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Preface

The standard normal distribution dates back to a pamphlet of de Moivre dated
12 November 1733. Further improvements were given by Laplace in 1774. The
work of Gauss in 1809 and 1816 established techniques based on the normal
distribution, which became standard during the nineteenth century. For both
theoretical and practical reasons, the normal distribution is probably the most
important distribution, not only in statistics. However, as mentioned by Chew
(1968), ‘‘other probability distributions than the normal distribution may be more
convenient mathematically to serve as model for the observations.’’ Among the
symmetrical distributions with an infinite domain, the most popular alternative to
the normal is the logistic distribution which was already used by Verhulst (1845)
in economic and demographic studies as well as the Laplace or the double
exponential distribution which had its origin in 1774, where Laplace presented his
first law of error. Its ‘‘two-piece nature’’ and its lack of differentiability at zero
make the Laplace distribution sometimes unattractive and inconvenient.
Occasionally, the Cauchy distribution is used, noting tails are so heavy that the
mean and standard deviation as well as all higher moments are undefined. Sur-
prisingly, one distribution avoided attracting attention, although already Manou-
kian and Nadeau (1988) had stated that

…the hyperbolic-secant distribution, which has not recieved sufficient attention in the
published literature, and may be useful for students and practitioners.

During the last few years, however, several generalizations of the hyperbolic
secant distribution have become popular in the context of financial return data
because of its excellent fit. Nearly all of them are summarized within this Springer
Brief.

Nürnberg, March 2013 Matthias J. Fischer

v



References

Manoukian, E.B., Nadeau, P.: A note on the hyperbolic-secant distribution. Am. Stat. 42(1),
77–79 (1988)

Verhulst, PF.: Recherches mathématiques sur la loi d’accroissement de la population [Mathe-
matical Researches into the Law of Population Growth Increase]. Nouveaux Mémoires de
l’Académie Royale des Sciences et Belles-Lettres de Bruxelles 18, 1–42 (1845) http://gdz.sub.
uni-goettingen.de/dms/load/img/?PPN=PPN129323640_0018&DMDID=dmdlog7. Retrieved
18 Feb 2013

Victor, C.: Some useful alternatives to the normal distribution. Am. St. 22(3), 22–24 (1968)

vi Preface

http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN129323640_0018&DMDID=dmdlog7
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN129323640_0018&DMDID=dmdlog7


Contents

1 Hyperbolic Secant Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preliminary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 The GSH Distribution Family and Skew Versions . . . . . . . . . . . . . 15
2.1 Perk’s Distribution Family . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Properties of the GSH Family . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Introducing Skewness by Splitting the Scale Parameter . . . . . . . 18
2.4 Introducing Skewness by Means of the Esscher

Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Vaughan’s Skew Extension. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The NEF-GHS or Meixner Distribution Family. . . . . . . . . . . . . . . 27
3.1 GHS Distribution: Definition and History. . . . . . . . . . . . . . . . . 27
3.2 GHS Distribution: Properties. . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Introducing Skewness by Means of the Esscher

Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The BHS Distribution Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Introducing Skewness and Kurtosis via Order Statistics . . . . . . . 37
4.2 BHS Distribution: Definition. . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 BHS Distribution: Properties. . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 EGB2 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii

http://dx.doi.org/10.1007/978-3-642-45138-6_1
http://dx.doi.org/10.1007/978-3-642-45138-6_1
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_1#Bib1
http://dx.doi.org/10.1007/978-3-642-45138-6_2
http://dx.doi.org/10.1007/978-3-642-45138-6_2
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec5
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Sec5
http://dx.doi.org/10.1007/978-3-642-45138-6_2#Bib1
http://dx.doi.org/10.1007/978-3-642-45138-6_3
http://dx.doi.org/10.1007/978-3-642-45138-6_3
http://dx.doi.org/10.1007/978-3-642-45138-6_3#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_3#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_3#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_3#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_3#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_3#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_3#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_3#Bib1
http://dx.doi.org/10.1007/978-3-642-45138-6_4
http://dx.doi.org/10.1007/978-3-642-45138-6_4
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_4#Bib1


5 The SHS and SASHS Distribution Family. . . . . . . . . . . . . . . . . . . 45
5.1 Variable Transformations Based on the Sinus

Hyperbolic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Definition of the SHS and SASHS Distribution Family . . . . . . . 47
5.3 Basic Properties of the SHS and SASHS

Distribution Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Application to Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Excursion: Moment-Ratio Plots . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Return Series Under Consideration . . . . . . . . . . . . . . . . . . . . . 57
6.3 Fitting Generalized Hyperbolic Secant Distribution:

Unconditional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Fitting Generalized Hyperbolic Secant Distribution:

Conditional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendix A: R-Code: Fitting a BHS Distribution . . . . . . . . . . . . . . . . 71

viii Contents

http://dx.doi.org/10.1007/978-3-642-45138-6_5
http://dx.doi.org/10.1007/978-3-642-45138-6_5
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_5#Bib1
http://dx.doi.org/10.1007/978-3-642-45138-6_6
http://dx.doi.org/10.1007/978-3-642-45138-6_6
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec1
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec2
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-45138-6_6#Bib1


Chapter 1
Hyperbolic Secant Distributions

Abstract The hyperbolic secant distribution (HSD) has its origin in Fisher [1], Dodd
[2], Roa [3] and Perks [4]. Additional properties are developed by Talacko [6–8]. It
is symmetric and bell-shaped like the Gaussian distribution but has slightly heavier
tails. However, in contrast, both probability density function, cumulative density
function and quantile function, admit simple and closed-form expressions, which
makes it appealing from a practical and a theoretical point of view. In particular,
HSD can be used as starting distribution to obtain generalized distribution systems
which exhibit skewness and heavier (or lighter) tails.

Keywords Definition and properties · Characterizing functions · Parameter esti-
mation

1.1 Preliminary Functions

Before the hyperbolic secant distribution (HSD) is introduced, we provide some use-
ful results on specific functions which are intimately connected to the understanding
and the derivations of the following results, and which can be skipped by the familiar
reader.

Fundamental to the later developments are the so-called hyperbolic functions, in
particular hyperbolic cosine and hyperbolic sine functions which are defined by

cosh(x) = 0.5
(
ex + e−x) and sinh(x) = 0.5

(
ex − e−x) .

Their inverse functions are given by

acosh(x) = cosh−1(x) = ln(x +
√

x2 − 1) and asinh(x) = ln(x +
√

x2 + 1)

with derivatives

M. J. Fischer, Generalized Hyperbolic Secant Distributions, 1
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45138-6_1,
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2 1 Hyperbolic Secant Distributions

[acosh(x)]′ = 1√
x2 − 1

and [asinh(x)]′ = 1√
x2 + 1

.

In addition, its reciprocal counterparts, hyperbolic secant and hyperbolic cosecant
are given by

sech(x) = 1

cosh(x)
and csch(x) = 1

sinh(x)
.

Various series and integral representations are summarized inGradshteyn andRyzhik
[5], e.g., the following power series representation of sech(x) for x ≥ 0:

sech(x) = 2e−x

1 − (−1)e−2x
= 2e−x

∞∑

k=0

[
(−1)e−2x

]k = 2
∞∑

k=0

(−1)ke−(2k+1)x .

(1.1)
According to Gradshteyn and Ryzhik [5], 1.422.1

sech(πx/2) = 4

π

∞∑

k=1

(−1)k+1 · 2k − 1

(2k − 1)2 + x2
(1.2)

and, from Gradshteyn and Ryzhik [5], 1.431.4,

sech(x) =
∞∏

n=0

(
1 + 4x2

(2n + 1)2π2

)−1

. (1.3)

Hyperbolic functions are strongly related to trigonometric functions, e.g.,

cosh(ix) = cos(x) and − i sinh(ix) = sin(x). (1.4)

Occasionally, we make use of the cosecans function csc(x) = 1/ sin(x) and of
the inverse tangens and cotangens function, i.e., arctan(x) and arccot(x) which are
connected through the relation

arccot(x) = π

2
− arctan(x). Besides,

π

2
− arctan(x) = arctan(x−1) (1.5)

for 0 < x < 1. Recall that their derivatives are

arctan′(x) = 1

1 + x2
, arccot′(x) = − 1

1 + x2
. (1.6)
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1.2 Definition

The HSD has its origin in Fisher [1], Dodd [2], Roa [3] and Perks [4]. Some of the
properties are also derived byTalacko [6–8] andLai [9]. Sections in textbooks dealing
with HSDs can be found, for example, in Johnson and Kotz [10], Manoukian [11]
andManoukian andNadeau [12]. For a brief contribution on possible generalizations
we refer to Fischer [13].

Formally, a random variable X = ln |Y1/Y2|, where Y1, Y2 are independent stan-
dard normal variables, is said to follow a hyperbolic secant or reciprocal of the
hyperbolic cosine distribution. The corresponding density derives as follows: First,
consider the distribution of Z = Y1/Y2. From Mood et al. [14], Eq. (28) in theorem
8 we conclude that

fZ (z) =
∫ ∞

−∞
|y1|φ(zy1)φ(y1)dy1

=
∫ ∞

−∞
|y1| 1

2π
exp

(
−0.5(y1

√
z2 + 1)2

)
dy1

= 1
√
2π(z2 + 1)

E

(
|Y1/

√
z2 + 1|

)
= 1√

2π(z2 + 1)

√
2

π

= 1

π(z2 + 1)
, z ∈ R

i.e., Z follows aCauchy distribution. Second, V = |Z | has a half-Cauchy distribution
with density

fV (v) = 2

π(v2 + 1)
, v ≥ 0.

Finally, the density of X = ln(V ) reads as

f (x) ≡ fX (x) = fV (ex ) · ex

= 2ex

π(e2x + 1)
= 2

π(e−x + ex )
= 1

π cosh(x)
. (1.7)

Obviously, the density is symmetrical around zero, i.e., f (−x) = f (x) and hasmode
at zero with fX (0) = 1/π . Using (1.6), (1.7) and substituting u ≡ ev , the cumulative
distribution function of X is

F(x) =
∫ x

−∞
2

π
· ev

1 + (ev)2
dv = 2

π

∫ ex

0
· 1

1 + u2 du = 2

π
· arctan(ex ). (1.8)

Consequently, the HS inverse function derives as

F−1(p) = ln
(
tan

(π

2
· p

))
. (1.9)
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and the survival or tail function by

S(x) = 1 − F(x) = 1 − 2

π
· arctan(ex ).

Random numbers are easily generated using either (1.9) or the representation
X = ln |Y1/Y2| from above. Making use of these representations, Kravchuk [15]
proposed a location rank test based on the HSD which is more robust to distribu-
tional misspecifications.

1.3 Properties

1. Characteristic function, moment-generating function and moments: The char-
acteristic function of an HSD is

C (t) =E(eit X ) =
∫ ∞

−∞
eitx 1

π
· sech(x)dx

(1.1)= 2

π

∫ ∞

−∞
eitx

∞∑

k=0

(−1)ke−(2k+1)|x |dx

= 4

π

∞∑

k=0

(−1)k

2k + 1

∫ ∞

−∞
eitx (2k + 1)

2
e−(2k+1)|x |dx

= 4

π

∞∑

k=0

(−1)k

2k + 1
· 1

1 + t2

(2k+1)2

= 4

π

∞∑

k=1

(−1)k+1 · 2k − 1

(2k − 1)2 + t2

(1.2)= sech(π t/2). (1.10)

In addition, the moment-generating function (mgf) of X exists and—using (1.4) and
(1.10)—is given by

M (t) = E(et X ) = C (−it) = sec(π t/2) = 1

cos(π t/2)
for |t | < 1.

Consequently, all moments exist, are finite, and given by E(Xk) = M (k)(0). In
particular,

E(X) = 0 = E(Xi ) for odd i ≥ 1,

V ar(X) = E(X2) = π2

4
, i.e. σX = √

V ar(X) = π

2
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Table 1.1 Generating functions for different parameterizations of X = ln |Y1/Y2|
No. 1 2 3

Reference [28] [29] [16]
Function 2X/π X 2X
Equation (1.11) (1.7) (1.12), σ = π

f (x) (2 cosh(xπ/2))−1 (π cosh(x))−1 (2π cosh(x/2))−1

F(x) 2
π
arctan(exp(πx/2)) 2

π
arctan(exp(x)) 2

π
arctan(exp(x/2))

F−1(p) 2
π
ln(tan(πp/2)) ln(tan(πp/2)) 2 ln(tan(πp/2))

M (t) (cos(t))−1 (cos(tπ/2))−1 (cos(tπ))−1

ϕ(t) (cosh(t))−1 (cosh(tπ/2))−1 (cosh(tπ))−1

Var 1 π2/4 π2

and

E(X4) = 5π4

16
.

