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Chapter 1
Weibull Distribution

1.1 Introduction

In probability theory and statistics, the Weibull distribution is a continuous probability
distribution named after Waloddi Weibull who described it in detail in 1951, although
it was first identified by Fréchet (1927) and first applied by Rosin and Rammler (1933)
to describe the size distribution of particles.

The Weibull distribution has since become one of the most cited lifetime distribu-
tions in reliability engineering and other disciplines. It adequately describes observed
failure times of many different types of components and phenomena.

Over the last three decades, numerous articles have been written on this distri-
bution. Hallinan (1993) presented an insightful review by presenting a number of
historical facts, and many forms of this distribution as used by the practitioners and
possible confusions and errors that arise due to this non-uniqueness. Johnson et al.
(1994) devoted a comprehensive chapter on a systematic study of this distribution.
A monograph written by Murthy et al. (2004) contains nearly every facet concerning
the Weibull distribution and its extensions. Since 2004, there has been significant
development of generalized Weibull models, thus there is real need for an update on
such models. Rinne (2008) is another valuable handbook on the Weibull distribution.
Lai et al. (2011) also provide a bird’s eye view of this important subject.

In this chapter, we first define a two-parameter Weibull distribution and then con-
sider some basic properties such as the moments, Weibull probability plots, parameter
estimation and the hazard rate function. A three-parameter Weibull distribution is
then introduced in Sect. 1.3. We study some graphical methods for estimating para-
meters, reliability properties and order statistics of this model. Section 1.4 briefly
discusses the applications of the Weibull models in diverse fields. A sample list of
selected applications with references are given.

The main theme of this mini-monograph is on generalized Weibull distributions.
These Weibull related distributions have arisen out of the need to provide more
flexibility in modeling lifetime data in diverse disciplines. Many empirical hazard
rate plots exhibit non-monotonic shapes including unimodal and bathtub shapes. In

C.-D. Lai, Generalized Weibull Distributions, SpringerBriefs in Statistics, 1
DOI: 10.1007/978-3-642-39106-4_1, © The Author(s) 2014



2 1 Weibull Distribution

Chap. 2, we study over twenty five such generalizations. Chapter 3 considers those
generalizations constructed from two or more Weibull distribution. Lastly in Chap. 4,
we study some discrete distributions constructed from the Weibull or generalized
Weibull distribution.

A Preliminary

Let T be the lifetime random variable with f (t), F(t) being its probability density
function (pdf) and cumulative distribution function (cdf), respectively. The reliability
or survival function is given by �F(t) = 1 − F(t).

The hazard (failure) rate function is defined as

h(t) = f (t)

1 − F(t)
= f (t)

�F(t)
; (1.1)

h(t)Δt gives (approximately) the probability of failure in (t, t +Δt] given the ‘unit’
has survived uptill time t .

We say that F is IFR (DFR) if h(t) is increasing (decreasing) in t .
F has a bathtub shape failure (hazard) rate if h(t) is initially decreasing during

the ‘infant mortality’ phase, approximately constant during the ‘useful period’, and
finally, increasing during the ‘wearout’ phase. For most bathtub shaped hazard rate
distributions, h(t) is decreasing and then increasing. The hazard rate function h(t)
is said to be unimodal if it has a unique mode, i.e., it has an upside-down bathtub
shape.

The cumulative hazard rate function is defined as

H(t) =
t∫

0

h(x)dx . (1.2)

It is easy to show that the reliability function can be represented as

�F(t) = e−H(t). (1.3)

Obviously, the cumulative hazard function completely determines the lifetime
(ageing) distribution and it must satisfy the following three conditions in order to
yield a proper lifetime (ageing) distribution: (i) H(t) is nondecreasing for all t ≥ 0
(ii) H(0) = 0 and (iii) lim

t→∞ H(t) = ∞.

Since the reliability function �F(t) and the hazard rate function h(t) can be uniquely
determined from each other, a new ageing distribution can therefore be derived by
constructing one of them first.

The mean residual life (MRL) of F is defined as

http://dx.doi.org/10.1007/978-3-642-39106-4_2
http://dx.doi.org/10.1007/978-3-642-39106-4_3
http://dx.doi.org/10.1007/978-3-642-39106-4_4


1.1 Introduction 3

μ(t) = E(T − t | T > t) =
⎡
⎣

∞∫

t

�F(x)dx

⎤
⎦ /�F(t).

We say that F is IMRL (DMRL) if μ(t) is increasing (decreasing) in t .

Readers should note that the acronyms that are defined throughout the text can be
navigated via the index section of this monograph.

1.2 Two-Parameter Weibull Distribution

The Weibull distribution is one of the best known distributions and has wide appli-
cations in diverse disciplines. It has undeniably received most attention since 1970s
because of its simplicity and flexibility. A report by Weibull (1977) lists over one
thousand references to the applications of the basic Weibull model.

In the forthcoming subsections, we will discuss its properties in some details.

1.2.1 Derivations

The Weibull model can be derived from the following transformations:

• Let Y = −X where X has a type 3 extreme value distribution (Johnson et al. 1995,
Chap. 22)

• Let T = X1/α where X has the exponential distribution with parameter λ.

1.2.2 Distribution Function

The distribution function of the standard two-parameter Weibull distribution (Weibull
1951) is given as

F(t) = 1 − exp

[
−

(
t

β

)α]
, α,β > 0, t ≥ 0. (1.4)

The distribution function has another form due to a different parametrization but the
present one seems more natural when a location parameter is added to the model as
given in the next section. The parameters α and β are usually called the shape and
scale parameters, respectively. The corresponding reliability function is given by

�F(t) = exp

[
−

(
t

β

)α]
, t ≥ 0. (1.5)
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We observe that both the reliability (survival) function and the hazard rate function
as given in (1.14) below have simple forms which give the Weibull a head start over
other lifetime models.

For some applications, one may find it be more convenient to re-parameterize the
above as

�F(t) = exp
{−λtα

}
, α,λ > 0. (1.6)

Two well known special cases are the exponential distribution (α = 1) and the
Rayleigh distribution (α = 2).

If X has a two-parameter Weibull distribution, then log X is an extreme value
distribution with location parameter log(β) and scale parameter 1/α, i.e., the pdf of
Y = log X is:

f (y) = α exp {α (y − ln β) − exp [α (y − ln β)]} . (1.7)

1.2.3 Skewness and Kurtosis

The distribution is positively skewed for small value of α. The skewness index
√
β1

decreases and equals zero for α = 3.6 (approximately). Thus, for values of α in the
vicinity of 3.6, the Weibull distribution is similar in shape to a normal distribution.
The coefficient of kurtosis β2 also decreases with α and then increases, reaching a
minimum value of about 2.71 when α = 3.35 (approximately). See, e.g., Johnson
et al. (1994, pp. 631–635) and Mudholkar and Kollia (1994).

1.2.4 Probability Density Function

The probability density function that corresponds to (1.4) is given by

f (t) =
(
α

β

)(
t

β

)α−1

· exp

[
−

(
t

β

)α]
. (1.8)

The value ofα has strong effects on the shape of the probability density function. For
0 < α ≤ 1, the probability density function is a monotonic decreasing function and
is convex as t increases. For α > 1, the density function has a unimodal shape. Plots
of density functions are given in Fig. 1.1.
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Fig. 1.1 Weibull density functions

1.2.5 The Mean, Variance and Moments

The kth moment about the origin may be obtained via its special case without a scale
parameter defined by X ′ = X/β. Now it is easy to show that

μ′
k = E(X ′k) = �

(
k

α
+ 1

)
, k = 1, 2, . . . (1.9)

In particular, the mean and variance are, respectively;

E(X ′) = �

(
1

α
+ 1

)
(1.10)

and

var(X ′) = �

(
2

α
+ 1

)
−

{
�

(
1

α
+ 1

)}2

(1.11)

(Johnson et al. 1994, p. 632). Here �(·) denotes the usual gamma function. The
coefficient of variation is:

ν =
√

� (2/α+ 1)

�2 (1/α+ 1)
− 1. (1.12)

The kth moment of X is obtained by

E(Xk) = βkμ′
k = βk�

(
k

α
+ 1

)
. (1.13)
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1.2.6 Hazard Rate Function

The hazard rate is defined as the ratio of the density function to its survival function,
so the hazard rate function of the two-parameter Weibull distribution is given by

h(t) =
(
α

β

) (
t

β

)α−1

. (1.14)

The shape parameter α also has a strong influence on the shape of the Weibull
hazard rate. It is obvious to see that h(t) is a decreasing function in t when
0 < α < 1, constant when α = 1 (the exponential case), and an increasing function
when α > 1. In view of the monotonic behaviour of its hazard rate function, the
Weibull distribution often becomes suitable when the conditions for ‘strict random-
ness’ of the exponential distribution are not satisfied, with the shape parameter α
having a value depending upon the fundamental nature being considered. Thus the
Weibull model is flexible and can be used to model IFR (increasing failure rate) or
DFR (decreasing failure rate) ageing distributions. A moderate value of α within 1
to 3 is appropriate in most situations (Lawless 2003). However, the very monotonic
shape of its hazard rate has also become a limitation in reliability applications because
for many real life data h(t) exhibits some form of non-monotonic behavior. For this
reason, several generalizations and modifications of the Weibull distribution have
been proposed to meet the need of having various shapes.

The hazard rate of the alternative form (1.6) together with its derivatives are,
respectively,

h(t) = αλ(λ t)α−1,

h′(t) = α(α− 1)
2
λ(λ t)α−2, h′′(t) = α(α− 1)(α− 2)

3
λ(λ t)α−3.

It follows from the above that for 1 < α < 2, h′(t) > 0 and h′′(t) < 0 for all t so
the hazard rate of the Weibull distribution is (ultimately increasing but decelerating).
However, h(t) does not converge to an asymptote.

The plots of the Weibull hazard rate functions are given in Fig. 1.2.

1.2.7 Mean Residual Life Function

Nassar and Eissa (2003) have shown that the MRL (mean residual life) function has
the following form

μ(t) = βeτ� (1 + 1/α) [1 − �τ (1/α)/�(1/α)], τ = (t/β)α. (1.15)

Here �τ (r) = ∫ τ
0 xr−1e−x dx is the incomplete gamma function and �(·) is defined

by �(r) = ∫ ∞
0 xr−1e−x dx .
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Fig. 1.2 Weibull hazard rate functions

For β = √
2 and α = 2,

μ(t) = √
2πet2/2 (1 − �(t)) , t > 0 (1.16)

where �(·) denote the cdf of a standard normal variable.
As IFR (DFR) implies DMRL (IMRL), it follows that μ(t) decreases (increases)

in t for α > 1 (0 < α ≤ 1).

1.2.8 TTT Plot for Two-parameter Weibull Distribution

In reliability and survival analysis, we often see the use of the scaled total time on
test statistic:

φ(r/n) = T (Xr )/(X1 + X2 + · · · + Xn), (1.17)

derived from the total time on test (TTT) transform of F given by

H−1
F (p) =

F−1(p)∫

0

�F(x)dx, 0 < p < 1. (1.18)

Here

T (Xr ) = nX1 + (n − 1)(X2 − X1) + · · · + (n − r + 1)(Xr − Xr−1), (1.19)
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where r = 1, 2, . . . , n and n is the total number of failure times ordered as X1 <

X2 < · · · < Xn . The shape characteristics of the scaled TTT plot (r/n,φ(r/n)) are
related to the shape of the empirical hazard rate which in turn will assist us to select
a probability model. If the empirical TTT plot is close to the graph of the scaled
transform based on the standard Weibull model, then the model can be accepted as
an adequate model.

The TTT plot of the Weibull model is a straight line if α = 1. It is convex for
α < 1 and concave for α > 1.

1.2.9 Methods of Estimating Parameters

Many different methods can be applied to estimate the parameters of the Weibull
distribution. Generally, these methods can be classified into two main categories,
the graphical techniques and the statistical methods. Some frequently used graphical
methods include methods using the empirical cumulative distribution plot (Nelson
1982), Weibull probability plot (Nelson 1982; Kececioglu 1991; Lawless 2003),
hazard rate plot (Nelson 1982) and so on.

1.2.10 Maximum Likelihood Estimation

Suppose there are r components in a sample of N components failed in a sample
testing. Given the failure data following the Weibull distribution, t1, t2, . . . , tr are the
lifetime of r failed components; let tr be the censoring time for the rest n − r com-
ponents. The likelihood function of the standard two-parameter Weibull distribution
has the form:

L(α,β) = N !
(N − r)!

(
α

βα

)r r∏
i=1

tα−1
i exp

{
− 1

βα

[
r∑

i=1

tαi + (N − r)tαr

]}
.

(1.20)
Thus the log-likelihood function is given by:

log L(α,β) = log

[
N !

(N − r)!
]

+ r (logα− α logβ)

+ (α− 1)

r∑
i=1

log ti −
{

1

βα

[
r∑

i=1

tαi + (N − r)tαr

]}
. (1.21)

Take the first derivative with respect to both parameters and then set them to zero,
we obtain
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r∑
i=1

tαi log ti + (N − r)tαr log tr

r∑
i=1

tαi + (N − r)tαr

− 1

α
− 1

r

r∑
i=1

log ti = 0 (1.22)

and

β =
{

1

r

[
r∑

i=1

tαi + (N − r)tαr

]}1/α

. (1.23)

Solving the Eq. (1.22), we can find the maximum likelihood estimate (MLE) of the
shape parameter α, and the estimation of the scale parameter β can then be obtained
from (1.23). For estimation procedures for grouped data, see, e.g., Nelson (1982);
Lawless (2003); Cheng and Chen (1988) and Rao et al. (1994).

We note that for the MLEs, the likelihood equation (1.22) needs to be solved
numerically and related software programs need to be applied. Balakrishnan and
Kateri (2008) proposed an alternative approach based on a very simple and easy-
to-apply graphical method which also readily shows the existence and uniqueness
of the maximum likelihood estimates. Furthermore, for censored data from a large
sample size, a closed-form estimator for the shape parameter was also obtained.

1.2.11 Other Estimation Methods

The least squares estimation (LSE) and the MLE are two common methods to
estimate the Weibull parameters. While the MLE method is preferred by many
researchers because of its good theoretical properties, the LSE method, especially
when used in conjunction with graphical methods such as the Weibull probability
plot (WPP) to be discussed in the next section, is most widely used by practitioners.
This is due in part to its computational simplicity.

A minimax optimization procedure for estimating the Weibull parameters with
the Kolmogorov-Smirnov distance used as the objective was proposed by Ling and
Pan (1998).

There are several other parameter estimation methods for the Weibull and we refer
our readers to the monograph by Murthy et al. (2004) for details.

1.2.12 Confidence Interval and Prediction Interval
for Weibull Mean

Krishnamoorthy et al. (2009) considered the problems of constructing confidence
interval for a Weibull mean and setting prediction limits for future samples. Specif-
ically, they constructed upper prediction limits that include at least l of m samples
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from a Weibull distribution at each of r locations. The methods are based on the
generalized variable approach. The procedures can be easily extended to the type II
censored samples. The generalized variable methods for estimating a Weibull mean
when the samples are type I censored are also outlined in their paper. The proposed
methods are thought to be conceptually simple and easy to use.

Yang et al. (2007) proposed a general method called ‘analytically adjusted naive’
method for constructing confidence intervals for their functions which eliminated the
need for the extensive tables. The method is applied to obtain confidence intervals
for the scale parameter, the mean-time-to-failure, the percentile function, and the
reliability functions. Monte-Carlo simulations showed that these intervals possess
finite sample properties, having coverage probabilities very close to their nominal
levels, irrespective of the sample size and the degree of censorship.

1.2.13 Bias

It is worth noting that when dealing with complete and small samples, the MLE and
LSE estimates of the Weibull parameters, especially the shape parameter, are long
known to be significantly biased (Montanari et al. 1997). The bias is also significant
for the heavy censoring cases which are common in field conditions.

There are several methods for correcting the bias of the MLE of the Weibull
parameters, mostly in the area of dielectric breakdowns studies. We refer our readers
to Ross (1994, 1996) and Hirose (1999) for a review of various bias correction
formulas for the shape parameter.

1.3 Three-Parameter Weibull Distribution

Introducing a location parameter to a two-parameter Weibull distribution results
a three-parameter Weibull distribution. This more general but also more flexible
distribution has cumulative distribution function given by

F(t) = 1 − exp

{
−

[
t − τ

β

]α}
, t ≥ τ . (1.24)

The three parameters of the distribution are given by the set θ = {α,β, τ } with
α > 0,β > 0 and τ ≥ 0; where β is a scale parameter, α is the shape parameter
that determines the appearance or shape of the distribution and τ is the location
parameter. The survival function is

�F(t) = exp

{
−

[
t − τ

β

]α}
(1.25)
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An alternative form of a three-parameter Weibull distribution can be expressed as

F(t) = 1 − exp
{−λ (t − τ )α

}
, t ≥ τ . (1.26)

Here, the parameter λ combines both features of scale and shape. Clearly, λ = β−α.
For τ = 0, this becomes a two-parameter Weibull distribution. Note that we referred
to this special case as the standard Weibull model; however, Johnson et al. (1994)
called a standard Weibull when β = 1 (or λ = 1) and the location parameter τ = 0
in the above equations.

1.3.1 Density Function

The probability density function of the three-parameter Weibull distribution is

f (t) = αβ−α(t − τ )α−1 exp

{
−

[
t − τ

β

]α}
, t ≥ τ . (1.27)

1.3.2 Mode and Median

The mode is at t = β
(
α−1
α

)1/α + τ for α > 1 and at τ for 0 < α ≤ 1. The median
of the distribution is at β(log 2)1/α + τ .

1.3.3 Moments

The kth moment of X defined by the density function (1.27) can be easily obtained
from the relationship X = βX ′ + τ with μ′

k = E(X ′k) given by Eq. (1.9). In
particular, the mean and variance of the three-parameter Weibull random variable
are, respectively,

E(X) = β�

(
1

α
+ 1

)
+ τ (1.28)

and

var(X) = β2�

(
2

α
+ 1

)
− β2

{
�

(
1

α
+ 1

)}2

. (1.29)
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1.3.4 Weibull Probability Plot

The Weibull probability plot (WPP) can be constructed in several ways (Nelson and
Thompson 1971). In the early 1970s a special paper was developed for plotting the
data in the form F(t) versus t on a graph paper with log-log scale on the vertical
axis and log scale on the horizontal axis. A WPP plotting of data involves computing
the empirical distribution function which can be estimated in different ways with the
two standard ones being

• F̂(ti ) = i/(n + 1), the “mean rank” estimator, and
• F̂(ti ) = (i − 0.5)/n, the “median rank” estimator.

