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Preface

Beyond official relationships, that GfK1 (Gesellschaft fiir Klassifikation) and JCS
(Japanese Classification Society) as member societies of IFCS (International
Federation of Classification Societies) cultivate, the societies have started to
intensify the scientific exchange of ideas, views, and knowledge — first on a personal
basis and subsequently via the organization of joint meetings in form of conferences
and workshops. After the first joint Japanese-German Symposium in Tokyo (2005)
and the second German-Japanese Symposium in Berlin (2006) — results of which
were published in a special volume of “Studies in Classification, Data Analysis,
and Knowledge Organization” under the title “Cooperation in Classification and
Data Analysis” — the third meeting took place together with the annual conference
of GfKIl in Karlsruhe (2010) followed by the fourth Japanese-German Symposium
organized in Kyoto (2012). According to the nature of these meetings there are
no restrictions concerning research directions presented at these symposia, all new
concepts and activities are welcome on which German and Japanese researchers in
the field of data analysis (in the broad sense) are currently working.

Given the just described tradition this volume contains substantially extended and
further developed material presented at the last symposia with emphasis on results
introduced at Kyoto (2012). As an unambiguous assignment of topics addressed
in single contributions is sometimes difficult, the peer-reviewed articles of this
volume are grouped in a way that the editors thought appropriate. Three parts
concerning “Clustering”, “Analysis of Data and Models” and “Applications” have
been formed. Within the chosen parts the presentations are listed in alphabetical
order with respect to the authors’ names. At the end of this volume an index is
included that, additionally, should help the interested reader.

Some of the papers which were presented at Karlsruhe (2010) and Kyoto (2012)
and are not contained in this volume have been or will still be published elsewhere
in the scientific literature (see, e.g., the proceedings of the Karlsruhe GfKI (2012)
conference under the title “Challenges at the Interface of Data Analysis, Computer
Science, and Optimization” in the Springer series “Studies in Classification, Data
Analysis, and Knowledge Organization™).



vi Preface

This volume — which can serve as another proof that the longstanding and close
relationships between the members of GfKl and JCS are growing further — would
not have been possible without the personal assistance of colleagues and friends as
well as the financial support of organizations which foster scientific research.

From the German side especially DFG (Deutsche ForschungsGemeinschaft)
should be mentioned as without her generous support the participation of German
researchers at the Japanese meetings would not have been possible. Additionally,
KIT (Karlsruhe Institute of Technology), Institut fiir Entscheidungstheorie und
Unternehmensforschung and Lehrstuhl fiir Informationsdienste & Elektronische
Mirkte from Fakultit fiir Wirtschaftswissenschaften at KIT have to be named.

From the Japanese side, the hospitality extended by the Faculty of Culture and
Information Science, Doshisha University, is appreciated whose support made it
possible to have Kyoto (2012) in the good environment of the old capital Kyoto.
Grateful acknowledgment is made to Mathematical Systems Inc., JAPAN, for its
kind support.

Finally, we thank the referees for their comments, suggestions and annotated
copies w.r.t. the submitted papers and all those who helped to make the symposia at
Karlsruhe (2010) and Kyoto (2012) scientifically important and successful meeting
points for our colleagues.

For his support in handling the typesetting process with IX[EX we are very
grateful to Maximilian Korndorfer. As always we want to mention Springer Verlag,
especially Dr. Martina Bihn, for excellent cooperation in publishing this volume.

Karlsruhe, Germany Wolfgang Gaul
Karlsruhe, Germany Andreas Geyer-Schulz
Tokyo, Japan Yasumasa Baba
Tokyo, Japan Akinori Okada

March 2013
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Clustering



Model-Based Clustering Methods for Time
Series

Hans-Hermann Bock

Abstract This paper considers the problem of clustering n observed time series
xk ={xx(@t)|t € T}, k =1,...,n, with time points ¢ in a suitable time range .7,
into a suitable number m of clusters Cy, ..., Cy, C {1,...,n} each one comprising
time series with a ‘similar’ structure. Classical approaches might typically proceed
by first computing a dissimilarity matrix and then applying a traditional, possibly
hierarchical clustering method. In contrast, here we will present a brief survey about
various approaches that start by defining probabilistic clustering models for the time
series, i.e., with class-specific distribution models, and then determine a suitable
(hopefully optimum) clustering by statistical tools like maximum likelihood and
optimization algorithms. In particular, we will consider models with class-specific
Gaussian processes and Markov chains.

1 Introduction

Clustering methods are designed in order to group objects (persons, texts, pic-
tures,...) into classes (clusters) such that each class contains objects which are
‘similar’ in some sense, while similarities between objects from different classes
are typically small. The underlying information about similarities is provided by
data (often: data vectors with qualitative or quantitative variables) that are supposed
to be known for all objects. This information is included into a statistical clustering
criterion or a mathematical algorithm that computes ‘automatically’ the desired,
hopefully optimum or interpretable clusters.

This paper considers the case where we have n objects k = 1,...,n and
each object k is characterized by a time series, i.e., a real-valued function x; :=

H.-H. Bock (B<)
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{xx(®)|t € 7} with a suitable set of time points 7. More specifically, for
continuous time with .7 = [0, T] we have x; = { xx(¢) | 0 < ¢ < T } while for p
discrete observation times t; < f, < --- < t, we write Xy = (xi(t1),...,x¢(tp)) =:
(X1, ..., Xkp). Typical examples include:

* n cities where temperature, air pressure, and humidity (p = 3) are daily recorded.
* n patients where the diagnostic status (with p variables) is observed over time.

* 1 stocks whose prices are continuously or daily recorded.

* n genes whose expression levels are measured every 2 h.

In these cases a clustering method should provide groups of objects with a
‘similar’ structure of time series within each group.

In this paper we do not follow the classical way by first determining an n x n
similarity matrix for the objects and then applying a traditional dissimilarity-based
clustering method (e.g., average linkage); see, e.g. Kalpakis et al. (2001), Chouakria
and Nagabhushan (2007) and Peng and Miiller (2008). In contrast we will describe
here some clustering approaches that proceed

1. By first defining a probabilistic model for a time series

2. Assuming a class-specific distribution for objects (time series) within the same
class

3. And then determine the unknown parameters and the underlying clustering by
maximum likelihood approaches.

Other, eventually more comprehensive surveys are given, e.g., by Liao (2005),
Frithwirth-Schnatter (2006, 2011), De la Cruz-Mesia et al. (2008), Pamminger
and Frithwirth-Schnatter (2010), McNicholas and Murphy (2010) and Delaigle
et al. (2012). The following Sect.2 presents the general approach, Sects.3-5
describe models with regression structures, Sect. 6 deals with Markov chain models,
Sect. 7 considers the continuous time case, and Sect. 8 comments on methods for
determining a suitable number of clusters.

2 Model-Based Clustering Approaches

In model-based clustering the observed time series Xi,...,X, are considered as
realizations of n independent random time series (stochastic processes) X, ..., X,
over the appropriate time domain. While we concentrate on the case of p discrete
time points f; <, < --- < t, with I = {t1,...,t,}), we will consider the time-
continuous case with an interval .7 = [0, T'] in Sect.7 below. The distribution of
the random processes has the generic form Py with a suitable parameter vector
(often with a density f(x;9)). A clustering model results if the set of objects is
supposed to be heterogeneous insofar as it is composed by several hidden classes of
objects such the distributions or parameters are class-specific and typically different
from class to class. At least two basic approaches for modeling this situation are
well-known:
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(a) The fixed-partition model where we assume the existence of a (specified)

number m of (unknown) disjoint classes Cy,...,C, C {1,...,n} of objects
and of m class-specific parameters ¥4, . . ., ¥, such that X; ~ Py, for all objects
keCi(i=1,...,m).

(b) The mixture model where we assume that X;,...,X, are all independent
with the mixture distribution X ~ Py, = Z;":l m; Py, where the
(unknown) vector ¥ = (my,...,7T,) contains the prior probabilities 7; of
the (unknown) classes. Note that the corresponding posterior probabilities

i (xg) = % define a degree of membership of object k in the class

i and define a clustering when applying a maximum a posteriori (MAP) rule.

Under these model assumptions the unknown 4 = (Cy,...,Cp), 0 :=
(V1,...,0,) and r := (my,..., m,) are estimated by maximizing the likelihood of
the observed time series Xy, .. ., X,, by a generalized k-means algorithm in case (a)

or by an EM algorithm in case (b).

3 Regression-Type Models for Normal Distributions

A basic clustering model results if all time series from some class follow, up to some
noise, the same class-specific regression model. The most simple approach assumes
a p-dimensional normal distribution for the X; with independent measurements
Xk(t) ~ M(ui(2),0%@)) fort € 7 = {l1,...,p}. Then a class C; is
characterized by

* A class-specific regression function w; (¢) = u(¢; 9;) and
¢ A class-specific variance function ol-z(t) =02(t; &)

with (unknown) parameters ¢; and ¢;. Following the approach (a) this amounts
to the more or less classical clustering model for X = (Xi(t1)..... X(t,)) =
(Xkts s Xip):

Xk ~ JVP([;LZ‘, 2,) fork € Ci (1)
with w; = (u(t1;9:), ..., u(tp;9;)) and the p x p diagonal covariance matrix

Y =diag(0*(t1;¢), ..., 02(ty; {)). Maximizing the likelihood is equivalent to
minimizing the least-squares clustering criterion

g(€:0,0) —Z 3 Z'xk(”) U] I )

2 b
i=1 keq; | j=1 o2 (tj:41) e84

Typical regression functions include (i) a constant value w(z;9%;) = 9, (ii) a
regression line w(t; %) = a; + b;t with ¥%; = (a;, b;), (iii) trigonometric functions
such as u(t;9;) = ¢; - sin(d; + e;t) with ¥%; = (c¢;,d;,e;), and (iv) truncated
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Fourier series or wavelet decompositions. Variances might be, e.g., (i) constants
0%(t;¢) = o oro? with §; = o7 > 0, (ii) linearin ¢ as 0(¢; §;) = o; + B; -1 with

¢ = (ai, Bi), etc.

4 Class-Specific Recursive and Autoregressive Models

When considering time series we may, in contrast to the situation in Sect. 3, usually
expect dependencies among the measured data values at different time points.
Insofar a diagonal covariance matrix in (1) might be too simplistic and should
be replaced by an arbitrary class-specific and positive definite covariance matrix
Y = (0irs) = (cov(Xi(t), Xk (t5)) for k € C;. The corresponding modification of
the clustering criterion (2) is then obvious.

In the case of equally spaced time points # = 1,..., p the resulting clustering
model can be reformulated in terms of a related regressive or autoregressive process:
We use the fact that the covariance matrix X; has a singular value decomposition
X, = Q!A; Q; with a diagonal matrix A; = diag(o?,... ,UI%D) and an orthogonal
lower triangular p x p matrix

1 0 0o ---0
gizn 10 ---0
-0

Qi = (qiys) = | 931 432 1

qi.p1 9i.p2 4i.p3 *** 1

Therefore the linearly transformed variable Z; := Q;(X; — w;) has distribution
Np(0,;0;0/A;0;0! = A;) with p independent normal components .41 (0, 62).
Writing down the individual rows ¢ = 1,...,p of X; = u; + Q!Z; shows
that the model (1) is identical to the following recursive model with class-specific
coefficients:

Xi(t) = Xir = pir + Z(_qi,t,t—r)(Xk(Z —T) — Wiy—) +0uUy (3)

=1

for k € C;, with independent errors U;; ~ .41(0, 1). Note that for the special case
where all elements of Q; below the s-th subdiagonal are O the model (3) reduces to
the class-specific autoregressive (AR) process:

Xi(0) = Xee = pie + Y _(~Gira—o)Xic(t =) = pis—e) + 00l (4)

=1

Quite generally, AR processes provide a major tool when specifying clustering
models for time series (typically formulated conditionally on fixed initial values,
e.g., Xk (0) = x4 (0)). As an example we mention the classical first order AR process
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Xi(t) = ai + b Xt — 1) + onUs. (5)

Generalizations are provided by higher order models, and also by dynamically
varying clustering models where in addition to the recorded value X} (¢) we observe,
at each time point 7, a secondary, time-varying, g-dimensional covariable vector yy;,
€ RY:

Xi(t) =a; +b; X (t = 1) + ¢ yi, + 0nUy (6)

with class-specific regression coefficient vectors ¢; € R? which are to be deter-
mined, e.g., iteratively within the generalized k-means algorithm.

5 Clustering Models with Time-Dependent Regression
Regimes

Various authors have considered clustering models where, for each class, there are
several different, alternative regression functions (describing different behaviour
types, ‘regimes’, ‘options’) and objects from this class may shift, from time to time,
from one regime to another one. We describe here a model proposed by Samé et al.
(2011) which is best illustrated by considering n consumers of electricity and their
energy consumption x (¢;) at discrete time points ¢;. We suppose:

1. There are m classes Cy,...,C,, of consumers (eventually with frequencies
T0lyennsy 7Tm).

2. For each class C;, there exist L (e.g.) polynomial class-specific regression
functions of degree q (‘options’)

Ris(1) = Biso + Bist - + Bisy - 17 + -+ Pisg - 1°
= (1,6, t%)(Biso, Bist» - - - » Bisg) =: T(t) Bis s=1,...,L.
3. At each time point ¢ = t;, the consumption X (¢;) of a consumer k € C; is
given by R;s(¢;) with one of the options s (up to a random error):
Xk(tj) = Ris(tj) + 045Uy with Uy, ~ '/’/1(07 1)

4. The option s is randomly selected: if k € C; chooses option s at t = t; we
write:

ij :(ijql,...,ij,s,...,ij’L):(0,...,1,...,0) =:e

s

5. This random selection process is described by a multinomial distribution:

Wij ~ Pol(1;qis(tji i), ..., qir(t); o))
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with class-specific time-dependent probabilities from the logistic model

gis(tjia;) 1 = P(Wy; = ejlk € C;)
expitts,1t; + tso}

=L s=1,...,L.
Zh:l expiinit; + ino}

Assuming further that consumers, daily consumptions, choices of options,
random errors are all independent we obtain the following class-specific distribution

density for any time series Xy = (Xi (1), ..., Xx(¢,)) from class C;:
P L
fitca Bi) =[] D aultjien) - o(x(t)): T(t;) Bis. 07 @)
j=1 s=1

where ¢(x; i, 0?) is the density of .4{(u, 0?). Following the general scheme from
Sect. 2 these distributions can be combined in the form of a fixed-partition clustering
model or, alternatively, by a mixture model, with a subsequent k-means or EM
algorithm for estimating parameters and the hidden clusters.

Other approaches for dynamic shifting among different options, within the same
class, is proposed in Horenko (2010) in the framework of a fuzzy model with
constraints that reduce hectic oscillations between different options over time, and
in Song et al. (2008) where dynamically varying and suitably modeled posterior
probabilities are used.

6 Clustering with Class-Specific Markov Chain Models

A major tool for describing the dependence structure of stochastic processes is
provided by Markov models. Such models have been used in the framework of
clustering models as well, see, e.g., De la Cruz-Mesia et al. (2008), Pamminger
and Friihwirth-Schnatter (2010) and Frithwirth-Schnatter (2011). In the following
we concentrate on the case of Markov chains with T equidistant time points
t =0,1,...,T and values (states, categories) from a finite state space (alphabet)
o ={1,....,c}. This model may apply, e.g., to the evolution of a disease (such as
HIV) with ¢ states of disease, observed on T time points for n patientsk = 1,...,n
(cohort study). The model assumes that for objects k from class C; the time series
Xi ={Xk: |t =0,..., T} is a homogeneous Markov chain with

* A class-specific initial distribution:
pff) = P(Xro =a) aed
¢ Class-specific transition probabilities:
P = P(Xys41 =b|Xsi =a) abed.
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The likelihood of the observed time series X, is then given by f(x;;¥;) =

Py Xy = xx) = pffk)o ]_[t | ka, x., With the parameter vector ¥; :=

PV, p8 p). L pi.

6.1 Fixed-Partition Clustering Model

Therefore, in the framework of the fixed-partition model, the likelihood of all

observed time series Xj, . . ., X, is given by
m T m c ® c c B )
= i — Dyng (i)
o= 1 Tty TTrt- =TT { T | T T
i=1 keG =1 i=1 La=1 a=1b=1
where
n; = |C;|, the number of objects (samples) in C;
nd = {k € C; | xxo = a }|, the number of samples from C; starting in state a
fl'g =D kec; fl b+ the number of state transitions @ — b in C;.

This criterion is to be maximized w.r.t. € and 6 by the k-means algorithm. Starting
with an initial m-partition ¢’ = (Cy,...,Cy,) of {1,...,n}, a first step A maximizes
L w.r.t. the parameter 6 and yields:

A(l) =ny ® /ni the relative frequency of time series in C; starting

inaatt =0

2D =nD /0l the relative frequency of observed transitions @ — b in C;

Pap "= Nap
with na : =Y. n the number of occurrences of state a
inC; (fort <T —1).

Afterwards step B determines the maximum-likelihood partition €* :=
(Cr,...,C)) with classes:

"= k| Py (Xe=x¢) == P Hﬁf:;w = max Py (Xe=x0)}

Finally the steps A and B are iterated in turn until stationarity is obtained.

6.2 Mixture Approach

Starting from the densities f(x;;?;), i = 1,...,m, the mixture approach (also
termed ‘dynamic Bayesian model’ in this case) leads to the mixture likelihood
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n m T—1
Gp.2.m) =[] [Z”f Py l_lpfc’k’,,xk.,+l] — max
t=0 o

k=1 Li=1
that must be maximized, by an adapted EM algorithm, w.r.t.

¢ The vector of class frequencies 7 := (71, ..., 7T,;)

e The vector p = (711(1) veees m{m) ) of all c¢m initial probabilities
7= Pi(Xpo = a),

+ And w.rt. the system &2 = (P, ... P™) of all transition matrices
PO = (py)-

Detailed investigations and a survey on this approach are provided by Frithwirth-
Schnatter (2006, 2011).

7 Model-Based Methods for Time-Continuous Processes

As seen before it is relatively easy, in the case of discrete time or a discrete state
space, to model, write down, and maximize the likelihood of observed time series,
in dependence of unknown classifications and parameters. This does no longer hold
in the case of real-valued, continuous-time processes x = {x;(¢)|0 < ¢t < T} where
we observe, at least theoretically, infinitely many time points simultaneously. Statis-
tical analysis of such processes is often conducted in the framework of ‘functional
data analysis’ (Ramsay and Silverman 2005; Ferraty and Vieu 2010; Chiou and Li
2007). In case of the clustering problem we describe, in the following, (i) methods
that use L, theory for random functions and corresponding least-squares criteria
(Sect.7.1), (ii) parametric approaches that model random functions by (truncated)
series of suitable orthonormal basis functions (Sect.7.2), and (iii) methods that
employ generalized likelihood concepts for stochastic processes (Sect. 7.3).

7.1 Using L, Theory and Least-Squares Criterion

A basic approach generalizes the classical least-squares clustering method to the
case of processes x; from the Hilbert space L,[0, T]. Assuming the fixed-partition-
approach with a given number m classes C;, we may, e.g., characterize each class
by a specific L, function u(t; ;) (with a parameter «; ) and minimize the criterion

m T
G6.wp)i=3 Y [ 1) = utionf

i=1keC;
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w.rt. € and «, ..., q, in a generalized k-means algorithm. More refined models
for the underlying random processes X, may consider class-specific covariance
functions Cov(Xk(t), Xx(t)) = R(t,7;B;) as well even if the consideration of
the function R introduces many additional parameters for estimation which may
endanger the reliability of the numerical clustering results, but, on the other hand,
provides the opportunity to specify here a range of more ‘parsimonous’ covariance
models.

7.2 Using Truncated Series Expansions

The ‘infinite-dimensional’ case can be reduced to a finite-dimensional one by
considering a prespecified (!) complete system of orthonormal L,[0, T'] functions
{¥;)lj = 0,1,...} (e.g., trigonometric functions, wavelets,...) and the corre-
sponding series expansion

oo q
Xe(0) =" Ay (1) ~ X0 =Y Ay () (8)

j=0 j=0

%

with random Fourier coefficients Ay; := fOT Yi(t)Xi(t)dt for j = 0,1,....1f¢q
is large enough such that X (¢) is sufficiently well approximated by the truncated
series X liq)(t) then we may concentrate on the analysis of the (finite dimensional)
random vectors Yy = (Ao, Ak1, ..., Arg) € R?T! of the first ¢ + 1 Fourier
coefficients and set up suitable clustering models for Yy, ...,Y, (with ‘observed’
values yi, ..., y, obtained by substituting x; (¢) for Xy (¢) in the formula for Ay;).
So this approach leads to classical multivariate clustering models, eventually under
normal assumptions.

While this approach started with a prespecified system of orthonormal functions,
some authors used a functional principal component analysis (PCA, the Karhunen-
Loeve (KL) expansion) for the stochastic processes Xj(-) from L,. For a process
X(¢) with u(¢) := E[X(¢)] and R(t, 7) := Cov(X(¢), X(7)) this expansion has the
form

X)) = p@)+ ) A;9;0)

Jj=1

where v, A; are the eigenfunctions and ordered eigenvalues of the covariance
operator R of X:

T
/0 R, v)yj@)dt = A; (1) j=12,...
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and the coefficients (KL scores) A; = A;(X) = fOT Y (1)(X(¢) — pu(t))dt are
uncorrelated with £[4;] = 0and Var(4;) = A; | 0. Similarly as before, the first
q coefficients have been used for characterizing classes in a clustering model. In
practice, however, it is difficult to estimate the covariance matrix R from clustered
data.

7.3 Using an Approximate Density Concept for Stochastic
Processes

It is difficult to design, for continuous-time processes X;(¢),..., X,(¢) with t €
[0, T, a joint likelihood under a clustering model. Therefore Delaigle and Hall
(2010) and Jacques and Preda (2012) introduced and used a new ‘approximate
density concept’ in clustering. The basic idea is to find an analogue to the relation
f(x) = limp—o P(|X — x| < h )/(2h) that holds for any univariate random
variable X with a smooth density f, for each value x € R'. Measuring the deviation
between a random process X € L, and a given function x € L, by

T o0
11X — x| :=/0 X(0) = x(O)Pdr = 3 A (4; —a))?
j=1

(with the KL scores A;,a; of X and x) they find, under suitable assumptions, the
following ‘approximation theorem for the small-ball probability’:

q
log P(||X — x|l < h) =) log fa;(a; (x)) + E(h.r(h)) + o(r (h))

=1

with:

*  fa; the density of the random KL score A4; (e.g., normal density)

* a;j(x):= fOT Y (t)x(t)dt the KL scores for function x

* afunction r (k) such that r(h) — oo for i | 0,

 afunction £ that depends on / and the infinite KL eigenvalue sequence,
* but both r and ¢ do not depend on x.

So the first term captures essentially the variation of the Lh.s. with x.

In analogy to the one-dimensional case the expression f)gq) (x) = ]_[(§=1 Sa;
(a;j(x)) is called the ‘approximate density of X at x’, with f4, ~ 41(0,4;) for a
centered Gaussian process X .

The resulting fixed-partition clustering model then uses the ‘approximate density’
in analogy to classical cases: Within each class C;

* We consider the first ¢ class-specific functional principal components



Model-Based Clustering Methods for Time Series 13

* Obtained from eigenvalues/eigenvectors w;i), /\y) of the class-specific covariance
function.

Then, for k € C;, the ‘approximate density’ of Xy at x € L, is

q
Xi ~ f@(x) := l—[ fA?(a;i)(x))

j=1

and the ‘approximate likelihood’ of the observed time series xy, . . . , xx (with classes
Cy,...,Cp) is given by

L(%) := ]_[ I ]_[ £, m(a ) (x0)).-

i=1keC; j=1
In the special case of n Gaussian processes X1, ..., X; we find that
(@) 2
1a; (x)
v =TT 70 (575070
i=lkeC; j=1 j
. N2
with class-specific variances /\y) = 0](-’) of the principal scores. Then a mod-

ification of the k-means algorithm is used for maximizing L(%’). Thereby, the
iterative estimation of the intra-class covariances and the update of the class-specific
KL expansions (eigenvalues, eigenvectors) may lead to time-consuming numerical
algorithms.

8 Determining the Number of Clusters

Apart from the process of (re-)constructing a clustering of objects, clustering
approaches have often to tackle with a series of related problems, e.g., the selection
of distribution models, the consideration of outliers, the reduction of information,
and the estimation of an appropriate (the ‘true’) number of clusters. In this last
section we summarize some methods for dealing with the latter estimation problem.

In the framework of model-based approaches the determination of an appropriate
number of clusters can be considered as a model selection problem. General
approaches for model selection are described, e.g., in Claeskens and Hjort (2008)
or Wasserman (2000). In particular, we mention here the classical Bayesian model
selection approach (using the Bayes factor based on a prior distribution for
the number of classes), Akaike’s information criterion (AIC; Akaike 1974), the
Bayesian Information Criterion (BIC; Schwarz 1978), the Deviance Information
Criterion (DIC; Spiegelhalter et al. 2002), the Integrated Classification Likelihood
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(ICL; Biernacki et al. 2000), and the Focused Information Criterion (FIC; Claeskens
and Hjort 2003) that are typically used when clustering classical vector-valued data.

Even if the time series situation is a little bit more complicated, these same
approaches have been successfully described and applied, e.g., by Sebastiani et al.
(1999, classical Bayes method), Frithwirth-Schnatter (2006, 2011), Ferrazzi et al.
(2005, BIC), De la Cruz-Mesia et al. (2008, BIC and Bayes factor), Jacques and
Preda (2012, BIC), Banfield and Raftery (1993) and Biernacki and Govaert (1997)
who both used an Approximate Weight of Evidence (AWE). Unfortunately, there are
no general results on the performance of these methods that apply to all situations,
and detailed simulation studies are needed for assessing the value of each method.
For example, when clustering Markov chain data, Pamminger and Friithwirth-
Schnatter (2010) and Friihwirth-Schnatter (2011) observed that BIC results in too
few clusters for small samples, but overfits the true number of classes in large ones
(see also Ferrazzi et al. 2005).
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1 Introduction

Newman and Girvan (2004) introduced modularity clustering as an efficient way
to find communities with maximal modularity in a large network. Formally, the
network is defined by a simple, undirected graph G = (V, E)) with the set of vertices
V and the set of edges E C V' x V. Alternatively, a simple, undirected graph can
be given by its | V | x | V | adjacency matrix M which is symmetric (my = my),
binary, and m; = 0. For an undirected edge {v,,v,} between the vertices v, € V
and v, € V, 2 elements of the adjacency matrix are set to 1, namely m,, = m,, = 1.

The communities form a partition C = {Cy,...,C,} of V with p subsets
(clusters, communities, groups). We denote the set of all partitions by £2, for
partitions we use upper indices, e.g. C', C"", C°", and to refer to the j-th cluster
of partition C° we use C]‘-”d . In addition, it is convenient to refer to the cluster to
which a vertex v belongs in a partition C as c¢ (v).

For a simple, undirected graph G and a partition C with a given number of
groups p, the modularity measure Q (G, C) is defined as:

V4
Q(G,C) =) (ei—aj) (1)
i=1
with
0 = ZVXEC,' Zvyecj My (2)
e 2| E|
and

ai =) ey 3)
J

e is the p x p weight matrix of partition C: e;; is the fraction of edges between
clusters C; and C;. ¢; is the fraction of edges in cluster C;. For the singleton
partition (each vertex is a cluster), we have e; = 0.

a; is the fraction of edges that link to vertices in cluster C;. The fraction of
edges with both vertices in cluster C; when edges are randomly established between
vertices is a,-z. Thus, modularity is the sum over all communities of the difference
between the fraction of edges in the same community (e;;) minus the expected value
of the fraction of edges (a?) of a network with the same community partition but
randomly generated edges. Modularity measures the non-randomness of a graph
partition.

The modularity maximization problem is then:

max 0(G,C) “4)
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Integer linear programming algorithms solve the modularity maximization
problem for small graphs (see e.g. Agarwal and Kempe 2008; Brandes et al. 2007).
Brandes et al. (2008) have given an integer linear programming formulation for
modularity clustering and established that the formal problem is — in the worst
case — NP-hard. However, Smale’s analysis of the average case shows that the
number of pivots required to solve a linear programming problem grows in
proportion to the number of variables on the average (Smale 1983). From the
empirical results shown in Sect.2, we conjecture that Smale’s results hold for
modularity optimization too.

The fastest heuristic algorithms for modularity maximization so far are greedy
agglomerative hierarchical clustering algorithms (see e.g. Schuetz and Caflisch
2008; Zhu et al. 2008). The recent success of the randomized greedy (RG) algorithm
with the core groups graph clustering (CGGC) scheme as ensemble learning variant
(see Ovelgonne and Geyer-Schulz 2013, 2012b; Ovelgonne et al. 2010) in the 10th
DIMACS Implementation Challenge shows that this algorithm currently is the best
heuristic algorithm available with regard to speed and nearness to optimality. The
question is: Why?

The rest of this paper is an attempt to answer this question: In Sect.2 we first
introduce the RG algorithm with the CGGC scheme and we present some of the
performance results for this algorithm.

The RG algorithm with the CGGC scheme actually combines two different ideas:

1. The RG algorithm is a non-deterministic highly efficient gradient algorithm.
We relate the analysis of this algorithm to the analysis of randomized solvers
(Biere et al. 2009) of the generalized satisfiability (GSAT) problem in Sect. 3.

2. The CGGC-scheme combines k local optima (or almost local optima) to find
new start points for local optimization algorithms. We will use the basic idea of
Morse theory to explain that the CGGC-scheme heuristically selects points on
or near the Morse graph as restart points in Sect. 4. For an introduction to global
analysis and Morse theory, see Jongen et al. (2000).

2 Randomized Greedy Modularity Optimization with Core
Groups

2.1 The RG Algorithm

Figure 1 shows the pseudocode of the main subroutine of the RG algorithm. The
RG algorithm takes a graph G and a partition C as arguments. In this subsection,
we start the RG algorithm from a singleton partition: RG(G, C*"s*°") The RG
algorithm consists of four phases, namely the initialization of e and a for the
partition C (line 1), building of a dendrogram (line 2), extracting the partition
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RG(G, C)

Input: Undirected, connected graph G, partition C.

Output: Partition P.

Local: Join list JL, matrix of fractions e, vector a of rowsums of e, modularity Q, maximal
modularity maxQ at level optLev.

11 {i (e, a, Q) + RG Initialize(G, C);

21 (JL, optLev, maxQ) <— RG_BuildDendrogram(G, e, a, Q);

3] P <« RG_ExtractClusters(G, JL, optLev);

4] P+ RG_Refine(P);

5]  return P}

Fig. 1 Algorithm 1: RG — main subroutine

RG _Initialize(G, C)

Input: Undirected, connected graph G(V, E), partition C.

Output: Matrix of fractions e, vector a of rowsums of e, modularity Q.
Local: Vertices v, w; clusters C,, Cy; indices c, n.

Functions: sum(vector), rowsum(matrix, index) , diag(matrix).

[01] {y if (C == Csmsierony £, forall (v € V)

[02] {3 forall (neighbors w of v) {4 e[v,w] <~ 1/(2% | E |); }4

[03] a[v] < rowsum(e,v);}3

[041] Q — —sum(a®) ; }»

[05] else {s forall(clusters C. € C)

[06] {6 forall (neighboring clusters C, of C,)

[07] {7 x +— number of edges connecting vertices in C. with vertices in C,;
[08] ele,n] < x/(2¢ | E [); }1

[09] elc, c] + (number of edges in cluster C.)/ | E |;

[10] alc] < rowsum(e,c);}e

[11] Q = sum(diag(e) —a*); }5

[12] return (e,a,Q); }1

Fig. 2 Algorithm 2: RG_Initialize

with the highest modularity (line 3) and searching for a refinement by vertex swaps
(line 4). The RG algorithm returns the best partition found (line 5).

Phase 1. The pseudocode of the subroutine RG_Initialize(G,C ) for the initialization
of the weight matrix e and the vector of the rowsums a for a partition C of the
vertices of the graph G is shown in Fig. 2. Functions used are: sum(v) returns the
sum of the elements of the vector v, rowsum(e, i) returns the sum of the i-th row of
matrix e, and diag(e) returns the vector of the main diagonal of the matrix e.

1. Lines 1-3 build up e;; (definition 2) and a; (definition 3) for the partition C S™sleon
of singletons. In line 4, the modularity Q of the singleton partition is computed.

2. Lines 5-10 compute ¢;; and a; when the algorithm starts with an arbitrary, non-
singleton partition. For arbitrary partitions, e;, i # j are the fractions of edges
between clusters (computed in lines 5-8). ¢; > 0, if clusters ¢; and ¢; are
neighboring clusters. Neighboring clusters are clusters for which at least one
edge with one vertex in ¢; and and the second vertex in ¢; exists. e;; is the fraction
of edges in cluster i (computed in line 9). In line 11, we compute the modularity
Q of the partition. This part of the code is used in line 3 of the CGGC algorithm
shown in Fig. 7.
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Fig. 3 Join path of RG_BuildDendrogram

Phase 2. The subroutine RG_BuildDendrogram is a randomized hierarchical
agglomerative modularity clustering algorithm which when called with a singleton
partition C*"&"" a5 second argument starts with the n vertices of the graph as
singleton clusters (p = n) and applies the join operation until a single cluster
(p = 1) is reached. It constructs a complete dendrogram represented as a list of
joins. A sample join path of this algorithm is shown in Fig. 3. Repeated execution
of RG_BuildDendrogram produces different join paths.

The pseudocode of RG_BuildDendrogram is shown in Fig.4. Functions used
are: random(s) returns a random element of the set s, without(s, e) returns the set
s without the element e, length(v) returns the length of the vector v, append(v, e)
appends the element e to the end of vector v.

The subroutine join(i, j) performs the join operation of two clusters in the
form of an inplace update of e: e[i;] = e[i;] + e[j;] (sum of rows i and j) and
e[;i] = e[;i] + e[; j] (sum of columns i and j) and a: a[i] = a[i] + a[j] (line 7
of RG_BuildDendrogram). For efficiency reasons, this is implemented by a sparse
matrix package.

At the heart of RG_BuildDendrogram are two facts which are both exploited in
line 5:

1. Merging two unconnected clusters always results in a negative modularity
change. Thus the search is restricted to connected clusters.

2. Merging two clusters C; and C; changes the modularity of the clustering by
AQ(i, j) = ej+ej—2a;a; = 2(e;j—a;a;). This allows an efficient computation
of modularity.

However, the key innovation of this algorithm is the random selection of a cluster
combined with a limited search instead of the search for the steepest gradient
(line 4). Because only one or two communities are randomly selected (line 3),
the effects of this innovation are a dramatic gain in speed and a non-deterministic
behavior of the algorithm. Non-deterministic behavior means that the algorithm will
move to one of several different local optima (if there are more than one), but it
cannot be said from the outset to which one. RG_BuildDendrogram is not locally
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RG _BuildDendrogram(G, e, a, Q)
Input: Graph G, matrix of fractions e, vector a of rowsums of e, modularity Q.
Output: vector of join pairs JL, height of dendrogram optLev with maximal modularity maxQ.
Local: Number of clusters searched k; indices of clusters c1, ¢2; modularity change AQ, maxAQ;
join pairs next join; set of active indices active.
Functions: random(set), length(vector), append(vector, element), without(set, element).
Subroutines: join(join pair).
[011 {1 optLev < 0; maxQ < Q; active < {1,...,length(a)};
2] for (i=1to rank(e) — 1) {2 maxAQ < —os;
3] if (i < rank(e)/2) k< 1 else k < 2;
4] for (j = 1to k) {3 ¢l « random(active);
5] forall (clusters ¢2 linked to c1) {4 AQ < 2(e[cl,c2] — (a[cl] xa[c2]));
6] if (AQ > maxAQ) {s maxAQ < AQ; next join < (c1,¢2);}s}ta}s
7] join(next join); active < without (active,c2);
8] JL < append(JL,next join); Q < Q + maxAQ;
9] if (Q > maxQ) {6 maxQ <« Q; optLev < i; }¢ }2
0]

[0
[
[
[
[
[
[
[
[ return (JL, optLev, maxQ);

0
0
0
0
0
0
0
1

Fig. 4 Algorithm 3: RG_BuildDendrogram

RG_ExtractClusters(G, JL, optLev)

Input: Graph G = (V, E), vector join pairs JL, height of dendrogram opzLev with maximal
modularity.

Output: Partition P.

Local: vertices v, w, vector of sets clusters, set c.
(11 {iforallv eV {; clusters[v] < {v} }»

1 for(i=1tooptLev) {,

] (v,w) < JL[i]) {2

] clusters[v] < clusters[v]U clusters[w];
] clusters[w] < 0},

]

]

return P;}

Fig. 5 Algorithm 4: RG_ExtractClusters

join-optimal, because as implemented (lines 2 and 3 of RG_BuilDendrogram) the
neighbors of at most 1 or 2 clusters are explored.

The algorithm always executes the locally best join, even if the best join has
a negative AQ and thus leads to a decrease in modularity. However, changes in
modularity along a join path are highly irregular: In Fig. 12 only a single join (1, 2)
with an increase in modularity exists for the first join, some points (the partition
1 (2 3 4) with the second highest modularity) are not reachable on a join path
with increasing modularity, and, last but not least, the optimum can also be reached
by following a join path which starts with a decrease in modularity.
Phase 3. The extraction of the partition with the highest modularity Q (G, C) from
the dendrogram is implemented by the subroutine RG_ExtractClusters(joinlist). The
pseudocode for this subroutine is shown in Fig. 5.
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RG _Refine(C)
Input: Undirected, connected graph G, partition C.
Output: Partition C.
Local: Boolean flag change; modularity change AQ, maxAQ; clusters C., C,,, Cy; vertex v.
Function: moveA Q(vertex, from_cluster, to_cluster).
Subroutine: move(vertex, from_cluster, to_cluster).
[11 {1 change + true;
2]  while (change) {» change + false;
] forall v € V) {3
] C, «+ currentCluster(v);
] maxAQ « 0;
] forall (neighboring clusters C, of v) {4
] AQ < moveAQ(v,C.,Cy);
] if (AQ > maxAQ) {s maxAQ ¢~ AQ: C. ¢ Cy: }s}4
] if (maxAQ > 0) {¢ move(v,C,,C.); change < true; }¢}3}2
0

[

[3
[4
[5
[6
[7
[8
[9
[10] return (C); }

Fig. 6 Algorithm 5: RG_Refine

Phase 4. The local refinement of this partition by greedy single vertex moves
between clusters is implemented by the subroutine RG_Refine whose pseudocode
is shown in Fig. 6. In the inner loop (lines 6-8) this algorithm searches for the best
move of vertex v to a neighboring cluster. The change in modularity when moving
vertex v from one cluster to the other cluster is computed by the function moveA Q
(line 7). If the best move of vertex v leads to an improvement of the modularity
measure, the move is executed by the function move (line 9). Because the search for
the best change in a neighboring cluster is continued until no further improvement
is possible, we call RG_Refine locally 1-change optimal. And the RG-algorithm is
also locally 1-change optimal.

2.2 Core Groups and Core Group Partitions

The second idea of combining locally optimal or almost optimal partitions to
find new start points for the algorithm is implemented by the CGGCgg-algorithm
(see Fig.7).

The CGGCg¢ algorithm first uses the RG-algorithm (see Fig.1) to compute
a vector of z locally (1-change) optimal solutions (line 1). The subroutine
getCoreGroups (line 2) combines the partitions C 1 .., C%into anew partition
C "¢ (called core group partition) in the following way:

Vowe Vi (N cci(v) = cci(w) & ccan(v) = ccan (w) (5)

i=1
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CGGCrg(G)

Input: Graph G, number of partitions for core group generation z.

Output: Partition C?¢ .

Local: Vector of z partitions C, core group partition C<°™¢, singleton partition C*™8leon,
(11 {1 for (i=1to2) {2 C[i] + RG(G, Csmsletony; 1,

[2] € « getCoreGroups(C);

[3] Cbest — RG(G, C(?OV{’); }1

Fig. 7 Algorithm 6: CGGCgg

Partition 1

(
T
U | D Partition 2
1
1

]

1
I
s
1 1
1 1 Partition 3
( . . D artition

Fig. 8 Example how core groups are extracted from several clusterings

A cluster of a core group partition is called a core group, because all members of
a core group are grouped together in the same cluster in each of the z locally optimal
partitions from which the core group partition is generated (Eq. 5).

The partition C " is the maximum overlap of a set (an ensemble) of partitions
and it serves as a restart point for the randomized greedy algorithm (line 3
of CGGCpgg). Figure 8 illustrates this operation for three partitions. However,
in Ovelgonne and Geyer-Schulz (2012b), CGGCg¢ shown in Fig.7 is generalized
to an ensemble learning scheme working with arbitrary weak learning algorithms
and with an iteration of the core group generation phase. The performance of this
algorithm crucially depends on z, the number of partitions used in building core
groups. In the 10th DIMACS implementation challenge, this parameter was set to
z =In | V | based on a preliminary analysis of the dependence of the algorithm’s
performance on this parameter for a small sample of data sets.

Table 1 shows references w.r.t. test data sets used in the experiments whose
results are shown in Table 2. The CGGC scheme and its iterated application
combined with the RG algorithm as base and final learner (denoted as CGGCgg
respectively CGGCigg) lead to a further improvement in solution quality. For
comparison purposes, results of the variable neighborhood search (VNS) algorithm
(Aloise et al. 2012) have been included. This algorithm achieved the 2nd best results
(after the CGGCigg algorithm) in the modularity optimization challenge of the
10th DIMACS Implementation Challenge. For small networks, an algorithm with
extensive local search like VNS can find competitive or even better results than
the CGGCigg algorithm. The main reason for this is that RG_BuildDendrogram is
not locally join-optimal. However, for larger networks the local search approach
provides inferior results.
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Table 1 Test datasets. A selection of networks from the testbed of the 10th DIMACS implemen-
tation challenge available at http://www.cc.gatech.edu/dimacs10/downloads.shtml

Name Vertices Edges Reference

adjnoun 112 425 Newman (2006)
celegans_metabolic 453 2,025 Duch and Arenas (2005)
Email 1,133 10,902 Guimera et al. (2003)
polblogs 1,490 16,715 Adamic and Glance (2005)
netscience 1,589 2,742 Newman (2006)

power 4,941 6,594 Watts and Strogatz (1998)
hep-th 8,361 15,751 Newman (2001)
PGPgiantcompo 10,680 24,316 Boguiii et al. (2004)
astro-ph 16,706 121,251 Newman (2001)
cond-mat 16,726 47,594 Newman (2001)
coAuthorsCiteseer 22,732 814,134 Geisberger et al. (2008)
cond-mat-2003 31,163 120,029 Duch and Arenas (2005)
citationCiteseer 268,495 1,156,647 Geisberger et al. (2008)
coAuthorsDBLP 299,067 977,676 Geisberger et al. (2008)
coPapersCiteseer 434,102 16,036,720 Geisberger et al. (2008)
coPapersDBLP 540,486 15,245,729 Geisberger et al. (2008)
eu-2005 862,664 16,138,468 Boldi et al. (2011)
in-2004 1,382,908 13,591,473 Boldi et al. (2011)

Table 2 Comparison of the average and best modularity identified by the algorithms RG,
CGGCgs, CGGCigg and VNS. Results are compiled from Ovelgonne and Geyer-Schulz (2012b)
and Aloise et al. (2012). The best value is typeset in bold

Average modularity obtained

Best modularity obtained

RG CGGC CGGC VNS RG CGGC CGGC VNS
RG irG RG iRG
adjnoun 0.2925 0.3061 0.3062 0.3134 0.3072 0.3111 0.3119 0.3134
celegans_metabolic  0.4367 0.4502 0.4502 0.4532 0.4485 0.4528 0.4523 0.4532
Email 0.5712 0.5799 0.5801 0.5826 0.5787 0.5821 0.5826 0.5828
polblogs 0.4258 0.4268 0.4268 0.4271 0.4260 0.4271 0.4271 0.4271
netscience 0.9404 0.9598 0.9597 0.9599 0.9499 0.9599 0.9599 0.9599
power 0.9282 0.9396 0.9397 0.9408 0.9333 0.9404 0.9404 0.9409
hep-th 0.8340 0.8558 0.8557 0.8576 0.8425 0.8565 0.8566 0.8577
PGPgiantcompo 0.8644 0.8862 0.8862 0.8860 0.8746 0.8866 0.8865 0.8860
astro-ph 0.6970 0.7428 0.7428 0.7446 0.7148 0.7442 0.7444 0.7449
cond-mat 0.8298 0.8524 0.8524 0.8532 0.8368 0.8531 0.8530 0.8534
coAuthorsCiteseer  0.8951 0.9051 0.9051 0.8330 0.8963 0.9053 0.9052 0.8336
cond-mat-2003 0.7571 0.7775 0.7776 0.7764 0.7618 0.7786 0.7786 0.7767
citationCiteseer 0.8086 0.8233 0.8234 0.8203 0.8119 0.8239 0.8241 0.8207
coAuthorsDBLP 0.8208 0.8373 0.8406 0.8330 0.8222 0.8382 0.8411 0.8336
coPapersCiteseer 0.9163 0.9217 0.9222 0.9204 09175 0.9221 0.9225 0.9205
coPapersDBLP 0.8538 0.8647 0.8666 0.8610 0.8556 0.8653 0.8668 0.8615
eu-2005 0.9390 0.9411 0.9411 0.9411 0.9403 0.9416 0.9416 0.9414
in-2004 0.9776 0.9783 0.9806 0.9805 0.9785 0.9795 0.9806 0.9805
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GSAT(F, MAX _FLIPS, MAX _TRIES)

Input: CNF formula F'; Parameters: MAX _F LIPS, MAX _TRIES: Integer
Output: A satisfying assignment p for F or FAIL

11 {ifor(i=1to MAX_TRIES) {»

2] p < arandomly assigned truth assignment for F;

3] for (j = 1 to MAX _FLIPS) {3

4] if (p satisfies F) {4 return(p);}4

5] v <— a variable flipping which results in the greatest decrease (possibly negative)
6] in the number of unsatisfied clauses;

7]

8]

Flipvin p; }3}2

[
[
[
[
[
[
[
[ return(FAIL); }

Fig. 9 Algorithm 7: GSAT

3 Randomized SAT Solvers and the RG Algorithm: Local
Search

In this section we introduce the GSAT and the WALKSAT algorithms as the most
prominent members of the family of incomplete randomized SAT solvers and
compare these algorithms with the RG algorithm. We introduce discrete Lagrangian
methods, because they offer a common formal framework for the analysis of
incomplete SAT solvers. In the rest of this section we will borrow parts of this
framework for the analysis of the RG algorithm.

The satisfiability problem is formulated as follows: F is an n-variable
conjunctive normal form (CNF) formula with clauses Ci,Cs,...,C,. For the
satisfiability problem of the propositional formula F, the discrete manifold
(its solution landscape) is defined as {0, 1}" x {0, 1,...,m} where the first term
in the Cartesian product denotes a truth assignment (the point x in {0, 1}") to the n
variables and the second term {0, 1, ...,m} the number of clause violations of the
point x for F. A truth assignment with zero violated clauses is a global minimum
in the discrete manifold and a solution of the satisfiability problem.

Both GSAT and WALKSAT algorithms have the property that despite the
NP-completeness of the GSAT problem, they often solve GSAT problems very fast.
This discovery was published as early as 1979 by Goldberg and this property of
the satisfiability problem led to a massive research effort in theoretical computer
science, discrete mathematics, and theoretical physics (Biere et al. 2009). For
a survey on incomplete SAT-solvers like the GSAT and WALKSAT algorithms,
see Kautz et al. (2009).

Figure 9 shows the pseudocode of the GSAT algorithm. The GSAT algorithm
starts its search from a random initial truth-assignment (line 2) by flipping the
truth value of the variable which leads to the largest reduction in the number
of clause violations (inner loop, lines 3-7). The GSAT algorithm is a discrete
deterministic gradient method with repeated runs from a random restart point (outer
loop, lines 1-7). The GSAT algorithm can solve GSAT problems which are one
order of magnitude larger than those solved by complete algorithms (e.g. resolution
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WALKSAT (F, MAX_FLIPS, MAX _TRIES, p)

Input: CNF formula F'; Parameters: MAX _F LIPS, MAX _TRIES: Integer; noise p € [0, 1]
Output: A satisfying assignment p for F or FAIL

(11 {ifor (i=1to MAX _TRIES) {,

[2] p < arandomly assigned truth assignment for F;

[3] for (j = 1 to MAX_FLIPS) {3

[4] if (p satisfies F) {4 return(p) }4

[5] C < an unsatisfied clause of F chosen at random;

[6] if (3 variable x € C with break_count = 0) {s Free move: v < x; }5

[71] else {6 Metropolis move: With p: v <— a variable € C chosen at random;

[8] Greedy move: With 1 — p: v <— a variable € C with the smallest break,count;}g
[9] Flipvinp; }3}2

[10] return(FAIL); };

Fig. 10 Algorithm 8: WALKSAT

or backtrack algorithms). The main disadvantage of GSAT is its inability to detect
infeasible problems.

The WALKSAT algorithm whose pseudocode is shown in Fig. 10 interleaves the
greedy moves of GSAT — flipping a variable in the clause which minimizes the
number of currently satisfied clauses that become unsatisfied (the break-count) —
with random walk moves from a Metropolis search, it focuses its search by always
selecting the variable to flip from an unsatisfied clause C chosen at random. The
Metropolis moves of the WALKSAT algorithm imply that the WALKSAT algorithm
can — with a positive probability — pass through valleys in the search space and, when
combined with an optimal cooling schedule (Hajek 1988), find a global optimum
asymptotically. The WALKSAT algorithm is similar to the RG algorithm in its
random selection of a local neighborhood (the variables in an unsatisfied clause).

Next, we present discrete Lagrangian methods for the SAT problem. For x as
defined above, U;(x) is a function that is 0 if C; is satisfied, and 1 otherwise.
U(x) denotes the m-dimensional vector of clause violations. The SAT problem in its
constrained formulation is min, N(x) = Y/, U;(x) subjectto U;(x) =0 Vi €

{1,2,...,m}. We obtain an unconstrained optimization problem by the discrete
Lagrangian function (Shang and Wah 1998): Ly (x,A) = N(x) + > i—, A Ui(x)
with A = (A1,42,...4,) € R™. The first term of the Lagrangian function

is the total number of constraint violations, the second term the sum of the
weighted violations in non-satisfied clauses. The redundancy of this formulation
is its main strength, because the Lagrangian multipliers A; (one for each constraint)
introduce a clause weighting scheme by introducing penalties to violated clauses.
For the SAT problem, all local minima are also global minima and, therefore, the
discrete Lagrangian methods can find the global optimum. However, for modularity
maximization this property does not hold.

Discrete Lagrangian algorithms for the SAT problem rely on finding a saddle
point. A point (x*,1*) € {0,1}" x R™ is a saddle point of Ly (x, A) if it is a local
minimum with regard to x* and a local maximum with regard to A*. Formally,
(x*,A*) is a saddle point for Ly (x,A) if Ly(x*, 1) < Lg(x*,A*) < Ly(x,A*) for
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Fig. 11 Joins as graph rewriting

A sufficiently close to A* and for all x that differ from x* in only one dimension.
x* is a local minimum for the constrained SAT problem defined above, if there
exists a A* so that (x*, A*) is a saddle point of L, (x, A). For a proof, see Shang and
Wah (1998, pp. 69-70).

A gradient algorithm for the SAT problem finds such saddle points by doing
descents in x and ascents in A. However, to implement such an algorithm, we
have to construct a discrete difference gradient: The neighborhood N(x) of x
contains x and all points y one variable flip away: y = x 4 v with v the direction

1 ifx; =0 and
—lifx; =1

with 4 denoting the element-wise addition of vectors. The discrete difference
gradient Vga7(x) is defined for x and all y in N(x) as the vector Vgar(x,y) =
Lg(x,A) — Ly(y,A). The discrete difference gradient is the vector of changes of
the Lagrangian function for the current A. The gradient algorithm now follows
the direction vector v (moves to the neighbor) which minimizes L;(y, ) for all
y € N(x), ties are broken arbitrarily.

The gradient algorithm updates x € {0,1}" and A € R™ until a saddle point
(fixed point) is reached (this means that x (k+1) = x(k) and A(k+1) = A(k) hold)
by the following update rules x (k+1) = x(k)+vand A(k+1) = A(k)+c-U(x(k))
where ¢ is a parameter which controls the speed of the increase of the weights of
the Lagrangian multipliers over iterations.

In the following, we adapt two concepts of discrete Lagrangian methods for the
SAT problem to modularity optimization: The definition of the discrete manifold
and the construction of the discrete difference gradient. Since Q (G, C) € [-0.5, 1],
the discrete manifold for modularity maximization is £2 x [—0.5, 1].

Figure 11 shows an intermediate partition of a graph clustering problem: each
node represents a cluster labelled with the number of edges within the cluster,
the edges are weighted with the number of edges between the clusters. Figure 11
visualizes the join operations as a graph rewriting operation which substitutes
clusters i and j with a new node and the edge set which results from the graph
substitution and a proper update of the numbers of edges within and between
clusters.

Let C?~! = join(C?,i, j) = join(CP?,j,i) be the commutative operation of
joining the two clusters C; and C; of C?. The change in modularity from such a
joinis AQ(C?,i, j) = e + ejj —2a;a; = 2(e;; —a;a;). Note, that AQ(C?,1i, j)
depends on the partition C? at which it is evaluated. The path-dependence leads

vector in {—1,0,1}" with at most one non-zero entry v; =
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Fig. 12 Path space for graph G (with modularity Q)

to an unbalanced cluster growth (see Ovelgonne and Geyer-Schulz 2012a). From
a partition C?, a join can generate at most p(p — 1)/2 new partitions with p — 1
clusters.