Hence, the kurtosis coefficient (i.e., the fourth standardized moment) of an HSD
calculates as

m4 = E(X4)

(V ar(X))2
= 5,

indicating that the HSD has heavier tails and higher peakedness than the normal
distribution (m3 = 3), even than the logistic distribution (m3 = 4.2). Occasionally,
the standardized HSD, i.e., with zero mean and unit variance is required. For this
purpose, define Z ≡ X/(π/2) with density

fZ (x) = 1

exπ/2 + e−xπ/2 = 1

2
· sech(xπ/2) = 1

2 cosh(xπ/2)
. (1.11)

More generally, introducing location parameter μ ∈ R and scale parameter σ > 0,
the density in (1.11) generalizes to

fH S(x;μ, σ) ≡ 1

σ
· fZ

(
x − μ

σ

)
= 1

2σ
· 1

cosh
(
π

x−μ
2σ

) . (1.12)

Please note, that X∗ = ln(G1/G2) with independent Gamma(0.5, 1)-variables
G1, G2 is considered occasionally in the literature, which also has hyperbolic secant
law with scale parameter σ = π in (1.12). This family also results as a special case
of the so-called exponentially generalized Beta of the second kind (briefly: EGB2),
see Bondesson [16], example 7.2.4. Table 1.1 summarizes the different parameteri-
zations.

2. Tail behavior and ψ-function: The tail behavior of a HSD is similar like that of
a logistic distribution which has tail function 1− F(x) = exp(−x)/(1+ exp(−x)).
The hyperbolic secant distribution exhibits (asymptotically) log-linear tails (see also
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Fig. 1.1 HS distribution: Density, log-density, ψ-function, inverse hazard functio

Fig. 1.1 upper right panel) which mean that the log-density is a linear function in
the left and right tails. Occasionally, such tails are termed semi-heavy (see, e.g.,
Sato [17]). The hyperbolic secant ψ-function1 (see Fig. 1.1, lower left panel) is
defined by

ψ(x) = − f ′(x)

f (x)
= tanh(x) = ex − e−x

ex + e−x
= e2x − 1

e2x + 1

approaches ±1 for x → ±∞.

3. Infinite divisibility: A distribution F is said to be infinitely divisible (ID) if, for
each n ≥ 1, it can be decomposed into n identical convolution factors Fn (see,
e.g. Lukacs [18]). In particular, for the moment-generating function it holds that

1 ψ-functions form the basic element in the context of robust statistics, in particular of robust
regression, which is an alternative to least squares regression when data are contaminated with
outliers or influential observations.
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M (t) = (Mn(t))n . Bondesson [16] showed that HSDs are so-called extended gen-
eralized Gamma distributions (briefly EGGC, see box below). This follows from its
moment-generating function which admits the representation

M (t) = 1

cos(π t/2)
=

∞∏

j=0

(
1 − t

1 − 2 j

)−1 (
1 − t

1 + 2 j

)−1

as an (infinite) sum of positive and negative Gamma variables. As a consequence,
HSD are self-decomposable2 and therefore infinitely divisible (see also Pitman and
Yor [19]).

Extended generalized Gamma distributions: The class of generalized
Gamma convolutions (GCC) was introduced by O. Thorin [20] in 1977, as
a useful tool for providing infinite divisibility of particular distributions. It is
the smallest class of distributions on R+ that contains (positive) Gamma dis-
tributions and is closed with respect to convolution and weak limits. Noting
that many distributions are limit distributions for sums of independent positive
and negative Gamma variables, Thorin [21] generalized his class to so-called
extended generalized Gamma distributions, briefly EGGC. For a detailed treat-
ment on EGGCs we refer to Bondesson [16].

4. Mean-variance mixture representation:Moreover, refering toBarndorff-Nielsen
et al. [22], the hyperbolic distribution admits a representation as a normal variance
mixture with mixing distribution g, i.e., its density is given by

f (x) =
∫ ∞

0

1√
2π

exp(−0.5x2/σ)g(σ )dσ

where g(·) denotes the density of a random variable V on (0,∞)which has moment-
generating function

MV (t) =
∞∏

i=0

(
1 − 2t

(1/2 + i)2

)−1

= 1

cos(π
√
2t)

.

The variable V also appears in the first hitting time distribution for Brownian motion
(see, e.g. Barndorff-Nielsen et al. [22], theorem 4.1).

5. Maximum domain of attraction: Assume now that X1, . . . , Xn are mutually
independent with common hyperbolic secant distribution function F(x). As its vari-
ance exists, the normalized sample mean Xn = 1

n (X1 + · · · + Xn) converges to

2 A more restrictive concept than ID is self-decomposability (SD). A random variable is said to be

self-decomposable if, for each c, 0 < c ≤ 1, we have X
d= c · X + εc, where εc is a random variable

independent of X .
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a standardized normal distribution according to the central limit theorem. Similar
results are available for the maximum of the sample: Under suitable normalization,
the normalized distribution of Zn = max{X1, . . . , Xn} converges to a Fréchet dis-
tribution Λ(x), i.e.,

lim
n→∞ P(Zn ≤ an x + bn) = lim

n→∞ Fn(an x + bn) = Λ(x). (1.13)

This can be shown on the basis of the inverse hazard function (see Fig. 1.1, lower
right panel)

h(x) = 1 − F(x)

f (x)
= cosh(x)(π − 2atan(exp(x)))

and because limx→∞ h′(x) = limx→∞ sinh(x)(π − 2atan(exp(x))) − 1 = 0. Fur-
thermore, bn ≡ F−1(1− 1/n) and an = h(bn) in (1.13). For a detailed treatment of
that issue we refer to Embrechts et al. [23].

6. Self-reciprocality: The HSD is self-reciprocal as is the normal distribution. This
means that its density f is proportional to its characteristic function C with propor-
tional constant

√
2π :

√
2π · f (x; 0,√π/2) =

√
2π

√
π√

2π cosh(
√

πx/
√
2)

= 1

cosh(
√

πx/
√
2)

= C (x; 0,√π/2).

7. Entropy: Entropy as a concept dates back to the works of Clausius in 1850 and
of Boltzmann around 1870, who gave entropy a statistical meaning and related it
to statistical mechanics. Next, the concept of entropy was evolved by Gibbs and
Von Neumann in quantum mechanics, and was reintroduced in information theory
by Shannon [24] in 1948. Information entropy is a purely probabilistic concept and
is regarded as a measure of the uncertainty related to a random variable X . Given
a continuous random variable X with (existing) density fX (x), the corresponding
differential or Boltzmann-Gibbs-Shannon (BGS) entropy is given by

H(X) = H f (X) ≡ −
∫ ∞

−∞
f (x) ln( fX (x))dx . (1.14)

If X follows a Gaussian distribution, H(X) = 0.5 ln(2πe). Plugging the HS density
(1.7) into Eq. (1.14),

H(X) = ln (π) + ln (2) .

The maximum entropy (MaxEnt) approach, established by Jaynes [25], [26], essen-
tially relies in finding the most suitable probability distribution under the available
information. According to Jaynes [25], the resulted maximum entropy distribution
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is the “least biased estimate possible on the given information.” More formally,
assume that g denotes another density and let Eg(·) denote the expectation operator
with respect to g. Further, let κ = κ(ε) be a k × 1 moment function for some finite
number k. The MaxEnt principle recovers a least biased f by maximizing (1.14)
subject to the data-consistent moment restriction

E f (κ) = Eg(κ). (1.15)

The solution of this problem is commonly termed as MaxEnt density f (·, λ0) with
representation given by

f (ε; λ) = 1

C(λ)
exp(−λ′κ(ε)), ε ∈ R, (1.16)

with the k × 1 (parameter) vector λ and normalizing constant C(λ), evaluated at
λ = λ0 which in turn corresponds to the Lagrange multiplier vector that causes
(1.16) to satisfy the moment-condition (1.15). For instance, the (standard) Gaussian
density solves the optimization problem

max H(X) subject to restriction (1.15),where κ(ε) = ε2, λ = 1 andC = √
2π.

This means that the normal distribution results as MaxEnt distribution when both
mean and variance are given, Similarly, the HS distribution solves the problem

max H(X) subject to restriction (1.15), where κ(ε) = ln{cosh(ε)}, λ = 1 and C = π,

i.e., also results as MaxEnt distribution under a different moment condition.

8. Relations to other distributions: As seen in Sect. 1.2, the HSD basically arises
from a Cauchy or the ratio of two independent Gaussian distributions. There is also
an interesting relation to the logistic distribution (see, Talacko [7]). Recall that the
HS density is

f (x) = C1 · sech(x) with C1 = 1

π
.

Squaring this density (up to the normalizing constant), the classical logistic distrib-
ution appears:

g(x) = C2 · sech2(x) with C2 =
[∫ ∞

−∞
sech2(x)dx

]−1

= 1

2
.

More generally, Fisher [27] introduces the so-called z-distribution with density

h(x) = Cn · sechn(x), where Cn = 1

2n−1B(n/2, n/2)
.
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Fig. 1.2 Big 5 distributions: density and log-density

For a detailed treatment we refer to Barndorff-Nielsen et al. [22]. The z-distribution
admits the stochastic representation 1

2 ln(Fn:n), where Fn:n denotes the classical
F-distribution with (n, n) degrees of freedom.

Finally, we conclude with Fig. 1.2 which compares both the density and the
log-density of the “big five” distributions on the real line, namely Normal, Logis-
tic, hyperbolic secant, Laplace (i.e., double exponential), and Cauchy distribution.
Except for the Cauchy distributions for which the variance does not exist, all vari-
ances are normalized to one.

1.4 Parameter Estimation

Assume that X1, ...Xn is an i id random sample from a hyperbolic secant den-
sity with unknown parameter vector θ = (μ, σ )′ as in (1.12). Typically, estima-
tors θ̂ of θ are obtained by the method of moments (MM, see Mood et al. [14],
Chap. 2, for instance) or by the Maximum Likelihood method (ML, see Greene [30],
Chap. 17, for instance). The main idea of the method of moments is to equate the
first two moments (around zero) of the HS variable and the corresponding sample
moments, i.e.,

E(X) = μ
!= Xn and E(X2) = μ2 + σ 2 != X2

n .

Solving for the unknown parameters μ and σ , the following MM estimators result:

μ̂M M = Xn, σ̂M M =
√

X2
n − (

Xn
)2

.
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Alternatively, the Maximum Likelihood (ML) estimator of θ maximizes the log
Likelihood function which in turn is defined as the logarithm of the joint density
fX1,...,Xn (x1, ..xn;μ, σ) of the random sample. In case of an HS density, the log
Likelihood function calculates as follows:

L L(θ) ≡ ln fX1,...,Xn (x1, ..xn; θ) = ln
n∏

i=1

fXi (xi ;μ, σ)

= −n ln(2σ) −
n∑

i=1

ln

{
cosh

(
π

xi − μ

2σ

)}
.

Consequently, θ̂M L satisfies the so-called likelihood equation

∂L L(θ)

∂θ
=

(
∂L L(θ)

∂μ
,
∂L L(θ)

∂σ

)′
= 0

with

∂L L(θ)

∂μ
=

sinh
(

π (x−μ)
2σ

)
π

2σ cosh
(

π (x−μ)
2σ

) and

∂L L(θ)

∂σ
=

−2 σ cosh
(

π (x−μ)
2σ

)
+ sinh

(
π (x−μ)

2σ

)
π x − sinh

(
π (x−μ)

2σ

)
π μ

2σ 2 cosh
(

π (x−μ)
2σ

) ,

and guarantees that ∂2L L(θ)

∂θ2

∣∣
∣
θ=θ̂M L

< 0. Under certain regularity conditions it is

known that, if θ0 is the true and unknown parameter vector, the ML estimator θ̂M L

satisfies √
N (θ̂M L − θ0)

d−→ N (0, I −1
N ),

where I −1
N denotes the inverse of the so-called Fisher information matrix. For prac-

tical purposes, a simple estimator of the Fisher information matrix is the so-called
BHHH or outer product of gradient (OPG) estimator which is defined as

Î −1
N =

[
n∑

i=1

ĝi ĝ
′
i

]−1

with ĝi = ∂ ln f (xi ; θ̂M L)

∂θ̂M L
.
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Chapter 2
The GSH Distribution Family
and Skew Versions

Abstract The generalized secant hyperbolic (GSH) distribution denotes a popular
symmetric subclass of Perk’s family which was already introduced in 1932. It allows
for any kurtosis higher than 1.8 and, hence, admits both thin and fat tail behavior.
Under a slightly different parameterization, the GSH family was re-examined by [1]
who also derived additional properties. Based on the GSH family, there are three
different proposals in the literature—related to Fischer and Vaughan [2], Fischer
[3], and Vaughan [4]—how to additionally introduce skewness which are discussed
within this chapter.