Here, the data set consists of successive failure times ti , t1 < t2 < . . . < tn .
For censored data (right censored or interval), the approach to obtain the empirical
distribution functions needs to be modified, see for example, Nelson (1982).

These days, most statistical software packages contain programs to produce these
plots automatically from a given data set. A well known statistical package MINITAB
provides a Weibull probability plot under Graph menu >> Probability Plot.

We may use ordinary graph paper or spreadsheet software with unit scale for
plotting. Taking logarithms twice of both sides of the survival function (1.25) yields

log(− log �F(t)) = α log(t − τ ) − α logβ. (1.30)

Let y = log(− log �F(t)) and x = log(t − τ ). Then we have a linear equation

y = αx − α logβ. (1.31)

The plot is now on a linear scale. We can now see that a WPP can indicate a
straight line if the assumption of a Weibull population for the data set concerned
is plausible. The least squares estimates derived from (1.31) can be used as an
initial estimates of the Weibull parameters with α̂ = regression coefficient and
β̂ = exp{−(y−intercept/α̂)}.

Thus the Weibull probability plot is a favoured tool by many reliability engineers.

Example: Suppose a data set consists of the times-to-failure of a product: 15, 32,
61, 67, 75, 116, 148, 178, 181, 183.

Figure 1.3 on the next page gives the two-parameter Weibull probability plot with
the linear regression line being fitted. The figure is plotted using R1:

>lm(formula = y ∼ log(lifetime))
Coefficients:

(Intercept) log(lifetime)
−6.892 1.437

1 R is a statistical package, see http://www.r-project.org/: for further information.

http://www.r-project.org/
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Fig. 1.3 Weibull probability plot with fitted regression line

Comparing Two Estimation Approaches for Parameters of Weibull
Distribution Based on WPP

Note that in the above WPP, we have assigned Y = log(− log(�F(t)) and X =
log(T − τ ). For simplicity, let us assume τ = 0. The least squares estimates of the
parameters can be obtained from (1.31). Thus this method is using the least-squares
regression of Y on X , i.e. minimizing the sum of squares of the vertical residuals,
to fit a straight line to the data points on WPP and then calculate the least squares
estimates. This method is known to be biased.

In the existing literature the least-squares regression of X on Y , i.e. minimiz-
ing the sum of squares of the horizontal residuals, has been used by some Weibull
authors. This motivated Zhang and Xie (2007) to carry out a comparison between
the estimators of the two least squares regression methods using intensive Monte
Carlo simulations. Both complete and censored data are examined. Surprisingly, the
result shows that least squares regression of Y on X performs better for small and
complete samples; whereas the least squares regression of X on Y performs better
in other cases in view of bias of the estimators. The two methods are also compared
in terms of other model statistics. In general, when the shape parameter is less than
one, least squares regression of Y on X provides a better model; otherwise, the least
squares regression of X on Y tends to be better.
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1.3.5 Weibull Hazard Plot

The hazard plot is analogous to the probability plot, the principal difference being
that the observations are plotted against the cumulated hazard (failure) rate rather
than the cumulated probability value. Moreover, this is designed for censored data.

Let H(t) denote the cumulative hazard rate , then it is easy to show that �F(t) =
exp(−H(t)) so

H(t) = − log �F(t) =
(

t − τ

β

)α
(1.32)

or equivalently
H(t)1/α/β = (t − τ ). (1.33)

Let y = log(t − τ ) and x = log H(t), then we have

y = logβ + 1

α
x . (1.34)

Rank the n survival times (including the censored) in ascending order and let K
denote the reverse ranking order of the survival time, i.e., K = n for the smallest
survival time and K = 1 for the largest survival time. The hazard (rate) is estimated
from 100/K (a missing value symbol is entered at a censored failure time). The
cumulative hazard is obtained by cumulating the hazard rates. The Weibull hazard
plot is simply the plot arising from (1.32). See Nelson (1972) for further details.

Both WPP and the Weibull hazard plot, in addition to providing simple straight
line fitting for parameter estimation, also have a role in model validation which is
important in any engineering analysis.

1.3.6 Estimation of Parameters

The parameters can be estimated using the equations for the mean (1.28), the variance
(1.29), and the third central moment given by

μ3 = β3
{
�(1 + 3/α) − 3�(1 + 1/α)�(1 + 2/α) + 2[�(1 + 1/α)]3

}
. (1.35)

Solving the three equations simultaneously yields the parameter estimates by the
method of moments.

Maximum likelihood estimation for the parameters in the three-parameter Weibull
distribution needs an initial value in the iteration scheme for likelihood equations. In
certain cases, maximum likelihood estimation can break down for the three-parameter
Weibull model, as no local maximum of the likelihood exists. To avoid these diffi-
culties, Some alternatives were proposed.
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• Islam et al. (2001) explicitly obtained the modified maximum likelihood estimators
of τ and β. They also showed that the modified maximum likelihood estimates are
asymptotically equivalent to the maximum likelihood estimates.

• Ahmad (1994) suggested a modification of the weighted least-squares to estimate
the location parameter τ first and then find the weighted least-squares estimators
for the scale parameter β and shape parameter α.

1.3.7 Order Statistics

Let X1, X2, . . . , Xn denote n independent and identically distributed three-parameter
Weibull random variables. Furthermore, let X(1) < X(2) < · · · ≤ X(n) denote the
order statistics from these n variables. The kth order statistic X(k) from a sample
of n observations corresponds to the lifetime of a (n − k + 1)-out-of-n system of n
independent and identically distributed Weibull components. The probability density
function of X(1), is given by

f1(t) = n[1 − F(t)]n−1 f (x)

= nα

β

(
t − τ

β

)α−1

e−n[(t−τ )/β]α , t ≥ τ ≥ 0. (1.36)

It is obvious that X(1) is also distributed as a Weibull random variable, except that α
is replaced by βn−1/α. The density function of X(r) (1 ≤ r ≤ n) is

fr (t) = n!
(r − 1)!(n − r)!

(
1 − e−[(t−τ )/β]α)r−1

e−[(t−τ )/β]α(n−r+1)

× αβ−α(t − τ )α−1, t ≥ τ ≥ 0. (1.37)

It can be shown that

E
[
(X(r))

k
]

=
k∑

i=0

τ iβk−iωk−i
(r) (1.38)

where

ωk
(r) = n!

(r − 1)!(n − r)!�
(

1 + k

α

) r−1∑
i=0

(−1)r
(

r − 1
i

)

(n − r + i + 1)1+(k/α)
.

1.3.8 Hazard Rate Function

The hazard rate function for the three-parameter Weibull is
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h(t) = f (t)
�F(t)

= α

β

(
t − τ

β

)α−1

, t ≥ τ . (1.39)

It is obvious that h(t) given above is similar to its corresponding function for the
two-parameter case as given in (1.14) except the function is now defined over [τ ,∞)

instead of [0,∞).
There are many extensions, generalizations and modifications of the Weibull dis-

tribution. They arise out of the need to model some empirical data sets which can-
not be adequately described by a three-parameter Weibull model. For example, the
monotonic property of the Weibull’s hazard rate function which is unable to capture
the behavior of a data set that has a bathtub shaped hazard rate. Lai et al. (2001)
and Xie et al. (2003) reviewed several Weibull-related distributions that exhibit bath-
tub shaped hazard rates. Plots of mean residual life from several of these generalized
Weibull derived models were given in Lai et al. (2004). For simplicity, we sometimes
simply refer these Weibull-related models as Weibull models.

1.4 Applications of Weibull Models

There are numerous applications for Weibull and Weibull related distributions in all
aspects of life so it would be futile, perhaps unhelpful, to list them all here. Most of
the applications are pitched towards reliability, survival analysis, product warranty,
medicine, biology, agriculture, forestry (tree diameter growth) and industrial engi-
neering (manufacturing and delivery times, reliability control charts), to name just
a few. Since the Weibull distribution is also an extreme value distribution it is fre-
quently used to model environmental data such as rains, floods and wind speeds (wind
speeds in most parts of the world can be modeled using the Weibull distribution).
The following are a selected few applications. These are arranged in alphabetical
order as follows:

1. Adhesive wear in metals—Queeshi and Sheikh (1997).
2. Aircraft windshield hazards data—Murthy et al. (2004).
3. Analysis of survival data from clinical trials—Carroll (2003).
4. Annual flood discharge rates—Mudholkar and Hutson (1996).
5. Bus motor failures—Davis (1952), Mudholkar et al. (1995)
6. Carbon fibers and composites hazards—Durham and Padgett (1997).
7. Cavitation erosion resistance—Meged (2004).
8. Cleaning web hazard times in photocopiers—Murthy et al. (2004).
9. Device hazard times—Aarset (1987).

10. Die cracking in the assembly and reliability testing of flip-chip (FC) packages—
Zhao (2004).

11. Earthquake-probability of occurrence—Hagiwaraa (1974).
12. Earthquakes interoccurrence times—Hasumi et al. (2009).
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13. Fatigue of bearings—Cohen et al. (1984).
14. Flood frequency—Heo et al. (2001).
15. Food safety—Fernández et al. (2002); Marabi et al. (2003).
16. Food preservation—Corzo et al. (2008), Oms-Oliu et al. (2009).
17. Food drying process—Miranda et al. (2010).
18. Forecasting technological change—Sharif and Islam (1980).
19. Fracture strength of glass—Keshevan et al. (1980).
20. Forest fire—Grissino-Mayer (1999).
21. Fracture strength data obtained from ASTM D3039 tension tests of 19 identical

carbon-epoxy composite specimens—Birgoren and Dirikolu (2004).
22. Hazard of coatings recoil compressive hazard in high performance polymers—

Almeida (1999); Newell et al. (2002).

23. Hazards of brittle materials—Fok et al. (2001).
24. Hazard probability prediction of concrete components—Li et al. (2003).
25. Inventory control—Tadikamalla (1978); Lo et al. (2007); Pan et al. (2009); Yang

et al. (2011).
26. Large-scale multiprocessor systems—Al-Rousan and Shaout (2004).
27. Material strength—Weibull (1939).
28. Pharmacoepidemiology—Suissa (2008).
29. Product warranty—Blischke and Murthy (1994, 1996); Murthy and Djamaludin

(2002).
30. Pitting corrosion and pipeline reliability—Sheikh et al. (1990).
31. Reliability control charts—Batson et al. (2006); Chen and Cheng (2007); Sürücü

and Sazak (2009).
32. Reliability sampling plans—Tsai et al. (2008).
33. Retailer’s pricing and ordering strategy—Shah and Raykundaliya (2010).
34. Software faults—Zhang (2008).
35. Strength of brittle materials—Basu et al. (2009).
36. Strength of dental materials—Nakamura et al. (2010).
37. Tree diameter growth—Bailey and Dell (1973); Maltamo et al. (1995).
38. Throttle hazard times—Carter (1986); Murthy et al. (2004).
39. Wind velocity—Justus et al. (1978); Tuller and Brett (1984).
40. Wind speed data—Al-Hasan and Nigmatullin (2003); Rehman et al. (1994); Lun

and Lam (2000).
41. Wind energy—Ojosu and Salawu (1990); Yeh and Wang (2008); Akda and Din-

lerb (2009); Akdağ and Güler (2009).
42. Yield strength of steel, fatigue life of steel—Weibull (1951).

We refer our readers to Chap. 7 of Rinne (2008) for other applications of the
Weibull model.
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Chapter 2
Generalized Weibull Distributions

2.1 Introduction

Since 1970s, many extensions of the Weibull distribution have been proposed to
enhance its capability to fit diverse lifetime data and Murthy et al. (2004) proposes
a scheme to classify these distributions. Over the last 40 years papers dealing with
various extensions of the Weibull distribution and their applications number well
over 4000.

A common factor among the generalized models considered in this chapter is
that the Weibull distribution is a special case of theirs. Either F(t) or h(t) of these
modified models are related to the corresponding function of the Weibull distribution
in some way. The means of these distributions usually do not have a simple expression
although their hazard rate functions h(t) are more capable to model diverse problems
than the Weibull model does.

2.2 Methods of Constructions

Generalized Weibull distributions can be constructed in many ways. Members of this
family usually contain the standard Weibull model as a special case. The following
is a brief sketch of some of the common methods. A new generalized distribution
may be obtained by:

• adding a constant λ to the existing hazard rate h(t) of the Weibull distribution or
a generalized Weibull model,

• transformations (linear, inverse or log) of the Weibull random variable,
• transformations of the distribution F(t) or the survival function �F(t) of the Weibull

distrbution in such a way that the new function remains a distribution or survival
function,

• competing risk approach (minimum of two or more Weibull variables),

C.-D. Lai, Generalized Weibull Distributions, SpringerBriefs in Statistics, 23
DOI: 10.1007/978-3-642-39106-4_2, © The Author(s) 2014
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• mixtures of two or more Weibull variables, mixtures of two or more generalized
Weibull variables, mixing a Weibull distribution with a generalized Weibull dis-
tribution, etc.

• method of compounding such as letting T = min(X1, X2, . . . , X N ) where X ’s are
independent and identically distributed Weibull variables and N is the compounded
variable,

• probability integral transform, e.g., let a new density be defined as f (t) =
ψ(G(t))g where G is cdf of the Weibull variable with its density function g,
ψ is a probability density function having support on the unit interval, or

• by adding a frailty parameter or a tilt parameter, see Chap. 7 of Marshall and
Marshall and Olkin (2007).

For a more detailed discussion on constructing life-time distributions, see Lai et al.
(2011).

2.3 Four-Parameter Weibull Distribution

This model was proposed by Kies (1958) and its survival function is given by

�F(t) = exp

{
−λ

[
(t − a)

(b − t)

]α}
; 0 < a ≤ t ≤ b < ∞,λ,α > 0. (2.1)

We note that the support of this distribution is a finite interval. Smith and Hoeppner
(1990) also presented a similar four-parameter Weibull model. They also applied the
model to fit fatigue and compliance calibration data.

2.4 Five-Parameter Weibull Distribution

Phani (1987) extended the model due to Kies (1958) with survival function given by

�F(t) = exp

{−λ(t − a)α1

(b − t)α2

}
; 0 ≤ a < t < b < ∞,α1,α2,λ > 0. (2.2)

The tensile strength of two groups of fused silica optical fibers has been analyzed
by Phani (1987) using the above Weibull distribution function.

2.5 Truncated Weibull Distribution

A simple way to construct a new distribution is by truncating the density function,
either from above or from below or both. Let G denote the two-parameter Weibull dis-
tribution function: G(t) = 1−exp{−(t/β)α} with its corresponding density function
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g = (α/β)(t/β)α−1 exp[−(t/β)α]. Then a doubly truncated Weibull distribution can
be specified by letting

f (t) = g(t)

G(b) − G(a)
(2.3)

and

F(t) = G(t) − G(a)

G(b) − G(a)
, (2.4)

respectively, for 0 ≤ a < t < b < ∞. The density function in (2.3) can be written
explicitly as

f (t) = (α/β)(t/β)α−1 exp[−(t/β)α]
exp{−(a/β)α} − exp{−(b/β)α} . (2.5)

Two special cases are as follows:

1. a = 0 and b < ∞, a right truncated Weibull model emerges,
2. a > 0 and b → ∞, a left truncated Weibull distribution results.

Note: The right truncated and left truncated Weibull distributions are also known as
the upper truncated and lower truncated Weibull distributions, respectively.

We now restrict ourselves to discuss the upper truncated Weibull as the related
properties of the lower truncated case can be obtained similarly.

2.5.1 Mean and Variance

General moment expressions were derived in McEwen and Parresol (1991). The
mean is

μ = β�(1 + 1/α)

1 − exp[−(b/β)α]
and the variance can be shown to be

σ2 = β2
{
�(1 + 2/α)(1 − exp[−(b/β)α]) − �2(1 + 1/α)

}
/(1−exp[−(b/β)α])2.

2.5.2 Hazard Rate Function

The hazard rate function is given by

h(t) = (α/β)(t/β)α−1 exp[−(t/β)α]
G(b) − G(t)

, 0 ≤ t ≤ b. (2.6)
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Because of the right truncation at t = b, it is clear from the above equation that
h(t) → ∞ as t → b.

Like the standard Weibull case, the shape of h(t) depends only on the shape
parameter α. Zhang and Xie (2011) showed the following results:

Case 1: α ≥ 1.

(i) In this case, h′(t) > 0 for 0 ≤ t ≤ b, and hence h(t) is an increasing function;
(ii) h(0) = 0 if α > 0 and h(0) = 1/{β − β exp[−(b/β)]}, if β = 1.

Case 2: α < 1.

(i) In this case, h(t) → ∞ for t → 0 and t → b;
(ii) the hazard rate function has a bathtub shape.

In fact, McEwen and Parresol (1991) have already shown by heuristical arguments
that the corresponding hazard rate function can be bathtub-shaped.

Zhang and Xie (2011) computed and presented the minimum values of h(t) for
different values of α,β and b.

2.5.3 Estimation of Model Parameters

Zhang and Xie (2011) presented two methods: (i) The graphical approach based
on the Weibull probability plot for the truncated Weibull, and (ii) the maximum
likelihood method.

2.5.4 Applications

Several applications were reviewed in Zhang and Xie (2011). The applications of
the truncated Weibull distribution include:

• engineering fields,
• tree diameter and height distributions in forestry,
• fire size,
• high-cycle fatigue strength prediction, and
• seismological data analysis for earthquakes.

2.6 Inverse Weibull Distribution

The inverse Weibull model is also known as the reverse Weibull model in the
literature.
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Let X denote the 2-parameter Weibull model with distribution function 1 −
e−(t/β)α . Define T by the inverse transformation:

T = β2

X
. (2.7)

Then T has a distribution function given by

F(t) = exp(−(β/t)α), α,β > 0, t ≥ 0. (2.8)

Alternatively, we may express (2.8) as

F(t) = exp(−(t/β)−α), α,β > 0, t ≥ 0. (2.9)

The inverse Weibull is also known as type 2 extreme value or the Fréchet dis-
tribution. (Johnson et al. 1995, Chap. 22) whereas the distribution of the negative
of the Weibull random variable is a type 3 extreme value distribution. Weibull and
Freéchet (inverse Weibull) distributions are both special cases of the generalized
extreme value distribution.

Erto (1989) has discussed the properties of this distribution and its potential use
as a lifetime model. The maximum likelihood estimation and the least squares esti-
mation of the parameters of the inverse Weibull distribution have been discussed by
Calabria and Pulcini (1990).