Hierarchical agglomerative modularity clustering algorithms start with the n
vertices of the graph as singleton clusters (p = n) and apply the join operation
until a single cluster (p = 1) is reached. The sequence of n — 1 join operations is
called a path of the algorithm which consists of n partitions. The path space is the set
of all possible paths of the algorithm. The path space structure induced by the join
operation defined above adds a lattice structure to §2. All paths leading to the same
partition are equivalent with regard to modularity, because Q(C?~') = Q(C?) +
AQ(CP?,i, j) holds. For example (for G and the path space shown in Fig. 12),
0(G,(123)4) = 0(G,1234)+ AQ(1234,1,2) + AQ((12)34,(12),3) =
0(G,1234) + AQ(1234,1,3) + AQ((13)34,(13),2) = Q(G,1234) +
AQ(1234,2,3)+ A0(1(23)4,(23),1).

Figure 12 shows the path space for a graph G. Because of the observation that the
join of two unconnected (by a direct link) vertices (or communities) decreases the
modularity, we can discard all joins (dotted arcs in Fig. 12) between unconnected
graph components (in italics in Fig. 12). In addition, note that as the examples
from Fig. 12 show, paths with a local decrease may still reach the globally optimal
solution (Q(—12/64,1 2 3 4), Q(—14/64,1 2 (3 4)), Q( 0, (1 2) (3 4))) or may be
the only way to reach a partition (e.g. by Q(—12/64, 12 3 4), Q(—14/64,1 2 (3 4)),
Q(—-2/64,1 (23 4))).

The discrete (join) gradient of a partition C? is Vj,,,(C¥). It is the vector
of the modularity changes AQ(C?,i,j) of all possible joins join(C?,i, j)
at C?. The modularity of the join neighborhood Nj,,,(C?) (a vector with
p(p — 1)/2 components) is given by Q(Njein(C?)) = Q(G.C)1 + Vjoin(C?)
with 1 a vector of ones of appropriate length. The discrete gradient at a
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partition C? is V(CP) and it is the vector whose elements are given by
0(G,(C”Y) — 0(G,CP) for all C¥ € N(C?) where N(C?) contains all
partitions connected to C? in the path space by one join operation (all
predecessor and successor partitions). C” is an isolated local maximum,
if V(C?) < 0, and an isolated local minimum, if V(C?) > 0. The greedy update
rule of Newman (2004) requires that the join which locally maximizes modularity
should be selected (ties are broken arbitrarily). For C? this requires a computation
of all p(p—1)/2 elements of Vj;,,(C?) and a search for the maximum. The selected
join (and the corresponding graph contraction) follow the steepest gradient direction
(greatest increase or smallest decrease). This corresponds exactly to the inner loop
(lines 3-7) of the GSAT algorithm shown in Fig.9. The algorithm of Newman
(2004) is locally join optimal and, if no ties are present, deterministic. In contrast to
the GSAT algorithm, no restarts of the algorithm at a random partition are possible,
and as a consequence, the algorithm of Newman (2004) can not escape local optima.

The (basic) randomized greedy update rule requires that one cluster of the
partition is randomly chosen and that only the joins of this cluster with all
other clusters are considered for contraction by a join. For C? this requires the
computation of at most p — 1 elements of V,;,(C?). The randomized greedy update
rule always selects one join partner randomly and then searches the best cluster
to join with this partner. This corresponds exactly to the random selection of an
unsatisfied clause in line 5 of the WALKSAT algorithm shown in Fig. 10. The
analysis of the WALKSAT algorithm has shown that this randomization combined
with the Metropolis step is essential for the excellent scalability and performance of
the WALKSAT algorithm (Biere et al. 2009, p. 188). Because of its post-processing
(RG_Refine), it is a non-deterministic locally 1-change optimal update rule.

We get a family of randomized greedy update rules (see RG_BuildDendrogram
algorithm shown in Fig. 4) by adapting the scope of the search by randomly selecting
k out of p—1 join partners. Both update rules described above belong to this family.

The main advantages of the randomized greedy update rule are: First, a lower
computational complexity (O(n) vs. O(n?) with n =| V |), second, a random
exploration of local modularity optima, and third, a more balanced cluster growth.

4 From Local to Global Optima: Morse Theory and Core
Groups

But how do we move from a local optimum towards a global optimum? The RG
algorithm is a non-deterministic local hill-climber. Therefore, the first answer is
that by repeated execution of the RG algorithm a sample of local optima can be
drawn — all that can be reached from the start partition. Second, for an infinite
number of restarts from a randomly selected partition the algorithm reaches the
global optimum with a probability of 1. For a discussion of this idea in the context of
genetic algorithms see Geyer-Schulz (1992). Another classic is the combination of
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Fig. 13 The graph of a B*
nonlinear function with 2
maxima and 1 saddle  S— L3
point in R? l \ /\ L?;

(see Jongen et al. 2000, p. 15)
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the gradient step with Metropolis moves controlled by an annealing heuristic. With
a very slow annealing heuristic, convergence of the algorithm to a global optimum
is guaranteed (Hajek 1988). All of these approaches lead to algorithms which have
been shown not to scale very well for modularity clustering.

In Ovelgonne and Geyer-Schulz (2010), Michael Ovelgonne introduced the idea
of combining a set of locally optimal partitions to a core group partition as a way
to find restart points for the RG algorithm. This idea has been implemented for
an ensemble learning algorithm in Ovelgonne and Geyer-Schulz (2012b) and it is
responsible for the increase in optimization quality necessary to win the DIMACS
quality challenge. A first interpretation of core group partitions as saddle points
in the partition lattice is presented in Ovelgonne and Geyer-Schulz (2013). In the
following, we give an extended, but still informal explanation of core groups as
high-dimensional saddle points in the partition lattice 2.

For this purpose, we consider the topology of the global search space with the
help of Morse theory, the study of the behavior of lower level sets of functions as
the level varies (Jongen et al. 2000). M is an open subset of R”, and f(M) — R a
function from M to R. By C¥(M, R) we denote the space of k-times continuously
differentiable functions on M and C*°(M, R) = NgenC k (M, R), where N =
{0,1,2,...}. Let f be a function with n variables with f € C%(R",R), f
nondegenerate, and f(x) = > /_, x? for || x [|[< 1 (Jongen et al. 2000, p. 9).
The lower level sets of f are then defined as f* = {x € R" | f(x) < «} for all
levels @ € R (Jongen et al. 2000, p. 14). Whenever the level passes a stationary or
Karush-Kuhn-Tucker point (that is a local minimum, local maximum, or a saddle
point) the topology of the lower level set changes.

When we move from level L6 to level L4 in Fig. 13, then from level L6 to level
L5 the lower level set is continuously deformed. At level L5 we find the saddle
point, the lower level set breaks in two components linked by the saddle point
(the topological change). And from L5 to L4 the two components are continuously
deformed. A gradient algorithm starting from a point in A runs to A*, and from
a point in B to B*. The topologically separate components indicate the basins
of attraction A and B for the gradient algorithm. A non-deterministic gradient
algorithm starting from the saddle point will climb either to A* or to B*. Saddle
points are thus the points where the paths of gradient algorithms to local optima
split.

In 2 dimensions, the analysis of the topological structure of the nonlinear space
becomes more complex, as the level set for a bounded nonlinear function with
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Fig. 14 Level sets of a nonlinear function f in R? (see Jongen et al. 2000, p. 10). The broken
arrows indicate the trajectories from local minima to the saddle points (the broken arrow from the
local minimum in D to a saddle point). The full arrows the trajectories to the local maxima A™,
B*, C*,and D* (rough sketch). We call this graph a Morse graph. The dotted arrows separate the
(open) basins of attraction A, B, C, and D (and are not part of the Morse graph)

four local maxima, four saddle points, and one local minimum shows (see Fig. 14).
However, when we look at the trajectories leading from a saddle point to a local
maximum in Fig. 14, at saddle points, the basins of attraction for gradient algorithms
are glued together. At saddle points, the paths to local maxima split. A Morse graph
is the graph that connects all critical points of a nonlinear function. For example,
in Fig. 14 the Morse graph (broken and full arrows) connects all critical points of
the nonlinear function shown.

If the number of local maxima of a nonlinear function within a given region
(indicated in Fig. 14 as dotted box) is known and finite (say k), we can in principle
find the global optimum by sampling: We start a local gradient algorithm from
a randomly chosen point, until we have found k local maxima. The largest local
maximum is the global maximum (this is not necessarily unique). Sampling works
best, if the areas of the basins of attraction of each local maximum are of equal
size. However, even in this setting, sampling will be problematic, if the area of the
basin of attraction of a local maximum is O or near 0. However, in general (without
knowing the number of local maxima), this approach will not work as a counter
example by Hassler Whitney shows.

Figure 15 shows three situations in which a local minimum or a saddlepoint
is a promising start point for a randomized gradient method: The local minimum
in the “smooth volcano” situation (Fig. 15a) is a start point from which infinitely
many local maxima can be reached. In the “rugged volcano” situation (Fig. 15b),
a possibly large, but finite set of local maxima can be reached. The “rugged
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a b

Fig. 15 A smooth volcano (a), a rugged volcano (b), and a rugged mountain saddle (c) together
with their Morse graphs

mountain saddle” (Fig. 15¢) characterizes a saddle point as a promising start point
for the RG algorithm shown in Fig.1. In all Morse graphs shown in Fig. 15,
saddle points split the paths to local maxima. The last two situations in which
many local maxima are reachable from a single starting point are characteristic
of modularity maximization for most graphs too, because this is a consequence
of the large number of graph automorphisms present in many real-life networks
(e.g. VLSI circuits, the roadnetworks of Florida and California, the North-American
Internet backbone graph) (Sakallah 2009, p. 309). As an illustration of a graph
automorphism, consider graph G shown in Fig. 12: The two partitions 1 (2 3) 4 and
1 (2 4) 3 have the same modularity, because the clusters (2 3) and (2 4) are the two
isomorphic 2-element subgraphs of the cyclic subgraph G| of G with the vertices 2,
3, and 4. We leave it to the reader to discover the other graph automorphisms present
inG.

Finally, we observe that when we have a sample of 2 or more local maxima,
promising starting points are the local minima or saddle points of the minimal
spanning tree which connects the sample points.

We can embed the path space of a modularity maximization problem defined in
the previous section and shown in Fig. 12 into an appropriate C*° space in such
a way that the critical points in path space (local maxima, local minima, and the
saddle points) are preserved in the continuous space. This embedding establishes a
homotopy equivalence between the path-space of modularity maximization and a
C*° space which preserves the connectedness structure of the critical points on the
Morse graph.

In this setting, core group partitions are saddle points:

A core group partition is by its very construction (see Eq.5) a partition from
which all local optima from which it has been generated are reachable by possibly
repeatedly applying the join operation of an agglomerative hierarchical clustering
algorithm. Because of the join lattice structure of the path space (e.g. for G shown
in Fig. 12 and the join operation of the RG algorithm) which is a sublattice of the
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complete path space (e.g. for G shown in Fig.3), a core group partition always
exists. The level of the core group partition (defined as the number of joins needed
to construct it) will always be strictly lower than the lowest level of the maxima it is
generated from.

A core group partition corresponds to a saddle point: In the path space of G
the core group partition is a branching point, where the join-paths of a gradient
algorithm leading to the k local maxima it has been generated from diverge.
The core group partition clearly can be reached from the singleton partition (the
infimum) of the path-space lattice by a sequence of join operations of a gradient
algorithm.

Because a core group partition is a saddle point, it is a good restart point for a RG
algorithm, if it contains join-paths to more local optima than it has been generated
from. Empirically, setting the number of local maxima to k = In(n) where n is the
number of vertices has worked quite well (see Ovelgonne and Geyer-Schulz 2012b).

To summarize:

* The operation of forming core group partitions from sets of locally maximal
(or almost maximal) partitions identifies (some) saddle points (critical points) on
the lattice of partitions.

* Core group partitions help in exploring the Morse graph of critical points.

* Core group partitions are good points for restarting RG algorithms, because a
core group partition is a branching point in the search space where different
basins of attraction meet.

S Summary and Further Research

In this paper we have analyzed the RG algorithm with the CGGC-scheme and
we describe an analogy between the discrete problem of modularity optimization
and nonlinear optimization in finite dimensions. We have shown that core group
partitions are the discrete counter-parts of saddle-points and that they constitute
good restart points for the RG-algorithm.

The behavior of the RG-algorithm mimics the idea to extract the minimal
spanning tree of the Morse graph in continuous space. However, what remains
to be done, is to construct an algorithm which allows a systematic exploration
of the Morse graph of the modularity maximization problem and thus guarantees
finding the global maximum of the modularity optimization problem. In addition,
in this paper we have not exploited any properties of the automorphism group of the
underlying graph.
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Comparison of Two Distribution Valued
Dissimilarities and Its Application
for Symbolic Clustering

Yusuke Matsui, Yuriko Komiya, Hiroyuki Minami, and Masahiro Mizuta

Abstract There are increasing requirements for analysing very large and complex
datasets derived from recent super-high cost performance computer devices and
its application software. We need to aggregate and then analyze those datasets.
Symbolic Data Analysis (SDA) was proposed by E. Diday in 1980s (Billard L,
Diday E (2007) Symboic data analysis. Wiley, Chichester), mainly targeted for large
scale complex datasets. There are many researches of SDA with interval-valued data
and histogram-valued data. On the other hand, recently, distribution-valued data is
becoming more important, (e.g. Diday E, Vrac M (2005) Mixture decomposition of
distributions by copulas in the symbolic data analysis framework, vol 147. Elsevier
Science Publishers B. V., Amsterdam, pp 27-41; Mizuta M, Minami H (2012)
Analysis of distribution valued dissimilarity data. In: Gaul WA, Geyer-Schulz A,
Schmidt-Thieme L, Kunze J (eds) Challenges at the interface of data analysis,
computer science, and optimization. Studies in classification, data analysis, and
knowledge organization. Springer, Berlin/Heidelberg, pp 23-28). In this paper, we
focus on distribution-valued dissimilarity data and hierarchical cluster analysis.
Cluster analysis plays a key role in data mining, knowledge discovery, and also in
SDA. Conventional inputs of cluster analysis are real-valued data, but in some cases,
e.g., in cases of data aggregation, the inputs may be stochastic over ranges, i.e.,
distribution-valued dissimilarities. For hierarchical cluster analysis, an order relation
of dissimilarity is necessary, i.e., dissimilarities need to satisfy the properties of
an ultrametric. However, distribution-valued dissimilarity does not have a natural
order relation. Therefore we develop a method for investigating order relation of
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distribution-valued dissimilarity. We also apply the ordering relation to hierarchical
symbolic clustering. Finally, we demonstrate the use of our order relation for finding
a hierarchical cluster of Japanese Internet sites according to Internet traffic data.

1 Introduction

Recent abundant computer resources make it easy to collect data of large scale and
complex structure like Bigdata. This dramatic fall of the cost performance ratio
of computing brings us more possibilities of discovering new knowledge, but at
the same time we are facing a lot of problems of how to analyze such large scale
complex datasets. We need methods reducing scale and complexity but keeping
information quantity and quality in balance and using as much of the information as
possible in our analysis.

1.1 Symbolic Data Analysis

Symbolic Data Analysis (SDA) has been proposed by E. Diday in 1980s (Billard
and Diday 2007). In conventional multivariate data analysis, a n X p data matrix is
represented as n points in p dimensions. On the other hand, in SDA, we often use
interval-valued data. In this case, the data can be represented as m (< n) hyperrect-
angles (called symbolic objects) in p dimensions. Points are uniformly distributed
within each hyperrectangles. Then symbolic object has internal variations.

A symbolic object is also said to be a second-level object, i.e., category,
class, or concept. For instance, the dog indicates just one observation (i.e., first-
level object), but if we are interested in a dog in a sense of one species, it is a
second-level object and a dog may include a huge number of dogs. In SDA, we use
descriptions for objects.

We can consider many possible data descriptions for symbolic objects,
e.g., interval values, modal interval values, and distribution values. Interval value
is as [10, 30], modal-interval value is as {[10, 20); 0.3, [20, 30); 0.7}. At the same
time, however, there is a need to develop methods for expanding the treatment of
conventional real values into symbolic treatments, and it is also a need for extension
of the multivariate analysis to be suitable with in SDA. For instances, principal
component analysis, multidimensional scaling(MDS) and cluster analysis etc. has
been developed for interval-valued data.

1.2 Distribution-Valued Data

In this paper, we are interested in distribution-valued data. The distribution-valued
representation is a powerful description for large, complex datasets. Interval values
can be an efficient description for large complex data, but this description assumes to
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take values uniformly over the interval range, so that there is a loss w.r.t. information
from the original data. Distribution-valued data is a generalization of interval-valued
data in the sense that distribution-valued data can represent arbitrary distributions
of values. The recent advances in SDA are concerned with distribution-valued data
(e.g. (Diday and Vrac 2005), (Mizuta and Minami 2012) etc.).

1.3 Dissimilarity Data Represented by Distribution-Values

We focus on dissimilarities given by the distribution-values. Dissimilarity data often
rises as input data in the context of MDS and cluster analysis. Generally, when we
use measured dissimilarity data, we presume error, so that we take average on the
data to use dissimilarity. However, since the dispersion is not always error, it is also
natural to consider to use the all values for analysis. We regard observations from
trials as distribution-valued data, and analyze them directly.

2 Hierarchical Cluster Analysis for Distribution-Valued
Dissimilarities Data

In this section, we propose the new method of hierarchical cluster analysis for
distribution-valued dissimilarity data. The targeted data of SDA is concepts instead
of individuals in conventional multivariate analysis. We assume that there are n
concepts, and input data is distribution-valued dissimilarity. At first we give a quick
review of conventional hierarchical cluster analysis.

Hierarchical cluster analysis is represented mathematically as n-tree as nested
tree structure model. Let C be an arbitrary set to be clustered and {¢} be empty set.
Then n — tree is a set  of subsets on C satisfying: C € 7; ¢ ¢ 7; {i} € 7 for every
ieC;and AN B € {¢, A, B} for all A, B € t (McMorris and Neumann 1983;
Gordon 1985, 1987) etc.

A dendrogram is an n-tree with the additional property that height / is associated
with each subset, satisfying the condition A N B # ¢,h(A) < h(B) & A C B
for subsets A, B € 7. A necessary and sufficient condition for a dendrogram is the
following;

h({i. j}) = minth({j.k}),h({i.k})} Vi, j.k € C.

This condition is called the ultra metric condition. An ultrametric condition
requires, in other words, that sets of dissimilarities must have (weak) order relations.
This point is one of the main themes in this paper. In general, distribution-valued
dissimilarities don’t have a natural order like real values. The next following
sections, we give the a new method for ordering distribution values.
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2.1 Comparison of Two Distributions and Ordering
Distributions

We start with considering how to compare two distribution values, i.e., which
distribution value is larger, otherwise they are equivalent. Maybe the first idea for
this question is using mean values of each distribution — compare the mean values
and reflect their order relation. This method (say, mean method in this paper) is
simple, but there is much loss of information from the original data. In the following
sections, we develop the method to compare two distributions which includes more
information and respects, e.g., variations and asymmetry. After that we extend the
method to establish an order relations among dissimilarities.

2.1.1 Related Work

Stochastic dominance is one of notable works on comparing distributions, where
first-order dominance and second-order dominance are defined (Levy 2006). First-
order dominance is defined by the rule X > Y < F(t) < G(t) for all ¢, where
X, Y are random variable and F(t) = Pr(X < ¢), G(t) = Pr(Y < t). Second-
order dominance is defined by the rule of X > Y & f_“oo F(t)dt < f_“oo G(t)dt for
all u. Necessary condition of first-order dominance and second-order dominance is
E(X)>=E().

Thus stochastic dominance is comparing random variables through comparison
of distribution functions and its integral values pointwise. Our distribution-valued
data approach is to directly compare random variables, i.e., using the value of
Pr(X < Y), based on comparison of observations. Besides, our approach does
not necessarily need the condition E(X) > E(Y) even when X is larger than Y.
We give basic definitions in the next section.

2.1.2 Definitions and New Methods
Definition by Probability

We put §; as dissimilarity with distribution values between concept i and j,
where S; = Sj;. Note that S is a distribution value. s;; is a random variable of
distribution S;;. Now we focus on the concepts i, j, k, and /, i.e. dissimilarities S
and Sy;. We define

Pr(sij > su) = Piju. (D

If S;; is analytical, we can calculate Pjx as follows.

/

S5
PI'(S,:,' > Skl) = PI'(S,'j — Skl > 0) = Pr(s;j.kl > 0) = / ' Sii * S]dds/ (2)
' 0
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where s;; — sy = sj;;; and ‘x’ means convolution. Here we define the rule for
comparison of two distributions.

o)
Definition 1 (Comparison of two distributions). A comparison operator T for
{S;j} is defined as

oo 1
Sij (>) Skl iff Pij,kl > E (3)

In general, a transitive relation among the distributions does not hold. Then we
introduce the value taking summation overk, [, i.e., P;j.. = + Z,iv =1 Pij- We can
interpret P;;.. as probability that Sj; is larger than any other dissimilarity. Based on

(00)?

) (o) , .
the comparison operator >, i.e., P;.. , we define comparison operator > .
Definition 2 (Order relation among distributions). Another comparison

operator (O;) for {S;;} is defined as

00)? 1
Sy 'Y Sy iff Py. > 5 )

Definition by Sample Sets

The previous definitions work, if the probability distributions Sj; is known. However,
in practical situations, we cannot get distribution functions but sample only. Then,
we propose definitions for sample: Definitions 3 and 4. At first, we begin with the
approximated method for comparison of two distributions. The basic algorithm of
the comparison method is as follows.

. Set initializing; set the number of trials M ; set m < O.

. Trial: Sample randomly with replacement from each distribution.

. Compare the two values from the trial.

. Give one point to the distribution with larger value, 0.5 point to that with equal
value, otherwise zero. m <— m + 1.

. Repeat from 2 to 4 untilm = M.

6. Count all points of each distribution, the larger one is output.

AW N =

W

Basic idea of this algorithm is like this: If we observe every trial that which of
the sample value is larger or smaller, then counting these results (points), we can
empirically guess which of distribution-value is larger or smaller.

We formulate the algorithm above. We put observations of random variables
Sij, Sy as s;,s,’fl. Then we define the sequence of numbers Xi[j,kl;l =1,2,---,M
as follows.
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1 LGf si>sp)
Xl =11 Gr st=st) . 5)
0 (otherwise)

Pj; 1y is empirically estimated as

1 M
* i
ij.kl — M 2 :Xij,kl'
=1

We replace Pjj; on Pij’.’fkl in Definition 1, then we can define a rule for an empirical

version of comparison of two distributions.
Definition 3 (Comparison of two distributions based on sample sets). A com-

. (freq) .
parison operator > for {Sj;} is defined as

e 1
Sy > Sy ift Py > 5 ©6)

. ... (freq) . . ..
As in Definition 1, > is the order relation of the two, however, in this time, based
on empirical frequency. In the same way, We define order relations among the
distributions.
For transitive relation among distributions, we put P;. = + lef 1=1 Piu
We can interpret PU* as probability that Sj; is larger than any other dissimilarity.
(freq)

Based on the comparison operator > , i.e., P;

i We define comparison operator

(freq)®
> .
Definition 4 (Order relation among distributions based on sample sets).

. (freq)® .
Another comparison operator > for {S;;} is defined as

(freq)®

1
Sj > Su iff P> 2. )

2.2 Extension to Hierarchical Cluster Analysis

We apply the method of comparing and ordering the distributions to hierarchical
cluster analysis. There are mainly two parts in hierarchical cluster analysis, i.e.,
choose the pair of clusters to be merged, and update the dissimilarity between the

clusters. In the former part, merge two clusters with minimal distribution-valued

S L (freq)® .
dissimilarity which is chosen by > operator. On the other hand in the latter part,
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. L (freq)
we can use the method of comparing the two dissimilarities then we use > operator.

Here is the algorithm of the hierarchical cluster analysis. Basic idea is the same as
for conventional hierarchical cluster analysis.
Algorithm with the proposed method

1. At an initial state, there are n clusters; {{1},{2},...,{n}}, i.e., regard each
concepts as clusters.

. Calculate P, forall i, j, k, /.

. Calculate P;.. forall , ;.

. Merge the pair (i, j) such that (i, j) = argmin {P; ..}.

. Update dissimilarity: New cluster is put # = i U j, then set Py, such that Py, =
min {Pil’ le}.

6. Repeat from 2 to 5 until the number of clusters is 1.

[ I SRS I S

In step 2, we use the definition 5 to decide the dissimilarity with minimum
order. And step 3, we apply the definition 3 to update the dissimilarities between
the clusters.

3 Application

We offer the application to network traffic data. We often feel that the browsing
speed on the Web is too slow, but never realize the reason. We can investigate the
reasons related to our personal computer, but it must be hard if the true reason is
far from us, i.e., due to the Web server and/or network traffic jam caused by heavy
users in the intermediate nodes from the source to us.

An engineer group had tried to investigate practical efficiency on the Internet
in Japan. From the viewpoint of network engineering, they had to clarify the
configuration from the bottom (physical layer). However, due to business reason,
all Internet Service Providers in Japan hesitated to reveal the information about
their operating networks. Then, the engineer group had tried to collect the traffic
information by their own applications. On a second thought, the end user can touch
the information mostly from the top layer and feel the speed. The group believed
that the collected data should give us a good approximation on the practical network
traffic, not the theoretical one.

Taking the great size and the periodic trend into consideration, the group had
collected the practical traffic data on the top layer with ‘ping’ command. The
command gives us Round Trip Time (RTT) which means the time from when it
carries out to the issuer gets a reply from the destination node. Eventually, the
collected data are as follows:

Number of Nodes 35

Number of Issued commands per 1 collection 50
Collection Interval Every 5 min

Collection Period  Over 2 years
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Fig. 1 The geometrical locations of 9 nodes

The group had no way to analyze the big data and need our help. We roughly
investigate the data and they are suitable to apply our method, to clarify the relation
between the measured nodes.

Unfortunately, the data has tons of missing values and we and the group cannot
specify why the operations failed. Then, we use the complete data (without missing
values) and the number of target nodes is 9. The left map in Fig. 1 displays the
geographical configuration on the 9 nodes.

In the paper, we use the data from 2006.1.18 to 2006.1.21 and each observed
datum between the 2 nodes is regarded as distribution valued data in SDA.

Figure 2 shows the clustering results with the conventional way (left) and our
proposed one (right). Assuming four clusters from the dendrograms, the classified
nodes are displayed in Fig. 3.

During the period, the bad news related to a big IT company is open to the
public and it must affects economy in Japan. Node 7 and 8 are known as famous
economical news sites and we can assume that Node 7 is isolated in both due to the
heaviest traffic. We would persuade ourselves if the node and Node 8 consist of one
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Cluster Dendrogram Cluster Dendrogram

1 O

7 9 6 4 2 5 3 1 8 7 4 9 8 3 1 2 5 6
dist_mean
hclust(*, "single") With the new method

Fig. 2 Results of hierarchical cluster analysis. The left dendrogram shows a result of mean method
with single-linkage. The right one shows a result of the proposed method

Fig. 3 Partition of nodes in four clusters. The /left is a result of the mean method, and the right is
a result of the proposed method

cluster, but the conventional result offers Node 1 is a member of the cluster, too. It
is not related to commercial events and might be misclassified from the economical
viewpoint.

On the other hand, the proposed result offers that Node 7-9 consist of isolated
clusters. Node 9 is in a national university network and needs to pass much routers
to Node 7 and 8 (since the academic network has several inter-exchange points
for commercial ones in Japan). The others are neither related to commerce nor in
academic network. In short, the proposed method gives us a better interpretation
rather than the previous ones.
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4 Concluding Remarks

In this paper, we handle distribution-valued data. We focus on the dissimilarities
with distribution values and hierarchical cluster analysis. In hierarchical cluster
analysis, an ultrametric condition is essential. Then we introduce a method for
comparison of two distributions, and extend it to order relations among the
distribution values. This method is intended to reduce the loss of information from
original data, and in fact, we can show that this proposed method is different from
the mean method by actual example of network traffic data. We also develop an
application of the method to symbolic clustering, and a result of the clustering for
traffic data is more interpretable than the case of using mean method.
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Pairwise Data Clustering Accompanied
by Validation and Visualisation

Hans-Joachim Mucha

Abstract Pairwise proximities are often the starting point for finding clusters by
applying cluster analysis techniques. We refer to this approach as pairwise data
clustering (Mucha HJ (2009) ClusCorr98 for Excel 2007: clustering, multivariate
visualization, and validation. In: Mucha HIJ, Ritter G (eds) Classification and
clustering: models, software and applications. Report 26, WIAS, Berlin, pp 14-40).
A well known example is Gaussian model-based cluster analysis of observations in
its simplest settings: the sum of squares and logarithmic sum of squares method.
These simple methods can become more general by weighting the observations. By
doing so, for instance, clustering the rows and columns of a contingency table will be
performed based on pairwise chi-square distances. Finding the appropriate number
of clusters is the ultimate aim of the proposed built-in validation techniques. They
verify the results of the two most important families of methods, hierarchical and
partitional clustering. Pairwise clustering should be accompanied by multivariate
graphics such as heatmaps and plot-dendrograms.

1 Introduction

Cluster analysis aims at finding interesting partitions or hierarchies of a set of
objects without taking into account any background knowledge. Here, without loss
of generality, we consider the cluster analysis of a set of observations (row points
of a data table). Model-based cluster analysis has become very popular by the
paper of Banfield and Raftery (1993). In the present paper, we focus on Gaussian
model-based cluster analysis of observations in its simplest settings that result in the
sum of squares and logarithmic sum of squares method. These simple model-based
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Gaussian clustering techniques can be expressed in terms of clustering based on
pairwise squared Euclidean distances between the observations. Moreover, they can
be generalized easily by taking into account weights of observations. With respect
to the special weights of observations (often referred to as masses), namely the
average row profile or row centroid, the cluster analysis of contingency tables based
on the chi-square distances results in an optimum decomposition of the Pearson
chi-square statistic (Greenacre 1988). The chi-square distance itself is a squared
weighted Euclidean distance with the special weights called inverse average column
profile. Both hierarchical and partitional cluster analysis of the rows and columns of
a contingency table can be carried out based on pairwise y>-distances.

In practice, the principle of weighting of observations is a key idea in data mining
to deal with both aggregated data (such as cores) and outliers. In the case of outliers
one has to down-weight them in order to reduce their influence. Mucha (2004) used
special (random) weights for resampling in validation of hierarchical clustering. Or,
clustering based on graph theory was generalized by consideration of weights of
observations (Bartel et al. 2003).

Hierarchical clustering is in some sense more general than partitional clustering
because one gets out a battery of (nested) partitions. Figure 1 shows both the
starting point of hierarchical clustering, a distance matrix as a heatmap, and the
final hierarchy that is visualised by a dendrogram. On the other hand, partitional
clustering results usually in better solutions (criterion values) with respect to a
partition into a fixed number of clusters. (A partitional clustering is simply a division
of the set of observations into non-overlapping subsets (clusters) such that each
data object is in exactly one subset.) Two well-known cluster analysis techniques,
Ward’s hierarchical method and the partitional K-means clustering, optimize the
sum of squares criterion that is derived from the simplest model of K Gaussian sub-
populations where we are looking for clusters of the same volume (see for details:
Banfield and Raftery 1993). In the present paper, we will consider a “generalization”
that can find clusters of different volumes.

Another focus is on validation and visualisation. Our built-in validation tech-
niques (Mucha 2009) can verify the results of the two most important families of
methods, the hierarchical and partitional cluster analysis. The Excel-spreadsheet is
both a distinguished repository for data/distances/clusters/hierarchies and a plotting
board for multivariate graphics that can be provided in Visual Basic for Applications
(VBA). Examples are dendrograms, plot-dendrograms, scatterplot matrices, density
plots, principal components analysis plots, and correspondence analysis plots
(Mucha et al. 2005).

2 Simple Model-Based Gaussian Clustering

Suppose there are K subpopulations with unknown J-dimensional normal densities.
Consider a fixed partition C = (Cy,...,Ck) of a sample of I independent
observations x; into K clusters. The most general model-based Gaussian clustering
is when the covariance matrix Wy of each cluster (subpopulation) Cy is allowed
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Fig. 1 Ward’s hierarchical cluster analysis of Table 1. The darker the gray color in the heatmap on
the right hand side the smaller the underlying y2-distances are. On the left hand side at the bottom
the cluster analysis of the column points is visualised. (Strictly speaking: Ward’s minimum within
cluster sum of squares method using both the special weights of rows and the special weights of
columns: for details see Sect. 2.2 below)
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Table 1 Fleets data. The original table is attached by the sums of rows and the sums of columns.
Additionally, on the right hand side, the matrix of row profiles (5) (rounded to two digits) is given
surrounded by the weights of rows (“Mass”, rounded to three digits) and the weights of columns

Country Name Cont Bulk Tank Sum Cont Bulk Tank Mass
Germany Germ 830 157 196 1,183 0.70 0.13 0.17 0.098
Switzerland Swit 89 32 36 157 0.57 0.20 0.23 0.013
Taiwan Taiw 191 174 42 407 0.47 0.43 0.10 0.034
Hong Kong Hong 36 225 137 398 0.09 0.57 0.34 0.033
Greece Gree 150 1,329 780 2,259 0.07 0.59 0.35 0.187
China Chin 218 595 316 1,129 0.19 0.53 0.28 0.094
India Indi 3 100 113 216 0.01 0.46 0.52 0.018
Iran Iran 7 44 35 86 0.08 0.51 0.41 0.007
Japan Japa 215 855 768 1,838 0.12 0.47 042 0.152
Turkey Turk 35 140 93 268 0.13 0.52 0.35 0.022
Korea (South) Kore 96 180 223 499 0.19 0.36 0.45 0.041
Malaysia Mala 36 58 94 188 0.19 0.31 0.50 0.016
Singapore Sing 142 119 309 570 0.25 0.21 0.54 0.047
United Kingdom U.K. 124 77 159 360 0.34 0.21 0.44 0.030
Denmark Denm 130 22 149 301 0.43 0.07 0.50 0.025
United States U.S. 83 114 417 614 0.14 0.19 0.68 0.051
Norway Norw 18 179 479 676 0.03 0.26 0.71 0.056
Ttaly Ital 12 54 227 293 0.04 0.18 0.77 0.024
Russia Russ 32 116 386 534 0.06 0.22 0.72 0.044
Saudi Arabia Saud 1 1 77 79 0.01 0.01 0.97 0.007

Sum 2,448 4,571 5,036 12,055 Weight 2.22 1.62 1.55

to vary completely. Then the log-likelihood is maximized whenever the partition
C minimizes the determinant criterion W(C) = Zle ny log |‘Z—: |, where Wy, =
ZiECk (x; —Xx)(x; —X;)7 is the sample cross-product matrix, and 7 and X; are the
cardinality and the usual maximum likelihood estimate of expectation values of the
kth cluster Cy. In the following the focus is on special simplified assumptions about
the covariance matrix that allow to consider pairwise clustering problems. When
it is constrained to be diagonal and (a) uniform or (b) non-uniform across all K
assumed clusters, (a) the sum of squares criterion (SS) or (b) the logarithmic SS

K
W(C) =) u(Wy) or W*C)= an logtr(—) (1)

k=1 =1

has to be minimized. Both SS criteria (1) can be reformulated as the minimization of

W(C)—Z =D D du o W (C)—anlog(z > dw).

k iec, heCy i €Cy heCy h>i k
2

where dj;, = ||x; — x;,|? is the pairwise squared Euclidean distance.
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2.1 Weighted Observations and Squared Euclidean Distance

Usually, all observations have the same weight. The (logarithmic) SS criteria (1)
and (2) can be generalized by weighting the observations. This allows fast and
efficient algorithms (analysis of massive data, resampling, .. . ) because the distances
themselves are not affected by weighting. There are other advantages such as
clustering of contingency tables based on the y?-distance (see below) or handling
of outliers by down-weighting them in some way in order to reduce their influence.
Using weights of observations the criteria (2) can be formulated for general use as

K

W(C)=Zw(ck)—2 =D mi Yo madiy 3)

k=1 = lECk heCy h>i

and

w (C)—ZMk g} Y Elhg,), @)

i€Cy heCy h>i k

where M, = ZieCk m; and m; > 0 denote the weight of cluster C; and the weight
of observation i, respectively. For example, given a partition C, the SS criterion (3)
can be improved (minimized) by exchanging an observation i coming from cluster
C and shifting into cluster Cy if w(Ci\{i}) + w(C, U {i}) < w(Cy) + w(Cy),
where

WO\ = ———(_ D mumd — Y mimyd)

mi 1€Cy, heCy h>1 heCy

and

w(Cy Ui}) = M, +m; ——— O Y mumdy + Y mimydy).

l€Cy heCyq,h>1 heCyq

2.2 Hierarchical and Partitional Clustering Based
on x*-Distance

Clustering techniques can be used to segment a heterogeneous two-way contingency
table into smaller, homogeneous parts. Following the paper of Greenacre (1988),
here the focus also is on chi-square decompositions of the Person chi-square statistic
by clustering the rows and/or the columns of a contingency table. Especially the
hierarchical Ward’s method as well as its generalization based on (4) is of interest.
The latter can find clusters of different volumes. Additionally, one can show that it is
also possible to carry out partitional clustering by starting from pairwise chi-square
distances. The partitional cluster analysis optimizes directly a criterion with respect
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to a fixed number of clusters K. Often it attains better solutions than hierarchical
cluster analysis.

The ubiquitous starting point of pairwise clustering techniques is a distance
matrix D = (dj;,). There are at least two well-known families of methods for
minimizing the (logarithmic) SS criteria based on pairwise distances: Partitional
clustering such as D;;Ex (that is based on the so-called T;,ExM method by Spith
1985) minimizes (3) for a fixed K by exchanging observations between clusters, and
hierarchical cluster analysis minimizes (3) in a stepwise manner by agglomeration
of pairs of observations/clusters. The well-known K-means method becomes a
special case of the D;;Ex method in the framework of pairwise clustering based
on squared Euclidean distances without using centroids anymore (see Spith 1985
and its generalization by Bartel et al. (2003)). Concerning hierarchical clustering
it should be mentioned that in the case of logarithmic SS usually the process of
amalgamation bears decreasing distance levels (inversions). In order to make it
possible to draw a dendrogram special treatments are available in our prototype
software ClusCorr98 (Mucha 2009).

Now let’s consider a contingency table N = (ny), i = 1,2,...,1, j =
1,2,...,J,as presented in Table 1 in bold on the left hand side. Then

xizn,-/n,; i=1,2,...,1 (5)

are the row profiles (see in Table 1 on the right hand side). Herein n; = Z]J'=1 nj
is the row total of the row point i. That is, we are now back formally to the
analysis of a data matrix X. That is, the weighted squared Euclidean distance
dy = % — xh||2Q = Z]J'=1 qj(x; — xp;)* is the appropriate distance measure
between the observations i and /1, where x; and x, are the corresponding row profiles
and the matrix Q of weights of variables (column points) is diagonal with the
following special weightsg; =n_/n_j,wheren; (j =1,2,...,J) (column total)
and n_ (grand total) are n; = Y/_ mjandn. = Y/_, Z,J:l nj;, respectively.
The dissimilarity between two row profiles x; and x, can be expressed by using the
original contingency table N as

i n
,h—Z—n—’ ) (©6)
-J

i np.

which is the well-known y2-distance.

Figure 1 displays both the original data N and schematically the matrix of row
profiles X that is derived from N. The darker the gray color in the heatmap of the
profiles the smaller the underlying values are. The corresponding matrix D of the
pairwise y2-distances (6) between the objects (countries) is given also schematically
in Fig. 1 on the right hand side at the top. The dendrogram on the right hand
side presents the final result of the cluster analysis of the observations based on
(3) with the following special weights (masses) m; = n; /n_ of the observation
i,i = 1,2,...,1. The hierarchical clustering of variables is shown below on the
left hand side.
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Fig. 2 Correspondence analysis (CA) plot of row and column points of Table 1. In addition, both
a partition of Ward’s method is marked by ellipses (dashed lines) and the cluster analysis result of
the logarithmic Ward’ is marked by ellipses (lines and dashed lines)

2.2.1 The Example in Detail

In Table 1, the data counts the world’s largest merchant fleets by country of owner,
i.e. all self-propelled oceangoing vessels 1,000 gross tons and greater (as of July 1,
2003, published by CIA World Factbook 2003). It consists of 20 observations
and the variables Full Container (abbr.: Cont), Dry Bulk (Bulk), and Tanker
(Tank). Hierarchical clustering gives a single unique solution, a hierarchy of nested
partitions. This is in opposition to the partitional K-means clustering that leads to
locally optimal solutions depending on initial partitions. Figure 1 shows the result
of hierarchical clustering by Ward’s method.

In Fig.2, the four cluster solutions of both the hierarchical Ward’s and the
logarithmic Ward’s method are shown in the projection space that is obtained by
correspondence analysis (CA). The latter is an appropriate visualisation tool for
such data and for clusters. Moreover, the CA plots will become more informative
by an additional projection of a dendrogram as shown in Fig.3. In Fig.2, the
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/ vl

Fig. 3 Bubble-plot-dendrogram coming from the logarithmic Ward’s method. The size of the
bubble of the corresponding observation is proportional to its mass. The latter quantifies the
importance of the observations in the statistical analysis

CA plot reflects the true chi-square distances completely, i.e., to 100 %. So, it is
not only an approximation as usual in the case of high dimensionality. The row
points (countries) are marked by diamonds and the column points by squares.
The criterion value (sum of within-cluster inertia) equals 0.04319 (Ward) and
0.04148 (logarithmic Ward), respectively. The latter classifies Malaysia and Korea
in the cluster {Denmark, Singapore, United Kingdom} that was found by Ward’s
method. By the way, the four cluster solution of Ward’s method can be improved
by the partitional D;, Ex clustering to 0.04209 by shifting Malaysia to the cluster
{Denmark, Singapore, United Kingdom}. So, in this application, both methods the
SS and the logarithmic SS come to similar results.

In addition to Fig. 2, Fig.3 shows the dendrogram of the hierarchical logarith-
mic Ward’s method that is projected onto the plan of CA. Such a bubble-plot-
dendrogram is important for a better understanding of the results of both CA and
clustering because the size of a bubble is proportional to the importance of the
corresponding observation. For example, the compact cluster at the lower right
corner (consisting of Greece, Japan, China,.. ., see also Fig.2) contains more than
half of all masses. It is merged at the end.

3 Built-in Validation

In hierarchical clustering the pivotal question arises: How to choose the number
of clusters (i.e., the distance levels) at which the dendrograms should be cut in
Fig. 1? Simulation studies based on bootstrapping can help to answer this question.
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Class # Y* # y* # Y* # v
1 16 |99 79 |
| 5 94
2 49|94 88 |
101 100
3 3¢ |93 93 91

200 |

| 9o 88 100 100

5 44|81

K 5 4 3 2
Total y* 88 88 96 100
Adjusted R 84 87 96 100

Fig. 4 Informative dendrogram of the Swiss bank data based the results of built-in validation (the
cardinality of clusters is given below the symbol #). Here the Jaccard measure y* (values are in
%) evaluates the stability of every cluster. The total Jaccard index and the adjusted Rand index R
at the bottom (also in %) can be used to decide about the number of clusters. Obviously, the two
cluster solution is most stable

Different resampling techniques can be carried out by “playing” with the weights
of observations in special random ways, see for instance (Mucha 2004). The
stability of results of hierarchical and partitional clustering can be assessed based
on measures of correspondence between partitions and/or between clusters. Finding
the appropriate number of clusters is the main task apart from individual cluster
validation. One gets many bootstrap results instead of an usual unique result of
hierarchical cluster analysis. The built-in validation techniques (as proposed by
Mucha 2009) evaluate additionally the stability of each cluster and the degree of
membership of each observation to its cluster. Using special randomized weights
of objects one can easily perform built-in validations of cluster analysis results
via bootstrapping techniques. There are several measures of similarity between
two clusterings (partitions) (Hubert and Arabie 1985) and between sets (clusters)
(Hennig 2007). The most well-known measures are the Jaccard index and the
adjusted Rand index.

Figure 4 presents the simulation result of hierarchical clustering of the well-
known Swiss bank data (Flury and Riedwyl 1988) by Ward’s method. The data
consists of measurements on 200 Swiss bank notes, where 100 are genuine (i.e.,
real) bank notes and 100 are forged ones. The following six variables are measured:
length of the bill, height of the bill on the left side, height of the bill on the right
side, distance of the inner frame to the lower border, distance of the inner frame to
the upper border, and length of the diagonal of the central picture. Ward’s method
performs very well: one observation is misclassified only.



56 H.-J. Mucha

Here, for validation, soft resampling (“soft bootstrapping”) is used, i.e., random
weighting of the observations by m; = z; * 1.8 4+ 0.1, where z; € [0,1) is a
uniform random generated weight of observation i . Here altogether 250 “bootstrap-
hierarchies” are compared with the original result of hierarchical cluster analysis.
The comparisons result in 250 total Jaccard values y* and 250 adjusted Rand
values R for each number of clusters K. The corresponding Jaccard values of each
individual cluster are presented in the dendrogram in Fig. 4. At the bottom, the total
Jaccard index (averaged across the corresponding values of the individual clusters
above) and the adjusted Rand index R (average value) give quite similar results.
The (theoretical) maximum of both similarity measures is 1 (or 100 %). Without any
doubt, the two cluster solution is very stable with regard to both measures (= 100 %,
or more exactly: total y* = 0.9996816 and R = 0.999356). The stability of clusters
strongly depends on how homogeneous and how well separated from neighbouring
clusters they are. The latter can be observed well in hierarchical cluster analysis. For
example, the stable cluster of genuine bank notes in the lower part of Fig.4 (=99
observations) becomes instable for K equals 4: The Jaccard measure decreases from
100 % (for K = 2 and K = 3) to 88 %.

4 Conclusions

Hierarchical and partitional clustering based on pairwise proximities are in some
sense more general. Gaussian model-based cluster analysis in its simplest settings
can deal effectively with weighted observations. Using special weights of both the
observations and the variables, simple model-based Gaussian cluster analysis allows
the segmentation of a contingency table by minimization of the sum of within-
cluster inertia. Moreover, pairwise clustering is very easy to apply. Based on CA
several graphics can be recommended for a presentation of data and clusters. The
stability of results of pairwise clustering can be assessed by bootstrap techniques
based on random weights of the objects. This can be done very effectively because
the pairwise distances are not affected by random weighting.
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Classification, Clustering, and Visualisation
Based on Dual Scaling

Hans-Joachim Mucha

Abstract In practice, the statistician is often faced with data already available.
In addition, there are often mixed data. The statistician must now try to gain optimal
statistical conclusions with the most sophisticated methods. But, are the variables
scaled optimally? And, what about missing data? Without loss of generality here
we restrict to binary classification/clustering. A very simple but general approach is
outlined that is applicable to such data for both classification and clustering, based
on data preparation (i.e., a down-grading step such as binning for each quantitative
variable) followed by dual scaling (the up-grading step: scoring). As a byproduct,
the quantitative scores can be used for multivariate visualisation of both data and
classes/clusters. For illustrative purposes, a real data application to optical character
recognition (OCR) is considered throughout the paper. Moreover, the proposed
approach will be compared with other multivariate methods such as the simple
Bayesian classifier.

1 Introduction

We consider here binary classification and clustering based on the dual scaling
technique. However, our approach of binary classification is not restricted explicitly
to K = 2 classes. For K > 2 classes, this results in (K — 1) K /2 binary classifiers.
This is denoted as pairwise classification because one has to train a classifier for
each pair of the K classes.

The dual scaling classification/clustering (DSC) technique proposed here is moti-
vated by practical problems of analyzing a huge amount of mixed data efficiently.
(Concerning an introductory data mining textbook, see Berry and Browne 2006.)
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Fig. 1 Examples of images of the digits 0 and 1 in a 8 x 8 grid of pixels. The square of a pixel
represents an integer value ranging from O (empty square) to 16 (full square)

One way to deal with such problems is down-grading all data to the lowest scale
level, that is, downgrading to categories by loosing all quantitative information.
Another general way is binary coding (Kauderer and Mucha 1998) which is much
more expensive in computer space and time.

Throughout the paper, an application of the proposed methods to OCR is
presented, see on the UCI — website http://archive.ics.uci.edu/ml/datasets/Optical+
Recognition+of+Handwritten+Digits (Frank and Asuncion 2010; Vamvakas et al.
2010). (By the way, the paper of Parvez and Mahmoud (2013) presents a recent
state of the art OCR application.) The main focus of this paper is on classification.
However it will be shown that DSC can be used in an iterative manner also for
clustering. The basis of the ORC data are normalized bitmaps of handwritten digits
from a preprinted form. From a total of 43 people, 30 contributed to the training
set and the other 13 to the test set. The resulting 32 x 32 bitmaps are divided into
non-overlapping blocks of 4 x 4 and the number of pixels are counted in each block.
This generates an input matrix of 8 x 8§ where each element is an integer in the range
0...16. This reduces the dimensionality and gives invariance to small distortions.
Figure 1 shows examples of digits 0 and 1: the first observation of “0” and “1” of
the database, respectively. The area of a square is proportional to the integer value
of the corresponding element of the 8 x 8 matrix (64 variables/attributes).

Usually, these 64 ordinal variables with 17 categories at most can be directly
processed by DSC. However, the number of categories is high with respect to the
sample size of a few hundred and there still is an ordinal scale. Therefore (and
because there is a general need of categorization in case of metric variables) here
the original ORC data is down-graded exemplarily in a quite rough manner into
at most five categories: “never” (count = 0), “seldom” (1-4), “sometimes” (5-11),
“often” (12-15), and “always” (16). The corresponding transformation to do this
is simply: if(c = 0;*“never”;if(c = 16;“always”;if(c > 11;“often”;if(c < 5;*“seldom”;
“sometimes”)))) (based on the standard function if(test;then;else), and where ¢
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never seldom sometimes  often often seldom never  never 1 2|3 4|5 6|7 8
never sometimes  always sometimes sometimes sometimes never  never 9 10 11 12 13 14 15 16
never sometimes  always  seldom never sometimes seldom never 17 18 19 20 21 22 23 24
never sometimes  always seldom never sometimes sometimes never 25 26 27 28 29 30 31 32
never sometimes  often seldom never sometimes sometimes never 33 34 35 36 37 38 39 40
never seldom often never seldom often sometimes never 41 42 43 44 45 46 47 48
never  never often sometimes often sometimes never  never 49 50 51 52 53 54 55 56
never never sometimes often sometimes seldom never never 57 58 59 60 61 62 63 64

Fig. 2 The values of the observation from the class Digit “0” of Fig. 1 after transformation into
text data (on the left hand side) and numbering of the 64 variables

stands for count). Figure 2 (on the left hand side) shows a result of binning into
categorical data as described by the simple formula above. In addition, on the right
hand side, the ordering of the 64 variables in a row vector of the data matrix X
(see below) is given. The quantitative meaning of the target words is only for
illustrative purposes. DSC makes no use of any ordering. That means that almost
all quantitative information in the data is lost beforehand. However, especially in
medical applications, special optimal scaling techniques for ordered categories can
be of great interest (P6lz 1995, 1996).

2 Binary Classification Based on Dual Scaling

The (actual) starting point of DSCis a (/ x J)-data table X = (x),i = 1,2,...,1,
j =12,...,J of I observations and J variables. It is only supposed for DSC that
the number of different values (or categories, words, .. .) of each variable should be
at least two. (Variables consisting of only one value do not effect the result.) On the
other hand, for reasons of getting a stable result for classifying unseen observations,
the number of categories should be “as small as possible” with regard to the number
of observations. Figure 2 shows an example of an observation. In addition to X,
a binary class membership variable is required. It will be used in order to give
categorical data a quantitative meaning. Generally, we want to obtain a new variable
z; so as to make the derived scores within the given classes ss,, as similar as possible
and the scores between classes ss;, as different as possible (Nishisato 1980, 1994).
The basis is a contingency table, which can be obtained by crossing a categorical
variable x; of M categories with the class membership variable. That is, regarding
some constraints in the frame of a dual scaling approach, the squared correlation
ratio has to be maximized:

SSp

= — = —). 1
1 ssp + 88y, ( ss,) M
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Fig. 3 Plot of the scores (2) and (3) of variable 14, respectively

Because of the well-known variance decomposition
s§; = 88y, + 55p,

the squared correlation ratio (1) lies in the interval [0,1].

Considering the special case of two classes, dual scaling can be applied without
the calculation of orthogonal eigenvectors. Without loss of generality, a given
category y,,j (m = 1,2,..., M;) of a variable j is transformed into an optimally
scaled variable in the sense of maximal between classes variance by

)
pmj .
o/

=(0)— =1,2,...,J,m=1,2,...,Mj. (2)
Pj T Pij

I/lmj

Here p,(,g.) is an estimate of the probability for being a member of class 0 when

coming from category m of variable j, whereas on the other side p,(nlj) is an estimate
of the probability for being a member of class 1 when coming from category m of
variable j. Alternatively, in the case of two classes, one can use the scoring

(0)

=, e
Ppj Tt Py

=L.2,...,.J,m=12,...,M;. 3)

because of v, = 1—u,,;. Therefore, without loss of generality, the scoring (2) will be
considered here later on. Figure 3 shows an example of the estimated probabilities
(scores) (2) and (3). They are estimated simply based on contingency tables. Table 1
shows both a contingency table and the estimated scores (2) of variable 14.