Keywords Definition and properties · Perk’s distribution · Scale parameter split ·
Esscher transformation · Vaughan’s skew version

2.1 Perk’s Distribution Family

Already in 1932, the British actuary Wilfred Perks [5]—being interested in gen-
eral functions for graduating life-table data—introduced a large class of probability
densities of the form

f (x) = a0 + a1e−x + a2e−2x + · · · + ame−mx

b0 + b1e−x + b2e−2x + · · · + bne−nx
(2.1)

with parameters a0, a1, . . . , am , b0, b1, . . . , bn such that f is actually a probability
density. Setting m = 1, a0 = 0, a1 = 1 and n = 2, b0 = 1, b1 = 0, b2 = 1, Eq. (2.1)
reduces to hyperbolic secant distribution:

f (x) = 2

π
· e−x

1 + e−2x
= 1

π
· 1

cosh(x)
, x ∈ R.

M. J. Fischer, Generalized Hyperbolic Secant Distributions, 15
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45138-6_2,
© The Author(s) 2014
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For b0 = b2 = 2, the logistic distribution is recovered. Slightly more generally,
Talacko [6] discussed specific distribution families with m = 1, a0 = 0 and n = 2,
b0 = b2, i.e., densities of the form

f (x) = a1e−x

b0 + b1e−x + b0e−2x
= c

ex + k + e−x
= cex

e2x + kex + 1
, x ∈ R

(2.2)
where c √ a1/b0 is a normalizing constant and k √ b1/b0 > −2 makes sure that
(2.2) is actually a density. For −2 < k ≥ 2 but k ∞= 0 replace k in (2.2) by 2 cos(λ)

with 0 ≥ λ < π . Talacko [6] calculated the corresponding characteristic functions
as follows:

C (t) = E(eit X ) = c
∫ ∈

−∈
eitx dx

ex + 2 cos(λ) + e−x
= c

∫ ∈

−∈
e(i t+1)x dx

e2x + 2 cos(λ)ex + 1

= c
∫ ∈

−∈
e(i t+1)x dx

(ex + eiλ)(ex + e−iλ)
= c

∫

C

e(i t+1)zdz

(ez + eiλ)(ez + e−iλ)

= c · π

sin(λ)
· sinh(λt)

sinh(π t)
= π

λ
· sinh(λt)

sinh(π t)
.

Note that from lim
t≡0

C (t) = 1 we concluded that c = sin(λ)
λ

. For k > 2, replace λ by

iθ , i.e. k by cos(iθ) = cosh(θ) in order to obtain with a similar calculation

C (t) = π

θ
· sin(θ t)

sinh(π t)
and c = sinh(θ)

θ
.

It took about 50years until Talacko’s generalized secant hyperbolic (GSH) distribu-
tion was re-examined by Vaughan [1] under the slightly different parameterization

k = k(η) =
{
cos(η), −π < η ≥ 0,
cosh(η), η ∗ 0

and with scaling constant c2 = c2(η) such that zero mean and unit variance is
achieved:

f (x; η) = c1(η) · exp(c2(η)x)

exp(2c2(η)x) + 2a(η) exp(c2(η)x) + 1
(2.3)

= c1(η)

2 (cosh(c2(η)x) + a(η))
(2.4)

with

a(η) = cos(η), c2(η) =
√

π2−η2

3 , c1(η) = sin(η)
η

· c2(η) for η ∈ (−π, 0],
a(η) = cosh(η), c2(η) =

√
π2+η2

3 , c1(η) = sinh(η)
η

· c2(η) for η > 0.
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Vaughan [1] also derived the cumulative distribution function, given by

F(x; η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + 1
η
arccot

(
− exp(c2(η)x)+cos(η)

sin(η)

)
for η ∈ (−π, 0),

exp(πx/
→
3)

1+exp(πx/
→
3)

for η = 0,

1 − 1
η
arccoth

(
exp(c2(η)x)+cosh(η)

sinh(η)

)
for η > 0

and the inverse distribution function, given by

F−1(u; η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
c2(η)

ln
(

sin(ηu)
sin(η(1−u))

)
for η ∈ (−π, 0),

→
3

π
ln

(
u

1−u

)
for η = 0,

1
c2(η)

ln
(

sinh(ηu)
sinh(η(1−u))

)
for η > 0.

2.2 Properties of the GSH Family

The density from (2.3) is chosen so that the GSH variable has zero mean and unit
variance, the range of the “kurtosis parameter” η is∈ (−π,∈). Actually, Fischer and
Klein [16] proved that the η is a kurtosis parameter in the sense of van Zwet [7]. The
GSH distribution includes the logistic distribution (η = 0) and the hyperbolic secant
distribution (η =−π/2) as special cases and the uniform distribution on (−→

3,
→
3)

as limiting case for η ≡ ∈. Figure 2.1 displays different densities and log-density.
All densities are unimodal.
The moment-generating function also depends on η and is given by

M (u; η) =
⎧
⎨

⎩

π
η
sin(uη/c2(η)) csc(uπ/c2(η)) for η ∈ (−π, 0),→
3u csc(

→
3u) for η = 0,

π
η
sinh(uη/c2(η)) csc(uπ/c2(η)) for η > 0.

It also satisfies (see Vaughan [1], p. 222)

M (u; η) =
⎧
⎨

⎩
1 + 1

2u2 + 1
4!

21π2−9η2

5π2−5η2
u4 + O(u5) for η ∈ (−π, 0],

1 + 1
2u2 + 1

4!
21π2+9η2

5π2+5η2
u4 + O(u5) for η > 0

establishing that V ar(X) = 1, so that the kurtosis coefficient m4 = E(X4) is

m4 =
⎧
⎨

⎩

21π2−9η2

5π2−5η2
for η ∈ (−π, 0],

21π2+9η2

5π2+5η2
for η > 0.
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Fig. 2.1 GSH distribution: Log-density, density for different η ∈ [−π, 5]

It is readily apparent that m4 decreases as η tends to ∈ and that m4 ∈ (1.8,∈).
Vaughan [1] also states that there is a unique member of the GSH family that corre-
sponds to any given kurtosis for regular unimodal distributions:

η = −π

√
5m4 − 21

5m4 − 9
for m4 ∗ 4.2 and η = π

√
21 − 5m4

5m4 − 9
for m4 ≥ 4.2.

In particular, when η = π then m4 = 3, the kurtosis of a normal distribution. Note
also that if ν denotes the degrees of freedom for a Student-t distribution with a given
(finite) kurtosis, then the parameter η in the GSH family with the same first four
moments is−π

→
(9 − ν)/(ν + 1) for 4< ν < 9, 0 for ν = 9 and π

→
(ν − 9)/(ν + 1)

for ν > 9.

2.3 Introducing Skewness by Splitting the Scale Parameter

The first skew version of Vaughan’s GSH distribution was proposed by Fischer and
Vaughan [2]. Application to unconditional and conditional financial return models
followed up with Fischer [8] and Palmitesta and Provasi [9]. The main idea of this
approach is to split the scale parameter of the GSH distribution into two parameters
representing the left and the right part across the expectation value. Note that this
idea was already used by Fernández et al. [10] and Fernández and Steel [11] in order
to design a skew Student-t distribution. Let I+(x) denote the indicator function for
x on R+ and I−(x) the indicator function for x on R−. It follows that
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Fig. 2.2 SGSH1 distribution: Effect of γ for fixed η = 0.2 and γ ∈ [1, 10] (left panel) and η = 2.5
and γ ∈ [0.1, 1] (right panel)

f (x; η, γ ) = 2γ

γ 2 + 1

{
fGSH (x/γ ; η) · I−(x) + fGSH (γ x; η) · I+(x)

}

= 2c1

γ + 1
γ

·
(

exp(c2x/γ ) · I−(x)

exp(2c2x/γ ) + 2a exp(c2x/γ ) + 1
+ exp(c2γ x) · I+(x)

exp(2c2γ x) + 2a exp(c2γ x) + 1

)

is a density function which is symmetric for γ = 1, skewed to the right for γ > 1
and skewed to the left for 0 < γ < 1. The corresponding distribution will be termed
the skewed GSH distribution of type I (SGSH1) in the sequel. The effect of γ on the
GSH density is illustrated in Fig. 2.2.

FollowingFischer [3], both cumulative distribution function and quantile function
admit closed forms, namely

F(x; η, γ ) = 2γ 2

γ 2 + 1
·
(

FGSH (x/γ ) · I−(x) +
(

γ 2 − 1 + 2FGSH (γ x)

2γ 2

)

· I+(x)

)

,

F−1(x; η, γ ) = γ F−1
GSH

(

x · γ 2 + 1

2γ 2 ; η

)

I−A (x)+ 1

γ
F−1

GSH

(
x · γ + 1

2
− γ − 1

2
; η

)
I+A (x).

with

I−
A (x) =

{
1, if x <

γ 2

1+γ
,

0, if x ∗ γ 2

1+γ
.

and I+
A (x) = 1 − I−

A (x).

Referring to Fernández and Steel [11], the power moments of an SGSH1-variable Z
can be derived using the following calculation scheme:
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E(Zr ) = E
+(Xr ) · 2γ

γ 2 + 1
·
(
γ −r−1 + (−1)r γ r+1

)
with E

+(Xr ) √
∫ ∈
0

xr fGSH (x)dx .

Evidently, E+(Xr ) equals the r -th power moment of the GSH distribution (which
can be obtained from the corresponding moment-generating function) divided by
two when r is even. For odd r and t ∞= 0, Palmitesta and Provasi [9] derive the
following expression1:

E
+(Xr ) = c1Γ (r + 1)

2cr+1
2

→
a2 − 1

· Lr,a

defining

Lr,a √
[

Lr+1

(

− 1
√

a2 − 1 + a

)

− Lr+1

(
1

√
a2 − 1 − a

)]

, where Lr (x) √
∈∑

k=1

xk

kr

denotes the polylogarithmic function (see Lewin [12]) which is defined for x ∈ C

and |x | < 1. Consequently, the first four power moments derive as

E(Z) = c1L1,a(1 − γ 2)

γ c22
→

a2 − 1
, E(Z2) = γ 4 − γ 2 + 1

γ 2 ,

E(Z3) = 6c1L2,a(1 − γ 6 + γ 4 − γ 2)

γ 3c42
→

a2 − 1

and

E(Z4) = (21π2 + sgn(t)9 t2)(1 + γ 8 − γ 2 − γ 6 + γ 4)

γ 4(5π2 + sgn(t)5η2)
.

Using the relationship between the centered and uncentered moments (e.g., Stuart
and Ord [13]), the derivation of the third and fourth standardized moments is tedious
but straightforward. As expected, both η and γ determine the skewness and the
kurtosis. It should also be noted that all other higher moments exist.

2.4 Introducing Skewness by Means of the Esscher
Transformation

A second way to introduce skewness into Vaughan’s GSH distribution was recently
discussed by Fischer [3], who used the existence of the moment-generating function
to construct asymmetric densities by means of the so-called Esscher transformation.

1 We exclude the case η = 0, which corresponds to the logistic distribution and refers to Palmitesta
and Provasi [9], instead.
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Fig. 2.3 SGSH2 distribution: h for fixed η = 0.2 and h ∈ [−1, 0] (left panel), and η = 2 and
h ∈ [0, 1] (right panel)

Esscher transformation: Originally, this concept was a tool in actuarial sci-
ence suggested by Esscher [14], which was popularized by Gerber and Shiu
[15] who applied this concept to value derivative securities. Given a random
variable X with moment-generating function MX (t) and density fX (x), the
Esscher-transformed density with parameter h is defined by

f (x; h) √ exp(hx) f (x)/M (h). (2.5)

Note that if X is Gaussian, the resulting Esscher-transformed variable is again
Gaussian (and thus symmetric) butwith different scale and location. In contrast,
Esscher-transformations of symmetric non-Gaussian densities frequently pro-
duce asymmetric distributions, where h ∞= 0 governs the amount of skewness,
and symmetry is obtained for h = 0.

