life
Cycle Processes [ISO97a, ISO97b, ISO02]. This standard helps also in defining
the different processes that constitute the entire development process including re-
lationships to management activities.
One of the main targets of any kind of measurement is that it should provide an
objective way of expressing information, free of value judgments. This is particu-

8.2 Applications of Project Control 121

larly important when the information concerned is “bad news”, for instance related
to productivity or cost, and thus may not necessarily be well received. Often the
observed human tendency is to ignore any criticism related to one’s own area and
direct attention to somebody else’s. Testing articulates that ”the design is badly
structured”, while operations emphasize that ”software has not been adequately
tested”. Any improvement activities must therefore be based on hard numerical
evidence. The first use of metrics is most often to investigate the current state of
the software process. On CMM Levels 1 and 2 basically any application of metrics
is mainly restricted due to nonrepeatable processes and thus a limited degree of
consistency across projects.

A selection of the most relevant project tracking metrics is provided in Fig. 8.3,
Fig. 8.4 and Fig. 8.5. These metrics include milestone tracking, cost evolution, a
selection of process metrics, work product deliveries and faults with status infor-
mation. We distinguish three types of metrics with different underlying goals.

Calendar time

Planned
milestones

Handover
Test

Code
Design

Milestone Delay

45 Degree Target Curve

Cost Evolution
Project

cost
Actual cost and evolution

Budget

Earned value

100%

Progress

0%

Expense Plan

Actual cost

0% Time Today 100%

Today Status:
actual : 40%:
planned: 55% 15% Delays

10% Less expenses

Project start Time

100%

Defects

0%

Expected defects Corridor of benchmarks

Quality

Calendar time

Planned
milestones

Handover
Test

Code
Design

Milestone Delay

45 Degree Target Curve

Calendar time

Planned
milestones

Handover
Test

Code
Design

Milestone Delay

45 Degree Target Curve

Cost Evolution
Project

cost
Actual cost and evolution

Budget

Cost Evolution
Project

cost
Actual cost and evolution

Budget

Earned value

100%

Progress

0%

Expense Plan

Actual cost

0% Time Today 100%

Today Status:
actual : 40%:
planned: 55% 15% Delays

10% Less expenses

Earned value

100%

Progress

0%

Expense Plan

Actual cost

0% Time Today 100%

Today Status:
actual : 40%:
planned: 55% 15% Delays

10% Less expenses

Project start Time

100%

Defects

0%

Expected defects Corridor of benchmarks

Quality

Project start Time

100%

Defects

0%

Expected defects Corridor of benchmarks

Project start Time

100%

Defects

0%

Expected defects Corridor of benchmarks

Quality

Fig. 8.3. Metrics dashboard (part 1): Overview metrics on schedule, cost, quality and con-
tent or earned value

Fig. 8.3 shows the high-level project tracking metrics that should be at the core
of each project control toolset. They include milestones (planned versus achieved),
cost evolution, quality status and earned value analysis. All these metrics are com-
bined with the latest outlook and the original plan. Fig. 8.4 shows the classic
tracking metrics that clearly serve as a more detailed view below what is showed
in Fig. 8.3.

Such work product-oriented tracking is not enough for tracking a project,
though we still see those metrics mostly used in software projects. Often this is
simply because they are trivial to collect. Fig. 8.5 is more advanced and links
process performance with project performance. Different core metrics and process
indicators are combined to get a view into how the project is doing and how it per-

122 8 Project Control

forms versus the estimated process behaviors. It not only reveals under-
performing projects easily, but it also helps to see risks much earlier than with af-
ter the fact tracking alone. In-process checks are always better than waiting until it
is too late for corrections.

Such tracking metrics are periodically updated and provide an easy overview
on the project status, even for very small projects. Based on this set of metrics
several metrics can be selected for weekly tracking work products’ status and pro-
gress (e.g., increment availability, requirements progress, code delivery, defect de-
tection), while others are reported periodically to build up a history database (e.g.,
size, effort). Most of these metrics are actually byproducts from automatic collec-
tion tools related to planning and software configuration management (SCM) da-
tabases. Project-trend indicators based on such simple tracking curves are much
more effective in alerting managers than the delayed and superficial task-
completion tracking with PERT charts.

Deliveries

0

5

10

15

20

25

w01 w02 w03 w04 w05 w06 w07 w08 w09 w10 w11 w12 w13 w14 w15

Project weeks

D
oc

um
en

ts
 o

r
re

qu
ire

m
en

ts
 d

el
iv

er
ed

in work
Review
Release

Defects

0
20
40
60
80

100
120
140
160
180

w01 w02 w03 w04 w05 w06 w07 w08 w09 w10 w11 w12 w13 w14 w15

Project weeks

D
ef

ec
ts

 d
et

ec
te

d

new entries
corrected
closed

Deliveries

0

5

10

15

20

25

w01 w02 w03 w04 w05 w06 w07 w08 w09 w10 w11 w12 w13 w14 w15

Project weeks

D
oc

um
en

ts
 o

r
re

qu
ire

m
en

ts
 d

el
iv

er
ed

in work
Review
Release

Defects

0
20
40
60
80

100
120
140
160
180

w01 w02 w03 w04 w05 w06 w07 w08 w09 w10 w11 w12 w13 w14 w15

Project weeks

D
ef

ec
ts

 d
et

ec
te

d

new entries
corrected
closed

Fig. 8.4. Metrics dashboard (part 2): Work product metrics on delivery and quality for a
project over project time. Status information is indicated with different shades

Effective project tracking and implementation of immediate corrective ac-
tions requires a strong project organization. As long as department heads and
line managers interfere with project managers, decisions can be misleading or

8.2 Applications of Project Control 123

even contradictory. Frequent task and priority changes on the practitioner level
with all related drawbacks are the consequence. Demotivation and inefficiency are
the concrete results. A project or matrix organization with dedicated project teams
clearly shows better performance than the classic line organization with far too
much influence of department leaders.

Project managers must work based on defined roles and responsibilities. They
are required to develop plans and objectives. Measurable performance and quality
targets are defined within the project (quality) plans and later tracked through the
entire project life cycle. Project managers report project and quality progress using
standardized reporting mechanisms, such as fault removal efficiency or progress
versus schedule in terms of deliverables (similar to the curves and completeness
status in Fig. 8.3, Fig. 8.4, Fig. 8.5).

Metrics targets actuals comment
size [KLOC]
effort [PY]
time to market [months]
tested requirements [%]
design progress [% of est. effort]
code progress [% of est. size]
test progress [% test cases]
inspection efficiency [LOC/h]
effort per defect in peer reviews [Ph/defect]
effort per defect in module test [Ph/ defect]
effort per defect in test [Ph/ defect]
defects detected before integration [%]
number of defects in design
number of defects in peer reviews
number of defects in module test
number of defects in test
number of defects in the field

Fig. 8.5. Metrics dashboard (part 3): Example with in-process metrics comparing actuals
with targets

Committing to such targets and being forced to track them over the develop-
ment process ensures that project managers and therefore the entire project or-
ganization carefully observe and implement process improvement activities.

Test tracking is a good example of how to make use of tracking metrics. Test
results can be used to suggest an appropriate course of action to take either during
testing activities or towards their completion. Based on a test plan all testing ac-
tivities should be seen in the context of the full test schedule, rather than as inde-
pendent actions. If the goal is, for instance, how well an integration test detects
faults then models of both test progress and defects must be available. Information
that supports interpretation (e.g., fault density per subsystem, relationships to fea-
ture stability) must be collected and integrated.
A typical test-tracking curve is presented in Fig. 8.6. It indicates that effective
tracking combines original plans with actual evolution, outlooks, updated plans
and decision guidance, such as curves for early rejection if delivered quality is be-
low expectations. Such previously agreed-upon limits or boundaries avoid ineffi-

124 8 Project Control

cient and time-consuming fights between departments when delivery occurred
with unsatisfactory quality. Transparent decision criteria followed up with respec-
tive metrics certainly serve as a more effective decision support for management.
Besides the typical S-shaped appearance, several questions must be answered be-
fore being able to judge progress or efficiency. For example, how effectively was
the specific test method applied? What is the coverage in terms of code, data rela-
tions or features during regression test? How many faults occurred during similar
projects with similar test case suites over time?

defects /
test cases

start-up steady progress stabilization

100%

0%

acceptance target

rejection criteria

time

successful
test cases

accumulated
defects

planned test
cases

defects /
test cases

start-up steady progress stabilization

100%

0%

acceptance target

rejection criteria

time

successful
test cases

accumulated
defects

planned test
cases

Fig. 8.6. A typical project control exercise: test tracking based on test plans, incoming de-
fects, test progress and various criteria for acceptance and rejection of the test object

Based on such a premise, it is feasible to set up not only release-oriented phase
end targets but also phase entry criteria that allow for rejection to module test or
inspections if the system quality is inadequate. Related test process metrics in-
clude test coverage, number of open fault reports by severity, closure delay of
fault reports, and other product-related quality, reliably and stability metrics. Such
metrics allow judgments in situations when, because of difficulties in testing, de-
cisions on the nature and sequence of alternative paths through the testing task
should be made, while considering both the entire testing plan and the present pro-
ject priorities. For example, there are circumstances in which full testing of a lim-
ited set of features will be preferred to a incomplete level of testing across full
(contracted) functionality.

8.2.2 Forecasting

While metrics-based decision making is more accurate and reproducible than so-
called intuitive and ad hoc approaches for managing software projects, it should
be clear that there are components of uncertainty that ask for dedicated techniques
of forecasting:

8.2 Applications of Project Control 125

Requirements are becoming increasingly unstable to achieve shorter lead times
and faster reaction to changing markets. The risk is that the project is built on a
moving baseline, which is one of the most often-quoted reasons for project fail-
ure.
Plans are based on average performance indicators and history data. The
smaller the project and the more the critical paths that are established due to re-
quested expert knowledge, the higher the risk of having a reasonable plan from
a macroscopic viewpoint that never achieves the targets on the microscopic
level of individual experts’ availability, effectiveness and skills. It was shown
in several studies that individual experience and performance contributes up to
70% to overall productivity ranges (see Chaps. 2 and 10) [Hump89, Jone01].
Estimations are based on individual judgment and as such are highly subjective.
Applying any estimation model expresses first of all the experience and judg-
ment of the assigned expert. Even simple models such as Function Points are
reported as yielding reproducibility inaccuracy of >30% [Fent97, Jone01]. To
reduce the risk related to decision making based on such estimates a Delphi-
style approach can be applied that focuses multiple expert inputs to one esti-
mate.
Most reported software metrics are based on manual input of the raw data to
operational databases. Faults, changes, effort, even the task break down are re-
corded by individuals that often do not necessarily care for such things, espe-
cially when it comes to delivery and time pressure. Software metrics, even if
perceived as accurate (after all, they are numbers), must be related to a certain
amount of error limits, which as experience shows is in the range of 10–20%
[Fent97, Jone01].

Forecasts are today an inherent part of any project control. Traditional project
tracking looked to actual results versus plans, where the plans would be adjusted
after the facts indicate that they are not reachable. This method creates too many
delays and is not sufficiently precise to drive concrete corrective actions on the
spot. Therefore, predictions are used to relate actual constraints and performance
to historic performance results.

Table 8.2 gives an overview on the use of metrics for forecasting. It is impor-
tant to note that typically the very same underlying raw data is used for both track-
ing current performance and predicting future results. For instance, for the project
management activities, effort and budget are tracked as well as requirements status
and task or increment status. This information can also be used to determine risk
exposure or cost to complete which relates to forecasting. The same holds for the
other phases. In particular, defects and test tracking have a long tradition in fore-
casting a variety of performance parameters, such as maintenance cost of customer
satisfaction.

An example for forecasting in a real project situation is provided in Fig. 8.7. It
shows a typical project control question related to managing project risks. Time is
running, and the project manager wonders whether he should still spend extra ef-
fort on regression testing of some late deliveries. Naturally this can and must be
decided based on facts. There are two alternatives, namely doing regression test or

126 8 Project Control

not doing it. Each alternative can have three possible outcomes, namely that a
critical defect is detected by regression test, a critical defect would be found by the
customer, and that there is no critical defect remaining. The respective probabili-
ties are different and are provided in the picture. Clearly the probability of detect-
ing a critical defect when no regression test is run is small compared to the sce-
nario with regression testing. If the probabilities are mapped to the expected
outcome or loss (or cost of the outcome), one can calculate a forecasted risk value.
The decision is finally rather simple to make, given the big differences in the ac-
cumulated cost (or risk) functions.

Good forecasts allow adjusting plans and mitigating risks long before the actual
performance tracking metrics would visualize such results. For instance, knowing
about average mean time to defect allows planning for maintenance staff, help
desk and support centers, or service level agreements.

Table 8.2. Metrics are selected based on the objective to achieve and suited to the respec-
tive project phase. Metrics of current status (progress) are distinguished from forecasting
metrics (outlook).

Project phase Progress Metrics Metrics for Predictions/Outlook

Project man-
agement

Effort and budget tracking; re-
quirements status; task/increment
status

Top 10 risks and mitigation out-
look; cost to complete; schedule
evolution

Quality man-
agement

Code stability; open defects; in-
process checks; review status and
follow-up

Remaining defects; open de-
fects; reliability; customer satis-
faction

Requirements
management

Analysis status; specification pro-
gress

Requirements volatility/comple-
teness

Construction Status of documents, code, change
requests; review status; efficiency

Design progress of require-
ments; cost to complete; time to
complete

Test Test progress (defects, coverage,
efficiency, stability)

Remaining defects; reliability;
cost to complete

Transition, de-
ployment

Field performance (failures, cor-
rections); maintenance effort

Reliability; maintenance effort

8.2.3 Cost Control

Because it seems obvious that costs in software projects are predominantly related
to labor (i.e., effort), it is rare to find practical cost control besides deadline- or
priority-driven resource allocation and shifting. The use of cost control, however,
is manifold and must exceed headcount follow-up. In decision making cost infor-
mation is used to determine relevant costs (e.g. sunk costs, avoidable versus un-
avoidable costs, variable versus fixed costs) in a given project or process, while in

8.2 Applications of Project Control 127

management control the focus is on controllable costs versus noncontrollable
costs.

risk sum

perform
regression

test?

yes

no

P=0.75
L= 5M

critical defect detected
with test

critical defect found
by customer

no critical
defect present

critical defect detected
with test

critical defect found
by customer

no critical
defect present

P=0.05
L= 30M

P=0.20
L= 5M

P=0.30
L= 1M

P=0.50
L= 26M

P=0.20
L= 1M

3.75 M

6.25 M1.5 M

1.0 M

0.30 M

13 M

0.20 M

13.50 M

P: probability of the event; L: loss / cost in case of event

cost = 5M

cost = 1M

risk sum

perform
regression

test?

yes

no

P=0.75
L= 5M

critical defect detected
with test

critical defect found
by customer

no critical
defect present

critical defect detected
with test

critical defect found
by customer

no critical
defect present

P=0.05
L= 30M

P=0.20
L= 5M

P=0.30
L= 1M

P=0.50
L= 26M

P=0.20
L= 1M

3.75 M

6.25 M1.5 M

1.0 M

0.30 M

13 M

0.20 M

13.50 M

P: probability of the event; L: loss / cost in case of event

cost = 5M

cost = 1M

Fig. 8.7. Project control uses the same underlying metrics for progress tracking and risk
management

A major step towards decision support is an accounting that moves from head-
count-based effort models to activity-based costing. Functional cost analysis and
even target-costing approaches are increasingly relevant because customers tend
to pay for features instead of entire packages as before. Not surprisingly, cost re-
duction can only be achieved if it is clear how activities relate to costs. The differ-
ence is to assign costs to activities or processes instead of to departments.

Activity-based models allow for more accurate estimates and tracking than us-
ing holistic models, which only focus on size and effort for the project as one unit.
Effects of processes and their changes, resources and their skill distribution or fac-
tors related to each of the development activities can be considered, depending on
the breakdown granularity.

An example is given in Table 8.3, which includes a first breakdown to major
development phases. The percentages and costs per thousand lines of code
(KLOC) are for real-time embedded systems and should not be taken as fixed
quantities [McGa01, Jone01]. Typically both columns for percentages and produc-
tivity are based on a project history database that is continuously improved and
tailored to the specific project situation. Even process allocation might vary; pro-
jects with reuse have a different distribution with more emphasis towards integra-
tion and less effort for top-level design. Unit cost values are likely to decrease in
the long-term as the cumulative effects of technological and process changes be-
come visible.

128 8 Project Control

Table 8.3. Example for activity-based effort allocation

Activity Percent Person months per KLOC
Project management 7% 0.7
Analysis, specification 17% 1.7
Design 22% 2.2
Coding 22% 2.2
Integration, configuration management 16% 1.6
Transition, deployment 16% 1.6

Total 100% 10

All activities that form the development process must be considered to avoid
uncontrollable overhead costs. Cost estimation is derived from the size of new or
reused software related to the overall productivity and the cost per activity. The
recommended sequence of estimation activities is first to estimate the size of the
software product, then to estimate the cost, and finally to estimate the develop-
ment schedule based on the size and the cost estimates. These estimates should be
revised towards the end of architecture and top level design and again towards end
of unit test or when the first increment is integrated.

Although activity-based accounting means more detailed effort reporting
throughout each project, it allows for a clear separation between value adding and
non-value adding activities, process value analysis, and improved performance
measures and incentive schemes. Once process related costs are obvious, it is easy
to assign all overhead costs, such as integration test support or tools, related to the
processes where they are necessary and again to the respective projects. Instead of
allocating such overhead to projects based on overall development effort per pro-
ject, it is allocated related to activities relevant in the projects. For instance, up-
front design activities should not contribute to allocation of expensive test equip-
ment.

While dealing with controlling cost, often the question comes up of which
tracking system is to be used. Most companies have rather independent financial
tracking systems in place that provide monthly reports on cost per project and
sometimes even on an activity base. The reports are often integrated with time-
sheet systems and relate effort to other kinds of cost. Unfortunately, such financial
systems are in many cases so independent from engineering that neither the activi-
ties clusters nor the reporting frequency are helpful for making any short-term de-
cisions.

Variance analysis is applied to control cost evolution and lead-time over time.
It is based on standard costs that are estimated (or known) costs to perform a sin-
gle activity within a process under efficient operating conditions. Typically such
standard costs are based on well-defined outputs of the activity, for instance, test
cases performed and errors found in testing. Knowing the effort per test case dur-
ing integration test and the effort to detect an error (which includes regression test-
ing but not correction), a standard effort can be estimated for the whole project.
Functionality, size, reuse degree, stability and complexity of the project determine
the two input parameters, namely test cases and estimated number of faults to be

8.2 Applications of Project Control 129

detected in the specific test process. Variances are then calculated as a relative
figure: variance = (standard cost – actual cost) / standard cost.

Variance analysis serves to find practical reasons for causes of off-standard per-
formance so that project management or department heads can improve operations
and increase efficiency. It is, however, not an end in itself because variances might
be caused by other variances or be related to a different target. Predictors should
thus be self-contained, such as in the given example. Test cases alone are insuffi-
cient because an unstable product due to insufficient design causes more effort in
testing.

A major use of cost control metrics combined with actual performance feed-
back is the tracking of earned value (see also Fig. 8.3). Earned value compares
achieved results with the invested effort and time. For simplification let us assume
that we have an incremental approach in the project with customer requirements
allocated to increments. Let us further assume that we deliver increments on a fre-
quent basis, which are integrated into a continuous build. Only if such increment
is fully integrated into the build and tested, it is accepted. Upon acceptance of an
increment, the status of the respective requirements within this increment is set to
“tested”. The build, though only internally available, could at any time with low
overhead be finalized and delivered to a customer. The value metrics then in-
creases by the relative share of these tested requirements compared to the sum of
all project requirements. If, for instance, 70% of all customer requirements are
available and tested , the earned value is 70%. Weighting is possible by allocating
effort to these requirements. Compared with the traditional progress tracking,
earned value doesn’t show the “90% complete syndrome”, where lots of code and
documents are available, but no value is created from an external perspective, be-
cause nothing could be delivered to the customer as is.

We can allocate effort to each requirement based on up-front effort estimation.
With each requirement that is delivered within an increment the value of the pro-
ject deliveries would increase by the amount of effort originally allocated to the
requirement. The reasoning here is that the effort should correlate with our pric-
ing. This certainly is not reality, however a good predictor for value generated.
Why, after all, should one spend a large part of project effort on a small marginal
value to the customer? If the value of delivered requirements is bigger than what
was supposed to be invested in terms of engineering effort, the project is ahead. If
it is less it is behind. The same approach is taken for schedule. Both parameters
combined give an excellent predictor for time and cost to complete a project.

Return on investment (ROI) is a critical expression when it comes to develop-
ment cost or justification of new techniques (see Chaps. 2 and 10) [McGi96,
Jone95]. However, heterogeneous cost elements with different meaning and un-
clear accounting relationships are often combined into one figure that is then op-
timized. For instance, reducing “cost of quality” that includes appraisal cost and
prevention cost is misleading when compared with cost of nonconformance be-
cause certain appraisal cost (e.g., module test) are components of regular devel-
opment. Cost of nonconformance, on the other hand, is incomplete if we are only
considering internal cost for fault detection, correction and redelivery because we

130 8 Project Control

must include opportunity cost due to rework at the customer site, late deliveries or
simply binding resources that otherwise might have been used for a new project.

8.3 Hints for the Practitioner

Start with few metrics that are mandatory for all projects. This will help to
ramp up fast and to educate on usage and analysis of the metrics in a variety of
project situations. Some 10 different metrics should be reported and evaluated.
They should be standardized across all projects to allow benchmarking, automa-
tion and usability. A typical suite of project metrics or core metrics with exam-
ples for practical usage is summarized in Table 8.4.

Table 8.4. A minimum metrics suite for project control

Metric type Examples
Project size New, changed, reused, or total; in KLOC or KStmt or a functional metric

such as function points
Calendar or
elapsed time

Estimated end date with respect to committed milestones, reviews and
work product deliveries compared with planning data, predictability

Effort and
budget

Total effort in project, cost to complete, cost at completion, effort distri-
bution across life cycle phases, efficiency in important processes, cost
structure, cost of non-quality, estimation accuracy

Progress Completed requirements, increment progress, test progress, earned value,
requirements status

Quality Fault estimation per detection phase, faults across development phases,
effectiveness of fault detection during development process, faults per
KLOC in new/changed software, failures per execution time during test
and in the field, reliability estimate

For maintenance projects with small new development rates, and for projects
that primarily need to continue delivering services without new development, the
metrics suite might need to be adjusted to focus on service level agreements and
quality. Metrics could include: the SLAs adherence; mean time between failures
(MTBF) of different severity (critical, major, minor), which helps to predict the
occurrence of customer maintenance requests; average time and effort taken to re-
solve a defect; maintainability metrics; or load of project resources, which helps in
resource allocation.

Project control must make sense to everybody within the organization who will
be in contact with it. Therefore, metrics should be piloted and evaluated after
some time. Potential evaluation questions include:

Are the selected metrics consistent with the original improvement targets? Do
the metrics provide added value? Do they make sense from different angles and
can that meaning be communicated simply and easily? If metrics consider what
is measurable but do not support improvement tracking they are perfect for hid-
ing issues but should not be labeled metrics.

8.4 Summary 131

Do the chosen metrics send the right message about what the organization con-
siders relevant? Metrics should spotlight by default and without cumbersome
investigations of what might be behind. Are the right things being spotlighted?
Do the metrics clearly follow a perspective that allows comparisons? If metrics
include ambiguities or heterogeneous viewpoints they cannot be used as history
data.

8.4 Summary

We have presented the introduction and application of a software metrics program
for project control. The targets of project control in software engineering are as
follows:

setting process and product goals
quantitative tracking of project performance during software development
analyzing measurement data to discover any existing or anticipated problems
determining risk
early available release criteria for all work products
creation of an experience database for improved project management
motivation and trigger for actual improvements
success control during reengineering and improvement projects

Most benefits that we recorded since establishing a comprehensive software
metrics program are indeed related to project control and project management:

improved tracking and control of each development project based on uniform
mechanisms
earlier identification of deviations from the given targets and plans
accumulation of history data from all different types of projects that are reused
for improving estimations and planning of further projects
tracking process improvements and deviations from processes

Many small and independent metrics initiatives had been started before within
various groups and departments. Our experience shows that project control of
software projects is most likely to succeed as a part of a larger software process
improvement initiative (e.g., CMM Level 2 demands basic project control as we
explained in this chapter, while CMM Level 4 and Six Sigma initiatives explicitly
ask for statistical process control and process measurement). In that case, the con-
trol program benefits from an aligned engineering improvement and business im-
provement spirit that encourages continuous and focused improvement with sup-
port of quantitative methods.

A measurement program must evolve along with the organization: it is not fro-
zen. The measurement process and underlying data will change with growing ma-
turity of management and organization. Measurements must always be aligned
with the organization’s goals and serve its needs. While raw data definitions can

132 8 Project Control

remain unchanged for long times, the usage of the metrics will definitely evolve.
What used to be project tracking information will grow into process metrics. Es-
timation of effort and size will evolve into statistical process control. Setting an-
nual objectives on the senior management level will grow into continuous im-
provements based on and tracked with flexibly used software measurements.

The good news is that measurement is a one-way street. Once managers and
engineers get used to measuring and building decisions on quantitative facts in-
stead of gut feelings, they will not go backwards. This in turn will justify the effort
necessary for introducing and maintaining a measurement program, which is
around 0.25 2% of the total R&D or IT budget. The higher numbers occur during
introduction, later the effort is much less. We measured benefits in the range of
over 5% just by having metrics and thus being able to pinpoint weaknesses and in-
troduce dedicated changes, thus improving project plans and their delivery dates.
Senior managers used to measurement will drive hard to get trustworthy data,
which increasingly they will use to base their decisions upon and show to custom-
ers, analysts or at trade shows. What gets measured gets done!

9 Defect Detection and Quality Improvement

Quality is not an act.
It is a habit.

Aristotle

9.1 Improving Quality of Software Systems

Customer-perceived quality is among the three factors with the strongest influence
on long-term profitability of a company [Buzz87]. Customers view achieving the
right balance among reliability, market window of a product and cost as having
the greatest effect on their long-term link to a company. This has been long articu-
lated, and applies in different economies and circumstances. Even in restricted
competitive situations, as we have observed with some software products, the
principle applies and has, for instance, given rise to open source development.
With the competitor being often only a mouse-click away, today quality has even
higher relevance. This applies to Web sites as well as to commodity goods with ei-
ther embedded or dedicated software deliveries. And the principle certainly ap-
plies to investment goods, where suppliers are evaluated on a long list of different
quality attributes.

Methodological approaches to guarantee quality products have lead to interna-
tional guidelines (e.g., ISO 9000) and widely applied methods to assess the devel-
opment processes of software providers (e.g., SEI CMM, [Jone97, Paul95] or
CMMI [Aher03, Chri03]). In addition, most companies apply certain techniques
of criticality prediction that focus on identifying and reducing release risks
[Khos96, Musa87, Lyu95]. Unfortunately, many efforts usually concentrate on
testing and rework instead of proactive quality management [McCo03].

Yet there is a problem with quality in the software industry. In talking about
quality we mean the bigger picture, such as delivering according to commitments.
The industry’s maturity level with respect to “numbers” is known to be poor.
What is published in terms of success stories is what few excellent companies de-
liver. We will help you with this book to build upon such success stories.

While solutions abound, knowing which solutions work is the big question.
What are the most fundamental underlying principles in successful projects? What
can be done right now? What actually is good or better? What is good enough –
considering the immense market pressure and competition across the globe? The
first step is to recognize that all your quality requirements can and should be
specified numerically. This does not mean “counting defects”. It means quantify-

134 9 Defect Detection and Quality Improvement

ing quality attributes such as security, portability, adaptability, maintainability, ro-
bustness, usability, reliability and performance [Eber97b].

In this chapter we look into how quality of software systems can be measured,
estimated, and improved. Among the many dimensions of quality we look into de-
fects and defect detection. Within this chapter several abbreviations and terms are
used that might need some explanation. CMM is the Capability Maturity Model,
which was originally created by the Software Engineering Institute (SEI); CMMI
is the integrated Capability Maturity Model. It is the successor to the CMM and
covers a much broader scope than the CMM. We will nevertheless for simplicity
speak in this book about “CMM”, covering the software CMM as well as the
CMMI. ROI is return on investment; KStmt is thousand delivered executable
statements of code (we use statements instead of lines, because statements are
naturally the smallest chunk designers deal with conceptually); PY is person-years
and PH is person-hours.

A failure is the departure of system operation from requirements, for instance,
the nonavailability of a channel in an exchange. A fault is the reason in the soft-
ware that causes the failure when it is executed, for instance, a wrong population
of a database. The concept of a fault is developer-oriented. Defects and faults are
used with the same meaning. Furthermore, (t) is the failure intensity, and (t) is
the amount of cumulative failures that we use in reliability models.

Reliability is the probability of failure-free execution of a program for a speci-
fied period, use and environment. We distinguish between execution time, which
is the actual time that the system is executing the programs, and calendar time,
which is the time such a system is in service. A small number of faults that occur
in software that is heavily used can cause a large number of failures and thus great
user dissatisfaction. The number of faults over time or remaining faults is there-
fore not a good indicator of reliability. The term “system” is used in a generic
sense to refer to all software components of the product being developed. These
components include operating systems, databases, or embedded control elements,
however, they do not include hardware (which would show different reliability
behaviors), as we emphasize on software development in this chapter.

The chapter is organized as follows. Section 2 summarizes some fundamental
concepts of achieving quality improvements and estimating quality parameters.
Section 3 describes the basic techniques for early defect detection. Knowing that
inspections and module tests are most effective if they are applied in depth to the
components with high defect density and criticality for the system, in Sect. 4 we
look at approaches for identifying such components. This section introduces to
empirical software engineering. It shows that solid rules and concrete guidance
with reproducible results can only be achieved with good underlying history data
from a defined context. Reliability modeling and thus predicting release time and
field performance are introduced in Sect. 5. Section 6 looks into how the return on
investment is calculated for quality improvement initiatives. Sect. 7 provides some
hints for practitioners. It summarizes several rules of thumb for quick calculation
of quality levels, defect estimation, etc. Finally, Sect. 8 summarizes the chapter.

9.2 Fundamental Concepts 135

9.2 Fundamental Concepts

9.2.1 Defect Estimation

Reliability improvement always needs measurements on effectiveness (i.e., per-
centage of removed defects with a given activity) compared to the efficiency of
this activity (i.e., effort spent for detecting and removing a defect in the respective
activity). Such measurement asks for the amount of remaining defects at a given
point in time or within the development process.

But how is the amount of defects in a piece of software or in a product esti-
mated? We will outline the approach we follow for up-front estimation of remain-
ing defects in any software that may be merged from various sources with differ-
ent degrees of stability. We distinguish between upfront defect estimation, which
is static by nature as it looks only on the different components of the system and
their inherent quality before the start of validation activities, and reliability mod-
els, which look more dynamically during validation activities at remaining defects
and failure rates.

Only a few studies have been published that typically relate static defect esti-
mation to the amount of already detected defects independent of the activity that
resulted in defects [Cai98], or the famous error seeding, which is well known but
is rarely used due to the belief of most software engineers that it is of no use to
add errors to software when there are still far too many defects in, and when it is
known that defect detection costs several person hours (PH) per defect [Mill72].

Defects can be easily estimated based on the stability of the underlying soft-
ware. All software in a product can be separated into four parts according to its
origin:

Software that is new or changed.
Software to be tested (i.e. reused from another project that was never integrated
and therefore still contains lots of malfunctions; this includes ported functional-
ity).
Software reused from another project that is in test (almost) at the same time.
This software might be partially tested, and therefore the overlapping of the two
test phases of the parallel projects must be accounted for to estimate remaining
malfunctions.
Software completely reused from a stable project. This software is considered
stable and therefore it has a rather low number of malfunctions.

The base of the calculation of new/changed software is the list of modules to be
used in the complete project (i.e., the description of the entire build with all its
components). A defect correction in one of these components typically results in a
new version, while a modification in functionality (in the context of the new pro-
ject) results in a new variant. Configuration management tools such as CVS or
Clearcase are used to distinguish the one from the other while still maintaining a
single source.

136 9 Defect Detection and Quality Improvement

To statically estimate the amount of remaining defects in software at the time it
is delivered by the author (i.e., after the author has done all verification activities,
she can execute herself), we distinguish four different levels of stability of the
software that are treated independently:

f = a × x + b × y + c × z + d × (w – x – y – z)

with
x: the number of new or changed KStmt designed and to be tested within this
project. This software was specifically designed for that respective project. All
other parts of the software are reused with varying stability.
y: the number of KStmt that are reused but are unstable and not yet tested
(based on functionality that was designed in a previous project or release, but
never externally delivered; this includes ported functionality from other pro-
jects).
z: the number of KStmt that are tested in parallel in another project. This soft-
ware is new or changed for the other project and is entirely reused in the project
under consideration.
w: the number of KStmt in the total software build within this product.

The factors a-d relate defects in software to size. They depend heavily on the
development environment, project size, maintainability degree, etc. Our starting
point comes from psychology. Any person makes roughly one (non-editorial) de-
fect in ten written lines of work. This applies to code as well as a design document
or e-mail, as was observed by the personal software process (PSP) and many other
sources [Jone97, Hump97]. The estimation of remaining malfunctions is language
independent because malfunctions are introduced per thinking and editing activity
of the programmer, i.e., visible by written statements. We could prove in our own
environment this independency of programming language and code defects per
statement when looking to languages such as Assembler, C and CHILL.

This translates into 100 defects per KStmt. Half of these defects are found by
careful checking by the author, which leaves some 50 defects per KStmt delivered
at code completion. Training, maturity and coding tools can further reduce the
number substantially. We found some 10 50 defects per KStmt depending on the
maturity level of the respective organization. This is based only on new or
changed code, not including any code that is reused or automatically generated.

Most of these original defects are detected by the author before the respective
work product is released. Depending on the underlying personal software process
(PSP), 40–80% of these defects are removed by the author immediately. We have
experienced in software that around 10–50 defects per KStmt remain. For the fol-
lowing calculation we will assume that 30 defects/KStmt are remaining (which is
a common value [Jone96]. Thus, the following factors can be used:

a: 30 defects per KStmt (depending on engineering methods; should be based
on own history data)
b: 30 × 60% defects per KStmt, if defect detection before start of test is 60%

9.2 Fundamental Concepts 137

c: 30 × 60% × (overlapping degree) × 25% defects per KStmt (depending on
overlapping degree of resources)
d: 30 × 0.1–1% defects per KStmt depending on the amount of defects remain-
ing in a product at the time when it is reused

The percentages are, of course, related to the specific defect detection distribu-
tion in one’s own history database (Fig. 9.1). A careful investigation of stability of
reused software is necessary to better substantiate the assumed percentages.

Defined

3

Repeatable

2

Initial

1

0% 0% 5% 15% 65% 15%
5F/KLOC

1% 2% 7% 30% 50% 10%
3F/KLOC

DesignRequire-
ments

CMM
Level Coding Module

Test
Integration
+ Syst Test Field

2F/KLOC

2% 5% 28% 30% 30% <5%
Defined

3

Repeatable

2

Initial

1

0% 0% 5% 15% 65% 15%
5F/KLOC

0% 0% 5% 15% 65% 15%
5F/KLOC

1% 2% 7% 30% 50% 10%
3F/KLOC

1% 2% 7% 30% 50% 10%
3F/KLOC

DesignRequire-
ments

CMM
Level Coding Module

Test
Integration
+ Syst Test Field

2F/KLOC

2% 5% 28% 30% 30% <5%

2F/KLOC

2% 5% 28% 30% 30% <5%

Fig. 9.1. Typical benchmark effects of detecting faults earlier in the life cycle

9.2.3 Defect Detection, Quality Gates and Reporting

Since defects can never be entirely avoided, several quality control techniques
have been suggested for detecting defects early in the development life cycle:

design reviews
code inspections with checklists based on typical fault situations or critical ar-
eas in the software
enforced reviews and testing of critical areas (in terms of complexity, former
failures, expected fault density, individual change history, customer’s risk and
occurrence probability)
tracking the effort spent for analyses, reviews, and inspections and separating
according to requirements to find out areas not sufficiently covered
test coverage metrics (e.g., C0 and C1 coverage)
dynamic execution already applied during integration test
application of protocol testing machines to increase level of automatic testing
application of operational profiles and usage specifications from start of system
test

138 9 Defect Detection and Quality Improvement

We will further focus on several selected approaches that are applied for im-
proved defect detection before starting with integration and system test. The start-
ing point for effectively reducing defects and improving reliability is to track all
faults that are detected. Faults must be recorded for each defect detection activity.

Counting faults and deriving the reliability (that is failures over time) is the
most widely applied and accepted method used to determine software quality.
Counting faults during the complete project helps to estimate the duration of dis-
tinct activities (e.g., module test or subsystem test) and improves the underlying
processes. Typically software engineer view quality on the basis of faults, while it
is failures that reflect the customer’s satisfaction with a product. Failure prediction
is used to manage release time of software. This ensures that neither too much
time or money is spent on unnecessary testing that could possibly result in late de-
livery, nor that an early release occurs, which might jeopardize customer satisfac-
tion because of undetected faults. More advanced techniques in failure prediction
focus on typical user operations and therefore avoid wasting time and effort on
wrong test strategies. Failures reported during system test or field application must
be traced back to their primary causes and specific faults in the design (e.g., de-
sign decisions or lack of design reviews).

The quality of defect reporting during the entire development process deter-
mines the validity of quality predictions. Based on fault reports starting with first
delivery of software code by the author to the configuration management system,
predictive models can be developed on the basis of complexity metrics (see Sect.
4) and on the basis of reliability prediction models (see Sect. 5). As a result, it is
possible to determine defective modules or classes during design and field failure
rates during testing. This in turn can be used as exit criteria to balance cost of
quality with cost of non-quality and with project duration.

Fig. 9.1 shows that in organizations with rather low maturity (i.e., ranked ac-
cording to the capability maturity model) faults are often detected at the end of the
development process despite the fact that they were present since the design
phase. Late fault detection results in costly and time-consuming correction efforts,
especially when the requirements were misunderstood or a design flaw occurred.
Organizations with higher maturity obviously move defect detection towards the
phases where they were introduced.

9.3 Early Defect Detection

9.3.1 Reducing Cost of Non-Quality

Quality improvement activities must be driven by a careful look into what it
means in the bottom line of the overall product cost. It is not building a sustainable
customer relationship to deliver bad quality and ruin one’s reputation just to
achieve a specific delivery date. And it is useless to spend an extra amount on im-
proving quality to a level nobody wants to pay for. The optimum seemingly is in

9.3 Early Defect Detection 139

between. It means to achieve the right level of quality and to deliver in time. And
it means to continuously investigate what this best level of quality really means,
both for the customers and for the engineering teams who want to deliver it.

We look primarily at factors such as cost of non-quality to follow through this
business reasoning of quality improvements. For this purpose we measure all cost
related to error detection and removal (cost of non-quality) and normalize by the
size of the product (normalize fault costs). We take a conservative approach in
only considering those effects that appear inside our engineering activities, i.e.,
not considering opportunistic effects or any penalties for delivering insufficient
quality. To identify the respective metrics we followed a goal-driven approach
[VanS00].

Reducing total cost of non-quality is driven by the fault detection distribution
(see Fig. 9.1 again). Assuming a distinct cost for fault detection and repair (which
includes regression testing, production, etc.) per detection activity allows one to
calculate the total cost of non-quality for a distinct project. Obviously the activi-
ties of fault detection are taken into consideration and not necessarily the achieved
milestone. Milestones in today’s incremental development might completely mis-
lead the picture because a distinct milestone could be achieved early, while major
portions of the software are still in an earlier development phase. Cost of non-
quality in terms of average cost per fault is then calculated based on the respective
detection activity. This also supports using a fixed value per fault and activity in a
distinct timeframe, because finding a fault with module test including the correc-
tion takes a rather stable effort, as well as for instance the detection, correction,
regression test, production and delivery during system test.

Three key drivers for achieving the downstream targets were singled out and
periodically measured in all projects to improve defect detection during the life
cycle. They later coined the underlying engineering rules to establish consistent
defect detection processes.
1. Reading or checking speed in inspections or peer reviews. Reducing reading

speed during code inspections improves design defect detection effectiveness
and thus reduces normalized fault cost and customer-detected faults.

2. Faults found per new or changed statement with module test. Increasing faults
found per new or changed statement with module test improves design defect
detection effectiveness and thus reduce normalized fault cost and customer de-
tected faults.

3. Test defect detection effectiveness. Increasing test defect detection effective-
ness (i.e., percentage of remaining faults being detected during integration) re-
duces normalized fault cost and customer detected faults.

Our contribution to research in this domain was that we validate several key re-
lationships in real settings with projects based on legacy software [Eber99]. Our
contribution for practical development projects is that we propose meaningful and
valid approaches to achieve quantitative field performance improvement.

140 9 Defect Detection and Quality Improvement

9.3.2 Planning Early Defect Detection Activities

The most cost-effective techniques for defect detection are code reviews and in-
spections and module test. Detecting faults in architecture and design documents
has considerable benefit from a cost perspective, because these defects are expen-
sive to correct. Major yields in terms of reliability, however, can be attributed to
better code, for the simple reason that there are many more defects residing in
code that were also inserted during the coding activity. We therefore provide more
depth on techniques that help to improve the quality of code, namely code reviews
(i.e., code reading (COR) and code inspections (COI)) and module test.

There are six possible paths between the delivery of a piece of software from
design until the start of integration test (Fig. 9.2). They indicate the permutations
of doing code reading alone, performing code inspections and applying module
test. Although the best approach from a mere defect detection perspective is to ap-
ply inspections and module test, cost considerations and the objective to reduce
elapsed time and thus improve throughput suggest to carefully evaluate which
path to follow in order to most efficiently and effectively detect and remove faults.
In our experience code reading is the cheapest detection technique, while module
test is the most expensive. Code inspections lie somewhat in between.

En
tir

e
se

t o
f m

od
ul

es COR

COI M
od

ul
e

te
st

in
te

gr
at

io
n

te
st

En
tir

e
se

t o
f m

od
ul

es COR

COI M
od

ul
e

te
st

in
te

gr
at

io
n

te
st

Fig. 9.2. Six possible paths for modules between end of coding and start of integration test

Module test, however, combined with C0 coverage targets have the highest ef-
fectiveness for regression testing of existing functionality. Inspections, on the
other hand, help in detecting distinct fault classes that can only be found under
load in the field.

The target is to find the right balance between efficiency (time spent per item)
and effectiveness (ratio of detected faults compared to remaining faults) by mak-
ing the right decisions to spend the budget for the most appropriate quality assur-
ance methods. In addition overall efficiency and effectiveness have to be opti-
mized. It must therefore be carefully decided which method should be applied on
which work product to guarantee high efficiency and effectiveness of code reading
(i.e., done by one checker) and code inspections (i.e., done by multiple checkers in
a controlled setting). Wrong decisions can mainly have two impacts:

9.3 Early Defect Detection 141

The proposed method to be performed is too “weak”. Faults, which could have
been found with a stronger method, are not detected in the early phase. Too lit-
tle effort is spend in the early phase. Typically in this case efficiency is high,
and effectiveness is low.
The proposed method to be performed is too “strong” or overly heavy. If the
fault density is low from the very beginning, even an effective method will not
discover many faults. This leads to a low efficiency, compared to the average
effort that has to be spent to detect one fault. This holds especially for small
changes in legacy code.

Faults are not distributed homogeneously through new or changed code
[Wayn93, Eber97a]. By concentrating on fault-prone modules both effectiveness
and efficiency are improved. Our main approach to identify fault-prone software-
modules is a criticality prediction taking into account several criteria. One crite-
rion is the analysis of module complexity based on complexity metrics. Other cri-
teria concern the amount of new or changed code in a module, and the amount of
field faults a module had in the predecessor project.

