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Preface

The present volume is the second in a two-volume set dealing with
modelling and numerical simulations in electrochemistry. Emphasis
is placed on the aspect of nanoelectrochemical issues.

It seems appropriate at this juncture to mention the now-
growing body of opinion in some circles that George Box was
right when he stated, three decades ago, that “All models are wrong,
but some are useful”. Actually, when the statement itself was made
it would have been more appropriate to say that “All models are
inaccurate but most are useful nonetheless”. At present, however,
the statement, as it was made, is far more appropriate and closer
to the facts than ever before. Currently, we are in the midst of the
age of massively abundant data. Today’s philosophy seems to be
that we do not need to know why one piece of information is better
than another except through the statistics of incoming and outgoing
links between information and this is good enough. It is why, both in
principle and in practice, one can translate between two languages,
without knowledge of either. While none of this can be ignored, and
it may even be true that “All models are wrong and increasingly
you can succeed without them” the traditional approach of scientific
modelling is still the order of the day. That approach may be stated
as hypothesize – measure – model – test. It is in this light that the
present volume should be viewed.

Again, as in the case of the previous volume, it is worth noting
that the demarcation lines between disciplines are no longer as clear
as they used to be in the past. This positive state of affairs may be
looked upon as one of the hallmarks of twenty-first-century science,
enabling desired cross-fertilization between related and even not so
related fields. This volume and the previous one are examples of this
trend.

The reader is presented with ten chapters written by 21 experts
in the fields of modelling in electrochemistry and its many subfields.
The first chapter deals with the subject of modelling in electrochem-
istry in general. The second and third chapters take up issues deal-
ing with optics as related to applications in nanoelectrochemistry.
The fourth, fifth and sixth chapters refer to surface electrochemistry.
The last of these introduces the subject of Monte Carlo simulations

v



vi Preface

and thus establishes the connection to the mathematically related
topics of the next two chapters, which deal with the mathematics
of corrosion and density functional theory, respectively. The final
two chapters discuss acoustic microscopy and current distribution in
electrochemical cells.

As in the previous volume, the chapters are independent in that
they may be read in any order that suits the reader. Omitting a given
chapter simply because the reader is familiar with the subject matter
and reading others should be of benefit no less.

Thanks are due to the 21 authors who made the volume possible.

Mordechay Schlesinger
University of Windsor
Windsor, ON, Canada
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Numerical Modeling of Certain
Electrochemical Processes

Nader G. Zamani

Department of Mechanical Engineering, University of Windsor, Windsor, ON,
Canada

Summary. This expository chapter deals with the basic mathemat-
ical models which arise in some electrochemical processes pertain-
ing to the galvanic corrosion phenomena. The elementary model
discussed is sufficient as a preliminary tool in designing cathodic
protection systems and their reverse effect, namely, electroplating.
After the model is introduced, different numerical approaches for
obtaining an approximate solution are discussed. The mathemati-
cal content is deliberately kept at the elementary level for it to be
accessible to general readers. The discussion is limited to galvanic
aqueous corrosion and therefore atmospheric factors are ignored.

I. ELEMENTARY ASPECTS OF ELECTROCHEMICAL
REACTION

The basic principle behind corrosion can be explained in terms of the
reaction between a hypothetical metal M placed in an ionic solution
as shown in Fig. 1. The chemical reaction due to the electron ex-
change can be represented by the following formula

M. Schlesinger (ed.), Modelling and Numerical Simulations II,
Modern Aspects of Electrochemistry 44, DOI 10.1007/978-0-387-49586-6 1,
c© Springer Science+Business Media LLC 2009
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Figure 1. Degradation of base metal.

M → Mn+ + ne−. (1)

Here n is the number of electrons lost and Mn+ is the positive
metal ion produced. Furthermore, e− refers to a single electron. This
process leads to an electric current in the ionic solution. The net
result is the degradation of the metal M.

One can utilize this process for two different purposes. The first
application is protecting a metal from corrosion, whereas the sec-
ond is to employ the reverse effect for plating the degrading metal
on another metal. The former application is referred to as cathodic
protection and the latter is known as electroplating.

Figure 2 shows two bars made of zinc and copper immersed in
an electrolyte (seawater). Needless to say, after some time, the zinc
bar shows signs of corrosion. In this situation an electrical poten-
tial difference is established between the two metals which can be
measured and is in agreement with the table of galvanic series in
seawater.1 Here, the zinc and copper bars acts as an anode and a
cathode, respectively. The simple experiment demonstrates the basic
idea behind the concept of cathodic protection. The zinc bar (anode)
is being sacrificed to protect the copper bar (cathode). This method
of cathodic protection is known as the sacrificial anodic method.

The sacrificial anodic protection method has been known
since ancient times, dating back to 100 BC when Pilny the Roman
employed it to prevent the corrosion of bronze and iron. In 1823, Sir
Humphry Davy was commissioned by the Royal Navy to investigate
the corrosion of copper used in the hulls of wooden battleships.2
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Figure 2. Zinc and copper in galvanic series.

II. A SIMPLE MATHEMATICAL MODEL

The mathematical model developed in this section is based on the
conservation of charge. Consider a cube element of the electrolyte
as shown in Fig. 3. The sides of the cube have dimensions �x , �y,
and �z, respectively. In the absence of charge generation (within the
cube), the inflow and outflow of charges must be equal. Therefore,
given the charge density vector �i = (ix , iy, iz

)
, one can write

ix�Ax −
(

ix + ∂ix

∂x
�x

)
�Ax + iy�Ay −

(
iy + ∂iy

∂y
�y

)
�Ay

+ iz�Az −
(

iz + ∂iz

∂z
�z

)
�Az = 0. (2)

Simplifying the expression leads to

−
(
∂ix

∂x
�x�y�z

)
−
(
−∂iy

∂y
�y�x�z

)
−
(
−∂iz

∂z
�z�x�y

)
= 0.

(3)

Finally, dividing through by ΔxΔyΔz leaves us with the charge
continuity:

∂ix

∂x
+ ∂iy

∂y
+ ∂iz

∂z
= div(i) = 0. (4)
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Figure 3. Control volume used for charge conservation.

However, the charge density vector is proportional to the gradi-
ent of the electrical potential ψ . Therefore,

(
ix , iy, iz

) = −σ
(
∂ψ

∂x
,
∂ψ

∂y
,
∂ψ

∂z

)
. (5)

In (5), the constant σ is the conductivity of the electrolyte and
has units of per ohm meter or amperes per volt meter.

Substituting the components of
(
ix , iy, iz

)
in (5) and dividing

through by σ , one obtains the celebrated Laplace equation:

∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2 = 0. (6)

Equation (6) may be written in terms of the electrochemical
potential φ, which is related to the electrical potential Ψ according
to ψ = c − φ. For more details, see the Appendix.

This substitution leads to the same type of partial differential
equation described by (7):
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∂2φ

∂x2 +
∂2φ

∂y2 + ∂2φ

∂z2 = 0. (7)

From this point on we will deal only with the electrochemical
potential φ and refer to it simply as the “potential.”

In the event that sources responsible for charge generation are
present, (7) is modified accordingly and takes the following form.
This is commonly referred to as the Poisson equation:

∂2φ

∂x2 +
∂2φ

∂y2 + ∂2φ

∂z2 + S = 0. (8)

In this equation, S represents the strength of the source (or
sink). Implicit in the above derivation is the assumption that the
steady-state condition prevails and therefore no time variation is
considered.

Equations (7) and (8) arise in many areas of science and engi-
neering, such as fluid dynamics, heat transfer, elasticity, and electro-
statics. The significance and simplicity of the Laplace equation has
led to a great deal of mathematical research into its solution.

The domain in which the solution to (7) is being sought is either
finite or infinite. For example, if the electrolyte is in a bounded con-
tainer, the solution domain is finite. On the other hand, if one is
investigating the cathodic protection of a ship in the open sea, the
solution domain is infinite. The most common method for obtaining
the solution to the potential function φ is the concept of separation of
variables.3 In this method, the function φ is assumed to be decoupled
as shown below:

φ(x, y, z) = X (x)Y (y)Z(z). (9)

The functions X (x), Y (y), and Z(z) are to be found once
additional information is provided. There are other analytical
methods such as the conformal mapping technique that can be
employed. The main difficulty with such analytical approaches is
associated with irregular domains. Solutions can be found in sim-
ple domains such as circular, rectangular, and elliptical regions in
two dimensions. With some additional effort, problems in simple
three-dimensional domains can also be arrived at. In view of these
facts, a numerical solution becomes necessary. These issues will
be discussed in later sections.
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1. Boundary Conditions

In electrochemical modeling, there are a variety of boundary condi-
tions that can be specified.4 If the value of the potential function is
known at a point, the condition takes the form below, where φconstant
is a constant:

φ(x, y, z) = φconstant. (10)

The above condition is commonly referred to as the Dirichlet
boundary condition. The known potential value is usually selected
from the electromotive force series table.

The situation where the current is specified at a given point
is known as the Neumann boundary condition. Mathematically
speaking it is represented by

−σ ∂φ
∂n

= ie. (11)

At well-painted surfaces (also called “insulated surfaces”) the
current normal to the surface is zero. Therefore, ie = 0 and (11)
reduces to

−σ ∂φ
∂n

= 0. (12)

At the exposed surfaces, the current in the normal direction is
no longer a fixed value but depends on the local potential value. This
type of boundary condition is the mixed or Robin type. Symbolically,
the mixed boundary condition is displayed below:

−σ ∂φ
∂n

= i0g(φ − φ0) = i0g(η). (13)

The term η = φ − φ0 is known as the overpotential, where
φ0 is the electrode equilibrium potential. The function g (η) has the
expression described in (14) and with this choice of the function,
(13) is called the “Butler–Volmer equation.”3

g(η) = e

(
γ F
RT

)
η − e

−
(
(1−γ )F

RT

)
η
. (14)

In this equation, R is the universal gas constant, T is the abso-
lute temperature of the electrode, F is the Faraday constant, and γ

is a symmetry parameter ((4) is a consequence of the Tafel equation
stating that η = a + blog (i)). In the event that the Butler–Volmer
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equation does not adequately model the physics of the problem, the
experimental curve for the function g has to be used. This curve is
known as the polarization curve. Figures 4 and 5 display a typical
polarization curve for plain carbon steel in seawater. Figure 4 repre-
sents the scenario where the metal acts as the anode, whereas Fig. 5
corresponds to case where it acts as a cathode. Note that the potential
is measured with respect to the silver–silver chloride electrode.

Figure 4. Anodic branch (millivolts vs. milliamperes).

Figure 5. Cathodic branch (millivolts vs. milliamperes).
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Finally, in an impressed current system (used in cathodic pro-
tection systems), the magnitude of the current density is specified.

−σ ∂φ
∂n

= iconstant. (15)

The boundary conditions associated with electrochemical pro-
cesses are collectively associated with the subject of electrode
kinetics.5–7

III. APPLICATION IN CATHODIC PROTECTION

In the discussion to follow, we have ignored any physical variables
(such as the conductivity σ ) and replaced the expression for the
polarization curve with the mathematical function f (φ).

Cathodic protection is a method for protecting metals against
corrosion. There are two techniques to achieve this objective. The
first approach is to use a sacrificial anode (a less noble metal) and
consume it to protect another metal. This technique has been uti-
lized for centuries in marine structures. As pointed out earlier, the
galvanic coupling between the two metals results in a current den-
sity flowing in the electrolyte as shown in Fig. 6a. In the second
approach, known as an impressed current system, the current den-
sity is artificially created using an inert electrode. This is depicted in
Fig. 6b. Mathematically speaking, the inert electrode can be viewed
as a current source where the value of i is assumed to be a known
constant at a point. In either case, the intent is to ensure that the

Figure 6. Cathodic protection methods.
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Figure 7. A bounded sacrificial anode cathodic protection system.

potential on the noble metal is lowered below a threshold poten-
tial. Sometimes this threshold value is referred to as the protection
potential.

The schematic in Fig. 7 depicts a bounded sacrificial cathodic
protection system (bounded by the container). In this figure, it is
assumed that the container is nonconducting and therefore the cur-
rent density is zero on the container boundary. The governing partial
differential equation and the associated boundary conditions are dis-
played in the figure.

The domain under consideration (electrolytic domain) may also
be infinite. This is clearly the case in marine applications. A fictitious
two-dimensional version of this situation is displayed in Fig. 8. Here,
the structure to be protected is the well-painted ship hull but with
bare areas (cathode) being present. The hull is to be protected with
anodic sections. The governing partial differential equation and the
associated boundary conditions are depicted in the schematic. In the
case of an infinite electrolyte, two auxiliary constraints are included.
The behavior of the far-field potential φ∞ is given by (16):

φ(r) = O(1/r2)+ φ∞. (16)

Here, φ∞ is the unknown potential at infinity.
The second constraint is based on the statement that the inflow

of current equals the outflow of current; therefore,
∫∫
© i dS = 0. (17)
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Figure 8. An infinite sacrificial anode cathodic protection system.

In terms of the potential function, (17) can be rewritten as
∫∫
© ∂φ

∂n
dS = 0. (18)

The variable n in this expression represents the outward unit
normal to the ship hull.

1. Iteration Process

Owing to the nonlinear boundary conditions, the governing bound-
ary value problem has to be solved iteratively. Although the equa-
tion is solved numerically (the details will be discussed in a later
section), we disregard this issue and assume that the solution to the
linearized problem is somehow obtained. The most general format
for the boundary value problem associated with a cathodic protec-
tion system is described below.

∇2φ = 0 in� (within electrolyte), (19)

φ = c1 onΓ1 (known potential), (20)
∂φ

∂n
= c2 onΓ2 (an inert electrode), (21)
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Figure 9. Successive iteration flowchart.

∂φ

∂n
= f (φ) on Γ3 (polarization behavior) . (22)

For well-painted surfaces, (21) applies where c2 is zero. The
boundary of Ω consists of the union of the boundaries in (20)–(22),
∂� = Γ1 + Γ2 + Γ3.

The flowchart in Fig. 9 adopted from4 describes the iteration
process through the calculations.

IV. ANALYTICAL SOLUTION TO TWO BENCHMARK
PROBLEMS

It was pointed out earlier that the analytical solutions of corrosion
cell problems are rather complicated (if not impossible). To demon-
strate this claim, two relatively simple geometries are presented
below.
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1. Corrosion Cell 1

The cell is assumed to have two-dimensional characteristics as dis-
played in Fig. 10. The three sides of the boundary are assumed to be
well painted and therefore the current densities in the normal direc-
tion are zero. On the bottom segment of the cell, the anode and cath-
ode are placed side by side. The dimensions of the cell are described
by the parameters a, b, and c as shown in the figure. The polariza-
tion curves are linear to further simplify the solution. These polar-
ization curves are depicted in Fig. 11, where

La = Lc = L = 1.

The variables La and Lc define the slopes of the linearized an-
odic and cathodic polarization curves as defined by (23) and (24)
below.

Figure 10. Corrosion cell 1.

Figure 11. Linear polarization curves.
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The analytical expressions for the polarization boundary condi-
tions are given by (23) and (24):

∂φ

∂n
= φ − 1

La
0 ≤ x ≤ a, y = 0, (23)

∂φ

∂n
= φ

Lc
a ≤ x ≤ c, y = 0. (24)

The analytical solution of the problem8, 9 can be obtained using
the method of separation of variables and is represented by (25):

φ(x, y) = a+ 2

π

∞∑

n=1

sin sin (nπa) cos cos (nπx) cosh [nπ (b − y)]

n [cosh cosh (nπb)+ nπL sinh (nπb)]
.

(25)

Keep in mind that the solution (25) is based on the assumption
La = Lc = L = 1. Once again, the variables La and Lc define the
slopes of the linearized anodic and cathodic polarization curves as
defined by (23) and (24).

2. Corrosion Cell 2

The geometry in this problem is slightly more complicated than that
for the previous cell. The bottom segment considered to be the cath-
ode is a cosine curve, whereas the top edge is the anode (at a constant
potential). The cell is depicted in Fig. 12. The shape of the cathode
is described by (26):

y(x) = 0.15 [1 − cos (πx)] . (26)

The polarization boundary condition is once again assumed to
be linear:

∂φ

∂n
= h1(x)φ + h2(x). (27)

Assuming that the components of the outward unit normal are
described by

(
nx , ny

)
,

h1(x) = −πnx tan (πx) , (28)

h2(x) = −πny cos
(

e−πy − e(y−2H)
)
. (29)
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Figure 12. Corrosion cell 2.

The other boundary condition are as follows:

φ(x, H) = 00 ≤ x ≤ 1y = H, (30)
∂φ

∂n
= 00 ≤ y ≤ H x = 0, (31)

∂φ

∂n
= 00 ≤ y ≤ H x = 1. (32)

This problem was solved in10 analytically with a closed-form
solution given by (33):

φ(x, y) = cos (πx)
(

e−πy − eπ(y−2H)
)
. (33)

V. APPLICATION IN ELECTRODEPOSITION

The process of electrodeposition is the reverse of the corrosion phe-
nomenon. The intent in electrodeposition is to deliberately con-
sume that material which is supplied by the anode to plate it on
the cathode.10–13 A major difference between the two applications is
that the domain occupied by the electrolyte is constantly changing
as the plating process proceeds. Such problems are classified as
the moving-boundary problems. Therefore, the nonlinearities are
twofold. Both the nonlinear polarization boundary condition and the
changing domain contribute to this effect.



Numerical Modeling of Certain Electrochemical Processes 15

The governing partial differential equation is still the Laplace
equation:

∂2φ

∂x2 +
∂2φ

∂y2 + ∂2φ

∂z2 = 0. (34)

In electrodeposition, it is reasonable to assume that the anode
maintains a constant potential; therefore, the boundary condition on
the anodic surface is quite simple:

φ(x, y, z) = φanode = constant. (35)

On the well-painted surfaces (insulated surfaces), the current
density vanishes:

∂φ

∂n
= 0. (36)

On the cathodic surfaces, the Butler–Volmer equation prevails.
The associated boundary condition is

−σ ∂φ
∂n

= i0

[
exp

(−αCñF

RT
φ

)
− exp

(
αAñF

RT
φ

)]
. (37)

The parameters in (37) are as follows: i0 is the exchange current
density, ñ is the number of electrons involved in cathodic reaction,
F is the Faraday constant, T is the absolute temperature, R is the
universal gas constant, αA is the anodic kinetic parameter, and αC is
the cathodic kinetic parameter

The instantaneous growth of the cathode (in terms of the out-
ward normal growth function h(t)) is given next:

dh

dt
=
(

M

ñρF

)[
exp

(
−αCñF

RT
φ

)
− exp

(
αAñF

RT
φ

)]
. (38)

The additional parameters introduced in (38) are as follows: t is
time, h(t) is the outward normal growth of the cathode, M is the
molecular weight, and ρ is the density of the electrolyte.

Nondimensionalizing the variables according to the scheme sug-
gested in11 leads to considerable simplification of the initial-
boundary-values problem. The final nondimensional form is
provided by (39)–(43):

∂2φ

∂x2 +
∂2φ

∂y2 + ∂2φ

∂z2 = 0 (in the electrode) , (39)
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φ = φA (on the anode) , (40)
∂φ

∂n
= ζ

(
e−αCφ − eαAφ

)
(on the cathode) , (41)

∂φ

∂n
= 0 (on insulated surfaces) , (42)

dH

dτ
= ζ

(
e−αCφ − eαAφ

)
(cathode growth) . (43)

The mathematical description of the initial-boundary-value
problem above is complete, once the initial condition has been
specified. It is assumed that the initial height is zero; therefore,

H = 0 at τ = 0. (44)

To predict the cathode shape, the initial-boundary-value prob-
lem described by (39)–(44) has to be integrated in time.

Clearly, obtaining an analytical solution is extremely difficult in
three dimensional and even two-dimensional geometries. In the next
section, a simple one-dimensional problem is treated in detail.

VI. ANALYTICAL SOLUTION TO A ONE-DIMENSIONAL
ELECTRODEPOSITION PROBLEM

To demonstrate the difficulties associated with solving initial-
boundary-value problems arising in electrodeposition, a fictitious
one-dimensional problem is treated next. The fictitious electrolyte is
initially present between x = 0 and x = L as shown in Fig. 13. The
point x = 0 corresponds to the location of the anode and the point
x = L corresponds to the initial position of the cathode. Note that

Figure 13. One-dimensional geometry of the electrodeposition problem.
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because of the plating process, the cathode grows and the distance
between the electrodes (i.e., the length of the electrode) is reduced.
If this distance is denoted by s(t), and h(t) represents the outwards
normal growth of the cathode, the following relationship is true:

s(t) = L − h(t). (45)

The partial differential equation reduces to an ordinary differen-
tial equation describing the variation of the potential function ϕ(x)
within the electrolyte:

d2φ

dx2 = 0. (46)

The boundary conditions are

φ(0, t) = φA (on the anodes) , (47)
dφ

dx
= ζ

(
e−αcφ(h,t)n − eαAφ(h,t)

)
(on the cathode) , (48)

dh

dt
= ζ

(
e−αcφ(h,t) − eαAφ(h,t)

)
= dφ

dx
(cathode growth rate), (49)

ds

dt
= L − t∫

0

ds

dτ
dτ (rate of electrolyte length change) , (50)

s (0) = L (initial electrolyte length) (51)

Note that (51) is equivalent to the following condition:

ds

dt
= −dh

dt
= −dφ

dx
. (52)

The general solution to (47) is of the form

φ(x, t) = C1(t)x + C2(t). (53)

Imposing the boundary conditions at the cathode and anode
allows one to calculate the constants of integration:

C1(t) = ζ
(

e−αC[C1(t)s(t)+φA] − e−αA[C1(t)s(t)+φA]
)
, (54)

C2(t) = φA. (55)
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In view of the fact that C1 (t) = − (ds/dt), (54) can be rewrit-
ten as

ds

dt
= −ζ

{
exp exp

[
αC

(
s

ds

dt
− φA

)]
− exp

[
−αA

(
s

ds

dt
− φA

)]}
.

(56)

The expression on the right-hand side of (56) can be linearized
by taking the first term of the Taylor series expansion in terms of
s(ds/dt) − φA. Performing the linearization and some algebra, one
arrives at an explicit expression involving ds/dt :

ds

dt
= rφA

1 + rs
. (57)

Here, the parameter r is given by r = ζ (αA + αc).
The exact solution for (57) can easily be obtained:

s(t) = 1

r

[
−1 + (1 + 2rA + 2r2φAt)

1/2
]
. (58)

Since s(0) = L the constant A is calculated from

A = L + r

2
L2. (59)

Combining the results, we have

C1 (t) = −ds

dt
= −φA

(1 + 2rA + 2r2φAt)1/2
, (60)

φ (x, t) = φA

⎛

⎝1 − r x
(
1 + 2rA + 2r2φAt

)1/2

⎞

⎠ , (61)

s
ds

dt
= φA

(

1 − 1

(1 + 2rA + 2r2φAt)1/2

)

. (62)

Once again, the above approximations are based on the critical
assumption that the entity s(ds/dt) − φA is small. For example, if
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we expect (ds/dt) − φA ≤ ε, it is straightforward to show that it
translates to the following constraints:

tε2r2 − ε
(

1 + 2rA + t2ε2r4
)1/2 ≤ φA ≤ 0. (63)

Naturally, analytical solutions to two-dimensional and three-
dimensional problems become intractable.

VII. GENERAL FRAMEWORK OF NUMERICAL
APPROXIMATION

Essentially, there are three numerical techniques for solving elliptic
partial differential equations.14–16 In the case of cathodic protec-
tion and electrodeposition, the governing partial differential equa-
tion is very simple, namely, the Laplace equation. These techniques
are classified as follows:

(a) Finite-difference method (FDM)
(b) Finite-element method (FEM)
(c) Boundary-element method (BEM)

The general description of these methods is provided in the
present section. More detailed information on the finite differences
and boundary elements will be provided in later sections of the
article. It will become clear that in electrochemistry applications
(of interest to us), the BEM could be the most efficient numerical
technique.

1. Finite-Difference Method

The domain under consideration (the electrolyte) is covered with a
grid. For the sake of simplicity, we use a two-dimensional Cartesian
grid. The discrete version of the Laplace equation at each grid point
is represented by (64):

φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi, j = 0. (64)

The subscripts (i, j) refer to the location
(
xi , y j

)
where dis-

cretization takes place. Furthermore φi, j is the approximation to
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Figure 14. The finite-difference grid.

the unknown potential φ
(
xi , y j

)
. These are symbolically depicted in

Fig. 14. Sufficient numbers of equations are written at the grid points
and once the boundary conditions have been taken into account, a
system of algebraic equations is obtained. This system can be solved
using direct or iterative methods available in numerical linear al-
gebra. In the case of nonrectangular geometries, the procedure is
more complicated. However, in principle, it is possible to map such
regions to a rectangular one using techniques such as grid genera-
tion. In such situations, although the domain is simplified consid-
erably, the governing partial differential equation takes a different
form owing to the coordinate change.

2. Finite-Element Method

In the FEM, the variational formulation (or weak formulation) of
the boundary value problem is employed. As a concrete example,
suppose the strong form of the boundary value problem is described
by (65)–(67):

�2φ = 0 in Ω, (65)

φ = prescribed value onΓ1, (66)
∂φ

∂n
= prescribed value on Γ2. (67)
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It can be shown (although it is neither trivial, nor intuitive) that
the solution to the above boundary value problem, among all func-
tions satisfying (66), also minimizes the functional J (φ) described
by (68):

J (φ) = 1

2

∫∫

Ω

(∇φ)2dΩ −
∫

Γ2

∂φ

∂n
dS. (68)

An alternative description is to state that among all functions,
satisfying (66), the exact solution of the boundary value problem
satisfies the following condition:

∫∫

Ω

∇φ∇ψdΩ =
∫

Γ2

∂φ

∂n
ψdS. (69)

The function ψ is arbitrary but vanishes on Γ2.
The electrolyte is discretized with different types of elements

available in the FEM. A typical element shown in Fig. 15 is a three-
noded triangular type which is a linear approximation to φ(x, y)
within its interior. The global system of equations is obtained by the
assembly process of contributions from individual elements. Upon
applying the boundary conditions, one can solve the resulting sys-
tem of algebraic equations using the direct or iterative methods.
Owing to the nature of the FEM, complicated geometries can eas-
ily be handled. The only drawback (as in the FDM) is the fact that
the electrolyte needs to be discretized. Keep in mind that in cathodic
protection and electrodeposition, the value of the potential on the
bounding surfaces is of primary interest.

Figure 15. A three-noded triangular element
in the finite-element method.



22 N.G. Zamani

3. Boundary-Element Method

The basic principle behind the BEM is to convert the partial differ-
ential equation into an integral equation using the classical methods
of applied mathematics. This technique requires the Green function
associated with the differential operator (in this case, the Laplace
operator). After the appropriate manipulations, (70) is obtained:

c(p)φ(p) =
Ω∮

∂

φ(p′)∂G(p, p′)
∂n

dS+
Ω∮

∂

∂φ(p′)
∂n

G(p, p′)dS. (70)

Since for the sake of simplicity we have limited our domain
(electrolyte) to two-dimensional geometries, the integrals in (70) are
in fact line integrals. In the three-dimensional case these become sur-
face integrals. Furthermore, the variable of integration is p′, while
p is held fixed.

The coefficient c(p) in (70) depends on the location of p =
(x, y) where the potential ϕ(x, y) is being evaluated. This value is
given below:

c(p) =

⎧
⎪⎨

⎪⎩

1 if p is in the interior ofΩ
0.5 if p is on the smooth part of ∂Ω
0 if p is in the exterior ofΩ

(71)

In the BEM, the boundary is divided into panels (patches or
elements on the boundary) as depicted in Fig. 16. On these panels,

Figure 16. The boundary is discretized with panels (boundary
elements).
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the integral equation (70) is discretized. The result is a system of al-
gebraic equations which can be solved once the boundary conditions
have been taken into account. A major advantage of the BEM is that
the body of electrolyte need not be discretized. On the other hand, the
resulting system of equations is fully populated. This is in contrast
to the FDM and the FEM, where the matrices are sparse. The BEM
has been widely used in aerodynamics applications. In that field, the
method is also known as the panel method (or the source distribution
technique17).

VIII. IMPLEMENTATION OF THE FINITE-DIFFERENCE
METHOD IN CATHODIC PROTECTION

The discussion in this section is limited to a two-dimensional rectan-
gular domain. The system under consideration is a rectangular con-
tainer filled with an electrolyte.5 The container’s vertical walls are
insulators. The electrolyte’s surface is open to air. The bottom of the
container consists of two metals in contact with each other exactly as
in the geometry shown in Fig. 25 in the Appendix. Metal 1 on the left
(cathode) has a higher equilibrium electromotive force and is thus
more noble than metal 2 on the right (anode).The system boundary
is a rectangle; there are insulators on three sides (left, right, top),
and metals on one side (bottom). The FDM has been used for the
calculation of the potential ϕ in the interior and on the boundary.

The steps in the FDM are:

1. Choosing a lattice
2. Discretization
3. Writing the mesh equations
4. Solving the mesh of equations

1. Choosing a Lattice

A rectangular lattice is a family of vertical and horizontal lines in the
xy plane. The point of intersection of lines is often called a “node.”
Each rectangle formed by two adjacent vertical lines and two hori-
zontal lines in the lattice is called a “mesh.” Each side of the mesh
is called a “link.” A rectangular lattice is said to be uniform if all of
the horizontal links are equal to a constant b. If a = b, then we have
a square lattice; however, the condition a = b is not essential and
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Figure 17. The corrosion cell and its finite difference
method lattice.

it will not be required here. Finally, a rectangular lattice is said to
be centered if the origin (x, y) = (0, 0) is one of the lattice points.
In a centered uniform rectangular lattice, the lattice points are the
points for which x = ma for m = 0,±1,±2, . . . and y = nb for
n = 0,±1,±2, . . .. Henceforth the term “lattice” will be used to
mean a centered uniform rectangular lattice as shown in Fig. 17.

2. Discretization

Once a lattice has been chosen, it must be decided how to
approximate the various derivatives of φ by difference quotients.
In the discussion that follows, reference will be made to the diagram
shown in Fig. 18. The lattice points have been given the abbrevia-
tions E (east), S (south), W (west), N (north), and C (center). The
values of the function at these points are denoted by φE, ϕS, φW,
φN, and φC respectively. Thus, for example, if C = (ma, nb), then
φC = φ (ma, nb), ϕN = φ (ma, (n + 1) b), etc.

The FDM is affected by replacing the derivatives of ϕ at a lattice
point such as C with their approximations as follows:

∂2φ

∂x2 ≈ φE − 2φC + φW

a2 , (72)

∂2φ

∂y2 ≈ φN − 2φC + φS

b2 . (73)
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Figure 18. Nodes used in approxi-
mating partial derivatives.

The so-called five-point approximation of the Laplacian opera-
tor at C is

�φ ≈ φE − 2φC + φW

a2 + φN − 2φC + φS

b2 . (74)

The first partial derivatives (at C) will be approximated by their
centered difference quotients:

∂φ

∂x
≈ φE − φW

2a
, (75)

∂φ

∂y
≈ φN − φS

2b
. (76)

Centered difference quotients are more accurate than one-sided
difference quotients.

3. Mesh Equations

The letter C will be used as before to denote a typical lattice point
and the letters E , N , W , and S will be used to denote the four
neighboring nodes as shown in Fig. 18. We now write the five-point
approximation of the Laplace equation at each node C in the interior
or on the boundary of the system:

φE − 2φC + φE

a2 + φN − 2φC + φS

b2 = 0 (77)
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From the above equation, the potential at C is calculated in
terms of φE, φN, φW, and φS:

φC = δ

2 (1 + δ)
(φE + φW)+ 1

2 (1 + δ)
(φN + φS) . (78)

In the (78), the variable δ is defined by δ = (b/a)2. Upon defin-
ing two other variables δ1 = δ/2 (1 + δ) and δ2 = 1/2 (1 + δ), one
can further reduce (78):

φC = δ1 (φE + φW)+ δ2 (φN + φS) . (79)

The constants δ, δ1, and δ2 have been defined for convenience;
they satisfy δ1 + δ2 = 1/2. Furthermore, if a = b, then δ = 1/2 and
δ1 = δ2 = 1/4, so (79) simplifies to

φC = φE + φN + φW + φS

4
. (80)

In general, a and b need not be equal; therefore, (79) has been
used throughout.

4. Solving the Mesh Equations

After having written the Laplace equation in the discretized form at
every node C in the system, we arrive at the set of mesh equations.
The next step is to solve these equations and find the values of φ at
every system node. The solutions to the mesh equations will only be
approximately equal to the exact value of; this is because the mesh
equations themselves are only approximations to field equation.

The mesh equations may be solved either directly or iteratively,
and within each of these two categories there are several possibil-
ities. The method discussed here is iterative. By an “iteration” we
mean a “lattice iteration,” to be described presently. Iterations have
simple structure and low storage requirements; moreover, the itera-
tions are all identical in structure (stationary), and they are in general
nonlinear. The iterative method begins by initializing the values of
φ at all nodes in the system to reasonable but otherwise arbitrary
values. An arbitrary pair of nodes is then chosen in the system as
the first node and the last node. The first lattice iteration begins as
follows.
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We start marching through the lattice in fixed and simple man-
ner, beginning at the first node, visiting each and every node in the
system once. With use of the Laplacian formula (79), at each step
(i.e., at each node) a new value of φ at that node is calculated in
terms of φ at the four neighboring nodes. Once this has been done,
we move to the next node and update its potential by the same proce-
dure. The first lattice iteration is completed as soon as the procedure
has been carried out for the last node. Second, third, and higher lat-
tice iterations are not only possible, but usually quite necessary.

In the process of marching through the lattice, nodes C for
which some of the four neighboring nodes, N, E, S, and W are out-
side the system will be encounted; these nodes outside the system
are called the “fictitious nodes.” Without any boundary conditions,
fictitious nodes would lead to an undetermined set of equations. It is,
however, possible to eliminate the fictitious nodes with the help of
the boundary conditions, thereby reducing the number of unknowns
to the number of equations available.

For each node C in the system, the elimination of its neighbor-
ing fictitious nodes (if it has any) changes the basic mesh equation
at C. The change depends on the location of C. For the system in
Fig. 17, there are 11 cases; these cases can now be examined with
reference to Fig. 19, which shows how the different cases have been
enumerated. The polarization functions of the cathode (metal 1) and
the anode (metal 2) are denoted by f and g, respectively.

Case 1 (the interior)
This is the simplest case. Node C is in the interior of the system,

its four neighboring nodes all belong to the system, and there are
no fictitious nodes in the neighborhood of C. The value of φC is
calculated in terms of φE, φN, φW, and φS according to the equation
below:

φC = δ1 (φE + φW)+ δ2 (φN + φS) . (81)

Case 2 (the top, excluding the corners)
For this case, node C can be anywhere at the interface between

the electrolyte and the air, except the corners. The only fictitious
node is N. To eliminate φN, the boundary condition for insulators is
used with the unit inward normal vector �n = (0,−1). From (82) it
follows that φN = φS.

0 = ∂φ

∂n
= −∂φ

∂y
= −φN − φS

2b
. (82)
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Figure 19. Fictitious nodes for different nodes on the boundary (lattice not shown).

In view of (82), the mesh equation takes the following form:

φC = δ1 (φE + φW)+ 2δ2φS. (83)

Case 3 (the top-left corner)
Here, there are two fictitious nodes, N and W. To eliminate ϕN,

the insulator boundary condition with �n = (0,−1) gives φN = φS,
just as in the previous case. To eliminate φW, again the insulator
boundary condition with �n = (1, 0) gives

0 = ∂φ

∂n
= ∂φ

∂x
= φE − φW

2a
. (84)

Therefore, φW = φE and the overall mesh equation is described
below:

φC = 2δ1φE + 2δ2φS. (85)

Case 4 (the top-right corner)
Here, the fictitious nodes are N and E. To eliminate φN and φE,

the insulator boundary can be applied twice with �n = (0,−1) and
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�n = (−1, 0), respectively. The results are φN = φS and φE = φW.
Therefore,

φC = 2δ1φW + 2δ2φS. (86)

Case 5 (the left wall, excluding the corners)
Here, node C can be anywhere on the left wall except at the very

bottom or the very top. To eliminate the fictitious node W, once again
the insulator boundary condition is used with �n = (1, 0). It follows
that φW = φE, from which we get

φC = 2δ1φE + δ2 (φN + φS) . (87)

Case 6 (the right wall, excluding the corners)
Here, node C is anywhere on the right wall except at the end-

points. To eliminate the fictitious node E, the insulator boundary
condition with �n = (−1, 0) can be used to obtain φE = φW, and
then

φC = 2δ1φW + δ2 (φN + φS) . (88)

Case 7 (cathode, excluding its endpoints)
For this case, C may be anywhere on the cathode, except at its

endpoints. The only fictitious node is S. To eliminate φS, the metal
boundary condition σ(∂φ/∂n) = f (φ) with �n = (0, 1) should be
used. The approximation is described by (89):

σ
∂φ

∂n
= σ

∂φ

∂y
= σ

φN − φS

2b
= f (φC) . (89)

It follows that φS = φN − (2b/σ) f (φC), which when substi-
tuted into the basic mesh equation gives

φC + 2bδ2

σ
f (φC) = δ1 (φE + φW)+ 2δ2φN. (90)

Case 8 (anode, excluding its endpoints)
The conditions in this case are similar to those in case 7; the only

difference is that here, the anode’s polarization function g′′should be
used instead of the cathode’s. The result is

φC + 2bδ2

σ
g (φC) = δ1 (φE + φW)+ 2δ2φN. (91)
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Case 9 (cathode, its left endpoint)
The fictitious points are S and W. To eliminate φW, the insulator

boundary condition with �n = (1, 0) is used to get φW = φE. To
eliminate φS, the metal boundary condition with �n = (0, 1) is used
to get φS = φN−(2b/σ) f (φC). Substituting φW and φS in the basic
equation gives

φC + 2bδ2

σ
f (φC) = 2δ1φE + 2δ2φN. (92)

Case 10 (anode, its right endpoint)
The fictitious points are S and E. The elimination of φs and φE

leads to φS = φW and φS = φN − (2b/σ)g(φC). Therefore, the
resulting mesh equation is

φC + 2bδ2

σ
g (φC) = 2δ1φW + 2δ2φN (93)

Case 11 (the cathode–anode junction)
This case is similar to cases 7 and 8. The difference is that

instead of the polarization functions f or g alone, the polarization
function f + g should be used. This is because at the junction,
each electrode is sending its own current vertically upward into the
solution (the actual direction is negative for the cathode), so the total
current density from the junction into the solution is the algebraic
sum of the contributions from both. The result is

φC + 2bδ2

σ
[ f (φC)+ g(φC)] = δ1 (φE + φW)+ 2δ2φN. (94)

Equations (81)–(89) give the potential φC explicitly in terms of
the potentials at the nonfictitious neighboring nodes of C. Equations
(90)–(94) also give the potential φC; however, to find φC from these
latter equations it is necessary to use a numerical technique since the
polarization functions f and g can be nonlinear.

Cases 1–11 have been incorporated without any change into a
Fortran code named COR CELL.5 The code is simple but system-
dependent; shape and boundary conditions both affect each line of
the central part of the program. Modifications will be necessary at
various places in the code before it can be used for other geometries
or boundary conditions. The user who introduces the changes must
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have some familiarities with the FDM. The user must also know how
the FDM is adapted to the features of the system in question. The
purpose of investigating cases 1–11 for the corrosion cell problem
was to demonstrate how geometric and boundary conditions can be
dealt with, and to make it easier for the reader to understand the
organization of the code.

Keep in mind that several iteration cycles may be required to
arrive at a converged solution.

IX. IMPLEMENTATION OF THE BOUNDARY-ELEMENT
METHOD IN CATHODIC PROTECTION

Once again, as in Sect. VIII, the discussion is limited to a bounded
two-dimensional domain. However, the domain is no longer re-
stricted to a rectangular one and is assumed to be arbitrary in
shape.18 The boundary of the domain Ω denoted by ∂Ω consists
of ΓA, ΓC , and ΓI; therefore, ∂Ω = ΓAUΓCUΓI. These segments
represent the anodic, cathodic, and insulated boundaries. The field
equation is the Laplace equation:

∂2φ

∂x2 +
∂2φ

∂y2 = 0. (95)

The boundary conditions are given by (96)–(100) below.

∂φ(Q)

∂nQ
= fA [φ(Q)] Q ∈ ΓA (anode) , (96)

∂φ(Q)

∂nQ
= fC [φ(Q)] Q ∈ ΓC (cathode) , (97)

∂φ(Q)

∂nQ
= 0 Q ∈ ΓI (insulation) . (98)

Here fA [φ(Q)] and fC [φ(Q)] represent the anodic and
cathodic polarization curves. Furthermore, nQ is the unit outward
normal to the boundary at the point Q under consideration, as
displayed in Fig. 20.
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Figure 20. The domain under con-
sideration and different segments.

Additional possible boundary conditions are shown below.
These conditions are applicable depending on the problem at hand:

∂φ(Q)

∂nQ
= qA Q ∈ ΓA (impressed current condition) , (99)

φ(Q) = φA Q ∈ ΓA (nonpolarizable anode) . (100)

The classical methods of applied mathematics (Green’s theorem
specifically), allow us to calculate the potential at an arbitrary point
P in the interior of ∂� according to the following equation:

2πφ(P) = −
∮

∂Ω

[
φ(Q)

∂

∂nQ

(
1

rPQ

)
−
(

ln
1

rPQ

)
q(Q)

]
dΓQ.

(101)

If the point P belongs to the boundary of Ω , the counterpart of
the equation is revised according to (101):

πφ(P) = − (PV)
∮

∂Ω

[
φ(Q)

∂

∂nQ

(
1

rPQ

)
−
(

ln
1

rPQ

)
q(Q)

]
dΓQ.

(102)

In these equations, rPQ stands for the distance between the
points P and Q, and (PV) represents the integration in terms of the
Cauchy principal value. Furthermore, q(Q) is the flux at point Q on
the boundary.

In cathodic protection modeling, (102) is the relevant form.
Once the unknowns φ(Q) and q(Q) on the boundary have been eval-
uated, the potential at an arbitrary interior point can be calculated
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with the aide of (101). This, however, is rarely needed as the surface
potential and fluxes are of primary interest.

Several properties of the integral equation (102) will be used
and are listed below:

(a) The condition of solvability of the interior potential prob-
lem is ∮

∂Ω

q(Q)dΓQ = 0.

(b) If the potential φ(Q) is specified (i.e., the Dirichlet boundary
condition), the flux q(Q) on Γ can be uniquely determined
from (102) and it automatically satisfies condition (a).

(c) If the flux q(Q) on Γ and satisfies condition (a), the potential
φ(Q) is not unique, but any two solutions differ by a constant.

(d) Finally, if condition (a) is violated, no solution for the poten-
tial φ(Q) can be obtained.

It is worth mentioning that the term ln
(
1/rPQ

)
in the above

integral equations is the Green function for the two-dimensional
Laplacian operator. For the case of the Laplacian operator in three
dimensions, the Green function is different and is expressed by
1/rPQ. In either case, the Green function is singular when the points
P and Q coincide. Therefore, the BEM involves calculating singular
integrals.

X. NUMERICAL IMPLEMENTATION
OF THE BOUNDARY-ELEMENT METHOD

The BEM is based on covering the boundary of the domain under
consideration with elements (or panels) where the degrees of free-
dom are the potential and flux. The degrees of freedom associated
with the j th panel (element) are φ j and q j .

The discrete version of the integral equation (102) at the mid-
side point of each element is described by (103):

∑N

j=1
Hijφ j =

∑N

j=1
Gijq j i = 1, 2, . . . , N . (103)

In (103), N is the total number of elements and i refers to the
field point at which the integral equation has been discretized.16 The
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expressions for Hi j and Gi j for a two-dimensional domain are given
below:

Hi j =

⎧
⎪⎪⎨

⎪⎪⎩

π +
s2 j∫
s1 j

∂
∂nQ

(
ln 1

rPQ

)
dΓQ if i = j

s2 j∫
s1 j

∂
∂nQ

(
ln 1

rPQ

)
dΓQ if i �= j,

(104)

Gi j =
S2 j∫
S1 j

ln
1

rPQ
dΓQ . (105)

The integrals Hij and Gij can be evaluated using a local coor-
dinate system. The expanded form of (103) is displayed by (106):
⎡

⎢
⎣

H11 · · · H1N
...

. . .
...

HN1 · · · HNN

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

φ1
...

φN

⎫
⎪⎬

⎪⎭
=
⎡

⎢
⎣

G11 · · · G1N
...

. . .
...

GN1 · · · GNN

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

q1
...

qN

⎫
⎪⎬

⎪⎭
. (106)

The matrix H happens to be singular whereas matrix G is
invertible. Although it is not the case in corrosion problems, if the
boundary conditions are linear, upon applying the known boundary
conditions (i.e., known potentials and fluxes), one can solve the lin-
ear system of equations for the unknown degrees of freedom.

1. Iteration Procedures

Recall that the boundary of the domain under consideration was the
union of ΓA, ΓC, and ΓI, which represented the anodic, cathodic,
and insulated surfaces. Assuming that fA and fC denote the anodic
and cathodic polarization curves, the symbolic expressions for the
boundary conditions are described by (107)–(109):

qA = fA(φA), (107)

qC = fC(φC), (108)

qI = 0. (109)

Substituting these equations in the expanded form (106),
where the degrees of freedom have been grouped together, leads
to following system of nonlinear transcendental equations:
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⎡

⎣
H11 H12 H13
H21 H22 H23
H31 H31 H33

⎤

⎦

⎧
⎨

⎩

φC
φA
φI

⎫
⎬

⎭
=
⎡

⎣
G11 G12 G13
G21 G22 G23
G31 G32 G33

⎤

⎦

⎧
⎨

⎩

fC(φC )

fA(φA)

0

⎫
⎬

⎭
.

(110)

In this system, the unknowns are QC, QA, and φI, representing
the groups of degrees of freedom on the three surfaces. A useful
rearrangement of the system (110) is displayed below:
⎡

⎣
H11 H12 −G13
H21 H22 −G23
H31 H31 −G33

⎤

⎦

⎧
⎨

⎩

φC
φA
0

⎫
⎬

⎭
=
⎡

⎣
G11 G12 −H13
G21 G22 −H23
G31 G32 −H33

⎤

⎦

⎧
⎨

⎩

fC(φC)

fA(φA)

φI

⎫
⎬

⎭
.

(111)

A further rearrangement of (111) is obtained through multiply-
ing by the inverse of the matrix of the right-hand side, which is sym-
bolically written below:

⎡

⎣
A11 A12 A13
A21 A22 A23
A31 A31 A33

⎤

⎦

⎧
⎨

⎩

φC
φA
0

⎫
⎬

⎭
=
⎧
⎨

⎩

fC(φC)

fA(φA)

φI

⎫
⎬

⎭
. (112)

Since the unknown vector φI is decoupled from the first two
equations, we can concentrate on the reduced system (113):

[
A11 A12
A12 A22

]{
φC
φA

}
=
{

fC(φC)

fA(φA)

}
. (113)

In the remaining portion of this section, three different methods
are discussed for iteration purposes.19

The first method to be discussed is the Jacobi iteration. This is
achieved according to the following scheme:

φn+1
C = A−1

11

[−A12φ
n
A + fC

(
φn

C

)]
, (114)

φn+1
A = A−1

22

[−A21φ
n
C + fA

(
φn

A

)]
. (115)

Here n and n + 1 represent the nth and (n + 1)th iterations,
respectively. The iteration procedure proceeds as follows:

(a) Make a guess of φn
C and φn

A.
(b) Calculate fC

(
φk

C

)
and fA

(
φk

A

)
from the cathodic and anodic

polarization curves.
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(c) Find φn+1
C and φn+1

A from (114) and (115).
(d) Repeat steps (a)–(c) until convergence is achieved.

The more sophisticated version of the above procedure is the
Gauss–Siedel method. This method is based on the following itera-
tion procedure:

φn+1
C = A−1

11

[−A12φ
n
A + fC

(
φn

C

)]
, (116)

φn+1
A = A−1

22

[
−A21φ

n+1
C + fA

(
φn

A

)]
. (117)

The main difference from the Jacobi iteration is that as soon
as a new value is found, it is used immediately. The steps for this
algorithm are described below:

(a) Make a guess of φn
C and φn

A.
(b) Calculate fC

(
φk

C

)
and fA

(
φk

A

)
from the cathodic and anodic

polarization curves.
(c) Find φn+1

C and φn+1
A from (116) and (117).

(d) Repeat steps (a)–(c) until convergence is achieved.

The third technique discussed is the Newton–Raphson method.
To describe the procedure, we define the two auxiliary functions
F1(φC, φA) and F2(φC, φA):

{
F1(φC, φA)

F2(φC, φA)

}
=
{

fC(φC)

fA(φA)

}
−
[

A11 A12
A21 A22

]{
φC
φA

}
. (118)

We now write the system (118) explicitly as

F1(φC, φA) = fC(φ)− A11φC − A12φA = 0, (119)

F2(φC, φA) = fA(φA)− A21φC − A22φA = 0. (120)

The Jacobian matrix J associated with the above system is
given by

J = ∂(F1, F2)

∂(φC, φA)
=
[

f ′C (φC)− A11 −A12
−A21 f ′A (φA)− A22

]
, (121)

where f ′C (φC) = d fC/dφC and f ′A (φA) = d fA/dφA.
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Therefore, the Newton–Raphson method takes the following
form:

{
φC
φA

}

n+1
=
{
φC
φA

}

n
− J−1

{
F1 (φC, φA)

F2 (φC, φA)

}

n
. (122)

The iteration proceeds as follows:

(a) Make a guess of φn
C and φn

A.
(b) Calculate F1

(
φn

C, φ
n
A

)
and F2

(
φn

C, φ
n
A

)
.

(c) Calculate f ′C
(
φn

C

)
and f ′A

(
φn

A

)
from the cathodic and anodic

polarization curves.
(d) Calculate the Jacobian matrix.
(e) Repeat steps (a)–(e) until convergence is obtained.
(f) Calculate φI from the last row of (112), i.e., φI = A31φC +

A32φA.

XI. CONCLUDING REMARKS

In this expository article, the basic mathematical model of some sim-
ple electrochemical processes was discussed. The model is based on
the concept of conservation of charge within the electrolyte. The
boundary conditions, on the other hand, are problem-specific. The
subject of electrode kinetics is central to the proper specification of
the boundary conditions. In their most general form, the conditions
are nonlinear, leading to a nonlinear boundary value problem. This
is closely tied to the nonlinear polarization curves. The analytical
solution of the mathematical model is formidable and for moderately
simple two-dimensional regions is impossible to obtain. The only
feasible approach is numerical simulation. The use of high-speed
digital computers is an essential tool in solving such problems.

The most common techniques for numerical simulation are the
FDM, the BEM, and the FEM. Each of these techniques has its
advantages and limitations. In this article, finite differences and
boundary elements were briefly discussed. The application of the
FEM in electrochemistry has been reviewed by Schlesinger re-
cently.20 Since the objective of the present article was not to present
a comparative study of the available techniques, no specific exam-
ples were considered. However, on the basis of the available liter-
ature, at least in the context of cathodic protection simulation, the
BEM may be the most efficient numerical approach.
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APPENDIX. ELECTRODE KINETICS IN CATHODIC
PROTECTION

This section reviews parts of electrochemistry relevant to corrosion
and cathodic protection. For a more complete account, one must con-
sult books on physical chemistry or corrosion.5–7

Currents

Under favorable conditions, at every point on the surface of a
metal immersed in an electrolyte, oxidation (anodic) and reduc-
tion (cathodic) reactions occur simultaneously. The anodic reaction
results in a current density flowing out of the metal and into the
electrolyte. The cathodic reaction at the same point is the density
current flowing from the electrolyte into the metal. The former is
called the “anodic current density” (denoted by ianodic ) and the latter
is called the “cathodic current density” (denoted by icathodic ). The
net current density out of the metal and into the electrolyte is then

inet = ianodic − icathodic. (123)

At any point on the wet metal surface ianodic and icathodic are
directly proportional to, or can be defined as, the oxidation and re-
duction rates. Equilibrium at a point is defined as a condition in
which the oxidation and reduction rates at that point are equal, or
when ianodic equals icathodic, or when inet = 0.

As a vector quantity, the electrical current density has a direc-
tion as well as magnitude. At each point on the wet metal surface, the
components of the current density normal to the surface and pointing
to the electrolyte will be taken to be inet.

This property will be used later to write the boundary
conditions.

Potentials

The electrolyte and metal begin to interact chemically once they
are in contact. As mentioned above, this interaction is in the form
of oxidation (positive metal ions migrating from the metal into the
electrolyte) and reduction (positive metal ions returning from the
electrolyte to the metal and becoming metal atoms). At any given
point on the wet surface of the metal surface, an electric field
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and hence an electrical potential difference is developed across an
infinitesimally thin layer at the metal–electrolyte interface. We will
refer to this electric field as the interface field and to the accompa-
nying electric potential difference as the interface field or the elec-
tromotive force. The direction and magnitude of the interface field
(the polarity and size of the interface potential) depend on several
factors, including the electrolyte ionic concentration. In corrosion
problems, it is often the case that the metal becomes slightly nega-
tive with respect to the neighboring points in the electrolyte.

Potential Measurements

By a system is meant here a structure comprising one or more types
of metal and electrolyte which are in contact with one another in an
arbitrary but fixed manner. Thus, a system may be a container with
one or more electrodes and electrolytes, or a much larger structure,
such as a ship. In addition to the currents and potentials along the
metal surface, there is current and potential distribution throughout
the entire system. The potential and current density at every point of
the system are denoted by φ and i respectively. Their units are volts
and amperes per square meter.

There is usually interest in knowing the electrical potential at
different points in the system, particularly at points near or adja-
cent to the metals or the electrodes involved. However, it is impos-
sible to measure the true electrical potential difference between a
metal and the solution which is in contact with it. This is because a
second metallic electrode is required, and a second electrode intro-
duces its own interface potential into the readings, even when those
readings are taken by an ideal voltmeter which draws no currents.
So, there is no method of measuring either the actual electromo-
tive force of an electrode or the true electrical potential at any point
inside the solution. But, by arbitrarily assigning a potential to one
electrode, one can measure or otherwise determine the potentials
elsewhere in the system with respect to this standard. Applications
vary from indoor laboratory work to underwater measurements at
offshore petroleum establishments. A few of the reference electrodes
in common usage are the hydrogen electrode, the saturated calomel
electrode (SCE), the silver–silver chloride electrode, and the glass
electrode.

The potential, current, and their signs (positive or negative) can
be the source of much error and disagreement; therefore, we must
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adhere to a rigid set of conventions if hopeless confusion about the
sign and interpretation, especially of φ, is to be avoided. To begin
with, a distinction must be made between what we call here electro-
chemical potential and the electrical potential difference in its orig-
inal sense as defined in physics. The former has proven useful and
convenient in the field of electrochemistry and its applications, such
as corrosion engineering. To measure φ, one connects the positive
terminal of an (ideal) voltmeter to the trunk or body of the metals
in the system; the negative terminal of the voltmeter goes to a probe
(or sensor) such as the SCE; the probe is placed at the point at which
φ is to be measured. To measure φ elsewhere in the system, we sim-
ply move the probe to the new spot. The positive terminal of the
voltmeter remains fixed at some point on the metallic bulk of the
electrodes. Using this procedure, the measurements taken at points
sufficiently close to the surface of a metal are the electromotive force
of the metal at those points. Equally important, such measurements
are consistent with the conventions of the International Union of
Pure and Applied Chemistry which imply that the baser a metal,
the lower its electromotive force.

If we let ψ denote the actual electrical potential difference
between a point in the system and the electrical ground, which is
usually a metallic bulk, then φ and ψ are related though

ψ = c − φ. (124)

The constant c in (124) depends on the type of the sensor used
for measuring ϕ (SCE, etc.). It may be added here that metals,
owing to their high conductivity, allow little or no potential vari-
ation throughout their interiors (or bulk). It is for this reason that
the metallic bulk is frequently a natural and convenient choice for a
point of reference or a point of zero electrical potential (also called
the “electrical ground”).

Equation (124) does establish a relation between φ and ψ , at
least for geometries where an electrical ground is easily identifiable.
However, (124) may not be used to find ψ from the knowledge of φ
obtained from measurements. This is because c is not known. Also
note that while both φ and c depend on the type of measuring probe,
their difference, ψ , does not. This is to be expected since the true
electrical potential difference ψ should not depend on our choice of
the probe.
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Polarization Equations

At each point on a metal surface which is in contact with the elec-
trolyte, ianodic and icathodic are given in terms of the electrochemical
potentialΦ according to the Tafel–Butler–Volmer polarization equa-
tions below:

ianodic = i0 exp
(
φ − φ0

α

)
, (125)

icathodic = i0 exp
(
φ − φ0

−β
)
. (126)

The net current density is then

inet = i0

[
exp

(
φ − φ0

α

)
− exp

(
φ − φ0

−β
)]

. (127)

The current densities ianodic and icathodic are not independent of
each other as they satisfy (128):

iαanodiciβcathodic = iα+β0 . (128)

The parameters i0, φ0, α, and β depend on factors such as the
temperature, electrolyte ion concentration, and the type of reference
electrode used for potential measurements. During a single experi-
ment, however, these entities are assumed to be constant.

The constant φ0 is the equilibrium potential or the reversible
potential of the electrode; its sign and magnitude depend on
the reference electrode. The difference η = φ − φ0 is called the
“overpotential” or the “overvoltage” and it represents the deviation
of φ from the equilibrium potential φ0. Thus, η = φ − φ0 may
take on both positive and negative values at different points on the
surface of an electrode.

The positive constant i0 is called the “exchange current density.”
Equations (125) and (126) imply that i0 is the current flowing across
a unit area of the electrode in each direction (metal to solution and
solution to metal) at the reversible potential (where η = φ−φ0 = 0).

The positive constants α and β are given by α = RT/γ F and
= RT/ (1 − γ ) F . Here R is the gas constant, T is the absolute tem-
perature, and F is the Faraday constant. The dimensionless constant
γ is in the interval (0, 1); it is called the “symmetry factor,” though
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that name is sometimes also used for α and β. The constants α and
β are not independent of each other as they satisfy (129):

1

α
+ 1

β
= F

RT
. (129)

In this paragraph we will consider some of the properties of the
relation between φ and inet. Equation (127) motivates the definition
of a polarization function f as follows:

f (φ)
def= i0

[
exp

(
φ − φ0

α

)
− exp

(
φ − φ0

−β
)]

. (130)

Then inet = f (ϕ) and

ḟ (φ) = i0

[
1

α
exp

(
φ − φ0

α

)
+ 1

β
exp

(
φ − φ0

−β
)]

, (131)

f̈ (φ) = i0

[
1

α2 exp
(
φ − φ0

α

)
− 1

β2 exp
(
φ − φ0

−β
)]

. (132)

According to (131), inet is a strictly increasing function of φ.
The slope ḟ (φ) of the graph of inet versus φ is a minimum at the
inflection point φ1 given by

φ1 = φ0 + 2αβ

α + β
ln
(
α

β

)
. (133)

Note that φ1 = φ0 iff α = β, i.e., iff γ = 1/2. Finally, the
graph of f is concave up for φ > φ1, and concave down for φ < φ1.
Moreover, inet > 0 for φ > φ0, inet = 0 for φ = φ0, and inet < 0 for
φ < φ0.

A linearized polarization function is sometimes used as an
approximation to the nonlinear function f . The particular lineariza-
tion function here is

flinear (φ) = i0

(
1

α
+ 1

β

)
(φ − φ0) . (134)

This linearization is expected to give good results for small val-
ues of |φ − φ0|.
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POLARIZATION CURVES

The graphs of f and flinear are shown in Fig. 21 for the cases α < β,
α > β, and α = β. The graph of f resembles that of a hyperbolic
sine function. It is exactly a hyperbolic sine function iff α = β for
(127) and (130) simplify to

inet = f (φ) = 2i0 sinh
(−φ0

α

)
. (135)

Practitioners in the field seem to prefer other variations of these
graphs. A first variation (not shown) is where we sketch inet or inet/ i0
versus the overpotential η = φ − φ0. Sketching versus η is equiv-
alent to a horizontal shift of the graph in Fig. 21 to the origin, and
sketching inet/ i0 instead of inet simply amounts to a vertical scaling
of the same graph.

A second variation is where φ is treated as a function of inet.
This variation is readily available since the polarization function is
invertible, irrespective of the relation between α and β. The resul-
tant graphs are mirror images of those in Fig. 21 with respect to the
bisector of the first quadrant. This is displayed in Fig. 22.

Figure 21. The graph of inet versus φ.

Figure 22. The graph of φ versus inet.
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It is clear from the graph in Fig. 22 and (125) and (126) that
for φ > φ0, we have ianodic > i0 > icathodic. In other words, for
φ > φ0, the anodic reaction dominates the cathodic reaction and
inet is positive, that is, a net current is flowing out of the given point
on the electrode. The part of the graph corresponding to φ > φ0
(inet > 0) will be referred to as the oxidation branch. In Fig. 21,
the oxidation branch is the part of the graph above the φ-axis. In
Fig. 22, the oxidation branch is to the right of the φ-axis. Similarly,
the inequalities icathodic > i0 > ianodic hold for φ < φ0. In this
case the cathodic reaction dominates the anodic reaction and inet is
negative, that is, a net current is flowing into the given point on the
electrode. The part of the graph for which φ < φ0 (inet < 0) is called
the “reduction branch.” In Fig. 21, the reduction branch is to the left
of the φ−axis.

A third variation occurs when in Fig. 22 the reduction branch
is sketched with φ versus −inet. In Fig. 22, this is equivalent to a
180◦ rotation of the reduction branch about the φ-axis (or drawing
the mirror image of the reduction branch with respect to the φ-axis)
while keeping the oxidation branch fixed. This variation is shown in
Fig. 23.

The graphs in Figs. 21–23 are all different representations of
the same equation, namely, (127), which is a relationship between
inet and φ. There is another type of graph which differs from the
previous ones. The idea is to sketch not the relation between inet and
φ, but the relation between ianodic/ i0 and η = φ − φ0, and also the
relation between icathodic/ i0 and overvoltage η = φ − φ0 both on
the same coordinate system. Therefore, the new graphs are obtained
from (125) and (126) instead of (127). The result is shown in Fig. 24.
This figure also includes the graph where a semilogarithmic scale is
used. The outcome is two straight lines with slopes α and −β.

Figure 23. Drawing oxidation and reduction branches on the same side.
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Figure 24. Overvoltage versus anodic and cathodic currents.

A Corrosion Cell

Polarization curves can sometimes be helpful in providing insight
into a specific problem. As an example, consider what may be the
most basic corrosion system, namely, a cell consisting of two small
(microscopic) pieces or grains of metal in contact with each other
and with an electrolyte. The small size of the cell allows us to assume
that the potential variation on the surface of each metal is zero, i.e.,
the potential φ on the surface of each piece is constant.

There are two possibilities for the galvanic contact between the
electrodes:

Case 1. The point of contact between electrodes is at the surface of
the electrodes.

Case 2. The point of contact between the electrodes is in the interior
of the electrodes.

The geometry displayed in Fig. 25a corresponds to case 1. In
this configuration the point of contact between the two metals also
polarizes to a potential φ. Since this point is common to both metals
and each metal surface is at a constant potential, it follows that both
metal surfaces are at the same potential, namely, φ. Implicit in this
statement is that there is no jump in potential in the direction along
the surface of the electrodes, an assumption that is correct and can
be justified on physical grounds, but it has not been done here.

The current density on the surface of metal 1 is constant and
it is given by i1 = fc(φ), where fc is the polarization function of
metal 1. Similarly, the current density on the surface of metal 2 is
constant and it is given by i2 = fa(φ), where fa is the polarization
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Figure 25. Two cases of a simple corrosion cell.

function of metal 2. On the other hand, i1 and i2 satisfy i1 + i2 = 0.
Therefore,

i2 = − fc(φ) = fa(φ). (136)

Consequently, the following expression is correct:

φ = ( fc)
−1 (i2) = f −1

a (i2) . (137)

To find (φ, i2) graphically using (136), we intersect the graphs
of fa and − fc. To find (i2, φ) graphically using (137), we intersect
the graphs of f −1

a and (− fc)
−1.

The governing equations are (see (134) for linear curves)

φ − φc = rci1 = −rci2, (138)

φ − φa = rai2. (139)

Linear polarization has been assumed for both electrodes.
In (138) and (139), φc and φa are the equilibrium potentials of

metals 1 and 2, where it has been assumed that φc > φa. Note that
i2 > 0 > i1 and φc > φ > φa. Therefore, metal 1 has been operat-
ing on the cathodic (reduction) branch of its polarization curve and
metal 2 has been operating on the anodic (oxidation) branch.

In a corrosion cell of the type under consideration, the metal
with higher reversible potential is called the “cathode,” while the
one with the lower reversible potential is called the “anode.” The
steady-state potential is somewhere between the two reversible (or
equilibrium) potentials. A net current flows out of the anode and
into the cathode. Thus, the anodic piece is attacked by the electrolyte
and the cathodic piece is protected. The rate of attack is directly
proportional to the current density i2. The constants −rc and ra in
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Figure 26. Steady-state potential and current density for case 1.

(138) and (139) are the slopes of the lines in Fig. 26b. For linear
polarization, exact solutions are easily obtainable and are given by

φ = ra

ra + rc
φc + rc

ra + rc
φa, (140)

i2 = −i1 = φc − φa

rc + ra
. (141)

Equations (139) and (140) confirm our earlier observations. As
a convex combination, φ is always between φc and φa, and φc > φa
implies i2 > 0 > i1.

From the inequalities φa < φ < φc and the statement following
(134) about the accuracy of the linear model, it can be seen that if the
difference φc − φa is too large, then the original exponential curves
must be used to obtain reasonably accurate results. The steady-state
potential and current density for the small corrosion cell in Fig. 25a
using nonlinear polarization functions are shown in Fig. 27.

As Fig. 27 indicates, the error due to linearization can be consid-
erably greater for the current density than it can be for the potential.
Linearization error for the current density can be consequential since
the rate of corrosion depends on the current density. If the current
density obtained from the linear model is substantially lower than
its true value, then the actual corrosion rate will be severely over-
estimated and this will lead to overly optimistic guesses about, for
example, the lifetime of a metallic machine part. Therefore, it seems
advisable to work with the exponential model, especially when the
difference φc − φa is large. Since solving nonlinear equations may
be impossible or difficult to carry out manually, one might con-
sider the following approach based on Figs. 26 and 27. First, find the
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Figure 27. Nonlinear polarization functions and their linearizations
(case 1).

steady-state potential from the linearized model, i.e., (140). Second,
substitute the potential thus obtained in the original (nonlinear) po-
larization functions for each of the metals. And third, choose the
greater answer as an estimate of the steady-state current density.

We end the above discussion with a comment about the effect
of the conductivity of the electrolyte. It was assumed at the begin-
ning of this section that the potential over the entire surface of each
electrode is constant. Strictly speaking, that assumption is valid only
when the electrolyte conductivity is infinite, or its resistivity is zero.
In reality, of course, no electrolyte has zero resistivity. The results
obtained in (140) and (141) and Figs. 26 and 27, however, are im-
portant and valuable because they provide worst-case (hence, safe)
approximations to practical corrosion situations.