Plugging (2.3) into (2.5), the Esscher-transformed GSH density for h ∞= 0 derives as

f (x; η, h) √

⎧
⎪⎨

⎪⎩

sin(hπ) sin(η)
π sin(ht) · exp((h+1)x)

exp(2x)+2 cos(η) exp(x)+1 for − π < η < 0,
sin(hπ)

hπ
· exp((h+1)x)
exp(2x)+2 exp(x)+1 for η = 0,

sin(hπ) sinh(η)
π sinh(hη)

· exp((h+1)x)
exp(2x)+2 cosh(η) exp(x)+1 for η > 0

(2.6)

and will be termed as skew GSH densities of type II, or briefly SGSH2 densities in
the sequel. Examples of SGSH2 densities are plotted in Fig. 2.3.

Note that for −π < η < 0 and h ∞= 0 we can derive the corresponding moment-
generating function of a SGSH2 variable X ,
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E(eu X ) =
∫ ∈
−∈

sin(hπ) sin(η)

π sin(ht)

exp((h + u + 1)x)

exp(2x) + 2 cos(η) exp(x) + 1
dx

= sin((h + u)η)

sin((h + u)π)

sin(hπ)

sin(hη)

∈∫

−∈

sin((h + u)π) sin(η) exp(((h + u) + 1)x)dx

π sin((h + u)η)(exp(2x) + 2 cos(η) exp(x) + 1)
.

= sin((h + u)η)

sin((h + u)π)

sin(hπ)

sin(hη)
.

Similar reformulations hold for η ∗ 0 and we finally arrive at

M (u) =
⎧
⎨

⎩

(sin((h + u)η) sin(hπ)) / (sin((h + u)π) sin(hη)) for − π < η < 0,
((h + u) · sin(hπ)) / (h sin((h + u)π)) for η = 0,
(sinh((h + u)η) sin(hπ)) / (sin((h + u)π) sinh(hη)) for η > 0.

All moments of the SGSH2 distribution exist. In particular, the first four power
moments are given by

E(X) =
⎧
⎨

⎩

η cot(hη) − π cot(hπ) for − π < η < 0,
(1 − hπ cot(hπ))/h for η = 0,
η coth(hη) − π cot(hπ) for η > 0,

E(X2) =
⎧
⎨

⎩

π2 − η2 − 2ηπ cot(hη) cot(hπ) + 2π2 cot2(hπ) for − π < η < 0,
π2 − 2π/h · cot(hπ) + 2π2 cot2(hπ) for η = 0,
η2 + π2 − 2ηπ coth(hη) cot(hπ) + 2π2 cot2(hπ) for η > 0,

E(X3) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−η3 cot(hη) + 3η2π cot(hπ) + 6ηπ2 cot(hη) cot2(hπ) + 3ηπ2 cot(hη)

−6π3 cot3(hπ) − 5π3 cot(hπ) for − π < η < 0,
6π2/h · cot2(hπ) + 3π2/h − 6π3 cot3(hπ) − 5π3 cot(hπ) for η = 0,
η3 coth(hη) − 3η2π cot(hπ) + 6ηπ2 coth(hη) cot2(hπ) + 3ηπ2 coth(hη)

−6π3 cot3(hπ) − 5π3 cot(hπ) for η > 0,

E(X4) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η4 + 5π4 − 4η3π coth(hη) cot(hπ) + 12η2π2 cot2(hπ) + 6η2π2

−24ηπ3 coth(hη) cot3(hπ) − 20ηπ3 coth(hη) cot(hπ)

+24π4 cot4(hπ) + 28π4 cot2(hπ) for − π < η < 0.
5π4 − 24π3/h · cot3(hπ) − 20π3/h cot(hπ) + 24π4 cot4(hπ)

+28π4 cot2(hπ) for η = 0,
η4 + 5π4 + 4η3π cot(hη) cot(hπ) − 12η2π2 cot2(hπ) − 6η2π2

−24ηπ3 cot(hη) cot3(hπ) − 20ηπ3 cot(hη) cot(hπ) + 24π4 cot4(hπ)

+28π4 cot2(hπ) for η > 0,
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Consequently, the variance of an SGSH2 variable is given by

V ar(X) =
⎧
⎨

⎩

π2(1 + cot2(hπ)) − η2(1 + cot2(hη)) for − π < η < 0,
π2(1 + cot2(hπ)) − 1/h2, for η = 0,
π2(1 + cot2(hπ)) + η2(1 − coth2(hη)) for η > 0.

2.5 Vaughan’s Skew Extension

Recently, Vaughan [4] advocated skew-extended GSH (S-EGSH) distribution fami-
lies as a natural generalization of the GSH representative. For constants c > h ∗ 0,
k, ωq > 0 and parameters a and b satisfying either ωkb > a > 0 or 0 > a > ωkb
Vaughan [4] discusses, e.g.,

f (x) = C1
exp(ax)

[
(exp(bx) + c)k − hk

]ω (2.7)

with normalizing constant

C1 = bc−λ+kω

⎡

⎣
∈∑

j=0

Γ (ω + j)

Γ (ω) j ! κk j B(λ, k( j + ω) − λ)

⎤

⎦

−1

,

where B(a, b) denotes the Beta function, λ = a/b and κ = h/c. The original GSH
family in (2.4) is recovered by setting

a = b = c2(η), c = a(η), h =
√

a(η)2 − 1, k = 2, w = 1

in (2.7). The corresponding cumulative function is given by

F(x) = C1

∑∈
j=0

Γ (ω+ j)
j ! κk j Bτ(u)(λ, k( j + ω) − λ)

∑∈
j=0

Γ (ω+ j)
j ! κk j B(λ, k( j + ω) − λ)

for τ(u) √ c

exp(bu) + c

and where Bu(a, b) denotes the incomplete Beta function. The above conditions on
the parameters ensure the densities are positive, and further that the distribution has
well-defined moment-generating functions, and hence all moments finite. They can
be expressed in terms of the Gamma function and its derivatives. For all S-EGSH
members there is a unique mode (Fig. 2.4).
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Fig. 2.4 S-EGSH distribution: Densities with a = 1, C = 4, h = 1, k = 2, w = 1 and b ∈ [1, 2]
(left panel), and a = 1, b = 1, C = 4, h = 1, k = 2 and w ∈ [1, 6] (right panel)
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Chapter 3
The NEF-GHS or Meixner Distribution Family

Abstract Another way to generalize the hyperbolic secant distribution with respect
to its tail behavior is to consider the ρ-th convolution. This was originally investi-
gated byBaten (1934) for ρ ∈ N followed byBaten’s [11] generalization for arbitrary
ρ > 0. In order to introduce skewness, it was suggested to apply the Esscher trans-
formation afterwards. The resulting distribution is frequently termed as NEF-GHS
or Meixner distribution and is the focus of this chapter.

Keywords Definition and properties · Convolution of HS distribution · Natural
exponential family · Random number generation

3.1 GHS Distribution: Definition and History

Another line of research which became popular in finance has its roots in the work
of Baten [3] who derived the probability density function of

X √ X1 + · · · + Xn,

where X1, . . . , Xn are independent hyperbolic secant copies with scale parameter
α > 0 for finite n ∈ N. In the limit n = ≥, Xn converges to a normal variable with
variance 2.More generally, Harkness and Harkness [11] discuss distribution families
with characteristic function

C (t) = sech(αt)ρ, α > 0, ρ > 0 (3.1)

which can be identified as the ρ-th convolution of a hyperbolic secant variable. This
family is commonly known as generalized hyperbolic secant (GHS) distribution
with shape parameter ρ and scale parameter α (which we set to one henceforth).
The underlying GHS density follows from the inversion formula and Gradshteyn
and Ryzhik ([7], 3.985.1):

M. J. Fischer, Generalized Hyperbolic Secant Distributions, 27
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45138-6_3,
© The Author(s) 2014
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Fig. 3.1 GHS distribution: Density and log-density for ρ ∈ [0.5, 3]

f (x; ρ) = 1

2π

∫ ≥

−≥
e−it xC (t)dt = 1

π

∫ ≥

0
cos(t x) · sech(t)ρdt

= 2ρ−2

πΓ (ρ)
· Γ

(ρ

2
+ i

x

2

)
Γ

(ρ

2
− i

x

2

)

= 2ρ−2

πΓ (ρ)
·
∣∣∣Γ

(ρ

2
+ i

x

2

)∣∣∣
2

= 2ρ−2Γ 2(ρ/2)

πΓ (ρ)
·

≥∏

n=0

[

1 +
(

x

ρ + 2n

)2
]−1

, (3.2)

where the last equality follows from Abramowitz and Stegun ([1], p. 256). The
standardized counterpart (see Fig. 3.1) with variance one is

f ∞(x; ρ) √ 2ρ−2∈ρ

πΓ (ρ)
·
∣∣
∣∣Γ

(
ρ

2
+ i

∈
ρ x

2

)∣∣
∣∣

2

. (3.3)

Simpler forms of the density are provided by Baten [3] and Harkness and Harkness
[11] for ρ ∈ N. For ρ = 1, the hyperbolic secant density from Chap.1 is recovered
using Gradshteyn and Ryzhik ([7], 8.332.2),

|Γ (0.5 + ix)|2 = π

cosh(πx)
.

For even ρ = 2n (n ∈ N) in (3.2), the corresponding counterpart is

|Γ (n + ix)|2 = π Pn

x sinh(πx)
for n = 1, 2, . . . and Pn √

n∏

i=1

[
(i − 1)2 + x2

]
.

http://dx.doi.org/10.1007/978-3-642-45138-6_1
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3.2 GHS Distribution: Properties

1. Distribution function, moment-generating function and moments: Unfortu-
nately, the cumulative distribution admits no closed form in general and has to
be calculated numerically from the characteristic function (e.g., using Fast Fourier
Transformation) or from the density (e.g., using suitable integration algorithms). In
addition, a rough approximation is available based on an Edgeworth expansion (see
Harkness and Harkness [11])

F(x; ρ) ≡ Φ(x/
∈

ρ) + 1

12ρ
Φ(3)(x/

∈
ρ).

The moment-generating function immediately follows from (3.1),

M (t) =
(

1

cos(t)

)ρ

, |t | < π/2.

Since its characteristic function in (3.1) is analytic, all moments exist are finite and
given by E(Xk) = ikC (k)

G H S(0). In particular,

E(X) = E(X3) = 0, E(X2) = ρ = V ar(X) and

E(X4) = 3ρ2 + 2ρ, i.e. m4 = 3 + 2

ρ
.

Consequently, the fourth standardized moment m4 increases as ρ decreases and is
bounded below by three which is achieved if ρ tends to infinity, and unbounded
above.