The final result of the transformation (2) is a quantitative data matrix Z = (z;;),
i=12,...,1,j =1,2,...,J. Figure 4 shows a special heatmap of the distance
matrix of 14 observations (selected from 765 observations in total) based on Z.
The smaller the square in a cell of the 14 x 14 grid the lower is the corresponding
distance. Here the squared euclidean distance is applied. The 6 x 6 square area
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Table 1 Contingency table as the result of cross-tabulation of variable
14 and the class membership variable, and estimated scores (2)

Given class

Category Digit “0” Digit “1” Total Score

Never 2 49 51 0.9608
Seldom 23 54 77 0.7013
Sometimes 171 114 285 0.4000
Often 146 76 222 0.3423
Always 34 96 130 0.7385
Total 376 389 765 0.5085

on the left top side presents the distances between observations of the class Digit
“0”. Obviously, there are small within-class distances and this class looks very
homogeneous. In opposition, the many different sizes of the squares on the right
bottom side represent distances between observations of the class Digit “1”. This
class looks inhomogeneous. All other squares are big. They indicate great distances
between observations from different classes. In Fig.5, the principal component
analysis (PCA) plot shows a multivariate view of Z. Obviously, it emphasizes the
inhomogeneity of the class Digit “1”. For further visualization methods, see Mucha
(2009).

On the other side the solution (score value) f,,; of the well-known correspon-
dence analysis (Greenacre 1984) that depends on the actual sample size of the two
clusters is simply related to (2) by

1ol

=—fuitc, j=12,.... 0 m=1,2,.... M;,.
(10+11)f‘1 / !

Umj

where [/ and /; is the number of observations in cluster 0 and cluster 1, respectively.
The constant c is responsible for the shift of the mean value of the scores f;; to the
origin. That is, every variable j (j = 1,2,...,J) is scaled by the same value
b = /IyI;/I and shifted by a constant c.

2.1 Distance Scores and the Cut-off Value

After upgrading the categories all data values of Z = (z;;) are in the interval [0, 1].
Without loss of generality the hypothetical worst-case z,, = 0 is considered here
(this naming comes from credit scoring where class 0 stands for bad applicants, see
Mucha et al. 1998). (Otherwise one can look at the best case model with z,, = 1.)
Then the Manhattan distance ¢;, between an observation z; and the worst case z,,
has both the suitable and really simple form
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Fig. 4 Class-heatmap of a 14 X 14 distance matrix that is figured out by using the scores from dual
scaling. The first six observations come from class Digit “0” (light gray background color) and the
last eight from class Digit “1” (gray background color). As before in Fig. 1, the size of a square is
proportional to the corresponding distance value

J
t = 1(zi.20) = »_ . )
j=1

We call #;, the (multivariate) distance score. Figure 6 visualizes the relation
between the distance scores and the error rate with respect to the class membership
variable. Now the question is how to build up a classifier based on the distance
scores. One simple way is looking for a suitable cut-off-point on the distance score
axis. Obviously, in Fig. 6, the optimum error rate is near 0 (only one error occurs,
marked by a great circle, with respect to 765 observations). There is a wide range of
this low error rate on the distance axis, see the marking below the abscissa. In Fig. 6,
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Fig. 5 PCA plot of the two classes Digit “0” and Digit “1” after the dual scaling (upgrading) step.
In the training data set, the cardinalities of the classes are 376 and 389, respectively

the dashed line highlights an appropriate cut-off-threshold. Here the corresponding
cut-off-value of the minimum error rate is 0.527. It is simply the average of the two
scores of minimum error rate. This cut-off-value is used as a classifier later on for
decision-making on new observations. Obviously, the two classes seem to be very
well separated based on the training data set.

The dual scaling classification of the observations of the test data set from
the UCI database results in an error rate of 0.28 % with respect to the cut-off-
value estimated from the training data set given above. Figure 7 shows the relation
between the distance scores (4) of the test data and the error rate. One error is
counted only. It is marked by a great circle. In addition, the distance scores of the
training data are drawn. Both curves of scores are very close to each other. For
numerical details concerning the error rates see Tables 2 and 3. Mucha et al. (1998)
investigated the stability of a special local DSC approach in an application to credit
scoring. It was the most stable classification method in comparison with five other
multivariate methods such as neural networks and C4.5.

2.2 The Naive Bayes Classifier

The simple Bayesian classifier (SBC), sometimes called Naive-Bayes, is based
on a conditional independence model of each variable given the class. Once the
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Fig. 6 Plot of distance scores t;, versus the classification error. In addition, both the true class
membership of each observation (marked by symbols) and the cut-off-threshold (dashed line) are
presented
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Fig. 7 Plot of distance scores #;, of the test data versus the classification error. In addition, both
the distance scores of the training data (see Fig. 6) and the cut-off-threshold are presented

discrete probabilities pfy?j) and pfnlj) are estimated in DSC (see above and Table 1),
the posterior probabilities can be computed easily as a by-product. In the ORC two
class data, categorised as shown in Fig. 2, the SBC performs similar to DSC: also
one observation (but not the same one) is misclassified. However, the error rate of
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Table 2 Training data set: comparison of results of dual scaling and Naive Bayes classification

Dual scaling classification Naive Bayes classification
Confusion matrix Confusion matrix
Given classes Class 0 Class 1 Error rate (%) Class 0 Class 1 Error rate (%)
Digit “0” 375 1 0.27 375 1 0.27
Digit “1” 0 389 0.00 0 389 0.00
Total 376 389 0.13 375 390 0.13

Table 3 Test data set: comparison of results of dual scaling and Naive Bayes classification

Dual scaling classification Naive Bayes classification
Confusion matrix Confusion matrix
Given classes Class 0 Class 1 Error rate (%) Class 0 Class 1 Error rate (%)
Digit “0” 177 1 0.56 176 2 1.12
Digit “1” 0 182 0.00 2 180 1.10
Total 178 183 0.28 178 182 1.11

SBC of the test data is a little bit higher: four observations are misclassified. Tables 2
and 3 summarize the comparison of the two methods using the training data set and
the test data set, respectively.

Similar good results can be reported also from linear discriminant analysis,
where, of course, the original data set is used.

2.3 Dual Scaling Cluster Analysis

Here the starting point is a random generated class membership variable P°(/,2)
of the I observations into 2 clusters. The iterative DSC repeats both the upgrading
step and the clustering step until either no change of two successive partitions
P"*1(1,2) and P"(1,2) occurs or until a fixed number of iterations are done.
For further details see Mucha (2002). Generally speaking the iterative DSC looks
for directions in the space and changes the geometry of the points (observations)
more in a random way than in a direct way of optimization. This is done partly by
optimum univariate optimization on the one hand and on the other hand by some
heuristics. Moreover, a result is obtained in any case independent of the existence of
a class structure. Here the voting technique is beside univariate dual scaling another
important key for clustering by DSC. Voting is an ensemble technique. Voting means
both finding the most typical partition (MTP) among a set of partitions that are
obtained simultaneously by starting from different initial partitions (Mucha 2002).
Obviously there are several ways in defining a MTP. Here, in the two class setting,
a MTP is chosen to be the one which sum over all simple matching similarities s,
to the remaining partitions becomes a maximum. Taking into account the random
permutation of cluster numbering the simple matching coefficient for two partitions
P™(1,2) and P"(I,2) is defined as
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a+d b+c
1 1

).

Spn = Max(

where (a + d) count the number of matches and (b + ¢) count the number
of mismatches, respectively. In the ORC two class data, convergence is reached
usually after seven iterations depending on the start partition. Herein the procedure
of voting is based on ten partitions. In that way, the iterative DSC finds both
quite similar quantifications and distance scores as the corresponding classification
method described before.

3 Conclusion

The idea of dual scaling classification is presented here in a detailed way. DSC
is both the most simple and computationally efficient classification method.
Obviously, it seems to be stable against outliers in the data. Missing values are
allowed simply by an additional category. DSC changes the geometry of the data
points in the case of given quantitative variables. On the basis of this new geometry
one can apply multivariate projection methods such as principal components
analysis in order to make a previously invisible structure visible. Sure, DSC can be
improved by sophisticated categorization methods.
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Variable Selection in K -Means Clustering
via Regularization

Yutaka Nishida

Abstract In many cases, both essential and irrelevant variables to the cluster
structure are included in the data set. The K-means algorithm (MacQueen JB
(1967) Some methods for classification and analysis of multivariate observations.
In: Proceedings of the 5th Berkeley symposium on mathematical statistics and
probability, Berkeley, pp 281-297) which is one of the most popular clustering
method can treat such a data set, but can not identify the essential variables for
clustering. In supervised-learning methods such as regression analysis, variable
selection is a major topic. However, variable selection in clustering currently is not
an active area of research. In this study, a new method of K-means clustering is
proposed to detect irrelevant variables to the cluster structure. The proposed method
achieves the purpose of calculating variable weights using an entropy regularization
method (Miyamoto S, Mukaidono M (1997) Fuzzy c-means as a regularization
and maximum entropy approach. In: Proceedings of the 7th international Fuzzy
Systems Association World Congress, Prague, vol 2, pp 86-92) which is developed
to obtain fuzzy memberships in fuzzy clustering. This method allows us to identify
the important variables for clustering.

1 Introduction

In many cases, both essential and irrelevant variables to the cluster structure are
included in the data set. The K-means algorithm (MacQueen 1967) which is one of
the most popular clustering methods can treat such data sets, but can not distinguish
which variable is essential to the cluster structure.
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There are two approaches for fixing this problem. One is the extraction of
the cluster structure by using a dimension reduction method such as principal
component analysis. Since this approach needs an interpretation of the components,
the interpretation of a result needs expert domain knowledge and is not easy. The
other approach is variable selection. In this approach, the importance of variables is
represented as a vector of variable weights, so a user can interpret the result easily.

In regression analysis, discriminant analysis and machine learning (e.g. with
support vector machines), variable selection is a major topic. However, variable
selection in clustering is not an area of active research. In this study, a new method of
K-means clustering is proposed to detect irrelevant variables to the cluster structure.

Let X = {x;} be an N x P data matrix, where x;; is an element of the i -th object
(i =1,...,N)in the j-th variable (j = 1,..., P), U = {u;} be a membership
matrix, where u;, is a membership of the i-th object which belongs to cluster k with
k=1,....K,and X = {Xy} be the K x P centroid matrix. The objective of the
K-means algorithm is to minimize the within-cluster sum of squares:

N P
Z Z uirdisg. (1)

1i=1j=1

M=

F(U,X) =
k

where dy; = (x; — Xi)*. Though the K-means algorithm treats all variables in the
same way when the distance between cluster centers and data points is calculated,
a certain variable might be more important than other variables. In this study, the
weights for variables are introduced into the distance as

dikj =Ww; (xij - )_ij)z, 2

where w; satisfies the constraints Zj;l w; =1land0 <w; < 1.

By introducing the weight parameter, we can identify the irrelevant variables to
the cluster structure. However, the solution obtained by optimizing the objective
function with weights parameter w is not a desirable for variable selection. The
solution is given by w; = 1 or 0. This means only one variable is always selected.

Both the objective function of K-means with weights parameter w and it’s
constraints (Zj;le = land 0 < w; < 1) are linear with respect to the
introducing parameter w;. This problem is a linear programing and it’s optimal
solution is at a vertex of the hyper-polygon of the feasible solutions is applicable.
In this case, we have w; = 1 or 0. This property implies that it is necessary
to introduce the nonlinearity into the objective function for w to obtain fuzzy
weight. This is the same problem of the estimating fuzzy u; in fuzzy c-means
(see Miyamoto et al. 2008). Therefore, in order to estimate w, we can utilize the
same techniques as in the estimation of fuzzy u; in fuzzy c-means algorithm.

In this paper, the entropy regularization method (Miyamoto and Mukaidono
1997) is utilized to estimate the weights. The entropy regularization method is
developed to obtain fuzzy memberships parameter which satisfy the conditions
Z:N=1 uy = 1 and 0 < uy < 1 in fuzzy clustering.
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In the following, we use this approach for variable selection. By using the entropy
regularization method, it is possible to estimate the parameter w; that satisfies the
constraints. The values of parameter w being close to zero means corresponding
variables are irrelevant for clustering. We consider variable weights take the same
value each variables in ordinary K-means algorithm. Our approach extend this fixed
weight parameter to take fuzzy value, [0, 1] using entropy regularization method.
Huang et al. (2005) took a similar approach and proposed W-K-means algorithm
which utilizes the fuzzy c-means algorithm (Bezdek 1980). The objective function
of W-K-means is written as

K N P
FUXw) =Y 3> uw (x5 — %)%, (3)
k=1i=1 j=1

where 8 (B < 0 or 8 > 1) is a parameter for weight w;.

In the Sect. 2, we show the objective function of a new K-means method with
variable selection and the parameter estimation algorithm for the proposed method.
In the Sects. 3 and 4, the usefulness of the proposed method is demonstrated with
synthetic and real data. Finally, we present conclusions in the Sect. 5.

2 Method

2.1 Objective Function

The objective function of a new K-means method can be defined as

K N P

F(U.X,w) = ZZZ””‘WJ(X’/ xk,)z—l—/\lijlogwj, “4)

k=1i=1 j=1

where w is a P x 1 variable weight vector consisting of w; as an element, and
A > 0 is a regularizing penalty parameter for variable weights. The first term is
the within-cluster sum of squares and the second term is the regularizing penalty
term for variable weights. In this objective function, the entropy regularization
method (Miyamoto and Mukaidono 1997) is utilized to achieve the purpose of
calculating variable weights.

The membership parameter U and the weight parameter w satisfy the following
conditions.

M=

up = 1, uy € {0, 1}, )
=1
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P
dowi=10=<w,; <1 (6)
j=1

The constraint (5) implies that an object belongs to one and only one cluster and (6)
means the total of the weights is 1. w is the weight vector of the variables.

2.2 Algorithm

To estimate the parameters (U, X, w), an iterative algorithm is developed to
minimize the objective function (4), given the value of A. Specifically, this algorithm
has the following three steps.

« U step: Update U for fixed X = X*, w = w*.
This step is very similar to the ordinary K-means algorithm except for the
parameter w; .

P P
1, ifZWj(.X[j - )_ij)z = ij(xij - )_Clj)zv

Uix = = = (7
0, otherwise.
* X step: Update X for fixed U = U*, w = w*.
This step is the same as for the ordinary K-means algorithm:
N
Z Uik Xij
Ry =S ®)

N .
E Uik

i=1

 w step: Update w for fixed U = U*, X = X*.
This optimal solution is derived from solving the constrained optimization
problem with the method of Lagrange multipliers (see Appendix).

K N
exp(—A Y ) iy — %4)*)
K i

€))

w; =

- r K N ’
Z exp(—A Z Z Uit (Xim — Xim)?)
m=1 ki
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3 Simulation Study

In this section, we conduct a simulation study to evaluate whether the proposed
method can estimate the true cluster structure and the frequency of local minima.
In the beginning, we describe the procedure of generating data sets. The data set
is assumed to be composed of the part with the cluster structure and the part that
doesn’t have it. Let X®) be an N x p structured data matrix and X© be an N x ¢
noise part data matrix, where p is the number of relevant and ¢ is the number of
irrelevant variables. An N x (p + ¢) data matrix is written as X = [X©, X()].

X® is generated from multivariate normal distributions with unique mean
vectors in each cluster and with the same variance between clusters and vari-
ables (Adachi 2011). A variable vector of /-th object which belongs to cluster k,
x?i,)() is generated from the p-variate normal distribution N, (t,, v(6)I,) with mean
vector u;, and covariance matrix v(6)I,, where I, is an identity matrix. The variance
v(0) is a function of a degree of separation between clusters 6 and defined as

SSB x (1 —16)
0)= ——=,
v(6) o
where SSB = ZleNk(;Lk — jii)? is between-cluster sum of squares, § =

SSB/(SSB+SSW) = SSB/(SSB+Nv(6)) is a degree of separation between clusters,
= Zle Nk gy is a overall mean and SSW = Zle Niv(6) = Nv(0) is within-
cluster sum of squares.

The cluster size Ny was drawn from the discrete uniform distribution on [30, 70].
The mean vector u;, was drawn from the continuous uniform distribution on
[—10, 10]. The degree of separation between clusters 8 was set to 0.9. The variable

vector xxl)c) was generated from N,(p;,v(6)I,) and arranged in the row of X.

The elements of X© are generated from the continuous uniform distribution on
[—10, 10]. Total number of variables p + g was fixed to 10 and p took three values
(p = 8, 5, 2). This means an operation of the number of irrelevant variables. The
number of clusters K was set to 3. The regularizing parameters A for each condition
(p = 8, 5, 2) were set as A = 0.0001, 0.0005, 0.001, respectively. One hundred
data sets were generated for each condition.

In this simulation, 50 initial values were used in each trial and the solution which
gives the minimum value of the objective function was accepted as global minima.
We defined the solution with the value of the objective function which does not
match with the value of the objective function corresponding to global minima as
local minima.

Table 1 shows the quartile values of the Adjusted Rand Index (ARI: Hubert and
Arabie 1985) and the number of local minima for each condition. The ARI is a
measure of the similarity between two partitions (in this case, true partition and
clustering by proposed method), which has an upper bound of one. The proposed
method keeps high performance in the ARI, even when the number of irrelevant
variables to the clustering structure is increased. We find that the proposed method
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Table 1 The values of the ARI and the number of local minima for each condition

p=38 P=5 p=2
1st Med 3rd 1st Med 3rd 1st Med 3rd
ARI Proposed 0.93 096 098 0.90 092 096 056 0.79 093

K-means 092 096 098 0.60 091 094 0.02 033 046
Local minima  Proposed 9 25 37 25.8 375 45 38 45 48
K-means 1 4.5 10 3 22.5 41 40.8 46 48

have many local minima, but the proposed method has high values of the ARI
than ordinary K-means. Therefore, we can conclude that the algorithm is working
properly and proposed method is useful in spite of many the local minima.

4 Real Data Examples

In this section, the utility of the proposed method is examined through applications
to real data sets.

4.1 Iris Data Set

First, we use the iris data set (Fisher 1936) to compare our approach with the
W- K -means method of Huang et al. (2005). The tuning parameter A in the proposed
method and B in the W-K-means was set as A = 0.2, 0.1, 0.05and 8 = 2, 3, 4
respectively. Table 2 shows the ARI values and the weight values for each variable.
In this table, wl-w4 means weight values corresponding to variables (sepal length,
sepal width, petal length, petal width).

The weights of the K-means algorithm are regarded as fix to 1/[number of
variables]. So in this case, every weight equals 1/4. The proposed method and the
W-K-means have almost the same value of the ARI and better than the ordinary
K-means algorithm. We find the weights of the proposed method are more sparse
than the W- K -means. This property is desirable for selecting variables, because it is
easy to distinguish unnecessary variables.

4.2 Animal Data Set

In this subsection, we used the animal feature data set (Toyoda 2008) to illustrate the
behavior of the proposed method. This data set contains 13 features (Table 3) of 30
animals (Table 4) which are represented as dummy binary variables. The proposed
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Table 2 The ARI values and the weights for each variable

Proposed W-K -means

A=02 A=0.1 A = 0.05 =2 =3 B =4 K-means
ARI 0.89 0.89 0.89 0.87 0.89 0.89 0.73
wl 0.001 0.030 0.103 0.082 0.158 0.188 0.250
w2 0.094 0.226 0.275 0.191 0.238 0.247 0.250
w3 0.005 0.064 0.160 0.100 0.178 0.203 0.250
w4 0.900 0.680 0.462 0.627 0.425 0.362 0.250

Table 3 The estimated weights for each variable

Small Medium Large 2-footed 4-footed Hair Hoof Mane Feather Hunt Run Fly Swim
0.01 0.00 0.00 0.10 0.24 0.10 0.24 0.01 024  0.00 0.00 0.03 0.03

Table 4 Clustering result with the number of clusters for K = 3

Member
I  Boar, Cow, Horse, Deer, Zebra, Elephant, Pig
II Dog, Wolf, Fox, Bear, Monkey, Japanese raccoon, Cheetah, Tiger, Cat, Hyena, Leopard, Lion
Il Penguin, Ostrich, Chicken, Canary, Sparrow, Hawk, Owl, Eagle, Pigeon, Duck, Goose

method was applied to the animal feature data set with the number of cluster K = 3
and a regularizing parameter A = 1. The estimated weights and clustering result is
shown in Tables 3 and 4.

We find that 30 animals are classified into the mammals with hooves (I), without
hooves (II) and birds (III) cluster. These clusters correspond exactly with the
weight values. The “4-footed”, “Hoof” and “Feather” variables have a high value of
weights. And these variables characterize the three animal clusters.

Some variables such as body size (“Small”, “Medium”, “Large”), “Mane”,
“Hunt” and “Run” are weighted zero or almost zero. So we can find variables with
high weights which and variables without weights which are not useful to classify
the 30 animals.

5 Conclusion

In this paper, a new method of K-means clustering with regularization method was
proposed for variable selection. We developed an alternating least square algorithm
for estimating parameters. Through the simulation study and real data examples,
the advantage of the proposed method was shown. The proposed method showed
better performance than other clustering methods. The weight parameters facilitate
the interpretation of the result.

The proposed method have a regularization parameter A which is determined
in advance of analysis. However, there is no rational method to determine this
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parameter and we determined empirically in this paper. It is future work how the
parameter is determined.

Appendix

We describe the derivation of (9). We can rewrite (4) as
} P P
FUX,w) =Y w;D; + 17" > w;logw;, (10)
J J

where D; = Y, > ui(x;j — X)*. Let o be a Lagrange multiplier, the Lagrangean
function is written as

P P P
w(w,a):ijDj—i—)k_lijlogwj—}—a(ij—l). (11)
J J 7

Differentiating partially ¥ (w, a) with respect to w; and o, we get

M:Dj+,x—l(1+logw,-)+% (12)
aWj
W(w.e)
S = Xwint "

J
Solving 0y (w, ) /0w, = 0 gives
w; =exp(—AD;) x exp(—1 — Aw). 14)

Solving dvy(w, ) /da = 0 yields

> owi=1 (15)

J
By inserting (14)—(15), we obtain

-1

P
exp(—1 —Aa) = ¢ ) exp(-AD;) ¢ . (16)
J
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Then, inserting (16) to (14) yields

K N
. exp{ —A Z Z ui(xy; — %)
Wy = exp(=AD;) _ ki Can

3 P K N
Z exp(—AD,,) Z exp —A Z Z ik (Xim — Xtm)?
m m=1 k i
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Structural Representation of Categorical Data
and Cluster Analysis Through Filters

Shizuhiko Nishisato

Abstract Representation of categorical data by nominal measurement leaves the
entire information intact, which is not the case with widely used numerical or
pseudo-numerical representation such as Likert-type scoring. This aspect is first
explained, and then we turn our attention to the analysis of nominally represented
data. For the analysis of a large number of variables, one typically resorts to
dimension reduction, and its necessity is often greater with categorical data than
with continuous data. In spite of this, Nishisato S, Clavel JG (Behaviormetrika
57:15-32, 2010) proposed an approach which is diametrically opposite to the
dimension-reduction approach, for they advocate the use of doubled hyper-space
to accommodate both row variables and column variables of two-way data in
a common space. The rationale of doubled space can be used to vindicate the
validity of the Carroll-Green-Schaffer scaling (Carroll JD, Green PE, Schaffer CM
(1986) J Mark Res 23(3):271-280). The current paper will then introduce a simple
procedure for the analysis of a hyper-dimensional configuration of data, called
cluster analysis through filters. A numerical example will be presented to show a
clear contrast between the dimension-reduction approach and the total information
analysis by cluster analysis. There is no doubt that our approach is preferred to the
dimension-reduction approach on two grounds: our results are a factual summary of
a multidimensional data configuration, and our procedure is simple and practical.
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1 Likert-Type Scoring and Its Limitations

When we collect multiple-choice data, we often see ordered response options
(e.g., Never, Sometimes, Often, Always), and we typically use Likert-type
scoring (Likert 1932), namely, 1, 2, 3 and 4 for categories Never, Sometimes, Often
and Always, respectively. This scoring scheme captures linear relations between
questions (items). When the method was proposed 80 years ago, researchers were
mainly interested in finding a set of highly correlated items, and scores from such
a set were interpreted as scale values of a unidimensional scale. The product-
moment correlation is a measure of linear relations and Likert-type scoring captures
linear relations. Thus, their combination offered an ideal tool for constructing
unidimensional scales. However, times have changed since then, and researchers’
interests are now directed also towards multidimensional scales and non-linear
relations. Yet, Likert-type scoring is still as popular as it was 80 years ago.

Today the Likert-type scoring is frequently used in surveys, of which purpose
is to find what data are telling us, hence no need to restrict our attention only to
linear relations. Likert-type scoring employs an interval scale, but if our aim is
to tap into all information in data, data must be free from metric constraints and
our preferred data should be expressed in nominal measurement, the suggestion
on down-grading of input measurement (Nishisato 1999). In understanding this
paradoxical suggestion, it is important to distinguish between the nature of nominal
measurement (i.e., the least permissible number of arithmetic operations) and the
scaling of nominal measurement (i.e., modifying the least constrained numerals,
thus the greatest number of possible arithmetic operations, to upgrade its scale
level). Our task lies in the scaling. The object then is to determine category scores
without metric restrictions as regression on the data, that is, those values that
reproduce or approximate the data in the least-squares sense (Nishisato 2012a).

2 Complete Representation of Categorical Data

Let us consider the following multiple-choice items:

* Q1. Do you support Darwin’s Theory of Evolution?

1 = No; 2 = yes, but not completely; 3 = yes absolutely
* Q2. Do you support death penalty?

1 =no; 2 = a little; 3 = strongly

Suppose that we obtained responses from 10 people. Table 1 shows responses
expressed in Likert-type interval-scale format (left-hand side) and the nominal-scale
format(right-hand side). The distribution of 1’s in the latter format represents the
entire unconstrained information in the current data.

In the nominal-scale representation, each subject’s response to one item is (1,0,0),
(0,1,0) or (0,0,1). These response patterns can be regarded as coordinates of a
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Table 1 Two formats of data

. Likert Nominal
representation
Subject Item 1 Item 2 Item 1 Item 2
1 3 2 001 010
2 1 3 100 001
3 2 2 010 010
4 3 1 001 100
5 2 1 010 100
6 1 3 100 001
7 1 2 100 010
8 3 3 001 001
9 1 3 100 001
10 3 2 001 010

three-dimensional graph. The responses from ten subjects can be expressed by
(f1,0,0), (0, f,0) and (0,0, f3), where fi + f> + f3 = 10. When we connect the
three points, we obtain a triangle. This is a geometric form of an item, which spans
2-dimensional space as a triangle. Typically two items are not perfectly correlated,
thus the corresponding two triangles span a 4-dimensional space because each
3-category item requires a 2-dimensional space. The correlation between two items
then can be defined as the projection of one triangle onto the space of the other
variable, which Nishisato (2006) has shown to be equivalent to Cramér’s coefficient.

If the number of response categories is 4, a response to each item is one of the
patterns (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1), and these coordinates generate
a pyramidal form in 3-dimensional space, or a 3-polytope; if the number is 5, the
item will yield a 4-polytope; and so on. The correlation between two items of a
k-polytope and an m-polytope can be calculated through the forced classification
procedure (Nishisato 1984; Nishisato and Baba 1999) as shown in Nishisato (2007),
or by Cramér’s formula.

3 Doubled Hyper-Space for Complete Representation

From the point of view of quantification theory (e.g., dual scaling, correspondence
analysis), the 10x6 response-pattern matrix of Table 1 yields four compo-
nents (i.e., the rank of the table minus 1 =5—1 =4, see Nishisato 1980), that
is, four sets of subjects’ weights and four sets of response-option weights. However,
it is well known that subject’s scores and response-option’s weights do not
span the same space. This discrepancy can be eliminated by doubling the space
dimensionality (Nishisato 1980). In other words, by expanding space dimensionality
from four to eight, we can introduce the coordinate system which allows us to plot
both column variables and row variables in a common space. This corresponds to
the analysis of the super-distance matrix (Nishisato and Clavel 2010) as shown in
Table 2. This space that accommodates both within-set distances and between-set
distances is called doubled hyper-space in the current paper.
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Table 2 Super distance matrix

Options of Item 1 Options of Item 2
Options of Item 1 Within-set distance Between-set distance
Options of Item 2 Between-set distance Within-set distance

Table 3 Contingency table of Items 1 and 2

Item 2 Item 2 Item 2
Option 1 Option 2 Option3
Item 1 Option 1 0 1 3
Item 1 Option 2 1 1 0
Item 1 Option 3 1 2 1

4 Vindication of the Carroll-Green-Schaffer Scaling

Let us consider the two questions in our example. Their response-pattern
representation is a 10x6 matrix, corresponding to Items 1 and 2 of the nominal-scale
format in Table 1. This data set can also be expressed as the options-by-options
contingency table (Table 3). In the latter form, it is known that the options of
Question 1 and those of Question 2 (i.e. between-set distances) do not span the
same space. The Carroll-Green-Schaffer scaling (Carroll et al 1986) transforms
the contingency table format to the 10x6 response-pattern format so that the six
options are now all column variables (i.e., within-set variables), thus span the
same space. Greenacre (1989) criticized the Carroll-Green-Schaffer scaling as
incorrect. Notice, however, that Nishisato (1980) presented a thorough comparisons
of scaling these two formats, showing (1) the two sets of option weights for
the contingency table are identical to the first two sets of weights from the
response-pattern matrix, and (2) the response-pattern format yields two additional
components (see Nishisato 1980, for a numerical example). This point was written
by Nishisato, after seeing Greenacre’s criticism, but the editor of that journal
rejected Nishisato’s paper without review, stating that the matter had already been
resolved in Greenacre’s favor. Nishisato’s point then was that the six response
options could be accommodated in the same space, not in 2-dimensional space, but
in 4-dimensional space, the idea of doubled hyper-space. In other words, one can
place two sets of options in columns, subject the data to quantification, and plot their
positions in the same space, provided that we double the dimensionality of space.
In conclusion, the Carroll-Green-Schaffer scaling is correct, so long as we double
the dimensionality of space. Furthermore, if we wish to accommodate not only all
options of two items, but also all subjects in common space, we need 8-dimensional
space (i.e., additional discrepancies between the space for subjects and the space
for items require the added dimensionality).
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5 Cluster Analysis of Variables Through Filters

Multidimensional analysis of categorical data in doubled hyper-space was the view
advanced by total information analysis or comprehensive dual scaling (Nishisato
and Clavel 2010). Their analysis starts with extracting all components, and
constructs the super-distance matrix, consisting of within-set and between-set
distances, using all components. The idea behind their insistence of using all
components lies in the hope to view the undistorted configuration of data. Due to
the doubled dimensionality of space, they proposed to apply the k-means clustering
to the complete information contained in this super-distance matrix. Nishisato
(2012b) suggested cluster analysis of only the between-set distance matrix since
our primary interest lies in the relation between row variables and column variables,
and proposed a simple minimum-distance clustering procedure, in which only the
minimum distance in each row and the minimum distance in each column are
retained for identifying associations.

The current paper proposes yet another procedure of clustering, called cluster
analysis through filters. From the complete between-set distance matrix, the
p-percentile distance is calculated, which is then used to filter the distances.
We discard all distances greater than the p-percentile point, and from the remaining
distances we identify clusters of variables. The percentile point can be changed to
identify tighter or looser clusters. This procedure is purely descriptive and does not
involve the problem of identifying the number of clusters or mutually exclusive
clusters. As a few preliminary investigations have demonstrated, the best value of p
depends on data sets and on the nature of clusters, that is, mutually exclusive versus
overlapping. Thus, the problem of choosing the best value of p will be left for future
research.

6 Example: Heuer’s Suicide Data

Heuer’s suicide data (Heuer 1979) are often used in psychometrics (e.g. Van der
Heijden and De Leeuw 1985; Nishisato 1994). The data are frequencies of 9 types of
suicides collected from 17 age groups of each of the 2 gender groups (Table 4). It is
known that the data contain 2 major components which account for 90 % of the total
information. Therefore, the results are typically graphed in two dimensions (Fig. 1),
using symmetric scaling (i.e., row variables and column variables are graphed
in two dimensions, as if they span the same space) and conclusions are drawn
directly from the graph. To be exact, however, the relations among those variables
in this 2-dimensional graph requires a 4-dimensional space to account for 90 % of
information, and our 2-dimensional graph is a distortion of the correct configuration.
More specifically, the discrepancies in angles between the axis for row variables and
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Table 4 Ages, genders and forms of suicides

sm gsH gsO hng drwn gun knf jmp oth
Male 10— 4 0 0 247 1 17 1 6 9
16— 348 7 67 578 22 179 11 74 175
21— 808 32 229 699 44 316 35 109 289
26— 789 26 243 648 52 268 38 109 226
31- 916 17 257 825 74 291 52 123 281
36— 1,118 27 313 1,278 87 293 49 134 268
41— 926 13 250 1,273 89 299 53 78 198
46— 855 9 203 1,381 71 347 68 103 190
51— 684 14 136 1,282 87 229 62 63 146
56— 502 6 77 972 49 151 46 66 77
61— 516 5 74 1,249 83 162 52 92 122
66— 513 8 31 1,360 75 164 56 115 95
71— 425 5 21 1,268 90 121 44 119 82
76— 266 4 9 866 63 78 30 79 34
81— 159 2 2 479 39 18 18 46 19
86— 70 1 0 259 16 10 9 18 10
90+ 18 0 1 76 4 2 4 6 2
Female 10— 28 0 3 20 0 1 0 10 6
16— 353 2 11 81 6 15 2 43 47
21— 540 4 20 111 24 9 9 78 67
26— 454 6 27 125 33 26 7 86 75
31- 530 2 29 178 42 14 20 92 78
36— 688 5 44 272 64 24 14 98 110
41— 566 4 24 343 76 18 22 103 86
46— 716 6 24 447 94 13 21 95 88
51— 942 7 26 691 184 21 37 129 131
56— 723 3 14 527 163 14 30 92 92
61— 820 8 8 702 245 11 35 140 114
66— 740 8 4 785 271 4 38 156 90
71— 624 6 4 610 244 1 27 129 46
76— 495 8 1 420 161 2 29 129 35
81— 292 3 2 223 78 0 10 84 23
86— 113 4 0 83 14 0 6 34 2
90+ 24 1 0 19 4 0 2 7 0

Notes: sm = splidmatters, gsH=gas at home, gsO=gas others, hng=hanging,
drwn = drowning, gun=guns and explosives, knf=knifing, jmp = jumping, oth = other
means

the axis for column variables (Nishisato and Clavel 2003) are 71.8° for component 1
and 74.5° for component 2, both of which are definitely not small enough to ignore.
Since a 4-dimensional graph is beyond our ability to present here, we must resort
to just pointing out the problem inherent in our traditional 2-dimensional so-called
symmetric graph. This graph is useful only if these discrepancy angles are minimal,
which is not the case with the current example.
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Solution 1 and Solution 2
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Fig. 1 Two-dimensional symmetric scaling plot of Heuer’s data

In our approach, we first extracted all eight components, in terms of which the
between-set distances were calculated (Table 5, reproduced here from Nishisato
2012b). Cluster analysis of the between-set distance matrix is then subjected to 2
filters, the 50 percentile and the 25 percentile filters (Table 6). These filters were
chosen just for the purpose of demonstration, not based on any rationale. We can
immediately see that

e There are predominant suicide types: Use of solid and liquid matters (drugs,
poisons), hanging, knives, jumping and other means.

e There are gender and age related types: young males and gas, old females and
drowning, males and guns/explosives.

This is a summary of the actual distribution of information. If we see any
discrepancies between the symmetric graph and the filtered distances, the latter
is always closer to the information in the data. Wouldn’t this simple summary be
more useful and informative than the traditional grossly distorted analysis through
dimension reduction? The traditional 2-dimensional graph looks beautiful, but it has
a serious trap that it is an overlay of two separate 2-dimensional configurations onto
the same space, making a direct interpretation totally illogical.
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Table 5 Age and suicide between-set distance table

sm gsH gsO hng drwn gun knf jmp oth

Male 10- 1.21 1.29 1.39 0.90 1.35 1.17 0.99 1.21 1.20
16— 0.60 0.68 0.81 0.51 1.00 0.66 0.51 0.69 0.50
21- 0.60 0.63 0.74 0.64 1.04 0.68 0.60 0.72 0.48
26— 0.57 0.62 0.73 0.62 1.01 0.68 0.57 0.70 0.47
31- 0.51 0.60 0.73 0.56 0.97 0.66 0.51 0.65 0.42
36— 0.47 0.59 0.74 0.46 0.92 0.65 0.42 0.60 0.41
41- 0.50 0.62 0.76 0.42 0.92 0.64 0.39 0.62 0.45
46— 0.53 0.65 0.78 0.39 0.93 0.63 0.38 0.63 0.48
51— 0.53 0.67 0.83 0.33 0.89 0.67 0.34 0.61 0.51
56— 0.54 0.70 0.88 0.32 0.88 0.70 0.34 0.60 0.55
61— 0.57 0.74 0.92 0.32 0.87 0.73 0.36 0.62 0.59
66— 0.63 0.80 0.99 0.37 0.89 0.79 0.41 0.65 0.66
71— 0.65 0.83 1.03 0.39 0.88 0.84 0.44 0.66 0.70
76— 0.70 0.88 1.07 0.44 0.90 0.88 0.49 0.70 0.75
81— 0.70 0.91 1.12 0.47 0.87 0.94 0.51 0.69 0.79
86— 0.78 0.96 1.15 0.52 0.94 0.96 0.58 0.77 0.85
90+ 0.83 1.00 1.18 0.57 0.98 0.99 0.62 0.82 0.89
Female 10— 0.57 0.81 1.04 0.73 0.94 0.98 0.67 0.61 0.66
16— 0.6 0.90 1.12 0.91 1.00 1.12 0.83 0.71 0.75
21- 0.62 0.91 1.15 0.92 0.96 1.16 0.83 0.70 0.77
26— 0.52 0.80 1.05 0.81 0.90 1.04 0.72 0.60 0.65
31- 0.48 0.80 1.06 0.77 0.85 1.04 0.67 0.56 0.64
36— 0.42 0.75 1.01 0.71 0.82 0.99 0.62 0.52 0.58
41- 0.35 0.72 1.01 0.59 0.73 0.95 0.50 0.42 0.56
46— 0.36 0.74 1.02 0.59 0.72 0.96 0.50 0.43 0.58
51— 0.37 0.75 1.04 0.55 0.68 0.96 0.47 0.42 0.59
56— 0.41 0.78 1.07 0.58 0.67 0.99 0.50 0.45 0.63
61— 0.46 0.81 11 0.59 0.66 1.03 0.52 0.47 0.67
66— 0.52 0.85 1.15 0.60 0.66 1.05 0.54 0.51 0.73
71— 0.58 0.90 1.19 0.66 0.68 1.11 0.61 0.56 0.79
76— 0.54 0.87 1.18 0.67 0.68 1.10 0.60 0.52 0.76
81— 0.52 0.86 1.17 0.68 0.70 1.10 0.61 0.51 0.75
86— 0.57 0.87 1.17 0.71 0.80 1.10 0.65 0.56 0.77
90+ 0.59 0.88 1.19 0.71 0.78 1.11 0.64 0.57 0.79

In practice, one should try other filters as well, and choose the one best suited
for the interpretation of data. If all variables are to be included in clustering,
the minimum distances of individual rows and columns (Nishisato 2012b) will
guarantee it. Another way of making sure that all variables are equally involved in
clustering is to consider conditional filtering such that the minimum three distances,
for example, are kept in each row and each column.
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Table 6 Sifting with filters 50 and 25 percentiles

Gender-Age sm gsH gsO hng drwn gun knf jmp oth
M 10-15 90%*

M 16— (60) 68 (51) 66 (51) 69 (50)*
M21- (60) 63 64 68 (60) (48)*
M 26— 57 62 73% 62 68 57 70 47)*
M31- (51) (60) 73%* (56) 66 (51) 65 42)*
M 36— 47) (59)* (46) 65 42) (60) 41)*
M4l1- (50) 62 42) 64 39)* 62 45)
M 46— (52) 65 39) 63* (38)* 63 48)
M51- (53) 67 33)* 67 34) 61 (51)
M 56— (59) 70 32)* 70 34 (60) (55)
M61- (57) 32)* (36) 62 (59)
M 66— 63 37)* 41) 65 66
M71- 65 39)* 44) 66 70

M 76— 70 44)* 44) 66 70
M 81— 70 47)* (51) (60)

M 86— (52)* (58)

M 90— B7)* 62

F 10— B37)* 67 61 66

F 16— 62°%

F21- 62* 70

F 26— (52)* (60) 65
F31- (48)* 67 (56) 64

F 36— 42)* 62 (52) (58)
F41- 35)* 59) (60) (42) (56)
F 46— 36)* (50) (50) (43) (58)
F51- 37)* (55) 68 47) 42) (59)
F 56— 41)* (58) 67 (50) 45) 63
Fo6l- (46)* 59) 66 (52) 47) 67

F 66— (52) (60) 66 (54) (51)*

F71- (58) 66 68 61 (56)*

F 76— 54) 68 68 69 (52)*

F 81— (52) 68 70 61 (51)*

F 86— 57 65 (56)*

F 90— 59) 64 (57)*

Note 1: M = male; F = female
Note 2: Regular numbers indicate results by the 50 percentile filter, (bold-faced numbers in
parentheses) by the 25 percentile filter, and the asterisks* by minimal values in each row and

column

7 Concluding Remarks

The idea of doubled hyper-space for data analysis places a heavy onus on the
researchers if they are to follow the traditional multidimensional graphic approach.
The present study offers a simple alternative procedure of cluster analysis through
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filters, which makes it possible to deal with doubled hyper-space without distorting
the configuration of multidimensional data. It is a descriptive way of deciphering
a complex cloud of data points, and offers some promise even for analysis of
exceptionally high-dimensional data. Cluster analysis is a dimension-free process,
and is seemingly suited to deal with doubled hyper-space.

Acknowledgements Thanks are due to José Garcia Clavel for the calculation of between-set
distances of Heuer’s data.
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Three-Mode Hierarchical Subspace Clustering
with Noise Variables and Occasions

Kensuke Tanioka and Hiroshi Yadohisa

Abstract Three-mode data are observed in various domains such as panel research
in psychology studies. To conceive clustering structures from three-mode data as an
initial analysis, a clustering algorithm is applied to the data. However, traditional
clustering algorithms cannot factor in the effects of occasions. In addition, it is
difficult to understand these typically high-dimensional data. Although Vichi et al.
(J Classif 24(1):71-98, 2007) proposed three-way clustering, their algorithms are
based on complicated assumptions.

We propose three-mode subspace clustering based on entropy weights. The
proposed algorithm excludes complicated assumptions and provides results that can
be easily interpreted.

1 Introduction

Three-mode data are described as X € RIXIVIXIKI where 7, J and K represent
a set of objects, variables, and occasions respectively, and | - | represents the
cardinality of sets. Three-mode data are observed in various domains such as
marketing science, Web mining, and psychology. For example, in panel research,
I, J and K are described as a set of participants, a set of questions, and a set
of years, respectively. Also, there are many situations in which the clustering
algorithm can be applied to three-mode data to reveal the clustering structures of
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objects. In such cases, typically, three-mode data are converted into two-mode data
Xk = (X0, X2, , X.g) where X, € RV js described as two-mode
data under the occasion k (€ K) and is applied to the clustering algorithm for
two-mode data. However, such a strategy leads to three problems. First, X ; jx tends
to become high dimensional data since X ; jx has a number of |J| x | K| variables.
Therefore, this approach leads to the curse of dimensionality (Bishop 2006). Second,
it is difficult to interpret the clustering results from high-dimensional data. Finally,
we note that the strategy does not factor in occasions.

To overcome these problems, subspace clustering algorithms may be applied
to the data X; jx. There are two kinds of subspace clustering approaches. In the
first approach, subspace variables are described as a few new variables derived
from a linear combination of the original variable spaces with strong assumptions.
For three-mode data, Vichi et al. (2007) proposed Tucker3 Clustering (T3Clus)
and Three-way Factorial k-means (3Fk-means) based on this approach. These
algorithms consider the factors of variables and occasions, respectively provide the
clustering results, and simultaneously visualize features for the clusters. However,
by this approach, it is difficult to interpret the results and eliminate the effects of
noise variables (Parsons et al. 2004), where noise variables are defined as variables
that do not include clustering structures and mask the true clustering structures.
In addition to that, these algorithms assume that the clusters are hyperspherical
and each cluster has the same number of objects since these algorithms are based
on the least-squares criterion. In the other approach, a subspace is described as
a subset of V, K for each cluster so that these variables and occasions have
clustering structures through the weights of variables and occasions for each cluster
are estimated (Parsons et al. 2004). The approach is simple, and hence it is easy
to interpret the clustering results. However, subspace clustering based on the three-
mode data approach has not been proposed so far. For two-mode data, clustering
objects on subsets of attributes (COSA), which is a subspace clustering algorithm
based on this approach, has been proposed by Friedman and Meulman (2004).
In COSA, it is easy to interpret the model based on entropy for which the subspace
is constructed.

Then, in this study, we propose a new hierarchical subspace clustering algorithm
for three-mode data based on COSA. The proposed algorithm consists of two steps.
In the first step, weights for variables and occasions on each cluster are estimated
such that effects of noise variables are reduced. In the second step, two clusters
are combined based on the minimum distance rule. These steps are iterated till the
number of clusters becomes one. The proposed algorithm has several advantages for
classifying objects from three-mode data. First, the proposed algorithm can detect
clusters on subsets of variables and occasions. In short, the proposed algorithm
eliminates the effects of masking variables. Then, researchers tend to easily conceive
the features of each cluster. Finally, the proposed algorithm does not assume that
each cluster has the same number of objects and does not determine the number of
clusters beforehand since it is a hierarchical clustering algorithm.
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2 Objective Function and Update Formula

In this section, we introduce a new objective function for the proposed hierarchical
clustering algorithm and define an update formula for weight functions of variables
and occasions.

2.1 Objective Function

Here we define the proposed objective function for three-mode subspace clustering
based on COSA.

Definition 1 (Objective function). When X jx, parameters A(> 0) and n(> 0)
(these parameters control the scale of weights for variables and occasions, respec-
tively) are given as input parameters, the objective function Q and the optimization
problem are defined as follows:

Q({wg}lc| {zg}lcl) = Z {(ugug(ugug - 1))_1(wg Qug) D(zy ®ug)+
g€G

|K|Aw] log(wy) + |J nz;, log(zg) + |K|Alog(|]) + |J|nlog<|1<|)}

() .
Z |Cg|(|Cg| — 1) Z Z Dsr [Wg,zg] — Min

SEC IEC

1,
Dy we.zg] = Z Z {WkgZkgdsiji + Awjg log(wjg) + Nzkg l0g(2kg) }
jelkek

+ |K|Alog(1/]) + |/ [nlog(IK])

subject to:

ijg =1, Wig = 0, szg =1, kg = 0, (D

jeJ kek

where, ® indicates the Kronecker product, G and Cg,(g € G) represent
set of indices for each cluster and clusters, w, = (Wig, Wag,"-- ,lelg)T and
Zg = (21g,228:777 .7 K|g)T respectively, indicate the weights of variables j and
occasions k on cluster C,, respectively, uy = (uig, g, * ,uj1|g)" show the
indicator vectors, u;, = 1 if object i belongs to C, else u;; = 0, log(wg) =
(log(wig). log(wag). -+ loglwys ). logze) =  (log(aig). loglzag). -+ .
log(zk|¢))", and
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Dy Dy --- Dy

_ Dy Dy .-+ Dy
D = . . . . )

Dy Dy -+ Dk

Dj. = (dg) represents the dissimilarity matrix between objects (s, € 1) for
variable j and occasion k.

wj, log(wj) and zx, log(zx,) are penalty terms for the weights of variables and
of occasions respectively, and | K|A log(|/J|) and |J|Alog(|K|) are added to satisfy
D*P{w,.z,] > 0 for Q.

The objective function provides large weight to the variable j and occasion k
on C, whose average distance of s, € C, is small; in short, we consider variable
J and occasions k on C, whose average distance of 5,7 € C, is large as masking
variables and the weight become small.

2.2 Update Formula for Weights of Variables and Occasions

In this subsection, we show the two propositions for updating formulas of w, and
Zg and D3 [w ¢ Z¢] minimizing the objective function Q. The proposed algorithm
adopts an alternative least squares fashion approach. Precisely, updating w, and z,
for g € G is iterated and the estimated weights for both w, and z, are guaranteed
for monotone non-increasing objective functions, because each regularized term of
the objective function Q is a convex function.

Proposition 1 (Update formula for weighs of variables j on C,, w,). When Q
and zg are given, g, (g € G), minimizing Q subject to (1) is described as follows:

_1 _
exp {( —|K|Aufugulug — 1)) (E; ®ug) D(zg ® ug)}

Wg = — - ,
17 exp {( —|KAulue@lug — 1)) (E;jQug)TD(zy ® ug)}
—1¢(K)
exp {(—[K I
< (K) _
Wig = ) Sjg — Z Z ZZkg stjk»
S jerexp {(<IKIHT S |Cg|<|Cg| D (G, iec iek
where Ej; = (epy)s|x|s) IS a unit matrix, exp{x} = (exp{xi},exp{xa},---,

exp{x,}), x € R", and 1; represents a vector that consists of 1 with length of | J |.
Next, we show the update formula for z

Proposition 2 (Update formula for weighs of occasions k on Cq, z,). When Q
and wg are given, 2g, (g € G), minimizing Q subject to (1) is described as follows:
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T T -t T’
exp{(—|J|nugug(ugug—1)) (Ex ®@ug)' D (wg®ug)}

% = —1 7 ,
1,7( exp {( — |J|nugTug(u§ug — 1)) (Ex @ug)™D' (wy ® ug)}
1)
exp{(—lJln) 'S } |
)
e S = EaeT T 2 2 2 Wisdes
Si-ex exp {1711 S GG =)

SEC,1EC, jEJ

where E x = (ep)|k|x|k| i @ unit matrix and 11, represents a vector that consists
of 1 with a length of |K|.

2.3 Dissimilarity Between Clusters

To determine a combined criterion between clusters based on Q, we introduce
dissimilarities based on COSA. The similarity between clusters come to be asym-
metry because each cluster has different weights for variables and occasions. Then,
the asymmetric similarity is converted into a symmetric similarity.

Definition 2 (Dissimilarities for three-mode data between clusters). When wy
and z, are calculated by an update formula, dissimilarities used for the proposed
algorithm are defined as follows:

D(Cy. Chl wg. Wi zg.20)" = ul max(2(C,. Chlwy.z,). 2(Cy. Cilwi.zi))un.

(2
D(Cq, Ch| W, Wi, zg,21)? = (ugugufuh)_l{(wgh ® uy)" D (I}, ® up)
+ |K|wii logwh,) + |J |2 log(zh,)
+ |K|Alog([/]) + |J|?710g(|K|)}, 3

where
D(Cq, Chlwg.zg) = (”gTr”g”;”h)_l {(Wg ® diagiuy})" D (zy ® diag{u,})
+ |Klwy logw)ueuj + |71z log(ze)ugui, + KA log(|J uguj
+ 1 |nlog( K Jugu |.
max(4, B) = (max(ag, by))mxn, A, B €R"™",
W;h = (max(wig, wip), max(wag, o), -+ , max(wy g, Wisii))s

#
Zyy = (Max(zig, z1n), Max (22, 220), **+ , Max(Zk |- 2K |h))-
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20 and 2@ are used to combine two clusters based on the minimum distance rule,
and the combination leads to Q minimized for the greedy minimization strategy.

3 Algorithm

In this section, we discuss the proposed algorithm. For agglomerative hierarchical
clustering, initial clusters are described as singleton clusters. Then, w and z; of the
initial clusters cannot be calculated since these updated formulae need more than
two objects in each cluster.

To overcome the problem for the initial weights, two approaches are determined.
For the first approach, when the variation of subclusters (clusters with a small
number of objects), is less than the thresholds obtained by researchers, w, and zg
are calculated on the basis of subclusters and are generated from X ; jx by using
BIRCH (Zhang et al. 1996) as the initial clusters. Although this approach can be
applied to large data, the approach cannot be applied if the number of objects is
small. For the other approach, the k-nearest neighbor KNN is used for X ; jx with the
number of objects being small. The approach is defined by Friedman and Meulman
(2004).

Definition 3 (Determining the initial KNN indicator matrix). When X ; jx and
a parameter of the KNN, p € {1,2,---,|I|}, are given, the KNNindicator vector
vi = (i1, vi2, -+, vi|q)) is defined as follows:

e — 1 (s € KNN(i))
“7 o (otherwise),
KNN(i) indicates {s| D} < Dijp}, D = 1; ® e)'D(1g ® ey), E; =
(e1,e2,---,eyy)) is a unit matrix and e; € RVI(i e I') represents a column vector
of E; and D;(,) represents the order statistics of {Di‘v}‘ls!:ll.
Then, based on Definition 3, the algorithm for calculating initial weights w;, z; is
presented as Algorithm 1, and the proposed subspace clustering for three-mode data
is shown as Algorithm 2. Algorithm 1 consist of two steps. First, a KNN indicator
vector for each object is calculated from X ; jx and p. Second, Calculating weights
for variable j and occasion k on V; = {i| vy = 1,i € I,s € KNN(i)} based on
like the alternative least squares fashion till a stop rule is satisfied. For Algorithm 2,
it also consists of two steps. First, weights for variable j and occasion k on clusters
C.(g € G) are calculated. Second, two clusters are combined based on minimum
distance rule. Then, these steps are iterated till the stop rule is satisfied.