The main input parameters for planning code inspections are:
General availability of an inspection leader. Only a trained and internally
certified inspection leader is allowed to plan and perform inspections to ensure
adherence to the formal rules and achievement of efficiency targets. The num-
ber of certified inspection leaders and their availability limits the number of
performed inspections for a particular project.
Module design effort (planned/actually spent). The actual design effort per
module (or class) can give an early impression on how much code will be new
or changed. This indicates the effort that will be necessary for verification tasks
like inspections.
Know-how of the checker. If specific know-how is necessary to check particu-
lar parts of the software, the availability of correspondingly skilled persons will
have an impact on the planning of code reviews and code inspections.
Checking rate. Based on the program language and historic experiences in
previous projects the optimal checking rate determines the necessary effort to
be planned.
Size of new or changed statements. Relating to the checking rate, the total
amount of the target size to be inspected defines the necessary effort.
Quality targets. If high-risk areas are identified (e.g., unexpected changes to
previously stable components or unstable inputs from a previous project) ex-
haustive inspections must be considered.
Achieving the entry criteria. The inspection or review can start earliest if en-
try criteria for these procedures can be matched. Typically at least error-free
compileable sources have to be available.

The intention is to apply code inspections to heavily changed modules first, in
order to optimize payback of the additional effort that has to be spent compared to
the lower effort for code reading. Formal code reviews are recommended to be

142 9 Defect Detection and Quality Improvement

performed by the author himself for very small changes with a checking time
shorter than two hours in order to profit from a good efficiency of code reading.
The effort for know-how transfer to another designer can be saved.

For module test some additional parameters have to be considered:
Optimal sequence of modules to be tested before start of integration test.
Start-up tests typically can start without having the entire set of new features
implemented for all modules. Therefore the schedule for module test has to
consider individual participation of modules in start-up tests. Later increments
of the new design are added to integration test related to their respective func-
tionality.
Availability of reusable module test environments. Effort for setting up so-
phisticated test environments for the module test must be considered during
planning. This holds especially for legacy code, where often the module test
environments and test cases for the necessary high C0 coverage are not avail-
able.
Distribution of code changes over all modules of one project. The number of
items to be tested has a heavy impact on the whole planning process and on the
time that has to be planned for performing module test. The same amount of
code to be tested can be distributed over a small number of modules (small ini-
tialization effort) or over a wide distribution of small changes throughout a lot
of modules (high initialization effort).
Achieving the entry criteria. The readiness of validated test lists is a manda-
tory prerequisite for starting the module test.

9.4 Criticality Prediction – Applying Empirical Software
Engineering

9.4.1 Identifying Critical Components

The distribution of defects among modules in a software system is not even. An
analysis of many projects revealed the applicability of the Pareto rule: 20% of the
modules are responsible for 80% of the malfunctions of the whole project
[Eber97a]. These critical components need to be identified as early as possible,
i.e., in the case of legacy systems at start of detailed design, and for new software
during coding. By concentrating on these components the effectiveness of code in-
spections and module test is increased and fewer faults have to be found during
test phases (see also Chap. 15).

It is of great benefit towards improved quality management to be able to predict
early on in the development process those components of a software system that
are likely to have a high fault rate or those requiring additional development ef-
fort. Criticality prediction is based on selecting a distinct small share of modules
that incorporate sets of properties that would typically cause defects to be intro-
duced during design more often than in modules that do not possess such attrib-

9.4 Criticality Prediction – Applying Empirical Software Engineering 143

utes. Criticality prediction is thus a technique for risk analysis during the design
process.

Criticality prediction is a multifaceted approach taking into account several cri-
teria. One criterion is the analysis of module complexity early in the life cycle.
There is no common agreement among psychologists what complexity is and what
makes some things more complicated than others. Of course, volume, structure,
order or the connections of different objects contribute to complexity. However,
do they all account for it equally? The clear answer is no, because different people
with different skills assign complexity subjectively, according to their experience
in the area.

Other criteria concern the amount of new or changed code in a module, and the
amount of field faults a module had in the predecessor project, etc. All these crite-
ria are used to build a complete criticality prediction model. Based on a ranking
list of criticality of all modules used in a build, different mechanisms can be ap-
plied to improving quality, namely redesign, code inspections or module test with
high coverage.

Instead of predicting the number of faults or changes (i.e., algorithmic relation-
ships) we consider assignments to groups (e.g., “fault-prone”). While the first goal
can be achieved more or less exactly with regression models or neural networks
predominantly for finished projects, the latter goal seems to be adequate for pre-
dicting potential outliers in running projects, where preciseness is too expensive
and is unnecessary for decision support.

Training and test data were taken from previous projects. All modules selected
for this experiment were from completed projects. They had been placed under
configuration control since the start of coding. Software defects or faults are all
deviations from functional requirements that are observed after the specific mod-
ule had been delivered by the designer as having full functionality. They are re-
corded within the configuration control system for each module together with sev-
eral complexity metrics. At this point we do not distinguish faults in terms of
potential downstream impact (e.g., cost or performance), as this is difficult to
judge during coding. Soft factors, such as designers' experiences are recorded dur-
ing the design process; however, for privacy reasons they were only temporarily
recorded and not for public access.

Having identified such overly critical modules, risk management must be ap-
plied. The most critical and most complex, for instance, the top 5%, of the ana-
lyzed modules are candidates for a redesign. For cost reasons mitigation is not
only achieved with redesign. The top 20% should have a code inspection instead
of the usual code reading, and finally at least the top 80% should not get any ex-
ception concerning a complete module test. By concentrating on these components
the effectiveness of code inspections and module test is increased and fewer faults
have to be found during test phases. To achieve feedback for improving predic-
tions the approach is integrated into the development process end-to-end (re-
quirements, design, code, system test, deployment).

144 9 Defect Detection and Quality Improvement

Evaluation of the classification approaches is based on [Wads90]:
low chi-square values, which is equal to reduced misclassification errors
comparing the two types of misclassification errors, namely type-I errors
(“fault-prone components” classified as “uncritical components”) and type-II
errors (“uncritical components” classified as “fault-prone components”).

The goal obviously must be to reduce type-I errors at the cost of type-II errors
because it is less expensive to investigate some components despite the fact that
they are not critical compared to labeling critical components as harmless without
probing further.

Fuzzy classification proved to be especially effective in the early identification
of critical components. This was underlined in some studies we performed. If
software engineering expert knowledge is available we recommend fuzzy classifi-
cation before using learning strategies that are only result-driven (e.g., classifica-
tion trees or mere neural network approaches). However, we see the necessity of
such approaches when only a few guiding principles are available and sufficient
project data can be utilized for supervised learning. Fuzzy classification was com-
bined with genetic algorithms to improve type-I misclassifications, while preserv-
ing the maximum chi-square. A natural limit of prediction correctness was de-
tected as the two data sets belonged to two entirely different populations.

It must be emphasized that using criticality prediction techniques does not
mean attempting to detect all faults. Instead, they belong to the set of managerial
instruments that try to optimize resource allocation by focusing them on areas with
many faults that would affect the utility of the delivered product. The trade-off of
applying complexity-based predictive quality models is estimated based on

limited resources are assigned to high-risk jobs or components
impact analysis and risk assessment of changes is feasible based on affected or
changed complexity
gray-box testing strategies are applied to identified high-risk components
fewer customers reported failures

9.4.2 Practical Criticality Prediction

The process for criticality classification and validation is shown graphically in Fig.
9.3:
1. Provide a list of all modules (or classes in object-oriented languages) at the start

of the project, during design and at the end of module test.
2. Provide a fault history classification for each module on the lists. A root cause

analysis might be added for high-ranking faults that allows for a Pareto-based
mitigation list.

3. Provide a change history classification (i.e., number of compiles or number of
deliveries).

4. Provide a complexity classification as indicated in previous sections.
5. Finalize a comprehensive criticality list that takes into account the different in-

puts from steps 2 4 mapped on the appropriate input list. Before the final rank-

9.4 Criticality Prediction – Applying Empirical Software Engineering 145

ings are presented to decide on further actions, the validity of the lists must be
evaluated (e.g. screening on reasonable modules, outliers, potential misleading
effects, etc.). The goal of screening is not to filter out what is thought to be un-
changeable, but rather to question undesired influences from history. Of course,
screening and ranking must primarily ensure that type I prediction errors are at
the lowest feasible levels.

6. Prepare suggestions based on ranked critical modules. Typical approaches in-
clude redesign of a few highest ranked modules according to a simultaneous
classification (i.e., the top modules must rank high in all three lists simultane-
ously). Redesign includes reduction of size, improved modularity, etc. Applica-
tion of thorough module test with high C0 coverage should be applied to high
runners according to independent classification (i.e., the top modules of all
three approaches are grouped). Details of complexity metrics must be investi-
gated for the selected modules to determine the redesign approach. In all cases
it is typically the different complexity metrics that indicate which approach in
redesign or test should be followed.

7. Validate and improve the prediction model based on post mortem studies with
all collected faults and the population of a ”real” criticality list. Then the actual
fault ranking is compared with the predicted ranking. The reasons for devia-
tions are investigated and the automatic classification approaches used are
tuned. The rules for screening are improved to ensure that type-II prediction er-
rors will be reduced the next time.

Our experiences show in accordance with other literature [Evan94b] that cor-
rections of faults in early phases is more efficient, because the designer is still fa-
miliar with the problem and the correction delay during testing is reduced.

Finished
project

Active
(running)
project

Project data
Static code

/ design
analysis

Statistical analysis,
construction of a fault-
class prediction modelError data

Static code
/ design
analysis

Fault-class
prediction

Criticality
prediction

Redesign,
focused

verification

Soft factors,
experience DB

Change history, actual/planned
effort, new/ changed code

Finished
project

Active
(running)
project

Project data

Finished
project

Active
(running)
project

Project data
Static code

/ design
analysis

Statistical analysis,
construction of a fault-
class prediction modelError data

Static code
/ design
analysis

Fault-class
prediction

Criticality
prediction

Redesign,
focused

verification

Soft factors,
experience DB

Change history, actual/planned
effort, new/ changed code

Fig. 9.3. Criticality prediction for source code based on static code analysis and code his-
tory

146 9 Defect Detection and Quality Improvement

9.5 Software Reliability Prediction

9.5.1 Practical Software Reliability Engineering

Software reliability engineering is a statistical procedure associated with the test
and correction activities during development. It is further used after delivery,
based on field data, to validate the prediction models. Customers of such predic-
tion models and the resulting reliability values are development managers who use
them to determine the best suitable defect detection techniques and to find the op-
timum delivery time. Operations managers use the data for deciding when to in-
clude new functionality in a delivered product that is already performing in the
field. Maintenance managers use the reliability figures to plan resources they need
to deliver corrections in due time according to contracted deadlines.

The current approach to software reliability modeling focuses on the testing and
rework activities of the development process. On the basis of data on the times be-
tween occurrences of failures, collected during testing, we attempt to make infer-
ences about how additional testing and rework would improve the reliability of the
product and about how reliable the product would be once it is released to the
user.

Software reliability engineering includes the following activities [Musa87,
Lyu95, Musa91]:

selecting a mixture of quality factors oriented towards maximizing customer
satisfaction
determining a reliability objective (i.e., exit criteria for subsequent test and re-
lease activities)
predicting reliability based on models of the development process and its im-
pact on fault introduction, recognition and correction
supporting test strategies based on realization (e.g., white box testing, control
flow branch coverage) or usage (e.g., black box testing, operational profiles)
providing insight to the development process and its influence on software reli-
ability
improving the software development process in order to obtain higher quality
reliability
defining and validating metrics and models for reliability prediction

The above list of activities is mainly from the customer’s point of view. When
making the distinction between failures and faults, the customer is interested in the
reduction of failures. Emphasis on reducing failures means that development and
testing is centered towards functions in normal and extraordinary operational
modes (e.g., usage coverage instead of branch coverage during system testing, or
operational profiles instead of functional profiles during reliability assessment). In
this section we will focus on the aspect of reliability modeling that is used for
measuring and estimating (predicting) the reliability of a software release during
testing as well as in the field.

9.5 Software Reliability Prediction 147

Such models use an appropriate statistical model, which requires accurate test
or field failure data related to the occurrences in terms of execution time. Several
models should be considered and assessed for their predictive accuracy, in order to
select the most accurate and reliable model for reliability prediction. It is of no use
to switch models after the facts to achieve best fit, because then you would have
no clue about how accurate the model would be in a predictive scenario. Unlike
many research papers on that subject, our main interest is to select a model that
would provide in very different settings (i.e., project sizes) of the type of software
we are developing a good fit that can be used for project management. Reliability
prediction thus should be performed at intermediate points and at the end of sys-
tem test.

At intermediate points, reliability predictions will provide a measure of the
product’s current reliability and its growth, and thus serve as an instrument for es-
timating the time still required for test. They also help in assessing the trade-off
between extensive testing and potential loss of market share (or penalties in case
of investment goods) because of late delivery. At the end of development, which
is the decision review before releasing the product to the customer, reliability es-
timations facilitate an evaluation of reliability versus the original set targets. Espe-
cially in communication, banking and defense businesses, such reliability targets
are often contracted and therefore are a very concrete exit criterion. It is common
to have multiple failure rate objectives.

For instance, failure rate objectives will generally be lower (more stringent) for
high failure severity classes. The factors involved in setting failure rate objectives
comprise the market and competitive situation, user satisfaction targets and risks
related to malfunctions of the system. Life-cycle costs related to development, test
and deployment in a competitive situation must be carefully evaluated, to avoid
setting reliability objectives far too high.

Reliability models are worthless if they are not continuously validated versus
the actually observed failure rates. We thus also include in our models, which will
be presented later in this section, a plot of predicted versus actually observed data.

The application of reliability models to reliability prediction is based on a ge-
neric algorithm for model selection and tuning:
1. Establish goals according to the most critical process areas or products (e.g., by

following the quality improvement paradigm or by applying a Pareto analysis).
2. Identify the appropriate data for analyzing faults and failures (i.e., with classifi-

cations according to severity, time between failures, reasons for faults, test
cases that helped in detection, etc.).

3. Collect data relevant for models that help to gain insight into how to achieve
the identified goals. Data collection is cumbersome and exhaustive: Tools may
change, processes change as well, development staff are often unwilling to pro-
vide additional effort for data collection and – worst of all – management often
does not wish for changes that affect it personally.

4. Recover historical data that was available at given time stamps in the software
development process (for example, fault rates of testing phases); the latter of
these will serve as starting points of the predictive models.

148 9 Defect Detection and Quality Improvement

5. Model the development process and select a fault introduction model, a testing
model and a correction model that suit the observed processes best.

6. Select a reliability prediction model that suits the given fault introduction, test-
ing and correction models best.

7. Estimate the parameters for the reliability model using only data that were
available at the original time stamps.

8. Extrapolate the function at some point in time later than the point in time given
for forecasting. If historical data is available after the given time stamps it is
possible to predict failures.

9. Compare the predicted fault or failure rates with the actual number of such in-
cidents and compute the forecast’s relative error.

Finally, this process can be repeated for all releases and analyzed to determine
the “best” model.

9.5.2 Applying Reliability Growth Models

Reliability growth models assume that when a failure occurs there is an attempt to
remove the design fault that caused the failure. After the correction the software is
set running again, to eventually fail yet again because of another fault. When the
defect is removed without causing a new fault, and under the assumption that the
number of defects is limited, reliability will grow over time. The successive times
of failure-free working are the input to probabilistic reliability growth models,
which use these data to estimate the current reliability of the software under study,
and to predict how the reliability will further improve in the future.

Many software reliability prediction models are based on some kind of Poisson
processes [Musa87, Lyu95, Musa91]. Poisson processes are well known in all
fields that deal with events that occur at random and independently from each
other. Applications include the occurrence of phone calls in a switching system or
their individual length. Both situations have been extensively investigated in traf-
fic theory with the result that they follow typical (Poisson) distributions that are
not normal but skewed, and which depend on several parameters. Naturally, the
occurrence of failures and of phone calls can be compared, providing a basis for
the definition of reliability models. Poisson models are based on a set of assump-
tions that are as follows (with time t, failure intensity (t) and cumulative failures

(t)):
Cumulative number of failures at the beginning is (t) = 0.
Failures are independent of other events or of history.
The probability of occurrence of a failure in a given small time interval is neg-
ligible and is the same for a second occurrence in the same small time interval.

An important property of the Poisson process is its additivity, which says that
mutually independent Poisson processes with intensities i can be superimposed to
create an overall Poisson process with intensity , where is the sum of all i .

9.5 Software Reliability Prediction 149

Formally both the failure intensity (t) and the collection of all failures at time t,
(t), are Poisson distributed random variables.

A model with constant failure intensity, a homogeneous Poisson process, is ap-
plicable during field operations without fault corrections. On the other hand, if
corrections are made in response to failures, such as during testing or when new
releases are introduced to the field, then a nonhomogeneous Poisson process
(NHPP) is appropriate. In the latter case the failure rate decreases over time with
corrections being provided (including the consideration of defective corrections).
The second approach to a decreasing failure rate is divided into two basic models
[Musa87, Lyu95].

Infinite failure models like the logarithmic nonhomogeneous Poisson execution
time model (LNHPP).

() = 0exp(–)

Other representatives are the Littlewood-Verrall model and the Weibull process
model.
Finite failure models like the basic exponential nonhomogeneous Poisson exe-
cution time model (ENHPP).

() = (0–)

This function assumes a linear decrease in intensity with each detection (and
correction) of a failure. Other representatives are the expanded exponential S-
shaped Yamada-Osaki model or the Crow model.

For a distinct subset of tests during subsystem and system test, an ENHPP
model can approximate the reported fault rates with good accuracy. In order to
validate forecasts made in the past, rates reported after the time that the forecast
was made can be compared with the ones that were extrapolated (Fig. 9.4).

Fault rate
reported
Fault rate
predicted

Prediction time

Project time in weeks

Fa
ul

ts

Fault rate
reported
Fault rate
predicted

Prediction time

Project time in weeks

Fa
ul

ts

Fig. 9.4. Application of ENHPP model to predict fault rates

The reality of software development and operation lies somewhere between the
two formal models. Failures may occur as a result of interaction between several

150 9 Defect Detection and Quality Improvement

faults (e.g., two fatal faults are in immediate sequence, leaving the correction of
only one of them without any effect on the failure rate). Another phenomenon that
we observed within communication systems is load-dependent failures that typi-
cally occur after the same parts of the code have been executed several times. In
this case the individual fault processes are not Poisson distributed as long as the
execution or load sequence by itself is not a Poisson process. This pattern often
causes communications software to fail once the environment changes (e.g. work-
load or equipment changes), although the software seemed to operate fault-free
during test.

Software failures are gathered and faults are detected from time to time based
on an analysis of cumulated failure descriptions, thus resulting in the detection of
faults that have caused between none and several different failures. Delayed fault
detection and correction or cumulated corrections of software (which is common
in huge systems with several million statements) are, of course, non-Poisson dis-
tributed. To make things easier, theory provides a law of huge numbers: as time
and thus failures approach infinity in such a way that the arrival of any failure is
very unlikely (i.e., in the field), superimposed occurrences (t) converge to a Pois-
son process.

The overall goal is, of course, not to accurately predict the failure rate but to be
as close as possible to a distinct margin that is allowed by customer contracts or
available maintenance capacity. An example for a practically used combined reli-
ability profile summarized from various models is showed in Fig. 9.5.

9.6 Calculating ROI of Quality Initiatives

Quality improvement is driven typically by two overarching business objectives:
improving the customer-perceived quality
reducing the total cost of non-quality

Project time in days

Predicted failure rate
Actual failure rate

Fa
ilu

re
s

Prediction time

Project time in days

Predicted failure rate
Actual failure rate

Fa
ilu

re
s

Prediction timePrediction timePrediction time

Fig. 9.5. Predicted field failure rate of several increments

9.6 Calculating ROI of Quality Initiatives 151

Improving customer-perceived quality can be broken down to one major im-
provement target, namely to systematically reduce customer detected faults. Re-
ducing field defects and improving customer-perceived quality almost naturally
improves the cost-benefit values along the product life cycle. Investments are
made to improve quality, which later improve the customer satisfaction. Therefore
the second objective of reducing the cost of non-quality comes into the picture:
this is the cost of activities related to detecting defects too late. Both aspects con-
tribute to reduced product cost and therefore improve the bottom line.

Return on investment (ROI) is a critical, yet often misleading expression when
it comes to development cost or justification of innovative technologies
[Wayn93]. Too often heterogeneous cost elements with different meaning and un-
clear accounting relationships are combined into one figure that is then optimized.
For instance, reducing the “cost of quality” that includes appraisal cost and pre-
vention cost is misleading when compared with cost of nonconformance because
certain appraisal costs (e.g., module test) are components of regular development.
Cost of nonconformance (cost of non-quality) on the other hand is incomplete if
we only consider internal cost for fault detection, correction and redelivery be-
cause we must include opportunity cost due to rework at the customer site, late de-
liveries or simply binding resources that otherwise might have been used for a
new project.

ROI is difficult to calculate in software process improvement. This is not really
due to not having collected effort figures but rather because it is necessary to dis-
tinguish the actual effort figures that relate to investment (that would have other-
wise not been done) and the returns (as a difference to what would have happened
if it had not been invested). At Alcatel in the past years we built a set of ROI cal-
culations related to software process improvement.
The following rules should be considered for calculating ROI effects:

Samples should consider projects before and after the start of the improvement
program to be evaluated with ROI.
Controlling should be able to provide history data (e.g., effort).
Aggregated or combined effort or cost figures must be separated (i.e., preven-
tion, appraisal cost, cost of nonperformance, cost of performance – which are
typically spent in any case).
Include only those effects that trace back to root causes that were part of the
original improvement planning.
Check cost data for consistency within one project and across projects.

ROI is most efficiently presented according to the following flow:
1. Current results (these are the potentials, i.e., problems, cost; causes)
2. Known effects in other (competing) companies (i.e., improvement programs in

other companies, benchmarking data, cost-benefit estimation for these compa-
nies)

3. ROI calculation (calculate cost of quality per month for several sample pro-
jects; calculate the savings since start of the improvement program; extrapolate
these savings for all affected projects, which is benefit; compare the benefit

152 9 Defect Detection and Quality Improvement

with the cost of the improvement program, which is ROI; never include the cost
of performance since this is regular effort)

We had the following experiences with ROI calculations:
It is more accurate and far easier to collect different effort figures during a pro-
ject than afterwards.
Activities related to distinct effort figures must be defined (activity-based cost-
ing helps a lot).
Cost and effort must not be estimated, but rather collected in projects (typically
the inputs to the estimation are questioned until the entire calculation is no
longer acceptable).
Detailed quality costs are helpful for root cause analyses and related defect pre-
vention activities.
Tangible cost savings are the single best support for a running improvement
program.
Cost of nonperformance is a perfect trigger for a process improvement pro-
gram.
Obvious management and software engineering practices are typically not ROI
topics.
There are many “hidden” ROI potentials that are often difficult to quantify
(e.g., customer satisfaction; improved market share because of better quality,
delivery accuracy and lower per feature costs; opportunity costs; reduced main-
tenance costs in follow-on projects; improved reusability; employee satisfac-
tion; resources are available for new projects instead of wasting them for fire-
fighting).
There are also hidden investments that must be accounted (e.g., training, infra-
structure, coaching, additional metrics, additional management activities, proc-
ess maintenance).
Process metrics are mandatory for following up and reinforcing changes (i.e.,
without metrics no improvement, and without improvement no metrics).

Not all ROI calculations are based on monetary benefits. Depending on the
business goals, they can as well be directly presented in terms of improved deliv-
ery accuracy, reduced lead time or higher efficiency and productivity.

For early defect detection, we will try to provide detailed insight in an ROI cal-
culation (Table 9.1). The data that are used for calculations result from average
values that have been gathered in our project history database. We will compare
the effect of increased effort for combined code reading and code inspection ac-
tivities as a key result of our improvement program. The summary shows that by
reducing the amount of code to be inspected per hour by more than a factor of
three, the efficiency in terms of faults detected increased significantly. As a result
the percentage of faults detected during coding increased dramatically. While
reading speed reflects only the actual effort spent for fault detection, the effort per
KStmt includes both detection and correction, thus resulting in around 3 PH/Fault,
which seems stable.

9.6 Calculating ROI of Quality Initiatives 153

Given an average-sized development project and only focusing on the new and
changed software without considering any effects of defect-preventive activities
over time, the following calculation can be derived. The effort spent for code read-
ing and inspection activities increases by 1470 PH. Assuming a constant average
combined appraisal cost and cost of nonperformance (i.e., detection and correction
effort) after coding of 15 PH/Fault, the total effect is 9030 PH less spent in year 2.
This results in a ROI value of 6.1 (i.e., each additional hour spent on code reading
and inspections yields 6.1 saved hours of appraisal and nonperformance activities
afterwards).

Effects of applying complexity-based criticality prediction to a new project can
be summarized as follows: 20% of all modules in the project were predicted as
most critical (after coding). and these modules contained over 40% of all faults
(up to release time). Knowing that at least 60% of all faults can be detected until
the end of module test and fault correction during module test and code reading
costs less than 10% compared to fault correction during system test, 24% of all
faults can be detected early by investigating 20% of all modules more intensively
with 10% of the effort compared to fault correction during system test, therefore
yielding a 20% total cost reduction for fault correction.

Additional costs for providing the static code analysis and the related statistical
analysis are in the range of few person hours per project. The tools used for this
exercise are off-the-shelf and readily available (e.g., static code analysis, spread-
sheet programs).

Table 9.1. ROI calculation of process improvements with focus on code reading / inspec-
tions (defect prevention activities are not considered for this example)

baseline year 1 year 2
Reading speed [Stmt/PH] 183 57 44
Effort per KStmt 15 24 36
Effort per Fault 7.5 3 3
Faults per KStmt 2 8 12
Effectiveness [% of all] 2 18 29

Project: 70 KStmts. 2100 Faults estimated based on
30 defects per KStmt
Effort for code reading or inspections [PH] 1050 2520
Faults found in code reading/inspections 140 840
Remaining faults after code reading/inspections 1960 1260
Correction effort after code reading/inspections
[PH] (based on 15 PH/F average correction effort) 29400 18900
Total correction effort [PH] 30450 21420

ROI = saved total effort/additional detection effort 6.1

154 9 Defect Detection and Quality Improvement

9.7 Hints for the Practitioner

We advocate at many places in this book to build your own history database.
However, everybody initially is at the point where bootstrapping a certain initia-
tive needs some concrete data – before even building a history database. Where do
you get such initial data? We started looking into books and conference proceed-
ings, cost estimation tools, lots of own project lessons learned, and gradually ex-
tracted some simple rules of thumb that we could use even in situations where no
historic information was accessible.

This section summarizes some quality-related rules of thumb in software pro-
jects. It is far from complete and certainly is not as scientific and supported by ex-
periments as some later parts of this chapter – but it is a start. The data stems from
our own history databases and also from a number of external sources, such as es-
timation tools, project management literature, etc. [Eber96, Jone97, Musa87,
Lyu95, Jone01, McCo98, Royc98, Fent97].

The amount of remaining defects at code completion (i.e., code has been
finished for a specific component and has passed compilation) can be esti-
mated in different ways. If size in KStmt or KLOC is known, this can be
translated into remaining defects. We found some 10 50 defects per
KStmt depending on the maturity level of the respective organization. This
is based only on new or changed code, not including any code that is re-
used or automatically generated.

Defect detection and correction – after the activity where the defect was in-
troduced – costs around 30 70% of total engineering (project) effort. This
is what we call cost of non-quality. It is by far the biggest chunk in any
project that can be reduced to directly and immediately save cost!

Defect detection by means of inspection is the least expensive of all manual
defect detection techniques. We found some 1 3 person hours per defect
for inspections and peer reviews. Before starting peer reviews or inspec-
tions, all tool-supported techniques should be fully exploited, such as static
and dynamic checking of source code. Module test comes after peer re-
views, as it detects other defect classes and needs some 2 10 person hours
per defect.

Defect detection is roughly 30% per distinct defect detection (quality con-
trol) activity. That translates into 30% of defects remaining at a certain
point of time can be found with a new defect detection technique. This is a
cascading approach, where each cascade (e.g., static checking, peer review,
module test, integration test, system test, beta test) removes some 30% of
defects. It is possible to exceed this number slightly towards 40 50% but
at dramatically increasing cost per defect.

9.8 Summary 155

If 30% of defects are removed per detection activity then 70% will remain.
Remaining defects at the end of the project thus equal the amount of de-
fects at code completion times 70% to the power of independent detection
activities (e.g., code inspection, module test, integration test, system test,
etc.).

Typical release quality of software is 90% of all initial defects at code
completion will reach the customer. Depending on the maturity of the
software organization, the following defects at release time can be ob-
served: CMM Level 1: 5 60 defects/KStmt; Level 2: 3 12 defects/KStmt;
Level 3: 2 7 defects/KStmt; Level 4: 1 5 defects/KStmt; Level 5: 0.5 1
defects/KStmt. Don’t expect high quality in external components from sup-
pliers on low maturity levels, especially if not explicitly contracted.

Improving release quality needs time: 5% more defects detected before re-
lease time translates into 10 15% more lead-time in the project.

Corrections create some 5 30% of new defects depending on time pressure
and underlying tool support. Especially late defect removal on the critical
path to release cause many new defects because quality assurance activities
are undermined and engineers are stressed. This must be considered when
planning testing/validation or maintenance activities.

The amount of necessary test cases can be estimated by functionality and
translates roughly into 0.3 1 test case per Function Point. For procedural
languages such as C, this translates into 3 7 test cases per KStmt.

At least 30% of all test cases are redundant. This is an excellent business
case in itself towards applying better test management and test coverage
tools. Orthogonal test case arrays help in reducing test redundancies.

Software strictly follows the Pareto principle. As a rule of thumb, 20% of
all components (subsystems, modules, classes) consume 60 80% of all re-
sources. 20% of all components contain 60% of all effective defects. 20%
of all defects need 60 80% of correction effort and 20% of all enhance-
ments require 60 80% of all maintenance effort.

9.8 Summary

Quality improvement such as increased reliability and maintainability are of ut-
most importance in software development. In this field, which was previously ad
hoc and unpredictable rather than customer-oriented, increasing competition and
decreasing customer satisfaction have motivated many companies to put more

156 9 Defect Detection and Quality Improvement

emphasis on quality. The software industry’s problem is that the maturity with re-
spect to “numbers” is poor. While solutions abound, knowing which solutions
work is the big question.

We have introduced in this chapter to several practical techniques for analyzing
and improving software quality. They are based on ideas of measurement, quanti-
fication, and feedback. All your quality requirements can and should be specified
numerically. This means quantifying qualities such as security, portability,
adaptability, maintainability, robustness, usability, reliability, and performance.
Based on experiences in our projects as well as external benchmarking studies we
have summarized some rules of thumb for practitioners. This allows introducing
quality metrics without exhaustive upfront internal data collection. Of course,
these rules of thumb do not relieve using own metrics for improving accuracy.

10 Software Process Improvement

They always say time changes things,
but you actually have to change them yourself.

Andy Warhol

10.1 Process Management and Process Improvement

Today, software is a major asset of many companies. R&D investments primarily
go into software development for a majority of applications and products. To stay
competitive with software development, many companies are putting in place or-
chestrated improvement programs of their engineering processes and the underly-
ing engineering tools environments. Often the improvement programs also include
a broader perspective into reengineering existing R&D processes.

We call such comprehensive engineering process improvement approach “e-
R&D” following the notation of business process improvement and e-business ini-
tiatives. The term e-R&D also means enabling of interactive R&D processes and
allows increasingly collaborative work independent of location. e-R&D can be
broken into three implementation tracks:

strengthened process capability
visibility
workflow integration

Strengthened process capability is key to e-R&D. If you do not know where
you are and where you want to go, change will never lead to improvement. Effec-
tive process improvement is achieved by using the well-known Capability Matur-
ity Model (CMM or CMMI), originally issued by the Software Engineering Insti-
tute [Paul95, Aher03]. This model provides a framework for process improvement
and is used by many software development organizations. It defines five levels of
process maturity plus an improvement framework for process maturity and as a
consequence, quality and predictability.

This model must be combined with a strong focus on business objectives and
metrics for follow-up of change implementation. Otherwise, the risk is high that
too much attention is focused on processes and not enough on what is essential for
customers and shareholders. For instance, several years ago, Alcatel’s voice net-
works business unit primarily focused on field quality improvement. Later, rapidly
changing markets pushed the carriers to offer new services at a rapid pace, so we
cut cycle time. Such a shift of priorities in a consistent and sustainable way is only

158 10 Software Process Improvement

achieved with a strong organizational process focus. Alcatel would not have
achieved it without being on CMM Level 3 in that business unit.

Are processes and engineering tools related? That is perhaps the major differ-
ence between process improvement as it is described in the theoretical literature
and e-R&D for practical usage. e-R&D takes a more comprehensive view. Proc-
esses without adequate tool support remain theoretic. The objective is to improve
visibility in engineering and master a variety of workflows and external interfaces
related to R&D. e-R&D must bridge the needs of process improvement with ade-
quate tool support – but without tightly coupling them.

These workflows together describe how software engineering work products
are gradually generated and further on embedded in products or services. They in-
dicate the link to corporate business processes and specific tools environments.
Some workflows are entirely internal to engineering, while others are at the
boundary to other functions. Service request management exemplifies such a
workflow and related interfaces. Service requests result from field operations and
are treated within R&D for corrections that are again deployed to the field.

Being able not only to reuse information but also to embed the respective proc-
esses in more integrated workflows for specific tasks generates immediate returns
by making engineers more flexible, and it reduces friction caused by manual over-
head at the boundaries of those tools and processes. A simple business case could
be constructed by taking the time and effort necessary to move engineers from one
project to another. Having standard workflow management around a standard
product life cycle reduces the learning effort to real technical challenges, instead
of organizational overhead.

Emphasis, however, is given towards setting and dealing with quantitative ob-
jectives and thus making progress of the improvement initiative visible. As such
our experiences are to a lower degree targeted towards the failing improvement
initiatives with their specific problems during the first months after the assess-
ment, but rather for those with sufficient breadth – especially on the upper man-
agement side – to continuously stretch the targets and thus never stop pushing for
improvements.

Although we focused from the beginning on many key process areas (KPAs) in
parallel and not so much on the leveraged approach of the CMM, the clear objec-
tive typically is during the first years of such an initiative to improve predictability
and customer-perceived quality, and to lower the cost of non-quality.

Why do software organizations embark on the CMM? There are several an-
swers to this question. Certainly it is all about competition. The trend in the indus-
try as a whole is growing towards higher maturity levels. Companies have started
to realize that momentum is critical: If you stand still, you fall behind! The busi-
ness climate and the software marketplace have changed in favor of end users and
customers. Companies need to fight for new business, and customers expect proc-
ess excellence.

Outstanding companies certainly do not embark on process improvement be-
cause they collect “certificates”. It is all about business: Your competitors are at
least at this same place (or ahead of you). The goal is to further improve planning

10.1 Process Management and Process Improvement 159

and decision making, lower costs, increase adherence to schedule and improve
product quality.

Most industry results published describe the background of such a program
with too much focus on the assessment and improvement framework [Chri03,
Aher03, Muta03, Wohl95]. The published results of SPI initiatives within CMM
L5-ranked Boeing Defense and Space Group [Wigl97] and a group within Mo-
torola [Eick03] surely help us to understand the value of moving on the long path
towards CMM L5. As one senior manager from a level-5 company said in a work-
shop: “The most valuable asset in our process improvement initiative is that all
these engineers still remember how awful it was when we were still at Level 1”.

Several studies investigate the added value of a SPI program from a quantita-
tive perspective [McGi96, McGa01, Dekl97]. They try to set up a return on in-
vestment (ROI) calculation that however typically takes average values across or-
ganizations and would not show the lessons learned in sufficient depth within one
organization. It has been shown in these studies that the CMM is an effective
roadmap for achieving cost-effective solutions. It has, by the way, not yet been
proven for the CMMI, which still is in its infancy [Aher03].

Key terminology in this chapter is briefly explained here. A policy is a high-
level but concrete commitment that each process has to follow. It is sufficiently
abstract to be used independently of environmental changes in the business unit.
An example of a policy is the directive to only start a project if the resources are
identified and assigned.

A process is a sequence of steps performed for a given purpose, for example,
the software development process. The process follows the guidance provided by
enterprise or business unit policies. A work product or artifact is the outcome of a
process. It can be intermediate and internal to a process or it can be delivered to
another process. A process document is a description of objectives to be achieved
with the process, the inputs and outputs of the processes, the steps that transform
inputs into outputs, and actors responsible for certain steps of the process. A proc-
ess is typically hierarchically described. A process element is one piece of a proc-
ess on a lower level, typically used to model a specific aspect or step of a more
complex process.

Process diversity refers to processes or workflows that follow the same set of
higher-level policies, but implemented in different ways. Managing process diver-
sity is primarily achieved by manual or automatic instantiation of such processes
for a concrete environment and its specific conditions. The topic of process diver-
sity and different approaches to dealing with it has been evaluated and described
in [Lind00, Eber03b].

The CMM is the Capability Maturity Model, for a decade the de facto standard
of software process improvement [Paul95]. It is structured into five levels of
growing maturity (Table 10.1). Each level as of Level 2 consists of several KPAs.

The CMMI is the integrated CMM [Aher03]. The CMMI is gradually replacing
the CMM, as it covers a wider range of process areas and application domains. In
this book we do not distinguish the two frameworks in detail and for simplicity
talk about “CMM”. SPI is software process improvement. In this context we do
not distinguish much between hardware and software systems regarding business

160 10 Software Process Improvement

processes and the underlying management processes in portfolio and project man-
agement. An EPG is the engineering process group, sometimes also referred to as
SEPG for software engineering process group. It is the team of people responsible
for implementing changes to engineering processes.
The chapter is organized as follows. Section 2 provides an overview on process
improvement and summarizes the fundamental background. Section 3 introduces
the topic and background of managing processes and process diversity. Section 4
looks on the business perspective and underlines what rewards to expect from
process improvement. Section 5 provides practical hints for practitioners and sec-
tion 6 summarizes the major lessons from process management and improvement.

Table 10.1. The five maturity levels of the CMM and their respective impact on perform-
ance (based upon [Paul95])

CMM
Level

Title Focus Key Process Areas

5 Optimizing Continuous process im-
provement on all levels

Process change management
Technology change management
Defect prevention

4 Managed Predictable product and
process quality

Quality management
Quantitative process management

3 Defined Standardized and tailored
engineering and manage-
ment process

Organization process focus
Organization process definition
Product engineering
Integrated product management
Intergroup coordination
Training program
Peer reviews

2 Repeatable Project management and
commitment process but
still highly people-driven

Requirements management
Project planning
Project tracking & oversight
Subcontract management
Quality assurance
Configuration management

1 Initial Heroes and massive effort
with chaotic results

10.2 Software Process Improvement

10.2.1 Making Change Happen

Process improvement has primarily to do with implementing changes. Successful
process improvement is successful change management. Success is what is visible
in the top and bottom lines. We look here primarily at what can be influenced di-
rectly within R&D process improvement, which impacts the bottom line more
than the top line. Inefficiencies can be attacked, rework can be reduced, customer
satisfaction can be improved, and effectiveness and productivity can be enhanced.

10.2 Software Process Improvement 161

Successful change management impacts the “people side” of business. Tech-
nology typically can be changed with a new product or at project start, or can be
facilitated with dedicated training and tools. However, it is more difficult to over-
come obstacles that result from the people working with this technology, who
might have been working for years in a specific way. Suddenly these previously
successful ways of working (i.e., what we call processes) prove obsolete. These
changes are difficult in many dimensions. From an individual perspective, engi-
neers fear that with defined processes they can be replaced easier or their work
could be outsourced. Managers realize that they not only need to understand new
ways of working but they also need to learn new ways of managing people and in-
novation.

On an individual level, behaviors have to change. On a corporate level, culture
has to change. Cultural change is still a phenomenon dealt with mostly within
business outside the software engineering and IT world [Harv93, Pete88, Binn95].
In particular, the latter study outlines with lots of practical insight from several or-
ganizations (among them none with software as their core business) that the more
successful leaders are in giving clear direction and being forthright, the more they
encourage people to take responsibility and to express their true thoughts and feel-
ings.

Successful process improvement means that results are tangible, are in line with
expectations, provide business value and are sustainable – even if management at-
tention is reduced (Fig. 10.1). At the top of the picture we summarize the starting
point of any change program, namely knowing what one’s own situation is (by
means of an assessment) and knowing what the objectives are for the changes.
This has often been summarized as the combination of a map (i.e., knowing one’s
own position) and a goal (i.e., knowing where you want to go to). The two belong
together like two sides of that one coin of successful process improvement.

Process improvement is a journey – typically without an end. It is a journey be-
cause there are many intermediate targets. It has no clearly defined end, since
there are always companies eagerly waiting to take your business. It is not just a
few months of effort and then comes the next wave of new things. In fact, process
improvement is the commitment to continuous changes, as it is asked from all do-
ing business in the software arena. To wait and rest on one’s achievements too
long typically means to see a new competitor entering the picture. The entry barri-
ers are so low that success and loss are only a few months (and sometimes mouse
clicks) apart.

This journey is best portrayed by a cyclic endeavor of iterative improvements.
We start at the top with establishing sponsorship. This is key to any change, as it
means that the responsible highest management makes a personal commitment to
making the change happen. From this executive sponsorship stem the business ob-
jectives that the changes should achieve. The next step is the assessment. Typi-
cally assessments follow a well-defined formalized scheme (e.g., CMM CBA-IPI
assessment or CMMI SCAMPI method [Aher03]).

The assessment generates a snapshot of one’s own current situation, and how
that relates to the objectives. Gaps are identified as are next steps. From those gaps
a concrete action plan is derived that serves as the basis for making the change ini-

162 10 Software Process Improvement

tiative into a concrete project. The action plan must be implemented in the form of
a regular project, or there will be a continuous lack of resources and insufficient
management follow-up. The last piece in this iteration is the continuous tracking
of actual improvement performance versus original objectives and versus project
milestones. Here is where metrics come very much into the picture to make
changes tangible and to identify what works and what needs still more effort and
focus.

Effective
changes

Action
planning

Assessment

Feedback loop
• Project performance
• Customer satisfaction
• Metrics
• Quality assurance
• Root cause analysis

Process improvement …
• … evaluates results
• … draws conclusions
• … is focused on business

Business
objectives

Effective
changes

Action
planning

Assessment

Feedback loop
• Project performance
• Customer satisfaction
• Metrics
• Quality assurance
• Root cause analysis

Process improvement …
• … evaluates results
• … draws conclusions
• … is focused on business

Business
objectives

Fig. 10.1. Effective and sustainable changes result from knowing the objectives and the
current situation

We talk a lot about the different levels of the CMM or CMMI. Let us briefly
and informally characterize them since they impact the way we address change
management in this chapter (Table 10.1). There are five levels, of which Level 2 is
the most difficult to reach with respect to culture changes in the organization. The
major culture change from an ad hoc behavior on Level 1 to the controlled behav-
iors per project on Level 2 is as follows:

joint commitments are made within the scope of a project
project plans become increasingly realistic
the whole project team reviews and has input to the plan
estimates are made by teams of developers
schedules made by project managers comprehend real work time

Towards Level 3 we see another pattern, that of generalizing changes so that
they impact the entire organization. This means:

the organization adopts a standardized process framework
a common professional culture emerges

10.2 Software Process Improvement 163

the culture is carried by all engineers and driven by increased pride in the or-
ganization
development and training is achieved through using process assets
focus on performance improvement with clear business perspective
customers feel with each contact a coherent and focused way of working
less rework and cost of non-quality allows the organization to focus on new de-
velopment
motivated personnel stay with the organization

Towards Level 4 we see again a substantial change in culture, this time from
the organization back to projects and directly linking performance improvement
targets to process improvement. This is where profound process knowledge is
consistently visible on all levels and in all functions and roles. Level 5 finally
looks into continuous improvements that are driven by empowered teams and in-
dividuals.

10.2.2 Setting Reachable Targets

Process improvement needs software measurement. Fig. 10.2 shows the de-
pendencies between the execution of a process, its definition and the improve-
ments. Improvements are only feasible if they relate to measurement. Processes
must be judged whether they are good or bad, or whether they are better or worse
than before. To make change sustainable, it must be based on realistic targets.

The interaction of objectives and feedback is obvious in day-to-day decision
making. Different groups typically work towards individually controlled targets
that build up to business division-level goals and corporate goals.

The example of improving maintainability indicates this hierarchy. A depart-
ment or business division-level goal could be to improve maintainability within
legacy systems, as it is strategically important for all telecommunication suppliers.
Design managers might break that down further to redesigning exactly those com-
ponents that are at the edge of being maintainable. Project managers, on the other
hand, face a trade-off with time to market and might emphasize on incremental
builds instead. Clearly both need appropriate indicators to support their selection
processes that define the way towards the needed quantitative targets related to
these goals. Obviously, one of the key success criteria for SPI is to understand the
political context and various hidden agendas within the organization in order to
make compromises or weigh alternatives.