2. Random number generation: Because the quantile function admits no simple
expression, generation ofGHS randomnumbers relies on acceptance-rejectionmeth-
ods as suggested by Devroye [6] for ρ ∗ 1. In contrast, for 0 < ρ < 1 we can apply
a result of Harkness and Harkness [11] which states that a GHS-variable can be
constructed from a couple of standard normal variables (Y1, Y2) with correlation
0 < ρ < 1 as follows

X √ ln

∣∣∣∣
∣
Y1/Y2 − ρ
√
1 − ρ2

∣∣∣∣
∣
. (3.4)

For ρ ∗ 1, the rejection algorithm of Devroye [6] basically uses an envelope con-
structed with the normal distribution in the main body and with the exponential
distribution in the tails. For reason of brevity, we skip details and refer to Devroye
[6], instead. The final algorithm works as follows (Fig. 3.2):
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Fig. 3.2 SGHS distribution: Density and log-density for t = 0.6 and ρ ∈ [−1.5, 1.5]

Rejection method for the GHS distribution, ρ ∗ 1
[Set-up.]
t → ρ

5/8

s → exp(1/(3
∈

ρ))

C → ∈
2πρ

(ρ/e)ρ

Γ (ρ+1)
pn → Cs

gt → g(t) where g(x) := 1∈
2πρ

(
1 + x2

ρ2

)(ρ−1)/2

exp (−x arctan(x/ρ))

λ → g(t)/|g≤(t)| (i.e., λ → (t/(ρ2+t2) + arctan(t/ρ))−1)

pt → 2Cgtλ

[Generator.]
repeat

generate i.i.d. uniform [0,1] random variates U, V .
if U <

pn
pn+pt

then generate a standard normal random variate N
set X → N

∈
ρ

if |X | > t then Accept → False
else W → V pn(2πρ)−1/2 exp

(−X2/2ρ
)

Accept → [W < Cg(X)]
if not Accept

then Accept → [W < Csg(X)]
if Accept then
Accept → [W < f (X)]

else generate an exponential random variate E
set X → t + λE
W → V Cgt exp(−E)

Accept → [W < f (x)]
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if Accept, then with probability 1/2, set X → −X
until Accept
return X

3.3 Introducing Skewness by Means of the Esscher
Transformation

1. SGHS distributions: As themoment-generating functionM (t) of aGHS-variable
X exists, a very simple way to obtain a skew version is to apply the Esscher trans-
formation to X in order to obtain the following skew GHS distribution (see, e.g.,
Grigelionis [8]) for |h| < π/2

f (x; ρ, h) = ehx

MG H S(h)
· fG H S(x; ρ)

= ehx

cos(h)−ρ
· 2ρ−2

πΓ (ρ)
·
∣∣
∣Γ

(ρ

2
+ i

x

2

)∣∣
∣
2

= 2ρ−2

πΓ (ρ)
·
∣∣∣Γ

(ρ

2
+ i

x

2

)∣∣∣
2
exp(hx + ρ ln(cos(h))). (3.5)

A more convenient parameterization results by setting β √ tan(h) ∈ (−≥,≥):

f (x; ρ, β) =
(

1
√
1 + β2

)ρ
2ρ−2

πΓ (ρ)
·
∣∣∣Γ

(ρ

2
+ i

x

2

)∣∣∣
2
exp(arctan(β)x), (3.6)

where we made use of the relation cos(arctan(x)) = (
∈
1 + x2)−1. This skew GHS

distribution is known in the statistical literature as NEF-GHS or Laha-Lukacs dis-
tribution (e.g., Morris [20] or Jørgensen [14] pp. 100-103). Defining δ = ρ/2 and
starting fromM (t) = (cos(t/2))−2δ for |t | < π , an (equivalent) density given by

f (x; δ, h) = (2 cos(h/2))2δ

2πΓ (2δ)
· exp(hx) · |Γ (δ + ix)|2 (3.7)

is known as the Meixner distribution in the mathematical and/or financial literature
(e.g., Meixner [19] or Schoutens [23, 24]). Henceforth, (3.5) will used for further
derivations.

2. Moment-generating functions, moments and tails: The moment-generating
function of a SGHS variable exists and is derived as follows for |h| < π/2:

M (t) =
∫ ≥

−≥
etx ehx

cos(h)−ρ
· 2ρ−2

πΓ (ρ)
·
∣∣
∣Γ

(ρ

2
+ i

x

2

)∣∣
∣
2

dx
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=
∫ ≥

−≥
e(h+t)x

cos(h)−ρ
· cos(h + t)−ρ

cos(h + t)−ρ
· 2ρ−2

πΓ (ρ)
·
∣∣∣Γ

(ρ

2
+ i

x

2

)∣∣∣
2

dx

= cos(h + t)−ρ

cos(h)−ρ

∫ ≥

−≥
e(h+t)x

cos(h + t)−ρ
· 2ρ−2

πΓ (ρ)
·
∣∣∣Γ

(ρ

2
+ i

x

2

)∣∣∣
2

dx

=
(

cos(h)

cos(h + t)

)ρ

=
(

(
√
1 + β2)−1

cos(arctan(β) + t)

)ρ

. (3.8)

Consequently, all moments exist. In particular, the first four power moments are

E(X) = ρβ,

E(X2) = ρ2β2 + ρβ2 + ρ,

E(X3) = ρ3β3 + 3 ρ2β3 + 3 ρ2β + 2 ρ β3 + 2 ρ β,

E(X4) = β2ρ3(ρβ2 + 6β2 + 6) + ρ2(11β4 + 14 β2 + 3) + 2ρ(3β4 + 4β2 + 1)

From this, we conclude that V ar(X) = ρ(1 + β2). Further, third and fourth stan-
dardized moments are given by

m3 = β
(
ρ2β2 + 3 ρ β2 + 3 ρ + 2 β2 + 2

)

(
1 + β2

)√
ρ

(
1 + β2

) ,

m4 = ρ3β4 + 6 ρ2β4 + 6 ρ2β2 + 11 ρ β4 + 14 ρ β2 + 3 ρ + 6β4 + 8β2 + 2

ρ
(
1 + β2

)2 .

In terms of the second parameterization (see Grigelletto and Provasi [10]), skewness
and kurtosis “simplify” to

m3 = sin(h)

√
1

δ(cos(h) + 1)
and m4 = 3 − cos(h) − 2

δ
.

Grigelionis [9] shows that SGSH distributions have semi-heavy tails, i.e.,

f (x; ρ, h) ∼
{

C−|x |ρ−1 exp(−(π − h)|x |) as x → −≥,

C−|x |ρ−1 exp(−(π + h)|x |) as x → +≥.

This SGHS family results as a special case from Grigelionis’s [9]. Generalized z
(GZ) distributions with characteristic function
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CG Z (t) =
(

B(β1 + it
2π , β2 − it

2π )

B(β1, β2)

)ρ

setting β1 = 0.5 + h
2π and β2 = 0.5 − h

2π (see also Mazzola and Muliere [17]).
Moreover, for δ = 1 the exponential generalized Beta distribution of the second kind
(EGB2) is included, see McDonald [18] and Chap.4.

3. Random number generation: Devroye [6] developes an algorithm based on the
acceptance-rejection technique for ρ ∗ 1 and λ > 0 which works as follows:

Generator for the NEF-GHS distribution, repeat
generate U, V i.i.d. uniformly on [0,1]
if U < pl/(pl+pm+pr )

then generate E exponential
X → tl − E/λl

T → V g(tl) exp(−E)

else if U > (pl+pm )/(pl+pm+pr )

then generate E exponential
X → tr − E/λr

T → V g(tr ) exp(−E)

else generate W uniformly on [0,1]
W → tl + 1/λm ln(1 − W (1 − exp(2δλm)))

(if λm = 0, set X → tl + 2δW )
T → V g(tm) exp(λm(X − tm))

(if λm = 0, set T → V pm/2δ)
Accept → [T < g(X) exp(−1/3ρ)] (’quick accept’)
if not Accept

then Accept → [T < g(X)] (’quick reject’)
if Accept then Accept → [T < f (x)]

until Accept
return X

Alternatively, Grigoletto and Provasi [10] propose to approximate the Meixner
density with Johnson’s SU translation system (see Johnson [12]) which is highly
flexible and, through its functional forms, is able to closely approximatemany heavy-
tailed continuous distributions. Also, simulating from this distribution is relatively
simple.

4. Characterizations: A first characterization of the SGHS distribution is connected
to so-called natural exponential families, briefly NEF’s (see, e.g., Barndorff-Nielsen
[2] or Morris and Lock [21]). NEFs are parametric families of distributions with
natural parameter θ ∈ Θ where the corresponding random variable X satisfies

Pθ (X ∈ A) =
∫

A
exp(θx − ψ(θ))d F(x), (3.9)

http://dx.doi.org/10.1007/978-3-642-45138-6_4
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for a certain function ψ and where F denotes a cumulative distribution function,
without loss of generality. Restricting analysis to the NEF subclass with quadratic
variance functions (briefly: NEF-QVF) of the form

V ar(X) = V (μ) = v0 + v1μ + v2μ
2 with μ = E(X), (3.10)

it is known (see Laha and Lukacs [15], Bolger and Harkness [4], Morris [20] and
Slate [25]) that NEF-QVF has only six members, namely, normal, Poisson, binomial,
Gamma, negative binomial, and SGHS distribution. For the latter, in (3.9) and (3.10)

ψ(x) = −ρ ln(cos(h)), v0 = 0, v1 = ρ, v2 = ρ−1.

Note in addition, that ψ ≤(θ) = E(X) and ψ ≤≤(θ) = V ar(X). For a multivariate
generalization of NEF-QVF’s we refer to Casalis [5], whereas Letac and Mora [16]
deal with NEF distributions with cubic variance function.

A second characterization originates in Meixner [19] from the theory of orthogonal
polynomials: Morris [20] proves that {Pm}m∗0 with P0 = 1 and

Pm(x, μ) = V m(μ)

{
dm

dμm
f (x; θ)

}
/ f (x; θ), m ∗ 1 (3.11)

forms a family of orthogonal polynomials for a NEF-QVF density f (x; θ). For
instance, assuming f in (3.11) to be Gaussian, Hermite polynomials appear. In case
of SGHS densities f , the resulting polynomial turns out to be so-called Meixner-
Pollaczek polynomials with

PM
m (x) √ (2λ)m

m! · eimφ · 2F1(−m, λ + ix; 2λ; 1 − e−2iφ)

and where 2F1 denotes the hypergeometric function and (·)m the Pochhammer
symbol.

Meixner processes: Since SGHS distributions are infinitely divisible, a spe-
cific Lèvy process {Xt }t ∗ 0 can be associated. This was done by Schoutens
and Teugels [22] and Grigelionis [8] and called as Meixner process. It
starts at zero, i.e., X0 = 0, has independent and stationary increments, i.e.,
Xt+s − Xt = f (t), and Xt follows a SGHS or Meixner distribution with para-
meters (μ, σ, β, δt). Grigelionis [8] shows that this process has Lèvy triplet
(γ, 0, ν) with

γ = ρ

2
tan(h/2) − ρ

∫ ≥

1

sinh(hx)

sinh(πx)
dx, ν(dx) = ρ

2

(
exp(hx)

x sinh(πx)

)
.
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In particular, it has noBrownian part and a pure jump part governed by the Lèvy
measure (see also Mazzola and Muliere [17]). Because

∫ 1
−1 |x |ν(dx) = ≥,

the process is of infinite variation. Pricing of financial derivatives is one of the
most popular applications of Meixner processes, see Schoutens [24].
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Chapter 4
The BHS Distribution Family

Abstract The shape of a probability distribution is often characterized by the distri-
bution’s skewness and kurtosis. Starting from a symmetric “parent” density f on the
real line, we can modify its shape (i.e., introduce skewness and in-/decrease kurtosis)
if f is appropriately weighted. In particular, every density w on the interval (0, 1)
is a specific weighting function. In this chapter, we follow up a proposal of Jones
[12] and choose the Beta distribution as underlying weighting function. “Parent”
distributions like the Student-t, the logistic, and the normal distribution have already
been investigated in the literature. Based on the assumption that f is the density
of a hyperbolic secant distribution, we focus on the Beta-hyperbolic secant (BHS)
distribution. In contrast to the Beta-normal distribution and to the Beta-Student-t
distribution, BHS densities are always unimodal and all moments exist. In contrast
to the Beta-logistic distribution, the BHS distribution is more flexible regarding the
range of skewness and leptokurtosis combinations.

Keywords Definition and properties · Weighting function · Order statistics
approach · EGB2 distribution

4.1 Introducing Skewness and Kurtosis via Order Statistics

Several techniques can be applied to symmetric distributions in order to generate
asymmetric oneswith possibly lighter or heavier tails. In terms of density functions—
provided their existence—most of these methods can be represented by

g(x; π) = f (x)w(F(x); π), (4.1)

where g denotes the transformed density, f and F the (symmetric) density and cumu-
lative distribution function, respectively, of the original (“parent”) distribution and
w is an appropriate weighting function on the interval (0, 1) with parameter vector π

M. J. Fischer, Generalized Hyperbolic Secant Distributions, 37
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(see, for instance, Ferreira and Steel [8]). Choosing w(u; φ) = 2F(φF−1(u)), the
skewing mechanism of Azzalini [2, 3] is recovered. Similarly, using

w(u; φ) = 2

φ + 1
φ

f (φsign(0.5−u)F−1(u))

f (F−1(u))
(4.2)

corresponds to applying different parameters of scale to the positive and the negative
part of a symmetric density (see, for example, Fernández et al. [7] and Theodossiou
[18]).