2.6.1 Density Function

The density function of the inverse Weibull model is

f (t) = αβαt−α−1e−(β/t)α . (2.10)

The density plots are given in Fig. 2.1.

2.6.2 Moments

The kth moment about 0 is

μ′
k = βk�(1 − kα−1)

which does not have a finite value for k ≥ α. The reason for this is that the inverse
Weibull distribution has a heavy right tail.
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Fig. 2.1 Inverse Weibull density functions

2.6.3 Hazard Rate Function

The hazard rate function is given by

h(t) = αβαt−α−1e−(β/t)α

1 − e−(β/t)α
. (2.11)

It can be shown that the inverse Weibull distribution generally exhibits a long right tail
and its hazard rate function is similar to that of the log-normal and inverse Gaussian
distributions.

Jiang et al. (2001) showed that the hazard rate function is unimodal (upside-down
bathtub shaped) with the mode at t = tM given by the solution of the following
equation

z(tM )

1 − e−z(tM )
= 1 + 1/α (2.12)

where z(t) = (β/t)α and

lim
t→0

h(t) = lim
t→∞ h(t) = 0. (2.13)

This is in contrast to the standard Weibull model for which the hazard rate is either
decreasing (if 0 < α < 1), constant (if α = 1) or increasing (if α > 1).

Figure 2.2 gives the hazrad rate plots of the inverse Weibull distribution.
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Fig. 2.2 Inverse Weibull hazard rate functions

We note with interest that the density functions and the hazard rate functions of
the inverse Weibull model have similar shapes for a given pair of α and β.

2.6.4 Inverse Weibull Probability Plot

The inverse Weibull transform is given by

x = log t, y = − log (− log(F(t)) . (2.14)

The above transformation was first proposed by Drapella (1993). The plot y versus
x is called the inverse Weibull probability plot (IWPP) plot. Under this transform,
the inverse Weibull model as given in (2.9) also yields a straight line relationship

y = α(x − logβ). (2.15)

2.6.5 Applications

Keller et al. (1985) used the inverse Weibull distribution for reliability analysis of
commercial vehicle engines.
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2.6.6 Models Involving Two Inverse Weibull Distributions

This was investigated by Jiang et al. (2001), see also Chap. 3 of this monograph for
a more detailed discussion.

2.6.7 The Generalized Inverse Weibull Distribution

de Gusmão et al. (2009) proposed a generalized inverse Weibull distribution by
adding another parameter γ to the standard inverse Weibull:

�F(t) = 1 − exp
[−γ(β/t)α

]
. (2.16)

When γ = 1, it clearly reduces to the inverse Weibull distribution.

Density Function

f (t) = γαβαt−(α+1) exp
[−γ(β/t)α

]
. (2.17)

Moments

The kth moment about 0 is

μ′
k = γ

k
α βk�(1 − kα−1)

which does not have a finite value for k ≥ α just as the inverse Weibull distribution.

Hazard Rate Function

The hazard rate function is given by

h(t) = γαβαt−(α+1) exp
[−γ(β/t)α

] {
1 − exp

[−γ(β/t)α
]}−1

. (2.18)

By differentiating the above h(t) with respect to t , we can easily show that h(t)
is unimodal (upside-down bathtub shaped) with a maximum value at t∗, where t∗
satisfies the nonlinear equation:

γ(β/t∗)
{
1 − exp

[−γ(β/t∗)α
]} = 1 + α−1.

http://dx.doi.org/10.1007/978-3-642-39106-4_3
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Estimate of Parameter

The maximum likelihood estimates of the parameters with censored data were
obtained and studied in de Gusmão et al. (2009).

Further Extensions

de Gusmão et al. (2009) also considered the mixture of two generalized inverse
Weibull distributions. Further, they also proposed the so called ‘The log-generalized
inverse Weibull distribution’.

2.7 Reflected Weibull Distribution

Suppose X has a three-parameter Weibul distribution, then T = −X has a reflected
Weibull whose distribution function is

F(t) = exp

{
−
(
τ − t

β

)α}
, α,β > 0,−∞ < t < τ . (2.19)

This is also known as type 3 extreme value distribution (Johnson et al. 1995,
Chap. 22). The density function is given by

f (t) =
(
α

β

)(
τ − t

β

)α−1

exp

{
−
(
τ − t

β

)α}
, α,β > 0,−∞ < t < ∞.

(2.20)
The hazard rate function is given by

h(t) =
(
α

β

)(
τ − t

β

)α−1 exp
{
−( τ−t

β )α
}

1 − exp
{
−( τ−t

β )α
} . (2.21)

Strictly speaking, the reflected Weibull is not suitable for reliability modelling unless
τ > 0 and (τ/β)α ≥ 9 so that Pr(0 < T < τ ) ≈ 1.

The model is fitted to an observed age distribution of holders of a certain type of
life insurance policy by Cohen (1973).

2.8 Log Weibull Distribution

This is an extreme value distribution derived from the logarithmic transformation
of the two-parameter Weibull having distribution function as given in (1.4). The
transformed variable has distribution function given by

http://dx.doi.org/10.1007/978-3-642-39106-4_1
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F(t) = 1 − exp

{
− exp

(
t − a

b

)}
, −∞ < t < ∞, (2.22)

where we have let a = logβ, b = 1/α. This is also known as type 1 extreme value
distribution or the Gumbel distribution. In fact, it is the most commonly referred to
in discussions of extreme value distributions (Johnson et al. 1995, Chap. 22). The
density function is already given in (1.7)—though in a different parametrization, i.e.,

f (t) = 1

b
exp

(
t − a

b

)
exp

{
− exp

(
t − a

b

)}
, −∞ < t < ∞. (2.23)

The hazard rate functions is given by

h(t) = f (t)

1 − F(t)
= 1

b
exp

(
t − a

b

)
. (2.24)

2.8.1 Applications

The log Weibull (Gumbel) distribution is an extreme value distribution. Thus it has
been applied to many extreme value data such as flood flows, wind speeds, radioactive
emissions, brittle strength of crystals, and etc. Chapter 22 Sect. 14 of Johnson et al.
(1995) lists many applications of this distribution.

2.9 Stacy’s Weibull Distribution

Stacy (1962) proposed a distribution which he called the ‘generalized gamma model’
with the pdf and cdf, given by

f (t) = αβ−αc

�(c)
tαc−1 exp

{−(t/β)α
}

(2.25)

and
F(t) = �(c)−1γ

(
c, (t/β)α

)
, (2.26)

respectively, for α,β, c > 0, where γ(·, ·) denotes the incomplete gamma function
defined by

γ(a, t) =
∫ t

0
xa−1e−x dx .

http://dx.doi.org/10.1007/978-3-642-39106-4_1
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2.9.1 Special Cases

For c = 1, it reduces to the standard Weibull distribution. For α = 1, it becomes the
two-parameter gamma distribution. If c → ∞, it becomes the lognormal distribution.
For c = 1/2 and α = 2, it reduces to the half-normal distribution. Further, the chi-
square distribution and the Levy distribution are also included as special cases.

2.9.2 Hazard Rate Function

The hazard rate function h(t) can be expressed as

h(t) = αβ−αctαc−1 exp {−(t/β)α}
�(c) − γ (c, (t/β)α)

. (2.27)

Glaser (1980) showed that the hazard rate function can exhibit various shapes as
given below:

Case 1: αc < 1.

(a) If α < 1, then h(t) is decreasing.
(b) If α > 1, then h(t) has a bathtub shape.

Case 2: αc > 1.

(a) If α > 1, then h(t) is increasing.
(b) If α < 1, then h(t) has a upside-down bathtub shape.

Case 3: αc = 1.

(a) If α = 1, c = 1, then h(t) is a constant.
(b) If α < 1, then h(t) is decreasing.
(c) If α > 1, then h(t) is increasing.

McDonald and Richards (1987) and Pham and Almhana (1995) also considered
the shape of the hazard rate function h(t).

2.9.3 Estimation of Parameters

Parameter estimation for Stacy’s generalized Weibull (gamma) distribution has been
widely treated in the literature. The maximum likelihood method and the method of
moment are the two common approaches but it has been known that there are various
difficulties in implementing these methods to this distribution. Other methods such
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as the heuristics and graphical methods were also proposed. For a literature review
of these methods see Gomes et al. (2008).

Gomes et al. (2008) proposed a new method of estimation through the power
transformation T = Xc where X has Stacy’s Weibull distribution as given in (2.25)
above. Then T has a gamma distribution with shape parameter c and scale parameter
βα. Based on this they constructed a heuristic method called algorithm I.E.R.V. which
involves looping around the shape parameter α.

2.9.4 Applications

Stacy’s Weibull distribution has applications in many fields such as health costs, civil
engineering (flood frequency, e.g, Pham and Almhana 1995), economics (income
distribution, e.g., Klieber and Kotz 2003) and others.

2.10 Exponentiated Weibull Distribution

Mudholkar and Srivastava (1993) proposed a modification to the standard Weibull
model through the introduction of an additional parameter ν (0 < ν < ∞). The
distribution function is

F(t) = [G(t)]ν = [1 − exp{−(t/β)α}]ν, α,β > 0, t ≥ 0, (2.28)

where G(t) is the standard two-parameter Weibull distribution. The support for F is
[0,∞).

When ν = 1, the model reduces to the standard two-parameter Weibull model.
When ν is an integer, the model is a special case of the multiplicative model to be
discussed in Sect. 3.3 . The distribution has been studied extensively by Mudholkar
and Hutson (1996), Jiang and Murthy (1999) and more recently Nassar and Eissa
(2003).

2.10.1 Density Function

The density function is given by

f (t) = ν{G(t)}ν−1g(t), (2.29)

where g(t) is the density function of the standard two-parameter Weibull distribution.
So

http://dx.doi.org/10.1007/978-3-642-39106-4_3
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f (t) = αν

βα
tα−1e−(t/β)α

(
1 − e−(t/β)α

)ν−1
. (2.30)

Two special cases worth noting:

(i) For α = 1, the probability density function is

f (t) = ν

β
e−t/β

(
1 − e−t/β

)ν−1
(2.31)

which is the exponentiated exponential distribution studied by Gupta et al.
(1998).

(ii) For α = 2, we obtain the probability density function of the two-parameter Burr
type X distribution:

f (t) = 2ν

β2 e−(t/β)2
(

1 − e−(t/β)2
)ν−1

. (2.32)

We also note that from (2.30),

f (0) =
⎧⎨
⎩

0 if αν > 1,

β−α if αν = 1,

∞ if αν < 1.

(2.33)

The value of f (0) will determine the value of the hazard rate function at t = 0
which in turn has an impact on the shape of the mean residual life MRL μ(t) of a
lifetime distribution, see for example Theorem 4.2 of Lai and Xie (2006).

The density function is plotted for different parameter values in Fig. 2.3.

2.10.2 Hazard Rate Function

The hazard rate function was given in Mudholkar et al. (1995) and Mudholkar and
Hutson (1996):

h(t) = ν(α/β)(t/β)α−1[1 − exp(−(t/β)α)]ν−1 exp(−(t/β)α)

1 − [1 − exp(−(t/β)α)]ν . (2.34)

For small t , Jiang and Murthy (1999) have shown that

h(t) ≈
(
αν

β

)(
t

β

)αν−1

. (2.35)

In other words, for small t , h(t) can be approximated by the hazard rate of a two-
parameter Weibull distribution with shape parameter (αν) and scale parameter β.
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Fig. 2.3 Exponentiated Weibull density functions

For large t , i.e., t → ∞, the term
exp(−(t/β)α)

1 − [1 − exp(−(t/β)α)]ν in (2.34) converges

to 1/ν by applying the L’Hospital’s rule. It is now clear that (2.34) converges to

h(t) ≈
(
α

β

)(
t

β

)α−1

(2.36)

for large t .
In other words, for large t , h(t) can be approximated by the hazard rate of a

two-parameter Weibull distribution with shape parameter α and scale parameter β.
Mudholkar et al. (1995), Mudholkar and Hutson (1996) and Jiang and Murthy

(1999) have all considered the shapes of h(t) and its characterization in the para-
meter space. The shape of h(t) does not depend on β and varies with α and ν. The
characterization on the (α, ν)- plane is as follows:

• α ≤ 1 and αν ≤ 1: h(t) monotonically decreasing.
• α ≥ 1 and αν ≥ 1: h(t) monotonically increasing.
• α < 1 and αν > 1: h(t) has an upside-down bathtub shape.
• α > 1 and αν < 1: h(t) has a bathtub shape.

Figure 2.4 contains four plots of the the hazard rate of the exponentiated Weibull
distribution.

The exponentiated Weibull was first introduced by Mudholkar and Srivastava
(1993) for modeling bathtub shaped hazard rate data.
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2.10.3 Mean Residual Life Function

The mean residual life of the exponentiated Weibull has been given by Nassar and
Eissa (2003) for positive integer ν as:

μ(t) = ν

ν−1∑
j=0

(−1) j
(
ν − 1

j

)/ [
( j + 1)�F(t)

] {
β�

(
1

β
+ 1

)[
( j + 1)−1/α

− ( j + 1)−1�( j+1)τ

(
1

β

)/
�

(
1

β

)]
+ te−( j+1)τ

}
− t,

(2.37)
where τ = (t/β)α. Thus, the mean of the distribution for ν ∈ N+ is

μ = μ(0) = ν�

(
1

α
+ 1

) ν−1∑
j=0

(−1) j
(
ν − 1

j

)
/
[
( j + 1)−1/α

]
. (2.38)

From the general theory that connecting bathtub (inverted bathtub) shaped hazard
rate distributions with increasing (decreasing) then decreasing (increasing) mean
residual life distributions (see Sect. 4.5 of Lai and Xie (2006) for details), Nassar and
Eissa (2003) have established the shape of μ(t) as follows:

Let μ(t) be given as (2.38), then

(i) μ = α if and only if α = ν = 1.
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(ii) μ(t) is decreasing (increasing) if α ≥ 1 and αν ≥ 1 (α ≤ 1 and αν ≤ 1).
(iii) μ(t) is decreasing and then increasing with a change point tm if α < 1 and

αν > 1.

(iv) μ(t) is increasing and then decreasing with a change point tm if α > 1 and
αν < 1.

Nadarajah and Gupta (2005) obtained the kth moment about the origin as

μ′
k = νβk�

(
k

α

) ∞∑
i=0

(1 − ν)i

i !(i + 1)(k+α)/α
, k > −α, (2.39)

where (1 − ν)i = (a)i = a(a + 1) . . . a(a + i − 1).

If ν is an integer, then

μ′
k = νβk�

(
k

α

) ν−1∑
i=0

(1 − ν)i

i !(i + 1)(k+α)/α
, k > −α, (2.40)

which was established by Nassar and Eissa (2003). Equation (2.40) follows from
(2.39) because (1 − ν)i = 0 for all i ≥ ν.

Xie et al. (2004) have studied the change points of h(t) and μ(t) in terms of
individual model parameters. The difference D of two change points is tabulated for
various combinations of the parameters.

2.10.4 Graphical Study

Jiang and Murthy (1999) discussed the shape of the WPP for the exponentiated
Weibull family and gave a parametric characterization of its probability density and
hazard rate functions. Their paper also deals with the issues relating to modeling a
given data set and the problem of estimating the model parameters.

2.10.5 Applications

The model has been applied

• to model the bathtub failure rate behavior of the data in Aarset (1987) (Mudholkar
and Srivastava 1993)

• to reanalyse the bus motor failure data (Mudholkar et al. 1995), and
• to analyse a flood data (Mudholkar and Hutson 1996).



2.11 Beta-Weibull Distribution 39

2.11 Beta-Weibull Distribution

The distribution is a generalization of the exponentiated Weibull distribution dis-
cussed in the preceding section. Let G(t) denote the standard two-parameter Weibull
distribution function given as G(t) = 1 − exp{−(t/β)α}.

The beta-Weibull was first proposed by Famoye et al. (2005) by coupling the beta
density and the Weibull distribution function such that the distribution function of
the new distribution is

F(t) = 1

B(a, b)

∫ G(t)

0
ua−1(1 − u)b−1du; 0 < a, b < ∞, (2.41)

where B(a, b) denotes the beta function defined by �(a)�(b)/�(a + b) = ∫ b
a xa−1

(1 − x)b−1dx . The same distribution was also proposed by Wahed et al. (2009).
Clearly, if b = 1, (2.41) reduces to the exponentiated Weibull distribution. In general,
the distribution function cannot be expressed explicitly.

The basic properties are given in Famoye et al. (2005).

2.11.1 Density and Hazard Rate Function

The density function is rather simple:

f (t) = 1

B(a, b)

α

β

(
t

β

)α−1 [
1 − e−(t/β)α

]a−1
e−b(t/β)α . (2.42)

The hazard rate function can be obtained from the preceding two equations as

h(t) = f (t)
�F(t)

.

It cannot be expressed explicitly.
Lee et al. (2007) examined the shapes of the hazard rate function and we now

summarize them below:

(a) h(t) is a constant b/β if a = α = 1,
(b) h(t) is a decreasing function if aα ≤ 1 and α ≤ 1,
(c) h(t) is an increasing function if aα ≥ 1 and α ≥ 1,
(d) h(t) has a bathtub shape if aα < 1 and α > 1, and
(e) h(t) has an upside-down bathtub shape if aα > 1 and α < 1.
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2.11.2 Comparison with Exponentiated Weibull Distribution

Lee et al. (2007) carried out a simulation study to compare the beta-Weibull model
with the exponentiated Weibull model. They concluded that the bias of the MLE from
the beta-Weibull distribution is smaller than the bias of the exponentiated Weibull
model with comparable standard errors when b < 1. The bias and the standard
errors are, in general, smaller for the exponentiated Weibull distribution when b ≥ 1.
(Recall, the beta-Weibull becomes the exponentiated Weibull when b = 1.) For the
three data sets analyzed in Lee et al. (2007), the estimates for the parameter b are
less than 1 which suggests the usefulness of the beta-Weibull for describing survival
data sets.

2.11.3 Applications of Beta-Weibull Model

The model is applied by Lee et al. (2007) to two censored data sets of bus-motor
failures and a censored data set of Arm A (Efron 1988) of the head-and-neck cancer
clinical trial.

Wahed et al. (2009) also fitted the model to a breast cancer data set and they con-
cluded that the beta-Weibull family is a reasonable candidate for modeling survival
data.

Log Beta-Weibull Model

Let Y = log T where T has the beta-Weibull distribution given above . Then Y has a
log beta-Weibull distribution studied by Ortega et al. (2011). Based on Y , they also
proposed and studied the log-beta Weibull regression model which they considered
to be very suitable for modeling censored and uncensored data.