Objectives related to individual processes must be unambiguous and agreed
upon the respective groups. This is obvious for test and design groups. While the
first are reinforced for finding defects and thus focus on writing and executing ef-
fective test suites, design groups are targeted to delivering code that can be exe-
cuted without defects. Defects must be corrected efficiently, which allows for set-
ting up a quantitative objective for a design group, that is, the backlog of faults it
has to resolve. This may uncover one of the many inherent conflict situations em-
bedded in an improvement program. Setting an overall target of reducing defects

164 10 Software Process Improvement

found by the customer of course triggers immediate activities in design, such as
improved coding rules, establishing code inspections, etc. Finding such defects up
front means better input quality to integration test that as a result might not be able
to still accomplish efficiency targets, such as a distinct rate of faults per test case.
Besides reaching test coverage, a successfully running test case has little worth
from a cost reduction perspective, which shows the inherent dilemma of conflict-
ing goals.

Define
Process

Measure
Process

Execute
Process

Improve
Process

Control
Process

Agree on
Objectives

Define
Process

Measure
Process

Execute
Process

Improve
Process

Control
Process

Agree on
Objectives

Fig. 10.2. Process improvement is based on upon process measurement

A goal-oriented measurement approach (see Chap. 3) ensures that process im-
provement is embedded in a closed feedback loop (see Fig. 10.3). Goals are busi-
ness-driven and are translated into annual targets or key performance indicators.
They are reflected in and tracked with scorecards. A history database captures
process, product and project information. It helps with tailoring processes and
with setting specific process and project targets. It also facilitates setting control
limits for statistical process control. The feedback loop is built upon measure-
ments from processes that are analyzed versus control limits and compared with
targets.

It is important to consider different perspectives and their individual goals re-
lated to promotion, projects and the business. Most organizations have at least four
such perspectives: those of the practitioner, the project manager, the department
head and senior management/executives. Their motivation and typical activities
differ greatly and often create confusing goals. Generally senior management and
practitioners support improvement programs because they feel the needs on a
daily basis. This is less true for middle management that has to make improve-
ments happen within conflicting goals and commitments. Projects are still running
with agreed-upon deadlines and available resources, while impetus for change
might require specific additional resources at a given moment. The yield of any
improvement initiative can be substantially lowered if preconditions are not satis-
fied in the day-to-day project work. For instance, asking for inspections before es-
timation and planning are adapted might result in superficial preparation and

10.2 Software Process Improvement 165

document reading, thus not detecting all defects that could have been found and,
in addition, provoking review findings that are never closed.

Lack of buy-in of middle management to our experience has two crucial ef-
fects. First, they definitely put medium-term improvement at a lower priority be-
cause they are measured according to short-term project results. Second, they
might even send conflicting signals to engineers. Often the traditional reward sys-
tems stem from hierarchical organizations that disempower teams charged with
executing cross-functional processes. Reuse is an example that continuously cre-
ates such discussions. When a project incurs expenses in order to keep compo-
nents maintainable and to promote their reusability, who pays for it and where is
this trade-off recorded in a history database that only compares efficiency of pro-
jects and thus of their management? Obviously, another critical success factor is to
make existing management processes compatible with redesigned business proc-
esses. This includes measuring middle management towards achieving realistic
and quantified improvements objectives – in other words to leave the classic func-
tional line- or project-oriented merit rating.

Metric

Goal

Question
History/process

database

SPC

Business
Product, Project
People
Processes

Improvement actions,
processes,
methods, tools,
tailoring per project

Business goals,
KPIs, annual targets,
performance scorecards

Targets,
forecasts,
control limits

process
learning,
training

Immediate
actions

Analysis

Score-
card

Guidance
per project

Metric

Goal

Question
History/process

database

SPCSPC

Business
Product, Project
People
Processes

Improvement actions,
processes,
methods, tools,
tailoring per project

Business goals,
KPIs, annual targets,
performance scorecards

Targets,
forecasts,
control limits

process
learning,
training

Immediate
actions

Analysis

Score-
card

Score-
card

Guidance
per project

Fig. 10.3. Goal-oriented measurement ensures that process improvement is embedded in a
closed feedback loop

Before moving to the second part of effective change, namely feedback, we
should spend a word on planning change. Change should be undertaken in a
timely way. It should not be forced so fast that it is obvious to engineers that the
targets cannot be reached. There should, however, never be a situation where peo-
ple wait and wonder what will happen next. This situation typically occurs during
the initial period when an assessment has just been finished and workgroups
struggle to implement process changes. After having achieved some first benefits,
again the risk is high to lose momentum because, after all, change is painful – as it
runs in parallel with regular work – and having achieved some goals signals to
many involved parties to concentrate more on project work.

166 10 Software Process Improvement

Knowing that accurate planning is necessary to make change happen, it is
somewhat of a relief to also realize that planning is a motivating activity. Doing
the planning makes the targets more concrete, and accomplishing them is suddenly
seen as possible, and even inevitable. Planning is the translation of the scorecard
principle towards reachable individual targets. The vehicle is working groups for
the operational change management and task forces for macro changes, who based
on some high-level business goals establish the plan and later follow it. Seldom
are people more motivated to work than just after they have finished their own
planning.

10.2.3 Providing Feedback

Managing and tracking SPI is done on different levels of abstraction. Senior man-
agement is interested in the achievements compared to business goals and related
to what has been invested in the program. Related objectives include the effec-
tiveness of fault detection because the obvious relationship to cost of quality is di-
rectly related to the common business goal of cost reduction. Lead-time reduction
and effort reduction is related to reduced rework and as such is also related to
fewer defects and early fault detection. On the project level, managing process
improvements asks for specific process metrics that compare efficiencies and thus
relate on the operational level to achieving the business goals. Several achieve-
ments of our improvement program can be attributed to increasing the visibility of
project status, improved awareness of work products quality and setting result-
oriented improvement targets for each major process. Thorough technical control
satisfies all these different needs for effective feedback.

Questions such as “are we doing better or worse?” will provide feedback
from the currently running R&D or engineering projects where changes
should be institutionalized to the respective workgroups responsible for
making change happen.

The feedback loop within a process improvement initiative, which we already
know from Fig. 10.1 and Fig. 10.2, is detailed in Fig. 10.4. On the left side we
have the classic improvement activities, such as periodic assessments and dedi-
cated working groups that would implement specific changes. They certainly in-
fluence the way requirements are managed (e.g., CMM Level 2), how develop-
ment and engineering processes are improved, what quality objectives could be set
and to which degree technology and infrastructure need to be addressed. This is all
input to the functional organization that is responsible for implementing the regu-
lar engineering projects. They are continuously tracked by means of project track-
ing and oversight metrics, which are not only used to monitor and manage pro-
jects, but also to provide feedback to the working groups on the progress of
change institutionalization. Root cause analysis of defects or in-process quality
checks provide further information on what is going right and what is going
wrong.

10.2 Software Process Improvement 167

Unfortunately, many organizations that consider software development as their
core business strictly separate between business performance monitoring and
evaluation on one hand and what is labeled software metrics on the other hand
[Pfle97]. Our motivation while building up a corporate SPI program was to link it
with the corporate technical control in order to align the different levels of target
setting and tracking activities. Only the close link of corporate strategy with
clearly specified business goals and with the operational project management
helps in achieving overall improvements. We therefore linked the operational met-
rics program for development and project management with our SPI initiative to
ensure that objectives on all levels correspond with each other.

Engineering
processes

Improvement
objectives and

periodic
assessments

Dedicated performance
objectives

Technology and
IT infrastructure

Product-line
oriented

engineering
organization

Cultural change needs

Project and process
feedback

Root cause analysis, in-
process quality checks

Business objectives

Engineering
processes

Improvement
objectives and

periodic
assessments

Dedicated performance
objectives

Technology and
IT infrastructure

Product-line
oriented

engineering
organization

Cultural change needs

Project and process
feedback

Root cause analysis, in-
process quality checks

Business objectives

Fig. 10.4. Process improvement activities need feedback loops from actual project and
process performance

Metrics need to make sense to everybody within the organization who will
be in contact with them. Therefore the metrics should first be piloted and
then evaluated after some time. Potential evaluation questions include:

Are the selected metrics consistent with the original improvement targets?
Do the metrics provide added value? Do they make sense from different
angles and can that meaning be communicated without many slides?

Do the chosen metrics send the right message about what the organization
considers relevant? Metrics should spotlight by default and without cum-
bersome investigations of what might be behind. Are the right things being
spotlighted?

168 10 Software Process Improvement

Do the metrics clearly follow a perspective that allows comparisons? Do
they avoid ambiguities or heterogeneous viewpoints, thus allowing to be
used as history data?

With such premises it is feasible to set up not only release-oriented phase end
targets but also phase entry criteria that allow for rejection to validation activities
(such as reviews or integration) if the system quality is inadequate.

There are two major reasons for project failure that can be observed in many
organizations. First and most important is the fact that we commit to inadequate
estimates prematurely, stick to original budgets and schedules even if require-
ments change, let requirements change until well into integration, and still rarely
update the estimates to match reality. The other major reason is insufficient navi-
gation of managers in the sea of data that modern communication and reporting
tools produce. Without navigation and adequate metrics managers invariably veer
off in wrong directions.

10.2.4 Practically Speaking: Implementing Change

Since the CMM provides both a guideline for identifying strengths and weak-
nesses of the software development process and a roadmap for improvement ac-
tions, Alcatel like many other organizations also based its SPI activities on the
CMM. Periodically assessments are conducted in all major development sites. The
direct findings according to the CMM are analyzed according to their prospective
impacts on the business goals and then prioritized to select those areas with the
highest improvement potential. Based on this ranking a concrete planning of im-
provement actions is repeatedly refined, resulting in an action plan with detailed
descriptions of improvement tasks with responsibilities, effort estimates, etc.
Checkpointing assessments of the same type are repeatedly done to track the im-
plementation of the improvement plan.

With process change management becoming a management function and SPI as
a project receiving high priority in the context of all engineering projects, real au-
thority is given to the SPI program. For the same reason, engineering process
groups (EPGs) are typically rather small, while at the same time part-time contri-
bution of experts in various areas fosters buy-in and sustainable culture change.
To avoid the prevailing attitude that nothing is worse than a six-month old slogan,
senior management should make explicit that any change needs within engineer-
ing (e.g., efficiency improvement, elapse time reduction, etc.) would be covered
under one process improvement (project) umbrella. All this is the life insurance
for your SPI initiative.

Reaching CMM Level 3 cannot be an end, as many KPAs on the levels four
and five ensure institutionalized process focus. Remaining on a CMM Level 3
would definitely derail the organization with the first bigger technology change.
Also, level 3 keeps practitioners and the projects unsatisfied, as they cannot and
should not directly influence processes on their respective operational level.

10.2 Software Process Improvement 169

Achieving the high maturity levels empowers individuals and guarantees continu-
ous improvements – bottom-up

10.2.5 Critical Success Factors

The approach of critical success factors allows you to keep the focus on resolving
concrete issues by decomposing goals into activities. It also ensures that within
complex decision processes, such as in regular project reviews, the relations be-
tween day-to-day tasks and the SPI program and its objectives are not lost.

We identified several critical success factors related to a process improve-
ment program.

Commitment and motivation from the senior management to the engineers;

Treating process improvement as a project;

Short-term results that immediately show measurable achievements in run-
ning projects;

Sustainable results even if pressure would be loosened;

Continuous change within and across processes.

What does it mean concretely that there is a push and concrete commitments
behind changes? It is definitely not what we faced in a change initiative in one of
our development centers some years ago. An improvement program with heavy
emphasis on quality improvement was installed. Both external and in-house con-
sultants were hired for coaching. Management said that they “empowered” team
leaders and gave priority to quality. The initiative, however, never flew as the
push was lacking, and all management cared about was output and preserving
their own stakes. Senior management never walked their talk and in critical situa-
tions made the same wrong decisions as before.

“Push” means that management plays an active role in setting overall targets
and then continuously reviews results. Tom Peters specified such reviews as “dur-
ing each staff meeting, go around the table posing the questions: What have you
changed lately? How fast are you changing? Are you pursuing bold enough
change goals? to each colleague. Do it ritualistically. Make these simple questions
a prime element in your performance appraisal system, as well as in your informal
monthly sit-down appraisal” [Pete88]. In our case such reviews are carried out on
a monthly base with the respective vice president, the institutionalization or devia-
tions are questioned in the respective project reviews, and customers are part of
the feedback loop.

170 10 Software Process Improvement

10.3 Process Management

10.3.1 Process Definition and Workflow Management

Successful processes are not static. Processes must be managed. They must be eas-
ily accessible for the practitioners and managers. They must integrate seamlessly,
and they must not disturb or create overhead. Process improvement will fail if we
do not consider these basic requirements. Process improvement will also fail if we
try to make the development processes completely uniform across large organiza-
tions. By focusing on the essence of processes, integrating processes elements
with each other and providing complete tools solutions, organizations can tailor
processes to meet specific needs and allow localized and problem- or skill-specific
software practices, while still ensuring that basic objectives of the organization are
achieved. This is what we call here managed process diversity.

Practitioners do not look for heavy process documentation, but rather for proc-
ess support that exactly describes what they have to do at the moment they have to
do it. Different products or components and various parameters such as system
size or type of development paradigm ask for a carefully balanced approach of
process documentation and maintenance. Modular process elements must be com-
bined according to a specific role or work product to be delivered. Still the need
for an organizational process, as described by CMM L3, is strongly emphasized
and reinforced [Paul95].

In implementing a homogeneous workflow support, we started with an inven-
tory, how we managed processes and their tailoring to specific settings. Processes
were agreed by the experienced practitioners for years and were approved by an
organization-wide process control board. This ensures that on the level of process,
policies, or commitments, no difference exists. On lower levels, however, the im-
plementation of these processes or policies varied dramatically primarily because
of cultural and legacy reasons. The need prevailed that from a sales or overall en-
gineering perspective, we had to provide a solution to our customers that inte-
grated various components. These components are individually assembled and
then integrated according to the specific network topology and market require-
ments an operator faces. For instance, two components might have the same re-
quirements management process, but two different tools in place. This means that
whenever we need to track progress of a product that integrates these two compo-
nents, specific interfaces were necessary to get the complete picture. This situation
was even worse if they applied different change management tools. In such cases
the entire metrics suite and traceability approaches were replicated for both com-
ponents.

Even if the components are not integrated and are never intended to be inte-
grated, such as two competing products, there can still be a trade-off in aligning
procedures or tools, which can build upon synergy. Scalability applies for license
cost of tools as well as for training. Managed process diversity, for instance, al-

10.3 Process Management 171

lows for easier moving of engineers from one product to another, as long as the
role descriptions and the procedures are aligned.

Having the concepts for managing process diversity within the software devel-
opment, the next step is to seamlessly integrate R&D workflows, such as software
development or software maintenance with their (e-)business counterparts, such as
customer relationship management or service request management. Collaborative
product commerce (CPC), specifically from an end-to-end perspective, will help
that engineering processes integrate with the interfacing business processes. Ex-
amples include configuration management for software artifacts, and how they re-
late to the overall product data management. or software defect corrections, and
how they relate to overall service request management as part of the enterprise
CRM solution. Product life cycles, though necessary as a foundation, are insuffi-
cient if not integrated well with non-SW-related business processes.

Fig. 10.5 details how such factors not only characterize the project complexity
and thus the management challenges, but also how they determine the level of
process integration and workflow management. Various project factors determine
different approaches to manage the involved software processes. Workflow man-
agement systems offer different perspectives to allow for instance navigation
based on work products, roles or processes.

Process Model

Project Factors

commercial
process out
of the box

one tailored
process for

project

managed
process

diversity

System Size small large

Legacy Impacts greenfield big legacy

Component Structure few, isolated,
standardized

many, complex
interactions

Project Organization small,
collocated

distributed,
virtual teams

Process Model

Project Factors

commercial
process out
of the box

one tailored
process for

project

managed
process

diversity

System Size small large

Legacy Impacts greenfield big legacy

Component Structure few, isolated,
standardized

many, complex
interactions

Project Organization small,
collocated

distributed,
virtual teams

Fig. 10.5. Different solutions for process diversity

Navigation is realized with HTLM hyperlinks as shown in Fig. 10.6. A life-
cycle picture shows the global overview of the processes, and many embedded
hyperlinks allow navigating with a few clicks to the final element in which the
reader is interested. Compared with static process models of the 1980s, which
typically used standard data modeling languages, the currently available workflow
systems provide nicely visualized flows that hide as much as possible anything
that is not relevant for a specific view. Usability is key and not formalism.

The perceived conflict between organizational process and individual tailoring
can be resolved by a tailorable process framework [Eber03b]. Such a framework

172 10 Software Process Improvement

should be fully graphically accessible and allows the selection of a process appli-
cable for components as well as an entire product based on selecting the appropri-
ate parameters that characterize the project. The framework allows for automatic
instantiation of the respective development process and product life cycle, a pro-
ject quality plan or specific applicable metrics, based on modular process elements
such as role descriptions, templates, procedures or check lists, which hyperlink
with each other.

Usability of any workflow support system is determined by the degree to which
it can be adapted or tailored towards the projects’ needs. There are organizational
and project-specific environmental constraints, which make it virtually impossible
to apply the workflow system out of the box. Adaptation is achieved by offering a
set of standard workflows, which are selected (e.g., incremental delivery versus
grand design; parallel versus sequential development; development versus mainte-
nance). On a lower level, work products are defined or selected out of a predefined
catalogue. The process models should distinguish among mandatory and optional
components.

Global Navigation Product Life Cycle Support
(Decision Reviews)

Project Core Team

Access to Documents
and their Reviews

Tailored by Product Line
Instantiated in Product Release

Work Product Matrix

Global Navigation Product Life Cycle Support
(Decision Reviews)

Project Core Team

Access to Documents
and their Reviews

Tailored by Product Line
Instantiated in Product Release

Work Product Matrix

Fig. 10.6. Hyperlinks facilitate integration with other tools and processes. This instance
shows the project dashboard that is automatically set up and prepopulated upon approved
project

Process diversity and tailoring of processes happens on various levels. A small
example shows this approach. To successfully deliver a product with heterogene-
ous architecture and a mixture of legacy components built in various languages,
certain processes must be aligned on the project level. This holds for project man-
agement, configuration management and requirements management. Otherwise it
would, for instance, be impossible to trace customer requirements that might im-
pact several components through the project life cycle.

 On the other hand, design processes and validation strategies are so close to the
individual components’ architecture and development paradigms that any standard
would fail as well as all standards for one design or programming methodology

10.3 Process Management 173

have failed in the past. To make the puzzle complete, for efficiency reasons, the
manager of that heterogeneous project or product line surely would not like it if
within each small team the work product templates or tool-based workflows were
redefined. Many workflow systems for unified processes fail on such low-level
process change management. They do not allow integrating process needs on dif-
ferent levels into a hierarchy with guided selection.

10.3.2 Quantitative Process Management

Integration of process tailoring, software measurement, history databases, and
analysis of metrics with the statistical control of metrics will facilitate quantitative
process management. Quantitative process management involves establishing
goals for the performance of the process, taking measurements of the process per-
formance, analyzing the resulting metrics, and making process adjustments to
maintain process performance within acceptable limits. This means that the soft-
ware organization collects process performance data from the software projects
and uses these data to characterize the process capability of its processes. It’s un-
derstood that not only processes are variable, but that understanding variation is
the basis for management by fact and systematic improvement. It means to quanti-
tatively understand the past, control the present and predict the future.

Quantitative process management builds upon statistical techniques to identify
process anomalies, to eliminate them and to ensure the processes will remain
within what is asked by business needs (Fig. 10.7).

Internal: A process is stable when “anomalies” have been eliminated.

External: A process is capable when it lays within the business needs.

Internal: A process is stable when “anomalies” have been eliminated.

External: A process is capable when it lays within the business needs.

Understand the cause of
the anomaly and react to avoid
it in the future

Process
capability

Upper control limit

Lower control limit

Process
noise

Process
anomalies

time

Business
needs

Process
anomalies

Specification limit

Specification limit

Internal: A process is stable when “anomalies” have been eliminated.

External: A process is capable when it lays within the business needs.

Internal: A process is stable when “anomalies” have been eliminated.

External: A process is capable when it lays within the business needs.

Understand the cause of
the anomaly and react to avoid
it in the future

Process
capability

Upper control limit

Lower control limit

Process
noise

Process
anomalies

time

Business
needs

Process
anomalies

Specification limit

Specification limit

Fig. 10.7. Quantitative process management

We see in Fig. 10.7 several dots resulting from process behaviors over time, for
instance, field quality in different projects. The business needs determine specifi-
cation limits, such as a maximum of defects in the field. Often these specification

174 10 Software Process Improvement

limits are asymmetric. In our example of field defects a lower specification limit
could be impacted by time to market, thus indicating that the product must have
the right quality. The process behaviors determine control limits. Depending on
the stability of the process, these control limits are inside the specification limits
and allow adjustments, such as in case a higher quality level is asked. For imma-
ture organizations, the control limits (which control?)are mostly outside the speci-
fication limits and the organizations are clueless on how to adapt processes (which
processes?) towards reaching specification limits. The process is not capable. This
explains why the CMM has in its name the word capability.

Predictability is a good indicator for the process maturity of an organization.
While on lower maturity levels the objective is to get the projects done in time and
budget – but with substantial variances, it evolves towards CMM L3 to the ability
to predict cost, schedule, and defects based on past performance. On higher matur-
ity levels upper and lower boundaries are defined for the expected performance.
Estimates actively deal with the uncertainties and acknowledge this by intervals
instead of point estimates.

Low maturity organizations often collect metrics just to show data. We often
faced situations where neither practitioners nor their management really used the
data. They would bring their reports and when asked questions had no idea how
the data points relate to each other. This is a waste of effort. Deciding to measure
implies the effort to evaluate and execute from what is measured (Fig. 2.1). The
analysis techniques include gap analysis between estimates and actual perform-
ance, correlations within the quantitative data, trends analysis, classification, parti-
tioning, identification of outliers, and analysis of rationale of such outliers, various
SPC (Statistical Process Control) techniques, including process stability analysis
and various analysis techniques related to statistical models for product/service
characteristics.

10.3.3 Process Change Management

Processes are not frozen; they evolve over time. Having defined processes on any
level of an organization also asks for process change management. Process change
management is typically an activity of the organization, however will also happen
within individual projects, especially in higher maturity organizations. To facili-
tate change, any process element should refer to a process owner who typically
serves as focal point for change proposals and change decisions. A process owner
is the expert for a specific process and guides any type of evaluation, improvement
or coaching. Of course, he should delegate authorship or dedicated coaching to
experts with more detailed knowledge and experience, but it is helpful to identify
a single person with overall responsibility to whom people can ask questions and
to whom they can suggest improvements. Any single instance of a process ele-
ment should be placed under configuration control, which allows managing
change in the context of several parallel projects. The latter is particularly relevant
to avoid uncontrolled mushrooming of variants, thereby creating situations where
an engineer would suddenly have to deal with two versions of the same process. It

10.4 Measuring the Results of Process Improvements 175

is for this reason that quality audits always ask for defined time stamps related to
process selection.

Tailoring and assembling process elements is outlined in Fig. 10.8. Project pa-
rameters (horizontal axis) drive the applicability and assembling of process char-
acteristics (vertical axis). By relating the elements to criteria on a generic level,
individual adaptation is far easier than doing this repeatedly for each project. Both
the elements and their links are subject to change, which is controlled and man-
aged by a process control board. Many process elements are related by their inher-
ent semantics that already predefine many internal relationships. For instance, de-
pending on the permission to allow or to prohibit late requirements changes, the
workflow is impacted at many places. This should not be identified for each single
project again and again. Instead the hooks are foreseen in the respective estima-
tion, planning or design processes to integrated requirement changes or late re-
quirements, which in one case are activated and in the other case are not visible.

Process Characteristics

Project
parameters

Policies,
processes

Procedures,
work products,
roles, etc.

Project
homepage

Tools,
templates, etc.

Quality plan,
metrics, etc.

Size Product Component

This part of process applies

To
 th

is
 k

in
d

of
 p

ro
je

ct

This part of process does not apply

To
 th

is
 k

in
d

of
 p

ro
je

ct

Defined tailoring
means that before

project start the
parameters are agreed

based on defined
selection criteria

Instantiation

Date

Process Characteristics

Project
parameters

Policies,
processes

Procedures,
work products,
roles, etc.

Project
homepage

Tools,
templates, etc.

Quality plan,
metrics, etc.

Size Product Component

This part of process applies

To
 th

is
 k

in
d

of
 p

ro
je

ct

This part of process does not apply

To
 th

is
 k

in
d

of
 p

ro
je

ct

Defined tailoring
means that before

project start the
parameters are agreed

based on defined
selection criteria

Instantiation

Date

Fig. 10.8. Assembling a specific process instance based on building blocks and project pa-
rameters

Managing process changes of course depends on process maturity. On lower
CMM levels, it is centrally governed, while on higher levels, tailoring and change
management – within a defined scope – increasingly is going back into the pro-
jects and teams.

10.4 Measuring the Results of Process Improvements

In this section we will show how process improvement and the respective process
measurement relates to concrete ROI tracking. To be more concrete, we will again
take an example from one of Alcatel’s business divisions during the nineties. At

176 10 Software Process Improvement

the beginning of the software process improvement program the focus was on four
areas closely related to our overall business goals:
1. improving the customer-perceived quality
2. improving schedule predictability
3. reducing the total cost of non-quality
4. reducing the cycle time

Although these four objectives are somehow related, it is clear that priorities
must be given to ensure reproducible decisions in case of conflicts. The order
given above reflects these priorities at the start of the SPI program.

Some results of this software process improvement program can be seen in the
following figures. Note that we follow the principles indicated earlier, such as
starting to measure before changes are implemented. Increasing design defect de-
tection effectiveness over a three-year timeframe is indicated in Fig. 10.9. Design
defect detection effectiveness is the percentage of all defects that are detected be-
fore the start of integration test. Before starting the improvement program 17% of
all faults were detected before the start integration test, while after three years al-
most two thirds of all faults are detected up front.

17% 63%46%31%

D
es

ig
n

Ef
fe

ct
iv

en
es

s

Time (average over all projects with release in one calendar year)

Baseline before improvement project started

17% 63%46%31%

D
es

ig
n

Ef
fe

ct
iv

en
es

s

Time (average over all projects with release in one calendar year)

Baseline before improvement project started

Fig. 10.9. Design defect detection effectiveness over four years

As a consequence, we could reduce defects in the field (after handover to the
customer) by more than 20% year after year during this initiative! Besides better
overall quality, this of course directly impacts productivity and predictability.
Schedule predictability (i.e., achieving the planned delivery date) improved (Fig.
10.10) dramatically. These are typical achievements that you obtain when moving
from CMM Level 1 to CMM Level 3. But different from a theoretical lecture, we
have shown in this chapter how such improvements are implemented to achieve
the results.

 Process diversity relates to cost management. Processes can be individually
sufficient and perfectly fitting in some overall objectives related to process matur-
ity, while still not positively impacting productivity and throughput of the entire
organization. We found, for instance, that at a given time frame a state-of-the-art
commercial CM system was introduced for more than five components within
several business divisions in parallel without knowledge of each other. The proc-
ess objectives, which were long-since agreed upon, were always guiding the intro-
duction, but the set up, the definition of procedures, roles or delivery mechanisms
and even the link to standard metrics and standard problem management was rein-

10.5 Hints for the Practitioner 177

vented in each single case. Synergy as it is intended within most companies cannot
grow with such lack of organizational learning.

Sc
he

du
le

in
ac

cu
ra

cy

Time (average over all projects with release in one calendar year)

Baseline before improvement project started

15% 4%7%13%Sc
he

du
le

in
ac

cu
ra

cy

Time (average over all projects with release in one calendar year)

Baseline before improvement project started

15% 4%7%13%

Fig. 10.10. Schedule inaccuracy (in terms of achieved delivery date versus plan) over four
years

10.5 Hints for the Practitioner

A key question that any process improvement activity must answer is, whether the
organization can demonstrate actual business benefit. An improvement that after
some months doesn’t show sustainable value is badly managed. As the Baldrige
award suggests, if the business results are not measurably visible as improvement
trends, it signals an approach or deployment problem, perhaps resulting from a fo-
cus on getting a “level” or “certificate” rather than achieving business objectives.

Successful process management and process improvement within the full scope
of e-R&D is based upon a few principles:

Process improvement must always be driven from clear business objec-
tives. Never start a process improvement activity with unclear objectives, or by
simply telling that a certain CMM level must be achieved. It will fail and de-
liver mediocre results.
Improve R&D project performance based on the criteria of predictability, qual-
ity and productivity.
Reinforce accountability through usage of concrete planning and progress
tracking instruments. Progress is what is measurable.
Line up processes with business needs and reinforce continuous learning and
improvement driven by the ever-changing business environment.
Continuously challenge existing behaviors. Use external benchmarks to
stimulate better performance.
Facilitate virtual teams across your projects that communicate and interact with
an increasingly integrated workflow system. Projects get smaller and teams will
be more distributed and mobile than ever. Prepare for such flexibility.
Improve efficiency by using standard processes and the technology and tools
that best support these processes.

178 10 Software Process Improvement

Integrate and interface with heterogeneous R&D tool suites. Do not rely on
specific tools and vendors. Decouple processes from tools to be able to make
changes without much overheads. The time of integrated and heavy CASE
suites is over.
Stimulate organizational learning and avoid architecture- or project-dependent
isolation. Processes must be innovated at the speed your products and services
are innovated. Don’t engrave anything in stone.
Allow tailoring of processes and workflows depending on business needs.
Introduce lean processes that can easily be implemented and followed through,
such as a “checklist” concept for determining completeness of milestones.
Integrate workflows by using standard interfaces and the same configuration
management for process elements and work products. Web services can facili-
tate simple interfaces.
Interface with other critical business processes and workflows based on a gen-
eral e-business strategy and quality management system (e.g. operations, ser-
vices, supply chain management, procurement, etc.).
Above all, treat any improvement or innovation initiative as a project on its
own with allocated resources, committed milestones, a project plan and peri-
odic follow-up. Change is not for free, and to assume that it somehow will get
done means nothing else than that management is not committed.

Measuring results of process improvement and thus making the business cases
for your own improvement projects can build upon the following insights:

Improved quality. We can directly address the customer needs by linking
dedicated improvement objectives, such as return rate, via the CMM to process
changes in R&D. This is actually the strength of CMM Levels two and three.
Two-digit quality improvements year over year are feasible if the CMM is applied
and closely followed up in engineering projects.

Reduced cycle time. The efficiency and effectiveness of engineering processes
directly impact engineering cycle time. For instance, earlier defect detection
means faster and more comprehensive defect correction. A defect found during
development costs less than 10% to correct compared to detection during test.
Your focus here should be on defect phase containment. Build the necessary
checks to ensure that work products have the right quality level before being
passed on to the next process step. Cycle time reduction builds upon a consistent
product life cycle and process repository, which allows instrumenting and tuning
processes to needs.

Improved engineering flexibility. With decreasing size and duration of pro-
jects, engineers need to be flexible to quickly start working in new environments.
While technical challenges cannot be reduced, the organizational and administra-
tive overhead must be managed and limited. Agreeing and reinforcing one consis-
tent and overarching product life cycle across the company ensures that you can
deliver solutions independently of where the components come from. Increasingly
components come from various suppliers, including freely available software. The
life cycle offers the framework for all projects to have a minimum set of decision

10.6 Summary 179

gates. Engineers can faster move to new projects or other departments if some ba-
sic process framework applies to the entire company.

Reduced overhead. Links to the management system with its process and role
descriptions, document templates are embedded in the workflow support system,
presenting engineers with immediate process support when and where they need
it. Long process descriptions are replaced by pictorial overviews and automated
interfaces. For example, clicking on a work product name can activate an interface
to a document management system, and administrative data such as the document
number are automatically derived from the project context. Less overheads facili-
tate that work products are kept consistent when changes occur.

Improved communication. Information is presented in a consistent way for all
projects, avoiding replication of data and reducing search time. A standardized
workflow and product life cycle management system can easily offer a dashboard
with immediate visibility on key data and responsibilities contributing to an in-
crease awareness of accountability. If you don’t have such workflow system at
hand, build nevertheless the project dashboard. Standardizing one management
part of the process (such as project metrics) and automating it will increasingly
grow towards alignments and standardization of other tools and processes.

Improved alignment of process and tools. With process asset libraries linked
to tools, we are able to filter out and evaluate scenarios of how process change
impacts tools, or where tool changes would impact processes. So-called “best-
practices” can be communicated with related tools and procedures to move up en-
gineering effectiveness and learn from the best in class in your company. Inter-
faces to tools and their user guides can now be embedded in the process support
environment.

Easier generation of training plans. With the advent of managed process di-
versity, aligned training plans and closer follow-up of skill evolution has been
achieved. Increasingly, project roles and also specific work product templates or
process-related roles are standardized and can be reused, thus facilitating more
consistent skill and human resource management.

10.6 Summary

Process improvement drives productivity improvement and thus frees resources
for innovation. We have tried with this chapter to close the gap and to avoid focus-
ing only on theoretically describing improved processes or only introducing a
software engineering tools suite. e-R&D is a comprehensive view of process im-
provement, starting from the basics of culture change towards more accountability
and building upon a number of integration mechanisms to ensure that technology
effectiveness keeps pace with process maturity.

Process management is necessary to ensure having the right processes. Too nar-
row an implementation of ISO 9000 or CMM bears the risk that processes specify
in all detail what needs to be done. Especially big organizations believe that proc-
esses can control everything. They loose flexibility and will be overrun by small

180 10 Software Process Improvement

new entrepreneurs with much more agility. We have observed organizations that
would treat the certifications as the goal, rather as a step in achieving real goals.
Process improvement and frameworks like ISO 9000 or CMM are always and
only tools to an end. They are important tools and within software engineering
they will definitely deliver results. However, the goal is better performance in pro-
jects and products.

Depending on market requirements and technology change, processes are dif-
ferent even within one organization. Process definition and process reinforcement
should be as high as necessary to ensure quality, predictability and productivity,
and as low as feasible to preserve flexibility and agility. Each single process must
be judged on the cost it creates versus the benefit it yields. Processes need com-
mercial justification, which is impossible if they are not even defined. Once organ-
izational maturity approaches a certain level (i.e., CMM L3), the real challenge is
how much to document and what to automate. While a lot has been written about
documentation and process improvement, not much is available on practical ex-
periences with introducing workflow management.

Two elements are critical to making a change successful: setting objectives –
defining what specific change should occur and setting targets for attaining that
change – and providing feedback – as the effort to change is underway, those
changing must receive concrete information about their progress in achieving the
goals. Where there are objectives and feedback, both the commitment to
change and the likelihood that change will in fact occur are much higher.

11 Software Performance Engineering

Measurement is an excellent abstraction mechanism
for learning what works and what doesn’t.

Victor Basili

11.1 The Method of Software Performance Engineering

Software performance engineering can be defined as a collection of methods for
the support of performance-oriented software development of application systems
along the entire software development process to ensure appropriate performance-
related product quality. It uses a systems engineering perspective to ensure a com-
prehensive view on performance requirements. It extensively uses software meas-
urements to define, implement and monitor performance objectives. Software per-
formance engineering can be described as a kind of aspect-oriented software
development.

Software performance engineering becomes an interface between software en-
gineering and performance management. It is not a relaunch of long-standing per-
formance management methods as other engineering approaches that were suc-
cessfully used in the area of telecommunications. Performance engineering
analyzes the expected performance characteristics of a software system in early
development phases. In the system analysis, software developers, customers and
users define performance characteristics as service level objectives in addition to
functional specifications (Fig. 10.1).

Performance has to be determined and quantified by performance metrics.
They are specific product metrics that can be derived from different system
levels and perspectives. Internal and external perspectives are often distin-
guished.

Internal performance metrics refer to operation times, e.g., the number of
operations per time unit, to transfer ratios, like the number of transferred
bytes per second, or to the utilization of system resources, like CPU or
RAM.

External performance metrics reflect the outside behavior of the software
system with regard to executed functions. The metrics often refer to re-
sponse times of concrete application functions and to the throughput.

182 11 Software Performance Engineering

Software
engineering

Perfor-
mance
manage-
ment

Performance
Engineering

Performance
tuning

Capacity
planning

Software
quality

assurance

Performance
modeling

Software
engineering

Perfor-
mance
manage-
ment

Performance
Engineering

Performance
tuning

Capacity
planning

Software
quality

assurance

Performance
modeling

Fig. 11.1. Use of existing concepts from other disciplines

A mix of varied quantified metrics describes the performance characteristic of
an IT system. The negotiations of developers, customers and users should be
based on suitable and justifiable cost performance ratios [Folt01]. Performance
engineering already provides instruments for this phase, like rules of thumb. Un-
realistic developments can be discontinued early or can be renegotiated. The quan-
tified performance metrics have to be refined in the system design and implemen-
tation phase.

Concrete application functions and interfaces can be evaluated at this time. The
software development process should allow a cyclic verification of the perform-
ance characteristics. They will be analyzed in the respective phase of the software
life cycle in the available granularity. In the first phases estimations have to be
used that are often based on rules of thumb. In further development phases ana-
lytical and simulative models can be used. If prototypical implementations of in-
dividual program components are already available, measurements can be exe-
cuted.

The quantified metrics should be continuously compared with the required per-
formance characteristics. Deviations lead to an immediate decision process. Per-
formance engineering uses existing methods and concepts from the areas of per-
formance management, performance modeling, software engineering, capacity
planning, and performance tuning as well as software quality assurance. It
enlarges and modifies them by performance-related analysis functions (see
Fig. 10.1). However, the performance metrics are only as exact as the basis data of
the models. In order that the calculations be concrete and realistic as possible, the
set up of a performance database is imperative.

Since a lot of performance data can be collected in the productive operation of
a software system by benchmarking and monitoring, it should be ensured that
these data are stored in the database for further performance engineering tasks in
future development projects. The quality of the performance evaluation depends
decisively on the maturity of the development process (see also the approach of a
Performance Engineering Maturity Model (PEMM) in [Schm00b]). However,

11.2 Motivation, Requirements and Goals 183

critical software components are analyzed until the end of the implementation
phase. The complete test environment is available within the phase of the system
test.

If prototypical implementations were not used within the design and implemen-
tation phase, the fulfillment of the performance requirements can be verified with
the help of load drivers, e.g., by synthetic workload, in the system test phase. The
real production system is available in the system operation phase. Often perform-
ance analyses are performed again in pilot installations over a certain time period,
since the analysis is now based on real workloads conditions. Thereby, an existing
system concept can be modified again. The workload of the system often increases
with a higher acceptance. That is why reserves should be considered within the
system concept. The proposed procedure has to be adapted to domain-specific en-
vironments. Because of the scope of the tasks, specialists should support perform-
ance engineering.

In subsequent development projects these tasks are handed over step-by-step to
the software developers. Their task spectrum widens to a long-term perspective.
The integration can essentially be simplified if software developers have already
learned these principles in their academic education.

11.2 Motivation, Requirements and Goals

11.2.1 Performance-related Risk of Software Systems

The performance characteristics of a software product are frequently considered
only at a much later point in the development process, typically during testing or
in the phase of deployment. This approach, known in the literature as the “fix it
later approach”, repeatedly leads to major problems (redesign, the use of more
powerful hardware than anticipated, delayed introduction, and so on), since the
possible performance characteristics are already defined at early stages of devel-
opment by design decisions regarding hardware and software architecture. The ef-
ficient operation of business processes depends on the support of IT systems. De-
lays in these systems can have fatal effects for the business. The following
examples clarify the explosive nature of this problem:

The planned development budget for the luggage processing system of the
Denver, Colorado airport increased by about US$ 2 billion because of inade-
quate performance characteristics. The system was only planned for the termi-
nal of United Airlines. However, the system was enlarged for all terminals of
the airport within the development without considering the effects on the sys-
tem’s workload. The system had to manage more data and functions than any
comparable system at any other airport in the world at the time. In addition to
faulty project management, inadequate performance characteristics delayed the
opening of the airport by 16 months. A loss of US$ 160,000 per day was re-
corded.

184 11 Software Performance Engineering

An IBM information system was used for the evaluation of individual competi-
tion results at the Olympic games in Atlanta, Georgia. The performance charac-
teristics of the system were tested in advance with approximately 150 users.
However, more than 1,000 people used the system in the production phase, and
the system collapsed under this workload. The matches were delayed and IBM
suffered image losses, whose immaterial damages are hard to determine. These
examples show that the evaluation of the performance characteristics of IT sys-
tems is important, especially in highly heterogeneous system environments.

However, active performance evaluations are often neglected in the industry.
The quality factor performance is only analyzed at the end of the software devel-
opment process. Then performance problems lead to costly tuning measures, the
procurement of more efficient hardware or to a redesign of the software applica-
tion. As the performance of new hardware systems increases, especially complex
application systems based on new technologies, e.g., multimedia data warehouse
systems or distributed systems, they need an explicit analysis of their performance
characteristics within the development process. These statements are also con-
firmed by an examination of Glass. He identified performance problems as the
second most frequent reason of failed software projects in an extensive analysis
[Glas98].

11.2.2 Requirements and Aims

The performance characteristics of a system have to be considered within the
whole software development process. Performance has to be given the same prior-
ity as other quality factors like functionality or maintainability. However, a practi-
cable development method is necessary to assure sufficient performance charac-
teristics. Extensive and cost-intensive tuning measures, which are a major part of
most development projects, can be consequently avoided. The operation of highly
critical systems, e.g., complex production planning and control solutions, depends
on specific performance characteristics, since inefficient system interactions are
comparable to a system breakdown because the subsequent processes are affected.
However, the system users’ work efficiency is impaired with inadequate response
times, causing frustration. Additionally, software ergonomic analyses show that
users who have to wait longer than five seconds for a system response initiate new
thought processes. Controlled cancellations of the new thought processes and the
resumption of the old condition take time and lead to lower user productivity.

The development method has to determine performance characteristics early
within the development process to minimize performance-entailed development
risks. A structured performance analysis is necessary. It should be supported by a
process model, which has to be integrated within the existing company-specific
software development process. The application of this method should also not be
isolated from the development process, since additional activities that accompany
the software development process are usually neglected in the face of staff and
time problems.

11.3 A Practical Approach of Software Performance Engineering 185

The fused models should not become an inefficient complex; an economic ap-
plication must still be guaranteed. Expenditures should have a justifiable relation-
ship to the total project costs [Scho99]. The height of the expenditures is often
based on empirically collected data and knowledge. The deployment of qualified
employees who have a high level of knowledge in the areas of software engineer-
ing and performance analysis is imperative. However, methods and technologies
must be shaped in a way that they are to be handled for the developer.

11.3 A Practical Approach of Software Performance
Engineering

11.3.1 Overview of an Integrated Approach

The aim of software performance engineering (SPE), as mentioned before, is pri-
marily to ensure that the performance of an information system – in terms of the
response time, throughput and technical process run times – is taken into account
from the early phases of development. The vision is to develop information sys-
tems that, based on the specification of a defined load model and the resulting re-
source consumption, are able to provide the performance attributes demanded by
future users based on specific application functions.

Although SPE should be considered as a process integrated into software engi-
neering, it cannot be considered entirely separately from other performance-
related tasks within the life cycle of an IT system. Software performance engineer-
ing builds especially on the data measured for performance management and
benchmarking and utilizes methods – such as workload, performance and cost es-
timation models [Schm00a] – which can, to a certain extent, be compared with
those used in capacity planning.

11.3.2 Establishing and Resolving Performance Models

The need for performance-related modeling variables in the context of software
development will be illustrated below based on the procedure that [Smit90] has
proposed for SPE. The aim is to transform scenarios (use cases) from the subse-
quent software system into suitable performance models. Assistance with this pro-
cedure for creating the model and then analyzing performance is offered by the
SPE·ED tool [SPEE98].

In order to take both software and hardware properties into account, a com-
bined software and hardware model is needed. Whereas software models are cur-
rently usually created based on rather informal notation such as Unified Modeling
Language (UML), hardware systems in the environment of performance assess-
ment are traditionally modeled using queue models or Petri nets.