In particular, every probability density on (0, 1) which is not uniform can be used
either to introduce skewness and/or to modify the kurtosis of the parent distribution.
A very attractive choice is the density of a Beta distribution, i.e.,

w(x;σ1, σ2) = 1

B(σ1, σ2)
xσ1−1(1 − x)σ2−1, σ1, σ2 > 0, (4.3)

where B(a, b) = ∫ 1
0 ta−1(1 − t)b−1dt denotes the Beta function (cf. Jones [12]).

Examples where (4.3) has been used in the literature include the following:

• Aroian [1], Prentice [17]: Beta-logistic distribution (which is also termed as
exponential generalized beta of the second kind or EGB2 distribution, or ln F
distribution), see also Sect. 4.4.

• Eugene et al. [6]: Beta-normal (BN) distribution,
• Jones and Faddy [13]: Beta-Student-t distribution.

Fischer and Vaughan [9] introduced the BHS distribution as a weighted hyperbolic
secant distribution with weights from (4.3). Whereas both Beta-normal and Beta-
Student-t distribution do not guarantee unimodality—except for a special parame-
terization given in Ferreira and Steel [8]—the BHS distribution does. In contrast to
the Beta-Student-t distribution, all moments of the BHS distribution exist. Although
the Beta-logistic and the BHS distribution are very similar, the BHS distribution is
more flexible regarding skew and leptokurtic data, see Fischer and Vaughan [9].

Note that (4.3) can be replaced with

w(x, a, b) = abxa−1(1 − xa)b−1, a > 0, b > 0, x ∈ [0, 1],

the density of the so-called the Kumaraswamy (K) distribution, see Kumaraswamy
[15], which has properties similar to the beta distribution but has some advantages
in terms of tractability. Whereas Cordeiro and de Castro [5] discuss, in particular,
the K-normal distribution family, Fischer [10] focusses on the K-hyperbolic secant
(briefly: KHS) case.
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4.2 BHS Distribution: Definition

Recall from Chap.1 that the probability density function of a hyperbolic secant
distribution is given by

fH S(x) = 1

ϕ cosh(x)
= 2

ϕ(ex + e−x )
, x ∈ R. (4.4)

It is symmetric and the corresponding cumulative distribution function is

FH S(x) = 2 arctan(ex )

ϕ
. (4.5)

The inverse cumulative distribution function is F−1
H S(u) = ln(tan(ϕu

2 )). Combining
(4.1), (4.3), (4.4), and (4.5), the density of the Beta-hyperbolic secant (BHS) distri-
bution is defined by

f (x;σ1, σ2) = B(σ1, σ2)
−1

ϕ cosh(x)

[ 2
ϕ
arctan(exp(x))

]σ1−1

[
1 − 2

ϕ
arctan(exp(x))

]1−σ2
, (4.6)

where σ1 > 0 and σ2 > 0 determine the shape of the density. The corresponding
cumulative distribution function is

F(x;σ1, σ2) = BF−1(x)(σ1, σ2)

B(σ1, σ2)
with Bu(p, q) =

⎧ u

0
t p−1(1 − t)q−1dt.

Introducing a location parameter μ ∈ R and a scale parameter ψ > 0, the BHS
density from (4.6) generalizes to

f (x) = B(σ1, σ2)
−1

ψϕ cosh( x−μ
ψ

)

⎪
2

ϕ
arctan(e

x−μ
ψ )

⎨σ1−1 ⎪
1 − 2

ϕ
arctan(e

x−μ
ψ )

⎨σ2−1

.

Different densities and their corresponding log-densities with μ = 0, ψ = 1,
σ1 = 1, and varying σ2 are plotted in Fig. 4.1.

The BHS distribution with parameters μ, ψ, σ1, σ2 is symmetric about μ for σ √
σ1 = σ2. Moreover, it is skewed to the right for σ1 > σ2 and skewed to the left for
σ1 < σ2. Assume that σ1 = σ2 √ σ. Then, kurtosis increases if σ decreases and vice
versa. First of all, for σ1 = σ2 = 1 the hyperbolic secant distribution is recovered.
Setting σ2 = 1 or σ1 = 1, skew hyperbolic secant distributions can be obtained.
A generalized symmetric family of hyperbolic secant distributions is achieved for
σ1 = σ2 = σ, where σ governs the amount of kurtosis. Like the Beta-logistic
distribution and the Beta-normal distribution, the BHS distribution converges to the
normal distribution for σ1, σ2 ≥ ∞.

http://dx.doi.org/10.1007/978-3-642-45138-6_1
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Fig. 4.1 BHS distribution: Different densities and log-densities σ1 = σ2 ∈ [0.5, 3] (upper panels)
and σ1 = 1, σ2 ∈ [1, 8] (lower panels)

4.3 BHS Distribution: Properties

TheBHSdistribution has exponentially decaying tails. In particular, the log-density is
asymptotically linear with slope determined by σ1 and σ2, respectively. In particular,
it can be shown that for large x

f (x;σ1, σ2) ∈ C exp(−x) exp((1 − σ2)x) = C exp(−σ2x), C = (2/ϕ)σ2

B(σ1, σ2)
.

Further, σ2 < 1 corresponds to distributions with heavier than plain exponential tails,
while if σ2 > 1 the distributions have lighter than plain exponential tails. Obviously,
the exponential tail behavior of the BHS distribution guarantees the existence of all
moments. In particular, the mth non-central moment of a BHS density is given by
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E(Xm) = 1

B(σ1, σ2)

⎧ 1

0
lnm(tan(

ϕ

2
u))uσ1−1(1 − u)σ2−1du.

From Gradshteyn and Ryhzik [11], formula 1.518.3 and 9.616 we can write

tan(
ϕ

2
u) = ln(

ϕ

2
u) +

∞⎩

k = 1

(22k−1 − 1)ε(2k)

k22k−1 u2k = ln(
ϕ

2
u) + u2

∞⎩

k = 0

aku2k

with the usual Riemann zeta function

ε(2k) =
∞⎩

l = 1

1

l2k
and ak = (22k+1 − 1)ε(2k + 2)

(k + 1)22k+1 . (4.7)

Using the notation

Λv

Λpv
B(p, q) √ Bv,0(p, q), B0,0(p, q) = B(p, q),

Fischer and Vaughan [9] show that for m > 0

E(Xm) = 1

B(σ1, σ2)




m⎩

j = 0

(
m
j

)
lnm− j (

ϕ

2
)B j,0(σ1, σ2)

+
∞⎩

k = 0

m⎩

j = 1

(
m
j

)
a( j)

k

m− j⎩

i = 0

(
m − j

i

)
lnm− j−i (

ϕ

2
)Bi,0(2k + 2 j + σ1, σ2)



 ,

where

a( j)
0 = a j

0 , a( j)
k = 1

ka0

k⎩

i = 1

(i j − k + i)ai a
( j)
k−i , k ≡ 1.

Thus, the mean of the BHS distribution is given by

E(X) = ln(
ϕ

2
) + κ(σ1) − κ(σ1 + σ2) +

∞⎩

k = 0

ak
B(2k + 2 + σ1, σ2)

B(σ1, σ2)
. (4.8)

with ak from (4.7). Note that κ denotes the digamma function in the last equation.
In contrast to (4.8), the corresponding formula for the Beta-logistic distribution is
given by

E(X) = κ(σ1) − κ(σ2).
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From the first four moments, we can deduce the skewness and kurtosis coefficients
M3 and M4 (i.e., the third and fourth standardized moments) for different parameter
combinations of the BHS distribution.

Additionally, the score function can be derived for the BHS distribution which plays
an important role in the theory of rank tests (see, e.g., Kravchuk [14]) for σ1 =
σ2 = 1) Specifically, with ε(x) √ arctan (ex ) the score function of a BHS variable is
given by

κ(x;σ1, σ2) = − g∗(x;σ1, σ2)

g(x;σ1, σ2)

= tanh (x) ε(x)(e2 x + 1)(2ε(x) − ϕ) + exσ1(ϕ − 2ε(x))
(
1 + e2 x

)
ε(x) (2 ε(x) − ϕ)

− exϕ − 2exε(x)(2 − σ2)(
1 + e2 x

)
ε(x) (2 ε(x) − ϕ)

.

Setting σ1 = σ2 = 1, the last equation reduces to κ(x; 1, 1) = tanh(x).

Fischer and Vaughan [9] showed that BHS densities are unimodal for all σ1, σ2 > 0.
This is not valid for the Beta-normal and the Beta-Student-t distribution, in general.

4.4 EGB2 Distribution

As already mentioned in the introduction of this chapter, the exponential generalized
beta of the second kind (EGB2) distribution or Beta-logistic distribution (see, e.g.,
Aroian [1] or Prentice [17]) resembles the BHS distribution. Its density is of the form

f (x;σ1, σ2) = 1

B(σ1, σ2)

exp(σ1x)

(1 + exp(x))σ1+σ2 .

Also, its moment-generating function and, hence, all moments exist. In particular,
skewness and kurtosis coefficients admit simple forms,

m3 = κ ∗∗(σ1) − κ ∗∗(σ2)

(κ ∗(σ1) − κ ∗(σ2))1.5
∈ [−2, 2], m4 = κ ∗∗∗(σ1) + κ ∗∗∗(σ2)

(κ ∗(σ1) − κ ∗(σ2))2
∈ [3, 9],

where κ ∗(x), κ ∗∗(x), and κ ∗∗∗(x) denotes the trigamma, tetragamma, and
pentagamma functions, respectively, where κ(n)(x) = dn

dxn ln(λ(x)). Although, this
family is commonly associated with a generalization of the classical logistic dis-
tribution (which arises on setting σ1 = σ2 = 1), it can also be interpreted as a
generalized HS distribution, because this family is recovered for σ1 = σ2 = 0.5,
and with specific scale parameter ψ = 1/

→
2ϕ (which is not included in the density
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representation above). For additional properties of the EGB2 distribution, we refer
to Barndorff-Nielsen et al. [4] or McDonald [16].
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Chapter 5
The SHS and SASHS Distribution Family

Abstract In the preceding chapters, the hyperbolic secant density was directly
manipulated by certain weighting functions in order to allow for skewness and
flexible kurtosis. In contrast, the random variable itself might be transformed with
a suitable transformation T. With focus on the standard normal distribution, this
idea dates back to Tukey [16] and Hoaglin [9], who postulated reasonable require-
ments on T. Corresponding examples are Hoaglin’s GH−transformation or the
GK−transformation of Rayner and MacGillivray [12], which can be integrated in a
generalized parameterization (see Fischer [4, 5]). Unfortunately, the corresponding
densities admit no closed-form representation, in general. To overcome this prob-
lem, one might use Johnson’s [10] S−transformation or the SAS transformation of
Jones and Pewsey [11] which guarantee that each of the probability density, cumula-
tive distribution, and quantile functions has a simple form. In contrast to Rieck and
Nedelman (2008) and Jones and Pewsey [11], who apply the S−transformation and
SAS−transformation, respectively, to the classical Gaussian distribution, this chapter
is dedicated to S− and SAS−transformed hyperbolic secant distributions which are
the subject of Fischer and Herrmann (2011) and Fischer [6].

Keywords Definition and properties · Variable transformation · Tukey· S–transformation

5.1 Variable Transformations Based on the Sinus Hyperbolic
Function

Henceforth, the focus is on direct transformations T of a hyperbolic secant variable
Z . In case of strictly monotone increasing transformations, the corresponding inverse
transformations T−1 exist and the derivation of the characterizing functions of the
new random variable X ≡ T(Z) is straightforward, see box below.
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Variable transformations: Let Z denote a symmetric variable. For a given
monotone transformation T : R √ R, the cumulative distribution function of
X = T(Z) is given by

FX (x) = P(X ≥ x) = P(T−1(X) ≥ T−1(x)) = P(Z ≥ T−1(x)) = FZ (T−1(x)).

From that, the corresponding density reads as

fX(x) = fZ(T−1(x))

∣∣∣∣
dT−1(x)

dx

∣∣∣∣ (5.1)

and the quantile function as F−1
X (x) = T(F−1

Z (x)).

Assume that Z follows a hyperbolic secant distribution. In order to achieve a closed
form for X, transformations based on the hyperbolic sine function could be taken
into consideration. Johnson [10] introduces the so-called inverse hyperbolic sine
transformation (briefly S−transformation, henceforth) as

S(x) ≡ Sθ,β(x) = sinh(θ−1(x + β)), β ∞ R, θ > 0. (5.2)

It is strictly monotone increasing (see Fig. 5.1) because S∈
θ,β(x) = θ−1 cosh(θ−1(x+

β)) > 0. Its inverse is given by S−1
θ,β(x) = θasinh(x) − β, where

asinh(x) = sinh−1(x) = ln(x +
√

x2 + 1) with asinh∈(x) = 1≡
x2 + 1

.