We define some notations to describe Algorithms 1 and 2 (see Fig. 1) such

that Q = (’)Q({wg}llGI, {zg}llGI), @(zfﬁ,zi@IC*, C¥.wg,w)) represents z Cor-

responding to 2(C, Crlwi.wii.z5.z5). (€ € {1.2}) and Qp = (ufu,(lu, —
1 -

D) (wy ®ug)" D(zy Quy) + | K[AwE log(we) +|J 12! log(zg) + | K| A log(|J )+

|/ log(|K1).



Three-Mode Hierarchical Subspace Clustering with Noise Variables and Occasions 97

Algorithm 1: Calculating initial weights Algorithm 2 : Proposed subspace clustering for three-mode data

: Set initial weights w; < 1/|J| and z; — 1/ |K]| : Set initial weights wg, Z,,(g € G), 1 < L and g « 1

1 1
2: Set initial parameters 1, n 2: Set initial indicator vectors uy, (g € G)
3: Set & > 0 to a small positive number 3: Set initial parameters 4, n
4: fori=1to |I| do 4: Set € > 0 to a small positive number
5:  Compute KNN(i) and v; 5: While ul. u - = || do
6: end for 6:  Compute {g*,h*} = argmin, , 7 (Cy, Ch|Wg, Wi, 2¢, 1)
Tt 1 7 for g =11to |G| do
8: While [0 — (V0| > ¢ do 8 I P N e A )
9: fori=1to|l|do 9 end for
10: for j=1to|/| do 100 6 L@ @
H: Update D, ) gl @ @ @
12:  end for 1 2 =92 2.57(C.Crowd w))
13: for k=1to |K| do 122 q—q+1:G—{g|h* #g.8€G}
14: Update (+)z; 130 setzge — 1g/[K|
15: end for 14: While |Q — V0| > e do
16: end for 15: for j=1to|/| do
17 — 141 16: Update (1@
18:end while 17: end for 8
18: for k =1to |[K| do
19: Update ('“)zifi)
20: end for
210 te—t+1
22:  end while
23:end while

Fig. 1 Algorithms 1 and 2
4 Numerical Example

In this section, we show the numerical example using “background to the
Electronics Industries Data” (Ambra 1985). The data consist of 24 countries,
6 industries, and 7 years as I, J, and K, respectively. The variables consist
of information science (INFO), radio and television equipment (RADI),
telecommunications products (TELE), electromedical equipment (ELET), scientific
equipment and components and parts (COMP). Similarly, the occasions are
observed each year from 1978 to 1985 but excluding 1981. Each cell shows a
specialization index and these values are determined as “the proportion of the
monetary value of an electronic industry compared to the total export value of
manufactured goods of a country compared to the similar proportion for the world
as whole” (Ambra 1985).

We apply the proposed clustering algorithm to the data with A = 1/35,n =
1/60, and p = 3. Then, we interpret the clustering results, for when there are three
clusters, it is easy to interpret the results. We show the clustering results and weights
of variables and occasions in Table 1 and Fig. 2.

From Fig. 2, each cluster is embedded in a differential subspace of variables and
occasions from the other clusters. Cluster 1 tends to have similar values for variables
of RADI and occasions of the old years under the period. Objects in cluster 2 are
mainly connected in INFO for the variables, and the middle of the period for the
occasions. For cluster 3, there are INFO, RADI, and COMP for variables and the
end of the period for the occasions.
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Table 1 Clustering results for “background to the Electronics Industries Data”

I CA US AS DA FR RF IR IT PB RU NO SP SV YU JP BL AU FI PO NZ GR CH TU
¢1 1111111111 111 222 22 3 3 3 3

Weights for variables
Cluster 1 ~ Cluster 2 Cluster 3

DD]DED =00 DD==DD

INFO RADITELE STRU ELET COMP INFO RADITELE STRU ELET COMP INFO RADITELE STRU ELET COMP

00 01 02 03 04 05

00 01 02 03 04 05
00 01 02 03 04 05

Weights for occasions
Cluster 1 Cluster 2 Cluster 3

heee dodlnoeo 3 0

1978 1979 1980 1982 1983 1984 1985 1978 1979 1980 1982 1983 1984 1985 1978 1979 1980 1982 1983 1984 1985

00 01 02 03 04 05
00 01 02 03 04 05

00 01 02 03 04 05

Fig. 2 Weights of variables and occasions for each cluster

5 Conclusion

In this paper, we proposed hierarchical subspace clustering for three-mode data for
considering the effects of variables and occasions. The proposed method provides
variables to reduce the effects of masking variables and features of clusters through
the weight for variables and occasions. In addition to that, it is easy to understand
the clustering results since the proposed algorithm does not include complicated
assumptions. For future study, we aim to optimize the objective function with A and
n as COSA.
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Analysis of Data and Models



Bayesian Methods for Conjoint Analysis-Based
Predictions: Do We Still Need Latent Classes?

Daniel Baier

Abstract Recently, more and more Bayesian methods have been proposed for
modeling heterogeneous preference structures of consumers (see, e.g., Allenby
et al., J Mark Res 32:152-162, 1995, 35:384-389, 1998; Baier and Polasek, Stud
Classif Data Anal Knowl Organ 22:413-421, 2003; Otter et al., Int J] Res Mark
21(3):285-297, 2004). Comparisons have shown that these new methods compete
well with the traditional ones where latent classes are used for this purpose
(see Ramaswamy and Cohen (2007) Latent class models for conjoint analysis.
In: Gustafsson A, Herrmann A, Huber (eds) Conjoint measurement — methods
and applications, 4th edn. Springer, Berlin, pp 295-320) for an overview on these
traditional methods). This applies especially when the prediction of choices among
products is the main objective (e.g. Moore et al., Mark Lett 9(2):195-207, 1998;
Andrews et al., ] Mark Res 39:479-487, 2002a; 39:87-98, 2002b; Moore, Int J
Res Mark 21:299-312, 2004; Karniouchina et al., Eur J Oper Res 19(1):340-348,
2009, with comparative results). However, the question is still open whether this
superiority still holds when the latent class approach is combined with the Bayesian
one. This paper responds to this question. Bayesian methods with and without latent
classes are used for modeling heterogeneous preference structures of consumers
and for predicting choices among competing products. The results show a clear
superiority of the combined approach over the purely Bayesian one. It seems that
we still need latent classes for conjoint analysis-based predictions.
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1 Introduction

Since many years conjoint analysis has proven to be a useful modeling approach
when preference structures of consumers w.r.t. attributes and levels of competing
products have to be modeled (see, e.g. Green and Rao 1971; Green et al. 2001;
Baier and Brusch 2009). Preferential evaluations of sample products (attribute-
level-combinations) are collected from sample consumers and for each consumer
the relation between attribute-levels and preference values is modeled. Then, these
individual models can be used for predicting choices of these consumers in different
scenarios. Since in conjoint analysis typically the number of evaluations is low
compared to the number of model parameters and many consumers show a similar
preference structure, various approaches have been proposed that assume identical
model parameters so that the ratio between evaluations and model parameters and —
hopefully — the choice predictions using these model parameters can be improved.

Besides approaches that assume the same model parameters across all con-
sumers especially latent class approaches have been proposed for this purpose (see
Ramaswamy and Cohen 2007 for an overview on these traditional methods).
Here, a division of the market into segments or (latent) classes with homogeneous
preference structures is assumed and modeled by identical model parameters within
a class. During the modeling step, the class-specific model parameters as well as
the number and the size of the classes have to be estimated. Latent Class Metric
Conjoint Analysis (shortly: LCMCA, DeSarbo et al. (1992)) is one of the most
popular approaches of this kind. In the upper part of Fig. 1 a typical situation is
given: The diagrams show a market with three market segments that differ w.r.t.
to their preference for “high quality” and for “modern” products. Since the market
seems to be clearly segmented, the sharing of evaluations within these segments
could lead to an improvement of choice predictions.

Alternatively, recently, Hierarchical Bayesian procedures have been proposed
for the same purpose (see, e.g. Allenby et al. 1995, 1998; Lenk et al. 1996).
Here, no explicit market segmentation with identical model parameters within the
segments is assumed. Instead, a common distribution of the model parameters is
postulated for all consumers (first level model), which then is adjusted to individual
consumers using their individual evaluations (second level model). Hierarchical
Bayes Metric Conjoint Analysis (shortly: HB/MCA, Lenk et al. (1996)) is a popular
approach of this kind. In the lower part of Fig.1 a typical situation is given,
where this approach is useful: The diagrams show a market obviously without
segments. Consumers differ individually w.r.t. to their preference for “high quality”
and for “modern” products, however, they cannot be grouped consistently into
homogeneous segments. Market researchers call this situation the “water melon
problem” (see, e.g. Sentis and Li 2002): Each dividing up into segments seems
to be arbitrarily, so the sharing of evaluations within segments should lead to no
improvement of choice predictions. Recently, many comparison studies have shown,
that these Hierarchical Bayes approaches seem to compete well with the traditional
latent class approaches w.r.t. criteria like model fit or predictive validity (see Table 1
for an overview on comparison studies and their results).



Bayesian Methods for Conjoint Analysis-Based Predictions: Do We Still Need. . .

Preference for ,high quality* products

"o %
Oo o
© o
Markeg segment 1
o O O‘ ° :
3 o 5
Q@Q0o0 ©o o
. o a-

105

Preference for , high _quality“ products Preference fm'_.hlgh quality* products
SO T o
“oo %o oo %o,
arket’ se ment 3
oo O\/I o
© o
.Market segment 2
oo o oy o~ O o
Ma ket&eg m?o ' .
o0 o M.lrlgl s%men 1 6 : N_l'ér et SToment l
00 0. 000 o o o 00%
oo I ~Q O

o
o
&l

erence for ,high quality products

Preference for ,,modern* products

P

oy

(o]

Preference for ,,modern” products

eference for ,high q

oo O

o
arkQ s@mef@2 g
0o o®

0080
o9

hlity* products
o

(o)
[e o l(e]

Oo o
o0
W@ ‘%o
Qla@tsegxegl
O o O
&o o)
[oNe)

Preference for ,|

Preference for ,,modern* products

high quality* products

Preference for ,,modern products

Preference f]

r,,modern” products

Preference for ,,modern* products

Fig. 1 A market with three market segments (upper part) and one without obvious segments
(lower part); grey points indicate individual preferences, black points mean preferences when
grouping the individuals; the lines are used to indicate the allocation of individuals to groups;
in the lower — unsegmented — part their exists no obvious grouping

Table 1 Segmentation gains for conjoint analysis-based choice predictions: an overview

Segm.
Reference bases Criteria Result
Lenk et al. (1996) 2 real Pred. validity (FCH, RMSE) No segm. gains
Allenby et al. (1998) 3 real Pred. validity (FCH, RMSE) No segm. gains
Moore et al. (1998) 2 real Pred. validity (FCH, RMSE) No segm. gains
Andrews et al. (2002a) Simulated Model fit (Pearson, No sign. diff.
Kendall),Pred. validity
(FCH, RMSE)
Andrews et al. (2002b) Simulated Model fit (Pearson, No sign. diff.
Kendall),Pred. validity
(FCH, RMSE)
Gensler (2003) Simulated Model fit (Pearson, No sign. diff.
Kendall),Pred. validity
(FCH, RMSE)
Moore (2004) 1 real Pred. validity (FCH, RMSE) No segm. gains
Karniouchina et al. (2009) 1 real Pred. validity (FCH, RMSE) No segm. gains

Across all studies, the assumption of market segments leads to no or only few
segmentation gains (i.e. no significant differences w.r.t. model fit or predictive
validity) and one could draw the conclusion that we don’t need latent classes for
conjoint analysis-based choice predictions. However, up to now, it is not clear
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whether this is also true for a combination of Hierarchical Bayes and Latent
Class approaches. For this reason, we compare in this paper a version of such
combined approaches, Hierarchical Bayes Latent Class Metric Conjoint Analysis
(HB/LCMCA), with HB/MCA, a purely Bayesian one. Since HB/MCA is a special
case of HB/LCMCA (with only one latent class) the introduction of HB/LCMCA
in chapter “The Randomized Greedy Modularity Clustering Algorithm and the
Core Groups Graph Clustering Scheme” suffices. In chapter “Comparison of Two
Distribution Valued Dissimilarities and Its Application for Symbolic Clustering”
a Monte Carlo design is developed which is used to compare HB/MCA and
HB/LCMCA. The paper closes with conclusions and outlook in chapter “Pairwise
Data Clustering Accompanied by Validation and Visualisation”.

2 Hierarchical Bayes Latent Class Metric Conjoint Analysis

In the following a combination of Hierarchical Bayes and Latent Class approaches
for conjoint analysis-based choice prediction is introduced for answering the
research question. The HB/LCMCA approach follows the HB/MCA approach in
Lenk et al. (1996), but uses similar modeling assumptions as in DeSarbo et al.
(1992) for the latent class part of the model and as in Baier and Polasek (2003) for
the distributional assumptions. HB/LCMCA contains HB/MCA as a special case
(with only one latent class). As in Lenk et al. (1996) the preferential evaluations
are modeled as the addition of corresponding partworths (preferential evaluations
of attribute-levels).

2.1 The Data, the Model, and the Model Parameters

Lety,,...,y, € R" describe observed preferential evaluations from n consumers
(i = 1,...,n) wrt. to m products (j = 1,...,m). y;; denotes the observed
preference value of consumer i w.r.t. product j. As an example, these preference
values could come from a response scale with values —5 (“I totally dislike
this product.”) to +5 (“I totally like this product.”). X € R”™*? denotes the
characterization of the m products using p variables. As an example, cars could be
characterized by attributes like price, performance, weight, and so on. For estimating
the effects of the different attributes on the consumer’s preference evaluations, one
uses a set of products that reflects possible attribute-levels (e.g. a “low” and a “high”
price) in an adequate way, using, e.g., factorial designs w.r.t. to nominal scaled
attributes. In this case for X dummy coded variables are used instead of the original
(possibly nominal) attributes.
The observed evaluations are assumed to come from the following model

y, =XB, +¢;, fori=1,....n with € ~ N(0,0°I) (1)
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with I as the identity matrix, 0% as an error variance parameter, and individual part-

worths B, ..., B, coming from T latent classes (t = 1, ..., T) with class-specific
partworths p, € R? and class-specific (positive definite) variance/covariance
matrices H; € RP*?:

N(p, Hy) if G =1,
B~ 1 i=1,...,n. (2)
Ny Hy) if G =T,

C = (Cy,...,C,) indicates the (latent) classes to which the consumers belong
with C; € {1,...,T}, n = (n1,...,nr) reflects the (related) size of the classes

(=27 Yici=ny/ T).

2.2 The Bayesian Estimation Procedure

For estimating the model parameters (9, C, ., ..., pup, Hy, ..., Hr, o?), Bayesian
procedures provide a mathematically tractable way that combines prior information
about the model parameters with the likelihood function of the observed data.
The result of this combination, the posterior distribution of the model parameters,
depends on the modeling assumptions and the assumed prior distributions of
the model parameters. It can be derived using iterative Gibbs sampling steps as
explained in the following. We use variables with one asterisk (“x”, e.g., ax) to
denote describing variables of an a priori distribution (prior information) and two
asterisks (“xx”, €.2., axx) to denote describing variables of a posterior distribution of
the model parameters. Note that the describing variables of the a priori distributions
and initial values for the model parameters have to be set before estimation whereas
the describing variables of the posterior distributions have derived values allowing
iteratively to draw values from the posterior distributions resulting in empirical
distributions of all model parameters. We use repeatedly the following five steps:

1. Sample the class indicators C using the likelihood / of the normal distribution
p(Ci =t pys o pp Hiy o Hr, 02, yy) oy [Xpe,, XHX + 0Dy,
(The consumer is allocated to the class that reflects her/his evaluations best.).

2. Sample the class sizes n from

n

p(|C) X Di(e1sx., ..., eTx) Withejxx = e1x +n1,...,erx + 07,0y = Z 1{C,-=t}

i=1

(Di(ey,. .., er) represents the Dirichlet distribution with concentration variables
ei,...,er. The variables of the a priori distribution are set to 1: e;«=1 V 7.).
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3. Sample the class-specific partworths g, ...,y from
PRy i) |CH o Hy 0%,y Y) 0N (s A)
with Z; = Xl¢c,=13, - ... Xlic,=1}). Vi = X(HHX' + 0L,

n n
A= QZVI'Zi+ AT an = A ZIV Y + AL )

i=1 i=1

(Due to known problems with slow convergence, the class-specific partworths are
sampled simultaneously. The class-specific partworths are stacked, @, and A
are the mean and the blocked variance/covariance matrix of the corresponding
posterior distribution. The variables of the a priori distribution, a, and A, are set
to be non-informative, alternatively, they could be used as in Baier and Polasek
(2003) to constrain the partworths. The Z; and V; matrices are used to allocate
the individual evaluations to the corresponding class.).
4. Sample the individual partworths g8, ..., B, from

PBiv- BulCopys o pr Hi, oo Hr, 02y, ..., y,) using B; ~ N(bjsx, Bixx)

with Biss = (X'X/0? + HZ')™! and bjux = p¢, + BissX'y; /0? + H g,

(The posterior distribution of the partworths for individual i with describing

variables b; «« and B; .« combines the information from the corresponding class-

specific partworths with the observed preferential evaluations of individual i.)
5. Sample the variance/covariance model parameters Hy, ..., Hr, o2 from

py.... Hr.0?|B,.....8,.C.Lt\..... 1y ¥y.....¥,) Using
H, ~ I W(Wsx, Wisx) With

n n

Wesx = Wi + 0.5 Lge=ry. Wesse = Wi + 0.5 (B; — p,)(B; — 1) 1ic,—; and

i=l1 i=l1
n

. nm 1
0% ~ IG(gwx, Gux) With guw = gu + T’G** =G« + 5 Z(Xﬁ1 —v) (X8, —¥i).

i=l1

(IW stands for the Inverse Wishart distribution, /G for the Inverse Gamma
distribution. Both distributions are used to model the a priori and the posterior
distributions of the variance/covariance model parameters. We use similar
settings for the a priori distributions as in Baier and Polasek (2003).)

As usual in Bayesian research, the posterior distribution of the model parameters
are empirical distributions which collect the draws of the iterative Gibbs steps. Each
empirical distribution consists typically of 1,000-2,000 draws, the “first” draws
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(e.g. the first 200 draws) are typically discarded due to the need of a so-called “burn-
in phase” during estimation.

When latent classes have to be modeled in Bayesian research, often the so-called
“relabeling problem” occurs: From a statistical point of view the “labels” of the
classes (their number 1,...,7") provide no information. For one draw of all model
parameters, changing the numbers of two or more classes makes no difference
(“unidentifiability problem”). However, during the iterative process over 1,000 or
more draws, such changes (due to algorithmic indeterminacy) lead to bad results
w.r.t. the empirical distributions. Therefore, usually, in step 2 a relabeling is enforced
that — after drawing the segment sizes — ensures that the class 1 has the smallest size,
2 the second smallest and so on. Alternatively, the relabeling could take place in step
3 w.r.t. class-specific partworths by ensuring that the importance of, e.g., attribute 1
is highest for class 1, second highest for class 2, and so on.

2.3 Model Fit and Predictive Validity

Once the posterior distribution of the parameters is available one can control model
fit or predictive validity in various ways. So, w.r.t. model fit, the preferential
evaluations w.r.t. to the estimation sample of evaluations could be compared
with the corresponding predictions using Pearson’s correlation coefficient. W.r.t.
predictive validity one uses the possibility that the model can also be used to predict
preferential evaluations w.r.t. modified sets of products (scenarios) by changing m
and X accordingly. One collects additional preferential evaluations w.r.t. to so-called
hold-out products and compares this evaluations with predictions of the model using
criteria like the Root Mean Squared Error (RMSE) which stands for the deviation
between the observed and predicted preferential evaluations or the first choice which
stands for the percentage of predictions where the “best” holdout product w.r.t to the
observed and predicted evaluations is the same.

3 Monte Carlo Comparison of HB/MCA and HB/LCMCA

In order to decide whether one still needs latent classes for conjoint analysis-
based choice predictions a comprehensive Monte Carlo analysis was performed
to compare the purely Bayesian approach (HB/MCA) with the combination of
the Bayesian approach and latent class modeling. One should keep in mind that
HB/MCA is the HB/LCMCA version with only one latent class (7' = 1), so, w.r.t.
model fit there should be a superiority of the combined over the purely Bayesian
approach. However, the question is, whether this also holds w.r.t. predictive
validity.
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3.1 Design of the Monte Carlo Study

In total, 1,350 datasets were generated, using 50 replications w.r.t. 3 dataset
generation factors with 3 possible levels each (forming 3 x3 x3 x50= 1,350
datasets). Each generated dataset describes a conjoint experiment for estimating
the preferences of 300 consumers w.r.t to products characterized by 8 two-level
attributes. The simulated conjoint task for each consumer was to evaluate a set of
16 products whose dummy coded descriptions w.r.t. the 8 two-level attributes were
generated using a Plackett and Burman (1946) factorial design (with 16 rows and
8 columns). Also, a set of 8 additional products was used to generate additional
preferential evaluations from each consumer for checking the predictive validity.
The first 16 products form the estimation set, the last 8 products the holdout set of
products.

A “true” preference structure of the consumers was assumed that could
come — according to the first dataset generation factor (‘“Heterogeneity between
segments”) — from a market with one, two, or three segments. The market with only
one segment is used as a proxy for an unsegmented market, the markets with two
or three segments as proxies for segmented markets. As in other simulation studies,
the means of the “true” segment-specific partworths were randomly drawn from the
[—1, 1] uniform distribution. All in all the following three dataset generation factors
were used:

¢ Heterogeneity between segments (unsegmented or not segmented market):
For a third of the datasets (level “low” for factor “heterogeneity between
segments”), it was assumed that there is no segment-specific preference structure,
i.e. all “true” individual partworths are drawn from one (normal) distribution
(one market segment). For the other datasets (levels “medium” and ‘“high”), it
was assumed that there is a segment-specific preference structure, i.e. all “true”
individual partworths are drawn from two (“medium”) or three (“high”) different
(normal) distributions (two or three market segments). The size of these market
segments was predefined as 100 % (in the case of one market segment, 300
consumers), 50 and 50 % in the case of two market segments (each segment
contains 150 consumers) resp. 50, 30 and 20 % in the case of three market
segments (containing 150, 90 and 60 consumers).

¢ Heterogeneity within segments (segment-specific distributions of individual
partworths): For all datasets it was assumed that the individual partworths
are drawn from normal distributions around the mean of their corresponding
segment-specific partworths (drawn from a uniform distribution as described
above). The variance/covariance matrix of these normal distributions was
assumed to be diagonal with identical values o in the diagonal. For a third
of the datasets these diagonal values (and consequently the heterogeneity within
segments) were assumed to be “low (0 =0.1)", for another third “medium
(0 =0.25)”, and for another third “high (o = 0.5)”.

¢ Disturbance (additive preference value error in data collection): Addition-
ally, as in other studies, a measurement error was introduced for the simulated
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Table 2 Model fit across the datasets in the Monte Carlo analysis

HB/MCA HB/LCMCA

Factor Level Corr(y;) Corr(B;) Corr(y;) Corr(B;)
Heterogeneity Low (450 datasets) 0.744 0.954 0.742 0.951
Between Medium (450 datasets)  0.535 0.698 0.685+**  (,817***
Components High (450 datasets) 0.456 0.576 0.655%**  0.767***
Heterogeneity Low (450 datasets) 0.594 0.763 0.724%*%*  (.872%**
Within Medium (450 datasets)  0.612 0.784 0.731%%*  (.884***
Components High (450 datasets) 0.529 0.682 0.627%%*  (.779***
Disturbance Low (450 datasets) 0.746 0.752 0.930#**  0.936%***
(Data error) Medium (450 datasets)  0.686 0.759 0.847+%*  (,925%**

High (450 datasets) 0.303 0.718* 0.305 0.674
Total (1,350 datasets) 0.578 0.743 0.694**+*  (.845%**

* Significant differences at o = 0.1; **at o« = 0.01; ***at o« = 0.001

data collection step. The calculated preference values for each product using
the generated “true” individual partworths were superimposed by a normally
distributed additive error (see model formulation in Sect.2.1) with a “low
(0 =0.4)", “medium (0 = 1)” or “high (0 =2)” standard deviation.

For each possible factor-level-combination — a total of 3 X 3 x 3 =27 combina-
tions was possible — the dataset generation was repeated 50 times (full factorial
design with 50 repetitions). As a result each dataset comprised conjoint evaluations
from 300 consumers with respect to 16 products for estimation (using — as above
mentioned — a Plackett and Burman (1946) factorial design) and 8 randomly
generated holdout products for checking the predictive validity. It should be
mentioned that — besides transforming the generated preferential evaluations into
a Likert scale — the dataset generation process reflects the model formulation quite
good (as usual, see the simulation studies in Table 1).

The HB/MCA and HB/LCMCA procedures were used with non-informative
priors in order not to distort the estimation results by information outside the
available collected data w.r.t. the 16 products. The number of segments (7)) was
predefined according to the HB/MCA (T = 1) or HB/[LCMCA (T =2, 3) procedure.
For all estimations, 1,000 Gibbs iterations with 200 burn-ins proved to be sufficient
for convergence. For HB/[LCMCA relabeling w.r.t. to the class size (label order
equals size order) was used.

3.2 Results w.r.t. Model Fit

For checking the model fit, mean Pearson correlation coefficients between true
and estimated individual preference values for products (Corr(y;)) as well as mean
Pearson correlation coefficients between true and estimated individual partworths
(Corr(B;)) were calculated. Table 2 shows aggregated results (mean values w.r.t. to



112 D. Baier

Table 3 Predictive validity across the datasets in the Monte Carlo analysis

HB/MCA HB/LCMCA

Factor Level First choice  RMSE  First choice RMSE
Heterogeneity Low (450 datasets) 0.775 0.060 0.770 0.062
Between Medium (450 datasets) 0.567 0.121  0.702%** 0.066%**
Components High (450 datasets) 0.491 0.132  0.673*** 0.063***
Heterogeneity Low (450 datasets) 0.640 0.099  0.757*** 0.056%*%*
Within Medium (450 datasets) 0.631 0.099  0.761%** 0.052%#%
Components High (450 datasets) 0.563 0.116  0.628*** 0.083
Disturbance Low (450 datasets) 0.687 0.087  0.870%** 0.029%%#%*
(Data error) Medium (450 datasets) 0.677 0.088  0.798%*** 0.041*%**

High (450 datasets) 0.469 0.139 0478 0.120
Total (1,350 datasets) 0.611 0.105  0.715%** 0.063#*

* Significant differences at o = 0.1; **at o« = 0.01; ***at o« = 0.001

the Pearson correlation coefficients) across all datasets with one factor-level fixed
(3 x 3 x 50 =450 datasets) and across all datasets (3 x 3 x 3 x 50 = 1,350 datasets).

For each factor-level combination of the Monte Carlo analysis these values
were calculated and compared between HB/MCA and HB/LCMCA. The results
are convincing: If a segment-specific structure is in the data, the segment-free
HB/MCA is outperformed by the segment-specific HB/LCMCA procedure. Overall
the superiority can clearly be seen.

3.3 Results w.r.t. Predictive Validity

In a similar way, the predictive validity was checked. For the eight holdout products
and each consumer, preference values were calculated from the estimated individual
partworths and compared to the preference values that were derived from the “true”
partworths. As criteria for the comparison the so-called first choice hit rate (first
choice) and mean root mean squared error (RMSE) were calculated. First choice
hit indicates for a consumer whether her/his preference values from the estimated
and from the “true” partworths are maximum for the same holdout product, the
first choice hit rate is the share of consumers where a first choice hit occurs.
RMSE compares also the preference values from the estimated and from the “true”
partworths but more according to their absolute values.

Table 3 shows (again) aggregated results (mean values w.r.t. to the first choice
hit rate and RMSE) across all datasets with one factor-level fixed (3 x 3 x 50 =450
datasets) and across all datasets (3 x 3 x 3 x 50 = 1,350 datasets). Again, the results
are convincing: If a segment-specific structure is in the data, the segment-free
HB/MCA is outperformed by the segment-specific HB/LCMCA procedure. Overall
the superiority of the combined approach can clearly be seen.
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4 Conclusions and Outlook

The comparison in this paper clearly shows that we still need latent classes
for conjoint analysis-based predictions even if we use Bayesian procedures for
parameter estimation. HB/LCMCA was clearly superior to HB/MCA w.r.t. model fit
and predictive validity, especially in cases when markets are segmented. However,
these results are only based on a rather small number of datasets (1,350 datasets)
generated synthetically and therefore no real data. More research in this field needs
to be done, especially with a larger set of conjoint data from real markets.
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Non-additive Utility Functions: Choquet
Integral Versus Weighted DNF Formulas

Eyke Hiillermeier and Ingo Schmitt

Abstract In the context of conjoint analysis, a consumer’s purchase preferences
can be modeled by means of a utility function that maps an attribute vector
describing a product to a real number reflecting the preference for that product.
Since simple additive utility functions are not able to capture interactions between
different attributes, several types of non-additive functions have been proposed
in recent years. In this paper, we compare two such model classes, namely the
(discrete) Choquet integral and weighted DNF formulas as used in a logic-based
query language called CQQL. Although both approaches have been developed
independently of each other in different fields (decision analysis and information
retrieval), they are actually quite similar and share several commonalities. By
developing a conceptual link between the two approaches, we provide new insights
that help to decide which of the two alternatives is to be preferred under what
conditions.

1 Introduction

The modeling of a decision maker’s preferences is of major concern in a mul-
titude of research areas, ranging from more traditional ones like economics and
operations research to modern fields like artificial intelligence and information
retrieval (Domshlak et al. 2011). Apart from modeling and reasoning about pref-
erences, the problem of learning preference models for predictive purposes has
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attracted increasing attention in recent years (Fiirnkranz and Hiillermeier 2011).
Take conjoint analysis as an example, where the goal is to predict the purchase
decisions of consumers (Baier and Brusch 2009; Green and Rao 1971). To this
end, a consumer’s preferences are typically expressed in terms of a utility function,
which maps an attribute vector describing a product to a real number reflecting the
preference for that product.

More formally, consider a set O of objects, and assume that all objects 0o €
O share the same set of attributes C = {ci,...,c,}; each attribute ¢; typically
corresponds to a “criterion” reflecting a certain aspect of a decision situation (e.g.,
the price of a product to be purchased). For an object o, the function f, : C — R4
assigns real values to attributes. Moreover, a utility function U € %, where %
is an underlying (parameterized) class of functions, aggregates these values and
combines them into a single utility score.! Thus, it maps each vector (xy, ..., x,) =
(folc1)s ..., fo(cm)) € R’] to a non-negative real number. By convention, higher
utility scores indicate higher preference.

The problem of learning a utility function from observed preference data (e.g.,
consumer preferences revealed through purchase decisions) essentially comes down
to estimating the parameters of that function. With respect to the generalization
performance of this model, i.e., its ability to accurately predict the utility of objects
not seen so far, the “capacity” of the model class 7/ is of utmost importance. On the
one side, 7/ must be expressive enough, so as to allow for approximating the target
(e.g., the utility function of a consumer) sufficiently well. On the other hand, it must
not be overly flexible, so as to avoid poor generalization performance caused by an
overfitting of the training data.

In many cases, simple additive utility functions of the form U(xy,...,x,) =
wo + Y_; wix; are not expressive enough. In particular, they are not able to capture
any interactions between the attributes ¢;. Therefore, several types of non-additive
functions have been proposed in recent years. In this paper, we compare two such
functions, namely the (discrete) Choquet integral (Choquet 1954) and weighted
DNF formulas expressed in a logic-based query language called CQQL (Schmitt
2008). Although both approaches have been developed independently of each other
in different fields (decision analysis and information retrieval), they are actually
quite similar and share several commonalities; besides, both of them have already
been used in a machine learning context (Tehrani et al. 2012; Baier and Schmitt
2012).

Specifically, we will show that the Choquet integral and the weighted DNF
formulas can be seen, respectively, as the set-based and the logic-based version
of almost the same mathematical structure. Our contribution is the discussion of
similarities and differences of the two approaches, as well as the establishment of a
conceptual link between them. This link provides new insights and helps to decide
which of the two alternatives is to be preferred under what conditions.

'The function class % is typically chosen so as to guarantee reasonable properties (rationality
axioms) of the aggregation process.
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2 Discrete Choquet Integral

Let C = {ci,...,c;} be a finite set of attributes or criteria as introduced above,
and j(-) a measure 2¢ — [0, 1]. For each A C C, we interpret /1(A) as the weight
or, say, the importance of the set of criteria A. A standard assumption on a measure
1(+), which is, for example, at the core of probability theory, is additivity: u(4 U
B) = pu(A) + pu(B) forall A, B € C suchthat AN B = @. Unfortunately, additive
measures cannot model any kind of interaction between criteria, since the increase
of the measure due to the addition of a subset of attributes B C C is always the
same and only depends on B itself. More specifically, adding B to a set of criteria
A (not intersecting with B) always increases the weight of the measure by p(B),
regardless of A.

Non-additive measures, also called capacities or fuzzy measures, are simply
normalized and monotone (Sugeno 1974): u(?) = 0, u(C) = 1,and u(A) < u(B)
forall A € B € C. A useful representation of non-additive measures, that we shall
explore later on, is in terms of the Mobius transform (Rota 1964):

w(B) =) my(4) (1)

ACB

for all B € C, where the Mobius transform m,, of the measure p is defined as
follows:

m,(4) = Y (~D)"1Pl(B). )

BCA

The value m, (A) can be interpreted as the weight that is exclusively allocated to
A, instead of being indirectly connected with A through the interaction with other
subsets.

A measure pu is said to be k-additive, if k is the smallest integer such that
m,(A) = O forall A € C with |A| > k. This property is interesting for several
reasons. First, as can be seen from (1), it means that a measure u can formally
be specified by significantly fewer than 2™ values which are needed in the general
case. Second, k-additivity is also interesting from a semantic point of view: This
property simply means that there are no interaction effects for subsets A € C whose
cardinality exceeds k.

While w; = p({c;}) is a natural quantification of the importance of a criterion
¢; in the case of an additive measure (utility function), measuring the importance of
a criterion becomes obviously more involved when p is non-additive. Besides, one
may then also be interested in a measure of interaction between the criteria, either
pairwise or even of a higher order. In the literature, measures of that kind have been
proposed, both for the importance of single (Shapley 1953) as well as the interaction
between several criteria (Murofushi and Soneda 1993).
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Given a fuzzy measure pu on C, the Shapley value (or importance index) of ¢;
is defined as a kind of average increase in importance due to adding ¢; to another
subset A C C (Shapley 1953):

1
ole) = —
R () (

]

AU {er}) = p(4)). 3)

The Shapley value of u is the vector () = (¢(c1),...,9(cn)). One can show
that 0 < ¢(¢;) < 1and >/, ¢(c;) = 1. Thus, ¢(c;) is a measure of the relative
importance of ¢;. Obviously, ¢(c;) = pn({c;}) if p is additive.

The interaction index between criteria ¢; and c;, as proposed by Murofushi and
Soneda (1993), is defined as follows:

) pAUlci.cjp) —pAU e} —pAdUie; D) + )

I,‘ﬁj =

This index ranges between —1 and 1 and indicates a positive (negative) interaction
between criteria ¢; and ¢; if I; ; > 0 (I;; < 0). The definition of interaction can
also be extended to more than two criteria (Grabisch 1997).

For a given object suppose that f : C — [0, 1] assigns a normalized value
from the unit interval to each criterion ¢;. An important question, then, is how to
aggregate the evaluations of individual criteria, i.e., the values f(c;), into an overall
evaluation, in which the criteria are properly weighted according to the measure p.
Mathematically, this overall evaluation can be considered as an integral %,,(f) of
the function f with respect to the measure p. Indeed, if u is an additive measure,
the standard integral just corresponds to the weighted mean

Gu(f) =Y wi- flc) =Y nle}) - fle). )

i=1 i=1

which is a natural aggregation operator in this case. A non-trivial question, however,
is how to generalize (4) in the case where u is non-additive. This question is
answered by the Choquet integral, which, in the discrete case, is formally defined as
follows:

m

Gu(f) =Y (f(ci)) = flea-—)) - m(A@)

i=1

where (-) is a permutation of the index set {1,...,m} that sorts the criteria in
increasing order of their evaluation, i.e., such that 0 < f(cq)) < f(cp) < ... <

Sf(comy) (and f(c@)) = 0 by definition), and As) = {c@),. .., cum)}. In terms of
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the Mobius transform m = m, of i, the Choquet integral can also be expressed as
follows:

Culf) = Y my(T) x min f(c;) 5)

TCC

3 Weighted DNF Formula

The Commuting Quantum Query Language (CQQL, Schmitt 2008) is a database
query language that extends the relational domain calculus (Codd 1971; Maier
1983) by the notion of proximity. By using concepts from quantum logic (von
Neumann 1932), CQQL reconciles the logical operators conjunction, disjunction,
and negation with score values from [0, 1] € R. Schmitt (2008) shows that these
logical operators in CQQL obey the rules of a Boolean algebra. A score value results
from evaluating a proximity predicate f? € [0, 1] against a value f(c;) of an object
attribute c;.

Example 1. The proximity predicate price_is_high on the price of a productis given
by fP(f(cprice)) = e~/ @prize)=maxp| ywhere maxp is the maximal possible price. This
predicate returns a high value close to 1 if the price of a product is high.

For simplicity, we will write f7(c) instead of f7( f(c)).

The syntax of a CQQL query is almost the same as the syntax of the relational
domain calculus.? CQQL offers weighted versions of conjunction and disjunction,
which allows for controlling the influence of their operands by using weights from
[0, 1]. An operand with weight 0 has no effect, whereas one with a weight 1 equals
the unweighted case.

From the laws of logic, we know that every Boolean algebra formula over an
attribute set C = {cy,...,cn} can be expressed in full disjunctive normal form
(DNF). Thus, every formula is bidirectly associated to a subset of 2" minterms. Our
weighted DNF approach is to assign a weight A out of [0, 1] to every DNF minterm
T (Schmitt and Zellhofer 2012):

AMT)
\/ (/\ frenn )\ ﬁf”(cz-)) =\ (A(T)A N freon N\ —ff’«:)).

TCC \c€eT ¢ €C\T TCC G €T ¢ €C\T

The weights A(T) can be seen as the parameters of the weighted DNF model
class, and a concrete model is identified by a mapping A of all 2” minterms into
[0, 1]" (Zellhofer and Schmitt 2010). Due to the full disjunctive normal form,
comparing any two different minterms at least one predicate is negated in one and

2In the following we will neglect quantifiers and functions.
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not negated in the second minterm. Because of exclusive disjunctions, the arithmetic
CQQL evaluation reduces to a simple weighted sum:

WDNFEL(f7) = D AT x [T fPex [] - £ (©6)

TSC ceT ¢€C\T

Applying the Mobius transform (m ) (A) = ZBQA (=D)4I=IBIA(B)) on the weights
yields:

wDNF(f7) =Y mu(T)x [] f7(c. (7)

TCC €T

4 Choquet Integral Versus Weighted DNF Formulas

In this section, we examine commonalities and differences between the Choquet
integral and the weighted DNF approach. Comparing (5) with (7), one recognizes
the same mathematical structure. Both formulas are summing over all subsets of
attributes, and every subset is weighted. However, the formulas differ in their last
term: ming er f(c;) versus ]_[CieT f?(c;). From the point of view of fuzzy logic,
both terms are conceptually strongly related, since both the min and the product
operator are triangular norms, that is, generalized logical conjunctions (Klement
et al. 2002).

There are, however, also important differences between (5) with (7). First,
although both terms f(c;) and f?(c;) assume values in the unit interval, they are
interpreted in different ways: In the case of the Choquet integral, x; = f(c;)
is considered as an individual utility degree, that is, the degree to which the
i-th criterion c¢; is satisfied. Thus, x; is a “the higher—the better” attribute; ideally,
x; = 1, whereas x; = 0 corresponds to the least preferred situation. In CQQL,
the meaning of x; = f?(c;) is more general. In fact, 7 is more neutral and
merely expresses proximity, while not yet committing to any sort of preference.
In particular, there is no clear direction of preference, i.e., x; is not necessarily a
“the higher—the better” attribute.

The second important difference, which is closely connected to the first one,
concerns the monotonicity of the measure p in the Choquet integral, and the
constraints implied by this property on the Moebius transform m in (5). Given
the interpretation of w(A) as the overall importance of the attribute subset A € C,
the monotonicity property is rather natural. Correspondingly, the Choquet integral
is a monotone aggregation operator: Increasing (decreasing) the values x; of the
criteria ¢; € A can only increase (decrease) the overall utility, and the corresponding
degree of increase (decrease) depends on the importance of A and the way in which
this subset of criteria interacts with other criteria.
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In a weighted DNF formula, there is no monotonicity of that kind. Instead, an
increase of x; = f”(c;) may lead to both, an increase or a decrease of wD N F) ( f?).
In fact, the effect will depend on the context, that is, the values of all other attributes.
Thus, by relaxing the monotonicity constraint, the weighted DNF can in a sense
be seen as a generalization of the Choquet integral. As such, it is able to model
dependencies that cannot be captured by the latter. As a striking example, consider
the XOR combination of the values x; (i.e., the overall utility is 1 if |{i | x; = 1}
is odd and O otherwise). Here, the effect of increasing a single x; from O to 1 can
be positive or negative, depending on the values of the other attributes (for example,
a dish may become more delicious by adding either turmeric or ginger, but not
both). While this dependency (even in a weighted version) can be modeled by a
weighted DNF formula, it obviously violates the monotonicity properties of the
Choquet integral.

From the discussion so far, it is clear that, from a modeling point of view,
a weighted DNF formula is even more flexible than the Choquet integral. This
observation can also be stated more formally, for example in terms of the so-
called Vapnik—Chervonenkis (VC) dimension (Vapnik 1998). The VC dimension is
a measure of the flexibility (capacity) of a model class. It is a key notion in statistical
learning theory and plays an important role in estimating the generalization perfor-
mance of a learning method. Recently, it has been shown that the VC dimension of
the Choquet integral, when being used as a threshold classifier, grows asymptotically
at least as fast as 2™ /./m, where m is the number of attributes (Hiillermeier and
Tehrani 2012). For the weighted DNF formula, it is not difficult to show that the
VC dimension is 2. Due to the monotonicity constraint, the VC dimension of the
Choquet integral is reduced, albeit only by a (surprisingly small) factor of ./m.
Nevertheless, both model classes are extremely flexible. Consequently, successful
learning will only become possible through proper regularization techniques.

In the case of the Choquet integral, this can be accomplished by restricting the
underlying measure p to k-additive measures (cf. Sect. 2). This is simply realized
by setting some of the coefficients in (5) to O (namely those m, (A) for |A]| > k).
Analogously, a restriction towards a monotone and k-additive measure can be
realized in the arithmetic weighted DNF formula by restricting the A-weights in (7).
This can be accomplished quite easily by adding some linear inequalities to the
linear problem. However, the so far open question arises, how theses restrictions
can be expressed within the logic-based CQQL formalism. It can be easily shown
that by means of so called connected weights the CQQL formalism is expressive
enough to represent an additive measure.

As one of the nice features of a monotone measure, we already mentioned the
existence of importance and interaction indices that can be derived from the measure
. Thus, despite the non-additivity of the measure and, coming along with this,
the non-linearity (of the utility function), the influence of single attributes and the
interaction between groups of attributes can be characterized in a formally sound
way.
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5 Summary and Outlook

Our comparison of the (discrete) Choquet integral and the weighted DNF formu-
las as non-linear generalizations of additive utility models has shown that both
approaches are indeed closely related. The most important difference between them
concerns the monotonicity property of the Choquet integral. On the one side, this
property restricts the class of utility functions that can be modeled, on the other side,
it arguably facilitates the interpretation of a model, notably through the derivation of
indices characterizing the underlying non-additive measure (such as Shapley value
and interaction index). Of course, the weighted DNF formula (7) can be easily
restricted to monotonicity and k-additivity. However, it is not clear so far how to
express such restrictions within the logic of CQQL.

When being used as a model class in a machine learning context, the restriction
to monotone dependencies imposes an inductive bias. If the assumption of mono-
tonicity is valid, this bias is expected to be useful; otherwise, it may prevent one
from fitting a proper model. Thus, the choice between the Choquet integral and the
weighted DNF as a model class should depend on the application at hand, and on
what assumptions can reasonably be made about this application.

For future work, we plan to extend our comparison by including other classes of
utility functions, notably the so-called generalized additive utility models (Gonzales
and Perny 2004). Besides, a generalization of the Choquet integral based on so-
called copulas was recently proposed by Kolesarova et al. (2011). Against the
background of our study, this extension appears to be especially interesting, as it
allows for replacing the minimum as a t-norm in the Moebius representation of
the Choquet integral by other t-norms (or copulas). Specifically, by choosing the
product as a t-norm, the resulting model would come even closer to the weighted
DNF model.
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A Symmetry Test for One-Mode Three-Way
Proximity Data

Atsuho Nakayama, Hiroyuki Tsurumi, and Akinori Okada

Abstract Recently, several major advances in models of asymmetric proximity
data analysis have occurred. These models usually do not deal with the relationships
among three or more objects, but instead, those between two objects. However, there
exist some approaches for analyzing one-mode three-way asymmetric proximity
data that represent triadic relationships among three objects. Nonetheless, a method
that evaluates the asymmetry of one-mode three-way asymmetric proximity data has
not yet been proposed. There is no measure for judging the necessity of a symmetric
model, reconstructed method, or asymmetric model analysis. The present study
proposes a method that evaluates the asymmetry of one-mode three-way proximity
data. In a square contingency table, a symmetry test is studied to check whether the
data are symmetric. We propose a method that extends this symmetry test for square
contingency tables to one-mode three-way proximity data.
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1 Introduction

The interest in studies of asymmetric proximity data models has increased, and
many significant contributions have been made in this area (e.g. Chino 2012).
Asymmetric relationships among objects are common phenomena in marketing
research, consumer studies, and other fields. Most previous studies have pro-
posed analyzing one-mode two-way asymmetric proximity data, which show the
relationships between two objects. Proximity data may be classified according
to the number of directions and modes used (Carroll and Arabie 1980). One-
mode two-way asymmetric proximity data describes, for example, the probability
of a consumer’s switching to brand j, given that brand i was bought on the last
purchase. The consumer-switching probability matrix is assumed to have I rows
and / columns, where I indexes the same ordered set of / objects for both rows and
columns. Carroll and Arabie (1980) labeled such a single matrix two-way because
it has both rows and columns. However, both directions correspond to the same set
of objects, so it is said that only one mode is included. By contrast, a proximities
matrix of I objects by S attributes is considered two-mode two-way data. The two
modes are the objects and the source. Then, proximities matrices for objects i and
J according to the k-th source are considered two-mode three-way data. One-mode
three-way proximity data consist of numerical values assigned to triples of objects.

However, the representations obtained from the analyses of one-mode two-way
asymmetric proximity data cannot explain higher-order phenomena with interaction
effects caused by more than two influences. Therefore, there is a need for a
method that is capable of analyzing asymmetric relationships among three or more
objects. Some approaches for analyzing one-mode three-way asymmetric proximity
data exist. The easiest is to average the elements in such a one-mode three-way
asymmetric proximity data & as

1{jk = (8ijk + Sikj + 8jik + Sjki + Skij + Skji)/6v (D

where i, j, k=1,..., n denote the objects. One-mode three-way asymmetric
proximity data §; are symmetrized into symmetric proximity data S;jk. Asymmetric
information is lost in this approach. Analyses based on this approach are not able to
represent the asymmetric information in one-mode three-way asymmetric proximity
data.

In other approaches, such as that of De Rooij and Heiser (2000), asymmetric
proximities were directly analyzed by asymmetric models. This approach can
represent asymmetric information. De Rooij and Heiser (2000) proposed triadic
distance models for the analysis of asymmetric three-way proximity data. In their

model, triadic distances dj;; are used that are the function of the dyadic distances

dijz»k(X; u;v) = dijz-(X; u) + dji(X; V) + di(X;u+v), (2)
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where i, j, k =1,..., n denote the objects, and d; is the dyadic distance between
objects i and j. The dyadic distance is defined as

dFXw) = (v — x; + ), 3)

t
where i, j = 1,..., n denote the objects, the matrix X contains the coordinates x;,
and ¢ denotes the dimension (f =1,..., T). Here, i is defined as corresponding to

the first way, j to the second way, and k to the third way of one-mode three-way
proximity data. De Rooij and Heiser (2000) assumed asymmetry between the first
and second ways and asymmetry between the second and third ways. These two
asymmetries do not need to be the same. The asymmetry between the first and third
way is equal to the sum of the two asymmetries. The asymmetry is modeled by a
shift in the Euclidean distance between the two ways. The asymmetry between the
first and second way is modeled by a shift u, the asymmetry between the second
and third way is modeled by a shift v, and the asymmetry between the first and third
way is modeled by a shiftu + v.

In other cases, asymmetric proximities were reconstructed before analysis.
Nakayama and Okada (2012) proposed a method to reconstruct one-mode three-way
asymmetric data such that the overall sum of the rows, columns, and depths is equal
over all objects. Hence, the identity of the marginals is satisfied by reconstruction
in the one-mode three-way proximity data. The each way of one-mode three-way
asymmetric data is labeled sequentially starting with the rows, followed by columns,
and finally depth. Nakayama and Okada (2012)’s method extended that of Harshman
et al. (1982) to one-mode three-way asymmetric proximity data. Harshman et al.
(1982)’s method made the overall sum of the rows and columns equal over all
objects. Nakayama and Okada (2012)’s method added a depth condition. Harshman
et al. (1982)’s method is effective for analyzing data that have differences among
the overall sum of the rows and columns, depending on external factors. Thus, it
is possible to show the structural factors of interest clearly. Nakayama and Okada
(2012) proposed a method that extends Harshman et al. (1982)’s method to one-
mode three-way asymmetric proximity data. The method reconstructs the one-mode
three-way asymmetric proximity data d;; as

— 1
8. = n Z Z(Sijk + i + Sjik + Oji + Swij + Okjp) = m (€]

for each i. The value of m is usually set at the grand mean of the unadjusted data.
The difference between the sum of each row, column, and depth, which multiplies
row i, column 7, and depth i by constant ¢;, and the grand mean of the unadjusted
one-mode three-way asymmetric proximity data may be minimized iteratively to
find the constant ¢;, which equalizes the sum of each row, column, and depth. The
method iteratively calculates constant ¢; by the quasi-Newton method under the
following conditions:
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It is important to select an appropriate approach based on the characteristics
of the one-mode three-way asymmetric proximity data. If it cannot be assumed
that asymmetry has arisen by chance and it is thought that asymmetry exists, the
symmetrized data should not be analyzed. The one-mode three-way asymmetric
proximity data should be reconstructed so that the overall sum of the rows, columns,
and depths is made equal over all objects if it is thought that the asymmetry and the
identity of the marginals exists. Because the identity of the marginals is satisfied by
the reconstruction in the one-mode three-way proximity data, the one-mode three-
way asymmetric proximity data should not be reconstructed when it is thought
that the asymmetry exists but the identity of the marginals does not exist. It is
desirable to analyze the asymmetric proximity data by asymmetric models such as
that of De Rooij and Heiser (2000). However, a method that evaluates the asymmetry
of one-mode three-way asymmetric proximity data has not been proposed.

Here, we propose a method that evaluates the asymmetry of the one-mode
three-way proximity data. In a square contingency table, the test of symmetry had
previously been studied to check whether the data were symmetric by the chi-square
test of symmetry, chi-square test of identity of the marginals, and chi-square test
of quasi-symmetry. We propose a method that extends the test of symmetry for
square contingency tables to three-way contingency tables. We consider one-mode
two-way proximity data as a square contingency table and one-mode three-way
proximity data as a three-way contingency table. Then, we examine the necessity for
the analysis of the symmetric model, reconstructed method, and asymmetric model
by the test of symmetry. We study the chi-square test of symmetry and identity of
the marginal in particular detail.

2 The Framework of the Proposed Test of Symmetry

We check the asymmetry of one-mode three-way proximity data by a chi-square test
of symmetry. The symmetrized asymmetric data are analyzed by a symmetric model
if the result of the chi-square test of symmetry shows that the data are symmetric.
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However, asymmetric data should not be symmetrized if the result of the chi-square
test of symmetry shows that the data are asymmetric. We examine the identity of the
marginals of the one-mode three-way proximity data by a chi-square test of identity
of the marginals when the chi-square test of symmetry shows that the symmetry
is not satisfied in the one-mode three-way proximity data. It is appropriate to
reconstruct asymmetric data by removing the extraneous size differences if the
identity of the marginals is satisfied in one-mode three-way proximity data that
do not satisfy the symmetry. However, asymmetric data should be analyzed by an
asymmetric model such as that of De Rooij and Heiser (2000) if the identity of the
marginals is not satisfied.

2.1 Chi-Square Test of Symmetry for One-Mode Three-Way
Asymmetric Proximity Data

When two variables have the same number of modalities in a square contingency
table, it can be ascertained whether the underlying joint probability distribution
is symmetric. In other words, we want to find out whether the probability of the
outcome §;; is the same as the probability of the outcome §j;. This can be examined
by a chi-square test of symmetry for a square contingency table, which assesses the
plausibility of the null hypothesis Hy: §;; = §;;, where §;; is the similarity between
objects i and j. The test requires test statistics whose value for the sample may be
considered a fair indicator of the plausibility of the null assumption. The chi-squared
statistic for this test is

85 +8i\" /8y + 8
XZZZZ(&/'_ ]2])/<12]’ (6)
i

which has n(n — 1)/2 degrees of freedom for n objects under the null hypothesis
of symmetry of the expected counts. Refer to Bowker (1948). The number of the
degrees of freedom corresponds to the number of null hypotheses.