We now turn to case 2 in Fig. 25b. Here too we shall assume the
dimensions of the cell are so small that each piece of metal has a
constant potential over its entire surface. Call them φ1 and φ2. Since
the two surfaces do not meet at a point on the electrolyte boundary,
we may not assume φ1 = φ2. This is in contrast with case 1, and it
is necessary to take into account the conductivity or the resistivity of
the electrolyte as shown in Fig. 28.

If (i1, φ1) and (i2, φ2) are the steady-state current density and
potential pairs for metals 1 and 2 ,respectively, they must satisfy

i1 = fc (φ1) , i2 = fa (φ2) , i1 + i2 = 0, φ1 − φ2 = ri2, (142)
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Figure 28. Electrolyte conductivity taken
into consideration for case 2.

where r is directly proportional to the resistivity of the electrolyte.
Eliminating i1 from (142), we find

i2 = − fc (φ1) = fa (φ2) = φ1 − φ2

r
. (143)

Equation (143) represents a system of three equations in the three
unknowns φ1, φ2, i2.

Unlike case 1, it is difficult to graphically solve for φ1, φ2, i2
using a two-dimensional graph, even if fc and fa are linearized. We
then proceed to solve (143) analytically for the linear case. The re-
sult is

φ1 = rc

r + ra + rc
φa + r + ra

r + ra + rc
φc, (144)

φ2 = r + rc

r + ra + rc
φa + ra

r + ra + rc
φc, (145)

i2 = φc − φa

r + ra + rc
= −i1. (146)

As convex combinations, both φ1 and φ2 are between φc and φa.
A simple test shows that φ2 < φ1; therefore φa < φ2 < φ1 < φc
and 0 < i2 < imax, where imax is the current density corresponding
to r = 0. For r = 0, it follows that φ1 = φ2. For r = ∞, we get
φ1 = φc, φ2 = φa , and i2 = 0 = i1. These results are shown in
Fig. 29.

Figure 29 is the counterpart of Fig. 26b for case 1. An equivalent
of Fig. 26a is not drawn here. Equations (144)–(146) are the coun-
terparts of (140) and (141). Even though cases 1 and 2 deal with
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Figure 29. Steady-state potential and current for case 2.

different geometries, the effect of electrolyte resistivity is apparent
from a comparison between (139) and (142) and a comparison be-
tween Figs. 26b and 29. Note that if the electrolyte is not a very good
conductor, i.e., r � 0, then the corrosion current density will be less
than rmax.

As a precautionary measure it is common to assume that the
corrosion rate is maximum, that is, the cell current density equals
rmax even when r � 0.

What was said earlier for case 1 about the effect of lineariza-
tion holds true here as well. It should be noted though that attack on
metal 2 is a maximum for the geometry in Fig. 25a. Therefore, con-
servative answers for the potential and current density for the present
case may be obtained from the results for case 1. For more accurate
answers, we can use (144) and (145) to find the potentials and then
substitute them in nonlinear (exponential) polarization functions to
find the current density.
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I. NEAR-FIELD TRANSDUCERS FOR HEAT-ASSISTED
MAGNETIC RECORDING

One application of near-field transducers (NFT) is in heat-assisted
magnetic recording (HAMR). HAMR is similar to conventional
magneto-optical (MO) recording in that the data are stored in mag-
netic bits on a disk by heating the area of the bit with a laser beam
in the presence of an external field to set the magnetic orientation
of the bit as it cools. The optical head in conventional MO record-
ing is mounted on an actuator and optical feedback signals are used
to maintain a constant spacing between the head and the recording
medium, which is generally on the order of tens or hundreds of
nanometers. Also, for conventional MO recording the applied mag-
netic field is very small (approximately 0.02 T), typically generated
by a large fixed external magnet, and the laser energy rather than the
magnetic field is modulated with the input data stream. On the other
hand, for HAMR the integrated optical–magnetic head is mounted

M. Schlesinger (ed.), Modelling and Numerical Simulations II,
Modern Aspects of Electrochemistry 44, DOI 10.1007/978-0-387-49586-6 2,
c© Springer Science+Business Media LLC 2009
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on a slider, which flies over the surface of the recording medium at
10 nm or less. The applied field for HAMR is highly localized, very
large in magnitude (up to 1 T or more), and generated by a miniature
recording pole positioned within tens of nanometers of the optical
spot. For HAMR the magnetic field from the pole is modulated with
the input data stream, while the laser energy on the medium can
remain constant.

Conventional magnetic recording technology records magnetic
bits with down-track and cross-track dimensions less than 100 nm.
Areal recording densities of up to 400 Gb/in.2 have been demon-
strated. Unfortunately, it is difficult with conventional recording
technology to achieve substantially larger densities. As the storage
density increases, the area of each bit decreases, but to maintain the
same level of signal-to-noise ratio, the number of magnetic grains
within each bit must not decrease. Therefore, greater areal densi-
ties require smaller magnetic grains. The magnetic grain diameter
is presently on the order of 10 nm. As the volume of a magnetic
grain is reduced, it reaches a point where the magnetic orientation of
the grain becomes thermally unstable. Essentially, the average ther-
mal energy within the grain, which is proportional to kBT , becomes
comparable to the magnetic anisotropy energy, KuV , where kB is
Boltzmann’s constant, T is the absolute temperature, Ku is the mag-
netic anisotropy constant of the grain, and V is the volume of the
grain. This has been termed the “superparamagnetic limit” of mag-
netic storage density. Although it is possible to increase the stability
of the recording medium by increasing the magnetic anisotropy of
the recording material, eventually the applied magnetic recording
field from the recording head is insufficient to switch the magnetic
state of the medium. It requires new technologies to achieve areal
densities beyond this point. In HAMR the magnetic anisotropy of
the medium is momentarily reduced to enable recording by raising
its temperature. The recorded bit is then quickly cooled back to its
high-anisotropy state at ambient temperature to stabilize it. In this
manner, extremely high magnetic anisotropy materials such as FePt
can be recorded in a HAMR system, thereby potentially enabling
areal storage densities in the range of 1–40 Tb/in.2.1, 2

At these storage densities, the recorded domains are only tens
of nanometers in length and width. Hence, the optical spot used to
heat the recording medium in HAMR must be an order of magni-
tude smaller than the optical wavelength of low-cost and high-power
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semiconductor lasers, which is in the range of 650–830 nm. A con-
ventional lens can only focus light to a spot size defined by the
diffraction of light from the clear aperture of the lens. The diffraction
limit for the focused optical spot is given by

d = 0.5 λ

n sin θ
, (1)

where d is the full-width spot diameter at the half maximum point
(FWHM), λ is the wavelength, n is the refractive index of the
medium in which the light is focused, and θ is the half angle of
the cone of focused light. In other words, conventional optics are
able to focus light to a spot size of approximately a half wavelength.
For example, the new Blu-ray technology operates at a wavelength
of 405 nm and a numerical aperture (equivalent to n sin θ ) of 0.85,
which corresponds to a focused optical spot size of approximately
240 nm. Although this is a very small optical spot, it is still much
too large for use with HAMR. In a sense, HAMR replaces the dif-
ficulty of surpassing the superparamagnetic limit with the difficulty
of focusing light below the diffraction limit.

A solid immersion lens3(SIL) is a somewhat unconventional
focusing optic that is able to bring light to a focus inside a trans-
parent high-index material, resulting in a spot size that is n times
smaller in diameter than that for light brought to a focus in air by
a lens with the same numerical aperture, where n is the refractive
index of the SIL. Such an optic may be an essential part of a HAMR
disc drive. However, this spot size is still at least twice as large as
that required for a 1-Tb/in.2 HAMR areal storage density. Therefore,
a HAMR disc drive requires a new approach for concentrating light
energy into a spot smaller than the diffraction limit. Such devices are
possible by making use of the “near field,” that is, by concentrating
energy that consists of both propagating and nonpropagating com-
ponents. Because the nonpropagating components are evanescent –
they decay exponentially with the distance from their source – the
NFT can only generate a sub-diffraction-limited spot within a dis-
tance that is much smaller than a wavelength. Fortunately, even in a
conventional disc drive, the recording head flies within 20 nm of the
recording surface, well within the near field of a HAMR transducer.

NFTs are becoming popular in various areas of spectroscopy
(e.g., surface-enhanced Raman spectroscopy with a lithographically
defined surface of gold or silver nanoparticles of various shapes).
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NFTs may also become useful for extremely high-density optical
lithography4 and optical imaging.5 However, the requirements for
the NFT in HAMR are substantially greater than those for NFTs
in spectroscopy, lithography, or near-field imaging. In all cases, the
NFT must concentrate optical energy into a spot much smaller than
the diffraction limit, or in the time-reversed sense, scatter or transmit
light from an optical region much smaller than the diffraction limit.
For HAMR, however, the efficiency of the NFT is also of primary
importance. A NFT which confines the light energy to a 20-nm spot
but which only conducts one part in 105 of the incident laser power
into this spot is not useful for HAMR even though it might work
for spectroscopy. To make use of low-cost, commercial semiconduc-
tor lasers for HAMR disc drives, the NFT coupling efficiency must
be approximately 5%. Although this may seem like a very small effi-
ciency, it should be remembered that the efficiency of light transmis-
sion through a near-field tapered optical fiber with a 50-nm aperture
is only approximately 0.001%.6 Thus, the HAMR NFT must have a
power coupling efficiency into the recording medium that is orders of
magnitude greater than the transmission efficiency of tapered optical
fibers.

This immediately raises the question whether it is correct to
make a comparison between the transmission efficiency of a NFT
and its power coupling efficiency into a recording medium. Trans-
mission efficiency is a far-field property, while coupling efficiency
is a near-field property. Is it possible that a very tiny aperture with
a far-field transmittance of 10−5 could nevertheless in the near field
couple optical power efficiently into a recording medium? Are the
far-field and near-field properties of NFTs related and, if so, in what
way? Of course the far-field transmittance of a NFT is only defined
in the absence of a recording medium. When a recording medium
is placed within the near field of a transducer, does that significantly
affect the optical properties of the NFT itself? What is the best way
to judge the merit of a NFT?

In the literature for NFTs a variety of approaches have been
reported for judging the merit or efficiency of NFTs. One popular
efficiency measure is the value of the enhancement of the electric
field in the vicinity of the NFT relative to that of an incident plane
wave. Another figure of merit (FOM) is the amount of power that is
transmitted through a NFT aperture relative to the incident power on
the NFT integrated over the surface of the NFT aperture. This FOM



Near-Field Optics for Heat-Assisted Magnetic Recording 57

assumes that the transmitted power (a far-field quantity) is directly
related to the near-field coupling efficiency of the transducer. It is
not simple to apply this FOM to NFT antennas. A sensible FOM for
HAMR is the power coupling efficiency, i.e., the ratio of the power
dissipated within the optical hot spot of the recording medium to the
total power in the incident beam. This FOM is generally somewhat
more difficult to compute than the other FOMs because it requires
an incident focused light beam with a well-defined power rather than
a simple incident plane wave.

With an appropriate FOM, it is possible to study, optimize, and
compare different NFT designs in detail theoretically.7 The NFTs
can generally be categorized as either antennas or apertures, al-
though there are some NFT designs that incorporate aspects of both.
Several mechanisms can be identified in these different designs that
enhance the coupling efficiency of light into the recording medium.
For example, in most cases the NFT is chosen to support surface
plasmons that resonate in the incident optical field and thereby
greatly enhance the optical field amplitude in the near field of the
transducer. Often these NFT designs incorporate sharp tips to fur-
ther increase the field amplitude via the lightning rod effect. A small
gap between two regions of the NFT can be used to enhance field am-
plitudes via the dual-dipole effect. Other mechanisms are designed
for more efficiently funneling energy from the incident beam into
the active region of the NFT.

The outline of this chapter is as follows. In Sect. II we discuss
the modeling techniques employed in this study. In Sect. III the dif-
ference between the near field and the far field is considered and it is
argued that any FOM based on far-field quantities is not appropriate
for HAMR. Various FOMs are considered in Sect. IV as they relate
to HAMR. Several mechanisms that may be employed by NFTs for
enhancement of the coupling efficiency are discussed in Sect. V. In
Sect. VI these mechanisms are studied for a variety of transducer de-
signs and a FOM is used to compare them. Because both antennas
and apertures may be useful for HAMR, we discuss the relationship
between these different transducer approaches in Sect. VII. The re-
lationship between the far field and the near field, especially in so
far as far-field measurements may be used to characterize NFTs, is
discussed further in Sect. VIII. Finally, the means for efficiently illu-
minating the NFT is an important topic which we address in Sect. IX
in a discussion on photonic nanojets.
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II. MODELING TECHNIQUES

Analytical solutions for the electromagnetic fields can be obtained
for only a small set of physical objects which generally exhibit
some form of symmetry. A solution to the problem of the scatter-
ing of plane waves by spherical or ellipsoidal objects was found by
Mie.8 Many useful insights can be obtained from this semianalyti-
cal theory and we make use of it in this chapter to discuss the local
field enhancement due to the surface plasmon resonance of metal-
lic spheres. However, in general it is not possible to study the wide
variety of NFT designs analytically. We have found that the scat-
tered field finite difference time domain (FDTD) technique9 is well
suited to our transducer studies. In this technique, the incident elec-
tric field is defined analytically throughout the computation space,
but the scattered field is computed numerically in the time domain at
specific points throughout the computational space on a Yee cell lat-
tice as shown in Fig. 1. As can be seen from this figure, the individ-
ual electric and magnetic field components are specified at different
points within each cell.

x

y

z

Ex(i,j,k)
Ey(i,j,k)

Ez(i,j,k)Hy(i,j,k)

Hz(i,j,k)

Hx(i,j,k)

Figure 1. The finite difference time domain (FDTD)
computation space is composed of Yee cells which
define the locations of the electric and magnetic
field components on the cell edges and cell faces,
respectively.
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The Yee cells must be chosen sufficiently small that the nu-
merical approximation is accurate. In practice, for modeling surface
plasmon phenomena at optical wavelengths for highly conducting
metals, we have found that a cell size of (2.5 nm)3 is generally rea-
sonable. The cell size and the computational resources in turn limit
the size of the computation space. At the boundaries of the space,
appropriate boundary conditions must be implemented so that scat-
tered fields do not get reflected back into the computation space. For
the simulations in this chapter, we used either reradiating boundary
conditions or perfectly matched layers.10 The size of the Yee cell
also determines the maximum size of the time step which can be
used to avoid numerical instability. The Courant time10 is an up-
per limit on the step size, but in practice it is found that somewhat
smaller time steps are required for stability. Smaller Yee cells re-
quire shorter time steps. For plane wave scattering problems, it is
generally necessary to run the simulation for five or more complete
periods of the wave to reach nearly steady state conditions. At inte-
gral values of the time step the scattered electric field at each Yee
cell is updated from the incident electric field, the scattered electric
field, and the scattered magnetic field. At half-integral time steps
the scattered magnetic field is updated from the scattered electric
field. In the scattered field FDTD technique, as opposed to the total
field FDTD technique, the update equations are significantly more
complex for materials that include optical losses. We model metals
as Debye materials in the FDTD calculation with a separate set of
Debye parameters for each wavelength.

III. NEAR FIELD COMPARED WITH FAR FIELD

It is not unusual to find articles on NFTs that begin with the classic
result of Bethe11 for the far-field transmission efficiency of a circular
aperture. Bethe was able to solve analytically for the light transmit-
ted through a circular aperture in an infinitesimally thin perfectly
conducting sheet. He discovered that when the aperture diameter is
small compared with the wavelength of the incident light wave, the
transmission efficiency is given by

T =
(

64π2

27

)(
d

λ

)4

, (2)
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Figure 2. Example of solid immersion lens illuminated beyond its cut-
off angle to illustrate the difference between far-field and near-field
properties.

where T is the ratio of the power per unit area transmitted through
the aperture to the power per unit area incident upon the aperture
and d is the diameter of the aperture. Obviously, the fourth-power
dependence on the ratio of the diameter to the wavelength causes the
transmitted power to fall drastically with aperture diameter. This dis-
couraging result convinced many people that it was impossible to ef-
ficiently conduct optical energy into volumes much smaller than λ3.

However, it is not difficult to demonstrate that far-field measure-
ments are not necessarily a measure of near-field efficiency. Perhaps
the simplest example is to consider a SIL that is illuminated only for
angles greater than sin−1(1/n), where n is the index of refraction
of the SIL, as shown in Fig. 2. In this case no light is transmitted
into the far field – it is all internally reflected at the bottom inter-
face of the SIL. This optical transducer would fare very poorly with
any FOM that is based on a far-field property. However, if any ob-
ject such as a recording medium is placed adjacent to this surface,
the light energy in a highly concentrated spot at the focus of the SIL
will be coupled into the medium. The near-field coupling efficiency
is not zero and in fact may be quite respectable. This simple exam-
ple, therefore, demonstrates that there is not necessarily a one-to-one
correspondence between far-field transmittance and near-field cou-
pling efficiency.

IV. FIGURES OF MERIT

How does one know if a particular NFT is promising for use in
a specific application? To optimize a particular NFT design or to
make comparisons between different NFTs, it is important to have a
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FOM. A variety of FOMs have been used in the literature to judge
the performance of NFTs. Examples include far-field transmittance,
peak field intensity in the neighboring medium, percent dissipated
power in the medium, and temperature rise in the medium. We shall
consider each of these in turn and discuss their advantages and
limitations.

1. Far-Field Transmittance

For a NFT that is an aperture, the simplest theoretical and ex-
perimental procedure for evaluating NFT efficiency is to calculate
or measure the far-field transmittance. The total power transmitted
through the aperture must be normalized in some manner. The in-
cident beam in a theoretical calculation is frequently a plane wave;
however, the incident power in a plane wave is infinite. Because only
a finite amount of power is transmitted through an aperture, the trans-
mittance of the aperture as a ratio of transmitted power to incident
power is exactly zero for a plane wave; therefore, the transmittance
of an aperture for a plane wave is not a useful FOM. However, there
is a finite amount of power in a plane wave in the cross-sectional area
of the aperture. A popular FOM is the ratio of the transmitted power
from a plane wave incident upon the NFT (or the absorbed power of
the medium next to the NFT) to the power/area of the plane wave
multiplied by the cross-sectional area of the aperture. For periodic
arrays of NFTs, the FOM is the ratio of the transmitted power to the
power/area of the plane wave multiplied by the area of a unit cell.
The power/area for a plane wave is

S =
∣∣E2

0

∣∣

2η

(
W/m2

)
, (3)

where E0 is the amplitude of the incident plane wave in volts per
meter and η is the impedance of the medium of propagation in ohms.
For free space,

η =
√
μ0

ε0

∼= 377�. (4)

Unfortunately, as discussed in the previous section, it is easily
demonstrated that the far-field transmittance is not necessarily re-
lated to the near-field coupling efficiency for a NFT meant to be
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used for HAMR. Although this FOM may be appropriate for NFTs
designed for some applications, it is not appropriate for designing
or comparing HAMR transducers and will not be used in this study.

2. Peak Field or Field Intensity

Another common FOM in studies of NFTs is the ratio of the peak
electric field amplitude in the vicinity of the NFT to the electric
field amplitude of an incident plane wave. This is a particularly
appropriate FOM for designing NFTs for surface-enhanced Raman
scattering. The Raman signal from various organic compounds is
experimentally found to be enhanced by many orders of magni-
tude12, 13 when the organic molecules are attached to rough sil-
ver surfaces or to gold or silver nanoparticles of different shapes.
Because the Raman effect is a two-photon process, the intensity of
the scattered light is proportional to the fourth power of the elec-
tric field in the vicinity of the molecule. Indeed, the amplification
of the Raman spectrum is so large that individual molecules can be
detected.14, 15 By optimization of the NFT design for the greatest
field enhancement, arrays of NFTs on a substrate can be optimized
for surface-enhanced Raman scattering. On the other hand, the local
field enhancement of the NFT when it is suspended in free space or
some other dielectric medium is not a particularly appropriate FOM
for HAMR. This is because the field enhancement from a NFT in
free space can be significantly different from the field enhancement
in the presence of any metallic or lossy medium. This will be demon-
strated in the studies of triangle and bow-tie antennas discussed in
Sect. V.

The |E |2 field intensity in a lossy medium is directly propor-
tional to the dissipated power. In particular,

Pdiss = 1

2
Re(σ ) |E |2 , (5)

where σ is the complex optical conductivity of the lossy material.
The optical conductivity is directly related to the complex optical
dielectric constant of the lossy material,

σ = − i2πcε0

λ

(
ε

ε0
− 1

)
(�m)−1 , (6)
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where c is the speed of light and ε0 is the permittivity of free space,
8.854×10−12. Therefore, the peak field intensity within the medium
normalized by the incident field intensity is closely related to the to-
tal power dissipation within the medium and can be a useful FOM
for HAMR studies of transducers. It will be used for the studies dis-
cussed in Sect. V. There are two disadvantages of this FOM, however.
First of all, the spatial distribution of the field intensity in the record-
ing medium can differ greatly for different NFTs. The total power
dissipated in the medium is proportional to the |E |2 field intensity
integrated over the volume of the medium, not just the peak |E |2
at some point within the medium. A second issue with this FOM
is more subtle. The peak field intensity in the incident beam is a
function of the wavelength and polarization of the incident focused
beam. If two NFTs couple light into a medium with the same peak
|E |2 FOM, but at two different wavelengths, then the NFT which
operates at the shorter wavelength will be more efficient at coupling
power into the medium. At the shorter wavelength, the focusing op-
tics will generate a smaller spot with dimensions proportional to λ2.
Therefore, for the same peak field amplitude of the incident beam,
there is more optical power in the vicinity of the transducer at the
shorter wavelength to be coupled into the medium. An alternative
way of looking at this is that for a given optical power in the incident
beam, the field intensity at the focus of the beam is proportional to
1/λ2. Therefore, shorter-wavelength operation of a NFT is an advan-
tage. This factor is not explicitly taken into account in a FOM based
solely on |E |2.

3. Percent Dissipated Power in the Recording Medium

Although every FOM has certain advantages and disadvantages,
one of the best optical FOMs for HAMR is based on the total
optical power dissipated within a certain region of the recording
medium. Once a calculation has been performed for the electric field
around the NFT and within the medium, it is straightforward to ap-
ply (5) to determine the dissipated power within any region of the
computational space. This FOM does account for the wavelength
dependence of the focused spot. For high-density HAMR storage,
the bit cell will be smaller than 50 nm. Therefore, the NFTs consid-
ered in Sect. V will be evaluated on the basis of the percentage of the
power in the incident beam that is dissipated within a circular area
of 50 nm in diameter in the recording medium.
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4. Temperature Rise in the Recording Medium

Finally, if the thermal properties of the recording medium are known,
then thermal models may be applied to convert the dissipated power
within the medium into a corresponding temperature profile. The
FWHM size of the thermal spot and its peak temperature for a given
input optical power to the transducer are directly related to the capa-
bility of the NFT for HAMR. Because this FOM depends on the spe-
cific thermal properties of the multilayer film stack in the recording
medium, and these properties are often not known with precision,
this FOM is of limited usefulness.

V. MECHANISMS FOR ENHANCEMENT
OF THE FIGURE OF MERIT

As mentioned in Sect. I, there are several different mechanisms that
operate in a well-designed NFT for enhancing the FOM. For the pur-
poses of this article either the peak |E |2 intensity in the medium or
the dissipated power in the medium will be chosen as the FOM for
studying these enhancement mechanisms for HAMR. Depending on
the specific NFT design, the order of importance of these mecha-
nisms may vary, but in general the best NFTs will combine most or
all of these mechanisms. The ones we will consider in this section
are localized surface plasmon resonance (LSPR), the lightning rod
effect, and the dual-dipole effect.

1. Localized Surface Plasmon Resonance

Small metallic particles are well known to exhibit LSPRs.16 Sur-
face plasmons are collective excitations of surface charge which
under suitable conditions can be excited by an external optical
field. Localized surface plasmons (LSPs) are oscillations of surface
charge on a finite structure with fields that decay exponentially from
the surface of the structure in both directions normal to the surface.
The structure may be composed of a metal surrounded by a dielec-
tric, or it may be composed of a dielectric surrounded by a metal.
Examples include metallic nanoparticles and nanobubbles embed-
ded in metals. Nanoholes in metal films also support LSPRs even
though a hole is not entirely surrounded by the metal film. The
surface plasmon resonance wavelength is determined by the size,
shape, and material of the structure and the surrounding medium.
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Figure 3. The extinction coefficient and the peak |E |2 field intensity
at the surface of a 60-nm gold sphere for an incident plane wave of
unit amplitude are computed from Mie theory using the refractive
indices from references.19, 20

At resonance, the nanoparticles absorb the incident optical energy
much more efficiently and generate enhanced electric fields at their
surfaces from the oscillating surface charge. The enhanced absorp-
tion from LSPR of silver and gold nanoparticles embedded in glass
has been used since medieval times to make stained glass windows
with yellow and red colors.17 In Fig. 3 the extinction coefficient for
a 60-nm gold sphere is shown calculated from Mie theory8, 18 and
graphed along with the electric field intensity at the surface of the
particle. The LSPR is observed at approximately 550 nm by the peak
in both the extinction coefficient and the field intensity at the surface.
It should be noted that the peak |E |2 field intensity at the surface of
the sphere is more than 70 times larger than the field intensity of the
incident plane wave. A plot of the field intensity in the neighborhood
of the sphere is shown in Fig. 4.

The resonance wavelength of LSPs is determined in part by the
refractive index of the surrounding medium. This is illustrated in
Fig. 5 by plotting the peak field intensity for the 60-nm gold sphere
versus wavelength for several different surrounding dielectrics. As
the index of the dielectric increases, the resonance shifts towards
longer wavelengths.
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Figure 4. Contour plot of the field intensity in the xy plane of a
60-nm gold sphere embedded in a dielectric of index 1.5 when
excited by a plane wave of unit amplitude which is polarized
along the x axis at a wavelength of 550 nm. The points in the
plane are computed with an increment of 1 nm.

Figure 5. Effect of the surrounding dielectric index on the surface
plasmon resonance wavelength of a 60-nm gold sphere. Increasing
the dielectric index shifts the resonance to longer wavelengths and
enhances the peak field intensity.
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Although a nanosphere is an excellent structure for illustrating
the surface plasmon resonance enhancement of electric fields, it is
not a particularly well designed NFT for HAMR. A better NFT for
HAMR is the triangle antenna. This structure, which can also be con-
sidered to be a nanoparticle, exhibits a LSPR. A plane wave incident
upon the triangle antenna and polarized along its length can drive
surface currents back and forth along the antenna. For appropriate
antenna dimensions, the antenna becomes a resonant structure of os-
cillating surface currents which is a LSPR. As previously stated, it is
not possible to compute the resonance fields analytically or semiana-
lytically for most NFT structures, which have much lower symmetry
than spherical nanoparticles. Therefore, in this article such calcu-
lations were carried out with the scattered field FDTD numerical
approach.9, 10, 21 In the FDTD calculation a plane wave of unit am-
plitude is incident onto the triangle antenna propagating in the −z
direction. A plot of the peak |E |2 at the tip of a triangle antenna ver-
sus wavelength is shown in Fig. 6. The LSPR occurs at a wavelength
of 775 nm. At this wavelength the peak field intensity, as computed

Figure 6. Peak field intensity at the tip of a gold triangle antenna
embedded in free space versus wavelength for excitation by an inci-
dent plane wave of unit amplitude polarized along the length of the
antenna. The antenna has an apex angle of 45◦, a length of 200 nm,
and a thickness of 80 nm.
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Figure 7. Local field intensity for a gold triangle antenna with a
length of 200 nm, radius of curvature at the apex of 20 nm, apex
angle of 45◦, and thickness of 80 nm. The incident plane wave of
unit amplitude is polarized along the x axis. The FDTD cell size is
(2.5 nm).3

by FDTD with a cell size of (2.5 nm),3 is enhanced by over a fac-
tor of 120! The field intensity at this wavelength is plotted in the xy
plane through the center of the antenna in Fig. 7, showing that the
peak field intensity occurs at the edge of the apex of the antenna
as would be expected from the lightning rod effect (to be discussed
in the next section). A plot of the field intensity along the x axis
through the center of the apex in Fig. 8 demonstrates the characteris-
tic exponential decay of the field strength on either side of the edge
of the antenna.

The LSPR is also affected by the dimensions of the nanopar-
ticles. In Fig. 9, the peak intensity is plotted for the triangle an-
tenna versus the length of the antenna. The moral of the story is
that if NFTs are designed properly, their dimensions, their opti-
cal properties and those of the surrounding materials will all be
chosen so as to maximize the field enhancement in the recording
medium by operating at the resonance of the LSP. Although the iso-
lated nanoparticles considered in this section give theoretical field
intensity enhancements of over 2 orders of magnitude, it should
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Figure 8. Field intensity computed along the x axis of the triangle
antenna in Fig. 6 showing the exponential decay characteristic of the
field from surface plasmons. The decay for negative x into the gold
antenna is of course much faster than the decay into the surrounding
dielectric.

Figure 9. Field intensity at the apex of the triangle antenna as a func-
tion of the antenna length computed for plane wave excitation at a
wavelength of 775 nm.
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be remembered that these values are not very relevant to HAMR.
When the NFTs are in the presence of lossy metallic materials like
the recording medium, the field within the medium is shielded and
greatly reduced. Moreover, the power absorption of the medium
greatly reduces the Q of the resonance, leading to much smaller field
enhancements.

2. Lightning Rod Effect

The lightning rod effect refers to the well-known fact that sharp
metallic objects tend to generate very large localized fields.22, 23

Electric field lines must terminate normally to the surface of a per-
fect conductor. This effect tends to concentrate the field lines at any
sharp points of highly conducting materials.24This is a shape effect,
not a resonance effect, and therefore does not have any particu-
lar wavelength dependence. It may or may not be associated with
a LSPR. For example, as a spherical gold nanoparticle is pulled
into an ellipsoidal shape, the LSPR splits into resonances at two
different wavelengths. One of the resonances shifts towards shorter
wavelengths with increasing obliquity and one shifts towards longer
wavelengths. The longer-wavelength resonance corresponds to sur-
face charge oscillating along the long axis of the ellipsoid and it is
found that the fields at the tips of the ellipsoid at the resonance get
stronger as the end of the ellipsoid gets narrower and sharper.25This
effect is shown in Fig. 10. The lightning rod effect can generate ex-
tremely large field enhancements.

The triangle antenna also provides an excellent illustration of
the lightning rod effect. In this case the FDTD technique is used to
compute the fields at the apex of the antenna as the radius of curva-
ture at the apex is varied. All calculations are carried out with a cell
size of (2.5 nm).3 The results are graphed in Fig. 11. The peak field
at the apex for this particular antenna design and within the accuracy
of the FDTD calculation is somewhat smaller than the absolute peak
field as can be seen from Fig. 7. Clearly it is beneficial to design the
NFT with a sharp point(s) to both enhance the field intensity and
localize it within the recording medium.

A contour plot of the field intensity for the antenna with a 5-nm
radius of curvature is shown in Fig. 12 for comparison with the plot
for a 20-nm radius of curvature in Fig. 7.

The strong effect on field enhancement of the lightning rod ef-
fect leads directly to a remark which, although obvious, nevertheless
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Figure 10. Field enhancement at the tip of a prolate spheroid as a function
of its aspect ratio.

Figure 11. Peak field intensity at the apex of a triangle antenna ver-
sus radius of curvature. The antenna is 200 nm long, 80 nm thick,
with a 45◦ apex angle. The incident plane wave has a wavelength of
775 nm.
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Figure 12. Local field intensity for a gold triangle antenna with a
length of 200 nm, radius of curvature at the apex of 5 nm, apex
angle of 45◦, and thickness of 80 nm. The incident plane wave of
unit amplitude is polarized along the x axis. The FDTD cell size is
(2.5 nm).3

seems to be often neglected in the literature. In particular, the peak
field intensity is also necessarily a function of the cell size used in
the numerical simulation. It is well known that the electric field am-
plitude at the edge of a semi-infinite perfectly conducting straight
edge has a logarithmic divergence.26If this were modeled numeri-
cally with a finer and finer mesh, the peak field amplitude would
be found to continuously increase. Therefore, when comparisons are
made between different NFTs using numerical calculations of peak
field amplitude, care should be taken to ensure that the same numer-
ical algorithm and same cell size are being employed in the compar-
ison. Otherwise the results are meaningless.

3. Dual-Dipole Resonance

A third technique for field enhancement is the dual-dipole effect. In
this case, two resonant particles are brought close enough together
to interact with each other. In the gap region between the two parti-
cles, the field can become much more intense than that from either
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Figure 13. Peak field intensity in the 10-nm gap between two 60-nm–
diameter gold spheres for two different background dielectric indices.

particle separately. As a simple example, we first consider the case
of two 60-nm gold particles with an incident plane wave polarized
along the axis connecting them. The peak field intensity is plotted
versus wavelength for a 10-nm gap between the spheres in Fig. 13.
There is clearly a resonance wavelength at 650 nm for excitation of
the LSPs on the spheres. The field intensity distribution at this wave-
length is plotted in Fig. 14. The peak field intensity of approximately
1,200 is in the region between the two spheres. The peak field inten-
sity in the gap between the spheres is plotted versus gap distance in
Fig. 15. The intensity falls very rapidly with increasing gap distance.

VI. COMPARISON OF NEAR-FIELD TRANSDUCERS

In this section the results of the previous two sections are com-
bined to compare several NFT designs that have been suggested
for use in data storage. In particular, the triangle antenna and the
bow-tie antenna are compared with the circular aperture, the tapered
rectangular aperture, the bow-tie aperture, and the C aperture. All
NFTs are illuminated by a highly focused beam using a SIL with a
refractive index of 1.5 to obtain an optical spot size with dimensions
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Figure 14. Field intensity distribution at resonance for the dual gold
spheres showing the large field enhancement in the gap between the
spheres.

Figure 15. Field intensity in the gap between dual gold spheres as a
function of gap distance for a background dielectric with index 1.5
at a wavelength of 650 nm, and a background dielectric with index
1.0 at a wavelength of 525 nm.
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of 0.49λ × 0.38λ as calculated using the stationary-phase approxi-
mation in the Richards–Wolf theory.27A simple recording medium
consisting of 10 nm of cobalt laminated to a 100-nm gold heat sink
is placed 7.5 nm below the NFT. The separation distance of the NFT
from the medium is determined by several considerations. At terabit
per square inch storage densities, the down-track distance between
magnetic transitions is only approximately 10–15 nm. With such
small spacing between transitions, it is necessary for the magnetic
reader to fly extremely close to the surface of the medium. More-
over, the fields generated in the medium by the NFT are primarily
evanescent fields. If the medium is spaced too far from the NFT, the
amplitude of these fields is too small to couple power efficiently.

As previously demonstrated, an efficient NFT should make use
of a LSPR effect. This effect requires a metallic surface that is
highly conductive at optical frequencies. There are relatively few
metals that satisfy this criterion. Silver and aluminum can support
LSPs throughout the visible region. Gold and copper can sup-
port LSPs in the near infrared region and slightly into the red region
of the visible spectrum. These elements and their alloys are the only
reasonable choices for NFTs in device applications. However, pure
silver, copper, and aluminum all have problems with corrosion. This
leaves gold as the material of choice for the NFT and, therefore,
gold is used for all NFT comparisons in this section.

The FOM for making the NFT comparisons is the peak field in-
tensity within the recording medium. The FWHM of the spot size
within the top layer of the recording medium is required to be 50 nm
or less for a realistic HAMR storage device at terabits per square
inch densities. The minimum dimension allowed within the NFT
structure is 20 nm for all NFTs. This ensures that no NFT design
is given an “unfair” advantage in the comparison by making use of
the lightning rod effect to a greater extent than the other designs. The
cell size in the FDTD calculations is (2.5 nm).3 With these restric-
tions, it is possible to make reasonable comparisons of the NFTs.
However, it should be remembered that if the desired FWHM opti-
cal spot size within the transducer is specified, then a better FOM is
the dissipated power within this area.

1. Circular Aperture

The circular aperture in an opaque film is the simplest NFT. It has
traditionally been given a poor rating as a NFT based in large part on
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Figure 16. Circular-aperture near-field
transducer and recording medium.

the discouraging far-field transmittance of such apertures as found
both theoretically8and experimentally.6 However, as has been previ-
ously discussed, the far-field transmittance of an aperture does not
necessarily correlate to its near-field power coupling efficiency. The
geometry of this NFT is shown in Fig. 16.

The peak field intensity in the medium exhibits a LSPR and
a maximum value at a wavelength of approximately 650 nm re-
gardless of hole diameter as shown in Fig. 17. Unfortunately, there
are two problems with this NFT. The peak field intensity within
the medium is extremely small and the dissipated power within the
medium spreads over an area that is much larger than the hole, as
shown in Fig. 18. On the other hand, the dissipated power within a
50-nm-diameter cylinder in the medium is 0.14%, which is much
larger than the value of 10−5 that might be expected for the far-field
transmittance based on the theory of Bethe.8 By filling the hole with
a high-index dielectric, one can reduce the optical spot size and in-
crease the field intensity in the medium.

2. Tapered Rectangular Aperture

The efficiency of the circular aperture can be improved significantly
by tapering the side walls. Moreover, because the circular aperture
produces an oblong dissipated power spot along the direction of
the incident polarization as shown in Fig. 18, it makes sense to widen
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Figure 17. Peak field intensity in the recording medium versus wavelength
for circular apertures of various diameters. The gold film is 40 nm thick.

Figure 18. Field intensity within the recording medium for a circular aper-
ture in a gold film with a 40-nm diameter and a thickness of 50 nm.
(Reprinted from Ref. [7]. Copyright 2006 with permission from the In-
stitute of Pure and Applied Physics.)
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Figure 19. Tapered gold rectangular aperture. The aperture is filled
with the glass of the solid immersion lens with refractive index 1.5.

Figure 20. Field intensity in the medium versus wavelength for the
tapered gold rectangular aperture.

the aperture in the orthogonal direction to obtain a more circular dis-
sipated power spot in the medium. This can be easily accomplished
with a tapered rectangular aperture as shown in Fig. 19. Further-
more, if the aperture is filled with a high-index material, like the
glass of the SIL, additional optical power can be concentrated within
the aperture.

The peak field intensity within the recording medium as a func-
tion of wavelength is shown in Fig. 20 for several different aperture
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Figure 21. Cross section of the field intensity in the medium for the
20 nm × 40 nm rectangular aperture in a 50-nm-thick gold film.

dimensions. The 20 nm × 40 nm rectangular aperture in the 50-nm-
thick gold film with a 45◦ slope to the side walls generates the largest
field intensity in the medium at a wavelength of approximately
650 nm. The field intensity within the medium is shown in Fig. 21.
The total power dissipated in the central 50 nm of the medium is
0.92%. Moreover, the optical spot within the medium is smaller than
the desired 50-nm FWHM. This is a substantial improvement over
the air-filled circular aperture with straight side walls.

3. Bow-Tie Aperture

An aperture in the shape of a bow tie, also called a “bow-tie slot an-
tenna” is shown in Fig. 22. This aperture is essentially a rectangular
aperture with a constriction in the center. When it is illuminated with
light polarized across the gap as shown in the figure, a LSPR is ex-
cited which oscillates surface charge into the two tips in the center.
The sharpened tips enhance the field strength in this region via the
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Figure 22. Bow-tie aperture.

lightning rod effect. Moreover, the two tips separated by a small gap
provide field enhancement via the dual-dipole effect. Therefore, all
three field-enhancement mechanisms are present in this NFT.

With so many dimensions to specify for this aperture, the opti-
mization process is lengthy. Variation of the length of the aperture
with wavelength indicates an optimum length of 300 nm or greater
although the LSPR wavelength is approximately 800 nm and only
weakly dependent on aperture length. Variation of the aperture width
gives a similar result for the optimum value and the optimum thick-
ness is approximately 80 nm. As the gap is made narrower, the field
intensity increases in the gap via the dual-dipole effect. There is
some variation in efficiency with apex angle, but values in the range
of 60◦–90◦ are good.

The wavelength dependence of the peak field intensity in the
medium is plotted in Fig. 23 for an aperture with a length of 300 nm,
a width of 290 nm, a thickness of 80 nm, a gap of 20 nm, and an apex
angle of 90◦. There is a narrow LSPR at 725 nm. The field intensity
in the medium at this wavelength is plotted in Fig. 24. The FWHM
optical spot size in the medium is somewhat larger than the desired
50 nm. The percentage of power delivered to a 50-nm cylinder in
the medium is 1.7%. This NFT is not as successful at confining the
optical energy as some of the other designs.
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Figure 23. Peak field intensity in the medium versus wavelength for
a bow-tie aperture with dimensions given in the text.

Figure 24. Field intensity from the bow-tie aperture in the medium at a
wavelength of 725 nm. (Reprinted from Ref. [7]. Copyright 2006 with per-
mission from the Institute of Pure and Applied Physics.)
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4. C Aperture or Ridge Waveguide

Next, the C aperture or ridge waveguide is considered. The C aper-
ture was originally proposed by Shi et al.28 but they originally con-
sidered apertures in perfectly conducting metal films in the absence
of a recording medium and for an incident plane wave. Although
these calculations indicated 3 orders of magnitude greater field in-
tensities from the C aperture than from a square aperture, these re-
sults are not directly relevant for HAMR. Many additional studies
have been made which include the effects of real metals and focused
incident beams.29–34The C aperture is shown in Fig. 25.

The ridge waveguide is a well-known geometry for transporting
microwaves. Like the bow-tie aperture, the C-aperture length can be
less than the cutoff dimension for a rectangular aperture. For a rect-
angular aperture in which the incident field is polarized parallel to
the short dimension, the field amplitude tends to zero at the short
edges of the aperture and is maximum in the central region. The
ridge in the center of the C aperture squeezes the field and thereby
further enhances the field strength between the ridge and the oppo-
site side. This can also be considered a dual-dipole effect, where
the opposite side serves as an image surface to the ridge. For a C
aperture in a real metal there is also a LSPR. Finally, the ridge it-
self enhances the field via the lightning rod effect. Therefore, this
NFT also makes use of all the field-enhancement mechanisms. Prop-
agating surface plasmon polaritons can be excited between the bot-
tom of the SIL and the aperture. In principle these surface plasmons
may siphon energy away from the LSP within the aperture, thereby
reducing the coupling efficiency. However, with clever engineering
these surface plasmons can actually be made to contribute additional
energy to the LSP.34

tongue width

gap width

aperture
length

aperture
width 

incident
polarization 

Figure 25. Dimensions of the C aperture.
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Figure 26. Peak field intensity in the medium versus wavelength for the
C aperture. The results are plotted for an aperture filled with air (n = 1)
and an aperture filled with glass (n = 1.5).

There are again many dimensions to be optimized for this NFT.
A length of approximately 300 nm is found to be near optimum. The
LSPR occurs at approximately 700 nm and the width is optimized
at 55 nm for a ridge that is 20 nm wide and has a gap of 20 nm. The
optimum thickness is approximately 100 nm. The wavelength depen-
dence of the field intensity in the medium is shown in Fig. 26. As the
index of the material inside the aperture increases, the resonance is
found to shift towards longer wavelengths. A plot of field intensity
within the medium in Fig. 27 shows that the light is very well con-
fined. This NFT delivers 2.1% of the incident power into the central
50-nm region of the recording medium.

5. Triangle Antenna

Antennas have also been proposed as NFTs for HAMR. The sim-
plest antenna design may be the triangle, as shown in Fig. 28. The
lightning rod effect was demonstrated in Sect. IV.2 for a triangle an-
tenna in free space. This antenna also exhibits a LSPR. It does not
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Figure 27. Field intensity within the medium from the C aperture. (Reprinted
from Ref. [7]. Copyright 2006 with permission from the Institute of Pure and
Applied Physics.)

length

tip width

apex angle

Figure 28. Dimensions for the triangle
antenna.

make use of the dual-dipole effect for field enhancement. When the
antenna is adjacent to a lossy metallic recording medium, however,
it behaves very differently. The LSPR wavelength is a very sensitive
function of antenna length. A length greater than 150 nm places the
resonance at wavelengths greater than 900 nm. A 100-nm antenna
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Figure 29. Wavelength dependence of field intensity and dissipated
power in the medium from a 100-nm-long triangle antenna with a 30◦
apex angle.

has a resonance at a wavelength of approximately 800 nm. Confine-
ment of the optical spot is difficult to achieve, however, with large
apex angles, so an apex angle of 30◦ is chosen. The wavelength
dependence of the peak field intensity in the medium is shown in
Fig. 29 for a 100-nm-long antenna that is 50 nm thick. Although the
LSPR occurs at 750 nm, the field intensity within the medium is not
confined, as shown in Fig. 30. By operating the antenna at shorter
wavelengths, one obtains better field confinement at the expense of
field intensity, as shown in Fig. 31. The dissipated power within the
medium at a wavelength of 650 nm is approximately 1.1%. However,
the field intensity in the medium tends to spread out away from the
tip of the antenna even at this wavelength.

It is interesting to compare these results with calculations of
the triangle antenna in free space. Plots of the extinction, scatter-
ing, and absorption cross sections for the 100-nm triangle antenna in
free space along with the peak field intensity at the apex are shown
in Fig. 32. The resonance occurs at 675 nm, significantly shifted
from the resonance wavelength in the presence of the medium. The
peak field intensity occurs at the apex of the antenna, and is clearly
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Figure 30. Field intensity in the medium from a 100-nm-long triangle
antenna with a 30◦ apex angle at a wavelength of 750 nm. (Reprinted
from Ref. [7]. Copyright 2006 with permission from the Institute of Pure
and Applied Physics.)

Figure 31. Field intensity in medium from a 100-nm-long triangle antenna
with a 30◦ apex angle at a wavelength of 650 nm.
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Figure 32. Extinction, scattering, and absorption cross sections normal-
ized by the area of the antenna for the 100-nm triangle antenna on a glass
substrate as a function of wavelength. The peak |E |2 field intensity versus
wavelength is also plotted.

Figure 33. “Beaked” triangle antenna.

not useful for predicting the distribution of dissipated power in the
medium. This clearly exhibits the unreliability of using peak field in-
tensity for an antenna or aperture in free space as a FOM for HAMR.

One way in which the problem of lack of confinement of the
coupled power to the medium can be solved is to cant the antenna
so that only the tip is close to the medium. Another approach is to
add a small “beak” at the end of the antenna as shown in Fig. 33.35
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Figure 34. Field intensity in the medium from a beaked triangle antenna at
725 nm. (Reprinted from Ref. [7]. Copyright 2006 with permission from the
Institute of Pure and Applied Physics.)

If a beak with a 20-nm width, length, and height is added to the
triangle antenna, then the resonance wavelength is slightly shifted
to 725 nm, but the field intensity within the medium at resonance is
much better confined, as shown in Fig. 34. The dissipated power in a
50-nm cylinder in the medium is 2.9%.

6. Bow-Tie Antenna

The bow-tie antenna was first proposed as a NFT by Grober et al.36

In the microwave frequency range, the bow tie is a well-known an-
tenna design. As shown in Fig. 35, the antenna is composed of two
triangular metallic plates with a narrow gap between them. This NFT
is the complement of the bow-tie aperture. All three NFT enhance-
ment mechanisms are clearly present in the design. Optimizing the
antenna design proceeds along lines similar to those for the triangle
antenna. An antenna that is 200 nm long, 50 nm thick, with a 20-nm
gap, 20-nm apex width, and 30◦ apex angle exhibits two LSP res-
onances at approximately 625 nm and 750 nm as shown in Fig. 36.
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Figure 35. Bow-tie antenna.

Figure 36. Field intensity in the medium and dissipated power versus
wavelength for the bow-tie antenna.

As in the case of the triangle antenna, however, the long-wavelength
resonance with the highest field intensity corresponds to an uncon-
fined spot, as shown in Fig. 37. The shorter-wavelength resonance,
on the other hand, does generate a small spot in the medium, as
shown in Fig. 38, and delivers 1.9% of the incident optical power
to the medium at a wavelength of 625 nm. Again, to obtain a con-
fined spot at the peak of the resonance curve, the bow-tie antenna
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Figure 37. Field intensity in the medium for a bow-tie antenna at a wavelength
of 750 nm.

Figure 38. Field intensity in the medium for a bow-tie antenna at a wave-
length of 625 nm.
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Figure 39. Field intensity in the medium for a bow-tie antenna canted at 20◦
at a wavelength of 750 nm.

can be canted so that only the high-field region between the tips is
in close proximity to the medium. A 20◦ cant of the two antenna
halves generates a much smaller spot at the resonance wavelength of
750 nm, as shown in Fig. 39. The canted bow tie delivers 2.1% of the
incident power into the central 50 nm of the medium.

VII. ANTENNA AND APERTURE RELATIONSHIP

In the earlier sections we considered different near-field structures.
These structures were one of three types: apertures, antennas, and
hybrid structures. The apertures have a finite dielectric opening in a
metal thin film. The resonant near field of interest is located within
and in the vicinity of the opening. Antennas are finite metallic struc-
tures located in an infinite dielectric region. The resonant near field
of antennas is located around the metallic structure. Then there are
hybrid structures such as a metal-coated, tapered optical fiber, which
on one hand do not have an aperture and on the other have metal
going to infinity. In such hybrid structures, the fact that the metal
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goes to infinity is not important. In fact, the resonant field of interest
is in a geometrically localized region around the metal – the region
around the tip in the case of the tapered fiber. If the metal is ter-
minated at a certain distance (a distance on the order of the decay
length of the associated surface plasmons), the field in the geometri-
cally localized region does not change. Thus, these hybrid structures
can be converted into an aperture or an antenna structure without
considerably altering the physics of the near field. Thus, we assume
that all the near-field structures of our interest are either of the aper-
ture or of the antenna type. The calculation of the cross sections goes
along different lines for the two types. Hence, this classification is
needed.

If we interchange the dielectric in the aperture opening and
the thin film metal, we get a complementary structure, which is an
antenna. Is there any relation between the resonance properties of
the two structures? If we assume that the aperture metal film is in-
finitesimally thick, and that the metal is a perfect electrical conduc-
tor (PEC), the aperture and the complementary antenna structure are
connected by a form of Babinet’s principle. Suppose that the aper-
ture is illuminated by an incident electric field �Ei. The interaction
with the aperture will set up a total electric field �E1. Now, suppose
that the complementary antenna structure is illuminated by an inci-
dent magnetic field that is vectorially equal to the incident electric
field in the aperture case. Thus, the incident magnetic field in the
antenna case is �Ei. In this case, let �H2 be the total magnetic field.
The particular form of Babinet’s principle states that

�E1 + �H2 = �Ei. (7)

Of course, in the case of a real metal film that is not infinitesimally
thick, the principle is not expected to be perfectly satisfied.

VIII. NEAR-FIELD AND FAR-FIELD RELATIONSHIP

It is difficult to design experiments to characterize the near field of
the structures. Any probe such as the scanning near field optical
microscope, which probes the near field directly, could end up al-
tering the structure of the near field. This could have an effect of
shifting the wavelength of the desired resonance. Experiments that
account for the light radiated in the far field can also be designed.
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But then, is the amount of far-field radiation a good measure of the
near-field enhancement? We discuss this connection in the following
section.

The source of radiation, in the classical electromagnetic theory,
is an accelerated charge. For time-harmonic fields, electrical current
serves as the source. There is a considerable amount of literature
on the radiation properties of apertures and antennas at radio and
microwave frequencies. At these frequencies, the penetration of the
fields into a metal is small. Thus, it is frequently quite acceptable to
model these structures by assuming the metals are PECs. At opti-
cal frequencies, a significant portion of the incident energy can be
dissipated in the metal. In addition, typical metals exhibit surface
plasmon resonances at optical frequencies. Associated with a sur-
face plasmon is an oscillating charge distribution on the surface of
the structure, localized within the skin depth of the metal.

In the absence of sources outside a closed surface, the tangential
electric and magnetic fields on the surface uniquely define the field
distribution outside the surface. In particular, the tangential fields
can be interpreted as electric and magnetic currents on the surface.
The equivalent currents replace the physical sources.37 The fields
generated by the physical and the hypothetical sources are the same
outside the surface. Inside the surface the field due to the hypothet-
ical sources is zero. This theorem is used to calculate the far-field
radiation pattern from the near-field FDTD simulation. We apply the
theorem in the special case of the region outside the surface being
a homogeneous dielectric medium. In FDTD simulations the infi-
nite domain is converted into a finite computational domain using
matching boundary conditions. This is true even in the case of strat-
ified media (e.g., thin film structures) that extend to infinity. Thus, in
the rest of the discussion, we assume that the domain of interest is
infinite.

Figure 40 shows a scatterer embedded in a hypothetical closed
surface. The surface currents are defined on the closed surface. The
equations that connect the surface currents to the tangential fields
and govern the radiation from the currents can be found in the pop-
ular FDTD texts.19

The Poynting vector has units of power per unit area. When the
normal (outward) component of the Poynting vector is integrated
over a closed surface, it represents the electromagnetic power leav-
ing the surface. For monochromatic fields the Poynting vector oscil-
lates harmonically about a direct-current offset. The frequency of the
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Figure 40. Scattering geometry.

oscillation is twice that of the oscillating fields. The average value
of the Poynting vector over an oscillation period is the measure of
the net power flow across the surface in one direction. In lossless
regions, the divergence of the Poynting vector is zero. Thus, in ac-
cordance with the Gauss divergence theorem, if we choose a closed
surface in a lossless region, the surface integral of the energy flux is
zero. The arbitrariness in the choice of the surface in the equivalence
theorem does not change the net energy flux through the surface. Let
the time-harmonic electric and magnetic field (at frequency ω) at a
point be given by

�E = �Eo exp (−iωt) (8)

and
�H = �Ho exp (−iωt) , (9)

respectively. The vector quantities �Eo and �Ho contain the amplitude
and phase information, and are hence complex. The time-averaged
Poynting vector is given by

< �S >= 1

2
Re
( �Eo × �H∗

o

)
· (10)

Here, Re and ∗ stand for the real part and complex conjugation,
respectively. In the rest of the discussion we will only be interested in
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the time-averaged Poynting vector for monochromatic radiation. The
only aspect of (10) that we carry forward is the linear dependence of
the Poynting vector on the electric and magnetic fields. Hence, we
simplify the notation by dropping the angular brackets and the sub-
script o on the fields. We represent the bilinear form by

�S = ( �E, �H). (11)

Henceforth, Poynting vector refers to the time-averaged Poynting
vector.

The fields �E and �H can be decomposed into the incident field
(indicated with subscript i) and the scattered field (indicated with
subscript s). The incident field is the field that would have been
present if the scatterer were absent. This assumes that the optical
source excitation is the same. We have been vague in our definition
of the scatterer. To be specific, we choose a geometrical arrange-
ment as our starting point. This is the incident geometry, and the
field is the incident field. We then alter the geometry. The change
is small enough so that the optical source can still be assumed to
be unperturbed. In particular, the change that we make would ei-
ther be placing a microscopic particle (the antenna) in the geometry,
or punching a hole in a metal film (the aperture). The difference
between the field in the changed geometry and the field in the in-
cident geometry is defined as the scattered field. In the context of
the equivalence theorem, the change that we make is done inside the
hypothetical surface. No matter how the incident geometry is de-
fined, we assume that the region outside the hypothetical surface is
lossless and homogeneous. With this decomposition of the fields, the
Poynting vector is given by

�S = �Si + �Ss + �Sc, (12)

where
�Si = ( �Ei, �Hi), (13)

�Ss = ( �Es, �Hs), (14)

and
�Sc = ( �Ei, �Hs)+ ( �Es, �Hi). (15)

�Si and �Ss are the Poynting vectors of the incident and the scat-
tered field, respectively. �Sc is an interference term. In a homoge-
neous dielectric, �S, �Si, and �Ss are divergenceless; hence, �Sc is also
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divergenceless. The total energy flux from the volume inside the
hypothetical surface is the integral of the component of the Poynt-
ing vector along the outward normal, over the closed surface. Let us
represent this integral by I and the integral of the three terms on the
right-hand side by Ii, Is, and Ic. Thus,

I =
∫∫
©

A

�S · d �A, (16)

and
I = Ii + Is + Ic. (17)

Here, A represents integral over the closed surface. If the closed sur-
face is distorted such that the volume swept in distorting the surface
is in a homogeneous dielectric medium, then owing to the diver-
genceless property, the integrals I , Ii, Is, and Ic remain invariant.

1. Radiation from Antennas

Let the incident geometry be the infinite free space and the incident
field be a plane wave. We use spherical polar coordinates such that
the polar and the azimuthal angles are denoted by θ and φ, respec-
tively. The polar angle is measured with respect to the +Z axis. The
azimuthal angle is measured with respect to the +X axis in the XY
plane. The incident plane wave is propagating along the θ = 0◦ di-
rection (+Z direction), and the polarization of the incident beam is
along the (θ = 90◦, φ = 0◦) direction (+X direction). Since the
Poynting vector is divergenceless in this medium, Ii = 0.

In the far field, the radiation field in a certain direction appears
locally like a plane wave propagating in that direction. The plane
wave in a particular direction can further be decomposed into two
mutually orthogonal polarizations. An analysis using Green’s func-
tion indicates that only the plane wave propagating in the same di-
rection as the incident wave and possessing the same polarization
can contribute to the term Ic.18 Thus, Ic is proportional to the ap-
propriately polarized scattered field radiation in the direction of the
incident beam. Energy conservation considerations indicate that I
is precisely the negative of the power being absorbed inside the
hypothetical surface, averaged over a field oscillation. We denote this

quantity by Ia. In fact, Is and Ia divided by
∣∣∣�Si

∣∣∣ are called the scat-

tering and the absorption cross sections, respectively. Their sum, the
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total or “extinction” cross section, is thus directly proportional to the
field strength of the scattering in the direction of the incident wave.
This is more commonly known as the “optical theorem.”16 A cross
section has physical dimensions of area, and can be normalized by
the physical cross section of the antenna to obtain a dimensionless
normalized cross section. If we consider all possible slices of the an-
tenna normal to the propagation direction, the physical cross section
of the antenna is the area of the slice with the largest cross section.

2. Radiation from Apertures

Consider a plane polarized wave incident normally on a metal film
of finite thickness. The incident energy is transmitted across the film,
reflected back, or absorbed in the film (see Fig. 41). Considering that
the plane wave is infinite in extent, each of the three energy contribu-
tions is infinite. Let the field distribution in the presence of the film
be termed the “incident field.” Let us now etch an aperture of finite
cross section in this film. Let the difference of the field after and be-
fore etching the aperture be termed the “scattered field.” We follow
an analysis similar to the case of the antennas. The aperture is the
source of the scattered field. Owing to the loss in the metal, this scat-
tered field decays inside the metal with increasing lateral distance
from the aperture. Since the metal film is infinite in its plane, the
hypothetical surface used in defining the equivalent currents has to
wrap around the metal at infinity. We define the surface (see Fig. 42)
to be S1− S2− S3 on one side, and S4− S5− S6 on the other. The
expression for the power flux, (17), is applicable here. However, the

Transmitted Plane Wave

Reflected Plane
Wave

Metal Film

Incident Plane
Wave 

Figure 41. Incident geometry.
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Figure 42. Aperture geometry.

key difference from the antenna case is that Ii is no longer zero. In
fact, the principle of energy conservation implies that Ii and the net
power absorbed inside the closed surface before etching the aper-
ture, Iaf, add up to zero. Note, both are infinite quantities. Also, I
and the net power absorbed inside the closed surface after etching
the aperture, Iaa, add up to zero. Hence,

Is + (Iaa − Iaf) = −Ic. (18)

The scatterer (aperture) is finite in extent. Moreover, owing to the
loss in the metal, fields decay in the film away from the aperture;
hence, Is, Iaa − Iaf, and Ic are finite quantities. The definition of
the scattering cross section is analogous to the antenna case. How-
ever, in the definition of the absorption cross section, we replace Ia
with Iaa − Iaf. In the case of the antenna, the term Ic was stated to
be directly proportional to the radiation intensity in the forward di-
rection. For the aperture, a Green’s function analysis similar to the
antenna case indicates that the contribution to Ic from the surface
S1−S2−S3 is proportional to the radiation intensity in the forward
direction. Similarly, the contribution from the surface S4− S5− S6
is proportional to the radiation intensity in the backward direction.
Thus, Ic is a linear combination of the radiation intensity in the for-
ward and backward directions.

To calculate the radiation pattern of the apertures using FDTD,
we need to define the equivalent currents on the hypothetical surface.
To overcome the difficulty of dealing with an infinite surface, we
choose the closed surface to be S2−S7−S5−S8. The assumption is
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that the surfaces S7 and S8 are chosen far away from the aperture, so
that the scattered field is negligible on them. Our claim is as follows:
it is possible to choose surfaces S1, S3, S4, and S6 infinitesimally
close to the metal film surface and surfaces S7 and S8 sufficiently
far from the aperture, such that the scattered field on the surfaces
S1, S3, S4, S6, S7, and S8 is infinitesimally small. This is possible
owing to the dissipation in the metal. Thus, the equivalent currents
are essentially present only on S2 and S5. Thus, in the FDTD code,
the radiation pattern can be calculated exactly as in the antenna case
– by using the closed surface S2 − S7 − S5 − S8.

3. Numerical Modeling

We apply the concepts discussed in the last few sections to the case
of a C aperture in aluminum. The thickness of the aluminum film is
chosen to be 100 nm. The dimensions of the C aperture are as fol-
lows: aperture length 155 nm, aperture width 70 nm, tongue width
25 nm, and gap width 25 nm. The incident field is X -polarized. The
XZ plane is a mirror symmetry plane for the C aperture. The sur-
rounding dielectric is assumed to be free space. The normalized scat-
tering and absorption cross sections as a function of wavelength are
shown in Fig. 43.
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Figure 43. Cross sections of the C aperture (normalized by
the area).
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Figure 44. Cross sections and near-field intensity of a C
aperture (magnitude normalized).

The near-field intensity is calculated at a point, in the gap, 5 nm
beyond the transmission side of the aperture. The cross sections are
normalized with respect to the physical area of the aperture. For
comparison with the near-field intensity, we normalize the cross sec-
tions such that the peak cross section is unity. To distinguish this
from the area normalization, we call this the “magnitude normaliza-
tion.” The cross sections and the near-field intensity are shown in
Fig. 44.

The three quantities have been magnitude-normalized in this
plot. Geometrically, the C aperture is a ridge waveguide of finite
extent. For a PEC waveguide of the same cross section, the cutoff
wavelength for the lowest-order transverse electric mode is around
500 nm. As one approaches the cutoff wavelength from shorter
wavelengths, the longitudinal wave vector decreases in magnitude.
Hence, for the same length of the waveguide, the field has a larger
number of transverse traversals in the aperture. On the other hand,
if one moves away from the cutoff wavelength towards longer wave-
lengths, the longitudinal wave vector becomes imaginary, indicating
evanescent decay. Hence, the strongest resonance is expected to be at
the cutoff wavelength. Three things about the aluminum C aperture
are different from the PEC waveguide: the metal can support surface
plasmons, the incident field (field in the metal film before the aper-
ture is etched) has a Fabry–Perot resonance, and leaky modes that
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Figure 45. Radiation pattern of a
C aperture.

Figure 46. Near-field intensity of the C aperture.

are not seen in an infinite waveguide can be excited in the case of a
waveguide whose length is a fraction of the wavelength. One or more
of these effects could cause a shift in the resonance wavelength. In
fact, we observe a resonance at approximately 650 nm. The radia-
tion pattern of the aperture at a wavelength of 650 nm is plotted in
Fig. 45. The corresponding near field intensity is shown in Fig. 46.

An electric dipole is induced in the gap of the C aperture.
The far-field radiation pattern of the dipole is expected to have a
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Figure 47. Effect of the medium on the near-field resonance
of a C aperture.

doughnut shape with X as the cylindrical symmetry axis. However,
the presence of the infinite metal in the xy plane is expected to
quench the radiation pattern in that plane. This would cause a pinch-
ing of the radiation pattern in the xy plane. This is seen in Fig. 45.

To see the effect of the medium, we place a cobalt film 5 nm
from the aperture. The magnitude-normalized near-field intensity
with and without the medium is plotted in Fig. 47. A considerable
shift in the resonance wavelength in seen. Thus, the medium loads
the C aperture.

We then consider the antenna structure complementary to the C
aperture – the C antenna. Even though we do not have a PEC an-
tenna, we would like to test the agreement with Babinet’s principle.
Instead of rotating the polarization of the incident beam by 90◦, we
rotate the antenna structure by 90◦. The normalized cross sections of
the C antenna are shown in Fig. 48. The resonance wavelength is the
same as that of the C aperture; however, the scattering cross section
is much more enhanced in this case. If we assume that a resonance
enhancement of the electric field has an associated enhancement in
the magnetic field, and vice versa, then Babinet’s principle suggests
that the complementary structure should also have a resonance in the
same spectral region. An enhanced magnetic field of opposite phase
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Figure 48. Cross sections of the C antenna (normalized by
the area).

Figure 49. Radiation pattern of the C
antenna.

would be needed to nullify the enhancement in the electric field of
the complementary structure.

The radiation pattern of the antenna at a wavelength of 650 nm is
plotted in Fig. 49. This radiation pattern shows the cylindrical sym-
metry of the doughnut-shaped dipolar radiation pattern.
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IX. PHOTONIC NANOJETS

Up to this point we have been considering NFTs for applications
such as HAMR. The transducer itself, however, is only one part of a
complete device for recording. The transducer will not be effective
unless it is situated at the position of a large field amplitude from
the incident laser beam. This is generally accomplished by focusing
the beam onto the transducer. A simple objective lens may be quite
satisfactory for this purpose. In this section we discuss techniques
for highly concentrating an incident beam into a “nanojet,” i.e., a
narrow beam of energy with an extended path length. In principle,
nanojet optics could form one part of the complete system for near-
field recording.

In the geometrical optics description of conventional lens
focusing, the focus is the point where all the light rays converge. In
Fig. 50, the focusing of a plane wave by a lens is shown.

The focal point is situated in the middle of a sphere. If the re-
fractive index of the sphere is greater than unity and the sphere is
truncated to a hemisphere (part on the right of the dashed line is
removed), we end up with a SIL. The key feature of this geometry
is that all the rays converge to a point – the focal point. If, instead,
the lens is removed from the system such that all parallel incident
rays fall directly on the sphere (Fig. 51), then all the rays will not
converge to a single point.

Lens

Sphere

Figure 50. Focusing by a lens.
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Figure 51. Focusing to a caustic.

Nonetheless, for an appropriate choice of the sphere refractive
index, there exists a surface such that several rays converge at every
point of the surface. In other words, the focal point degenerates into
a surface. This surface is termed a “caustic.” Owing to the symmetry
of the problem, the caustic has a cylindrical symmetry. The caustic
has a cusp at the point where the caustic intersects the symmetry
axis. Our discussion so far has been based on geometrical optics.
When one goes to a complete electromagnetic description, the focal
point of a lens does not have a field singularity. Nonetheless, there is
a focal region of high field concentration. Similarly, for the caustic
one ends up with a region of high field concentration in the neighbor-
hood of the geometrical caustic. In addition, in the electromagnetic
description, the wavelength adds a length scale to the phenomenon.
Thus, for a fixed radius and refractive index of the sphere, the caustic
region will depend on the wavelength of light (in free space).

In Fig. 51, the cusp of the caustic is shown to lie inside the
sphere. In such a situation, the cusp can be pushed to the surface of
the sphere by reducing the refractive index of the sphere. In the geo-
metrical optics description, this will happen when the refractive in-
dex of the sphere is twice that of the surrounding medium (assumed
to be free space here). In the physical optics description, the choice
of the refractive index ratio depends on the ratio of the radius of the
sphere to the wavelength. Typically, it is found to be smaller than 2.
When the cusp region is chosen close to the sphere surface, an in-
teresting phenomenon of “photonic nanojet” emerges. On the free
space side of the surface, an intense optical-jet-like region is gener-
ated. A two-dimensional FDTD model of this phenomenon is shown
in Fig. 52.
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Figure 52. Two-dimensional photonic nanojet intensity mod-
eled using the FDTD method.