Similarly, Jones and Pewsey [11] consider the sinh-arcsinh (SAS) transformation

SAS(x) ≡ SASθ,β(x) = sinh
(
θ−1(asinh (x) + β)

)
, β ∞ R, θ > 0. (5.3)

Obviously, SASθ,β(x) = Sθ,β(S−1
1,0(x)). This transformation is also strictly monotone

increasing (see Fig. 5.1), because d
dxS

−1
θ,β(x) = θ≡

x2+1
> 0. Moreover, notice that

SAS∈
θ,β(x) = cosh

(
θ−1(asinh (Z) + β)

)

θ
≡

x2 + 1
∗ 0, (5.4)

SAS−1
θ,β(x) = sinh (θasinh(x) − β) and

d

dx
SAS−1

θ,β(x) = cosh (θasinh(x) − β) θ≡
x2 + 1

.
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Fig. 5.1 Different S−transformations and SAS−transformations

5.2 Definition of the SHS and SASHS Distribution Family

SHS distribution: Originally, the S-transformation was applied to the normal
distribution (see, for instance, Choi and Nam [2], Hansen et al. [8] or Rieck and
Nedelman [13]) to model skew and heavy tailed data. Above that, Tadikamalla and
Johnson [15] applied it to the logistic distribution and called it the LU distribution.
Combining the S−transformation with the hyperbolic secant variable according to
(5.1), Fischer [6] discusses the SHS density (see Fig. 5.2) which takes the form
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Fig. 5.2 Different SHS distributions with β = 0, θ ∞ [0.6, 2] (left panel) and θ = 0.8, β ∞ [0, 2]
(right panel)

f (x) = 1

π cosh(θ ln(x + ≡
x2 + 1) − β)

θ≡
x2 + 1

= 2/π
(
(x + ≡

x2 + 1)θe−β + (x + ≡
x2 + 1)−θ eβ

)
θ≡

x2 + 1

with corresponding cumulative distribution function

F(x) = 2

π
arctan (exp(θasinh(x) − β))

= 2

π
arctan

(
e−β

(
x +

√
x2 + 1

)θ
)

(5.5)

and quantile function, respectively,

F−1(u) = sinh

(
ln(tan(πu/2)) + β

θ

)

= 1

2

(
eβ/θ (tan(πu/2))1/θ − eβ/θ (tan(πu/2))−1/θ

)
. (5.6)

Whereas β determines the skewness of the SHS distribution, θ > 0 influences both
tail thickness and peakedness.

SASHS distribution: Jones and Pewsey [11] apply the SAS-transformation to
introduce skewness and kurtosis into a normally distributed random variable and
show that the parameters β and θ in the distribution of the transformed random
variable X act, respectively, as skewness and kurtosis parameters in the sense of
corresponding orderings defined in van Zwet [17]. Similarly, Rosco et al. [14] apply
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Fig. 5.3 Different SASHSdistributionswithβ = 0, θ ∞ [0.6, 5] (left panel) and θ = 1, β ∞ [0, 20]
(right panel)

the restricted SAS-transformation with θ = 1 but arbitrary β to skew a Student-t vari-
able with ν > 0 degrees of freedom. Alternatively, Fischer and Herrmann [7] focus
on the HS distribution. The corresponding SASHS density (see Fig. 5.3) reads as:

f (x) = cosh (θasinh(x) − β) θ

π cosh(sinh (θasinh(x) − β))

1≡
x2 + 1

. (5.7)

Notice that

cosh(θasinh(x) − β) = 1

2

(
eθ ln(x+≡

x2+1)−β + e−θ ln(x+≡
x2+1)+β

)

= 1

2

(
e−β

(
x +

√
x2 + 1

)θ + eβ
(

x +
√

x2 + 1
)−θ

)
.

Hence, the cumulative distribution function of a SASHS distribution is given by:

F(x) = 2

π
arctan (exp(sinh(θasinh(x) − β)))

= 2

π
arctan

[
exp

(
1

2

{
e−β

(
x +

√
x2 + 1

)θ − eβ
(

x +
√

x2 + 1
)−θ

})]

and, hence, its inverse is given by:

F−1(u) = sinh

(
asinh(ln(tan(πu/2))) + β

θ

)

= 1

2

(
eβ/θ [ln (tan(πu/2))]1/θ − e−β/θ [ln(tan(πu/2))]−1/θ

)
.
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5.3 Basic Properties of the SHS and SASHS
Distribution Families

SHS distribution: First of all, the median depends only on β and θ and is given by:

x0.5 = β

θ
. (5.8)

It can be shown that all SHS densities are unimodal (see Fischer [6]). Tails of this
family of distributions are of the form

f (x)
x√±→≤ C0

C1x1+θ + C2x1−θ

for suitable constants C0, C1, and C2. Hence, tails decrease as a power of |x| such
that the SHS family behaves in a way similar to Student’s t distribution and moments
exist only up to a certain order (depending on θ , see below). Provided their existence,
the moments of the SHS family can be derived as follows: For n ∞ N notice that

S(z)n = 1

2n

(
eθ−1(z+β) − e−θ−1(z+β)

)n

= 1

2n

n∑

i=0

(
n

i

) (
eθ−1(z+β)

)n−i (
e−θ−1(z+β)

)i
(−1)i

= 1

2n

n∑

i=0

(
n

i

) (
eθ−1(z+β)(n−i)

) (
e−θ−1(z+β)i

)
(−1)i

= 1

2n

n∑

i=0

(
n

i

) (
eθ−1(z+β)(n−i)−θ−1(z+β)i

)
(−1)i

= 1

2n

n∑

i=0

(
n

i

) (
eθ−1(z+β)(n−2i)

)
(−1)i

= 1

2n

n∑

i=0

(
n

i

) (
e

n−2i
θ

(z+β)
)

(−1)i = 1

2n

n∑

i=0

(
n

i

) (
e

n−2i
θ

β
) (

e
n−2i

θ
z
)

(−1)i.

Replacing z by Z and taking expectations, we obtain

E(Xn) = E(S(Z)n) = 1

2n

n∑

i=0

(
n

i

)(
e

n−2i
θ

β
)

(−1)iMZ

(
n − 2i

θ

)
,

where

MZ(t) = 1

cos(π t/2)
for |t| < 1
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denotes the moment-generating function of a hyperbolic secant variable. Provided
their existence (i.e., for n < θ ), the first four power moments are given by

E(X) = sinh(β/θ)

cos(πθ/2)
, E(X2) = 1

2

(
sinh(2β/θ)

cos(πθ)
− 1

)
,

E(X3) = 1

4

(
sinh(3β/θ)

cos(1.5π/θ)
− 3

sinh(β/θ)

cos(0.5π/θ)

)
and

E(X4) = 1

8

(
cosh(4β/θ)

cos(2π/θ)
− 4

cosh(2β/θ)

cos(π/θ)
+ 3

)
.

From this, skewness and kurtosis (measured by third and fourth standardized
moments) can be calculated in a straightforward manner.

SASHS distribution: In this case, the median admits the form

x0.5 = sinh

(
β

θ

)
. (5.9)

Asymptotically, the SASHS density behaves like

f (x)
x√±→≤ K0 exp(−K1xθ )xθ−1

implying that this family has exponentially decaying tails, lighter than tails decreas-
ing as a power of |x| such that semi-heavy tail behaviour can bemodeled.At first sight,
SASHS families resemble the well-known generalized error distribution (GED) from
Box-Tiao [1] or some related skew version, see, for instance, DiCiccio and Monti
[3]. All moments exist and derive as follows: First, the n-th power of the SAS trans-
formation can be written as

SAS(z)n = 1

2n

n∑

i=0

(
n

i

)
eβ(n−2i)

(
z +

√
z2 + 1

)θ(n−2i)

= 1

2n

n∑

i=0

(
n

i

)
eβ(n−2i) exp

{
θ(n − 2i) ln

((
z +

√
z2 + 1

))}
.

Replacing z by Z and taking expectations, we obtain

E(Xn) = 1

2n

n∑

i=0

(
n

i

)
eβ(n−2i)

E (exp (θ(n − 2i)W))

= 1

2n

n∑

i=0

(
n

i

)
eβ(n−2i)MW (θ(n − 2i))
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Fig. 5.4 Log density (left panel) and density (right panel) of W

with W ≡ asinh(X) = ln(X + ≡
X2 + 1) and whereMW denotes the corresponding

moment-generating function. Some properties of W are summarized in the next box.

Consider the random variable W ≡ T(X) ≡ asinh(X) = ln(X + ≡
X2 + 1),

where X represents the hyperbolic secant density. The underlying transforma-
tion T is monotone increasing because

T∈(x) = 1≡
x2 + 1

> 0.

Because of its inverse function, T−1(x) = sinh(x) with corresponding first
derivative (T−1)∈(x) = cosh(x) > 0, the random variable W admits the fol-
lowing density (see Fig. 5.4)

fW (w) = cosh(w)

π cosh(sinh(w))
, w ∞ R

with cumulative distribution function

FW (w) = 2

π
arctan(exp(sinh(w))), w ∞ R.

It has light tails (such that all moments exist). The first few even moments can
be numerically approximated as:

E(W) = 0, E(W2) = 1.0655, E(W3) = 0, E(W4) = 2.587

E(W6) = 8.813, E(W8) = 37.009.
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Chapter 6
Application to Finance

Abstract Although able to incorporate different combinations of skewness and
kurtosis, generalized hyperbolic secant distributions have mainly been neglected
so far in the broad financial literature. Within this chapter we illustrate their flexi-
bility in the context of different financial return distributions (e.g., stock indices and
exchange rates). In particular, we compare its fit with that of popular benchmark
models such as stable distributions, (skew) Student-t distributions and generalized
hyperbolic distributions.

Keywords Financial return ·GARCHmodel ·Goodness-of-fit ·Moment ratio plot

6.1 Excursion: Moment-Ratio Plots

Moment-ratio diagrams (MRD) were introduced for Pearson-type distributions by
Elderton and Johnson [8] in order to provide a useful visual assessment of skewness
and kurtosis. The classical moment ratio plot consists of all possible pairs of third
and fourth standardized moments (M3, M4) that can be obtained through different
combinations of the shape parameters of the underlying distributions, provided their
existence. In general, the relation M3 <

√
M4 − 1 for M4 ≥ 1 holds, i.e., for a

given level of kurtosis only a finite range of skewness may be spanned. For example,
Fig. 6.1 contains MRD’s for six generalized secant distributions, where all moments
exists: SGSH1 and SGSH2 distribution (Chap. 2), SHS distribution (Chap.3), Beta
hyperblic secant (BHS) distribution and EGB2 distribution (Chap.4), and SHS and
SASHSdistribution (Chap.5). Except for EGB2 andBHSdistributionwhere kurtosis
(and hence skewness) is limited to 6 and 8, respectively, the other four candidates
cover a broad area of the admissible range. In addition, SGSH1 and SGSH2 also
admit platykurtic behavior. If third and fourth standardized moments are not defined,
skewness-kurtosis plots based on alternative measures of skewness and tail weight
may help, see Brys et al. [5, 6].
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Fig. 6.1 Selected SK plots
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Fig. 6.2 Nikkei data: level versus returns

6.2 Return Series Under Consideration

1. Nikkei data: In order to adopt and compare estimation results for a great deal of
distributions—in particular the stable distributions (STABLE)—priority is given to
the weekly returns of the Nikkei from July 31, 1983 to April 9, 1995, with N = 608
observations. This series was intensively investigated, for example, by Mittnik et
al. [20] because it exhibits typical stylized facts of financial return data. Figure6.2
illustrates the time series of levels and corresponding log-returns.

2. FX data: Secondly, we chose data from foreign exchange markets (FX-markets)
which are available from the PACIFIC Exchange Rate Service.1 This service offered
by Prof. Werner Antweiler at UBC’s Sauder School of Business provides access to
current and historic daily exchange rates through an online database retrieval and
plotting system. In contrast to the volume notation, where values are expressed in
units of the target currency per unit of the base currency,2 the so-called price notation
is used within this work which corresponds to the numerical inverse of the volume
notation. All values are expressed in units of the base currency per unit of the target
currency. Many European countries quote exchange rates this way.