We propose a method that extends the chi-square test of symmetry to one-mode
three-way asymmetric proximity data. The test assesses the plausibility of the null
hypothesis Hy: 8;x = itj = 8jix = i = Sxij = Skji, The chi-square statistic is

Si + Sij + Sji + Sjpi + S + S\
2 _ j j T 0 j ij T Okj
£=22 2(8’3’*_ 6 ) /

i J k

ik + Sij + Sjix + Gjxi + Sy + S
6 bl

(N

which has n(n — 1)(n — 2)/6 degrees of freedom for n under the null hypothesis of
symmetry of the expected counts. The number of degrees of freedom corresponds
to the number of null hypotheses.
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2.2 Chi-Square Test of Marginal Identity in One-Mode
Three-Way Asymmetric Proximity Data

In the case of independence, the fundamental parameter behind a square contin-
gency table is the joint probability distribution. The joint probability distribution can
be derived from the marginal probability distributions of §; and § ;. It is therefore
natural to inquire whether the two variables have identical distributions. Hence, it is
necessary to examine the identity of the marginals by a chi-square test of identity.
The identity of the marginals means that average transitions between objects are
equal. A chi-square test of identity of the marginals in a square contingency table
assesses the plausibility of the null hypothesis Hy: §;. =& ;. The test requires test
statistics whose value for a sample may be considered a fair indicator of the
plausibility of the null hypothesis. The statistic for this test is

8. +8,;\* /6. +6,
2 i J i. J
X—Z E (&.— 5 )/ " (3)
i

which has n — 1 degrees of freedom for n objects.

We propose a method that extends the chi-square test of marginal identity for
one-mode three-way proximity data. The chi-square test of identity of the marginals
in one-mode three-way asymmetric proximity data assesses the plausibility of the
null hypothesis Hy: 8;;. = 8 jx = J;x. The chi-square statistic is

8y + 8 + 8\ /8 + 8 + S

2 _ i J i J

X —E § E (31;;'.— 3 ) / 3 . )
i j k

which has n — 1 degrees of freedom for n objects.

3 An Application

We applied the proposed method to consecutive Swedish election data obtained
from Upton (1978). Swedish respondents were asked how they voted in three
consecutive elections (1964, 1968, and 1970). There are four political parties:
the Social Democrats (SD), the Center Party (C), the People’s Party (P), and the
Conservatives (Con). This ordering is from left- to right-wing parties. The data
are given in Table 1. The data give the frequency of 64 possible sequences among
these four parties at the three time points. The frequency matrices are assumed to
have four rows, columns, and depths, where four indexes the same ordered set of
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Table 1 Transition

. 1970
frequency data among four
parties in three consecutive 1964 1968 SD C p Con
Swedish elections (1964, Social Democrats (SD) SD 812 27 16 5
1968, and 1970) C 5 20 6 0
P 2 3 4 0
Con 3 4 2
The Center Party (C) SD 21 6 1 0
C 3 216 6 2
P 0 3 7 0
Con 0 0 4
The People’s Party (P) SD 15 2 8 0
C 1 37 8 0
P 1 17 157 4
Con 0 2 12 6
The Conservatives (Con) SD 2 0 0 1
C 0 13 1 4
P 0 3 17 1
Con 0 12 11 126

four objects for the rows, columns, and depths. Thus, the frequency matrices are
considered to be 4 x 4 x 4 one-mode three-way asymmetric proximity data.

For the one-mode three-way asymmetric proximity data, the chi-square test of
symmetry assessing the plausibility of the null hypothesis Hy: 6;x = iy = 8jix =
8jti = Okij = ;i was performed. The chi-square statistics were calculated from the
transition frequency data. The calculated chi-square statistics were greater than
the critical value at a significance level of o« =0.01 with four degrees of freedom.
Hence, we rejected our null hypothesis Hy and concluded that the probabilities of
the outcomes ik, Sixj, jik, Sjki» Sxij» and 6xj; were not the same.

For the transition-frequency data, the chi-square test of identity of the marginals
assessing the plausibility of the null hypothesis Hy: 8;;. = § jx = §;x was performed.
The chi-square statistics were calculated from the transition-frequency data. The
calculated chi-square statistics were greater than the critical value at a significance
level of a =0.01 with three degrees of freedom. Thus, we rejected our null
hypothesis Hy and concluded that the probabilities of the outcomes §;;, 6 jx, and
8 x were not the same.

From the results of the chi-square test of symmetry, the data were not symmetric.
Hence, the transition-frequency data did not need to be symmetrized. However, the
results of the chi-square marginal identity test showed that identity of the marginals
did not exist. Analysis of the asymmetric model was hence preferable to the analysis
of the symmetric model or the analysis of the reconstruction of the one-mode three-
way asymmetric data so that the overall sum of the rows, columns, and depths was
made equal over all of the objects.
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4 Discussion and Conclusion

To check the results of the chi-square tests, we compared the results of the
analysis using symmetric, reconstructed, and asymmetric models. First, we analyzed
the one-mode three-way asymmetric proximity data that were symmetrized by
Eq.(1). Next, we analyzed the one-mode three-way asymmetric proximity data
that were reconstructed using the method of Nakayama and Okada (2012). The
reconstructed asymmetric proximity data were also symmetrized using Eq. (1).
These symmetrized proximity data were analyzed by a generalized Euclidean
distance model (e.g. De Rooij and Gower 2003). In a generalized Euclidean distance
model, the triadic distances d are defined as

dipe = (djf +djp +d)'?, (10)

where dj; is the Euclidean distance between points i and j representing objects i and
J. These analyses used the maximum dimensionalities of categories nine through
five. Therefore, the first stress values were obtained in nine- through unidimensional
spaces. Similarly, the second stress values were obtained in eight- through unidi-
mensional spaces, the third stress values in seven- through unidimensional spaces,
and so on. The smallest stress value in each dimensional space was chosen as the
minimum stress value in that dimensional space. The two-dimensional configuration
in the present analysis is now discussed. The two-dimensional configuration allows
easy understanding of the relationships among the objects. The stress value in
two-dimensional space obtained from the reconstructed data was 0.226, and the
stress value in two-dimensional space obtained from the non-reconstructed data was
0.300.

Figure 1 shows the two-dimensional configuration obtained from the analysis
of reconstructed transition-frequency data by the method of Nakayama and Okada
(2012). Figure 2 shows the two-dimensional configuration obtained from the
analysis of symmetrized transition-frequency data without reconstructing the data.
In Fig. 1, the positions of the parties are based on their characteristics. Left- to right-
wing parties are located in clockwise order. The Center party is located near the
People’s party. The relationships among the parties seem to be correct; it cannot be
expected that as many people switch from a right-wing party to a left-wing party as
switch from a right-wing or left-wing party to a party in the middle of the political
spectrum. However, in Fig.2, the positions of the parties are not based on their
characteristics. Left- to right-wing parties are not located in clockwise order. The
Center party is located far from the People’s party. The relationships among the
parties are approximate.

Next, the two-dimensional results of De Rooij and Heiser (2000)’s one-mode
three-way asymmetric model were compared with those of Nakayama and Okada
(2012)’s method. De Rooij and Heiser (2000) analyzed the same transition-
frequency data of Swedish respondents. The results of De Rooij and Heiser
(2000)’s one-mode three-way asymmetric model have the same tendency as those
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of Nakayama and Okada (2012)’s method. The positions of the objects using
the De Rooij and Heiser (2000) method are similar to those using the Nakayama
and Okada (2012) method. Left- to right-wing parties are located in clockwise order.
However, the results of De Rooij and Heiser (2000) partially differ in tendency from
those of the Nakayama and Okada (2012) reconstructed method. These differences
exist in the Center party and the People’s party. In the results of Nakayama and
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Okada (2012), the Center party is more closely located to the People’s party. The
reason for these differences is that the Center party and the People’s party are
gaining votes over the years. The results of De Rooij and Heiser (2000) show
the asymmetric relationships by the slide-vector that pointed in the direction of
the Center party and the People’s party. However, the results of Nakayama and
Okada (2012) would not be able to express such an asymmetric relationship. The
difference seems to indicate the necessity of analysis of the asymmetric model.
The reasons behind these differences in the results of the two analyses should be
clarified in a future study. From these results, the analysis of the asymmetric model
would be preferable to the analysis of the symmetric model or the analysis of the
reconstruction of the one-mode three-way asymmetric data.

We proposed a method that extended the symmetry test for square contingency
tables to one-mode three-way asymmetry proximity data. The proposed method
provided results that agreed with the present analysis. The proposed method can
be used successfully to evaluate the necessity of a one-mode three-way asymmetric
model. In future work, we are interested in establishing the validity of the proposed
method for various one-mode three-way proximity datasets. Additionally, we aim
to tackle the chi-square test of quasi-symmetry for one-mode three-way proximity
data.
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Analysis of Conditional and Marginal
Association in One-Mode Three-Way
Proximity Data

Atsuho Nakayama

Abstract The purpose of this study was to examine the necessity for one-mode
three-way multidimensional scaling analysis. In many cases, the results of the
analysis of one-mode three-way multidimensional scaling are similar to those of
one-mode two-way multidimensional scaling for lower dimensions, and, in fact,
multidimensional scaling can be used for low dimensional analysis. Our results
demonstrated that at lower dimensionality, triadic relationships represented by the
results of one-mode three-way multidimensional scaling were almost consistent
with the dyadic relationships derived from one-mode two-way multidimensional
scaling. However, triadic relationships differ from dyadic relationships in analyses
of higher dimensionality. The degree of coincidence obtained for one-mode three-
and two-way multidimensional scaling revealed that triadic relationships can only be
represented by one-mode three-way multidimensional scaling; specifically, triadic
relationships based on conditional associations must be separately explained in
terms of marginal associations for higher dimensionality analysis.

1 Introduction

Multidimensional scaling (MDS) can be classified according to the number of
directions and modes used (Carroll and Arabie 1980). A single-symmetric proximity
matrix has / rows and I columns, where I indexes the same ordered set of [
objects for both rows and columns. Carroll and Arabie (1980) referred to this kind
of single matrix as two-way, because it has both rows and columns; this corresponds
to an MDS involving only one inputted matrix as a two-way analysis. Because both
directions correspond to the same set of objects, the model only includes one mode.
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However, the two modes have two different directions, such as objects and sources.
Therefore, proximity matrices for objects i and i, according to the k-th source,
are considered two-mode three-way matrices. One-mode three-way proximity data
consist of numerical values assigned to triples of objects.

Researchers have often used one-mode two-way MDS (Kruskal 1964a,b). One
configuration, X of n points x; = (x;1,...,Xjp), is assumed, fori = 1,...,n, in
a p-dimensional Euclidean space, where the x;-coordinate corresponds to the point
for object i. Dyadic distances dj; between two points, representing objects i and j
in the configuration, are given by

P 1/2
dij = (Z (xit - .Xj,«)z) . D
t=1

The dyadic distances dj; are determined by finding the dA,-j that satisfies the following
conditions:

8 <8s=dy>dyforall i <j r<s 2)
where §;; represents the one-mode two-way proximity data. The measure of the

badness-of-fit of dij to 8ij is called the stress S and is based on the stress formula
defined below (Kruskal and Carroll 1969):

S= | Ydy—dp? [ 3y~ dy2. 3)

i<j i<j

Using the method of steepest descent, S may be minimized iteratively to find a
configuration of minimum stress and the gradient of S, which is given by 0.5 /dx;;.
Once the gradient has been calculated, it is possible to consider whether a local
minimum has been reached. If a local minimum has been reached, then a suitable
output is created. However, if a local minimum has not been reached, a new step-
size is calculated. From this, a new configuration is calculated, and the iterations
begin again.

However, a model capable of analyzing proximities data that differ from one-
mode two-way proximities data is needed. A new model is required to explain
high-level phenomena among three objects. Previous studies of one-mode three-way
MDS usually assumed some functional relationship between one-mode three-way
proximity data and the triadic distances (e.g. Gower and De Rooij 2003; De Rooij
and Gower 2003; De Rooij 2008), and these functions generally used a linear
combination of squared distances. De Rooij and Gower (2003) used symmet-
ric functions of triadic distances, including the perimeter distance, generalized
Euclidean distance, generalized dominance distance, variance function, area of the
triangle, and the product model. The triadic distances between the points 7, j, and
k are djj.. For example, the generalized Euclidean distance model is given by
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2 2 241/2
dje = (d} + dj + d)'>. )

The triadic distances d;j are determined by finding a dAljk that satisfies the following
conditions:

Sijk < 8t = dA,-jk > a?m forall i < j <k, r<s<t, 5)
where J;; represents the one-mode three-way proximity data. The measure of

badness-of-fit of dj to §;x is called the stress S and is based on the stress formula
defined below (Kruskal and Carroll 1969)

S= | > (du- a?zjjk)z/ > (dij — di)>. (6)

i<j<k i<j<k

Using the method of steepest descent, S may be minimized iteratively to find
a configuration of minimum stress and the gradient of S, which is given by 9.5 /dx;,.

Gower and De Rooij (2003) reported that the results of a one-mode three-way
MBDS are likely to resemble those of a one-mode two-way MDS. Here, we propose
a method that judges the necessity for analysis of one-mode three-way MDS. We
calculated the degree of coincidence for each configuration of one-mode three- and
two-way MDS to examine whether the results of a one-mode three-way MDS were
strongly associated with the results of a one-mode three-way MDS.

2 The Method

One-mode three-way proximity data consist of numerical values assigned to triples
of objects and show triadic relationships. An example of a triadic relationship is
the frequency with which goods from each of three categories i, j, and k were
purchased simultaneously, or the frequency with which each of the three brands i,
J,and k were simultaneously chosen, due to their similarity.

We would usually analyze one-mode three-way proximity data that show the
frequencies of co-occurrences between three objects i, j, and k (Table 1a) when
one-mode three-way proximity data are calculated from objects x sources binary
(0, 1) data that displayed co-occurrences among objects, where the value 1 means
presence of objects and the value O their absence. In this case, the calculation
represents the conditional association between objects of first and second way, given
objects of third way. However, there is another way to examine one-mode three-
way proximity data. One-mode three-way proximity data can be used to show the
frequencies of co-occurrences between objects of first and second way, without
objects of third way, and can also express the conditional association (Table 1b).
When these two one-mode three-way data are combined, we get marginal one-mode
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Table 2 One-mode two-way

proximity data Second way
First way Object i Object j Object k
Object i 241 51 34
Object j 51 1,316 122
Object k 34 123 456

three-way proximity data (Table 1c). Marginal one-mode three-way proximity data
show the frequencies of co-occurrences among two objects, which do not depend
on object of third way. Marginal one-mode three-way proximity data correspond
to one-mode two-way proximity data placed as many times as the number of
objects. When marginal one-mode three-way proximity data are collapsed, we
obtain one-mode two-way proximity data (Table 2). We can treat one-mode two-
way proximity data as marginal associations of dyadic relationships in one-mode
three-way proximity data.

Gower and De Rooij (2003) reported that the results of a one-mode three-way
MBDS are likely to resemble those of a one-mode two-way MDS. If the results of a
one-mode three-way MDS are almost consistent with those of one-mode two-way
MDS, the triadic relationships in one-mode three-way proximity data are almost
consistent with the dyadic relationships in one-mode two-way proximity data. The
triadic distances obtained from the analysis of one-mode three-way proximity data
are consistent with the triadic distances calculated from the coordinates obtained
from the analysis of one-mode two-way proximity data. Therefore, the coordinates
X; of n points in a p-dimensional Euclidean space, obtained from the analysis of
one-mode three-way proximity data, are almost consistent with the coordinates X
obtained from the analysis of one-mode two-way proximity data when Procrustes
analysis (e.g. Sibson 1978) was used to match the configuration from the one-mode
two-way MDS to that for one-mode three-way MDS. We take as our measure of
consistency the degree of coincidence of corresponding columns of X; and X, .

1/2

¢) = ZtiXdp/ ZerZXdp . (7)
=1

Procrustes statistics (e.g. Sibson 1978) are applied to our measure of consistency
the degree of coincidence. The degree of coincidence is the sum of products of
corresponding rows of X, and X4, and ranges from O to 1 due to normalization
by the sum of the squares. The corresponding columns of X; and X, are exactly
consistent with each other if the degree of coincidence, ¢, is 1. The triadic
relationships can be also expressed by one-mode two-way MDS. Conditional associ-
ations as triadic relationships in one-mode three-way proximity data are considered
marginal associations of dyadic relationships in one-mode three-way proximity
data. As the degree of coincidence ¢ decreases, the degree of coincidence of the
corresponding columns of X; and X, also decreases. If the triadic relationships
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exhibit little consistency with the dyadic relationships, then the results of one-
mode three-way MDS are less similar to those of one-mode two-way MDS. The
coordinates X, obtained from the analysis of one-mode three-way proximity data
exhibit little consistency with respect to the coordinates X; obtained from the
analysis of one-mode two-way proximity data. The degree of coincidence, ¢,
decreases toward 0. Marginal and conditional associations should be separately
considered. Consequently, the triadic relationships can be only represented by one-
mode three-way MDS. To determine whether the triadic relationships are strongly
associated with the dyadic relationships, we calculated the degree of coincidence, ¢,
between each configuration of one-mode three- and two-way MDS. We examined
the necessity for analysis of one-mode three-way MDS based on the degree of
coincidence, ¢.

3 The Analysis

We used binary data that displayed co-occurrences among three beer brands, which
were chosen from ten brands, due to their similar brand images. Ten beer brands
from four different companies were evaluated based on five attributes: category,
taste, malt, price, and history (Table 3). The major producers were Asahi, Kirin,
Sapporo, and Suntory, while small local breweries supplied distinct tasting beers.
Based on the Japanese taxation system, the varieties of brewed malt beverages
in Japan were further categorized into three groups: beer, Happoshu, and third-
category beer. Alcoholic beverages based on malt are classified as beer if the
weight of the malt extract exceeds 67 % malt. Beer can be further divided into
two classes: regular beer and premium beer. The brewed malt beverages market
has been declining, while the premium beer market has been expanding, due to
the trend toward a more enriched spiritual life. Premium beer is made from rich,
pure malt using carefully selected ingredients and original brewing methods. The
price of premium beer is higher than that of others, due to the higher quality
ingredients. Happoshu is a tax category of Japanese liquor with less than 67 % malt
content. This alcoholic beverage is popular among consumers because it is taxed
less than beverages legally classified as beer. With alcohol tax revenues decreasing
as a result of Happoshu’s popularity, the Japanese government eventually raised the
nation’s tax on low-malt beers. Brewers followed suit by lowering the malt content
of their products. Since 2004, Japanese breweries have produced even lower-taxed
and non-malt brews made from soybeans and other ingredients, which do not fit
the classifications for beer or Happoshu. These lower-taxed and non-malt brews,
referred to by the mass media as third-category beer, were developed to compete
with Happoshu. The Happoshu market has been declining since the late 2000s, due
to the expansion of the third-category beer market.

To obtain background data about the Japanese beer market, a brand image
survey of college students was conducted to assess consumers’ impressions of
various beer brands. College students were asked to select similar brands from a
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Table 3 Ten beer brands from four different companies and their characteristics

Category Taste Malt Price History
Brand 1 Regular beer Mild Not-all malt Middle price Traditional
(Kirin) brand
Brand 2 Regular beer Rich All malt Middle price New brand
(Kirin)
Brand 3 Regular beer Mild Not-all malt Middle price New brand
(Asahi)
Brand 4 Regular beer Mild Not-all malt Middle price Traditional
(Sapporo) brand
Brand 5 Premium beer Rich All and pure Premium New brands
(Suntory) malt price
Brand 6 Premium beer Rich All and pure Premium New brands
(Sapporo) malt price (resale)
Brand 7 Third Mild Other than Low price New brand
(Kirin) category malt
beer
Brand 8 Third Mild Other than Low price New brand
(Asahi) category malt
beer
Brand 9 Third Mild Other than Low price New brand
(Suntory) category malt
beer
Brand 10 Third Mild Other than Low price New brand
(Sapporo) category malt
beer

list of ten beer brands sold in the Japanese market (Table 3) after watching each
beer’s TV commercial. From these results, we selected binary data that displayed
co-occurrences among three beer brands, chosen from the ten brands due to their
similar brand images. One-mode three- and two-way similarity data were calculated
from these binary data. The 10 x 10 x 10 one-mode three-way similarity data
indicated the frequencies with which each of the three brands was simultaneously
chosen, due to their similarity. The 10 x 10 one-mode two-way similarity data
indicated the frequencies with which each of the two brands was simultaneously
chosen, due to their similarity. The one-mode three-way proximity data were then
analyzed by one-mode three-way MDS, based on a generalized Euclidian distance
model (e.g. De Rooij and Gower 2003). The generalized Euclidian distance model
was selected because the triadic distances allowed for easy expansion of the one-
mode two-way algorithms to that of the model; this provided better visualization
of the relationships among objects as a way to better understand them. Next, the
one-mode two-way proximity data were analyzed by one-mode two-way MDS
(Kruskal 1964a,b). These analyses used the maximum dimensionalities of cate-
gories eight through four. Therefore, the first stress values were obtained in eight-
through unidimensional spaces. Similarly, the second stress values were obtained in
seven- through unidimensional spaces, and so on. The lowest stress value in each
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Table 4 Degree of coincidence values, ¢, for the corresponding dimensions of the configuration
of one-mode three- and two-way MDS for each dimensionality

Dimensionality 5  Dimensionality 4 ~ Dimensionality 3 ~ Dimensionality 2

Dimension 1~ 0.995 0.993 0.993 0.988
Dimension2  0.955 0.960 0.954 0.912
Dimension 3 0.827 0.877 0.797

Dimension 4  0.907 0.973

Dimension 5  0.666

dimensional space was chosen as the minimum stress value in that dimensional
space. The resulting minimum stress values obtained from the analysis of one-
mode three-way proximity data in five- through unidimensional spaces were 0.303,
0.303, 0.325, 0.354, and 0.467, respectively. The resulting minimum stress values
obtained from the analysis of one-mode two-way proximity data in five- through
unidimensional spaces were 0.000, 0.000, 0.031, 0.144, and 0.280, respectively.

Procrustes analysis was used to match the each dimensional configuration from
the one-mode two-way MDS to that for one-mode three-way MDS. The degree
of coincidence, ¢, of corresponding dimensions of the configuration of one-mode
three- and two-way MDS was then calculated. The calculation used the results
of dimensionality of categories five through one. Therefore, the first degree of
coincidence, ¢, of the corresponding dimensions of the configuration of one-mode
three- and two-way MDS was calculated in five- through unidimensional spaces.
Similarly, the second degree of coincidence, ¢, was calculated in four- through
unidimensional spaces, and so on. Table 4 lists the resulting degrees of coincidence,
¢, for the corresponding dimensions of configurations of one-mode three- and two-
way MDS for each dimensionality. We examined the degrees of coincidence, ¢, of
the corresponding dimensions of the configuration of one-mode three- and two-way
MDS. Every degree of coincidence of one and two dimensions was greater than
0.9. The corresponding dimensions of each configuration of one-mode three- and
two-way MDS were consistent. The number of degrees of coincidence less than 0.9
increased as the dimension increased. Some dimensions of each configuration of
one-mode three- and two-way MDS were not consistent.

4 Conclusions and Outlook

The configuration obtained from one-mode three-way MDS almost fit that of one-
mode two-way MDS in one and two dimensions. However, the coordinate values
of some brands of the one-mode three-way MDS did not correspond closely to
those of one-mode two-way MDS at higher dimensions. For lower dimensions, the
triadic relationships found using one-mode three-way MDS were almost consistent
with the dyadic relationships obtained from the results of the one-mode two-way
MDS. However, the triadic relationships differed from the dyadic relationships at
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higher dimensions. Triadic relationships based on conditional associations cannot
be explained in terms of the dyadic relationships based on marginal associations.
They can be represented only by one-mode three-way MDS. The reasons for the
inconsistency at higher dimensions were explored by comparing the results of
dimensionalities 2 and 3.

Figure 1 presents the two-dimensional configuration of the results of dimension-
ality 2 and jointly represents the configuration obtained from one-mode three- and
two-way MDS. This configuration reveals the similarities among the ten brands. The
configuration of one-mode three-way MDS reveals the triadic relationships between
each set of three brands that share similar impressions. The configuration of one-
mode two-way MDS reveals the dyadic relationships between each set of two brands
that share similar impressions. The one-mode three-way MDS configuration had
almost the same tendencies as one-mode two-way MDS. Very little distinguished
the two configurations for a dimensionality of 2. The brands located in the central
portion of Fig.1 were considered similar to those of the other brands located
at the edge of Fig. 1, which were considered dissimilar to the other brands. In
Fig. 1, regular beer (brands 1, 2, 3, 4, 5, and 6) are displayed in the left half, and
third-category beer (brands 7, 8, 9, and 10) are displayed in the right half of the
configuration. The horizontal dimension 1 of the solution is the regular beer versus
third-category beer dimension. In Fig. 1, the brands of companies with a smaller
market share (brands 4, 5, 6, 9, and 10) are displayed in the lower half, and brands
of companies with a larger market share (brands 1, 2, 3, 7, and 8) are displayed in
the upper half. Asahi holds the largest share of the present Japanese beer market;
Kirin previously held the largest share. The vertical dimensionality two represents
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Fig. 2 Two-dimensional view of the three-dimensional configuration. The left figure (a) defines
the plane by dimensions 1 and 2, and presents the joint representation of the configuration obtained
from one-mode three- and two-way MDS. The right figure (b) defines the plane by dimensions 1
and 3, and presents the joint representation of the configuration obtained from one-mode three-
and two-way MDS

the dimension of brands of companies with a smaller market share versus those with
a larger market share.

The three-dimensional configuration of the results of dimensionality three is
represented separately. It is divided into configurations of dimensions 1 and 2
(Fig.2a) and those of dimensions 1 and 3 (Fig.2b). Figure 2a presents a two-
dimensional view of the three-dimensional configuration (which defines the plane
by dimensions 1 and 2), as well as the joint representation of the configurations
obtained from one-mode three- and two-way MDS. As with the two-dimensional
configuration obtained from the two-dimensional solution, little difference was
observed between the one-mode three- and two-way MDS configurations. The
two configurations displayed almost the same tendencies in terms of similarity
among the ten brands. The horizontal dimension 1 of the solution represents regular
beer versus third-category beer. The vertical dimension 2 represents the brands of
companies with a smaller market share versus those with a larger market share.

Figure 2b presents a two-dimensional view of the three-dimensional config-
uration, which defines the plane by dimensions 1 and 3, as well as the joint
representation of the configuration obtained from one-mode three- and two-way
MDS. Some differences appeared in the configuration of one-mode three-way MDS
and that of one-mode two-way MDS in Fig.2b. The configuration of one-mode
three-way MDS contains information that cannot be expressed by one-mode two-
way MDS. In the vertical dimension 3 of the configuration of one-mode three-way
MDS, brands generating an impression of high quality (3, 4, 6, 7, and 8) have a
negative value; whereas those generating an impression of good taste (1, 2, 5, 9,
and 10) have a positive value. The vertical dimension 3 of the configuration of
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one-mode three-way MDS represents brands considered to be high quality versus
brands considered to be taste good. However, the tendency of vertical dimension 3
for one-mode two-way MDS is less clear than that for one-mode three-way MDS.
The coordinate values of brands 1 and 6 reverse the positive and negative values in
the vertical dimension 3; see Fig. 2b.

The degree of coincidence and configuration obtained from one-mode three-
and two-way MDS demonstrate that triadic relationships can only be represented
by one-mode three-way MDS in high dimensionality. In the analysis of lower
dimensionality, the triadic relationships that are represented by the results of one-
mode three-way MDS are almost consistent with the dyadic relationships derived
from the results of one-mode two-way MDS. It is desirable to clarify the insight
of low dimensionality based on the results of one-mode two-way MDS. This helps
clarify the relationships among objects more easily than the results of one-mode
three-way MDS. Additionally, the software required for this approach, such as
SAS, R, or SPSS, is more popular than that used for one-mode three-way MDS.
However, triadic relationships differ from dyadic relationships in analyses of higher
dimensionality. Triadic relationships cannot be partially explained in terms of
dyadic relationships. From these results, we can conclude that triadic relationships
based on conditional associations must be separately explained in terms of marginal
associations in analyses of higher dimensionality. The dataset used in this study
required analysis of one-mode three-way MDS. We actively applied our findings
about the differences between triadic and dyadic relationships in analyses of higher
dimensionality In the future, we plan to establish the validity of the proposed
method for various one-mode three-way proximity data. We will also investigate
mathematical conditions and assumptions for the proposed method. The reasons for
the resemblance between the results of a one-mode three- and two-way MDS are
attributed to one-mode three-way MDS, which assumes the functional relationship
between triadic relationships and distances is a linear combination of squared
distances. If triadic relationships are correlated with dyadic relationships, then the
linear functional assumption is not sufficient to explain the triadic relationships. A
model representing a nonlinear quadratic form is needed to analyze one-mode three-
way proximity data. We hope to address these issues in future studies.
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Analysis of Asymmetric Relationships Among
Soft Drink Brands

AKkinori Okada

Abstract Brand switching data among eight soft drink brands were analyzed. The
data are represented by an 8 x 8 brand switching matrix. The brand switching matrix
is inevitably asymmetric, because the relationship from brand j to brand k is not
necessarily equal to the relationship from brand k to brand j. The brand switching
matrix was analyzed by asymmetric multidimensional scaling based on singular
value decomposition. The four-dimensional result was chosen as the solution. The
solution gives the outward tendency, which represents the strength of switching from
a corresponding brand to the other brands along each dimension, and the inward
tendency, which represents the strength of switching to a corresponding brand from
the other brands along each dimension. The solution disclosed that the differences
between diet and non-diet brands as well as between cola and lemon-lime brands
played important roles in the brand switching.

1 Introduction

Several researchers (Bass et al. 1972; Borg and Groenen 2005, Chap. 23; DeSarbo
and Soete 1984; DeSarbo et al. 1990; Zielman and Heiser 1991) have analyzed
brand switching data among soft drink brands. The brand switching among n brands
is represented by an n x n brand switching matrix, where the row corresponds to
the brand from which the brand switching is made and the column corresponds
to the brand to which the brand switching is made. The brand switching matrix
is intrinsically asymmetric, because the frequency of the brand switching from
brand j to brand k is not necessarily equal to that from brand k to brand j.
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Earlier studies focused their attention mainly on how to represent the asymmetric
relationships among soft drink brands. The purpose of the present study is not
only to represent asymmetric relationships among soft drink brands but also to
disclose the competitive relationships among soft drink brands by asymmetric
multidimensional scaling.

2 The Data

Brand switching data among eight soft drink brands (Bass et al. 1972), which
are represented by an 8 x 8 brand switching matrix, are analyzed in the present
study. The brand switching matrix is analyzed by asymmetric multidimensional
scaling (Okada 2008, 2011; Okada and Tsurumi 2012) based on singular value
decomposition. The eight soft drink brands are characterized by two attributes;
cola/lemon-lime and diet/non diet shown in Table 1.

The data (Bass et al. 1972) have already been normalized by dividing each row
element by the sum of the corresponding row elements. Each element represents
the proportion of the brand corresponds to the row which is switched to the brand
corresponds to the column. And the sum of row elements is unity. The higher
the proportion is, the closer the brand corresponding to the row is to the brand
corresponding to the column in brand switching. Thus we regard the proportion as
the similarity from the brand corresponding to the row to the brand corresponding
to the column in brand switching among eight brands.

3 The Method

Brand switching data were analyzed by asymmetric multidimensional scaling
(Okada 2008, 2011; Okada and Tsurumi 2012) based on singular value decomposi-
tion. Let A be a matrix of switching or similarity from row brands to column brands.
The (j, k) element of A, aj, represents the switching or similarity from brand j to
brand k. The (k, j) element of A, ay;, represents the switching or similarity from
brand k to brand j. The two conjugate elements; a; and ay;, are not always equal.
When we have n brands, A is an n X n asymmetric matrix. The singular value
decomposition of A is

A =XDY/, ey

where sX is the n x n matrix of left singular vectors of unit length, D is the n x n
diagonal matrix of singular values in descending order of its diagonal elements, and
Y is the n x n matrix of right singular vectors of unit length. The j-th element
of the i-th column of X, xj;, represents the outward tendency of brand j along
dimension i (Okada 2008, 2011). The k-th element of the i-th column of Y, yy;,
represents the inward tendency of brand k along dimension i (Okada 2008, 2011).
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Table 1 Eight soft drink

brands Brand Cola/lemon-lime Diet/non-diet
Coke Cola Non-diet
7-Up Lemon-lime Non-diet
Tab Cola Diet
Like Lemon-lime Diet
Pepsi Cola Non-diet
Sprite Lemon-lime Non-diet
Diet Pepsi Cola Diet
Fresca Lemon-lime Diet

The outward tendency of a brand represents the strength of switching from the
corresponding brand to the other brands in brand switching. The inward tendency
of a brand represents the strength of switching to the corresponding brand from the
other brands in brand switching. The outward tendency of a brand represents how
weak the brand is, and the inward tendency represents how strong the brand is in
brand switching.

As stated earlier the (j, k) element of A, aj, shows the proportion of the brand
corresponds to row j which is switched to the brand corresponds to column k, and
represents the similarity from object j to object k. The similarity from brand j to
brand k, aj, is approximated by using m(m < n) singular vectors and values

m
ajp = Zdixjiykis ()

i=1

where d; is the i-th diagonal element of D or the i-th largest singular value of A.
The i-th term of the right side of Eq. (2), d; x;;yu, is the product of xj;, the outward
tendency of brand j, and yy;, the inward tendency of brand k, along dimension i
multiplied by the i-th singular value d;. This term is geometrically represented as
the area of a rectangle (x;; X yj;) with positive or negative sign in a plane spanned
by the i th left singular vector (abscissa) and the 7 th right singular vector (ordinate)
multiplied by d;, and represents the ith component of the similarity from brand j
to brand k along dimension i, which can be positive or negative (Okada 2011). This
means that the algebraic sum of positively or negatively signed areas of rectangles,
each comes from each dimension, approximates the similarity aj; (see Fig.5). The
larger m is, the more precisely aj; is approximated. But the larger m needs more
terms to approximate aj, which leads to the complexity. Thus m is determined by
balancing the precision of the approximation with the complexity together with the
interpretation of the obtained result.

4 Results

Singular value decomposition of the brand switching matrix among eight soft drink
brands was computed. Singular values were 1.087, 0.496, 0.406, 0.365, 0.268,
0.197, 0.122, and 0.000. The four-dimensional result was chosen as the solution
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(m = 4). The proportion of the sum of four squared singular values to the sum

of all squared singular values is 0.93. This figure is large enough to represent the
asymmetric relationships among eight soft drink brands, and the difference between
the fourth and fifth singular value (0.097) is relatively larger than that between the
third and fourth singular value (0.041). And the four dimensional result is easy to
interpret.

Figure 1 shows the outward and inward tendencies along Dimension 1. The eight
soft drink brands are almost along a 45° line emitting from the origin to the upper
right direction (which shows the outward tendency is equal to the inward tendency,
and is represented by a dotted line in Fig. 1). This tells that the asymmetry in the
brand switching along Dimension 1 is not large. The range of the outward tendency
is smaller than that of the inward tendency, this comes from the normalization of the
row so that the sum of each row elements is unity. The three brands (Coke, 7-Up and
Pepsi) have inward tendencies which are larger than their own outward tendencies,
suggesting that the three brands are stronger than the other brands in the brand
switching along Dimension 1. The three brands are non-diet. Non-diet brands have
larger outward and inward tendencies than diet brands have. The eight soft drink
brands have positive outward and inward tendencies. The product of the outward
tendency of brand j and the inward tendency of brand k is positive. The product
multiplied by the first singular value, d;x;j; yi;, represents the similarity from brand
j to brand k along Dimension 1. Dimension 1 seems to represent the general
dominance or strength of the soft drink brands in the brand switching, because the
first singular value is large compared with the other singular values.
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Fig. 2 The outward tendency
and the inward tendency
along Dimension 2. A
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Fig. 3 The outward tendency
and the inward tendency
along Dimension 3. A
non-diet brand is represented
by a solid square or rhombus,
a diet brand is represented by
a grey square or rhombus. A
cola brand is represented by a
square, and a lemon-lime
brand is represented by a
rhombus
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Figures 2—4 show the results along Dimensions 2, 3, and 4, respectively. Contrary
with the outward and inward tendencies along Dimension 1, those along Dimensions
2, 3, and 4 are not always positive. Figure 2 shows the result along Dimension 2.
Coke is in the third quadrant, while five others are in the first quadrant and two
others are in the second quadrant. Dimension 2 differentiates Coke from the other
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brands, and classifies the brands almost into two groups; one consists of Coke, and
the other consists of brands in the first quadrant. The similarity among brands in the
first quadrant is positive for any two brands along Dimension 2, because the outward
and the inward tendencies are positive. The similarity between a brand in the first
quadrant and Coke (in the third quadrant) is negative along Dimension 2, because
a brand in the first quadrant and Coke have the outward and the inward tendencies
which have opposite signs. The brands in the second quadrant have negative outward
tendencies and positive inward tendencies. Dimension 2 outward (the horizontal
dimension) seems to differentiate Coke from the other brands. Dimension 2 inward
(the vertical dimension) seems to represent the difference between non-diet brands
and diet brands.

The results along Dimension 3 is shown in Fig. 3. While Like is in the fourth
quadrant, Dimension 3 also classifies the brands almost into two groups; one group
consists of brands in the first quadrant, and the other group consists of brands in
the third quadrant, where the similarity among brands in these quadrants within
the group is positive and the similarity among brands when two brands belong to
different groups is negative. Dimension 3 outward (the horizontal dimension) seems
to represent three categories; cola brands, lemon-lime brands, and Pepsi. Dimension
3 inward (the vertical dimension) seems to represent other three categories; Coke,
diet brands and non-diet brands.

Figure 4 shows the outward and inward tendencies along Dimension 4. While
Like is in the second quadrant and Tab is in the fourth quadrant, Dimension 4
also classifies the brands almost into two groups; one group consists of brands in
the first quadrant, and the other group consists of brands in the third quadrant,
where the similarity among brands within the group is positive and the similarity
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among brands when two brands belong to different groups is negative. Dimension
4 outward (the horizontal dimension) seems to represent three categories; Pepsi,
diet brands and non-diet lemon-lime brands. Dimension 4 inward (the vertical
dimension) seems to represent the difference between cola brands and lemon lime
brands.

5 Discussion

Brand switching data among eight soft drink brands was analyzed by asymmetric
multidimensional scaling using singular value decomposition (Okada 2011; Okada
and Tsurumi 2012). Asymmetric multidimensional scaling gives the outward
tendency and the inward tendency along each dimension. The outward tendency
of a brand represents the strength of switching from the brand to the other brands,
and the inward tendency of a brand represents the strength of switching to the brand
from the other brands.

In the present model, outward tendency along dimension i, which represents the
strength of switching from the brand to the other brands along dimension i (cf. shub
weight in Kleinberg (1999)), is represented by the ith left singular vector, and
inward tendency along dimension i, which represents the strength of switching to
the brand from the other brands along dimension i (cf. authority weight in Kleinberg
(1999)), is represented by the ith right singular vector. As shown in Eq. (2), the
similarity from brand j to brand k along dimension i is represented by the product
of outward tendency of brand ; along dimension x;;, and inward tendency of object
j along dimension i yy;, multiplied by the i -th singular value d;. While the product
along Dimension 1 is positive, the products along Dimensions 2, 3, and 4 can be
negative. The similarity from brand j to brand k is approximated by the algebraic
sum of the products (Eq. 2). The negative terms reduce the similarity. Figure 5 gives
an explanation of these.

Figure 5 a—d respectively show the rectangle which corresponds to the similarity
along Dimensions 1, 2, 3, and 4. The similarity from Coke to Pepsi along Dimension
1 is represented by the area of the rectangle (the product of the outward tendency
of Coke and the inward tendency of Pepsi along Dimension 1) with diagonal stripes
from lower left to upper right (Fig. 5a) multiplied by d; (1.087). On the other hand,
the similarity from Pepsi to Coke along Dimension 1 is represented by the area of
the rectangle (the product of the outward tendency of Pepsi and the inward tendency
of Coke along Dimension 1) with diagonal stripes from upper left to lower right
(Fig. 5a) multiplied by d;. The similarity from Coke to Pepsi along Dimension 2
is represented by the area of the rectangle (the product of the outward tendency
of Coke and the inward tendency of Pepsi along Dimension 2) of diagonal stripes
from lower left to upper right multiplied by d» (0.496). The product of the outward
tendency of Coke and the inward tendency of Pepsi along Dimension 2 is negative,
because the outward tendency of Coke is negative and the inward tendency of Pepsi
is positive. The area of the rectangle corresponding to the similarity from Coke to
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Fig. 5 The rectangle corresponding to the similarity from Coke to Pepsi, and that from Pepsi to
Coke along Dimensions 1 (a), 2 (b), 3 (c), and 4 (d) respectively

Pepsi is negatively signed. The area of the rectangle corresponding to the similarity
from Pepsi to Coke is positively signed (the outward tendency of Pepsi and the
inward tendency of Coke are negative). The area of the rectangles corresponding
to the similarity from Coke to Pepsi and that from Pepsi to Coke along Dimension
3 are negatively signed. The area of the rectangles corresponding to the similarity
from Coke to Pepsi and that from Pepsi to Coke along Dimension 4 are positively
signed. The similarity from Coke to Pepsi is represented by the algebraic sum of



Analysis of Asymmetric Relationships Among Soft Drink Brands 155

positively or negatively signed areas formed by the outward tendency of Coke and
the inward tendency of Pepsi along Dimensions 1, 2, 3, and 4 multiplied by singular
values. In the case of the similarity from Coke to Pepsi, areas of rectangles along
Dimensions 2 and 3 are negatively signed, and these two terms reduce the similarity.

Along Dimensions 2, 3, and 4 the outward tendency and the inward tendency
can be negative. This means that the product of the outward and inward tendencies
is positive when the two have the same sign, and is negative when the two have
opposite signs. This tells that (a) the similarity between any two brands in the first
and the third quadrants is positive, (b) the similarity between any two brands in the
second and the fourth quadrants is negative, (c) the similarity between one brand in
the first quadrant and the other in the third quadrant is negative, and (d) the similarity
between one brand in the second quadrant and the other in the fourth quadrant is
positive. This also tells that the similarity from brand j to brand k is smaller than
the similarity from brand k to brand j, when the angle (of two lines connecting the
origin and the points representing brand k and brand j, respectively) from brand j
to brand k is positive (counter clockwise), suggesting brand & dominates over brand
Jj - These can represent the competitive relationships among brands described below.

Along Dimension 1, the eight soft drink brands are almost along a 45° line
emitting from the origin to the upper right direction (dotted line in Fig. 1). There are
no clear dominance relationships among the brands, but there are some. We focus
our attention to the four categories generated by combining the two characteristics;
cola/lemon lime and diet/non-diet, and examine the dominance relationship in each
category. Each category has two brands. It is possible to say which brand is dominant
over the other brand. Along Dimension 1, Coke and Pepsi are almost on the 45° line.
It seems that the two brands have almost the same dominance. 7-Up seems dominant
over Sprite. Diet Pepsi is dominant over Tab, while the magnitude of the brand
switching from Diet Pepsi to Tab as well as that from Tab to Diet Pepsi are small,
because the outward and inward tendencies of the two brands are small. Like is
dominant over Fresca. The magnitude of the brand switching from Like to Fresca
and that from Fresca to Like are small by the same reason as in the case between
Diet Pepsi and Tab.

Along Dimension 2, Pepsi and 7-Up in the second quadrant are dominant over
the five brands in the first quadrant. Coke in the third quadrant is dominant over
Pepsi and 7-Up. Like and Fresca (lemon-lime diet brands) are dominant over the
other three brands in the first quadrant. While there is not any significant dominant
relationships among brands along Dimension 3, Coke is dominant over the other
three diet brands in the third quadrant. Like (diet lemon-lime brand) in the fourth
quadrant is dominant over the four brands in the third quadrant. And three brands
(Pepsi, 7-Up and Sprite) which are non-diet brands in the first quadrant are dominant
over Like. Along Dimension 4, there are no significant dominance relationships
among brands in the first and the third quadrants respectively. Like in the second
quadrant is dominant over the two brands (non-diet lemon-lime brands) in the first
quadrant, and is dominated by the four brands in the third quadrant (which include
three cola brands). Tab (diet cola brand) in the fourth quadrant is dominant over the



156 A. Okada

four brands (three are cola brands) in the third quadrant. 7-Up and Pepsi in the first
quadrant are dominant over Tab.

It has been disclosed that the difference between diet and non-diet brands plays
an important role in the brand switching among the eight soft drink brands (Bass
et al. 1972; DeSarbo and Soete 1984). This was also confirmed in the present study.
It also disclosed that (a) the difference between cola and lemon-lime brands also
plays an important role in the brand switching as well, and that (b) Coke and Pepsi
play an important role in the brand switching, respectively.

In the present asymmetric multidimensional scaling the diagonal element of
the brand switching matrix was dealt with. The diagonal element represents the
magnitude of staying or the loyalty to the corresponding brand. The reproduced
diagonal element of brand j based on four dimensions is dixj;y;; + daxjppyj2 +
dsxj3y;3 + daxjsyjs. The reproduced diagonal element correlates with the diagonal
element of the brand switching matrix positively (r = 0.94), with the market share
(Bass et al. 1972) positively (r = 0.97), and with the density (DeSarbo and Soete
1984) which tells the dominance of the brand (the smaller density means the larger
dominance) negatively (r = —0.80). These figures tell that the outward tendency
and the inward tendency of a brand represent the magnitude of staying or the loyalty
to the brand.
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Automatic Regularization of Factorization
Models

Steffen Rendle

Abstract Many recent machine learning approaches for prediction problems over
categorical variables are based on factorization models, e.g. matrix or tensor
factorization. Due to the large number of model parameters, factorization models
are prone to overfitting and typically Gaussian priors are applied for regularization.
Finding proper values for the regularization parameters is usually done with an
expensive grid-search using holdout validation data. In this work, two approaches
are presented where regularization values are found without increasing computa-
tional complexity. The first one is based on interweaving optimization of model
parameters and regularization in stochastic gradient descent algorithms. Secondly,
a two-level Bayesian model to integrate regularization values into inference is
shortly discussed.

1 Introduction

Recently, factorization models such as matrix or tensor factorization models have
attracted a lot of research due to their success in important applications, e.g. in
recommender systems and the Netflix prize.! Many different factorization models
have been proposed where a common characteristic is that all of them deal
with a very large number of model parameters — especially if the rank of the
factorization is chosen large. The large number of model parameters makes fac-
torization approaches prone to overfitting. To achieve a high generalization quality,
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regularization is applied. Such regularized factorization models have shown great
prediction quality — provided that the regularization constants have been chosen
correctly. However, the selection of regularization values is typically done with
grid-search approaches which are very time-consuming and only applicable when
the number of regularization parameters is low. In recent research (Rendle 2012),
a simple extension for stochastic gradient descent (SGD) based learning algorithms
has been proposed that finds regularization values while model parameters are
learned. In this work, this approach is generalized for grouping of variables and
extended to other regularization functions.

2 Regularized Factorization Models

In the following, the problem setting is defined in a generic way that subsumes many
of the state-of-the-art factorization models and their regularization structures.

2.1 Factorization Models

The most well-studied factorization model is matrix factorization (MF) (e.g. Srebro
et al. 2005) where the interaction between two categorical variables C; and C; is
modeled with the dot product of two latent vectors:

k
_)/}(Cls 62) = (Vc‘ls V(?z) = Z vC],f VL‘Z,fs V S RCIUCZ (1)
f=1

Here V' are the model parameters that should be learned — i.e. each level ¢ of the
categorical variables is represented by a k dimensional vector v.. There are many
extensions for more complex predictor variables, e.g. tensor factorization models
(e.g. Tucker 1966) for more than two categorical variables or specialized models that
take other types of variables into account, e.g. implicit models and neighborhood
information (e.g. Koren 2010).

Factorization machines (FM) (Rendle 2010) are an attempt to generalize fac-
torization models by using design matrices with p real-valued predictor variables,
x € R?, as input. This makes FMs as flexible as standard machine learning models,
e.g. linear/polynomial regression or support vector machines (SVMs). An FM
models all nested interactions up to order d between the p input variables in x
using factorized interaction parameters. The factorization machine (FM) model of
order d = 2 is defined as

)4 P )4 k
PO i=wo+ D wixj+ Y D XXy vy 2
j=1 /=1

J=lj'=j+1
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where k is the dimensionality of the factorization and the model parameters ® =
{Wo, Wi, ..., Wp, Vi1, ... Vpk)are

wo€R, weRP, VeRP*, (3)

Like polynomial regression, an FM includes all interactions between vari-
ables up to order d. In Eq.(2), the first part corresponds to linear regression
(unary interactions) and the second part contains all interactions between variable
pairs —e.g. x; x;- is the interaction between the j-th and j’-th variable. However,
instead of using one independent model parameter per interaction (e.g. w; ;- for the
interaction between x; and x;/), FMs use a low rank assumption (e.g. the pairwise
effect between x; and x;- is modeled by Zl}zl vj.rvj’ ). This correspond to the
assumption that the matrix of all p? pairwise effects W ~ V V! has a low rank
k < p. This reduces the number of model parameters for pairwise effects from p?
to p k and allows to estimate interactions even in problems where the number p of
variables is very large.

2.2 Regularization

Factorization models are typically applied for prediction problems with a large
number of predictor variables, i.e. p is large — often in the range of millions. This
includes matrix factorization which is the most common factorization model where
the predictor variables can be seen as the levels of two categorical variables of large
domain. In contrast to standard linear regression models that have &(p) model
parameters @, this number increases to &'(k p) for factorization models, where a
typical value for k is 100. For example, a simple matrix factorization model for
the Netflix prize data could have k x p = 100 x 500,000 = 50,000,000 model
parameters that are fitted to 100,000,000 observations. This high number of model
parameters makes factorization models prone to overfitting.

In all state-of-the art factorization approaches, a regularization function R is
applied to prevent overfitting. The most common approach of regularization is to
favor small values for model parameters ® because the lower the value the less the
effect of the model parameter on the outcome and thus the lower the complexity of
the solution. For example, in L2 regularization a quadratic penalty (i.e. R() = 6?)
is used which corresponds from a probabilistic view to the assumption that a model
parameter follows a Gaussian prior 8 ~ .47(0, 1). The regularizers R themselves
typically depend on IT many regularization parameters A = {A,..., A} which
can be used e.g. for specifying the strength of the regularization (e.g. R(#) = A6?
or analogously 8 ~ A47(0,1/1)).
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2.2.1 Grouping of Model Parameters

In many factorization models, there is more than one regularization parameter
(i.e. IT > 1) so that different parts of the model can be regularized with individual
constants. E.g. model parameters for pairwise and unary effects (see Eq. (2)) might
need different regularization constants. In this work, this general setting is studied
by using a partition function = : ® — {1,..., [T} that allows to place each model
parameter in one of [T groups. The partition function 7 is the link between the
IT regularization variables A and the model parameters @ — e.g. the regularization
parameter for model parameter 6 € @ is A, (). And the set of model parameters that
share the [-th group (and thus also share A; € A) can be denoted by 7' (/) € 6.
Some choices for partition functions are:

1. No grouping:
=1 ='1) =6, ©)
2. Individual regularization parameters per factor layer:

IT=2+k 7 ') ={w}, )]
a7 Q) ={w; i €{l,..., p}}, (6)
'+ fy=isie{l,....p Vfell,... kb (D

3. Depending on the application, it also makes sense to divide the predictor vari-
ables into groups, e.g. the first variables within x might describe the levels of one
categorical variable and thus can be modeled with an individual regularization
parameter. E.g. if x € R?%% describes two categorical variables with each 1,000
levels, one reasonable grouping would be:

I=1+2, 77'(1) = {w}, (3)
7' Q) = {wi,vigp i €{1,...,1,000}, f € {l,....k}},  (9)

a7 3) = {wi,vip i €{1,001,...,2,000}, f € {1,....k}}.
(10)

This grouping can also be combined with the regularization per factor layer.

2.2.2 Regularization Functions

In this work, regularizers of the following form are studied:

RO, 4) = Y Aer(x'(2) (11)

ge{l,...[1}
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where r is a real-valued function over a subset of model parameters (selected by the
grouping). Examples for r are the L2-norm which corresponds to Gaussian priors
on the model parameters” or the L1-norm corresponding to Laplace priors

r2O) =Y 6% re)=>"16l (12)

feo’ feo’

Here ®’ is a subset of model parameters, ®" C ©.

From an optimization perspective, L2 punishes large values of model parameters
with a quadratic penalty. With L1 regularization, sparse solutions can be achieved
which can be seen as a kind of feature selection (e.g. Zou and Hastie 2005).

2.3 Learning Regularized Factorization Models

Similar to other statistical models, the parameters of factorization models are
learned using observed data. Let S = {(x1, y1), (X2, )2), . - -} be the set of observed
training instances. The loss L measures how well the model parameters explain the
training data

L(S,0)= Y 1(3(x),y) (13)

(x,y)€S

where [ is a loss function, e.g. squared loss [*5(yy, y2) = (y1 — y2)? for regression
or logit loss € (yy, y2) = In(1 4 exp(—y; y»)) for classification.

The overall optimization criterion OptReg for model parameters ® given regu-
larization constants A is a combination of loss L and regularization R

O*| A := OptReg(S, A) := argmin (L(S, ®) + R(O, A)) (14)
)

Here ®*| A is used to emphasize that ®* is optimal only w.r.t. given regularization
constants A. To simplify notation, only one regularization function R is used here,
but this could also be extended for a linear combination of several functions,
e.g. combining L1 and L2 regularization would correspond to an elastic net (Zou
and Hastie 2005). The adaptive SGD algorithm described in Sect. 3.1 can handle
several functions R.