186 11 Software Performance Engineering

The first step is to identify performance-critical scenarios that pinpoint the in-
teraction or exchange of messages between the objects in the software system and
that are involved in executing a specific user function. Assuming that UML nota-
tion is used, these should be represented in detail using sequence diagrams (iso-
lated message sequence charts can be used too). The next step is to transform the
diagrams into “execution graphs”, which, amongst other things, may be made up
of elementary nodes, branch nodes, repetition nodes, apportionment nodes or
nodes that represent parallel processes (Fig. 11.2).

operation 1

operation 2

operation 3

operation 4

operation 5

operation 6

Object 1 Object 2 Object 3

operation 1

operation 2

operation 3
operation 4

iteration

Sequence diagram as an
instance of a specific use

case

Transformation
into an

execution graph

operation 6
operation 5

Fig. 11.2. Transformation of sequence diagrams into execution graphs

Once the execution graphs have been created, the nodes contained in the model
must be quantified with regard to their resource consumption. Aspects that must
be specified may include the CPU instructions needed for the nodes or the number
of input and output operations performed to transfer data from and to the hard disk
system or network (Fig. 11.3).

The specified sequence of resources is based on the hardware system used in
the model in each case. This must also be specified in terms of the achievable op-
erating times (service time) for resources such as the CPU, the available through-
puts for hard disks used and the network capacity.

Another step to be performed is to specify the load model. This entails defining
job details – such as number of jobs per second, arrival time distributions (e.g.,
exponential) or the number of users and appropriate thinking time – for the model.

The technical resolution of the model that has been established, based on an
analytical or simulated resolution procedure, requires the use of a suitable tool.

11.3 A Practical Approach of Software Performance Engineering 187

operation 1

operation 2

operation 3

operation 4

operation 5

operation 6

CPU: 10
I/O: 2

CPU: 40
I/O: 0

CPU: 20
I/O: 2

CPU: 40
I/O: 2

CPU: 10
I/O: 10

CPU: 10
I/O: 2

Iteration: 5

Specify resource
requirements of the

elementary
execution steps

based on reference
hardware to be used

Disk
I/O

Specify the
processing

performance
(service time) of the

hardware
components

1 sec.

20 MB/sec 20 Msgs/sec

Netz
I/O

CPU

CTRL

Model of the hardware system

Fig. 11.3. Defining resource requirements based on reference hardware

The SPE ED tool used for modeling – one of the few tools commercially avail-
able – provides the option of a software-based view during performance modeling.
Possible performance information, for instance, relates to the time behavior (total
duration and execution time of the individual nodes), best-case and worst-case
analyses, average values and hot-spot analyses for the individual components of
the scenarios. This therefore allows you to estimate the extent to which a chosen
software architecture will actually be able to meet performance expectations. You
will usually find either architecture-based tools (e.g., SES-Strategizer), which only
permit process-related conclusions about the software system to be investigated,
or software modeling tools (e.g., Telelogic Tau), which fail to take the hardware
resources into account and therefore only allow relative performance analyses.
More information on the comparison of various modeling tools can be found, for
instance, in [Schm01a].

11.3.3 Generalization of the Need for Model Variables

Regardless of the specific models, methods and tools used for performance model-
ing, it is necessary to access information and modeling variables that are able to
describe the system – made up of hardware and software – with regard to its per-
formance properties. In the context of performance models, the following basic in-
formation that is needed can be determined.

Workload (classes of elementary jobs)
number and type of job classes (online, interfaces, batch)
load profiles over periods in time (frequency of execution of job classes)

188 11 Software Performance Engineering

job volumes (data quantity that is submitted to the system for each job)
output volumes (quantity of data returned to the user)
complexity of and relationship between read and write job classes
proximity of accesses to the database (cache vs. synchronization)
response time and throughput demands for each job class

Description of the software architecture
operating system and network protocols
standard services (e.g., Web, file, database and application servers)
middleware used (e.g., DCE, ODBC, JDBC, RMI, CORBA)
design models of client and server components (e.g., in UML)
aspects regarding the implementation of client and server components
mapping job classes to application processes

Description of the hardware architecture
hardware systems used (representation of the CPU, HD, RAM, structure, etc.)
network systems used (sketch of the LAN or WAN properties)
I/O controllers and network controllers used
special controllers (e.g., audio and video cards)

Description of the performance capability
Once the load and the hardware/software architecture have been described, it is

still necessary to quantify the performance of the hardware and software compo-
nents used, for instance, in the form of “service rates” or possible throughput rates.
Modeling tools, such as SES-Strategizer, contain templates for this allowing entire
server systems to be mapped with regard to essential resources (CPU, I/O, mem-
ory, network). In the case of the processor, for instance, performance is often de-
scribed in terms of the number of instructions that can be executed per time unit or
in terms of results of standard benchmarks such as SPECint95 or tpmC (TPC-C,
by the Transaction Processing Council).

Description of the load behavior
The next step is to assign resource requirements to specific model elements or

application system processes that are met via jobs submitted for processing. For a
specific component in the design model or a server process, therefore, it must be
determined how many CPU instructions, I/O activities or network accesses are
needed in order to provide the functionality concerned. These steps require fairly
detailed knowledge of the operating system concerned because such variables can
only be determined with the help of monitoring systems (e.g., system activity re-
porter (sar)).

11.3 A Practical Approach of Software Performance Engineering 189

11.3.4 Sources of Model Variables

We will now provide a summary of the sources from which model variables can
be obtained.

Model variables from operational systems
It is possible to obtain model variables from systems that have already been

implemented. Typically, this is done as part of performance management tasks.
These tasks are only of interest for software development if the recorded con-
sumption of resources such as CPU, main memory, hard disk requirements, I/O
system, and network bandwidths can also be assigned to technical application
functions. In addition, it is also necessary to know the load parameters mentioned
in the previous section as well as the hardware and software architecture.

Model variables based on prototypes (individual benchmarks)
In the case of new technologies, such as applications servers, models cannot be

used until sufficient experience of generating meaningful performance model
variables has been gained. In order to build up experience with regard to the per-
formance of new technologies, therefore, it is necessary to carry out measurements
on real systems or appropriate prototypes. This task especially lends itself to using
load driver systems in order to gather suitable data with prototypical implementa-
tions. Only in this way can reproducible performance data be obtained based on a
defined load profile.

Model variables based on standard benchmarks
In the area of server systems you can usually obtain performance specifications

from benchmark organizations. In addition to allowing you to conduct a relative
comparison of computer systems, these allow you to estimate the necessary re-
sources based on your own application, providing these resources and the load
used can be largely compared with the benchmark application. Corresponding
metrics are used in performance modeling, for instance, with BEST/1 as model
variables, especially for the task of characterizing CPU performance. Manufac-
turer-independent benchmarks are offered by organizations such as TPC, SPEC
and BAPCo (for further information see also Chap. 16). Information on the results
of these benchmarks can be found in [Idea00].

Model variables based on datasheets for hardware systems
Using datasheets is a particularly good idea when it comes to describing the

performance properties of network controllers (data throughput), bus systems or
hard disk systems being used. In the case of a hard disk system, for instance, the
following performance attributes play a role:

Properties of the disk controller (e.g., typical available bandwidth in MB/s,
cache hit rates for any available read and write cache)
Properties of the connected disk drives (e.g., search times – positioning of the
R/W head above the required track, rotation delay – positioning of the R/W

190 11 Software Performance Engineering

head within the track, transfer rate – transmission of data between the controller
and disk drive, memory capacity of the hard disk systems).

Instrumentation based on measurement points introduced during development
is crucial for recording the time behavior and resource consumption of entire ap-
plication functions through to elementary functions of individual software compo-
nents (e.g. method calls from objects). One practical alternative solution is offered
by Application Response Measurement Applications Programmers Interface
ARM-API, a quasi-standard drawn up by the Computer Measurement Group. It
can be used to include measurement points in both C++ applications and Java ap-
plications (as of version 3.0 of ARM-API).

11.3.5 Performance and Software Metrics

Because new information systems are becoming more and more complex, the em-
pirical assessment of architectures and software systems is becoming increasingly
important. In order to allow the entire life cycle of an information system to be
evaluated in terms of quality and quantity and be iteratively optimized, software
engineering makes use of metrics. The process of quantifying the attributes of
software engineering objects and components in relation to specific measurement
goals, possibly by using measurement tools, is referred to as “software measure-
ment”. The basic idea behind software measurement is to record valid metrics in
order to achieve an empirical assessment of the process, the resources used, and
the actual product.

Numerous analyses (e.g., [Smit98], [Schm00a]) have demonstrated there to be
a problem in that only very vague ideas of the information system to be developed
exist in the early stages of development. As a result, the application of precise
procedures for resolving the model is usually pointless at the beginning of a per-
formance analysis. Instead, successive attempts should be made to obtain relevant
information using the simplest means in each case (assumptions, rules of thumb,
trend analyses, analytical models, and simulation models; Fig. 11.4).

Expertise (e.g. trend analysis) PE

Analogy conclusion PA

Model-based estimate PS

Model-based analysis PM

Measurement on the counterpart PP

Measurement on the orginal PO

Fig. 11.4. Performance-based layer model

11.3 A Practical Approach of Software Performance Engineering 191

To formalize this approach, Norton [Nort00] has suggested using an adapted
spiral model as defined by Boehm [Boeh88]. The spiral model processes, which
should be iterated, are planning, development, evaluation and presentation.

The spiral model for performance metrics introduction, which should be it-
erated, consists of following steps:

Planning. Implementing the goals with the least effort

Development. Deriving suitable performance data

Evaluation. Verifying and validating the results

Presentation. Evaluating whether customer requirements have been met

Empirical data relating to the performance properties of an IT system may be
obtained, for instance, by applying the empirical layer model specified in Fig.
11.5. Emulating the work in [Dumk00b], we have extended this model, putting it
into concrete terms. In order to draw empirical conclusions about the “next level
in” (the i-1th level), the following general connection can be deduced based on a
software system or software component k:

(performance behavior (k)) i =

(correction factor performance determined correction exponent) i+1

The accuracy of the “performance determined” decreases as the number of lay-
ers increases because of abstracting from the underlying original system. Existing
comparative data often has to be used for subcomponents of a software system in
the early development stages due to a lack of alternatives (Table 11.1).

Table 11.1. Examples of possible transformation forms

Transformation Description
PP PO Performance Counterpart – The application of data regarding the perform-

ance behavior of a network-based application under laboratory conditions
through monitoring as an initial assessment for real practical implementa-
tion

PM PO Performance Model – The model-based performance analysis, based on
analytical or simulated resolution procedures, of a client/server application
as the starting point for assessing the performance of distributed systems

PS PO Performance Estimate – The use of an estimation model (rules of thumb)
for characterizing the performance properties of a generally known tech-
nology such as file or database server systems

PA PO Performance Analogy – Application of the key performance figures of a
LAN for estimating the application characteristics in a WLAN

PE PO Performance Expertise – The application of general trend data regarding
performance development for network-based platforms as a basis for es-
timating the performance of the software system to be developed

192 11 Software Performance Engineering

The main point of interest of software performance engineering is to find or
generate manageable relationships between the layers in order to support appro-
priate error rectification. If the transformations that have been presented are car-
ried out step by step, this corresponds to the successive accumulation of perform-
ance experience relating to a new system to be developed that Norton [Nort00]
proposed in the context of his spiral model. We do not intend to look any further
here at other time-based, multivariate or reflexive aspects.

11.3.6 Persistence of Software and Performance Metrics

In order to establish such dependencies, we need statistical evaluations (such as
correlation analyses) that are able to take both performance metrics and software
metrics into account. Both at universities and in the industrial environment, soft-
ware metrics and performance metrics are usually stored separately and are par-
tially redundant, making it difficult for complex connections between these met-
rics to be proven. The aim, however, should be to set up a control loop covering
the entire software life cycle. On the one hand, this means that software develop-
ers should be given access to performance data for live information systems so
that such practical knowledge regarding the performance engineering process can
be taken into account. On the other hand, potential operators of new information
systems should be given access to performance metrics relating to software devel-
opment, for instance, to allow them to conduct forward-looking system planning
(e.g., regarding necessary network expansion for the implementation of new ap-
plication types). It goes without saying that each of these groups of users is only
interested in a limited section of the data available. For example, application de-
velopers are only interested in metrics regarding application types that can be
compared to a certain degree with the applications that they are developing (Fig.
11.5).

Software
metrics

database

Performance
management

solutions

XML-based performance information bus

CASE tools Performance
modeling

Standard
benchmarks

Performance
measurements

CORE information supplier

SPE
data warehouse

Fig. 11.5. Performance-based layer model [Schm01a]

11.4 Case Study: EAI 193

With a view to integrating the various data storage systems, it would be a good
idea to define a standardized interface (e.g., in the form of a CORBA-IDL or via
an XML-based interface) for the automatic exchange of performance met-
rics/knowledge. The idea of defining an exchange format for performance-related
data was first raised by Smith [Smit94], who proposed a “Performance Model In-
terchange Format”. An initial proposal for a suitable exchange format, but de-
signed especially for performance models, can be found in [Smit99]. Data ex-
change between heterogeneous systems, which in view of the wide variety of
possible sources is the probable scenario for performance-related data, particularly
lends itself to using XML as the data exchange format.

An XML-based interface has the advantage that it can be used pretty much re-
gardless of programming languages and platforms, therefore allowing an auto-
mated control loop to be established covering the entire software life cycle. This
interface could then be used not only for software development environments and
performance management solutions for the purpose of exchanging data, but also
for the consistent management of performance-related data within suitable reposi-
tories or metrics databases. In this way, for instance, data and metrics that are ob-
tained via benchmarking, modeling or monitoring as well as general hardware and
software metrics could be taken into account and added to an automatic control
loop. Based on such superior metrics, it would be possible to perform tasks such
as validating models or carrying out statistical analyses to identify dependencies
between general software metrics (product, resource, process) and performance
metrics. A general proposal and the prototypical implementation for storing meas-
urement variables are described in [Folt00].

11.4 Case Study: EAI

Enterprise application integration (EAI for short) solutions require sufficient per-
formance both in terms of time/resource behavior and supported scalability. In this
respect, steps must be taken to ensure that sufficient performance is built into the
communications requirements of the applications when developing EAI systems,
and that the data required in equal part by all applications can be written and read
efficiently. This section provides an overview of the approach adopted for EAI
performance analysis and highlights possible results obtained as part of a bench-
mark test under consideration of the ISO 14756 standard.

11.4.1 Introduction of a EAI Solution

By way of introduction, an outline overview of EAI solutions is provided using
the following definition (based on [Juri01b]):

EAI allows data and business processes to be used company-wide on the basis of net-
work-based applications or data sources. Early software programs, such as inventory

194 11 Software Performance Engineering

and personnel management, sales systems and database systems, were developed
largely independently of each other without account being taken of the potential inter-
actions between those systems. They were developed using the technologies of the day
and were tailored to meet specific customer needs, this resulting frequently in proprie-
tary systems. With the increasing growth of companies and the realization that appli-
cation data and functions could be exchanged and used company-wide, there was an
investment in corresponding EAI solutions.

The provisioning of EAI solutions is currently one of the major challenges fac-
ing the IT industry. One of the key arguments for developing such solutions re-
volves around the potential for implementing efficient, high-quality integrated
business processes to reduce dramatically the time-to-market of associated prod-
ucts, for example. The performance of business processes supported by an EAI
system depends on a multitude of factors. These factors include the degree of dis-
tribution, the transmission capacity of the networks utilized, the degree of process
automation, the potential number of users that can work on the system, the per-
formance of existing systems and systems that will be developed from scratch or
even the hardware architecture utilized.

The selected software design of the integration applications used also has a ma-
jor impact on performance. These applications are typically used to store reference
and master data permanently that can be provided to all the applications involved
in the integration, to monitor and control supported business processes, integrate
user interfaces via relevant web portals and to integrate heterogeneous system en-
vironments using standardized middleware solutions such as message-oriented
middleware (MOM) and Common Object Request Broker Architecture (CORBA).
As part of the EAI solution analyzed here to determine its performance character-
istics, only MOM technology has been used to date. MOM technology works pri-
marily on an asynchronous basis (transmission of XML messages) and is based on
IBM’s MQ Series product.
The primary objectives of the performance analyses conducted were:

to analyze the performance behavior of the overall application
to identify potential bottlenecks in relation to any developed software compo-
nents
to identify the performance behavior of individual system components
to determine resource requirements in relation to hardware and software ser-
vices

11.4.2 Available Studies

At present there is relatively little research work that looks explicitly at the per-
formance characteristics of EAI solutions. One reason is that these solutions are so
complex coupled with the fact that an EAI solution may be broken down into
various subaspects that, when looked at individually, have no direct bearing on the
EAI system per se. Research that deals with the performance characteristics of

11.4 Case Study: EAI 195

EAI solutions therefore tends to focus especially on those technologies that can be
used as part of EAI and less on complete solutions.

Relevant research can be found for example in [Krai00]. This research analyzes
the possibility of prioritizing messages to implement user class-specific re-
sponse times within the MQ Series message backbone.
The issues of EAI solution performance and scalability based on J2EE-
compliant integration architectures are tackled in [Juri01b]. Juric looks at the
various aspects of developing solutions to meet performance needs and in-
cludes notes on devising an efficient design for the subsequent application as
well as observations on tuning aspects of an integration infrastructure.
The performance analyses provided by IBM covering the MQ Series technol-
ogy have proved very useful. This information enabled initial estimates to be
made both of the performance behavior of message transmission and also of the
MQ Series Integrator components used [Dunn00].
A performance analysis of so-called global straight-through processing (GSTP)
solutions can by found under [Czac01]. The analyzed solution was realized by
the use of queuing (MQSeries) and message broker (MQSeries Integrator)
technology from IBM. A realistic simulation of a GSTP workload was imple-
mented and tested under high message rates to gain an in-depth understanding
of the STP design and performance issues.

11.4.3 Developing EAI to Meet Performance Needs

This section sets out to highlight the approach adopted to developing system archi-
tecture in order to meet performance needs while outlining the nature of an EAI
load model. As opposed to the way in which a load model is derived from user in-
teractions for a conventional software application, an EAI load model results from
the communications requirements of the subapplications that need to be inte-
grated.

Overview of steps taken
Within the context of the telecom-based EAI project that underpins this example,
an interactive approach to performance-oriented architecture development was
adopted. The steps listed below were initiated at an early stage of the project.

1. Performance requirements and load profile
The interaction behavior between the integrated applications had to be predicted to
determine the communications load profile. To this end, the following assessment
model was adopted and used to analyze each interface:

communications profile incl. performance requirements (throughput/latency)
volume of data per communication
type of synchronization
determine priority classes in relation to individual interfaces
determine persistency and transaction requirements

196 11 Software Performance Engineering

determine performance requirements
identify impact of inefficient communications relationships

2. Identifying and initially assessing components that affect performance
This involves in particular identifying potential performance bottlenecks associ-
ated with specific technologies (e.g., CORBA, MOM) and products (e.g.
MQS/MQSI), and highlighting suitable alternative solutions to optimize perform-
ance. Selected examples of such factors include:

use of persistent versus non-persistent messages
impact on performance of the transaction backup process used
processing performance/performance of source and target systems
performance of functions associated with the MQ Series Integrator component
(MQSI for short)
system architecture characteristics (HW, NW, system components)
number of messages written to a queue/read per time unit
connection of a reference database via an interaction application

3. Setting up an equivalence or analogy model
This stage involves drawing up a generalized load model (types of messages in re-
lation to time intervals). At the same time, based on the performance behavior of
analyzed reference implementations (e.g., using available benchmarks for the se-
lected integration product) conclusions can be extrapolated about the performance
behavior of the actual integration application using the simplest procedures.

use and disclose analogy procedures
identify potential error sources and assess possible inaccuracies:
unclear requirements,
rule-based functions within the MQSI that are difficult to predict,
application scalability within the planning time frame,
performance (throughput) of the persistence mechanisms used.
Represent and delineate the analyzed application layers

4. Performance analysis
Measurement-based performance analyses (so-called benchmarks based on the
application itself) provide a far more accurate assessment of the performance be-
havior than the analogy procedures discussed in the previous section. Since there
is still very little research on the performance behavior of EAI solutions, explicit
performance analyses need to be included as part of developing this kind of sys-
tem.

For our benchmarks we used the T-Systems performance tool, s_aturn, which is
available for the Solaris and Linux platforms. It supports performance analyses in
accordance with ISO 14756 “Measurement and Rating of the Performance of
Computer-based Software Systems”. This standard, which has existed since 1991,
describes an evaluation process for time characteristics of IT systems from the end
users’ point of view. The standard considers the whole system consisting of hard-
ware and software. It follows the “black box” principle and provides measure-
ments available at the user interface.

11.4 Case Study: EAI 197

Measurement of performance according to ISO is performed in three stages
[ISO97c]:
1. demand profile drawn up
2. measurements made
3. ISO assessment factors evaluated and assessed

Performance requirements and implied risks
To justify the costs associated with the performance analyses that need to be con-
ducted, the use of a “performance risk analysis” as per [Schm01b] has proven use-
ful. As part of interviews with the customer, developer and operator, the interfaces
used within the EAI solution are analyzed and potential performance losses are as-
sessed in terms of their secondary financial effects. Potential effects relate both to
a loss in respect of the supported business process (primary risks, such as fewer
customers served than envisaged, revenue expectations, image tarnished, etc.) and
to the development and subsequent live operation (secondary risks). It may well
often prove difficult to assess the subsequent load profile realistically and what
impact inefficient system behavior may have. A successful outcome can therefore
only be ensured by adopting a gradual approach and carrying out multiple assess-
ments.

Developing an EAI-compliant load model
An abstract load model needs to be developed to set up performance models and
conduct benchmark tests. The aim is to combine the identified interfaces to form
abstract communications interface types (CTn for short). In this respect the volume
of data to be transmitted (peak values) and, where necessary, existing critical re-
quirements relating to performance are taken into account. A potential approach to
this task could include the following types:

CT1: up to 1 KByte/s (performance non-critical)
CT2: up to 100 KByte/s (performance critical)
CT3: implementation unclear (more than 100 KByte/s)

By utilizing the combined performance characteristics of the individual inter-
faces, these characteristics can be mapped to the corresponding benchmark values
(the graphic shows the throughput of the integration interface for MQ input/output
– queue portion, as can be seen from [Dunn00]) in relation to the integration soft-
ware used. Clustering individual interfaces to create interface types will yield the
lacking information relating to the time/quantity structure of the relevant commu-
nications requirements.

Expected results
Based on the aforementioned abstract communications load model, the application
benchmark is conducted using the actual application. As part of this, the commu-
nications load generated on the message bus is simulated so that the achievable
performance in terms of response time and throughput of the bus system and the
integration application can be determined based on a given use of resources. The
model-based assumptions can be verified (response times, throughput, resource

198 11 Software Performance Engineering

consumption) using these tests, while other findings can be adopted in correspond-
ing design guidelines governing the message bus.

If customer-relevant performance bottlenecks are identified in the test, the fol-
lowing action needs to be taken to resolve these shortcomings:

Specify hardware requirements and stipulate required scalability.
Identify tuning-relevant characteristics of the SW components involved.
Prepare and implement the prioritization of potential interfaces.
Optimize the communications interfaces between the components.
Specify network requirements.
Adapt user requirements depending on costs.
Draw up alternative architecture proposals (worst case: system redesign).
Customer performance requirements of the complete EAI architecture can only

be ensured if issues relating to performance behavior of the subsequent EAI solu-
tion can be included from an early stage of development. This means that commu-
nications load profiles in relation to the interfaces used need to be available; this
technical information must be provided by the subapplications that need to be in-
tegrated.

11.5 Costs of Software Performance Engineering

To derive the costs of necessary SPE tasks we propose the use of a risk-driven ap-
proach. To develop and introduce information systems that meet both functional
and qualitative requirements, it is necessary to plan appropriate technical and hu-
man resources to implement the tasks involved. In general, it is easy to understand
that a system with high quality requirements involves greater costs than one with
lower quality requirements. However, if one examines the quality feature of
space- and time-related efficiency (performance in general) as defined by the ISO
9126 quality standard, it then becomes more difficult to make an assessment. It is
necessary to apply software performance engineering (SPE) methods during the
entire software development process to guarantee this quality feature.

11.5.1 Performance Risk Model (PRM)

The so-called Performance Risk Model (PRM) considers three areas involved
(business process, development, operational environment), where the occurrence
of a performance risk leads to potential losses (Fig. 11.6). These include primary
risks RpG arising in connection with the business process, and secondary risks Rs
that arise in the context of development RsE and the operational environment RsW.
The evaluation model presented below is for determining the potential risks in the
areas affected.

We pursue two approaches to quantify the risks in a monetary context. One for
the primary risks RpGi (business process) and another one for the secondary risks
RsEi (development) and RsWi (real operation). The total risk R (in Euro) is the sum-

11.6 Hints for the Practitioner 199

mation of determined primary and second risks weighted via the entry probability
pi.

n

i

n

i
sWisEi

n

i
pGi iii

RpRpRpeuroR
1 11

][

The overall risk R (in Euro) is made up of the summation of primary and sec-
ondary risks weighted using the probability of occurrence pi.

The valuation model should be applied several times in the course of the life
cycle of an IT solution, in the form of checklists to be filled in for each risk crite-
rion. This enables risks involved in the business process to be recognized during
an SIB (Strategic Information Planning, cf. Business Process Reengineering) for
the first time. However, risks that refer to SW development and subsequent active
operations are not recognized until the beginning or during the actual development
project.

Business
process Value creation

Size

Vital functions

Methods

Techniques

People Experience
Consciousness

Middleware
DBMS

Risk criteria Selected examplesLocation of potential risk

Procedural models
Test methods

medical IT systems
flight computers in airplane

e-commerce systems
telecoms enviroment

high transaction rate
large data volume

Integration of HW & SW

Use of resources

Nonfunctional interfaces
Software version changes

Computer utilization
Administrative effort

Backup/recovery

Development

Normal
operation

Se
co

nd
ar

y
ri

sk
s R

s
Pr

im
ar

y
ri

sk
s R

p

Fig. 11.6. Overview of the performance risk model

11.6 Hints for the Practitioner

When the full software life cycle is considered, a performance management tool
chain (tools for measurement, short term analysis, long term analysis, performance
prediction) should be implemented immediately before and during operational use
to answer the following performance-relevant questions:

200 11 Software Performance Engineering

to generate performance-relevant information concerning software compo-
nents/architectures through prototype benchmarks
verification of required service levels based on the whole IT system using per-
formance benchmarks
definition of tuning measures for efficient production, consideration all soft-
ware and hardware components of the system
support in capacity planning for changing load profiles are impending migra-
tions

The performance measurements gathered from production systems can then be
used as input parameters for modeling tools, when the same software components
are to be used for newly developed software systems.

We recommend a stepwise approach for building a performance risk model:
1. Provide a project-specific checklist (similarly a tailoring activity).

determination of potential risk categories in dependence on affected fields
specialization of the risk categories through the actual risk criteria

2. Carry out interviews with representatives of the customer, developer and opera-
tor side to identify the corresponding performance risk metrics.

identification of organizational information (participants, date, project-phase)
Information for all participants about the used PRM valuation model
contents-related introduction of the project to be analyzed
common analysis of the validity of potential risk criteria
summarizing remarks about performance-related project experiences

3. Statistically analyze the registered data for the identification of primary risk
problems.

identification of cluster frequencies via the evaluated projects
derivation of the corresponding monetary performance risks
determination of the corresponding SPE activities for minimization of perform-
ance-related risks

4. Verify the valuation model and identify potential improvements both of the
valuation model and of the employed checklist procedure.

The use of models to analyze the performance of an information system irre-
spective of the special solution method requires the following steps:
1. Analysis of the technical load requirements and identification of job classes as

the basis of the load model. The performance requirements of later users must
adhere to the job classes.

2. Allocation of technical job classes to processes in the application system and
calculation of the interactions between them.

3. Recording of the resource consumption of the identified processes with regard
to computer and network systems used or to individual components.

4. Reproduction of the components of the information system critical for the per-
formance of the overall system in a model.

11.7 Summary 201

5. Execution of the performance model with the requisite and increased load pro-
files and constant and altered system resources.

6. Evaluation of identified performance metrics using statistical methods.
7. Model validation by means of performance metrics measured in operation from

applications or using prototypical benchmarks. A successive improvement of
the results of models should be possible as a result.

The application of performance models for a particular technology is only pos-
sible if there is sufficient performance experience. For new technologies, this can
only be gained by running prototypical performance tests and successively build-
ing up empirical results from information systems in active operation. An exclu-
sively theoretical examination will not lead to any result that is usable in engineer-
ing terms in this case.

Other important sources of performance metrics are benchmarks. Well known
benchmarks for hard- and software-systems can be found by the Standard Per-
formance Evaluation Cooperation (SPEC) and the Transaction Processing Per-
formance Council (TPC). For further information see also Chap. 16.

11.7 Summary

This chapter has shown an overview about a practical way for the implementation
of a software performance engineering process. After a motivation for SPE-related
activities, an overview about necessary tasks was given. In this context, we ex-
plained the necessary preconditions for successful SPE activities, like the required
metrics, potential sources of metrics and so on. Furthermore we have given an
overview about a case study for the investigation of the performance behavior of
an enterprise application integration solution. Finally, for the realization of SPE
activities we proposed a risk-driven approach. This approach provides the possi-
bility to explain potential benefits for the project management.

The idea proposed in this chapter of deriving the costs required to realize per-
formance engineering tasks from potential risks has the advantage of enabling
risks to be made transparent and of putting these into monetary terms as far as
possible. On the basis of assessed risks it should be easier for project management
to integrate SPE tasks into the time schedules and costs of project plans and esti-
mate their added value. Moreover, the selection of actual SPE methods is sup-
ported by the definition of a cost framework.

12 Service Level Management

The only Zen you find on the tops of mountains
is the Zen you bring up there.

Robert Pirsig

12.1 Measuring Service Level Management

Although the area of network and system management has experienced a regres-
sive trend over the past two years, the use and management of service level
agreements can, according to [Gart02], most certainly be considered an enabler
technology for market growth in the area of service-based integration solutions.
The use of service level agreements is not yet taken for granted even in the case of
traditional IT solutions.

An analysis has shown that service level agreements that are comprehensible
and, most importantly, measurable by the customer are concluded for only 5 to
10% of all applications. You may well ask why this low regard for SLAs (SLAs)
actually needs to be changed for Web service-based applications.

The following properties inherent in such architectures and the disadvantages
associated with traditional technologies explain poor usage of measurements:

Web service-based applications are designed for use across various companies,
whereas previous applications were primarily used within a single company.
Current pressure on costs is giving rise to customer demand for transparent
costs for service provision, and Web service-based applications support this
goal.
Up to now, SLAs have been primarily based on resource-related measurement
variables that were generally incomprehensible to customers in the context of
the functions they used.
In the case of Web service-based applications, the main focus is on the interac-
tion chain involving measurement variables that are based on functions or busi-
ness processes and that take the actual customer benefit into account.
Commercial application systems based on integrated Web services urgently re-
quire the services used to be subject to quality assurance (efficiency, security,
availability, etc.).

204 12 Service Level Management

As SLAs for Web service-based solutions can also be concluded “on demand”,
i.e., at run time, this gives rise to further requirements for the underlying technol-
ogy, the content of agreements, SLA monitoring and also the measures that need
to be drawn up during development. Whereas SLAs used to have a predominantly
technical orientation and were mostly the domain of the operators of IT solutions,
Web service-based solutions also require system integrators to take account of the
use of SLAs during development. Only if the issue of SLA management is explic-
itly addressed in development can SLAs that are comprehensible for customers
and backed up by measured values be concluded later during actual operation
[Dunc01].

For the operators of IT solutions, this situation is associated with a changeover
from system management to service management. This is the only way to take bet-
ter account of the business process supported.

After providing an introduction to Web service technology, this part primarily
aims to describe the topic of SLA management in such environments. In this con-
text, we highlight the general contents of SLA agreements, describe the interaction
chain for service provision that arises in Web service-based solutions, and provide
a brief explanation of the opportunities offered by the WSLA (Web service level
agreements) framework that IBM has developed especially for Web services.
Within the various sections we will also look at development tasks – an aspect that
is usually neglected but without which the authors consider efficient SLA man-
agement to be impossible.

12.2 Web Services and Service Management

12.2.1 Web Services at a Glance

Web service-based solutions entail using the Internet as middleware for imple-
menting business to business (B2B) applications. This could not be done very eas-
ily using previous middleware solutions such as CORBA, RMI or DCE. The rigid
coupling and predominantly synchronous communication methods made it neces-
sary to resolve the communications relationships right at the time of development.

Using Web service technology, applications are able to communicate with one
another easily and at low cost via the Internet, regardless of the technology used.
This is made possible by using the HTTP-based Simple Object Access Protocol
(SOAP), which, using HTTP, can also be routed across, firewalls. By means of
Extensible Markup Language (XML) and XML-based messages it is possible to
achieve both asynchronous and quasi-synchronous communication.

Based on the Web-Service Description Language description, applications lo-
cated on the Internet are able to specify services of their own and publish them in
suitable directories, for instance, Universal Description Discovery and Integration
(UDDI). Central UDDI business registries are currently operated by companies
such as IBM and Microsoft. In order to access a specific Web service, the initiat-

12.2 Web Services and Service Management 205

ing system requires its WSDL description, which can also be queried at runtime
via UDDI (Fig. 12.1).

Advantages expected from using Web services:
simpler and less costly than dedicated integration frameworks
higher degree of standardization
synchronous and asynchronous communication model via company boundaries
support of the component paradigm
simple means of communicating across firewalls
widespread acceptance in industry
bridge between different technology approaches, such as J2EE and .net.

Service Center
(Registry - UDDI)

Service Requestor Service Provider

find
(wsdl + UDDI)

publish
(wsdl + UDDI)

bind
SOAP messages on top of

HTTP, SMTP, MOM, or
other transport protocols

S
O

AP
-b

as
ed

 m
id

dl
ew

ar
e

Atomic Web services
Composite Web services

Service description (wsdl)

Web service client
other Web service

UDDI
- white pages
- yellow pages
- green pages

WSDL Service description
- Interface bindings
- Ports (URI)
- Services

S
O

AP
-b

as
ed

 m
id

dl
ew

ar
e

Added value services
- QoS control
- SLA-management
- Version control

Fig. 12.1. Web service architecture model [Alon04]

Web services can be viewed as technical components that reside on the Internet
[Turo02], with it being possible to develop entire application systems based on a
loose coupling. A Web service should constitute a clearly identifiable part of the
business or service process that is being supported. This means that the interface
for a Web service is coarsely granular in nature, although no quantifiable dimen-
sions for this feature can be given at present due to a lack of experience. In the
case of the requirement for the functions offered by a Web service to be supported
by suitable SLAs, this characteristic is especially important because this means be-
ing able to restrict the variety of potential SLAs. The authors believe that such an

206 12 Service Level Management

interface should contain five to ten business functions (excluding elementary func-
tions).

The live operation of a Web service can largely be compared with that of other
applications. The essential difference involves use on the Internet of commercially
offered Web services, in which case the provider concerned is responsible for the
functional and nonfunctional aspects. For this reason, agreements regarding qual-
ity of service are needed between the provider and potential users of the Web ser-
vice.

A distinction can be made here between a static and a dynamic approach. In the
case of static agreements, functional and nonfunctional aspects are determined in
their entirety at the time when live operation commences, whereas in the case of a
dynamic approach, an appropriate contract is concluded virtually “on demand” at
the time of execution. In their current form as loosely coupled collections of ser-
vices, it is more appropriate to view Web services as an ad-hoc solution that can
be developed quickly and easily.

The present generation of Web services merely allows applications to be inte-
grated at function level. In their present form, they are not transaction-oriented and
merely provide fundamental "request/response" functionality. Challenges such as
transaction backups, the secure transmission of messages between Web services,
control of the process logic between Web services and the provision of nonfunc-
tional requirements and therefore the support of effective SLA management have
not yet been developed sufficiently. There are nevertheless initial attempts at stan-
dardization with regard to these issues [Schm03a]. In the rest of this chapter we
concentrate on the topic of SLA management.

12.2.2 Overview of SLAs

The conclusion of SLAs is based on fixed service and performance agreements be-
tween customers and suppliers and creates transparency for both parties in terms
of performance and costs. Specific SLAs are used to define the type, scope and
quality of services and to check that specifications are met. As SLAs also include
potential sanctions for the event that agreed-upon service parameters are not met,
the specifications made in them have a significant effect on the commercial suc-
cess of a company providing services for a customer.

As part of SLA management for Web service-based applications, a service
level agreement must be concluded in addition to providing the actual Web ser-
vice.

The following specifications are required [Hein02, Kell03]:
Partners involved and the validity of the agreement, i.e., the period over which
the service is to be provided
Specification of the contract components and procedure for any necessary
modifications
Specification of the functional scope and quality of the service to be provided
Definition of the SLA parameters with which provision of the service will be
proved

12.2 Web Services and Service Management 207

Specification of the procedure for determining/calculating the SLA parameters
The consequences of contract disruptions and legal basis
Settlement arrangements

In the context of service-oriented architectures, the benefits of successful
service level management can be described as follows:

The number of conflict situations within supplier relationships can be re-
duced, resulting in enhanced customer satisfaction.

The resources used in order to render the service (hardware, personnel, li-
censes) can be distributed at a detailed level by the provider and therefore
used in such a way as to optimize costs.

Problems can be identified speedily by service level monitoring and the as-
sociated cause determined.

Costs can be made more transparent – on the one hand, the customer only
wants to pay for services actually used, while on the other hand, plausible
pricing can be guaranteed.

It is obvious that the contents described for a service level agreement may vary
significantly in terms of the precise details. In the case of Web service-based ap-
plications, it is especially necessary to maintain the relationships between the Web
services involved in providing the service and to promote a broad standardization
of possible SLA agreements. Both aspects of syntax and aspects of semantics need
to be considered. Only the aspects of syntax can be dealt with today by using a
technology-independent language such as XML.

One example is the task of interpreting the availability of a Web service that is
specified as being 98%. Users may well ask questions such as whether this takes
maintenance time into account, whether it is based on round-the-clock operation,
and how potential downtime (i.e., recovery time) is dealt with. This flexibility
must be explicitly taken into account during development, and the Web service in-
terface must be supplied with this information. In addition, monitoring must be
supported by suitable measurement points so that potential bottlenecks or in-
fringements of the SLA can actually be identified. It is only if these aspects are
taken into account when developing a specific Web service that SLA management
can be implemented for such a solution.

12.2.3 Service Agreement and Service Provision

Fig. 12.2 illustrates the interaction chain of a Web service-based application. We
have specified different instances of SLAs here – an Operation Level Agreement
(OLA) in the context of an internal service, a Underpinning Contracts (UC) in the
case of a subcontracted service, and an SLA with regard to the actual user. Al-

208 12 Service Level Management

though Web services can also be used directly by appropriate end users, we will
proceed by assuming the integration (loose coupling) of Web services to form new
application systems. This means that it would actually be more appropriate to
speak of UCs rather than SLAs.

Technical
component

Internal
service

Web
service

Integration
application
(e.g. portal)

Value
chain

User of the
application

MIPS HTTP op/sec

O
bje

ct
un

de
r

co
ns

id
er

at
i o

n
M

ea
s u

re
m

en
t

v a
ria

bl
e

Vi
e w

/
in

te
re

s t

WS
functions/sec

Target UC
functions/sec

Actual UC
functions/sec Process time

Resource
selection

Internal
service
provider

External
service
provider

Service
integrator

User /
customer

Process
owner

Web service supplier Web-service-based application

OLA OLA UC SLA SLA

Internet

Technical
component

Internal
service

Web
service

Integration
application
(e.g. portal)

Value
chain

User of the
application

MIPS HTTP op/sec

O
bje

ct
un

de
r

co
ns

id
er

at
i o

n
M

ea
s u

re
m

en
t

v a
ria

bl
e

Vi
e w

/
in

te
re

s t
O

bje
ct

un
de

r
co

ns
id

er
at

i o
n

M
ea

s u
re

m
en

t
v a

ria
bl

e
Vi

e w
/

in
te

re
s t

WS
functions/sec

Target UC
functions/sec

Actual UC
functions/sec Process time

Resource
selection

Internal
service
provider

External
service
provider

Service
integrator

User /
customer

Process
owner

Web service supplier Web-service-based application

OLA OLA UC SLA SLA

Internet

Fig. 12.2. Service level-based interaction chain

Now that the interface in question has been identified in the interaction chain as
a whole, we intend to look at the potential procedure for a service level agreement.
The scenario shown in Fig. 12.3 is based on the lifecycle of an SLA that [Debu03]
illustrated in the context of a multi-provider environment.

WS trust center
UDDI provider

WSDL

SLA

WS provider

Measurement
service

WS monitoring

WS measurement

Adherence to contract

WSWSWS

WS admin

1

3

4 5

2

6

7

WS
customer

Fig. 12.3. Scenario for using an SLA-supported Web service

The individual steps performed here are as follows:
1. Publication of an available Web service from the provider side, including pos-

sible SLA conditions.

12.3 Web Service Level Agreements 209

2. Inclusion of a measurement service. Based on the measurement service it is
possible to observe the functional and nonfunctional behavior (e.g., availability,
performance) of the used Web service.

3. Customer query (also a requirement from a specific integration application)
with regard to a specific Web service from an independent supplier.

4. Conclusion of a contract between the customer (human or technical) and the
Web service provider.

5. Activation of the measurement service for monitoring adherence to the con-
tract. Observation of specific attributes like the availability.

6. Use of the Web service within the customer’s own application. The use of the
Web service can be also motivated by a dynamic request.

7. Billing of the services provided, taking the SLA specifications into account.
Achieved or not achieved service levels form the basis for bonuses or contrac-
tual penalties.

12.3 Web Service Level Agreements

In order for the requirements described above to be implemented technically, a
commercially available solution is required. We will now provide a brief introduc-
tion to the WSLA framework that IBM developed for the purpose of service level
management in Web service-based environments. The WSLA framework is part
of the IBM Web Service Toolkit (here version 3.2). The following descriptions
have been drawn up using [Kell03] and [Debu03] as well as a practical test im-
plemented in this environment [WSTK02].

12.3.1 WSLA Schema Specification

The XML-based WSLA schema specification offers a generic basis for a specific
SLA language description. Based on experience, the following structural elements
are taken into account here [Kell03]:
Parties section

Information regarding the contract parties (e.g., contact persons)
Any subcontractors involved by the supplier

Service description section
Definition of the SLA parameters used
Assignment of the SLA parameters to the services used
Procedure for determining (measuring/calculating) the SLA parameters

Obligations
Conditions to be adhered to
Procedure for dealing with infringements of SLA parameters

210 12 Service Level Management

12.3.2 Web Services Run-Time Environment

The run time environment includes a deployment service (for installing and con-
figuring the technical environment), a measurement service (for measuring the
quality of service QoS), and a condition evaluation service (for identifying con-
tract infringements). Using these services together with the proposed roles – the
party using the service (service customer), the party offering the service (service
supplier) and an independent third-party supplier (service hub) – the various tasks
in the process of offering and using Web services are covered. The procedure used
is tailored to the typical classification of the marketing of conventional products.
The process begins with the provider of a service, referred to here as the service
supplier, whose range of tasks include developing, producing and offering the ser-
vice. The result is the service, which can be accessed and used on the Internet via
a URL. The producer does not have a direct connection to the customer in this
model.

The service hub is responsible for making contact with the customer and actu-
ally processing the business transaction. This party can be viewed as a product
dealer. The service supplier makes usable services available to the service hub by
registering the services in a database. A UDDI directory service could be used for
this task, for instance. In the case of the Web service run time environment from
IBM, this task can be carried out using a Web browser-based interface. The data
required includes a brief description and the WSDL definition of the service. A
reference to a demonstration page can also be specified as an additional option.

The WSDL information is specified in the form of a URL, via which the actual
document can be obtained. The service hub can now create offerings for a cus-
tomer. A name and the corresponding registered service are then defined for this.
In addition, other properties can be defined and the usage period can be specified.
For instance, an SLA can be defined for a required performance level and, in
terms of measurement technology, can be based on the throughput volume. For in-
stance, the throughput may be measured in terms of accesses per minute. It is pos-
sible to define upper and lower limits that the customer can select later.

The performance level determines the priority for adherence to the restrictions.
The offering can then be presented to the user by the service hub activating it.
Services that have already been sold provide the hub with information on service
usage, for instance, the frequency of the application and the costs involved. So that
a customer is able to work with a service, the service hub and the service requester
as the user draw up a contract. The customer thereby accepts the offer and deter-
mines other details such as the means of payment, the service model and the ex-
pected number of accesses per minute. In addition, the run time of the agreement
can be adjusted. Once the contract has been activated, the user can now access the
service in the demonstration environment using a browser (Fig. 12.4).