2.12 Extended Weibull Model of Marshall and Olkin

Marshall and Olkin (1997) proposed a modification to the standard Weibull model
through the introduction of an additional parameter ν (0 < ν < ∞). The model is
given through its survival function function

�F(t) = νḠ(t)

1 − (1 − ν)Ḡ(t)
= νḠ(t)

G(t) + νḠ(t)
(2.43)

where G(t) is the distribution function of the two-parameter Weibull and �F(t) =
1 − F(t).
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The parameter ν is called a tilt parameter in Marshall and Marshall and Olkin
(2007).

The case when G is an exponential distribution function has been considered as
the exponential-geometric distribution studied by Adamidis and Loukas (1998) and
Marshall and Olkin (1997).

When ν = 1, �F(t) = Ḡ(t) so the model reduces to the standard Weibull model.

2.12.1 Extended Weibull

Using (1.4) as G in (2.43), we then have the distribution function given by

F(t) = 1 − ν exp[−(t/β)α]
1 − (1 − ν) exp[−(t/β)α] . (2.44)

Marshall and Olkin (1997) called this the extended Weibull distribution. The mean
and variance of the distribution cannot be given in a closed form, but they can be
obtained numerically. The model may be considered as a competitor to the three-
parameter Weibull distribution defined in (1.19).

Ghitany et al. (2005) showed that this distribution can be obtained by compound-
ing the Weibull extension model of Xie et al. (2002) with the exponential distribution.
That is, the extended Weibull is the result of mixing the Weibull extension model of
Xie et al. with the exponential density. Zhang et al. (2007) also investigated some
reliability properties of this model.

The resulting density function associated with (2.44) is given by

f (t) = (αν/β)(t/β)α−1 exp[−(t/β)α]
{1 − (1 − ν) exp[−(t/β)α]}2 (2.45)

The plots of the density function for different parameter values are given in
Fig. 2.5.

2.12.2 Shapes of the Hazard Rate Function

The hazard rate function that corresponds to (2.45) is

h(t) = (α/β)(t/β)α−1

1 − (1 − ν) exp[−(t/β)α] . (2.46)

Marshall and Olkin (1997) carried out a partial study on the shape of the hazard
rate. They found that h(t) is increasing when ν ≥ 1,α ≥ 1 and decreasing when
ν ≤ 1,α ≤ 1. If α > 1, then the hazard rate function is initially increasing and

http://dx.doi.org/10.1007/978-3-642-39106-4_1
http://dx.doi.org/10.1007/978-3-642-39106-4_1
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Fig. 2.5 M&O extended Weibull density functions

eventually increasing, but there may be an interval where it is decreasing. Simi-
larly, when α < 1, the hazard rate function is initially decreasing and eventually
decreasing, but there may be an interval where it is increasing.

It is shown in Marshall and Olkin (1997) that h(t) has modified bathtub shape
(MBT, or N shape) for β = 1,α = 2, ν = 0.05 or ν = 0.1.

Gupta et al. (2010) gave a complete study concerning the shapes of the hazard rate
and their results were given in their Theorems 4–6 which we will summarize them
below. In order to present these results, the shape parameter α is re-parameterized
through the transformation ψ = α−1

α e1/α.

Case (i): ν > 0,α > 1.

1. h(t) is initially increasing.
2. If ν ≥ 1 − ψ, then h(t) is increasing.
3. If ν > 1 − ψ, then h(t) is (strictly) increasing and followed by a bathtub shape

(i.e, it has an N shape). Such a shape is also called a modified bathtub shape.

Case (ii): ν > 0, 0 < α < 1.

1. h(t) is initially decreasing.
2. If ν ≤ 1 − ψ, then h(t) is decreasing.
3. If ν < 1 − ψ, then h(t) is initially (strictly) decreasing and followed by an

upside-down bathtub shape (i.e., it has a reflected N shape).

Case (iii): α = 1.

1. If 0 < ν < 1, then h(t) is decreasing.
2. If α > 1, then h(t) is increasing.
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Of course, Case (iii) has already been established by Marshall and Olkin (1997). We
also note that for ν = α = 1, the model reduces to the exponential distribution and
thus h(t) is a constant.

Figure 2.6 gives the plots of h(t) from the extended Weibull model for various
combination of parameter values.

2.12.3 Turning Points of h(t)

For non-monotonic types, the estimates of the turning points of h(t) and their con-
fidence intervals were provided by Gupta et al. (2010).

2.12.4 Mean Residual Life

In view of the complexity of the mean residual life function μ(t) of the Weibull
distribution, we anticipate that the mean residual life function of the extended Weibull
is worse in terms of complexity. Lai et al. (2004) have provided several plots of MRL
for different combinations of parameter values from this distribution.
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2.12.5 Application

Zhang et al. (2007) fitted the model to the failure times of a sample of devices from
a field-tracking study of a large system.

2.13 The Weibull-Geometric Distribution

The Weibull-geometric distribution, abbreviated as WG, was proposed and studied
by Barreto-Souza et al. (2010).

Let {Xi } be independent and identically distributed Weibull random variables
having shape and scale parameters α and β, respectively.

Consider T = min{X1, X2, . . . , X Z } where Z is discrete random variable having
a geometric distribution with probability function:

p(z) = (1 − p)pz−1; 0 < p < 1, z = 1, 2, . . . (2.47)

Then T has the Weibull-geometric distribution with density function

f (t) = αβ−α(1 − p)tα−1e−(t/β)α
{

1 − pe−(t/β)α
}−2 ; α,β > 0. (2.48)

The above model may arise from a situation where failure (of a device for example)
occurs due to the presence of an unknown number, say Z , of initial defects of the same
kind. The random variables X ′

i s represent their lifetimes (with constant, increasing or
decreasing hazard rate) and each defect can be detected only after causing failure, in
which case it is repaired perfectly. Thus, the distributional assumptions given earlier
lead to the WG distribution for modeling the time of the first failure.

In the derivation of the WG distribution, it is required that 0 < p < 1. However,
for negative value of p, Eq. (2.48) is still a proper density function. Thus we can
extend the definition of the WG distribution in (2.48) for any p < 1.

Figure 2.7 gives the density plots with α = 5 and β = 1.111 for different values
of p.

2.13.1 Distribution Function

The cdf of the Weibull-geometric model has a simple form:

F(t) = 1 − e−(t/β)α

1 − pe−(t/β)α
, (2.49)
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and the corresponding survival function is

�F(t) = (1 − p)e−(t/β)α

1 − pe−(t/β)α
. (2.50)

2.13.2 Hazard Rate Function

The hazard rate function of the Weibull-geometric distribution is

h(t) = αβ−αtα−1
{

1 − pe−(t/β)α
}−1

. (2.51)

The above function is decreasing for 0 < α < 1 and p < 1. However, for other
parameter values, it can take different shapes. We use two figures to illustrate some
of the possible shapes of the hazard function for selected values of α and β and
p = 0.2, 0.5, 0, 0.5, 0.9.

Figure 2.8 gives the plots with α = 1.5 and β = 2.
Figure 2.9 gives the plot for α = 5 and β = 1.111.

These preceding two plots show that the hazard rate function of the WG distrib-
ution is much more flexible than some other generalized Weibull distributions.

We note that for α = 1.5,β = 2 and p = 0.9, the hazard rate function is first
increasing and then followed by a bathtub curve so it has a modified bathtub shape.
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Fig. 2.8 Weibull-geomeric hazard rate functions—I
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2.13.3 Quantile Function and Moments

The quantile function is

Q(u) = β

{
log

(
1 − pu

1 − u

)}1/α

(2.52)

and the kth moment about the origin 0 is

μ′
k = (1 − p)βk�(k/α+ 1)�(p, k/α, 1) (2.53)

where �(z, s, a) = {�(s)}−1
∫∞

0 t s−1e−at (1 − zet )−1dt; z < 1, a, s > 0 is known
as the Lerch’s transcendent function which can be computed via Mathematica or
Maple.

2.13.4 Estimation of Parameters

Maximum likelihood estimates and other inferential properties were derived by
Barreto-Souza et al. (2010).

2.13.5 Applications

Barreto-Souza et al. (2010) fitted the Weibull-geometric, extended exponential-
geometric (EEG), and Weibull models to a real data set given in Meeker and Escobar
(1998, p. 149). The data present the fatigue life (rounded to the nearest thousand
cycles) for 67 specimens of Alloy T7987 that failed before having accumulated 300
thousand cycles of testing:

94, 118, 139, 159, 171, 189, 227, 96, 121, 140, 159, 172, 190, 256, 99, 121, 141,
159, 173, 196, 257, 99, 123, 141, 159, 176, 197, 269, 104, 129, 143, 162, 177, 203,
271, 108, 131, 144, 168, 180, 205, 274, 112, 133, 149, 168, 180, 211, 291, 114, 135,
149, 169, 184, 213, 117, 136, 152, 170, 187, 224, 117, 139, 153, 170, 188, 226.

It was found that the WG model gives a better fit than its competitors.

2.14 Weibull-Poisson Distribution

Hemmati and Khorram (2011) proposed a three-parameter ageing distribution using
the same construction technique as in the preceding section.
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Again, let Xi denote the standard Weibull variable and define T = min{X1,

X2, . . . , X Z } where Z denotes the zero truncated Poisson random variable having
probability function given by

p(z) = e−λλz(1 − e−λ)−1/z!; λ > 0, z = 1, 2, . . . (2.54)

It is easy to show that the resulting density function is given by

f (t) = λα

β(1 − e−λ)
(t/β)α−1 exp{−λ−(t/β)α+λe−(t/β)α}; λ,α,β > 0. (2.55)

The survival function is reasonably straightforward and it is given by

�F(t) =
(

1 − exp
{
λe−(t/β)α

})
/(1 − eλ). (2.56)

It is clear from either (2.55) or (2.56) that the Weibull-Poisson distribution reduces
to the Weibull distribution as λ → 0.

2.14.1 Hazard Rate Function

The hazard rate function of the Weibull-Poisson model is given by

h(t) = αλ(1 − eλ)(t/β)α−1 exp{−λ− (t/β)α + λe−(t/β)α}
β(1 − e−λ)(1 − exp{λe−(t/β)α}) . (2.57)

Hemmati and Khorram (2011) showed that h(t) is increasing, decreasing or has a
modified bathtub shape (N -shape, i.e., h(t) strictly increasing then then followed by
a bathtub shape). Not that h(t) is unable to achieve a bathtub shape.

2.15 Modified Weibull Distribution

Lai et al. (2003) proposed a three-parameter generalized Weibull model which they
called the modified Weibull distribution. The distribution function is given by

F(t) = 1 − exp(−atαeλt ), t ≥ 0, (2.58)

where the parameters λ > 0, α > 0 and a > 0. For λ = 0, (2.58) reduces to
a Weibull distribution. This simple generalization of the Weibull model is able to
exhibit a bathtub shaped hazard rate function. We now study this model in some
detail.
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2.15.1 Density Function

The density function of the modified Weibull is given by

f (t) = a(α+ λt)tα−1eλt exp(−atαeλt ). (2.59)

Some density plots from this model are given in Fig. 2.10.

2.15.2 Moments

The moments of the distribution can be found in Nadarajah (2005).

2.15.3 Hazard Rate Function

The hazard rate function of this generalized Weibull model also has a simple form:

h(t) = a(α+ λt)tα−1eλt . (2.60)

Clearly the shape of h(t) depends only on α because of through the term tα−1 and
the remaining two parameters have no direct effect on the shapes.
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Case (i): α ≥ 1.

1. h(t) is increasing in t , implying an increasing hazard rate function, thus F is IFR.

2. h(0) = 0 if α > 1 and h(0) = a if α = 1.

3. h(t) → ∞ as t → ∞.

Case (ii): For 0 < α < 1.

1. h(t) initially decreases and then increases, implying it has a bathtub shape.

2. h(t) → ∞ as t → 0 and h(t) → ∞ as t → ∞.

3. The change point t∗, the turning point of the hazard rate function, is

t∗ =
√
α− α

λ
. (2.61)

The interesting feature of this hazard curve is that t∗ increases as λ decreases.
The limiting case when λ = 0 reduces to the standard Weibull distribution.

Figure 2.11 gives the hazard plots for the modified Weibull distribution.

Useful Periods
The ‘useful period’ of this lifetime distribution when its h(t) has a bathtub shape is
studied in detail by Bebbington et al. (2006).
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2.15.4 Mean Residual Life

In common with many other generalized Weibull distributions, the mean of this
distribution does not have a closed form. Plots of the mean residual life function μ(t)
can be found in Lai et al. (2004) or Xie et al. (2004) for some selected parameter
values. The latter paper also computed the distance between the change points of
h(t) and μ(t).

2.15.5 Estimation of Parameters

A simple method for estimating the parameters of the modified Weibull model
through a WPP was given in Lai et al. (2003). Bebbington et al. (2008) have sug-
gested an empirical estimator for the turning point t∗ and the theory was illustrated by
means of real data set. A simulation study was conducted to assess the performance
of the estimators in practice.

2.15.6 Estimates of Parameters for Progressively Type-II
Censored Samples

Progressively type-II censoring is often used in life testing. Consider an experiment
in which n units are placed on a life test. At the time of the first failure, k1 units are
randomly removed from the remaining n−1 units. At the second failure, k2 units from
the remaining n − 2 − k1 units are randomly removed. The life test continues until
the mth failure at which time, all the remaining km = n − m − k1 − k2 − · · · − km−1
units are removed.

Ng (2005) studied the estimation of parameters based on a progressively type-
II censored sample from the modified Weibull model specified by (2.58). He first
obtained the maximum likelihood estimates of the model parameters. The estimators
based on a least-squares fit of a multiple linear regression on a Weibull probability
paper plot were also obtained and compared with the MLE via Monte Carlo simula-
tions.

Recently, Jiang et al. (2010) also studied maximum likelihood estimation of the
model parameters of the modified Weibull distribution with progressively type-2
censored samples. The property of the log-likelihood function was investigated by
introducing a simple transformation to decrease the dimension of the parameter
vector. Existence and uniqueness of the MLEs of the model parameters were proved.
Several examples were presented to illustrate the uniqueness and existence property
of the MLEs.
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2.15.7 Application

Failure times data from Aarset (1987) was fitted by this modified Weibull model.

2.15.8 Competing Risk Models Involving Two Modified
Weibull Distributions

Alwasel (2009) proposed a competing risk model involving two modified Weibull
distributions. The maximum likelihood estimates of the six parameters (since each
of modified Weibull models has three parameters) were also derived although not in
a closed form. So a numerical method is required for computing the MLEs of these
parameters.

2.15.9 Beta Modified Weibull Distribution

Silva et al. (2010) proposed a new distribution called the beta modified Weibull based
on the following construction scheme:

F(t) = 1

B(a, b)

∫ G(t)

0
ua−1(1 − u)b−1du (2.62)

where G(t) denotes the cdf of the modified Weibull distribution. The density function
is given by

f (t) = 1

B(a, b)
G(t)a−1(1 − G)b−1g(u)du (2.63)

where g(t) = G ′(t).
The model contains several well known sub-models including the beta-Weibull

studied by Lee et al. (2007).
The hazard function h(t) of the beta modified Weibull can be bathtub shaped,

increasing, decreasing or inverted bathtub shaped (UBT) depending on the values of
the parameters.

2.15.10 Generalized Modified Weibull Family

The survival function of the distribution proposed and studied by Carrasco et al.
(2008) is

�F(t) = 1 −
(

1 − exp
{
−atαeλt

})β
, λ ≥ 0,α,β, a > 0; t ≥ 0. (2.64)
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Clearly, the distribution is a simple extension of the modified Weibull distribution
of Lai et al. (2003) since (2.64) reduces to (2.58) when β = 1. In fact, it includes
several other distributions such as type 1 extreme value, the exponentiated Weibull
of Mudholkar and Srivastava (1993) as specified in (2.28) above, and others. An
important feature of this lifetime (ageing) distribution is its considerable flexibility
in providing hazard rates of various shapes.

2.16 Generalized Weibull Family

The so called generalized Weibull model was derived by Mudholkar and Kollia
(1994) and Mudholkar and Hutson (1996) from the basic two-parameter Weibull
distribution by appending an additional parameter. The quantile function for the new
model is given by

Q(u) = β
[
θ1 − (1 − u)1/θ

]1/α
, θ < ∞

= β[− log(1 − u)]1/α, θ → ∞
(2.65)

where the new parameter θ is unconstrained so that −∞ < θ < ∞. It follows
immediately that the survival function is

�F(t) =
[

1 −
(

t

β

)α
/θ

]θ
; α,β > 0, (2.66)

where the support is for F(t) is (0, ∞) for θ ≤ 0 and (0,βθ1/α) for θ > 0. So the
support of the distribution can be a finite interval or unbounded.

Indeed the model reduces to the basic two-parameter Weibull when θ → ∞.
Nikulin and Haghighi (2006) observed that the generalized Weibull distribution turns
into the exponential ifα = 1 and θ → ∞, and the log-logistic distribution if θ = −1,
which is often used as a model in survival studies. Further, common distributions
such as the lognormal and gamma distributions may be well approximated by this
family. They also noted that if α ≥ 0 and θ < 0, then the family coincides with Burr
XII distributions.

2.16.1 Characterization of Hazard Rate

This generalized family not only contains distributions with bathtub and inverted
(upside-down bathtub) hazard rate shapes, but also allows for a broader class of
montonic hazard rates. The model hazard rate is given by
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h(t) = α(t/β)α−1

β (1 − (t/β)α/θ)
. (2.67)

The following classification was obtained by Mudholkar and Hutson (1996):

1. α < 1 and 0 < θ < ∞: h(t) has a bathtub shape.

2. α ≤ 1 and θ ≤ 0: h(t) is decreasing in t .

3. α > 1 and −∞ < θ < 0: h(t) has an inverted bathtub shape.

4. α ≥ 1 and θ ≥ 0: h(t) is increasing in t .

5. α = 1 and θ → ∞: F is exponential (i.e., h(t) is a constant).

It was also shown that the generalized Weibull family (2.68) is closed under
proportional hazards relationships, that is, for any ν > 0, �F(t)ν is also a member of
the family (2.68).

Furthermore, for θ ≤ 0, (2.68) reduces to the hazard rate of the Burr XII distrib-
ution, see for example, Sect. 2.3.13 of Lai and Xie (2006).

2.16.2 Estimation of Parameters

The maximum likelihood estimates of the model parameters were obtained by
Mudholkar and Hutson (1996).