Daily exchange rates for the EUR-USD are available from Jan 1, 2002 to Apr 30,
2012 (n = 2593). Figure6.3 illustrates the corresponding time series for both levels
and returns. For our analysis, we also consider two subperiods of this time series.
First, from Jan 1, 2002 to Mar 31, 2008 (n = 1568) where the exchange rate steadily
increases. Secondly, fromApr 1, 2008 to Apr 30, 2012 (n = 1025) where we observe
a volatile period of down-movement. Table6.1 summarizes the relevant statistics and
Fig. 6.4 exhibits both histogram versus kernel density for the underlying series.

1 Download under the URL-link http://fx.sauder.ubc.ca/.
2 This is commonly used in North America to quote exchange rates.

http://fx.sauder.ubc.ca/
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Fig. 6.3 EUR/USD exchange rate: level versus returns

Fig. 6.4 Nikkei and EUR/USD returns: histogram versus kernel density
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Table 6.1 Data set: descriptive and inductive data statistics

Data No. X S2
S K LB LM

Nikkei 608 0.0958 6.4365 −0.4517 6.1401 0.1675 0.0000
NikkeiGARCH 606 0.0340 0.8781 −0.6321 5.5857 0.1578 0.6635
EURUSD 2593 0.0147 0.4315 0.1012 5.4191 0.8940 0.0000
EURGARCH 2591 0.0343 0.9857 −0.0116 3.8534 0.9174 0.1984
EURUSD1 1568 0.0349 0.3100 −0.1738 3.7323 0.4819 0.0043
EURUSDGARCH1 1566 0.0715 0.9597 −0.0958 3.3494 0.7050 0.1356
EURUSD2 1025 −0.0162 0.6163 0.3035 5.3209 0.5459 0.0000
EURUSDGARCH2 1023 −0.0225 0.9975 0.1274 4.2596 0.9472 0.8033

6.3 Fitting Generalized Hyperbolic Secant Distribution:
Unconditional Case

1. Distributions under consideration: The main purpose of this chapter is to com-
pare the flexibility of the seven generalized hyperbolic secant distributions which
where previously discussed, namely SGSH1 and SGSH2 (see Chap. 2 or Fischer
[10, 11]), SGHS (see Chap.2 or Morris [21]), BHS and EGB2 (see Chap.4 or Fis-
cher and Vaughan [12] and McDonald [19]), SASHS and SHS (see Chap.5 or Fis-
cher and Herrmann [14] and Fischer [13]). In addition, results are also provided for
distribution families which have become popular in finance in the past: First, the
Student-t distribution (T) and skew generalizations (ST, see Zhu and Galbraith [24])
where moments exist only up to a certain order. Secondly, stable distributions which
appear from the central limit theorem if the variance does not exist (see, e.g., Nolan
[22]). Finally the generalized hyperbolic (GH) distributions which were discussed
by Prause [23] and include, for example, the Normal-inverse Gaussian distributions
(see Barndorff-Nielsen [1, 2]) as well as the hyperbolic distributions (see Eberlein
and Keller [7]) as special cases.

2. Model setup and parameter estimation: For the moment, assume that the under-
lying log-returns are independent and identically distributed, i.e.,

Rt = μ + Ut with Ut ∼ D(0, π 2, φ), t = 1, . . . , T ,

where D denotes the underlying distribution model with location μ ∈ R, (constant)
scale π > 0 and shape parameter vector φ. Define the vector of unknown parame-
ters as σ = (μ, π, φ) and suppose that N observations r1, . . . , rN are given. The
corresponding log-likelihood function is defined as

LL(ϕ) =
N∑

i=1

ln (fD(r1, . . . , rN ;σ)).

http://dx.doi.org/10.1007/978-3-642-45138-6_2
http://dx.doi.org/10.1007/978-3-642-45138-6_2
http://dx.doi.org/10.1007/978-3-642-45138-6_4
http://dx.doi.org/10.1007/978-3-642-45138-6_5
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Then, themaximumlikelihood estimator (MLE)ofσ , indicatedby ψ̂ML is the solution
of the following optimization problem:

ψ̂ML = argmaxσLL(σ).

Under certain regularity conditions it is known that (see Lehman and Casella [18]),
if σ0 is the true and unknown parameter vector, the ML estimator ψ̂ML satisfies

√
N(ψ̂ML − σ0)

d−→ N(0, I−1
N ),

where I−1
N denote the inverse of the so-called Fisher information matrix. A detailed

treatment of estimating the Fisher information matrix can be found in Greene [17],
Chap. 17. The empirical results of this note have been obtained with the statistical
software package R using the constrained optimization function nlminb (see Gay
[16]). Exemplarily, Appendix A includes the corresponding R code for the BHS
distribution.

3. Measuring goodness-of-fit: Similar to Mittnik et al. [20], four criteria are
employed to compare the goodness-of-fit of the different candidate distributions.
The first is the log-Likelihood value (ψN ) obtained from the Maximum-Likelihood
estimation. The ψN -value can be considered as an “overall measure of goodness-of-fit
and allows us to judge which candidate is more likely to have generated the data.”
As distributions with different numbers of parameters k are used, this is taken into
account by calculating the Akaike criterion given by

AIC = −2 · ψN + 2N(k + 1)

N − k − 2
.

The third criterion is the Kolmogorov-Smirnov distance as a measure of the dis-
tance between the estimated parametric cumulative distribution function, F̂, and the
empirical sample distribution, Femp. It is usually defined by

K = 100 · sup
x∈R

|Femp(x) − F̂(x)|. (6.1)

Finally, the Anderson-Darling statistic is calculated, which weights |Femp(x)− F̂(x)|
by the reciprocal of the standard deviation of Femp, namely

√
F̂(x)(1 − F̂(x)), that

is

AD0 = sup
x∈R

|Femp(x) − F̂(x)|
√

F̂(x)(1 − F̂(x))
. (6.2)

Instead of just the maximum discrepancy, the second and third largest value, which is
commonly termed asAD1 andAD2, are also taken into consideration. WhereasK
emphasizes deviations around the median of the fitted distribution,AD0,AD1 and
AD2 allow discrepancies in the tails of the distribution to be appropriately weighted.
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4. Empirical results: The results for the unconditional case are summarized on the
left side of Tables6.2, 6.3, 6.4 and 6.5. Across all four examples (and across most
of the goodness-of-fit measures), HS dominates NV, BHS dominates EGB2, and
SASHS slightly outperforms ST. On the other hand, stable distributions provide a
poor fit, whereas GH distributions demonstrate their flexibility although having one
additional parameter. AD-statistics are in general very close for ST, GH, and most
of the skewed generalized hyperbolic secant classes.

6.4 Fitting Generalized Hyperbolic Secant Distribution:
Conditional Case

1. Integration of GARCH effects: Assuming independent observations—as we did
in the last subsection—is not very realistic. To capture dependency between differ-
ent log-returns, generalized autoregressive conditionally heteroscedastic (GARCH)
models have been proposed by Engle [9] and Bollerslev [3] as models for financial
return data. These models are able to capture distributional stylized facts (such as
thick tails or high peakedness) as well as the time series stylized facts (like volatil-
ity clustering). The setting for our GARCH framework is similar to Bollerslev [3]
assuming that the log-returns Rt of financial data are given by

σm(L)Rt = μ + Ut

with
Ut |Ft−1 ∼ D(0, h2t , φ) or Ut |Ft−1 = htεt with εt ∼ D(0, 1, φ),

where σm(L) is a polynomial in the lag operator L of order m. For reasons of sim-
plicity, assume thatσm(L) ≡ 1 andμ ≡ 0. The residuals {Ut} are assumed to follow
a GARCH-D process. That means they follow a distribution3 D with shape parame-
ter φ and time-varying variance h2t . In the GARCH(1, 1)-Normal specification from
Bollerslev [3] h2t is given by

h2t = Λ0 + Λ1R2
t−1 + κ1h2t−1 = Λ0 + Λ1h2t−1ε

2
t−1 + κ1h2t−1. (6.3)

Note that setting κ1 = 0 results in the ARCH model of Engle [9].

3 Although GARCH models with conditionally normally distributed errors imply unconditionally
leptokurtic distributions, there is evidence (see, for example, Bollerslev [4]) that starting with
leptokurtic and possibly skewed (conditional) distributionwill achieve better results. For that reason,
alternative error distributions are used.
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2. Parameter estimation: We refer to Franke et al. [15], Chap. 12, where ML esti-
mation of standard GARCH models is discussed. In contrast to the unconditional
estimation, where the likelihood L can be easily decomposed as a product of univari-
ate density functions, the main idea is now to represent it as a product of conditional
densities as follows:

L(ϕ) =
N∏

i=2

fD(ri|Ri−1 = ri−1, R1 = r1;σ)fD(r1;σ).

3.Empirical results: Time dependencies were taken into account two-fold: First, the
time series were filtered with a suitable GARCH filter and the residuals considered,
instead. Secondly, we directly fitted a GARCHmodel where the residual distribution
is modeled by each of the distributions mentioned above (see Tables6.6 and 6.7). In
the first case, especially for the Nikkei data—which are highly skewed—the skew
versions significantly outperform their symmetric counterparts. Again, STAB and
SHS deviate from their competitors (in a negative sense) for most of the goodness-of-
fitmeasures. In case of the SHSdistribution, because of its restriction to highly heavy-
tailed data. Moreover, SASHS and ST are very close together. In the second case, the
GH family achieves the highest likelihood across all four time series, whereas both
the skew GSH versions and the SHS distribution dominate the Anderson–Darling
measures, at least for the Nikkei data set.

To sum up, GH, ST and SGHS, EGB2, BHS, SGSH1 and SGSH2 are very close
together across all measures. In particular, it becomes obvious that most of the gen-
eralized hyperbolic secant distributions are fully competitive and, further, we have
interesting statistical properties.
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Appendix A
R-Code: Fitting a BHS Distribution

A.1 Unconditional Case

# Data import

temp=scan("C:\\PATH\Nikkei.txt") # Import exchange rates
data=100*diff(log(temp)) # Calculate log-returns

# Define density function

BHS.density=function(x, SHAPE){
b1=SHAPE[1];b2=SHAPE[2]
return(1/beta(b1,b2)/pi/cosh(x)*((2/pi)*atan(exp(x)))ˆ(b1-1)*

(1-(2/pi)*atan(exp(x)))ˆ(b2-1))
}

# Define Log-likelihood Function

LOGLIKE=function(PARA,DATA){
mu=PARA[1]; sigma=PARA[2]; shape=PARA[3:4]
ll=-sum(log(1/sigma* BHS.density((DATA-mu)/sigma,shape)))
return(ll)
}

# Start optimization

result=nlminb(start=c(0,1,2,1),obj=LOGLIKE,
lower=c(-0.1,0,0.01,0.1),upper=c(3,6,10,10),DATA=data)

M. J. Fischer, Generalized Hyperbolic Secant Distributions, 71
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-45138-6,
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72 Appendix A: R-Code: Fitting a BHS Distribution

A.2 Conditional Case

# Data import

temp=scan("C:\\PATH\Nikkei.txt") # Import exchange rates
data=100*diff(log(temp)) # Calculate log-returns

# Define density function

BHS.density=function(x, SHAPE){
b1=SHAPE[1];b2=SHAPE[2]
return(1/beta(b1,b2)/pi/cosh(x)*((2/pi)*atan(exp(x)))ˆ(b1-1)*

(1-(2/pi)*atan(exp(x)))ˆ(b2-1))
}

# Define Log-likelihood Function

LOGLIKE=function(PARA,DATA){
mu=PARA[1];
a0=PARA[2];a1=PARA[3];b1=PARA[4] # GARCH parameter
shape=PARA[5:6] # Shape parameter
n=length(DATA);

h=rep(var(DATA),n);
for(i in 2:n){h[i]=a0+a1*DATA[i-1]ˆ2+b1*h[i-1]}
h=sqrt(h)
ll=-sum(log(1/h*BHS.density((DATA-mu)/h,shape)))
return(ll)
}

# Start optimization

result=nlminb(start=c(0,1,0,0,1.93,1.33),obj=LOGLIKE,
lower=c(1,0.001,0.001,0.001,0.1,0.98),
upper=c(1,2,1,1,10,10),DATA=data)
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