2The maximum a posteriori estimator of a likelihood with Gaussian priors is equivalent to a loss
with L2 regularization where the regularization constant A corresponds to the precision (or inverse
variance) of the Gaussian prior.
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2.3.1 Learning Algorithm

Stochastic gradient descent (SGD) is the most common technique for learning
factorization models. In contrast to full/batch gradient descent (GD) which com-
putes the complete gradient of the optimization criterion for each step, SGD
performs a small gradient step for each single training case. Compared to other
optimization techniques such as alternating least-squares or coordinate descent,
SGD is (i) very easy to implement and (ii) easy to adapt to a wide variety of loss
functions.

SGD algorithms iterate in a random order over all training examples and for each
single training example (X, y) € S, a small update step (with step size 1) is made in
the opposite direction of the gradient of the objective (Eq. 14)

9 0 -
0 =0 (%z(y(x),w + (o) 557 (7 ‘W)D) (15)

where 6’ is the model parameter 6 after ¢ gradient steps. The derivation of the losses
is for square loss

s g _ 9 V=% R
3l OXO).y) =25 GEIO)—y)" =2 ((O) —y) -73(x|0)  (16)

and for logit loss (using the definition of (z) = 1/(1 + exp(—z)))

0 ¢, . 0 o _ . B iA -
3g] O®6).y) = -5 In(l +exp(-§(x|0) y)) = (0 (F|O) y) — 1) y 777 (x|6).

a7
The derivation of the regularization function for L2 and L1 is
5 9 1, if 0 >0,
—rP2(0,,....0) =20, —r'{6,,....00) =31, i T
5" ({6 i) T ({6 1}) 1, if6<0,. (18)
0, else

The convergence of SGD depends on the choice of the step size 1 which has to be
chosen ‘small enough’ for the specific data and regularization setting. The step size
is typically determined by a hyperparameter search.

3 Automatic Regularization

The SGD algorithm described so far is the standard learning technique for most
regularized factorization models. In this algorithm, the regularization values are
constants and have to be found in a model selection phase, which is done typically



Automatic Regularization of Factorization Models 163

with expensive grid-search. In the following, two approaches are described where
the search for regularization values is integrated in the learning algorithm for model
parameters.

3.1 Adaptive SGD (SGDA)

In (Rendle 2012) an extension for SGD algorithms is proposed where regulariza-
tion values are optimized while model parameters are learned. This approach is
discussed in the following and generalized to grouping and non-L2 regularization.

3.1.1 Optimization Task for Regularization Values

To measure the quality of regularization parameters A, typically a holdout set is
used. Let Sy C S be a validation set, then

A* := argmin (L(Sy. OptReg(S \ Sy, A))) (19)
A

Note that A is optimized on the validation set and ® on the disjoint set of remaining
cases S \ Sy. Mostly this objective is solved by using candidates for A (e.g. grid
search) and solving OptReg for each candidate of A independently. Clearly, this
is a very time consuming approach and mostly infeasible for a large number of
regularization values.

3.1.2 Integrated SGD Algorithm

In (Rendle 2012) learning regularization values is integrated into the SGD learning
algorithm for model parameters. The approach is based on the observation that
in each SGD-step on model parameters (Eq. 15) the regularization value has an
influence on the future model parameter. Now, the regularization values can be
adapted so that the next update on model parameters leads to a minimal error on
the validation set. To formalize and apply this idea, the model equation (Eq. 2) after
the next SGD-step on model parameters is defined as

y(X|@t+l) _WH—I—}-ZWH—I X; +Z Z X xjr th+l t+1f (20)

j=1j'=j+1

where each 6/T! is defined according to Eq. (15), i.e. it depends explicitly on A.
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With this definition, the validation set error can be minimized on Sy with SGD
as well:

.
A =20 - (Wguy(xl@f“),y)) (1)
with

o . o o
@)’(XW =y |:5(7T(W0) = g)a—WOV(” '(9) + j:ﬂ%=g er(ﬂ '(g)

k )4
+y Y Yo ! r(n‘l(g))} (22)

9 -
I=1jimv ) =g j'#] Vi-f

Now a simple integrated SGD learning algorithm that optimizes both model and
regularization parameters jointly can be sketched. The SGDA algorithm alternates
between updating the model parameters with Eq. (15) based on one case of S \ Sy
and updating regularization parameters with Eq. (21) based on one case of Sy. The
overall computational complexity of this integrated algorithm is the same as learning
only model parameters (Sect. 2.3.1).

3.2 Hierarchical Bayesian Model

A search for regularization values can also be avoided with hierarchical Bayesian
models. From a Bayesian point of view, regularization can be seen as prior
distributions over model parameters, e.g. .2 regularization with A is the same as
a 0-mean Gaussian prior with variance 1/A. By defining a hyperprior distribution
over the regularization values, e.g. a Gamma distribution, inference about the
regularization values is possible:

-1 1 + T 92
Ay~ (@), xg|@,a,ﬂ~r(°‘+|” @I +1 P+ Yo ) 23)

2 ' 2

For factorization models, such an approach has been proposed for MF by
Salakhutdinov and Mnih (2008) and for generic FMs by Freudenthaler et al. (2011).
Equation (23) extends the Bayesian FM approach of Freudenthaler et al. (2011) by
groups.
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Fig. 1 Comparison of the automatic regularization approaches SGDA and MCMC to the
expensive SGD approach. (a) Depicts the error of a matrix factorization model (with varying k) and
(b) for the KNN approaches of Koren (2008). Results are from Rendle (2012) and Freudenthaler
etal. (2011)

4 Evaluation

Figure 1 compares standard SGD learning to the automatic regularization
approaches of adaptive SGD (SGDA, Sect.3.1), and the Hierarchical Bayesian
Model (MCMC, Sect.3.2). Two recommender system models are shown, matrix
factorization (left) and nearest neighbor (right) both regularized with L2. All
experiments® are conducted on the Netflix prize dataset with about 100,000,000
training cases and 1,400,000 test cases.

For the MF models, MCMC has a lower error than SGD and SGDA. The reason
is that SGD and SGDA are point estimators, whereas MCMC estimates the whole
predictive distribution by sampling and thus can cover uncertainty.

5 Conclusion

Regularization is a an important aspect in learning factorization models because of
their high number of model parameters. This work discusses two possibilities to find
proper regularization values without increasing the computational complexity of the
learning algorithms even when the number of regularization parameters is high.

3 All models have been learned with LIBFM, http://www.libfm.org.
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Three-Way Data Analysis for Multivariate
Spatial Time Series

Mitsuhiro Tsuji, Hiroshi Kageyama, and Toshio Shimokawa

Abstract We discuss several methods to realize three-way (three mode) approaches
to clustering using the INDCLUS model and multidimensional scaling using the
INDSCAL model, which assumes that the objects are embedded in a discrete or
continuous space common to all data, including individual differences obtained by
weighting each dimension. We apply some effective dynamic graphical approaches
using two methods to perform a time-space structural analysis for multivariate
spatial time series. The clustering and scaling of multivariate spatial time series
consider: (1) the spatial nature of the objects to be clustered geometrically (discrete);
(2) the characteristics of the feature space with the time series (continuous); (3) the
latent structure between space and time. The last aspect is addressed using dynamic
graphics with a matrix-type presentation. We can simultaneously observe the spatial
nature, move the feature space and can zoom in/out of the results using a suitable
size. The proposed analysis can be applied to the classification and scaling of the
prefectures of Japan on the basis of the observed dynamics of some safety indicators.

1 Spatial Time Series Data

The statistical analysis of spatial time series data, which include the place and
time of collection, is very complex. Uncertainty and the role of statistics should
be considered in detail (Cressie and Wikle 2011). Coppi, D’urso and Giordani
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considered the space of multivariate time trajectories and the spatial nature of
clustering (Coppi et al. 2010).

In this report, we apply both the discrete INDCLUS and continuous INDSCAL
approaches to some liquor sales data. We consider both the geographical space of
liquor sales and the feature space of the time series at the same stage.

2 Three-Way Data Analysis

We propose and investigate three-way clustering and scaling approaches (Pruzansky
1975; Arabie et al. 1987; Tsuji et al. 2010) to spatial time series data. The data that
we are investigating are three-way data, namely,

liquor x time X place

The three variables are characterized as follows:

* On the basis of five type of liquor (sake, white distilled liquor, beer, whisky, wine)

* On the basis of the year (spanning 1987-2007)

* On the basis of the location from among 46 prefectures (excluding Okinawa) in
Japan,

in relation to safety problems of drunken driving. When driving in a bad condition
that normal driving may be impaired by alcohol, the penalties to drivers have been
strengthened. Data for liquor sales were converted into sales per 100 persons.

When we applied the INDCLUS and INDSCAL, one of the most difficult
problems encountered was the selection of the initial configuration. Therefore,
we focused on the continuous feature of time as follows:

e From 1987 to 2007, we calculated the mean of each liquor over 5 years
(1987-1991, 1992-1996, 1997-2001, 2002-2006) to avoid the difficulty of
choosing an initial configuration in the three-way data analysis INDCLUS and
INDSCAL.

Our research used the following procedure;

» First, we used the INDCLUS to explain the structure of places using Japanese
maps.

* Next, we used the INDSCAL to explain the geometrical interpretation of places
(prefectures) from the view point of individual weights of liquor and time.

* For the annual data from 1987 to 2007, we again used the INDSCAL with only
one iteration to explain the geometrical interpretation of places (prefectures) from
the view point of the individual weights of liquor and time.

* Finally, from the results of the individual weights, we were able to find the time
trajectories.
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Fig. 1 Three-cluster map using INDCLUS (VAF = 0.488)

2.1 Results by INDCLUS

The INDCLUS model is represented by

R
Sij,k = E Wkrpirpjr + ¢k,
r=1

where s;;; is the similarity between place i and j for individual k (k = 1,--- , K);
R is the suitable number of clusters found from places; wy, is the weight of
individual liquor k for cluster r, p;. represents the probability that place i belongs
to cluster r (p;-=1) or not (p;- =0), and ¢, is an additive constant of individual
liquor k.

Characteristics of the INDCLUS model are overlapping clustering and non-
hierarchical structure. Figure 1 shows the result map obtained using this model
(VAF = 0.488) in the case of three clusters.
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Fig. 2 Two-dimensional plot of places (prefectures) by INDSCAL (VAF = 0.464)

* The first cluster includes Yamanashi (wine) and Tokyo (beer).

* The second cluster includes Niigata (sake) and Southern Kyushu (white distilloed
liquor).

* The third cluster includes many prefectures.

Thus, the spatial nature of liquor could be expressed geometrically and discretely.

2.2 Results by INDSCAL

In the INDSCAL model, the three-way matrix D = {d;x} is estimated from an
input data matrix A = {3, x }, where dj;x is the distance between place i and j for
individual k of liquor and time, and §;; is the dissimilarity between place i and j
for individual k of liquor and time. Distance dj;x is represented by

R
dij,k = Z Wir (-xir - -xjr)zv

r=1

where wy, is the weight of importance along dimension r (r =1,---, R) for
individual k (k = 1,---) ; Ris the number of dimensions; x;. and x;, are coordinates
of the place i and j, respectively, along dimension r of an R-dimension with
individual weights of liquor and time space (Fig. 2)
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Fig. 3 Japan map of the results by INDSCAL with two-dimensions (VAF = 0.464)

Along Axis-1, Niigata (sake) is located on the left-side and Kagoshima and
Kumamoto (white distilled liquor) are located on the right-side.
Along the Axis-2, Tokyo (beer) is located on the upper-side.

We can express the results for INDSCAL using a map of Japan (Fig. 3), where

we can find the results for INDSCAL in a more geometrically continuous map.

In the upper map, Niigata (sake) is represented by white, and Kagoshima and
Kumamoto (white distilled liquor) are represented by deep black.

In the lower map, Tokyo (beer) is represented by deep black.

Several prefectures are identified by their shades.
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Fig. 4 Two-dimensional plot of weights (liquor and time)

Figure 4 shows the two-dimensional plot of weights (liquor and time).

* The weights of the Axis-1 include sake and white distilloed liquor.
* The weights of the Axis-2 include whisky, wine and beer.

Thus, the characteristics of the feature space of liquor with time could be expressed
using a geometrically continuous map.

2.3 Individual Plot from Results of INDSCAL

In Sect. 2.2, we examined three time periods (1987-1991, 1992—-1996, 1997-2001)
to simplify the analysis of INDSCAL. To make the time series feature space,
we create time series projects for the individual weight space.

Figure 5 shows a detailed two-dimensional plot of weights (liquor and time).
In addition to that plot, we make the time trajectories for two weights of wine and
sake.

We determined the continuity of time, and identified an interesting relationship
between liquor and time. In 1993, the sale of wine changed significantly.
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Fig. 5 Two-dimensional plot of weights (liquor and time) in detail

3 Dynamic Graphical Presentation with Matrix-Type

The validity of integration of INDCLUS (Cluster Analysis) and INDSCAL (MDS)
was observed as follows;

e The result by INDCLUS was visualized geometrically.
e The result by INDSCAL was also visualized geometrically.

We developed the dynamic graphical presentation application with a matrix-type of
some graphical files including geometrical results (Tsuji et al. 2009). Figure 6 shows
the results of this application with a matrix-type of INDCLUS and INDSCAL.
Then, we created various types of maps on the same plane, to show a more real
configuration of the latent structure.

GIS (Geographical Information System) is a very interesting technology.
Moreover, spatio-GIS includes some latent structure in the geographic space.
The presentation of matrix-type dynamic graphics has some significant features,
namely,

¢ We can obtain several results at the same time.
*  We can simultaneously move several results into their appropriate places.
¢ We can zoom in/out of several results at the same time into their suitable size.
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Assessment of the Relationship Between Native
Thoracic Aortic Curvature and Endoleak

Formation After TEVAR Based on Linear
Discriminant Analysis

Kuniyoshi Hayashi, Fumio Ishioka, Bhargav Raman, Daniel Y. Sze,
Hiroshi Suito, Takuya Ueda, and Koji Kurihara

Abstract In the field of surgery treatment, thoracic endovascular aortic repair
has recently gained popularity, but this treatment often causes an adverse clinical
side effect called endoleak. The risk prediction of endoleak is essential for pre-
operative planning (Nakatamari et al., J Vasc Interv Radiol 22(7):974-979, 2011).
In this study, we focus on a quantitative curvature in the morphology of a patient’s
aorta, and predict the risk of endoleak formation through linear discriminant
analysis. Here, we objectively evaluate the relationship between the side effect
after stent-graft treatment for thoracic aneurysm and a patient’s native thoracic
aortic curvature. In addition, based on the sample influence function for the average
of discriminant scores in linear discriminant analysis, we also perform statistical
diagnostics on the result of the analysis. We detected the influential training

K. Hayashi (b)) - H. Suito - K. Kurihara
Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan

CREST, Japan Science and Technology Agency, Tokyo, Japan
e-mail: k-hayashi @ems.okayama-u.ac.jp; suito@ems.okayama-u.ac.jp;
kurihara@ems.okayama-u.ac.jp

F. Ishioka
School of Law, Okayama University, Okayama, Japan

CREST, Japan Science and Technology Agency, Tokyo, Japan
e-mail: fishioka@law.okayama-u.ac.jp

B. Raman - D.Y. Sze
Department of Radiology, Stanford University School of Medicine, Stanford, USA
e-mail: ramanb @stanford.edu; dansze @stanford.edu

T. Ueda
Department of Radiology, St. Luke’s International Hospital, Tokyo, Japan

CREST, Japan Science and Technology Agency, Tokyo, Japan
e-mail: takueda@luke.or.jp

W. Gaul et al. (eds.), German-Japanese Interchange of Data Analysis Results, 179
Studies in Classification, Data Analysis, and Knowledge Organization,

DOI 10.1007/978-3-319-01264-3__16,

© Springer International Publishing Switzerland 2014


mailto:k-hayashi@ems.okayama-u.ac.jp
mailto:suito@ems.okayama-u.ac.jp
mailto:kurihara@ems.okayama-u.ac.jp
mailto:fishioka@law.okayama-u.ac.jp
mailto:ramanb@stanford.edu
mailto:dansze@stanford.edu
mailto:takueda@luke.or.jp

180 K. Hayashi et al.

samples to be deleted to realize improved prediction accuracy, and made subsets
of all of their possible combinations. Furthermore, by considering the minimum
misclassification rate based on leave-one-out cross-validation in Hastie et al. (The
elements of statistical learning. Springer, New York, 2001, pp. 214-216) and the
minimum number of training samples to be deleted, we deduced the subset to
be excluded from training data when we develop the target classifier. From this
study, we detected an important part of the native thoracic aorta in terms of risk
prediction of endoleak occurrence, and identified influential patients for the result
of the discrimination.

1 Introduction

Recently, many medical imaging tools have been developed, and they have provided
quantitative and detailed data in the clinical field. In clinical treatment, doctors and
researchers try to use the findings from these quantitative data for therapy planning.
Therefore, statistical approaches and methods are useful for the development of high
quality therapy planning.

Aneurysms are among diseases that are associated with aging and atherosclerotic
change, and many people face the risk of developing an aneurysm. In the field
of surgery treatment, thoracic endovascular aortic repair (TEVAR), which is a
minimally-invasive therapy technique, has been widely accepted as a new treatment
for thoracic aneurysms. Makaroun et al. (2008) compared the results of TEVAR
and surgical repair in patients with descending thoracic aortic aneurysms, and
they showed that TEVAR exhibited significantly lower incidences of aneurysm-
related mortality. On the other hand, it has been shown that a clinical side effect
called “endoleak” is often caused after TEVAR. Endoleak is one complication of
TEVAR, and is a leakage of blood into the aneurysm sac after endovascular repair.
Many investigators have recognized the contributions of aortic morphology and
the achievement of adequate device fixation and seals for endoleak (Nakatamari
et al. 2011). However, it seems that a quantitative analysis for the occurrence of
endoleak has not been adequately performed. Then, Nakatamari et al. (2011) and
Ishioka et al. (2011) applied linear discriminant analysis to the dataset that has
quantitative variables computed on the basis of CT angiography, and they performed
risk prediction. However, the normalization of the length of the thoracic aorta for
each patient was not sufficiently processed. Moreover, statistical diagnostics of the
analysis result were not performed in their studies.

In this paper, we properly normalized the length of the thoracic aorta of a
patient, and we generated the target dataset for analysis. Then, we performed
the discrimination of the no endoleak and endoleak groups in order to detect an
important part of the thoracic aorta in the risk prediction of endoleak formation.
In addition, we assessed the result of the discriminant analysis with the sample
influence function (SIF), and detected notable patients in terms of the risk prediction
of endoleak formation.
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2 Data Set and Data Normalization

In one of the six FDA-sponsored clinical trials examining the Thoracic Excluder
or TAG stent-graft devices (W.L. Gore & Associates., Flagstaff, Arizona), 121
patients were prospectively enrolled between April 2001 and September 2008
(Nakatamari et al. 2011). We preliminarily excluded the patients for whom pre-
procedure CT angiography data were not available. In this study, we included
45 patients (no endoleak: 23 patients, endoleak: 22 patients). There are mainly
four types of endoleak, but in this study, we performed a two-class discrimination
between no endoleak and endoleak.

2.1 Calculation of Curvature Index

With reference to Rubin et al. (1998), we defined a curvature index k = 1/D cm™!
that quantifies aortic morphology, where D is the mean diameter. D can be
calculated at 1-mm increments along the median luminal centerline computed based
on CT angiography (see Fig. 1). In this study, we calculated the curvature index (k)
as the inverse of the radius of curvature at 10-mm discrete intervals along the aortic
centerline. We regarded the part from the position of 30 points (30 mm) before the
right brachio-cephalic artery to the celiac artery as the target part of the thoracic
aorta being analyzed (see Fig. 2).

2.2 Normalization of the Length of the Target Part
of the Thoracic Aorta

The target part of the thoracic aorta in each patient is different. Therefore, we need
to normalize the length of this part. In this subsection, we describe how to normalize
the target part in this study.

We first detected a patient (referred to as A38) who had the shortest length of
the target part of all the patients. The length for patient A38 was 263 points. Next,
we calculated the normalized points for all patients based on the length of the target
part of A38. In addition, we estimated the curve line of the curvature data for each
patient using B-splines of order three based on de Boor (1978) and Konishi and
Kitagawa (2004, pp. 98—104). With the normalized position of the thoracic aorta and
the estimated curve line function, we finally calculated the normalized curvature for
each patient. Then, their lengths were normalized into 263 points. In patient A38, the
curvature data along the part from point 221 to point 263 corresponded to missing
values. Therefore, we adopted the maximum values for each of the 11 points from
points 1-220, as the variables in discriminant analysis. The first variable indicates
the maximum curvature from points 1-11, and the 20th variable corresponds to
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Fig. 1 An atherosclerotic aneurysm of a patient on a three-dimensional CT angiographic image

the maximum curvature from points 210-220. Moreover, we added the variables
in terms of the initial and final positions for the part of stent-graft insertion on the
normalized position. We performed the discrimination of no endoleak and endoleak
with a dataset that had 45 training samples and 22 variables. The 21st and 22nd
variables indicate the initial and final positions for the part of stent-graft insertion
on the normalized position, respectively.

3 Linear Discriminant Analysis and Its Diagnostics

In this section, we give a simple explanation of linear discriminant analysis for two
groups with reference to Hastie et al. (2001, pp. 84-88), and we also show statistical
diagnostics based on the sample influence function with reference to Hampel et al.
(1986, pp. 92-95), Fung (1992), and Tanaka (1994).

3.1 Opverview of Linear Discriminant Analysis

Let X and G denote a p-dimensional real-valued random input vector and a
categorical variable, respectively. In this paper, we code the classes of no endoleak
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Fig. 2 The curvature of a patient as a function of location along the median centerline of the flow
lumen

and endoleak as 1 and 2, respectively. Here, we assume the density functions of X
in class 1 and class 2 to be f;(x) and f>(x), respectively. X is an input vector, and
we assume the prior probability of a patient to be in class 1 and class 2 as m; and
15, respectively, where w + mp, = 1.

By using fi(x) and mx (k = 1,2),

o PX=x|G=bPG=k _ filom
PG=klX=x= P(X =) = Hom + hom

(k=1,2).

M
In linear discriminant analysis, we assume the density function of class k to be
W exp(—3(x — )T Z7' (x — py)), where g, is the mean vector of the
population and ¥ is the common covariance matrix of the population. Based on (1)

- P(G=1]X= .
and W exp(—3(x— )T 71 (x— ), log PEGT}X=:‘;; can be written as

_ 1 _ T
X2 (p,y — ) = 5 +py)' T ‘(m—uz)+10gn—2- 2

When formula (2) is greater than 0, we classify patient x into class 1. Otherwise,
we classify x into class 2 based on Hastie et al. (2001, p. 88). In practical analysis,
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we use the estimated my, ur, and X that correspond to 7y = ng/(n; + na),
~ 2 2 ~ ~

e = (1/m) Y08 xf,and ¥ = (1/ (1 4+n2=2)) ey 370 (6F =) (% —f) "
respectively. Here, ny is the number of training samples in the k-th class. xff refers
to the i-th training sample in the k-th class. With these estimated parameters,

we calculate f;(x;) and perform the discrimination in linear discriminant analysis.

3.2 Diagnostics Based on the Sample Influence Function

In this study, we define the average of the discriminant scores in each class as a target
statistics because its statistical mean is the magnitude of the separation between
classes. The discriminant score for x! in class 1 is calculated as

21(x)) = log(fi (x))71) — log(fa(x}) 7). 3)

From (3), we can calculate the average of the discriminant scores in class 1 as
follows.

N 1 &
AR n—ZZl(X,‘l)- 4)
T

The discriminant score for x? in class 2 is

(k%) = log( f2(x2)72) — log( /1 (x2) 7). (5)

From (5), we can also calculate the average of the discriminant scores in class 2 as

R 1 &
Zr=— Y %(x)). 6
2 nzzzz(xl) (6)

i=1

To assess the influence of the i -th training sample in the g-th class for 7y, we use
the following measure as sample influence function (SIF):

SIF(xS: Z4) = —(ng — )(Zi — Zi). )

where Zj is the average of the discriminant scores in the k-th class when we
develop the discriminant classifier or the discriminant rule by deleting x{ (i =
l,...,ng; g = 1,2). We plot SIF(Xf; Zk) along the i-th training sample of the
g-th class to evaluate the influence of x; for the k-th class. A positive value in
the sign of SIF(x{; Zk)(k = 1,2) indicates that the k-th class is not separated
well from other classes. On the other hand, a negative value indicates that the k-th
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Step 1 For the g-thc lass, detect the training samples that give at least one negative value
for the SIF(x¥;Z;) (k= 1,2) forall Z(k = 1,2).

Step2  Calculate 4gs, which are all possible combinations of the training samples that
give negative values in step 1 for the g-th class.

Step 3 For each A4, develop the classifier by deleting 4, from the g-th training data,
and calculate the misclassification rate of a leave-one-out cross-validation and a
K-fold cross-validation.

Step4  In each case, search the subsets that give the minimum misclassification rate, and
find the subset that has the minimum number of training samples to be deleted
among the subsets.

Step 5  Compare the number of training samples in the subset chosen based on a
leave-one-out cross-validation and that based on a K-fold cross-validation.

Step 6 Choose the subset that has the minimum number of training samples of all the
subsets in step 5.

Fig. 3 Diagnostic process based on the sample influence function

class is separated. We can, therefore, improve the predicted discriminant result by
focusing on the negative sign. To assess the influence of multiple training samples
on the analysis result, based on the training samples in the g-th class that give at
least one negative value in SIF(Xf?T ; Zk)(k = 1,2), we first calculate Ags, which
are all possible combinations of them in the g-th class. In each Ag, we then
develop the classifier by deleting the subset A, from the training data. We research
the subsets that give the minimum misclassification rate in a leave-one-out cross-
validation. Among them, we finally detect the subset that has the minimum number
of training samples in the subsets. When we delete the influential training samples,
we have to consider statistical efficiency. In general, we need to delete only the
essential training samples from the perspective of prediction accuracy. Therefore,
we should research the subsets that give the minimum misclassification rate based
on the leave-one-out cross-validation and the K -fold cross-validation. Among them,
we should detect the subset that has the minimum number of training samples.
Then, by giving importance to statistical efficiency, we propose general diagnostics
based in the sample influence function as shown in Fig. 3. In this study, we focused
more on obtaining information about the relationship between the thoracic aortic
morphology of a patient and the endoleak formation after TEVAR as opposed to
the improvement of the prediction accuracy in discriminant analysis. Therefore,
to perform an accurate diagnostics, in this paper, we performed only diagnostics that
were based on the misclassification rate based on a leave-one-out cross-validation.
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Table 1 Results Predicted\observed ~ Endoleak (—)  Endoleak (+) Total
Endoleak (—) 21 1 22
Endoleak (+) 2 21 23
Total 23 22 45

Table 2 Results of
ane CoUts Of cross Predicted\observed  Endoleak (—)  Endoleak (+) Total

validation
Endoleak (—) 13 8 21
Endoleak (+) 10 14 24
Total 23 22 45

Table 3 Results after

variable selection (adopted Predicted\observed  Endoleak (—)  Endoleak (+)  Total

variables: 1,4, 6,7, 10, 11, Endoleak (—) 22 2 24
13, 16, 18, 19, 21) Endoleak (+) 1 20 21
Total 23 22 45

Table 4 Results of cross

validation after variable Predicted\observed  Endoleak (—)  Endoleak (+)  Total

selection (adopted variables: Endoleak (—) 19 3 22
1,4,6,7,10, 11, 13, 16, 18, Endoleak (4) 4 19 23
19, 21) Total 23 22 45

4 Risk Prediction of Endoleak Formation with Quantitative
Data

We applied the discriminant rule in (2) to the target dataset described in Sect.2.2.
The results are shown in Tables 1-4.

4.1 General Results

Table 1 shows the results of a general discriminant analysis. The true discriminant
rates in no endoleak and endoleak were 91.304 and 95.455 %, respectively.
We identified a relationship between native curvature and endoleak formation, but
these results based on a leave-one-out cross-validation were 56.522 and 63.636 %,
respectively.

From these results in Table 2, in the case of 22 variables, we did not observe any
significant relationship between native curvature and endoleak formation in terms
of prediction.

Next, we performed variable selection using stepwise selection. In this variable
selection process, we adopted the misclassification rate of a leave-one-out cross-
validation. The general result and the result based on a leave-one-out cross-
validation after variable selection are shown in Tables 3 and 4, respectively. The
numbers on “adopted variables” in Tables 3 and 4 represent the chosen variables in
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the variable selection. In the former case, the true discriminant rates of no endoleak
and endoleak were 95.652 and 90.909 %, respectively. In the latter case, they were
82.609 and 86.364 %, respectively. We determined that there were important parts
among the positions on the native curvature that predicted the endoleak formation.
Since the 21st variable chosen after variable selection is the variable that shows the
initial position of stent-graft insertion, then, we confirmed the fact that the initial
position is important for the prediction accuracy of the discrimination.

4.2 Statistical Diagnostics

The plots of SIF(x]; 2k)(i = 1,...,23; k = 1,2) in Fig.4 show the effects
of x! for Zi when we develop the classifier by deleting x} from class 1. In
SIF(x/; Z 1), there were six negative values to be deleted from the perspective of
prediction. In SIF(x}; 22), there were 14 negative values. The plots of SIF(x?; Zk)
i =1,...,22; k = 1,2) in Fig.5 show the effects of X,.2 for Zk when we
deleted the training samples in class 2. In SIF(x?; Z 1), there were 16 negative
values to be deleted. On the other hand, there were five negative values in
SIF(X%; 22). Therefore, in no endoleak and endoleak, there were the 17 training
samples that give at least one negative value in the sample influence functions for
the average discriminant scores in no endoleak and endoleak, respectively. Based
on the misclassification rate in a leave-one-out cross-validation, we explored a
minimum number of the subset that most improved the total accuracy of no endoleak
and endoleak in the estimated discriminant model after variable selection. By the
omission of the subset comprising the Ist, 2nd, 7th, 16th, 17th, 19th, 20th, 21st,
and 23rd training samples in no endoleak, the total accuracy of no endoleak and
endoleak based on a leave-one-out cross-validation was changed into 100 %. In the
medical field, the cost of discriminant errors due to no endoleaks is different from
that due to endoleaks. For example, based on Gore (2011, p. 10), it is mentioned
that the percentage of the patients that have experienced an endoleak is 28.6 %.
Then, we performed an additional analysis for multiple-case diagnostics. First, we
explored the subsets to give the maximum total accuracy of endoleaks based on the
misclassification rate in a leave-one-out cross-validation. Among these subsets, by
considering statistical efficiency, we explored the best subset having the minimum
number of deleted training samples, with the condition that the prediction accuracy
of the no endoleak was equal or improved.

In the case of the perturbation at the training samples of no endoleak, there were
two optimal subsets. One was the subset comprising the 1st, 2nd, 7th, 19th, 20th,
21st, and 23rd training samples in no endoleak. The other was the subset comprising
the 1st, 2nd, 16th, 19th, 20th, 21st, and 23rd training samples in no endoleak. When
we developed the classifier by the omission of the 1st, 2nd, 7th, 19th, 20th, 21st,
and 23rd training samples in no endoleak, the accuracies in the general results
for no endoleak and endoleak were 100 and 100 %, respectively. In addition, the
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Fig. 4 The influence patterns obtained for the average of the discriminant scores in each class by
deleting the training samples in no endoleak group
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Fig. 5 The influence patterns obtained for the average of the discriminant scores in each class by
deleting the training samples in endoleak group

accuracies in the results based on a leave-one-out cross-validation were 87.500
and 100 %, respectively. When we developed the classifier by the deletion of the
1st, 2nd, 16th, 19th, 20th, 21st, and 23rd training samples in no endoleak, the
accuracies in the general results for no endoleak and endoleak were 93.75 and
100 %, respectively. Moreover, the accuracies in the results based on a leave-one-out
cross-validation were 87.500 and 100 %, respectively. In the case of the perturbation
at the training samples of endoleak, the subset comprising the 14th, 19th, and 21st
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training samples in endoleak was the best optimal subset. When we developed the
classifier by excluding the 14th, 19th, and 21st training samples in endoleak, the
true discriminant rates in the general results for no endoleak and endoleak were
95.652 and 100 %, respectively. In addition, the true discriminant rates based on a
leave-one-out cross-validation were 86.957 and 100 %, respectively.

Therefore, the subset comprising the 1st, 2nd, 7th, 19th, 20th, 21st, and 23rd
training samples or the 1st, 2nd, 16th, 19th, 20th, 21st, and 23rd training samples
in no endoleak group was the optimal subset to delete from a point of view of
prediction accuracy.

5 Discussion and Conclusion

Tse et al. (2004), Parmer et al. (2006), and Piffaretti et al. (2009) have investigated
the association between the diameter and location of landing zones on a stent-
graft, and the risk of endoleak formation after TEVAR, and they reported that the
diameter and location are the most significant factors. Nakatamari et al. (2011)
and Ishioka et al. (2011) have applied linear discriminant analysis to the dataset
based on the native thoracic aortic curvature of a patient to study its effect for the
risk of endoleak occurrence. However, an appropriate normalization for different
lengths of thoracic aorta was not performed. In addition, statistical diagnostics
for the analysis results were also not performed. In this study, we performed the
discrimination for no endoleak and endoleak after appropriate processing. From the
results based on a cross validation after variable selection, we detected the important
parts (variables) of the thoracic aorta that indicate a risk of endoleak formation.
In terms of risk prediction, in the statistical diagnostic analysis based on the sample
influence function, we detected six notable patients in the no endoleak group. The
1st, 2nd, 19th, 20th, 21st, and 23rd training samples in no endoleak were chosen
in the cases of the diagnostics based on the maximization of the total prediction
accuracy and that of the prediction accuracy of endoleak group with the condition
that the prediction accuracy of no endoleak group is equal or improved. In general,
when we search the subsets to delete from the training data, if we focus only on
improving the prediction accuracy of the classifier, we should search the best subsets
for deleting not only an individual class, but all classes. However, in this study,
we assigned higher priority to gaining an understanding of the characteristics of the
patients in each group, and we searched each class.

In future, we will investigate their characteristics in detail. In this study, we also
performed a statistical test for the difference between the two averages on the each
variable chosen after variable selection, assuming that their population variances
are different. From the results of these statistical tests shown in Tables 5-7,
we determined that the curvature of patients in the no endoleak was larger than
that in the endoleak in the 7th variable. On the other hand, we also observed the
tendency whereby the curvature of patients in the endoleak was larger than that in
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Table 5 Welch two sample t-test in each position after variable selection
(by R: A language and environment for statistical computing, R Founda-
tion for Statistical Computing, http://www.R-project.org/)

Position No endoleak (average)  Endoleak (average) p-value
Variable 1 21.171 21.430 0.852
Variable 4 19.438 18.649 0.679
Variable 6 23.577 22.034 0.490
Variable 7 27.900 22.654 0.022*
Variable 10  23.516 24.551 0.659
Variable 11~ 21.359 24.000 0.264
Variable 13 16.360 21.422 0.041*
Variable 16  12.161 16.529 0.037*
Variable 18 13.709 15.185 0.446
Variable 19  13.379 15.295 0.338
Variable 21  11.217 8.591 0.007**
Signif. code:  0.1; 0.05*; 0.01**; 0.001***

Table 6 Welch two sample t-test in each position in the case of deleting
the Ist, 2nd, 7th, 16th, 17th, 19th, 20th, 21st, and 23rd training samples
in no endoleak group after variable selection (by R: A language and

environment for statistical computing)

Position No endoleak (average)  Endoleak (average) p-value
Variable 1 20.982 21.430 0.778
Variable 4 20.903 18.649 0.263
Variable 6 25.731 22.034 0.180
Variable 7 29.804 22.654 0.025*
Variable 10 21.041 24.551 0.154
Variable 11 19.470 24.000 0.063
Variable 13 15.771 21.422 0.047*
Variable 16  11.575 16.529 0.045*
Variable 18 12.462 15.185 0.213
Variable 19  13.240 15.295 0.323
Variable 21  12.429 8.591 0.004**

Signif. code:  0.1; 0.05*; 0.01**; 0.001***

the no endoleak in the 13th and 16th variables. In addition, in the 21st variable
corresponding to the initial position of stent-graft insertion, we confirmed that the
position in the no endoleak was farther from the origin of thoracic aorta than that in
the endoleak. The rough averages of the initial positions of stent-graft insertion in
the no endoleak and endoleak corresponded to farther positions than the 7th variable.
Therefore, from the results in Tables 5-7, we could also confirm the tendency that
the curvature value on the part of stent-graft insertion in the endoleak is larger than
that in the no endoleak.
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Table 7 Welch two sample t-test in each position in the case of deleting
the 1st, 2nd, 19th, 20th, 21st, and 23rd training samples in no endoleak
group after variable selection (by R: A language and environment for
statistical computing)

Position No endoleak (average)  Endoleak (average) p-value
Variable 1 20.620 21.430 0.587
Variable 4 20.597 18.649 0.311
Variable 6 25.925 22.034 0.119
Variable 7 30.096 22.654 0.008**
Variable 10  21.706 24.551 0.227
Variable 11 19.378 24.000 0.046*
Variable 13 15.508 21.422 0.025*
Variable 16  11.048 16.529 0.015*
Variable 18  13.523 15.185 0.457
Variable 19  14.103 15.295 0.593
Variable 21  11.941 8.591 0.005**

Signif. code:  0.1; 0.05*; 0.01**; 0.001***

The findings in this study are useful for predicting the risk of endoleaks, and will
support the therapy planning for TEVAR.
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Fold Change Classifiers for the Analysis of Gene
Expression Profiles

Ludwig Lausser and Hans A. Kestler

Abstract The classification of gene expression data is often based on profiles
containing thousands of features. These features represent the abundance of RNA
molecules related to a particular gene. Most state of the art algorithms in this field
like random forests or boosting ensembles can be seen as combination strategies for
single threshold classifiers. The structure of these classifiers is beneficial in these
high-dimensional settings as feature reduction is possible which also allows for a
direct semantic and syntactic interpretation.

A single ray, the half-open interval representing one class, compares a single
expression value of the profile with a threshold. In this work an alternative base
classifier, the fold change classifier, is discussed. The classifier compares two
expression values of the same sample. We analyze fold change classifiers as
unweighted ensembles of type majority or unanimity vote. A sample compression
bound for unweighted ensembles of fold change classifiers is also given.

1 Introduction

Modern diagnostic tools allow the categorization of tissues and other biological
samples according to their gene expression profile. The classification of such data
is based on high-dimensional vectors containing expression levels of thousands
of RNA molecules. The classification models with the highest interpretability can
directly be translated into natural language, such as

IFx; > 7AND x5 <4ORXx3 >2THEN .... (1)
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Typical models allowing such a syntactical interpretation are for example decision
trees (Breiman et al. 1984) , decision lists (Rivest 1987) or unweighted ensembles
of rays (Kestler et al. 2011). Modern algorithms utilizing these schemes are,
e.g. random forests (Breiman 2001), boosting ensembles (Freund and Schapire
1995) or the set covering machine (Marchand and Shawe-Taylor 2002). The
semantic interpretability of these models depends on the chosen kind of base
classifier. A common choice is the single threshold classifier or ray. This base
classifier compares a single measurement to a threshold (e.g. x; > 7). Although
this base classifier is adequate in many applications, it is questionable if the single
threshold classifier is the best choice for expression data. Its dependency on a fixed
threshold makes a ray susceptible to global multiplicative or additive effects. Other
algorithms use x; > x; as a base classifier (Geman et al. 2004; Tan et al. 2005;
Eddy et al. 2010). Bg and Jonassen (2002) utilize this pairwise criterion for feature
selection and (Xu et al. 2008) utilize base classifiers of type x; > x; > x;. In some
way these procedures can be seen as extensions of the threshold approach.

In this work we discuss an alternative base classifier of type :—’/ > t. It will
be called fold change classifier in the following. It is a natural extension of our
conjunction of rays approach (Kestler et al. 2011). In fact, our motivation for
studying this type of classification scenario originates from the often used paradigm
of considering fold-expression changes between groups as a criterion of finding
differentially regulated genes.

In the following we analyze the influence of fold change classifiers on
unweighted ensembles of type majority vote or logical conjunction and give a
sample compression bound for unweighted ensembles.

2 Methods

Throughout the rest of this paper the following notation will be used. An unlabeled
sample will be given by x = (x1,...,x,)7, x € R". A class label y will be
assumed to be binary y € {0, 1}. The set of labeled training samples will be denoted
Z = {(x;,y;)}’_,. It is assumed that it was drawn from a fixed but unknown
distribution Z. For a single sample also z € Z will be used.

Single threshold classifiers (rays): The structure of a single threshold classifier
ri(t) (x) can be formalized by using the indicator function I, evaluating to 1 if
condition a is true and O otherwise.

r () = Ty—naz0) 2
The decision criteria of ray ri(t) (x) is restricted to a single feature value x; which is

compared to a threshold ¢ € R. The direction d € {—1, 1} indicates if the relation
of x; and t shouldbe x; > ¢ (ford = 1)orx; <t (ford = —1).
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basic concept of fold change classifiers
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Fig. 1 Three fold change classifiers for features x; and x; (t € {0.5,1,2}). Linear decision
boundaries in a two dimensional subspace are generated

Fold change classifiers: A fold change classifier is given by following equation:
(1) _ —
hij (X) - Hl:i>ti| - H[Xithj] (3)
X

Here, the threshold + € R, is used to determine or set how large the relative
difference between x; and x; should be. An illustration of a fold change classifier
can be found in Fig. 1. The fold change classifier corresponds to a linear decision
boundary in the two dimensional subspace of features i and j. For t = 1 it is
equivalent to the bisecting line of the first quadrant.

Unweighted ensemble methods: In many cases the predictive power of a base
classifier (either a single threshold classifier or a fold change classifier) is too
low to get an accurate classification performance. In this case an ensemble of
base classifiers ¢;(X),..., cx(X) is trained and combined via some kind of fusion
strategy, e.g. cart (Breiman et al. 1984), boosting (Freund and Schapire 1995),
random forests (Breiman 2001), etc. The combined prediction is often of a higher
accuracy than the prediction of an ensemble member. On the other hand, ensemble
classifiers inherit some properties of their base classifiers. Among all possible
fusion strategies the unweighted ensemble methods belong to those with the best
interpretability. The methods treat all single predictions in the same manner. This
implies that knowing all ensemble members is equivalent to knowing the consensus.
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No additional parameters or weights are needed. Two well known members of this
category are the unweighted majority vote and the unanimity vote.

An unweighted majority vote predicts the class label which was predicted most
often among the ensemble members.

h(x) = L[5 ¢; (x)> X (1—c; (0))] “4)

The unanimity vote (logical conjunction) only predicts class 1 if all ensemble
members predict this class. Otherwise class 0 is predicted.

h(x) = Tip ¢ ) o)

For the unanimity vote a standard training of the ensemble members (e.g. min-
imizing the empirical risk) is not advisable (Kestler et al. 2011). The risk of
misclassifying an example of class 1 is much higher than misclassifying an example
of class 0. In this case an ensemble member should be trained to maximize the
sensitivity of predicting class 1. It should only minimize the empirical risk on the
remaining samples.

Data dependent classifiers: A subset of classifiers 77 (Z) € ¢ of a hypothesis
class 77 is called data dependent, if each h € J#(Z) can be reconstructed by
utilizing a certain sequence of training examples, a so called compression set Z,
and some additional information given by a message string o € ..

p: XL xS — H (6)

The mapping p is called a reconstruction function of 7#(Z). Although 7 (Z) is
often much smaller than J#, a restriction to a set of data dependent classifiers
is often preferable. It especially allows the application of sample compression
bounds (N. Littlestone and M. Warmuth, 1986, Relating data compression and
learnability, Unpublished manuscript), a kind of (1 — §) confidence bound on the
risk of a classification method. These bounds allow to calculate limits of the risk of
a classification method, which will not be exceeded with a probability of (1 — §).
Other types of such bounds are, e.g., VC bounds (Vapnik 1998) or PAC-Bayes
bounds (McAllester 1999). Sample compression bounds belong to the class of
training set bounds, which means that they can directly be applied in the training
phase of a classifier and do not depend on a separate test or validation set (test set
bounds).

The idea of sample compression bounds is directly based on the concept of
data dependence. By definition a data dependent classifier can be trained by only
utilizing samples out of the compression set Z.. The remaining set of training
samples Z, = Z \ Z. is unused in this context. The set Z, can be seen as being
independent from the training process of this particular classifier. The set Z, can be
used as a validation set for this classifier and can be applied as in a test set bound.
This procedure can be repeated for each classifier in 5#°(Z). An overall confidence
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of (1 —§) for these bounds can be achieved by distributing the overall risk of failure
8 among them. A more detailed introduction on sample compression bounds can be
found in Langford (2005).

Theorem 1 (cf. Laviolette et al. 2006). For a random sample Z. = (Z,, ..., Zy)
of iid examples drawn from %, and for every § € (0, 1],

Pr{Vh € H#(Z): R(h) < Bin (Remp(h.Z:),Proxs(h)8)} =1-6  (7)

Loosely speaking the misclassification risk R(%) of each data dependent classifier
h € ¢ (Z) is bound by a term based on the binomial tail inversion.

E(E,S) :sup%p |Bin(£,p) 28} (8)
m m

Equation 8 is an (1 — §) confidence bound on the risk p of a fixed classifier after
receiving k errors in m independent tests. It can be seen as the inversion of the
binomial tail, which denotes the probability of receiving an error rate k/m for a
classifier with risk p.

(K = (m i m—i
Bm(m,p)_;(l,)p(l P) ©)

In Theorem 1 the confidence (1 — §) is given to the set of bounds on each
reconstructable classifiers and not to the bound of a particular one. As a consequence
the error probability § has to be distributed among all classifiers. This is done
according to an arbitrary but fixed prior distribution Pr4 ... Kestler et al. (2011)
showed sample compression bounds for majority votes and unanimity votes of data
dependent rays. These compression bounds will now be extended to data dependent
fold change classifiers and the union of both classifier types.

Data dependent fold change classifiers: A fold change classifier hg) x) =
[y, 51.;] Will be called data dependent if there is a sample zeZwithx;/X; =1t

=5 (x) = 11[ (10)

X N
XiZ 35X
Xj /i|

The corresponding reconstruction function p* only utilizes this single sample.
Here the information string consists of an ordered tuple (i, j) of feature indices
i <j,i,je{l,...,n}and abinary variable d € {—1,1}.

(t=3%; /%)) . _
h;; Y(x) ifd =1

p*({i}s(ls j)vd) = =X:/X
h](f il ’)(X) else.

Y

The value of d is used to determine the ordering of the two feature dimensions.
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The reconstruction p* can easily be extended to cover both data dependent rays
and fold change classifier. The message string must therefore be allowed to contain
a partially ordered tuple (i, j) of feature indices i < j,i,j € {1,...,n}. The
combined reconstruction function will be called p™ in the following.

gy = PR d) i<
p ({2}, (i, j).d) ({3 1.d) ifi— 12)

Data dependent majority votes or unanimity votes: As both ensemble types
belong to the group of unweighted ensemble methods no additional information
is needed to reconstruct the applied fusion scheme. The information therefore can
be gained be concatenating the single compression sets and message strings. We are
now ready to give a sample compression bound of majority votes or unanimity votes
of data dependent rays or fold change features, which extends the formerly given
compression bound in Kestler et al. (2011).

In the following data dependent majority votes or conjunctions will be denoted
as .# (Z) and ¥ (Z). For the different base classifiers the notation will correspond
to the notation given above (e.g. .#*(Z) and .# ™ (Z)).

Theorem 2. LetZ = (Z,,...,Z,) denote a random sample of m examples drawn
iid from Z. Let % (1) denote a set of unweighted ensembles of data dependent fold
change classifiers based on the reconstruction functions described above. Then for
every Z and for every § € (0, 1],

Pr{Vh € % (Z): R(h) < Bin (Remp(h. Z,).q(1])8)} > 1 — (13)
where
6m oIl
hl) = M*(Z) and 14
q(|h]) 2(h + (D7) for #*(Z) an (14)
6m—Vly—lnl
G = —— s fordl*(Z), (15)

m2(|h| + 1)%( Il )

Here h € 7 (Z) denotes a single unweighted ensemble and |h| the number of its
ensemble members. The given bounds also hold for the sets of data dependent
conjunctions €*(Z), € (Z) by replacing the corresponding q(k) of .#*(Z),
AM(Z) by q(|h]) = q(|h])|A]".

Proof. In order to derive the sample compression bounds from Theorem 1 we
need to give reconstruction functions and prior distributions for the corresponding
hypothesis classes. The reconstruction functions were given in Eqs. 11 and 12.

The prior distribution P x.» can be decomposed into the prior distribution
over all compression sets Py and the distribution of all message strings for a
fixed message string length P . The prior P is equivalent for both hypothesis
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classes. It is a distribution over compression sets of varying sizes || > 0. For
a fixed |h| the compression sets can be assumed to be uniform distributed. These
distributions are merged to P, by weighting the sizes by 6/(x(|h| + 1))? (since
Zmzl |h|72 = m2/6 < 1).

Once the compression set is fixed the string set . can be seen as uniformly
distributed over the set of all allowed messages. For the set of fold change classifiers
this corresponds to the set of pairs (j, d), where j is an ordered and repetition-free
vectorj € {(i,j) : 1 <i < j < n} anddisavectord € {—1,+1}"I. For the
hypothesis class of combined classifiers the vectors j are allowed to be chosen out
of j € {(i.j) : 1 <i < j < n}"l If the ensemble is a conjunction for which
the base classifiers were trained as proposed before we can further assume that the
compression set is ordered though it may contain duplicates (Kestler et al. 2011).

O

Examples for the sample compression bounds can be found in Table 2.

3 Simulation Experiments

The fold change classifiers were analyzed in 10 x 10 cross-validation experiments.
They were tested in majority vote ensembles of 1 up to 1,000 ensemble
members. The ensemble members were selected according to following objective
|ITPR(h) — FPR(h)| which is the absolute difference of true positive rate TPR
and false positive rate FPR. The classifiers with the highest values were chosen.
We analysed ensembles of three different types of fold change classifiers. The
first one denoted by maj(+ = i) utilizes fold change classifiers with parameter ¢
fixedto i € {0.1,0.2,...,2}. This category especially includes ensembles of type
hg=1) . The second one consists of data dependent fold change classifiers. Each fold
change classifier is allowed to search for an optimal value of ¢ within the set of
reconstructable values. An ensemble of this type will be denoted by maj*. The third
type of ensemble utilizes a mix of data dependent fold change classifiers and single
threshold classifiers. It will be denoted by maj™.

The results of the ensembles are compared with random forests (Breiman 2001),
support vector machines (Cortes and Vapnik 1995) and classification trees (Breiman
et al. 1984). For the random forests (rf) the number of trees is varied from 1 up to
100. The support vector machines (svm) are used with linear svm(lin) and radial
svm(rad) kernels. For both svms the cost parameter ¢ is varied from 0.1 up to
10.0 by a step size of 0.1. For the classification trees (cart) the minimal number
of samples per node are varied from 1 to 10. The experiments were performed on
two microarray datasets.

The Shipp dataset (Shipp et al. 2002) contains 77 cancerous samples of a
single B-cell lineage. The samples can be distinguished in 58 samples of diffuse
large B-cell lymphoma (DLBCL) and 19 samples of GC B-cell lymphoma,
follicular (FL).
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Table 1 Results of the 10 X 10 cross-validation experiments for the Shipp and the West datasets.
For all classifiers the average accuracy is reported. For those classifiers which are based on fold
change features additionally the number of base classifiers is given

Shipp West

Classifier Accuracy # base cl. Classifier Accuracy # base cl.
fec(r = 1) 95.45 1 fec(r = 1) 77.55 1
fee(t = 0.3) 99.74 1 fee(t = 0.4) 96.12 1
fec™ 98.05 1 fec™ 73.27 1
fect 96.75 1 fec™ 72.24 1
maj(t = 1) 95.97 3 maj(t = 1) 88.78 140
maj(t = 0.3) 99.74 1 maj(t = 0.4) 96.12 1
maj* 98.05 1 maj™ 89.80 115
maj T 96.75 1 majt 89.80 577
svm(lin) 96.75 - svm(lin) 92.45 -
svm(rad) 90.65 - svm(rad) 82.45 -
f 89.61 - rf 89.80 -
Cart 90.39 - cart 87.76 -

Table 2 Values of the sample compression bound for different compression set sizes |2 |

Bound (§ = 0.05)

A Error rate n =50 n =100 n =150 n = 200 n = 1,000

1 1.00 8.05 9.34 10.08 10.60 13.47
5.00 15.76 17.29 18.16 18.76 21.96
10.00 23.15 24.83 25.76 26.41 29.82

5 1.00 8.38 9.71 10.48 11.02 13.99
5.00 16.38 17.97 18.86 19.48 22.78
10.00 24.04 25.77 26.74 27.41 30.91

10 1.00 8.82 10.22 11.03 11.60 14.71
5.00 17.23 18.88 19.82 20.47 2391
10.00 25.25 27.06 28.07 28.76 32.39

The West dataset (West et al. 2001) contains expression profiles from 49 breast
cancer samples. These samples can be categorized according to their estrogen
receptor status (25 ER+4-/24 ER—). The expression profiles are based on 7,129
features.