2.16.3 Applications

Mudholkar and Hutson (1996) have successfully fitted the model to the two-arm
clinical trials data (Head-and-Neck cancer trials) considered by Efron (1988).

2.17 Jeong’s Extension of Generalized Weibull

Jeong (2006) extended the above generalized Weibull model by incorporating another
parameter with the survival function given as

�F(t) = exp

[
−θ1−τ {(t/β)α + θ}τ − θ

τ

]
; 0 < α,β, θ < ∞, −∞ < τ < ∞.

(2.68)
The distribution becomes the standard Weibull distribution when τ = 1. It reduces
to the Mudholkar’s generalized Weibull of (2.66) as τ → 0.

This new parameter family was motivated to parameterize the cumulative inci-
dence function (in the context of survival analysis) completely.

The model has an application to breast cancer data.
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2.17.1 Hazard Rate Function

The hazard rate function of Jeong’s extension is

h(t) = α(t/β)αθ1−τ

t [(t/β)α + θ]1−τ . (2.69)

By differentiating log h(t) with respect to t and then setting the derivative to zero,

we find the turning point β
{
θ(1−α)
ατ−1

}1/α
exists on the real axis only if (a) α < 1 and

ατ > 1 or (b) α > 1 and ατ < 1.
When (a) holds, h(t) has a bathtub shape and if (b) holds then it has an upside-

down bathtub shape (unimodal). Otherwise, h(t) can be a constant, decreasing or
increasing.

2.17.2 Application

The model was applied to two breast cancer data sets from the National Surgical
Adjuvant Breast and Bowel Project.

2.18 Generalized Power Weibull Family

Nikulin and Haghighi (2006) introduced a family of distributions with survival func-
tion

�F(t) = exp
{

1 − (
1 + (t/β)α

)θ} ; α,β, θ > 0. (2.70)

Obviously, the case θ = 1 reduces it to the standard Weibull distribution.

The quantile function is given as below:

Q(p) = β{(1 − log(1 − p))1/θ − 1}1/α; 0 < p < 1. (2.71)

2.18.1 Probability Density Function

The probability density function is given by

f (t) = αθ

βα−1 tα
{
1 + (t/β)α

}θ−1 exp
{

1 − (1 + (t/β)α)θ
}

. (2.72)



56 2 Generalized Weibull Distributions

G
en

er
al

iz
ed

 p
ow

er
 W

ei
bu

ll 
de

ns
ity

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

t

density function 

f : α = 0.8,β = 0.5,θ = 0.125
f : α = 2.2,β = 0.5,θ = 0.2
f : α = 0.99, β = 0.5,θ = 1.05

Fig. 2.12 Generalized power Weibull density functions

The density plots of the generalized power Weibull for three combinations of the
parameters α, β and θ are given in Fig. 2.12.

2.18.2 Hazard Rate Function

The hazard rate of the generalized power Weibull family is

h(t) = αθ

βα−1 tα
{
1 + (t/β)α

}θ−1
. (2.73)

It has been shown in Nikulin and Haghighi (2006) that the hazard rate has nice and
flexible properties. Depending on the values of the parameters, h(t) can be constant,
monotone (increasing, decreasing), unimodal or bathtub shaped.

More specifically, it has been shown that the hazard rate curve is

(a) motone increasing if either α > 1 and αθ > 1 or α = 1 and θ > 1;
(b) monotone decreasing if either 0 < α < 1 andαθ < 1 or 0 < α < 1 andαθ = 1;
(c) unimodal (inverted bathtub shaped) if α > 1 and 0 < αθ < 1;
(d) bathtub shaped 0 < α < 1 and αθ > 1.

The plots of hazard rates are given in given in Fig. 2.13.
Using a chi-squared goodness-of-fit test, Nikulin and Haghighi (2006) showed

that the model provides a good fit to the well known randomly censored survival
times data for patients at ARM A of the Head-and-Neck Cancer Trail.
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2.19 Slymen-Lachenbruch Modified Weibull Distribution

Slymen and Lachenbruch (1984) proposed a modified Weibull model with survival
function given by

�F(t) = exp

{
− exp

[
c + β(tα − t−α)

2α

]}
; α,β, c > 0. (2.74)

Thus

log[− log �F(t)] = c + β(tα − t−α)
2α

. (2.75)

We can see that a Weibull type probability plot can be constructed from the last
equation.

Hazard Rate Function

The hazard rate function can be expressed as:

h(t) = β

2

(
tα−1 − t−α−1

)
exp

[
c + β(tα − t−α)

2α

]
. (2.76)

Slymen and Lachenbruch (1984) showed that if 2{(α+ 1)t−α−2 − (α− 1)tα−2} ×
(tα−1 − t−α−1)−2 is a bounded function then h(t) can have a bathtub shape.
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2.20 Flexible Weibull

Bebbington et al. (2007a) introduced a distribution which is quite simple and yet very
flexible to model reliability data. The proposed distribution has survival function
given as

�F(t) = exp
(
−eαt−β/t

)
. (2.77)

For β = 0, it reduces to type 1 extreme value distribution (Johnson et al. 1995,
Chap. 22) so that it can be transformed to the standard Weibull and hence the name
flexible Weibull was given.

When β = α, it reduces to a special case of the Slymen-Lachenbruch modified
Weibull model considered in the preceding section.

It follows easily from (2.77) that

log[− log(�F(t))] = αt − β/t (2.78)

showing that the two parameters α and β can be initially estimated through a prob-
ability plot.

2.20.1 Density Function

The density function corresponding to (2.77) is

f (t) = (α+ β/t2) exp(αt − β/t) exp
(
−eαt−β/t

)
. (2.79)

The plots of three density curves are given in Fig. 2.14.

2.20.2 Hazard Rate Function

Unlike many other generalized Weibull distribution, the hazard rate of this distribu-
tion is rather simple:

h(t) = (α+ β/t2) exp(αt − β/t). (2.80)

A distribution F is said to be is IFRA (increasing failure rate average) if and only
if
∫ t

0 h(s)ds/t = − log �F(t)/t is increasing in t . IFR (increasing average failure
rate) is a subclass of IFRA. Note that the IFRA ageing class is featured prominently
in Barlow and Proschan (1981).

It was shown by Bebbington et al. (2007a) that the distribution is IFR if αβ ≥
27/64, IFRA if and only if αβ ≥ 1/4, which includes the IFR case, as required. We
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Fig. 2.15 Flexible Weibull hazard rate functions

see that if 1/4 < αβ ≤ 27/64, then the distribution is IFRA, but not IFR. Also, if
αβ < 27/64, the hazard rate has a modified bathtub shape (i.e., h is first increasing
followed by a bathtub shape).

The hazard rate plots are given in Fig. 2.15.
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2.20.3 Parameter Estimation

Bebbington et al. (2007a) showed thatα and β can be estimated through the Weibull-
type probability plot using (2.78) above.

The maximum likelihood estimates of two parameters can also be obtained numer-
ically through maximizing the likelihood function.

2.20.4 Applications

The flexible Weibull distribution has applications in:

• survival analysis for secondary reactor pumps (Bebbington et al. 2007a),
• human mortality study (Bebbington et al. 2007b),
• stop over duration of animals in the presence of trap-effects (Choqueta et al. 2013).

2.21 Weibull Extension Model

Another generalization of Weibull was introduced by Xie et al. (2002) and a detailed
statistical analysis was given in Tang et al. (2003). In the latter, the authors simply
referred their distribution as ‘the Weibull extension model’.

The distribution is in fact a generalization of the model studied by Chen (2000).
The cumulative distribution function is given by

F(t) = 1 − exp
{
−λβ

[
e(t/β)α − 1

]}
, t ≥ 0,α,β,λ > 0. (2.81)

We see that the distribution approaches to a two-parameter Weibull distribution
when λ → ∞ with β in such a manner that βα−1/λ is held constant.

For λ = 1, the above distribution is the exponential power distribution considered
and studied by Smith and Bain (1975, 1976). The case with scale parameter β = 1
was considered by Chen (2000) who also considered the estimation of parameters.

2.21.1 Density Function

The probability density function is

f (t) = λα(t/β)α−1 exp
{
(t/β)α + λβ(1 − e(t/β)α)

}
. (2.82)

Figure 2.16 gives the density plots.



2.21 Weibull Extension Model 61

0 1 2 3 4 5

0
5

10
15

t

W
ei

bu
ll e

xt
en

sio
n 

de
ns

ity

density function 
f : α = 0.7, β = 100, λ = 2
f : α = 0.8, β = 100, λ = 2
f : α = 1.1, β = 100, λ = 2
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2.21.2 Hazard Rate Function

The hazard rate function that corresponds to (2.81) is

h(t) = λα(t/β)α−1 exp
[
(t/β)α

]
. (2.83)

The shape of h(t) depends only on the shape parameter α.

For α ≥ 1:

(i) h(t) is an increasing function;
(ii) h(0) = 0 if α > 1 and r(0) = λ, if α = 1;

(iii) h(t) → ∞ as t → ∞.

For 0 < α < 1:

(i) h(t) is decreasing for t < t∗ and increasing for t > t∗ with

t∗ = β(1/α− 1)1/α. (2.84)

This implies that the hazard rate function has a bathtub shape;
(ii) h(t) → ∞ for t → 0 or t → ∞;

(iii) The change point t∗ increases as the shape parameter α decreases.

The hazard rate plots of the distribution are given in Fig. 2.17.
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2.21.3 Mean Residual Life

For this model, the mean residual life function μ(t) does not have a closed form
although its turning point μ0 can be obtained numerically. In fact, μ(t) attains its
maximum value at t = μ0. Xie et al. (2004) have given plots of μ(t) and h(t) for
α = 0.45, 0.5, and 0.6 with β = 100,λ = 2.

2.21.4 Other Properties

Quantile function, skewness and kurtosis, estimation of parameters, etc., were given
in Tang et al. (2003).

Nadarajah (2005) derived explicit algebraic formulae for the kth moment (about
zero) of the distribution when 1/α is a non-negative integer.

2.21.5 Model Adequacy

Complete Bayesian analysis of the model has been provided by Gupta et al. (2008)
using Markov chain Monte Carlo simulations. A thorough study has also been con-
ducted for checking adequacy of the model for a given data using some of the graph-
ical and numerical methods based on predictive simulation ideas. A real data set was
considered for an illustration of their methods.
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2.21.6 Applications

The model has been fitted to:

• the failure times of Aarset data (Aarset 1987)
• the failure times of a sample of devices in a large system (Gupta et al. 2008). The

detailed description of the data set can be found in Meeker and Escobar (1998).

2.22 The Odd Weibull Distribution

Cooray (2006) has constructed a generalized Weibull family called the odd Weibull
family based on the idea of evaluating the distribution of the ‘odd of death’ of a
lifetime variable.

2.22.1 Distribution Function

The distribution function of the odd Weibull is given as

F(t) = 1 −
(

1 + (e(t/β)α − 1)θ
)−1

, (2.85)

with β > 0 be the scale parameter and αθ > 0 as the shape parameter.
When θ = 1, F(t) is the cdf of the Weibull distribution. On the other hand, when

θ = −1, F(t) has the inverse Weibull distribution given by F(t) = e−(t/β)α .
Jiang et al. (2008) showed that the logit function, the logarithm of the odds, of

the odd Weibull distribution can be written as the product of the logit function of the
standard Weibull and θ. Similarly, it can also be written as the product of the logit
function of the inverse Weibull and −θ.

The density function is

f (t) =
(
αθ

t

)(
t

β

)
e(t/β)α

(
e(t/β)α − 1

)θ−1
[

1 +
(

e(t/β)α − 1
)θ]−2

. (2.86)

2.22.2 Quantile Function

The quantile function can be shown to be

Q(u) = β

{
log

[
1 +

(
u

1 − u

)1/θ
]}

. (2.87)
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2.22.3 Hazard Rate Function

The hazard rate function of the odd Weibull distribution is

h(t) =
(
αθ

t

)(
t

β

)
e(t/β)α

(
e(t/β)α − 1

)θ−1
[

1 +
(

e(t/β)α − 1
)θ]−1

. (2.88)

Cooray (2006) has shown that the odd Weibull family can model various hazard
shapes (increasing, decreasing, bathtub, and unimodal); thus the family is proved to
be flexible for fitting reliability and survival data. More precisely, he established that

(1) for α < 0, θ < 0 or α < 1,αθ ≥ 1, h(t) is unimodal,
(2) for α > 1,αθ > 1, h(t) is increasing,
(3) for α < 1,αθ < 1, h(t) is decreasing, and
(4) for α > 1,αθ ≤ 1, h(t) has a bathtub shape.

Cooray (2006) also indicated that in the regions where (α > 1,αθ > 1) and
(α < 1,αθ < 1), h(t) may have some other shapes. Jiang et al. (2008) found, using
numerical analysis, that the ‘other shapes’ are N (modified bathtub) and reflected N
shapes when the model parameters are near the boundary line αθ = 1. The latter
authors also studied the tail behaviours of h(t) in detail.

2.22.4 Weibull Probability Plot Parameter Estimation

The shapes of the Weibull probability plot with different parameters were presented
in Jiang et al. (2008) and the steps of the graphical estimation were also iterated.
In estimating parameters of the odd Weibull model by a graphical approach, it is
necessary to determine if the shape parameters are positive or negative. Cooray
(2006) suggested to employ the total-time-test (TTT) for this purpose whereas Jiang
et al. (2008) concluded that it is easy to check the sign of the shape parameters using
a Weibull probability plot.

2.22.5 Optimal Burn-In Time and Useful Period

For a product lifetime exhibiting a bathtub shaped hazard rate, an important issue is
to determine the optimal burn-in time. As seen from an earlier subsection, the odd
Weibull model can indeed display such a shape. Jiang et al. (2008) observed that the
second portion (stable period) of the odd Weibull model, when exhibiting a bathtub
shape, could be quite long and flat which is a good property in application. They
discussed those issues concerning the optimal burn-in time and the useful period for
the model.
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2.22.6 Application

The model has been fitted to a sample of 208 data points, which represent the ages at
death in weeks for male mice exposed to 240r of gamma radiation (Kimball 1960).

2.23 Generalized Logistic Frailty Model

Vaupel (1990) proposed and examined a logistic frailty model to correct an inherent
deficiency in the Gompertz-Makeham law often used in a mortality study. The Vaupel
model has incorporated a deceleration parameter s ≥ 0 in such a way that the resulting
hazard is a logistic function given by

h(t) = Aet/β

1 + s Aβ(et/β − 1)
. (2.89)

The survival function corresponding to (2.89) is

�F(t) =
[
1 + s Aβ(et/β − 1)

]− 1
s

(2.90)

which is relatively simple. On differentiation of (2.89), we have

h′(t) = Ae(t/β)(1/β − s A)[
1 + s Aβ(et/β − 1)

]2 . (2.91)

From the preceding equation, we see that h(t) is increasing (decreasing) forβs A <

1(s Aβ > 1) and it converges to a constant as t → ∞. For human mortality, the case
(s Aβ > 1) is obviously unrealistic as it would imply the immortality of man.

2.23.1 Generalized Logistic Frailty Distribution

In view of its hazard rate function being monotonic, the logistic frailty model has
limited applications in reliability and survival analysis. To provide a more flexible
model that is applicable to various disciplines associated with lifetime data, Lai and
Izadi (2012) generalized the logistic frailty model in (2.90) by incorporating a shape
parameter:

�F(t) =
[
1 + s Aβ(e(t/β)α − 1)

]− 1
s

(2.92)
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where A,α,β > 0 and s ≥ 0. Hereα andβ are clearly the shape and scale parameter,
respectively. As mentioned earlier, s is a deceleration parameter whereas A is some
kind of ‘normalizing constant’, particularly if s = 0.

We will see how this distribution is related to the Weibull in the next subsection.

2.23.2 Limiting Case

As s → 0, (2.92) is reduced to

lim
s→0

�F(t) = lim
s→0

[
1 + s Aβ(e(t/β)α − 1)

]− 1
s

(2.93)

= exp
{
−Aβ(e(t/β)α − 1)

}
.

which is the Weibull extension model of Chen (2000) and Xie et al. (2002). It has
been shown in Xie et al. (2002) that (2.93) is either IFR (increasing failure rate),
DFR (decreasing failure rate) or a bathtub shaped hazard rate distribution.

2.23.3 Probability Density Function

The density function of the generalized logistic frailty model can be obtained easily
by differentiating (2.92) with respect to t and it is given by

f (t) = Aα(t/β)α−1e(t/β)α
[
1 + s Aβ(e(t/β)α − 1)

]− s+1
s

. (2.94)

2.23.4 Hazard Rate Function

The hazard rate function that corresponds to (2.92) is

h(t) = Aβ(t/β)α−1e(t/β)α

1 + s Aβ(e(t/β)α − 1)
. (2.95)

Rewriting the above in a slightly different form,

h(t) = Aα(t/β)α−1e(t/β)α/(s Aβ)

e(t/β)α + (1 − s Aβ)/(s Aβ)
. (2.96)
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From the preceding equation, it is clear that h(t) is increasing if s Aβ < 1 and
α > 1. We have also mentioned that for s = 0, (2.96) can yield IFR (increasing
failure rate), DFR (decreasing failure rate) or a bathtub shape.

Other possible shapes are displayed in Fig. 2.18.
Note that the one of the above curves almost has an S shape which may be useful

for describing human late life mortality deceleration phenomenon as observed in
Greenwood and Irwin (1931).

The shapes of the hazard rate of the generlized logistic frailty model are summa-
rized in terms β and c (c = a Aα) by Lai and Izadi (2012).

2.23.5 Applications

The model has been fitted to:

• the data set given in Wang (2000) which consists of the lifetime failures of 18
electronic devices, and

• the data of active repair times (in hours) for an airborne communication transceiver
which was reported in Von Alven (1964).
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Fig. 2.18 Generalized logistic hazard rate functions
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2.24 Generalized Weibull-Gompertz Distribution

Nadarajah and Kotz (2005) proposed a generalization of the standard Weibull model
with four parameters having survival function given as below:

R(t) = exp
{
−atb

(
ectd − 1

)}
, a, d > 0; b, c ≥ 0; t ≥ 0. (2.97)

Since (2.97) includes the Gompertz (1825) distribution as its special case when
b = 0 and d = 1. For this reason we may refer it as the generalized Weibull-
Gompertz distribution. For b = 0 it contains the Weibull extension model of Xie
et al. (2002) as given in Sect. 2.21 above. Since the models have four parameters, it
may be considered as an over-parameterized model.