12.3 Web Service Level Agreements 211

Customer
management

Supplier
management

Client application Web service

Condition
evaluation service

Measurement
service

Web service
customer

Web service
hub

Web service
supplier

Measurement
aggregation

Contract violations

Aggregated
SLA metrics

Availability
measurements

Contract violations

Fig. 12.4. Overview of the WSLA framework run time environment [Debu03]

12.3.3 Guaranteeing Web Service Level Agreements

The technical implementation is realized by Web Service Level Agreements
(WSLA) for defining and monitoring SLAs. The run time control is carried out
within the Web service management middleware (WSMM) in order to guarantee a
service. Another aspect is the service desk, via which several services can be
grouped together automatically and therefore used together. The possible func-
tions allow users to autonomously create, compile, manage, route and search Web
services as well as to switch between them.

The advantage for clients is that this system reduces the complexity of the con-
nection, the interoperability, the distribution and the combination of various het-
erogeneous Web services. The three-layer architecture that maps the respective
roles intercommunicates via SOAP messages.

For the client it does not matter whether the partner with whom he communi-
cates is a hub or the service itself because the access is the same. This supplier
level is divided into two layers in the architecture: the hub and the service sup-
plier. A client communicates with the hub, which assumes responsibility for iden-
tifying the client, executing the auxiliary services, and forwarding data to the cor-
rect service. This is done in a type of pipeline.

When a client sends a query to the hub, a profile service, started by a handler,
assigns the client a profile ID for further processing. The value is inserted in the
message context so that the ID can be used by other handlers. The next step entails
a contract service checking the client’s authorization to access a particular service.
A measurement service is then prepared to determine the performance. The query
is saved in the subsequent management request service for statistical purposes.
The concluding Web service management middleware controls the time at which
the data is forwarded to the actual service. The contract ID is queried for this, al-
lowing the associated WSLA conditions to be evaluated. Based on these perform-
ance requirements and the current load of the service supplier, the WSMM decides

212 12 Service Level Management

when the query can be submitted to the service desk for execution. If this time is
reached, the service desk assumes responsibility for routing to the actual service.

The WSMM and service desk work together as a means of load distribution so
that the specified WSLA restrictions can be adhered to as far as possible. The ser-
vice’s reply is not forwarded directly, either. The reply does not reach the client
until the measurement service, management and WSMM handler have been exe-
cuted.

12.3.4 Monitoring the SLA Parameters

The WSLA descriptions add SLA capabilities to the Web services. In a formal
way, the performance requirements are defined by the WSLA language. This en-
ables suitable monitors to evaluate these definitions and determine whether the
current measured values correspond with the specifications (service level targets).
To this end, performance guarantees are defined for the Web service operations
and business processes via the WSLA. The recording of performance measure-
ment is unambiguous and therefore allows violations of performance guarantees to
be established.

Third parties can be incorporated into the evaluation and monitoring process.
This allows a supplier of services to use the specification to define SLAs and
reach an agreement with the customer. Several performance levels are defined, to-
gether with the associated templates. A customer selects the required SLA from
this portfolio when concluding a contract. For the supplier, these specifications
provide an indication of the resources needed to operate the Web services and the
priority of the service for this user. The values are important for the customer for
the purpose of setting the measurement and control systems correctly.

Control systems (condition evaluation) establish whether the SLAs are adhered
to. In the event that the contractually agreed-upon SLA parameters are violated,
warnings are output. With a view to enabling this evaluation, the information rele-
vant for data collection is input to the measurement service. This is done when the
contract is activated. An estimate regarding fulfillment of the SLA can then be
made using the current measurements.

If the specifications are violated or if an error status exists, the actions of the
handling agreement take effect. This may involve an error message, for instance.
The control system is made up of the following elements: a data collection system
for obtaining measurement data, the measurement service, a measurement compo-
nent for compiling metrics from the measured values – as specified in the WSLA
– and a system for comparing the actual calculated metrics with the specifications.
A standardized comparative performance value is assigned to each class of work-
load using the SLA. This value contains an assessment function that estimates
how probable it is that the actual values will exceed or fall below the specified
values. For planning purposes, the middleware uses simple procedures for model-
ing the load and assessing the performance of a Web service using queue systems
or something similar.

12.3 Web Service Level Agreements 213

The Web services are connected, distributed and compiled via the service desk
in the Web Service Toolkit. This is done using clusters that connect several ser-
vices via a shared access point. As a result, an individual cluster is able to deter-
mine which service a query starts, trigger appropriate performance measurements
for the service processing and control the handling of downtime. The choice of
service to be started affects not only availability but also the quality of service
specifications in the WSLA and business rules. The decision is made automati-
cally based on a service policy. The service desk permits an abstract view for sup-
pliers and users for the purpose of processing client accesses that are received in
parallel in heterogeneous environments, with the underlying implementation being
hidden from users.

12.3.5 Use of a Measurement Service

In the following we want to show a possible architecture of a measurement ser-
vice. This architecture allows the measurement of different attributes (e.g., per-
formance, availability) of several Web services. The Web Services to be measured
can be selected freely within the Internet. Furthermore, the functionalities of the
measurement service can be used through a Web services-based interface (Fig.
12.5).

The components of the agent perform the following tasks:
Measurement probes. Executes the measurements by the use of one or more
methods from the Web service. For the isolation of the processing time of the
Web services from the needed time within the network we simply used a “ping”
in addition. The “ping” is a simple measurement. This is executed shortly be-
fore the actual measurement runs.
Configuration of the Web Service access. Gives the possibilities for the con-
figuration of the measurement agent by the use of an XML file. Adaptation to
the particular shaping of the WSDL description from a specific Web Service,
selection of the method for measuring, definition of corresponding parameter,
establishing of intervals for the measurements.
Load driver component. It allows the simulation of the expected workload.
The required performance behavior of the Web Service can be tested on this
virtual basis. In detail this component provides the definition of the load mix,
definition of response time goals and the necessary substitution of parameters.
User configuration and access. It offers the possibility to administrate users of
the measurement service with different access rights. That means rights to read
available measurements, rights to configure the measurement of new Web Ser-
vices.
Prediction component. It is based on existing measurements, forecast models
can be developed. These models can be developed by the use of mathematical
calculations like the operational analysis.
Metrics storage & export component. For deeper analysis it is necessary to
use separate statistical tools like Microsoft Excel or SPSS. The current version
offers a comma-separated file, which contains all measurements.

214 12 Service Level Management

WSDL-based access layer. Provides all functions of the measurement agent as
service-oriented interface (this means the agent is even a Web service). On the
base of this function the agent can be used to control “service level agreements”
for a specific Web service.
Web based GUI. It provides a simple graphical control interface. Provides the
configuration of the measurements time interval and measurement goals and
generates simple graphical reports too.

Fig. 12.5. Architecture of a measurement service

A measurement service based on the shown architecture was first implemented
under [Schm03b]. It has the possibility to measure the availability, the perform-
ance, the functionality and the complexity of a specific Web service from the users
(or better integrators) point of view.

12.4 Hints for the Practitioner

An initial implementation (Fig. 12.6, Fig. 12.7) of the proposed concept was real-
ized in cooperation between the T-Systems development center in Berlin and the
Software Measurement Laboratory (SMLab) at the University of Magdeburg. For
the development of the service we used Java as implementation language and
XML for all configuration tasks. The prototype is available for usage under the
following URL within the Internet: http://ws-trust.cs.uni-magdeburg.de

This prototype provides the possibility to measure the performance-, stability-
and availability-behavior of any Web service provided within the Internet. For a
registration of a Web service under the measurement service it is necessary to
provide the URL of the corresponding WSDL-file. Based on a dynamic adoption
engine, the required application code will be generated dynamically. Therefore,
the measurement service is able to adapt on a specific Web Service at runtime
(just in time). This function is necessary to provide the functionality of the meas-

WS

access

Configuration

of the Web

Service access

User

configuration &

access

Metrics storage

& export

component

Measurement probes

WSDL-based Access Layer (Measurement Service)

Web based GUI

Prediction

component

WS

access

WS

access

WS

access
WS

access

WS

access

WS

access

WS

access

Load driver

component

WS

access
WS

access

12.4 Hints for the Practitioner 215

urement agent as Web service itself. In the case of a successful code generation,
the basic configuration starts. This configuration considers the choice of the meth-
ods, the invocation period, aspects of fault tolerance, activities in the case of
WSDL changes and the interpretation of possible system errors. Furthermore the
type of the result edition will be configured.

Fig. 12.6. GUI of the implemented measurement service

On this basis, a concrete Web service can be observed regarding his qualitative
behavior. The results of this observation can then flow directly in into the selec-
tion of a concrete Web service. Furthermore it is possible to estimate the quality
behavior of the whole system by the use of the selected Web service. During the
selection of a specific Web service the developer should verify the functional be-
havior and also the nonfunctional behavior.

In the case of the development of a Web service (provided within the Internet
or intranet) it is necessary to provide a complete description. This description
should explain the whole interface, from a black box standpoint. That means pro-
vided functions, possible preconditions, semantic aspects, quality implications, re-
source requirements and also questions of the maintenance.

216 12 Service Level Management

Fig. 12.7. Response time behavior of a specific Web service

12.5 Summary

Web services offered on the Internet usually only have a rudimentary description
of their functional and nonfunctional properties, which means that determined
properties can usually not be assumed for the Web services offered. Numerous of-
ferings are only available temporarily and do not have a commercial character.

From the viewpoint of the authors, it is vital that the opportunities provided by
SLA management in the environment of Web service-based applications are taken
into consideration during development. In the process, development should be
based not only on the tasks related to process modeling and analysis but also on
the actual software development. Web services that take both functional behavior
and nonfunctional properties into account and, what is most important, guarantee
these during execution need to be positioned successfully on the Internet before
commercial solutions can be implemented based on this technology.

The generic WSLA language and the associated architecture offer the opportu-
nity to cover a wide range of negotiating situations between potential contract par-
ties. However, the WSLA approach only addresses selected problems (primarily
issues regarding performance) when it comes to guaranteeing a defined service
level. The vast majority has to be taken into account during software development.

The task for software development is to create Web services with determined
properties. From the viewpoint of the authors, this requires the use of agent tech-
nology or, in an initial approach, the instrumentation of technically founded user
functions.

13 Case Study: Building an Intranet
Measurement Application

Practicing principles matters more than proving them.
Epictetus

13.1 Applying Measurement Tools

The metrics tool application is one of the main technologies for managing the
measurement process in the phases of the measurement itself and during the ex-
ploration of the measurement data. However, currently a lot of experience re-
sources in the Web exist for supporting the decision process waiting for migration
or adaptation. Fig. 13.1 demonstrates some of the technological aspects included
in such support systems [Dumk03a].

Measurement
Information

Web Server Data base
server

Summary of
project data

Measurement
examples

Case study
data

Measurement
Exploration

Measurement
Tutorials

2. Application
Server

1. Middleware

3. Server Pages

4. Script Languages

Fig. 13.1. Web-based technologies of measurement experience services

This section describes a Web-based solution based on the International Soft-
ware Benchmarking Standards Group (ISBSG) International Repository including
the experience of project estimations (see [Abra03] and [Abra02b]). This approach
was designed and implemented in a common initiative of the École de Technolo-
gie Supérieur (ETS) in Montreal, Canada, and the SML@b team at the University
of Magdeburg, Germany. The solution was realized in two versions, which are de-

218 13 Case Study: Building an Intranet Measurement Application

scribed in following. The implemented tool is not generally available, but it dem-
onstrates the possibility of future solutions in this area.

13.2 The White-Box Software Estimation Approach

Reliable software effort estimation is critical for project selection, project planning
and project control. Over the past thirty years, various estimation models have
been developed to help managers perform estimation tasks, and this has led to a
market offering of estimation tools. Some of these tools date from the late 1970s
and have been progressively modernized by their vendors. For organizations inter-
ested in using such estimation tools, it should be crucial to know about the predic-
tive performance of the estimates such tools produce. In this market segment,
however, estimation tool builders have not provided information on the perform-
ance of their models, either with respect to their initial data repositories or on their
performance when adapted to the evolution of software development technologies.
For users, these tools are basically black boxes about which little is known in
terms of the reliability of the estimates such black-box tools provide as output.

The construction of an estimation model usually requires a set of completed
projects from which a statistical model is derived and which is used thereafter as
the basis for the estimation of future projects. However, in most organizations,
there is often no structured set of historical data about past projects, which ex-
plains their inability to build their own models based on the characteristics of
those projects. Traditionally, organizations without such historical data have had
four alternatives when they wanted to improve their estimation process:
1. Collect data from past projects and build estimation models using their own

historical data sets – this is particularly useful if the projects to be estimated
have a high degree of similarity with past projects. This, of course, requires the
availability of high-quality information about those projects documented in a
similar and structured way.

2. Take the time required to collect project information from current projects, and
wait until completion of enough projects to build sufficiently reliable estima-
tion models with a reasonable sample size. Most often, however, managers
cannot afford to wait.

3. If their upcoming projects bear little similarity to their own past projects, they
may access data repositories containing projects similar to the ones they are
embarking on and derive estimation models from these. A key difficulty, until
fairly recently, has been the lack of market availability of project repositories.

4. Purchase a commercial estimation tool from a vendor claiming that the tool ba-
sis includes historical projects of the same type as their upcoming projects. This
is a quick solution, but often an expensive one.

While alternatives 1 and 2 are under the total control of an organization, alter-
natives 3 and 4 depend on an outside party. Until fairly recently, for those organi-
zations without their own historical data sets for building estimation models them-

13.2 The White-Box Software Estimation Approach 219

selves, and who could not afford the long lead time to do so, only alternative 4
was widely available, with the associated constraint of not knowing either the ba-
sis of the estimation or the quality of the estimates derived from sources not avail-
able for independent scrutiny. In this section, we refer to these commercial tools
as black-box estimation tools.

In the mid-1990s, various national software measurement associations got to-
gether to address the limitations of alternatives 1 to 4, specifically to overcome the
problems of both the availability and the transparency of data for estimation and
benchmarking purposes and to offer the software community a more comprehen-
sive alternative in the form of a publicly available multi-organizational data re-
pository. This led to the formation of the ISBSG [ISBS03] whose goal is the de-
velopment and management of a multi-organizational repository of software
project data. The ISBSG organization collects voluntarily provided project data
(functional size, work effort, project elapsed time, etc.) from the industry, conceal-
ing the source and compiling the data into a database. By mid-2003, this reposi-
tory contained over 2000 projects. It is now available to organizations for a mini-
mal fee, and any organization can use it for estimation purposes. For instance,
such a repository can also be used to assess software estimation tools already on
the market.

Abran defines the white-box approach to estimation as the analysis of a data set
for which all the data points are available, and the statistical models of which can
be analyzed both graphically and through the results of statistical tests. For a
white-box approach, it is necessary to have access to the full data set: access to
each of the individual data points allows both visual analysis of the data sets and,
for instance, the investigation of obvious outliers to interpret the results in the em-
pirical context of size intervals.

For the prototypes, the linear regression technique was selected to build the es-
timation models over more complex estimation techniques, such as analogy-based
and neural network techniques, which have not been shown to better explain the
size-effort relationship in software projects on the types of data sets available for
such studies, including multiorganizational data sets ([Bria00], [Dola01]). Fur-
thermore, linear regression models are better known by practitioners and simpler
to understand and use. Many software engineering data sets are heterogeneous,
have wedge-shaped distributions ([Abra96], [Abra02a], [Keme87], [ISBS03],
[Kitc84]) and can, of course, have outliers that have an impact on the construction
of the models and on their performance.

Therefore, any sample selected needs to be analyzed for the presence of out-
liers, as well as for visually recognizable point patterns that could provide an indi-
cation that a single, simple linear representation would not be a good representa-
tion of the data set; for instance, a set of projects within an interval of functional
size might demonstrate one behavior with respect to effort, and the same set of
projects within another size interval a different one. If such recognizable patterns
are identified, then the sample should be subdivided into two smaller samples, if
there are enough data points, of course. Both the samples with outliers and those
without them should be analyzed.

220 13 Case Study: Building an Intranet Measurement Application

The visual analysis provides another clue. The following example is provided
in [Dumk03b]: A visual analysis of Fig. 13.2 (upper left part) indicates that there
are two candidate outliers that might have an undue impact on the regression
model. The data point with almost 1,000 Function Points (FP) [Albr83] has a cor-
responding level of effort that is much smaller than that of many projects of much
smaller functional size, and a project with 3,700 FP is almost three times as large
as the majority of the projects.

E
ffo

rt
(h

ou
rs

)

E
ffo

rt
(h

ou
rs

)

Size (Function points (FP))

Natural [621,3500]: N=9
and size>620 FP
Y=10.053x – 1404.9, R2=0.7424

Natural: N=41 including outliers
Y=10.053x – 648.91, R2=0.8577

Natural [20,620]: N=30 and size<620 FP
Y=6.1355x – 264.98, R2=0.475

Size (Function points (FP))

E
ffo

rt
(h

ou
rs

)

Size (Function points (FP))

E
ffo

rt
(h

ou
rs

)

E
ffo

rt
(h

ou
rs

)

Size (Function points (FP))

Natural [621,3500]: N=9
and size>620 FP
Y=10.053x – 1404.9, R2=0.7424

Natural: N=41 including outliers
Y=10.053x – 648.91, R2=0.8577

Natural [20,620]: N=30 and size<620 FP
Y=6.1355x – 264.98, R2=0.475

Size (Function points (FP))

E
ffo

rt
(h

ou
rs

)

Size (Function points (FP))

E
ffo

rt
(h

ou
rs

)

Size (Function points (FP))

Fig. 13.2. Regression analyses – projects in NATURAL

Two different groups can be identified: one subset of projects between 20 and
620 FP, with a good sample size of 30 observations (Fig. 13.2, upper right part),
and the other a more sparsely populated subset of 9 projects between 621 and
3700 FP, a much larger size interval (Fig. 13.2, lower part). It can then be ob-
served visually that in the sample of projects with functional size between 20 FP
and 620 FP there is a relationship between the independent and dependent vari-
ables: its estimation model (Fig. 13.2, upper right part) is Y=6.135 FP+265 with
an R² = 0.475. In this model, the constant of 265 h could represent the fixed cost
of setting up the projects within this size interval, the positive slope then corre-
sponds to the variable cost, which is dependent on the size of the projects. For pro-
jects larger that 620 FP in size (Fig. 13.2c), the estimation model is

Y = 10.539 FP – 1404, with R² = 0.74

13.3 First Web-Based Approach 221

But, with only nine data points, caution must be exercised in interpreting the
data. For the smaller range, the constant of the regression line is positive; for this
larger size interval, the constant of the equation is negative (-1404 h), which is, of
course, counter intuitive. This means in particular that there should not be an ex-
trapolation of the model outside the range of values from which it was derived
(that is, it is not valid for projects smaller than 621 FP).

This example also highlights the fact that in this ISBSG multiorganizational
dataset there is, for each sample and by programming language, a different size-
effort relationship, and the strength of this relationship differs. The directly de-
rived models performed as well as models built by other researchers for smaller
and older multiorganizational datasets [Dola01] under similar conditions, as well
as for more recent software applications: For some programming languages, the
relationship of the models is within the range reported in the literature for multi-
organizational data sets (that is, R2 around 0.40) without any indication of their
programming languages. Without visualization, the results obtained from estima-
tion tools can be somewhat of a mystery to practitioners and have at times been re-
ferred to as “black-box” estimations [Dumk03b]. The “white-box” estimation pro-
totypes we have developed greatly alleviate this problem.

The first generation of prototypes was built as a proof-of-concept for the white-
box approach to software estimation. It was based on a business model, which
must take into account that, while the ISBSG data can be purchased from ISBSG.
A new business model is explored in our second generation of Web-based proto-
types: in this new model, the estimation features themselves are marketed through
the Web, rather than the data or the software. This means that the pricing policy
will be based on the number of requests for estimation, without the obligation of
paying for the full dataset or for the software itself. It also means that users do not
need to worry about software upgrades or further repository releases.

13.3 First Web-Based Approach

The first Web-based prototype was designed and implemented as an application
server model with three tiers. It was programmed as a “Web-based” Java-Applet
in a distributed system using Java (Sun Corporation) and its remote method invo-
cation (RMI) counterpart to the remote procedure calls (RPC) [Dumk03a]. Com-
putation results [Weis91] are presented in Fig. 13.3, in both table and scatter-plot
format, with Work Effort or Duration displayed (Y-axis) depending on the number
of Function Points (X-axis).

A linear regression line, its equation and R² are displayed, using the least
squares method of statistics. Depending on the confidence interval selected and
the expected size of the project to be estimated, the estimated effort (or duration),
its prediction interval and the prediction bounds are plotted. The user can analyze
the impact of outliers by using the select/unselect option to delete some data from
the sample he is analyzing, and asking the prototype to recompute the estimation
results. In the table at the bottom of the display screen, the lower, estimated and

222 13 Case Study: Building an Intranet Measurement Application

upper values for the dependent variables (project work effort, elapsed time, deliv-
ery rate and speed of delivery) are given, together with the number of projects in
the sample selected and taken into account in the regression model.

Fig. 13.3. Stand-alone prototype

13.4 Second Web-Based Approach

Of course, as a proof-of-concept, robustness had to be added to the first prototype.
Furthermore, the first prototype was built using release 7 of the ISBSG repository.
However, not only does ISBSG publish updated versions of its repository at ir-
regular intervals, but it also modifies, for various reasons, the data structures of the
dataset made available with each successive release (for instance, new fields for
added data variables). In addition to improvements to the management of user ac-

13.5 Hints for the Practitioner 223

counts, more sophisticated visualization features were recommended to permit the
construction of multiple estimation models by selecting ranges of data points from
the same sample, as illustrated in Fig. 13.2.

The estimation features were enhanced to provide users with the facility to build
multiple estimation models from the same sample, as described in [Dumk03b].
For instance, in this second prototype, a user, after a graphical analysis of the
sample she selected, can divide the X-axis into ranges of functional sizes (i.e., in-
tervals) to obtain distinct regression models for each size range. Of course, the lin-
ear regression curve, associated equation and R² are provided for every scatter plot
(Fig. 13.4). To improve the management of user accounts, a Java GUI-driven user
database handler was implemented to delete a user, add a user or alter the user set-
tings from the GUI instead of direct typewriting at a terminal (Fig. 13.5).

13.5 Hints for the Practitioner

White-box software estimation as shown in this chapter can be a helpful approach
for the IT community based on following intentions:

The construction of an estimation model usually requires a set of completed
projects from which a statistical model is derived and that is used thereafter as
the basis for the estimation of future projects.
The white-box approach to estimation consists of the analysis of a dataset for
which all the data points are available, and the statistical models of that can be
analyzed both graphically and through the results of statistical tests.
The implemented statistical analysis functions should be easy to understand and
really interesting for the user.
The experience database must be composed of voluntary activities by the IT
community.
In the presented Web-based prototypes, the linear regression technique was se-
lected to build the estimation models over more complex estimation techniques,
such as analogy-based and neural network techniques.

13.6 Summary

The construction of an estimation model usually requires a set of completed pro-
jects from which a statistical model is derived and which is used thereafter as the
basis for the estimation of future projects. Abran defines the white-box approach
to estimation as the analysis of a data set for which all the data points are avail-
able, and the statistical models of which can be analyzed both graphically and
through the results of statistical tests. For a white-box approach, it is necessary to
have access to the full data set: access to each of the individual data points allows
both visual analysis of the data sets.

224 13 Case Study: Building an Intranet Measurement Application

The given description of the Web-based project data analysis tool should moti-
vate the IT community for more initiatives using the large facilities in the Web de-
scribed in Chap. 4 as the future of e-measurement.

Fig. 13.4. Estimation features – second Web-based prototype

Fig. 13.5. GUI-driven user administration

14 Case Study: Measurements in IT Projects

Project without clear goals will not achieve their goal clearly.
Tom Gilb

14.1 Estimations: A Start for a Measurement Program

Project estimations are required as early as possible – not only from the contrac-
tors but also from every project leader. Because of the importance of early estima-
tion methods Meli and Santillo [Meli99] published a comparative overview of
Function Point estimation methods that shows a valuable collection of worldwide
efforts in this direction. Since Function Point counts are based on the requirements
documentation, so-called Function Point prognoses or approximations proved in
practice to be helpful to aid early estimations [Bund98b], [Bund99a].

Our experience shows, that the necessary information for such approximations
can be gained very early, at the beginning of a project (or, in stable environments,
even before) in discussions with the project leader. In a few cases we used this
Function Point Prognosis a year before project start. Of course, we added large
percentages for each error, uncertainty, early estimation and risk.

We will in this chapter describe a case study about introducing and increasingly
improving an estimation and measurement program inside an IT organization.

About 1995 the IT department of the AXA Service AG in Cologne (the non-
insurance part of AXA Germany) started a metrics program with Function Point
(FP) metrics, the introduction of a handbook for measurement and estimation, and
the evaluation of tools. In the following year the Function Point Workbench and
the estimation tool Checkpoint for Windows (CKWIN) were introduced and the
base counts of all application systems was started.

In 2001 the IT department completed the total counts of all 78 application sys-
tems (excluding Enterprise Resource Planning (ERP) applications, e.g. SAP, Peo-
plesoft) totaling about 100,000 unadjusted Function Points (FPs). By 2003 the
portfolio increased to 98 application systems with about 150,000 unadjusted Func-
tion Points. Actually, more than 100 staff members are trained in FP counts and
project estimation. In each group of developers there is at least one FP and estima-
tion “expert“. The competence center consists of two persons. In 2002 productiv-
ity measures were developed, and a baseline for productivity measurement was
completed. In 2003 the metrics database was introduced as Version 1.0. Some of
the enterprise embedded solutions are presented in this chapter.

226 14 Case Study: Measurements in IT Projects

14.2 Environment

14.2.1 The IT Organization

The IT department of AXA Service AG includes about 500 IT professionals with
approximately 50 project leaders. In addition, there is an outsourced computing
center with about 250 staff members. The insurance branches deliver about 160 IT
coordinators supporting the IT projects. IT development is mostly host-based with
COBOL programming. There exist about 2,700 databases (1,600 CICS, 1,100
IMS), and 2,500 DB2 tables (1,600 production, 900 disposition), and about
7,800,000 transactions per day (5,600,000 CICS and 2,200,000 IMS). PC projects
use Optima++, a C++ shell, for programming and Internet programming is done
with Java.

FP counts are obligatory in the AXA Service AG, at least at the end of the re-
quirements analysis and at the project post mortem. Function Point Prognosis, –
as described here – instead of only FP count is mandatory during the feasibility
study and at the start of a project. The counts and their details are documented
centrally. Throughout this chapter Function Points mean IFPUG 4.0 unadjusted
FPs.

To get access to history data, we use a project register database (Excel), which
shows detailed information (extracted from the Function Point Workbench) for
each FP count. It contains the quantity as well as the Function Points of EIs (Ex-
ternal Inputs), EOs (External Outputs), EQs (External Inquiries), ILFs (Internal
Logical Files) and EIFs (External Interface Files) for each of these components
and some additional information (platform, VAF (Value Adjustment Factor), ad-
justed Function Points). When a project was counted repeatedly only the most re-
cent count is shown and older counts are kept in a history table. There are sums of
the quantity of EIs and EOs, of ILFs and EIFs, which were needed for our re-
search. IO means throughout this chapter the sum of the number (quantities) of EI
and EO.

We started in 1997 with 20 application counts [Bund98a], which increased to
39 counts a year later [Bund99a]. A balanced scorecard was introduced for the de-
partment leaders, combining their success in counting all of their application sys-
tems with 20% of their financial bonus. This was essential management support
for the success of our metrics program.

14.2.2 Function Point Project Baseline

In addition to the investigation of the formulae for prognosis we also investigated
the FP proportions and average function complexity of our FP counts and com-
pared it, e.g., with the International Software Benchmarking Standards Group
(ISBSG) data. The ISBSG (http://www.isbsg.org) publishes every year a collec-
tion of metrics. The actual Release 8 is based on more than 2,040 projects world-
wide. Since we did this research several times over the past years, we now have at

14.2 Environment 227

least three historical annual metrics of our own data for comparison, as can be
seen in the following parts of the chapter.
Value adjustment factor. One of the first results of our data collection was the
perception that the value adjustment factor (VAF) of our counts is typically in the
range of 0.73–1.22, with an average of 0.95 in the 2001 data (0.93 in 1998), and
an average of 0.94 for host and 0.96 for PC environment. The average for migra-
tions is 0.73. We have used this metric for quality assurance of our Function Point
counts since 1998.
Function component proportions. Table 14.1 shows the historic development of
the function component proportions in AXA Service AG. Of course, the first two
years are not very representative. The figures from 1998 and 2001 are similar, and
the division into Host and PC development shows differences that should be care-
fully observed in future. The domination of the EIs and EOs (61% together) seems
to be the reason for the strong correlation between IOs and the unadjusted FPs –
the main result of this research.

It can be seen that EOs dominate in AXA Service AG (39%) compared with the
results obtained by Morris and Desharnais [Morr96] (22%–24%), and the quick
estimation mode of Checkpoint for Windows (CKWIN), the estimation tool from
SPR (Software Productivity Research) in Burlington, MA, (20%), whereas ILFs
are of minor importance (16% versus 24% and 43%, respectively). Because of this
peculiarity one conclusion was not to use Checkpoint for Windows (EIF + ILF =
46% versus 23% in AXA Service AG) in Quick Estimate mode for the estimation
of FPs. The reason for the major importance of EOs may be that AXA Service
AG has many centralized management information.

In 2000 we accomplished an error calculation with the 1998 data by using the
percentage of each component to calculate 100% from it and compared the result
with the actual Function Point count. Errors range from 37% (EOs) to 48% (EQs)
[Bund00b. Hence we do use the percentages of the components only as a rule of
thumb for the quality assurance of our Function Point counts.

Table 14.1. Function component proportions

2001 Percent of Function Points
Platform Number of Application

Systems
EI EO EQ ILF EIF

Total 78 22 39 8 16 14
Host 69 21 40 8 16 15
PC 9 28 31 12 19 10
ISBSG Rel. 6 238 New development

projects
33.5 23.5 16 22 5

Metricviews 26–39 22–24 12–14 24 4–12
Checkpoint 20 24 10 43 3

1998 Total 39 25 39 14 17 6
1996/97 Total 20 27 39 11 18 5
1997 Total 12 18 43 12 18 9
1996 Total 8 34 35 11 18 2

228 14 Case Study: Measurements in IT Projects

Average function complexity. We used the Excel problem solver to calculate
from the project register database the average function complexity of the five
components, i.e., how many FPs a “typical“ EI, EO, EQ, ILF or EIF has in our en-
vironment. It is widely agreed that this measure is stable and can be used as a rule
of thumb for quick estimation of counts, since the components need not be classi-
fied as low, average or high. SPR Function Points, e.g., use the average IFPUG
classification for Function Point estimation.

Table 14.2 shows that that the average Function Points increased over time,
which may be caused by growing complexity in application development envi-
ronment. In 1998 we tested the applicability of the typical FPs for estimation pur-
poses by multiplying it with the quantities of the EIs, EOs, EQs, ILFs and EIs, re-
spectively, and compared the results with the unadjusted Function Points of the
counts. The error was less than 13%

Table 14.2. Average Function Complexity

2001 Average Function Points
Platform Number of application sys-

tems
EI EO EQ ILF EIF

Total 78 4.7 5.9 4.4 8.6 6.5
Host 69 4.7 5.9 4.6 8.7 6.5
PC 9 4.3 5.7 3.8 7.6 6.5
IFPUG 4 5 4 10 7

Release 5 4.3 5.4 3.8 7.4 5.5ISBSG
Release 5 Europe 4.2 4.9 3.8 7.2 5.3

1998 Number of application sys-

tems
EI EO EQ ILF EIF

Total 39 4.6 5.7 4.3 8.2 6.1
Host 28 4.8 5.7 4.5 8.5 6.2
PC 11 4.0 5.7 3.9 7.3 5.4

1997 Number of application sys-

tems
EI EO EQ ILF EIF

Total 20 4.6 5.5 4.3 8.1 5.7

Function point ratios. One would expect three inputs (add, change, delete) at
least, one output and one EQ for maintenance of a file. The following results show
the averages in AXA Service AG (Table 14.3).

Ratios of components. There are remarkable differences between the before-
mentioned expectations and also some differences between the ratios in our appli-
cation systems (AS) and the ISBSG findings [ISBS00, ISBS02], as can be seen
from Table 14.3.
Ratios of Function Points per component. The ratios of Function Points per ILF,
input and output were also calculated (Table 14.4).

14.3 Function Point Prognosis 229

Table 14.3. Ratios of components

Application systems AXA Service AG ISBSG Rel. 5
2001 1998 1997 Europe Total

Quantity 78 39 20 32 238
EI per ILF 2.6 2.7 2.7 3.8 2.9
EO per ILF 3.6 3.3 3.7 2.6 1.5
EQ per ILF 0.9 1.4 1.2 1.9 1.1
EIF per ILF 0.6 0.5 0.4 - -
Ratios per input and ratios per output
78 Application Sys-
tems

2001 78 Application systems 2001

EO per EI 1.3 EI per EO 0.7
EQ per EI 0.3 EQ per EO 0.3
ILF per EI 0.4 ILF per EO 0.3
EIF per EI 0.2 EIF per EO 0.2

Table 14.4. Ratios of Functions Points per component

78 AS 2001 78 AS 2001 78 AS 2001
EI FPs per ILF 12.2 EO FPs per EI 8.0 EI FPs per EO 3.4
EO FPs per ILF 21.0 EQ FPs per EI 1.5 EQ FPs per EO 1.1
EQ FPs per ILF 4.0 ILF FPs per EI 3.3 ILF FPs per EO 2.4
EIF FPs per ILF 4.2 EIF FPs per EI 1.6 EIF FPs per EO 1.2

14.3 Function Point Prognosis

Regression analysis on our project register database was used to find correlations
between the number of components and the unadjusted Functions Points of the
counts [Gaff94]. The result of the research was that the sum of the quantities of
EIs and EOs (IOs in our terminology) is correlated with about R2 0.95 (R 0.97)
to the total amount of FPs of a count and can thus be used as a Rule of thumb for
the prognosis of FPs when the FPs of EQs, ILFs and EIFs are not known.

An interesting result was that the correlation was not as reliable (R2 mostly less
than 0.9) for other components as for data subsets of small, medium and large
counts, and it was not better with polynomial regression. Of course, the use of FPs
instead of the IOs for the prognosis gives a stronger correlation, but the higher ef-
fort for classification of the components instead of only counting the inputs and
outputs is not adequate for the higher precision. One should always keep in mind
that estimation has to do with uncertainty per se.

The 1998 data were analyzed independently by Noel [Noel98] in a joint re-
search with the Software Engineering Management Research Laboratory, Depart-
ment Informatique, Universite du Quebec a Montreal (UQAM), Canada, who ob-
tained the same results. He applied the same method to seven projects with
COSMIC Full Function Points (FFPs), in order to find a similar correlation for
FFPs, but the sample seemed to be too small for reliable results. He reported in his

230 14 Case Study: Measurements in IT Projects

thesis an error margin of 20%. Table 14.5 gives a historical overview of the prog-
nosis formulae. Fig. 14.1 visualizes the regression analysis result for all counts.

Table 14.5. Function Point prognosis formulae

2001 Number of counts R2 Error in% Formula for Prognosis
Total 78 0.9483 13 FP = 7.8 × IO + 43
Host 69 0.9498 12 FP = 7.9 × IO + 40
PC 9 0.9503 21 FP = 6.4 × IO + 172

1998 39 0.9589 20 FP = 7.6 × IO + 50
Host 28 0.9580 FP = 7.9 × IO + 11
PC 11 0.9760 FP = 6.5 × IO + 134

1997 20 0.9525 13

(Median 11)
FP = 7.3 × IO + 56

Fig. 14.1. Regression analysis example

14.4 Conclusions from Case Study

14.4.1 Counting and Accounting

A good documentation of counting and estimation data is a treasure for metrics
programs. Our investigations show that valuable metrics can be gained from the
collected data. A surplus benefit was finding (via regression analysis) a prediction
that helped us to estimate FPs very early in the process. Since FPs are an impor-
tant measure for the estimation of effort we thus gained the synergetic benefit to
be able to do reliable estimations very early in the life cycle of our IT projects. Of

TOTAL

y = 7,7905x + 43,499

R
2

= 0,9483

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000

IO

F
P

's
 u

n
a
d

ju
s

te
d

TOTAL

y = 7,7905x + 43,499

R
2

= 0,9483

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000

IO

F
P

's
 u

n
a
d

ju
s

te
d

14.4 Conclusions from Case Study 231

course, a complete count of FPs at the end of the requirements analysis is obliga-
tory, as well as an improved estimation at this time.

We heard from other organizations that they did similar research. There is
strong evidence that different environments will lead to other results, hence each
organization should develop its own heuristic solutions. Nevertheless, compari-
sons with other metrics are valuable for the enterprise.

From the start of the introduction of our metrics program in 1996 it has been a
long road to arrive at these results of application counting. The success could only
have been achieved with sufficient management support. The year 2002 was de-
voted to introducing project FP counting and estimation as well as the introduction
of productivity metrics.

The quality of a software product is measured by the degree of how well it fits
the requirements of the end users. The increasing diffusion of IT in private life
leads to increasing requirements and quality of software systems. This conscious-
ness of increased quality made quality one of the most important goals of software
development. There exist a lot of relevant and proved measures, methods and
techniques for improvement of quality of software and software development.

Quality today is no coincidence, but can and must be exactly planned. For this
reason quality assurance in IT projects consists of at least the following function-
ality:

quality planning
quality measures
quality control
quality assurance

The first three functions are secured by so-called constructive quality assurance
measures, which have to be performed systematically in order to define quality a
priori. Constructive quality assurance measures are, e.g., the systematic use of
methods, development tools or standardized processes. Quality control is per-
formed by analytical quality assurance measures in order to measure quality or
deviations and to correct them.

The focus of these tasks is directed to constructive quality assurance measures,
since prevention is better than error correction, or, in a metaphor: fire prevention
is better than fire fighting.

This is accompanied by the requirement for the definition of quality goals for
the software development process, from which the quality goals of the software
can be deducted. Quality is then measured by comparison of the goals and the ob-
tained quality features of the developed software. In IT projects, as part of the re-
quirements, the quality measures are defined at the start of the IT project. This is a
direct link to estimation.

14.4.2 ISO 8402 Quality Measures and IFPUG GSCs

The ISO 8402 Quality Measures overlap partially with the 14 general system
characteristics (GSC) of the IFPUG Function Point method [IFPU99], which are

232 14 Case Study: Measurements in IT Projects

used to add estimation parameters to the functional size measurement for the cal-
culation of adjusted function points Hence the idea evolved to create an automatic
interface to avoid double work for the project leaders. A large organization thus
has developed the following Excel chart, which automatically calculates the qual-
ity measures from the GSCs and vice versa. The connection between the quality
measures and the GSCs was ranked from 1 to 9 by a team, i.e., the sum of each
column is 9. Thus, in Fig. 14.2 the quality measure fit is connected with the fol-
lowing IFPUG GSCs (see column 1 in Fig. 14.2 and Table 14.6 for the mapping of
the values):

1/9 with data communication
2/9 with distributed data processing
1/9 with online data entry
5/9 with facilitate change

Table 14.6. Evaluation of IFPUG GSC and DIN/ISO quality measures

General system characteristics Mapped to the priority of the quality measure
0 = No priority (0)
1 and 2 = Small priority (1)
3 = Medium priority (2)
4 and 5 = High priority (3)

A
da

pt
ab

ili
ty

U
sa

bi
lit

y

E
ffi

ci
en

cy

Fu
nc

tio
na

lit
y

M
ai

nt
ai

na
bi

lit
y

C
or

re
ct

ne
ss

P
or

ta
bi

lit
y

S
ta

bi
lit

y

S
ec

ur
ity

In
te

ro
pe

ra
bi

lit
y

R
eu

sa
bi

lit
y

R
el

ia
bi

lit
y

3 2 2 3 2 2 3 2 3 2 1 2

Data communication 5 1 3 1 1

Distributed Data Processing 4 2 9

Performance 4 3 2

Heavily Used Configuration 5 3 1

Transaction Rate 0 3 2 1 2

Online Data Entry 5 1 1 3 2 2

End-User Efficiency 4 6

Online Update 5 5 4

Complex Processing 4 3 3 1 3

Reusability 2 7

Installation Ease 4 1 4 2 2

Operational Ease 4 2 6 1

Multiple Sites 5 8

Facilitate Change 5 5 1 1

relative meaning 10,0% 8,9% 6,3% 9,8% 7,7% 8,4% 10,5% 7,9% 9,6% 8,4% 5,6% 7,0% 100,0

absolute meaning 43 38 27 42 33 36 45 34 41 36 24 30 42

IFPUG GSC's

Quality Characteristic

Ratings
 High Average Low None
 9 - 7 6 - 4 3 - 1 0

Value :
High Average Low None
 5 4 - 3 2 - 1 0 IFPUG
 3 2 1 0 Q-
Charact

Va lue

abs .
ra ting Va lue
 45
 3
 41
 40
 2
 27
 26
 1
 6
 5
 0
 0

Fig. 14.2. Mapping of the DIN/ISO quality measures to the IFPUG GSCs

14.4 Conclusions from Case Study 233

14.4.3 Distribution of Estimated Effort to Project Phases

With the aid of an Excel chart the distribution of the estimated effort of the project
phases can be done with the percentage method. A corporate solution, e.g., would
ask for following input:
1. Effort as estimated
2. Effort for interfaces (e.g., computing center, other projects) as individually es-

timated, or from estimation tool
3. Team size of IT staff for each phase
4. Team size of end-users and specialists for each phase

Fig. 14.3 demonstrates this standard. In the first folder the estimated effort for
development and users is divided into the three partial efforts for IT department,
user and IT Organization. After input of the effort for interfaces the Project rele-
vant effort will be calculated and the project category is determined (Project Class
C in this case). The effort is shown in person hours (PH), person days (PD) person
months (PM) .

Effort Distribution

PH PD PM

IT-Department 55,75% 85,98% 51,10% 9.812 1.226,5 61,3

User 29,25% 26,81% 5.148 643,5 32,2

IT-Organization 15,00% 13,75% 2.640 330,0 16,5

Effort 1 100,00% 91,67% 17.600 2.200,0 110,0

Interfaces 14,02% 8,33% 1.600 200,0 10,0

Effort according to Proj.Class 100,00% 11.412 1.426,5 71,3

Effort 2 100,00% 19.200 2.400,0 120,0

Project Class C

Fig. 14.3. Effort distribution

The explanation of terms is as follows:
IT-Department. Effort as estimated with estimation tool. This effort comprises
effort for development of the application accomplished by the project team: ef-
fort for IT staff, users and specialists, but not the effort for interfaces.
User effort accomplished by users.
IT-Organization. Effort accomplished by other departments, specialists, pro-
ject management, quality assurance and consultancy.
Effort 1. Effort accomplished by the IT team, comprising all conceptional
tasks, programming and test relevant tasks as well as effort for project man-
agement and quality assurance.

234 14 Case Study: Measurements in IT Projects

Interfaces. Effort for interfaces required in other applications or departments
that have to change their systems or processes for the integration of the new
project.
Effort according to Project Class. Dimension relevant effort is the sum of ef-
fort accomplished by the IT team and effort for interfaces. It determines the
project category that is used for planning the organizational structure of the
project.
Effort 2. This is the sum of Effort 1 and Interface effort.

Fig. 14.4 is used to determine the phase relevant effort for the IT staff and us-
ers. The project duration is computed from effort and team size. The percentages
shown in both tables were ascertained from the competence center in a large or-
ganization, which documented and maintained project data centrally.