The results of the cross-validation experiments are summarized in Table 1. The
table shows the results of the best single fold change classifiers (fce, fec™, fcc+)
which corresponds to the first ensemble members. Additionally the results of the
best ensembles are shown. For the Shipp dataset, the single fold change classifiers
outperformed rf, cart and svm(rad). The linear support vector machine outperformed
fce(r = 1) and showed an equal accuracy to fcc ™. On this dataset the majority vote
ensemble could only increase the accuracy for maj(# = 1). For the West dataset only
one fold-change-classifier (fcc(t = 0.4)) could outperform the reference classifiers.
The corresponding majority votes were able to increase the accuracies up to 17 %.
They outperformed svm(rad) and cart.
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4 Discussion and Conclusion

Many standard classification methods can be seen as combinations of simple base
classifiers. A standard base classifier in this context is the single threshold classifier,
e.g. x; > t. Simply comparing a single feature value to a threshold ¢, it is one of the
best interpretable classifiers. A drawback of this kind of classifier is its dependency
on a specific threshold. It conceals implicit assumptions on the underlying data of
being equally scaled and offset free which is often not the case. The single threshold
classifier inherits its vulnerability to global multiplicative or additive influence to the
combined classifiers.

The fold change classifier seems to be a valid alternative or even superior.
Its relative decision criterion f—’/ > ¢ is also directly interpretable. Furthermore
this classifier is invariant against scaling effects. Also the new classifiers can be
trained in a data dependent way, which makes them suitable for analysis via sample
compression bounds.

The cross-validation experiments show, that these base classifiers can be used
to construct simple ensembles having a comparable accuracy to state of the art
classifiers as random forests or support vector machines, but at the same time being
of a much simpler structure. Moreover, the pairwise relation of genes can shed
new light on possible relationships between involved pathways such as crosstalk.
Furthermore, the simple comparison of expression values does not account for
global differences in expression across genes as the increased performance for
values of ¢ # 1 suggests.
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An Automatic Extraction of Academia-Industry
Collaborative Research and Development
Documents on the Web

Kei Kurakawa, Yuan Sun, Nagayoshi Yamashita, and Yasumasa Baba

Abstract This research focuses on an automatic extraction method of Japanese
documents describing University-Industry (U-I) relations from the Web. The
method proposed here consists of a preprocessing step for Japanese texts and a
classification step with a SVM. The feature selection process is especially tuned
up for U-I relations documents. A U-I document extraction experiment has been
conducted and the features found to be relevant for this task are discussed.

1 Introduction

To make a policy of science and technology research and development, university-
industry-government (U-I-G) relations are an important aspect to be investigated
(Leydesdorff and Meyer 2003). It is one of the research targets to identify or
clarify the U-I-G relations among organizations from the Web documents. In the
clarification process, to get the exact documents relevant to U-I-G relations from the
Web is the first requirement. The objective of this research is to extract automatically
documents of U-I relations from the Web. We set a target into “press release articles”
of organizations, and make a framework to automatically crawl them and decide
which is of U-I relations.
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In Sect.2, we describe the framework which consists of a Web documents
crawling process and a machine learning based document classification process.

2 Automatic Extraction Framework for Academia-Industry
Collaborative R&D Documents on the Web

2.1 Crawling Web Documents and Extracting Texts

When we look for a document about U-I relations, especially in terms of
collaborative research and development, there can be several sources of the form.
We can find press release news sites of the organization, faculty introductory sites,
laboratory home pages, researchers’ own sites, such as blogs, and general scientific
news sites of commercial sectors. Generally speaking, the sources of evidence of
the fact that university and industry collaborate in research and development vary.
However, we conclude that the press release site of organizations is promising
source for automatic extraction and coverage. The reason is that in both university
and industry articles of research and development results tend to be published in a
news release, and the news articles are well-formed, so that it is better to analyze
and classify these texts.

Figure 1 shows the automatic extracting process of documents on U-I relations
from the Web. In the first step, we set seed URLs with popular crawling program
such as wget! to crawl all press release news articles. Then we extract relevant
texts from each article to classify whether it is documenting U-I relations or not.
Extracted texts from the web documents are very noisy for content analysis. Even
though we scrape the text from HTML tagged documents, irrelevant text, e.g. menu
label text, header or footer of a page, or ads are still remaining. We have observed
that the remaining irrelevant text fragments do not form complete sentences whereas
the text containing U-I relations usually consists of two or three sequential, complete
and well-formed sentences. For example, “the MIT researchers and scientists from
MicroCHIPS Inc. reported that. .. ”, and off course in our real target of Japanese “B
RS E A Lm kA S iE. HEFFRIC XD EE ) RIS
are picked up. In case of Japanese, in that sense, the necessary text fragments for
detection are only those including punctuation marks which means fully formal
sentence. Extracted text becomes fairly less noisy.

2.2 Classifier

We apply support vector machine (SVM) (Vapnik 1995) in order to decide whether
a document is described U-I relations or not. SVM is a kernel-based algorithm that

Uhttp://www.gnu.org/software/wget/
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Fig. 1 Automatic extraction framework for U-I relations documents on the Web

have sparse solutions, so that predictions for new inputs depend only on the kernel
function evaluated at a subset of the training data points. The determination of the
model parameters corresponds to a convex optimization problem, and so any local
solution is also a global optimum.

2.2.1 Support Vector Machine

A support vector machine is the two-class classifier simply using linear models of
the form

y(x) = W (x) + b. (1

where ¢ (x) denotes a fixed feature-space transformation, and b is the bias parameter.
The training data set comprises N input vectors Xy, ..., Xy, with corresponding
target values #q,...,ty where t, € {—1,1}, and new data points x are classified
according to the sign of y(x).

Assuming that the training data is linearly separable in feature space, so that by
definition there exists at least one choice of the parameters w and b that satisfies
y(x) > O for points having #, = +1 and y(x,) < O for points having ¢, = —1,
so that ¢, y (x,) > 0 for all points.

To try to find the unique solution of w and b, SVM uses the concept of the margin,
which is defined to be the smallest distance between the decision boundary and any
of the samples, as illustrated in Fig. 2. The decision boundary is chosen to be the one
for which the margin is maximized. The location of this boundary is determined by
a subset of the data points (support vectors), which are indicated by the circle on the
hyperplanes y(x) = 1 and y(x) = —1.

In this case, the optimization problem simply requires to maximize ||w|~!, which
is equivalent to minimize ||w||>. Then we have to solve the optimization problem

1
arg min — || w]|>. 2
w.,b 2



206 K. Kurakawa et al.

Fig. 2 Maximize margin y=1
between hyperplane e e * y=20
y(x) =Tand y(x) =0 . / y=-1
. ¥ 4 . Support Vector

y.

margin

subject to the constraints, 7,(W @¢(x) +b) > 1, n = 1,..., N by means of the
Lagrangian method.

In order to classify new data points using the trained data, we evaluate the sign
of y(x). This can be expressed by

N
YX) = antyk(x.%,) + b. 3)

n=1

where the kernel function is defined by k(x,x’) = ¢(x)T¢(x'), and all @, > 0 is
Lagrange multipliers.

2.2.2 Feature Selection

Our problem is to classify web documents of U-I relations by means of SVM,
so that the text document should be represented by a vector x,. The mapping
from text document to a vector is known as feature selection, and several methods
are proposed, i.e. term selection based on document frequency, information gain,
mutual information, a y-test, and term strength (Yang and Pedersen 1997). In our
approach, we adopt tf-idf (term frequency — inverse document frequency), which
is one of the most commonly used term weighting schemes in today’s information
retrieval systems (Aizawa 2003).
tf-idf is formally defined as follows.

tf-idf(z, d, D) = tf(t,d) x idf(t, D). @)

t, d, D respectively denote a term, a document, and a corpus (set) of documents.
tf(z, d) is the number of occurrences of a term in a document d. idf(z, D) is the
inverse document frequency.

The feature is expressed by

Xg = (x,l,d, Xty ds** s x,M,d), Xtd = tf-idf(t, d, D) X bt,d- (5)

b; 4 means the boolean existence of the terms in d. The term can be a term
in a document, type of POS (part-of-speech) of morpheme, or analytical output
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of external tools in our experiment. The feature selection is the term selection,
where the terms refers to the elements of x;. The feature x; is calculated for each
document, and the size of which depends on the term selection.

3 Features and SVM Parameters

We seek several features for SVM input for both learning and classifying. In this
experiment, tf-idf is the base element of input vectors Xx,, so that the variations
here are depending on term selections. Table 1 shows feature and SVM parameter
selections for each classification test. For dividing a sequential Japanese text into
morphemes, we use Mecab, a Japanese morphological analyzer (Kudo et al. 2004).
In the first group of features, three types of Bag of Words ((1). BoW) features are
examined. The first one is that full output of Mecab is used to construct the Bow
feature, and each word tf-idf consists of the feature vector x,,. In the second ((2).
BoW(N)), only the noun is chosen, and in the third ((3). BoW(N-3)), the word is
restricted to proper-noun, general-noun, and Sahen-noun (verb formed by adding
“3 % ([suru], do) to the noun).
In the fourth ((4). K(14)), we prepare 14 keywords related to U-I relations and
calculate tf-idf for all documents. Hence, the other words are ignored. The keywords
e “If ¢ ([kennkyu], research), “Fd #” ([kaihatsu], development), “5% Ef”
([]1kken] experiment), “AXJ/]” ([seikou], success), “¥& 7" ([hakken], discover),
“BEAA” ([kaisi], start), “Z'H” ([jushou], award), “3% %" ([hyoushou], honor),
“H 6] ([kyoudou], collaboration), “I#}[G]” ([kyoudou], cooperation), “{4] 77"
([kyouryoku], join forces), “PE=" ([sangaku], Ul relationship), “P£ B 2% ([sankan-
gaku], UIG (University-Industry-Government) relations), and “i# {5 ([renkei],
coordination). In the fifth ((5). K(18)), some keywords added to the preliminary
14, i. e. “=Z 7 ([jutaku], entrusted with), “ZZ &6 ([itaku], consignment), “f
% ([teiketsu], conclusion), and “fiff 5% B> ([kennkyuin], researcher). In the sixth
((6). K(18) + NM), keywords and POS (Part of Speech) of the next morpheme in
a sequential text are checked, in that grammatic connections of those keywords
are restricted to verb, auxiliary verb, and Sahen-noun. In the seventh ((7). Corp.),
cooperation marks are caught for the evidence of company name. Those are
“k 7\ £ ¥’ ([kabushikigaisha], Incooperated), (#%) (an unicode character as
U+3231), (Fk), or (F%). This corresponds to Ltd. or Inc. in English. In the eighth
((8). Univ.), university name is checked, i.e. “K 2%Z”([daigaku], university), or
“XK”([dai], a shorten representation of university). In the ninth ((9). C. + U.), it is
checked whether both cooperation mark and university name are being in a sentence.
In the tenth ((10). ORG), we checked the existing of an organization by means of
Cabocha’s Japanese named entity extraction function (Kudo and Matsumoto 2002).



208 K. Kurakawa et al.

Table 1 Feature selection and SVM Kkernel functions

TF-IDF feature element

@ @ 3) 4 (S) (6) @ ® O (10)
TestID BoW BoW(N) BoW(N-3) K(14) K(18) K(18)4+NM Corp. Univ. C.+U. ORG Kernel

1-1 v Linear

1-2 v Linear

1-3 v Linear

2-1 v Linear

2-2 v Polynomial
2-3 v RBF

3-1 v Linear

3-2 v Polynomial
33 v RBF

4-1 v Linear

4-2 v Polynomial
4-3 v RBF

5-1 v v/ Linear

5-2 v v/ Polynomial
5-3 v v RBF

6-1 v v v v/ Linear

6-2 v v v v' Polynomial
6-3 v v v v’ RBF

7-1 v v v v Linear

7-2 v v v v Polynomial
7-3 v v v v RBF

8-1 v v v v v’ Linear

8-2 v v v v v Polynomial
8-3 v v v Y v’ RBF

Refer to the body of the section to know what abbreviations mean

Since the support vector machine is driven by a kernel function, we examine
the linear kernel, polynomial kernel and RBF (Radial Basis Function) kernel here.
We use SVM'#" which is Joachims” implementation.’

4 Experiment to Classify

4.1 Data Set and Results

We prepared real web documents for the experimental data set used. Press release
documents of several kinds of organizations are crawled and manually tested
whether it is U-I relations or not. Then we selected the same amount of articles
in both positives and negatives. The numbers are shown in the Table 2.

2http://svmlight.joachims.org/
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Table 2 Data set for experiment

Crawled articles Articles for experiment
Organization Positive article ~ Negative article ~ Positive article ~ Negative article
Tohoku Univ. 44 499 44 44
The Univ. of Tokyo 106 848 106 106
Kyoto Univ. 40 329 40 40
Tokyo Inst. of Tech. 37 343 37 37
Hitachi Corp. 103 450 103 103
Total 330 2,469 330 330

Table 3 Classification results (average points in tenfold cross validation)

Test ID Accuracy Precision Recall F-measure
1-1 61.21 64.04 42.12 47.28
1-2 60.61 63.75 40.00 45.54
1-3 61.52 67.44 40.00 46.72
2-1 67.58 72.02 61.52 63.70
2-2 58.03 69.76 23.33 34.45
2-3 66.51 62.53 86.37 71.89
3-1 68.18 72.02 63.33 64.78
3-2 57.88 69.00 23.03 34.08
3-3 66.67 62.22 88.18 72.43
4-1 70.61 74.66 63.64 67.40
4-2 - - - -

4-3 70.76 65.49 90.30 75.66
5-1 70.61 74.61 63.64 67.31
5-2 - - - -

5-3 70.76 65.49 90.30 75.66
6-1 - - - -

6-2 - - - -

6-3 70.15 64.64 93.64 76.09
7-1 78.79 85.01 71.52 76.99
7-2 - - - -

7-3 72.27 66.07 94.85 77.61
8-1 78.94 85.03 71.82 77.16
8-2 - - - -

8-3 71.82 65.73 94.85 77.35

—Not calculated because of precision zero or learning optimization fault

For each combination of feature elements in Table 1, we then conducted tenfold
cross validation for the above data set. Classification test results are shown in Table 3
from the viewpoint of accuracy, precision, recall, and f-measure. In the test ID 1-1,
1-2, 1-3, feature elements consist of bag of words (BoW) which count over 15,800,
13,000, and 12,000 words, respectively. The f-measures are worse than the other
features with the same linear kernel function. The bags of words used in the first
three tests seem to be unsuitable for learning.
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In the test ID from 2-1 to 8-3, feature element size is about 14—-33. They seem to
be effectively caused by learning, except for some tests resulting in some learning
optimization fault. Accuracy and f-measure are gradually improved while feature
elements are additionally complex. The test ID 7-3 has the best f-measure, and it’s
recall rate is high too. But, when comparing the accuracy, test ID 8-1 is better than
ID 7-3. Test ID 7-3 is totally better than others.

4.2 Discussion

In comparing with BoW features and keyword features, BoW features were
unsuitable for learning, while keyword features produced good results. Even though
BoW is known for useful general elements for text categorization, this time BoW
features were unsuitable for learning. The reason they failed can be that the training
data size was too small. If we have enough training data, it becomes larger than
the feature vector size. This means training data size surpasses the number of basis
function of SVM, so that learning could be done without over-fitting. In case of
keyword features, the effects of learning were observed. This might be because
keyword features construct small dimension of the feature vector comparing to the
training data size.

To reduce the number of feature elements to the order 10!, we have to choose
the most sensitive terms as feature elements. In our study, the 18 keywords of U-I
relations which we chose were effective for learning. The test ID 4-* shows the
effectiveness of co-occurence of keywords and POS of the following morpheme.
The score of test ID 4-* considering the 18 keywords and POS was 3 points higher
than that of test ID 3-* considering only the 18 keywords.

In comparing test ID 4-* to test ID 5-*, the scores of them were equivalent. This
means organization tag count as a result of named entity extraction is meaningless.
In the press release articles, organization names may intend to be written in any
genre of articles irrelevant to U-I relations.

Test ID 6-* and 7-* are based on the occurrence of university and company
symbols. Especially in ID 7-3, recall and f-measure are the highest. This means
the occurrence of the two symbols in a sentence is sensitive to U-I relations.

Comparing test ID 7-* and 8-*, what we can find is the effectiveness of the
organization tag. But, effectiveness is not clear as mentioned in a previous sentence.

Finally, we want to mention the kernel function type. We understand it strongly
depends on scores. Relations among kernel function type, feature elements, and
training data size may reveal mechanisms of learning for this problem. This point
remains for next research topic.
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5 Conclusion

To extract automatically documents of U-I relations from the Web, we designed an
automatic extraction framework that consists of a crawling process for press release
articles of organizations and a machine learning process to detect if each article is
documenting U-I relations or not. A support vector machine (SVM) is adopted for
the learning process.

We designed feature vectors for SVM and conducted machine learning exper-
iments to see the effect of several combinations of feature vector elements and
kernel function types of SVM. The result is that U-I relations keywords, university
and company symbols in a sentence are effective features for the detection of U-I
relations. In the experiment of detecting university-industry cooperation we got an
accuracy 78.94, f-measure 77.16 for classifying U-I relations documents on the Web.
In the future work, we will analyze how kernel function type and the parameters
effect on the scores.
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The Utility of Smallest Space Analysis
for the Cross-National Survey Data Analysis:
The Structure of Religiosity

Kazufumi Manabe

Abstract The purpose of this paper is to illustrate the utility of Smallest Space
Analysis (SSA) developed by Louis Guttman using the examples of National
Religion Surveys conducted in Japan (2007) and Germany (2008) by the research
team organized by the author.

By conducting a data analysis of these two surveys, we try to examine the similar-
ities and differences in religiosity between people in Japan and Germany. Smallest
Space Analysis (SSA) demonstrates its usefulness in exploring the characteristics
of religiosity in different countries from a comparative perspective.

1 Introduction

Since the emergence of secularization theory, religious pluralism theory, and
religious market theory, there has been a revitalization of discussions on religiosity
in the Western sociology of religion. A review of past studies reveals that among the
studies of religion conducted in Western sociology, few have been conducted from
the perspectives of cross-national comparison with Asian countries. Recognizing
this problem, we have focused on the comparison of Japan and Germany to improve
this research situation (Manabe 2012).

Based on the previous researches, we divided religiosity into two components:
(1) religious practice, participation and behavior, and (2) religious faith, belief
and feeling, and transformed these components into questionnaire items. Then,
we conducted a nationwide survey in Japan using the questionnaire we constructed,
and conducted a nationwide survey using essentially the same questionnaire in
Germany (Manabe 2008, 2010).
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This paper presents the results of the data analyses of these two surveys, from a
comparative perspective. The comparative perspective is the perspective from which
we examine the “similarities” and “differences” in religiosity between people in
Japan and Germany (Jagodzinski and Manabe 2009; Manabe 2011).

The basic approach to data analysis used in this paper, figuratively speaking, is to
begin by looking at the forest rather than the trees. The data analysis of questionnaire
surveys generally begins with the identification of the overall structure of data, and
this is followed by efforts to intensify the analysis by focusing on specific aspects
of the data. I refer to the former structural aspects as “looking at the forest,” and the
latter more specific aspects as “looking at the trees.” What kinds of techniques, then,
can be used to “look at the forest”? Smallest Space Analysis (SSA) developed by
Louis Guttman is a very useful tool in examining the “similarities” and “differences”
of the “forests” when conducting a cross-national comparative survey (Levy 1994;
Manabe 2001; Shye 1978).

As a type of multidimensional scaling, SSA is a method of expressing the
relationship between n question items shown in a correlation matrix by the size of
the distance between n points in an m-dimensional (m < n) space. The higher the
correlation, the smaller the distance, and the lower the correlation, the greater the
distance. Usually a 2-dimensional (plane) or 3-dimensional (cube) space is used
to visually depict the relationship between question items. This shows that SSA is
an appropriate method of visually depicting the overall structure and relationships
among question items (For the technical and mathematical aspects, see Borg and
Shye 1995).

2 Survey Outline

National surveys were conducted in both Japan and Germany using essentially the
same questionnaire. Overviews of the surveys follow.

2.1 Japanese Survey

1. Respondents: Male and female adults aged 20 and older, nationwide.

2. Sampling procedure: Central Research Services was entrusted to conduct the
sampling and surveying. The sample was obtained using a two-stage stratified
random sampling of men and women aged 20 and older from the Basic Resident
Registry as of March 31, 2006. The country was divided into 12 regions. These
were divided by size into 16 large cities, other cities, and towns and villages, and
surveys were conducted in 25 locations in the 16 large cities, 63 locations in the
other cities, and 12 locations in the towns and villages, for a total of 100 locations.
Eighteen people were surveyed from each of these 100 locations, yielding a total
of 1,800 respondents.
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3,
4.
5.

Survey method: Questionnaire leave-and-pick-up method
Survey period: March 2007.
Valid response rate: 882/1,800 (49.2 %)

2.2 German Survey

B~ W

. Respondents: Male and female German-speaking adults aged 18 and older,

nationwide.

. Sampling procedure: German research company Marplan was entrusted to

conduct the sampling and surveying. Survey respondents were selected using
the Kish Method, from randomly selected households chosen using the random
walk method, based on the ADM sampling system developed by the German
Market and Public Opinion Research Institute (Arbeitskreis Deutscher Markt und
Meinungsforschunginstitute, ADM) in the 1970s. Six residences were extracted
from each of 129 ADM sample points nationwide (105 in West Germany, 24 in
East Germany). Next, after subtracting from these 774 households those 42
where the survey could not be conducted due to vacancy or other reasons,
survey respondents were selected using the Kish Method from the remaining 732
households. However, another 176 households were further excluded because
“No one could be contacted after three visits” or because “The residents were
unwilling to participate.” Respondents were extracted from the remaining 556
households, and valid responses were received from 515 individuals (subtracting
41 individuals who could not respond to the survey due to illness or unwillingness
to participate).

. Survey method: Personal interview method using a questionnaire
. Survey period: February to March 2008.
. Valid response rate: 515/732 (70.4 %)

3 Results of Data Analysis

3.1 Religious Behaviors

For both Japan and Germany, I created a correlation matrix showing the relation-
ships between the question items about “religious behavior” (10 items in Japan
and 8 in Germany) and conducted a Smallest Space Analysis (SSA) using the
Hebrew University Data Analysis Package (HUDAP), a computer software package
for analyzing data. The results produced two 2D SSA maps (spatial partitions),
as shown in Figs. 1 and 2. The original format of these SSA maps (computer output)
had the number of each variable (question item) marking its position on the 2D
space (Euclidean space). However, there were also three concentric circles drawn
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2 Visit ancestors’ graves

10 Worship before a household Buddhist altar

9 Worship before a household shrine

4 Buy protective charms or amulets
) . e 5 Visit a shrine, temple, or church to pray
6 Regularly engage in religious activities 1 Visit a shrine on New Year's Day

8 Visit a shrine, temple, or church on certain days

7 Read books related to religion

3 Draw a stick

Q10 Do you visit a shrine on New Year's Day?

Q12a Visit ancestors’ graves during the obon and higan seasons.

QI12b Draw a stick with a number on it to learn my fortune.

Ql2c Buy protecitive charms or amulets (for traffic safety, passing entrance exams,etc.)

Ql2d I visit a shrine, temple, or church to pray for such things as business prosperity and success in
passing the entrance exams.

Q12e [am regularly involved in relgious activities, such as worship and devotions.

Q12f Iread books related to religion, such as the Bible or sacred scriptures.

Ql2g I visit a shrine, temple, or church on certain days.

Q12h I worship before a household shrine.

Q12i I worship before a household Buddhist altar.

oD 00 =] O n e b —

Fig. 1 Smallest Space Analysis of religious behaviors (Japan)

in the space. These are the result of my efforts to apply meaning to (interpret)
the spatial partition of the question items. How can these results be interpreted?
The SSA maps for both Japan and Germany consist of spatial partitions in which
the question items are plotted in three concentric circles centered around the item
“I read books related to religion, such as the Bible,” based on the given question
item’s relationship to the center item (expressed by the correlation coefficient),
extending from the concentric circle closest to the center (containing items with
larger correlation coefficients) to the concentric circle furthest away (containing
items with smaller correlation coefficients). The reason circles are used rather than
ovals for the space partitioning is because a circle expresses equidistance from the
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Guardian angels or amulets

s Pray before a crucifixion

14

Pray for success
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2 Visit ancestors’ graves

1Q9 Do you attend worship services on important church holidays?

2 Q11-1 Visit ancestor’s or relatives’ graves on memorial days.

3 Q11-2 1 have guardian angels or amulets with me to keep from everyday harm.

4 Q11-3 1go to church and pray for such tings as success at work and success in passing my exams.
5 Q11-4 1go to church or attend prayer meetings.

6 QI11-5 Iread religious books, such as the Bible.

7QI1-6 1go to church on Sundays and holidays.

8 Q11-7 1pray before a crucifixion ( a statue of Christ) or other figure at home.

Fig. 2 Smallest Space Analysis of religious behaviors (Germany)
center (in this case, from the question item “I read books related to religion, such as

the Bible”), thus reflecting that items have the same approximate size of correlation
coefficients.
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Of course, this spatial partition of question items is based on Guttman’s
“contiguity hypothesis.” This hypothesis means that if the question items used in
a survey are similar in meaning, they will be positioned close to one another (spatial
distance) on the SSA map.

Thus, a comparison of the SSA maps regarding “religious behavior” in both
Japan and Germany shows that when question items are plotted around the central
question item “I read books related to religion, such as the Bible,” there are clear
similarities between the two countries.

The shape of the SSA map described above, that is, the figure drawn with several
concentric circles around a common center point (in this case, the question item
“I read books related to religion, such as the Bible”) is referred to as a “simplex.”
Guttman calls the correlation structure among items which can be explained with
simple rank order “simplex.” According to Guttman, when the relationships between
items addressed in this kind of data analysis have the characteristics of a simplex,
the performance of a “Scale Analysis” on those items will result in the formation
of a unidimensional scale. This suggests that question items categorized a priori as
“question items regarding religious behavior” are unidimensionally measuring “the
same thing” (behavior that must be regarded as religious behavior).

The similarities evident on the SSA maps of Japan and Germany suggest that the
question items regarding religious behavior used in this nationwide survey in both
countries are appropriate, and that they comprise a so-called “Guttman scale.”

What differences were found between the two countries? In Japan, ten question
items on religious behaviors are separated into three groups within the concentric
circles into which the space has been divided. These are (a) Bible /sacred scripture
reading, worship, devotions, shrine/temple/church visits, (b) grave visits, household
shrine/altar worship, and (c) New Year’s Day shrine visits, fortune-telling sticks,
protective charms and amulets, and prayer. I then further focus on the shared
social characteristics of the activities in each group to describe them as (a) faith-
manifestation behavior, (b) traditional or customary behavior and (c) event-specific
behavior.

While this reflects the pattern that emerged in Japan, the pattern that emerged
in Germany is as follows: (a) Bible reading, church/prayer meetings, Sunday and
holiday worship services, prayer before a crucifixion (a statue of Christ), (b) prayer
for success, guardian angels or amulets, and (c) grave visits.

A comparison of the results obtained from Japan and Germany shows that there
are similarities between the two countries insofar as the question items on religious
behavior are able to be divided into three groups using three concentric circles,
based on the size of the correlation coefficient between each item and the center
item “I read books related to religion, such as the Bible”.

However, there are important differences between the two countries with regard
to the meanings of the questions that are included in each of the three groups.
In Japan, the concentric circles around the center point start from “faith-
manifestation behaviors” to “traditional behaviors,” to “event-specific behaviors.”
In Germany however, there are doubts regarding the suitability of these labels,
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and the following labels would be proposed instead: from “faith-manifestation
behaviors” to “instrumental behaviors,” to “memorialism behaviors.”

3.2 Religious Faith, Beliefs and Feelings

A comparison of the two countries’ SSA maps (Figs. 3 and 4) shows that while the
spatial partition of several question items do not indicate complete agreement in the
religiosity of the Japanese and Germans (these will be discussed later), the major
overall patterns are quite similar.

As has been done in previous analyses, I have tried to read the SSA map
spatial partition based on the size of the correlation coefficients between the various
question items and the center item, “I have religious faith.” Again, several concentric
circles have been drawn around that center point on each SSA map, with the
innermost circle containing question items with the largest correlation coefficients
with “I have religious faith” and the outermost circle containing question items with
the smallest correlation coefficients with that item. Let’s look at the similarities that
can be seen in the two countries’ maps.

1. Responses to most of the question items plotted in the second concentric circle
in Germany and in the second and third concentric circles in Japan (counting
outward from the center) are similar in both countries.

2. Question items on “religious views of nature,” “memorialism,” “the importance
of the here and now,” “art=religion,” and “sixth sense” are plotted in the fourth
and fifth circles in Japan, and in the third circle in Germany.

3. On both countries’ SSA maps, the two items “All gods are the same” and
“Happiness in this life is more important than salvation in the next life” were
plotted in the outermost concentric circle.

EEINT3

This suggests that the overall structures of religiosity in Japan and Germany are
similar, and should not be viewed as completely different. This is not to say that
there are no differences, however, and those that do exist are outlined below.

1. The question item about “a religious mind” which was thought as a unique
question in Japan was plotted all on its own in the second concentric circle on
the Japanese map, quite far away from the question items contained in the third
circle, but it was plotted in the second concentric circle on the German map,
along with other question items in that sector.

2. Of the question items plotted in the second concentric circle on the German
map:

(a) “I feel a strong spiritual connection with my deceased relatives” is located
more centrally in Japan, but more peripherally in Germany.

(b) The three question items “I cannot litter near or contaminate a church,” “If
you are irreverent to God, you will be punished,” and “If you do something
wrong, even if no one else sees it, you will be punished” were plotted fairly
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| Happiness in this life > salvation in the next ife

Religious faith

I have religious faith.

[ feel a strong connection to my ancestors.

I feel a sence of peace when I visit a shrine, temple, or church.

I cannot litter near, or contaminate a shrine, temple, or church.

When [ visit a shrine, temple, or church, [ instinctively want to put my hands together.
‘When I’'m having problems, I call out in my heart to a god or deity.

I’m grateful to the gods for my safe and peaceful daily life.

When I pray to a Shinto or Buddhist deity,I feel like they somehow amswer my prayer.
The souls of our ancestors are living on somewhere and are always watching out for us.
Failure to hold a memorial service for one’s ancestors is evidence of a lack of belief.

If you are irreverent to gods or deities you will be punished.

The memories of family members who have died are precious.

Being saved by a god or deity means that things will go well for you in this life.

Good behavior in this life will be rewarded in the next life.

Shinto gods and Buddhist deities are all the same thing.

Happiness in this life is more important than salvation in the next life.

When looking at a large, old tree, a kind of feeling of divinity comes over me.

At sunrise or sunset, or in the light of the moon, I experience a sense of solemnity.

I think that this very moment here and now is an important time.

[ feel that [ have been given life by a great power that I cannot see.

When [ hear a worship song or gospel music, or the singing of sutras or sacred songs, T:
a sense of peace and solemnity.

Gods and deities inspire awe.

When [ worship at a Buddhist altar or visit family graves, I think more about my deceas
parents and grandparents than about my ancestors.

If you do something wrong, even if no one else sees it, you will be punished.
Sometimes I feel as though I have a sixth sense in which I am informed of what is going
happen in the future.

An excellent piece of artwork can convey a sense of something religious.

I think that souls inhabit everything, such as mountains, rivers, grass, and trees.

A religious mind is importamt

. 3 Smallest Space Analysis of religious beliefs, feelings and attitudes (Japan)
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Qs 1 have religious faith.

Q18-1 [ feel a strong spiritual ion with my d i relatives.

Q182 1 feel a sense of peace When I visit a church.

Q183 1 cannot contaminate a church.

Q184 When 1 visit a church, [ instinctively want to put my hands together.

QI8-5  When I am having problems, I call out in my heart to God.

QI18-6 1 am grateful to God for my safe and peaceful daily life.

QI18-7 When [ pray to God, I feel like he somehow answers my prayer.

QI18-8  The souls of our ancestors are living on somewhere and are always watching out for us.

Q181 Failute to hold a memorial service for one's ancestors is evidence of a lack of belief.

Q192 If you are irreverent to God, you will be punished.

Q19-3 Memories of family members who have died are precious.

Q194 Being saved by God means that things will go well for you in this life.

Q19-5  Good behavior in this life will be rewarded in the next life.

QI9-6  The gods of various religions are all the same thing.

Q197 Happiness in this life is more important than salvation in the next life.

QI9-8 When looking at a large, old tree, a kind of fesling of divinity comes over me.

Q199 At sunrise or sunset, or in the light of the moon, [ experi a sense of sol

Q19-10 1 think that this very moment here and now is an important time.

Q19-11  Ifeel that | have been given life by a great power that [ cannot see.

Q19-12 When [ hear prayers, church music, or worship songs, | feel a sense of peace and solemnity.

QI9-13  God inspires awe.

QI19-14  When [ visit family graves, I think more about my deceased parents and grandparents than about my ancestors.

Q19-15  If you do something wrong, even if no one else sees it, you will be punished.

QI9-16  Sometimes [ feel as though | have a sixth sense in which [ am informed of what is going to happen in the future.

QI9-17  An excellent piece of artwork can convey a sense of something religious.

Q19-18 I think that souls inhabit everything, such as mountains, rivers, grass, and trees.

Q2 A religious mind is important.
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close to one another on the Japanese map, all within a single concentric
circle, forming a kind of subgroup. On the German map, however, these three
are distributed in scattered locations throughout the circles. Clearly there is
little relationship of meaning between these three items.

(c) On the German map, the question items “When I am having problems, I call
out in my heart to God,” “I am grateful to God for my safe and peaceful daily
life,” and “When I pray to God, I feel like he somehow answers my prayer,”
were all plotted in the exact same location. As a result, we had a technical
problem since the item numbers marking each item were all overlapping,
leaving the last item number as the only one visible. This means that the
relationship of meaning between these three items is extremely strong.

3. The item “Failure to hold a memorial service for one’s ancestors is evidence of a
lack of belief”” was plotted in a concentric circle near the center point of “I hold
religious beliefs” on the Japanese map, but was plotted in a circle located quite far
from the center point on the German map. This reflects a substantive difference in
meaning between “ancestor commemoration” in Japan and “marking memorial
days” in Germany.

4 Conclusions

We have illustrated the utility of SSA for the cross-national comparison of religiosity
in Japan and Germany. Then, what are the issues that will need to be addressed
in the future? When reporting on the findings above, I tried to develop several
hypothetical arguments. Many of these arguments addressed not only substantive
problems related to religiosity in both countries, but also methodological problems,
such as the wording of the question items used in the surveys. When preparing
the German translation of the national questionnaire conducted in Japan, efforts
were made to maintain the greatest degree of “functional equivalence” possible on
the question items. Still, some problems undeniably remained. The data analysis
of the national surveys conducted in both countries revealed that the substantive
meaning of question items used in Japan and Germany were in some cases quite
different. Careful investigation of the equivalence of meaning of the terms used in
international comparative surveys is the greatest research challenge remaining to be
addressed in the future.
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Socio-economic and Gender Differences
in Voluntary Participation in Japan

Miki Nakai

Abstract The aim of the present paper is to examine the relationship among
participation in voluntary association, socio-economic position, and gender. Based
upon a nationally representative sample in Japan in 2005 (N = 2,827), we classify
a variety of voluntary organizations in terms of membership through which social
integration/cohesion and social exclusion operate among different groups — such
as social class, education, age, and gender. Correspondence analysis of voluntary
participation data revealed that membership is differenciated by gender. It was
confirmed that the distinction between old and new organizations seems to be valid
in the Japanese context. The implications of the results are also discussed in terms
of gender inequality and segregation not only in the economic arena but also in the
society as a whole.

1 Introduction

A lot of social scientists regard voluntary organizations as mediators between the
mass and the elite. Participation in voluntary associations has been seen as an
agent by which weak individuals become strong and thereby has been regarded as
‘social capital’. This ‘social capital’ concept has been studied by a number of social
scientists; involvement in associational activity leads to the prosperity of democratic
institutions (Putnam 2000).

At the same time, many of the early studies emphasized that voluntary
associations were sorting mechanisms, that is to say, the groups divided and
segregated people by their interests and ultimately by socio-economic, educational,
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and religious differences. Decades of research on voluntary association affiliation
show how membership is related to various socio-demographic characteristics, such
as social class, education, and age.

However, how various types of associational activities are classified has yet to be
elucidated fully (Li et al. 2003; Nakai 2005). In this paper, we investigate the way
how people’s voluntary participation is segregated with a focus on gender as well as
social class, education, and age. Some literature suggested that in many societies,
gender is related to political activities; men are more active than women (Verba
et al. 1978). It was also found that women were less engaged in unconventional
forms of participation such as strikes and demonstrations. It has been suggested that
the well-established gender gap in many common forms of political participation
remained evident during the 1980s and early 1990s in many countries around the
world (Barnes and Kaase 1979).

Some researchers, however, expect to find evidence that some of these gender
differences have gradually diminished or even disappeared over time, with women
becoming more active, especially among the younger generations in affluent modern
societies (Inglehart and Norris 2003). For example, as more women enter the paid
labour force, they may be less likely to join female-dominated groups which help
to stabilize their personality and more likely to have voluntary participation patterns
that are similar to men’s patterns which enable them to earn their living and are
useful for furthering one’s career. Such arguments would fit nicely with evidence
that there has been a reduction in gender segregation in some other domains in
developed countries.

On the other hand, the validity of this ‘reduction in gender segregation’
perspective in the context of Japanese society is highly questioned, because the
relative stability of occupational gender segregation and gender division of labour in
households would lead to continued segregation of voluntary participation patterns.
The persistently high level of gender segregation in the labour market, or paid work
in Japan, has been investigated by several researchers (see e.g. Nakai 2009), but we
know much less about the same phenomenon in voluntary associations, so-called
unpaid social participation.

Therefore, the aim of this paper is to make visible social distinction between
different types of voluntary organizations, so that we could assess the mechanisms
through which social integration/cohesion and social exclusion operate in different
groups, such as social class, education, age, and gender. Here, we report our
preliminary classification of a variety of voluntary organizations in terms of
membership, so that we can continue with further research to examine the role of
the voluntary participation to facilitate trust, democracy, as well as gender equality
in Japan.

1.1 Some Classification Systems for Voluntary Organizations

Some researchers have offered a classification system which groups various vol-
untary organizations (e.g. Li et al. 2003; Schofer and Fourcade-Gourinchas 2001).
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For example, Li et al. (2003) employed a “working-class dominated” or “Labour”
type of organization and a “service-class-dominated” or “Civic” type of organization
to show that class difference in associational membership is a means for particular
social groups to retain their exclusiveness by forming tight bonds with others similar
to themselves. Homophily is often used in social network analysis to explain this
effect (McPherson et al. 2001).

Meanwhile, Schofer and Fourcade-Gourinchas (2001) employed “new” versus
“old” social movement association membership. They examined variation in civic
involvement in associational activities among nations, as well as variation in the
types of associational activities in which their citizens engaged.

These classification systems might be useful for their own arguments, but
the types suggested are conceptualized as ideal types. They are a priori defined
classifications, and for that reason, arbitrary. Also, the nature of the voluntary
association in which people are involved may depend on the society they live
in. Circumstances may be specific to each country under consideration. Country-
specific institutional background (or the differences in popularity) may matter for
the pattern of voluntary engagement. In this paper we will investigate how well the
classification systems introduced in the literature work in a Japanese context. Based
on the 2005 national survey of social stratification and mobility, we aim to classify
various types of voluntary associations in terms of people’s actual participation
patterns or their membership.

2 Methods

To clarify the structural pattern of voluntary participation, correspondence analysis
was adopted so that we get a multidimensional graphical visualization of the
relationship among the categorical variables (Greenacre and Blasius 1994; Le Roux
and Rouanet 2009).

2.1 Data

The data is from a nationally representative survey of social stratification and
mobility conducted in 2005 in Japan. The sample has 2,827 respondents (1,343
men and 1,484 women), aged 20-69. The response rate of 44.2 % is considered as
not very high. Younger males seem to be slightly under-represented. Respondents
provided such socio-demographic information as age, education, occupation, as well
as the involvement in a variety of associational activities. We analyze relations
between social class and participation in the Japanese context.
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2.2 Measurement of Respondents’ Participation in Voluntary
Organizations

Respondents’ participation in a variety of civil society and community organizations
are measured by the question of respondents’ affiliation in each of 12 types of
organizations/association groups as follows:

(1) Neighbour’s associations (NEIGHBR)
(2) Community associations such as women’s clubs, youth associations, senior’s
clubs, voluntary fire fighters’ clubs (COMMNTY)
(3) Parent-teacher associations (PTA)
(4) Guilds such as agricultural cooperatives and fishery organizations, trade
associations (GUILD)
(5) Trade unions (UNION)
(6) Political parties (PARTY)
(7) Supporters groups or fan clubs (SUPPRT)
(8) Local consumer cooperatives (COOP)
(9) Civic advocacy groups and NGOs (NGO)
(10) Voluntary groups (VOLUNTR)
(11) Religious associations (RELIGIOUS)
(12) Hobby and leisure clubs (LEISURE)

We can link these associations to the a priori classification systems by Li et al.
(2003) and Schofer and Fourcade-Gourinchas (2001). Based on the framework of
Li et al. (2003), “labour” type of engagement includes trade unions; “civic” type
of engagement includes parent-teacher associations, political party, civic advocacy
groups and NGOs, voluntary groups, religious associations, and hobby and leisure
clubs. Based on the framework of Schofer and Fourcade-Gourinchas (2001), “new”
social movement associations include local consumer cooperatives, civic advocacy
groups and NGOs, and voluntary groups; “old” social movement associations
include guilds, trade unions, and political party.

The words in bold in parentheses along with circle markers are used to represent
each voluntary organization in Fig. 1.

2.3 Social Status Groups

It is of interest here to look at differences in voluntary organization involvement
among social status groups and gender of respondents. Therefore respondents are
grouped by occupation, education, age, and gender:

Respondent’s occupational categories: (A)  professional, (B) managerial,
(O) clerical, (D) sales, (E) skilled manual, (F) semi-skilled manual, (G) non-
skilled manual, (H) farm.
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Respondent’s employment status:  (I) full-time, (J) part-time, (K) self-employed,
(L) unemployed.

Respondent’s education: (M) primary, (N) secondary, (O) tertiary (junior college),
(P) tertiary (university).

Respondent’s age:  (Q) 20-29, (R) 30-39, (S) 4049, (T) 50-59, (U) 60-69.

3 Results

3.1 Who Belongs to Voluntary Associations?

We first show socio-economic and gender differences in participation in Table 1. The
rows correspond to the respondents’ social status characteristics and the columns
are the voluntary associations. Entries are the percentages of individuals claiming
membership in each particular association. According to the overall percentages of
the respondents who affiliate with each particular association, more than half of
the respondents (54.9 %) are members of neighbour’s associations. Only a fourth
(24 %) did not belong to any voluntary association (not shown in table). Studies
of comparative civic societies often tell that the United States is always at or near
the top of volunteer participation, whereas Japan trails in the rear, and European
countries such as Britain and France occupy the space in the middle. However, quite
a number of people (3 out of 4) participate in at least one association. A recent
comparative study of East Asia suggests that participation by Japanese is not at a
low level, but relatively greater numbers of people are involved in various types
of association than other east Asian countries and regions (Yoshino and Tsunoda
2010). The result here can be understood in the light of this argument.

There is some evidence that women are more likely than men to be involved
in more associations. Women have an average of 1.67 memberships, whereas men
average is 1.54 memberships (not shown in table). The difference in the average
number of memberships is not big, but statistically significant (p < 0.05, using
Student’s #-test). One of the earliest studies of political behaviour in Western Europe
and North America concluded that men exceeded women in the number of voluntary
association memberships (e.g. Booth 1972). However, women are more active in
contemporary Japan.

People who are in their 20s and unmarried participate in relatively less associa-
tions and, therefore, their social capital seems to be very limited.

3.2 Classification of Voluntary Association

We analyzed Table 1 by correspondence analysis. The first four singular values
(with percentages of chi-square) are 0.30398 (44.36 %), 0.20362 (19.90 %), 0.16374



230 M. Nakai
Table 1 Percentages of respondents who participate in 12 types of associations
Percentages of membership in each association

O @ B @ & _© O ©& O Jdo dy dz
All 549 17.1 13.1 11.0 89 16 41 91 19 6.6 48 260
Male subtotal 548 12.1 92 155 11.1 22 49 40 1.6 52 4.1 268
(A) Professional 559 84 224 7.7 175 00 28 84 35 49 112 343
(B) Managerial 70.5 11.6 16.1 188 12,5 80 98 7.1 27 89 2.7 357
(C) Clerical 55.0 11.1 14.0 135 205 29 53 35 12 35 29 275
(D) Sales 564 128 3.0 241 83 30 53 53 15 53 3.0 278
(E) Skilled manual 579 127 103 19.0 135 28 56 40 1.6 28 2.0 242
(F) Semi-skilled manual 49.7 185 93 106 166 00 26 33 13 26 6.6 232
(G) Non-skilled manual 364 106 15 91 6.1 15 15 15 15 45 3.0 227
(H) Farm 735 19.1 44 574 0.0 00 132 00 1.5 88 29 132
(I) Full-time 56.1 119 12.8 108 18.7 29 52 52 14 42 38 282
() Part-time 405 9.1 58 99 33 1.7 08 1.7 25 33 50 248
(K) Self-employed 69.2 185 8.1 479 05 09 85 33 28 6.6 57 223
(L) Unemployed 455 85 04 49 04 16 28 20 08 81 33 272
(M) Primary 551 10.1 22 189 26 40 48 13 09 18 3.5 128
(N) Secondary 56.0 13.6 83 174 123 15 52 3.6 1.0 42 38 27.1
(O) Tertiary (junior college) 65.7 14.3 143 143 20.0 57 86 57 0.0 171 5.7 37.1
(P) Tertiary (university) 514 102 142 102 13.0 23 41 6.1 33 79 48 333
(Q) 20-29 109 58 06 51 83 00 06 06 13 26 19 288
(R) 30-39 372 105 13.0 69 190 1.2 28 32 08 24 20 255
(S) 40-49 633 20.0 233 13.7 189 0.7 52 7.4 19 44 8.1 278
(T) 50-59 709 98 7.8 216 108 33 62 59 1.0 56 3.6 248
(U) 60-69 655 11.8 08 219 14 41 68 19 27 85 38 277
Female subtotal 550 21.6 16.6 70 69 10 34 137 22 79 54 252
(A) Professional 56.1 242 31.8 32 223 13 19 204 3.8 102 83 274
(B) Managerial 61.5 385 7.7 462 154 0.0 154 308 00 7.7 0.0 274
(C) Clerical 451 17.8 208 83 125 1.1 3.0 144 27 64 64 280
(D) Sales 56.6 17.8 17.8 147 6.2 00 00 10.1 08 3.1 23 17.1
(E) Skilled manual 521 234 181 74 64 00 53 106 2.1 32 53 160
(F) Semi-skilled manual 622 216 144 63 63 09 09 54 00 45 54 144
(G) Non-skilled manual 545 200 155 55 45 18 36 155 1.8 12.7 10.0 245
(H) Farm 50.0 36.0 6.0 340 0.0 20 6.0 80 00 80 0.0 240
(I) Full-time 459 17.1 185 7.6 224 1.1 22 123 25 53 53 227
() Part-time 58.1 20.7 240 54 38 09 26 136 1.6 73 7.5 219
(K) Self-employed 55.8 340 109 265 0.7 07 48 156 14 88 2.0 272
(L) Unemployed 583 21.8 114 27 09 1.1 45 141 27 96 4.5 289
(M) Primary 50.8 202 2.0 101 24 16 56 40 1.6 65 4.0 18.1
(N) Secondary 582 220 165 7.2 59 10 34 133 25 76 63 273
(O) Tertiary (junior college) 53.5 252 302 54 129 05 3.0 218 1.5 89 3.0 257
(P) Tertiary (university) 452 17.4 232 32 11.6 06 0.6 206 26 103 58 239
(Q)20-29 142 12 06 00 83 06 12 41 06 36 4.7 16.6
(R) 30-39 446 234 338 19 130 0.7 1.1 134 07 3.7 33 178
(S) 4049 65.1 339 452 86 92 07 14 219 24 72 79 247
(T) 50-59 622 159 6.1 103 63 13 4.0 153 29 87 56 254
(U) 60-69 65.7 258 00 93 05 13 72 101 32 125 5.1 346
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Fig. 1 Structure of participation, social status and gender: Dimension 1 X Dimension 2

(12.87 %), and 0.12902 (7.99 %). Therefore we can restrict attention to the first two
dimensions following the elbow criterion. These two dimensions display 64.3 % of
the total dependence between the row and the column variables.

Then, we used the configuration space shown in Fig. 1 to map voluntary orga-
nizations, respondents’ socio-economic status, educational level, age and gender
which allowed us to identify social and gender boundaries. The figure represents the
positions of the voluntary associations by circle markers, social groups of males by
square markers and social groups of females by triangle markers in two-dimensional
space.

Inspecting Fig. 1, we see that the first dimension (horizontal axis) contrasts
the urban new middle-class types of association in the positive part from the old
middle-class types of association in the negative part. White-collar employees and
civil servants, as well as respondents with a university degree are in the right half
and they tend to participate in new middle-class type organizations such as trade
unions, PTAs (parent-teacher associations), local COOPs (consumer cooperatives),
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and NGOs. Moreover, respondents in their 20s and 30s are also displayed on the
positive side of this dimension.

By contrast, respondents who work as self-employed and persons doing home
handicraft, as well as people who found work after finishing primary and lower
education are in the left half. They tend to be involved with old middle-class types of
associations such as guilds and supporters’ groups. These groups are also associated
with people in their 50s and 60s.

The second dimension (vertical axis) mirrors a contrast between the community-
based associations and the organizations whose basis is not necessarily located in
local community. The categories related to the interest groups through which people
have political involvement or improve the condition of employment show up in the
upper part. They include trade unions and political parties and have been regarded
as “traditional” political organizations. On the negative side of this dimension,
on the other hand, the community-based associations appear that are located in and
provide services to neighbourhoods and communities. They include parent-teacher
organizations, community associations, and many others.

Much of the literature almost ignore gender related mechanisms that are seen as
producing social capital until relatively recently. Social relations, or participation,
through which social capital is produced are rarely analysed from a gender
perspective. However, a comparison of belonging to a wide range of different
types of organizations reveals how far membership is differentiated by gender.
Some organizations are mainly composed of males which include political parties,
trade unions, and recreation circles. By contrast, there are associations in which
women predominate, especially those related to the traditional role of women as
housewives or caregivers, such as those concerned with child and safeguarding
consumer rights and interests, as well as providing women’s human rights. The
distinction between “old” and ‘“new” organizations combined with gender proved
to be valid in this empirical analysis. However, this new/old distinction can be
conceptualized in different way from some previous researchers such as Schofer
and Fourcade-Gourinchas (2001), where “new” social movements focus on issues
related to human rights and cover associations which have developed rapidly since
the late 1960s, whereas old social movement associations aim to gain access for the
working class to economic wellbeing. Instead, our result shows that the distinction
between new middle-class types and old middle-class types of associations can be
useful in the differentiation of associations in a Japanese context. Conventional
forms of political participation such as parties and trade unions are shown to be
associated with males, whereas women are active in the alternative channels such
as NGOs and grass-roots voluntary associations rather than via traditional modes
of political expression. Having said that, participation patterns of young women
working on a full-time basis appear to be similar to that of male white-collar
employees from the viewpoint of types of associations.

In this figure, most of the points of male involvement with square markers
are on the positive part of dimension 2, with two exceptions: male respondents
who are self-employed or farmers. On the other side of dimension 2, almost all
the points of female involvement marked with triangle markers show up, with
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Fig. 2 Horseshoe effect. The plot of the age categories shows an arching (horseshoe shaping)
pattern

two exceptions: women in their 20s or women those who work full-time. Therefore,
women in their 20s and women who work full-time are on the same side as
men in terms of dimension 2, which suggests that they show the same degree of
participation in paid work as their male counterparts and, at the same time, tend to
show associational membership patterns similar to men’s patterns.

The age group variable forms a horseshoe, a typical structure we usually find
in ordered categorical data (see Fig.2). We also found that each pair of the same
age groups of men and women has a parallel curve, but their participation pattern is
completely different through their 30s and 40s. This result implies that segregation
exists which reflects existing patterns of gender inequality not only in the labour
force but also in society as a whole. Gender division of labour becomes well
established when men and women are in their 30s. This segregation might harm
women’s full participation in society.
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4 Conclusion and Discussion

The main findings of this study are as follows: This study confirms that the
distinction between old middle-class type and new middle-class type organizations
seems to be valid in this empirical analysis in the Japanese context. We see that
women’s voluntary participation may be changing as a result of changing gender
roles. However, despite the movement of women’s work from household to the
labour market, participation is highly segregated by gender in Japan. These analyses
show that the social space approach with a focus on gender can bring fruitful
information for the overall understanding of the current status of gender inequality
in Japan.

Further research must be undertaken in these areas utilizing the data of a
follow-up study.

Acknowledgements I thank the Social Stratification and Social Mobility (SSM) 2005 Committee
providing the data set used in this study.
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Estimating True Ratings from Online Consumer
Reviews

Diana Schindler, Lars Liipke, and Reinhold Decker

Abstract Online consumer reviews have emerged in the last decade as a promising
starting point for monitoring and analyzing individual opinions about products and
services. Especially the corresponding “star” ratings are frequently used by market-
ing researchers to address various aspects of electronic word-of-mouth (eWOM).
But there also exist several studies which raise doubts about the general reliability
of posted ratings. Against this background, we introduce a new framework based
on the Beta Binomial True Intentions Model suggested by Morrison (J Mark Res
43(2):65-74, 1979) to accommodate the possible uncertainty inherent in the ratings
contained in online consumer reviews. We show that, under certain conditions, the
suggested framework is suitable to estimate “true” ratings from posted ones which
proves advantageous in the case of rating-based predictions, e.g. with respect to the
willingness to recommend a product or service. The theoretical considerations are
illustrated by means of synthetic and real data.