2.25 Generalized Weibull Distribution of Gurvich et al.

It has been pointed by Nadarajah and Kotz (2005) that several of the modifications
of the Weibull distribution discussed in this section can arise from a representation
suggested by Gurvich et al. (1997). This distribution did not arise from a reliability
perspective but from the context of modeling random length of brittle materials. The
distribution function of this class is given by

F(t) = 1 − exp {−aG(t)} , (2.98)

where G(t) is a monotonically increasing function in t such that G(t) ≥ 0.

Several distributions we presented in this chapter can be derived by assigning
appropriate expressions to G(t). For example,

• the modified Weibull model of Lai et al. (2003) is obtained by setting G(t) =
tα exp(λt),

• the Weibull extension model of Xie et al. (2002) is obtained by letting G(t) =
α exp(t/β)α − 1,

• the log Weibull model is derived by assigning G(t) = exp ((t − a)/b)), and

• the model considered by Nadarajah and Kotz (2005) follows from taking G(t) =
tb
(

ectd − 1
)

.

Several other Weibull related distributions are also contained in this family.
Pham and Lai (2007) have noted that Gurvich’s model is so general in which

G(t) is in fact the cumulative hazard function of an arbitrary lifetime distribution.
We note that any survival function �F can be expressed as �F(t) = exp{−∫ t

0 h(t)dt} =
exp{−H(t)}. Letting aG(t) = H(t), we see that the Gurvich’s model includes all
the continuous lifetime distributions.
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2.26 Weibull Models with Varying Parameters

The parameters of the models discussed so far are held constants. This section deals
with models where some of parameters are

(i) functions of the variable t ,
(ii) function of some supplementary variables (denoted by S), or

(iii) random variables (covariates).

2.26.1 Time Varying Parameters

In these models the scale parameter (β) and/or the shape parameter (α) of the standard
Weibull model given by (1.4) are function of the variable t .

Examples

(i) Only one of the two parameters is varying with time.
(ii) Both α and β are functions of time. For example,

α(t) = a

(
1 + 1

t

)b

ec/t , β(t) = a′tb′
ec′/t . (2.99)

(iii) F(t) = 1 − exp{−�(t)} where �(t) is a nondecreasing function with �(0)=0
and �(∞) = ∞. For example,

�(t) =
m∑

i=1

λiφi (t), 1 ≤ i ≤ m. (2.100)

2.26.2 Weibull Accelerated Models

In these models the scale parameter β is a function of some supplementary vari-
able (covariate) S. In reliability applications S represents the stress on the item so
the life of the item (a random variable with distribution F) is a function of S. The
shape parameter is unaffected by S and hence a constant. See Sect. 2.6.2 of Murthy
et al. (2004).

http://dx.doi.org/10.1007/978-3-642-39106-4_1
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Arrhenius Model

The relationship is given by

β(S) = exp(γ0 + γ1S). (2.101)

(See Jensen (1995) for a summary this model). We see that log(β(S)) is linear in S.

Power Model

The relationship is given by

β(S) = eγ0

Sγ1
. (2.102)

The power model is also briefly in Jensen (1995).
A more general formulation is one where the scale parameter is expressed as

β(S) = exp

(
b0 +

k∑
i=1

bi si

)
(2.103)

where S = (s1, s2, . . . , sk)
′ is a k-dimensional vector of supplementary variables.

One may note that these types of models have been used extensively in accelerated
life testing in reliability, see for example, Nelson (1990) or Chap. 6 of Lawless (2003).

2.26.3 Weibull Proportional Hazard Models

An alternative approach to modeling the effect of the supplementary variables
(covariates) on the survival function �F(t) is through the hazard rate function. The
relationship is given by

h(t |S) = ψ(S)h0(t), (2.104)

where h0(t) is called the baseline hazard for a two-parameter Weibull distribu-
tion. The only restriction on the scalar function ψ(·) is that it be positive. The last
equation tells us h(t |S) is proportional to the baseline hazard rate h0 and thus the
name ‘proportional hazard’ model.

Many different forms for ψ(·) have been proposed in the literature. One such is
the following:

ψ(S) = exp

(
k∑

i=1

bi si

)
. (2.105)
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(See for e.g., Kalbfleisch and Prentice 2002 and Lawless 2003). It now follows from
(2.104) that the survival function

�F(t |S) = �F(t)ψ(S). (2.106)

(Note that in the current context, �F(t) is the Weibull survival function, but it could
denote any other survival functions in a general setting).

When ψ is given by (2.105) and (2.104) becomes

h(t |S) = h0(t) exp

(
k∑

i=1

bi si

)
(2.107)

The hazard model above is generally known as the Cox proportional hazard model.
Taking the natural logarithm of both sides of the preceding equation, we have

log(h(t |S)/h0(t)) =
k∑

i=1

bi si (2.108)

We now have a fairly ‘simple’ linear model where the parameters can be readily
estimated.

2.26.4 Applications

In the recent years, the Cox proportional model is a popular survival model when
covariates are involved. Examples of applications include:

• epidemiology and biostatistics, e.g., multiple infection data,
• financial analysis, e.g., stock exchange market,
• clinical trials, and
• survival analysis, e.g., cancer relapse data.
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Chapter 3
Models Involving Two or More
Weibull Distributions

In this chapter we discuss several univariate statistical models that are derived from
two or more independent Weibull distributions that interact with each other under
some governing ‘operations’. For example, Barlow and Proschan (1981) raised a
general question regarding under what reliability operations a given class of life
distributions is preserved.

In a reliability setting, a system generally consists of several components. We
assume that each component lifetime Xi , i = 1, 2,. . . , n has a Weibull distribution
with cdf Fi having scale parameter αi and shape parameter βi . We further assume
that these components are statistically independent although this assumption may
not hold in many practical situations. Generally a reliability system has a structure
that determines how these components are linked (arranged) together. For example,
the components can be arranged in series, parallel or series-parallel hybrid. It is
well known that the reliability of a system depend on (a) the system structure and
(b) reliability functions of all the components.

In general, a survival model that involves a larger number of subpopulations
(components) is likely to be hampered by a larger number of model parameters to
be estimated.

Four such models are now presented in this chapter: (A) Competing risk models,
(B) multiplicative models, (C) sectional models and (D) mixture models. In addition,
we also consider these models when the underlying distribution is the inverse Weibull
distribution instead of Weibull itself. Structures A and B correspond to the series
and parallel systems, respectively. After a general introduction of these models, we
will present several examples of generalized Weibull models that arise from these
structures.

3.1 n-fold Mixture Model

The literature on Weibull mixture models has grown at an increasing pace and
there are many applications of such models. A mixture aries because of the over-
all population is not homogeneous. Formally a mixture model corresponds to the

C.-D. Lai, Generalized Weibull Distributions, SpringerBriefs in Statistics, 77
DOI: 10.1007/978-3-642-39106-4_3, © The Author(s) 2014
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mixture distribution that represents the probability distribution of observations in the
overall population.

Let pi be the mixing proportion of the i th subpopulation so the distribution of the
mixture model is represented by

F(t) =
n∑

i = 1

pi Fi (t), pi ≥ 0,

n∑
i = 1

pi = 1. (3.1)

Here we assume the n Weibull random variables involved in the mixture are
statistically independent.

The hazard rate function of a finite mixture is given by

h(t) =
∑

wi (t)hi (t), (3.2)

where hi (t) denotes the hazard rate function of the i th subpopulation (or i th compo-
nent), and

wi (t) = pi Fi (t)∑n
i = 1 pi Fi (t)

; 0 ≤ pi ≤ 1, 1 ≤ i ≤ n (3.3)

such that
∑n

i = 1 wi (t) = 1. The preceding two equations show that the hazard rate
function of the mixture model is simply a weighted mean of the hazard rates for the
subpopulations with the weights varying with time t .

In most applications in the literature, only two-fold mixtures were considered to
minimize the number of parameters to be estimated. We will consider this special
case in a Sect. 3.6 below.

Gurland and Sethuraman (1995) have considered a mixture of the Weibull distri-
bution with hazard rate λαtα−1 and the exponential distribution with hazard rate λ1.
For α > 1, the Weibull distribution is IFR. They found that the resulting mixture
distribution is ‘ultimately’ DFR. In fact, the mixture with the exponential has resulted
a hazard rate with an upside-down bathtub shape.

A basic feature of the finite mixture model is that the mixing weights are all
positive. However, Titteringto et al. (1985) suggested that it is possible to have
mixture model with negative weights as long as the density function for the model
is valid.

Let us consider a life distribution G(t, θ) with a parameter θ that itself is ran-
dom variable with distribution function �. Then the resulting distribution F can be
expressed as

F(t) =
∫

G(t |θ)d�(θ).

Such an infinite mixture is also known a compound distribution.
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3.1.1 Reliability Approximation Using a Finite Weibull
Mixture Distributions

Bǔcar et al. (2004) have shown that the reliability of an arbitrary system can be
approximated well by a finite Weibull mixture with positive component weights
only, without knowing the structure of the system, on condition that the unknown
parameters of the mixture can be estimated. To support the main idea, they have
presented five examples for demonstration. In order to estimate the unknown com-
ponent parameters and components weights of the Weibull mixture, some of the
already known methods were applied and the EM algorithm for the m-fold mixture
was derived. The fitted distributions obtained by different methods were compared to
the empirical ones by calculating the AIC and δc values. The authors concluded that
the suggested Weibull mixture with an arbitrary but finite number of components is
suitable for lifetime data approximation.

For other ageing characteristics of Weibull mixtures, see Murthy et al. (2004).

3.2 n-fold Competing Risk Model

The ‘competing risk’ problem arises in the study of any failure process in which there
is more than one distinct cause of failure. This often occurs in clinical, epidemiologic,
demographic, basic science and industrial literature.

Again we assume here the n Weibull random variables involved in the n-fold
competing risks model are independent. The distribution function is given by

F(t) = 1 −
n∏

i = 1

(1 − Fi (t)). (3.4)

The above model represents the lifetime distribution of a series system of n inde-
pendent but not necessarily identical Weibull components. The mean of the n-fold
competing risk model is

μ =
∞∫

0

n∏
i = 1

(1 − Fi (t))dt.

It is easy to show that the hazard rate function of a series system is the sum of the
hazard rates of its n components, namely

h(t) =
n∑

i = 1

hi (t). (3.5)
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The special case n = 2 is more widely studied in the literature, see for example,
Jiang and Murthy (1997a). A more detailed discussion is given in Sect. 3.5.

For a detailed study of the n-fold competing risk models, see Chap. 9 of Murthy
et al. (2004).

3.2.1 Common Shape Parameter Case

Nelson (1982, Chap. 5) considered the case where the shape parameters are the same
for all subpopulations. He discussed parameter estimation based on a Weibull hazard
plot. Since the shape parameters are the same, this model can be reduced to a simple
univariate Weibull distribution.

3.3 n-fold Multiplicative Model

The n-fold multiplicative model also known as the complementary risk model in the
literature, has the distribution function given by

F(t) =
n∏

i = 1

Fi (t). (3.6)

It is now obvious how the name ‘multiplicative model’ has arrived. The readers are
referred to Chap. 10 of Murthy et al. (2004) for details model structure, distribution
function, the shapes of the hazard rate function, etc.

If all the n component lifetimes are independent and identically distributed as a
Weibull distribution, then (3.6) is equivalent to the exponentiated Weibull distribution
given in Sect. 2.10. It is easy to see that (3.6) corresponds to the distribution of a
system of n independent components that are arranged in parallel.

The multiplicative model involving two Weibull distribution was studied in detail
by Jiang and Murthy (1997e). It was shown that there are only four possible shapes
of the hazard rate function: (i) decreasing, (ii) increasing (iii) UBT or (iv) MBT
depending on the values of the scale and shape parameters of the two Weibull vari-
ables. It is interesting to note that, like the case of mixture, a BT shaped hazard rate
cannot be achieved under a multiplicative Weibull model.

3.4 n-fold Sectional Model

The distribution function in a n-fold sectional model has n segments joined together
as follows:

http://dx.doi.org/10.1007/978-3-642-39106-4_2
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F(t) =

⎧⎪⎪⎨
⎪⎪⎩

k1 F1(t), 0 ≤ t ≤ t1,

1 − k2 F2(t), t1 < t ≤ t2,
· · · · · ·
1 − kn Fn(t), t > tn−1.

(3.7)

where the sub-populations Fi (t) are the two- or three-parameter Weibull distributions
and the ti ’s (called partition points) are an increasing sequence. Jiang and Murthy
(1997b) and Jiang et al. (1999a) considered the case where n = 2 in detail whereas
Jiang and Murthy (1997c) considered the case where n = 3. Both cases can achieve
a bathtub shaped hazard rate; the former has a ‘V’ shape bathtub whereas the latter
can attain a flat bottom provided α2 = 1 where αi is the shape parameter of the
i th Weibull distribution. In the case n = 3, Jiang and Murthy (1997c) reported
that the hazard rate can be one of twenty different shapes which can be classified
into five types—(i) I (ii) D (iii) BT (iv) UBT and (v) roller-coaster shape. Thus, the
sectional models involving three Weibull distributions can be used to model a variety
of reliability data.

3.4.1 Sectional Weibull Hazard Rate Models

Instead of a Weibull sectional model involving F(t) or F(t) as in (3.7), one can
construct a sectional Weibull hazard rate model involving two or more truncated
Weibull hazard rate functions, see for example, Ananda and Singh (1993), Mukherjee,
and Roy (1993), Griffith (1982), and Kunitz (1989).

In what follows we restrict ourselves to discuss only the cases involving two
Weibull or generalized Weibull populations.

3.5 Additive Weibull Model

Earlier, Xie and Lai (1996) proposed a generalized Weibull model which they called
the additive Weibull model in view of its additive property of the two hazard rate
functions.

The additive Weibull model is effectively a twofold competing risks model involv-
ing two Weibull distributions as studied later by Jiang and Murthy (1997d).

The reliability function has a very simple form and is now given below:

F(t) = exp
{−(t/β1)

α1 − (t/β2)
α2

}
, α1,α2,β1,β2 > 0. (3.8)

It is easy to see that the mean of the additive Weibull model

μ =
∞∫

0

F(t)dt =
∞∫

0

exp
{−(t/β1)

α1 − (t/β2)
α2

}
dt

does not have a closed form.
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Fig. 3.1 Additive Weibull density functions

3.5.1 Density Function

The density function is simply given by

f (t) = f1(t)F2(t) + f2(t)F1(t)

where Fi (t) = exp{−(t/βi )
αi } and fi (t) = (αi/βi )(t/βi )

αi −1 exp{−(t/βi )
α
i }.

The densities with various parameter values are plotted in Fig. 3.1.

3.5.2 Hazard Rate Function

The hazard rate function of this additive model also has very simple expression:

h(t) = (α1/β1)(t/β1)
α1−1 + (α2/β2)(t/β2)

α2−1, t ≥ 0. (3.9)

By inspection, it is easy to see that F is IFR if both shape parameters are greater
than 1, i.e., if α1 > 1 and α2 > 1; and DFR if α1 < 1 and α2 < 1.

For α1 < 1 and α2 > 1, h(t) then has a bathtub shape. This is because the
second term in the preceding equation which dominates for small t is decreasing.
For large t , the first term of h(t) dominates and is an increasing function of t . An
important feature of this model is that h(t), with an appropriate choice of parameter
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Fig. 3.2 Additive Weibull hazard rate functions

values, can achieve a fairly flat middle part of the life phase so it is able to model
a population with a stable useful period of a life span. Thus, the model establishes
itself an important place in the reliability literature.

See the plots in Fig. 3.2 given on the next page:
There is however, an undesirable aspect of this model which yields rather

low values of h(t) in the middle period of the lifetime. This can be rectified by
adding a ‘lift’ factor h0 to h(t) as was proposed in Lai et al. (2004). See also
Bebbington et al. (2008). The resulting new system corresponds to a series sys-
tem of two Weibull components augmented by an exponential component with scale
parameter h0. This additional component is arranged in series along with the first two
components. Since the exponential is a special case of the Weibull distribution, the
modified additive model corresponds to a threefold competing risks model involving
Weibull distributions.

It is obvious that h(t) cannot achieve an UBT shape.

3.5.3 Special Case: The Reduced Model

In order to reduce the number of parameters, we construct a reduced model by letting
α1 = α =,α2 = 1/α, β1 = β2 = β in (3.8) and (3.9). The hazard rate of the reduced
model has only two parameters:
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h(t) = α

β
(t/β)α−1 + 1

αβ
(t/β)1/α−1, t ≥ 0. (3.10)

To enhance its applicability, a ‘lift’ parameter h0 may be added to give

h(t) = α

β
(t/β)α−1 + 1

αβ
(t/β)1/α−1 + h0, h0 > 0, t ≥ 0. (3.11)

Xie and Lai (1996) showed that the simplified model is also able to give rise to a
bathtub shaped hazard rate.

Stable period: Bebbington et al. (2006) proposed computationally tractable formal
mathematical definitions for the ‘useful period’ of lifetime distributions with bathtub
shaped hazard rate functions. Detailed analysis of the reduced additive Weibull hazard
rate function illustrates its utility for identifying such useful periods.

We note that the whereabouts of the useful period is useful information in
determining an optimal burn-in time. Burn-in is a widely used engineering pro-
tocol to weed out weak items before the product is released for field use. see
Bebbington et al. (2005) for a discussion.

3.5.4 Probability Plots

Xie and Lai (1996) proposed a graphical method for estimating the parameters of
(3.8) using the following two equations assuming α1 > 1 and α2 < 1:

F(t) ≈ exp
{−(t/β2)

α2
}

as t → ∞

and
F(t) ≈ exp

{−(t/β1)
α1

}
as t → 0.

Taking natural logarithm of the last two equations, we have

ln[− ln(F(t)] ≈ α2 ln(t) + α2 ln(β2), for small t (3.12)

and
ln[− ln(F(t)] ≈ α1 ln(t) + α1 ln(β1), for large t. (3.13)

On this probability plot, Eqs. (3.12) and (3.13) are straight lines with α1 and α2 as
respective slopes, and α2 ln(β2) and α1 ln(β1) as intercepts respectively.

To implement this plot, the failure times are ranked in the ascending order and
then split them into two subsets. The first subset will be used for Eq. (3.12) and then
the second for Eq. (3.13). The parameters can also be estimated from this generalized
Weibull plot and these estimates may also be used as the initial values for other formal
methods of estimate.
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The above probability plot can be simplified if we reparameterize the model as

F(t) = exp
{−λ1tα1 − λ2tα2

}
, (3.14)

where λ1 = 1/βα1
1 and λ2 = 1/βα2

2 as was given in Xie and Lai (1996) when they
implemented the probability plot.