Phase
Percent.
Phase

Effort
(PM)

Percent.
Phase FTE

Effort
(PM)

Duration
(Month)

Percent.
Phase FTE

Effort
(PM)

Duration
(Month)

Duration
(Month)

Req.
Anal. 24,0% 26,4 11,0% 5 12,1 3,23 10,5% 7 11,55 2,2 3,67

Design 21,5% 23,65 15,05% 6 16,56 3,68 3,05% 5 3,36 0,89 3,68

Coding 25,5% 28,05 19,5% 7 21,45 4,09 3,3% 3 3,63 1,61 4,09

Test 14,5% 15,95 6,8% 4 7,48 2,49 5,7% 2 6,27 4,18 4,18

Integr.
Test 14,5% 15,95 3,4% 3 3,74 1,66 6,7% 3 7,37 3,28 3,28

Sum 100,0% 110,0 55,75% 25 61,33 15,15 29,25% 20 32,18 12,16 18,89

Project IT-Core Project User

Fig. 14.4. Phase relevant effort

It is important to mention the work of Jeffrey [Jeff97], which said that the effort
in IT projects grows linearly up to a project size of about 10 person years (about
125 to 300 FPs) and exponentially above. The distribution of the estimated effort
to the project phases and involved teams is a necessary prerequisite for resource
planning. In addition, information about costs, effort, schedule and staff are
needed.

14.4.4 Estimation of Maintenance Tasks

Project estimation often does not include the maintenance effort during the life-
time of an application system, but it usually exceeds the other application devel-
opment costs. Software maintenance is often defined as the modification of a
software product after delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a changed environment. Practical experience

14.4 Conclusions from Case Study 235

shows that IT systems live longer than expected. It is a common practice that the
costs for maintenance are accumulated during the lifetime of a system without
controlling the amount and without differentiating between the different kinds of
costs.

Like in a supermarket the user is afterwards astonished that the many cheap
goods in the basket (i.e., comparably maintenance requirements) accumulate to a
large sum at the cash point. It is only a pity that in software maintenance nothing
can be removed from the basket afterwards (to stick to the analogy with the su-
permarket).

Note that the International Function Point User Group (IFPUG) definition
[IFPU99] holds that maintenance tasks do not change the functionality of an ap-
plication system. If it does so, it will be an enhancement instead.

14.4.5 The UKSMA and NESMA Standard

In addition of the ISO 14764 standard “Software Engineering – Software Mainte-
nance“, the United Kingdom Software Metrics Association (UKSMA) published
together with the International Software Benchmarking Standards Group (ISBSG)
published in July 2001 (as part of the UKSMA Quality Measurement Standards)
the standard “Measuring Software Maintenance and Support“, Version 0.5 Draft
[UKSM01], available at: http://www.uksma.co.uk. This standard distinguishes be-
tween maintenance, support and operations (Table 14.7).

Table 14.7. The UKSMA activity based model of support and maintenance

Development (1) Development – defined as in IFPUG 4.1

Enhancement (2)
Enhancement
– defined as in IFPUG 4.1 and with 5 person days effort –
changes the functionality
(3) Maintenance
Corrective maintenance
Perfective maintenance
Preventative maintenance
Adaptive maintenance (5 person days effort) – may
change the functionality!

Maintenance (3) and
Support (4)

(4) Ad hoc help desk responses
Problem analysis
Decommissioning

Operations (5)
(5) System administration
Deployment/rollout
Database management
Information Retrieval Support

The aim of the standard was to define measures from which up to 23 metrics
can be derived, such

236 14 Case Study: Measurements in IT Projects

Productivity. Function Points per person year
Departmental proportion minor enhancements. The proportion of mainte-
nance and support effort devoted to minor enhancements (per department)
Proportion minor enhancements. Departmental effort of minor enhancements
divided by the sum of maintenance and support effort devoted to minor en-
hancements, expressed in percent.

In 2001 the Netherlands Software Metrieken Gebruikers Associatie (NESMA,
http://www.nesma.nl/download/FPA) published the Function Point Analysis for
Software Enhancement Guidelines Version 1.0 [NESM02], which uses (with spe-
cial impact factors weighted) so called Test Function Points (TFP) and Enhance-
ment Function Points (EFP) for calculation of the total enhancement effort includ-
ing testing (E) as:

E = (EFP × hours per EFP) + (TFP × hours per TFP)

14.4.6 Enhancement Projects

Maintenance is a necessary part of the enhancement of an application system. The
ISBSG Data Base from June 2002 [ISBS02] shows 40,7% (322 from 791 projects,
see page 23 in [ISBS02]) enhancement projects. On pages 41 and 44 of [ISBS02]
the following details of IFPUG 4.0 Function Point counts are published (Table
14.8 and Table 14.9).

Table 14.8. Function Point components percentages in enhancement projects

Functionality Added Changed Deleted Total
N 408 306 83 454
EI (%) 31.9 37.8 38.0 34.4
EO (%) 31.4 25.9 35.1 29.4
EQ (%) 13.5 16.0 10.7 14.1
ILF (%) 15.6 18.0 11.1 16.5
EIF (%) 7.5 2.3 5.1 5.6
Totals (%) 55.3 42.0 2.7

Table 14.9. Analyses of changes in enhancement projects

Functionality N Percentage
Only added functions 143 31.5
Only changed functions 46 10.1
Added and changed functions 183 40.3
Added and deleted functions 5 1.1
Added, changed and deleted functions 77 17.0
Total 454 100.0

Nevertheless, it should be kept in mind that maintenance does not alter the sys-
tem size in Function Points due to IFPUG 4.1 rules [IFPU99]. If it does so, it is
not maintenance but enhancement instead.

14.4 Conclusions from Case Study 237

14.4.7 Software Metrics for Maintenance

The analogy with the supermarket directs our attention to metrics for the estima-
tion of maintenance effort. The aim is to develop measures and threshold figures
to find out when the service effort will exceed the costs of a new development. Of-
ten it is not considered that software – like other products or goods – ages with
time and that preventive planning of maintenance or redevelopment is necessary.

Productivity and maintenance effort depend on software size and some other
parameters. The COCOMO-M(aintenance) model and SLIM both use only one
parameter related to maintenance, while PRICE-S, SEER-SEM and Jones’ estima-
tion tool Checkpoint [Jone02] use several such parameters. Parameters related to
maintenance may be found in a publication from Abran et al. [Abra02b], e.g.,

type of application system
programming language
age of software
quality of existing documentation
necessity of a complete system test
restrictions in availability of resources
functional complexity
technical complexity
degree of reuse

This field study was done in two organizations concerning 15 maintenance pro-
jects with functional changes in one organization, and 19 maintenance projects in
the other organization. The result was that there exists a positive but weak rela-
tionship between size and effort. The regression analysis gave evidence of other
parameters influencing the effort. Introduction of a second free parameter in-
creased the significance (R2 = 0.85 and 0.87, respectively). The average size of the
maintenance tasks in the organization with the Web-based environment was four
times as large as in the military organization, but the average effort was only two
times as much. Thus the average cost per maintenance task in the Web-based envi-
ronment was only half as much (about 115 person-hours) as in the military envi-
ronment (221 person-hours).

Zuse [Zuse97] collected the following metrics, which can be used for estima-
tion of maintenance tasks:

Number of errors occurring after delivery. Often the measurements are per-
formed during six months after delivery.
Number of changes or change requests.
Effort for error search and correction.
Error quote recorded as errors per Function Point.
Mean time until error occurrence.
Software Maturity Index (SMI), defined as difference between the number of
modules/functions of the actual release (R) minus the number of mod-
ules/functions changed, added and deleted in the previous release (P). This dif-
ference is divided by the number of modules/functions of the actual release:

238 14 Case Study: Measurements in IT Projects

SMI = (R - P) / R

This list can be prolonged by the following metric:
Effort for maintenance in hours per installed Function Point. If this figure is
very high, reengineering or new development should be planned.

Simple counting of maintenance tasks and error reports therefore can hint to er-
ror-prone modules and can furthermore deliver information about enhancement of
modules/functions. Such metrics and results from collections of the relevant data
are beneficial information for know-how collection of organizations and estima-
tion of future maintenance tasks.

Two aspects should be considered:
estimation of maintenance effort after delivery of the application system
estimation for (single) maintenance tasks

14.4.8 Estimation of Maintenance Effort After Delivery

Even at the beginning of the 1990s Großjohann [Groß94] from Volkswagen AG
(VW) used a VW-specific variant of the Function Point method for estimation of
the service effort of IT systems. He calculated the relation between hours per
Function Point per year (service factor) and the service year. This so-called bath-
tub curve (Fig. 14.5, the name is derived from the form of the curve) was calcu-
lated by the formula (S = service factor, Y = service year):

S(Y) = 1.604 – 0.37268 × Y + 0.04684 × Y 2 – 0.00166 × Y 3

The effort for the service of the complete life cycle of an application system (ST)
is calculated according to the following formula:

ST = FP × S(Y–0.5) × B(Y)

In this formula B(Y) are influential factors (skills, number of users, system spe-
cific and environment specific parameters) correlating with the year. This total ef-
fort is divided into

maintenance 65%
user support 25%
production 10%

If shortages of budgets are decided the maintenance will be reduced and prob-
lems may occur since user demand at least correct and complete functionality of
the running system, which cannot be guaranteed under this circumstances. Projects
for the enhancement of the application system are not included in this formula and
have to be added separately.

14.4 Conclusions from Case Study 239

14.4.9 Estimation for (Single) Maintenance Tasks

Single maintenance tasks are necessary due to legal, technical or organizational
requirements as well as for error correction. Often the effort of such tasks is less
than 3 person months and therefore the effort for a Function Point count cannot be
economically justified.

The estimation Competence Center of the AXA Service AG developed with
some project leaders an Excel chart with typical tasks and parameters, which were
considered to be influential for maintenance tasks [Bund02b]. Each of these fac-
tors was correlated with an estimated effort for estimation, which could be
changed by plus/minus 100%. The actual effort was documented, too. During two
years five of the application development departments performed more than 220
estimations using these spreadsheets. More than 90 of this estimations contained
actual efforts.

The estimations were changed according to the actual averages. In average the
reduction of the former estimated efforts was about 44%. Table 14.10 shows the
new Excel estimation sheet for host maintenance tasks.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Year in service

Pe
rs

on
 h

ou
rs

 p
er

Fu

nc
tio

n
Po

in
t p

er
 y

ea
r

Fig. 14.5. So-called bathtub curve from projects in Volkswagen AG

14.4.10 Simulations for Estimations

One of the most best-known estimation tools is Checkpoint for Windows
(CKWIN). The follow-up product is KnowledgePlan. CKWIN is a knowledge-
based expert system developed by Software Productivity Research (SPR) from
Burlington, MA, USA. It uses about 220 project parameters and a large knowl-
edge base for estimation and planning of IT projects. The database consists of
about 6,700 IT projects. The difference between KnowledgePlan and CKWIN can
roughly be described as: KnowledgePlan uses fewer parameters than CKWIN, i.e.,
the estimations can be done quicker. It can be integrated with MS Project, i.e., MS
Project plans can be imported into KnowledgePlan, and vice versa. Estimations

240 14 Case Study: Measurements in IT Projects

from KnowledgePlan can be used in MS Project plans as work breakdown struc-
tures. A very useful application of Checkpoint/KnowledgePlan (or any other esti-
mation tool that has this feature) is simulations in order to answer questions for
process improvement. Questions such as how project durations can be reduced by
reduction of requirements creep and project complexity can be investigated.

Table 14.10. The estimation sheet for host maintenance tasks

Parameters: Effort in
person

days (PD), 1
PD = 8 per-

son hours
Project

Manage-
ment

Planning, coordination, controlling, management 10% from
total effort

Number of involved IT persons 0,2 PD
Number of involved users of insurance branches 0,3 PD

Discussions

Number of involved interfaces 0,4 PD
Number of new tables / databases 3 PDDatabases

Number of concerned tables / databases 2,5 PD
Number of peanuts program changes 0,1 PD

Number of small program changes 0,3 PD
Number of “normal“ program changes 3,0 PD

Number of large program changes 5,0 PD

Programs

Number of all programs to be changed 0,1 PD
Number of concerned Program Status Blocks

(PSB’s)
0,2 PD

Number of new / to be changed Jobs 0,7 PD

Other ele-
ments

Number of concerned Formats 0,3 PD
Number of concerned pages of system documenta-

tion
0,3 PDDocumenta-

tion
Number of pages of system documentation to be

written new
0,3 PD

Number of test cases to be defined new 0,1 PD
Number of old test cases to be verified 0,05 PD

IT test effort 0,8 PD

Test

Number of test cycles for end user test 2,8 PD

Checkpoint/KnowledgePlan (and similar tools, such as SLIM or COCOMO II)
support simulations by variation of its input parameters. Hence the concrete goal
for the simulations is to find out the most effective parameters affecting project
duration using the estimation of a typical IT project. The following steps were
chosen in the simulation project.

We started the simulation project with the sensitivity analysis in order to see
from Checkpoint/KnowledgePlan the parameters that have the greatest influence
on project duration. With the sensitivity analysis Checkpoint/KnowledgePlan
shows the 16 strongest parameters for the project goals: duration, effort, produc-
tivity and quality. Hence we got a hit list of parameters mostly influencing the

14.5 Hints for the Practitioner 241

matching goal, independent of the actual parameter value. For our investigations
only the goal project duration was of relevance.

Next these parameters were improved successively by about one unit at a time,
documented in tables and reset afterwards. For the evaluation of the parameters
Checkpoint/KnowledgePlan uses a scale off 1 to 5. On this scale a value between
1.00 and 2.99 gives a positive, and between 3.00 and 5.00 a negative influence for
the estimation results. The default is N/A (Not Applicable), and the value 3.00 is
the industry (database) average. The values can be set in hundreds. But this preci-
sion makes no sense since one cannot explain e.g. the difference between 2.75 and
2.76, and the difference in the results would also be marginal. In some cases we
used halves, e.g., 3.5 in cases when we could not decide between, e.g., 2.00 and
3.00.

14.4.11 Sensitivity analysis.

When modifying the parameters, according to the hit list of the sensitivity analysis
we found that 3 of the 16 parameters could not be used for shorter durations since
they had the best values (=1.00) from the start.

The hit list of parameters is sorted in decreasing order. The first parameter has
the most effect for shorter duration. The last parameter, delivered a three-day
longer duration for some reason. The next step was the summation of the parame-
ters, followed by step-by-step improvement to 1. All simulations were docu-
mented in analogous tables, which are not shown here.

Checkpoint/KnowledgePlan shows an alternative for the improvement of an IT
project with the report on weaknesses. In this case the weaknesses are the parame-
ters with values between 3.50 and 5.00. Again, these parameters were modified
step-by-step and in sum.

The simulations clearly demonstrated that there are a large number of ways to
finish projects earlier. But not all parameters can be influenced by senior manag-
ers, project mangers or the project team, as e.g., the involvement of the users.
Based on the modification of only one parameter, the project duration could im-
proved by 32.60% with equal quality and more staff (138 instead of 86).

The lesson learned is that tools should be used more frequently for simulations.
This rule is also valid for project planning tools. We found in daily project life that
this rule is almost neglected by project leaders, leaving them without an essential
aid for project survival.

14.5 Hints for the Practitioner

There is a business need for early estimations. One of the most influential parame-
ters of estimation is the size, e.g., Function Points. Thus FP prognoses or FP ap-
proximations practically proved to be helpful aids for early estimations. Centrally
collected information about FP counts allow research that can deliver useful met-

242 14 Case Study: Measurements in IT Projects

rics for quality assurance, estimation and benchmarking. Hence the measurement
of software size is the most important parameter of estimation. Different environ-
ments lead to other results, thus each organization should develop its own heuris-
tic solutions.

Standards for the distribution of the estimated effort to the project phases can
be used to develop an organization specific percentage method for estimation.
There exist a lot of relevant and proven measures, methods and techniques for im-
provement of quality of software and software development. The ISO 8402 Qual-
ity Measures can be mapped to the 14 general system characteristics (GSC) of the
IFPUG Function Point method [IFPU99], which are used to add estimation pa-
rameters to the functional size measurement for the calculation of adjusted func-
tion points. Simple counting of maintenance tasks and error reports can hint to er-
ror-prone modules and can furthermore deliver information about enhancement of
modules/functions. Such metrics are beneficial information for estimating future
maintenance tasks.

14.6 Summary

This chapter has presented and discussed the experiences in the domain of IT pro-
ject estimation and measurement within AXA Service AG. One of the major mile-
stones was the development of an early project effort estimation method using ap-
proximated FPs, the so-called FP Prognosis. This standard was derived from a
central project register database.

A useful aid for the project leaders is an Excel chart mapping the ISO 8402
Quality Measures to the 14 general system characteristics (GSC) of the IFPUG
Function Point method [IFPU99]. Additionally, an Excel sheet for the distribution
of the estimated effort to the project phases was developed. Software metrics of
enhancement projects from the ISBSG database are presented, and a literature
overview of software metrics for software maintenance is provided.

Single maintenance tasks are necessary due to legal, technical or organizational
requirements as well as for error correction. Often the effort of such tasks is less
than 3 person months and therefore the effort for a Function Point count cannot be
economically justified. For this reason an Excel estimation sheet for simple main-
tenance tasks can be developed.

The lesson learned is that tools should be used more frequently for simulations.
This rule is also valid for project planning tools. We found in daily project life that
this rule is almost neglected by project leaders, leaving them without an essential
aid for project survival.

15 Case Study: Metrics in Maintenance

Maintainability is not restricted to code; it describes many software products, in-
cluding specification, design, and test plan documents. Thus we need maintain-

ability measures for all of the products we hope to maintain.
Shari Lawrence Pfleeger

15.1 Motivation for a Tool-based Approach

In a time of increasing penetration by software in nearly all areas of our life the
software quality is a very important criterion in order to trust in its reliability and
functionality. And it is important from a business perspective, e.g., the decision to
reuse software or to develop it from scratch. Especially for legacy systems, it is of-
ten difficult to get information on software quality, since these systems grow to
complex structures over time, and often the documentation is no longer up to date.

Because of the size and complexity of software it is usually impossible to
evaluate the software manually; for this reason methods and tools are needed to
support this task. This chapter introduces a methodology supporting the tool-based
quality evaluation of software systems and demonstrates the application of the
methodology for a telecommunication software system (see also Chap. 9). With
help of a static software analysis tool the explained theoretical foundations are ap-
plied to a large software system, and evaluation examples from the project quality
report are presented. The underlying quality model is explained in detail as are the
experiences made (e.g., tool handling, surplus value).

Note that there are several tools available for static code analysis with compa-
rable functionality (e.g. Logiscope, Klocwork, LDRA, Splint, QAC). We focus
here on Logiscope in this context to provide in-depth examples how such tools are
used. Others could have been also used with similar results.

This work presents a methodology for the quality evaluation of large-scale
software systems. The evaluations were aimed to accompany the database scheme
substitution of a large-scale telecommunication system, in order to provide infor-
mation about the quality of the software system, its structure and the dependability
of the components to each other. The investigations were performed with the Lo-
giscope tool, a CASE tool performing static and dynamic source code analyses.

The advantages of the CASE tool application and the identified problem areas
are shown. This chapter is divided into three main parts. After this short introduc-
tion, the analyzed software system, a large telecommunication system, is briefly
described. The next part introduces the Logiscope tool, which is used for the qual-

244 15 Case Study: Metrics in Maintenance

ity evaluation, and explains its reference quality models. With help of an example
calculation the way to obtain a quality statement is illustrated. The knowledge of
this information is important to understand and interpret the analysis results. Fi-
nally, we present and discuss the reached results for the system under investiga-
tion, give a detailed effort consideration and share the gained experiences.

15.2 The Software System under Investigation

The software system under investigation is a large telecommunication system. It
supports the realization of administration tasks for digital operator interfaces. The
tasks are realized with an OSI-compatible Common Management Information
Protocol (CMIP) by a so-called Q3 interface providing the functionality of the
operator interface. With the help of Common Management Information Service
Element (CMISE) operations it is possible to administrate analog and digital tele-
phone connections.

Because of the OSI-compatible protocol approach, systems of different suppli-
ers (e.g. Siemens, Alcatel) can be administrated inside a single application. Fur-
thermore, the system has a customer relationship management (CRM) system in-
terface for the handling of customer jobs as well as additional interfaces, e.g. for
the automatic transmission of e-mails. The system has existed for about ten years
and is implemented as object-oriented with C++. The reason for this analysis was
the desire to replace the object-oriented database management system in use by a
relational database management system. Since the system was developed over
such a long time, among other things a general overview of the whole system
quality was desired and the critical components were to be identified. We focused
on investigating some critical parts of the telecommunication system. For that rea-
son one component out of over 30,000 classes was chosen that is especially in-
volved in the changes caused by the database replacement. Since there was no
well-defined persistence layer, the analyzed component realizes parts of such a
layer for the reengineered system.

The analysis presented here comprises a prototype of the database access com-
ponent. Ninety-six files were investigated, some of them in a quite unspecified
state. The Logiscope tool could extract 45 classes and 773 functions, but because
of the state of the prototype some identified components contained only rough in-
formation.

Fig. 15.1 shows the information extracted from the source files by the Rational
Rose reengineering component. The extracted structure provides a first insight
into the system under investigation. As can be seen later in the quality evaluation
(e.g., in the graphical representations of the prototype), the Logiscope tool was
able to generate more information about the system under investigation.

15.3 Quality Evaluation with Logiscope 245

15.3 Quality Evaluation with Logiscope

The Logiscope tool can be used for different purposes in the area of software qual-
ity management/assurance, such as software quality and structure analyses, tool-
based generation of quality reports, and so on [Tele01]. Basically it contains three
main components, an Audit component (quality and structure analyses), a
RuleChecker component (control of programming rules) and a TestChecker com-
ponent (test coverage), and among other languages it supports Java, C++, C and
ADA.

Fig. 15.1. The Rational Rose model of the telecommunication system (made anonymous)

The basic tools within the Logiscope analyses are static analysis (Fig. 15.2; see
also Chap. 9 with Fig. 9.3. Criticality prediction for source code based on static
code analysis and code history) and dynamic analysis (Fig. 15.3).

The static analysis performs a syntactic and semantic analysis of the source
code, is programming language-dependent and delivers the input for complexity
measurements, call graphs, control graphs, quality reports, etc. With help of the
dynamic analysis, test coverage analysis can be realized. In contrast to the static
analysis, the running program is investigated. Before compiling the program the
source code is instrumented, and basically the program structure statements are
marked. When the program is running after the compilation process it permanently

246 15 Case Study: Metrics in Maintenance

writes information to an execution result file. This file can be used to observe the
test coverage, and thus the test case generation is supported as well as a statement
about the status of the tests can be derived. In our case only static analyses were
used because the software system under investigation is an embedded system on a
certain platform and the effort to arrange a running environment seemed to be too
demanding.

Fig. 15.2. Principle of static analysis

For our analysis the reference quality model of Logiscope was adopted. Since
our example software system was written in C++, the C++ quality model was
used. The particular feature of this model is the break down into three granular
levels, the application level, the class level and the function level. This distinction
is dedicated to the object-oriented style of the language C++.

While the analysis on the application level collects metrics and evaluates it ac-
cording to factors and criteria for the whole program, the class level analysis does
the same with respect to the relationships and dependability between the classes.
The function level analysis primary focuses on the properties of the functions. For
each granularity there are particular results, for instance control and call graphs on
function level and inheritance tree graphs on class level.

The quality models are built according to commonly used principles, including
the GQM approach (see [VanS00]). First, the model of the application level (Fig.
15.4) will be shown. To clarify: the factor maintainability is defined on the appli-
cation level.

The maintainability is broken down by analyzability, changeability, stability
and testability. The analyzability is derived by the composition of the metrics

Source Files

Object Files

Compiler Analyzer

Analysis Result

Files

Quality

Model

Viewer

15.3 Quality Evaluation with Logiscope 247

ap_inhg_levl, ap_mif, ap_aif, ap_cof, AVG_CBO (derived by ap_cbo and
ap_clas) and RECU_Ratio (derived by ap_cg_cycle and ap_cg_edge). The other
attributes and criteria at the different levels are composed in the same manner. For
each metric there is an upper and a lower limit, and during the static analysis it is
determined whether the metrics value for the component is within the limits or
outside.

Fig. 15.3. Principle of dynamic analysis

This information is used to derive a statement for the criteria (e.g., analyzability
and changeability), and the criteria statements are composed to the factor state-
ments (e.g., for the maintainability). For a more detailed understanding, a rough
description of the used metrics is given in the next two sections as well as an ex-
ample calculation for the application level of our telecommunication software sys-
tem.

The following tables (Table 15.1, 15.2 and 15.3) show the applied metrics for
the different granular levels (application, calls and function levels), including the
limits and, if necessary, their composition.

Execution

Result File

Instrumented

Source Files

Analysis Result

Files

Source Files

Compiler
Instrumen-

tation Library

Instrumented

 Binary

Test Checker

Viewer

Analyzer

248 15 Case Study: Metrics in Maintenance

Table 15.1. Metrics and limits overview application level

Short name Long name Max Min

ap_ahf Attribute hiding factor 1.00 0.70
ap_aif Attribute inheritance factor 0.60 0.30
ap_cbo Coupling between objects +7 0
ap_cg_cycle Call Graph recursions +7 0
ap_cg_edge Number of Edges in the Call Graph +7 0
ap_cg_levl Number of Levels in the Call Graph 9.00 2.00
ap_clas Number of application classes +7 0
ap_cof Coupling factor 0.18 0.03
ap_func Number of application functions +7 0
ap_inhg_cpx Hierarchical Complexity of the Inheritance Graph 2.00 1.00
ap_inhg_edge Number of Edges in the Inheritance Graph +7 0
ap_inhg_levl Number of Levels in the Inheritance Graph 4.00 1.00
ap_inhg_uri Number of Repeated Inheritance +7 0
ap_mhf Method hiding factor 0.40 0.10
ap_mif Method inheritance factor 0.80 0.60
ap_nmm Number of application member functions +7 0
ap_pof Polymorphism factor 1.00 0.30
ap_vg Sum of cyclomatic numbers (VG) of the applica-

tion functions
+7 0

AVG_CBO Average coupling between objects AVG_CBO =
(ap_cbo) / (ap_clas)

10.00 0.00

AVG_VG Average of the VG of the application’s functions
AVG_VG = (ap_vg) / (ap_func)

5.00 1.00

NMM_Ratio Percentage of nonmember functions NMM_Ratio =
((ap_func - ap_nmm) / (ap_func)) ×
(1.000000e+02)

10.00 0.00

RECU_Ratio Ratio of recursive edges on the call graph
RECU_Ratio = ((ap_cg_cycle) × (1.000000e+02))
/ (ap_cg_edge)

5.00 0.00

URI_Ratio Ratio of repeated inheritances in the application
URI_Ratio = ((ap_inhg_uri) × (1.000000e+02)) /
(ap_inhg_edge)

10.00 0.00

15.3 Quality Evaluation with Logiscope 249

Table 15.2. Metrics and limits overview class level

Short name Long name Max Min

AUTONOM Rate of class autonomy AUTONOM =
((1.000000e+02) × (cl_func_priv +
cl_func_prot + cl_func_publ - cl_dep_meth +
cl_data_prot + cl_data_publ + cl_data_priv -
cl_data_class)) / (cl_func_priv + cl_func_prot
+ cl_func_publ + cl_data_priv + cl_data_prot
+ cl_data_publ)

100.00 30.00

cl_bcob Number of comments blocks before the class +7 0
cl_bcom Number of comments blocks in the class +7 0
cl_cobc Coupling between classes 12.00 0.00
cl_data_class Number of class-type attributes +7 0
cl_data_priv Number of private attributes +7 0
cl_data_prot Number of protected attributes +7 0
cl_data_publ Number of public attributes +7 0
cl_data_vare Sum of ic_varpe of class methods +7 0
cl_data_vari Sum of ic_varpi of class methods +7 0
cl_dep_meth Number of dependent methods 6.00 0.00
cl_fpriv_path Sum of PATH of private class methods +7 0
cl_fprot_path Sum of PATH of protected class methods +7 0
cl_fpubl_path Sum of PATH of public class methods +7 0
cl_func_calle Sum of dc_callpe of class methods +7 0
cl_func_priv Number of private methods +7 0
cl_func_prot Number of protected methods +7 0
cl_func_publ Number of public methods +7 0
cl_usedp Sum of ic_usedp of class methods +7 0
cl_wmc Weighted Methods per Class cl_wmc = SUM

(ct_vg)
25.00 0.00

COMFclass Class Comments Frequency COMFclass =
(cl_bcom + cl_bcob) / (cl_func_publ +
cl_func_prot + cl_data_prot + cl_data_publ)

+7 0.20

cu_cdused Number of direct used classes 4.00 0.00
cu_cdusers Number of direct users classes 4.00 0.00
ENCAP Encapsulation rules ENCAP = cl_data_publ +

cl_data_vare
5.00 0.00

FAN_INclass Fan in of a class FAN_INclass = cl_data_prot
+ cl_data_publ + cl_usedp + cl_data_vari

15.00 0.00

FAN_OUTclass Fan out value of a class FAN_OUTclass =
cl_data_prot + cl_data_publ + cl_usedp +
cl_data_va

20.00 0.00

in_bases Number of base classes 3.00 0.00
in_noc Number of children 2.00 0.00
SPECIAL Specializability SPECIAL = (2.000000e+00) ×

(cl_data_publ + cl_data_prot) + cl_func_publ
+ cl_func_prot + (1.000000e+01) × (in_bases)

25.00 0.00

TESTAB Testability TESTAB = cl_fprot_path +
cl_fpriv_path + cl_fpubl_path + cl_data_vare
+ cl_func_calle

100.00 0.00

USABLE Usability USABLE = (2.000000e+00) ×
(cl_data_publ) + cl_func_publ

10.00 0.00

250 15 Case Study: Metrics in Maintenance

Table 15.3. Metrics and limits overview function level

Short name Long name Max Min

AVGS Average size of statements AVGS =
(N1 + N2) / (lc_stat)

9.00 1.00

cg_hiercpx Relative call graph Hierarchical
complexity

5.00 1.00

cg_levels Number of relative call graph levels 12.00 1.00
cg_strucpx Relative call graph Structural com-

plexity
3.00 0.00

cg_testab Relative call graph System testability 1.00 0.00
COMF Comments frequency COMF =

(lc_bcom + lc_bcob) / (lc_stat)
+7 0.20

ct_bran Number of destructuring statements 0.00 0.00
ct_exit Number of out statements 1.00 0.00
ct_nest Number of nestings +7 0
ct_path Number of paths 60.00 1.00
ct_vg Cyclomatic number 10.00 0.00
dc_calling Number of callers 7.00 0.00
dc_calls Number of direct calls 5.00 0.00
dc_lvars Number of local variables 5.00 0.00
FAN_IN Fan In FAN_IN = ic_usedp +

ic_varpi
4.00 0.00

FAN_OUT Fan Out FAN_OUT = ic_paradd +
ic_varpe

4.00 0.00

ic_paradd Number of parameters passed by ref-
erence

2.00 0.00

ic_param Number of function parameters 5.00 0.00
ic_parval Number of parameters passed by

value
2.00 0.00

ic_usedp Number of parameters used +7 0
ic_varpe Number of distinct uses of external

attributes
2.00 0.00

ic_varpi Number of distinct uses of internal
attributes

+7 0

IND_CALLS Number of relative call graph call-
paths

30.00 1.00

lc_bcob Number of comments blocks before
the function

+7 0

lc_bcom Number of comments blocks in the
function

+7 0

lc_stat Number of statements 20.00 1.00
LEVL Number of levels LEVL = ct_nest +

1.000000e+00
4.00 1.00

n1 Number of distinct operators +7 0
N1 Total number of operators +7 0
n2 Number of distinct operands +7 0
N2 Total number of operands +7 0
VOCF Vocabulary frequency VOCF = (N1

+ N2) / (n1 + n2)
4.00 1.00

15.4 Application of Static Source Code Analysis 251

Application Level

ap_inhg_levl

ap_mif

ap_aif

ap_cof

ap_cbo

ap_clas

AVG_CBO

ap_cg_cycle

ap_cg_edge

RECU_Ratio

ANALYZABILITY

ap_inhg_levl

ap_mif

ap_pof

ap_func

ap_nmm

NMM_Ratio

ap_inhg_uri

ap_inhg_edge

URI_Ratio

CHANGEABILITY

ap_inhg_cpx

ap_mhf

ap_ahf

ap_cof

ap_cbo

ap_clas

AVG_CBO

STABILITY

ap_mhf

ap_ahf

ap_cg_levl

ap_vg

ap_func

AVG_VG

TESTABILITY

MAINTAINABILITY

Fig. 15.4. Logiscope quality model application level

15.4 Application of Static Source Code Analysis

In the area of software measurement a number of methods exist to measure and
analyze characteristics of software. These methods can be distinguished with the
help of different categorizations by their target (software product, process, re-
sources), their assessing manner (counting, measurement, hybrid calculations
etc.), their simplicity of application (e.g., experts are needed or not) and their as-
sessing process (e.g., stand-alone assessment, integration in software development
process). We will look in this case study into static code analysis. This means ana-
lyzing syntactical and semantical attributes of the source code with the goal to
identify weaknesses and thus have an indirect quality metric. As an example we
use the Logiscope tool. There are other similar tools available, such as Klocwork
or McCabe analysis tool suite.

Logiscope is a product measurement tool that can be characterized as a tool for
stand-alone source code assessment and evaluation. Therefore, the application of
Logiscope in IT software quality assurance requires some investigations for the
measurement integration in the software development process (see [Dumk99b]
and [Dumk97]). The measurement integration of the Logiscope tool also includes
the involvement of a metrics data repository combined with other product or proc-

252 15 Case Study: Metrics in Maintenance

ess evaluations such as function point estimation or process level assessments (see
[Folt98], [Jacq97] and [Loth02a]).

As mentioned before, the Logiscope results can be divided into three granular
levels: the application level, the class level and the function level.

Function level. At function level the functions themselves are considered as com-
ponents of interest, including their size, complexity and dependability on other
functions. Different visualizations give an overview of the function distribution
according to the factor maintainability (Fig. 15.5) and the criteria (e.g., analyzabil-
ity, Fig. 15.6) as well as a precise mapping of the functions to the factor/criteria
ranges from excellent to poor (e.g. the listing of functions that rate fair according
to the analyzability, Table 15.4).

excellent
20,3%

good
79,3%

poor
0,0%

fair
0,4% excellent

20,3%

good
79,3%

poor
0,0%

fair
0,4%

Fig. 15.5. Function distribution for the maintainability factor

21,5

77,9

0,6 0
0

10
20
30
40
50
60
70
80
90

100

excellent good fair poor

Pe
rc

en
t %

21,5

77,9

0,6 0
0

10
20
30
40
50
60
70
80
90

100

excellent good fair poor

Pe
rc

en
t %

Fig. 15.6. Function distribution for the analyzability criteria

With help of these visualizations a general overview of the functions can be ob-
tained and critical components can be identified (e.g., functions that score fair or
worse). Obviously, in our analysis the functions rate quite good for the factor
maintainability and the chosen criteria analyzability; there are only a few outliers.
Another very powerful view into the functions dependability can be obtained with
help of a call graph showing the call relations between the functions.

With help of the different views on the software, basically the source code, the
criteria Kiviat diagram (see Fig. 15.7) and the control flow graph (not shown) a
good overview of the functions can be obtained, and thus the software decisions
(acceptance, redesign etc.) are supported by the tool. With help of the control flow
graph program structure statements, conditions and loops can be identified as well

15.4 Application of Static Source Code Analysis 253

as jumps, dead code and exceptions. This graph is a very good view to control, if
the function visits the parts as expected.

Table 15.4. Functions scoring FAIR for the analyzability criteria (anonymous)

Criteria: ANALYZABILITY:FAIR
Function Name

Class1::functionA() const
Class1::functionB(const Proxy)
Class2::functionC() const

The criteria Kiviat diagram (Fig. 15.7) provides the metrics results for the cho-
sen function Object3::functionC mapped to the criteria. Thus problem areas can be
identified (e.g., complexity that is too high or a high number of calls), and this
knowledge can be included in following recoding or redesign steps. The synthesis
gives the overall result for the function.

Fig. 15.7. Object3::functionC criteria Kiviat diagram

Class level. At the class level the classes are of major interest, including their size,
complexity and dependability on other classes. In the reference quality model the
two factors maintainability and reusability are investigated. The results for the ex-
ample project can be seen in Fig. 15.8.

Fig. 15.9 provides the class distribution for the analyzability in order to enable
a comparison between function and class level.

254 15 Case Study: Metrics in Maintenance

excellent
5,3%

good
52,6%poor

5,3%

fair
36,8%

excellent
5,3%

good
42,1%

poor
10,5%

fair
42,1%

excellent
5,3%

good
52,6%poor

5,3%

fair
36,8%

excellent
5,3%

good
52,6%poor

5,3%

fair
36,8%

excellent
5,3%

good
42,1%

poor
10,5%

fair
42,1%

excellent
5,3%

good
42,1%

poor
10,5%

fair
42,1%

Fig. 15.8. Class level evaluation factors

5,3

47,4 47,4

0,1
0

10
20
30
40
50
60
70
80
90

100

excellent good fair poor

Pe
rc

en
t %

5,3

47,4 47,4

0,1
0

10
20
30
40
50
60
70
80
90

100

excellent good fair poor

Pe
rc

en
t %

Fig. 15.9. Class distribution for criteria analyzability

As can be seen, the analyzability for the classes is ranked worse than the function
analyzability. Obviously it is not sufficient to have analyzable functions but also
the composition of these functions to classes is important for the system quality.
Another very helpful view on the software system at the class level is the inheri-
tance tree visualizing the static structure of the developed system. With help of the
available Logiscope results at class level design decisions are supported as well as
the identification of critical classes.

Application level. The application level composes different aspects to a final re-
sult for the application under investigation. In our case the system rates at the up-
per end of the fair range (7 points), as shown in Fig. 15.10.

To sum up, Logiscope provides three granular evaluation levels, the application
level, the class level and the function level. The different granularities provide dif-
ferent views on the software, and in our opinion this distinction seems to be very
helpful and appropriate.

15.5 Hints for the Practitioner

Usually, measurement tools are applied to selected source code artifacts or com-
ponents and produce some diagrams for the software evaluation. For large-scale
software systems, the following aspects have to be taken into consideration:

Hints for the Practitioner 255

the effort (time) for the preparation (collecting and making available the soft-
ware elements that have to be included in the measurements or analyses)
the effort for the information mining (gathering of knowledge about the soft-
ware system in order to understand the measurement levels and results)
the effort for the tool understanding (handling of features, characteristics and
particularities)
the effort for the measurement itself.

In our project the preparation effort was negligible, because the software under
investigation was available as a package. Since this package was a prototype it
was known that certain parts of the software were not fully specified or possibly
were missing.

Fig. 15.10. Application level result

The information mining was supported by project reports, in particular the so-
called cookbook (which contained information about the database substitution)
and software models (e.g., Rational Rose models). For the generation of the Lo-
giscope analysis project special emphasis had to be given to the source file suf-
fixes, because they differed from the familiar notation. Diverse ambiguities ac-
cording to the source file structure and content were abolished in discussions with
specialists who were familiar with the code. All in all, a couple of days were re-
quired for the information mining, but this effort deeply depends on the familiarity
with the software under investigation.

The tool understanding effort was quite high. Since it was one of our first large
Logiscope projects only some manuals and less experience were available. Several
times the tool behaved somehow strangely and in this case even the manuals could
not help. Sometimes only the exit and restart of the tool reanimated its functional-
ity. It is not clear if the problems occurred because of the Logiscope tool itself or
because of our special software and hardware environment. Especially with re-
spect to the measurement effort (see below), these problems were annoying and a
lot of time was lost. In general, the understanding of the granular levels as well as
the identification and understanding of the Logiscope quality reference models
composite was quite extensive. For the understanding of the quality model a lot of
referencing and consulting in manuals was necessary, and not all results were un-
derstood. Several Logiscope features are difficult to understand and the manuals
did not always help. We absolutely recommend having an expert available who is
familiar with Logiscope for all the questions that occur during its application.

256 15 Case Study: Metrics in Maintenance

The measurement effort for the example project took about one week. The pro-
ject building (the phase where Logiscope generates all its needed information
from the source code) took about 20 min, later project reloads (e.g., for new Lo-
giscope sessions after a Logiscope abort) about 5 min and even more calculation-
intensive operations within a Logiscope analysis lasted less then 1 min. Most of
our time was spent looking at the multifaceted results, for the quality evaluation
and for the quality report generation (a customized report was generated manu-
ally).

For more complex software systems the measurement effort can increase very
quickly, e.g., for a C++ software system with more than 2,000 classes and more
than 20,000 functions, the project building phase took about 30 hours, and each
project reload lasted at least 40 min. Thus the measurement effort can become a
critical cost driver factor. To sum up, the effort considerations show that enough
resources have to be budgeted in order to guarantee the success of Logiscope qual-
ity analyses. We absolutely recommend the use of the Logiscope tool for contin-
ued quality analyses even if some hurdles have to be overcome.

15.6 Summary

The applied methodology shows a practicable way for the quality evaluation of
large software systems. With help of the Logiscope tool it was possible to get an
overview of the system quality as well as to identify critical components (classes
or functions, respectively) and thus to take these components under further inves-
tigation. In this way, the software maintenance as well as the software develop-
ment itself can be supported and test priorities can be placed. For the participated
software developer it was the first time to get another system view than source
code or Rational Rose models. Therefore the applied methodology was considered
to be very helpful for the developer’s purposes. Furthermore, it was possible to
trace the project progress (important information for the customer) and the train-
ing period into the software system was shortened.

An important question for the software developer was whether statements ac-
cording to the database replacement effort could be derived. Unfortunately, only
quality and structure statements could be deduced, because no exact persistence
criteria were available, and furthermore, the old and the reengineered components
were too different to be comparable. For that reason, no direct statement could be
obtained, but at least information about the coupling between classes/functions
could be extracted because of the integrated coupling metrics. In spite of this lack
of information the developer was satisfied with the results, because a new, very
helpful perspective on the software was received.

Altogether the system under investigation rates quite well, even if the applica-
tion level result is only fair. We found one reason for this result in the unspecified
state of some classes. On the other hand one strength of the Logiscope tool is the
capability to extract quite a lot information from the source code, even if not all
system information is available. The different results for the different granularities

Summary 257

(application, class and function level) were interesting. Obviously, it is not enough
to program small, high-quality functions but also the composition of these func-
tions to classes and later on to the whole system is very important for the overall
quality results.

Even though a couple of hurdles (e.g., tool understanding, measurement effort)
have to be overcome, we can strongly recommend the use of a source code analy-
ses tool like Logiscope for quality evaluations of large-scale software systems, be-
cause without tool support quality analyses of such systems are nearly impossible.
In this context the following statement is very important (from our own experience
and as often mentioned in the literature): measurement or metrics programs re-
spectively are basically more (or possibly only) likely to be successful if the
measurements can be tool-based and at least semi-automated. Not all desired
statements for the developer could be derived (e.g., persistence classifications, im-
pact statements of the data base substitution), but the received information was
very helpful for the ongoing decision-making processes.

The applied methodology and tool should be used to continually control the
progress of the prototype development (also of the program development), thus
enabling the compliance to certain quality goals, rules and restrictions (e.g., de-
sign/structure requirements, complexity limits). Only with continued quality con-
trol will the quality of the code improve permanently and significantly.

16 Metrics Communities and Resources

Coming together is a beginning, staying together
is progress, and working together is success.

Unknown

16.1 Benefits of Networking

Software measurement is not easy. Lots of measurement programs fail to deliver
actual performance improvements – for numerous reasons, as we showed in this
book. To help with introduction, to ensure useful international standards, and to
guide with benchmarking and consulting, there exist a lot of software metrics
communities across the world.

We provide a selection of those communities with which we have cooperated
and thus gained insight in the previous years. The list is far from being complete
and we apologize for this obviously subjective selection. All mentioned communi-
ties are internationally active and publish their English Internet sites. The authors
appreciate update proposals, which we will include in the Web page of this book
and also the next edition (see Chap. 1). The selection is sorted alphabetically.

16.2 CMG

The Computer Measurement Group (CMG) is a globally acting non-profit organi-
zation of data processing professionals committed to the measurement and man-
agement of computer systems (hardware and software). CMG members are con-
cerned with performance evaluation of existing systems to improve performance
(e.g., response time, throughput, etc.) and with capacity management. National
chapters of the CMG are active in Australia, Austria, Canada, Germany (as
CECMG), Italy, South Africa, the United Kingdom (as UKCMG) and the USA.
The home page is http://www.cmg.org/.

260 16 Metrics Communities and Resources

16.4 COSMIC

The Common Software Measurement International Consortium (COSMIC) was
founded in late 1998 by a group of experienced software measurers from industry
and science with the aim to design and promote the second generation of software
measurement methods. About 40 people from 8 countries combined their efforts
voluntarily and proposed some principles for a software functional size measure-
ment method. At the end of 1999, they published the COSMIC Full Function
Point (FFP) Version 2.0 Measurement Practices Manual (MPM) [UQAM99], and
made it available for free on the Web. A short overview of the COSMIC Full
Function Points is documented in the Chap. 7.