The photonic nanojets display two remarkable features. Even
though the spot size is comparable to a high-numerical-aperture
diffraction-limited SIL spot, the depth of focus is much larger. For
a comparable spot size from a lens, the depth of focus would have
been much smaller. Secondly, from Fig. 52, the decay length of the
two-dimensional photonic nanojet (distance between the peak field
and the 1/e field in the longitudinal direction) is larger than the wave-
length. The spot size of the nanojet at its waist is marginally larger
than the size of a spot generated by a two-dimensional lens of unit
numerical aperture38(see Fig. 53).

The angular spectrum (spatial frequency content) of the pho-
tonic nanojet is shown in Fig. 54. The amplitude distribution of the
angular spectrum alone does not explain the long decay length of
the photonic nanojet. The bathtub-shaped phase distribution plays a
key role. Different spatial frequencies gain different phases on prop-
agation. This dephasing causes spot divergence. The bathtub shape
counteracts the typical dephasing factor that decreases with increas-
ing magnitude of the spatial frequency.

When a nanoparticle is placed in the light path, light is scat-
tered. Assuming that the incident light is a plane wave, the light
that radiates back towards the source is termed the “backscattered
light.” When nanoparticles are illuminated by a plane wave, the in-
tensity of backscattered light is small compared with the intensity
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Figure 53. Comparison of the two-dimensional nano-
jet spot size with that of lens focusing. k is the
wave vector in free space. (Reprinted from Ref. [38].
Copyright 2005 with permission from the Optical
Society of America.)

Figure 54. Angular spectrum of a two-dimensional nanojet. s and k are the spatial
frequency and the free-space wave vector, respectively. (Reprinted from Ref. [38].
Copyright 2005 with permission from the Optical Society of America.)

of the incident light. If instead, a lens is used to focus light onto
the nanoparticle, the backscattered light intensity increases by a few
orders of magnitude. However, if the nanoparticle is placed in the
photonic nanojet, the backscattering increases by several orders of
magnitude.39 In the two-dimensional case, the effect is still seen,
but it is not as pronounced. The enhanced backscattering for the two-
dimensional case is shown in Fig. 55. The effect of the particle size
on the back-cattering enhancement is shown in Fig. 56.



Figure 55. Differential cross section of a particle placed in a nanojet. (Reprinted from
Ref. [39]. Copyright 2004 with permission from the Optical Society of America.)

Figure 56. Backscattering enhancement in the nanojet as a function of particle size.
(Reprinted from Ref. [39]. Copyright 2004 with permission from the Optical Society
of America.)
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Chen et al.40 have argued that while the large intensity of the
nanojet provides a lenslike enhancement of the backscattering, it is
the coordination between the backscattering and the modes of the
nanojet-creating sphere that generates the superenhancement of the
nanojet.

X. CONCLUSION

A variety of mechanisms have been discussed for enhancing the
efficiency of NFTs for use in HAMR. These include the LSPR effect,
the lightning rod effect, and the dual-dipole effect. Several common
FOMs for NFTs have been discussed and it has been shown that peak
|E |2 field intensity within the recording medium, or even better, the
dissipated power within the recording medium are the best FOMs.
On the other hand, far-field transmittance or even peak field ampli-
tude in the absence of a recording medium are not useful for judging
the merits of NFTs for HAMR. Several transducer designs have been
analyzed theoretically and compared using a standard geometry that
approximates the situation found in HAMR. The results are sum-
marized in Table 1. Surprisingly large power coupling efficiencies
can be obtained theoretically for the best transducer designs, lend-
ing credibility to the engineering challenge of building such a data
storage device.

Our study of the C aperture indicates that the resonance wave-
length for an aperture of finite length can be shifted from the cutoff

Table 1.
Summary of near-field transducer (NFT) performance. The peak

|E|2 intensity is normalized by that of the incident beam.

NFT design λres Peak |E |2 Pdiss FWHM spot size (nm2)

Circular aperture 650 0.07 0.14% 113 × 142
Rectangular aperture 650 0.80 0.92 43 × 25
Bow-tie aperture 725 1.38 1.7 59 × 56
C aperture 700 2.42 2.1 34 × 39
Triangle antenna 650 0.77 1.1 55 × 54
Beaked triangle 725 2.82 2.9 43 × 41
Bow-tie antenna 650 1.41 1.4 39 × 36
Canted bow tie 750 2.61 2.1 31 × 36

FWHM full width at half maximum
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wavelength of the corresponding PEC waveguide, especially at
optical frequencies. The far-field cross sections and the near field
intensity have resonances at around the same wavelength. The
strong currents associated with the near-field enhancement are also
responsible for the absorption and far-field radiation. It might be
possible to come up with a current distribution of certain orienta-
tion and phase relationship such that the far-field radiation is small.
Whether there is a geometry in which this current distribution can
be excited by a plane wave is an open question. Complementary
aperture/antenna systems that seem to be resonating in completely
different modes can still have similar resonance properties in accor-
dance with Babinet’s principle.

Finally, we have briefly considered one interesting optical tech-
nique for exciting the NFT via a nanojet.
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Summary. The modelling of light–matter interactions at nanometre
length scales is becoming increasingly important in modern nano-
electrochemistry. The ability to fabricate extremely sophisticated
nanostructures in the laboratory that cannot be described analytically
has driven the need for modelling. Advances in scientific compu-
tation techniques, and the availability of computing resources have
also led to cost savings in several industries, such as the automo-
tive industry. One of the most important considerations for choosing
the optimal numerical technique for a problem is symmetry. This
rather old-fashioned consideration has tremendous effects on both
the accuracy and the efficiency of numerical methods. We show how
symmetry considerations play a major role in modern scientific com-
putation. Examples of supported and unsupported quantum dots and
quantum dot clusters are presented.
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I. INTRODUCTION

The ability to fabricate nanostructures on surfaces and to exploit
their optical, chemical and electrical properties has defined the fron-
tier of surface science.1 These properties are increasingly being used
in the development of technologies in several industries. Examples
are nanostructured catalysts in the automobile industry, nanoplas-
monic sensors in the biomedical industry and nano-interconnects in
the electronics industry. Often, computational modelling is used to
advance research in these applications, and the big advantage is cost
savings. Despite advances in techniques of scientific computation,
and sheer computing power, the true gain in R&D time depends on
the choice of the optimal numerical method. A critical criterion in
the choice of numerical technique is the symmetry of the problem,
which significantly affects both the accuracy and the efficiency of
the numerical method used.

With advances in nanotechnology, quantum dots are ubiqui-
tous in surfaces with myriad applications in electrochemistry. In this
chapter, we discuss the numerical modelling of quantum dots – both
the spherically symmetric (metal or semiconductor) dots embedded
in a matrix (usually a dielectric) and the hemispherical metal dots
(a.k.a. nanoparticles or thin-film islands) supported by a substrate
(again, usually a dielectric). We are particularly concerned about the
optical properties of quantum dots, since the interaction of light with
quantum dots is used widely for several applications in surface elec-
trochemistry – from characterization of the thickness and quality of
thin films, to the development of surface sensors – as well as in na-
noelectronics and quantum computing.

Quantum dots are probed with light in two ways – with white
light to extract macroscopic information such as size and refrac-
tive index, and with coherent, laser light to manipulate the quan-
tum wavefunction of the bound electrons. Therefore, we present the
computational methods used in the modelling of two categories of
experiments – white light interaction with metallic unsupported and
supported quantum dots, and laser interaction with spherical semi-
conductor quantum dots. In the former category, we are interested in
the macroscopic effects of the quantum dot (and the substrate) on the
absorption, transmission and reflection of the incident white light.
In the latter category, we are interested in the quantum wavefunction
and energy of the quantum dot that can be probed and manipulated
by a laser.
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II. OPTICAL PROPERTIES OF METAL NANOPARTICLES

In this section, we describe theoretical methods that describe
the macroscopic optical properties of metal nanoparticles (a.k.a
quantum dots). Recently, silver and gold nanoparticles have found
tremendous use in biological assays, detection, labelling and sens-
ing because of their sensitive optical spectra. While some works in
the literature refer to these as ‘quantum dots’, in optical absorption
experiments their quantized energy structure is not probed. The
spectrum is a probe of the localized surface plasmon phenomenon,
a collective electronic excitation that is localized in spatial extent
owing to the small size of the nanoparticle compared with the
wavelength.

1. Macroscopic Theories

For a single spheroidal nanoparticle with dimensions much smaller
than the wavelength of light, the absorption spectrum can be calcu-
lated to experimental accuracy using the well-known Mie theory.2

The incident light sets up the localized surface plasmon oscillation,
and the induced potential is to a good approximation a dipole. The
spectrum of the re-radiated light is calculated, and this has a peak
whose position depends on the size, shape and composition of the
nanoparticle.

A collection of nanoparticles embedded in a dielectric medium
is modelled by effective medium theories such as the Maxwell–
Garnett3, 4 theory where each nanoparticle is treated as a dipole, and
the medium is treated as homogeneous with effective dielectric prop-
erties. This model provides qualitative agreement with experimental
absorption spectra, but applications such as sensing and catalysis
demand greater agreement between theoretical predictions and ex-
perimental results.

In-between the two limits is the interesting regime where one
must study electrochemistry produced by nanoclusters.5, 6 Nanopar-
ticles linked by ligands show a spectrum completely different from
that when they are apart. This phenomenon is the basis of several
biosensing schemes. The analytical theory of the optical properties
of dimers is challenging. The coupled-dipole approximation (where
each nanoparticle is modelled as a dipole and their interaction is
dipole–dipole) is limited to very small nanoparticles. In practice,
nanoparticles of dimension 20–50 nm have a significant quadrupolar
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contribution in their induced potentials. Recently, Klimov et al.7

completed a beautiful mathematical treatment of the localized sur-
face plasmon eigenmodes of a nanoparticle dimer, but did not con-
nect their results to optical experiments.

2. Discrete-Dipole Approximation

One numerical method that is suitable for the study of small clus-
ters (N = 2 − 10) of nanoparticles (10–30 nm) is the well-known
discrete-dipole approximation (DDA). Developed by Draine and
Flatau8 for modelling atmospheric phenomena, the DDA relies on
the approximation of a continuous material by a discretized cubic
grid of N point dipoles. One of the limitations of the method is the
faithful representation of target surfaces. This problem could be cir-
cumvented by increasing the dipole density in high-curvature sur-
face regions, but this means giving up the use the of the fast Fourier
transform algorithm, which requires equally spaced grid points.

Each dipole is uniquely described by its grid location ri and po-
larizability αi . The polarizabilities are calculated from the complex
dielectric function εi of the material, using the Clausius–Mossotti
relation:9

εi − 1

εi + 2
= ndαi

3
, (1)

where nd is the number density of the array. The polarizabilities give
a relation between the polarizations of the dipoles and the local elec-
tric field (the incident field plus the fields of all other dipoles). From
the above equation, one may construct a system of 3N complex, lin-
ear equations from which the polarization may be extracted. After
solving for the polarization, one may use it to construct the near-
field and far-field optical properties of the target. We are interested
in the extinction cross-section of the particles, or the sum of the ab-
sorption and scattering cross-sections.

The validity criterion for the DDA is the long-wavelength ap-
proximation: |m|kd < 1, where m is the complex refractive index,
k is the wavenumber and d is the grid spacing. We choose the grid
spacing to be small enough so as to satisfy this criterion. The DDA
calculations for a coated gold sphere (both in air and in an aque-
ous medium) compared with the calculation from Mie theory2 agree
extremely well.
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A second advantage of this method is that we can plot contour
maps of the evanescent field around a metal nanoparticle. This gives
us the ability to extract optoelectrical information at an extremely
small surface. A limitation of this method is that computational re-
sources (memory and time) place a limit on the size of the nanopar-
ticles and/or the number of particles in a cluster.

3. Optical Properties of Nanoparticles on a Surface

In modern sensing applications, nanoparticles are immobilized on
a surface so they present the maximum detection surface to the an-
alyte. The sensing signal is the optical absorption spectrum. This
configuration is well known to researchers in the surface science
community as surface quantum dots or supported thin-film islands,
and their optical properties have been studied for a while. Specifi-
cally, the Marton–Schlesinger10 method and the Bedeaux–Vlieger11

methods have provided both quantitative calculations of the opti-
cal properties of nanoparticles on a surface. One big advantage of
the latter method is the effect of the substrate is naturally built into
the formalism (see Fig. 1). A limitation of these methods is that the

Figure 1. Calculated absorption spectrum of a hemispherical gold nanoparticle of
radius 7 nm with and without a SiO2 substrate. Inset: Geometry of calculation.
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Figure 2. Calculated localized surface plasmon resonance spectrum of a dimer of
hemispherical gold nanoparticles of radius 7 nm and interparticle centre-to-centre
distance 17.5 nm. A dielectric coating of n = 1.45 and thickness 1.75 nm leads to a
second absorption feature at 650 nm.

electric field itself cannot be mapped, and more complex structures
(such as nanoparticles made of concentric shells of materials) can-
not be modelled. Note that later modifications of this method12 have
made it possible to visualize the multipolar potential, yielding more
physical insights into this problem.

Despite the limitations of the DDA method, it is best suited for
applications where it is important to know the local electric field on
the surface, or when the nanoparticle itself has a composite structure.
For example, the second feature in the two-nanoparticle absorption
spectrum shown13 in Fig. 2 can be explained by plotting the elec-
tric field map. The map reveals that the presence of a dielectric can
mediate the overlap of evanescent fields, an effect that was hitherto
unknown.14

4. Towards an Optical Method of Surface Electrochemistry

In concluding this section, we would like to present a teaser of
an idea. The holy grail of electrochemistry is to determine the
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electrochemical potentials that determine and control chemical re-
actions. The more complex the molecule’s geometry, the more dif-
ficult this process is. It would be exciting to develop an easy and
inexpensive method for this determination. With this goal in mind,
consider the following experiment. Molecule B is a long molecule
that has ligands that bind to gold. Clusters of gold nanoparticles can
be created in solution by linking individual nanoparticles via these
linkers. Molecule A is a reducing agent that reduces a specific bond
in the linker, creating monomers. During this process, the peak of
the absorption spectrum changes by approximately 100 nm as seen
in Fig. 3.15 An exciting recent finding15 is that if one uses various
types of reducing agents, the rate of the spectral change depends on
the size of the reducing agent. From an electrochemical viewpoint,
apart from stearic hindrance, the rate of reduction would depend on
the reduction potential. Thus, the rate of change of the spectrum,
once it has been calibrated, can provide an optical (and inexpensive)
means of determining the reduction potentials in a class of reactions!

Figure 3. Measured absorption spectrum of a colloid of gold nanoparticles of radius
10 nm. When linked by molecule B, they are clustered with an absorption spectrum
in the blue. When reducing agent molecule A is added, monomers are formed, and
the absorption spectrum turns red.
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III. OPTICAL MANIPULATION OF SEMICONDUCTOR
QUANTUM DOTS

In this section, we describe the modelling of experiments in which
laser light (both single-frequency and broadband) is used to probe
and manipulate the quantum wavefunction of a semiconductor quan-
tum dot. As in the case of naturally occurring atoms, quantum dots
have discrete bound electronic states, and hence are referred to
as ‘artificial atoms’. As explained by Kastner,16 “Modern techniques
of lithography make it possible to confine electrons to sufficiently
small dimensions that the quantization of both their charge and their
energy are easily observable. In fact, there is a close analogy between
the confined electrons inside an single electron transistor (SET) and
an atom”. Recent developments in optical technologies have en-
abled the probing of this electronic structure using single-frequency
(continuous-wave laser) or broadband (pulsed laser) coherent light.
The experiments involve the exact determination of the energy lev-
els (spectroscopy) or the precise control of the electronic wavefunc-
tion (quantum control), much in the ways of atomic, molecular and
optical physics or physical chemistry. The applications range from
nanoelectronics to solid-state quantum optics.

1. Atomic Model of Semiconductor Quantum Dots

As described above, a semiconductor quantum dot can be modelled
with good accuracy as a hydrogen-like atom. An excellent introduc-
tion to the quantum hydrogen atom is presented in chapter II of vol-
ume 43 of Modern Aspects of Electrochemistry, as well as in classic
texts.17

Briefly, the electron in a hydrogen atom lies in a spherically
symmetric ‘Coulomb’ potential due to the positively charged nu-
cleus (in atomic units with e = me = h̄ = 1):

V (r) = −1

r
. (2)

The Schrödinger equation that describes the stationary states of an
electron in this potential is

− ∇2

2
ψ + V (r)ψ = Eψ. (3)
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Recall the well-known result that symmetries in a problem are
associated with conserved quantities. Because of the spherical and
reflection symmetries in the potential, it immediately follows that
angular momentum and parity are conserved quantities in this sys-
tem. In spherical coordinates, the above equation is separable into its
radial and angular components and the radial equation correspond-
ing to an angular momentum � is

− 1

2r2

d

dr

(
r2 dψn�

dr

)
+ V �

eff(r)ψn�(r) = Enψn�(r), (4)

where the effective potential is

V �
eff(r) = −1

r
+ �(�+ 1)

2r2 . (5)

The eigenvalues En = − 1
2n2 and eigenvectors �(r) which are

the products of the radial functions ψn�(r) and spherical harmonics
Y�m have long been known. An excellent pictorial representation of
the radial wavefunctions can be found in the text Theoretical Atomic
Physics.18

Since the energy eigenvalues depend only on n, they are degen-
erate with respect to both � and m. For each value of n, � can vary
from 0 to n − 1, and for each value of �, m can vary from −� to +�.
Degeneracies in energy are associated with conserved quantities and
symmetries in a system. The degeneracy in m is characteristic of a
central force field, for which the potential depends only on the radial
distance. The � degeneracy is characteristic of the Coulomb field,
as distinguished from other central force fields.19 This degeneracy,
sometimes referred to as ‘accidental degeneracy’ in the literature, is
associated not with a geometrical symmetry but with a dynamical
symmetry – represented by the O(4) group, of which the angular
momentum vector and the Runge–Lenz vectors are generators.20 In
equivalent classical terms, the angular momentum and the Lenz vec-
tor are constants of motion for an electron in a Coulomb potential.

More relevant to our understanding of quantum dots are alkali-
metal atoms. Alkali-metal atoms are similar to hydrogen since they
have one valence electron. The behaviour of the outer electron may
be understood as a single electron moving in the combined potential
of the nucleus and the inner-shell electrons, i.e. the core. This com-
bined potential is central but only approximately of the Coulomb
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form because of the size of the core and multielectron effects within
it. This prevents the states with the same quantum number n from
having the same energy (as in the Coulomb degeneracy in field-free
hydrogen). In spite of this difference, the energy levels of field-free
alkali metals can be calculated from a relation that is very similar to
that for hydrogen,

En� = −1

2(n − μ�)2
, (6)

where μ� is the quantum defect.21 This arises owing to the core pen-
etration of the wavefunction where the potential is not Coulombic.
Recall from (5) that the higher the angular momentum number, the
further out is the centrifugal potential barrier. The radial wavefunc-
tions with smaller � values penetrate the core (and feel the effects
of the inner electrons), while those with l > 2 hardly penetrate the
core at all. Thus, the quantum defect depends on the � quantum num-
ber, being large for the � = 0 or s states and small for states with
� > 2. Therefore for states with high n or �, the approximation of
the nuclear potential as Coulombic is a very good one.

To translate the physics of atoms to that of quantum dots, it
is necessary to modify the mass of the electron using an effec-
tive electron mass.22 Calculation of the quantized energy values
of a quantum dot can be accomplished numerically by solving the
Schrödinger equation of the hydrogen-like atom with an effective
electron mass.23

Owing to rapid technological developments in the last two
decades, quantum dots are increasingly being subjected to external
fields, and often to rapidly changing external fields. It is now possi-
ble to dynamically manipulate the quantum wavefunction of a quan-
tum dot. Indeed, such systems are being considered as candidates
for quantum computing! It is useful therefore to have methods of
modelling such processes.

Again, the quantum dot is modelled as a hydrogenic atom with
an effective electron mass that simply scales the calculation. The
potential experienced by an atomic electron in a static electric field
εs in the z direction is

V (r) = −1

r
+ εsz. (7)
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The system exhibits competing symmetries – spherical symmetry
due to the Coulomb potential and axial symmetry due to the Stark
potential (applied electric field). Parity and angular momentum, �,
are no longer conserved; only the magnetic quantum number, m, is
a good quantum number in this system. However, the z-component
of the Runge–Lenz vector (besides Lz) is a constant of the motion in
this system.

An atom in a strong magnetic field is another example of a
system which exhibits competing symmetries (spherical symmetry
due to the Coulomb potential and cylindrical symmetry due to the
magnetic field). The Hamiltonian for the hydrogen atom in a mag-
netic field in the z direction24 (one atomic unit of magnetic field is
2.35 × 105 T) is

H = P2

2
− 1

r
A(r)L · S + L · B

2
+ S · B + B2

8
(x2 + y2). (8)

The L · S term is negligible except at very low values of the mag-
netic field; i.e. for the magnetic field strengths that we are interested
in, the spin and angular momentum are decoupled and the contri-
bution of spin may be ignored. The paramagnetic terms, which are
linear in B, add a constant energy to the Hamiltonian, yielding an
overall phase factor in the time-dependent wavefunction, and may
also be ignored. This Hamiltonian also conserves parity; thus, for
the Coulomb–diamagnetic problem, the magnetic quantum number
m as well as parity are conserved quantities. For each value of m, the
unperturbed Hamiltonian is (n− |m|)-fold degenerate. The degener-
acy of the � states, |m| ≤ � < n, is then lifted by the diamagnetic
potential, which is quadratic in the magnetic field. The Schrödinger
equation representing the diamagnetic atom is not separable in any
coordinate system, in contrast to its counterpart, an atom in an elec-
tric field, which separates in parabolic coordinates.

We will look at numerical methods to compute both the energy
levels of a quantum dot as well the dynamics of the quantum wave-
function in the presence of an external field. There are a variety of
methods to choose from, and in this section we show that by using
the symmetry properties one can greatly enhance the accuracy and
efficiency of the calculation.
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2. Pseudospectral Method

Here, we present a method that is highly efficient and accurate at
solving the eigenproblem of the hydrogen-like atom when only a
limited number of eigenstates need be known. The radial, time-
independent Schrodinger equation (4) for a hydrogen atom is a
second-order differential equation. The numerical method presented
is a pseudospectral method (also known as ‘collocation method’).
First, the dependent variable of the differential equation is expanded
in a basis of orthogonal functions that is truncated at some order N.
In this method, the residual is set to zero at each of the N collocation
points (defined for that basis). This produces a matrix eigenvalue
problem whose eigenvalues are the same as that of the differential
equation eigenproblem.25

While expanding in a basis of orthogonal functions is fairly eas-
ily understood, care must be taken in choosing an appropriate set
of basis functions. In this case the symmetry of the basis functions
chosen must match that of the problem, as seen below. The impor-
tance of symmetry in the problem is beautifully presented by the
choice of basis for the radial coordinate. Consider two choices of the
basis for the radial coordinate – a Fourier basis and a Laguerre ba-
sis. That is, the radial functions can be expanded in a basis of Fourier
functions (sines and cosines) or Laguerre functions. The collocation
points can be loosely thought of as the nodes of the basis functions.

In the Fourier basis, the collocation points (think of nodes of
sines and cosines) are equally spaced from −∞ to +∞. The prob-
lem of representing a Coulomb potential on a uniform grid is well
known; since the potential is steep near the origin, the wavefunc-
tions are highly oscillatory there, and need a finely spaced grid to be
represented there. This can be overcome by mapping the exact po-
tential on a nonuniform grid to a transformed, uniform collocation
grid. But another problem is the radial hydrogen wavefunctions have
a domain from 0 to ∞, whereas the domains of the Fourier functions
are from −∞ to +∞. The problem of the domain matching is over-
come by expanding the radial collocation grid to negative values to
−∞, and choosing only those solutions that go to 0 at r = 0.

The Laguerre basis suits the symmetry of the problem, because
its collocation points (think of nodes of the Laguerre functions) lie
between 0 and∞, and the collocation grid spacing is nonuniform. Of
course, we have prior intuition that this basis is better suited because
the analytic solutions of the hydrogen atom Schrödinger equation are
Laguerre polynomials.
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Figure 4. Comparison between the use of a Laguerre basis and a mapped-Fourier
basis for the calculation of energy eigenvectors and eigenvalues of the hydrogen
atom.

The effect of choosing a symmetry-suited basis is stunning in
the accuracy of the calculation,26 as shown in Fig. 4. One sees that
the accuracy of the mapped-Fourier basis (although nominally expo-
nential) reduces to polynomial because of the Coulomb singularity
and the artificial method used for domain matching. On the other
hand, the error is fairly constant over all the eigenmodes. The La-
guerre basis calculation provides extremely accurate eigenvalues (up
to machine precision). However, this accuracy is only for a range of
eigenmodes.

Thus, to model experiments with spectroscopic accuracy, it
might be better to use the Laguerre basis, but to model experiments
that need rough estimates of many energy eigenvalues, it might be
better to use the mapped-Fourier basis. The limitation of the pseu-
dospectral method is that it is very time consuming to calculate dy-
namics, especially when multiple angular momenta are involved.

3. Finite-Difference Method

The modelling of atoms in external fields can be effectively ac-
complished using the finite-difference method. In a finite-difference
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method, derivatives are approximated by differences between val-
ues at infinitesimally close points. Thus, this method lends itself
to representation of solutions of differential equations on a grid.27

The power of this method lies in the ability to calculate the initial
state wavefunctions with reasonable accuracy, propagate them in the
presence of external fields, and use them to calculate experimentally
measurable quantities both for bound states (transition probabilities)
and for continuum states (ionization probabilities).

The solution of the field-free eigenproblem is found by expand-
ing the wavefunction (solution) in a mixed basis of discretized radial
functions times spherical harmonics, while retaining a finite number
of spherical harmonics:

�(r j , θ, φ) =
�max∑

�=0

φ�(r j )Y
m
� (θ, φ), (9)

where j is an index corresponding to a radial grid point. Thus, the
truncation in the number of spherical basis functions (which gives an
exponentially small error) is challenged by the truncation in the ra-
dial grid extent (which gives a polynomial error). The Coulomb sin-
gularity is avoided by using a nonuniform radial grid28 (see Fig. 5)
and a softening of the potential at the origin. The resulting dif-
ferential equation for φ�(r j ) is then discretized using second-order
approximations for the derivatives and discretization yields an eigen-
value equation of a symmetric tridiagonal matrix, which is then
solved.29

The unperturbed eigenstates |kn�(r j )〉 are eigenstates of a real,
symmetric, tridiagonal matrix. A diagonalization can yield N eigen-
states and eigenvalues (where N is the number of grid points), of
which we require only the lowest few. The complexity of this proce-
dure is of O(N). The grid is chosen to yield eigenvalues with a max-
imum error of 0.01% by comparing them with known eigenvalues of
the hydrogen atom. The radial functions are also in excellent agree-
ment with the analytic solutions to the radial part of the Schrödinger
equation for values of the principal quantum number up to n = 35.

The time evolution of individual eigenstates can be performed
by multiplication with the appropriate phase:

|k(t)〉 = e−iEk t |k(0)〉. (10)



Symmetry Considerations 127

0 4000 8000 12000

Radial distance (a.u.)

0.0

1.0

2.0

3.0

4.0

5.0

G
rid

 s
pa

ci
ng

 (
a.

u.
)

Figure 5. Grid spacing in a nonuniform radial grid used to
model the hydrogen atom (spherical quantum dot). The grid
points are closely spaced near the origin where the potential
has a singularity, and are widely spaced away from the origin
where the potential goes asymptotically to 0.

In the presence of an external time-dependent field, the time-
dependent Schrodinger equation, a first-order differential equation
in time, must be solved. The key problem is that the field also
mixes the radial and angular coordinates, making typical implicit
methods (that are unconditionally stable and accurate) very resource
intensive. Therefore, the Peacemann– Rachford method is recom-
mended.30 In the total Hamiltonian H = H0 + HI, H0 connects
adjacent radial points of functions with the same � value, whereas
the interaction HI couples functions of different � values at the same
radial point.

�(r, t + δt) =
∞∑

n=0

(−i)n

n!
∫ t

0
dt1

∫ t

0
dt2 . . .

∫ 2

0
dtn

T [H(t1) H(t2) . . . H(tn)]�(r, t), (11)

where T represents the time-ordering operator.
To second order, the short-time propagator is

�(r, t + δt) = exp
[
−iH

(
t + δt

2

)
δt

]
�(r, t). (12)
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We expand the propagator as

�(r, t + δt) =
(

1 + iH0
δt

2

)−1 (
1 + iHI

δt

2

)−1

(
1 − iHI

δt

2

)(
1 − iH0

δt

2

)
�(r, t). (13)

The Peacemann–Rachford propagator agrees with the full prop-
agator up to the third order in δt . In combining this with the
finite-difference method described above, the first two operations
on �(r, t) are straightforward, and the next two require finding the
solution to five-term and three-term recurrence relations in � and r ,
respectively. The computational complexity of this operation is of
first order in Nr × N�.

The advantage of this method is that since both positive and neg-
ative energy states are represented on the same grid, this allows us to
study the dynamics of bound states as well as ionization problems.
The limitation of this method is that the radial grid is closely spaced
near the nucleus, with the spacing increasing to a constant value to-
wards the outer edge. Although this makes it possible to represent
field-free wavefunctions accurately, it limits the accurate represen-
tation of high-momentum processes away from the nucleus. Thus,
the finite-difference method is effective in modelling experiments
where the semiconductor quantum dot is probed or manipulated by
coherent (laser) light.

IV. SUMMARY

We have presented a variety of methods to model light–matter in-
teractions in nanoelectrochemistry. In particular, the experiments in-
volved include the probing of metal quantum dots using white light
(nanoplasmonics), and the manipulation of semiconductor quantum
dots using laser light (semiconductor quantum optics). These exper-
iments drive applications in myriad areas such as surface electro-
chemistry, biosensor development, nanolithography, nanoelectronics
and quantum computing. We showed that the symmetry of the prob-
lem is an important consideration in choosing the optimal numerical
method. This consideration, when carefully applied, can lead to sig-
nificant cost and time savings in R&D.
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I. INTRODUCTION

The interface between a solid electrode and a liquid electrolyte is a
complicated many-particle system, in which the electrode ions and
electrons interact with solute ions and solvent ions or molecules
through several channels of interaction, including forces due to
quantum-mechanical exchange, electrostatics, hydrodynamics, and
elastic deformation of the substrate. Over the last few decades, sur-
face electrochemistry has been revolutionized by new techniques
that enable atomic-scale observation and manipulation of solid–
liquid interfaces,1, 2 yielding novel methods for materials analysis,
synthesis, and modification. This development has been paralleled
by equally revolutionary developments in computer hardware and
algorithms that by now enable simulations with millions of individ-
ual particles,3 so there is now significant overlap between system
sizes that can be treated computationally and experimentally.

In this chapter, we discuss some of the methods available
to study the structure and dynamics of electrode–electrolyte in-
terfaces using computers and techniques based on quantum and
statistical mechanics. These methods are illustrated by some re-
cent applications. The rest of the chapter is organized as follows.
In Sect. II, we present fully three dimensional, simulations in con-
tinuous space by molecular dynamics (MD) of ion intercalation
during charging of lithium-ion batteries. In Sect. III, we discuss
the simplifications that are possible by mapping a chemisorption
problem onto an effective lattice-gas (LG) Hamiltonian, and in
Sect. IV we demonstrate how input parameters for a statistical-
mechanical LG model can be estimated from quantum-mechanical
density-functional theory (DFT) calculations. Section V is de-
voted to a discussion of Monte Carlo (MC) simulations, both for
equilibrium problems (Sect. V.1) and for dynamics (Sect. V.2).
As an example of the latter, we present in Sect. VI a simula-
tional demonstration of a method to classify surface-phase tran-
sitions in adsorbate systems, which is an extension of standard
cyclic voltammetry (CV): the electrochemical first-order rever-
sal curve (FORC) method. A concluding summary is given in
Sect. VII.
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II. MOLECULAR DYNAMICS SIMULATIONS OF ION
INTERCALATION IN LITHIUM BATTERIES

The charging process in lithium-ion batteries is marked by the in-
tercalation of lithium ions into the graphite anode material. Here we
present MD simulations of this process and suggest a new charging
method that has the potential for shorter charging times, as well as
the possibility of providing higher power densities.

1. Molecular Dynamics and Model System

MD is based on solving the classical equations of motion for a sys-
tem of N atoms interacting through forces derived from a potential-
energy function.4–8 From the potential energy EP, the force on the
i th atom, Fi , is calculated. Thus, the equation of motion is

Fi (t) = −∂EP

∂ri
= mi

∂vi

∂t
= mi

∂2ri

∂t2 , (1)

where ri , vi , and mi are the position, velocity, and mass of the
i th atom, respectively. Consequently, the quality of the simulations
strongly depends on the ability of the classical force field to reason-
ably describe the atomistic behavior.

The newly developed general AMBER force field (GAFF)9 was
used to approximate the bonded interactions of all the simulation
molecules, while the simulation package Spartan (Wavefunction,
Irvine, CA, USA) was used at the Hartree–Fock/6-31g* level to ob-
tain the necessary point charges for each of the atoms. To simulate a
charging field, the charge on the carbon atoms of the graphite sheets
was set to −0.0125e per atom. The bonded (first three terms of (2))
and nonbonded (last term) interactions in the AMBER force field are
represented by the following potential-energy function:

EP =
∑

bonds

Kr (r − req)
2 +

∑

angles

Kθ (θ − θeq)
2 (2)

+
∑

dihedrals

Vn

2
[1 + cos(nφ − γ )]

+
∑

i< j

(
Ai j

R12
i j

− Bi j

R6
i j

+ qi q j

εRi j

)

,
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Figure 1. (a) Snapshot of the model system containing four graphite sheets, two
PF−6 ions, and ten Li+ ions (spheres), solvated in 69 propylene carbonate and
87 ethylene carbonate molecules after reaching constant volume in the N PT
ensemble. (b) Snapshot after 200 ns molecular dynamics simulation. The en-
semble is the N V T ensemble. The system has periodic boundary conditions
and is simulated at 1 atm and 300 K. Top view, perpendicular to the plane of the
graphite sheets.

where Kr , Kθ , and Vn are the bond stretching, bending and torsional
constants, respectively, the constants A and B define van der Waals
interactions between unbonded atoms, and ε is the electrostatic per-
mittivity. The simulation package NAMD10 was used for the MD
simulations, while the graphics package VMD11 was used for visu-
alization and analysis of the simulation results.

The model system representing the anode half-cell is composed
of four graphite sheets (anode) containing 160 carbon atoms each,
two PF−6 ions, and ten Li+ ions, solvated in an electrolyte made of
69 propylene carbonate and 87 ethylene carbonate molecules (see
Fig. 1a). The graphite sheets were fixed from one side by keeping
the positions of the edge carbon atoms fixed.

2. Simulations and Results

After energy minimization, the simulations were run at constant
pressure using a Langevin piston Nosé–Hoover method12, 13 as im-
plemented in the NAMD software package until the system had
reached its equilibrium volume at a pressure of 1 atm and 300 K in
the N PT (constant particle number, pressure, and temperature) en-
semble. The system’s behavior was then simulated for 200 ns (100
million steps) in the N V T (constant particle number, volume, and
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temperature) ensemble. Two observations were made: first, the Li+
ions stayed randomly distributed within the electrolyte, and second,
none of the Li+ ions had intercalated between the graphite sheets
after 200 ns (see Fig. 1b).

While the lithium ions do not intercalate within the simulation
time given above, it is expected that given enough time they will
move towards the graphite sheets and be intercalated. To test whether
intercalation is possible in such a model system, one of the lithium
ions was positioned between the graphite sheets at the beginning of
a simulation, and we observed whether it diffused out from between
the sheets. The lithium ion stayed intercalated, even after 400 ns.

For intercalation to occur, the lithium ion has first to diffuse
within the electrolyte until it reaches the graphite electrode. Con-
sequently, faster diffusion would result in faster intercalation and
shorter charging time. To increase the diffusion of lithium ions in
the electrolyte, we explored a new charging method. In addition to
the charging field due to the fixed charge on the graphite carbons, an
external oscillating square-wave field (amplitude 5 kcal mol−1, fre-
quency 25 MHz) was applied in the direction perpendicular to the
plane of the graphite sheets. Not only does this additional field in-
crease diffusion, but also some of the lithium ions intercalate into
the graphite sheets within an average time of about 50 ns. Figure 2

0 50 100 150 200
time / ns

0

5

10

15

20

25

R
M

S 
di

sp
la

ce
m

en
t 

/ 
A

no external EF
with external EF

Figure 2. Root-mean-square displacement of lithium ions as a func-
tion of time. Diffusion is much faster with the additional oscillating
electric field (amplitude 5 kcal mol−1, frequency 25 MHz).
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shows a plot of the root-mean-square displacement of lithium ions
as a function of time for a system with and without an applied ex-
ternal field. The increased diffusion and intercalation indicate that
a charging protocol involving an oscillating field may decrease the
charging time and possibly increase the battery’s power density.

III. LATTICE-GAS MODELS OF CHEMISORBED
SYSTEMS

As mentioned in Sect. I, even the simplest electrosorption sys-
tems are extremely complicated. This complexity means that a
comprehensive theoretical description that enables predictions for
phenomena on macroscopic scales of time and space is still gen-
erally impossible with present-day methods and technology. (Note
that MD simulations, such as those presented in Sect. II, are only
possible up to times of a few hundred nanoseconds.) Therefore, it is
necessary to use a variety of analytical and computational methods
and to study various simplified models of the solid–liquid inter-
face. One such class of simplified models are LG models, in which
chemisorbed particles (solutes or solvents) can only be located at
specific adsorption sites, commensurate with the substrate’s crystal
structure. This can often be a very good approximation, for instance,
for halides on the (100) surface of Ag, for which it can be shown
that the adsorbates spend the vast majority of their time near the
fourfold hollow surface sites.14 A LG approximation to such a con-
tinuum model, appropriate for chemisorption of small molecules
or ions,15–20 is defined by the discrete, effective grand-canonical
Hamiltonian,

HLG =
∑

n

(
−Φ(n)

(n)∑

〈i j〉
ci c j

)
+H3 − μ̄

∑

i

ci . (3)

Here, the lattice sites i are the preferred adsorption sites (the min-
ima of the continuous corrugation potential), and ci is a local occu-
pation variable, with 1 corresponding to an adsorbed particle and 0
to a solvated site. The sums

∑(n)
〈i j〉 and

∑
i run over all nth-neighbor

pairs and over all adsorption sites, respectively, Φ(n) is the effec-
tive nth-neighbor pair interaction, and

∑
n runs over the interaction
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ranges. The term H3 contains multiparticle interactions.21–23 The
sign convention is such that φ < 0 implies repulsion, and μ̄ > 0
favors adsorption. Equation (3) is also easily generalized to multiple
species.24, 25

To connect the electrochemical potentials to the concentrations
in bulk solution of species X, [X], and the electrode potential, E ,
one has (in the dilute-solution approximation)

μ̄x(T, [X], E) = μ̄0
x + kBT ln([X]/[X]0)− e

∫ E

E0
γx(E

′)dE ′, (4)

where kB is Boltzmann’s constant, T the temperature, e the ele-
mentary charge, and γx(E) the electrosorption valency26–29 of X.
The importance of the integral over the potential-dependent elec-
trosorption valency [rather than just the product eγx(E)E ana-
logous to the case of potential-independent γx] was pointed out
in Ref. [30]. The quantities superscripted 0 are reference values
that include local binding energies. The interaction constants and
electrosorption valencies are effective parameters influenced by sev-
eral physical effects, including electronic structure,21–23 surface
deformation, (screened) electrostatic interactions,31–33 and the fluid
electrolyte.34, 35 The density conjugate to μ̄x is the coverage relative
to the number N of adsorption sites,

ΘX = N−1
∑

i

ci . (5)

IV. CALCULATION OF LATTICE-GAS PARAMETERS
BY DENSITY FUNCTIONAL THEORY

There are many methods to estimate LG parameters. One of these
is comparison of MC simulations (see Sect. V) of a LG model with
experimental adsorption isotherms. For detailed descriptions of this
method we refer to Refs. [30,31,36–39]. Here we instead concentrate
on the purely theoretical method based on quantum-mechanical DFT
calculations.23

DFT is the most widely used method to calculate ground-state
properties of many-electron systems. It is based on the Hohenberg–
Kohn theorem, which states that all properties of the many-particle
ground state can be expressed in terms of the ground-state electron
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charge-density distribution40 and leads to the Kohn–Sham equa-
tions for single-particle wave functions.41 These are second-order
differential equations, which include potential terms due to the ions
and the classical Coulomb repulsive energy between the electrons,
as well as the electronic exchange–correlation energy, and they
are solved self-consistently. For surface structural studies, DFT is
usually performed using pseudopotentials with slab models and
plane-wave basis sets. The slab consists of a finite number of atomic
layers, periodic in the direction parallel to the surface, which can be
repeated periodically in the third direction (separated by a vacuum
interval), or not. The fluid solvent can be considered either as an
effective continuum or by molecular models.

Here we present preliminary results on a DFT calculation of
lateral interaction constants pertaining to a LG model for the ad-
sorption of Br on single-crystal Ag(100) surfaces.29, 37–39, 42 The LG
model is represented by (3) on a square lattice with lattice constant
a = 2.95 Å, H3 = 0, infinitely repulsive interactions for adparticles
at nearest-neighbor sites, and the long-range repulsion

φi j = (
√

2)3

r3
i j

φnnn for ri j ≥
√

2 , (6)

which is compatible with dipole–dipole interactions or elastically
mediated interactions. (Here, ri j is given in units of a.) Since the
DFT calculations are performed in the canonical ensemble (fixed
adsorbate coverage), μ̄ in (3) is replaced by the binding energy of a
single adparticle, Eb.

We prepared slabs with seven metal layers, which were placed
inside a supercell with periodic boundary conditions. Two different
sizes of supercells were used: a 2×2 supercell with size of 2a×2a×
36.95 Å, and a 3× 3 supercell with size of 3a × 3a × 36.95 Å. The
vacuum region above the surface was twice the thickness of the slab,
and the orientation of the surface normal was in the z direction. One,
two, and three Br atoms were placed on the 3×3 surface to represent
coverages Θ = 1/9, 2/9, and 1/3. Two Br atoms were placed on the
2 × 2 surface to represent Θ = 1/2, and one Br atom was placed
on the 2× 2 surface to represent Θ = 1/4. Supercells with different
coverages of Br are shown in Fig. 3.

The DFT calculations were performed using the Vienna ab ini-
tio simulation package (VASP).43–45 The basis set was plane-wave,
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Figure 3. (a) Cross section of a 3 × 3 supercell with
Θ = 1/9. (b) Three-dimensional representation of the
same cell and coverage. (c) Top view of a 3 × 3 surface
and a 2 × 2 surface with various coverages.

with the generalized gradient-corrected exchange–correlation func-
tion,46, 47 and Vanderbilt pseudopotentials.48 The k-point mesh was
generated using the Monkhorst method49 with a 5 × 5 × 1 grid for
the 3×3 cells and a 7×7×1 grid for the 2×2 cells. All calculations
were done on a 54 × 54 × 192 real-space grid.

Individual DFT calculations provide total energies, E , and
charge densities, ρ(x). The adsorption energy Eads for a single
adatom and the corresponding charge-transfer function �ρ(x) are
obtained from calculations of the adsorbed system and isolated slab
and atoms as follows:

Eads =
[
Esyst − Eslab

]
/Nads − EBr (7)
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and50

�ρ(x) = [ρ(x)syst − ρ(x)slab]/Nads − ρ(x)Br , (8)

where Nads = NΘ is the number of adsorbed Br atoms in the cell,
and the quantities subscripted Br refer to a single, isolated Br atom.

Since the system is electrically neutral, the integral over space
of �ρ(x) vanishes. The surface dipole moment is defined as

p =
∫

z�ρ(z)dz . (9)

Kohn and Lau51 have shown that the nonoscillatory part of the
dipole–dipole interaction energy between adsorbates separated by
a distance R behaves as

φdip−dip = 2papb

4πε0 R3 (10)

for large R (in our case larger than the nearest-neighbor distance).
This result is twice what one might naı̈vely expect. Thus, the next-
nearest-neighbor interaction constant from (6) would be

φdip−dipnnn =
2p2

4πε0 R3
nnn

, (11)

with p obtained from the DFT by (9). This estimate, which depends
on Θ , is included in Fig. 4 as solid circles.

Alternatively, the interaction constant φnnn in the LG Hamilto-
nian, (3), can be estimated by performing a nonlinear least-squares
fit of the Θ-dependent DFT adsorption energy Eads in (7) to

Eads = −φnnn�Θ − EbΘ, (12)

with φnnn = A(1 + BΘ)2, using the three fitting parameters A, B,
and Eb. This is consistent with the theoretical prediction of (11) with
a dipole moment that depends linearly on Θ . The quantity

�Θ = (
√

2)3

N

∑

i< j

cicj

r3
i j

(13)
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Figure 4. Three different estimates of the lattice-gas interaction con-
stant φnnn. Circles based on (10) with the dipole moment p directly
obtained from the density functional theory (DFT) calculation. Squares
based on a three-parameter fit to the DFT adsorption energy Eads
as described in (12). Diamonds based on minimizing mean-square
deviations (MSD) from the estimate based on the DFT dipole moment
p, constrained to retain a low value of χ2 from the fit to Eads. See the
discussion in the text.

can be calculated numerically to any given accuracy for a partic-
ular coverage and adsorbate configuration. This estimate for φnnn
is included in Fig. 4 as solid squares. It does not agree particularly
closely with the result obtained from the dipole moments. However,
we found that χ2 of the fit, considered as a function of the fitting pa-
rameters, was characterized by an extremely wide and shallow basin
surrounding its minimum. We therefore further minimized the mean-
square deviation (MSD) between the values of φnnn obtained from
this fitting procedure and those obtained directly from (11) with the
DFT values for p within the three-dimensional parameter region for
which the original χ2 was close to its minimum. This procedure gave
significantly improved consistency between the two estimates for
φnnn, without a significant increase in χ2. The final result is shown
as solid diamonds in Fig. 4, and the corresponding parameters are
listed in Table 1.

The average value of φnnn obtained by this method is con-
sistent with that found by fitting equilibrium MC simulations (see
Sect. V.1) to experimental adsorption isotherms in aqueous solution
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Table 1.
Results for the fits of the Θ-dependent lattice-gas interaction

constant φnnn according to the two methods described in the text.
Here, ν is the number of degrees of freedom (number of data points

minus number of parameters, here equal to 2) for the initial
nonlinear least-squares fit of φnnn to the density functional theory

(DFT) adsorption energy Eads, while MSD is the mean-square
deviation between this estimate and the estimate obtained directly

from the DFT dipole moment. Minimizing MSD within the basin of
low χ2 significantly reduces the MSD (see the greatly improved

agreement in Fig. 4) without significantly increasing χ2.

Method A B Eb χ2/ν MSD/ν
Min. χ2 −6.017 × 10−2 −0.8632 3.102 2.362 × 10−5 1.803 × 10−4

Min. MSD −4.085 × 10−2 −0.7595 3.070 2.675 × 10−5 7.692 × 10−6

(approximately −21 meV). However, no significant coverage depen-
dence was found in the analysis of the experimental data.30, 39 It is
not surprising that results from in situ experiments and in vacuo DFT
calculations should show some differences, and we find it encourag-
ing that the average results are consistent. Application of the method
described here to Cl/Ag(100) gave less consistent results than for
Br, possibly indicating that the effective interactions for Cl are not
purely dipole–dipole in nature.52

V. MONTE CARLO SIMULATIONS

1. Equilibrium Monte Carlo

As a method to obtain equilibrium properties of a system described
by a particular Hamiltonian, MC simulation is more accurate than
mean-field approximations, especially for low-dimensional systems
near phase transitions.36, 53 This is an effect of fluctuations, which,
while ignored or underestimated by mean-field methods, are very
important in two-dimensional systems. Given the rapid evolution of
computers and the relative ease of programming of MC codes, this
is our method of choice for equilibrium and dynamic studies of both
LG and continuum models.
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The goal of an equilibrium MC code is to bring the system to
equilibrium as rapidly as possible, and then sample the equilibrium
distribution as efficiently as possible. The only requirement is that
the transition rates between two configurations c and c′ satisfy de-
tailed balance,

R(c′ → c)/R(c → c′) = exp
[− (H(c)−H(c′)

)
/kBT

]
. (14)

This result applies to both continuum and discrete systems, and H
may be a classical potential of predetermined form, or the interaction
energies can be calculated “on the fly” by DFT.54 The sampling can
be accomplished with a number of different choices of the transition
rates R(c′ → c),36, 53, 55–62 including Metropolis, Glauber, and heat-
bath algorithms. It is important to note that the stochastic sequence
of configurations generated by an equilibrium MC algorithm does
not generally correspond to the actual dynamics of the system.

2. Kinetic Monte Carlo

To construct a MC algorithm producing a stochastic path through
configuration space that is a good approximation to the actual time
evolution of the system (in a coarse-grained sense), one can intro-
duce transition states between the LG states. Only then can “MC
time,” measured in MC steps per site in a LG simulation, be con-
sidered proportional to “physical time,” measured in seconds.42 In a
Butler–Volmer approximation,26, 36 the free energy of the transition
state between LG configurations c and c′ is given by

H∗ (c, c′
) = �+ (1 − α)HLG (c)+ αHLG

(
c′
)
, (15)

where the symmetry constant α = 1/2 for diffusion but may be
different for adsorption/desorption.36 The “bare” barrier Δ must
be determined by other methods. These may be ab initio calcula-
tions,35, 63–66 MD simulations of the diffusion process on a short
time scale as in Sect. II,4–8 or comparison of dynamic simulations
with experiments.42 The most common choice of transition rate
for kinetic MC simulation in chemical applications is the one-step
algorithm,67, 68

R
(
c → c′

) = ν0 exp
[− (H∗(c, c′)−HLG(c)

)
/kBT

]
, (16)
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where ν0 is an attempt frequency [often on the order of a phonon
frequency (109–1013 Hz), but see Ref. [42] for exceptions] that must
be determined by other means. As we have shown previously,55–62

to obtain reliable structural information from a kinetic MC simu-
lation, the transition rates must approximate the real physical dy-
namics, which includes using transition states with proper energies.
While the need for correct transition rates may seem obvious, it is
regrettably often ignored in the literature. The most difficult barrier
to estimate is that for adsorption/desorption, which requires reorga-
nization of the adparticle’s hydration shell.

Since the transition rates used in kinetic MC simulations of
activated processes are typically small, simulations that extend to
macroscopic times must use a rejection-free algorithm, such as
the n-fold way69, 70 or one of its generalizations.67, 71–77 These
algorithms simulate the same Markov process as the “naive” MC
approach of proposing and then accepting or rejecting individual
moves. Although they require more bookkeeping (see the appendix
of Ref. [71] for an example), they avoid the large waste of computer
time resulting from rejected moves.

VI. ELECTROCHEMICAL FIRST-ORDER REVERSAL
CURVE SIMULATIONS

The FORC method was originally developed to enhance the amount
of dynamic information extracted from magnetic hysteresis exper-
iments.78–81 We recently proposed that the method can be further
developed as an extension of traditional CV to study the dynamics
of phase transitions in electrochemical adsorption.82, 83

This electrochemical FORC method consists in saturating the
adsorbate coverage Θ in a strong positive electrochemical poten-
tial μ̄ and, in each case starting from saturation, decreasing μ̄ at a
constant rate to a series of progressively more negative “reversal
potentials” μ̄r (see Fig. 5a). Subsequently, μ̄ is increased back to
the saturating μ̄ at the same rate. (Saturation at negative potentials
with reversal potentials in the positive range is also possible.) The
method is thus a simple generalization of the standard CV method,
in which the negative return potential is decreased for each cy-
cle. This produces a family of FORCs, Θ(μ̄r, μ̄i), where μ̄i is the
instantaneous potential during the increase back toward saturation.
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Figure 5. (a) Family of first-order reversal curves (FORCs) for our model of
Br/Ag(100), corresponding to potential sweeps back and forth across the continu-
ous phase transition between the disordered and c(2 × 2) phases. The bold arrows
show the directions of the potential sweeps, and the vertical arrow indicates μ̄r for
one of the FORCs. The bold curve is the FORC whose minimum lies closest to the
critical coverage (shown in more detail in the inset). The thin curve in the middle is
the equilibrium isotherm. (b) Voltammetric currents corresponding to the FORCs in
(a). (c) Contour plot of the FORC distribution ρ, corresponding to the FORCs in (a).
The jagged curve of dots in the upper part of the diagram corresponds to the minima
of the positive-going curves in (a). The area above the curve corresponds to desorp-
tion, and the area below it to adsorption. The slanted, straight line corresponds to the
bold curve in (a). After Ref. [82].

In CV experiments, one actually records the corresponding family
of voltammetric currents,

i(μ̄r, μ̄i) = −γ e
dμ̄i

dt

∂Θ(μ̄r, μ̄i)

∂μ̄i
, (17)

where γ is the electrosorption valency and e is the elementary charge
(see Fig. 5b).
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The next step in extracting dynamical information from the
FORCs or the corresponding currents is to calculate the FORC
distribution,

ρ = −1

2

∂2Θ

∂μ̄r ∂μ̄i
= 1

2γ e(dμ̄i/dt)

∂i(μ̄r, μ̄i)

∂μ̄r
. (18)

This is shown in Fig. 5c as a contour plot commonly known as a
FORC diagram in terms of the more convenient variables μ̄b =
(μ̄r + μ̄i)/2 and μ̄c = (μ̄r − μ̄i)/2.79, 82 Geometrically, ρ is pro-
portional to the vertical distance between adjacent current traces.

To our knowledge, the data for our model of Br/
Ag(100),29, 37–39, 42 which are shown in Fig. 5, are the first FORC
predictions for a continuous phase transition. The data in all three
panels are significantly different from the corresponding data for a
discontinuous transition, such as seen in underpotential deposition.
In particular, the FORC distribution for a discontinuous transition
contains a negative region, while this does not appear for continuous
transitions. (See details in Refs. [82, 83].) Closely related to this neg-
ative region is an extremum of the current density during the return
scan.84 Electrochemical FORC analysis should be a useful and valu-
able method to distinguish between continuous and discontinuous
phase transitions in experiments.

VII. CONCLUSION

In this chapter we have presented some applications of the
statistical-mechanics-based computer-simulation methods of MD
and equilibrium and kinetic MC simulations complemented by
quantum-mechanical DFT calculations of interaction energies.
These include both highly technologically oriented applications
to lithium-battery technology, and basic-science investigations into
adsorption on single-crystal electrodes. Our hope is that these ex-
amples and the list of references will encourage other workers in
surface electrochemistry to take advantage of the recent spectacular
advances in computational power and algorithmic sophistication
to study ever more detailed and accurate models of processes at
solid–liquid interfaces.
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I. INTRODUCTION

Mixed, i.e. electronic and ionic, conducting materials have been
known for a rather long time although their full potential was not
always understood. As an example, a conducting polymer such as
polyaniline is the oldest conjugated known polymer; it was first
reported in 1862 by Letheby.1 In 1910, polyaniline was described
as an octamer existing in four different states2 and it was later anal-
ysed for its electrical properties by Jozefowicz.3 Later, many works
were devoted to conducting polymers and more generally to elec-
troactive materials especially in the form of thin films deposited on
a metallic electrode.

A number of useful reviews have been published on the prop-
erties of the electroactive materials, especially on conducting poly-
mers. The reviews of Murray4, 5 provide a summary of the early
works in this area. The reviews by Albery and Hillman,6 Hillman,7

Abruna,8 Evans,9 Smyrl and Lien10 and Lyons11, 12 are also very
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useful. More recently, reviews have been provided by Oyama
and Ohsaka,13 Murray,14 Andrieux and Savéant,15 Inzelt16 and
Doblhofer,17 and in the book edited by Lyons.18 To our knowledge,
since the mid 1990s no thorough review has been published. So,
this text will mainly focus on the results reported in this field during
these last 10 years.

Electroactive materials are often used as thin films coating a
metallic electrode. Charge transport in these films and charge trans-
fer reactions at metal/film and film/electrolyte interfaces play key
roles in the reduction and oxidation of these electroactive films. As
an example, it is commonly accepted that the oxidation process of
such a film requires either cation expulsion or anion entry to com-
pensate for the positive charges formed inside the film. However, it
has been shown that the redox processes in electroactive films are
accompanied not only by the exchange of ions with the electrolyte
solution but also by solvent exchanges.19

As electroneutrality is demanding, it is generally assumed that
the field-assisted transport of charged species is more rapid than the
transport of neutral species and, consequently, solvation equilibria
can only be established slowly. Therefore, the equilibria associated
with electronic, ionic and solvation processes may be established
on quite different time scales, but at long enough time scales ther-
modynamics will prevail and processes will attain a state of global
equilibrium. However, the relative rates of all the processes involved
in the charge compensation are still an open question.

Electroactive materials have attracted interest in view of
their practical applications as electrodes in batteries,20–22 as gas-
separating membranes,23 in microelectronic devices,24 for molec-
ular recognition25 and as sensors for the detection of chemical
or biological species,26 or some inorganic ions in solutions,27 or
even as nanostructured materials.28 New possibilities have recently
been found, e.g. in microwave absorbers for screening external
electromagnetic fields.29 Using these materials, e.g. in the field
of electroanalysis,30 requires a clear understanding of the charge
compensation processes following the redox switching of these
electroactive materials from reduced to oxidized forms or vice versa.

In this paper, after some generalities, a review of the models
and techniques used to investigate ionic and solvent transfer and
transport in electroactive materials will be first carried out. As the
models employed are largely dependent on the techniques used to
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test them, two main approaches will be described. The electrochem-
ical investigation of electroactive films, in terms of voltammetry and
electrochemical impedances, takes into account the charged species
involved in the redox process of the film. The addition of gravimetric
investigations thanks to quartz crystal microbalances (QCMs) allows
the solvent interaction to be attained. A third approach largely used
to investigate these films, as they often have electrochromic prop-
erties, is based on optical techniques, but they are out of the scope
of this paper. At the end, we shall describe the use of AC electro-
gravimetry coupled with electrochemical impedance measurements
to characterize ions and solvent motion at the film/electrolyte in-
terface during the redox switching of an electroactive material. AC
electrogravimetry allows the mass response to a small potential per-
turbation to be analysed thanks to a fast QCM used in the dynamic
regime.31, 32 This technique has already been fruitful in several
domains: copper electrodeposition,33 gold oxidation in an acidic
medium,34 ionic insertion in WO3

35, 36 or passivity of iron in a sul-
phuric medium.37 Here, the models proposed in the literature are re-
viewed for two and three species involved in the oxidation/reduction
process taking into account insertion laws based on diffusion and
heterogeneous kinetic equations. Then, calculated electrochemical
impedances and electrogravimetric transfer functions deduced from
these models will be compared with experimental results: the influ-
ence of the nature of the ionic species which interact with the films
will be discussed.

II. GENERAL CONSIDERATIONS

Before we review ionic and solvent transfer and transport in elec-
troactive materials, some general considerations concerning the ther-
modynamics, swelling and conductivity of these materials will be
given.

1. Thermodynamics

From a thermodynamic point of view, it has been shown that the re-
dox process in an electroactive film is accompanied not only by the
exchange of ions with the electrolyte solution but also by solvent
exchange,19, 38 e.g. for a polymer P immersed in an aqueous solu-
tion of a salt CA, a general redox process where cations, anions and
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solvent are exchanged with the solution to compensate the electronic
charges exchanged with the electrode can be represented by
{[

Pn+nA−]α
[
C+A−]β [H2O]

}
P +νe−

⇔
{[

P(n−ν)+(n − ν)A−] (α − δ)
[
C+A−] (β − ε) [H2O]

}

P

+ δC+
s + (δ + ν)A−

s + εH2Os, (1)

where {}p and {}s mean, the species inserted in the polymer and the
species in the solution, respectively.

Owing to thermodynamic constraints and electroneutrality re-
quirements, the coefficients, α, β, δ and ε can be of either sign, or
equal to 0, and are not necessarily integer numbers.

When an electric field is applied across an ion-containing
membrane, ions move through the membrane owing to electromo-
tive forces. This ion transport is accompanied by solvent transport
through the membrane. Solvent is transported either by an associ-
ation with the transported ion, such as a hydration sphere, or by
hydrodynamic pumping owing to the movement of the ions and as-
sociated solvent molecules. This solvent transport accompanying the
ion transport through a membrane is termed “electro-osmosis”.39

Electroactive polymers are a special case of ion-exchange poly-
mers in that one can control the charge site density; this charge
density range is determined by the charge type and volume con-
centration of the redox sites. For simplicity, for a polymer having
cationic sites immersed in a bathing solution containing a single 1:1
electrolyte C+A−, the partition of anions and cations (here, coun-
terions and co-ions, respectively) between the bathing solution, C+

s ,
A−

s , and the cationic form of the polymer, C+
p , A−

p , is40

C+
s + A−

s � C+
p + A−

p . (2)

This process satisfies the activity constraint and is described by the
equilibrium constant

Ksalt = C+
p C−

p γ
±
p /C2

sγ
±2
s , (3)

where Ksalt is the salt partition coefficient, γ± denotes the mean
activity coefficient in the designated phase C+

p and C−
p are the con-

centrations of C+
p and A−

p respectively and Cs represents equal con-
centrations of anion and cation in the bathing solution.
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The electroneutrality constraint for the concentration, cM+p, of
the fixed polymer sites, M+, and the concentrations of mobile ions
in the polymer phase, C+

p , A−
p , leads to

cA−
p
= cM+

p
+ cC+p . (4)

By eliminating cA−
p

between (3) and (4), we obtain a quadratic ex-
pression for a “permselectivity index”, R = cC+p /cM+

p
:

R2 + R − S2T 2 = 0, (5)

where S = cs/cM+
p

and T = Ksalt
1/2
[
γ±s /γ±p

]
.

This expression means that when ST � 1 (e.g. when cs � 1),
R= 0, which means that the film is ideally permselective (as
cC+p = 0, no co-ions enter the polymer), whereas when ST increases
(i.e. when cs increases), R is different from 0, which shows co-ion
ingress in the film. However, it is noticeable that the permselec-
tivity index depends upon the degree of polymer oxidation via
cM+

p
. The change of the permselectivity index has been thoroughly

investigated for various conditions of solvent and salt transfers
accompanying complete or partial redox switching.41, 42

2. Swelling

Among the physicochemical properties of electroactive materials,
such as conducting polymers, one which has attracted much atten-
tion in recent years is the so-called electrochemomechanical effect,
i.e. the expansion and contraction of the sample that arise upon redox
switching.43, 44 As an example, for polypyrrole (PPY), it has been
shown that a compact structure is attained at cathodic potentials, and
only the surface in contact with the electrolyte is electrochemically
active, whereas for anodic polarization the structure becomes per-
meable to ions: every polymeric chain actuates as an electroactive
interface.45–47 For polyaniline, the volume changes can be attributed
to the influence of several factors: ion and water exchange with the
electrolyte, coulombic repulsion between charged sites in the poly-
mer backbone, anion–polymer interaction and structural changes of
the polymer backbone.48, 49 In addition, it has been shown that the
anion in the electrolyte has a definite influence on the film volume
changes.50 Finally, the doping degree, the nature of the counterions
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and the method of preparation (chemical or electrochemical) have
a considerable influence upon the polymer structure.51 In some
conditions, the main part of the overall increase of volume (and
hence of conformational rearrangements) observed during oxidation
has to be attributed to an effect of solvent penetration.52 For poly
(2-methylaniline), the volume changes seem to be due to two differ-
ent processes, the faster one being proton and anion exchange with
the electrolyte, both carrying solvent molecules. The other process is
a structural change of the polymer backbone, giving higher volume
changes but having a much lower rate during the reduction step.53

These swelling phenomena have a profound influence on the rate
and magnitude of the redox-switching mass response.54 Finally, this
volume change behaviour has allowed arrangements of conducting
polymers to be considered as artificial muscles.

These volume and structure changes were studied using vari-
ous techniques.55, 56 Microscopic observations of a minute drop of
polymer48–50 were very efficient. Quartz crystal admittance mea-
surements (electroacoustic admittance) to follow the departure from
rigidity,57 by following the shear moduli with time,58 to gain some
insight with regard to solvation59 were also helpful. This technique
was also used for identifying the rate-limiting step of the redox
switching of some polymers.60 The authors have shown that the
movement of neutral species is often slower than the movement of
charged species, and occurs to an extent which depends on the exper-
imental conditions. In particular for polyaniline in HCl, the move-
ment of water is slow and lags behind that of the protons. As a
result, at higher sweep rate it has been shown that less water en-
ters the film. It was also shown that the viscoelastic properties are
greatly influenced by the anion identity.61 As examples, perchlorate-
doped polyaniline films are compact, whereas sulphate-doped films
are more open.

3. Conductivity

The electrical conductivity of conducting polymers is known to be
a strong function of their oxidation states (or doping level). It usu-
ally increases with the potential applied to an electrode in contact
with the film, i.e. when the film is oxidized.62 This is the case for
pure PPY, but for dodecyl sulphate modified PPY the ion conduc-
tivity is at its maximum in the reduced state and decreases sig-
nificantly with increasing potential.63 For some 3,4-disubstituted
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PPYs and polythiophenes, oxidation causes the transition from a
low-conductivity to a conductive state as generally found in poly-
conjugated polymers, but these modified polymers pass to a sec-
ond low-conductivity state via a maximum.64, 65 The consequence
of such a dramatic change in electronic conductivity upon switching
might lead to a moving-front phenomenon, which separates a part
where the film is in its conductive state from one where it is in its in-
sulating state and propagates from the electrode to the solution.66, 67

III. ELECTROCHEMICAL APPROACH
OF ELECTROACTIVE MATERIALS

Many organic and inorganic materials are electroactive. Among
them, electroactive polymers constitute a large family, which can be
classified into two major types: redox polymers and electronically
conducting polymers.18 The combination of a deposited polymer
film and a supporting electrode constitutes a chemically modified
electrode. The mechanism of charge percolation through surface-
deposited polymer films is of central importance. Redox polymers
are localized-state conductors, containing redox-active groups cova-
lently bound to an electrochemically inactive polymeric backbone.
In these materials electron transfer occurs via a process of sequen-
tial electron self-exchange between neighbouring redox groups. This
process is termed “electron hopping”. In contrast with electronically
conducting polymers, the polymer backbone is extensively conju-
gated, which results in considerable charge delocalization. Charge
transport (via polarons and bipolarons) along the polymer chain is
rapid and interchain charge transfer is rate-limiting. Redox poly-
mers remain conductive over only a limited range of potential. Max-
imum conductivity is observed when the concentrations of oxidized
and reduced sites in the polymer are equal. This occurs at the stan-
dard potential of the redox centre in the polymer. In contrast, elec-
tronically conducting polymers, such as PPY, display quasi-metallic
conductivity and remain conductive over a large potential range.
Redox polymers are usually preformed and subsequently deposited
onto the support electrode surface via dip or spin coating. In con-
trast, electronically conducting polymers are usually generated via
in situ electrodeposition. In this case there is electropolymerization
of the electroactive monomer.
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In all cases, the process of redox switching, i.e. the transition
from an insulating to a conducting form, is accomplished via an
electrochemically induced change in the oxidation state of the layer.
Since electroneutrality within the film must be maintained, the ox-
idation state change is accompanied by the ingress or egress of
charge-compensating counterions.