3.5.5 Estimation

The initial estimates of the parameters can be achieved using Weibull-type probability
plots as demonstrated by Xie and Lai (1996) and Usgaonkar and Mariappan (2009).

The maximum likelihood estimation of the parameters of the additive Weibull
models can be implemented via Matlab as in Bebbington et al. (2010). Kanie and
Nonaka (1985) presented an analytical technique for estimating the two shape para-
meters with α1 �= α2 based on two cumulative hazard functions. For other methods
see the discussion given in Sect. 9.2.3 of Murthy et al. (2004).

3.5.6 Mean Residual Life

The mean residual life of the model is plotted in Lai et al. (2004) when the hazard
rate has a bathtub shape.

Bebbington et al. (2006) defined and considered analogous ‘stable periods’ in the
case of the corresponding upside-down bathtub shaped mean residual life functions.
The useful period of the mean residual life μ(t) of the reduced additive Weibull
model can be determined.

Bebbington et al. (2008) showed the mean residual life is reduced in the presence
of a constant competing risk.

3.5.7 Applications

• Xie and Lai (1996) fitted the distribution to an actual set of failure time data
collected during unit testing.

• Usgaonkar and Mariappan (2009) applied the additive Weibull model to three real
reliability data sets.
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3.6 Mixtures of Two Weibull Distributions

Jiang and Murthy (1995, 1998) have studied the the twofold mixture model in detail
and their results were summarized in Chap. 8 of Murthy et al. (2004).

Let Fi (t) = exp{−(t/βi )
αi } be the survival function of the i th Weibull population

with density function fi (t) and its corresponding hazard rate function hi (t), i = 1, 2.

Then the distribution function of the mixture of two Weibull distributions is given
by

F(t) = pF1(t) + (1 − p)F2(t) (3.15)

with Fi (t), i = 1, 2 are given above. As a result, the model is characterized by
five parameters—the shape and scale parameters for the two subpopulations and the
mixing proportion parameter p, where 0 < p < 1.

The density and hazard rate functions of the mixture model are given by

f (t) = p f1(t) + (1 − p) f2(t) (3.16)

and

h(t) = pF1(t)

pF1(t) + (1 − p)F2(t)
h1(t) + (1 − p)F2(t)

pF1(t) + (1 − p)F2(t)
h2(t). (3.17)

The moments of the mixture model are simply the mixture of the component
moments.

3.6.1 Shape of the Density Function

The shape of the density function f (t) depends on the parameter values.
Murthy et al. (2004) pointed out out that although the twofold mixture model is
characterized by five parameters, the shape of the density function is only a function
of the two shape parameters, the ratio of the two scale parameters, and the mixing
proportion.

The possible shapes are given in Chap. 8 of Murthy et al. (2004):

• Decreasing
• Unimodal
• Decreasing followed by unimodal
• Bimodal

Figure 3.3 gives some density plots of the Weibull mixtures.
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Fig. 3.3 Weibull mixture density

3.6.2 Shape of the Hazard Rate Function

The shape of the hazard rate depends on the parameter values. Chap. 8 of
Murthy et al. (2004) also list the possible shapes which include, but not limited
to the following:

• Decreasing
• Increasing
• Unimodal followed by increasing (N shape)
• Decreasing followed by unimodal (reflected N shape)
• Bimodal followed by increasing

The next figure (Fig. 3.4) gives two of the many possible hazard rate shapes of the
Weibull mixture model.

We also note that a mixture of two Weibull distribution cannot give rise to a BT
shaped hazard rate. See, for example, Glaser (1980) for details.

Wondmagegnehu (2004) has fine-tuned the results of Jiang and Murthy (1998)
with a definite discriminant between the two classes based on the value of the mixing
proportion p with p1 = p and p2 = 1 − p as given in (3.15). In the case where the
two Weibull shape parameters are different, i.e., α1 �= α2 and both α1,α2 > 1, he
used several examples to illustrate all possible shapes that the mixture hazard rate
can encounter.
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3.6.3 Generalized Mixtures

Generalized mixtures are mixtures that represent the distribution function as a lin-
ear combination of the distribution functions of components in the mixture, and the
coefficients may be any real number. By contrast, the coefficients in usual mixtures
are proportions that lie between 0 and 1. The generalized mixtures appear in charac-
terization problems, in inference procedures and in some representations of systems.
For example, the distribution function of the lifetime of a parallel system can be
written as a generalized mixture of the distributions of series system lifetimes (see,
e.g. Navarro et al. 2007). For a comprehensive review, see Navarro et al. (2009).

For Weibull and inverse Weibull mixture models allowing negative weights, see
Jiang et al. (1999b).

3.6.4 Other Properties

Other properties of the twofold Weibull mixture such as the Weibull probability plots,
estimation of parameters, etc, see Chap. 8 of Murthy et al. (2004).
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3.7 Model Involving Two or More Inverse Weibull Distributions

Recall in Chap. 2, the inverse Weibull is obtained by inverting the Weibull random
variable. Its distribution function is given by

F(t) = exp
{−(β/t)α

}
, α,β, t >0. (3.18)

Jiang et al. (2001) have studied three models (mixture, competing risk and multi-
plicative) involving two inverse Weibull distributions.

3.7.1 Mixture of Two Inverse Weibull Distributions

The distribution function is given by

F(t) = pF1(t) + (1 − p)F2(t), 0 < p < 1, (3.19)

where F1(t) and F2(t) are the two basic inverse Weibull distributions of the form
given by (3.18) and αi and βi , (i = 1, 2) are the shape and scale parameters of
population i , respectively.

The density function of the mixture is simply given by

f (t) = p f1(t) + (1 − p) f2(t) (3.20)

where fi (t) = αiβi
αi t−αi −1e−(βi /t)αi , i = 1, 2.

Density Function

The density function for the mixture model can be one of the following two shapes:
(i) unimodal and (ii) bimodal. The figure on the next page (Fig. 3.5) gives two density
plots; one each of the two possible shapes.

Hazard Rate Function

The hazard rate function has a similar shape as its density function, namely it is
either unimodal or bimodal as illustrated by Fig. 3.6 given on the next page. This is
all together expected since the hazard rate of the two sub-populations are unimodal
(UBT).

http://dx.doi.org/10.1007/978-3-642-39106-4_2
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Inverse Weibull Probability Plots

A detailed study of the inverse Weibull probability plots and estimation of parameter
is given in Jiang et al. (2001).
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3.7.2 Competing Risk Model

The model is given by
F(t) = F1(t)F2(t) (3.21)

or equivalently,
F(t) = F1(t) + F2(t) − F1(t)F2(t).

where the two subpopulations are inverse Weibull distributions of the form given by
(3.18). The density function of the model is given by

f (t) = f1(t)F2(t) + f2(t)F1(t). (3.22)

The hazard rate of the competing risk model has a simple form, that is,

h(t) = h1(t) + h2(t) (3.23)

where hi is the hazard rate of the i th population, i = 1, 2.
Interesting enough, the shapes of the hazard rates in a competing risks model are

almost the same as those for the mixture model, i.e., either h(t) is UBT or bimodal.

3.7.3 Multiplicative Model

The model is given by
F(t) = F1(t)F2(t) (3.24)

where the two subpopulations are inverse Weibull distributions of the form given by
(3.18).

f (t) = f1(t)F1(t) + f2(t)F2(t). (3.25)

Although one would expect the density function of the multiplicative model to be
either unimodal or bimodal, an examination of the density plots for a range of para-
meter values, Jiang et al. (2001) found that the hazard rate function is always UBT,
so is its density function.

3.8 Mixtures of Two Generalized Weibull Distributions

In this section, we consider mixtures of two generalized Weibull distributions which
could be very useful in modeling human mortality data. It is obvious that a host of
distributions can be constructed through mixtures of this kind.
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For illustrative purpose, let F1 and F2 denote the flexible Weibull distribution and
the reduced additive Weibull distribution, respectively. The former is discussed in
Sect. 2.20 whereas the latter is specified by (3.8).

Bebbington et al. (2007) showed, that a mixture, assigning mortality to exogenous
or endogenous causes, using the reduced additive and flexible Weibull distributions,
models well human mortality over the entire life span.

Specifically, the two survival functions are

F1(t) = exp{−eαt−β/t − γt} (3.26)

and
F2(t) = exp{−(at)b − (at)1/b − ct}. (3.27)

The components of the mixture distribution are asymptotically consistent with
the reliability and biological theories of ageing. The relative simplicity of the mixing
distribution makes feasible a technique where the curvature functions of the corre-
sponding survival and hazard rate functions are used to identify the beginning and
the end of various life phases, such as infant mortality, the end of the force of natural
selection, and the late life mortality deceleration. The results are illustrated with a
comparative analysis of Canadian and Indonesian mortality data.

3.9 Composition of Two Cumulative Weibull Hazard Rates

The so called ‘ ’ model proposed by Stoyan et al. (2013) is essentially the sectional
Weibull hazard rate model discussed in Sect. 3.4.1. Instead of using the hazard rates
directly, the model is specified through a cumulative hazard rate defined by

H(t) = H1(t) + H2(t) (3.28)

where

H1(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
t
β1

)α1
for t ≤ t1

(
t1
β1

)α1
otherwise

(3.29)

and

H2(t) =
{

0 for t ≤ t2(
t−t2
β2

)α2
otherwise

(3.30)

The component Weibull hazard rates are right truncated as:

http://dx.doi.org/10.1007/978-3-642-39106-4_2
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h1(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
α
β

) (
t
β

)α1−1
for t ≤ t1

0 otherwise

(3.31)

and

h2(t) =
{

0 for t ≤ t2
α2
β2

(
t−t2
β2

)α2−1
otherwise.

(3.32)

Thus the cumulative hazard rate function is increasing on [0, t1], constant on [t1, t2]
and again increasing for t > t2.

The Weibull probability plot is constructed by Stoyan et al. (2013) and the least
squares method is used to estimate the model parameters. The model was applied as
a flaw distribution to fit the Weibull’s porcelain data.

3.10 Relative Ageing of Two 2-Parameter Weibull Distributions

Although this section does not discuss a generalized Weibull distribution, it never-
theless does fall within the scope of this chapter.

We say that X ages faster than Y if the ratio of the hazard rate of X over the hazard
rate of Y is an increasing function of t . The concept of relative ageing is a particular
form of partial ordering between two lifetime random variables. This concept was
defined in Sect. 2.10 of Lai and Xie (2006).

Suppose we have two independent Weibull random variables X and Y with dis-
tribution functions F(x) and G(y), respectively, given by

F(x) = 1 − exp
{−(x/β2)

α2
}
, G(y) = 1 − exp

{−(y/β1)
α1

}
. (3.33)

This ratio of the hazard rate of X to the hazard rate of Y is given by

β1α2

β2α1
× βα1−1

1

βα2−1
2

tα2−α1 (3.34)

which is an increasing function of t if α2 > α1.
Suppose E(X) = E(Y ), i.e., β2�(1 + 1/α2) = β1�(1 + 1/α1). Lai and Xie

(2003) have shown that var(X) ≤ var(Y ). Two Weibull distributions can also be
partially ordered with respect to the shape parameter in ‘convex ordering’ in the
sense as in Barlow and Proschan (1981, p. 105) (See also Sect 10.3.2 of Lai and Xie
(2006) for a brief definition).
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Chapter 4
Discrete Weibull Distributions
and Their Generalizations

4.1 Introduction

In lifetime modeling, it is common to treat failure data as being continuous, implying
some degree of precision in measurement. Too often in practice, however, failures
are either noted at regular inspection intervals, occur in a discrete process or are
simply recorded in bins. In life testing experiments, it is sometimes impossible or
inconvenient to measure the life length of a device, on a continuous scale. For exam-
ple, in the case of an on/off- switching device, the lifetime of the switch is a discrete
random variable. In many practical situations, reliability data are measured in terms
of the number of runs, cycles, or shocks the device sustains before it fails. In survival
analysis, we may record the number of days of survival for lung cancer patients since
therapy, or the times from remission to relapse are also usually recorded in number
of days. In this context, the geometric and negative binomial distributions are known
discrete alternatives for the exponential and gamma distributions, respectively. It is
well known that these discrete distributions have monotonic hazard rate functions
and thus they are unsuitable for some situations.

Fortunately, many continuous distributions can be ‘discretized’. As mentioned
above, the geometric and the negative binomial can be derived by ‘discretizing’
the exponential and gamma, respectively. There are three discrete versions of the
continuous Weibull distribution (Murthy et al. 2004, pp. 33–34). The discrete versions
of the normal and Rayleigh distributions were also proposed by Roy (2003) and
(2004) respectively. Recently, Burr XII and Pareto distributions were also discretized
by Krishna and Pundir (2009).

In this chapter, we limit ourselves to discuss the discrete Weibull-type distributions.

4.2 Discrete Distribution

Let the random variable X with support N+ = {1, 2, . . .} be the discrete lifetime of
a component and denote by p(k) the probability of a failure occurs at time k, i.e.,

C.-D. Lai, Generalized Weibull Distributions, SpringerBriefs in Statistics, 97
DOI: 10.1007/978-3-642-39106-4_4, © The Author(s) 2014
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p(k) = Pr {X = k} , k = 1, 2, . . . (4.1)

The above definition can be extended to a random variable Y with support N =
{0, 1, 2, . . .} by a simple translation Y = X − 1.

A convention is given for this chapter to avoid any possible confusion concerning
the nature of a function. Whenever a function, say g, is defined on N or N+, its
argument is denoted by i , thus writing g(i). If the function g is defined on a continuous
scale (e.g., [0,∞) or [1,∞)), then its argument is denoted by t , thus writing g(t).

As an exception to the above rule, we use a common notation p(i) to denote
the probability mass function of the discretized version of the continuous random
variable having density function f (t).

The reliability (survival) function that corresponds to X is given by

F(k) = Pr {X > k} =
∞∑

j=k+1

p( j), k = 1, 2, . . . , (4.2)

noting that F(0) = 1. The survival function may be defined over the whole non-
negative real line by

F(t) = F(k) for 0 ≤ k ≤ t < k + 1, (4.3)

where t ∈ [0,∞). Here F(t) is referred to the right continuous survival function.
The hazard (failure) rate function h(k) is defined as

h(k) = Pr(X = k | X ≥ k) = Pr(X = k)

Pr(X ≥ k)
= p(k)

F(k − 1)
, (4.4)

provided Pr(X ≥ i) > 0. The above equation may be expressed as

h(k) = F(k − 1) − F(k)

F(k − 1)
. (4.5)

The preceding Eq. (4.5) may be considered as the ‘classical discrete hazard rate
function’. Although this definition is widely used in the literature, there are a few
problems associate with this definition. We will discuss this issue in some details and
provide an alternative definition of discrete hazard rate over the next two subsections.

Shaked et al. (1995) gave the necessary and sufficient conditions for a sequence
{h(k), k ≥ 1} to be a failure (hazard) rate:

(a) For all k < m, h(k) < 1 and h(m) = 1. The distribution is defined over
{1, 2, . . . , m}, or

(b) For all k ∈ N+ = {1, 2, . . .}, 0 ≤ h(k) ≤ 1 and
∑∞

i=1 h(i) = ∞. The
distribution is defined over k ∈ N+ in this case.
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Further Relationships

It follows from (4.5) that

F(k) =
∏

1≤i≤k

(1 − h(i))

= (1 − h(1)) (1 − h(2)) · · · (1 − h(k)) . (4.6)

Moreover, it can be shown easily that

p(k) = F(k − 1)h(k) = h(k) (1 − h(1)) (1 − h(1)) · · · (1 − h(k − 1)) . (4.7)

Ageing classifications of discrete lifetimes are given in Roy and Gupta (1992).
Gupta et al. (1997) discussed monotonic properties of discrete failure (hazard) rates.

4.2.1 Some Problems of Usual (‘Classical’) Definition
of Discrete Hazard Rate

The definition of the failure rate h(k) given in (4.4) is different from its continuous
counterpart in several aspects. It is the conditional probability of failure at X = k
given the ‘device’ has not failed by k − 1 and thus h(k) ≤ 1. In contrast, it is the
product h(t)Δ (Δ small) that is approximately the probability of immediate failure
conditional on X > t for the continuous case. Hence h(t) of a continuous lifetime
can be unbounded in some situation but h(k) of a discrete lifetime model is always
finite.

The hazard rate defined by (4.4) is not additive for a competing risk model which
is equivalent to a system with components arranged in series.

In addition, the cumulative hazard function H(k) = ∑k
i=1 h(i) is not equivalent

to − log F(k) as in the continuous case. Thus,

H(k) =
k∑

i=1

r(i) �= − log F(k). (4.8)

For a more detailed discussion on the problems associated with this definition, see
for example, Sect. 6.10 of Lai and Xie (2006) or Xie et al. (2002).

4.2.2 Alternative Definition of Discrete Hazard Rate

Because of the problems associated with the classical definition of the failure rate
h(k), several authors have presented an alternative definition of a discrete failure rate
function, see Sect. 6.11 of Lai and Xie (2006) and the references therein. In order to
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make a distinction, the alternative failure rate function will be denoted by h1(k).

h1(k) = log

{
F(k − 1)

F(k)

}
, k = 1, 2, .. (4.9)

Equation (4.9) may be considered as a ‘nonclassical’ discrete hazard rate function.
Earlier, we have established that

− log F(k) �= H(k), H(k) = h(1) + h(2) + · · · + h(k).

However, if we alternatively define the cumulative hazard function as:

H1(k) = h1(1) + h1(2) + · · · + h1(k). (4.10)

Then it follows from (4.9) that

H1(k) = − log F(k). (4.11)

which has an analogous relation between the survival function and the cumulative
hazard function as for the continuous case.

A battery of discrete distributions are used in Xie et al. (2002) to illustrate a
‘non-classical’ definition of the discrete hazard rate function, which we shall also
investigate in the current paper, alongside the ‘classical’ definition of the discrete
hazard rate function.

Relationships Between h(k) and h1(k)

Fortunately, there is a simple relationship between the two definitions of failure
(hazard) rates h(k) and h1(k)::

h1(k) = − log
[
F(k)/F(k − 1)

]

= − log

{
F(k − 1) + F(k) − F(k − 1)

F(k − 1)

}
= log[(1 − h(k)] (4.12)

h(k) = 1 − e−h1(k), (4.13)

showing that the two concepts h(k) and h1(k) have the same monotonic property,
i.e., h1(k) is increasing (decreasing) if and only if h(k) is increasing (decreasing).
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4.3 Discrete Weibull Models

The distribution function, survival function and the hazard rate functions of the
continuous Weibull distribution, are respectively given by

F(t) = 1 − exp{−λtα}, (4.14)

F(t) = exp{−λtα} (4.15)

and
h(t) = αλeα−1. (4.16)

Here the lifetime variable X can only assume non-negative integer values and
this defines the support for F(t). There are several versions of discretized Weibull
distributions but we consider only three relatively well known discrete analogues of
the Weibull distribution.