The COSMIC-FFP method is based on the strengths of the IFPUG, Mark II
[UKSM98] and the NESMA Function Point Method [NESM02]. It uses only four
base functional components: Entry, Exit, Read and Write. In developing the
method there was a 14-month field trial period starting March 1999 in order to
verify in industry the practicability of this new measurement method.

The tests were performed with 18 development projects from 5 organizations
(16 new developments and 2 enhancements) on multiple platforms and with 21
maintenance requests of small functional enhancements in a single organization.
There was consistent positive feedback about all the test requirements, with the
additional benefit of a database of historical data.

The COSMIC-FFP method is the first functional sizing method to be:
designed by an international group of experts on a sound theoretical basis;
drawn on the practical experience of all the main existing FP methods;
designed to conform to ISO 14143 Part 1;
designed to work across MIS and real-time domains, for software in any layer
or peer item;
widely tested in field trials before being finalized.

The Measurement Manual is available in English, Japanese, French and Span-
ish. Translation into Italian and German are in progress. Furthermore, the
COSMIC-FFP method was approved as an ISO standard in March 2003: ISO
19761. In addition, the COSMIC group has published the COSMIC Guide to the
Implementation of ISO 19761. This guide can be downloaded from the Web at no
cost at http://www.lrgl.uqam.ca/cosmic-ffp.

The International Software Benchmarking Standards Group (ISBSG) has also
approved COSMIC-FFP as a data collection standard. There are several world-
wide research activities under way for further improvement and dissemination of
the COSMIC-FFP method (ISO 19761).

The COSMIC home page is http://www.cosmicon.com; the standard and publi-
cations are hosted at http://www.lrgl.uqam.ca/cosmic-ffp. Publications include
case studies as well as a large number of research publications on COSMIC-FFP.

16.6 German GI Interest Group on Software Metrics 261

16.6 German GI Interest Group on Software Metrics

The German GI Fachgruppe Software 2.1.10 Software-Messung und -Bewertung.
It is concerned with theoretical foundations of software measurement and evalua-
tion as well as with the practical implementation and the problems arising with the
integration in the software development process, as e.g., certifications, metrics da-
tabases or experience factories. It also fosters and stimulates research programs.
Thus there is cooperation with organizations in industry (e.g., the continuing In-
ternational Workshops on Software Measurement, IWSM) and international coop-
eration, especially with the École de technologie supérieure, Université du Québec
(Montreal, Canada) and the CIM (Center d’Interet sur les Metriques, a Canadian
metrics association). The IWSM is organized every year alternately in Montreal,
Canada and Magdeburg, Germany. The proceedings of the IWSM are published
on the Internet at http://www.lrgl.uqam.ca.

The GI Interest Group on Software Metrics maintains the Software Measure-
ment Laboratory (SML@b) at University of Magdeburg, which is a prototype of a
software measurement database in the Internet. It allows Java based interactive en-
try of measurement data of popular CAME tools such as Logiscope, Datrix or
OOM and delivers respective reports.

It hosts one to two meetings per year with an international audience. The home
page is http://ivs.cs.uni-magdeburg.de/sw-eng/us/. It presents rich information
about software metrics, experiments and literature.

16.7 IFPUG

The International Function Point User Group (IFPUG) in the USA, founded 1984,
has developed a standardized Function Point Method Release 4.1.1 [IFPU99] with
rules for the counting of Function Points. The measurement of IT projects should
be in line with Version 4.1 of the IFPUG Function Point Method in order to be
comparable between different organizations.

Furthermore, the IFPUG offers a certification (Certified Function Point Spe-
cialist, CFPS), organizes annual conferences for knowledge transfer and has work-
ing groups for the further development of the IFPUG method. Thus in 1998, as an
enhancement to the existing detailed two case studies, a third one was published,
covering Function Point counting in object-oriented projects and environments.

Many people from more than 14 countries are IFPUG members and the number
grows every year. The home page of the IFPUG, http://www.ifpug.org, delivers
plenty of information about software metrics and estimation as well as links to
other IT metrics organizations and IFPUG member services.

In 2001 more than 350 people were Certified Function Point Specialists (CFPS)
[IFPU02]. The certification is valid for 3 years, at which time the examination
must be repeated. Information about certifications can be found at the IFPUG
home page, http://www.ifpug.org.

262 16 Metrics Communities and Resources

The book Measuring the Software Process, written by David Garmus and
David Herron [Garm95], contains an example of a Function Point examination
with two sets 45 multiple choice questions (instead of two sets of 50 questions as
in the official examination) and a case study that is a little bit smaller than in the
official examination. The solutions are documented as well. Preparation for the
CFPS examination by practicing this prototype examination five to six times has
been proved to be sufficient, since there are typical questions in this example.
Candidates who have counted more than 16,000 Function Points during practical
work have a fair chance to pass the examination. The examination itself consists
of three parts with a total score of 150:

Part 1 with 50 questions about IFPUG rules (definitions)
Part 2 with 50 questions concerning the usage of IFPUG rules (implementa-
tions), but more complicated than part 1.
Part 3 with a case study for a complete Function Point count with about 15
transactions and data entities. The case study is formulated verbally and nor-
mally follows the transactions and data, with screens and reports to be counted.

For the parts 1 and 2 of the examination one should plan to spend the first two
hours (about 1 min. per question) in order to have enough time to understand and
count the Function Points of the case study.

At least 90% of the answers must be correct in each of the three parts in order
to pass the examination. If only one of the three parts has less than 90% correct
answers, the candidate has failed. About 65% of the candidates normally pass the
examination.

16.8 ISBSG

The International Software Benchmarking Standards Group (ISBSG) started as a
loose cooperation of national metrics organizations. These IT metrics organiza-
tions mostly used the IFPUG Function Point method for the sizing of projects.
They collected data about software projects with the goal to achieve improve-
ments in software development.

Release 8 of the ISBSG Repository data was published in June 2003 based on
2,048 projects on data disc. The latest report of the ISBSG (The Software Metrics
Compendium) [ISBS02] was published in June, 2002 based on 1,238 projects. The
indicators in the ISBSG database are closely connected to the Function Point siz-
ing method. It is useful for an organization that wants to participate in an ISBSG
benchmark to have historical project data sized using Function Points.

The mission of the ISBSG is the support of international software developers in
order to improve global software engineering practices and business management
of IT resources through the provision of project data that are standardized, veri-
fied, most recent and representative for current technologies.

Some national member organizations/communities of the ISBSG are:

16.8 ISBSG 263

ASMA (Australian Software Metrics Association)
IFPUG (International Function Point Users Group) – lead member
NASSCOM (Indian)
AEMES (Association Espanola de Metricas del Software)
DASMA (Deutschsprachige Anwendergruppe for Softwaremetrik and Estima-
tion)
FiSMA Finland Software Metrics Association
GUFPI-ISMA (Italian Software Metrics Association – Gruppo Utenti Function
Point Italia)
JFPUG (Japanese Function Point User Group)
NESMA (Netherlands Software Metrieken Gebruikers Associatie)
SwiSMA (Swiss Software & Service Metrics Association)
UKSMA (United Kingdom Software Metrics Association) – associate member

The primary goal of the ISBSG was the development of an international reposi-
tory of software project data. The collection of the data and the establishment of
the ISBSG database in organizations allow software organizations to use a service
that is a true alternative to their own analyses. The ISBSG database lets the or-
ganization save the effort of developing their own metrics database and addition-
ally allows it to compare its own data with the data of a network that consists of
the best performers worldwide. That is benchmarking in its true sense.
Further goals:

Enable the comparison of software development on an international basis
Find the world best processes for the improvement and simplification of soft-
ware development
Master and improve the global understanding of software engineering tech-
niques
Enable translation and dissemination of actual techniques for software devel-
opment
Extension of available data
Enhancement of software measurement through the development of a common
vocabulary and a unique understanding of technical terminology
Deliver better information for international business decisions
Support an international network of practitioners

The ISBSG offers the following services:
IT project benchmarking service. The procedure allows the members of a na-
tional metrics organization or ISBSG to deliver their project data free of charge
and with a minimal effort to the ISBSG database. The projects are quality ap-
proved and compared with similar projects in the database. A report with
graphical results will be delivered free of charge.
Best practice network. Everybody who has contributed to the database and
who is registered in the ISBSG can participate in the network.

264 16 Metrics Communities and Resources

“The Benchmark”. A general benchmarking report that is published about
every 18 months, containing about 200 analyses and documentation of the col-
lected data. The report has a high benefit for software developers, project lead-
ers, consultants and organizations as well as academics. Organizations that con-
tribute to the ISBSG database can order the report at a reduced charge (Fig.
16.1).
Customer-specific analyses and reports. On special demand of a participating
organization the standardized report as well as a customized report according to
the organization’s data can be delivered. The repository data can also be bought
on a disc for own analyses.
Research requests: Interested parties (e.g., academic institutes) can get the re-
pository data for research projects on special application free of charge.
The ISBSG repository: The number of projects in the ISBSG database rises
continually. Release 8 [ISBS03] from June 2003 contains 2,048 IT projects
(396 in 1997; 451 in 1998; 789 in 1999; 1,238 in 2002) from more than 20
countries from all over the world. Australia delivered the largest portion, fol-
lowed by the USA. A detailed demographic report of the origin of the projects
is published in The Benchmark. In mid-2002 more than 200 projects were de-
livered from Japan with a letter of intent to deliver another 200 projects in
2003. In 1999 and 2001 results of special research of the ISBSG repository was
published [ISBS99, ISBS01].

The home page of the ISBSG, http://www.isbsg.org, provides information
about its services.

Finish Project

Collect Project Data

Send Project Data to
ISBSG Coordinator

Get and Analyze
Project Positioning

Report

ISBSG
Database

www.isbsg.org

Finish Project

Collect Project Data

Send Project Data to
ISBSG Coordinator

Get and Analyze
Project Positioning

Report

Finish Project

Collect Project Data

Send Project Data to
ISBSG Coordinator

Get and Analyze
Project Positioning

Report

ISBSG
Database

www.isbsg.org

Fig. 16.1. The ISBSG benchmarking database

16.9 ISO 265

16.9 ISO

The International Organization for Standardization (ISO) was founded in 1947 and
has developed and published more than 11,000 international standards in all eco-
nomic domains. The Name ISO was chosen from the Greek and means equal. The
connection of “equal” and “standard” led to the choice of the name ISO. The ISO
is independent of any government and does not belong to the United Nations Or-
ganization (UNO), although it cooperates closely with many commissions of the
UNO. The work of the nearly 30,000 experts from more than 120 countries in the
nearly 2.850 working groups of the ISO is voluntary. The groups are managed
from the secretary general in Geneva (Switzerland), which also publishes the stan-
dards.

In the domain of quality management (including software management) the key
standards are ISO 9000 for quality management and quality assurance and ISO
14000 on environmental management. Fig. 16.2 gives an overview of the ISO
framework for measurement. Different types of software measurement related
standards, which we refer to in this book, are portrayed in that overview picture,
such as ISO 15504 (capability maturity determination and process assessment
standard), ISO 9001 (quality management), ISO 14143 (functional size measure-
ments), ISO 15939 (measurement process), ISO 12207 (system life cycle) or ISO
9126 (quality attributes).

Information about the ISO can be found at its home page:
http://www.iso.ch/en/ISOOnline.frontpage.

ISO
9001-
2000

ISO
14143

ISO
14598

ISO 9126

ISO
15288

ISO
12207

ISO
15504

ISO
15939

PSM CMMI
MODELS

STANDARDS
Scales Processes Entities and Attributes

ISO
9001-
2000

ISO
14143

ISO
14598

ISO 9126

ISO
15288

ISO
12207

ISO
15504

ISO
15939

PSM CMMI
MODELS

STANDARDS
Scales Processes Entities and Attributes

Fig. 16.2. The ISO framework for measurement

266 16 Metrics Communities and Resources

16.10 SPEC

The Standard Performance Evaluation Corporation (SPEC) is a nonprofit organi-
zation formed to establish, maintain and endorse a standardized set of computer
performance benchmarks. SPEC develops suites of benchmarks and also reviews
and publishes submitted results from member organizations and other benchmark
licensees. The SPEC organization is well known for processor benchmarks, but
nowadays provides benchmarks for graphical systems, application servers, Web
servers, mail servers or different Java implementations. Information about the
SPEC can be found at its home page: http://www.spec.org/

16.11 The MAIN Network

The Metrics Association’s International Network (MAIN) was founded 2002 in
Brussels, Belgium with the goal to promote, coordinate and exchange experiences
among software metrics user groups worldwide. It was decided to exchange in-
formation about the activities and results of the national IT metrics organizations
and to cooperate with the ISO, ISBSG and other international IT metrics organiza-
tions.

MAIN is an international network of autonomous software metrics associa-
tions. Its goals are:

Exchange of experience among associated organizations
Influence in international standard definition processes
Support for the foundation of new national metrics associations
Contribute to the organization of software metrics conferences in cooperation
with any other entity
Initiate and control common projects and working groups
Develop a common knowledge-base of documents such as metrics papers, case
studies, training materials, measurement guidelines, research initiatives data-
base, benchmark database

Furthermore, the MAIN network supports and fosters the development of IT
metrics organizations in countries that do not have national metrics organizations.
The MAIN URL is http://www.mai-net.org.

The MAIN network cooperates with non-European IT metrics organizations
IFPUG and ASMA (Australia). The JFPUG (Japan) is an associate member, as is
the COSMIC consortium on Full Function Points. The MAIN Network cooperates
with the ISO standardization process.

The following national metrics organizations are (as of 2003) MAIN members:
AEMES (Association Espanola de Metricas del Software)
DANMET (Danish Software Metrics Association)
DASMA (Deutschsprachige Anwendergruppe für Softwaremetrik und Auf-
wandschätzung)

16.12 TPC 267

FISMA (Finnish Software Metrics Association)
FPUGA (Function Point User Group Austria)
GUFPI-ISMA (Gruppo Utenti Funzioni Punti Italiana). Italy is a spearhead for
functional size measurements in Europe since legal restrictions for proposals to
government bodies demand the declaration of size in Function Points.
IT/KVIV (Genootschap Software Metrics Belgium)
NESMA (Netherlands Software Metrieken Gebruikers Associatie)
SwiSMA (Swiss Software & Service Metrics Association)
UKSMA (United Kingdom Software Metrics Association)
JFPUG (Japanese Function Point User Group)
An interested party is the CIM (Center d’Interet sur les Metriques – Canadian
Metrics Association).
A Russian metrics association is in the starting phase with the support of the
FISMA.

16.12 TPC

The Transaction Processing Performance Council (TPC) is a nonprofit organiza-
tion founded to define transaction processing and database benchmarks and to
communicate objective, verifiable TPC performance data to the industry. Informa-
tion about the TPC can be found at its home page: http://www.tpc.org/. Currently
TPC provides benchmarks such as TPC-C to simulate a complete computing envi-
ronment where a population of users executes transactions against a database or
TPC Benchmark W (TPC-W), which is a transactional Web benchmark. The
workload is performed in a controlled Internet commerce environment that simu-
lates the activities of a business-oriented transactional Web server.

16.13 Internet URLs of Measurement Communities

Further links are available in the following home pages of metrics organizations:

AEMES, Spanish metrics organization http://www.aemes.fi.upm.es
ASMA, Australian metrics organization http://www.asma.org.au
ASQF, Arbeitskreis Software-Qualität Franken,
Germany

http://www.asqf.de

BFPUG, Brazilian metrics organization http://www.bfpug.com.br
CMG, Computer Measurement Group http://www.cmg.org
COSMIC, The Common Software Metrics Inter-
national Consortium (Full Function Points)

http://www.cosmicon.com

DASMA, Deutschsprachiger Anwenderverband
für Softwaremetriken und Aufwandschätzung
e.V., Germany

http://www.dasma.org

268 16 Metrics Communities and Resources

ESI, The European Software Institute, Spain http://www.esi.es
MAIN – Metrics Associations International Net-
work, European metrics organization

http://www.mai-net.org

FISMA, Finnish metrics organization http://www.sttf.fi
GI Fachgruppe 2.1.10 Software-Measurement und
-Bewertung, University Magdeburg

http://ivs.cs.uni-
magdeburg.de/sw-eng/us/

GUFPI-ISMA, Italian metrics organization http://www.gufpi.org
Fraunhofer Institut (IESE) in Kaiserslautern http://www.iese.fhg.de
IFPUG, International Function Point User Group,
USA

http://www.ifpug.org

ISBSG, Australian metrics organization http://isbsg.org
ISO home page http://www.iso.ch/en/

ISOOnline.frontpage
IT/KVIV, Genootschap Software Metrics -
Belgium, Belgian metrics organization

http://www.ti.kviv.be

NASA, National American Space Administration,
USA, Parametric Cost Estimation, COCOMO

http://www.jsc.nasa.gov/bu2/

NESMA, Dutch metrics organization http://www.nesma.nl
http://www.nesma.org

PSM, The Practical Software and Systems Meas-
urement Support Center, DoD

http://www.psmsc.com

Research Laboratory of the Université du Québec,
Canada

http://www.lrgl.uqam.ca

SEI, Software Engineering Institute, CMM http://www.sei.cmu.edu
SPEC, Standard Performance Evaluation -
Corporation

http://www.spec.org/

SwiSMA, Swiss Software & Service Metrics As-
sociation

http://www.swisma.ch

TPC, Transaction Processing Performance Coun-
cil

http://www.tpc.org

UKSMA, British metrics organization http://uksma.co.uk

16.14 Hints for the Practitioner and Summary

A lot of metrics communities across the world provide expertise and consultancy
for the novice and the practitioner. They are concerned with practical research,
building up standards and organization of knowledge transfer, e.g. by organization
of congresses. They are fostering benchmarking, networking and awareness for
software measurement and metrics. Do not hesitate to contact this experts in case
you have any question. All these metrics organizations are networking and linked.
This rare species of experts knows each other and will help you in case of need.
Naturally they provide a surplus of benefits to their members. The list of Internet
URLs is your guide to their know how.

Glossary

The Glossary has been compiled based on entries from various international stan-
dards, such as IEEE Std 610 (Standard Glossary of Software Engineering Termi-
nology) [IEEE90], ISO 15504 (Information technology. Software process assess-
ment. Vocabulary) [ISO98], ISO 15939 (Standard for Software Measurement
Process) [ISO02], the SWEBOK (Software Engineering Body of Knowledge)
[SWEB01], and the PMBOK (Project Management Body of Knowledge)
[PMI01]. Entries are adjusted to serve the needs of this particular book. The au-
thors acknowledge the usage of these standards and take all responsibility for de-
viating adjustments within the text below.

Acceptance criteria. The criteria that a system or component must satisfy in order to be ac-
cepted by a user, customer, or other authorized entity.

Acquirer. An organization that acquires or procures a system, software product or software
service from a supplier.

Activity. An element of work performed during the course of a project. An activity nor-
mally has an expected duration, expected cost, and expected resource requirements.
Activities are often subdivided into tasks.

Actual Cost of Work Performed (ACWP). Total costs incurred (direct and indirect) in ac-
complishing work during a given time period. See also earned value

Allocate. Assign requirements to a project, function, process, behavior, or other logical
element of the system.

Application Service Providers (ASP). A company that provides servers and services to host
/ run applications.

Application software. Software that is specific to the solution of an application problem.
Appraisal. A comparison of an implemented process to a process maturity model Software

process assessments and software capability evaluations are examples.
Appraisal cost. A factor of the cost of quality consisting of the defect detection right in the

phase where it is introduced. Examples include code reviews or module test.
Architecture. A high level design that provides decisions made about the problem(s) that

the product will solve, component descriptions, relationships between components, and
dynamic operation description.

Assessment. See: appraisal
Audit. Systematic, independent and documented process for obtaining evidence and evalu-

ating it objectively to determine the extent to which audit criteria are fulfilled
Auditor. Person qualified and competent to conduct audits
Base measure. An attribute and the method for quantifying it. A base measure is function-

ally independent of other measures
Baseline. A formally approved version of a configuration item, regardless of media, for-

mally designated and fixed at a specific time during the configuration item's life cycle.

270 Glossary

Benchmarking. The continuous process of measuring products, services and practices
against the toughest competitors or those companies recognized as industry leaders.

Business process. A partially ordered set of enterprise activities that can be executed to re-
alize a given objective of an enterprise or a part of an enterprise to achieve some de-
sired end-result

Business case. Consolidated information summarizing and explaining a business proposal
from different perspectives for a decision maker.

Capability. A measure of the system's ability to achieve the mission objectives, given that
the system is dependable and suitable.

Capability evaluation. An appraisal made by a trained team of professionals, using an estab-
lished method (e.g., the SEI software capability evaluation method) to: (1) identify
contractors qualified to perform specific task(s), or (2) monitor the state of the process
used on an all information pertinent to the systems engineering process.

Capability Maturity Model (CMM). Descriptions of the stages through which organizations
evolve as they define, implement, measure, control, and improve their processes. Pri-
marily targeted for software systems.

Capability Maturity Model Integrated (CMMI). A recent release of the CMM that captures
also systems or procurement activities. It is fully based on ISO15504.

Cardinality. Describes the constraint on the number of entity instances that are related to the
subject entity through a relationship. Cardinality is represented for each entity partici-
pating in a relationship by indicating the minimum and maximum number of its in-
stances that may be associated with one particular instance of the related entity.

CASE tool. An engineering tool that is used as an aid to systems or software development.
Causal analysis. The analysis of defects to determine their underlying root cause.
Certification. Acknowledgement based on a formal demonstration that a system or compo-

nent complies with its specified requirements and is acceptable for operational use.
Change agent. An individual or group that has sponsorship and is responsible for imple-

menting or facilitating change. An example of a change agent is the systems engineer-
ing process group. Contrast with change advocate.

Change control. An element of configuration management, consisting of the evaluation, co-
ordination, approval or disapproval, and implementation of changes to work products.

Change Control Board (CCB). A formally constituted group of stakeholders responsible for
approving or rejecting changes to the project baselines.

Change request. A formal request to change some aspect of an established baseline.
Collaborative Product Commerce (CPC). CPC is a mode of product and business develop-

ment in which product value chain partners, motivated by common commercial inter-
ests, generate value by sharing product assets, capital and intellectual property. Given
the ubiquity of CPC architecture across a broad class of applications, CPC's greatest
value is as a business strategy. Used synonymously with product life cycle manage-
ment.

Commercial Off The Shelf (COTS): Components or tools that are supplied from outside.
They are reused as they are (out of the box).

Commitment. A pact that is freely assumed, visible, and expected to be kept by all parties.
Complexity. (1) The degree to which a system or component has a design or implementa-

tion that is difficult to understand and verify. (2) Pertaining to any of a set of structure-
based metrics that measure the attribute in (1).

Compliance. Meeting the requirements of a standard or meeting specified requirements.

Glossary 271

Concurrent Engineering. An approach to project staffing that, in its most general form, calls
for implementers to be involved in the design phase. Sometimes confused with fast
tracking.

Contingency Planning. The development of a management plan that identifies alternative
strategies to be used to ensure project success if specified risk events occur.

Contract. A contract is a mutually binding agreement, which obligates the seller to provide
the specified product, and obligates the buyer to pay for it.

Correction. Action taken to eliminate a detected nonconformity
Corrective action. Action taken to eliminate the cause of a detected nonconformity or other

undesirable situation
Cost Budgeting. Allocating the cost estimates to individual project components.
Cost Control. Controlling changes to the project budget.
Cost Estimating. Estimating the cost of the resources needed to complete project activities.
Cost of Non-Quality (CNQ). The costs incurred of not having the right level of quality at a

given moment. The cost of non-quality includes activities from that moment onwards
related to insufficient quality, such as rework, inventory cost, scrap, or quality control.

Cost of Quality. The costs incurred to ensure quality. The cost of quality includes quality
planning, quality control, quality assurance, and rework.

Cost Performance Index (CPI). The ratio of budgeted costs to actual costs. CPI is often used
to predict the magnitude of a possible cost overrun using the following formula: origi-
nal cost estimate/CPI = projected cost at completion. See also earned value.

Cost Variance (CV). (1) Any difference between the estimated cost of an activity and the
actual cost of that activity. (2) In earned value, BCWP less ACWP.

Critical Path. In a project network diagram, the series of activities which determines the
earliest completion of the project. The critical path will generally change from time to
time as activities are completed ahead of or behind schedule. Although normally calcu-
lated for the entire project, the critical path can also be determined for a milestone or
subproject.

Customer. Organization or person receiving a solution, service or product
Customer satisfaction. Customer’s opinion of the degree to which a transaction has met the

customer's needs and expectations
Defect. Unintended deviation requirement related to an intended or specified use
Defect density. The number of defects identified in a product divided by the size of the

product component (expressed in standard measurement terms for that product).
Development. The process of translating a design into hardware and/or software compo-

nents.
Direct measure. A measure of an attribute that does not depend upon a measure of any other

attribute
Earned Value (EV). (1) A method for measuring project performance. It compares the

amount of work that was planned with what was actually accomplished to determine if
cost and schedule performance is as planned. See also actual cost of work performed,
budgeted cost of work scheduled, budgeted cost of work performed, cost variance, cost
performance index, schedule variance, and schedule performance index. (2) The budg-
eted cost of work performed for an activity or group of activities.

Effectiveness. Measure of the extent to which planned activities are realized and planned
results achieved

Efficiency. Relationship between the result achieved and the resources used

272 Glossary

Effort. The number of labor units required completing an activity or other project element.
Usually expressed as person hours, person weeks, or person years. Not to be confused
with duration.

Engineering. (1) The application of science and mathematics by which properties of matter
and the sources of energy are made useful to people. For the sake of simplicity we
typically speak of “engineering” and “projects” in this chapter. (2) In this book, we
also call “engineering” any type of organization in the enterprise that is in charge of
software projects, applications or products. We consider classic R&D organizations as
well as IT departments or outsource development centers.

Engineering process group (EPG). A group of specialists who facilitate the definition,
maintenance, and improvement of the engineering process used by the organization. In
the key practices, this group is generically referred to as "the group responsible for the
organization's engineering process activities."

Estimate. An assessment of the likely quantitative result. Usually applied to project costs
and durations and should always include some indication of accuracy (e.g., ± x per-
cent). Usually used with a modifier (e.g., preliminary, conceptual, feasibility). Some
application areas have specific modifiers that imply particular accuracy ranges (e.g.,
order-of-magnitude estimate, budget estimate, and definitive estimate in engineering
and construction projects).

Estimate At Completion (EAC). The expected total cost of an activity, a group of activities,
or of the project when the defined scope of work has been completed. Most techniques
for forecasting EAC include some adjustment of the original cost estimate based on
project performance to date. Also shown as “estimated at completion.” Often shown as
EAC = Actuals-to-date + ETC. See also earned value and estimate to complete.

Estimate To Complete (ETC). The expected additional cost needed to complete an activity,
a group of activities, or the project. Most techniques for forecasting ETC include some
adjustment to the original estimate based on project performance to date. Also called
“estimated to complete.” See also earned value and estimate at completion.

Evaluation. A systematic determination of the extent to which an entity meets its specified
criteria.

Extensible Markup Language (XML). XML is a standard maintained by the World Wide
Web Consortium for creating special-purpose markup languages.

Failure. The termination of the ability of an item to perform a required function or its in-
ability to perform within previously specified limits.

Fault. An incorrect step, process or data definition in a computer program
Functional Size. A size of the software derived by quantifying the Functional User Re-

quirements
Gantt Chart. Gantt chart and bar chart are the same in project management. A graphic dis-

play of schedule-related information. In the typical bar chart, activities or other project
elements are listed down the left side of the chart, dates are shown across the top, and
activity durations are shown as date-placed horizontal bars. Also called a Gantt chart.

Graph. Formally, a graph, G={V,E}, is composed of a set of vertices, V, and edges, E, con-
necting the vertices.

Indicator. A measure that can be used to estimate or predict another measure
Indirect measurement. A measure of an attribute that cannot be measured directly and thus

is derived from one or several other direct measures. Typically used to predict or fore-
cast quality or performance attributes earlier in the life cycle than they are directly
measurable.

Glossary 273

Information technology (IT). The applications, services and solutions used inside an enter-
prise to facilitate or automate business processes. We contrast IT with R&D to show
the two major instances of software engineering.

Inspection. Conformity evaluation by observation and judgment accompanied as appropri-
ate by measurement, testing or gauging

Institutionalization. The building of infrastructure and corporate culture that support meth-
ods, practices, and procedures so that they are the ongoing way of doing business, even
after those who originally defined them are gone.

Integration test. The progressive linking and testing of programs or modules in order to en-
sure their proper functioning in the complete system.

Key Process Area (KPA). A structuring element of the Capability Maturity Model. Each
KPA follows the same template, thus facilitating process understanding and change.

Life cycle. The system or product evolution initiated by a user need or by a perceived cus-
tomer need through the disposal of consumer products and their life cycle process
products and by-products.

Life cycle model. A framework containing the processes, activities, and tasks involved in
the development, operation, and maintenance of a software product, spanning the life
of the system from the definition of its requirements to the termination of its use.

Life cycle cost. The total investment in product development, test, manufacturing, distribu-
tion, operation, refining, and disposal. This investment typically is allocated across the
anticipated number of units to be produced over the production life cycle, thus provid-
ing a per-unit view of life-cycle cost.

Maintenance. The process of modifying a product or component after delivery to correct
faults, adapt to a changed environment, improve performance or other attributes, or
perform line and depot maintenance of hardware components. That is, it includes
maintenance that may be corrective, adaptive, or perfective.

Management system. System to establish policy and objectives and to achieve those objec-
tives

Maturity level. A well-defined evolutionary plateau toward achieving a mature software
process. The five maturity levels in the SEI Capability Maturity Model are initial, re-
peatable, defined, managed, and optimizing.

Maturity model. Models of the stages through which organizations progress as they define,
implement, evolve, and improve their processes. It serves as a guide for selecting proc-
ess improvement strategies by facilitating the determination of current process capa-
bilities and identification of the issues most critical for an organization.

Measure. The number or category assigned to an attribute of an entity by making a meas-
urement

Measurement. The use of a measure or metric to assign a value (which may be a number or
category) from a scale to an attribute of an entity

Method. A systematic procedure, technique, or mode of inquiry to create a product or per-
form a service.

Methodology. A body of methods, rules and postulates employed by a discipline.
Metric. The defined measurement method and the measurement scale. We use metric syn-

onymously to measure and measurement, underlining the need to have a well-defined
measurement process and clear mapping to value and scale.

Milestone. A significant event in the project, usually completion of a major deliverable.
Used to structure a life cycle.

274 Glossary

Mitigation. Taking steps to lessen risk by lowering the probability of a risk event’s occur-
rence or reducing its effect should it occur.

Model. An abstract representation of reality in any form (including mathematical, physical,
symbolic, graphical, or descriptive form) to present a certain aspect of that reality for
answering the questions studied

Monte Carlo Analysis. A schedule risk assessment technique that performs a project simu-
lation many times in order to calculate a distribution of likely results.

Multi-project management. Optimal allocation of resources to a set of related projects.
Net present value (NPV). See present value
Pareto analysis. The analysis of defects by ranking causes from most significant to least

significant. Pareto analysis is based on the principle that most effects come from rela-
tively few causes, i.e., 80% of the effects come from 20% of the possible causes.

Pareto Diagram. A histogram, ordered by frequency of occurrence that shows how many
results each generated identified cause.

Peer review. A review of a work product, following defined procedures, by peers of the
product’s producer for the purpose of identifying defects and improvements.

Percent Complete (PC). An estimate, expressed as a percent, of the amount of work that has
been completed on an activity or group of activities.

Performance. A quantitative measure of a product, process, person or project characterizing
a physical or functional attribute relating to achieving a target or executing a mission
or function. Performance attributes include quantity (how many or how much), quality
(how well), coverage (how much area, how far), timeliness (how responsive, how fre-
quent), and readiness (availability, mean time between failures).

Plan. A documented series of tasks required meeting an objective, typically including the
associated schedule, budget, resources, organizational description and work breakdown
structure.

Policy. Guiding principles designed to influence or to determine decisions or actions. A
high-level but concrete commitment that each process has to follow.

Portfolio. All assets and their relationship to the corporate strategy.
Portfolio management. Having the right product mix and performing the right projects to

implement a given strategy.
Practice. A technical or management activity that contributes to the creation of the output

(work products) of a process or enhances the capability of a process.
Present value: Current value of all future expense and income considering a realistic inter-

est rate with the today’s (“present”) date as a common reference point.
Prevention cost. A factor of the cost of quality capturing the effort necessary to actively

prevent defects. This factor is very difficult to measure since it includes not only dedi-
cated prevention activities, but also analysis of previous defects, etc.

Priority. The level of importance of an event or task
Probability. The likelihood of a specific outcome, measured by the ratio of specific out-

comes to the total number of possible outcomes. Probability is expressed as a number
between 0 and 1, with 0 indicating an impossible outcome and 1 indicating an outcome
is certain.

Process. Set of activities, which uses resources to transform inputs into outputs. A sequence
of steps performed for a given purpose, for example, the software development proc-
ess.

Process Area (PA). A structuring element of the CMMI.

Glossary 275

Process improvement. Action taken to change an organization's processes so that they meet
the organization's business needs and achieve its business goals more effectively

Process Measurement: The set of definitions, methods, and activities used to perform meas-
urements of a process and its resulting products for the purpose of characterizing and
understanding this process.

Process metrics. Quantitative data used for assessing the effectiveness of the process and
identifying corrective actions to be taken.

Product. Result of activities or processes.
Product data management (PDM). PDM is a set of applications and capabilities for captur-

ing and maintaining the definition of a product and related data through all phases of a
product's life. The four most commonly used PDM applications are library functions
(search and file check-in/check-out), management of bills of materials (BOMs), prod-
uct configuration management (PCM) and engineering change management (ECM).

Product life cycle (PLC). The PLC describes the main activities needed to define, develop,
implement, build, operate, service, and phase out a product and all related variants. It is
subdivided into phases that are separated by dedicated milestones, so-called decision
gates.

Product life cycle management (PLM). PLM is a process for guiding products from idea
through retirement to deliver the greatest business value to an enterprise and its trading
partners. It comprises all processes to manage and effectively execute the PLC. PLM
employs product information and business analysis to support strategy, planning, man-
agement and execution through each phase of a product's life cycle. PLM supports an
enterprise's ability to monitor activities, analyze challenges and bottlenecks, make de-
cisions and execute decisions.

Product measures. Measurable attributes of a product, such as size or number of defects that
generally do not vary over time (i.e., the product measure can be measured at any
time).

Program management. Achieving a shared objective with a set of related projects.
Project. A temporary endeavor undertaken to create a unique product or service. In software

engineering we distinguish different project types (e.g., product development, IT infra-
structure, outsourcing, software maintenance, service creation, etc.). The techniques
described here apply to all of them.

Project life cycle. A collection of generally sequential project phases whose name and
number are determined by the control needs of the organization or organizations in-
volved in the project. The project life cycle and the product life cycle are orthogonal,
i.e., a product life cycle can consist of several projects and a project can comprise sev-
eral products.

Project management (PM). The application of knowledge, skills, tools, and techniques to
project activities in order to meet or exceed stakeholder needs and expectations from a
project.

Project management body of knowledge (PMBOK). A repository presenting a baseline of
project management knowledge. Serves as a de-facto industry and educational standard
and is used for certification.

Project manager. The individual responsible for managing a project. Often technical project
manager (TPM) for software projects.

Project plan. A formal, approved document used to guide both project execution and project
control. The primary uses of the project plan are to document planning assumptions

276 Glossary

and decisions, to facilitate communication among stakeholders, and to document ap-
proved scope, cost, and schedule baselines.

Quality assurance. Part of quality management, focused on providing confidence that qual-
ity requirements are fulfilled

Quality control. Part of quality management, focused on fulfilling quality requirements
Quality goals. Specific objectives, which if met, provide a level of confidence that the qual-

ity of a product is satisfactory.
Quality improvement. Part of quality management, focused on increasing effectiveness and

efficiency
Quality management. Coordinated activities to direct and control an organization with re-

gard to quality
Quality model. The set of characteristics and the relationships between them, which provide

the basis for specifying quality requirements, and evaluating quality
Quality of service (QoS). A metric that describes quality features that are service provides.
Quality plan. Document specifying the quality management system elements and the re-

sources to be applied in a specific case
Quantitative Control: Any quantitative or statistically based technique appropriate to ana-

lyze a software process, identify causes of variations in the performance of a software
process and bring the performance of the software process within defined limits.

R&D. Research and development. Comprises in this book any engineering activity in the
product life cycle.

Reliability. The ability of an item to perform a required function under stated conditions for
a stated period of time

Requirement. Need or expectation that is stated, customarily implied or obligatory
Requirements analysis. A systematic investigation of user requirements to arrive at a defini-

tion of a system.
Requirements traceability. The evidence of an association between a requirement and its

parent requirement or between a requirement and its implementation.
Return on investment (ROI). The tangible outcome or profitability of an investment meas-

ured in business metrics (e.g., money). Defined as the ratio of income (result, return) to
the directly related effort (investment).

Reuse. The use of an asset in the solution of different problems.
Review. An evaluation of software element(s) or project status to ascertain discrepancies

from planned results and to recommend improvement.
Rework. Action taken on a nonconforming product to make it conform to the requirements
Risk. A function of the probability of occurrence of a given threat and the potential adverse

consequences of that threat's occurrence.
Risk management. The systematic application of management policies, procedures and

practices to the tasks of identifying, analyzing, evaluating, treating and monitoring
risk.

Schedule variance (SV). (1) Any difference between the scheduled completion of an activ-
ity and the actual completion of that activity. (2) In earned value, BCWP less BCWS.

Service. Intangible product that is the result of at least one activity performed at the inter-
face between the supplier and customer

Service level agreement (SLA). Contracted agreement on a certain service level for ser-
vices.

Six Sigma. A technique for statistical process control that governs processes with sufficient
accuracy and control to stay with its standard deviation of outputs (sigma) within a

Glossary 277

range allowing that six times that standard deviation just reaches the allowed control
interval.

Software Engineering Institute (SEI). An organization at the Carnegie Mellon University in
Pittsburgh, USA, established to drive software process improvement. The SEI has cre-
ated and owns the Capability Maturity Model.

Software process. The process or set of processes used by an organization or project to
plan, manage, execute, monitor, control and improve its software related activities

Software tool. A software product providing automatic support for software life cycle tasks.
Software work product. Any artifact created as part of defining, maintaining, or using a

software process, including process descriptions, plans, procedures, computer pro-
grams, and associated documentation, which may or may not be intended for delivery
to a customer or end user. (See software product for contrast.)

Statistics: The science of data. It involves collecting, organizing, analyzing, reporting and
interpreting data.

Statistical process control (SPC). A collection of strategies, techniques and actions taken by
an organization to ensure they are delivering a product or service within quantitatively
defined objectives of quality, cost or time. It measures and identifies out-of-control
conditions in a process and takes action to return the process to an in-control state.

Software Engineering Body of Knowledge (SWEBOK). A repository presenting a baseline
of software engineering knowledge. Serves as a de-facto industry and educational
standard.

Sunk cost. Expenses incurred before the present decision is taken. A paradigm that avoids
that decisions get biased by past expenses, which are of no future value.

System. An integrated composite that consists of one or more of the processes, hardware,
software, facilities and people, that provides a capability to satisfy a stated need or ob-
jective.

Test. An activity in which a system or component is executed under specified conditions,
the results are observed or recorded, and an evaluation is made of some aspect of the
system or component.

Test coverage. The extent to which the test cases test the requirements for the system or
software product.

Traceability. The ability to trace the history, application or location of an item or activity,
or similar items or activities, by means of recorded identification

Unit test. A test of individual programs or modules in order to ensure that there are no
analysis or programming errors.

User. An individual or organization that uses the operational system to perform a specific
function.

Validation. Confirmation by examination and provision of objective evidence that the par-
ticular requirements for a specific intended use are fulfilled.

Verification. Confirmation by examination and provision of objective evidence that speci-
fied requirements have been fulfilled.

Work product. An artifact associated with the execution of a process

Literature

[Abra01a] Abran, A.: COSMIC – Deployment of the second generation of FSM methods.
Presentation at JFPUG 2001. http://www.lrgl. uqam.ca (2001). Cited 15 Dec 2003

[Abra01b] Abran, A., Desharnais, J., Oligny, S., Symons, C.: COSMIC FFP Measurement
Manual Version 2.1. Common Software Measurement International Consortium, 2001.
http://www.lrgl.uqam.ca (2001). Cited 15 Dec 2003

[Abra02a] Abran, A., Silva, I., Primera, L.: Field studies using functional size measurement
in building estimation models for software maintenance. Journal of Software Mainte-
nance: Research and Practice. 14: 31 64 (2002)

[Abra02b] Abran, A., Dumke, R., Desharnais, J., Ndyaje, I., Kolbe, C.: A strategy for a
credible & auditable estimation process using the ISBSG International Data Reposi-
tory. In: IWSM’02: Software Measurement and Estimation. Dumke, R., Abran, A.,
Bundschuh, M., Symons, C., 12th International Workshop on Software Measurement,
Magdeburg, October 2002, Shaker, Aachen (2002) pp. 246 258

[Abra03] Abran, A., Braungarten, R., Dumke, R.: The second generation of the ISBSG
Effort Estimation Prototype. In: Dumke R., Abran A., (eds) IWSM’03: Investigations
in Software Measurement, 13th International Workshop on Software Measurement,
Montreal, September 2003. Shaker Aachen (2003) pp. 218 231

[Abra96] Abran, A., Robillard, P. N.: Function Points analysis: an empirical study of its
measurement processes. IEEE Transactions on Software Engineering, 22: pp. 895 909
(1996)

[Aher03] Ahern, D. M., Clouse, A., Turner, R.: CMMI Distilled – A Practical Introduction
to Integrated Process Improvement. 2nd edn. Addison-Wesley, Boston (2003)

[Albr83] Albrecht, A. J., Gaffney, J. E.: Software function, source lines of code and devel-
opment effort prediction: a software science validation. IEEE Transactions on Soft-
ware Engineering, 9: pp. 639 647 (1983)

[Alon04] Alonso, G.; Casati, F.; Kuno, H.; Machiraju, V.: Web Services – Concepts, Archi-
tectures and Applications, Springer Berlin Heidelberg, (2004)

[Auru03] Aurum, A. et al. (eds.): Managing Software Engineering Knowledge. Springer,
Berlin Heidelberg New York, ISBN: 3-540-00370-3 (2003)

[Benk03] Benko, C.A., McFarlan, W.: Connecting the Dots. Aligning Your Project Portfo-
lio With Corporate Objectives. McGraw-Hill, New York (2003)

[Binn95] Binney, G. and C.Williams: Leaning into the Future. Nicholas Brealey Publish-
ing, London (1995)

[Boeh00] Boehm, B. W.: Software Cost Estimation with COCOMO II. Prentice Hall Inc.
(2000)

[Boeh88] Boehm, B.: A Spiral Model of Software Development and Enhancement, IEEE
Computer, 21: 61 72, (1988)

280 Literature

[Bowe95] Bower, J.L. and C.M.Christensen: Disruption Technologies – Catching the
Wave. Harvard Business Review, Jan-Feb (1995)

[Bria00] Briand, L. C., Langley, T., Wieczorek, I.: A Replicated Assessment of Common
Software Cost Estimation Techniques. International Conference on Software Engineer-
ing – ICSE, Limerick, (2000), pp. 377 386

[Bund00a] Bundschuh, M., Fabry, A.: Aufwandschätzung von IT-Projekten. MITP Bonn
(2000) p. 331

[Bund00b] Bundschuh, M.: Function Point Approximation with the five Logical Compo-
nents, FESMA 00, Madrid, Spain, October 18 20, (2000)

[Bund02b] Bundschuh, M., Estimation of Maintenance Tasks, in: Dumke, R. et al. (eds.)
Software Measurement and Estimation – Proceedings of the 12th International Work-
shop on Software Measurement, 2002, Shaker Aachen (2002) ISBN 3-8322-0765-1,
pp. 125 136

[Bund04] Bundschuh, M., Fabry, A.: Aufwandschätzung von IT-Projekten, MITP Bonn
(2004) ISBN 3-8266-0864-X (2nd edition)

[Bund98a] Bundschuh, M.: Function Point Prognosis, FESMA 98 “Business Improvement
through Software Measurement”, Antwerp, Belgium, May 6 8, (1998), pp. 463–472

[Bund98b] Bundschuh, M.: Function Point Prognosis. In: Metrics News, Vol. 3, No. 2, De-
cember 1998

[Bund99a] Bundschuh, M.: Function Point Prognosis Revisited, FESMA 99, Amsterdam,
Netherlands, October 4 7, 1999, pp. 287 297 [Bund04] Bundschuh, M., Fabry, A.:
Aufwandschätzung von IT-Projekten, MITP Bonn (2000) ISBN 3-8266-0534-9 (2nd
edition to appear in 2004)

[Büre99] Büren, G., Kroll, I.: First Experiences with the Introduction of an Effort Estima-
tion Process. In: CONQUEST’99: Quality Engineering in Software Technology, Con-
ference on Quality Engineering in Software Technology. Nuremberg (1999), pp.
132 144

[Buzz87] Buzzel, R.D. and B.T. Gale: The PIMS Principles – Linking Strategy to Perform-
ance. The Free Press, New York (1987)

[Cai98] Cai, K.: On Estimating the Number of Defects Remaining in Software. The Journal
of Systems and Software. Vol. 40, No. 2, pp. 93 114 (1998)

[Carl92] Carleton, A.D. et al.: Software Measurement for DoD Systems: Recommendations
for Initial Core Measures. Technical Report CMU/SEI-92-TR-19. (1992), Pittsburgh,
USA.