1. Models of the Charge Transport Through the Electroactive
Film

Two types of model have been used to describe the charge transport
through electroactive films: continuous models, considering ionic
transport in a compact film based on the Nernst–Planck equations,
and porous models, whose transport is described by transmission
line equivalent circuits.

(i) Compact Model (Diffusion–Migration Model)

The geometry of the modified electrode is given in Fig. 1.
By definition, the fluxes of species i , Ji , are positive for outgo-

ing species:
Ji (x) > 0 for x > 0. (6)

The global potential across the modified electrode, E (the metal
electrode is supposed to be grounded), is the sum of three quantities:

E = E1 + E2 + E3, (7)

Electrode

Solvent 

Anions 

Cations 

Electrons 

x = 0 x = df 

Electrolyte Electroactive film 

Figure 1. The electrode/film/electrolyte system.
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where E1 and E3 are the interfacial differences of potential across
the metal/film (electron transfer overvoltage) and film/electrolyte
(ion transfer overvoltage) interfaces, respectively and E2 is the po-
tential difference across the film (diffusion + ohmic overvoltages)
with thickness df.

Generally, the total faradaic electrochemical impedance,
ZF (ω), is obtained by considering

ZF (ω) = Z1 (ω)+ Z2 (ω)+ Z3 (ω) , (8)

where Z1(ω) = (�E1/�IF) is relative to the metal/polymer in-
terface, Z2(ω) = (�E2/�IF) is relative to the bulk polymer and
Z3(ω) = (�E3/�IF) is relative to the polymer/electrolyte inter-
face, to which double-layer capacities have to be added to obtain the
measurable electrochemical impedance.68, 69

As a simplifying assumption, which will be used in the fol-
lowing, the charge transport mechanism, which occurs in the bulk
polymer during an oxidation/reduction reaction of the polymer in
aqueous media, can be modelled by assuming that the transport
of the species in the electrolyte is sufficiently fast and is not a
limiting step.

(a) Boundary conditions

The following boundary conditions are supposed to apply. The
metal/polymer is an ion blocking interface:

i.e. for x = 0, Ja(0) = Jc(0) = 0. (9)

As anions (subscript a), and cations (subscript c), cannot cross the
electrode/polymer interface, only the electrons (subscript e), are sup-
posed to cross the interface:

Je(0) = IF

F
, (10)

Je(0) = k − k′ce(0), (11)

where IF is the faradaic current density related to the charge transfer
at the metal/film interface, k and k′ are the rate constants of the elec-
tronic transfer and F is the Faraday number (96,500 C). In addition,

k = k0 exp bE1 and k′ = k′0 exp bE1,

where E1 is the film/electrolyte interfacial potential difference.
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On the other hand, as outwards positive fluxes give negative cur-
rents for expelled anions and positive currents for expelled cations,
by assuming monovalent ions at the film/electrolyte interface, we
have

for x = df, −Ja (df)+ Jc (df) = IF

F
, (12)

where

Ji (df) = ki ci (df)− k′i , with i = a, c (13)

and ki = ki0 exp bi E3 and k′i = k′i0 exp b′i E3 and

Je (df) = 0, (14)

although for any x in the bulk polymer

IF

F
= Je (x)− Ja (x)+ Jc (x) , (15)

where Je (0) is the electron flux at the electrode/film interface and
Ja (df) and Jc (df) are the anion and cation fluxes at the film/solution
interface, respectively.

(b) Movement of the species

For models considering the electroactive films as a homoge-
neous medium, the movement of the species is considered to be gov-
erned by migration and diffusion. This is easily understandable for
conducting polymers but is less obvious for redox polymers where
conduction through electron hopping prevails. However, Savéant
et al.70, 71 Buck,72–74 and Albery et al.75 have shown that electron
hopping is not only driven by a concentration gradient but is also
field-assisted and then movement of electrons can also be described
by Nernst–Planck equations. Then, the flux, Ji , of all the species
within the film can be written as

Ji (x) = −Di
∂ci

∂x
− zi Di

F

RT
ci
∂ϕ

∂x
, i = e,a,c, (16)

where Di is the diffusion coefficient of species i and ze = 1, za =
−1, and zc = 1.

The concentrations change as

∂ci

∂t
= −∂ Ji

∂x
. (17)
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The potential follows the Poisson equation:

ε
∂2ϕ

∂x2 =
∑

i

zi ci (18)

and the total current is equal to

I = F
∑

i

zi Ji (x)+ 1

ε

∂2ϕ

∂x∂t
. (19)

(c) Steady state and quasi steady state

At steady state, (∂/∂t) ≡ 0 in the movement equations, so,
from (17), Ji (x) is a constant and the boundary conditions lead to
Ji (x) = 0 and IF = 0. In this equilibrium situation, ci (x) and
E (x) are constant throughout the film and are equal to ci and E ,
respectively.

The general problem, even without consideration of space-
charge effects, is intrinsically non-linear. Only DC solutions for
potential, concentrations, fluxes and currents are possible by exact
methods in some specific cases. Time-dependence problems, such
as the derivation of the impedance, require some simplifications or
consideration of special cases. Diffusion–migration models were
used to simulate the behaviour of electroactive films both by direct
computer integration of the equations to calculate cyclic voltammo-
grams,76 or potential distributions across the film77 and by Monte
Carlo simulation.78, 79

(ii) Porous Model (Transmission Line Model)

By considering that polymers have a porous nature,80–83

Barker,84 Albery et al.,85 Buck,86, 87 and Paasch88–91 have shown
that to calculate the impedance of electrode/film/solution systems
there is a full equivalence of the transport of species by diffusion–
migration and Poisson potential distribution and a transmission
line equivalent circuit, like those shown in Fig. 2. Their distributed
components are

Ri (x) = RT

F2z2
i Di ci (x)

, (20)



162 C. Gabrielli and H. Perrot

Figure 2. Transmission lines used as equivalent circuits for electroactive
films. These aperiodic circuits describe ion and electron transport in con-
ducting polymers with reversible interfacial charge exchange processes. (a)
Single Warburg impedance, (b) circuit describing film bulk and Warburg
impedance, capacitors CP represent the Poisson equation, (c) multi-ion and
electron exchange processes. From Buck and Mundt.87
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Ci (x) = z2
i F2ci (x)

RT
, (21)

Cp (x) = ε

4π
. (22)

The transmission lines shown in Fig. 2 are such that the distributed
capacitance Cp represents the Poisson branch and parallel branches
represent each charged species. Figure 2a describes the single
Warburg impedance for a single z+:z− salt. This leads to an al-
ternative approach of the charged species movement supposed to
follow a diffusion–migration process. If the concentrations are sup-
posed to be distance-independent, the impedance is quite easy to
obtain. If not, the derivation is more intricate and needs numerical
techniques.

The solution of this transport problem in its full generality is
difficult; only numerical solutions can be obtained. Using approx-
imations, one can reach analytical solutions in some simple cases.
The main hypothesis, often made, is electroneutrality, which means

∑

i

zi ci = 0 in the transport approach

or
Cp = 0 in the transmission line approach.

2. Calculation of the Impedance

At the beginning, the impedance of a polymer film was calculated
by taking into account the transport of the species by diffusion
alone,92, 93 then both diffusion and migration were considered.94, 95

For the latter, an exact solution can be obtained for two species,
whereas only approximate solutions are obtained for three species.

(i) Two-Species Problems

The impedance of an electroactive film where the insertion
of one ion (subscript i in the following equations) occurs at the
film/electrolyte interface, balanced by the entry of electrons at the
metal/film interface has been calculated for compact and porous rep-
resentations. By assuming local electroneutrality [ce (x) = ci (x)]
in the polymer, Buck96 and Vorotyntsev97 followed by others98–101
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found the solution of the Nernst–Planck equations for the following
boundary conditions:

x = 0, Ji = 0 and Je = I

e
= ka − kcce (0) , (23)

x = df, Je = 0 and Ji = − IF

e
. (24)

At steady state, Je = Ji = 0, ce (x) = ci (x) = cp, and ϕ (x) =
ϕp, and then the concentrations of the species and the potential are
uniform in the bulk film.

In a low-amplitude sine wave regime, the various impedances
were calculated,

Z1 (ω) = Re + Rp
De + Di

8υDeDi
[(De + Di ) coth υ − (De − Di ) tanh υ] ,

(25)

Z2 (ω) = Rp + Rp
(De − Di )

2

4υDeDi
tanh υ, (26)

Z3(ω) = Ri + Rp
De + Di

8υDeDi
[(De + Di ) coth υ + (De − Di ) tanh υ] ,

(27)

and then the total faradaic impedance of the electroactive film is

ZF(ω) = Re + Ri + Rp

+ Rp
1

4υDeDi

[
(De + Di )

2 coth υ + (De − Di )
2 tanh υ

]
,

(28)

where

υ2 = jωd2
f (D

−1
e + D−1

i )

8
, Rp = df

σ
, σ = (De + Di )cp

F2

RT
,

Ri = 1

F
[
bikici(df)− b′i k′i

] , Re = 1

F [baka − bckcce(0)]
.

Re and Ri are the electronic and ionic charge transfer resistances at
the metal/film and film/electrolyte interfaces, respectively, Rp is the
resistance of the bulk film, and σ is the conductivity of the film.
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At low frequencies, ω→ 0, we have

ZF(ω) ∼ Re + Ri + Rp

+ Rp
1

4υDeDi

[
(De + Di )

2
(

1

υ
+ υ

3

)
+ (De − Di )

2υ

]
.

(29)

Then, in the low-frequency range, the impedance is equivalent to a
Rlf, Clf series circuit, such as

Rlf = Re + Ri + Rp + Rp

4De Di

(
(De − Di )

2 + (De + Di )
2

3

)
,

(30)

Clf = d2
f

2Rp(De + Di )
, i.e. Clf = df

2
cp

F2

RT
. (31)

Figure 3 shows the various shapes of the impedance of the thin film
calculated for equal coefficients of ions and electrons (De = Di =
D) but taking into account the double-layer capacities, Ci and Ce,
across the film/electrolyte and electrode/film interfaces, respectively.

Z(ω) = 1

jωCi + 1
Ri

+ 1

jωCe + 1
Re

+ Rp

(
1 + coth ν

ν

)
, (32)

where
ν = (jω/ω∗)1/2 andω∗ = 4D/d2

f .

For the same geometry, Paasch found for a transmission line like the
one in Fig. 2 for the porous model of the conducting polymers88–90

ZF(ω) = ρ2
1 + ρ2

2

ρ1 + ρ2

coth(dfβ)

β
+ 2ρ1ρ2

ρ1 + ρ2

df

sinh(dβ)
+ dfρ1ρ2

ρ1 + ρ2
, (33)

where
β2 = (k + iω)CSc(ρ1 + ρ2), k = gct

CSc
,

where gct is the charge transfer conductance which couples electrons
and ions, ρ1 and ρ2 are the resistivities of the electronically conduct-
ing porous material and the pore filled with electrolyte with ionic
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3

2

1

Rp+Re+RiRp

0

Rp

a

−I
m

[Z
(ω

)]

Re[Z(ω)]

Rp+Re+Ri

−I
m

[Z
(ω

)]

Re[Z(ω)]

4

3

2

1

Rp

Rp

0

b

Figure 3. Impedance calculated from (32) plot-
ted in the complex (−Im [Z (ω)] , Re [Z (ω)]) for
equal diffusion coefficients of ions and electrons
De = Di and ω∗ = 0.4, Re = Ri = Rp / 4, (a)

Ce = Ci = 0.01R−1
p ω−1∗ (curve 1), 0.001R−1

p ω−1∗
(curve 2), 0 (curve 3); (b) Ci = 100Ce,
Ce = 0.001R−1

p ω−1∗ (curve 1), 0.0001R−1
p ω−1∗

(curve 2), 0.00001R−1
p ω−1∗ (curve 3), 0 (curve 4).

From Buck et al.96
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conductivity, respectively, C is the capacity of the pore unit area and
Sc is the effective pore area per unit volume.

When k = gct = 0, (33) has exactly the same form as (28) when
Re = Ri = 0, noting that

coth y = coth(y/2)+ tanh(y/2)

2
and

1

sinh y
= coth(y/2)− tanh(y/2)

2
.

(34)

Then, the two models give equivalent results. This calculation was
also given by Buck without the electroneutrality hypothesis (i.e.
Cp �= 0). The transmission line approach is often called the “porous
model” of a conducting polymer as electrons are supposed to cross
the polymer (phase 1) and ions are supposed to move into pores,
filled by electrolyte, represented by the second branch of the trans-
mission line. It is noticeable that the transmission line approach
allows more complicated kinetics to be tested for a two-species prob-
lem, e.g. charge transfer in parallel to the capacity Ce(x) and Ci (x),
or diffusion of the ion in the “ionic pores”, i.e. to introduce complex
impedances instead of the real resistance ρ1 and/or ρ2, of the pure
capacitances C1 and/or C2. It also allows position-dependent param-
eters to be introduced to mimic concentration gradients in the poly-
mer [ci (x) �= constant].

(ii) Three-Species Problems

For three charged species, where electrons crossing the metal/
polymer interface and anions and cations crossing the polymer/
electrolyte interface are considered, the problem is far more involved
and has to be solved by numerical methods.102 To obtain analytical
solutions, questionable assumptions have to be made. Using the al-
ternative model, 3D transmission lines have to be considered and
only numerical solutions can be obtained.86, 103

Two types of hypothesis were invoked, which lead to position-
independent parameters [ci (x) = constant], to analytically solve the
Nernst–Planck equations. Either relationships between the concen-
trations are supposed in addition to electroneutrality in the bulk film
or the migration terms are neglected.

(a) Inzelt model104

In this model, in addition to ci (x) = constant and local steady
state electroneutrality (ce+cc−ca = 0), a strict relationship between



168 C. Gabrielli and H. Perrot

the concentration fluctuations resulting from the potential perturba-
tion was assumed:

�cc = (1 − γ )�ca,

�ce = γ�ca. (35)

These assumptions lead to the three elementary impedances which
form the total impedance of the modified electrode:

Z1(ω) = 1

nFk1
+ k∗2

2k1NF

( a

P
+ c

I

) coth(sdf/2)

s

+ k∗2
2k1NF

( c

I
− a

P

) tanh(sdf/2)

s
, (36)

Z2(ω) = d

NF
+ 1

NF

( c

I
− a

P

)
U

tanh(sdf/2)

s
, (37)

Z3(ω) = 1

k3F
+ k∗4

2k3NF

( c

I
+ a

P

) coth(sdf/2)

s

+ k∗4
2k3NF

( a

P
− c

I

) tanh(sdf/2)

s
, (38)

where

a = De

RT
Ce, b = Dc

RT
Cc, c = Da

RT
Ca

and
s2 = j

ω

ω0
,

where

ω0 = γ cDe + (1 − γ )cDc + (a + b)Da

N
, N = a + b + c

and

U = γ nDe + (1 − γ )Dc − Da

N
,

I = − (na + b)Da + γ ncDe + (1 − γ )cDc

N
,

P = γ (b + c)De + (1 − γ )aDc − aDa

N
,

H = γ nbDe − (1 − γ )(na + c)Dc − bDa

N
.
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If all the species are supposed to have the same diffusion coefficient,
De = Da = Dc = D and n = 1, then U = 0, I = −D, P =
Dγ ((b+c−a)/a+b+c) and H = −D(1−γ ). Then, the impedance
is simplified under the form

Z1(ω) = 1

nFk1
+ k∗2

2k1NFs

(
(a + b)(γ b − a)

γ b
coth(sdf/2)

+γ b2 + a(a + b)

γ b
tanh(sdf/2)

)
,

(39)

Z2(ω) = df

NF
, (40)

Z3(ω) = 1

Fk3
+ k∗4

2k3NFs

(
(a + b)(γ b − a)

γ b
coth (sdf/2)

+γ b2 + a(a + b)

γ b
tanh (sdf/2)

)
.

(41)

If, in addition, cc � ce and ca, then

Z1(ω) ≈ 1

Fk1
− k′2

k1NFs

a2

γ b
coth (sdf)

and

Z3(ω) ≈ 1

Fk3
− k′4

k3 N Fs

a2

γ b
coth (sdf) .

The value of the impedance obtained by Inzelt is very close to
Vorotyntsev’s value97 when the cation movement is neglected, i.e.
when Dc = 0, b = 0, γ = 1 and Ca = Ce. This is due to the hy-
pothesis made on the concentration fluctuations which limit the two
approaches to the same number of degrees of freedom.

(b) Diffusion model

Another possible assumption is to neglect the migration terms
in the Nernst–Planck equations so the charged species behave inde-
pendently. Local electroneutrality is not imposed.105
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Here, anions, cations and electrons are supposed to be trans-
ported through the polymer only by diffusion:

�Ji = −Di
∂�ci

∂x
, i = e, a, c, (42)

i.e.

jω�ci = −∂�Ji

∂x
(43)

or

jω�ci = d2�ci

dx2 , i = e, a, c. (44)

At x = d, �Je(df) = 0 (45)

and

�Ji (df) = Ki�ci (df)+ Gi�E3, i = a, c. (46)

At x = 0, �Je(0) = Ke�ce(0)+ Ge�E1 (47)

and
�Ja(0) = �Jc(0) = �Js(0) = 0. (48)

This leads to

�Ji (d)

�E3
= Gi

1 + Ki

(
(coth df

√
jω/Di )/

√
jωDi

) , i = a, c (49)

and

�Je(0)

�E1
= Ge

1 − Ke

[(
coth df

√
jω/De

)/√
jωDe

] . (50)

Concerning the bulk film, the Poisson equation leads to

d2�E

dx2 = 4π

εεo
[�ce(x)+�cc(x)−�ca(x)] , (51)

where

�ci (x) = Gi cosh x
√

jω/Di√
jωDi sinh df

√
jω/Di + Ki cosh df

√
jω/Di

�E3, i = a, c

(52)



AC-Electrogravimetry Investigation in Electroactive Thin Films 171

and

�ce(x) = Ge cosh(x − df)
√

jω/De√
jωDe sinh(df

√
jω/De)− Ke cosh(df

√
jω/De)

�E1,

(53)
so as

�E2 = �E(0)−�E(df), (54)

then

�E2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dc
jω

Gc(1−cosh df
√

jω/Dc)√
jωDc sinh df

√
jω/Dc−Kc cosh df

√
jω/Dc

�E3

− Da
jω

Ga(1−cosh df
√

jω/Da)√
jωDa sinh df

√
jω/Da−Ka cosh df

√
jω/Da

�E3

+ De
jω

Ge(cosh df
√

jω/De−1)√
jωDe sinh df

√
jω/De−Ke cosh df

√
jω/De

�E1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (55)

So

Z1(ω) = 1

FGe

(

1 − Ke
coth df

√
jω/De√

jωDe

)

, (56)

Z−1
3 (ω) = F

⎛

⎝ Gc

1 + Kc

[
(coth df

√
jω/Dc)/

√
jωDc

]

− Ga

1 + Ka

[
(coth df

√
jω/Da)/

√
jωDa

]

⎞

⎠ , (57)

Z2(ω) = df

σ
+ 4π

jωεε0
(58)

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
DcGc(1−cosh df

√
jω/Dc)√

jωDc sinh df
√

jω/Dc+Kc cosh df
√

jω/Dc

− DaGa(1−cosh df
√

jω/Da)√
jωDa sinh df

√
jω/Da+Ka cosh df

√
jω/Da

)
Z3(ω)

+ De(cosh df
√

jω/De−1)

F
√

jωDe sinh df
√

jω/De

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
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(c) Limiting cases

If the electron transfer is supposed to be very fast and �E2 is
negligible, the total impedance is reduced to Z3(ω).106 On the other
hand, if the cation movement is neglected (Gc = 0),

Z3(ω) = − 1

FGa

(

1 + Ka
coth df

√
jω/Da√

jωDa

)

(59)

and

Z2(ω) = df

σ
+ 4π

jωεε0 F

(

−Da(1 − cosh df
√

jω/Da)√
jωDa sinh df

√
jω/Da

+De(cosh df
√

jω/De − 1)
√

jωDe sinh df
√

jω/De

)

. (60)

Equation (60) has the same general form as (28), which gives the
impedance for a permselective film, taking into account (34):

Z2(ω) = df

σ
+ 4π

jωεε0 F
√

jω

(√
Da tanh

df

2

√
jω/Da

−√De tanh
df

2

√
jω/De

)
,

whose low-frequency limit is equal to

Z2(0) = df

σ
+ πd3

f

6εε0 F

Da − De

Da De
.

(iii) Applications of Impedance Analysis

Impedance techniques were largely applied to investigate the
behaviour of electroactive materials. Many conducting polymers,
among them polyaniline,107–110 PPY,111, 112 poly(o-toluidine),113

poly(o-aminophenol),114–116 polythiophene117 and poly(3-
methylthiophene)118, 119 were investigated. It has even possi-
ble to separate the transport of two different species in PPY/
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polystyrenesulphonate.120 For PPY, it has been proposed that a
fast and a slow charge transport may occur in the polymer. The
fast faradaic process is assumed to arise from ionic motion in the
bulk of the film and the slow one to arise from ionic motion in
the double layer.121 The study of the transport of species in free-
standing polymer membranes was also fruitful.122 The behaviour of
inorganic electroactive materials, among them potassium (Prussian
blue),123–125 cobalt,126, 127 indium,128 nickel,129 chromium,130 and
platinum131 hexacyanoferrates, was also examined by impedance
techniques.

For electroactive films, the electrochemical impedance tech-
nique alone is not able to discriminate among the various models
which have been proposed in the literature because the exper-
imental plots always have the same shape. The scanning elec-
trochemical microscope (SECM) has been used successfully to
study the various ion fluxes from and towards the polymer dur-
ing a redox process and to identify them. The movements of
Cl−132 and protons133 have actually been proved by using the
SECM for polyaniline in HCl medium. A quantitative approach
to the rate of counterion ejection in a PPY film leading to a
discussion of the nature (porous or compact) of the film has
been reported.134 SECM investigations have been carried out on
many other polymers, such as poly(vinylferrocene),135 poly(4-
vinylpyridine),136 poly(benzobisimidazobenzophenanthroline),137

poly(3,4-ethylenedioxythiophene) (PEDOT)138 and Nafion.139

As the electrochemical techniques are sensitive only to charged
species, other techniques have been used additionally to provide
novel insights into the composition and structure of polymer films.
Radiotracer study,140 surface-enhanced Raman scattering,141 neu-
tron reflectivity142–144 and Kelvin probe measurements145 have been
employed. Optical beam deflection is a powerful technique to study
ionic movements. The principle of mirage spectroscopy involves the
measurement of laser beam deviation provoked by a refractive index
gradient at the film/solution interface.146–149 This technique was de-
veloped in the early 1980s by Boccara et al.150 Coupled with voltam-
metry, it allows the movements of cations and anions to be easily
distinguished, especially if there is no solvent exchange between the
polymer and the bathing solution.



174 C. Gabrielli and H. Perrot

IV. COUPLED ELECTROCHEMICAL
AND GRAVIMETRIC APPROACH

FOR ELECTROACTIVE MATERIALS

Numerous studies of electroactive thin films were conducted with
cyclic voltammetry (see the references given in the reviews listed at
the beginning of this text) but the performances of this technique
were largely improved by using fast scan rates at ultramicroelec-
trodes.151, 152 However, to gain real insight into the movements of
species during the oxidation and reduction of electroactive thin films,
particularly concerning the solvent, the QCM has been employed
with great success. From the i(E) and m(E) recorded experimental
raw data of the current and mass changes with respect to potential,
the authors have processed these data as efficiently as possible to ex-
tract information on the redox behaviour of the electroactive films,
in particular concerning the ingress and egress of neutral species and
charged species occurring during the redox switching.

1. Cyclic Voltammetry and Quartz Crystal Microbalance

Since the pioneering works in the 1980s,153–159 Bruckenstein and
Hillman have thoroughly investigated the species involved in the
charge compensation occurring mainly in conducting polymers
when they are reduced or oxidized by coupling cyclic voltammetry
and gravimetry by means of a QCM.

The simplest data processing has been based on the calculation
of the charge, q(t), with respect to time by integrating the current
i(t). Then, the change of mass per charge unit, F�m/�q, or the
slope of the F�m(q) function, leads to the apparent molar mass of
the species exchanged between the electroactive film and the bathing
solution.160, 161 However, this apparent molar mass is the mass of
the species if only one species is involved, but can be very different
when more than one species is involved in the charge compensation
process. So, functions # j , such as # j = �m + q(m j/z j F) for an
ion j , where m j and z j F are the molar mass and the charge carried
per mole of species j , have been considered to eliminate the contri-
bution of ion j from the measured mass. Simple plots involving q,
�m, and # (or their time derivatives) as one of the variables per-
mit an unequivocal test for the existence of a global equilibrium. In
the absence of a global equilibrium, the nature of the rate-limiting
step – motion of electrons, specified ions or neutral species – can
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be established. Once the identity of the slow species has been es-
tablished, quantitative interpretation becomes possible using q data
(in the case of electrons) or # and �m data (in the case of heavy
species).162, 163 In the late 1990s, these authors proposed using a
scheme of cubes to visualize complicated electroactive film redox
switching mechanisms where multiple redox, solvation and config-
uration processes might accompany oxidation or reduction of the
film.164–166 As an example, Fig. 4 shows redox switching of poly-
thionine in aqueous acetic acid.

This cube was based on a previous scheme of squares visual ap-
proach.161 Here, the axes x , y and z, respectively, represent coupled
electron/proton transfer, solvent transfer and acetic acid coordina-
tion. Four equilibrium constants describe the coordination reactions
for the four pairs of species on the left and right faces of the cube.
The authors interpreted their data on partial redox switching of
poly(vinylferrocene) films under permselective conditions in aque-
ous perchlorate bathing electrolytes which produce films that reach

Figure 4. Cube representation for redox switch-
ing of polythionine in aqueous acetic acid. L and
T denote the reduced (leucothionine) and oxi-
dized (thionine) states, respectively. Superscript
a denotes the acetic acid coordinated state. The
mechanistic pathway for the redox cycle is illus-
trated by the heavy arrows. From Bruckenstein
and Hillman.165
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equilibrium very slowly. The relaxation kinetics involves polymer
reconfiguration and solvent (water) transfer. Even after 1 h at an
open circuit, the film still exchanges small amounts of solvent with
the bathing electrolyte. In addition, they showed that the structure
of the polymerized film, which is determined by the counterion in-
troduced during the precipitation, exhibits tortuous pores of various
size and voids of molecular dimensions within the film. Then, since
a smaller anion meets less resistance than a larger anion during trans-
port within the film, the total amount of counteranion that can enter
the film increases with a decrease in anion size and in scan rate.
They suggested that a free volume constraint within the film deter-
mines the amount of water that transfers between the film and the
bathing electrolyte, and concluded that the amount of water trans-
ferred decreases with increased size of the counteranion.167

For PPY, in general when the anion is small and then mobile,
the anion transfer will be dominant, and when the anion is very
large (immobile), the cation transfer will be dominant on the time
scale of most electrochemical measurements. When PPY is exposed
to aqueous tosylate solutions, the authors explored the time scale ef-
fects on the competing ion transfers closely associated with solvent
transfer. By using the scheme of cubes approach, they showed that
on short time scales during reduction, cation entry competes effec-
tively with anion ejection as a means of satisfying film electroneu-
trality. On longer time scales, the thermodynamically favoured anion
mechanism prevails.168

To quantify the relative quantity of solvent and ion for a perms-
elective film, the ratio ρ of the flux of water [ fw = (dmw/dt) /A]
divided by the flux of counterions [ fion = (dmion/dt) /A], at any
time, potential E or charge level q, is calculated from experimen-
tal data. mion is obtained from q using Faraday’s law (mion =
Mionq/zF , where Mion is the molar mass of the ion and zF is its
charge) and mw = mtotal − mion:

ρ = fw

fion
, i.e. ρ = dmw

dmion
. (61)

ρ can be used as a diagnostic tool to show whether the redox pro-
cess is thermodynamically reversible or kinetically controlled. In
the latter situation, it allows the slower step, coupled electron/ion
or neutral species (water) transfer, to be determined.169 For Prus-
sian blue in K2SO4 as the apparent molar mass of K+, which is the
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counterion required for maintaining electroneutrality, is lower than
39 g, Bruckenstein and Hillman concluded that water transfers in the
opposite direction to it during redox cycling. In other solutions, the
change in molar mass indicates that anion transfer competes with
K+ transfer.170 The analysis of the mechanism through the ratio
of solvent and counterion fluxes has been widened by using cyclic
voltammetry with changing sweep rates and potential jump exper-
iments to characterize the rate-controlling process as a function of
the extent of film oxidation. This method has the capability to re-
solve time scale – and potential (charge) – dependent mechanistic
shifts and film relaxation phenomena as they are reflected through
the flux ratio.171

More recently, Bruckenstein and Hillman have proposed a new
model for the population of electroactive film mobile species (ion
and solvent) under a range of thermodynamically and kinetically
controlled conditions that allows the film state to be visualized in
three dimensions, including E(V ), q (C cm−2), and $-space, where
$ represents the film composition and contains the concentrations
of the individual mobile species populations, Γi (mol cm−2).172 For
a permselective film undergoing a redox process,

Red ⇔ Ox + e−, (62)

they have supposed a classical kinetic law for the change of the cou-
pled electron/ion population:173

dΓOx

dt
= ke

(
ΓRedη

(1−α) − ΓOxη
(−α)) , (63)

which can be written

d%Ox

dt
= ke

[
(ΓT − ΓOx)η

(1−α) − ΓOxη
(−α)] , (64)

where ke(s−1) is the rate constant for coupled electron/ion
transfer into/out of the film, %T = %Ox + %Red and η =
exp

[
nF(E − E0)/RT

]
.

For the solvent transfer, the following solvation model has been
considered:

Ox + xS
k′f−−→←−−
kb

OxS, (65)
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where Ox is an oxidized site in the polymer, S is the solvent in the
solution and OxS is a solvated oxidized site in the polymer. The rate
equation for the solvent population in the film is

dΓS

dt
= k′fΓOx[S]x − kbΓOx,S, (66)

where k′f and kb are the heterogeneous rate constants for solvent
transfer into and out of the film defined by reaction (65). Since
a relatively small absolute amount of solvent transfers across the
film/solution interface (as compared with the vast excess in bulk so-
lution), the change in solvent concentration in the bulk solution is
essentially 0, i.e. [S] ≈ constant. Therefore, (66) simplifies to

dΓS

dt
= kfΓOx − kbΓOx,S, (67)

where
kf = k′f[S]x .

The population (ΓOx) of unsolvated oxidized sites can be calculated
from the total number (solvated and non-solvated) of oxidized sites
(ΓOx,T):

dΓS

dt
= kf

(
ΓOx,T − ΓOx,S

)− kbΓOx,S. (68)

The total solvent population is the mean number of solvent
molecules associated with all oxidized sites and their local envi-
ronment without distinction as to whether the solvent is “bound”
or “free”. Thus, ΓS = xΓOx,S, where x is the number of solvent
molecules (whether “bound” or “free”) per oxidized site.

dΓS

dt
= kf

(
ΓOx,T − ΓS

x

)
− kb

(
ΓS

x

)
. (69)

The film compositional signature in E , q, and $-space allows vi-
sual diagnosis of thermodynamic compared with kinetic control and
the identification of various possible phenomena; these include film
reconfiguration, ion and solvent trapping, relative rates of ion and
solvent transfer, and relative rates of solvent entry and exit.

Figure 5 shows the 3D (E, q, ΓS) compositional space repre-
sentation of the behaviour of the electroactive film mobile species
(ion and solvent). This representation has been extended to combine
thermodynamic non-ideality (attractive or repulsive interaction
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Figure 5. 3D representation in the (Q, E, Γs) space for slow electron/ion and slow
solvent transfers (equal forward and reverse solvent transfer rates), where Q repre-
sents the film ion population and Γs is the film solvent population. Arrows indicate
the potential scan direction. From Jackson et al.172

between solvent and redox sites) with slow electron/counterion and
solvent transfer kinetics.174 For polyaniline in perchloric acid, this
approach, combined with the analysis of the ion flux to solvent flux
ratio, has shown that the early stages of the film oxidation are associ-
ated with proton transfer (exit) and the latter stages with perchlorate
transfer (entry) to satisfy electroneutrality. By a change of the scan
rate, it has been also demonstrated that the film solvent population
is in equilibrium on the time scale of slow scan voltammetry, but
shows thermodynamic non-idealities.175 For poly(vinylferrocene)
in perchlorate solutions of various cations, it has been shown that
the cation as well as perchlorate and water transport participated in
the redox switching process. By a change of the scan rate and the
use of potential steps, it has been demonstrated that the films exhibit
transient non-permselectivity during redox switching. The flux of
water per anion was determined in all the media studied. Finally,
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it has been recognized that the cation and/or water leave/leaves the
polymer in an amount that depends on the cations in the solution.176

In their recent publication, for permselective films, these authors
reported the use of current and microbalance frequency responses
to generate time-resolved ion and solvent flux data as functions of
potential. The total mass change, mT(t), is, at any stage of the re-
dox process, the sum of the contributions from anion and solvent
transfers, mA(t) + mS(t). Then, application of the electroneutrality
condition and the Faraday law to the current data yields the ion flux:

jA = 1

MA

dmA

dt
= i

zA F
, (70)

where MA and zA are the molar mass and charge number of the an-
ion.

The total mass flux is defined by

jT = 1

MA

dmT

dt
(71)

and the solvent flux is calculated from the total mass flux and the ion
flux:

jS = 1

MS

dmS

dt
= 1

MS

(
dmT

dt
− i

zA F

)
. (72)

As mT(E) and i(E) are recorded experimentally at various scan
rates of the voltammetry, jA, jT and jS can be calculated. For
PEDOT in tetraethylammonium tetrafluoroborate, acetonitrile or
dichloromethane solutions under permselective conditions, it has
been shown that the rate of solvent expulsion (during doping) and
entry (during dedoping) are key determinants of the switching
mechanism, which changes between kinetically limited transfer
and rapid solvent transfer, which depend upon the identity of the
solvent.177, 178

Other groups have also proposed other data processing to ex-
tract information on the switching mechanism from the raw ex-
perimental mass and current changes with respect to the potential.
Torresi and colleagues used the following two fundamental equa-
tions giving the mass and charge changes:179

�m = mcξc + maξa + msξs, (73)

q = −F (ξc − ξa) , (74)
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where mi and ξi are the molar mass and the number of moles of
species i exchanged, respectively (where species i is the cation, an-
ion, or solvent). They obtained the flux of cations and anions, each
with a contribution from solvent, as a function of the current density
and mass flux:

d
(
ξc + ms

mca
ξs

)

dt
= 1

Wca

d�m

dt
− ma

mca

j

F
, (75)

d
(
ξa + ms

mca
ξs

)

dt
= 1

Wca

d�m

dt
+ mc

mca

j

F
, (76)

where mca is the molar mass of the salt.
They were not been able to quantitatively determine the solvent

contribution as it is not possible to evaluate the individual amount of
each species involved in the charge compensation process. However,
with some hypotheses (e.g. assuming that solvent molecules are as-
sociated with the hydration layer of the cations, ξs = hξc) they were
able to extract information on the transport number of cations with
potential and on the relation between the participation of solvent and
the oxidation state of the polymer matrix.180, 181

By simultaneously measuring the current and mass changes
during voltammetric experiments and calculating the instantaneous
mass to electrical charge ratio, F dm/dq, at each potential, one can
have access to the atomic mass of the inserted anion or cation if
only one species is involved or to the difference between the atomic
masses of the two species if two species are involved.182 By consid-
ering the same fundamental equations (73) and (74) (where �na = ξa
and �nc = −ξc), Ivaska and colleagues have used a quantity similar
to Fdm/dq:

m̄r = �nama + �ncmc

�nc − �na
. (77)

This quantity can have two extreme values, i.e. either when only
cations, i.e. |�nc| � |�na|, or only anions, i.e. |�na| � |�nc|, are con-
tributing to the ionic transfer. Then,

mc ≥ m̄r ≥ −ma.

When the observed value of m̄r is larger than the limits, mc and−ma,
it can be concluded that some solvent molecules are simultaneously
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transferred with anions or cations. This method has been applied
to PEDOT during doping and dedoping processes.183 The authors
have also shown that this polymer has rather slow redox behaviour
in water because of its hydrophobic surface properties.184

Bund and Neubeck preferred analysing the dm/dt function on
a permselective polymer and have shown that the solvent-exchange
behaviour depends not only on the dimensions but also on the charge
density of the anion.185 By comparing also dm/dt (called “mass
change rate”) with the current, Kwak et al. have studied the influ-
ence of aprotic solvents (acetonitrile and propylene carbonate) on
the charge compensation process during the redox switching of PPY
and modified PPY.186, 187

As shown previously, the use of electrochemistry with either
QCM or probe beam deflection (PBD) techniques can only pro-
vide two pieces of information. Interpretation of the data then ne-
cessitates assumptions to be made, commonly permselectivity (no
co-ion transfer) and/or no solvent transfer. By using simultaneously
the three techniques, one can achieve a complete description of the
charge, mass change and ion flux of all the mobile species (cations,
anions and solvent). However, to obtain the relative rates of the
species transfers, it has been necessary to vary the experimental
time scale during the experiment, either by changing the sweeping
rate of the voltammetry188 or by analysing the responses to poten-
tial steps.189 A comparison of the predicted PBD profiles calculated
from the current and mass responses with the profile of the measured
PBD signal, by temporal convolution analysis, enabled the contri-
bution of cation (H+), anion (ClO−

4 ), ] and solvent (H2O) transfer
at the first redox step to be discriminated quantitatively. A further
separation of the slow-moving solvent counter flux from fast ion ex-
change was possible by shortening the experimental time scale.

Similarly, gravimetric measurements associated with some
other techniques can be very fruitful. The use of the SECM to
study poly(o-phenylenediamine) has allowed the unusual responses
observed at negative potentials to be explained by a precipitation–
dissolution of phenazinehydrine charge transfer complexes devel-
oped via redox switching of the oligomers.190 Direct evidence of the
exchange capability of Fe(CN)6

4−/3−anions entrapped in PEDOT
film with Cl− anion from the solution was found.191 By use of
contact electric resistance measurements, the doping levels of the
synthesized PPY films and the mobility of charge carriers in KCl
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aqueous solutions were determined.192 For indium hexacyanofer-
rate, the use of radiotracers has allowed the movements of anions
and cations to be investigated.193 The use of impedances was also a
breakthrough in understanding the movement of neutral and charged
species.194 Also, spectroelectrochemical techniques were used with
the QCM with great success.

2. AC Electrogravimetry

For electroactive thin films, the electrochemical impedance tech-
nique alone is not able to discriminate among the various models
which have been proposed in the literature. So the measurement
of an electrogravimetric transfer function, �m/�E, by using a
fast QCM, in parallel to measurement of the impedance has been
proposed to test these various models and to obtain a complete
description of the ionic and solvent exchanges between the film and
the solution. So far, two groups, one in Korea and the other one in
France, have used this technique.

Kwak et al.195–197 have considered that only two types of
species may be involved in the charge compensation process: cations
and anions, which can be solvated or not. They considered the elec-
trochemical capacitance, �q/�E, and the electrogravimetric trans-
fer function (which they called “electrogravimetric capacitance”),
which can be separated into two parts:

�q

�E
= �q+

�E
+ �q−

�E
(78)

and

�m

�E
= �m+

�E
+ �m−

�E
= −m′

i+
z+F

�q+
�E

− m′
i−

z−F

�q−
�E

, (79)

m′
i = mi + Y ms, (80)

where the subscripts + and − represent cation and anion, respec-
tively, m′

i is the molar mass of an ion and its accompanying solvent
molecules, z is the electric charge of an ion, mi is the molar mass
of an ion, Y is the number of accompanying solvent molecules per
ion and ms is the molar mass of the solvent. From these equations,
�m±/�E and �q±/�E can be obtained separately.
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They considered equivalent circuits of the electrochemical
impedance of the electrode/polymer film/electrolyte solution system
(Fig. 6). If only one kind of ion transport takes part in the charge

Figure 6. Equivalent circuits for a electrode/film/electrolyte solution system. (a)
Classical Randles circuit, where Rs is the solution resistance, Rct is the charge
transfer resistance, Cd is the double-layer capacitance, and Z ′ is the charge transport
impedance in the film. (b) Simplified circuit valid when the time scale of the ion
diffusion differs from that of the charge transfer phenomena. (c) Z ′ in the case in
which one kind of ion occurs. (d) Z ′ in the case in which both cation transport and
anion transport occurs. Z D+ represents ZD for cation transport and Z D− represents
ZD for anion transport. From Yang et al.199
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compensation, which is much slower than electron transport, Z ′, an
impedance related to the charge transport in the film, is simplified
to ZD:

ZD = RD
coth

√
jωRDCD√

jωRDCD
, (81)

where RD is the ionic resistance and CD is the redox capacitance of
the film.

Then, when only one ion is involved in the ion transport, the
electrogravimetric transfer function is

�m

�E
= − m′

i

zi F

�q

�E
(82)

and as

�q

�E
= 1

jω

�I

�E
, (83)

�m

�E
= − m′

i

zi F

1

jω

�I

�E
(84)

and
�m

�E
= − m′

i

zi F

1

jω

1

Z ′ . (85)

Therefore, when only one ion is involved in the charge transport, the
electrogravimetric transfer function is

�m

�E
= − m′

i

zi F
CD

tanh
√

jωRDCD√
jωRDCD

, (86)

which is plotted in Fig. 7. As can be seen in Fig. 7, the electrogravi-
metric transfer function appears in the third or the first quadrant
when ion transport is cation-specific or anion-specific, respectively.
If dual transport takes place, Z ′ is given as the parallel combina-
tion of ZD+ and ZD−, where ZD+ represents ZD for cation transport
and ZD− represents ZD for anion transport. ZD+ and ZD− can be
considered as transmission lines (Fig. 6c, d). The electrogravimetric
transfer function is then supposed to be a combination of elementary
transfer functions, which depend on RD and CD, as no free solvent is
considered, which depends on the relative rates of anions and cations
and on the nature of the dominant ion (Fig. 7c–f).
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Figure 7. Electrogravimetric transfer function (�M/�E) plots
for ZD in the case in which (a) ion transport is cation-spe-
cific, CD+ �= 0, CD− = 0, (b) ion transport is anion-specific,
CD+ = 0, CD− �= 0, (c) and (d) cation transport is faster than
anion transport, (e) and (f) anion transport is faster than cation
transport. From Yang et al.199

For PPY doped with a large anion such as copper phthalocya-
nine tetrasulphonate, cation transport is dominant. The authors have
shown that the number, Yi , of accompanying water molecules de-
pends on the nature and concentration of an electrolyte solution as
well as on the redox state of the film. They have shown that Yi in-
creases as the electrolyte concentration decreases. As the decrease in
electrolyte concentration causes an increase in dielectric constant of
the solution, this results in an increase in the hydration number of the
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ions. The amount of water inserted into the film during the first ca-
thodic scan is much larger than that during the second scan. As after
deposition the film is rather compact, and has few free spaces, when
a cation inserts itself into the film during the first cathodic scan, a
very strong cathodic peak current appears at more negative poten-
tial than during subsequent scans and a substantial amount of water
moves with a cation. In addition, within a conducting polymer film,
the ionic concentration is high, but the amount of existing water is
small, leading to strong ion–ion interaction inside the film.195

For PPY doped with an anion such as polystyrenesulphonate,
cation transport is dominant, but anions are largely involved as well.
By studying the influence of the film thickness, these authors sug-
gested that for films whose thickness varies from 0.2 to 1.5 μm,
cation transport would be dominant for thick films, whereas an-
ion transport would be considerable for thin films during the redox
reaction. This surprising finding could be due to the distortion of
the mass measurements related to the viscoelastic behaviour of the
thicker films. Besides, the measured impedance shows large War-
burg impedances for the thicker films, showing that mass transport
is a rate-limiting step. The electrochemical and electrogravimetric
capacitances show two loops which demonstrate the presence of two
types of electron transport, one is fast, the second one is slow. The
semicircle in the higher-frequency region is related mainly to the
cation transport, whereas that in the lower-frequency region is re-
lated mainly to anion transport.197

For PPY with NO3
−, they have shown that the apparent dif-

fusion coefficient of an ion in the fast charge transport process is
governed by the diffusion coefficient of an ion, whereas the apparent
diffusion coefficient of an ion in the slow charge transport process
is governed by the diffusion coefficient of an electron. It has been
shown that in PPY/NO3 films anion transport is dominant in the fast
charge transport process, whereas cation transport is considerable in
the slow one.198

Using this technique, Kwak et al. have studied the possible in-
volvement of anion transport in Prussian blue in acetonitrile and
propylene carbonate solutions. It is known that cation transport is
dominant during the redox reaction of Prussian blue films and that
the electroactivity and ion transport behaviour of Prussian blue films
are highly limited by the pore size because Prussian blue films have
a rigid zeolitic structure. The electroactivity in aqueous solutions
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containing Na+ or Li+ is small, while the electroactivity in solu-
tions containing K+, Rb+, Cs+ or NH+

4 is large. This results from
the larger hydration radius of Na+ and Li+ compared with the pore
size of Prussian blue films. In the two aprotic solvents, the electro-
gravimetric transfer function shows that cation transport prevails.
However, in polypropylene carbonate solutions, in addition to cation
transport, anion transport takes place. Anion transport occurs in the
higher-frequency region, whereas cation transport is considerable in
the lower-frequency region.199 By studying ion and water transport
in Prussian blue in aqueous solutions, they have shown that 56%
(w/w) of the fresh Prussian blue film is water, which shows that
this electrodeposited material absorbs substantial amounts of wa-
ter. After a structural reorganization, ion transport during the redox
reaction of the Prussian blue film is cation-dominant, with a small
fraction of accompanying water transport.200

Our group has based the modelling on the classical redox mech-
anisms involving cations, anions and solvent, which lead to a gener-
alized partition rate for species i (Ji < 0 for inserting species):

<P>+ e− + M+ kc−−→←−−
k′c

< P,M+>, (87)

<P>+ A− k′a−−→←−−
ka

<P,A−>+ e−, (88)

where <P> is the host film and <P,M+> and <P,A−> are the
inserted cations and inserted anions, whose concentrations are cc
and ca and whose diffusion coefficients are Da and Dc, in the film.
The insertion/expulsion rates can be taken to be equal to

Ja(d) = ka(ca − camin)− k′a(camax − ca)casol, (89)

Jc(d) = k′c(cc − ccmin)− kc(cc max − cc)ccsol, (90)

where ci max, is the maximum concentration of sites available for ion
insertion for species i = a or c, ci min is the minimum concentration
of sites occupied by ions i in the host film, cisol is the concentra-
tion of species i in the solution and

k′c = k′c0 exp b′c E3, kc = kc0 exp bc E3, (91)

k′a = k′a0 exp b′a E3, ka = ka0 exp ba E3. (92)
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As for thin films Ji = −df (dci/dt), (89) and (90) have the same
form as the Bruckenstein and Hillman equation (64) when ci min is
considered to be negligible. For the solvent, the same model as used
by Bruckenstein and Hillman172 (68) is adopted and which has for-
mally the same form as the anion and cation dynamic laws:

Js (d) = ks (cs − cs min)− k′s (cs max − cs) , (93)

where

k′s = k′s0 exp b′s E3, ks = ks0 exp bs E3. (94)

If cations, anions and solvent are involved in the redox reaction,
the associated mass change and the electric charge passed through
the electrode/film interface, per unit surface, are equal to, from (73)
and (74),

�m = mc�ξc + ma�ξa + ms�ξs, (95)

�q = −F (�ξc −�ξa) , (96)

where mc, ma and ms are the molar masses of the cation, anion
and solvent, respectively (if ions are solvated, an extra mass nms,
where n is the number of solvent molecules, is added to their molar
mass) and �ξc, �ξa and �ξs are the number of moles exchanged
for cationic species, anionic species and solvent per surface unit,
respectively.

The net instantaneous molar flux of species i (c, a or s) is
Ji = dξi/dt

(
mol cm−2 s−1

)
. It can also be expressed in terms of

concentration as ci = ξi/df, where df is the film thickness. There-
fore, as Ji (df) = − (dξi/dt) = −df (dci/dt),

df
dca

dt
= −ka (ca − ca max)+ k′a (ca min − ca) casol,

df
dcc

dt
= −k′c (cc − cc min)+ kc (cc max − cc) ccsol, (97)

df
dcs

dt
= −ks (cs − cs min)+ k′s (cs max − cs) ,

where dca/dt > 0 for inserted anions. Similar expressions arise for
cations and solvent.
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The changes of the faradaic current and mass with respect to
time are

i (t) = F Adf

(
dcc

dt
− dca

dt

)
, (98)

m (t) = A [mccc (t)+ maca (t)+ mscs (t)] , (99)

where A is the area of the electrode.

(i) Steady State

From (97) and similar equations for cations and solvent, the
steady-state concentration of species i at potential E3, obtained for
(d/dx) ≡ 0, which gives the insertion isotherm of species i , is

ci (E3) = ci max exp
[(

b′i − bi
)
(E3 − Ei )

]+ ci min

1 + exp
[(

b′i − bi
)
(E3 − Ei )

] , i = a, c, s,

(100)
where Ei is such that

cisol
k′i0
ki0

= exp
[− (b′i − bi

)
Ei
]
. (101)

Its derivative, i.e. the slope of the insertion or expulsion isotherm, is

dci

dE3
= bi − b′i

4

ci max − ci min

cosh2 [(b′i − bi
)
(E3 − Ei ) /2

] , (102)

which is bell-shaped and has a maximum for E3 = Ei equal to
(

dci

dE3

)

max
= (ci max − ci min)

4

(
b′i − bi

)
. (103)

(ii) Dynamic Regime

From the kinetic insertion/expulsion equations, (89), (90) and
(93), if small-amplitude potential perturbations, �E3, are consid-
ered, the concentration responses, �ci , in the frequency domain, are
such that

�Ji (d) = −jωd f �ci = Ki�ci + Gi�E3, i = a, c, s, (104)
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where

Gi =
(
∂ Ji

∂E3

)

ci

= bi ki (ci − ci min)− b′i k′i (ci max − ci ) cisol, i = a, s,

Ki =
(
∂ Ji

∂ci

)

E3

= ki + k′i cisol (105)

and

Gc =
(
∂ Jc

∂E3

)

cc

= b′ck′c (cc − cc min)− bckc (cc max − cc) ccsol,

Kc =
(
∂ Jc

∂cc

)

E3

= k′c + kcccsol, (106)

where Gi < 0 for inserting species and Gi > 0 for expelling species.
Then, according to (104), the change of the concentration of

species i with potential is

�ci

�E3
(ω) = −Gi

jωdf + Ki
i = a,c,s. (107)

(iii) Electrochemical Impedance

Indeed, the faradaic current density, �IF, is related to the
charge, �q, by �IF = jω�q, and from (96)

�E3

�IF
(ω) = 1

jωAdf F
(
− �cc

�E3
(ω)+ �ca

�E3
(ω)
) (108)

and the total impedance of the film is equal to

�E3

�I
(ω) = 1

jωCint + jωAdf F
(
− �cc

�E3
(ω)+ �ca

�E3
(ω)
) , (109)

where Cint is the polymer/solution interface capacitance, the elec-
trolyte resistance being neglected here. Then,

�E3

�IF
(ω) = 1

jωAdf F
(

Gc
jωdf+Kc

− Ga
jωdf+Ka

) . (110)
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At high frequency, a charge transfer resistance is defined such as

Rct = 1

FA (Gc − Ga)
(111)

and the measurable impedance is

�E3

�I
(ω) = 1

jωCint + jωAdf F
(

Gc
jωdf + Kc

− Ga
jωdf + Ka

) . (112)

Another interesting quantity can be calculated to discriminate be-
tween the influences of the various species: the electric charge/potent
ial transfer function, which is also called the “electrochemical capac-
itance”, �q/�E3 (ω),

�q

�E3
(ω) = 1

jω

�I

�E3
(ω) = Cint + Adf F

(
Gc

jωdf + Kc
− Ga

jωdf + Ka

)
.

(113)

(a) Comparison with impedance models

The investigation of electroactive materials under the form of
thin films deposited on one of the electrodes of a quartz crystal res-
onator necessitates the use of very thin films as will be explained in
Sect. V. Then all the quantities calculated in the previous sections
will be examined when df → 0 and compared with the proposed
model.

For a permselective electroactive film and considering insertion
of a counterion from the solution, the impedance of thin films is
calculated from (25) and (26) and using the same notation as the
proposed model (i.e. (104))

Z3(ω) = 1

FGi
− df Ki

8FGiυDeDi
[(De + Di ) coth υ

+(De − Di ) tanh υ] . (114)

For thin films, as υ = αdf, coth υ ∼ (1/υ)+ (υ/3) and tanh υ ∼ υ.
Hence, when df → 0, (25), (26) and (114) become
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Z1 (ω) ∼ Re + 1

σ

De + Di

8αDeDi

[
(De + Di )

(
1

αdf
+ αdf

3

)

− (De − Di ) αdf

]
, (115)

Z2 (ω) ∼ df

σ
+ 1

σ

(De − Di )
2

4αDeDi
αdf, (116)

Z3 (ω) ∼ − 1

FGi
− Ki

Gi

1

8FαDeDi

[
(De + Di )

(
1

αdf
+ αdf

3

)

+ (De − Di ) αdf

]
. (117)

Then, the total faradaic impedance is

ZF (ω) ∼ Re + 1

σ

(De + Di )
2

8α2df De Di
− 1

FGi
− Ki

Gi

(De + Di )

8Fα2df De Di
, (118)

i.e.

ZF(ω) ∼ Re + RT

cp F2

1

jωdf
− 1

FGi
− Ki

FGi

1

jωdf
, (119)

which can be represented by a Rlf, Clf series circuit such as

Rlf = Re − 1

FGi
and Clf = df

(
cp F2

RT
− FGi

Ki

)

. (120)

To obtain the total impedance of the electrode/film/solution system,
it is necessary to take into account the double-layer capacitances
at each interface. Therefore, the impedance of thin permselective
films depends on both the electron and the ion transfer elementary
impedances because the bulk film impedance, Z2 (ω), is negligible.

It is equivalent to anion insertion without cation movement of
the proposed model (112) if Re and the electron contributions are
neglected (for fast electron transfer):

�E3

�IF
(ω) = − jωdf + Ka

jωdf FGa
. (121)
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If permselectivity is not supposed, i.e. when anions, cations and sol-
vent are considered to be involved in the switching process of the
electroactive film, in addition to the electrons, the full analytical
calculation is not possible and the approximate diffusion model de-
scribed previously can be used. So, the charged species behave inde-
pendently and local electroneutrality is not imposed.

Here, anions and cations are supposed to be transported through
the polymer only by diffusion. From (56)–(58), when df → 0,
one has

Z1 (ω) ∼ 1

FGe

(

1 − Ke
(1/df

√
jω/De)+ (df

√
jω/De/3)

√
jωDe

)

,

(122)

Z1 (ω) ∼ 1

FGe

(
1 − Ke

1

jωdf

)
, (123)

Z−1
3 (ω)∼ F

⎛

⎝ Gc

1 + Kc

(
(1/df

√
jω/Dc)+ (df

√
jω/Dc/3)

)
/
√

jωDc

− Ga

1 + Ka

(
(1/df

√
jω/Da)+ (df

√
jω/Da/3)

)
/
√

jωDa

⎞

⎠ ,

(124)

Z3 (ω) ∼ 1

jωdf F [(Gc/(jωdf + Kc)− (Ga/(jωdf + Ka))]
,

(125)

Z2 (ω) ∼ 2πd2
f

εε0

{[
Gc

jωdf + Kc
− Ga

jωdf + Ka

]
Z3(ω)+ 1

jωFdf

}

(126)

and then

ZF (ω) ∼ 1

FGe

(
1 − Ke

1

jωdf

)

+ 1

jωdf F [(Gc/(jωdf + Kc)− (Ga/(jωdf + Ka))]
,

(127)
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which gives the same expression as the impedance calculated from
the proposed model if the electron contribution is neglected. This
means that the proposed model is coherent with the classical
migration–diffusion model but it takes into account only the ex-
change of species between the film and the solution as the film is
supposed to be very thin and the electron transfer very fast.

(iv) Mass/Potential (Electrogravimetric) Transfer Function

Generally, the change of the mass of the film is

�m = −A
∑

i=a,c, s

mi

∫ df

0
�cidx . (128)

Hence, for thin films

�m = −Adf

∑

i=a,c, s

mi�ci. (129)

The mass/potential transfer function is then defined by

�m

�E3
= −Adf

∑

i=a,c, s

mi
�ci

�E3
, (130)

i.e.

�m

�E3
(ω) = −Adf

(
mc

Gc

jωdf + Kc
+ ma

Ga

jωdf + Ka
+ ms

Gs

jωdf + Ks

)

(131)

and
�m

�IF
(ω) = Z3 (ω)

�m

�E3
, (132)

where ma, mc and ms are the molar masses of anions, cations and
solvent (the mass of the electron is supposed to be 0). Of course, only
the charged species, anions and cations, are involved in the electro-
chemical impedance, �E3/�IF (ω), whereas the electrogravimet-
ric transfer function, �m/�E3 (ω), depends on anions, cations, and
solvent all together.
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Another interesting quantity is the change of mass per unit
charge, F (�m/�q), such as

�m

�q
(ω) = jω

�m

�IF
= jωZ3 (ω)

�m

�E3
(133)

and then the mass/electric charge transfer function is

�m

�q
(ω)

= − [mc (Gc/(jωdf +Kc))+ ma(Ga/(jωdf +Ka))+ ms(Gs/(jωdf +Ks))]

F [(Gc/(jωdf +Kc))− (Ga/(jωdf +Ka))]
.

(134)

When only one charged species is involved in the redox switching,
the latter function has the particular form

F
�m

�q
= mi (135)

which gives the molar mass of the species involved in the charge
compensation process occurring during the redox switching of the
electroactive film.

(v) Diagnostic Criterion

As the model takes into account two charged species (cations
and anions) plus the solvent, there are, a priori, two degrees of free-
dom for the impedance, which is concerned with the two charged
species, and three degrees of freedom for the electrogravimetric
transfer function, which is concerned with the anions, cations and
solvent. Generally, three degrees of freedom lead to three time con-
stants and only two quantities �E/�I and �m/�E are experimen-
tally available. However, calculated partial electrogravimetric trans-
fer functions will allow the three species to be distinguished.

By using (130) and (108), one can eliminate the anion contribu-
tion in the total mass change, �m/�E3, by considering

�m

�E3
− ma Adf

�ca

�E3
= Adf

(
mc

�cc

�E3
+ ms

�cs

�E3

)
, (136)

�m

�E3
− ma Adf

�ca

�E3
= �m

�E3
− ma Adf

(
�cc

�E3
+ �IF

jωdfF �E3

)
. (137)



AC-Electrogravimetry Investigation in Electroactive Thin Films 197

Therefore, by equating the left-had side of (136) and (137), the
quantity

�mcs

�E3
= �m

�E3
− ma

jω

A

F Z3
(138)

takes into account only the mass change of cations and solvent as
this partial electrogravimetric transfer function is equal to

�mcs

�E3
= Adf

(
(ma + mc)

�cc

�E3
+ ms

�cs

�E3

)
, (139)

i.e.

�mcs

�E3
= −Adf

(
(ma + mc)

Gc

jωdf + Kc
+ ms

Gs

jωdf + Ks

)
. (140)

In the same way, if the cation contribution is eliminated in the mass
change, �m/�E3, by using (130) and (108), the second partial elec-
trogravimetric transfer function, �mas/�E3, which takes into ac-
count only the mass change of anions and solvent, is

�mas

�E3
= �m

�E3
+ mc

jω

1

F Z3
, (141)

i.e.
�mas

�E3
= Adf

(
(ma + mc)

�ca

�E3
+ ms

�cs

�E3

)
, (142)

i.e.

�mas

�E3
= −Adf

(
(ma + mc)

Ga

jωdf + Ka
+ ms

Gs

jωdf + Ks

)
. (143)

From the plot of the cation–solvent, �mcs/�E3, and anion–solvent,
�mas/�E3, partial electrogravimetric transfer functions, a diagnos-
tic criterion can be proposed.

In the complex plane, as �cs/�E3 is the common relax-
ation loop in �mcs/�E3 and �mas/�E3, if both �mcs/�E3 and
�mas/�E3 show only one loop, �cs/�E3 = 0 and no solvent
crosses the polymer/solution interface, and only anions and cations
enter or are expelled. However, if �mas/�E3 shows two loops and
�mcs/�E3 shows only one loop, then the cations do not interfere in
the charge compensation process.
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(vi) Simulations

The various time-varying and frequency-varying quantities
which characterize the behaviour of the model are calculated for
various insertion/expulsion mechanisms. Redox switching of an
electroactive film involving a cation alone, then an anion and sol-
vent, and finally a cation, an anion and solvent will be successively
examined. First of all, the change of the concentrations with respect
to potential are calculated by integrating the differential equations
(97) for cations, anions and solvent by assuming a linear change of
potential with time. Then the current and the change of mass are
calculated by using (98) and (99), respectively. Finally, the quan-
tity F(dm/dq) is calculated through F(dm/I dt). Concerning the
frequency-varying transfer functions, the impedance �E/�I (ω) is
calculated from (109), the electrochemical capacitance �q/�E (ω)

is calculated from (113), the electrogravimetric transfer function,
�m/�E (ω), is calculated from (131), F �m/�q (ω) is calculated
from (133), and the partial electrogravimetric transfer functions
�mcs/�E (ω) and �mas/�E (ω) are calculated from (138) and
(141), respectively. Notice that in the following, as the potential dif-
ferences across the electrode/film interface and the bulk film will be
neglected, the difference of potential E3 across the film/electrolyte
interface will be assimilated to E . All the calculations were carried
out using Mathcad 13 (Mathsoft).

Figure 8 shows the various time-varying quantities for a re-
dox switching involving only one cation for a 20 mV s−1 potential
scan rate. Figure 8a shows the variation of the concentrations of the
cations, cc(E), from cmax to cmin for increasing potentials and from
cmin to cmax for decreasing potentials. The difference between the
up and down plots is due to kinetics as the system is slow com-
pared with the potential scan rate. The relative change of the mass,
�m (E), which is arbitrarily taken to be equal to 0 for anodic po-
tentials, is strictly related to the concentrations of the cations as
they are the only ions involved in the insertion mechanism (Fig. 8c).
Figure 8b shows the cyclic voltammogram, i (E); the anodic and ca-
thodic current peaks are not at the same potential as the system is not
reversible. Finally, Fig. 8d gives the quantity F(dm/dq), which is a
potential-independent constant equal to −23 g according to (135).
This value is coherent with the Na+ ion used for the simulation.

Figure 9 shows the various transfer functions related to
the insertion/expulsion of cations alone. Figure 9a shows the
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Figure 8. Calculated parameters vs. a voltage scan: (a) cc, (b) I , (c) �m, (d)
F (dm/dq). The parameters used for the calculation were as follows: v = 20 mV s−1,
df = 0.1 μm, kc0 = 5.0× 10−2 cm s−1, k′c0 = 5.0× 10−6 cm s−1, bc = −20 V−1,

b′c = 25 V−1, ccmin = 10−4 M, ccmax = 1 M and mc = 23.0 g mol−1.

electrochemical impedance in the (−Im [Z (ω)], Re [Z (ω)])
complex plane calculated from

�E

�I
(ω) = 1

jωCint + jωdf F Gc
jωdf+Kc

, (144)

which is a particular case of (112) for cations alone (Ga = 0). At
low frequency, a vertical line is found related to the Rlf,Clf se-
ries circuit (118). At higher frequencies, the semicircle is due to
the charge transfer resistance (111) in parallel to the double-layer
capacitance across the film/solution interface. Figure 9b shows the
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Figure 9. Calculated transfer functions at 0 V: (a) �E/�I (ω), (b) �q/�E(ω),
(c) �m/�E(ω), (d) F�m/�q(ω). The parameters used for the calcula-
tion were as follows: df = 0.1 μm, kc0 = 5.0 × 10−2 cm s−1, k′c0 =
5.0×10−6 cm s−1, bc = −20 V−1, b′c = 25 V−1, ccmin = 10−4M, ccmax = 1 M
and mc = 23.0 g mol−1.

electrochemical capacitance function (�q/�E); it is a semicircle
whose equation is a particular case of (113) when Ga = 0,

�m

�q
(ω) = 1

jω

�I

�E
(ω) = Cint + df F

(
Gc

jωdf + Kc

)
, (145)

and which goes from (�m/�q) (ω→∞) = Cint at high fre-
quency to (�m/�q) (ω→ 0) = Cint + df F (Gc/Kc) at low fre-
quency. Figure 9c gives the electrogravimetric transfer function. In
agreement with (131) when Ga = Gs = 0, it is a semicircle located
in the third quadrant of the complex plane as it is a cation which
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is involved in the charge compensation process. Figure 9d gives the
mass change per charge unit (F�m/�q) function in the complex
plane; it is reduced to one point on the abscissa at −23 g mol−1 as
only one sodium ion is involved.

For a permselective film involving an anion and solvent, the
time-varying quantities are quite similar to those given in Fig. 8 for
a cation alone. Hence, only the frequency functions are given in
Fig. 10 for this mechanism. The functions shown in Fig. 10a, and
b are similar to those shown in Fig. 9a and b as process analysed
involved only one charged ion as well. Figure 10c shows the elec-
trogravimetric transfer function which exhibits two loops, one at
high frequency, related to the anion movement, is located in the
first quadrant, whereas the low-frequency loop, related to the sol-
vent movement, is located in the fourth quadrant. Besides, the par-
tial cation–solvent electrogravimetric transfer function, �mcs/�E,
where the anion participation has been eliminated, exhibits only a
semicircle related to the solvent. Figure 10d shows the F (�m/�q)
transfer function. From (134) it is

F
�m

�q
(ω) = ma + ms

Gs (jωdf + Ka)

Ga (jωdf + Ks)
. (146)

Figures 11 and 12 are relative to an insertion/expulsion mechanisms
involving cations, anions and solvent. Figure 11a–c gives the vari-
ations of the concentrations of cations, solvent and anions. As the
rate of the anion movement is rather low, the kinetic hysteresis be-
tween the concentration curves up and down is very large. Figure 11d
shows the voltammogram, which is very similar to Fig. 8b as the
cation is the dominant species. This observation is also valid for the
mass change (Fig. 11e). Figure 11f gives the quantity F (dm/dq); it
is rather difficult to interpret this function for the mechanism anal-
ysed, although for cathodic potentials, it is close to −23 g mol−1,
which is the molar mass assumed for the cation in this case.