Essentially, one can construct a discrete Weibull distribution by

• discretizing F(t) of the Weibull distribution, or
• discretizing the hazard rate function h(t) of the Weibull distribution.

4.3.1 Model-1

This model was proposed by Nakagawa and Osaki (1975). Its distribution function
is given by

F(k) =
{

1 − qkα

0
k = 0, 1, 2, 3 . . . ,

k < 0.
(4.17)

This was derived by discretizing the distribution function of the continuous
Weibull distribution given in (4.14) by letting t = k and q = e−λ, we obtain (4.17).

It follows from (4.17) that

p(k) = q(k−1)α − qkα . (4.18)

4.3.2 Model-2

This model was derived by Stein and Dattero (1984). The hazard rate function of the
model is given by

h(k) =
{

ckα−1

0
k = 1, 2, . . . , m,

k < 0.
(4.19)
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with α > 0 and 0 < c ≤ 1 and m is given by

m =
{ [c−{1/(α−1)}]+ if α > 1,

∞ if α ≤ 1; (4.20)

and [ ]+ represents the integer part of the quantity inside the square brackets.
Thus, the distribution is obtained by discretizing the hazard rate function of the

continuous Weibull distribution subject to the conditions given by Shaked et al.
(1995).

The probability mass function is

p(k) = ckα−1 ×
k−1∏
j=1

(1 − cjα−1); k = 1, 2, . . . , m. (4.21)

4.3.3 Model-3

This model was proposed by Padgett and Spurrier (1985) with distribution function
specified as

F(k) = 1 − exp

{
−

k∑
i=0

h(i)

}
= 1 − exp

{
−

k∑
i=0

ciα−1

}
, c > 0, k = 0, 1, 2, . . .

(4.22)
Note that the condition h(k) ≤ 1 is no longer required in this case. The hazard
rate h(k) = ckα−1 is in fact the alternative (nonclassical) discrete hazard rate h1(k)

defined by (4.9).

4.3.4 Estimation of Parameters

The traditional methods (method of moments and the maximum likelihood) are not
easy to implement when estimating the parameters of the discrete Weibull distribu-
tions.

Khan et al. (1989) discussed estimation of parameters of the type I (i.e., Model-1)
discrete Weibull distribution (4.17) and proposed the method of proportions to esti-
mate the parameters. They compared this method with the method of moments based
on simulated observations and studied its basic properties. The authors stated that
their method can be easily applied to the type II discrete Weibull model given by
(4.19). Santos and Alves (2013) proposed a new estimate of the shape parameter.
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4.3.5 Applications

The discrete Weibull (model-1) is applied by Santos and Alves (2013) to a financial
data set dealing with durations between violations in a quantitative risk management
environment.

4.4 Discrete Inverse Weibull Distribution

Recall, the inverse Weibull distribution is given by

F(t) = e−λt−α , t > 0. (4.23)

The inverse Weibull distribution has received considerable attention in the
literature. Keller and Kamath (1982) studied the shapes of the density and failure
(hazard) rate functions for the basic inverse model and Keller et al. (1985) used the
model for the reliability analysis of commercial vehicle engines. Erto (1989) intro-
duced further properties and identification of the model. Calabria and Pulcini (1989,
1990) dealt with parameter estimation of the model. Jiang and Murthy (1999) con-
sidered Weibull and inverse Weibull mixture models with negative weights. Also,
Drapella (1993) and Jiang et al. (2001) introduced graphical plotting techniques,
known as the inverse Weibull probability paper (IWPP) plot and the Weibull prob-
ability paper (WPP) plot to determine the suitability of the Weibull and the inverse
Weibull models for fitting a given data set. They showed that if IWPP plot is roughly
a straight line, then the inverse Weibull model may be used to fit the given data set.
Similarly if WPP plot is roughly a straight line, then the Weibull model may be used
to fit the data set concerned.

Drapella (1993) called (4.23) as the complementary Weibull distribution whereas
both Bergstrom and Edin (1992) and Mudholkar and Kollia (1994) called it the recip-
rocal Weibull distribution. Bergstrom and Edin (1992) has found the distribution a
good fit to an employment duration data set. A detailed study of the inverse Weibull
distribution including its model structure, hazard plot, parameter estimation and ap-
plication was given in Sect. 6.6 of Murthy and Djamaludin (2002). See also Sect. 2.6
of this monograph.

Aghababaei Jazi et al. (2010) proposed and studied a discrete version of the
inverse Weibull distribution and the some of the findings are given in the following
subsections.

4.4.1 Discrete Inverse Weibull Model

A discrete analogue of the continuous inverse Weibull is given by the cdf

F(k) = qk−α
, k = 1, 2, . . . . (4.24)

http://dx.doi.org/10.1007/978-3-642-39106-4_2
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and its corresponding probability function is

p(k) =
{

q, k = 1
qk−α −q(k−1)−α , k = 2, 3, . . .

(4.25)

where 0 < q < 1 and α > 0.

4.4.2 Derivation

It is easy to show that if X is a r.v. from distribution (4.23), then the distribution
function of [X ] + 1 is given by (4.24). It now follows that the proposed discrete
distribution may also be obtained from a continuous Weibull random variable through
the process of ‘inversion’ and then ‘discretization’.

Note that in (4.24), q = e−λ where λ is the scale parameter that appears in (4.23).

4.4.3 Properties of Its Probability Function

Figure 4.1 gives the plots of the probability function f (k) specified in (4.25)
for (i) q = 0.05, α = 3 and q = 0.2, α = 2 (ii). The scale parameter q
completely determines the probability function f (k) at k = 1. When log q ≥
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log(4.2)/(2−α − 1), f (k) is monotone decreasing. Otherwise, it is no longer
monotone decreasing but it is unimodal (with mode at 2). The shape parameter
α is more influential on f (k) than q after k = 1. When α becomes smaller, the tail
of f (k) becomes longer, i.e., the probability mass on smaller values of k are then
shifted to the larger values of k.

Also the probability function p(k) in (4.25) is not infinitely divisible because
there is no positive probability mass at k = 0; and hence the corresponding random
variable is not self-decomposable (see Steutel and van Harn 2004, for a proof).

4.4.4 Moments

The moments cannot be expressed in the closed form. The mean is given as

μ = E(X) =
∞∑

i=1

(1 − qi−β ) (4.26)

4.4.5 Inverse Weibull Probability Paper Plot

Drapella (1993) proposed the inverse Weibull transform

x = log(t), y = − log(− ln(F(t))

and called the plot y versus x the “inverse Weibull probability paper (IWPP) plot”.
He showed that IWPP plot is linear for the continuous inverse Weibull model.

Applying the same set of transformations to our discrete inverse Weibull model
(4.24), we then obtain a straight line given below:

y = αx − log(− log q). (4.27)

4.4.6 Hazard Rate Functions

For the discrete inverse Weibull distribution, the hazard rate and the alternative hazard
rate, are given by

h(k) = qn−α − q(k−1)−α

1 − q(n−1)−α ; k = 1, 2, . . . (4.28)
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Fig. 4.2 Discrete inverse Weibull hazard rate function

and

h1(k) = log

(
1 − q(k−1)−α

1 − qk−α

)
; k = 1, 2, . . . , (4.29)

respectively.
Figure 4.2 illustrates the alternative hazard rate function of the discrete inverse

Weibull for (q,α) = (0.5, 1), (0.05, 1), (0.001, 1). For q = 0.5, the alternative
hazard rate is a monotone decreasing function. For smaller values of q, it is unimodal
and hence non-monotone.

It is easy to show that if A = (1 − q)−1 ≥ B =
(

1 − q2−β)1/2
, then the

alternative (nonclassical) hazard rate is monotone decreasing, is unimodal otherwise.

For example, if A ≤ min

{
B,

1−q3−α

B4

}
, the alternative hazard rate is unimodal with

mode at k = 2.
In contrast to the discrete inverse Weibull, the hazard rate of the discrete Weibull

is monotone (increasing for α > 1 and decreasing for α < 1).
For a discussion on how to estimate hazard rate functions for discrete lifetimes

see Grimshaw et al. (2005).
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4.4.7 Estimation of Parameters

Aghababaei Jazi et al. (2010) presented four methods for estimating the parameters
q and β. These are (i) method of proportions, (ii) method of moments, (iii) heuristic
algorithm, and (iv) inverse Weibull probability plot (IWPP).

The first two are the traditional estimation methods, the third is a numerical
optimization algorithm and the last is a graphical method followed by the least
squares estimates.

4.4.8 Application

Aghababaei Jazi et al. (2010) fitted the discrete inverse Weibull to 18 lifetimes of
certain electronic devices given in Wang (2000).

4.5 Discrete Additive Weibull Distribution

In reliability modeling, it is common practice to treat failure data as being continuous,
implying some degree of precision in measurement. Too often in practice however,
failures are either noted at regular inspection intervals, occur in a discrete process,
such as switching instants, or are simply recorded in bins. How does this degree of
imprecision affect the models fitted, and the inferences to be drawn from them?

For example, an important concept in reliability is the bathtub shaped hazard
rate function, which consists of an initially decreasing hazard rate (the ‘wear-in’
phase) followed by an approximately constant hazard (the ‘useful’ phase) and finally
an increasing hazard rate (the ‘wear-out’ phase). The point of minimum hazard is
termed the ‘turning point’. This obviously provides an opportunity to improve the
expected operating time by means of ‘burn-in’ (using up the initial wear-in phase).

The very concept of bathtub-shaped of a discrete hazard rate function is murky,
with several possible definitions of the hazard rate as discussed in Sect. 4.2, It is
unclear whether these all produce the same shaped hazard rate function when fitted
to data, much less the same turning point and burn-in properties.

Most of the results presented below can be found in Bebbington et al. (2010,
2012).

The continuous additive Weibull distribution defined in (3.14) has survival func-
tion

F(t) = exp
{
−λ1tα − λ2tβ

}
for all t ∈ [0,∞), (4.30)

where λ1, λ2, α, β ∈ (0,∞) are parameters. Intuitively, F(t) is the survival function
of X = min{W1, W2}, where W1 and W2 are independent Weibull random vari-

http://dx.doi.org/10.1007/978-3-642-39106-4_3
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ables with parameters (λ1,α) and (λ2,β), respectively. Importantly, its hazard rate
function:

h0(t) = −F
′
(t)

F(t)
= αλ1tα−1 + βλ2tβ−1 (4.31)

can attain a bathtub shape, meaning that it is initially decreasing but ultimately
increasing. It has been shown in Xie and Lai (1996) that h0(t) is bathtub shaped
when α < 1 < β, or when β < 1 < α. The turning point of the hazard rate function
h0(t), i.e., the point t where the bathtub shaped hazard rate function achieves its
minimum, is given by (Xie and Lai 1996; Eq. 9)

t =
(
α(1 − α)λ1

β(β − 1)λ2

)1/(β−α)

(4.32)

when α < 1 < β, and by an analogous formula when β < 1 < α.
In this section we develop and explore a discrete analogue of the above hazard

rate function and in particular determine its shape and, when it exists, a (unique)
turning point.

4.5.1 Hazard Rates of the Discrete Additive Weibull Model

As noted earlier, several discrete lifetime distributions have been introduced in the
literature. Many such distributions have been derived by discretizing their continuous
counterparts. A number of discrete distributions are discussed in Xie et al. (2002),
whose hazard rate functions are explored with the help of the ratio of two consecutive
probabilities. We shall also encounter these ratios later in this section, especially when
dealing with the aforementioned ‘non-classical’ definition of the discrete hazard rate
function.

Throughout this section we concentrate on the discrete version of the additive
Weibull distribution due to its ability to produce increasing, decreasing, and bathtub
shaped hazard rate functions. The latter has also been produced by a geometric-
exponentiated Poisson competing risk model by Jiang (2010).

When the survival function is additive Weibull (4.30), then with the notation
q1 = exp{−λ1} and q2 = exp{−λ2} we have from (4.5) that

h(i) = 1 − qiα−(i−1)α

1 qiβ−(i−1)β

2 . (4.33)

The survival function that corresponds to (4.33) can be obtained from (4.6).
The following theorem given in Bebbington et al. (2010) specifies the possible

shapes of h(i).
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Theorem 4.1 We have the following statements:

• If either (i) α ≥ 1 and β > 1 or (ii) α > 1 and β ≥ 1, then h : N+ → [0, 1) is
strictly increasing.

• If α = 1 and β = 1, then h : N+ → [0, 1) is constant.
• If either (iii) α ≤ 1 and β < 1 or (iv) α < 1 and β ≤ 1, then h : N+ → [0, 1) is

strictly decreasing.
• Ifα < 1 < β, then h : N+ → [0, 1) is bathtub shaped with the minimum achieved

at one of the three points 	tα,β
, 1 + 	tα,β
, and 2 + 	tα,β
, where

tα,β =
(
α(1 − α)λ1

β(β − 1)λ2

)1/(β−α)

, (4.34)

where 	·
 is the floor function, that is, 	x
 is the largest integer k such that k ≤ x.
• For β < 1 < α, similar results are obtained as the preceding case.

Alternative Hazard Rate

The definition of the ‘non-classical’ hazard rate function h1 : N+ → [0,∞) is given
(4.9) by the formula

h1(i) = log[S(i − 1)/S(i)] = − log[1 − h(i)], (4.35)

where the second equality follows from (4.13), and is the definition used in Jiang
(2010). In the case of the additive Weibull survival function,

h1(i) = λ1

(
iα − (i − 1)α

)
+ λ2

(
iβ − (i − 1)β

)
. (4.36)

The survival function that corresponds to (4.36) can be obtained from (4.11), i.e.,

F1(k) =
k∏

i=1

e−h1(i). (4.37)

It appears that the overall shapes of the two hazard rate functions h(i) and h1(i)
are same, and we formulate this as the next theorem.

Theorem 4.2 The statements of Theorem 4.1 hold with h : N+ → [0, 1) replaced
by h1 : N+ → [0,∞).

Theorem 4.2 can be explained by first extending Eq. (4.35) to the continuous scale
(with t), then differentiating the result with respect to t , and in this way arriving at
the equation h′

1(t) = h′(t)/(1 − h(t)). Obviously, the signs of the derivatives h′
1(t)

and h′(t) coincide, and hence so do the monotonicity properties of h1(t) and h(t)
(see, e.g., Xie et al. 2002; Property 1) including their turning points.
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4.5.2 Discretizing the Hazard Rate of Continuous Weibull Model

Note that the factors iα − (i − 1)α and iβ − (i − 1)β on the right-hand side of
Eq. (4.36) are discrete analogues of the derivatives (d/dt)tα and (d/dt)tβ , which
are of course equal to αtα−1 and βtβ−1, respectively. In turn, discrete analogues of
the latter functions are αiα−1 and βiβ−1, respectively. Making these substitutions
on the right-hand side of Eq. (4.31), we arrive at the discrete version

h0(i) = αλ1iα−1 + βλ2iβ−1 (4.38)

of the continuous hazard rate function h0(t) given by Eq. (4.31).
Equation (4.38) can be derived simply by ‘discretizing’ the hazard rate of the

continuous additive Weibull model (4.31) by simply replacing t by i and [0,∞)

by N+.
As the new hazard rate is not bounded above by 1, we regard h0(k) is a nonclassical

discrete hazard rate so Eq. (4.11) applies and the survival function that corresponds
to (4.38) is given by

F0(k) =
k∏

i=1

e−h0(i), (4.39)

which is not the same as (4.37).

Note Type-III discrete Weibull distribution was also obtained this way.

Summary

We can obtain a discrete hazard rate at least in three ways via:

1. discretize the continuous survival function and find the classical hazard rate h(k)

using (4.5),
2. find the nonclassical hazard rate h1(t) using the relationship between h(k) and

h1(k) as given by (4.12) or (4.13), or
3. discretize the hazard rate function h(t) of the continuous lifetime distribution and

denote it by h0(k). Then consider the latter as a nonclassical discrete hazard rate.

4.5.3 Examples

Several discrete survival data sets are fitted by the three versions of discrete additive
Weibull model and the readers are referred to Bebbington et al. (2010) for details.

The following are fitted hazard rate plots for Aarset (1987) data where h(k), h0(k)

and h1(k) are given by (4.33), (4.39) and (4.37), respectively. The parameters of each
of the models were estimated by the maximum likelihood method.
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h : λ1 = 0.12,  λ2 = 4.710−19, α = 0.44, β = 9.62
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Fig. 4.3 Discrete additive Weibull hazard rate functions

Note that in Fig. 4.3, the discrete hazard rate functions were drawn as continuous
curves rather than step functions to improve readability.

4.5.4 Applications

Bebbington et al. (2012) fitted the discrete additive Weibull distribution to the
following data sets:

• Time to failure of 18 electronic devices (Wang 2000)
• Failure times of 50 devices (Aarset 1987)
• Lifetimes of 20 batteries (Ansell and Ansell 1987)
• Unit testing failure data (Xie and Lai 1996)
• BT-Serum reversal times (Carrasco et al. 2008).

4.5.5 Remark

While both the continuous and the discrete versions of the additive Weibull hazard
rate function have same shapes for any given set of parameters λ1,λ2,α and β,
application of the models to a range of data sets has shown that the behavior of the
fitted continuous model is not necessarily a strong guide to the behavior of the fitted
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discrete versions. This has implications for burn-in, in particular. Further, different
definitions of the discrete hazard rate functions can have different tail behavior.

4.6 Conclusion

This monograph gives an update on the work by Murthy et al. (2004) on general-
ized Weibull distributions. The aim is to afford the readers a number of families
of distributions in which the Weibull family is a special case. By and large, these
extensions/generalization provide more flexible hazard rate shapes for fitting real
life data than the Weibull distribution can deliver. For each generalized family, we
briefly describe it’s construction and present its reliability properties in some de-
tail. Furthermore, shapes of the density functions and the hazard rate functions are
provided whenever deemed to be appropriate.

In recent years, we witness the proliferation of lifetime distributions many of
which were derived via transformations of random variables. Despite their mathe-
matical elegance, these models are often overparameterized and they lack motivation.
In our view, the sample size of a reliability data set is usually small so a simpler but a
flexible reliability model is really what a researcher is looking for. One would hope
this could become a focus for future research on reliability modeling.
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