[Chri03] Chrissis, M.B., M.Konrad and S.Shrum: CMMI. Guidelines for Process Integra-
tion and Product Improvement. Addison-Wesley, Boston (2003).

[CIO03] The CIO newsletter: http://www.cio.com
 http://www.cio.com/research/itvalue/cases.html. Cited 15 Dec 2003.
[COSM03] COSMIC: COSMIC FFP Measurement Manual, Version 2.2. 2003.

http://www.lrgl.uqam.ca. Cited 15. Dec 2003.
[Czac01] Czachorowski P.: Demonstrating a Scalable STP Solution, CSC’s Consulting

Group – Systems Performance Center, (2001)
[Debu03] Debusmann, M.; Keller, A.: SLA-driven Management of Distributed Systems us-

ing the Common Information Model. In: IFIP/IEEE International Symposium on Inte-
grated Management (IM2003), Colorado Springs, USA, 24.-28.3.2003. IEEE Com-
puter Society Press, Los Alamitos, USA (2003)

[Dekl97] Dekleva, S. and D.Drehmer: Measuring Software Engineering Evolution: A
Rasch Calibration. Information Systems Research. Vol. 8, No. 1, pp. 95 105 (1997)

Literature 281

[DeMa82].DeMarco, Tom: Controlling Software Projects. Yourdon Press, New York, NY,
USA (1982).

[Deva02] Devaraj, S. and R.Kohli: The IT Payoff. Financial Times/Prentice Hall, Engle-
wood Cliffs, USA (2002).

[Dola01] Dolado, J. J.: On the Problem of the Software Cost Function. Information and
Software Technology. Vol. 43, No. 1, pp. 61 72 (2001)

[Dumk00a] Dumke, R., Wille, C.: A New Metric-Based Approach for the Evaluation of
Customer Satisfaction. In: IWSM’00: New Approaches in Software Measurement, ed
by Dumke, R., Abran, A., 12th International Workshop on Software Measurement,
Berlin, September 2000. Springer, Berlin Heidelberg New York (2000) pp 183 195

[Dumk00b] Dumke, R., Abran, A. (eds.): New Approaches in Software Measurement. Proc.
of the 10th IWSM’00. Lecture Notes on Computer Science. LNCS 2006, Springer,
Berlin Heidelberg New York (2001) p. 245

[Dumk01] Dumke, R., Abran, A. (eds.): Current Trends in Software Measurement. Proc. of
the 11th IWSM’01, Shaker, Aachen (2001) p. 325

[Dumk02a] Dumke, R., Rombach, D. (eds): Software-Messung und –Bewertung. Deutscher
Universitätsverlag, Wiesbaden (2002) p. 254

[Dumk02b] Dumke, R., Abran, A., Bundschuh, M., Symons, C. (eds.): Software Measure-
ment and Estimation. Proc. of the 12th IWSM’02, Shaker, Aachen (2002) p. 315

[Dumk03a] Dumke, R., Lother, M., Wille, C., Zbrog, F.: Web Engineering (Pearson Educa-
tion, Boca Raton (2003) p. 465

[Dumk03b] Dumke, R., Abran, A. (eds): Investigations in Software Measurement. Proc. of
the 13th IWSM’03. Shaker, Aachen (2003) p. 326

[Dumk96a] Dumke, R., Foltin, E., Koeppe, R., Winkler, A.: Softwarequalität durch
Meßtools – Assessment, Messung und instrumentierte ISO 9000. Vieweg Braun-
schweig Wiesbaden (1996) p. 223

[Dumk96b] Dumke, R., Winkler, A.: Object-Oriented Software Measurement in an OOSE
Paradigm. Proc. of the Spring IFPUG’96, February 7 9, Rome, Italy (1996)

[Dumk96c] Dumke, R.: CAME Tools – Lessons Learned. Proc. of the Fourth International
Symposium on Assessment of Software Tools, May 22 24, Toronto (1996) pp.
113 114

[Dumk97] R. Dumke, H. Grigoleit, Efficiency of CAME Tools in Software Quality Assur-
ance. Software Quality Journal, 6: pp. 157 169 (1997)

[Dumk99a] Dumke, R., Foltin, E.: An Object-Oriented Software Measurement and Evalua-
tion Framework. Proc. of the FESMA, October 4 8, 1999, Amsterdam, (1999) pp.
59 68

[Dumk99b] Dumke, R., Abran, A. (eds): Software Measurement – Current Trends in Re-
search and Practice Proc. of the 9th IWSM’99. Deutscher Universitätsverlag Wies-
baden (1999) p. 269

[Dunc01] Duncan, H.: The Computing Utility: Real-Time Capacity on Demand, CMG
Conference, Anaheim, USA (2001)

[Dunn00] Dunn, T.; Jones, D.: MQSeries Integrator for AIX V2. Performance Report, IBM,
(2000). http://www-306.ibm.com/software/integration/support/supportpacs/individual/
ip63.html. Cited 14. June 2004.

[Eber01] Ebert, C. and P.DeNeve: Surviving Global Software Development, IEEE Soft-
ware, Vol. 18, No. 2 (2001) pp. 62 69.

282 Literature

[Eber03a] Ebert, C. and M.Smouts: Tricks and Traps of Initiating a Product Line Concept
in Existing Products. Proc. Int. Conference on Software Engineering (ICSE 2003),
IEEE Comp. Soc. Press, pp. 520 527, Los Alamitos, USA (2003).

[Eber03b] Ebert, C., J.DeMan and F.Schelenz: e-R&D: Effectively Managing and Using
R&D Knowledge. In: Managing Sofware Engineering Knowledge. Ed.: A. Aurum et
al., pp. 339 359, Springer, Berlin (2003)

[Eber96] Ebert, C., Dumke, R.: Software-Metriken in der Praxis, Springer, Berlin, (1996),
ISBN 3-540-60372-7

[Eber97a] Ebert, C.: Experiences with Criticality Predictions in Software Development. In:
Proc. Europ. Software Eng. Conf. ESEC / FSE '97, Eds. M. Jazayeri and H.Schauer,
pp. 278 293, Springer, Berlin Heidelberg New York (1997)

[Eber97b] Ebert, C.: Dealing with Nonfunctional Requirements in Large Software Systems.
N.R.Mead, ed.: Annals of Software Engineering, 3: pp. 367 395, (1997)

[Eber99] Ebert, C., T.Liedtke, E.Baisch: Improving Reliability of Large Software Systems.
In: A.L.Goel, ed.: Annals of Software Engineering. 8: pp. 3 51 (1999)

[Econ03] Economic Data Web Site. http://www.economy.com/ (2003). Cited 15 Dec
2003.

[Eick03] Eickelmann, N.: An Insider’s View of CMM Level 5. IEEE Software, Vol. 20,
No. 4, pg.79 81 (2003)

[Eman98] Eman, K. E., Drouin, J., Melo, W.: SPICE The Theory and Practice of Software
Process Improvement and Capability Determination. IEEE, Los Altimos (1998) p. 486

[Emea03] e-Measurement Pearson Web Site:
 http://www.pearsonedmeasurement.com/emeasurement/ (2003). Cited 15 Dec 2003
[Endr03] Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering –

Empirical Observation, Laws and Theories. (Addison-Wesley, Boca Raton (2003) p.
327

[Erdo02] Erdogmus, H., Tanir, O.: Advances in Software Engineering – Comprehension,
Evaluation, and Evolution. Springer, Berlin Heidelberg New York (2002) p. 467

[Evan94a] Evanco W.M., Lacovara R.: A model-based framework for the integration of
software metrics. Journal of Systems and Software 26, 77 86 (1994)

[Evan94b] Evanco, W.M. and W.W, Agresti: A composite complexity approach for soft-
ware defect modeling. Software Quality Journal, 3: pp. 27 44 (1994)

[Fent97] Fenton, N. E., Pfleeger, S. L.: Software Metrics – A Rigorous & Practical Ap-
proach. Thomson, London (1997) p. 236

[Fetc00] Fetcke, T.: Two Properties of Function Points Analysis. In: Dumke, R., Lehner, F.
(eds.). Software Metriken – Entwicklungen, Werkzeuge und Anwendungsverfahren.
Deutscher Universitätsverlag, Wiesbaden (2000) pp. 17 34

[Fetc99] Fetcke, T.: A Generalized Structure for Function Point Analysis. Proceedings of
the International Workshop on Software Measurement, Lac Superieur, Mon
Tremblant, Canada (1999) pp 1 25

[Folt00] E. Foltin, R. Dumke, A. Schmietendorf: Entwurf einer industriell nutzbaren
Metriken-Datenbank. In: Dumke R., Lehner F. (eds.): Software-Metriken. Deutscher
Universitäts Verlag, Wiesbaden (2000) p. 95

[Folt01] Foltin, E.; Schmietendorf, A.: Estimating the cost of carrying out tasks relating to
performance engineering, In: Dumke, R.; Abran, A.: New Approaches Software Meas-
urement, Lecture Notes on Computer Science LNCS 2006, Springer-Verlag Berlin
Heidelberg (2001)

Literature 283

[Folt98] Foltin, E., Dumke, R. R.: Aspects of Software Metrics Database Design. Software
Process – Improvement and Practice, 4: pp. 33 42 (1998)

[Gaff94] Gaffney, J. E. Jr.: A Simplified Function Point Measure. In the Proceedings of the
IFPUG 1994 Fall Conference, Oct. 19 21, 1994, Salt Lake City, Utah

[Garm95] Garmus, D., Herron, D.: Measuring the Software Process, Yourdon Press Com-
puting Series, Prentice Hall PTR, Englewood Cliffs, New Jersey (1995)

[Gart02] Gartner Research Notes #TU-11-0029 (A Project Checklist) and #SPA-13-5755
(IT Portfolio Management and Survey Results). Similar survey results in: Vander-
wicken Financial Digest, Standish Group, http://www.iqpc.com. Cited 15 Dec 2003.

[Glas98] Glass, R.: Software Runaways. Lessons learned from Massive Software Project
Failures. Prentice Hall PTR, NJ (1998)

[Grad92] Grady, R.B.: Practical Software Metrics for Project Management and Process Im-
provement. Prentice Hall, Englewood Cliffs, NJ (1992)

[Groß94] Großjohann, R., Über die Bedeutung des Function-Point-Verfahrens in rezessiven
Zeiten. In: Dumke, R., Zuse, H. (eds.), Theorie und Praxis der Softwaremessung, pp.
20–34, Deutscher Universitäts Verlag, Wiesbaden (1994)

[Hall01] Hall, T., Baddoo, N., Wilson, D.: Measurement in Software Process Improvement
Programmes: An Empirical Study, in: Reiner Dumke, Alain Abran (eds.) New Ap-
proaches in Software Measurement, Proceedings of the 10th International Workshop,
IWSM 2000, Berlin, October 2000, Springer, Berlin Heidelberg New York (2001)
pp.73–82, ISBN 3-540-41727-3

[Harv93] Harvey-Jones, J.: Managing to Survive. Heinemann, London (1993)
[Hein02] Heinrich, L. J.: Informationsmanagement – 7th edition, R. Oldenbourg, Munich

(2002)
[Hitt95] Hitt, L. and E.Brynjolfsson: Productivity, Business Profitability, and Consumer

Surplus: Three Different Measures of Information Technology Value. MIS Quarterly,
20: pp. 121 142 (1995)

[Hump89] Humphrey, W.S.: Managing the Software Process. Addison-Wesley, Reading,
USA (1989)

[Hump97] Humphrey, W.S.: Introduction to the Personal Software Process. Addison-
Wesley, Reading, USA (1997)

[Idea00] IDEAS International, Übersicht zu ausgewählten Benchmarkergebnissen (TPC,
SPEC, SAP, BAPCo, AIM),

 http://www.ideasinternational.com/benchmark/bench.html. Cited 15 Dec 2003.
[IEEE90] IEEE Standard 610.12-1990. IEEE Standard Glossary of Software Engineering

Terminology. IEEE, New York, NY, USA. ISBN 1-55937-067-X (1990).
[IFPU02] IFPUG, IT Measurement – Practical Advice from the Experts, Addison-Wesley

Indianapolis (2002) ISBN 9-780201-741582
[IFPU99] IFPUG, Counting Practices Manual, Release 4.1, IFPUG, Westerville, OH, 1999
[IQPC03] The International Quality & Productivity Center: http://www.iqpc.com/. Cited 15

Dec 2003.
[ISBS00] ISBSG, The Benchmark, Release 6, ISBSG, Warrandyte, Victoria (2000) ISBN 0

9577201 6 5
[ISBS01] ISBSG, Practical Project Estimation, ISBSG, Warrandyte, Victoria (2001) ISBN

0 9577201 1 4
[ISBS02] ISBSG, The Software Metrics Compendium (The Benchmark, Release 7),

ISBSG, Warrandyte, Victoria (2002) ISBN 0 9577201 2 2

284 Literature

[ISBS03] ISBSG, Estimating, Benchmarking and Research Suite (Release 8). International
Software Benchmarking Standards Group, Warrandyte, Victoria.

 http://www.isbsg.org/. (2003) Cited 15 Dec 2003
[ISBS98] ISBSG, The Benchmark, Release 5, ISBSG, Warrandyte, Victoria (1998)
[ISBS99] ISBSG, Software Project Estimation – A Workbook for Macro-Estimation of

Software Development Effort and Duration, ISBSG, Melbourne, Victoria, 1999, ISBN
0-9577201-0-6

[ISO00] ISO/IEC JTC1/SC7 Software Engineering, CD 15939: Software Engineering -
Software Measurement Process Framework, Version: V10, (2000)

[ISO02] ISO/IEC/IEEE Standard for Software Measurement Process. IEEE Std
15939:2002, IEEE, Piscataway, USA (2002)

[ISO97a] ISO/IEC/IEEE Standard for Developing Software Life Cycle Processes. IEEE Std
1074:1997, IEEE, Piscataway, USA (1997)

[ISO97b] ISO/IEC/IEEE Standard for Software Life Cycle Processes. IEEE Std
12207:1997, IEEE, Piscataway, USA (1997)

[ISO97c] ISO 14756: Measurement and rating of performance of computer-based software
systems. ISO/IEC JTC1/SC7 Secretariat, Canada (1997)

[ISO98] ISO/IEC TR 15504-9:1998. Information technology. Software process assessment.
Vocabulary. ISO/IEC JTC1/SC7 Secretariat, CANADA (1998)

[Jacq97] Jacquet, J. P., Abran, A.: From Software Metrics to Software Measurement Meth-
ods: A Process Model, Third International Symposium and Forum on Software Engi-
neering Standards, Walnut Creek, Canada (1997)

[Jeff97] Jeffery, R., Software Models, Metrics, and Improvement. In: Proceedings of the
8th ESCOM Conference, Berlin (1997) pp. 6 11

[Jone01] Jones, C.: Software assessments, Benchmarks, and Best Practices. Addison-
Wesley, Reading, USA (2001)

[Jone02] Jones, C.: How Software Estimation Tools Work. Technical Report, Software Pro-
ductivity Research Inc., Burlington, MA (2002)

[Jone95] Jones, T. C.: Return on Investment in Software Measurement. In: Proc. 6. Int.
Conf. Applications of Software Measurement. Orlando, FL, USA, (1995).

[Jone96] Jones, C., Applied Software Measurement, McGraw-Hill, New York, (1996),
ISBN 0-07-032826-9

[Jone97] Jones, C., Software Quality, International Thomson Computer Press, Boston, MA,
(1997), ISBN 1-85032-867-6

[Jone98] Jones, C.: Estimating Software Costs. McGraw-Hill, New York, (1998)
[Juri01a] Juristo, N., Moreno, A. M.: Basics of Software Engineering Experimentation

Kluwer Academic, Boston (2001) p. 395
[Juri01b] Juric, M. B., Basha, S. J., Leander, R., Nagappan, R.: Professional J2EE EAI.

Wrox-Press, (2001)
[Kapl92] Kaplan, R., Norton, D.: The Balanced Scorecard - Measures that Drive Perform-

ance. Harvard Business Review, (Jan. 1992)
[Kapl93] Kaplan, R., Norton, D.: Putting the Balanced Scorecard to Work. Harvard Busi-

ness Review.(Sept/Oct 1993)
[Kell03] Keller, A., Ludwig, H.: Journal of Network and Systems Management, Special Is-

sue on E-Business Management, Volume 11, Number 1, Plenum Publishing Corpora-
tion, March (2003).

[Keme87] Kemerer, C. F.: An Empirical Validation of Software Cost Estimation Models.
Comm. ACM 30(5), 416 442 (1987)

Literature 285

[Kene99] Kenett, R. S., Baker, E. R.: Software Process Quality – Management and Control.
Marcel Dekker, New York Basel (1999) p. 241

[Khos96] Khoshgoftaar, T.M. et al: Early Quality Prediction: A Case Study in Telecommu-
nications. IEEE Software, 13: 65 71 (1996)

[Kitc84] Kitchenham, B. A., Taylor, N. R.: Software Cost Models. ICL Technical Journal,
4: 73 102 (1984)

[Kitc95] Kitchenham, B. A., Pfleeger, S. L., Fenton, N.: Towards a Framework for Soft-
ware Measurement Validation. IEEE Transactions on Software Engineering, 21(12),
929 944 (1995)

[Kitc96] Kitchenham, B.: Software Metrics – Measurement for Software Process Improve-
ment. NCC Blackwell, London (1996) p. 241

[Krai00] Kraiß, A.; Weikum, G.: Zielorientiertes Performance-Engineering auf Basis von
Message-orientierter Middleware. In: Tagungsband zum 1. Workshop Performance
Engineering in der Softwareentwicklung, Darmstadt, (2000)

[Kütz03] Kütz, M. et al: Kennzahlen in der IT. Dpunkt-verlag, heidelberg, Germany,
(2003).

[Lind00] Lindvall, M., Rus, I.: Process Diversity in Software Development. Guest Editor’s
Introduction to Special Volume on Process Diversity. IEEE Software, Vol. 17, No.4,
pp. 14 18, (2000)

[Loth01] Lother, M., Dumke, R.: Points Metrics – Comparison and Analysis. In: Dumke,
R., Abran, A. (eds.) IWSM’01: Current Trends in Software Measurement, 11th Inter-
national Workshop on Software Measurement, Montreal 2001. Shaker, Aachen, (2001)
pp. 228 267

[Loth02a] Lother, M., Dumke, R.: Efficiency and Maturity of Functional Size Measurement
Programs. In: Dumke et al. (eds.) Software-Messung und -Bewertung. Proceedings of
the Workshop GI-Fachgruppe 2.1.10, Kaiserslautern 2001, Deutscher Universitätsver-
lag, (2002) pp. 94 135

[Loth02b] Lother, M., Dumke, R.: Application of eMeasurement in Software Development.
Proc. of the IFPUG Annual Conference, San Antonio, Texas, (2002), chap. 5

[Loth03a] Lother, M., Dumke, R., Böhm, T., Herweg, H., Reiss, W.: Applicability of
COSMIC Full Function Points for BOSCH specifications. In: IWSM’03: Investiga-
tions in Software Measurement, ed by Dumke, R., Abran, A., 13th International Work-
shop on Software Measurement, Montreal, September 2003, Shaker, Aachen (2003)
pp. 204 217

[Loth03b] Lother, M.: Functional Size eMeasurement Portal. http://fsmportal.cs.uni-
magdeburg.de/FSMPortal_Start_d.htm (2003). Cited 15 Dec 2003

[Lyu95] Lyu, M.R.: Handbook of Software Reliability Engineering. McGraw-Hill, New
York, (1995)

[Macd94] MacDonnell, S. G.: Comparative Review of functional complexity assessment
methods for effort estimation. Software Engineering Journal 8(5), 107 116 (1994)

[McCo98] McConnell, S.: Software Project Survival Guide. Microsoft Press. Redmond,
USA, (1998)

[McCo03] McConnell, S.: Professional Software Development. Addison-Wesley, Boston,
USA, (2003)

[McGa01] McGarry, J. et al: Practical Software Measurement. Addison-Wesley Longman, ,
Reading, USA, (2001)

[McGi96] McGibbon, T.: A Business Case for Software Process Improvement. DACS
State-of-the-Art Report. Rome Laboratory,

286 Literature

 http://www.dacs.com/techs/roi.soar/soar.html#research, (1996). Cited 14. Apr. 1999.
[Meli99] Meli, R., Santillo, L.: Function Point Estimation Methods: A Comparative Over-

view. In: Proceedings of the FESMA Conference 1999, Amsterdam, (1999) pp. 271–
286

[Mend02] Mendes, E., Mosley, N., Counsell, S.: Web Metrics – Estimating Design and
Authoring Effort. http://www.cs.auckland.ac.nz/ ~emilia/Assignments/ (2002). Cited
15 Dec 2003

[Meta02] Meta Group: The Business of IT Portfolio-Management: Balancing Risk, Innova-
tion and ROI. White Paper. (2002). Available at: www.metagroup.com or white-
papers.silicon.com. Cited 17. Juni 2004.

[Mill02] Miller, A., Ebert, C.: Software Engineering as a Business. Guest Editor Introduc-
tion for Special Issue. IEEE Software, Vol. 19, No.6, pp.18 20, (Nov. 2002)

[Mill72] Mills, H.D.: On the Statistical Validation of Computer Programs. Technical Re-
port FSC-72-6015, Gaithersburg, MD : IBM Federal Systems Division (1972).

[Morr02] Morris, P.: Total Metrics Resource, Discussion Paper: Evaluation of functional
size measurements for real-time embedded and control systems.

 http://www.totalmetrics.com/ (2000). Cited 15 Dec 2003
[Morr96] Morris, M., Desharnais, J. M.: Validation of the Function Point Counts. In: Met-

ricviews, summer 1996, (1996), p. 30
[Muru01] Murugesan, S., Deshpande, Y.: Web Engineering. Lecture Notes on Computer

Science 2016, Springer, Berlin Heidelberg New York (2001) p. 355
[Musa87] Musa, J.D., Iannino, A., Okumoto, K.: Software Reliability – Measurement, Pre-

diction, Application. McGraw-Hill, New York, (1987)
[Musa91] Musa, J.D., Iannino, A.: Estimating the Total Number of Software Failures Using

an Exponential Model. Software Engineering Notes, Vol. 16, No. 3, pp. 1 10, July
1991 (1991).

[Muta03] Mutafelija, B., Stromberg, H.: Systematic Process Improvement Using ISO
9001:2000 and CMMI (Artech House, Boston (2003) p. 300

[NASA95] NASA: Software Measurement Guidebook. Technical Report SEL-94-102. Uni-
versity of Maryland, Maryland, (1995) p 134

[NESM02] NESMA, Function Point Analysis for Software Enhancement, Guidelines Ver-
sion 1.0, 2002, http://www.nesma.org. (2002) Cited 15 Dec 2003.

[NIST03] NIST Web Site: see http://www.cstl.nist.gov/ (2003). Cited 15 Dec 2003
[Noel98] Noel, Damien: Analyse statistique pour un design plus simple de la methode de

measure de taille fonctionelle du logiciel dans des contextes homogenes. Doctoral dis-
sertation, UQUAM, Montreal, Cananda, 2.8.1998 (1998)

[Nort00] Norton, T. R.: A Practical Approach to Capacity Modeling. Tutorials WOSP
2000, Ottawa, Canada, Sept 17 20, 2000, (2000)

[Numb97] NumberSIX, MetricsONE User’s Guide Version 1.0, Washington 1997, URL:
 http://www.numbersix.com. Cited 05. May 1999 (1999).
[Oman97] Oman, P., Pfleeger, S. L.: Applying Software Metrics. IEEE Computer Society

Press, Los Altimos (1997) p 321
[OMG01] OMG Object Management Group: Software Process Engineering Metamodel

Specification, (2001)
[Paul95] Paulk, M.C. et al (eds): The Capability Maturity Model: Guidelines for Improving

the Software Process. Addison-Wesley, Reading, (1995)
[Pete88] Peters, T.: Thriving on Chaos. Macmillan, London, (1988)

Literature 287

[Pfle97] Pfleeger, S.L. et al: Status Report on Software Measurement. IEEE Software, Vol.
14, No. 2, pp. 33 43, Mrc. 1997 (1997)

[PMI01] A Guide to the Project Management Body of Knowledge. PMI (Project Manage-
ment Institute). ISBN: 1880410230, January (2001). See also at: http://www.pmi.org,

 http://www.pmi.org/prod/groups/public/documents/info/pp_pmbokguide2000excerpts.
pdf. Cited 15 Dec 2003.

[Putn03] Putnam, L. H., Myers, W.: Five Core Metrics – The Intelligence Behind Success-
ful Software Management. Dorset House Publisching, New York (2003)

[Reif02] Reifer, D.J.: Making the Software Business Case. Addison-Wesley Longman,
Reading, USA, (2002)

[Reit01] Reitz, D.: Konzeption und Implementation von palmbasierten Werkzeugen zur
Unterstützung des Softwareentwicklungsprozesses. Thesis, University of Magdeburg,
(2001)

[Reme00] Remenyi, D. et al.: The Effective Measurement and Management of IT Costs and
Benefits (2nd eds.). Butterworth Heinemann, London, (2000)

[Royc98] Royce, W.: Software Project Management. Addison-Wesley. Reading, USA,
(1998)

[RSM98] Ressource Standard Metrics Version 4.0 for Windows NT, M Squared Technolo-
gies, URL: http://www.tqnet.com/m2tech/rsm.htm. (1998) Cited 03. Feb. 2000.

[Scha98] Scharnbacher, K., Kiefer, G.: Kundenzufriedenheit: Analyse, Messbarkeit und
Zertifizierung. Oldenbourg, Munich (1998)

[Schm00a] A. Schmietendorf, A. Scholz: Performance Engineering - Ein Überblick zu den
Aufgaben und Inhalten. HMD 213, dpunkt, Heidelberg, (2000)

[Schm00b] Schmietendorf, A., Scholz, A., Rautenstrauch, C. (2000): Evaluating the Per-
formance Engineering Process. In: ACM (Eds.): Proceedings of the Second Interna-
tional Workshop on Software and Performance. WOSP2000. Ottawa, ON, (2000) pp.
89 95.

[Schm01a] A. Schmietendorf: Prozess-Konzepte zur Gewährleistung des Software-
Performance-Engineering in großen IT-Organisationen, in Schriften zum Empirischen
Software Engineering, Shaker-Verlag, Aachen November 2001 (2001)

[Schm01b] Schmietendorf, A., Dumke, R.: Empirical Analysis of the Performance-Related
Risks. In Proc. of the International Workshop on Software Measurement IWSM´01,
Montreal, Quebec, Canada, August, 2001 (2001)

[Schm03a] Schmietendorf, A., Lezius, J., Dimitrov, E., Reitz, D.: Web-Service-basierte
EAI-Lösungen, in Knuth (eds.), M.: Web Services, Software & Support Verlag, Frank-
furt/Germany, (2003)

[Schm03b] Schmietendorf, A., Dumke, R.: Empirical analysis of availabe Web Services, in
Dumke, R.; Abran, A. (eds.): Investigations in Software Measurement. pp. 51 69,
Shaker Aachen, September 2003 (2003)

[Scho99] Scholz, A., Schmietendorf, A.: A risk-driven performance engineering process
approach and its evaluation with a performance engineering maturity model. In: Pro-
ceedings of the 15th Annual UK Performance Engineering Workshop. Bristol, UK,
(1999).

[Schw00] Schweikl, U., Weber, S., Foltin, E., Dumke, R.: Applicability of Full Function
Points at Siemens AT. In: Dumke, R., Lehner, F. (eds.): Software Metriken – Entwick-
lungen, Werkzeuge und Anwendungsverfahren. Deutscher Universitätsverlag, Wies-
baden, (2000) pp. 171 182

288 Literature

[Simo98] Simon, H., Homburg, C.: Kundenzufriedenheit Konzepte Methoden Erfahrungen,
Gabler, Wiesbaden (1998)

[Sing99] Singpurwalla, N. D., Wilson, S. P.: Statistical Methods in Software Engineering –
Reliability and Risk. Springer, Berlin Heidelberg New York (1999) p. 295

[Smit90] Smith, C.: Performance Engineering of Software Systems. Software Engineering
Institute. Addison-Wesley, (1990)

[Smit94] Smith, C.: Performance Engineering. In: Maciniak, J.J. (eds.): Encyclopedia of
Software Engineering. Vol. 2, John Wiley & Sons, (1994), pp. 794 810

[Smit98] Smith, C. U.; Williams, L. G.: Performance Evaluation of Software Architectures.
In: Proc. of First International Workshop on Software and Performance – WOSP 98,
Santa Fe/NM, October 1998 (1998)

[Smit99] Smith, C., Williams, L.G.: A Performance Model Interchange Format. Journal of
Systems and Software, 49 (1999) 1

[Smla03] SML@b Web Site: see http://ivs.cs.uni-magdeburg.de/sw-eng/us/ (2003). Cited
15 Dec 2003

[Snee96] Sneed, H. M.: Schätzung der Entwicklungskosten von objektorientierter Software.
Informatik Spektrum, Springer Berlin Heidelberg New York, (1996) 19: pp. 133 140

[SPEE98] SPE ED Quick Start 2. Performance Engineering Services Division, L&S Com-
puter Technology Inc., Austin, TX, (1998)

[Stan02] Standish Group, Chaos Reports: http://www.standishgroup.com/. Cited 11. Dec
2002 (2002).

[Star94] Stark, G., Durst, R. C., Vowell, C. W.: Using Metrics in Management Decision
Making. IEEE Computer, Vol. 27, No. 9, pp. 42 48, (1994).

[SWEB01] Guide to the Software Engineering Body of Knowledge (SWEBOK). Prospec-
tive Standard ISO TR 19759. (2001) See also at http://www.swebok.org. 18.April 2001

[Symo01] Symons, C.: Come Back Function Point Analysis (Modernized) - All is forgiven.
In: Proceedings of FESMA-DASMA 2001, Heidelberg, (2001)

[Tele01] Telelogic Tau Logiscope 5.0, Diverse Manuals, http://www.telelogic.com, (2001).
Cited 15 Dec 2003.

[Thur02] Thuraisingham, B.: XML Databases and the Semantic Web. CRC Press, Boca
Raton (2002) p. 306

[Turo02] Turowski, K.: Vereinheitlichte Spezifikation von Fachkomponenten, Memoran-
dum des GI-AK 5.10.3, February 2002 (2002)

[UKSM01] UKSMA, Measuring Software Maintenance and Support, Version 0.5, Draft,
July 1st, 2001, http://www.uksma.co.uk. Cited 07. Dec. 2001 (2001).

[UKSM98] UKSMA, MK II Function Point Analysis Counting Practices Manual, Version
1.3.1, http://www.uksma.co.uk, (1998). Cited 04. Jun. 1999.

[UQAM99] UQAM, Full Function Points Measurement Manual, Version 2.0, Accessible
at: http://www.lrgl.uqam.ca/cosmic-ffp/manual.jsp (1999). Cited 17. June 2004.

[VanS00] Van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical
Guide for Quality Improvement of Software Development. McGraw-Hill, London,
(2000)

[Wads90] Wadsworth, H. M. (Ed.): Handbook of statistical methods for engineers and sci-
entists. McGraw-Hill, New York, (1990)

[Wall02] Wallin, C. et al.: Integrating Business and Software Development Models. IEEE
Software vol. 19, No. 6, pg. 18 33, November/December (2002)

[Wang00] Wang, Y., King, G.: Software Engineering Processes – Principles and Applica-
tions. CRC Press, Boca Raton New York London (2000) p. 708

Literature 289

[Warb94] Warboys, B.C. (eds): Software Process Technology. Proc. of the EWSPT’94,
Lecture Notes on Computer Sience, vol 772, Springer, Berlin Heidelberg New York,
(1994)

[Wayn93] Wayne, M. Z., Zage, D. M.: Evaluating Design Metrics on Large-Scale Soft-
ware. IEEE Software, Vol. 10, No. 7, pp. 75 -81, Jul. 1993 (1993)

[Webm03a] WebME Web site. http://sel.gsfc.nasa.gov/website/documents/ (2003). Cited
15 Dec 2003

[Webm03b] Web Measurement Standards. http://www.ifabc.org/web/ (2003). Cited 15 Dec
2003

[Weis91] Weiss, N. A., Hasset, M. J.: Introductory Statistics (3rd edn). Addison-Wesley,
Boca Raton New York London, (1991) pp 600 651

[Wigl97] Wigle, G.B.: Practices of a Successful SEPG. European SEPG Conference 1997.
Amsterdam, 1997. More in-depth coverage of most of the Boeing results. In: Schul-
meyer G. G., McManus, J. I. (eds.): Handbook of Software Quality Assurance, (3rd
edn), Int. Thomsom Computer Press, (1997)

[Wink03] Winkler, D.: Situation des eMeasurement im WWW. Research Report, Univer-
sity of Magdeburg, March 2003 (2003)

[Wohl00] Wohlin, C., Runeson, P., Höst, M., Ohlson, M., Regnell, B., Wesslen, A.: Ex-
perimentation in Software Engineering: An Introduction. Kluwer Academic, Boston
(2000) p. 204

[Wohl95] Wohlwend, H., Rosenbaum, S.: Schlumberger's Software Improvement Program.
IEEE Trans. Software Engineering. Vol. 20, No. 11, pp. 833 839, Nov.1994

[WSTK02] IBM Web Service Toolkit, (2002), URL:
 http://www.alphaworks.ibm.com/tech/webservicetoolkit. Cited 15 Dec 2003.
[Zuse97] Zuse, H., A Framework for Software Measurement. DeGruyter, Berlin, (1997),

ISBN 3-11-015587-7

Index

acceptance 72, 111
accounting 127
activity-based controlling 127
adjusted function points 226, 232
adjustment 42
aggregation 14
AMI tool 50
analysis techniques 19
application counts 226
application systems 225, 226, 228
ARM

Application Response Measurement
190

assets 14
average function complexity 226, 228

balanced scorecard 64, 226
Bang metric 97
benchmarking 263, 264
benchmarking repository 82
benefits 131, 175
Boeing 3-D 97
BOOTSTRAP 36
Breakeven-Analysis 31
budget control 120
business case 12, 14, 28, 32
business goals 14
business indicators 63
buy-in 165

calibration 43
CAME framework

Choice Adjustment Migration
Efficiency 40

CAME strategy
Community Acceptance Motivation

Engagement 39
CAME tools

Computer Assisted Measurement and
Evaluation 49, 89

Capability Maturity Model See CMM

Capability Maturity Model Integrated
See CMMI

CARE tools
Computer-Aided RE-Engineering 49

CASE tools
Computer Aided Software

Engineering 243
Computer-Aided Software

Engineering 49
CBA-IPI 161
CFPS 111, 261
change management 161, 168, 174
Chaos Report 10
CHECKPOINT 50
Checkpoint/KnowledgePlan 225, 239
chi-square test 144
CMG

Computer Measurement Group 259
CMIP

Common Management Information
Protocol 244

CMISE
Common Management Information

Service Element 244
CMM 36, 37, 133, 134, 157, 159, 168
CMMI 37, 134, 157, 159
COCOMO II 51, 95, 237, 240
code inspection 137
code review 140
CodeCheck 52
COMET 54
commitment 169
communication 73, 78
competence center 111
Computer Aided Measurement and

Evaluation (CAME) See
configuration management 171
controlling 11
CORBA

Common Object Request Broker
Architecture 204

core metrics 116, 130
COSAM 54

292 Index

COSMIC 95, 229, 260, 266, See also
Full Function Points

COSMIC Full Function Points 95
COSMIC Xpert 99
COSMOS 52
cost control 126
cost control metrics 129
cost estimation 128
cost of non-quality 138, 151, 154
cost of quality 151
COSTAR 50
costs 107
CPM 260
criticality prediction 142
Crow model 149
culture change 162
customer satisfaction 41, 133
customer satisfaction index 41

dashboard 15, 16
DASMA 75, 263, 266
Data quality 68
DATRIX 52
DCE

Distributed Computing Enviroment
204

deadline 119
defect detection 154
defect distribution 137
defect estimation 135
defect tracking 138
defects 163
design activities 64
design review 137
DOCTOR HTML 54
documentation 74, 110
duration 241
dynamic analysis 247

EAI
Enterprise Application Integration

193
early estimation 225
e-certification 59
e-experience 59
effectiveness 140
efficiency 140
effort 70, 72, 74, 113, 233, 234, 240
effort estimation methods 75
e-Measurement 56
e-Measurement communities 58
e-measurement consulting 59

end-user efficiency 74
engineering balance sheet 116
engineering process group 160
ENHPP 149
EPG 160
e-quality services 59
e-R&D 157
e-repositories 59
estimation 109, 231, 239, 242, 261
estimation conference 107
estimation culture 107, 108
estimation honesty 108
estimation object 107
estimation parameters 232, 242
estimation tool 227, 233, 239
Excel 54
exchange of experiences 75

failure 134, 146
failure prediction 138
fault 134, 146
feasability study 103
Feature Points 97
feedback 70, 71
feedback loop 166
FFP See Full Function Points
finite failure model 149
forecasting 124
Full Function Points 100, 103, 229, 260
function component proportions 227
function point approximation 225
function point counting 110
function point counts 110
function point estimation 225, 227
function point method 113, 231, 242,

261
function point prognosis 225, 226
function point proportions 226
Function Point Workbench 51, 225
function points 111, 225, 226, 228, 229
functional size measurement 103, 114,

232, 242
functionality 107
fuzzy classification 144

general system characteristics 231, 242
goal 163, 231
goal conflicts 107
Goal Question Metric 36
goal-orientation 30
goal-oriented 11
goals 75, 109

Index 293

GQM
Goal Question Metric 36

GSC 231, 232, 242

history database 154
HTTP

Hyper Text Transfer Procol 204

IFPUG 113, 226, 261, 263
IFPUG FP 97
indicator 13, 29
infinite failure models 149
inspection 140
inspection planning 141
Investment analysis 31
ISBSG 217, 226, 228, 262

International Standard Benchmarking
Group 81

ISBSG benchmarking database 110
ISBSG International Repository 82
ISO 265, 266
ISO 14143 260
ISO 14764 235
ISO 15939 2
ISO 19761 95, 260, See also Full

Function Points
ISO 8402 231
ISO 9000 133
IT metrics 70, 74, 110, 113
IT metrics initiative 109
IT metrics organisations 261, 267
IT metrics organizations 75
IT metrics program 109
IT project 10, 231
IWSM 261

Kiviat diagram 252
knowledge transfer 110, 111

large-scale software systems 243
LDRA 53
Littlewood-Verrall model 149
LNHPP 149
Logiscope 243
LOGISCOPE 52

MAIN 266
MAIN Network 75
maintainability 163
management support 110, 226, 231
Management techniques 118
Mark II 260

Mark II FPA 97
Mark II Method 113
measurement 242
measurement effort 256
measurement e-learning 59
measurement failures 3
measurement introduction 32
measurement plan 64
measurement process 10, 32, 67
measurement program 66
measurement risks 3
measurement selection 86
measurement service 213
measurement theory 42
METKIT 55
metrics 112
metrics database 83, 84, 111, 225
metrics initiative 109
metrics introduction 66, 76
Metrics One 52
metrics program 230
metrics responsible 66
metrics storage 82
metrics team 66
metrics template 64
metrics tools 49, 82
minimum metrics 130
MJAVA 52
module test 140
MOOD 52
motivation 73, 108
motivational system 73

NESMA 113, 260, 267
nominal scale 43

objectives 11
OLA

Operation Level Agreement 207
operational profile 137
ordinal scale 43

P&L statement 10
Palm-FFP 99
parameters 240, 241
Pareto principle 155
Pareto rule 142
PC-METRIC 52
PD See person day
PEMM

Performance Engineering Maturity
Model 182

294 Index

people 72
percentage method 233
performance 120
person day 233
person hour 134, 233
person month 233
person year 134
PH See person hour
planning 70, 71, 110, 239
PLM 21
PM See person month
PMT 52
Poisson process 148
policy 159
portfolio management 13, 18, 33
prediction 125
PRM

Performance Risk Model 198
process 159
process capability 157
process change management 174
process diversity 159, 172
process element 159
process improvement 157, 177, 240
process management 170, 177
process owner 174
product data management 171
product life-cycle 21, 22, 34

PLC 15, 171
product line 26
product quality 74
productivity 16, 111, 127, 240
productivity metrics 225
project complexity 240
project control 115, 116, 118, 130
project duration 234, 240
project estimations 225
project management 26, 233
project manager 112, 117
project metrics 130
project register database 226, 229
project size 234
project team 75
project tracking metrics 121
PY See person year

QoS
Quality of Service 210

quality 74, 107, 231, 240, 242
quality assurance 231, 233
quality assurance measures 231
quality control 137, 231

quality features 231
quality goals 231
quality management 120
quality measures 231, 232, 242
quality planning 231
QUALMS 52
quantitative process management 173
quick estimation 227, 228

ratio scale 43
regression analysis 229, 230
reliability 134
reliability growth model 148
reliability model 147
remaining defects 155
reporting 30
requirements 231
requirements creep 110, 240
resistance 72, 73, 108
resource planning 234
risk 74
risk management 18, 143
RMI

Remote method Invokation 204
RMS 51
ROA 18, 31
ROCE 18, 31
ROI 15, 31, 32, 129, 134, 159, 276, 286
rule of thumb 154, 227, 229
RuleChecker 245

SCAMPI 161
schedule 110
Scorecard 15
SEI 134
SEI core metrics 13
sensitiveness 31
sensitivity analysis 240, 241
SEPG 160

software engineering process group
160

simulations 240, 241
SLA

Service Level Agreements 203
SLIM 51, 95, 237, 240
SML@b 217
SOAP

Simple Object Access Protocol 204
SOFT-CALC 52
SOFT-ORG 51
software development 231, 242
software development process 231

Index 295

software measure 71
software metrics 261
software metrics program 117, 131
software product 231
software project management 116
software reliability engineering 146
software size 242
software system 231
SPC 173
SPE

Software Performance Engineering
185

SPEC 266
SPI 159
SPICE 36
SPR function points 228
standards 110, 265, 266
Standish Group 10
static analysis 246
statistical process control 173
statistics 173
STW-METRIC 53
success factors 73, 169

tailoring 171
team size 233
technology management 24
test coverage 137
test defect detection effectiveness 139
test tracking 123
TestChecker 245
thresholds 42
time 107
tools 110
TPC 267
tracking 120
tracking system 128
Trend analysis 31
tuning 43
type I error 144

type II error 144

UC
Underpinning Contracts 207

UDDI
Universal Description Discovery and

Integration 204
UKSMA 113, 263, 267
UML

Unified Modelling Language 185
unadjusted function points 226
underestimation 107
Unified Process 86, 90
UQAM 229
usage specification 137

VAF 226, 227
value analysis 31
variance analysis 128
visibility 73

Weibull process model 149
work breakdown structure (WBS) 240
work product 159
workflow management 158
WSLA

Web Service Level Agreements 212
WSMM

Web Service Management
Middleware 211

XML
Extensible Markup Language 193,

204

Yamada-Osaki model 149

ZD-MIS 55