Figure 12a gives the impedance plot; as usual it has the shape of
a semicircle with a low-frequency capacitive behaviour. The electro-
chemical capacitance is more attractive as it exhibits two semicircu-
lar loops, one for the cation in the high-frequency range, the other
one for the anion in the low-frequency range (Fig. 12b). Figure 12c
seems to be more interesting as the electrogravimetric transfer func-
tion shows three loops, one for each species. In the third quad-
rant, two loops are found; the higher-frequency one is due to the
cation, whereas the other one is related to the solvent. In the second
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Figure 10. Calculated transfer function for cation-solvent mechanism at 0.05 V: (a)
�E/�I(ω), (b) �q/�E(ω), (c) �m/�E(ω), (d) F�m/�q(ω), (e) �mcs/�E(ω).
The parameters used for the calculation were as follows: df = 0.1 μm,
ka0 = 8.0× 10−6 cm s−1, k′a0 = 1.0×10−1 cm s−1, ba = −30 V−1, b′a = 30 V−1,
camin = 3 × 10−4 M, camax = 10−1 M, ma = 35.5 g mol−1,

ks0 = 5.0 × 10−3 cm s−1, k′s0 = 5.0×10−7 cm s−1, bs = −30 V−1, b′s = 20 V−1,

csmin = 5 × 10−4 M, csmax = 3 × 10−2 M and ms = 18.0 g mol−1.
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camin = 3 × 10−4 M, camax = 5 × 10−3 M, ma = 35.5 g mol−1,
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Figure 12. Calculated transfer functions for a cation-anion-solvent
mechanism at 0 V: (a) �E/�I(ω), (b) �q/�E(ω), (c) �m/.�E(ω),
(d) F�m/�q(ω), (e) �mcs/�E(ω) and (f) �mas/�E(ω). The pa-
rameters used for the calculation were as follows: df = 0.1μm,
kc0 = 8.0×10−2 cm s−1, k′c0 = 5.0×10−5 cm s−1, bc = −20 V−1, b′c = 25 V−1,

ccmin = 10−4 M, ccmax = 1 M, mc = 23.0 g mol−1, ka0 = 2.0 × 10−7 cm s−1,

k′a0 = 8.0 × 10−4 cm s−1, ba = −30 V−1, b′a = 30 V−1, camin = 3 × 10−4 M,

camax = 5 × 10−3 M, ma = 35.5 g mol−1, ks0 = 2.0 × 10−2 cm s−1, k′s0 =
2.0 × 10−6 cm s−1, bs = −15 V−1, b′s = 20 V−1, csmin = 2 × 10−4 M,
csmax = 5 × 10−1M and ms = 18.0 g mol−1.



AC-Electrogravimetry Investigation in Electroactive Thin Films 205

quadrant, in the lowest-frequency range the loop is related to the
anion movement. Besides, the partial electrogravimetric transfer
functions help in identifying the loops. The cation–solvent electro-
gravimetric transfer function, �mcs/�E (Fig. 12e), shows the two
loops in the third quadrant, characteristic of the cation and the sol-
vent, as the anion loop has disappeared. The anion–solvent electro-
gravimetric transfer function, �mas/�E (Fig. 12f), shows one loop
in the third quadrant, characteristic of the solvent, and one loop in
the fourth quadrant, characteristic of the anion, as the cation loop
has disappeared.

V. EXPERIMENTAL

AC electrogravimetry consists in the simultaneous measurements of
the electrochemical impedance and the mass/potential, or electro-
gravimetric, transfer function. Impedance measurements are already
well documented in the literature;201, 202 hence, in this text, only the
electrogravimetric transfer function measurement will be described.
It uses a fast QCM whose general concepts are first given below.

1. Basic Microbalance Concepts

Electrochemical and electrogravimetric experiments were carried
out by means of a typical three-electrode cell polarized by using
a potentiostat (SOTELEM-PGSTAT). Electroactive films were de-
posited onto one of the gold electrodes of the quartz crystal used as
the grounded working electrode, a large-area platinum grid was used
as the counter electrode and a saturated calomel electrode (SCE) was
the reference electrode.

The electrochemical QCM takes advantage of the change of the
resonance frequency of a 6 or 9 MHz “AT-cut” quartz crystal (Matel-
Fordhal, France) due to a minute mass change of one of its electrodes
exposed to the solution, the other one being kept in air. The two gold
electrodes, deposited on the opposite faces of the quartz crystal, al-
lowed the resonator to be electrically connected to an oscillator cir-
cuit.203 The microbalance frequency change, � fm, of the oscillator
where the quartz crystal is loaded by some material of mass, �m, is
usually interpreted in terms of mass change thanks to the Sauerbrey
relationship:204, 205

� fm = −K S
th �m, (147)
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where the theoretical value of the coefficient, Kth, is 18.3 ×
107Hz g−1 cm2 for a 9 MHz resonance frequency quartz resonator.
This relationship is valid for a small mass increase or decrease.

This relation is only valid for acoustically thin films. Concretely,
it means that the relation is not respected when thick layers are used
because the influence of the viscoelastic properties of the layer may
appear in the frequency change.206 This effect is, in general, am-
plified when polymer films are used. To determine the maximum
useful thickness, electroacoustic measurements allowed a pertinent
value to be evaluated. In a first step, a classical Butterworth–Van
Dyke equivalent circuit of the loaded quartz (Fig. 13a) is extracted

0.0 0.1 0.2 0.3 0.4 0.5
–10000

–5000

0

df / μm

Δf
s 

/ H
z

0

500

1000

1500

2000

2500

R
m

 /Ω

Rm Lm Cm

Cp

b

a

Figure 13. Electroacoustic characterization of the quartz crystal
loaded by a polypyrrole film. (a) Butterworth–Van Dyke equivalent
circuit. (b) Change of the frequency, fs = 1/(2π

√
LmCm), and mo-

tional resistance, Rm, with respect to the polypyrrole film thickness.
From Al-Sana et al.207
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from the electroacoustic measurements performed around the res-
onance frequency of the quartz resonator with a network analyser.
Figure 13b shows the change of two parameters related to the equiv-
alent circuit, fs =

(
1/2π

√
LmCm

)
and Rm, which characterize the

gravimetric and the mechanical film properties, with respect to the
film thickness. Figure 13b shows that for PPY, up to a film thickness
of 0.25 μm, fs decreases linearly when the thickness (i.e. mass) in-
creases and the motional resistance, Rm, is practically constant.207

Therefore, the Sauerbrey equation is respected, which is confirmed
by a small change of the motional resistance Rm, which means
that the mechanical properties of the film do not affect the gravi-
metric response. After this maximum thickness, fs does not follow
the ideal deviation and Rm increases drastically. Beyond this thick-
ness, the gravimetric regime is not respected and the response given
by the microbalance has to be corrected to consider only the mass
contribution.

2. AC-Electrogravimetry Aspects

The principle of AC-electrogravimetry measurements is given in
Fig. 14. The modified QCM working electrode was polarized at
a chosen potential V ′ and a sinusoidal small-amplitude potential
perturbation, �V ′, was superimposed. The microbalance frequency
change, � fm, corresponding to the mass response of the film, �m,
of the modified working electrode was detected by means of a fre-
quency/voltage converter. Different systems, a home-made device
based on an integrated circuit (VFC110) or a commercial device
incorporated in a universal counter (Yokogawa TC110), can be
used.195, 208, 209

The resulting signal,�V f, was simultaneously sent with the cur-
rent response, �I , of the electrode to a four-channel frequency re-
sponse analyser (FRA-Solartron 1254), which allowed the two trans-
fer functions, �V f/�V(ω) and �V/Rst�I(ω), to be determined,
where �V is the raw potential response, which takes into account
the electrolyte resistance, and Rst is the resistance in the counter
electrode circuit, which allows the current �I to be measured. Usu-
ally, a 10−3Hz to 60 kHz frequency range is analysed to measure
the whole impedance. For the electrogravimetric transfer function,
the 10−3–100 Hz range is enough. A Fast Fourier Transform anal-
ysis was also proposed, but the frequency range analysed is rather
narrow.195
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Figure 14. The AC-electrogravimetry and electrochemical impedance set-up. From
Gabrielli et al.209

As shown previously, the model produces two different transfer
functions: �m/�E(ω) and �E/�I(ω). So, a numerical treatment
is necessary to obtain the final experimental transfer functions com-
parable with these theoretical quantities from the raw experimental
transfer functions, �V f/�V(ω) and �V/Rst�I(ω). The most im-
portant part is to convert the response �V f from the microbalance
frequency changes, � fm.

As mentioned previously, the raw transfer function given by the
frequency response analyser, �V f/�V(ω), must be corrected to ob-
tain the final mass/potential transfer function, �m/�E(ω).

�m

�E
(ω) = �m

�f m
(ω)

�f m

�V f
(ω)

�V f

�V
(ω)

�V

�E
(ω) , (148)

where the four different transfer functions involved in the correction
procedure are:

• �m/�f m(ω), related to the Sauerbrey relation (147), is
equal to −1/K S

th or −1/K S
exp, where K S

exp is the experimental

mass/microbalance frequency coefficient. At 9 MHz, K S
exp is

equal to 16.3 × 107Hz g−1cm2 as demonstrated previously.
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This quantity is usually evaluated by using copper or silver
electrodeposition.210

• �f m/�V f(ω) is the inverse of the frequency/voltage con-
verter sensitivity and can be estimated by using the following
equation:

�f m

�V f
(ω) = �f m

�e
(ω)

�e

�V f
(ω), (149)

where � fm/�e(ω) = � fsynt/�e(ω) is the sensitivity of the ref-
erence frequency synthesizer by assuming � fm = � fsynt and
�e/�Vf(ω) is the inverse of the global calibration transfer function,
�Vf/�e(ω), obtained by replacing the QCM by a second synthe-
sizer modulated in frequency. �e is the sinusoidal potential input
of the synthesizer used to measure the sensitivity. For an HP 8647A
synthesizer, � fsynt/�e was determined experimentally and a typical
value of 97.75 Hz V−1 was obtained.

• �Vf/�V(ω) is the raw experimental transfer function ob-
tained during the AC-electrogravimetry measurements.

• �V/�E(ω) allows the ohmic drop correction to be carried
out by taking into account the electrolyte resistance, Re. The
following relation is used by incorporating the experimental
electrochemical impedance, �E/�I (ω):

�V

�E
(ω) = Re

�E/�I (ω)
+ 1. (150)

3. Dynamic Characterization of the Frequency/Voltage
Converter

The frequency/voltage converter has a limited bandwidth owing to
the distortions of the electronic components. A global calibration
transfer function, �Vf/�e(ω), has to be determined to evaluate the
sensitivity of the frequency/voltage converter and the useful fre-
quency range where the response is linear.

Figure 15 shows the modulus and the phase of the global cali-
bration transfer function, �Vf/�e(ω), for an home-made configu-
ration. At low frequencies, the phase shift of (�Vf/�e) is close to
0 and the modulus, |�Vf/�e|, is equal to 1.02. This result means
that the dynamic sensitivity (�Vf/�fs)dynamic of the system is
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Figure 15. Modulus and phase of the global calibration of a home-made
frequency/voltage converter. From Gabrielli et al.209

10.2 mV Hz−1. The useful frequencies where the system can be
used without any correction ranges from low frequencies to 1 Hz for
this particular configuration. If measurements are expected above
1 Hz, a modulus and phase shift correction is necessary by using
calibration curves such as those given in Fig. 15.209

VI. EXAMPLES OF APPLICATIONS
OF AC ELECTROGRAVIMETRY

Some examples of the applications of AC electrogravimetry to the
study of the redox switching of inorganic and organic films are now
reported. First, details about Prussian blue, where mainly cation
movement can be detected, will be given. Then, the behaviour of
PPY, where cations, anions and solvent participate in the charge
compensation process, will be described. Finally, a system of sand-
wiched polymers will be analysed.

1. Prussian Blue

Prussian blue can be obtained in different ways; however, when
Prussian blue films are produced galvanostatically following the pro-
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cedure described by Itaya et al.211 it is possible to control in a very
accurate way the quality and the amount of Prussian blue deposited.
The freshly deposited Prussian blue films are in the “insoluble”
form, Fe4[Fe (CN)6]3, and after several voltammetric cycles in KCl
solution, they are converted into the “soluble” structure, which is
characterized by the presence of potassium substituting a quarter of
the high-spin iron sites in the “insoluble” Prussian blue structure –
KFeFe (CN)6.

Prussian blue films can be reduced to the colourless form, called
“Everitt’s salt”

(
KFe4[Fe (CN)6]3 or K2FeFe (CN)6

)
, or oxidized to

the yellow form called “Prussian yellow”
(
Fe4[Fe (CN)6]3Cl or

KFeFe (CN)6Cl
)
. These electrochemical processes can be easily de-

tected by cyclic voltammetry of Prussian blue films in KCl solutions.
The reduction process for the “soluble” Prussian blue structure has
been described as211

KFeIIIFeII(CN)6 + e− + K+ kc−→←−
k′c

K2FeIIFeII(CN)6, (151)

where FeIII and FeII refer to the different oxidation states of iron
atoms in the Prussian blue structure.

The impedance spectra and voltammetric response of Prussian
blue films in KCl solutions have been the subject of many papers
in the last few years.212–215 However, many aspects of the electro-
chemical behaviour of these films have not yet been clarified, es-
pecially concerning the entry and exit of ions and solvent into/from
the Prussian blue film during redox switching. According to the reac-
tion described in (151), the reduction of Prussian blue to the Everitt’s
salt form is accompanied by the entrance of potassium ions, which
are the counterions here, to maintain film electroneutrality. How-
ever, the insertion or expulsion of ions from the film could also be
accompanied by an exchange of solvent molecules between the film
and the outer solution. To examine the electrochemical subtleties,
AC electrogravimetry, i.e. simultaneous coupling of electrochemical
impedance and mass/potential transfer function measurements, was
used to characterize ion and solvent motions at the Prussian blue
film/electrolyte interface.216–218
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(i) Film Preparation

FeCl3 (chemically pure), K3Fe (CN)6, KCl and HCl (p.a.) (A.R.
Merck) were used for the synthesis of Prussian blue films. Water
was deionized and distilled. One of the gold electrodes of the quartz
crystal was immersed into 0.02 M K3

(
Fe (CN)6

)
, 0.02 M FeCl3 and

0.01 M HCl aqueous solutions. Electrodeposits of Prussian blue
were galvanostatically carried out by applying a controlled cathodic
current of 11 μA for 210 s. The estimated film thickness for these
experiments was df = 0.14μm, which is adequate not to have vis-
coelastic complications.

In a first step, current and mass responses to a potential scan
were simultaneously measured in KCl aqueous solutions. Then,
measurements of the electrochemical impedance and the electro-
gravimetric transfer function were carried out.219

(ii) Voltammetric and Mass/Potential Curves

During the reduction of Prussian blue films to the colourless
Everitt’s salt form in KCl solutions, the charge compensation is com-
monly supposed to occur by the entrance of potassium ions within
the film. Figure 16 shows a voltammogram of a film of Prussian blue
in a KCl solution and the change of mass measured by means of
the QCM accompanying the current variation. The hysteresis ob-
served in the mass/potential curve shows that the electrochemical
process is kinetically limited. However, this approach does not al-
low the determination of the rate-limiting step, either mass transport
or mass transfer, at the film/solution interface which is responsible
for kinetic limitations. The mass decrease, �m, between the reduced
form (Everitt’s salt) and the oxidized form (Prussian blue) was about
1.2 μg cm−2. Meanwhile, the expected mass change evaluated from
the electric charge enclosed within the voltammogram, by consider-
ing that all the charge compensation involved only the participation
of potassium countercations, is about 1.6 μg cm−2. This discrepancy
might show that lighter species were involved in the charge com-
pensation process or that there was a flux of water molecules in the
opposite sense to the flux cations or that anions were involved. How-
ever, it was not possible to discern between these three possibilities
from the global information provided by the QCM operating in the
quasi steady state.
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(iii) Electrogravimetric Transfer Function
and Electrochemical Impedance

The current, �I , and mass, �m, responses of Prussian blue
films to a small-amplitude sinusoidal potential perturbation, �E,
were studied at several imposed potentials, with respect to the
frequency, to obtain extra information about the role of protons
and potassium ions during the electrochemical redox reaction of
Prussian blue.220 Figure 17 shows the transfer functions charac-
teristic of a Prussian blue film at 0.375 V vs. SCE. In the same
graphs, the theoretical curves are also represented. Good agreement
between the theoretical and the experimental data was obtained for
each of the five transfer functions not only regarding shape but also
regarding frequencies.

The electrochemical impedance, �E/�I(ω), is shown in
Fig. 17a. �q/�E(ω) was calculated by using �E/�I(ω) experi-
mental data and is plotted in Fig. 17b. A single loop was obtained
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Figure 17. Experimental and theoretical transfer functions for Prussian blue polarized
at 0.375 V vs. SCE in 0.5 M KCl. (a) �E/�I(ω), (b) �q/�E(ω), (c) �m/�E(ω),
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mc = 23 g mol−1. From Gabrielli et al.219
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for this potential. This means that only one type of charged species,
anions or cations, was involved in the redox reaction, but the charge
of the ion was not determined. Moreover, the role of the solvent
was not clarified at this stage. The experimental electrogravimetric
transfer function, �m/�E(ω), is presented in Fig. 17c. Only one
semicircle was obtained and its location in the third quadrant indi-
cates that the ionic species involved here were cations. This single
loop confirms that anions do not contribute to the redox switching
for this material.

Only the partial electrogravimetric transfer function allows
identification of the ions. From (141), �mas/�E(ω) was calculated
and is presented in Fig. 17d, which corresponds to the elimination of
a cation having a mass of 23 g. Here, this partial electrogravimetric
function, �mas/�E(ω), is very small, showing that this is mainly
a cation with an apparent molar mass of 23 g which is involved at
0.375 V. This result implies that, according to the theory, the contri-
butions of anions and water molecules are always negligible in this
potential range.

However, the chemical identification of the species is not avail-
able at this step. F�m/�q(ω) was calculated according to (133).
This transfer function is an attractive parameter for identification
of the nature of the ion that was involved in the charge compen-
sation process, especially when only one ion acts as a counterion.
Therefore, when only one species is involved in the compensation
process, F�m/�q(ω) is frequency-independent and directly gives
its molar mass as is plotted in Fig. 17e. At E = 0.375 V vs. SCE,
F�m/�q(ω) = 23 g mol−1 over a wide range of frequencies
(Fig. 17f), showing that both K+ and H3O+ participate in the charge
compensation process. This value, not so far from the solvated pro-
ton mass, 19 g mol−1, indicates that at this potential it is mainly the
hydronium ion which participates in the charge compensation pro-
cess as a countercation. The behaviour of Prussian blue is in very
good agreement with the quantities plotted in Fig. 9. It is noticeable
that the discrepancy between the experimental quantity and quantiles
calculated from the model can be cancelled by considering constant
phase elements

�cc

�E
= −Gc

(jωdf)
α + Kc

, 0 < α < 1 (152)

in the model instead of (107), where α = 1.
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Figure 18 shows the dependence of the low-frequency limit of
Re[F�m/�q(ω)], which gives an apparent molar mass, mc, of the
cations expelled from Prussian blue, with respect to the potential.
It is observed that over a wide range of potentials, between 0 and
0.25 V, this function reaches values near the potassium molar mass,
showing that K+ is the dominant cation in this potential range. Oth-
erwise, at potentials more anodic than 0.35 V, the molar mass ob-
tained approximated the mass of the hydrated proton. This result
explains the smaller values of the apparent molar mass reported in
the literature.221 Between these two potentials, intermediate values
of molar mass were obtained. This shows that the two cations are
simultaneously involved in the charge compensation process.

Figure 19a shows the variation of the low-frequency limit of
the electrogravimetric transfer function �m/�E (ω→ 0), which is
equal to the slope of the insertion law. Knowing the apparent mass
of the inserted cation allows one to determine the percentage of
potassium and hydronium ions and hence the relative participation
of these ions in the redox process. As a result of integration of
the curves given in Fig. 19a, Fig. 19b shows the change of the con-
centrations of K+ and H3O+ in the Prussian blue film when the
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potential changes. It shows that the K+ concentration decreases by
1.1×10−3

mol cm−3, whereas the H3O+ concentration decreases by
0.2 × 10−3

mol cm−3, when the potential increases from 0 to 0.4 V
vs. SCE.

2. Polypyrrole

In contrast to electroactive films where only one species is involved
in the charge compensation process, e.g. Prussian blue, the results
for which have already been reported, in the following three species
are often involved during the redox switching of PPY. Therefore,
it is much more difficult to understand the compensation mecha-
nism is. Indeed, the solution of the problem necessitates the anal-
ysis of three unknown processes, namely related to anions, cations
and solvent transfers, with only two known quantities as the usual
quantities measured being current and mass by means of a potentio-
static arrangement coupled with a QCM.167 The first investigations
analysed the current and mass responses to a potential scan. How-
ever, these quasi-steady-state techniques were not able to separate
anion and cation transfers and especially solvent interference. So,
only qualitative results were gained by means of these techniques.
Two ways have been explored to properly analyse the three species
transfers. PPY films were chosen as an illustration of the benefits
of AC electrogravimetry to gain thorough information on the kinet-
ics of the redox processes of electroactive polymers.222 To satisfy
the QCM requirements, very thin films were used, where charge
transport (migration or diffusion) in the polymer is not limiting.
The rate-limiting steps are now the ionic and solvent transfers at the
polymer/electrolyte interface.

(i) Film Preparation

PPY films can be prepared using different methods described in
the literature.223 The PPY films were prepared from a 0.1 M pyrrole
+0.05 M sodium dodecyl sulphate. This low sodium dodecyl sul-
phate concentration was chosen to avoid surfactant aggregates and
to obtain films of good quality in terms of mechanical properties.224

From these solutions, a cyclic potential sweep between 0 and
0.675 V vs. SCE at a 10 mV s−1 sweep rate was applied twice.
These films were sufficiently thin to allow the Sauerbrey equation
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to be used without limitation from viscoelastic properties of the
polymer film.168 Electrochemical studies were carried out mainly in
0.25 M NaCl to study the influence of the ions present in the bathing
solution.

(ii) Voltammetric and Mass/Potential Curves

PPY films were firstly studied by cyclic voltammetry and the
mass response to a potential scan was recorded by means of the
QCM. Figure 20a shows the current and mass responses to a poten-
tial scan of a PPY film in a 0.25 M NaCl solution. The mass decrease,
determined through microbalance measurements, between the re-
duced and oxidized forms was about 2.05 μg cm−2. Meanwhile, the
expected mass change evaluated from the electric charge enclosed
within the voltammogram was about 2.15 μg cm−2 if only Na+ was
supposed to be involved in the charge compensation process. How-
ever, the reduction process of the film between −0.2 and −0.6 V
seemed to demonstrate cation ingress as the film gained mass and the
oxidation process seemed to demonstrate cation expulsion as the film
lost mass. However, when oxidation went beyond +0.3 V, the film
gained mass again, showing anion insertion. Therefore, the QCM in
the quasi steady state led to ambiguous results, as the charge com-
pensation seems to occur not only by cation ingress but also by anion
expulsion. Even when the �m −�q curve is plotted (Fig. 20b), the
conclusions remain ambiguous: by considering the global mass and
charge change during the process, the equivalent molar mass ob-
tained is −28 g mol−1 and by taking into account the slope in the
linear range, one obtains a value of −90 g mol−1.

These results clearly show that the charge compensation process
occurring during the oxidation or reduction of the PPY film involves
insertion and expulsion of cations and anions. However, it is difficult
to separate the various processes. The coupling of the measurement
of the electrochemical impedance and the electrogravimetric transfer
function will enlighten these points.

(iii) Electrogravimetric Transfer Function
and Electrochemical Impedance

Figure 21 shows the various transfer functions measured on
PPY films immersed in a 0.25 M NaCl solution at potentials
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−0.55 V vs. SCE. In the same graphs the theoretical curves are
also represented. Good agreement between the theoretical and the
experimental data was obtained for each transfer function, not only
regarding shape but also regarding frequencies.
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Figure 21. Measured and calculated transfer function quantities for a polypyrrole
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The electrochemical impedance (Fig. 21a) has the usual shape
when dealing with this kind of ion blocking electrode, and it is dif-
ficult to extract information. It should be noted as there is no part
with a slope equal to 45◦ in the electrochemical impedance response
that the rate limiting step is not mass transport in the film but rather
ionic transfer between the solution and the film. The electrogravi-
metric transfer function, �m/�E(ω), shows (Fig. 21c) at least two
loops at −0.55 V. The high-frequency loop, in the third quadrant of
the complex plane, seems to be related to cation expulsion from the
film, whereas the low-frequency loop, in the second quadrant, seems
to be related to anion ingress in the film. The low-frequency limit
of this loop gives a negative value for (�m/�E) (ω→ 0); this is in
agreement with the slope of the m(E) plot of the mass response to a
potential scan given in Fig. 20 in this potential range.

The model was tested by taking into account that the possible
species involved in the compensation process could be H2O for the
solvent, Cl− for the anions and H+ or Na+, hydrated or not, for
the cations. Below, examples are detailed for 0.25 M NaCl at E =
−0.55 V vs. SCE.

For this potential, the plot of the electrochemical capacitance
�q/�E(ω) (Fig. 21b) in the complex plane shows two loops. This
demonstrates that two charged species are involved in the charge
compensation process. For E = −0.55 V vs. SCE, the plot of
�m/�q(ω) also shows two loops like in the simulation part (see
Fig. 12). This demonstrates that the solvent is involved in the redox
reaction in addition to anions and cations. Now, the plots of the par-
tial electrogravimetric transfer function will help to identify the loop
related to each species.

Figure 21e shows the quantity �mcs/�E(ω), obtained by elim-
inating the anion contribution, which means that this partial electro-
gravimetric transfer function is only related to the contribution of
the cation and solvent and remains in the third quadrant. By tak-
ing ma = 35.5 g mol−1, i.e. the molar mass of Cl− ions, the low-
frequency loop disappears. This demonstrates that Cl− is the anion
involved in the charge compensation and that it has the lowest time
constant.

Finally, the plot of the partial electrogravimetric transfer func-
tion, �mas/�E(ω), obtained by eliminating the cation contribution,
is related to the anion and solvent alone (see Fig. 13). By taking
mc as the atomic mass of Na+ + nH2O, where n is the number of
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Figure 22. Number of water molecules attached
to the Na+ cations during their insertion/expulsion
from polypyrrole immersed in 0.25 M NaCl. From
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solvent molecules, the high-frequency loop disappears for n = 2.
This demonstrates that the cation involved in the charge compen-
sation process is Na+ hydrated with two molecules of water at this
potential and that it has the lowest time constant. If the sodium ions
were taken without the solvation shell, the calculations in the ca-
thodic range would show bad agreement between the experimental
data and the theoretical simulation. Figure 22 shows the number of
water molecules that hydrate the sodium cations. From three wa-
ter molecules at −0.7 V, this number decreases to none at 0.3 V vs.
SCE.

Therefore, the free solvent was related to the intermediate fre-
quency loop and was expelled when PPY was oxidized. To fit the
�m/�E(ω) data, the solvent molar mass has to be taken as ms =
18 g mol−1 showing that free water was transferred during the redox
process.

By identification of the parameters of the model from the ex-
perimental data, it was also possible to determine Gi and Ki for the
three species involved in the charge compensation process. Then, the
slope of the insertion laws, �ci/�E(E) = − (Gi/Ki ), can be plot-
ted with respect to the potential (Fig. 23a) for the cations, anions and
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Figure 23. Insertion laws for cations, anions and sol-
vent for polypyrrole in 0.25 M NaCl. (a) Variation
of the derivative of the insertion law, (dce/dE); the-
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)
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)
/2,

and η = [(b′i − bi
)
/2
]
(E3 − Ei ). (b) Insertion law for

cations, anions and solvent with respect to the potential,
�ci (E3). From Gabrielli et al.216
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solvent and then through an integration the insertion law, ci (E), can
be determined for each species (Fig. 23b). On the other hand, Fig. 24
gives the plot of the time constants Ki for cations, anions and sol-
vent for various salts, NaCl, CsCl and Na2SO4. It shows that the
time constants of cations and anions are practically independent of
the salt, whereas the time constant of free solvent depends very much
on the salt diluted in the solution.225 Finally, by determining Gi and
Ki for various concentrations of the salt in the aqueous solution, one
can evaluate the elementary rate constants of insertion/expulsion, ki
and k′i (see (93), (105), (106)).
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3. Complex Polymeric Structures

Ion-selective electrodes (ISEs) are used in clinical, pharmaceutical
or environmental analysis for the detection not only of inorganic ions
but also of some organic species such as anionic or cationic surfac-
tants. However, the need for an internal filling solution causes many
problems, such as fragility, and it is obstructive for miniaturization.
The need for microstructures or even nanostructures leads to the con-
cept of an all-solid-state ISE.

Ivaska et al.226 proposed the incorporation of a conducting
polymer, e.g. PPY, between the membrane, which is only an ionic
conductor, and the metallic surface, which is only an electronic con-
ductor, and demonstrated the feasibility of such ISEs.

Since than many authors have tried to develop the two-layer type
of sensors by using PPY or other conducting polymers, e.g. polythio-
phenes,227 as the internal solid contact. Some authors have even tried
to simplify the electrode fabrication by incorporating the conducting
polymer into the membrane body.228 Results showed, however, that
the latest systems still need improvement.

PPY is a very well known conducting polymer used in numer-
ous works as the electroactive component of an all-solid-state ISE.
Most of the papers dealt with a PPY-coated PVC electrode where
PPY is doped with different anions, inorganic such as chloride or
organic such as dodecyl sulphate. Several techniques were used
to characterize these devices. Potentiometric measurements repre-
sent a method allowing thermodynamic characterization. AC elec-
trogravimetry was also used to characterize ion and solvent motions
at the PVC/electrolyte interface to understand how the electroactive
film (Prussian blue, conducting polymer, etc.) ensures the mediation
between the membrane and the electrode.229, 230

(i) Electrode Preparation

The working electrode was a gold electrode deposited on the
quartz crystal. PPY was deposited under a galvanostatic regime
through a SOTELEM galvanostat, from an aqueous solution contain-
ing 0.3 M pyrrole and 0.1 M KCl. The current applied was 200 μA
for 60 s. The film thickness was about 0.2 μm, as measured by scan-
ning electron microscopy. The electrode was then rinsed with dis-
tilled water and left in air to dry.

A very thin film is prepared from a PVC solution (20% of
high molecular weight PVC, 80% of a plasticizer (dionyl phthalate)
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dissolved in tetrahydrofuran), an ionophore, valinomycin, was added
by means of 1% and a lipophilic salt, potassium tetraphenylboride
(KB#4), weighting a third of the ionophore mass was spin-coated on
the modified electrode surface by PPY by applying a spinning rate
of 10,000 rpm for 10 s after pipetting 10 μL of the above-mentioned
solution. The film thickness was estimated by scanning electron mi-
croscopy to be 0.2 μm. All electrodes were conditioned in 0.1 M KCl
solution for at least 24 h prior to use.

(ii) Electrogravimetric Transfer Function and Electrochemical
Impedance

Figure 25 shows the five main transfer functions obtained from
electrogravimetric measurements at−0.45 V vs. SCE in a 0.1 M KCl
solution. In the same graphs, the theoretical curves are also repre-
sented. Good agreement between the theoretical and the experimen-
tal data was obtained for each of the five transfer functions not only
regarding shape but also regarding frequencies.

From the electrochemical impedance spectra, �E/�I (ω), lit-
tle information can be obtained concerning the different species par-
ticipating in the insertion/expulsion phenomenon as it is presented
Fig. 25a. However, the shape of the spectra confirms that there is an
ionic transfer between the solution and the film and there is no dif-
fusion (mass transport) usually expressed by a slope equal to 45◦
appearing at lower frequencies. Moreover, from the impedance data
the electrochemical capacitance, �q/�E(ω) (Fig. 25b), can be cal-
culated. This gives information on the different charged species in-
volved in the charge compensation process. Two loops were obtained
corresponding to two different ionic species, maybe a cation and an
anion. Additionally, these two transfer functions allow the two con-
stants Ki and Gi to be determined for each of the ions, which will
help us to calculate the mass of each ion and so to identify them.

This identification is obtained by using the electrogravimetric
transfer function, �m/�E(ω) (Fig. 25c). The high-frequency loop
in the third quadrant is related to the potassium ion. Indeed, by keep-
ing the constants Ki and Gi calculated before, we can estimate the
molecular mass of the ionic species and for the cation a mass of
39 g mol−1 was found: most of the time the cation was attached to
some water molecules. To our knowledge, this technique is the only
way to estimate the number n of water molecules attached to the
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Figure 25. Measured and calculated transfer function quantities for polypyr-
role/Prussian blue structures in 0.1 M KCl solution at −0.45 V vs. SCE.
(a) �E/�I(ω), (b) �q/�E(ω), (c) �m/�E(ω), (d) �mcs/�E(ω) and (e)
�mas/�E(ω). The parameters used for the calculation were as follows: df = 0.4 μm,
Cint = 6.99 μF cm−2, Kc = 9.4 × 10−5 cms−1, Ka = 1.2 × 10−6 cm s−1, Ks =
5.0 × 10−5 cm s−1, Gc = 5.3 × 10−8 mol s−1cm−2V−1, Ga = −1.1 ×
10−9 mols−1 = cm−2V−1, Gs = 3.3 × 10−8mol s−1 cm−2 V−1, ma =
35.5 g mol−1, ms = 18 gmol−1, and mc = (23 + 3 × 18) g mol−1. From Gabrielli
et al.230
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Figure 26. Number of water molecules n attached to the in-
serted cation against potential. From Gabrielli et al.230

cation inserted in the PVC film. Figure 26 shows the evolution of the
number of water molecules n with the potential. The minimum cor-
responds to a potential close to the equilibrium potential (vs. SCE)
in 0.1 M KCl . Furthermore, at −0.45 V a second well-defined loop
also appears, related to the free solvent as shown in Fig. 25d for
the partial electrogravimetric transfer function �mcs/�E(ω). An-
ions are also involved in the phenomenon as indicated by the partial
electrogravimetric transfer function �mas/�E(ω) (Fig. 25e) where
the cation contribution was eliminated. At this potential the anion
was involved in the insertion/expulsion process. Several questions
arise from these results concerning anion and solvent motions into
the PVC film. In the first place the difficulty of carrying out accurate
measurements at low frequencies (less than 10 mHz) might be the
reason for the not so well defined loop for each of the species, espe-
cially for the anion. Microbalance frequency instabilities can explain
this behaviour and could be correlated to the swelling effect. The fact
that the solvent has an active role in the kinetics indicates that the
membrane is not completely hydrophobic and, consequently, the in-
fluence of the soaking time of the electrode before measurements has
to be considered. Different parameters can be determined according
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anions in 0.1 and 0.01 M KCl. From Gabrielli et al.230



AC-Electrogravimetry Investigation in Electroactive Thin Films 231

to the potential. In Fig. 27a, the global kinetic parameter Kc was
determined at each potential value. A constant decrease is observed
when the potential goes towards the anodic region. Two KCl con-
centrations were examined and a small difference is observed, which
indicates poor influence of the ccsol values on the Kc evolution. An-
other key point was the determination of the relative concentrations
of the cations and the anions, respectively, �cc and �ca, over the
potential changes. In Fig. 27b, the estimated response is given: when
the potential goes towards the cathodic regime, cc increases and ca
decreases. This result is in good agreement with the charge compen-
sation process shown previously.

VII. CONCLUSION

First of all, the use of the QCM to study the behaviour of electroac-
tive thin films was a real breakthrough in understanding the charge
compensation process occurring during the redox switching, above
all for simple processes where only one counterion is involved.
AC electrogravimetry, which consists in combining impedance and
mass/potential transfer function measurements, allows a better un-
derstanding of more complex insertion/expulsion mechanisms. Dif-
ferent key points can be explored by using this dynamic approach,
such as:

• Determination of the interfacial transfer kinetics of the
charged or non-charged species

• Quantification of the electroactive sites in the host film
• Identification of the species involved in the electrochemical

process
• Quantification of the charged or non-charged species present

in the film

Here, where diffusion of the species in the polymer is not limiting,
ionic transfer at the polymer/solution interface is the rate-limiting
step of the charge transfer related to the charge compensation. More
precisely, anions, cations and solvent exchanges between the elec-
troactive film and the solution due to the charge compensation pro-
cess occurring during a redox switching can be separated. The ionic
and free solvent transfer rates can be determined and the concen-
tration changes of the species in the electroactive film can be esti-
mated at each potential value. Finally, the molar mass of the species
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involved in the charge transfer can be obtained, which allows the
species to be clearly identified. Sometimes, and in addition, the sol-
vent bound to the ions can be quantified according to the polarization
value applied to the electroactive film.

Finally, it should be noted that this technique is non-destructive
and is a very good way to clarify the insertion/expulsion mechanism
of free solvent which could occur during electrochemical redox pro-
cesses of electroactive materials.
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230C. Gabrielli, P. Hémery, P. Liatsi, M. Masure, H. Perrot, Electrochim. Acta, 51

(2006) 1704.



6

Monte Carlo Simulations
of the Underpotential Deposition of Metal

Layers on Metallic Substrates: Phase
Transitions and Critical Phenomena
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Summary. The underpotential deposition (UPD) of metal sub-
monolayers and monolayers on metal substrates for the systems
Ag/Au(100), Au/Ag(100), Ag/Pt(100), Pt/Ag(100), Au/Pt(100),
Pt/Au(100), Au/Pd(100), and Pd/Au(100) is studied by means of
lattice Monte Carlo simulations. Interaction energies among differ-
ent metal atoms are evaluated by using the embedded-atom method.
A wide variety of physical situations are found and discussed, in-
cluding systems exhibiting the sequential adsorption of atoms on
kink and step sites, prior to the completion of the monolayer. On the
other hand, for other systems, we observe the formation of 2D alloys
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between substrate and adsorbate atoms, and our predictions are com-
pared with available experimental data. The adsorption isotherms
determined for most of the systems studied exhibit sharp transi-
tions in the coverage when the chemical potential is finely tuned.
In particular, on the basis of the fact that the UPD of Ag atoms on
the Au(100) surface exhibits a sharp first-order phase transition,
at a well-defined value of the (coexistence) chemical potential, we
also performed extensive simulations aimed at investigating the hys-
teretic dynamic behavior of the system close to coexistence upon
the application of a periodic potential signal.

I. INTRODUCTION: SOME BASIC ASPECTS
OF THE UNDERPOTENTIAL DEPOSITION

PHENOMENON

Among electrochemical surface phenomena, the deposition of a
metal onto a foreign metal surface opens the way to a wealth of
possibilities for preparing and designing surfaces with a variety of
electrocatalytic activities.41 Furthermore, since the growth of a new
phase is involved, the problem is by itself of fundamental importance
for understanding a number of processes involved in the formation
of the new phase.

Let us first briefly discuss the advantages of electrochemical de-
position of a metal with respect to the same processes achieved from
the gas phase. Figure 1 schematically illustrates the binding (free)
energy of an atom binding to a surface as a function of the distance
from it. In the case of metallic systems, the binding-energy curve
typically exhibits a minimum with values in the range 3–5 eV, which
at room temperature amount to between 120kT and 200kT , kT be-
ing the thermal energy. An estimation of the desorption rate can be
made in terms of the equation

ν = ν0 exp
(
− E#

kT

)
, (1)

where the preexponential factor ν0 contains entropic contributions
and shows a weak dependence on the temperature, and E# is the acti-
vation energy for the desorption process. Using an attempt frequency
ν0 of 1 THz, the resulting frequencies range is between 10−40 and
10−75 s−1 for the desorption of a single adatom. Even considering
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Figure 1. The binding (free) energy of a metal atom (M) to a metal surface
as a function of the distance from it (full line) and the modification in the
case of the electrochemical situation. Here (g) and (ad) refer to the gas
and adsorbed phases, respectively. Also, Mz+(aq) represents a metal ion
in an aqueous solution. The dotted and the broken lines represent states
of the system where the desorbed state corresponds to an electron in the
metal and a solvated ion in the solution. The broken line corresponds to a
more positive potential applied to the metal surface than that shown by the
dotted line.

an ensemble of the order of 1023 atoms, the times resulting for the
desorption of a single adatom are in the range of 1017 and 1052 s,
which are extraordinarily long times (the age of the universe is of
the order of 4 × 1017 s). These estimations show that any attempt
at attaining an adsorption–desorption equilibrium would be unsuc-
cessful for metallic atoms at room temperature. Once a free atom
arrives at the surface, it can be practically stated that it will never
leave it at 300 K. However, when electrochemistry is put to work,
the situation changes drastically, as illustrated in Fig. 1. The dotted
curve introduces an alternative state to that of the desorbed adatom.
This new state corresponds to an ion core solvated in solution and an
electron (or the number of electrons corresponding to the valence)
in the electrode. The energetic situation of the latter can be changed
by the application of a potential difference, as we shall show below,
so that one can have a state with an even lower energy, as marked by
the dashed line. Thus, the activation energy for adatom desorption
can be practically changed by the application of a suitable potential
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to the substrate. It must be pointed out that although we have used so
far the term energy, the proper thermodynamic quantity to consider
in the case of the present system is the Gibbs free energy, G, since
the usual experimental conditions are those where the pressure and
the temperature of the system are given.

The state of the art of several underpotential deposition (UPD)
systems and a thorough compilation of them prior to 1996 have been
given in the book by Budevski et al.8 More recent reviews have been
given by Aramata6 and Herzog and Arrigan,18 the latter in an analyt-
ical context. Although the evidence of UPD phenomena dates back
to the 1930s (see Chap. 3 in Ref. [8] for a historical review), ex-
perimental studies on UPD on polycrystalline surfaces bloomed in
the 1960s and the 1970s. At the end of the latter decade, Kolb23 re-
viewed the work on UPD on polycrystalline surfaces. At this stage,
modeling on this phenomenon was phenomenological, being related
to a thermodynamic description of the problem. In this respect, Kolb
and coworkers14, 24 found a linear relationship between the underpo-
tential shift and the work function that was interpreted in terms of
the differences of the electronegativities of the metals participating
in the binding. Following this line of modeling, Trasatti46 proposed
an ionic bond model to explain the correlation between underpo-
tential shift and work function differences. A quantum mechanical
description of UPD in terms of the jellium model that revealed the
role played by the work function and the surface energies of the
metals involved in the UPD problem was introduced by Leiva and
Schmickler.27–29 The use of single-crystal surfaces to study the UPD
phenomenon started at the end of the 1970s, providing a new insight
into this problem.

Figure 2 shows typical examples of UPD on single-crystal sur-
faces, that is, potentiodynamic runs obtained for the deposition of
Tl on Ag(111) and Ag(100) single-crystal surfaces. The technique
employed to get these results involves the application of a linear po-
tential sweep to the working electrode, with the measurement of the
resulting current I . This is usually referred to the electrode area,
A, so the most commonly reported quantity is the current density
i = I/A. The latter can be written as

i = −Q
dθ

dt
, (2)

where Q is the charge flowing for the desorption of a complete
monolayer, and θ is the coverage degree. If the potential sweep rate
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Figure 2. Cyclic voltammograms corresponding to the electrodesorption/adsorption
of Tl+ ions on a Ag(111) surface (a) and on a Ag(100) surface (b). The electrolyte
was 1.5× 10−3 M TlClO+

4 , 0.5 M NaClO+
4 , 10−2 M HClO4. The potential sweep

rate was 10 mV/s and the temperature was 298 K. (Reprinted from Ref. [45], with
permission from Elsevier.)

is low enough so that equilibrium conditions are approached, (2)
shows us that a voltammogram such as that shown in Fig. 2 should
give us the derivative of the adsorption isotherm. Furthermore, the
hysteresis observed between the positive and the negative sweep is
a measure of the deviation from equilibrium, so the peak shift be-
tween the upper and lower parts of the figure tells us something
about the nature of the different processes involved. Also, several
processes are observed on the different single-crystal faces, which
involve the formation of different phases on the surface. Their nature
was discussed by Lorenz and coworkers.44 The fact that even a sim-
ple system shows the existence of several phases (and, thus, phase
transitions) on a well-defined single crystal, as well as hysteresis, in-
dicates that UPD systems may be a rich area for experimental and
theoretical work.

Let us now analyze UPD in terms of the classical approach em-
ployed to study the deposition of a metal on a foreign substrate,8 as
summarized in Fig. 3. According to this view, the deposition mecha-
nisms are considered taking into account two main parameters. One
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Figure 3. Different metal growth types depending on the metal ad-
sorbate–metal substrate interaction and the lattice misfit. (a) Ad-
sorbate–adsorbate interaction, UM

bind, is stronger than adsorbate—

substrate interaction, UM/S. Only overpotential deposition is ob-
served, with the formation of adsorbate metal clusters on the surface
(Volmer–Weber mechanism). (b) Substrate–adsorbate interaction,
UM/S, is stronger than adsorbate–adsorbate interaction, UM

bind. Lat-

tice misfit, ε%
mf, is negligible. A pseudomorphic layer is observed at

underpotential. Overpotential growth takes place in a layer-by-layer
fashion (Frank–van der Merwe mechanism). (c) Substrate–adsorbate
interaction, UM/S, is stronger than adsorbate–adsorbate interaction,

UM
bind . Lattice misfit, ε%

mf, is important. A first underpotential-de-
posited layer is formed, which exhibits a significant strain and is
different from its bulk three-dimensional phase. Further overpoten-
tial growth involves the formation of unstrained three-dimensional
clusters that resemble the bulk structure of the deposit (Stranski–
Krastanov mechanism).

of them is the interaction of the adsorbate with the substrate, U M/S,
with respect to the bulk interactions of metal being deposited, U M

bind,
and the other is the lattice misfit, which can be defined according to
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ε%
mf =

abulk
S − abulk

M

abulk
S

× 100, (3)

where abulk
S and abulk

M denote the substrate and the adsorbate bulk
lattice parameters, respectively.

When U M
bind is lower than U M/S, a more negative potential than

the reversible one is necessary to generate the new phase. Metal de-
position under these conditions is denominated “overpotential depo-
sition” (OPD). Since the homoatomic binding is stronger than the
heteroatomic one, it is expected that the deposited atoms will try
to join each other instead of wetting the surface, with the concomi-
tant formation of adsorbate islands on the substrate surface (Fig. 3a).
This is the so-called Volmer–Webe deposition mechanism. The op-
posite case, U M

bind > U M/S, means UPD. We will address the ther-
modynamics of UPD and OPD in more detail below. Depending on
ε%

mf, two different UPD mechanisms may result. If ε%
mf is negligible,

the UPD growth will closely follow the morphology of the substrate,
yielding the so-called pseudomorphic growth. The usual situation is
that one or two monolayers can be deposited onto the substrate in the
UPD region without appreciable strain. The application of a negative
overpotential would lead this system to the so-called Frank–van der
Merwe layer-by-layer growth (see Fig. 3b). On the other hand, if ε%

mf
is important, UPD is still possible, but the growth may no longer be
pseudomorphic. In any case, a strained monolayer results, with char-
acteristics different from those of the bulk metal. A negative overpo-
tential would lead this system into the so-called Stranski–Krastanov
deposition mechanism, where metal islands will occur on the surface
of the strained monolayer (Fig. 3c). This third case, where ε%

mf is rel-
atively large, may in turn be subdivided into two types of growth.
On the one hand, if ε%

mf is positive and the adsorbate tries to fol-
low the substrate structure, an expanded structure will result with
respect to bulk metal. This will imply a work function of the system
lowered not only with respect to bulk substrate but also with respect
to bulk metal, providing a favorable scenario for anion adsorption
due to the shift of the potential of zero charge of the surface. On
the other hand, if ε%

mf is negative and large, repulsion between metal
adatoms will prevent them from following the structure of the sub-
strate, with the occurrence of expanded structures with respect to the
substrate, which may be higher-order commensurate or incommen-
surate. Rojas38 has analyzed the different types of atomic packing



246 M. Cecilia Giménez et al.

Table 1.
Crystallographic misfits as defined according to (3)
(first line) and the status of the monolayer (second

line) according to the results of an off-lattice Monte
Carlo simulation.

Substrate/adsorbate Cu Pd Pt Au Ag
Cu 0 −7.6 −8.4 −12.9 −13.2

p p p e e

Pd 7.0 0 −0.7 −4.9 −5.3
p p p p p

Pt 7.7 0.7 0 −4.1 −4.5
p p p p p

Au 11.4 4.7 4.0 0 −0.3
c p p p p

Ag 11.7 5.0 4.3 0.3 0
c p p p p

Pseudomorphic systems are reasonable candidates for lattice model
simulations. Taken from Ref. [39].
p pseudomorphic, e expanded with respect to a 1 × 1 layer on the
substrate, c compressed with respect to a 1×1 layer on the substrate.

at the surface for binary systems involving Ag, Au, Pd, Pt, and Cu,
by means of an off-lattice Monte Carlo simulation technique. These
simulations allowed the positions of adsorbate atoms to relax freely
to their equilibrium values, without enforcement of any underlying
lattice positions. The results are summarized in Table 1. Those sys-
tems remaining commensurate are good candidates for lattice model
simulations, such as those that are the subject of the present work.

II. SOME THERMODYNAMICS ON THE UPD
PHENOMENON

We discuss now the electrochemical problem in some more detail.
To do this, it is useful to draw a thermodynamic cycle, as shown
in Fig. 4. Electrochemical measurement systems usually consist of
three electrodes: the so-called working electrode, where the pro-
cesses under study take place, the reference electrode, with respect
to which the potential applied to the working electrode is measured
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Figure 4. Thermodynamic cycle representing the transfer of a
core ion of a metal adsorbed on a substrate to the bulk metal
in an electrochemical system.

(this remains unpolarized), and the counter electrode, which pro-
vides a circuit for electron flow, acting as an electron source or sink,
depending on the reactions taking place at the working electrode.
For the sake of simplicity, in this scheme we consider the working
and reference electrodes only. Alternatively, our reference electrode
could be thought to be infinitely large, playing at the same time the
role of the counter electrode, providing the current necessary to com-
pensate the reactions at the working electrode without changing its
potential. Furthermore, we will assume that the reference electrode
is made of the same metal as that being deposited on the working
electrode and that both the reference and the working electrodes are
immersed in a solution containing the core ions Mz+ of the metal
being deposited. Let us assume first that the potential difference is
measured under zero current flow conditions, and that equilibrium
has been established. Let us further assume that a certain number of
atoms have been deposited on the working electrode, which is made
of the substrate material. Thus, the ion cores Mz+ of the deposit
on the substrate are in equilibrium with the ion cores in the bulk
metal of the reference electrode. Thus, the free-energy change for
the transfer of an ion from the deposit to the bulk metal, say, �GT,
must be equal to zero:

�GT = 0. (4)
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An alternative pathway for the same ion is also shown in Fig. 4,
involving the corresponding free-energy changes from 1 to 7, i.e.,
the free energy change required to take the core ion Mz+ out from
the surface of the substrate to a point in the metal. This can be sum-
marized in the following set of equations:

�G1 = −μM/S, (5)

�G2 = I+z, (6)

�G3 = −zeΦM2 , (7)

�G4 = ze (ΨM − ΨS) , (8)

�G5 = zeΦM1 , (9)

�G6 = −I+z, (10)

�G7 = μM, (11)

whereμM/S is the chemical potential of the metal atoms adsorbed on
the substrate, I+z is the energy required to remove z electrons from
the metal atom, ΨS and ΨM are the outer potentials of the working
and the reference electrodes, respectively, and μM is the chemical
potential of the metal atoms in bulk metal. Use of (5)–(11) along

with the condition �GT =
7∑

i=1
�Gi leads to the equality

�φ = (ΨS − ΨM) = μM − μM/S

ze
, (12)

where �φ is the potential difference measured between the working
and the reference electrodes. If for some type of atomic arrangement
of the metal atoms on the substrate surface �φ > 0, we are in the
presence of the so-called UPD phenomenon. That is, the adsorption
of the first monolayer of adsorbate atoms may occur at potentials
that are positive with respect to the Nernst equilibrium potential.
On the other hand, if �φ < 0, this means that the atomic arrange-
ment with the chemical potential is less stable than the bulk metal
and could only be observed at overpotentials (OPD), constituting a
metastable state. In the case of UPD, (12) defines the so-called un-
derpotential shift,23 say, �φUPD, which is a measure of the stability
of the adatoms in a monolayer with respect to the bulk. To discuss
it in energetics terms, let us neglect for the moment entropic and
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volume effects, considering the case T = 0 and P = 0. This is
not a severe approximation in the case of the formation of a pure
monolayer, as we have discussed previously.34 In such a case, the
configurational entropy is zero, and the vibrational entropic and vol-
ume changes were found to provide a very small contribution to the
underpotential shift. In this limit �φUPD can be calculated from the
binding energy of the adatoms on the monolayer and the bulk bind-
ing energy of the metal, U M

bind,

�φUPD ≈ U M
bind −

(
UM/S −US

)
/NM/S

ze
, (13)

where UM/S is the energy of the adatoms plus the substrate system,
US is the energy of the naked substrate, and NM/S is the number of
adsorbate atoms. Note that we have replaced the differential quan-
tity μM/S by the term

(
UM/S −US

)
/NM/S. In fact, by neglecting

entropic effects, μM/S should be given by the derivative of US/M
with respect to the number of metal atoms in the system, say, NM,

μM/S ≈
(
∂UM/S

∂NM/S

)

P,T
, (14)

which in principle could be different from
(
UM/S −US

)
/NM/S.

However, if we model the UPD monolayer as an infinite system, the
binding energy of the adatoms, namely, UM/S − US, can be consid-
ered to be an extensive quantity and can be written as

UM/S −US = NMU M/S, (15)

where U M/S is the binding energy per atom, a quantity that, in princi-
ple, is independent of the system size owing to the absence of border
effects. Thus, differentiation of (15) yields

μM/S ≈
(
∂UM/S

∂NM/S

)

P,T
= U M/S =

(
UM/S −US

)

NM/S
. (16)

The physical meaning of (16) is that if we assembled a mono-
layer atom by atom, most of the time we would obtain the same
energy as the binding energy of an adatom in the monolayer. This
is analogous to the considerations that are made concerning the
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disassembly of a bulk metal by removing atoms in a kink position.8

This equation is a consequence of the extensivity assumption made
in (15) and would be not be valid for a nanometric system or for a
metal deposit where border effects are not negligible.

Note that in the derivation of (12) no current flow through an
external circuit was considered. In fact, in the third step the elec-
trons of the adatom were brought back to the working electrode and
only the transfer of an ion was taken into account. In other words,
we considered what we usually denominate an “N, P, T system.” An
alternative derivation can be made taking into account electron ex-
change between the system and the environment. Let us now as-
sume that the working and the reference electrodes are connected
to two infinite electronic reservoirs with electrochemical potentials
μ̃w

e and μ̃r
e, respectively, thus providing a Volta potential difference

ΨS−ΨM = μ̃r
e− μ̃w

e (the contacts are made of the same material, so
the chemical part of the electrochemical potential is the same). These
reservoirs may remove electrons from (or inject electrons into) the
system by keeping ΨS − ΨM constant. With these boundary condi-
tions, the proper thermodynamic function to study the system is

G̃ = U + PV − T S − Nw
e
∼
μ
w

e − Nr
e
∼
μ

r

e (17)

where Nw
e and Nr

e are the number of electrons in the W and the R
electrodes respectively.

On the other hand, the energy of the system can be written as

U = T S− PV +Nw
e
∼
μ
w

e +Nr
e
∼
μ

r

e+NM μ̃M+z +NM/Sμ̃M+z/S (18)

NM/S is, as before, the number of adsorbate atoms on the sub-
strate S, NM is the number of M bulk atoms making the R electrode,
μ̃M+z and μ̃M+z/S are the electrochemical potentials of the M+z core
ions in the reference and working electrode respectively.

Let us now consider the transfer of a single M atom from
the W to the R electrode, assuming that the atom is transferred
as a neutral species. Thus we have that �Nw

e = −z = −�Nr
e ,

�NM/S = −�NM = −1, so the two previous equations become:

�G̃ = �U +�(PV )−�(T S)+ z
∼
μ
w

e − z
∼
μ

r

e (19)

and

�U = �(T S)−�(PV )− z
∼
μ
w

e + z
∼
μ

r

e + μ̃M+z − μ̃M+z/S (20)
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Taking into account that the chemical potentials of the M atoms

in the reference and working electrodes are μM = μ̃M+z + z
∼
μ

r

e and

μM/S = μ̃M+z/S + z
∼
μ
w

e and combining eqs. (19) and (20) we get:

�G̃ = μM − μM/S + z
∼
μ
w

e − z
∼
μ

r

e = μM − μM/S − zeη (21)

The equilibrium condition �G̃ = 0 leads, as before, to Eq. (12),
which provides the basis for computer simulations of the present
system. In fact, this equation defines the relationship between a pa-
rameter that is experimentally controlled, that is, the overpotential η,
and its counterpart in computer simulations, which is the chemical
potential of the atoms being deposited μM. In principle, since we are
dealing with macroscopic systems, simulations within different en-
sembles should lead to the same conclusions, i.e., canonical (NVT)
as well as grand canonical simulations could be employed to study
UPD systems. However, the grand canonical conditions are closer to
the experimental ones, and the control of the chemical potential in
many cases provides a straightforward emulation of the experimental
conditions, so this is the technique more frequently applied. Further-
more, if nanosystems are under consideration, this is the only valid
alternative, since the equivalence between ensembles is no longer
valid for them.19

III. DESCRIPTION OF THE MONTE CARLO
SIMULATION METHOD AND THE MODEL

FOR METAL DEPOSITION

In this section we will describe the model and simulation method
employed for the results presented in this chapter.

1. The Lattice Model

Lattice models are widely used in computer simulations to study
the adsorption of atoms and molecules on surfaces, because they al-
low us to deal with a large number of particles at a relatively low
computational cost. Furthermore, the assumption that particle ad-
sorption can only occur at definite sites is a good approximation
for some systems. Such is the case of the adsorption of Ag on Au,
where there is no crystallographic misfit. For some systems, one also
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has strong evidence, obtained by performing continuum computer
simulations using the canonical Monte Carlo method, that indicates
that at least one of the phases present during the UPD on (100)
surfaces possesses a pseudomorphic structure.39 Continuum Monte
Carlo simulations have shown that an adsorbate monolayer sponta-
neously acquires a (1 × 1) coincidence cell, in agreement with the
experimental finding at low underpotentials.13

However, it should be recognized that continuum Hamiltonians,
where particles are allowed to take any position in space, are much
more realistic in cases where the epitaxial growth of an adsorbate
leads to incommensurate adsorbed phases40 or to adsorbates with
large coincidence cells.

Throughout this chapter, we report results obtained by using the
grand canonical Monte Carlo simulation applied to a lattice model
that represents the square (100) surface lattice of a metal substrate.
Solvent effects are neglected, but this should not be a major prob-
lem for the metal couples considered, since the partial charge on the
adatoms is expected to be small, thus minimizing the metal–water
dipole interactions. The model also neglects all kinds of anion ef-
fects that may coadsorb during the metal deposition process. This
approximation may lead to some underestimation or overestimation
of the underpotential shift,24 depending on whether anions adsorb
more strongly or more weakly on the adsorbate than on the substrate,
respectively.42

Square lattices with periodic boundary conditions are used to
represent the surface. Each lattice node represents an adsorption site
for an atom. The adsorbate may adsorb, desorb, or hop between
neighboring sites. Also, atoms of the same nature as the substrate
may only move on the surface. In this way, the model represents an
open system for one of its components (the adsorbate), as in the case
of adatom deposition on a foreign surface.

2. The Grand Canonical Monte Carlo Method

One of the most appealing characteristics of the grand canoni-
cal Monte Carlo method is that, as in many experimental situa-
tions, the chemical potential μ is one of the independent variables.
This is the case of low-sweep-rate voltammetry, an electrochemical
technique where the electrode potential can be used to control the
chemical potential of species at the metal–solution interface. This
technique offers a straightforward way of obtaining the adsorption
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isotherms provided the sweep rate is slow enough to ensure equi-
librium for the particular system considered. At the solid–vacuum
interface, the chemical potential is related to the vapor pressure of
the gas in equilibrium with the surface. However, as we discussed
in Sect. I, chemical potential sweeps under equilibrium conditions
cannot be achieved at the solid–vacuum interface because the des-
orption process is too slow owing to the high energy barrier that
the metal adatoms have to surmount (typically of the order of some
electronvolts).

The 2D adsorption system is taken as a square lattice with M =
L × L sites (in the present simulations, we will take L = 100). Each
adsorption site is labeled by index 0, 1, or 2, depending on whether
it is empty, occupied by one atom of the same kind as those of the
substrate, or occupied by one adsorbate atom, respectively.

Following the procedure proposed by Metropolis and coworkers,5

the acceptance probability for a transition from state −→n to −→n ′ is
defined as

W−→n →−→n ′ = min(1,
P−→n ′
P−→n

), (22)

where P−→n is the probability of finding the system in state −→n , and
P−→n ′ is the probability of finding the system in state −→n ′, so that de-
tailed balance is granted.

In the grand canonical Monte Carlo simulation, three different
types of events are allowed for, as follows:

1. Adsorption of an adsorbate atom onto a randomly selected
lattice site

2. Desorption of an adsorbate atom from an occupied lattice site
selected at random

3. Motion of an atom from the lattice site where it is adsorbed
to one of its four nearest neighboring sites.

Let us now describe the Monte Carlo implementation of these
events in detail.

(i) Change of Occupation

This process corresponds to the first two items enumerated in
the previous section, which can be considered as a Monte Carlo trial
consisting of an attempt to change the occupation state of a randomly
selected site.
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Let us call pio (probability of input/output) the probability of
making this kind of trial. Then, if a random number within the inter-
val [0, 1) is smaller than pio, a change of occupation is attempted.
In this way, one of the M adsorption sites is selected at random with
probability 1/M . By defining the matrix element surface(i, j), such
that it contains the occupation state of the site (i, j), one has that:

• If surface(i, j) = 0, the site was empty and an attempt to
adsorb a particle on it is made [the state would change to
surface(i, j) = 2]. In this case, the change in the number of
particles will be �N = 1 and the change in energy will be
�E = Eads, where Eads is the adsorption energy associated
with the adsorbate particle coming to position (i, j), accord-
ing to the corresponding environment.

• If surface(i, j) = 1, it means that the site is already occupied
by a substrate particle, so the trial ends.

• If surface(i, j) = 2, one has that the site is occupied by an
adsorbate particle. Then, an attempt to desorb it is made [the
state would change to surface(i, j) = 0]. In this case, the
change in the number of particles will be �N = −1, and
the change in energy will be �E = −Eads.

The acceptance probability of the trial for the first or the third
case is

p = min
[

1, exp
(
−�E − μ�N

kbT

)]
. (23)

(ii) Diffusion

The probability of occurrence of a diffusion event is comple-
mentary to that corresponding to the change of occupation, namely,

pdif = 1 − pio. (24)

To allow the diffusion process on the surface, the particles are
labeled from 1 to N (total number of particles) and an attempt to
move all particles, each one toward a neighboring site, is made. For
each particle, one of the four first neighboring sites is selected with
probability 1/4. If the site is occupied, the trial ends. However, if
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the site is empty, an attempt to move the particle toward the selected
neighboring site is made with probability

p = min
[

1, exp
(
−�E

kbT

)]
, (25)

with
�E = Efinal

ads − E initial
ads , (26)

where E initial
ads is the adsorption energy of the particle on the site ini-

tially occupied by it, and Efinal
ads is the adsorption energy on the final

site where diffusion is attempted.

(iii) Calculation of the Coverage

During the dynamic evolution of the system, the relevant ther-
modynamic properties are calculated, after disregarding a large
enough number of Monte Carlo steps to allow for equilibration.
In this way, average values of instantaneous magnitudes are stored
during each simulation run. For example, the average coverage of
the adsorbate atoms 〈θ〉Ads, at a given chemical potential μ, is cal-
culated as the average of the instantaneous value, θ(μ)Ads,i, which
is defined as follows:

θ(μ)Ads,i = NAds,i

M − NSu
, (27)

where NAds,i is the number of adsorbate atoms, M is the total num-
ber of sites, and NSu is the number of substrate-type atoms present
on the surface at the time step i .

3. Interatomic Potential: The Embedded-Atom Method

A very important feature to be taken into account when comparing
the results of a simulation with experiments is the quality of the in-
teratomic potentials used to perform the simulations. In this work,
the embedded-atom method (EAM)11 is used, because it is able to
reproduce important characteristics of the metallic binding, such as
the equilibrium lattice constants and heats of solution of the binary
alloys.
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The EAM considers that the total energy Utot of an arrangement
of N particles may be calculated as the sum of energies Ui , corre-
sponding to individual particles, that is,

Utot =
N∑

i=1

Ui , (28)

where Ui is given by

Ui = Fi (ρh,i )+ 1

2

∑

j �=i

Vij(rij). (29)

Here, Fi is the embedding function and represents the energy
necessary to embed an atom i in the electronic density ρh,i , at the
site where this atom is located. ρh,i is calculated as the superposition
of the individual electronic densities ρi (rij):

ρh,i =
∑

j �=i

ρi (rij). (30)

Thus, the attractive contribution to the embedded-atom potential
is given by the embedding energy, which accounts for many-body
effects.

On the other hand, the repulsion between ion cores is repre-
sented through a pair potential Vij(rij), which only depends on the
distance between the cores ri j :

Vij = Zi (rij)Z j (rij)

rij
, (31)

where Zi (rij) may be envisaged as a sort of effective charge, which
depends on the nature of particle i .

It is worth mentioning that to obtain reliable interatomic poten-
tials, the energies resulting from the application of the EAM have
been parameterized by fitting available experimental data, such as
elastic constants, dissolution enthalpies of binary alloys, bulk lattice
constants, and sublimation heats.11
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4. Surface Defects

Concerning the electrodeposition process and owing to the presence
of surface defects, one may expect not only the formation of 2D
phases but also of 0D and 1D phases.8 In fact, Fig. 5 shows different
kinds of surface defects. The 0D phases are associated with the ad-
sorption of individual particles on single surface defects, such as va-
cancies or kink sites (Fig. 5b). On the other hand, the 1D phases are
associated with the step decoration (Fig. 5c). Finally, Fig. 5d shows
the adsorption of a complete monolayer forming a 2D phase.

The simulation of annealing processes has often been used to
obtain minimal-energy structures or to solve ergodicity problems.35

A suitable way to implement these simulations is by using the canon-
ical Monte Carlo method at different temperatures. In the present
case, simulated annealing is used to obtain different surface defects,
such as islands of various sizes and shapes. In all cases the initial
state corresponds to a coverage degree of θ = 0.1 substrate atoms
distributed at random. Simulations start at a very high initial tem-
perature T0, of the order of 104 K, and the system is later cooled
following a logarithmic law:

Tf = T0 K Ncycles, (32)

Figure 5. Surface defects. (a) 1 terrace sites; 2 step sites; 3 kink sites. (b)
Adsorption on kink sites. (c) Adsorption on steps. (d) Adsorption on a com-
plete monolayer. (Reprinted from Ref. [15], with permission from Elsevier.)
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where Tf is the final temperature, Ncycles is the number of cooling
steps, and K is a constant between 0 and 1 (in the present case, K =
0.9 is used). Here, a Monte Carlo step consists of the diffusion of all
particles present on the surface, as described in Sect. III.2. A certain
number of Monte Carlo steps were run at each temperature and the
simulation stopped when Tf was reached.

In general, this technique is often used to reach equilibrium con-
figurations. In these cases, a large number of steps are needed for
each temperature. However, since our goal is to obtain far-from-
equilibrium configurations of substrate islands, a relatively small
number of Monte Carlo steps were used. As expected, the use of
few Monte Carlo steps, which corresponds to fast cooling, generates
a large number of small islands. On the other hand, by using a large
number of Monte Carlo steps, which corresponds to slow cooling,
one observes the coarsening of the islands, so one generates bigger
and more compact aggregates (the limiting case would be to obtain
a single island, as in the equilibrium situation).

5. Energy Tables

One of the main advantages of lattice models is their simplicity:
since the distances between the adsorption nodes are fixed, the en-
ergy values that the system can take become reduced to a discrete
set. Furthermore, the potentials used are relatively short ranged, so
a very important simplifying assumption can be made to obtain the
adsorption energies Eads.