1 Introduction

Today, the Internet has established itself as an important channel for online trading,
purchasing and chatting. Consumers intensively use new forms of communication
such as online forums, blogs, discussion groups as well as online review platforms
like those offered by Amazon.com, Epinions.com or Airlinequality.com to express
their opinions and thoughts about products or services. Hence, the respective
consumer feedbacks have emerged as an important database for marketing research.
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amazoncom
S—]

1 of 1 people found the following review helpful:
#rfrdedede No need to trade in your SD780., September 8, 2011
By slwChell (Kenosha,, WI United States) - See all my reviews

ToF BOREVIEWER
This review = from: Canon PowerShot ELPH 300 HS 12 MP CMOS Digital Camera with Full 1080p HD Video (Red) (Electronics)

Although the Elph 300 claims to be "the world’s thinnest camera,” that's now, not a couple of years ago when Canon
released the SD780. The latter camera is thinner, narrower, shallower in all its exterior dimensions and marginally lighter in
weight. It's also boasts a 12.1 mp lens and HD video.

On the plus side, the new Elph has a wider-angle lens and stereo sound (of questionable superiority over monaural sound
when the recording mic is necessarily squeezed onto a sound stage this small).

In short, unless your 780 is broken, it would seem pointless to replace it with this point and shoot. Should you plan to pick
up an Elph 300, you may wish to wait until the end of the month. One of Amazon's competitors is promising to reduce its
price for the camera, so it remains to be seen how Amazon will respond.

Help ather customers find the most helpful reviews Report sbuse | Permalink
Was this review helpful to you? | Yes | [ Ne Comment

© Epinions.con
The Canon Powershot SD1300 IS
wWritten: Nov 07 10

Product Rating: 7 # % % Pros: Ultra-compact, stylish, and user friendly

Durability e

Cons: No optical Viewfinder, slight tendency toward over-exp no manual exp options

Battery Life it st

Photo Quality. s —— The Bottom Ling:

St

fter Lag At this point in time, for the price, consumers simply can't buy a better ultra-compact P&S

digicam than the SD1200 1S

Howard_Creech's Full Review: Canon Powershot SD1300 1S / Digital IXUS 105 Digit

We are just coming out of the worst economic downturn since the great depression. Money is still very tight for most folks and
bargains are important. Canon's ultra-compact digital cameras have consistently been among the most successful competitors in
the hi-tech e because they y deliver imp bang for your buck, rock solid usability, class chamg
performance, and excelient image quality - all stuffed into a stylish metal alioy body that's small enough lo be dropped into a shin
pocket and tough enough to go just about anywhere

1

Canon's newest SO series ultra-compact digicam is a very well built little camera - fit and finish are impressive with good
dust/moisture seals. The SD1300 IS Is tough enough to go just about anywhere, plus it is smaller and lighter than its predecessors
and features a simpler menu and easier operation. The SD1300 IS is a reasonably priced choice for anyone looking for a compact,
lightweight, responsive camera that is simpie enough to appeal to a casual shooter, but provides (jus!) enough creative capability to
appeal to a more demanding pholographer, The SD1300 IS makes an ideal first digital camera, it is an excellent choice for students
and budget conscious shulterbugs, i is also a good choice for the primary family camera, and a very good choice for travelers who
want a tough, Bghtweight, "go-anywhere” digital camera

Recommended:
Yes

Amount Paid (USS): 152.00
This Camera is a Good Choice if You Want Something... Easy Enough for Anyone 1o Use

Fig. 1 Examples of online consumer reviews from Amazon.com and Epinions.com

The structure of the reviews can vary significantly depending on the platform on
which the reviews are posted. Two very popular formats are shown in Fig. 1.

Online consumer reviews typically contain so-called ‘“star” ratings (e.g.,
expressed on a 5-point scale) and different formats of full texts. In some cases,
online consumer reviews also include additional information about pros and cons
and the recommendation or non-recommendation of the respective product or
service as, see, e.g., online consumer reviews from Epinions.com.


Amazon.com
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Epinions.com
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Despite this broad range of information sources, studies in this context are often
based on data sets which only contain “star” ratings and texts as illustrated by the
Amazon.com example. An obvious characteristic of those reviews is the fact that
the two components differ greatly regarding their data analytic complexity. The
difficulties with respect to the statistical analysis of texts may be one reason why
many studies are based on rating information instead of texts. The corresponding
aims of scientific investigations vary considerably. There are studies which analyze
the value of online consumer reviews for firms by evaluating posted ratings
(Dellarocas et al. 2004). Other papers analyze the value of online ratings with
respect to the development of marketing strategies (Chen et al. 2003; Thomas et al.
2011; Lee et al. 2011) or assess the value of online consumer reviews for the
economy in general (Jiang and Chen 2007). Based on posted ratings, Dellarocas
et al. (2010) recently investigated whether consumer reviews are primarily written
for popular “hit” products or for “niche” products. Furthermore, there is a growing
number of studies devoted to the quantification or measurement of the impact
of posted ratings on (future) sales (Chen et al. 2004; Godes and Mayzlin 2004;
Chevalier and Mayzlin 2006; Joeckel 2007; Moe and Trusov 2011).

While many researchers are directing their efforts to the analysis of online
consumer ratings for marketing purposes, there is also a growing research devoted
to the question whether these ratings are a consistent marketing database at all.
Actually, several aspects are conceivable to be suspicious regarding the significance
of posted consumer ratings when they are used as the only source of information.
For example, Li and Hitt (2008), as well as Moe and Schweidel (2011), confirm that
reviewers’ purchase intentions may vary over time because of other reviews. Hence,
later reviews may be influenced by earlier ones. Moe and Trusov (2011) further
support this empirically, which indicates that posted ratings are not necessarily
robust over time and cannot inevitably be interpreted as the true quantifications
of opinions. Li and Hitt (2010), furthermore, argue that posted ratings on the
aggregate level do not necessarily reflect the objective value or quality of a product
or service. Most recently, Hao et al. (2011) provided further evidence in this
respect by studying consumer ratings in third-party software application markets.
Hu et al. (2006) falsified the assumption that average ratings calculated from online
consumer reviews fully reflect aggregate preferences. Instead, they pointed out that
average ratings only represent a compromise of extreme opinions. Later, Hu et al.
(2009) state that online consumer reviews are often written in a rather positive than
objective way (they categorized this as J-shaped distribution) and, as a consequence
thereof, are biased and cannot be taken per se as a consistent data base. In addition,
they point out that online reviewers either tend to report their distinct satisfaction
or distinct dissatisfaction regarding a purchased product. This means that people
who are neither extremely satisfied nor extremely unsatisfied typically have little
motivation to write about this “average feeling”. From the aforementioned study
it can be concluded that online consumer reviews coming along with a 1-star
(minimum) or a 5-star (maximum) rating may be overrepresented, whereas those
with ratings in between may be underrepresented. Both together would remarkably
influence the results of data analyses based thereon. The results of Hu et al. (2009)
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further substantiate the assumption that analyzing posted “star” ratings without
examining the reliability of the corresponding frequency distribution may lead
to erroneous interpretations. Finally, Tsang and Prendergast (2009) empirically
evaluated the relationship between review texts and numerical ratings and found
that the trust in online consumer reviews strongly depends on the consistency of
textual evaluation and posted rating (e.g. positive ratings and positive valences of
free texts). Especially, in consumer-to-consumer relationships it is important that
text valences and ratings correlate, which can be seen as an implicit indicator of
consistency.

The argument of Abulaish et al. (2009) points to a similar direction and suggest
examining both review texts and rating information and, hence, managing possibly
existing inconsistencies in the posted ratings that way. They argue that, basically, the
whole review text has to be read to be able to correctly interpret the true meaning
of the given rating. Even though there are several activities, e.g., with respect to the
use of text mining tools to aggregate the textual parts of online consumer reviews,
such that one does not have to read all the texts available for a product or service
of interest, reviewers’ subjectivity still remains a problem for review data analysis
(Abulaish et al. 2009; Liu et al. 2005; Liu 2010).

The consolidation of the above-reported streams of research directly leads to the
following implication: When analyzing online consumer reviews on the aggregate
level and only using rating information then it cannot be excluded that the results
are biased, either because of a J-shaped distribution of the ratings (Hu et al. 2009) or
because of reviewers’ subjectivity and situational influences (e.g. the basic mood of
the reviewer when writing the review). Posted, i.e. observed, ratings can therefore
be interpreted as the outcome of a stochastic process. Against this background, the
aim of this paper is to introduce and illustrate an easy-to-use framework, which
helps to analyze and interpret inconsistencies that result from the above-mentioned
conditions.

The remainder of the paper is organized as follows. In Sect. 2, we provide a brief
sketch of the Beta Binomial True Intentions Model by Morrison (1979) (Sect.2.1),
introduce an adapted version to deal with ratings (Sect.2.2), and finally apply it
to a synthetic data set (Sect.2.3), which represents different rating distributions.
In Sect. 3, the new approach is applied to two real data sets generated from online
consumer reviews in order to demonstrate its basic functionality and to shed light
on some important aspects of its practical use. Section 4 discusses the results and
corresponding limitations and outlines directions for future research.

2 Theoretical Framework

2.1 Beta Binomial True Intentions Model (BBTIM)

More than three decades ago, Morrison (1979) suggested and empirically verified
a simple stochastic framework for transforming stated purchase intentions into
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estimated “true” — but unknown — purchase intentions, which can then be used
to estimate future purchase probabilities. The starting point of this so-called True
Intentions Model (TIM) is the assumption that, whenever a person is asked whether
s/he intends to buy a product in the future, the stated intention may change over
time: Let us assume, for example, that a person, who is asked today whether s/he
will buy a dishwasher during the next year, would answer this question with “no”. In
this case, the stated purchase intention clearly points to a purchase probability close
or even equal to zero. But then, 6 months later, the respondent’s present dishwasher
breaks down. Now two scenarios are imaginable: (1) the respondent will repair it or
(2) s/he will buy a new one. The latter, of course, would contradict the previously
stated intention.

To deal with this kind of information instability Morrison (1979) suggested
the TIM and used it to transform stated (i.e. empirically observed) intentions (/)
into estimates of the unknown “true” intentions (/;). The key idea behind this
very elegant approach was to “deflate high stated intention and inflate low stated
intention” (Morrison 1979, p. 66) in order to get a more realistic picture of the “true”
intentions existing in the product category of interest. Therefore, he first defined the
following simple linear relationship

I, = a + bl (1

with unknown parameters a and b (a,b > 0 and a + b < 1) to be estimated from
survey data. For the unknown parameters ¢ and b the underlying “regression to
the mean” principle requires that ¢,b > 0 and a + b < 1 (Healy and Goldstein
1978). Both intention variables are supposed to be linearly dependent on each other.
Furthermore, it is assumed that a respondent answers on an (n + 1)-point scale with
levels 0,1, 2,...,n (where 0 means definitely no purchase intention and n points to
a definite purchase intention). Expressed in a more formal way, we get

P, =r;n1I) = (n)lt’(l —I)" ", withr =0,1,...,nand I, € (0,1) (2)
r

where I can be interpreted as the outcome of scale level based Bernoulli draws and
therefore can be assumed to follow a binomial distribution with parameters n and
I, € (0,1).

Following this, the estimation of [, is based on

(B + B2)
r(B)I'(B2)

Starting from the above probability functions and by assuming the “true” purchase
intentions [; to be beta-distributed, Morrison (1979, p.67) developed his Beta
Binomial True Intentions Model (BBTIM), which provides the methodological
guide for our own approach:

g(I;; Br. B2) = a1y 3)
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BB +r,B+n—r)
B(B1.B2) ’

r(B)I(B2)
INGIE R

BBTIM provides a methodologically elegant way to deal with information
instability that might occur due to circumstances respondents do not or cannot
anticipate when asked about their purchase intentions.

In the case of online consumer reviews we have got a similar situation: Reviewers
often post their opinions about a product or service under circumstances that
are unknown to the marketing researcher. In addition, various situational factors
might influence the rating process (see, e.g., Hao et al. 2011) or the underlying
opinion changes over time (see, e.g., Moe and Schweidel 2011). Actually, the
posted opinions can be the outcome of an actual purchase, as well as the result
of past experiences, and they can be influenced by the current mood and/or the
missing willingness to carefully balance the exact rating the product or service
deserves. Inconsistency may also result from the non-willingness to report “average
feelings” (see above) or the willingness to only write about extremely good or bad
experiences. From a marketing researcher’s perspective, all these factors suggest the
interpretation of the posted (observed) ratings as the outcome of a latent stochastic
process.

P(Is =r;n,pB1,B2) = (:) “4)

withr = 0,1,...,n and B(B1, B2) =

2.2 Beta Binominal True Ratings Model (BBTRM)

Analogous to Morrison’s use of the stated intention /I, in the case of online
consumer reviews, Y?°? denotes the posted “star” rating with realizations r =
0,1,2,..., R, whereas Y™ refers to the unknown “true” rating, which has to
be estimated from posted/observed ratings. According to Morrison (1979) the
following model development starts from two basic assumptions:

Ar: The unknown “true” ratings are a linear function of the posted ones
(i.e., posted rating = “true” rating + error).
Ar: The unknown “true” ratings vary across the reviews posted for a particu-

lar product or service.
Furthermore, it is hypothesized:

H;i: The variation of the “true” ratings can be described by a beta distribution.
H: The “true” ratings can be estimated from the posted ones.

Assumption A; leads to the simple relationship

the a4+ prmted‘ (5)
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The posted ratings are interpreted in the following as individual responses on
an (R + 1)-point rating scale with levels r = 0,1,2,..., R. A value equal to
zero indicates that the reviewer has a clearly negative opinion about the respective
product or service, whereas the highest level R points to a clearly positive opinion
about the rated object. The observed realizations r of the random variable Y7o%d
can then be interpreted as the outcome of a binomial process with parameters R and
unknown probability Y 7“¢:

R
P(Yﬁosted =r; R, the) — ( )(the)r(l _ the)R—r’ (6)
r
withr =0,1,...,Rand Y™ € (0, 1).

Continuing with assumption A, we consider the “true” rating Y to follow
a beta distribution with parameters 8, 8, > 0. The probability of observing a
particular rating r then takes the form:

posted __ ... _ R F(IBI +:32) F(r+:31)F(R_r +:32)
e _"Rﬂ“m”‘p>rwomm) R

The unknown parameters B8; and f, can be estimated from the observed rating
data by means of the maximum likelihood method. According to Kalwani and Silk
(1982, p. 284) the regression parameters ¢ and b of Eq. (5) can be deduced from the
conditional expectation as follows:

+ Bi Bi 1
E Yz‘rue — lrue Yposred =7) = r — + 7.
=y V=R BB Ript P REpitfa

The empirical counterpart of Eq. (5), providing an estimator 3¢ for the “true”
rating, then reads

A

Atrue A . oA 181 I 1
y" =a+br,witha = ————— andb = —————. 9)
R+ B1+ B2 R+ B1+ B2

The above framework is referred to as the Beta Binomial True Ratings Model
(BBTRM) in the following.

2.3 Application of the BBTRM Framework to Synthetic Data

In order to verify hypotheses H; and H; several data sets with varyingly distributed
ratings are considered. As already mentioned the “star” ratings contained in online
consumer reviews often have a J-shaped distribution (see, e.g., Chevalier and
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Table 1 Illustration of different frequency distributions

Nyposea [absolute] Nyposiea [relative]

r = Yposed  Example | Example2 Example3 Example ] Example2 Example 3
0 102 120 70 0.20 0.24 0.14

1 96 95 30 0.19 0.19 0.06

2 96 70 40 0.19 0.14 0.08

3 102 95 125 0.20 0.19 0.25
4(=R) 104 120 235 0.21 0.24 0.47
pposted 500 500 500 1 1 1

Table 2 Parameter estimates for the synthetic data sets

Example 1 Example 2 Example 3
B 0.95 0.66 0.77
B> 0.93 0.66 0.33
a 0.16 0.12 0.15
b 0.17 0.19 0.20
y2emp 0.16 2.94 39.47

(rounded values)

Mayzlin 2006; Hu et al. 2009; Li and Hitt 2008), indicating a strong positive opinion
about the respective product or service. Own comprehensive (work-in-progress)
analyses of different product categories underscore this appraisal. Besides this,
uniform and U-shaped frequency distributions of overall ratings can be observed in
numerous categories. We therefore created three synthetic data sets which illustrate
these common distributions and demonstrate the application of BBTRM in general
with these data sets.

Example 1 approximates a uniform distribution, Example 2 a U-shaped distribu-
tion and Example 3 represents a J-shaped distribution. All three data sets are based
on nP*sed = 500 simulated rating frequencies. Table 1 displays the test data sets.

In the case of Example 1 the maximum likelihood estimation leads to 3 gExample I
0.95 and B! = 0.93. As a result, we get jrueExamle] — Ty and

Example 1 (. _ I(0.954+0.93) I'(0+0.95)"(4—0+0.93) __
PR i(r = 0:4,0.95,0.93) = (0)r(0.95)r(0.93) T (4+0.95+0.93) = 0.202

(see Eq.(7)). The probabilities P(r) for r = 1,2, 3, 4 are calculated the same way.
Table 3 shows the probabilities P(r) and the resultmg estimated frequencies 7 Ny irue
for all three examples. The corresponding estimates ,3 1 and ,32, as well as 4 and b
(see Eq. (9)), are shown in Table 2.

The results in Tables 2 and 3 show that the available BBTRM parameter
estimates provide acceptable approximations 7iyme of the observed frequencies
Nyposea. To further verify this impression y>-tests were carried out (Ho: “The
observed frequencies Ny osiea Of the posted ratings equal their estimated counterparts
fiyme.”). The non-rejection of this hypothesis implies that hypotheses H; and H,
(see Sect.2.2) cannot be rejected as well. In the present case H; and H, cannot be
rejected for Examples 1 and 2, but have to be rejected for Example 3 at the 1 % level.
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Table 3 Results for the synthetic data sets

P(r) Ayme = P(r)-nposted
r Example 1 Example 2 Example 3 Example 1 Example 2 Example 3
0 0.202 0.243 0.116 101 = 0.202-500 121 58
1 0.196 0.175 0.107 98 = 0.196-500 88 54
2 0.194 0.164 0.122 97 = 0.194-500 82 61
3 0.198 0.175 0.170 99 = 0.198-500 88 85
4 0210 0.243 0.485 105 = 0.210-500 121 242

(rounded values)

Accordingly, in the first two cases, the assumption that the “true” product ratings
follow a beta distribution cannot be falsified. Consequently, the above examples
allow the preliminary conclusion that the BBTRM framework should work in
the case of approximately U-shaped or uniformly shaped frequency distributions.
We will discuss this in more detail in Sect. 4.

3 Estimation of “True” Ratings Using the BBTRM
Framework

3.1 Application of the BBTRM Framework to Real World Data
Sets

In the following, the BBTRM framework is applied to two real world data sets
from fields where online reviewing has been popular for a number of years.
The first data set was crawled from Airlinequality.com, the “world’s leading
airline and airport review site”, the second one represents customer opinions
from Apartmentratings.com, the “leading source of apartment reviews by renters”.
Airlinequality.com reviews can be assumed to be based primarily on the experiences
typically resulting from the last flight with the respective airline, normally offering
the main service for a couple of hours. In contrast to this, Apartmentratings.com
reviews can be assumed to typically reflect the impressions and experiences gained
over months or even years while living in the respective apartment. These different
characteristics have a significant influence on the “true” ratings as will be shown
later.

The first data set contains in total 491 ratings for four randomly selected
airlines. In order to build a bridge to the widely used 5-point rating scales and to
achieve a better allocation of the rating frequencies the original 10-point scale was
transformed into a 5-point scale with rating groupings (0; 1;2)=r=0, (3;4)=r=1,
(5)=r=2, (6; 7)=r=3 and (8; 9; 10)=r=4 (see Juster (1966) and Morrison (1979)
for similar aggregations). Neutral labels “Airline 17, “Airline 2”, etc. are used for
data privacy reasons. Table 4 illustrates the data used.
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Table 4 Airline-specific

. . N y posted
frequencies of posted ratings

r Airline 1  Airline2  Airline3  Airline 4
0 39 63 54 19
1 18 12 19 6
2 10 16 6 7
3 24 14 15 15
4 46 14 31 63
nPosted 137 119 125 110

Table 5 BBTRM results for the airline data

Airline 1 Airline 2 Airline 3 Airline 4

B 0.38 0.25 0.23 0.37

B> 0.33 0.61 0.34 0.15

a 0.08 0.05 0.05 0.08

b 0.21 0.21 0.22 0.22

Ayme = P(r)nposted

r Airline 1 Airline 2 Airline 3 Airline 4

0 38 62 54 18

1 17 17 15 9

2 16 12 12 8

3 19 12 13 11

4 47 15 31 64

Ntrue 137 118 125 110

Hy The observed frequencies 7 yposea Of the posted ratings equal their estimated

counterparts Ayme. (¢ = 0.01; 2 = 9.21; df = 2)

xme 3.66 3.29 4.26 221

Hy Not rejected Not rejected Not rejected Not rejected

Conclusions The variation of the “true” ratings can be described by a beta distribution (H1).

The “true” ratings can be estimated from the posted ones (H>).

(rounded values)

Information about recommendation frequencies was available as well. We refer
to this in Table 8 (7,,.posea ). The total number of reviews and ratings for Airline 1 to
Airline 4 vary between 137 and 110, respectively, which meets usual sample sizes
in this field of application at the time of data collection.

The airlines considered can be distinguished from each other on the basis of
their different frequency distributions. The distribution of Airline 1 is approximately
U-shaped, whereas the ratings for Airline 2 are rather negative. The data structure of
Airline 3, in a sense, is like a mixture of that of Airline 1 and Airline 2. Finally, the
frequency distribution of Airline 4 tends to be approximately J-shaped. Insofar the
selected data sets are heterogeneous enough to build a meaningful database for
model testing. Table 5 shows the results we get when applying BBTRM to this
data.
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Table 6 City-specific

frequencies of posted Rypored

apartment ratings r City 1 City 2 City 3
0 448 2,337 441
1 259 1,399 227
2 267 1,294 227
3 197 1,193 199
4 241 1,257 279
pposted 1,412 7,480 1,373

In all cases the “true” ratings could be estimated at a satisfactory level and,
accordingly, accounting for unobservable influences (that might have occurred
during the rating process) was possible (see the results of y>-tests in Table 5).
Estimated ,3 parameters as well as the corresponding function parameters @ and
b are also given in Table 5.

Additionally, the robustness of the available estimates was tested. Therefore, each
sample was reduced randomly 10 times and the resultlng parameter estimates ,3 1s ,32,
4 and b were compared. On average, the values of ,31 vary by approximately 1 % in
the case of data set 1 (U-shaped data), 4 % in the case of data set 2 (predominantly
negative), 2 % in the case of data set 3 (mixture of data sets 1 and 2) and 8 % in the
case of data set 4 (J-shaped data). The corresponding variations of ,32 are 2,2,0.3
and 0.7 %. In the case of data sets 1 and 2 @ and b do not differ notably (<0.5 %).
This effect also occurs for the b parameters of data sets 3 and 4. The a parameters
vary by 2 % for data set 3 and 12 % for data set 4. All in all, the respective variations
tend to be mostly minor, which indicates acceptable robustness of the predictions.
The results of y>-testing further support this. Accordingly, Hy (“The observed
Jfrequencies nyposiea Of the posted ratings equal their estimated counterparts.”) cannot
be rejected in any of the cases considered.

In order to further substantiate these findings the model was also applied to the
above-mentioned apartment ratings (see Table 6). This data set, in total, contains
10,265 ratings as well as the corresponding recommendation information collected
for three cities in the USA. The rating distributions are similar to that of Airline 3 in
the previous example. We explicitly take into account the fact that the reviewing
process can also lead to more extreme opinion patterns. The implications such
a specific structure may have on further predictive uses of the model will be
demonstrated in the next subsection. Table 6 shows the input data for the BBTRM.

At a first glance, nothing points to a specific challenge arising from this data.

Once again, the model-based estimation of the “true” ratings works properly
and, as to be seen in Table 7, the resulting estimates iyme are very similar to
their observed counterparts. The supporting outcomes of the corresponding y>-tests
are depicted in Table 7, as well as the ,3 parameters and the resulting regression
parameters ¢ and b.

Obviously, in both application cases the structure of the input data can be
modeled quite well. Thus, the “true” ratings can serve as a reliable starting point
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Table 7 BBTRM results for the apartment data

City 1 City 2 City 3
B 0.59 0.60 0.51
B> 0.83 0.84 0.66
a 0.11 0.11 0.10
b 0.19 0.18 0.19
Ayme = P(r)nposted
r City 1 City 2 City 3
0 448 2,312 436
1 276 1,469 243
2 232 1,249 207
3 219 1,181 209
4 237 1,269 278
Ntrue 1,412 7,480 1,373
Hy: The observed frequencies 7 yposea Of the posted ratings equal their estimated
counterparts Ayme. (@ = 0.01, y>"" = 9.21; df = 2)
xxm 8.60 5.38 3.53
H, Not rejected Not rejected Not rejected
Conclusions The variation of the ‘true’ ratings can be described by a beta distribution (H).

The ‘true’ ratings can be estimated from the posted ones (H5).

(rounded values)

for further computations, for instance, the prediction of future sales (see, e.g., Chen
et al. 2004).

Another interesting and useful application of this construct is the prediction
of unknown recommendation probabilities in cases where this information is not
part of the posted reviews. For example, the vendor of a product or service
which is often rated on an online opinion platform might be interested in using
the estimated recommendation probabilities for future demand planning or a
check of the effectiveness of recent advertising efforts in the context of eWOM.
This further emphasizes the importance of such additional information for both
marketing research and communication management. However, information about
recommendation or non-recommendation to buy is not provided by all platforms.
Amazon.com, for example, does not survey this information. A closer consideration
of this issue and the corresponding question whether the application of BBTRM
might be helpful in this case will be presented in the next subsection.

3.2 Extended Use of the BBTRM Framework

In accordance with Morrison (1979), who used the “true” intentions to compute
purchase probabilities, the estimated “true” ratings will now be used to determine
the probability of recommending a product or service, given a certain rating r. We
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Table 8 Estimated and observed recommendation frequencies for the airline data

— plec

R pree = Ny posted T pgeposted

r Airline 1 Airline 2 Airline 3 Airline 4 Airline 1 Airline 2 Airline 3 Airline 4
0 3 3 3 2 7 1 0 0

1 5 3 5 2 3 1 1 0

2 5 7 3 4 3 2 1 4

3 17 9 11 11 21 13 12 14

4 43 12 29 61 46 14 31 63

n 73 34 51 80 80 31 45 81

Hy: The observed recommendation frequencies 7 ,posed equal their estimated counterparts 71 re.
(o = 0.01, 2 = 9.21; df = 2)

e 7.59 8.58 7.67 4.19

H Not rejected Not rejected Not rejected Not rejected

(rounded values)

therefore, once again, make use of the above two real world data sets. Since for
both cases the recommendations concerning the rated objects are available, this
information can be used as a benchmark for the BBTRM-based predictions of
recommendation probabilities. The consideration of both examples is of particular
interest because of their different accessibility for this task, regardless of the very
similar performance with respect to the estimation of the “true” ratings.

The interesting recommending probability p"™‘ is defined as a function of the
posted ratings. Consequently, starting from Eq. (8), we get:

rec _ #’31,\ . (10)
R+ B1+ B2

The left side of Table 8 shows the estimated recommendation frequencies for the
airline data. For comparison purpose the respective benchmark frequencies #,,postea
are displayed in the right part of the table. The value 71 ,ecaininer = 43 for Airline
1 then, for example, indicates that 43 of the reviewers, who assigned this airline to
rating class r = 4, are estimated to also recommend this airline. The corresponding
observation, 7,,posed, ainine 1 = 46, 1s given in the right part of the table.

All in all, the predictions are rather good, taking into account that no information
about the real recommendation behavior was used in the model calibration process.
The y?-statistics depicted at the bottom of Table 8 further support the visual
impression. For all airlines, the null hypotheses of equality cannot be rejected at
the 1 % level.

The above results suggest the conclusion that the BBTRM framework is a power-
ful tool for the prediction of unknown (missing) recommendation information. The
direct computing of missing recommendation information from the “true” ratings is
a significant benefit because of the fact that no other information except the ratings
is required for this enhancement of the available data. However, such a good model
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Table 9 Estimated and observed recommendation frequencies for the apartment data

— plec

ﬁ prec = *N y posted N ppeposted
r City 1 City 2 City 3 City 1 City 2 City 3
0 49 262 44 0 4 2
1 76 412 66 9 31 13
2 128 619 110 128 628 129
3 130 789 135 189 1,172 196
4 204 1,062 243 241 1,256 278
n 587 3,144 598 567 3,091 618
Hy: The observed recommendation frequencies 71,05 equal their estimated counterparts
A pree. (0 = 0.01, 2 = 9.21;df = 2)
xm 24,434.98 21,478.87 1,124.27
H, Rejected Rejected Rejected

(rounded values)

fit cannot be guaranteed in general. The corresponding results for the apartment data
depicted in Table 9 show a worse model fit.

This time the predictions are rather unsatisfactory and the question is why?
Obviously, the number of recommendations for the classes r = 0 and r = 1
are heavily overestimated, whereas the remaining classes feature fairly acceptable
predictions. In contrast to the rather temporary service consumption process in the
airline example, the permanent relevance of an apartment decision implies that
negative experience results in a strict non-recommendation. Obviously, recommen-
dations only come into question if at least a medium satisfaction (expressed by
a rating equal or higher than 2) occurs. This structural split of the willingness to
recommend a product or service is hard to overcome by a model which implicitly
assumes a monotonous trend. For such cases another indirect approach has to be
considered.

A closer look at the rating frequencies for City 1 and City 2 reveals remarkable
differences regarding the total number of recommendations, as well as regarding
the class-wise frequencies. The BBTRM, on the other hand, provides rather similar
parameters for the linear relationship that defines the core of the model in both cases,
namely 4¢™ 7 = 0.109 and 42 = 0.110, b1 = 0.185 and HC¥? = 0.184,
respectively. This suggests the guess that both cases are also similar with respect to
the recommendation frequencies. The data shown in Table 10 clearly supports this
estimation (see the relative values).

Practically, this means that, based on a data set (e.g. the apartments offered in
City 1), where recommendation frequencies are available, the unknown recommen-
dation behavior can be predicted by transferring the recommendation pattern from
one data set (City 1) to another (City 2), which offers the same parameter estimates
4 and b (see Table 7). In this case, for example, the recommendation behavior for
City 2 could be predicted by the results for City 1, although the data of City 2
might have been unknown. Analogous approaches can be found in the literature
on missing value imputation (Kalton and Kasprzyk 1982; Sande 1982). Analogies
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Table 10 Absolute and relative recommendation frequencies for City 1 and City 2

N pcposted

r City 1 (absolute) City 1 (relative) City 2 (absolute) City 2 (relative)
0 0 0 4 0

1 9 0.02 31 0.01

2 128 0.23 628 0.20

3 189 0.33 1,172 0.38

4 241 0.43 1,256 0.41

n 567 1 3,091 1

(rounded values)

particularly exist with regard to so-called cold-deck imputation procedures. For
obvious reasons a successful transfer, however, requires that both data sets represent
the same product or service category.

4 Discussion and Conclusion

In recent years, online consumer review platforms have become very popular and
essential for both consumers and researchers. The literature shows that two major
research streams have emerged. On the one hand, researchers use the textual part
of online consumer reviews for pattern mining and sentiment analysis. On the other
hand, “star” ratings are used as a starting point for further analysis, for example,
the prediction of future sales or purchasing behavior. The analyses regarding
each research stream implicate several advantages and disadvantages. Therefore,
in the following, we will first illustrate some hindrances to sentiment analysis
(1). Thereafter, some advantages of the rating-based BBTRM framework are offered
(2) as well as some critical aspects, which require further research (3). We finish
with some general advantages of a rating-based approach (4).

1. The (automatic) analysis of review texts is a popular object of research.
Nevertheless, some obvious barriers might hamper it. For example, one problem
is to differentiate between subjective and objective expressions. Similar to this
is the problem of automatically filtering out emotions. Furthermore, explicit and
implicit features that are posted by the reviewers have to be distinguished from
one another. Another problem is the differentiation between positive or negative
tone, namely the determination of a meaningful sentiment value. And, on top of
this, opinion mining has to handle the same general problems as other natural
language processing methods: sarcasm, orthographic mistakes, common speech
and so on. These aspects are widely discussed and are still a topic in linguistics
(see, for example, Liu (2010) or Manning et al. (2010), who address these and
some other issues in-depth).



250 D. Schindler et al.

2. In research, “star” ratings are often assumed to reflect the aggregate message of
the review text regarding the satisfaction or dissatisfaction with the product or
service of interest. However, there are a couple of issues which raise questions
about the general reliability of ratings. Especially, overwhelmingly positive
ratings give rise to suspicion (Hu et al. 2006, 2009; Li and Hitt 2010; Moe and
Schweidel 2011). We elaborated on this in Sect. 1. One possibility to examine
the reliability of rating data in online consumer reviews is to have a closer look
at the distribution structure. The main idea behind this is that certainty about
the basic distribution structure helps to ensure further analyses as, for example,
the prediction of future sales. By interpreting “star” ratings as the outcome of a
stochastic process, the proposed BBTRM framework can be used to investigate
rating frequency distributions. In so far the estimation of the “true” ratings can be
seen as a kind of internal verification of the reliability of the observed rating data.
If posted ratings are replicable in the indicated sense the database can be assumed
to be consistent and useful for further predictions. Considering that ratings often
provide the basis for further computations with managerial implications this
promises to be beneficial. The empirical usefulness of the suggested framework
has been demonstrated by means of several data sets reflecting common rating
frequency distributions. However, the available results also showed that a closer
look at the data at hand is required before applying the framework in a given
setting.

3. Structural breaks as in the case of the apartment data can significantly impair
the quality of the predictions of unknown probabilities. Problems arise if the
observed frequency distribution is characterized by an extreme asymmetry or if
the data show a distinct multimodal structure. The question of why, for example,
J-shaped data is not suitable for the BBTRM framework directly corresponds
to the assumed beta distribution of the “true” ratings: In cases where the beta-
distributed random variable Y "¢ can be estimated adequately, the reproduction
of a broad range of empirical distributions becomes possible (see, for example,
Lilien et al. 1992). Otherwise, alternative distributions are required for ¥ "¢, The
search and empirical verification of such distributions is work in progress and is
therefore beyond the focus of this article.

Another point of discussion is the linearity assumption regarding the relation-
ship between the posted and the estimated ratings. However, greater universality
by assuming a non-linear relationship should always be contrasted with the
required methodical burden going hand in hand with that. Kalwani and Silk
(1982) already discussed this issue by referring to the original purchase intention
framework (Morrison 1979) and suggested a piecewise linear model (see also
Jamieson and Bass 1989). More flexible functions might also help to better deal
with extreme rating frequency distributions and possible structural breaks in the
data. Even though these challenging extensions of the basic framework have to be
left to future research, the great importance of online product ratings for purchase
decision making and (e)WOM, as well as for consumer satisfaction analysis and
opinion mining, makes them worth a closer consideration. Last but not least
one could think about an extension of the presented approach which allows the



Estimating True Ratings from Online Consumer Reviews 251

evaluation of the predicted recommendation behavior by using the full texts or
the pros and cons coming along with the product ratings. But since this is not
possible at the current stage of research without an expensive pre-processing of
the text data we did not yet implement this idea.

4. The purely rating-based approach enables new applications in the context of
international marketing and ecommerce. Particularly the independence of the full
texts and, therewith, the independence of respective country-specific languages
facilitates ad-hoc analyses of the present type across borders. The consideration
of country-specific “true” ratings and recommendation probabilities opens new
options for comparing country-specific (¢)WOM behavior. From an international
marketing point of view it is of increasing importance to know at which level
of satisfaction (quantified by means of rating values) a population tends to
recommend a product or service. In so far the new approach may also contribute
to current research in international (€)WOM analysis.

Finally, the suggested framework is little sensitive to the number of observed
ratings, provided basic requirements with regard to the achievement of statis-
tically significant parameters are fulfilled. This allows the use of the BBTRM
framework also in cases where only a comparatively small number of reviews
are available, as in the case of the airline data above. A corresponding example
is the introduction of a new product where (€)WOM already plays an important
role, but consumer evaluations are still scarce.
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Statistical Process Modelling for Machining
of Inhomogeneous Mineral Subsoil

Claus Weihs, Nils Raabe, Manuel Ferreira, and Christian Rautert

Abstract Because in the machining process of concrete, tool wear and production
time are very cost sensitive factors, the adaption of the tools to the particular
machining processes is of major importance.

We show how statistical methods can be used to model the influences of the
process parameters on the forces affecting the workpiece as well as on the chip
removal rate and the wear rate of the used diamond. Based on these models a
geometrical simulation model can be derived which will help to determine optimal
parameter settings for specific situations.

As the machined materials are in general abrasive, usual discretized simulation
methods like finite elements models can not be applied. Hence our approach
is another type of discretization subdividing both material and diamond grain
into Delaunay tessellations and interpreting the resulting micropart connections as
predetermined breaking points. Then, the process is iteratively simulated and in each
iteration the interesting entities are computed.
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1 Introduction

Tool wear and machining time represent two dominant cost factors in cutting
processes. To obtain durable tools with increased performance these factors have to
be optimized demanding for the investigation of the interactions between tool and
workpiece. Unlike ductile materials such as steel, aluminum or plastics, material
characteristics for mineral substrates like concrete are difficult to determine due
to their strongly inhomogeneous components, the dispersion of the aggregates and
porosities, the time dependency of the compression strength etc. (see Denkena et al.
2008). As a result of the brittleness of mineral materials and the corresponding
discontinuous chip formation, there are varying engagement conditions of the tool
which leads to alternating forces and spontaneous tool wear by diamond fracture.

Despite the manifold of concrete specifications, tools for concrete machining are
still more or less standardized, not adapted to the particular machining application.
In non-percussive cutting of mineral subsoil such as trepanning, diamond impreg-
nated sintered tools dominate the field of machining of concrete because of the
diamonds’ mechanical properties. These composite materials are fabricated powder-
metallurgically. Well-established techniques like cold pressing with a following
vacuum sintering process or hot-pressing, being a very productive manufacturing
route, are used for industrial mass production. The powder-metallurgical fabrication
process implies a statistical dispersion of the diamonds embedded in the metal
matrix. Additionally, the composition and allocation of different hard phases,
cement and natural stone grit in the machined concrete are randomly distributed.
Because of these facts, the exact knowledge of the machining process is necessary
to be able to investigate for appropriate tool design and development.

To obtain a better understanding of these highly complex grinding mechanisms
of inhomogeneous materials which can not be described solely by physical means,
statistical methods are used to take into account the effect of diamond grain
orientation, the disposition of diamonds in the metal matrix and the stochastic
nature of the machining processes of brittle materials. The first step to gain more
information about the machining process is the realization of single grain wear tests
on different natural stone slabs and cement.

2 Experimental Setup

To gain information about the fundamental correlations between process parameters
and workpiece specifications, single grain scratch tests have been accomplished. For
these, isolated diamond grains, brazed on steel pikes have been manufactured (see
Fig. 1, left and middle) to prevent side effects from the binder phase or preceded
grain scratches as they occur in the grinding segments in real life application.
To provide consistent workpiece properties, high strength concrete specimens of
specification DIN 1045-1, C80/90 containing basalt as the only aggregate had been
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Single iamol

Fig. 1 Sample before and after brazing (left and middle) and scratch test device on basalt (right)

produced. Also, the two phases, cement binder and basalt, were separately prepared
as homogeneous specimens for an analysis of the material specific influence on
the wear.

To eliminate further side effects such as hydrodynamic lubrication and interac-
tion of previously removed material and adhesion, the experiments have been carried
out without any coolant. The brazed grain pikes had been attached to a rotating
disc which in turn had been mounted to the machine (see Fig. 1, right) to simulate
the original process kinematic. Parameters for the experimental design were chosen
according to common tools and trepanning processes. To guarantee constant depth
of cut the rotatory motion of the grain pike had been superimposed by a constant
feed which generated a helical trajectory. To generate a measurable grain wear, a
certain distance had to be accomplished. A total depth of cut of 250 um had been
achieved in every test.

3 Design of Experiments and Regression Models

In order to investigate the influences of the process parameters to the responses tool
wear and forces, a series of 92 single grain scratch experiments had been carried
out based on a statistical design of experiments. Table 1 shows the factor levels of
this design. Note that because the outer hole diameter d,, (in mm) is not adjustable
continuously a twice-replicated Central Composite Design (CCD, Eriksson 2008) of
the cutting speed v, (in rpm) and the depth of cut a, (in pm/r) with seven center
point runs had been repeated for each of the four diameter levels.

In a first attempt to provide a basis for the simulation models the results of these
experiments had been analyzed by fitting regression models using stepwise forward-
backward-selection based on the Akaike Information Criterion taking into account
linear, quadratic and two-fold interaction effects. This procedure led to the following
equations for average normal and radial forces F, and F, (in N) and for the tool
wear measured by the height decrease A of the diamond grain:

F, = 44.025—0.524d,, — 035142 + 0.062d a,,
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Table 1 Factor levels of the CCD

Factor Levels

Outer hole diameter d, 50 80 110 130

Depth of cut a, 375 5 7.5 10 11.25
Cutting speed v, 346 525 900 1,275 1,454

F, = =5.204+ 0.007v, +2.425a,, — 0.187a% — 0.00009v,d, + 0.007d ya .

log(Ah) = —10.67 + 1.386a,, — 0.069a2 + 0.00007d>.

All model coefficients are significant on a level of 5 % and the R2s are 0.181,0.236,
and 0.131. The low goodness of fit has to be seen in the context of the relatively high
reproduction variance (i.e. the variance of realizations with the same factor levels),
due to which the R? values are limited by 0.652, 0.628, and 0.395.

4 Simulation Model

The regression formulas of the previous section had been used to fit the parameters
of a geometrical physical simulation model of tool and workpiece. The main idea
behind this model is to see the abrasive materials as bonds of microparts which
are flattened and broken out during the process. Our approach is to determine
these bonds by the Delaunay tessellations of sets of points which are uniformly
distributed within the corresponding workpiece or grain shape (see Fig. 2). Thereby
the workpiece is reduced to a ring covering the scratch line to be produced and the
grain is idealized to the shape that is formed when the corners of a cube are flattened,
where the amount of the reduction due to flattening is described by two parameters
ki and vy (see Fig.2).

Positions of Workpiece and Diamond: For the simulation of the process the
diamond grain and the workpiece are adjusted according to the settings of the
corresponding machining process leading to the initial coordinates of workpiece
and grain vertices S,, and Si. The position of the workpiece stays constant during
the whole process and is centered around the origin parallel to the x y-plane, where
the z-coordinate of the bottom is z = 0. The grain is first centered in the origin and
successively turned around the (x, z, y)-axes by angels oy, o and «,. Finally, the
grain is moved to its starting position by shifting all grain vertices along the x-axis
by the drilling diameter d, and along the z-axis by the starting height /.

Beside d,, in mm the depth of cut a,, in wm/r and the cutting speed v, in rpm are
the process parameters. With sampling rate r,, in H z, the actual position of the grain
at the beginning of each iteration i can be determined by turning the grain vertices
around the z-axis and shifting them along the same axis:
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Fig. 2 Edge length
reductions and Delaunay
tessellations of randomly
distributed points

cosa, 0 sina, 0ar0
S=8" o 1 oo |-
—sina, 0 cosa, 0a, 0

with o, = 2nv,)/(60r,), a, = (a,v,)/(600007,).

Workpiece Affecting Forces: Next, in each iteration the matrix W of intersection
volumes of all pairs of grain and workpiece simplices is computed, where the
(!, j)th entry wy;;; of W reflects the intersection volume of the /th grain simplex
with the jth workpiece simplex. Then, for each workpiece simplex intersecting at
least one grain simplex it is determined, which force affects it. For this purpose
first the total mass my;; = > Iy >0 Whil Ok of all grain simplices that intersect the
actual workpiece simplex j is computed from the grain simplex volumes wy;; and
the grain density px. By interpreting the collision of workpiece and grain simplices
as a force impact the force affecting the jth workpiece simplex can be simulated
by assuming the relation Fj; = (v,my;;)/tqs, where the constant ¢4 is the iteration
length.

How the workpiece affecting force Fj; distributes in radial and normal direction
depends on the geometrical properties of the involved simplices. In this context
for simplicity only the largest grain simplex is considered and the vertices of this
simplex as well as those of the workpiece simplex are projected to the vertical plane
parallel to the cutting direction. In this projection the angle y; between the vector
orthogonal to the cutting direction and that vertex of the grain simplex, that contacts
the workpiece simplex first, is computed. After determining the corresponding angle
¥ the normal and radial forces can be computed by F,.;;; = Fysin[max(y., k)]
and F,;; = Fjcos[max(yw, yr)] (see Fig. 3).

The total forces affecting the workpiece in iteration i are then given by

Fn;i = Z Fn;ij and Fr;i = Z Fr;ij-

Lotk R R
J -Z1S=1 wy:1j >0 J -Z[S=1 w1 >0

The material removal rate of the workpiece and the wear rate of the grain at the
end of each iteration is then given by the change of the corresponding volumes.
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Fig. 3 Geometric I
distribution of forces on : )
collision of grain and
workpiece simplex

Fig. 4 Simulated machined
workpiece and diamond grain

Figure 4 shows an exemplary view of a machined workpiece and a diamond
grain, for better visualization in unrealistic proportions.

Tool Wear: The simplices of the workpiece always break out when hit by a grain
and the continuous wear of the grain is modeled by decreasing all simplices in
action by a specific factor 7. However, when the mass w,,;; of the active workpiece
simplex exceeds a threshold defined by the inequality w,,;; 0, > urmy;; with a
specific constant pi, the density p,, of workpiece material and mass my;; of active
grain simplex, the grain simplex also breaks out. The material removal rate of the
workpiece and the wear rate of the grain at the end of each iteration is then given by
the change of the corresponding volumes.
Figure 5 shows the pseudo-code of the simulation model.

Model Fitting: For the optimal determination of the unknown simulation model
parameters p; and 7; and of the iteration length 7; a two step procedure is applied
(with the other model parameters fixed, e.g. as r, = 10,000Hz, p,, = 2,0, =
352,k = 1,vy = 0.7,y = @; = a, = m/4). See Raabe et al. (2011) for
more details on the simulation model. In the first step parameters are chosen by
minimizing the deviation of simulated and real response data based on a statistical
design and in the second step the model is calibrated by introducing some process
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compute (S, S,,)
S,g — SkRR Ry + (d)y, h0,0) @ 1,,,, ng = no. of vertices
fori=1— i, do
St < SR, —(0,a,,0) @ 1,
compute intersection volumes W;
forj=1-—n, do
Micj $= Ll >0 Wkil Pk
compute (%,, %)
¥ < max(Yy, %)
Fij < (vpmj) [1a
(Fn;iijr;ij) — F}j(sil’l}/, COSY)
if Wy, jPw > Hiimy;; then
remove diamond simplices [ : wy;;; > 0
else
reduce heights of diamond simplices [ : wg;; > 0 by 1y
end if
remove workpiece simplex j
end for
(Fn;hFr;i) — (Zan;ij>ZjFr;ij)
end for

Fig. 5 Pseudocode representation of simulation model

Table 2 Factor levels of

Factor Levels

model parameters -
Specific constant i 5 15 25
Specific factor 7y 0.01 0.025 0.04
Reciprocal sample rate 74 10 55 100

parameter dependent scale terms adjusting for the remaining discrepancy of the
equations in Sect. 3 and the corresponding regressions applied to the simulated data.
In the first step, based on a combined design with 8 x 27 = 216 experiments
consisting of the process parameter settings of the cube of the CCD for the two
middle diameter levels (see Table 1) replicated for each setting of a full factorial
33-Design (with levels in Table 2) for the model parameters a quadratic model of
the squared deviations of simulated and measured forces is fitted in dependence
of the model parameters. By minimizing the squared Euclidian distance between
the simulated and realized two-dimensional force vectors the model parameters are
estimated by ux = 10.638, nr = 0.036, and t; = 39.8.
In the second step, the model calibration, process parameter dependent scale terms
8§y (vp,ap,dp)ands,(vp,ap,dp) for the simulated forces are introduced to adjust for
the remaining systematic model deviations. These scale terms are obtained by fitting
the models Fy;p / Fr;s = (vp, ap dy)Br+erand Fyp/Frs = (vp ap  dp)Bu+
en. The estimated ratios are taken as the scale terms and are stored as multiplicative
factors for the simulated forces.
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Residuals
f=]

o 5 10 15
St

¥

Fig. 6 Comparison of cross residuals for F, based on measured (grey) and simulated (black) data
(Color figure online)

With the simulation model calibrated this way, the whole statistical design had
been repeated and by comparing the results of this simulation series with the real
experiments it can be shown that simulated and real data are very close. This
impression is exemplarily emphasized by a comparison of the cross residuals, i.e.
the residuals from applying the models for simulated forces to measured forces and
vice versa (Fig. 6). Moreover, in order to decide, whether the differences between
the models are significant, joint models for simulated and measured forces are fitted.
In these models, an indicator variable /r showing if a specific data point had been
measured (I = —1) or simulated (I = +1) is introduced both as main effect as
well as in interactions with all contained regressors. Since for both forces Ir had
no significant influence in the models, neither as main effect nor in any interaction
(see Table 3), the results confirm that the same models hold for both simulated and
measured forces.

4.1 Extensions

As shown in the previous section the simulation model is able to reflect the process
behavior quite well. However, it still neglects some important factors, namely the
wear of the grain and the heterogeneity of the material which causes highly non-
stationary processes.

For the investigation of the first factor the influence of the grains had been studied
by including them into the regression analysis. There, the multi-used grains are
directly taken into account as random effects u (included in the model by right
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Table 3 Results of the joint regression models of simulated and measured force data. Coefficients
significant on a level of 5 % bold

Model for F, Model for F,
Regressor Coefficient p-value Coefficient p-value
Intercept 42.666 <0.0001 —9.184 0.0031
Vp 0.0055 0.0079
a, 3.671 <0.0001
d, —0.4934 0.0003
af, —0.3399 0.0018 —0.253 <0.0001
vpd, —0.00006 0.01
ayd, 0.0599 0.0005 0.00406 0.106
I —1.0435 0.8868 —2.956 0.3358
Ipv, —0.00254 0.2277
Ifa, 1.048 0.2143
Ird, 0.02635 0.8419
IFaf, 0.0027 0.9801 —0.0587 0.3413
Ipv,d, 0.000035 0.102
Ira,d, —0.00048 0.9774 —0.00031 0.2114

Table 4 Regression models of forces and tool wear

Target Model RIQDO
F, = 44.025 —0.524d, — 0.351a§, +0.062d,a, + ¢,& ~ N(0, 9.458) 0.118
= 16.697 + 0.025v, — 0.321d,, — 0.003v,a, + 0.037a,d, + 9.968x 0474
+Du+¢e,u~ N(0,8.604), &~ N(0,6.66) '
F, = —5.204 4+ 0.007v, + 2.425a, — 0.187af, —0.00009v,d, + 0.007d ,a, 0.114
+ee ~ N(0,2.976)
= 1.408 4 0.009v, — 0.039a§, —0.0001v,d, + 0.008a,d, + 2.35x + Du 0,300
+&,  u~ N(0,2.36), &~ N(0,2.35
log(Ah) = —10.67 + 1.386a, — 0.069a§ + 0.00007d£ + e, ~ N(0,1.644) 0.128
= —12.88 + 1.85a, + 0.000001V2p - 0.057a§ + 0.0003d§ —0.007a,d, 024

—1.02y + Du+e, u~ N(0,0.914), &~ N(0,1.329)

multiplication to the random effect design matrix D). Additionally the orientation
of the grains is analyzed (see Tillmann et al. 2011) leading to a pair of coordinates
x and y, which are also included in the regression analysis.

By these additions the low leave-one-out cross validated multiple correlation
coefficients Rlzaa of 0.118 (Fn), 0.114 (F,) and 0.128 (Ah) for the three regressions
could be improved significantly. By repeating the stepwise model selection with the
orientation and grain data the Rlzo , values increase to the values shown in Table 4,
which also summarizes the corresponding models for each of the target variables.

The second important factor neglected in the actual simulation model is the
heterogeneity of the material. This factor will become even more severe when more
heterogeneous materials like armored concrete will be studied. The consideration
of the heterogeneity demands for the investigation of the force time series. A closer
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X

Fig. 7 Top: exemplary process with time smoothed (red) and spatially smoothed (green) paths.
Middle: force image of drilling wall. Bottom: spatially smoothed force image of drilling wall (Color
figure online)

look to these reveals the high non-stationarity of the process. As the scratch lines are
concentric circles with fixed radius and the rotational frequency of the tool is also
fixed, it is possible to construct images of the forces by mapping the sample points
to the corresponding positions at the drilled wall for each process. These images are
typically very noisy due to the high variability in measuring the forces and therefore
have to be smoothed spatially by an appropriate procedure. Figure 7 shows a typical
process signal and corresponding force images where the lower image had been
smoothed using local polynomial regression in the x- and y-coordinates.

We plan to include the distributions and equations derived from the investigations
of grain orientation and material heterogeneity into the simulation model to make it
more realistic and to be able to test optimization strategies for the machining process
in a more reliable way.
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