Let us consider the adsorption (desorption) of a particle at a
node immersed in a certain environment, as shown in Fig. 6. The
adsorption site for the particle is located in the central box, and
the calculation of the interactions is limited to a circle of radius R.
Then, the adsorption energy for all the possible configurations for
the environment of the central atom can be calculated before the
simulation. The present results were obtained considering configu-
rations involving first-, second-, and third-nearest neighbors, giving
a total of 13 sites, including the central atom (under consideration).
Each site has three possible occupation states: 0 (empty), 1 (occu-
pied by a substrate-type atom), or 2 (occupied by an adsorbate-type
atom). Therefore, there are 312 = 531, 441 possible configurations,
depending on the different environments that an atom can have on
the surface. Each possible value of Eads is then calculated as the
difference of the total energies of the system with and without the
central atom.
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Figure 6. Environment in-
volved in the calculation of the
adsorption energy. The sites
involved are numbered to dis-
tinguish the different config-
urations. The central site is
the darkest and the color of
the sites is clearer as we con-
sider first, second, and third
neighbors.

One advantage of the Monte Carlo method implemented is that
all the adsorption energies of an atom can be tabulated, so during the
Monte Carlo simulation the most expensive numerical operations
are reduced to the reconstruction of the number I that characterizes
the configuration surrounding the particle on the adsorption node.
Computationally speaking, I is nothing but the index of the array in
which the energy is stored.

IV. ADSORPTION ISOTHERMS

In this section we will show the simulations of adsorption isotherms
for several systems. We will study the influence of the temperature
and the influence of surface defects on the adsorption of a metal
monolayer on a different substrate.

1. Systems Studied and Adsorption Energies

In Fig. 7, 25 relevant adsorption configurations, taken from the
531, 441 that are possible for the environments that an atom can
have on the surface, are shown. The corresponding adsorption en-
ergies are summarized, as illustrative examples, in Table 2 for the
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Figure 7. Typical configurations, taken from the 531, 441 possible ones, which an
adsorbing atom can have on the surface. A adsorbate-type atoms; S substrate-type
atoms. (Reprinted from Ref. [16], with permission from the American Chemical
Society.)

systems studied, namely, Ag on Au(100), Au on Ag(100), Ag on
Pt(100), Pt on Ag(100), Au on Pt(100), Pt on Au(100), Pd on
Au(100), and Au on Pd(100).

It is interesting to compare different physical situations which
can be expected as a consequence of the energies involved in the
configurations analyzed. Let us start by considering configurations
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Table 2.
Energy differences (eV) associated with the deposition of an atom

in the environments represented in Fig. 7 for the adsorption systems
considered in this work. (Reprinted from Ref. [16], with permission

from the the American Chemical Society.)

Config. Ag/Au Au/Ag Ag/Pt Pt/Ag Au/Pt Pt/Au Au/Pd Pd/Au
1 −2.580 −3.106 −3.127 −4.224 −3.672 −4.228 −3.283 −3.117
2 −2.866 −3.566 −3.340 −4.828 −4.160 −4.847 −3.901 −3.502
3 −3.126 −3.987 −3.521 −5.397 −4.585 −5.434 −4.444 −3.862
4 −3.366 −4.380 −3.681 −5.938 −4.965 −5.986 −4.453 −3.863
5 −3.591 −4.744 −3.825 −6.455 −5.300 −6.508 −5.358 −4.535
6 −2.582 −3.142 −3.122 −4.267 −3.705 −4.246 −3.335 −3.137
7 −2.585 −3.177 −3.116 −4.310 −3.738 −4.254 −3.388 −3.157
8 −2.585 −3.177 −3.116 −4.310 −3.738 −4.264 −3.388 −3.157
9 −2.588 −3.212 −3.110 −4.353 −3.770 −4.282 −3.439 −3.178
10 −2.590 −3.247 −3.105 −4.396 −3.802 −4.300 −3.490 −3.198
11 −2.842 −3.563 −3.303 −4.837 −4.130 −4.833 −3.878 −3.497
12 −2.868 −3.599 −3.332 −4.869 −4.188 −4.863 −3.948 −3.521
13 −2.825 −3.567 −3.275 −4.852 −4.112 −4.817 −3.863 −3.500
14 −2.810 −3.541 −3.259 −4.826 −4.071 −4.785 −3.815 −3.485
15 −3.076 −3.947 −3.455 −5.370 −4.495 −5.388 −4.347 −3.833
16 −2.580 −3.106 −3.126 −4.224 −3.671 −4.227 −3.282 −3.116
17 −2.840 −3.529 −3.309 −4.792 −4.103 −4.814 −3.833 −3.477
18 −3.002 −3.470 −3.692 −4.634 −4.336 −4.708 −3.905 −3.497
19 −2.917 −3.473 −3.564 −4.651 −5.139 −4.640 −3.885 −3.450
20 −3.149 −3.859 −3.174 −5.185 −4.626 −5.193 −4.382 −3.777
21 −3.250 −3.760 −4.010 −4.996 −4.758 −5.048 −4.351 −3.758
22 −3.230 −3.770 −3.976 −5.009 −4.747 −5.029 −4.363 −3.747
23 −3.211 −3.780 −3.942 −5.022 −4.736 −5.010 −4.374 −3.736
24 −3.358 −3.498 −3.534 −6.257 −4.808 −6.176 −4.796 −4.384
25 −3.731 −4.287 −4.621 −5.661 −5.505 −5.635 −5.176 −4.223

1–17 and 24, which correspond to environments involving only ad-
sorbate atoms. By comparing configurations 1–5, one can get insight
into the influence of the first neighbors, which in all cases have a fa-
vorable effect on the adsorption of the central atom. On the other
hand, by comparing cases 6–10, one can observe the influence of
second neighbors (in the absence of first neighbors) and one may
conclude that, except for Ag/Pt, in all the remaining cases they favor
the adsorption of an atom at the central site. The direct influence of
third neighbors is almost negligible, as follows from the comparison
of configurations 1 and 16.
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Configurations 19 and 20 are meaningful when considering ad-
sorption at step sites. In these cases, the data in Table 2 indicate that
upon adsorption on Pt steps, Ag and Au atoms will tend to avoid
the presence of neighboring homoatoms. This fact is no longer un-
expected, since both Ag and Au exhibit an important compressive
surface stress when adsorbed on Pt. On the other hand, in the re-
maining systems, the adatoms would prefer to adsorb beside other
adatoms.

Configurations 21–23 represent the environment of the three
kinds of kink sites that an atom can find on the surface. By compar-
ing configurations 20 and 22 for all systems, one notices that for the
systems Ag/Au, Ag/Pt, and Au/Pt adsorption onto kink sites (config-
uration 22) is favored as compared with step decoration (configura-
tion 20), whereas for the systems Au/Ag, Pt/Ag, Pt/Au, Au/Pd, and
Pd/Au the growth of a monodimensional phase at step sites should
be preferred (configuration 20).

A similar trend can be noticed when comparing configurations
14 and 19, which correspond to the adsorption of an adatom close
to a step of the same (configuration 14) or a different (configuration
19) nature. For the systems Ag/Au, Ag/Pt, Au/Pt and Au/Pd, config-
uration 19 is more stable than configuration 14, so in these cases the
adsorption of a new atom at the step of a substrate island should be
more favorable than adsorption on the edge of an adsorbate island.
On the other hand, the opposite trend is observed for the systems
Au/Ag, Pt/Ag, Pt/Au, and Pd/Au.

2. Evaluation of Adsorption Isotherms for Defect-Free
Surfaces

We will first analyze the adsorption isotherms on defect-free
surfaces.

(i) UPD Compared with OPD: First-Order Phase Transitions

Adsorption isotherms were calculated for the different systems
in the case of defect-free surfaces. For a fixed temperature and
chemical potential, a simulation has to be performed to evaluate
the average coverage degree corresponding to the equilibrium state
of the system. By repeating this procedure for different values of
the chemical potential, one obtains the isotherms, such as those
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Figure 8. Adsorption isotherms of four model systems at T = 300 K. Full
lines and circles, adsorbate/substrate isotherms; dashed lines and diamonds,
adsorbate/adsorbate isotherms.

shown in Fig. 8 for the cases of the systems Ag/Au(100), Ag/Pt(100),
Au/Ag(100), and Pt/Ag(100).

In all examples shown in Fig. 8, each isotherm exhibits an
abrupt jump in the coverage degree, as expected for the case of a
first-order phase transition.

The isotherms were obtained at T = 300 K and each graph
includes two of them, which can generically be symbolized as
A/S(100) and A/A(100), where A and S denote adsorbate and sub-
strate, respectively. Thus, the comparison of the behavior of the
heteroatomic A/S(100) system with that of the pure metal A/A(100)
system allows us to determine the existence of either UPD or OPD.

The difference between the chemical potentials �μ = μA/S −
μA, at which the transition occurs for the systems A/S(100) and
A/A(100), is then a measure of the underpotential shift, namely,

�φUPD = −�μ

ze0
. (33)
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Table 3.
Chemical potential (eV) at coexistence μcoex,

which is identified by the abrupt step observed in
the adsorption isotherms. Results corresponding to

different systems and obtained at T = 300 K.
(Reprinted from Ref. [16], with permission from

the the American Chemical Society.)

Substrate/adsorbate Ag Au Pt Pd
Ag −2.83 −3.87 −5.30 –
Au −3.00 −3.95 −5.29 −3.78
Pt −3.38 −4.37 −5.83 –
Pd – −4.21 – −3.92

Table 4.
Excess of chemical potential (eV) calculated as
the difference of the values of μcoex in Table 3

for the systems A/S(100) and A/A(100).
(Reprinted from Ref. [16], with permission
from the the American Chemical Society.)

Substrate/adsorbate Ag Au Pt Pd
Ag 0.00 0.08 0.53 –
Au −0.17 0.00 0.54 0.14
Pt −0.55 −0.42 0.00 –
Pd – −0.26 – 0.00

Table 3 summarizes the approximate values for the chemical
potential at which transition occurs for each system, while Table 4
shows the excess of chemical potential for the systems A/S(100),
calculated as the difference of the values listed in Table 3 for the sys-
tems A/S(100) and A/A(100). Negative values indicate UPD, while
positive ones correspond to OPD.

According to the results shown in Table 4, UPD is predicted for
the systems Ag/Au, Ag/Pt, Au/Pt, and Au/Pd, and OPD is expected
for the remaining systems. Although this prediction is in agreement
with the experimental results for Ag/Au and Ag/Pt, it does not agree
with the experimental finding of UPD for Pd/Au.22 This discrepancy
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may be understood since the presence of adsorbed anions may yield
part of the energy excess required for the observation of UPD.

(ii) The Influence of Temperature
on the Isotherms

Adsorption isotherms have also been calculated, for the systems
studied , at different temperatures, as shown in Fig. 9 for four typical
cases.

It can be observed that, in general, at low temperatures the
isotherms exhibit an abrupt jump at a certain “coexistence” chem-
ical potential, as expected for first-order phase transitions. However,
at higher temperatures, the isotherms become smooth, approaching
the Langmuir-type isotherm. This behavior is due to the fact that at
high temperatures the lateral interaction among the adsorbed parti-
cles becomes less important. The limiting case would be a Langmuir
isotherm, where interactions among adsorbed particles are no longer
present.

1
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Figure 9. Adsorption isotherms obtained for different temperatures of four
model systems. Full lines 300 K; long-dashed lines 1,000 K; dot-dashed
lines 1,500 K; dotted lines 2,000 K; dashed lines 3,000 K.
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For each system, there is a critical temperature that separates
two well-defined regions: the first one, where first-order phase tran-
sitions exist (abrupt jumps, at low temperatures), and the second one,
where one observes smooth isotherms (at high temperatures). The
exact calculation of that critical temperature is beyond the scope of
this work because it would involve a deeper and computationally de-
manding study with the aid of finite-size scaling techniques.

3. Study of the Influence of Surface Defects

To study the influence of surface defects on the adsorption
isotherms, simulations were performed in the presence of sub-
strate atoms in the monolayer, with a coverage degree of 0.1. As
described in Sect. III.4, the substrate-type atoms are present in the
form of islands, giving place to step and kink sites.

(i) Isotherms Corresponding to UPD Systems: The Effect
of Kinks and Steps as Compared with the Complete
Monolayer

As already discussed, for T = 300 K, the adsorption isotherms
on defect-free surfaces show an abrupt change of coverage degree
for a certain coexistence chemical potential. This situation turns out
to be different in the presence of surface defects, as shown in Fig. 10
for the systems Ag/Au, Ag/Pt, Au/Pd, and Au/Pt. In these cases the
coverage degree starts to rise smoothly at chemical potentials more
negative than the coexistence chemical potential. Relative coverage
degrees θk (θs) for kink (step) sites may be defined as the number of
occupied kink (step) sites divided by the total number of kink (step)
sites. Figure 10 shows the dependence of θk, θs, and the total cov-
erage degree θ on the chemical potential, μ. The behavior of these
isotherms indicates that kink sites are occupied first, then adsorption
takes place on step sites, and finally the rest of the surface becomes
covered. A careful inspection of this figure shows that the chemical
potential values at which θk = 0.5 are close to the corresponding
energy values for adsorption at kink sites (see configurations 21–23
in Fig. 7 and the corresponding values in Table 3). Something sim-
ilar occurs with the μ values at which θs = 0.5, which are close to
the energy values of configuration 20 in Fig. 7 (adsorption on step
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Figure 10. Adsorption isotherms obtained at T = 300 K in the presence of sur-
face defects, for the systems that present underpotential deposition. Full lines
and filled circles, adsorption isotherm for the complete monolayer; dashed
lines and open diamonds, adsorption isotherms for the step sites; dotted lines,
adsorption isotherms for the kink sites.

sites). However, it must be noticed that an abrupt jump is no longer
observed in the θk and θs isotherms, as expected for both 0D and 1D
systems.

It is very illustrative to analyze the final state of the sur-
face, for some typical systems, at different chemical potentials.
In fact, Fig. 11 shows frames corresponding to the final state of the
Ag/Pt(100) system obtained at six different chemical potentials.
Since the substrate island remains unchanged during the adsorption
process, it is concluded that the diffusion of substrate atoms at the
temperature considered (T = 300 K) is negligible. It is observed
that adsorbate atoms are adsorbed on the free sites of the surface
according to the preferences described above, that is, first they fill
the kink sites, then steps sites are decorated, and finally the rest of
the surface becomes covered. A similar behavior is observed for the
systems Ag/Au(100) and Au/Pt(100), which are not shown here for
the sake of space. However, a detailed view of the neighborhood of a
single Pt island is presented in Fig. 12 for the system Au/Pt, showing
the main features discussed above.



268 M. Cecilia Giménez et al.

Figure 11. Snapshots of the final state of the surface at six different chemi-
cal potentials (−4.27,−3.97,−3.66,−3.44,−3.40, and −3.06 eV) for the
system Ag on Pt(100), as obtained for T = 300 K. Light gray, Ag atoms;
dark gray, Pt atoms. (Reprinted from Ref. [16], with permission from the
American Chemical Society.)
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Figure 12. Final state of the surface at four different chemical potentials (−5.10,
−4.61, −4.50, and −4.39 eV) for the adsorption of Au on Pt. Defects are
those of a single Pt island. Open circles, gold atoms; filled circles, Pt atoms.
(Reprinted from Ref. [16], with permission from the the American Chemical
Society.)

(ii) Isotherms Corresponding to OPD Systems: The Formation
of Surface Alloys

Unlike the systems considered in Fig. 10, the systems Au/Ag,
Pt/Ag, Pd/Au, and Pt/Au do not present an appreciable widening
of the adsorption isotherms due to the presence of surface defects
(Fig. 13). Figure 13 also shows that the partial coverages θk and θs
for this type of system do not exhibit a clear-cut trend as in the case
of the systems depicted in Fig. 10. This can be understood through
a comparative analysis of configuration 20 against configurations
21–23 (see Fig. 7, Table 3). For these systems there is not a clear
preference for adsorption at steps or at kink sites, as compared with
adsorption on terraces, in contrast to the predictions for the systems
that exhibit UPD and are presented in Fig. 10.

From Fig. 13 it also follows that kink sites are not filled be-
fore step decoration, but instead both processes take place simul-
taneously. Furthermore, as pointed out above, configuration 14 is
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Figure 13. Adsorption isotherms in the presence of surface defects, calcu-
lated at T = 300 K for the systems that present overpotential deposition. Full
lines and circles, adsorption isotherm for the complete monolayer; dashed lines
and diamonds, adsorption isotherms for the step sites; dotted lines, adsorption
isotherms for the kink sites.

characterized by lower energy values than configuration 19, so atom
deposition at the steps of substrate islands becomes delayed as com-
pared with deposition at sites belonging to islands of the same na-
ture. It is also remarkable that, within the present model, all these
systems exhibit a positive excess of binding energy, and that the
binding energy of the adsorbate is larger than or similar to that of
the substrate.

For the systems Au/Ag, Pt/Ag, Pd/Au, and Pt/Au, adsorbate
atoms diffuse into the islands, forming an alloy, while the islands
tend to disintegrate. This fact is illustrated in Fig. 14 for Pt deposi-
tion on Ag(100) and in Fig. 15 for the system Pt/Au(100). At low
coverage degrees, the adatoms start to be embedded into the islands,
and even form small nuclei. This process continues and upon com-
pletion of the monolayer, the substrate islands have incorporated an
important number of adatoms.
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Figure 14. Snapshots of the final state of the surface obtained at six different
chemical potentials (−5.74, −5.53, −5.41, −5.32, −5.30, and −5.21 eV), for
the adsorption of Pt on Ag, in the presence of Ag islands. Results obtained at
T = 300 K. Light gray, silver atoms; dark gray, platinum atoms. (Reprinted
from Ref. [16], with permission from the the American Chemical Society.)
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Figure 15. Typical configurations showing final states of the surface obtained
for four different chemical potentials (−5.65, −5.30, −5.29, and −5.26 eV)
for the adsorption of Pt on Au(100), with Au defects. White circles, Au
atoms; black circles, Pt atoms. Results obtained at T = 300 K. (Reprinted
from Ref. [16], with permission from the the American Chemical Society.)

4. Comparison with Experiments

While the simplicity of the present model, which, among others, ne-
glects surface reconstruction, anion adsorption, and specific kinetic
features, does not allow a quantitative comparison with experiments,
qualitative predictions can be made concerning surface alloy forma-
tion in the presence of islands.

Table 5 summarizes the predictions of the Monte Carlo simula-
tions for the systems studied in this work, along with some results of
experimental observations. Within this context, it is worth mention-
ing the results reported by Kolb and coworkers for Pd and Pt depo-
sition on Au(100).22, 47 For the former system, the authors proposed
that alloying upon Pd deposition should proceed involving Au atoms
from islands and step edges. The results of the Monte Carlo simula-
tions strongly support this explanation on thermodynamic grounds,
based on the energetics of the Pd/Au system. Interesting results have
also been obtained for the system Pt/Au. Waibel et al.47 studied Pt
deposition on Au(100), finding that nucleation of Pt starts mainly at
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Table 5.
Comparison between the predictions of Monte Carlo simulations
for the formation of surface alloys in the presence of islands of
substrate atoms and experimental observations. (Reprinted from

Ref. [16], with permission from the the American Chemical
Society.)

System Surface alloy prediction Experimental observation
Ag/Au(100) No No
Ag/Pt(100) No No
Au/Pd(100) Slight alloying Not available
Au/Pt(100) No Not available
Au/Ag(100) Yes Nor available
Pt/Ag(100) Yes Not available
Pd/Au(100) Yes Surface alloying22

Pt/Au(100) Yes Au islands became stable against
dissolution47

defects, such as step edges, for low deposition rates. On the other
hand, at high deposition rates some nuclei also appear on the ter-
races, at random sites. Figure 7 in Ref. [47] shows that upon Pt
deposition on Au, the shape of the islands becomes progressively
blurred as Pt is deposited. According to the Monte Carlo results,
at low deposition rates, Pt atoms could be incorporated into the is-
lands, yielding the enhanced stability observed. Also, owing to its
high binding energy, Pt is expected to present 3D growth, as pointed
out by Waibel et al.,47 but this feature is not considered in the model
employed.

V. DYNAMIC RESPONSE OF AG MONOLAYERS
ADSORBED ON AU(100) UPON AN OSCILLATORY

VARIATION OF THE CHEMICAL POTENTIAL

1. Dynamic Phase Transitions: Basic Concepts

The term “hysteresis” is used to describe the lagging of an ef-
fect behind its cause. Hysteresis is a common phenomenon that is
observed in a great variety of physical, chemical, and biological sys-
tems. However, the magnetization response of a ferromagnet in the
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presence of an oscillatory magnetic field is probably the best known
example of hysteresis.

Hysteresis in thermodynamic systems is often related to the ex-
istence of first-order phase transitions, which are the sources of non-
linearities always associated with hysteretic behavior. Within this
context, physical systems exhibiting first-order phase transitions and
capable of becoming coupled to an external oscillatory drive, as in
the case of metal adsorption on metal surfaces, as described in pre-
vious sections, are excellent candidates for the observation of (out-
of-equilibrium) dynamic phase transitions (DPTs). DPTs may be
observed when a physical system is forced by an oscillatory (ex-
ternal) drive. In this case, one has a symmetry breaking between
a dynamically ordered state (DOS), such that the system cannot
follow the external oscillatory drive, and a dynamically disordered
state (DDS), where the system becomes coupled to the drive. Of
course, DPTs involve the competition of two characteristic time
scales: the relaxation time of a stationary state of the physical sys-
tem and the period of the external drive. DPTs have been observed,
among others, in the Ising magnet,1, 2, 9, 12, 25, 26, 43, 45 the Heisenberg
model,20, 21 the XY model,48 and the Ziff–Gulari–Barshad (ZGB)
model for the catalytic oxidation of CO.30, 32 In the case of the Ising
ferromagnet on a 2D square lattice, an oscillatory magnetic field
causes the occurrence of a second-order DPT that is believed to be-
long to the universality class of the standard Ising model in the same
dimensionality.36, 37, 43 For a recent review, see Ref. [3].

2. Simulation Method

Monte Carlo simulations were performed using the model described
in Sect. III.2. Runs started from an empty substrate and subse-
quently, the chemical potential was swept harmonically according to

μ(t) = μcoex + μ0 sin(ωt), (34)

where μ0 is the amplitude of the sweep, while ω = 2π/τ is the pul-
sation such that τ is the period of the applied perturbation. Also,
μcoex is the coexistence chemical potential measured at the first-
order phase transition observed upon deposition of Ag on Au(100)
(see Sect. 2), given by μcoex = −3.03 eV.
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Simulations were performed at T = 300 K, so the system is far
below its critical temperature. During the simulation, the time depen-
dence of the Ag coverage (θ(t)) was recorded. After several initial
sweeps to allow the system to achieve a nonequilibrium stationary
state had been neglected, the quantities of interest were evaluated by
averaging over many cycles.

3. Dynamic Response of the Coverage Degree

Figure 16 shows two examples of the dynamic behavior of the sys-
tem as obtained by applying oscillatory sweeps of the same ampli-
tude μ0 = 0.3 eV but different periods τ .

For the shortest period (τ = 10 μs, see Fig. 16a), the system be-
comes trapped within a low-coverage regime, with θAg < 0.5. Since
the highest chemical potential achieved is given by μcoex − μ0 =
−2.73 eV, the applied signal clearly drives the system well inside the
high-coverage regime of the equilibrium isotherm. So, the behavior
observed in Fig. 16 for τ = 10 is clear evidence that such a period is
much smaller than the relaxation time (τrelax) required by the system
to jump from the low-coverage to the high-coverage regimes. On the
other hand, for τ = 100 (see Fig. 16b) the system reaches the high-
coverage regime (θAg ≈ 1) during all sweeps, indicating that for this
case one has τ > τrelax. So, from Fig. 16 one concludes that it is pos-
sible to identify the dynamic competition between two time scales
in the system: the half period of the external drive and the relaxation
time (also known as the metastable lifetime of the system in a given
state). For large periods, a complete decay of the metastable phase
always occurs during each half period. Consequently, the coverage
describes a limiting cycle (almost symmetric). In contrast, for short
periods, the system does not have enough time to change the cover-
age from θ ≈ 0 to θ ≈ 1, and the symmetry of the hysteresis loop
is broken. It should be mentioned that the phenomenon of symmetry
breaking between limiting cycles in an externally driven system has
been the subject of considerable attention. It was first reported in the
context of numerical and mean-field studies of the magnetization of
a ferromagnet in an oscillating magnetic field45 and subsequently it
has been studied by means of Monte Carlo simulations of the kinetic
Ising model.3, 9, 36, 37, 43
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Figure 16. The temporal dependence of the cover-
age and the chemical potential (upper panel), and the
coverage–chemical potential loops (lower panel). (a)
Results obtained using lattices of side L = 100 and
by taking μ0 = 0.3 eV and τ = 10. (b) As in (a) but
for τ = 100. In (a) the coverage is amplified by a fac-
tor of10 for the sake of clarity. So, to properly obtain
the actual coverage, the θ -scale has to be divided by
a factor of 10. (Reprinted from Ref. [17], with per-
mission from the the American Chemical Society.)
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4. Dynamic Phase Transitions

To study the DPTs involved in the already discussed symmetry
breaking process, it is useful to define the dynamic order parameter
(Q) as the period-averaged surface coverage with Ag atoms, namely,

Q = 1

τ

∮
(2θAg − 1)dt. (35)

Notice that for finite systems, as in the present study, one ac-
tually computes 〈|Q|〉, where 〈〉 means averages over different cy-
cles of the time series θAg(t). So, if τ < τrelax, the coverage cannot
change from θ ≈ 0 to θ ≈ 1 (and vice versa) within a single pe-
riod, and therefore one has 〈|Q|〉 > 0. This situation is regarded as
the DOS. In contrast, when τ > τrelax and the coverage follows the
applied chemical potential, one has Q ≈ 0 in the so-called DDS.
Between these two extreme regimes, one expects the existence of
a critical period such as 〈|Q|〉 should vanish in the thermodynamic
limit. This behavior may be the signature of a nonequilibrium DPT.

Further insight into the nature of DPTs can be obtained by mea-
suring the fluctuations of the order parameter (χ ), given by

χ = L2Var (|Q|) = L2[〈|Q|2〉 − 〈|Q|〉2], (36)

where Var (|Q|) is the variance of the order parameter. This mea-
surement is motivated by the fact that, as is well known, systems
undergoing second-order phase transitions exhibit a divergency of
the susceptibility. Of course, for equilibrium systems the fluctuations
of the order parameter are related to the susceptibility through the
fluctuation-dissipation theorem. It is not obvious if such a theorem
would hold for our out-of-equilibrium dynamic system. However, if
our system obeyed the fluctuation-dissipation theorem, both quanti-
ties would be proportional.

Figures 17 and 18 show the dependence of the order parameter
(see (35)) and its fluctuations (see (36)) on the chemical potential
and the period of the applied signal, respectively. For a given pe-
riod and low enough values of μ0, one has 〈|Q|〉 > 0, although
it decreases smoothly and monotonically when μ0 is increased (see
Fig. 17a). On the other hand, if the chemical potential is fixed, the or-
der parameter also decreases when τ is increased (see Fig. 18a). So,
the behavior of 〈|Q|〉 suggests the existence of continuous transitions
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Figure 17. (a) The order parameter and (b) the fluctuations of
the order parameter vs. the amplitude of the applied (oscilla-
tory) chemical potential. Results obtained by using lattices of
side L = 100 and by taking different periods τ of the applied
signal, as listed. (Reprinted from Ref. [17], with permission
from the the American Chemical Society.)

between a DOS (for 〈|Q|〉 > 0) and a DDS (for 〈|Q|〉 ≈ 0). This pre-
liminary conclusion, which has already been anticipated within the
context of the discussion of Fig. 16, may also be supported by the
characteristic peaks observed by plotting the variance of the order
parameter, as shown in Figs. 17b and 18b and c.
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Figure 18. (a) The order parameter and (b) the fluctuations of
the order parameter vs. the period τ of the applied chemical po-
tential. Results obtained by using lattices of side L = 100 and
by taking different values of the amplitude of the applied signal,
as listed. (Reprinted from Ref. [17], with permission from the
the American Chemical Society.)

In view of these findings, it would be desirable to perform
a systematic study of finite-size effects. In fact, it is well known
that continuous (second-order) phase transitions become shifted and
rounded owing to the finite size of the samples used in numerical
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Figure 19. The fluctuations of the order parameter,
as defined by (36), vs. the period τ of the applied
chemical potential. Results obtained by using lattices
of different side as listed. (Reprinted from Ref. [17],
with permission from the the American Chemical
Society.)

simulations, while actual transitions can only be observed in the ther-
modynamic limit (L → ∞). This shortcoming can be overcome by
applying the finite-size scaling theory to the numerical results ob-
tained by using a wide range of sample sizes.7 Therefore, we per-
formed simulations up to L = 1,024 for a few typical values of the
parameters (not shown here for the sake of clarity). Our first finding
was that the dependence of 〈|Q|〉 on μ0 does not show any appre-
ciable finite-size effect (not shown here for the sake of space). Fur-
thermore, the fluctuations of the order parameter (χ , as measured
according to (36)) are independent of the lattice size, as is shown in
Fig. 19.

Since one has χ = L2Var (Q), it follows that the variance of
the order parameter actually vanishes in the thermodynamic limit.
Owing to this evidence we conclude that for the range of parameters
used, rather than undergoing a true phase transition, the Ag/Au(100)
system actually exhibits a crossover between the DOS and the DDS.
A possible reason for the observation of a crossover instead of a true
DPT could be the absence of symmetry between the adsorption and
desorption processes. To test this possibility we measured the relax-
ation times for Ag-covered and uncovered surfaces as a function of
the applied overpotential (see Fig. 20).
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b

a

Figure 20. The relaxation times vs. the applied overpotential. τ1/2
des and τ0

des
are shown by means of full diamonds in (a) and (b), respectively. These
data correspond to the desorption processes up to θAg = 1/2 and θAg = 0,

respectively. τ1/2
ads and τ1

ads are shown by means of full circles in (a) and
(b), respectively. These data corresponds to the adsorption processes up
to θAg = 1/2 and θAg = 1, respectively. Results obtained by averaging
over 100 different configurations. More details are provided in the text.
(Reprinted from Ref. [17], with permission from the the American Chemi-
cal Society.)

Two relaxation times are measured for each process, namely,
(1) τ 1/2

des and τ 0
des for the desorption processes up to θAg = 1/2

and θAg = 0, respectively, and (2) τ 1/2
ads and τ 1

ads for the adsorption
processes up to θAg = 1/2 and θAg = 1, respectively. The results
obtained, plotted in Fig. 20, show that for low overpotentials the re-
laxation times corresponding to both processes are different, quan-
titatively confirming the asymmetry between them. Also, for large
overpotentials the relaxation times tend to be almost the same, sug-
gesting that in this limit the asymmetry may be irrelevant. However,
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it should also be noticed that in that case neither crossovers nor DPTs
are observed owing to the fact that one would need to apply signals
with periods shorter than 1 μs (see Fig. 18). Within this context, it is
worth mentioning that the response to a pulsed perturbation of the
ZGB model49 for the catalytic oxidation of CO has also been studied
very recently.32 The ZGB model exhibits a first-order irreversible
phase transition between an active state with CO2 production and
an absorbing (or poisoned) state with the surface of the catalyst
fully covered by CO, such that in this regime the reaction stops irre-
versibly49 (for a recent review, see Ref. [31]). To study DPTs in the
ZGB model, it is convenient to perform a generalization by intro-
ducing a small probability for CO desorption that, on the one hand,
preserves the first-order nature of the transition4 and, on the other
hand, prevents the occurrence of CO poisoning. Measurements of
the lifetimes associated with the decay of the metastable states of
the ZGB model indicate that they depend on the direction of the pro-
cess, showing a marked asymmetry as in the case of our adsorption–
desorption simulations. In fact, the contamination time τd (measured
when the system is quenched from high to low CO coverage) is dif-
ferent from the poisoning time τp (measured from low to high CO
coverage).32, 33 Therefore, DPTs are observed by applying a periodic
external – asymmetric – signal of period τ = τp+ τd.32 On the basis
of this evidence, we conclude that the observation of the crossover
in our simulations should – most likely – be related to the fact that
we applied a periodic – symmetric – potential, and the adsorption–
desorption processes involved are not symmetric. Of course, it could
also be possible that at higher temperatures the asymmetry becomes
irrelevant. However, in the present work we restricted ourselves to
T = 300 K since we expect to contribute to the understanding of the
dynamic behavior of the Ag/Au(100) system in a standard electro-
chemical environment.

To further characterize the crossover between different states,
we take advantage of the well-defined peak exhibited by χ and
Var (|Q|) (see Figs. 17–19). So, the crossover period (τ cross) and the
corresponding crossover chemical potential (μcross

0 ) are identified
with the location of the above-mentioned peak. The results obtained
are displayed in Fig. 21, which shows a logarithmic dependence of
μcross

0 on τ cross. In the “state diagram” of Fig. 21, the full line shows
the border between DOSs obtained for intermediate values of both
μcross

0 and τ cross, and DDSs that are found for large enough values
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Figure 21. Linear–logarithmic plot of the crossover chemical po-
tential vs. the crossover period. Data obtained from the peaks ob-
served in plots of Var (|Q|) vs. μ0 (full circles), and Var (|Q|) vs.
τ (full squares). The full line showing the border between dynamic
ordered states and dynamic disordered states has been drawn
in order to guide the eye. Also, the vertical dashed line corre-
sponds to the minimum period at which dynamic disordered states
were observed. More details are provided in the text. (Reprinted
from Ref. [17], with permission from the the American Chemical
Society.)

of the period. It should be noted that for very low periods (i.e.,
τ cross < 6) we were unable to observe DOS (see, e.g., Fig. 18) even
after greatly increasing the chemical potential.

VI. CONCLUSIONS

Grand ganonical Monte Carlo simulations using realistic interatomic
potentials were performed for a significant number of metallic sys-
tems, allowing us to draw a number of interesting conclusions. One
of the novel features of the work is the exploration of the electro-
chemical phenomena of UPD and OPD in terms of lattice models
that consider the many-body interactions typical of metallic systems.
Thus, without the need to assume a particular type of interaction po-
tential between the particles, phase transition phenomena in metallic
monolayers could be studied. These studies comprised the formation
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of the metal monolayer phase under conditions close to equilibrium,
as well as the dynamic perturbation of the interface. In the latter
case, a crossover between different behaviors of the systems is pre-
dicted, which should stimulate further experimental and theoretical
work in the area.

Concerning the energetics of the different systems, it can be
stated that the systems Ag/Au(100), Ag/Pt(100), Au/Pt(100), and
Au/Pd(100) present a positive excess of binding energies (negative
excess of chemical potential) as compared with the homoepitax-
ial growth of adsorbate-type atoms, indicating that in these sys-
tems UPD is expected. On the other hand, for the Au/Ag(100),
Pt/Ag(100), Pt/Au(100), and Pd/Au(100) systems, the monolayer
adsorption is more favorable on substrates of the same nature than
on the substrates considered.

Simulations were also performed in the presence of surface is-
lands made of the same metal as the substrate to emulate surface
defects. For the first family of systems mentioned, the islands re-
mained almost unchanged, being decorated by the adatoms before
completion of the monolayer. In the case of the systems Au/Pt(100)
and Ag/Pt(100), the adsorbate atoms filled first the kink and then
the step sites in a clear sequence. These processes are somewhat
closer in the case of Ag/Au(100) and very close in Au/Pd(100). For
the second family of systems, the substrate islands showed disgre-
gation to form 2D alloys with the adsorbate atoms and there is no
differentiation in the filling of kink, step, or terrace sites. The sys-
tem Au/Pd(100) presents borderline behavior, as a small quantity of
Au is embedded into the Pd islands without altering their structure.
On the basis of these results, it can be suggested that, in general, the
stability of the substrate islands upon deposition of a foreign metal
is mainly determined by the difference of the cohesive energies.

Monte Carlo simulation results showed that most metal–metal
systems studied exhibit abrupt, first-order transitions when the
chemical potential is tuned around a coexistence value. This obser-
vation, as well as the detection of hysteretic and relaxation effects,
confirms the existence of true first-order transitions upon the UPD
of a great variety of metal overlayers on different metal substrates.

On the other hand, on the basis of the fact that many adsorption
isotherms of metal/metal systems exhibit an abrupt jump between a
low-coverage state and a high-coverage state, for a well-defined
(coexistence) chemical potential, the dynamic behavior of one
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particular system [Ag adsorption on the Au(100) surface], upon
the application of an oscillatory chemical potential signal, has been
carefully studied. The situation where the chemical potential is var-
ied periodically around μcoex was analyzed and the influence of the
period and the amplitude of that variation on the dynamic behavior
of the system was discussed.

The numerical results show that a silver layer adsorbed on
Au(100) smoothly changes from a DOS to a DDS when the period
(amplitude) of the chemical potential is increased by keeping μ0 (τ )
constant. Since the size dependence of the order parameter is negli-
gible and its fluctuations scale with the system size, it is concluded
that the system does not exhibit a true DPT, but rather a crossover
between two different dynamic states, namely, DOS and DDS. The
absence of true DPTs is due to the asymmetry between the adsorp-
tion and desorption processes of Ag atoms. The crossover points are
identified by the position of the peaks of the fluctuations of the or-
der parameter. In this way it is possible to draw the corresponding
diagram of states characteristic of the system. The amplitude of the
chemical potential at the crossover point exhibits a logarithmic de-
pendence on the crossover period. However, for low enough periods,
the DOS is no longer observed.

These theoretical results could be verified by performing ex-
periments consisting in the study of the adsorption of Ag on a
Au(100) surface, under UPD conditions, and the subsequent anal-
ysis of the influence of a periodic variation of the applied potential.
One has to recognize that it would be difficult to establish a cor-
relation between the actual time scale of the experiments and the
Monte Carlo time step, although qualitative similar observations are
expected. Furthermore, by determining the rate constants of the rel-
evant electrochemical processes, one may perform real-time Monte
Carlo simulations.10
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REFERENCES

1M. Acharyya, Phys. Rev. E 56 (1997) 1234.
2M. Acharyya, Phys. Rev. E 56 (1997) 2407.
3M. Acharyya, Int. J. Mod. Phys. C 16 (2005) 1631.
4E. V. Albano, Appl. Phys. A 55 (1992) 226.
5M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University
Press, Oxford, 1987.

6A. Aramata, Underpotential deposition on single-crystal metals, in Modern Aspects
of Electrochemistry, Vol 31, pp 181–250, J. O’M. Bockris, Ralphe E. White and
B. E. Conway (eds), Springer,New York, 2002 .

7K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics: An
Introduction, Springer, Berlin, 1988.

8E. Budevski, G. Staikov and W. J. Lorenz, Electrochemical Phase Formation and
Growth, VCH, Weinheim, 1996.

9B. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71 (1999) 847.
10K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95 (1991) 1090; Phys. Rev.

Lett. 68 (1992) 604.
11S. M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B 33 (1986) 7983.
12H. Fujisaka, H. Tutu and P. A. Rikvold, Phys. Rev. E 63 (2001) 016120; 63 (2001)

059903(E).
13S. G. Garcı́a, D. Salinas, C. Mayer, E. Schmidt, G. Staikov, W. J. Lorenz, Elec-

trochim. Acta 43(1998) 3007.
14H. Gerischer, D. M. Kolb and M. Przasnyski, Surf. Sci. 43 (1974) 662.
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I. GENERAL INTRODUCTION

Localized corrosion describes dissolution processes concentrated at
specific areas on the surfaces of metals. In some types of localized
corrosion, enhanced dissolution rates arise from partial or complete
destruction of the protection normally afforded by the passive oxide
film covering the metal surface. Oxide breakdown can be due to
mechanical rupture (stress corrosion cracking), the chemical action
of aggressive anions such as chloride (pitting corrosion), the im-
paction of solid particles on the surface (erosion corrosion), or the
concentration of corrosion products within small solution-filled gaps
(crevice corrosion). Other localized corrosion processes are initiated
at metal compositional inhomogeneities such as grain boundaries
in alloys (intergranular corrosion), or interfaces between dissimilar
metals (galvanic corrosion). The economic impact of all forms of
localized corrosion is severe. For example, pitting and stress corro-
sion cracking together account for about one fourth of equipment
failures in the chemical process industries.1
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Metal dissolution rates during localized corrosion are high
enough so that large concentration or potential gradients are typi-
cally found near the dissolving metal surface. Characterization of
these gradients is a necessary precursor for understanding the mech-
anisms controlling the corrosion rate. Thus, experimental research
on localized corrosion has always been closely coupled to quantita-
tive analysis of mass transport processes by mathematical modeling.
In this chapter, three examples are presented which illustrate the
range of models applied to localized corrosion processes, reflecting
the particular interests of the authors. Section II, written by Hebert,
is a review of recent work on the modeling of pitting corrosion. The
remainder of the chapter communicates results of recent work by
Tribollet on galvanic corrosion (Sect. III) and on the simulation of
the impedance in crevice-type geometries.

II. PITTING CORROSION

1. Introduction

Pitting corrosion refers to the localized dissolution of metals in small
cavities called “pits,” which appear spontaneously when the metal is
in contact with aqueous solutions containing certain “aggressive”
anions, such as the chloride ion. Pitting occurs on passive met-
als, such as iron, nickel, chromium, aluminum, and titanium, as
well as most industrially relevant alloys, including stainless steel
and aluminum alloys. The initiation of a pit apparently involves the
localized breakdown of the surface oxide film to expose the reac-
tive underlying metal, by means of a mechanism which is not yet
well understood. Once exposed, the metal corrodes very rapidly, at
equivalent current densities which exceed those on the surrounding
passive surface by factors of 105 or more. While as-initiated pits may
be as small as 0.1 μm in width, they can rapidly grow to sizes which
can penetrate walls of metal structures, or act as initiation sites for
stress corrosion cracks.

The solution composition and potential inside pits differ dra-
matically from those in the bulk solution. Large concentration
gradients develop within the pit and in the neighboring solution, to
support the diffusion of metal ions away from the corroding surface.
The high metal ion concentration in the pit also produces large con-
centrations of chloride ions, which migrate into the pit to preserve
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electrical neutrality, and the solution in the pit is acidified by hydrol-
ysis of the metal ions. Large anodic current densities flow from pits,
which under natural corrosion conditions are discharged by cathodic
reactions occurring on the outside metal surface. The electrostatic
potential gradients required to drive these currents result in electrode
potentials in the pit which are displaced cathodically relative to the
outside surface. The metal corrosion rate in the pit is determined
by the response of the dissolution kinetics to the different solution
composition and potential in the cavity.

The fundamental electrochemical reactions and transport pro-
cesses occurring during pit growth can be formulated as equations,
which taken together constitute a mathematical model for the pit.
Modeling of pit growth has been actively pursued for the past several
decades. The solution of the model equations yields the distribution
of the corrosion rate along the surface of the pit, and in principle can
be used to predict the evolution of the pit shape with time. Models
of pitting have been pursued from both engineering and mechanistic
points of view. The former category includes stochastic and deter-
ministic models of pitting implemented in predictions of long-term
corrosion failure probability of existing structures.2–5 Other models
have been developed which delineate ranges of solution composition
and potential for which active pits will be repassivated, to identify
materials suitable for particular process environments.6–8 Mecha-
nistic modeling studies, on the other hand, usually incorporate hy-
potheses about processes controlling the metal dissolution rate in
pits, and critical conditions of pit stability, which are evaluated by
comparing the simulation output with experimental measurements.
The present review focuses on this latter type of model because of
the author’s perspective that the efficacy of engineering models de-
pends ultimately on the resolution of mechanistic issues regarding
pit growth and stability. Because of the focus on individual pits, the
review will not discuss another area of significant activity, the mod-
eling of pit–pit interactions.9, 10

The following section describes the general framework of pit-
ting models, in terms of the theory of coupled transport and reaction
in electrochemical systems.11 Previously, the application of these
equations to pitting and crevice corrosion was reviewed 15–20 years
ago by Sharland12 and Turnbull.13 Section 3 covers progress in the
modeling of pitting, focusing on the period since these reviews. Sec-
tion 4 discusses an important remaining challenge, the mathematical
description of transport in concentrated solutions found in pits.
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2. General Structure of Pitting Models

The fundamental equations of a pit model are the differential mole
balances for chemical species dissolving in the pit. The mole balance
for species i is

∂ci

∂t
= −∇ · Ni + Rvi. (1)

Rvi represents the rates of homogeneous reactions in the pit, ex-
pressed as moles of i generated per time per volume of the solution.
If the solution is very dilute, the species flux Ni is

Ni = −Di∇ci − zi Fui ci∇φ + ci v. (2)

In practice, (2) is usually applied even when relatively concentrated
solutions in pits are expected. Possible errors due to the dilute solu-
tion approximation are examined below (Section 4). Poisson’s equa-
tion, when applied to electrolyte solutions, suggests that the length
scale of regions of ionic space charge (the Debye length) is on the
order to 1 nm.11 Thus, on the much larger scale of pits and crevices,
the solution composition must be electrically neutral,

∑

i

zi ci = 0. (3)

Equations (1) and (3) provide n + 1 model equations to be solved
for the n chemical species concentrations ci and the electrostatic
potential φ. The species in the model include the metal ions formed
by corrosion, and the anion (most frequently Cl−) and cation of the
external electrolyte solution. Models also incorporate balances for
species formed by homogeneous reactions in the cavity, such as hy-
drolysis reactions generating H+ ions and hydrolyzed metal ions,
and complexation reactions producing metal chloride complexes.
Many models of pits contain at least five chemical species.

Boundary conditions on reactive surfaces are based on continu-
ity of transport flux and reaction rates. If species 1 is produced by
dissolution at current density id, the boundary condition would be

id

zi F
= N1 · n, (4)

where n is the outward unit normal vector at the surface. The
reaction current density id is coupled to the local potential and
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concentration through a kinetic rate expression. The fluxes of non-
reactive species at the metal surface are zero. If the pit’s length-to-
width aspect ratio is large, reactions on the cavity sidewalls can then
be modeled as pseudohomogeneous reactions in the volume of the
cavity solution. The wall reactions are then represented as Rvi terms
in species balances (1) where Rvi represents the rate of the surface
reaction multiplied by the surface area per unit volume. The model
pit geometry should resemble that of the actual pit or crevice, if pos-
sible. Many approximations to the pit geometry have been employed
in models, which will be discussed in detail in the next section.

3. Review of Recent Models

This section summarizes modeling studies reported since the re-
views of Sharland and Turnbull.12, 13 First, models are discussed
which considered the pit surface to be actively dissolving, and did
not take into account repassivation of surfaces in the pit. Then, the
results of two modeling studies are described which included both
dissolution and passivation. We choose to highlight repassivation in
this way, since it underlies the important issue of pit stability. All
models were based on the dilute solution transport equations in the
previous section, except as indicated.

(i) Models of Pit Growth

Sharland simulated one-dimensional crevices or pits in steel,
with either passive or active sidewalls.14, 15 The model included hy-
drolysis chemistry and formation of corrosion products, but did not
consider obstructed transport due to the solid material in the pit.
Metal dissolution kinetics were taken from earlier measurements
on macroscopic electrodes.16 The model predictions were compared
with the findings of previous experiments on large-scale artificial
pits with lengths and widths of order 1 and 0.1 cm, respectively.
Because these dimensions are at least an order of magnitude larger
than those of actual pits, the simulations may have been represen-
tative of crevice corrosion rather than pitting; however, encouraging
comparisons were reported with some pH and potential measure-
ments. In other model predictions, the quality of agreement with
experiment was unclear owing to uncertain values of transport pa-
rameters in the concentrated solutions present in the pit.
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Harb and Alkire reported comparisons of experimental mea-
surements and finite-element simulations of pit growth on stainless
steel and nickel in the presence of flow.17, 18 The simulation domain
was a two-dimensional analog of the pit geometry, consisting of a
cylindrical trench oriented transverse to the flow direction. Experi-
mental evidence presented by the authors indicated that, for the con-
ditions studied, pit growth on stainless steel was controlled by mass
transport, while that on nickel was potential-dependent and there-
fore determined by electrode kinetics. Thus, the model for stainless
steel used a constant concentration boundary condition based on the
solubility of a precipitated salt film. The predicted pit currents were
about 3 times smaller than those measured experimentally, possibly
owing to the simplified geometry or the neglect of migration mass
transport. The electrode kinetics used in the model for nickel were
taken from an earlier study using macroscopic electrodes.19 Exper-
iments on both stainless steel and nickel indicated that pit stabil-
ity in the presence of flow is governed by a critical Péclet number,
i.e. Pe= uoro/D, where uo is the characteristic velocity in the pit,
ro is the pit radius, and D is the metal ion diffusivity. In the case
of nickel, pits were repassivated when Pe exceeded 1,000, while on
steel the critical Pe was about 10. The simulations of nickel found
that the pit solution was significantly diluted by flow for Pe in the
range 100–1,000, as shown in Fig. 1. The results therefore suggested
that a concentrated pit solution may be necessary to sustain the ki-
netically controlled dissolution of nickel in pits.

The same authors also applied the model of nickel to simu-
late pit growth in quiescent solutions.20 The predictions yielded
potential-dependent pit growth currents in reasonable agreement
with experimental findings. The same model equations and param-
eters were later solved by Verbrugge et al. using the quasipoten-
tial method.21 This technique is a dependent-variable transformation
through which the simulation is carried out in two steps: the solution
of the Laplace equation in the geometric domain of the pit for the
quasipotential; and the integration of a nonlinear ordinary differen-
tial equation initial value problem to obtain the species concentra-
tions and potential as functions of the quasipotential. This method
is computationally more efficient than the finite-element method, as
the nonlinear species balance differential equations are replaced by
the much simpler Laplace equation. The currents predicted by this
simulation were again in reasonable agreement with experimental
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Figure 1. Lines of constant Ni2+ concentration at (a) Pe = 100 and (b)
Pe = 1,000.17 A–G correspond to concentrations of 0.01 (A), 0.04 (B),
0.07 (C), 0.10 (D), 0.13 (E), 0.16 (F), and (G) 0.19 mol/l.

findings. However, the metal ion concentrations at the dissolving
surface were found to exceed saturation, which would be incon-
sistent with kinetically controlled dissolution. This discrepancy led
the authors to speculate that knowledge of concentration-dependent
transport coefficients in concentrated solutions would be necessary
to obtain quantitatively accurate predictions.
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Engelhardt and Strehblow developed a method employing the
quasipotential transformation to predict the evolution of the pit
shapes during dissolution.22 The model was highly flexible in that
it applied for different initial pit shapes, and accounted for transport
by both diffusion and migration, and transport resistance both in-
side and outside pit. It was apparently the first model to calculate the
development of the pit shape. The pit solution consisted of the dis-
solved metal ion, along with the anion and cation of the bulk elec-
trolyte. The boundary condition at the dissolving surface assumed
either Tafel kinetics or a saturated solution composition, or a com-
bination of these conditions applying on different parts of the pit
surface. The model explained some widely observed general charac-
teristics of pit growth. For example, it predicted that when pit growth
was controlled by mass transport, the pit depth should increase pro-
portionally to the one-third power of time, and that pits should evolve
to ellipsoidal and ultimately to hemispherical shapes, independent
of their initial geometry (Fig. 2). Figure 2 also demonstrates good
agreement with experimentally measured pit geometries.23 On the

Figure 2. Shapes of axially symmetric pits evolved from dis-
solution of an initial plane disk, after the dimensionless times
indicated.22 X represents depth and R distance from the
pit axis. The dashed line is an experimentally measured pit
shape.23
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other hand, pit growth controlled jointly by transport and kinetics
(on the pit bottom and sidewalls, respectively) led to shallow-dished
shapes, as also found experimentally.

In a later paper, Engelhardt et al. examined the use of approxi-
mations to models of one-dimensional pits of the type studied previ-
ously by Sharland.24 Their objective was to determine the minimum
level of model complexity required to predict pit growth rates with
acceptable accuracy. Simplification was achieved by carefully identi-
fying chemical species which could be eliminated. It was found that
the pit solution could frequently be viewed as a binary electrolyte,
even when the principle anion in the pit is present in low concen-
trations in the bulk solution. Inclusion of the potential drop outside
the pit was shown to be important when pit sidewalls were actively
dissolving. More recently, Engelhardt and Macdonald used a similar
modeling approach to analyze the potential drops in pits which grow
at low dissolution current densities on the order of 0.1− 1 mA/cm2,
as expected from penetration rates observed in service conditions.25

They concluded that practical electrolytes such as seawater give rise
to negligible potential drops and hence the pit growth rate should be
constant. However, it is not clear how the conditions of pit stability,
which usually require concentrated solutions in the pit (see the next
section), would be satisfied at such low current densities. In any case,
this study indicated that greater attention should be paid to the con-
ditions of slow pit growth during long-term exposures, which may
differ appreciably from those of typical laboratory studies.

Verhoff and Alkire simulated the pitting of aluminum in al-
kaline chloride solutions, comparing their model predictions with
experimental measurements of the growth of individual pits.26, 27

Their first paper reported calculations using a model which assumed
steady-state transport by diffusion and migration in a domain in-
cluding both the hemispherical pit and the surrounding solution.
The solution chemistry was described at different levels of complex-
ity, incorporating various hydrolysis and complexation reactions. pH
measurements were successfully predicted by the model with only
one hydrolysis reaction, but not with more complex schemes. Also,
the simulations apparently predicted unrealistic metal ion concentra-
tions much higher than saturation. In the next paper, transient model
calculations carried out to predict the evolution of pit solution com-
positions during interruptions of anodic polarization were reported.
The results were used to rationalize experimental observations of
pit-size-dependent critical interruption times above which pits were
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passivated during the interruption. While the comparisons with ex-
periment were not definitive, they suggested critical pit stability cri-
teria related to the minimum chloride or metal ion concentrations in
the pit.

More recent work by Alkire and coworkers has focused on
predictions of critical solution compositions needed to initiate pit-
ting corrosion in preexisting microscopic crevices adjacent to MnS
inclusions in stainless steel.28–30 Webb and Alkire attempted to
predict the chloride concentration dependence of the pitting poten-
tial, assuming that pit initiation depended on a critical thiosulfate
concentration in the crevice.28 The solution chemistry in these mod-
els is highly complex, as they include the species produced by steel
and MnS dissolution, as well as the products of their solution-phase
reactions. In view of the resulting large number of model parame-
ters, the authors have developed techniques to highlight parameters
on which the model behavior critically depends. These techniques
should be generally useful in other simulations of electrochemical
systems which employ complex speciation schemes.

(ii) Models of Pit Growth and Repassivation

Laycock and coworkers developed simulations of pit growth on
stainless steel at constant applied potential.31, 32 The present discus-
sion focuses on their second paper, in which the model was substan-
tially improved by the extension of the simulation domain to include
the solution outside the pit cavity. The pit growth model incorpo-
rated a hypothesis of the critical condition for passivation within
the pit, and the resulting development of the pit shape was evalu-
ated. The metal surface was assumed to be passivated at metal ion
concentrations lower than a critical value; the dissolution rate in-
creased with metal ion concentration above the critical value. These
concentration-dependent dissolution kinetics were closely related to
results of experimental studies of artificial pits,33–35 and the crite-
rion for passivation was supported by measurements of actual pit
growth.36 It should be mentioned that description of mass transport
in the model did not conform to the dilute solution theory as outlined
above, since a current continuity equation was used which included
contributions from migration but not diffusion; hence, the potential
gradient in the pit was probably overestimated. However, inaccura-
cies in the prediction of potential were likely compensated by adjust-
ment of empirical dissolution kinetic parameters in the model.
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The pit shapes and current transients produced by the simula-
tion were strongly influenced by passivation in the pit, and showed
unique characteristics which are also found experimentally. At rela-
tively low applied potentials, the surface near the pit mouth tended to
be passivated because the concentration was below the critical value.
As a result, the dissolution front undercut the passivated portion of
the pit sidewall, and then propagated upward until the pit wall was
eventually breached. Metal ions near the perforation rapidly diffused
out of the pit, causing the neighboring surface to be passivated. This
process was then repeated, producing cavities covered by perforated
thin metal layers, in which the perforations were spaced at predica-
ble intervals. These features strongly resembled perforated pit covers
found experimentally, supporting the general concept of passivation
embodied by the model (see Figs. 3, 4). It was shown that each

Figure 3. Cross section through a typical pit in
316 stainless steel, grown at −0.23 V in 1 M
NaCl.31
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Figure 4. Cross sections through simulated pits grown at 0.19 V vs. the saturated
calomel electrode, after (a) 0.5 s, (b) 1.0 s, (c) 1.5 s and (d) 2.5 s.31 Contour lines
correspond to the constant metal ion concentrations indicated, in moles per liter, and
axis scales are in micrometers. Note the perforated cover over the pit predicted by
the simulation.

perforation event decreased the overall mass transfer resistance in
the pit, and that the relative decrease of resistance became larger
as the pit size increased. Thus, a perforation event would cause
small pits to be completely passivated, since the concentration in-
crease outside the pit was generally not sufficient to overcome the
sudden decrease of internal mass transfer resistance. The resulting
pit current transients of small pits grew with time until they were
suddenly terminated, and in this aspect resembled measured tran-
sients of “metastable pits” found at low potentials. However, exper-
iments indicate that metastable pits are prevalent in a well-defined
potential range, while in the simulations, the existence of such a
potential range depended on the details of the assumed initial pit
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geometry. Therefore, while the modeling results support the exis-
tence of a threshold concentration for repassivation, it is not clear
that the potential dependence of repassivation was captured. Exper-
imental studies of stainless steel and iron–chromium alloys suggest
that the potential as well as the electrolyte concentration may control
repassivation.35, 37

Aluminum etch tunnels are another type of pit which exhibit
repassivation on their internal surfaces. Tunnels are formed by an-
odic etching of aluminum in chloride solutions at temperatures
above 60◦C.38 They maintain widths on the order of 1 μm while
they penetrate the metal in the crystallographic <100> direction,
to depths of tens of micrometers. Figure 5 shows a scanning electron
microscope image of an oxide replica of an etched aluminum sur-
face, illustrating the typical morphology of tunnels.39 The high
length-to-width aspect ratio of tunnels is due to continuous oxide
passivation on the sidewalls, while the tip surface corrodes at cur-
rent densities of several amperes per square centimeter. Because of
the small width dimension of tunnels, lateral concentration and po-
tential gradients across the tip surface are very small. Thus, both
the passive sidewall adjoining the tip and the corroding tip itself are
in contact with the same solution composition and potential, which
may be viewed as a critical condition for repassivation. Hebert and
coworkers have carried out an extended experimental and model-
ing study of etch tunnels, with the goal of understanding the nature
of this critical condition. These studies took advantage of unique
opportunities to study repassivation afforded by the geometry of
tunnels, such as the amenability of the linear tunnel shape to ac-
curate transport modeling. The outcome of this investigation was
a model of tunnel growth incorporating a mathematical description
of repassivation, which successfully explained the tunnel shape.40

In the following paragraphs, the experimental background of this
repassivation model is discussed, after which the modeling results
are described.

In the experiments of Hebert and coworkers, repassivation was
initiated by either step or ramp reductions of the applied current
during etching.41–44 Repassivation in tunnels produces morpholog-
ical changes of the otherwise flat tip surface, which were clearly
apparent in electron microscope images. The current step experi-
ments showed that oxide passivation on the tip occurred within times
of 1 ms, and was accompanied by characteristic potential transients



302 K.R. Hebert and B. Tribollet

Figure 5. Oxide replica of aluminum etch tunnels grown
in 1N HCl+6N H2SO4 at 77◦C.39 The replica is formed
by anodic oxidation of the etched surface, followed by
dissolution of the metal.

over the same range of times.41, 42 The time scale of passivation
was much smaller than the time needed for the occurrence of solu-
tion composition changes, which is approximately L2/D ∼ 100 ms,
where L is the tunnel length and D the electrolyte diffusion coef-
ficient. Thus, in these experiments the solution composition at the
tip remained constant during repassivation. It is evident that passiva-
tion was controlled by a critical potential, and not a critical solution
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composition, as discussed above with reference to stainless steel pit-
ting. However, both the ohmic potential drop and the electrolyte con-
centration in tunnels increase significantly during their growth. If
passivation were controlled only by the potential, the entire tip sur-
face would be rapidly passivated. Therefore, to explain passivation
in the transient experiments and also during steady tunnel growth,
it was recognized that the critical potential should decrease with in-
creasing electrolyte concentration.45

The critical repassivation potential, as measured using current–
potential curves, has this required dependence on chloride concen-
tration, and in fact the tunnel growth is observed at the repassivation
potential corresponding to the bulk solution composition. Transport
calculations during steady tunnel growth showed that the decrease
of the repassivation potential at the tip surface, due to the elevated
chloride concentration there, almost exactly compensated for the ef-
fect of increasing ohmic drop.46 Thus, the experiments indicated
that the commonly measured repassivation potential, evaluated at
the local chloride concentration at the metal surface, is the funda-
mental criterion for repassivation in tunnels. This finding contrasts
with other interpretations stating that the repassivation potential is
not fundamentally significant in terms of surface–solution interac-
tions.47 In further experiments by Hebert and coworkers, the kinet-
ics of repassivation were quantitatively determined with experiments
using ramped reductions of applied current during tunnel etching.43

It was argued that the repassivation potential probably controls chlo-
ride adsorption on dissolving metal surface in the pit.

Hebert’s model for tunnel growth predicted the tunnel shape on
the basis of the repassivation model just described.40 Starting from
the initial condition of a cubic etch pit, the model calculated the
evolution of the pit shape resulting from dissolution and sidewall
passivation. The dissolution rate was taken directly from experimen-
tal measurements.48 Since the passivation kinetics were potential-
dependent, it was necessary to accurately predict the potential at the
tunnel tip. This required the use of concentrated solution transport
equations, for the first time in a pitting model. All transport and ki-
netic parameters used in the model were taken from independent
sources. The calculations showed that pits growing at the bulk solu-
tion repassivation potential spontaneously transformed into tunnels
by sidewall passivation (Fig. 6). The tunnels then grew with paral-
lel walls until the concentration at the tip approached saturation, at
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Figure 6. Predicted width profiles of aluminum etch tunnels at 70− 90◦C (solid
lines), along with AlCl3 electrolyte concentrations at the dissolving tip surface
(dashed lines). The attenuation lengths of the predicted exponential width de-
cays were 30, 19, and 11 μm at 70, 80, and 90◦C, respectively, while values of
36, 22, and 13 μm were measured experimentally.39 (Reproduced with permis-
sion from Ref. [40] Copyright 2001, The Eletrochemical Society.)

which point the tunnel width began to decrease exponentially with
increasing length (the constant-width regime is not clearly appar-
ent in Fig. 5 owing to extensive surface dissolution in this etchant).
The exponential decay slopes in the tapering-width regime increased
with temperature, and were in quantitative agreement with those ob-
served experimentally (Fig. 6). The ability of the model to predict
both the onset of tunneling and the detailed development of the tun-
nel shape validated the conceptual basis of the repassivation model.

The apparently different repassivation concepts embodied in
the models of Laycock and White and Hebert may in fact share im-
portant common elements.31, 40 Repassivation occurs in the former
model below a critical electrolyte concentration, while in the latter
it takes place below a critical potential, the value of which decreases
with increasing concentration. Therefore, at a given potential, both
concepts indicate that active dissolution occurs only above a mini-
mum concentration. The hypotheses differ in that Hebert addition-
ally accounted for a direct influence of the potential on passivation,



Topics in the Mathematical Modeling of Localized Corrosion 305

which was not done by Laycock and White. As mentioned earlier,
there is some evidence that the potential influences repassivation on
stainless steel and iron–chromium alloys.35, 37 Future work might
explore whether these investigations might lead to a common un-
derstanding of pit stability applying to both aluminum and stainless
steel.

4. Transport in Concentrated Electrolyte Solutions

Nearly all pit models have been based on transport equations which
strictly apply in solutions much more dilute than those usually found
in pits, which exceed 1 M and often approach saturation in the metal
chloride salt. The fundamental shortcoming of dilute solution trans-
port theory is that it accounts only for interactions between ions
and solvent molecules, and not between pairs of ions. Ion–ion in-
teractions are manifested, for example, by deviations of the solu-
tion conductivity from values predicted by dilute solution theory,
which become appreciable at concentrations as low as 0.01 M.49

This section will examine specific inaccuracies resulting from the
dilute solution approximation, and point out cases where the use of
concentrated solution transport models is tractable. Dilute and con-
centrated solution approaches will be compared in the context of a
simple example of a one-dimensional pit with passive sidewalls. The
metal and electrolyte solution were taken to be aluminum in 0.1 M
NaCl. There are no cathodic reactions or homogeneous reactions in
the pit, and the solution composition at the pit mouth is that of the
bulk solution. This example was described in more detail in an ear-
lier publication.50 This example is chosen because of its simplicity
and since the behavior of the dilute solution model may be familiar
to readers.

The general multicomponent flux equations in concentrated
solutions appear in the form11

ci∇μi = RT
∑

j

ci c j

cT D̄i j

(
v j − vi

)
, (5)

where μi is the electrochemical potential of ionic species i , cT is the
total concentration of all solution species, D̄i j is the diffusivity for
the interaction between species i and j , and vi is the species veloc-
ity of i . The interspecies diffusivities D̄0 j , which refer to ion–solvent
interactions, reduce to the infinite-dilution diffusivities D j in (2) in
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the limit as the ci approach zero. The fluxes of species i , Ni = ci vi ,
which appear in the species-balance equations (1), are obtained in
principle by inverting the system of equations like (5) written for
each species. For the simple example system containing water, and
Na+, Cl−, and Al3+ ions, six D̄i j coefficients would describe all pos-
sible species interactions. Moreover, since the D̄i j depend on com-
position, their values would be required over the range of all possible
solution compositions which might be found in a pit. These consid-
erations render impractical the direct use of models based on (5).

Considerable simplification results if the electrolyte solution
may be approximated as a binary electrolyte. The use of this ap-
proximation in pitting models was shown to be widely applicable by
Engelhardt et al., in the context of dilute solution transport theory.24

In the example, it may be recognized that since electrical migration
drives Na+ ions out of the pit, these ions would be present only very
close to the pit mouth, and hence the pit solution could be approxi-
mated as an AlCl3 electrolyte. The inverted flux equations for water,
Al3+, and Cl− ions may be combined with the species conserva-
tion equations, i.e., (1), to obtain a diffusion equation in terms of the
electrolyte concentration c,

d

dx

[
D

(
1 − d ln co

d ln c

)
dc

dx

]
− id

z+ν+F

dt+
dx

= 0, (6)

where x is the coordinate along the pit length (the origin is at the
pit mouth), co is the water concentration, and z+, ν+, and t+ are the
metal ion charge, stoichiometric number, and transference number.
Given these properties, (6) can be solved using the boundary condi-
tions c = cb/z+ at x = 0, where cb is bulk NaCl concentration, and
at the dissolving surface,

id (1 − t+)
z+ν+F

= D

(
1 − d ln co

d ln c

)
dc

dx
. (7)

The electrolyte concentration profile c(x) is used to determine two
types of potential. First, the potential which would be measured
using reference electrodes equilibrating with the local solution is
calculated. We take the reference electrode to be of Ag/AgCl type,
which equilibrates with Cl− ions in solution according to

μAg + μ− = μAgCl + μe− . (8)
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The potential of a Ag/AgCl reference electrode in the bulk solution,
relative to a hypothetical electrode of the same type positioned at the
dissolving surface (x = L) is

�E = 1

F
[μ−(x = L)− μ−(x = 0)] . (9)

The gradient of μ− is related to the current density and the local
composition gradient,

dμ−
dx

= − F

κ
id + 1

z+ν+
dμA

dx
. (10)

where κ is the solution conductivity and the AlCl3 electrolyte chem-
ical potential μA (where μA = ν+μ+ + ν−μ−) can be computed
at a given concentration with knowledge of the electrolyte activity
coefficient. �E is found by integrating (10),

�E = −id

L∫

0

dx

κ
+ RT

(
ν+ + ν−
z+ν+F

) c(L)∫

c(0)

t+d ln(c f+−). (11)

where f+− is the electrolyte activity coefficient. If �E is added to
the potential of the metal with respect to a reference electrode in
the bulk, one obtains the potential of the metal with respect to a
hypothetical reference electrode of the same type, positioned just
outside the electrical double layer on the dissolving surface of the
pit. In effect, �E is a potential correction which, when added to the
measured potential, produces the “true” electrode potential. The first
term contributing to �E on the right side of (11) may be identified
as the ohmic drop in the pit, and the second term represents the con-
centration overpotential.

The quasielectrostatic potential as defined by Newman was also
calculated, for comparison with the electrostatic potential φ in the
dilute solution model.11 The quasielectrostatic potential is defined
according to the electrochemical potential and concentration of a
reference species. Here this species is taken to be the chloride ion,

μ− = RT ln c− − FΦ. (12)

The value of the quasielectrostatic potentialΦ depends on the choice
of the reference species used in the definition. As the solution be-
comes very dilute, it becomes the same as the electrostatic potential
φ in the dilute solution model.
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The solutions of (6) and (11) require three concentration-
dependent transport properties, D, t+, and κ , along with the elec-
trolyte activity coefficient in Eq. (11). These properties may be
measured using well-known techniques.51 The three independent
transport coefficients D, t+, and κ may be related to the diffusiv-
ities D̄o− , D̄o+ , and D̄+− from (5). In the dilute solution model
there would be only two diffusivities, D+ and D−, equivalent to
D̄o− and D̄o+ . There is no analog of D̄+− in dilute solution theory
because ion–ion interactions are not considered. When D̄+− is sig-
nificant, the predictions of the potential in dilute solution models
deviate strongly from those in concentrated solution models. These
deviations cannot be compensated by adjusting D+ and D− from
their values at infinite dilution. However, since the properties D
and t+ in (6) and (7) do not depend on D̄+−, the predictions of the
concentration are not affected by ion–ion interactions.

Calculations were carried out at 70◦C because transport prop-
erties and activity coefficients of AlCl3 had been assembled at this
temperature.40 Measurements indicated that D and t+ were approx-
imately constant at concentrations at least up to 1.5 M, with values
of 2.1× 10−5 cm2/s and 0.21, respectively. Also, since even at satu-
ration the electrolyte concentration was small compared with that of
water, the water concentration derivative in (6) could be neglected.
Thus, (6) led to a simple linear concentration profile in the pit, as
was also predicted by the dilute solution model.

c = c(x = 0)+ id (1 − t+)
z+ν+F D

x . (13)

Since both κ and f+− varied strongly at high concentration, it was
necessary to explicitly consider their concentration dependences
when evaluating the integrals in (11). In Figs. 7–9, respectively,
predictions of the chloride concentration at the dissolving surface,
the potential correction �E , and the quasielectrostatic potential
are compared between the concentrated and dilute solution mod-
els. According to the latter model, μ− is determined by the chlo-
ride concentration and local electrostatic potential φ ((12), with φ

replacing Φ). Accordingly

�E = RT

F
ln

c− (x = L)

c−(x = 0)
− [φ (x = L)− φ(x = 0)] . (14)
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Figure 7. Comparison of chloride concentration at the dis-
solving surface of a pit, calculated using models based on
(a) dilute solution and (b) concentrated solution transport
equations. The dashed line is calculated from the dilute so-
lution model assuming a binary electrolyte in the pit. (Re-
produced with permission from Ref. [50]. Copyright 1999,
The Eletrochemical Society.)

Figure 8. Comparison of reference electrode potential drops
in pits, calculated using models based on (a) dilute solu-
tion and (b) concentrated solution transport equations. The
dashed line is calculated from the dilute solution model as-
suming a binary electrolyte in the pit. (Reproduced with
permission from Ref. [50]. Copyright 1999, The Eletrochem-
ical Society.)

The infinite-dilution diffusivities were temperature-corrected using
empirical formulas.52 Since the predictions of both concentrated and
dilute solution models depend only on the product idL , the results in
Figs. 7–9 are plotted against this parameter.
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Figure 9. Comparison of quasi-electrostatic potential at a dis-
solving surface in a pit, calculated using models based on (a)
dilute solution and (b) concentrated solution transport equa-
tions.50 The dashed line is calculated from the dilute solu-
tion model assuming a binary electrolyte in the pit.

Figure 7 shows that in both models, the Cl− concentration at the
dissolving surface increases linearly with idL . Both trends are rep-
resented by (13), representing the binary electrolyte approximation.
The larger slope of the line representing the concentrated solution
model is due to the smaller D and larger t+, respectively, compared
with their infinite-dilution values. Aside from the different transport
property values, Fig. 7 is consistent with the mathematical equiva-
lence of the concentrated and dilute solution models for predictions
of concentration. If one is primarily interested in predictions of con-
centration, the dilute solution model may suffice, provided that the
calculations account for deviations of transport properties from their
values at infinite dilution. However, most models require knowledge
of the potential to calculate rates of electrochemical reactions.

The reference electrode potential drop�E is displayed in Fig. 8.
Here, the results of the two models are quite different, in that the di-
lute solution model predicts zero �E at all depths, while negative
values are calculated by the concentrated solution model. The be-
havior in Fig. 2 is due to the dependence of the reference electrode
potential on μ− (8). Since Cl− ions are not involved in the reaction,
the species balance (1) requires that their flux is zero in both models.
In the dilute solution model, the Cl− flux depends only on the gra-
dient of μ−, and so zero flux requires that μ− is uniform in the pit.
On the other hand, the Cl− flux in the concentrated solution model
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depends on the gradients of both μ− and μ+, the latter through the
D̄+− term in (5). Therefore, the predicted μ− is nonuniform, lead-
ing to a nonzero potential drop. The fundamental reason for the erro-
neous potential calculations of the dilute solution model is its neglect
of effects due to ion–ion interactions, which appear in the concen-
trated solution model through the dependence of the conductivity on
D̄+−. A reliable measure of whether ion–ion interactions might be
important in a model is the whether the experimental conductivity
deviates from its value predicted by dilute solution theory.

Figure 9 compares the quasielectrostatic potential with the elec-
trostatic potential in the dilute solution model. The plotted poten-
tials are those at the dissolving surface relative to the values at
the pit mouth. The concentrated solution model predicts a much
larger potential drop in the pit, primarily because it depends on the
experimentally measured conductivity, which is again is reduced in
concentrated solutions relative to the conductivity according to the
dilute solution model. By comparison with Fig. 7, it may be seen
that significant relative errors in the dilute solution calculation ap-
pear at concentrations less than 1 M. Since pit solutions are usually
even more concentrated, large relative errors in potential calculations
would be expected. This may be a serious concern because the metal
dissolution rate increases exponentially with potential.

5. Concluding Remarks

The foregoing review shows that in the past 15–20 years modeling of
pitting corrosion has benefited from significant technical advances,
including the use of finite-element methods and the quasipotential
transformation. Pitting models have enabled predictions of shape
evolution and convection effects, and can handle increasingly com-
plex solution-phase chemistry. Models of metastable pits in stain-
less steel and aluminum etch tunnels were developed incorporating
repassivation criteria, which were validated by the successful predic-
tion of the highly unusual morphologies of these pits.31, 40

The discussion of concentrated solution models has indicated
that, while the transport flux equations in their rigorous form (5)
may be intractable, the use of the binary electrolyte approximation
allows the convenient implementation of concentrated solution
theory in pitting corrosion models. Engelhardt et al. have shown
that this approximation is valid over a surprisingly wide range of
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conditions.24 Some pitting models in recent years have pursued a
different approach using the dilute solution model, implementing
complex descriptions of the solution composition with a large num-
ber of chemical species. The calculations presented in this section
suggest that the errors due to the dilute solution equations, particu-
larly regarding potential calculations, may outweigh the benefits of
a detailed knowledge of the solution composition.

III. GALVANIC COUPLING AT THE INTERFACE
BETWEEN TWO METALS

The galvanic coupling between two metals is a well-known phe-
nomenon. Generally it is studied by using two electrodes of pure
metals immersed in the same solution and electrically connected;
thus, the current flowing between the two metals can be measured
directly. However, while it is frequently assumed that each electrode
is homogeneous, experimental observation shows that in some cases
a particular behavior is visible near the interface between the two
metals. From a qualitative point of view, this heterogeneity can be
due to a current or potential distribution. This kind of distribution
was well studied in particular by Newman for an interface between
a metal and an insulator.53, 54 However, the case of the interface be-
tween two conducting materials and in particular two metals was
considered only recently.55 The particular case of aluminum and
copper is considered here as an example.

1. Theoretical Description of the Currents and Potentials
at the Interface of Two Metals

Numerical simulations were performed to obtain a description of the
potential and current distributions on the surface of the disk elec-
trode and in the surrounding electrolytic solution. Figure 10 gives a
schematic representation of the disk electrode used in this model. In
the absence of concentration gradients, the potential φ in the solu-
tion surrounding the electrode is governed by the Laplace equation:

∇2φ = 0. (15)
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Figure 10. The electrode.

Using cylindrical coordinates (r, θ, z), one can express (15) as

1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2 +
∂2φ

∂z2 = 0, (16)

where z is the normal distance to the electrode surface, r is the radial
coordinate, and θ is the azimuth. The cylindrical symmetry condi-
tion requires the geometry to be invariant under rotation about the z
axis, i.e.,

∂φ

∂θ
= 0. (17)

The combination of (16) and (17) yields the governing equation in a
two-dimensional domain as

∂2φ

∂r2 + 1

r

∂φ

∂r
+ ∂2φ

∂z2 = 0. (18)

On the surrounding insulator and far from the electrode surface, the
boundary conditions are given by

∂φ

∂z

∣∣∣∣
z=0

= 0 at r > r0 (19)

and
φ → 0 as r2 + z2 →∞. (20)

Under the assumption of a kinetic regime, the current density at the
electrode surface can be expressed as

i = −κ ∂φ

∂z

∣∣∣∣
z=0

, (21)

where κ is the electrolyte conductivity.
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The kinetic current expressions fi (φ) are a function of the
potential φ, and the corresponding kinetic parameters were deter-
mined from experimental measurements performed individually on
each material.

For metal 1 : 0 ≤ r ≤ r1, f1(φ) = −κ ∂φ

∂z

∣∣∣
∣
z=0

. (22)

For metal 2 : r1 ≤ r ≤ r0, f2(φ) = −κ ∂φ

∂z

∣∣∣∣
z=0

. (23)

f1(φ) and f2(φ) can correspond to anodic current, to cathodic cur-
rent, or to the sum of anodic and cathodic current.

2. Application to the Al–Cu Coupling

(i) Mathematical Model

Metal 1 is copper (Fig. 11), and according to our knowledge
of this system, the copper electrode is under cathodic polarization
and the oxygen reduction reaction occurs. The current can then be
expressed as

Figure 11. The electrode under investigation.
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iCu = fCu (φ) = −kO2 exp
(
−2.303

bO2

φ

)
, (24)

where the constant kO2 and bO2 were determined from experimental
measurements. The values determined experimentally were bO2 =
220 mV/dec and kO2 = 7.6 × 10−6A cm−2. Metal 2 is aluminum
and since this metal is passive, the current is approximately uniform
on the electrode. Thus, the boundary condition corresponds to an
anodic current of 1 μA cm−2 independent of the potential:

iAl = fAl (φ) = 1 μA cm−2. (25)

The simulations were performed using the finite-element package
FEMLAB with the conductive DC module in a two-dimensional ax-
ial symmetry. The mesh size was refined to obtain a numerical error
lower than 0.1% evaluated from the net current of the system, which
is the sum of the current passing through the copper and aluminum
electrodes. At the corrosion potential this net current is zero.

Figure 12 shows the potential distribution calculated on the
electrode surface along the electrode radius with the electrolyte con-
ductivity as a parameter. Independent of the electrolyte conductivity,

Figure 12. Potential distributions on the surface of the Al/Cu model couple
deduced from theoretical calculations for different values of the electrolyte
conductivity.
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the general shape of the potential distribution remains similar. The
potential is seen to be constant over the copper electrode; it strongly
increases immediately after the copper/aluminum interface and
reaches a maximum value over the aluminum electrode near the
aluminum/insulator interface, just before a slight decrease. Such be-
havior is fully consistent with the boundary conditions determined
for the calculation. Figure 12 also shows that the variations of the
potential along the disk electrode radius are higher for a low con-
ductivity of the electrolyte, which, from a practical point of view,
made these variations easier to detect.

Figure 13 shows the influence of Ag/AgCl probe position (i.e.,
readings at two distances from the electrode surface). Calculations
were performed in the case of a weakly conductive electrolyte to
highlight the influence of the position of the probe on the potential
distribution. No significant difference was observed between the two
measurements: when the probe was withdrawn from the electrode
surface, the sudden variation of the potential at the aluminum/copper
interface was barely reduced in comparison with measurements per-
formed on the disk electrode surface itself. Moreover, it should be
noticed that the amplitude of the potential variations was smaller
when the electrode was far from the substrate.

Figure 13. Potential distributions on the surface of the Al/Cu model cou-
ple deduced from theoretical calculations for different values of the probe
position (electrolyte conductivity equal to 5 × 10−5 S m−1).
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Figure 14. Current distributions on the surface of the Al/Cu model
couple deduced from theoretical calculations.

The solution of the Laplace equation also allows the distribution
of the normal current on the disk electrode surface to be calculated,
as shown in Fig. 14. The normal current on aluminum is constant and
corresponds to the boundary condition chosen, while for the copper
electrode, the calculations show a cathodic current distributed along
the electrode radius. Thus, calculation led to results in good agree-
ment with the initial hypothesis: a passive behavior for aluminum
and a cathodic current related to oxygen reduction on copper. Fur-
thermore, potential and current distributions revealed a particular
behavior at the aluminum/copper interface. Figure 14 shows a very
high cathodic current on copper at the aluminum/copper interface
corresponding to an increase of oxygen reduction on copper:

O2 + 2H2O + 4e− → 4OH−. (26)

This suggests that local variations of the chemical composition of
the electrolyte can occur from the beginning of immersion with a
local alkalinization of the electrolyte at the aluminum/copper inter-
face. Thus, the consequence is a particular evolution of the interface
morphology of the disk electrode after immersion in the electrolyte
related to corrosion phenomena restricted to the aluminum/copper
interface.
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(ii) Experimental

The sample consisted of a pure aluminum/pure copper couple.
A cylinder of pure aluminum (99.999 wt%), provided by Alfa/Aesar,
was drilled in its center and a cylinder of pure copper (99.9 wt%),
provided by Goodfellow, was then introduced by force into the hole.
The assembly of the two materials gave a perfectly joined interface
avoiding any crevice corrosion due to surface defects. The diameters
of the two cylinders were chosen to obtain an aluminum surface area
to copper surface area ratio of 10 (external diameters were equal to
10 and 3.15 mm for the aluminum and copper bars, respectively).
The electrode was then embedded in an epoxy resin so that a disk
electrode was obtained at the extremity. Before immersion in the
electrolyte, the disk electrode was mechanically polished with SiC
papers up to 4,000 grade, ultrasonically cleaned with ethanol, then
with distilled water. The electrolyte was a 10−3M Na2SO4 solution
prepared with analytical-grade chemicals in contact with an air at-
mosphere and at room temperature.

Local electrochemical measurements were performed using a
homemade device. The local potential variations were measured us-
ing a 100− μm-diameter Ag/AgCl microelectrode. It consisted of a
silver wire (100 μm in diameter, Goodfellow) laterally insulated with
cataphoretic paint, and sealed in a glass capillary with epoxy resin.
The AgCl was deposited in a 2 M KCl solution under potentiostatic
oxidation of the silver electrode at 0.4 V vs. the saturated calomel
electrode. The microreference electrode was moved with a three-axis
positioning system (UTM25, Newport) driven by a motion encoder
(MM4005, Newport), allowing a spatial resolution of 0.2 μm in the
three directions. A homemade analog differential amplifier with both
variable gain and high input impedance was used to record the local
potential. All measurements were performed at the corrosion poten-
tial Ecorr using a Keithley 2000 digital multimeter. The experimental
setup was controlled with homemade data-acquisition software de-
veloped under a LabView� environment.

(iii) Experimental Results and Discussion

The aluminum/copper interface was observed using optical and
scanning electron microscopy before and after immersion in the
sodium sulfate solution. Figure 15 shows an optical micrograph of
the interface before immersion (copper on the right, aluminum on
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Figure 15. Optical observation of the Al/Cu interface of the disk electrode
before immersion.

the left of the micrograph). The two materials are perfectly joined
without any defects observable at the interface. After 24 h of im-
mersion in the sulfate solution (Fig. 16), two main differences were
observed in the vicinity of the interface in comparison with the ob-
servations performed before immersion:

1. A deep crevice was formed at the aluminum/copper interface.
Close to the crevice, aluminum has a bright color, while ex-
cept in this zone it seems to be covered by an oxide film over
its whole surface, which is in good agreement with previous
hypotheses concerning a passive state for aluminum in the
couple. The bright color suggests that the crevice was at least
partially related to the dissolution of the aluminum close to
the interface.

2. An orange-brown ring about 50 μm thick occurred all
around the aluminum/copper interface. It was located on the
aluminum material at a distance of about 150 μm from the
interface. The ring was analyzed by energy-dispersive spec-
troscopy as being copper and is attributed to the deposition of
copper coming from the dissolution of the aluminum/copper
interface.56, 57 This copper deposition will not be analyzed in
the present work.
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Figure 16. Optical observations after 24 h of immersion in a 10−3 M Na2SO4
solution.

The observations also show that the corrosion processes were
restricted to the aluminum/copper interface and only concerned the
interface or the zone very close to the interface (copper ring at
150 μm from the interface). No other domain of the sample exhib-
ited corrosion damage, whether on aluminum or on copper. Further
scanning electron microscope observations allowed the zone close
to the interface to be more accurately described. In Fig. 17, the gray
zone corresponds to aluminum, while the white zone corresponds
to copper. The deep crevice previously observed using optical mi-
croscopy was more accurately seen on the scanning electron micro-
scope micrographs. Moreover, aluminum was found to be corroded
very close to the aluminum/copper interface with a dissolution depth
decreasing from the interface to some micrometers from the inter-
face. Except in this zone, aluminum was not corroded.

(iv) Comparison Between Theoretical Calculations
and Experimental Observations

Observations of the morphology of the aluminum/copper in-
terface after immersion in the electrolyte suggest that corrosion
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Figure 17. Scanning electron microscope observations of the Al/Cu inter-
face of the disk electrode after 24 h of immersion in a 10−3 M Na2SO4
solution.

occurs in different steps. The strong dissolution of aluminum at the
aluminum/copper interface partially leads to the formation of the
crevice, as observed. Thus, the initial step of the corrosion process
appears to be the dissolution of aluminum at the aluminum/copper
interface, while aluminum remains passive on the remaining surface
of the electrode. This is in good agreement with the current distri-
bution previously shown from the numerical calculations (Fig. 14).
A strong cathodic current density, related to increased reduction of
the oxygen, was predicted on copper at the aluminum/copper in-
terface. Such a reaction should lead to a local alkalinization of the
electrolyte.57

Figure 18 shows the potential distribution measured at the be-
ginning of immersion at the surface of the disk electrode using a
Ag/AgCl microreference electrode. Two consecutive measurements
were performed and both gave the same results. The curves were
also in good agreement with the potential distribution deduced from
the theoretical calculations (h = 0.1), showing that the hypotheses
of the calculations were relevant.
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Figure 18. Potential distributions measured in a 10−3 M Na2SO4
solution on the surface of the pure aluminum/pure copper model
couple using a Ag/AgCl microreference electrode. Two consecutive
measurements were performed.

Thus, from these results, a two-step mechanism is proposed to
explain the corrosion phenomena observed on the aluminum/copper
model couple:

• Step 1: During the immersion of the disk electrode in the
electrolyte, aluminum is the anode of the system and is in
the passive state, while copper is cathodically polarized. The
current distribution shows that significant oxygen reduction
occurs on the copper electrode close to the aluminum/copper
interface, whereas copper dissolution can be ignored during
the first moments of immersion. Thus, owing to the strong
cathodic reduction, alkalinization of the electrolyte occurs lo-
cally.

• Step 2: When the pH reaches a value of 9, the aluminum
is depassivated and dissolves, leading to the formation of a
crevice. The current distribution shows that the high cathodic
current is restricted to the aluminum/copper interface, which
explains that the dissolution of aluminum only occurs at the
aluminum/copper interface, leading to the specific topogra-
phy observed with scanning electron microscopy.
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Such phenomena are not dependent on the scale of the events
and the two-step mechanism could explain the corrosion mecha-
nisms in commercial alloys such as AA2024. Indeed, the results
showed that the most significant feature was the current distribu-
tion, which provokes the increase of oxygen reduction at the inter-
face and thus induces a strong variation of the pH of the electrolyte.
This study shows that a simple model (pure aluminum/pure copper)
is relevant for the study of what happens in copper-rich aluminum
alloys and also underlines the specific and important role of the
aluminum/copper interface. This feature cannot be observed if the
galvanic coupling is studied in the usual way with two independent
electrodes in the same solution.

3. Conclusions

A simple system with two pure metals as described in Fig. 10 is rel-
evant for understanding some local corrosion phenomena. The po-
tential and current distributions on the surface of the model couple
were deduced from theoretical calculations and the potential distri-
bution could be experimentally checked using a Ag/AgCl microref-
erence electrode. In the example of pure aluminum/pure copper, an
increased cathodic activity related to oxygen reduction was observed
at the aluminum/copper interface from the beginning of immersion.
Combination of the measurements and calculations with optical and
scanning electron microscopy observations of the model couple af-
ter a longer immersion time (24 h) allowed a two-step mechanism to
be proposed to explain the corrosion damage. This work underlines
that the local alkalinization of the electrolyte at the aluminum/copper
interface plays a key role in the degradation of the system.

IV. IMPEDANCE IN A CONFINED MEDIUM

1. Introduction

Thin-layer cells are experimental devices of interest for simulation
of various localized corrosion processes. For example, a thin mois-
ture film covers the metal surface during atmospheric corrosion, and
the thin-layer geometry is also relevant to crevice corrosion, and cor-
rosion under delaminated protective films.58–62 Thin-layer cells are
usually achieved by confining a thin electrolyte layer (the thickness
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of which is less than a few hundred micrometers) between the sur-
face of a working electrode and a parallel waterproof wall which
is mechanically set to define the desired thickness.61 Most classi-
cal thin-layer cells have a cylindrical geometry and involve large
disk electrodes (with radii of several millimeters). The geometrical
accuracy is generally limited by the difficulty of achieving strict par-
allelism between the electrode surface and the wall ensuring elec-
trolyte confinement.63, 64 With use of a positioning control procedure
based on the measurement of the electrolyte resistance, parallelism
errors could, however, be accurately quantified and then minimized
in these cells.63

In a thin-layer cell, the residual convection (“natural convec-
tion”) which always exists in a large volume of solution becomes
negligible. When the migration processes of the electroactive species
can also be neglected (for instance, in presence of a supporting elec-
trolyte), the mass transport is purely achieved by diffusion and is
determined by Fick’s laws:

N = −D∇c, (27)
∂c

∂t
= D∇2c, (28)

where N is the flux of the diffusing species
(
mol s−1 cm2

)
, and D(

cm2 s−1
)

and c
(
mol cm−3

)
are its diffusion coefficient and con-

centration, respectively.
Electrochemical impedance spectroscopy is a powerful elec-

trochemical technique allowing the mass transport of electroactive
species in the vicinity of electrodes to be investigated. In a thin-layer-
cell configuration, the corresponding mass transport impedance can
be calculated from Fick’s equations (27) and (28). With the assump-
tion that diffusion processes occur only along the normal direction
of the electrode surface (one-dimensional diffusion), analytical ex-
pression of the diffusion impedance can be derived in a thin-layer
cell. The diffusion impedance will depend obviously on the bound-
ary conditions considered in the calculations. It could also be modi-
fied by an eventual time constant distribution within the layer of the
ionic conductor covering the electrode or by the occurrence of ho-
mogeneous chemical reactions coupled to the diffusion processes.

From a more general point of view, Keddam et al. also demon-
strated that the impedance measured in a thin-layer-cell configura-
tion is significantly modified by the existence of a radial potential
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distribution within the liquid film confined over the electrode sur-
face.62 This effect was ascribed to the ohmic drop existing within
the liquid film covering the electrode surface.

In this context, the aim of this work was to experimentally in-
vestigate mass transport in a cylindrical thin-layer cell involving
a large disk electrode, using electrochemical impedance spec-
troscopy. In addition to this experimental approach, a new trans-
mission line model was proposed to take into account the radial
potential drop existing within the cell in the theoretical diffusion
impedance calculation. In contrast to the model previously proposed
by Keddam et al., the cylindrical geometry of the electrochemical
cell was rigorously taken into account in this new mathematical de-
velopment.62 With use of this model, modified one-dimensional
spatially restricted diffusion impedances were calculated using two
methods. First, it was assumed that mass transport proceeds only
normally to the electrode surface. Second, both normal and radial
mass transport contributions were considered.

2. Experimental

The cylindrical thin-layer cell used in this study is depicted in
Fig. 19. To guarantee quasiperfect mechanical stability during mea-
surements, this setup is supported by an antivibration table. The
working electrode is the cross section of a platinum cylinder (5 mm
in diameter). This electrode is sealed in a cylindrical epoxy resin
insulating holder (30 mm in diameter). Prior to use, the electrode
was successively polished with a 4,000 grit silicon carbide paper,
cleaned with ethanol, rinsed with deionized water, and dried with a
N2 flux. The electrode holder is fixed at the bottom of a glass cell.
The glass cell/electrode holder assembly is attached to a microp-
ositioning system made of a bidirectional x − y translation stage
mounted on a three-axis rotation platform. Thanks to this configura-
tion, the position and spatial orientation of the electrode surface can
be completely defined with an accuracy of 2 × 10−7◦ in the angu-
lar settings, and a precision of 1 μm in the linear positioning. Facing
the platinum working electrode, a mobile waterproof polytetraflu-
oroethylene cylinder (30 mm in diameter) ensures the confinement
of the electrolyte, forming a thin layer over the metallic sample.
This cylinder is attached to a z-translation stage and can be moved
vertically with a precision of 2 μm. The geometry of the confined
zone facing the working electrode surface was set according to the
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Anti-vibrating table

x-y translation stage

Multi-axis plateau

Reference electrode

Cylindrical
counter electrode

Adjustable thickness
of electrolyte

Insulating PTFE cylinder
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Pt disc (5 mm in diameter)

z translation stage

Vertical axis supporting
the z translation stage

Figure 19. The cylindrical thin-layer cell used for the impedance measurements.

positioning procedure proposed in a previous work.63 Thanks to this
method, the average electrolyte film thickness was set with a preci-
sion estimated at ±5 μm.

The impedance measurements were carried out using a clas-
sical setup: a frequency response analyzer (Solartron 1250) and
an electrochemical interface (Solartron 1286) monitored by a per-
sonal computer. A standard sulfate electrode and a large platinum
grid were used as reference and counter electrodes, respectively.
These two electrodes were located outside the confined zone fac-
ing the working electrode surface. This configuration prevents
notably the counter electrode reactions from affecting the local
chemistry in the vicinity of the working electrode. All experiments
were performed in a 0.01 M Fe (CN)6

3− + 0.01 M Fe (CN)6
4− +

0.5 M KCl solution. Solutions were prepared in deionized and dou-
bly distilled water from analytical-grade chemicals (Sigma). All
solutions were freshly prepared.
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3. Theory

As discussed above, if we assume that diffusion processes occur only
normal to the electrode surface (one-dimensional model),62, 65 the
theoretical diffusion impedance associated with the transport of an
electroactive species can be derived analytically in a thin-layer-cell
configuration. For a thin-layer cell of thickness e, the expression
of this impedance will depend on the condition considered at the
boundary.

In the case of a boundary impermeable to the diffusing species
[i.e., (∂c/∂x)x=e = 0], a one-dimensional spatially restricted diffu-
sion impedance Z1D (� cm2) is obtained at the electrode:

Z1D (ω) = Rd
e

D

coth
(√

e2

D jω
)

√
e2

D jω
, (29)

where ω is the angular frequency of the sine wave perturbation, Rd is
a scaling factor depending on the kinetics of the interfacial reactions,
and e is the electrolyte film thickness.65

The Nyquist plot of this spatially restricted diffusion impedance,
calculated for Rd = 0.05� cm3s−1 and D = 6.3× 10−6 cm2s−1, is
presented in Fig. 20 for various values of the electrolyte film thick-
ness e. The diagrams exhibit a classical Warburg behavior at high
frequency (straight line with a 45◦ slope) followed by a capacitive
behavior at lower frequencies. Electrically, the low-frequency be-
havior is equivalent to a resistor–capacitor series connection. The
value of this low-frequency resistor decreases as the electrolyte film
thickness decreases. An increase of the characteristic frequencies
(corresponding to the transition frequency between the Warburg
and the capacitive behavior, for example) is also observed as the
electrolyte film thickness decreases.

As discussed in the previous section, the existence of a radial
potential distribution should be taken into account for modeling suit-
ably the impedance response on a large disk electrode located in a
cylindrical thin-layer cell. Thus, a transmission line model adapted
to the geometry of the cylindrical thin-layer cells was derived ac-
cording to Fig. 21. Let us assume first that the electrolyte resis-
tivity was homogeneous in the whole liquid film confined at the
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Figure 20. One-dimensional spatially restricted diffusion
impedance (calculated according to (28) with D = 6.3 ×
10−6 cm2 s−1 and Rd = 5 × 10−2� cm3 s−1) with the dif-
fusion layer thickness e as a parameter.

working electrode surface, and second that the interfacial impedance
of the electrode Z int

(
� cm2

)
was homogeneous at the electrode sur-

face (i.e., no reactivity or capacitance distribution exists at the elec-
trode surface).

This model is very similar to that of de Levie,66 which was
also used by Keddam et al. for describing the impedance response
of electrodes located in a cylindrical thin-layer cell.62 However, in
contrast to the previous work of Keddam et al.,62 this approach takes
into account the cylindrical geometry of the thin-layer cell. This was
achieved by introducing the dependence on the radial coordinate of
the ring-shaped electrode surface elements dSelec (r) (30) and on the
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Figure 21. The transmission line model proposed to take into account the
potential drop within the thin-layer cell (lateral view).

lateral surface of the cylindrical electrolyte film confined within the
cell Slat (31):

dSelec(r) = 2πrdr, (30)

Slat(r) = 2πre. (31)
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where r (cm) is the radial coordinate, dSelec (r)
(
cm2

)
is a ring-

shaped electrode surface element located at a distance r from the
electrode center, Slat

(
cm2

)
is the lateral surface of a cylindrical elec-

trolyte film element of radius r confined within the cell, dr (cm) is
a length element following the radius of the electrode, and e (cm) is
the thickness of the thin-layer cell.

Under these assumptions, one can express the elementary re-
sistances and admittances (dR and dY ) involved in the model (see
Fig. 21) as

dR = R0 dr, (32)

dY = dr

Z0
, (33)

where dR is the resistance of a length element of the liquid layer, R0
is the electrolyte resistance, dY is the admittance of a ring-shaped
electrode surface element dSelec (r), and Z0 is the impedance of the
interface for a radial unit length of electrode. Equations (32) and
(33) can be rewritten as

dR = ρ

dSlat (r)
dr = ρ

2πre
dr, (34)

dY = dSelec (r)

Z int
= 2πrdr

Z int
, (35)

where ρ is the electrolyte resistivity.
The local currents I and di(A), flowing respectively along the

radial coordinate through the electrolyte layer and normally through
a ring-shaped electrode surface element, are linked by the following
charge conservation law:

di(r) = I (r + dr)− I (r). (36)

Equation (36) can be rewritten as

di(r)

dr
= ∂

∂r
[I (r)] . (37)

Otherwise, these currents can also be expressed using Ohm’s law
according to
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I = du

dR
, (38)

di = udY, (39)

where u and du are the local potential within the thin-layer cell
and the local ohmic drop in a length element dr of the liquid layer,
respectively.

Using (34) and (35), one can rewrite (38) and (39) as

du

dr
= ρ

2πre
I, (40)

di

dr
= 2πr

Z int
u. (41)

Using relations (37) and (41), the derivative of expression (40) vs.
the radial coordinate leads to

d2u

dr2 −
1

r

du

dr
− ρ

eZ int
u = 0. (42)

This differential equation can be solved numerically; however, if the
quantity 1

r
du
dr is negligible, (42) becomes

d2u

dr2 −
ρ

eZ int
u = 0. (43)

This last equation can be solved analytically and the general solution
is given by

u = A exp (αr)+ B exp (−αr) , (44)

where A and B are two constants to be determined with the boundary

conditions and α
(
cm−1

)
is equal to

√
ρ

eZint
.

Otherwise, the cylindrical symmetry of the cell imposes the
boundary condition (45):

[
du

dr

]

(r=0)
= 0. (45)

Thus, starting from (44), the boundary condition (45) leads to

A = B. (46)
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From (44) and (46), the local potential u can then be expressed
according to

u = 2A cosh (αr) . (47)

By defining U as the potential at the edge of the electrode [U =
u(R0)] and I0 as the global current flowing through the interface
[I0 = I (R0)], one can express the impedance of the electrode
Z
(
� cm2

)
according to

Z = U

I0
πR2

0 . (48)

Using (42), one can express the global current flowing through the
interface as

I0 =
R0∫

0

di =
R0∫

0

2πr

Z int
udr . (49)

Using (47), one can express I0 more explicitly as

I0 = 4π A

Z int

(
R0

α
sinh (αR0)+ 1

α2
[1 − cosh (αR0)]

)
. (50)

Finally, the impedance of the electrode Z
(
� cm2

)
is given by

Z = R2
0 Z int

2
[

R0
α

tanh (αR0)+ 1
α2

(
1

cosh(αR0)
− 1

)] . (51)

For e very large, thus in bulk solution, it is easy to verify that
Z is equal to Z int; and for e very small, Z is proportional to√

Z int, in agreement with the de Levie theory. Knowledge of
the interfacial impedance Z int is required for the calculation of
the global impedance of the electrode, which is given by (51). In the
present work, this interfacial impedance corresponds to a diffusion
impedance and was calculated using the classical analytic expres-
sion of the one-dimensional spatially restricted diffusion impedance
Z1D given by (29).

To know the validity of (51), the differential equation (42)
was solved numerically. The results obtained from the direct nu-
merical integration and from (51) are given in Fig. 22, where
only the phase shift, as a function of the dimensionless frequency
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Figure 22. Bode representation of the theoretical impedance diagrams calculated
with the transmission line model ((51) with Zint calculated according to (29)). Com-
parison with the numerical integration of (42) is given. With Rd = 0.05� cm2 s−1,
D = 6.3 × 10−6 cm2 s−1, ρ = 18� cm, and different values of the thickness e.
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/D, is plotted. The comparison with the theoretical

one-dimensional spatially restricted diffusion impedance (29) is also
given in Fig. 22, and shows that the transmission line model must be
applied for each thickness. For small values of e, the phase shift
tends towards 22.5◦, which corresponds to half of the phase limit
(45◦) for the diffusion impedance (see (29)). As shown in Fig. 22, the
analytical solution given by (51) is a relatively good approximation.

4. Results and Discussion

The experimental impedance diagrams measured in the thin-layer
cell for relatively thin electrolyte films (thicknesses greater than
115 μm) and for very thin electrolyte films (thicknesses less than
115 μm) are presented in Nyquist coordinates in Figs. 23 and 24, re-
spectively. In bulk conditions (electrolyte film thicknesses greater
than several centimeters), the diagram obtained experimentally con-
sists of a straight line exhibiting a phase angle very close to 45◦
(Fig. 23). This result is consistent with the assumption of a linear
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Figure 23. (a) Experimental impedance dia-
grams as a function of the electrolyte film thick-
ness for e ≥ 115 μm; (b) magnification of the
high-frequency range of the diagram.

mass transport normal to the electrode surface. Indeed, in bulk
conditions, such behavior is well predicted by the classical one-
dimensional diffusion model in the case of a semi-infinite diffusion
process (Warburg impedance corresponding to e infinite in (29)).

In the whole range of thin electrolyte film thicknesses investi-
gated (i.e., thicknesses equal to or less than 300 μm), the general
shape of the experimental impedance diagrams was changed. As a
first approximation, they can be described by a combination of a
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Figure 24. (a) Experimental impedance diagrams as a function of the
electrolyte film thickness for e≤ 115 μm; (b) magnification of the high-
frequency range of the diagrams.

straight line in the high frequencies followed by a capacitive arc in
the low-frequency domain, showing behavior quite similar to that
predicted by one-dimensional spatially restricted diffusion models.
However, several significant differences exist between the experi-
mental (Figs. 23, 24) and the theoretical (Fig. 20) impedance dia-
grams calculated from (29). First, whatever the range of electrolyte
film thicknesses, the one-dimensional spatially restricted diffusion
model predicts a decrease of the low-frequency limit of the real
part of the impedance as the electrolyte film thickness decreases
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(see Fig. 20). As shown in Fig. 23, this prediction was achieved
experimentally only for relatively thick electrolyte films (thicknesses
ranging from 95 to 300μm), but for smaller film thickness, the low-
frequency limit of the real part of the impedance increases as the
electrolyte film thickness decreases.

Indeed, as clearly illustrated by the high-frequency magnifica-
tion of the experimental Nyquist plots in Figs. 23b and 24b, the phase
angles decrease monotonically as the electrolyte film thickness de-
creases. Quantitatively, in the thin electrolyte film conditions inves-
tigated in this study (e ≤ 300 μm), the experimental values of the
phase angle are systematically lower than 45◦ in the high frequen-
cies. This result is in agreement with Fig. 22.

In the whole range of thicknesses investigated (20 μm ≤ e ≤
300 μm), the theoretical phase angles calculated from (51) decrease
in the high-frequency range ( fadim > 1) as the electrolyte film thick-
ness decreases. This prediction from the transmission line model is
also consistent with the experimental measurements. These results
show the significant improvement provided by the transmission line
model for the description of the diffusion impedance in cylindri-
cal thin-layer cells involving large disk electrodes and demonstrate
how this potential distribution could have a noteworthy impact on
the impedance response in a thin-layer cell involving a large disk
electrode.

The fit between experimental measurements and the one-
dimensional spatially restricted modified diffusion impedance
calculated from the transmission line model remains, however,
imperfect. A possible explanation for the quantitative differences
existing between the theoretical diagrams calculated from (51) and
the measurements may be suggested by the conclusions of Gabrielli
et al.67 These authors showed that neglecting radial mass transport
leads to inaccurate impedance calculations in the case of cylindrical
thin-layer cells involving microelectrodes. The discrepancy between
the measurements and the predictions from the transmission line
model proposed in this work may be consequently explained by
the use of a too strong approximation consisting in neglecting the
radial diffusion processes in (51). Experimentally, the occurrence
of such radial diffusion is, however, not obvious in our case. In-
deed, Gabrielli et al. demonstrated that radial diffusion appears in
the impedance measured at a microelectrode as an additional low-
frequency contribution.67 In the frequency range investigated in
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this work (100 kHz − 5 mHz), such a contribution was not clearly
evidenced for large disk electrodes. A careful examination of the re-
sults reveals, however, that the purely capacitive behavior predicted
theoretically at low frequency by both one-dimensional models pre-
viously discussed ((29) and (51)) was not achieved in this range
of frequency. In fact, the experimental Nyquist diagrams (Figs. 23,
24) do not reach clearly the perfect vertical asymptotic behavior
predicted by these models at low frequency (Fig. 20). Similarly, the
phase angle of 90◦ predicted by both models was not observed in
the frequency range investigated (Fig. 22).

To check the possible occurrence of a radial contribution in the
impedance measured on large disk electrodes, some measurements
were performed with a frequency limit as low as 100 μHz (Fig. 25).
Moreover, radial mass transport was also taken into account in the
transmission line model and theoretical impedance diagrams (Z2D;
also plotted in Fig. 25) were calculated numerically. Figure 25 shows
an additional time constant on the experimental diagrams in the very
low frequency range, which is evidenced by the existence of a max-
imum of the experimental phase angle in Bode representation. The
value of this maximum increases as the electrolyte film thickness de-
creases, whereas the dimensionless frequency corresponding to this
maximum increases as the electrolyte film thickness decreases. This
low-frequency behavior remains totally unexplained if only a one-
dimensional diffusion path is considered.

Diagrams calculated numerically from the two-dimensional
model (Fig. 25) are also in very good accordance with the exper-
imental results. In the low-frequency range, the additional time
constant is totally predicted by the model, and for high frequencies,
the transmission line model proposed in this paper allows one to ex-
plain the small (lower than 45◦) and frequently distributed values of
the phase angle. Thus, these results are consistent with the findings
of previous work by Gabrielli et al., but the use of an electrode in
the millimeter or centimeter range requires very low frequency (less
than 100 μHz in certain cases) to allow the radial mass transport
effect to be observed.67

5. Conclusions

The use of an accurate experimental device allowed the measure-
ment of the electrochemical impedance corresponding to the diffu-
sion of ferrocyanide ions on a large disk electrode in a cylindrical
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Figure 25. Bode representation of the theoretical impedance diagrams calculated
with the transmission line model by taking into account radial mass transport ((50)
with Zint calculated numerically using an adaptation of the model of Gabrielli
et al.,67 D = 6.3 × 10−6 cm2/s and ρ = 18� cm) and comparison with exper-
imental measurements.

thin-layer cell configuration. Even if the diagrams obtained exper-
imentally exhibit some strong similarities with the theoretical dia-
grams predicted by the classical spatially restricted linear diffusion
impedance models, some significant differences between theory and
experiments were evidenced. These differences consisted notably in
a nonmonotonic evolution of the low-frequency limit of the real part
of the experimental diagrams as well as small (less than 45◦) val-
ues of the phase angle in the high frequencies. This behavior was
ascribed to the potential distribution in the electrolyte film confined
at the electrode surface due to ohmic drop. This effect was taken
into account by developing a new transmission line model which
accounts for the cylindrical geometry of the electrochemical cell.
Moreover, an analytical derivation of the impedance was possible
by neglecting the radial mass transport within the cell. Under this
linear mass transport assumption, the model allowed qualitative ex-
planation of the experimental results in a large frequency range.



Topics in the Mathematical Modeling of Localized Corrosion 339

However, to fit quantitatively the diagrams and to further explain the
additional time constant evidenced experimentally in a very low fre-
quency range (frequencies lower than 1 mHz), the two-dimensional
character of the mass transport should be taken into account.
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I. SCOPE OF THIS CHAPTER

Density-functional theory (DFT) is one of the most widely used
quantum mechanical approaches for calculating the structure and
properties of matter on an atomic scale. It is nowadays routinely ap-
plied for calculating physical and chemical properties of molecules
that are too large to be treatable by wave-function-based methods.
The problem of determining the many-body wave function of a
real system rapidly becomes prohibitively complex.1 Methods such
as configuration interaction (CI) expansions, coupled cluster (CC)
techniques or Møller–Plesset (MP) perturbation theory thus become
harder and harder to apply. Computational complexity here is related
to questions such as how many atoms there are in the molecule, how
many electrons each atom contributes, how many basis functions are
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required to adequately describe these electrons, how many compet-
ing minima there are in the potential-energy surface determining the
molecular geometry, and whether any additional external fields are
present. The description of the many-body wave function in CI, CC
and MP techniques depends sensitively on these questions, and be-
comes very difficult for systems with more than a few electrons.

DFT shifts attention from the many-electron wave function to
the charge density, which is much simpler to obtain and to in-
terpret. In practice, this charge density is expressed in terms of
single-particle orbitals, similar to those employed in the Hartree–
Fock approximation, but the way these orbitals are obtained, used
and interpreted is quite different. It is one aim of this chapter to
describe these differences. Simple density functionals, such as the
local-density approximation (LDA), are computationally cheaper
even than the Hartree–Fock approximation, but typically provide
more accurate total energies and related quantities. If the demands
on accuracy are higher than can be satisfied by the LDA – as
they normally are in quantum chemistry – beyond-LDA functionals
such as gradient-dependent approximations or hybrid functionals are
available. Today, generalized-gradient approximations (GGAs) and
hybrids are standard tools for applications of DFT to molecular prop-
erties, such as geometries, vibration frequencies, binding energies
and ionization energies. The dependence of such properties on ex-
ternal electric and magnetic fields is also accessible. The inclusion of
such fields in the formalism of DFT is also described in this chapter.

As demands on accuracy increase, density functionals become
more complex. Exact exchange, self-interaction corrections (SICs)
or kinetic-energy densities are examples of ingredients of such more
complex functionals. These, and some related approaches, are also
briefly described here.

In spite of all its successes, DFT also suffers from severe limita-
tions. As the systems become larger and larger, DFT, too, encounters
computational limitations, and must yield to semiempirical mod-
elling. At the other end of the spectrum, as demands on accuracy
grow beyond that attained by today’s best functionals (quantified
below), wave-function-based methods such as CI, CC or MP reign
supreme. Simultaneous progress in computing technology and con-
struction of density functionals, however, has pushed both frontiers
of DFT further and further out. As a consequence, many problems of
interest in physics and chemistry, including in electrochemistry,2–6

are now accessible via DFT.
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Typical applications of DFT to electrochemical problems have
been thoroughly reviewed in a previous volume of this series,2

and a wealth of useful information on the performance of DFT in
the calculation of electric polarizabilities and hyperpolarizabilities
of atoms, molecules and clusters is contained in Ref. [3]. These
sources, however, give only very brief descriptions of the formal-
ism of DFT, and the nature of the different approximations used in
a typical DFT calculation. The scope of the present chapter is com-
plementary: we are very short on applications, limiting us to giving
a few representative numbers for simple systems, but describe the
conceptual structure of DFT, the theorems it is based on, and how
these theorems can be turned into practical tools for solving chemi-
cal and physical problems.

The literature on DFT is large, and rich in excellent reviews and
overviews. Some representative examples of full reviews and sys-
tematic collections of research papers are Refs. [7–21]. This chapter
is much less detailed and advanced than those treatments. Introduc-
tions to DFT that are more similar in spirit to the present one (but
differ in emphasis and selection of topics) are the contribution of
M. Levy in Ref. [11, page 3], the one of S. Kurth and J. P. Perdew in
Refs. [17 page 8, 18 page 1] that by Argaman and Makov 22 and that
by one of the present authors.23

II. ELEMENTS OF THE QUANTUM MECHANICS
OF MANY-ELECTRON SYSTEMS

In this section we recapitulate a few selected elements of the quan-
tum mechanics of many-electron systems that are useful for under-
standing and using DFT.

1. Hamiltonians and Wave Functions

To get a first idea of what DFT is about, it is useful to take a step
back and recall some elementary quantum mechanics. In quantum
mechanics we learn that all information we can possibly obtain
about a given system in a pure state is contained in the system’s
wave function, Ψ . Here we will exclusively be concerned with
the electronic structure of atoms, molecules and solids. Within the
Born–Oppenheimer approximation, the nuclear degrees of freedom
appear only in the form of a potential v(r) acting on the electrons,
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so the wave function depends only on the electronic coordinates.
(Strictly speaking, v(r) is a potential energy, not a potential as the
word is used in electrostatics, but the terminology ‘potential’ is very
common.)

Nonrelativistically, this wave function is calculated from
Schrödinger’s equation, which for a single electron moving in a
potential v(r) reads

[

− h̄2∇2

2m
+ v(r)

]

Ψ (r) = ε Ψ (r). (1)

Both the Born–Oppenheimer approximation and the nonrelativis-
tic approximation can be avoided by formulating the problem from
the outset without them. In the former case, this leads to a com-
bined DFT for electrons and nuclei;24 in the latter case it results in
relativistic DFT (RDFT).20, 25–27 Alternatively, relativistic or nona-
diabatic corrections can be added to the standard formalism via
perturbation theory.

If there is more than one electron (i.e. one has a many-body
problem), Schrödinger’s equation becomes
⎡

⎣
N∑

i

(

− h̄2∇2
i

2m
+ v(ri )

)

+
∑

i< j

U (ri , r j )

⎤

⎦Ψ (r1, r2, . . . , rN )

= E Ψ (r1, r2, . . . , rN ), (2)

where N is the number of electrons and U (ri , r j ) is the electron–
electron interaction. For a Coulomb system one has

Û =
∑

i< j

U (ri , r j ) =
∑

i< j

q2

|ri − r j | . (3)

Note that this is the same operator for any system of particles in-
teracting via the Coulomb interaction, just as the kinetic energy
operator

T̂ = − h̄2

2m

∑

i

∇2
i (4)

is the same for any nonrelativistic system.
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Whether the system under study is an atom, a molecule or a
solid thus depends only on the potential v(ri ). For an atom, e.g.,

V̂ =
∑

i

v(ri ) =
∑

i

Qq

|ri − R| , (5)

where R denotes the nuclear position, relative to some fixed coor-
dinate system, and Q is nuclear charge. (Here and below we adopt
the convention that in terms of the elementary charge e > 0 and the
atomic number Z , the nuclear charge is Q = Ze and the charge on
the electron is q = −e.) For a molecule or a solid one has

V̂ =
∑

i

v(ri ) =
∑

ik

Qkq

|ri − Rk | , (6)

where the sum on k extends over all nuclei in the system, each with
charge Qk = Zke and position Rk . It is only the spatial arrangement
of the Rk (together with the corresponding boundary conditions) that
distinguishes, fundamentally, a molecule from a solid. For this rea-
son one sometimes says that T̂ and Û are ‘universal’, while V̂ is
system-dependent, or ‘nonuniversal’.

Similarly, it is only through the term Û that the (essentially
simple) single-body quantum mechanics of (1) differs from the ex-
tremely complex many-body problem posed by (2). These properties
are built into DFT in a very fundamental way.

The usual quantum-mechanical approach to Schrödinger’s
equation (SE) can be summarized by the following sequence,

v(r)
SE�⇒ Ψ (r1, r2, . . . , rN )

〈Ψ |···|Ψ 〉�⇒ observables, (7)

i.e. one specifies the system by choosing v(r), plugs it into
Schrödinger’s equation, solves that equation for the wave func-
tion Ψ and then calculates observables by taking expectation values
of operators with this wave function. One among the observables
that are calculated in this way is the particle density:

n(r) = N
∫

d3r2

∫
d3r3 · · ·

∫
d3rN Ψ ∗(r, r2, . . . , rN )Ψ (r, r2, . . . , rN ).

(8)
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Many powerful methods for solving Schrödinger’s equation
have been developed during decades of struggling with the many-
body problem. In physics, e.g., one has diagrammatic perturbation
theory (based on Feynman diagrams and Green’s functions), while in
chemistry one often uses CI methods, which are based on systematic
expansion in Slater determinants. A host of more special techniques
also exists. The problem with these methods is the great demand
they place on one’s computational resources: it is simply impossible
to apply them efficiently to large and complex systems. Nobody has
ever calculated the chemical properties of a 100-atom molecule with
full CI, or the electronic structure of a real semiconductor using
nothing but Green’s functions.

A simple estimate of the computational complexity of this task
is to imagine a real-space representation of Ψ on a mesh, in which
each coordinate is discretized by using 20 mesh points (which is not
very much). For N electrons, Ψ becomes a function of 3N coor-
dinates (ignoring spin, and taking Ψ to be real), and 203N values
are required to describe Ψ on the mesh. For N = 10 electrons, ap-
proximately 1039 data values are required. A CD-ROM disc holds
approximately 700 MB. If each value is represented by 1 byte, one
would thus require approximately 1.5×1030 discs, which, at an aver-
age thickness of 1.2 mm per CD, would result in a pile of CDs about
10 times the diameter of the known universe (20 billion lightyears).

The density n(r) is a function of three coordinates, and requires
203 values on the same mesh, which conveniently fits on any stan-
dard storage medium. The same applies to single-particle orbitals,
which by definition also depend on three coordinates (plus spin)
only. N such orbitals, used to build the density, require 203 N values.
(A CI calculation also employs unoccupied orbitals, and requires
more values.) For N = 10 electrons, the many-body wave function
thus requires 2030/203 ≈ 1035 times more storage space than the
density, and 2030/(10× 203) ≈ 1034 times more than sets of single-
particle orbitals. Clever use of symmetries can reduce these ratios,
but the full many-body wave function remains, in practice, unacces-
sible for real systems with more than a few electrons.

It is here where DFT provides a viable alternative. DFT explic-
itly recognizes that nonrelativistic Coulomb systems differ only by
their potential v(r), and supplies a prescription for dealing with the
universal operators T̂ and Û once and for all. We will see that in
practice this prescription can be implemented only approximately.
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Still, these approximations retain a high degree of universality in the
sense that they often work well for more than one type of system.
For this reason, the density-functional approach forms the basis of
the large majority of electronic-structure calculations in physics and
chemistry. Much of what we know about the electric, magnetic and
structural properties of materials has been calculated using DFT,
and the extent to which DFT has contributed to the molecular sci-
ences is reflected by the 1998 Nobel Prize in Chemistry, which was
awarded to Walter Kohn,1 the founding father of DFT, and John
Pople,28 who was instrumental in implementing DFT in computa-
tional chemistry.

The density-functional approach can be summarized by the
sequence7, 29

n(r) �⇒ Ψ (r1, . . . , rN ) �⇒ v(r), (9)

i.e. knowledge of n(r) implies knowledge of the wave function and
the potential, and hence of all other observables. We stress that, con-
trary to what is sometimes claimed in the literature, the sequence
of mappings in DFT is not n(r) �⇒ v(r) �⇒ Ψ (r1, . . . , rN ). All
proofs of the Hohenberg–Kohn theorem prove that the wave func-
tion is a density functional. The properties of the potential follow in
a second step. This issue is addressed in more detail in Sect. III.1.

Although sequence (9) describes the logical structure of DFT,
it does not really represent what is done in actual applications of
it, which typically proceed along rather different lines, and do not
make explicit use of many-body wave functions. The rest of this
chapter attempts to explain both the conceptual structure and some
of the many possible shapes and disguises under which this structure
appears in applications.

2. Density Matrices and Density Functionals

It is a fundamental postulate of quantum mechanics that the wave
function contains all possible information about a system in a pure
state at zero temperature, whereas at nonzero temperature, or in a
general mixed state, this information is contained in the density ma-
trix of quantum statistical mechanics. Normally, this is much more
information that one can handle: for a system with N = 100 parti-
cles the many-body wave function is an extremely complicated func-
tion of 300 spatial and 100 spin variables that would be impossible
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to manipulate algebraically or to extract any information from, even
if it were possible to calculate it in the first place. For this reason one
searches for less complicated objects to formulate the theory. Such
objects should contain the experimentally relevant information, such
as energies and densities, but do not need to contain explicit infor-
mation about the coordinates of every single particle. One class of
such objects are reduced density matrices.

For a general quantum system at temperature T , the density op-
erator in a canonical ensemble is defined as

γ̂ = exp(−β Ĥ)

Tr[exp(−β Ĥ)] , (10)

where Tr[·] is the trace and β = 1/(kBT ). Standard textbooks on
statistical physics show how this operator is obtained in other en-
sembles, and how it is used to calculate thermal and quantum expec-
tation values. Here we focus on the relation to DFT. To this end we
write γ̂ in the energy representation as

γ̂ =
∑

i exp(−βEi )|Ψi 〉〈Ψi |∑
i exp(−βEi )

, (11)

where |Ψi 〉 is eigenfunction of Ĥ , and the sum is over the entire
spectrum of the system, each state being weighted by its Boltzmann
weight exp−βEi . At zero temperature only the ground-state con-
tributes to the sums, so that

γ̂ = |Ψi 〉〈Ψi |. (12)

The coordinate-space matrix element of this operator for an N -
particle system is

〈x1, x2, . . . , xN | γ̂ |x ′1, x ′2, . . . , x ′N 〉
= Ψ (x1, x2, . . . , xN )

∗Ψ (x ′1, x ′2, . . . , x ′N )
= : γ (x1, x2, . . . , xN ; x ′1, x ′2, . . . , x ′N ) , (13)

which shows the connection between the density matrix and
the wave function. (We use the usual abbreviation x = rs
for space and spin coordinates.) The expectation value of
a general N -particle operator Ô is obtained from O =
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〈Ô〉 = ∫ dx1
∫

dx2 · · ·
∫

dxNΨ (x1, x2, . . . , xN)
∗ Ô Ψ (x1, x2, . . . , xN),

which for multiplicative operators becomes

〈Ô〉 =
∫

dx1

∫
dx2 · · ·

∫
dxN Ô γ (x1, x2, . . . , xN ; x1, x2, . . . , xN )

(14)

and involves only the function γ (x1, x2, . . . , xN ; x1, x2, . . . , xN ),
which is the diagonal element of the matrix γ . Most operators we
encounter in quantum mechanics are one- or two-particle operators
and can be calculated from reduced density matrices that depend on
fewer than 2N variables. Note that in this context, expressions such
as ‘two-particle operator’ and ‘two-particle density matrix’ refer to
the number of particles involved in the definition of the operator (two
in the case of an interaction, one for a potential energy, etc.), not to
the total number of particles present in the system.

The reduced two-particle density matrix is defined as

γ2(x1, x2; x ′1, x ′2)

= N (N − 1)

2

∫
dx3

∫
dx4 · · ·

∫
dxNγ (x1, x2, x3, x4, . . . , xN ;

x ′1, x ′2, x3, x4, . . . , xN ),

(15)

where N (N − 1)/2 is a convenient normalization factor. This
density matrix determines the expectation value of the particle–
particle interaction, of static correlation and response functions,
of the exchange and correlation holes, and related quantities. The
pair-correlation function g(x, x ′), e.g., is obtained from the diago-
nal element of γ2(x1, x2; x ′1, x ′2) according to γ2(x1, x2; x1, x2) =:
n(x1)n(x2)g(x, x ′).

Similarly, the single-particle density matrix is defined as

γ (x1, x ′1)

= N
∫

dx2

∫
dx3

∫
dx4 · · ·

∫
dxN γ (x1, x2, x3, x4, . . . , xN ;

x ′1, x2, x3, x4, . . . , xN )

= N
∫

dx2

∫
dx3

∫
dx4 · · ·

∫
dxN Ψ ∗(x1, x2, x3, . . . , xN )

× Ψ (x ′1, x2, x3, . . . , xN ) . (16)
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The structure of reduced density matrices is quite simple: all coor-
dinates that γ does not depend upon are set equal in Ψ and Ψ ∗, and
integrated over.

In the special case that the wave function Ψ is a Slater deter-
minant, i.e. the wave function of N noninteracting fermions, the
single-particle density matrix can be written in terms of the orbitals
comprising the determinant, as

γ (x, x ′) =
∑

j

φ∗j (x)φ j (x
′), (17)

which is known as the Dirac (or Dirac–Fock) density matrix.
The usefulness of the single-particle density matrix becomes ap-

parent when we consider how one would calculate the expectation
value of a multiplicative single-particle operator Â = ∑N

i a(ri ),
such as the potential V̂ =∑N

i v(ri ):

〈 Â〉 =
∫

dx1 · · ·
∫

dxN Ψ ∗(x1, x2, . . . , xN)

⎡

⎣
N∑

i

a(xi )

⎤

⎦Ψ (x1, x2, . . . , xN)

= N
∫

dx1 · · ·
∫

dxN Ψ ∗(x1, x2, . . . , , xN ) a(x1) Ψ (x1, x2, . . . , xN )

=
∫

dx a(x) γ (x, x), (18)

which is a special case of (14). The second line follows from the
first by exploiting the property that the fermionic wave function Ψ

changes sign upon interchange of two of its arguments. The last
equation implies that if one knows γ (x, x), one can calculate the
expectation value of any multiplicative single-particle operator in
terms of it, regardless of the number of particles present in the
system. For nonmultiplicative single-particle operators (such as the
kinetic energy, which contains a derivative) one requires the full
single-particle matrix γ (x, x ′) and not only γ (x, x). The simplifi-
cation is enormous, and reduced density matrices are very popular
in, e.g., computational chemistry for precisely this reason. More de-
tails are given in, e.g., Ref. [8]. The full density operator, (10), on the
other hand, is the central quantity of quantum statistical mechanics.

It is not possible to express expectation values of two-particle
operators, such as the interaction itself, or the full Hamiltonian



Density-Functional Theory in External Electric and Magnetic Fields 351

(i.e. the total energy), explicitly in terms of the single-particle den-
sity matrix γ (r, r′). For this purpose one requires the two-particle
density matrix.

Apparently even less information is contained in the particle
density n(r), which is obtained by summing the diagonal element of
γ (x, x ′) over the spin variable,

n(r) =
∑

s

γ (rs, rs). (19)

This equation follows immediately from comparing (8) with (16).
We can define an alternative density operator, n̂, by requiring that
the same equation must also be obtained by substituting n̂(r) into
(18), which holds for any single-particle operator. This requirement
implies that n̂(r) = ∑N

i δ(r − ri ). The expectation value of n̂ is
the particle density, and therefore n̂ is often also called the ‘density
operator’. This concept must not be confused with any of the various
density matrices or the density operator of statistical physics, (10).

The particle density is an even simpler function than γ (x, x ′): it
depends on one set of coordinates x only, it can easily be visualized
as a three-dimensional charge distribution and it is directly acces-
sible in experiments. These advantages, however, seem to be more
than compensated for by the fact that one has integrated out an enor-
mous amount of specific information about the system in going from
wave functions to density.

The great surprise of DFT is that in fact no information has
been lost at all, at least as long as one considers the system only
in its ground state: according to the Hohenberg–Kohn theorem,29

which is discussed in detail in Sect. III, the ground-state den-
sity n(x) completely determines the ground-state wave function
Ψ (x1, x2, . . . , xN ). The Runge–Gross theorem, which forms the
basis of time-dependent DFT (TD-DFT),30 similarly guarantees that
the time-dependent density contains the same information as the
time-dependent wave function.

Hence, in the ground state, the function of one variable n(r) is
equivalent to the function of N variables Ψ (x1, x2, . . . , xN ). This
property shows that we have only integrated out explicit information
on our way from wave functions via density matrices to densities.
Implicitly all the information that was contained in the ground-state
wave function is still contained in the ground-state density. Part of
the art of practical DFT is how to get this implicit information out,
once one has obtained the density!
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3. Functionals and Their Derivatives

Since according to (9) the wave function is determined by the den-
sity, we can write it as Ψ = Ψ [n](r1, r2, . . . , rN ), which indicates
that Ψ is a function of its N spatial variables, but a functional of
the function n(r). In principle, therefore, observables in DFT are
calculated, explicitly or implicitly, as functionals of the ground-state
density.

Functionals

Functionals are a most useful mathematical tool. In general, a func-
tional F[n] can be defined as a rule for going from a function to a
number, just as a function y = f (x) is a rule ( f ) for going from a
number (x) to a number (y). A simple example of a functional is the
particle number,

N =
∫

d3r n(r) = N [n], (20)

which is a rule for obtaining the number N , given the function n(r).
Note that the name given to the argument of n is completely irrel-
evant, since the functional depends on the function itself, not on its
variable. Hence, we do not need to distinguish F[n(r)] from, e.g.,
F[n(r′)]. Another important case is that in which the functional de-
pends on a parameter, such as in

vH[n](r) = q2
∫

d3r ′ n(r′)
|r − r′| , (21)

which is a rule that for any value of the parameter r associates a
value vH[n](r) with the function n(r′). Equation (21) is the so-called
Hartree potential, which we will repeatedly encounter below.

Functional Derivative

Given a function of one variable, y = f (x), one can think of two
types of variations of y, one associated with x , the other with f .
For a fixed functional dependence f (x), the ordinary differential dy
measures how y changes as a result of a variation x → x + dx
of the variable x . This is the variation studied in ordinary calculus.
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Similarly, for a fixed point x , the functional variation δy measures
how the value y at this point changes as a result of a variation in
the functional form f (x). This is the variation studied in variational
calculus.

The derivative formed in terms of the ordinary differential,
d f/dx , measures the first-order change of y = f (x) upon changes
of x , i.e. the slope of the function f (x) at x :

f (x + dx) = f (x)+ d f

dx
dx + O(dx2). (22)

The functional derivative measures, similarly, the first-order change
in a functional upon a functional variation of its argument:

F[ f (x)+δ f (x)] = F[ f (x)]+
∫
δF[ f ]
δ f (x)

δ f (x) dx+O(δ f 2), (23)

where the integral arises because the variation in the functional F
is determined by variations in the function at all points in space.
The first-order coefficient (or ‘functional slope’) is defined to be the
functional derivative δF[ f ]/δ f (x).

The functional derivative allows us to study how a functional
changes upon changes in the form of the function it depends on.
A general expression for obtaining functional derivatives of a func-
tional F[n] = ∫ f (n, n′, n′′, n′′′, . . . ; x)dx with respect to n(x) is8

δF[n]
δn(x)

= ∂ f

∂n
− d

dx

∂ f

∂n′
+ d2

dx2

∂ f

∂n′′
− d3

dx3

∂ f

∂n′′′
+ · · · . (24)

This expression is frequently used in DFT to obtain exchange–
correlation potentials from exchange–correlation energies.

III. THE HOHENBERG–KOHN THEOREM

1. Enunciation and Discussion of the Hohenberg–Kohn
Theorem

At the heart of DFT is the Hohenberg–Kohn theorem,29 which states
that for ground states (8) can be inverted: given a ground-state den-
sity n0(r) it is possible, in principle, to calculate the corresponding
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ground-state wave function Ψ0(r1, r2, . . . , rN ). This means that Ψ0
is a functional of n0. Consequently, all ground-state observables are
functionals of n0 too. If Ψ0 can be calculated from n0 and vice versa,
both functions are equivalent and contain exactly the same informa-
tion. At first sight this seems impossible: how can a function of one
(vectorial) variable r be equivalent to a function of N (vectorial)
variables r1 . . . rN ? How can one arbitrary variable contain the same
information as N arbitrary variables?

The crucial fact which makes this possible is that knowledge
of n0(r) implies implicit knowledge of much more than that of an
arbitrary function f (r). The ground-state wave function Ψ0 must not
only reproduce the ground-state density, but it must also minimize
the energy. For a given ground-state density n0(r), we can write this
requirement as

Ev,0 = min
Ψ→n0

〈Ψ |T̂ + Û + V̂ |Ψ 〉, (25)

where Ev,0 denotes the ground-state energy in potential v(r). The
preceding equation tells us that, for a given density n0(r), the
ground-state wave function Ψ0 is that which reproduces this n0(r)
and minimizes the energy.

For an arbitrary density n(r), we define the functional

Ev[n] = min
Ψ→n

〈Ψ |T̂ + Û + V̂ |Ψ 〉. (26)

If n is a density different from the ground-state density n0 in po-
tential v(r), then the Ψ that produce this n are different from the
ground-state wave functionΨ0, and according to the variational prin-
ciple the minimum obtained from Ev[n] is higher than (or equal to)
the ground-state energy Ev,0 = Ev[n0]. Thus, the functional Ev[n]
is minimized by the ground-state density n0, and its value at the min-
imum is Ev,0.

The total-energy functional can be written as

Ev[n] = min
Ψ→n

〈Ψ |T̂ + Û |Ψ 〉 +
∫

d3r n(r)v(r) =: F[n] + V [n],
(27)

where the internal-energy functional F[n] = minΨ→n〈Ψ |T̂ +Û |Ψ 〉
is independent of the potential v(r), and is thus determined only
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by the structure of the operators Û and T̂ . This universality of the
internal-energy functional allows us to define the ground-state wave
function Ψ0 as that antisymmetric N -particle function that deliv-
ers the minimum of F[n] and reproduces n0. If the ground state
is nondegenerate, this double requirement uniquely determines Ψ0
in terms of n0(r), without our having to specify v(r) explicitly. Note
that this is exactly the opposite of the conventional prescription of
specifying the Hamiltonian via v(r), and obtaining Ψ0 from solving
Schrödinger’s equation, without our having to specify n(r) explicitly.

Equations (25)–(27) constitute the constrained-search proof of
the Hohenberg–Kohn theorem, given independently by Levy31 and
Lieb.32 The original proof by Hohenberg and Kohn29 proceeded by
assuming that Ψ0 was not determined uniquely by n0 and showed
that this produced a contradiction to the variational principle. Both
proofs, by constrained search and by contradiction, are elegant and
simple. In fact, it is a bit surprising that it took 38 years from
Schrödinger’s first papers on quantum mechanics33 to Hohenberg
and Kohn’s 1964 paper containing their famous theorem.29

For future reference we now provide a commented summary of
the content of the Hohenberg–Kohn theorem. This summary consists
of four statements:

(1) The nondegenerate ground-state wave function is a unique
functional of the ground-state density:

Ψ0(r1, r2, . . . , rN ) = Ψ [n0(r)]. (28)

This is the essence of the Hohenberg–Kohn theorem. As a
consequence, the ground-state expectation value of any ob-
servable Ô is a functional of n0(r) too:

O0 = O[n0] = 〈Ψ [n0]|Ô|Ψ [n0]〉. (29)

This equation is sometimes called the ‘first Hohenberg–Kohn
theorem’.

(2) Perhaps the most important observable is the ground-state en-
ergy. This energy

Ev,0 = Ev[n0] = 〈Ψ [n0]|Ĥ |Ψ [n0]〉, (30)

where Ĥ = T̂ + Û + V̂ , has the variational property
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Ev[n0] ≤ Ev[n′], (31)

where n0 is the ground-state density in potential V̂ and n′ is
some other density. Equation (31) is so important for practical
applications of DFT that it is sometimes called the ‘second
Hohenberg–Kohn theorem’.
If the ground state is degenerate, several of the degenerate
ground-state wave functions may produce the same density,
so a unique functional Ψ [n] does not exist, but by definition
these wave functions all yield the same energy, so the func-
tional Ev[n] continues to exist and to be minimized by n0. A
universal functional F[n] can also still be defined.7, 34

In performing the minimization of Ev[n], one takes into ac-
count the constraint that the total particle number N is an
integer by means of a Lagrange multiplier, replacing the con-
strained minimization of Ev[n] by an unconstrained one of
Ev[n] − μN . Since N = ∫ d3rn(r), this leads to

δEv[n]
δn(r)

= μ = ∂E

∂N
, (32)

where μ is the chemical potential.
(3) Recalling that the kinetic and interaction energies of a non-

relativistic Coulomb system are described by universal oper-
ators, we can also write Ev as

Ev[n] = T [n] +U [n] + V [n] = F[n] + V [n], (33)

where T [n] and U [n] are universal functionals (defined as
expectation values of the type (29) of T̂ and Û ), independent
of v(r).
On the other hand, the potential energy in a given potential
v(r) is the expectation value of (6),

V [n] =
∫

d3r n(r)v(r), (34)

and is obviously nonuniversal (it depends on v(r), i.e. on
the system under study), but very simple: once the system
has been specified, i.e. v(r) is known, the functional V [n] is
known explicitly.
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(4) There is a fourth substatement to the Hohenberg–Kohn theo-
rem, which shows that if v(r) is not held fixed, the functional
V [n] becomes universal: the ground-state density determines
not only the ground-state wave function Ψ0, but, up to an ad-
ditive constant, also the potential V = V [n0]. This is simply
proven by writing Schrödinger’s equation as

V̂ =
∑

i

v(ri ) = Ek − (T̂ + Û )Ψk

Ψk
, (35)

which shows that any eigenstate Ψk (and thus, in particular,
the ground state Ψ0 = Ψ [n0]) determines the potential oper-
ator V̂ up to an additive constant, the corresponding eigenen-
ergy. As a consequence, the explicit reference to the potential
v in the energy functional Ev[n] is not necessary, and one can
rewrite the ground-state energy as

E0 = E[n0] = 〈Ψ [n0]|T̂ + Û + V̂ [n0]|Ψ [n0]〉. (36)

Another consequence is that n0 now determines not only the
ground-state wave function but also the complete Hamilto-
nian (the operators T̂ and Û are fixed), and thus all excited
states too:

Ψk(r1, r2, . . . , rN ) = Ψk[n0], (37)

where k labels the entire spectrum of the many-body
Hamiltonian Ĥ .

Originally the fourth statement was considered to be as sound
as the other three. However, it has become clear very recently, as a
consequence of work of Eschrig and Pickett35 and of Capelle and
Vignale,34, 36, 37 that there are significant exceptions to it. In fact,
the fourth substatement holds only when one formulates DFT ex-
clusively in terms of the charge density, as we have done up to
this point. It does not hold when one works with spin densities
(spin-density-functional theory, SDFT) or current densities (current-
density-functional theory, CDFT). (In Sect. VII we will discuss these
formulations of DFT.) In these (and some other) cases the densities
still determine the wave function, but they do not uniquely determine
the corresponding potentials. This so-called nonuniqueness problem
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has been discovered only recently, and its consequences are now be-
ginning to be explored.34–45 It is clear, however, that the fourth sub-
statement is, from a practical point of view, the least important of
the four, and most applications of DFT do not have to be recon-
sidered as a consequence of its eventual failure. (But some do: see
Refs. [34, 36, 37, 45] for examples.)

Another conceptual problem with the Hohenberg–Kohn theo-
rem, much better known and more studied than nonuniqueness, is
representability. To understand what representability is about, con-
sider the following two questions: (1) How does one know, given
an arbitrary function n(r), that this function can be represented in
the form (8), i.e. that it is a density arising from an antisymmetric
N -body wave function Ψ (r1, r2, . . . , rN )? (2) How does one know,
given a function that can be written in the form (8), that this density
is a ground-state density of a local potential v(r)? The first of these
questions is known as the N -representability problem; the second is
known as the v-representability problem. Note that these are quite
important questions: if one should find, e.g., in a numerical calcu-
lation, a minimum of Ev[n] that is not N -representable, then this
minimum is not the physically acceptable solution to the problem at
hand. Luckily, the N -representability problem of the single-particle
density has been solved: any nonnegative function can be written in
terms of some antisymmetric Ψ (r1, r2, . . . , rN ) in the form (8).46, 47

No similarly general solution is known for the v-representability
problem: The Hohenberg–Kohn theorem only guarantees that there
cannot be more than one potential for each density, but does not ex-
clude the possibility that there is less than one, i.e. zero, potentials
capable of producing that density. However, it is known that in dis-
cretized systems every density is ensemble v-representable, which
means that a local potential with a degenerate ground state can al-
ways be found, such that the density n(r) can be written as a lin-
ear combination of the densities arising from each of the degenerate
ground states.48–50

It is not clear if one of the two restrictions (‘discretized sys-
tems’ and ‘ensemble’) can be relaxed in general (yielding ‘in con-
tinuum systems’ and ‘pure state’, respectively), but it is known that
one may not relax both: there are densities in continuum systems
that are not representable by a single nondegenerate antisymmetric
function that is the ground state of a local potential v(r).7, 48–50 In
any case, the constrained search algorithm of Levy and Lieb shows
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that v-representability in an interacting system is not required for
the proof of the Hohenberg–Kohn theorem. The related question of
simultaneous v-representability in a noninteracting system, which
appears in the context of the Kohn–Sham formulation of DFT, is
discussed below (61).

2. A Simple Example: Thomas–Fermi Theory

After these abstract considerations, let us now consider one way in
which one can make practical use of DFT. Assume we have specified
our system (i.e. v(r) is known). Assume further that we have reliable
approximations for U [n] and T [n]. In principle, all one then has
to do is to minimize the sum of kinetic, interaction and potential
energies

Ev[n] = T [n]+U [n]+V [n] = T [n]+U [n]+
∫

d3r n(r)v(r) (38)

with respect to n(r). Wave functions are not required in the process.
The minimizing function n0(r) is the system’s ground-state charge
density and the value Ev,0 = Ev[n0] is the ground-state energy. As-
sume now that v(r) depends on a parameter a. This can be, e.g.,
the lattice constant in a solid or the angle between two atoms in a
molecule. Calculation of Ev,0 for many values of a allows one to plot
the curve Ev,0(a) and to find the value of a that minimizes it. This
value, a0, is the ground-state lattice constant or angle. In this way
one can calculate quantities such as molecular geometries and sizes,
lattice constants, unit cell volumes, charge distributions and total en-
ergies. By looking at the change of Ev,0(a) with a, one can, more-
over, calculate compressibilities, phonon spectra and bulk moduli
(in solids) and vibrational frequencies (in molecules). By comparing
the total energy of a composite system (e.g. a molecule) with that
of its constituent systems (e.g. individual atoms), one obtains dis-
sociation energies. By calculating the total energy for systems with
one electron more or less, one obtains electron affinities and ioniza-
tion energies. By appealing to the Hellman–Feynman theorem, one
can calculate forces on atoms from the derivative of the total energy
with respect to the nuclear coordinates. All this follows from DFT
without our having to solve the many-body Schrödinger equation
and without our having to make a single-particle approximation. For
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comments on the most useful additional possibility to also calculate
single-particle band structures of solids, see Sect. V.2.

In theory it should be possible to calculate all observables, since
the Hohenberg–Kohn theorem guarantees that they are all function-
als of n0(r). In practice, one does not know how to do this explicitly.
Another problem is that the minimization of Ev[n] is, in general, a
tough numerical problem on its own. And, moreover, one needs re-
liable approximations for T [n] and U [n] to begin with. In the next
section, on the Kohn–Sham equations, we will see one widely used
method for addressing these problems. Before looking at it, how-
ever, it is worthwhile recalling an older, but still occasionally useful,
alternative – the Thomas–Fermi approximation, which, historically,
predates modern DFT and the Hohenberg–Kohn theorem.

In this approximation one writes

U [n] ≈ EH[n] = q2

2

∫
d3r
∫

d3r ′ n(r)n(r
′)

|r − r′| , (39)

i.e. approximates the full interaction energy by the Hartree energy,
the electrostatic interaction energy of the fixed charge distribution
n(r). The kinetic energy can be approximated as

T [n] ≈ T LDA[n] =
∫

d3r thom(n(r)), (40)

where thom(n) is the kinetic-energy density of a homogeneous inter-
acting system with (constant) density n. Since it refers to interacting
electrons thom(n) is not known explicitly, and further approxima-
tions are called for. As it stands, however, this formula is already
a first example of a LDA. In this type of approximation one imag-
ines the real inhomogeneous system (with density n(r) in potential
v(r)) to be decomposed into small cells in each of which n(r) and
v(r) are approximately constant. In each cell (i.e. locally) one can
then use the per-volume energy of a homogeneous system to ap-
proximate the contribution of the cell to the real inhomogeneous one.
Making the cells infinitesimally small and summing over all of them
yields (40).

For a noninteracting system (specified by subscript s, for ‘single
particle’), the function thom

s (n) is known explicitly,

thom
s (n) = 3h̄2(3π2)2/3n5/3/(10m) (41)
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(see also Sect. VI.1). This is exploited to further approximate

T [n] ≈ T LDA[n] ≈ T LDA
s [n] =

∫
d3r thom

s (n(r)), (42)

where T LDA
s [n] is the LDA to Ts[n], the kinetic energy of noninter-

acting electrons of density n. Equivalently, it may be considered the
noninteracting version of T LDA[n]. (The quantity Ts[n]will reappear
below, when we discuss the Kohn–Sham equations.)

The Thomas–Fermi approximation consists in combining (39)
with (42) and minimizing the resulting energy functional

E[n] = T [n]+U [n]+V [n] ≈ ETF[n] = T LDA
s [n]+EH[n]+V [n].

(43)

The Thomas–Fermi approximation to the dielectric constant, which
provides a simple description of static screening, is obtained by
minimizing ETF[n] with respect to n and linearizing the result-
ing relation between v(r) and n(r). It thus involves one more ap-
proximation (the linearization) compared with what is called the
‘Thomas–Fermi approximation’ in DFT.51 In two dimensions no
linearization is required and both uses of the name Thomas-Fermi
become equivalent.51

A major defect of the Thomas–Fermi approximation is that
within it molecules are unstable: the energy of a set of isolated atoms
is lower than that of the bound molecule. This fundamental defi-
ciency and the lack of accuracy resulting from neglect of correlations
in (39) and from using the local approximation (42) for the kinetic
energy limit the practical use of the Thomas–Fermi approximation in
its own right. However, it is found to be a most useful starting point
for a large body of work on improved approximations in chemistry
and physics.14, 52 More recent approximations for T [n] can be found
in Refs. [53–55], in the context of orbital-free DFT. The extension
of the local-density concept to the exchange–correlation energy is at
the heart of many modern density functionals (see Sect. VI.1).

IV. THE EXCHANGE–CORRELATION ENERGY

1. Definition of the Exchange–Correlation Energy

The Thomas–Fermi approximation (42) for T [n] is not very good.
A more accurate scheme for treating the kinetic-energy functional of
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interacting electrons, T [n], is based on decomposing it into one part
that represents the kinetic energy of noninteracting particles of den-
sity n, i.e., the quantity above called Ts[n], and one that represents
the remainder, denoted Tc[n] (the subscripts s and c stand for ‘single
particle’ and ‘correlation’, respectively). Ts is defined by minimiz-
ing the expectation value of the kinetic-energy operator T̂ over all
wave functions yielding the density n(r), i.e.

Ts[n] = min
Φ→n

〈Φ|T̂ |Φ〉 = 〈Φ[n]|T̂ |Φ[n]〉. (44)

Similarly, the full kinetic energy is defined as T [n] = 〈Ψ [n]|T̂ |Ψ [n]〉,
where Ψ [n] minimizes T̂ + Û and yields n(r). All consequences
of antisymmetrization (i.e. exchange) are described by employing
single-determinantal wave functions in defining Ts. The difference
Tc := T − Ts is then a pure correlation effect.

Ts[n] is not known exactly as a functional of n [and using the
LDA to approximate it leads one back to the Thomas–Fermi approx-
imation (42)], but it is easily expressed in terms of the single-particle
orbitals φi (r) of a noninteracting system with density n, as

Ts[n] = − h̄2

2m

N∑

i

∫
d3r φ∗i (r)∇2φi (r), (45)

because for noninteracting particles the total kinetic energy is just
the sum of the individual kinetic energies. Since all φi (r) are func-
tionals of n, this expression for Ts is an explicit orbital functional
but an implicit density functional, Ts[n] = Ts[{φi [n]}], where the
notation indicates that Ts depends on the full set of occupied orbitals
φi , each of which is a functional of n. Other such orbital function-
als will be discussed in Sect. VI. We now rewrite the exact energy
functional as

E[n] = T [n]+U [n]+V [n] = Ts[{φi [n]}]+EH[n]+Exc[n]+V [n],
(46)

where by definition the exchange–correlation functional Exc ≤ 0
contains the differences Tc = T − Ts and Wxc := U − EH. Unlike
(43), (46) is formally exact, but of course Exc is unknown – although
the Hohenberg–Kohn theorem guarantees that it is a density func-
tional. Exc is defined as Tc + Wxc, but it is often decomposed as



Density-Functional Theory in External Electric and Magnetic Fields 363

Exc = Ex + Ec, where Ex is due to the Pauli principle (exchange
energy) and Ec := Tc +U − EH − Ex =: Tc +Wc is due to correla-
tions. This definition of Ec shows that part of the correlation energy
Ec is due to the difference Tc between the noninteracting and the in-
teracting kinetic energies, which is occasionally called the ‘correla-
tion kinetic energy’ or the ‘kinetic energy of correlation’. Similarly,
Wc may be called the ‘potential energy of correlation’. In Sect. IV.2
we give a simple physical interpretation of the various contributions
to Ec.

The exchange energy can be written explicitly in terms of the
single-particle orbitals as

Ex[{φi [n]}] = −q2

2

∑

jk

∫
d3r
∫

d3r ′
φ∗j (r)φ∗k (r′)φ j (r′)φk(r)

|r − r′| ,

(47)

which is known as the Fock term, but no general exact expression
in terms of the density is known. Note that (47) is the same func-
tional of the orbitals used also in Hartree–Fock theory, but the or-
bitals themselves are different, of course: the Hartree–Fock orbitals
are solutions of the Hartree–Fock integro-differential equation, with
an integral operator representing exchange, whereas the Kohn–Sham
orbitals are solutions of the Kohn–Sham equation, with a local mul-
tiplicative potential representing exchange and correlation effects.
Moreover, the Hartree–Fock energy functional is minimized with re-
spect to the orbitals, while the DFT energy functional is minimized
with respect to the density, of which the orbitals are (highly nonlo-
cal) functionals.

For the correlation energy no general explicit expression is
known, neither in terms of orbitals nor in terms of densities.
A simple way to understand the origin of correlation is to recall
that the Hartree energy is obtained in a variational calculation in
which the many-body wave function is approximated as a prod-
uct of single-particle orbitals. Use of an antisymmetrized product
(a Slater determinant) produces the Hartree energy and the exchange
energy.8, 56, 57 The correlation energy is defined as the difference be-
tween the full ground-state energy (obtained with the correct many-
body wave function) and the one obtained from the (Hartree–Fock
or Kohn–Sham) Slater determinant. As a consequence of the vari-
ational principle, Ec ≤ 0. The Hartree–Fock and the Kohn–Sham
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Slater determinants are not identical, since they are composed of
different single-particle orbitals, and thus the definition of exchange
and correlation energy in DFT and in conventional quantum chem-
istry is slightly different. Quantitatively, however, the difference
between both definitions of Ec is rather small.58

2. Interpretation of the Exchange–Correlation Energy

Recalling the quantum mechanical interpretation of the wave func-
tion as a probability amplitude, we see that a product form of the
many-body wave function corresponds to treating the probability
amplitude of the many-electron system as a product of the probabil-
ity amplitudes (orbitals) of individual electrons. Mathematically, the
probability of a composed event is the product of the probabilities of
the individual events, provided the individual events are independent
of each other. If the probability of a composed event is not equal to
the probability of the individual events, these individual events are
said to be correlated. Correlation is thus a general mathematical con-
cept describing the fact that certain events are not independent. It can
also be defined in classical physics, and in applications of statistics to
problems outside science. Exchange, on the other hand, is due to the
indistinguishability of particles, and is a true quantum phenomenon,
without any analogue in classical physics.

The Hartree energy EH is obtained from a product wave func-
tion, and thus describes the interaction energy of a fixed charge
distribution n(r). In quantum mechanics, charges never have an ab-
solutely fixed position in space, but undergo quantum fluctuations,
which ultimately are due to the uncertainty principle. In the pres-
ence of particle–particle interactions, the particles coordinate their
fluctuations such as to further minimize their total energy, relative to
the value obtained from a (hypothetical) fixed distribution. The in-
dividual probability amplitudes are now not independent anymore,
and the particles become correlated in the sense described above.
The correlation energy Ec is the additional energy lowering ob-
tained from these synchronized quantum fluctuations. The kinetic
energy Tc = T − Ts associated with these fluctuations is posi-
tive, but this is compensated for by the gain in interaction energy
Wc = U − (EH + Ex) ≤ 0, so that Ec = Tc + Wc ≤ 0, in accor-
dance with the variational principle.

Clearly Ec is an enormously complex object, and DFT would be
of little use if one had to know it exactly to make calculations. The
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practical advantage of writing E[n] in the form (46) is that the un-
known functional Exc[n] is typically much smaller than the known
terms Ts, EH and V . One can thus hope that reasonably simple ap-
proximations for Exc[n] will provide useful results for E[n]. Some
successful approximations are discussed in Sect. VI. Clearly, in the
construction of approximations it is useful to have at hand a list of
exact properties of Exc.

3. Selected Exact Properties of the Exchange–Correlation
Energy

As we have already seen, the variational principle immediately pro-
vides the inequalities

Exc = (T−Ts)+(U−EH) = Tc+Wxc = Ex+Ec ≤ Ex ≤ 0. (48)

Among the known properties of these functionals are the coordinate-
scaling conditions first obtained by Levy and Perdew59

Ex[nλ] = λEx[n], (49)

Ec[nλ] > λEc[n] for λ > 1, (50)

Ec[nλ] < λEc[n] for λ < 1, (51)

where nλ(r) = λ3n(λr) is a scaled density integrating to total parti-
cle number N .

Another important property of the exact functional is the one-
electron limit

Ec[n(1)] ≡ 0, (52)

Ex[n(1)] ≡ −EH[n(1)], (53)

where n(1) is a one-electron density. These latter two conditions,
which are satisfied within the Hartree–Fock approximation, but not
by standard local-density and gradient-dependent functionals, en-
sure that there is no artificial self-interaction of one electron with
itself.

The Lieb–Oxford bound,60–62

Ex[n] ≥ Exc[n] ≥ −1.68e2
∫

d3r n(r)4/3, (54)



366 E. Orestes et al.

establishes a lower bound on the exchange–correlation energy, which
is satisfied,e.g, by the LDA,63, 64 the GGAs PW9165 and PBE,66

and the Tao, Perdew, Staroverov, Scuseria meta-GGA.67 On the
other hand, earlier GGAs68 and meta-GGAs69 and other function-
als containing fitting parameters70–73 are not guaranteed to satisfy
the bound for all possible densities. The success of some of these
latter functionals shows that, while the bound is doubtlessly obeyed
by the exact functional, satisfaction is not a necessary condition for
good performance in practice.

The fact that both exchange and correlation tend to keep elec-
trons apart has given rise to the concept of an exchange–correlation
hole, nxc(r, r′), describing the reduction of probability for encoun-
tering an electron at r′, given one at r. The exchange–correlation en-
ergy can be written as a Hartree-like interaction between the charge
distribution n(r) and the exchange–correlation hole nxc(r, r′) =
nx(r, r′)+ nc(r, r′),

Exc[n] = q2

2

∫
d3r

∫
d3r ′ n(r)nxc(r, r′)

|r − r′| , (55)

which defines nxc. The exchange component Ex[n] of the exact
exchange–correlation functional describes the energy lowering due
to antisymmetrization (i.e. the tendency of like-spin electrons to
avoid each other). It gives rise to the exchange hole nx(r, r′), which
obeys the sum rule

∫
d3r ′ nx(r, r′) = −1. The correlation com-

ponent Ec[n] accounts for the additional energy lowering arising
because electrons with opposite spins also avoid each other. The
resulting correlation hole integrates to zero, so the total exchange–
correlation hole satisfies

∫
d3r ′ nxc(r, r′) = −1.

One of the most intriguing properties of the exact functional,
which has resisted all attempts at describing it in local or semilo-
cal approximations, is the derivative discontinuity of the exchange–
correlation functional with respect to the total particle number,74–76

δExc[n]
δn(r)

∣∣∣∣
N+δ

− δExc[n]
δn(r)

∣∣∣∣
N−δ

= v+xc(r)− v−xc(r) = �xc, (56)

where δ is an infinitesimal shift of the electron number N , and �xc
is a system-dependent, but r-independent shift of the exchange–
correlation potential vxc(r) as it passes from the electron-poor to the
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electron-rich side of integer N . The noninteracting kinetic-energy
functional has a similar discontinuity, given by

δTs[n]
δn(r)

∣
∣∣∣
N+δ

− δTs[n]
δn(r)

∣
∣∣∣
N−δ

= εN+1 − εN = �KS, (57)

where εN and εN+1 are the Kohn–Sham single-particle energies
of the highest occupied and lowest unoccupied eigenstate, corre-
sponding to the Kohn–Sham highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO), respec-
tively. These eigenvalues are discussed in more detail in Sect. V.2.

The kinetic-energy discontinuity is thus simply the Kohn–
Sham single-particle gap �KS, or HOMO–LUMO gap, whereas
the exchange–correlation discontinuity �xc is a many-body effect.
The true fundamental gap � = E(N + 1)+ E(N − 1)− 2E(N ) is
the discontinuity of the total ground-state energy functional,7, 74–76

� = δE[n]
δn(r)

∣∣∣∣
N+δ

− δE[n]
δn(r)

∣∣∣∣
N−δ

= �KS +�xc. (58)

Since all terms in E other than Exc and Ts are continuous functionals
of n(r), the fundamental gap is the sum of the Kohn–Sham gap and
the exchange–correlation discontinuity. Standard density functionals
(LDA and GGA) predict �xc = 0, and thus often underestimate the
fundamental gap. The fundamental and Kohn–Sham gaps are also
illustrated in Fig. 1.

All these properties serve as constraints or guides in the con-
struction of approximations for the functionals Ex[n] and Ec[n].
Many other similar properties are known. A useful overview of scal-
ing properties is the contribution of M. Levy in Ref. [21 page 11].

V. THE KOHN–SHAM EQUATIONS

DFT can be implemented in many ways. The minimization of an
explicit energy functional, discussed up to this point, is not nor-
mally the most efficient among them. Much more widely used is the
Kohn–Sham approach. Interestingly, this approach owes its success
and popularity partly to the fact that it does not exclusively work in
terms of the particle (or charge) density, but brings a special kind
of wave function (single-particle orbitals) back into the game. As
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a consequence, DFT then formally looks like a single-particle the-
ory, although many-body effects are still included via the so-called
exchange–correlation functional. We will now see in some detail
how this is done.

1. Self-Consistent Single-Particle Equations
and Ground-State Energies

Since Ts is now written as an orbital functional one cannot directly
minimize (46) with respect to n. Instead, one commonly employs
a scheme suggested by Kohn and Sham77 for performing the min-
imization indirectly. This scheme starts by writing the minimiza-
tion as

0 = δE[n]
δn(r)

= δTs[n]
δn(r)

+ δV [n]
δn(r)

+ δEH[n]
δn(r)

+ δExc[n]
δn(r)

= δTs[n]
δn(r)

+ v(r)+ vH(r)+ vxc(r) . (59)

As a consequence of (34), δV/δn = v(r), the ‘external’ potential
the electrons move in. This potential is called ‘external’ because it is
external to the electron system and is not generated self-consistently
from the electron–electron interaction, as vH and vxc. It comprises
the lattice potential and any additional truly external field applied to
the system as a whole. The term δEH/δn simply yields the Hartree
potential, introduced in (21). For the term δExc/δn, which can only
be calculated explicitly once an approximation for Exc has been cho-
sen, one commonly writes vxc.

Consider now a system of noninteracting particles moving in the
potential vs(r). For this system the minimization condition is simply

0 = δEs[n]
δn(r)

= δTs[n]
δn(r)

+ δVs[n]
δn(r)

= δTs[n]
δn(r)

+ vs(r), (60)

since there are no Hartree and exchange–correlation terms in the
absence of interactions. The density solving this Euler equation is
ns(r). Comparing this with (59), we find that both minimizations
have the same solution ns(r) ≡ n(r) if vs is chosen to be

vs(r) = v(r)+ vH(r)+ vxc(r). (61)
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Consequently, one can calculate the density of the interacting
(many-body) system in potential v(r), described by a many-body
Schrödinger equation of the form (2), by solving the equations of a
noninteracting (single-body) system in potential vs(r). The question
whether such a potential vs(r) always exists in the mathematical
sense is called the ‘noninteracting v-representability problem’. It
is known that every interacting ensemble v-representable density
is also noninteracting ensemble v-representable, but, as mentioned
in Sect. III.1, only in discretized systems has it been proven that all
densities are interacting ensemble v-representable. It is not known if
interacting ensemble-representable densities may be noninteracting
pure state representable (i.e by a single determinant), which would
be convenient (but is not necessary) for Kohn–Sham calculations.

The Schrödinger equation of this auxiliary system,
[

− h̄2∇2

2m
+ vs(r)

]

φi (r) = εi φi (r), (62)

yields orbitals that reproduce the density n(r) of the original system
(these are the same orbitals employed in (45)),

n(r) ≡ ns(r) =
N∑

i

fi |φi (r)|2, (63)

where fi is the occupation of the i th orbital.
Equations (61)–(63) are the celebrated Kohn–Sham equations.

They replace the problem of minimizing E[n] by that of solving
a single-body Schrödinger equation. (Recall that the minimization
of E[n] originally replaced the problem of solving the many-body
Schrödinger equation!)

The techniques for solving the Kohn–Sham equation are similar
to those used for the Hartree–Fock equation. Commonly, the orbitals
are expanded in basis functions, and a secular equation is solved
to find the energetically optimal coefficients of the expansion. The
literature on suitable basis sets is enormous and cannot be reviewed
here. It is common practice to use in DFT calculations the same basis
sets developed for Hartree–Fock and CI calculations, although it is
not always clear (in particular in the case of correlation-consistent
bases) if this is always an optimal choice.
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Since both vH and vxc depend on n, which depends on the φi ,
which in turn depend on vs, the problem of solving the Kohn–Sham
equations is a nonlinear one. The usual way of solving such problems
is to start with an initial guess for n(r), calculate the corresponding
vs(r) and then solve the differential equation (62) for the φi . From
these one calculates a new density, using (63), and starts again. The
process is repeated until it converges. The technical name for this
procedure is ‘self-consistency cycle’. Different convergence criteria
(such as convergence in the energy, the density or some observable
calculated from these) and various convergence-accelerating algo-
rithms (such as mixing of old and new effective potentials) are in
common use. Only rarely does it requires more than a few dozen
iterations to achieve convergence, and even rarer are cases where
convergence seems unattainable, i.e. a self-consistent solution of the
Kohn–Sham equation cannot be found.

Once one has a converged solution n0, one can calculate the
total energy from (46) or, equivalently and more conveniently, from

E0 =
N∑

i

εi − q2

2

∫
d3r

∫
d3r ′ n0(r)n0(r′)

|r − r′|

−
∫

d3r vxc(r)n0(r)+ Exc[n0]. (64)

All terms on the right-hand side of (64) except for the first, involv-
ing the sum of the single-particle energies, are sometimes known as
double-counting corrections, in analogy to a similar equation valid
within Hartree–Fock theory. These corrections give mathematical
meaning to the common statement that the whole is more than the
sum of its parts.

Equation (64) follows from writing V [n] in (46) by means of
(61) as

V [n] =
∫

d3r v(r)n(r) =
∫

d3r [vs(r)− vH(r)− vxc(r)]n(r)

= Vs[n] −
∫

d3r [vH(r)+ vxc(r)]n(r), (65)

and identifying the energy of the noninteracting (Kohn–Sham) sys-
tem as Es =∑N

i εi = Ts + Vs.
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2. Single-Particle Eigenvalues and Excited-State Energies

Equation (64) shows that E0 is not simply the sum of all εi . If E0 can
be written approximately as

∑N
i ε̃i (where the ε̃i are not the same

as the Kohn–Sham eigenvalues εi ), the system can be described in
terms of N weakly interacting quasiparticles, each with energy ε̃i .
Fermi-liquid theory in metals and effective-mass theory in semicon-
ductors are examples of this type of approach. The ε̃i , however, are
not the same as the Kohn–Sham eigenvalues εi , nor are they neces-
sarily approximated by them.

In fact, it should be clear from our derivation of (62) that the
εi are introduced as completely artificial objects: they are the eigen-
values of an auxiliary single-body equation whose eigenfunctions
(orbitals) yield the correct density. It is only this density that has
strict physical meaning in the Kohn–Sham scheme. The Kohn–Sham
eigenvalues, on the other hand, in general bear only a semiquantita-
tive resemblance to the true energy spectrum,78 but are not to be
trusted quantitatively.

The main exception to this rule is the highest occupied Kohn–
Sham eigenvalue. Denoting by εN (M) the N th eigenvalue of a sys-
tem with M electrons, one can show rigorously that εN (N ) = −I ,
the negative of the first ionization energy of the N -body system,
and εN+1(N + 1) = −A, the negative of the electron affinity of
the same N -body system.75, 79, 80 These relations hold for the ex-
act functional only. When calculated with an approximate functional
of the LDA or GGA type, the highest eigenvalues usually do not
provide good approximations to the experimental I and A. Better
results for these observables are obtained by calculating them as
total-energy differences, according to I = E0(N − 1)− E0(N ) and
A = E0(N )− E0(N + 1), where E0(N ) is the ground-state energy
of the N -body system. Alternatively, SICs can be used to obtain im-
proved ionization energies and electron affinities from Kohn–Sham
eigenvalues.81

Figure 1 illustrates the role played by the highest occupied and
lowest unoccupied Kohn–Sham eigenvalues, and their relation to
observables. For molecules, HOMO(N) is the HOMO of the N -
electron system, HOMO(N+1) is that of the N + 1-electron system
and LUMO(N) is the LUMO of the N -electron system. In solids
with a gap, the HOMO and LUMO become the top of the valence
band and the bottom of the conduction band, respectively, whereas
in metals they are both identical to the Fermi level. The vertical lines
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0

HOMO (N)

Figure 1. Schematic representation of some important Kohn–Sham
eigenvalues relative to the vacuum level, denoted by 0, and their rela-
tion to observables. I is the ionization energy of the many-body sys-
tem, which is equal to that of the Kohn–Sham system. A is the many–
body electron affinity, AKS is the electron affinity of the Kohn–Sham
system, � is the fundamental gap, �KS is the single-particle highest
occupied molecular orbital–lowest unoccupied molecular orbital gap
and �xc is the derivative discontinuity. (Reprinted from Ref. [23].
Copyright c© 2006 with permission from the Brazilian Journal of
Physics.)

indicate the Kohn–Sham (single-particle) gap �KS, the fundamental
(many-body) gap �, the derivative discontinuity of the exchange–
correlation functional, �xc, the ionization energy of the interacting
N -electron system I (N ) = −εN (N ) (which is also the ionization
energy of the Kohn–Sham system IKS(N )), the electron affinity of
the interacting N -electron system A(N ) = −εN+1(N + 1) and the
Kohn–Sham electron affinity AKS(N ) = −εN+1(N ).

Given the auxiliary nature of the other Kohn–Sham eigenval-
ues, it comes as a welcome surprise that in many situations the
Kohn–Sham eigenvalues εi do, empirically, provide a reasonable first
approximation to the actual energy levels of extended systems. This
approximation is behind most band-structure calculations in solid-
state physics, and often gives results that agree well with experi-
mental photoemission and inverse photoemission data,82 but much
research remains to be done before it is clear to what extent such con-
clusions can be generalized, and how situations in which the Kohn–
Sham eigenvalues are good starting points for approximating the true
excitation spectrum are to be characterized microscopically.83, 84

Several more rigorous approaches to excited states in DFT, which
do not require the Kohn–Sham eigenvalues to have physical mean-
ing, have been developed:
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1. The early suggestion of Gunnarsson and Lundqvist85 to use a
symmetry-dependent exchange–correlation functional to cal-
culate the lowest-energy excited state of each symmetry class
has been implemented approximately by von Barth,86 but suf-
fers from lack of knowledge of the symmetry dependence of
the functional. More recent work on this dependence is pro-
vided in Ref. [87].

2. Extrema of the ground-state functional Ev[n] above the min-
imum energy correspond to densities of excited states, but
the excited states obtained in this way do not cover the en-
tire spectrum of the many-body Hamiltonian.88 Moreover, if
the minimization of the functional Ev[n] is done (as usual)
by solving a Kohn–Sham equation, there may occur spurious
self-consistent solutions of these equations with E > E0 that
do not extremize Ev[n] at all, and it is not always possible to
tell if a given high-energy Kohn–Sham solution is of this spu-
rious nature, or really a higher extremum of Ev[n]. For these
reasons the path via higher-lying extrema is rarely used. How-
ever, an interesting application within semiconductor physics
was recently reported.89

3. Excitation energies can also be calculated from excited-state
densities. A mapping between excited-state densities and the
external potential, and a Kohn–Sham-like scheme for calcu-
lating the density and energy of a specific excited state of
interest have been constructed,90, 91 but the definition of a
proper Kohn–Sham procedure is not trivial.92

4. A systematic approach to excited states in DFT is ensemble
DFT, developed by Theophilou93 and further elaborated by
Oliveira et al.94 In this formalism the functional depends on
the particular choice for the ensemble, and a simple approxi-
mation for this dependence is available.94 Some applications
of this method have been worked out by Nagy95 and a recent
analysis of this method is presented in Ref. [96].

5. The most widely used DFT approach to excited states is TD-
DFT. The time-dependent generalization of the Hohenberg–
Kohn theorem, the Runge–Gross theorem, cannot be proven
along the lines of the original Hohenberg–Kohn theorem,
but requires a different approach.30, 97 For recent reviews of
TD-DFT, see Ref. [98]. Excited states were first extracted
from TD-DFT in Refs. [99, 100]. This approach is now
implemented in standard quantum-chemical DFT program
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packages101, 102 and is increasingly applied also in solid-state
physics.103

6. Recently, excitation energies have also been extracted from
ground-state DFT by means of generator coordinates.232

Most band-structure calculations in solid-state physics do not
employ any of these techniques (which are computationally very ex-
pensive for solids), but are actually calculations of the Kohn–Sham
eigenvalues εi . This simplification has proved enormously success-
ful, but one must be aware of the fact that it takes the auxiliary
single-body equation (62) literally as an approximation to the many-
body Schrödinger equation. DFT, practised in this mode, is not a
rigorous many-body theory anymore, but a mean-field theory (albeit
one with a very sophisticated mean field vs(r)). A more reliable al-
ternative is provided by the GW method, which in principle is in-
dependent of DFT, but in practice normally takes DFT results as a
starting point.103–105

The energy gap obtained in Kohn–Sham band-structure cal-
culations is the one called the ‘HOMO–LUMO’ gap in molecular
calculations, i.e. the difference between the energies of the highest
occupied and the lowest unoccupied single-particle states. Neglect
of the derivative discontinuity �xc, defined in (56), by standard lo-
cal and semilocal exchange–correlation functionals leads to an un-
derestimate of the gap (the so-called band-gap problem), which is
most severe in transition-metal oxides and other strongly correlated
systems. SICs provide a partial remedy for this problem.106–108

A partial justification for the interpretation of the Kohn–Sham
eigenvalues as the starting point for approximations to quasi-particle
energies, common in band-structure calculations can be given by
comparing the Kohn–Sham equation with other self-consistent equa-
tions of many-body physics. Among the simplest such equations are
the Hartree equation

[

− h̄2∇2

2m
+ v(r)+ vH(r)

]

φH
i (r) = εH

i φ
H
i (r), (66)

and the Hartree–Fock equation
[

− h̄2∇2

2m
+ v(r)+ vH(r)

]

φHF
i (r)− q2

∫
d3r ′ γ (r, r′)

|r − r′| φ
HF
i (r′)

= εHF
i φHF

i (r), (67)
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where γ (r, r′) is the density matrix of (16). It is a fact known as
Koopman’s theorem57 that the Hartree–Fock eigenvalues εHF

i can
be interpreted as unrelaxed electron-removal energies (i.e. ioniza-
tion energies of the i th electron, neglecting reorganization of the re-
maining electrons after removal). As mentioned above, in DFT only
the highest occupied eigenvalue corresponds to an ionization energy,
but unlike in the Hartree–Fock approximation this energy includes
relaxation effects.

The Kohn–Sham equation (62) includes both exchange and
correlation via the multiplicative operator vxc. Both exchange
and correlation are normally approximated in DFT, whereas the
Hartree–Fock approximation accounts for exchange exactly, through
the integral operator containing γ (r, r′), but neglects correlation
completely. A possibility to treat exchange exactly in DFT is offered
by the optimized effective potential (OEP) method discussed in
Sect. VI.3. In practice, DFT results are typically at least as good as
Hartree–Fock ones and are often comparable to much more complex
wave-function-based methods.

The interpretation of the Kohn–Sham eigenvalues as single-
particle energies is suggestive and useful, but certainly not neces-
sary for DFT to work: if the Kohn–Sham equations are only used to
obtain the density, and all other observables, such as total energies,
are calculated from this density, then the Kohn–Sham equations in
themselves are not an approximation at all, but simply a very useful
mathematical tool.

VI. AN OVERVIEW OF APPROXIMATE
EXCHANGE–CORRELATION FUNCTIONALS

As described at the beginning, the standard formulation of DFT is
based on the Born–Oppenheimer approximation and the nonrela-
tivistic approximation. Although both of these approximations can
be relaxed within DFT, neither is specific to DFT. In addition to
these, there are basically three more specific types of approxima-
tions involved in a DFT calculation.

One is conceptual, and concerns the interpretation of Kohn–
Sham eigenvalues and orbitals as physical energies and wave func-
tions. This approximation is optional – if one does not want to make
it, one simply does not attach meaning to the eigenvalues of (62).
The pros and cons of this procedure were discussed in Sect. V.
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The second type of approximation is numerical, and concerns
methods for actually solving the differential equation (62). A main
aspect here is the selection of suitable basis functions, which we
do not address in the present text, because the selection follows the
same criteria that are well known in the context of Hartree–Fock or
CI calculations.

The third type of approximation involves constructing an ex-
pression for the unknown exchange–correlation functional Exc[n],
which contains all many-body aspects of the problem (see (46)).
The present section is intended to give the reader an idea of what
types of functionals exist, and to describe what their main fea-
tures are, separately for local functionals (Thomas–Fermi, LDA
and Xα; Sect. VI.1), semilocal, or gradient-dependent, func-
tionals [gradient-expansion approximation (GEA) and GGA;
Sect. VI.2), and nonlocal functionals [hybrids, orbital functionals
such as meta-GGAs, exact exchange (EXX) and SIC, and integral-
dependent functionals such as average-density approximation
(ADA); Sect. VI.3]. Section VI.4 contains a brief description of
selected aspects of the performance of some of the functionals de-
scribed in Sects. VI.1–3. For more details on functional construction,
testing and extensive comparisons of a wide variety of functionals,
the reader is referred to the reviews7–21 or to the original papers
cited below.

1. Local Functionals: LDA

Historically (and in many applications also practically) the most im-
portant type of approximation is the LDA. To understand the concept
of a LDA recall first how the noninteracting kinetic energy Ts[n] is
treated in the Thomas–Fermi approximation. In a homogeneous sys-
tem one knows that, per volume,

thom
s (n) = 3h̄2

10m
(3π2)2/3n5/3, (68)

where n = const and the change from a capital T to a lower-case t is
used to indicate quantities per volume. In an inhomogeneous system,
with n = n(r), one approximates locally

ts(r) ≈ thom
s (n(r)) = 3h̄2

10m
(3π2)2/3n(r)5/3 (69)
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and obtains the full kinetic energy by integration over all space:

T LDA
s [n] =

∫
d3r thom

s (n(r)) = 3h̄2

10m
(3π2)2/3

∫
d3r n(r)5/3.

(70)

For the kinetic energy the approximation Ts[n] ≈ T LDA
s [n] is much

inferior to the exact treatment of Ts in terms of orbitals, offered by
the Kohn–Sham equations, but the LDA concept turned out to be
highly useful for another component of the total energy (46), the
exchange–correlation energy Exc[n]. For the exchange energy Ex[n]
the procedure is very simple, since the per-volume exchange energy
of the homogeneous electron liquid is known exactly,7, 8

ehom
x (n) = −3q2

4

(
3

π

)1/3

n4/3, (71)

so that

ELDA
x [n] = −3q2

4

(
3

π

)1/3 ∫
d3r n(r)4/3. (72)

This is the LDA for Ex. If one adds this term to the Thomas–Fermi
expression (43), one obtains the so-called Thomas–Fermi–Dirac ap-
proximation to E[n]. If one multiplies it with an adjustable parame-
ter α, one obtains the so-called Xα approximation to Exc[n]. These
approximations are not much used today in DFT.

The LDA for the correlation energy Ec[n] formally consists in

Ec[n] ≈ ELDA
c [n] =

∫
d3r ehom

c (n)|n→n(r) =
∫

d3r ehom
c (n(r)),

(73)
so that

Exc[n] ≈ ELDA
xc [n] =

∫
d3r ehom

xc (n)|n→n(r) =
∫

d3r ehom
xc (n(r)),

(74)
where ehom

xc = ehom
x + ehom

c is the per-volume exchange–correlation
energy of the uniform electron liquid. The corresponding exchange–
correlation potential is simply

vLDA
xc [n](r) = ∂ehom

xc (n)

∂n

∣∣
∣∣∣
n→n(r)

. (75)
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This approximation for Exc[n] has proved amazingly successful,
even when applied to systems that are quite different from the elec-
tron liquid that forms the reference system for the LDA. A partial
explanation for this success of the LDA is systematic error can-
cellation: typically, the LDA underestimates Ec but overestimates
Ex, resulting in unexpectedly good values of Exc. This error cancel-
lation is not accidental, but systematic, and is caused by the fact
that for any density the LDA exchange–correlation hole satisfies
the correct sum rule on the exchange–correlation hole nxc(r, r′),∫

d3r ′nLDA
xc (r, r′) = −1, which is only possible if integrated errors

in nLDA
x cancel with those of nLDA

c .
Unlike for the exchange energy, the correlation energy ehom

c [n]
of the uniform electron liquid is not known exactly: the determina-
tion of the correlation energy of a homogeneous interacting elec-
tron system is already a difficult many-body problem on its own!
Early approximate expressions for ehom

c (n) were based on apply-
ing perturbation theory (e.g. the random-phase approximation) to
this problem.85, 109 These approximations became outdated with the
advent of highly precise quantum Monte Carlo calculations for the
electron liquid, by Ceperley and Alder.110 Modern expressions for
ehom

c (n)63, 64, 111 are parameterizations of these data. These expres-
sions are implemented in most standard DFT program packages and
in typical applications give almost identical results. On the other
hand, the earlier parameterizations of the LDA, based on pertur-
bation theory,85, 109 can occasionally deviate substantially from the
quantum Monte Carlo ones, and are better avoided. In the chemistry
literature, the combination of the LDA for exchange, (72), with the
LDA for correlation, (73), in the parameterization in Ref. [64] is
known as the Slater exchange plus Vosko–Wilk–Nusair correlation
version 5 (SVWN5) functional.

For many decades the LDA has been applied in, e.g., calcu-
lations of band structures and total energies in solid-state physics.
In quantum chemistry it is much less popular, because it fails to
provide results that are accurate enough to permit a quantitative
discussion of the chemical bond in molecules (so-called chemical
accuracy requires calculations with an error of not more than about
1 kcal/mol = 0.0434 eV/particle). For the same reason, electro-
chemical calculations rarely use the LDA, but employ more refined
functionals, as described below.
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At this stage it may be worthwhile to recapitulate what practi-
cal DFT does, and where the LDA enters its conceptual structure:
what real systems, such as atoms, molecules, clusters and solids,
have in common is that they are simultaneously inhomogeneous (the
electrons are exposed to spatially varying electric fields produced by
the nuclei) and interacting (the electrons interact via the Coulomb
interaction). The way DFT, in the LDA, deals with this inhomoge-
neous many-body problem is by decomposing it into two simpler
(but still highly nontrivial) problems: the solution of a spatially ho-
mogeneous interacting problem (the homogeneous electron liquid)
yields the exchange–correlation energy ehom

xc (n), and the solution of
a spatially inhomogeneous noninteracting problem (the inhomoge-
neous electron gas described by the Kohn–Sham equations) yields
the particle density. Both steps are connected by the local-density
potential (75), which shows how the exchange–correlation energy
of the uniform interacting system enters the equations for the inho-
mogeneous noninteracting system.

The particular way in which the inhomogeneous many-body
problem is decomposed and the various possible improvements on
the LDA are behind the success of DFT in practical applications of
quantum mechanics to real materials. Some such improvements on
the LDA are discussed in the next two sections.

2. Semilocal Functionals: GEA, GGA and Beyond

In the LDA one exploits knowledge of the density at point r. Any
real system is spatially inhomogeneous, i.e. it has a spatially varying
density n(r), and it would clearly be useful to also include informa-
tion on the rate of this variation in the functional. A first attempt at
doing this was the so-called GEAs. In this class of approximation
one tries to systematically calculate gradient corrections of the form
|∇n(r)|, |∇n(r)|2, ∇2n(r), etc. to the LDA. A famous example is
the lowest-order gradient correction to the Thomas–Fermi approxi-
mation for Ts[n],

Ts[n] ≈ T W
s [n] = T LDA

s [n] + h̄2

8m

∫
d3r

|∇n(r)|2
n(r)

. (76)

The second term on the right-hand side is called the ‘Weizsäcker
term’. If one adds this term to the Thomas–Fermi expression (43),
one obtains the so-called Thomas–Fermi–Weizsäcker approximation
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to E[n]. In a systematic gradient expansion, the 8 in the denominator
is replaced by 72.7, 8 Similarly, in

Ex[n] ≈ EGEA(2)
x [n] = ELDA

x [n] − 10q2

432π(3π2)1/3

∫
d3r

|∇n(r)|2
n(r)4/3

(77)

the second term on the right-hand side is the lowest-order gradient
correction to ELDA

x [n].
Remarkably, the form of this term is fully determined already by

dimensional analysis. In EGEA(2)
x = q2

∫
d3r f (n, |∇n|2) the func-

tion f must have dimensions (length)−4. Since the dimensions of n
and |∇n|2 are (length)−3 and (length)−8, respectively, and to second
order no higher powers or higher derivatives of n are allowed, the
only possible combination is f ∝ |∇n(r)|2/n4/3.

In practice, the inclusion of low-order gradient corrections al-
most never improves on the LDA, and often even worsens it. Higher-
order corrections (e.g. ∝ |∇n(r)|α or ∝ ∇βn(r) with α, β > 2),
on the other hand, are exceedingly difficult to calculate, and little
is known about them. In this situation it was a major breakthrough
when it was realized, in the early 1980s, that instead of power-series-
like systematic gradient expansions one could experiment with more
general functions of n(r) and ∇n(r), which need not proceed order
by order. Such functionals, of the general form

EGGA
xc [n] =

∫
d3r f (n(r),∇n(r)), (78)

have become known as GGAs.
Different GGAs differ in the choice of the function f (n,∇n).

Note that this makes different GGAs much more different from each
other than the different parameterizations of the LDA: essentially
there is only one correct expression for ehom

xc (n), and the various pa-
rameterizations of the LDA63, 64, 85, 109, 111 are merely different ways
of writing it. On the other hand, depending on the method of con-
struction employed for obtaining f (n,∇n) one can obtain very dif-
ferent GGAs.

Nowadays, the most popular (and most reliable) GGAs are PBE
(denoting the parameter-free functional proposed in 1996 by Perdew,
Burke and Ernzerhof 66) and B88LYP (denoting the combination
of Becke’s 1988 one-parameter exchange functional B8870 with
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the four-parameter correlation functional of Lee, Yang and Parr71).
Many other GGA-type functionals are also available, and new ones
continue to appear. A useful collection of explicit expressions for
some GGAs can be found in the appendix of Ref., [112] and more
detailed discussion of some selected GGAs and their performance is
given in Ref. [113] and in the chapter by S. Kurth and J. P. Perdew
in Refs. [17 page 8, 18 page 1].

3. Orbital Functionals and Other Nonlocal Approximations:
Hybrids, Meta-GGA, SIC, OEP, etc.

In spite of these advances, the quest for more accurate functionals is
ongoing, and both in chemistry and in physics various beyond-GGA
functionals have appeared. One important line of research has led to
hybrid functionals, mixing a fraction of Hartree–Fock exchange into
the DFT exchange functional (other mixtures are also possible). The
most popular functional in quantum chemistry, B3LYP,114 is such a
hybrid, combining exact exchange with LDA exchange, the B88 ex-
change GGA70 and the LYP correlation GGA.71 The original con-
struction employed the PW91 parameter-free correlation GGA,65

but nowadays it is mostly used together with the four-parameter LYP
GGA for correlation, without recalculating the mixing parameters.
In spite of the label ‘3’, the B3 functional actually contains eight pa-
rameters: three are mixing parameters, one parameter is contained
in the B88 GGA for exchange70 and four are contained in the LYP
GGA for correlation.71

The construction of a hybrid functional involves a certain
amount of empiricism in the choice of functionals that are mixed
and in the optimization of the weight factors given to the mixed
functionals. Formally, this might be considered a drawback, but in
practice B3LYP has proven to be the most successful approximate
functional for chemical applications.

More extreme examples of this semiempirical mode of con-
struction of functionals are Becke’s 1997 hybrid functional,115 which
contains ten adjustable parameters, and the functionals in Refs. [116,
117], each of which contains more than 20 parameters. A more re-
cent example is DF07,73 which promises a unified treatment of long-
range (static) and short-range (dynamical) correlations, with a spe-
cial correction added to account for dispersion (van der Waals) inter-
actions. This functional contains five mixing parameters, in addition
to three parameters contained in the input functionals.
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Another recent beyond-GGA development is the emergence
of so-called meta-GGAs, which depend, in addition to the density
and its derivatives, also on the Kohn–Sham kinetic-energy density
τ(r)67, 69, 118–120

τ(r) = h̄2

2m

∑

i

|∇φi (r)|2, (79)

so Exc can be written as Exc[n(r),∇n(r), τ (r)]. The additional
degree of freedom provided by τ is used to satisfy additional
constraints on Exc, such as a self-interaction-corrected correla-
tion functional, recovery of the fourth-order gradient expansion
for exchange in the limit of slowly varying densities and a fi-
nite exchange potential at the nucleus.67, 118, 119 In several recent
tests,67, 118, 119, 121–124 meta-GGAs have given favourable results,
even when compared with the best GGAs, but the full potential of
this type of approximation is only beginning to be explored system-
atically. Of course, meta-GGAs can also be used as components of
hybrids. A recent successful example is given in Ref. [119].

As we have seen in the case of Ts, it can be much easier to rep-
resent a functional in terms of single-particle orbitals than directly
in terms of the density. Such functionals are known as orbital func-
tionals, and (45) constitutes a simple example. Another important
orbital-dependent functional is the exchange energy (Fock term) of
(47). The meta-GGAs and hybrid functionals mentioned above are
also orbital functionals, because they depend on the kinetic energy
density (79), and on a combination of the orbital functional (47) with
ordinary GGAs, respectively.

Still another type of orbital functional is the SIC proposed in
Ref. [111] (PZ-SIC),

Eapprox,SIC
xc [n↑, n↓] = Eapprox

xc [n↑, n↓]
−
∑

i,σ

(
EH[niσ ] − Eapprox

xc [niσ , 0]) , (80)

which subtracts, orbital by orbital, the contribution the Hartree and
the exchange–correlation functionals would make if there was only
one electron in the system. This correction can be applied on top of
any approximate density functional, and ensures that the resulting
corrected functional satisfies Eapprox,SIC

xc [n(1), 0] = −EH[n(1)] for
a one-electron system, as demanded by (52) and (53). The LDA is
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exact for a completely uniform system, and thus is self-interaction-
free in this limit, but neither it nor common GGAs or hybrids satisfy
the requirement of freedom from self-interaction in general. This
self-interaction is particularly critical for localized states, such as
the d states in transition-metal oxides. For such systems PZ-SIC has
been shown to greatly improve the uncorrected LDA,106, 107 but for
thermochemistry PZ-SIC does not seem to be significant.125

Unfortunately the PZ-SIC approach, which minimizes the cor-
rected energy functional with respect to the orbitals, does not lead to
Kohn–Sham equations of the usual form, because the resulting effec-
tive potential is different for each orbital. As a consequence, various
specialized algorithms for minimizing the PZ-SIC energy functional
have been developed. For more details on these algorithms and some
interesting applications in solid-state physics see Refs. [106–108]
and for applications to thermochemistry see Refs. [126–130]. For
finite systems, PZ-SIC has also been implemented by means of the
OEP,81 which produces a common local potential for all orbitals,
and is discussed in the next paragraph. A detailed review of imple-
mentations and applications of PZ-SIC can be found in the contribu-
tion of Temmerman et al.19 Alternatives to the PZ-SIC formulation
in Ref. [111] have recently been analysed in Refs. [131,132], with a
view to either improving the results obtained with PZ-SIC or simpli-
fying the implementation of the correction.

Since hybrid functionals, meta-GGAs, SIC, the Fock term and
all other orbital functionals depend on the density only implicitly, via
the orbitals φi [n], it is not possible to directly calculate the functional
derivative vxc = δExc/δn. Instead one must use indirect approaches
to minimize E[n] and obtain vxc. In the case of the kinetic-energy
functional Ts[{φi [n]}], this indirect approach is simply the Kohn–
Sham scheme, described in Sect. V. In the case of orbital expressions
for Exc, the corresponding indirect scheme is known as the OEP133

or, equivalently, the optimized-potential model.134 The minimization
of the orbital functional with respect to the density is achieved by
repeated application of the chain rule for functional derivatives,

vxc[n](r) = δEorb
xc [{φi }]
δn(r)

=
∫

d3r ′
∫

d3r ′′
∑

i

[
δEorb

xc [{φi }]
δφi (r′)

δφi (r′)
δvs(r′′)

δvs(r′′)
δn(r)

+ c.c.

]

,

(81)
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where Eorb
xc is the orbital functional (e.g. the Fock term) and vs is the

Kohn–Sham effective potential. Further evaluation of (81) gives rise
to an integral equation that determines the vxc[n] belonging to the
chosen orbital functional Exc[{φi [n]}].133, 135 As an alternative to
solving the full OEP integral equation, Krieger, Li and Iafrate (KLI)
have proposed a simple but surprisingly accurate approximation that
greatly facilitates implementation of the OEP.133

The application of the OEP methodology to the Fock term (47),
either with or without the KLI approximation, is also known as
the EXX method. The OEP-EXX equations have been solved for
atoms133, 134, 136 and solids,137, 138 with very encouraging results.
Other orbital-dependent functionals that have been treated within the
OEP scheme are the PZ-SIC81 and the Colle–Salvetti functional.136

A detailed review of the OEP and its KLI approximation is given in
Ref. [135].

The high accuracy attained by complex orbital functionals im-
plemented via the OEP, and the fact that it is easier to devise or-
bital functionals than explicit density functionals, makes the OEP
concept attractive, but the computational cost of solving the OEP
integral equation is a major drawback. However, this computational
cost is significantly reduced by the KLI approximation133 and other
recently proposed simplifications.139–141 In the context of the EXX
method (i.e. using the Fock exchange term as an orbital functional)
the OEP is a viable way to proceed. For more complex orbital func-
tionals, additional simplifications may be necessary.133, 139–141

A further reduction of computational complexity is achieved
by not evaluating the orbital functional self-consistently, via (81),
but only once, using the orbitals and densities of a converged self-
consistent LDA or GGA calculation. This ‘post-GGA’ or ‘post-LDA’
strategy completely avoids the OEP and has been used both for hy-
brid functionals and for meta-GGAs.69, 115, 120, 142 A drawback of
post methods is that they provide only approximations to the self-
consistent total energies, not to eigenvalues, effective potentials, or-
bitals or densities. An attempt to maintain the formal simplicity
of post methods, while perserving at least some corrections to the
eigenvalues, is the scaled-self-consistency approach.143, 144

In the case of hybrid functionals, still another mode of imple-
mentation has become popular. This alternative, which also avoids
solution of (81), is to calculate the derivative of the hybrid func-
tional with respect to the single-particle orbitals, and not with respect
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to the density as in (81). The resulting single-particle equation is
of Hartree–Fock form, with a nonlocal potential, and with a weight
factor in front of the Fock term. Strictly speaking, the orbital deriva-
tive is not what the Hohenberg–Kohn theorem demands, but rather
a Hartree–Fock-like procedure, but in practice it is a convenient and
successful approach. This scheme, in which self-consistency is ob-
tained with respect to the single-particle orbitals, can be consid-
ered an evolution of the Hartree–Fock Kohn–Sham method,8 and
is how hybrids are commonly implemented. Recently, it has also
been used for meta-GGAs.67, 118, 119 For occupied orbitals, results
obtained from orbital self-consistency differ little from those ob-
tained from density self-consistency, implemented via the OEP.

Apart from orbital functionals, which are implicit nonlocal den-
sity functionals because the orbitals depend on the density in a
nonlocal way, there is also a class of explicit nonlocal density func-
tionals. Such nonlocal density functionals take into account, at any
point r, not only the density at that point, n(r), and its derivatives,
∇n(r), etc., but also the behaviour of the density at different points
r′ �= r, by means of integration over physically relevant regions of
space. A typical example is

EADA
xc [n] =

∫
d3r n(r)εhom

xc (n̄(r)), (82)

where εhom
xc is the per-particle exchange–correlation energy of the

homogeneous electron liquid. In the LDA one would have n̄(r) ≡
n(r), but in the ADA one takes145

n̄(r) =
∫

d3r ′ n(r′)w[n](|r − r′|), (83)

where w[n](|r − r′|) is a weight function that samples the density
not only semilocally, as do the GGAs, but over a volume determined
by the range of w.

The dependence of the ADA and the closely related weighted-
density approximation (WDA)145 on n̄(r), the integral over n(r),
instead of on derivatives, as in the GGAs, is the reason why such
functionals are called ‘nonlocal’. In practice, this integral makes
the functionals computationally expensive, and in spite of their
great promise they are used much less than GGAs. However, re-
cent comparisons of ADA and WDA with LDA and GGAs for
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low-dimensional systems122, 146 and for bulk silicon147 have shown
that nonlocal integral-dependent density functionals can outperform
local and semilocal approximations.

4. Performance of Approximate Functionals: A Few Examples

No systematic attempt at comparing explicit functionals can be made
here. Extensive comparisons of a wide variety of functionals can be
found in Refs. [7–21]. For pure illustrative purposes only, Tables 1–5
show ground-state energies of the argon atom and of the water

Table 1.
Ground-state energy in atomic units of the Ar atom (Z = 18),

obtained with some representative density functionals and related
methods. The Hartree–Fock and exact exchange values are from

Krieger et al. (third of Ref. [133]), average-density approximation
(ADA) and weighted-density approximation (WDA) values are from
Gunnarsson et al.,145, as reported in Ref. [7], and the local density

approximation (LDA)–self-interaction correction (SIC)(PZ) value is
from Perdew and Zunger111. The experimental value is based on231,

and is given to fewer significant digits than the calculated values,
because of relativistic and quantum electrodynamical effects (Lamb
shift) that are automatically included in the experimental result but
not in the calculated values. (Reprinted from Ref. [23]. Copyright

c© 2006 with permission from the Brazilian Journal of Physics.)

Method −E /au
Thomas–Fermi 625.7
Hartree–Fock 526.818
Exact exchange 526.812
LDA (exchange only) 524.517
LDA (VWN) 525.946
LDA (PW92) 525.940
LDA-SIC(PZ) 528.393
ADA 527.322
WDA 528.957
GGA (B88LYP) 527.551

Experiment 527.6
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Table 2.
Ground-state energy, in atomic units, of the H2O

molecule, obtained with some representative density
functionals and basis sets. The calculation was performed
with the Gaussian03160 electronic structure package. For
comparison, the total energy for H2O obtained with full

configuration interaction (FCI/cc-pVDZ) is
−76.242 hartree161.

Basis set LDA (SVWN5) GGA (PBE) Hybrid (B3LYP)
STO-3G −74.730 −75.223 −75.310
6-311G −75.851 −76.328 −76.416
cc-pVDZ −75.853 −76.332 −76.419
aug-cc-pVQZ −75.911 −76.386 −76.472

Table 3.
Same as Table 2, for the H2O+ ion. FCI/cc-pVDZ total

energy is −75.733 hartree161.

Basis set LDA (SVWN5) GGA (PBE) Hybrid (B3LYP)
STO-3G −74.376 −74.871 −74.954
6-311G −75.351 −75.871 −75.956
cc-pVDZ −75.391 −75.883 −75.968
aug-cc-pVQZ −75.428 −75.916 −76.002

Table 4.
Same as Table 2, for the H3O+ ion. Calculated

Multi-Reference Double-Excitation configuration
interaction/cc-pVTZ total energy is −76.567 hartree at a
ground state equilibrium geometry C3v with H-O-H angle

120◦ and O–H bond length 0.096 nm162.

Basis set LDA (SVWN5) GGA (PBE) Hybrid (B3LYP)
STO-3G −75.103 −75.590 −75.676
6-311G −76.140 −76.619 −76.706
cc-pVDZ −76.136 −76.614 −76.701
aug-cc-pVQZ −76.176 −76.655 −76.742
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Table 5.
Same as Table 2, for the OH− ion. FCI/cc-pVDZ

total energy is −75.623 hartree163.

Basis set LDA (SVWN5) GGA (PBE) Hybrid (B3LYP)
STO-3G −73.806 −74.302 −74.395
6-311G −75.189 −75.658 −75.746

cc-pVDZ −75.159 −75.633 −75.721
aug-cc-pVQZ −75.293 −75.760 −75.842

molecule. Owing to the importance of the paradigmatic dissocia-
tion reaction 2H2O → H3O+ + OH− for electrochemistry, we also
include data on the ionic dissociation products. Although such very
limited comparisons cannot substitute a complete analysis, the data
in Tables 1–5 do illustrate the quality, or lack thereof, of common
density functionals, combined with common basis sets.

Accurate ground-state energies are the key to obtaining many
other properties, such as geometries, ionization energies and vi-
brational frequencies, and functionals are usually constructed (or,
in the case of semiempirical functionals, fitted) to give as good as
possible energies. Modern high-level functionals predict molecular
energies to within less than approximately 4 kcal/mol,67, 73, 118, 119

which is close to the desired chemical accuracy of 1 kcal/mol =
0.0434 eV/particle. On the other hand, energy gaps in solids can be
wrong by 100%.

Ionization energies can, in principle, be obtained from the high-
est occupied Kohn–Sham eigenvalue (see Sect. V.2), but for local
and semilocal approximations, this does not yield reliable results be-
cause the asymptotic effective potential obtained from these approx-
imations decays exponentially, and not as the correct 1/r . As a con-
sequence, the outermost electron is too weakly bound, and ionization
energies are underestimated. SICs or other fully nonlocal function-
als are needed to improve this behaviour and the resulting eigenval-
ues.81, 111 Ionization energies obtained as total-energy differences,
on the other hand, are much more reliable.

Electron affinities are harder to obtain than ionization energies,
because within local and semilocal approximations the N+1’st elec-
tron often is not bound at all, so wrong affinities result both from
eigenvalues and from total energies. By exploiting error cancellation
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between basis-set effects (which artificially bind the extra electron)
and the wrong asymptotic tail of LDA and GGA potentials (which
leads to underbinding of the extra electron), one can nevertheless
obtain reliable affinities from standard functionals.148

Another consequence of the wrong asymptotic behaviour of
local and semilocal functionals is that static polarizabilities are
frequently overestimated by standard functionals. Much useful in-
formation on the performance of approximate density functionals
in calculations of electric polarizabilities and hyperpolarizabilities
of atoms, molecules and clusters can be found in Schwerdtfeger,149

Fuentealba150 and Pouchen et al.151

Quite generally, current functionals give acceptable results for
lengths and strengths of all main types of chemical bonds (covalent,
ionic, metallic and hydrogen bridge). The LDA tends to slightly (ap-
proximately 1%) underestimate bond lengths, while the GGA over-
estimates them by a similar margin. Hybrid functionals and other
orbital-dependent functionals further improve this situation: bond
lengths of molecules can be predicted by high-level density func-
tionals with an average error of less than 0.001 nm.

For van der Waals (dispersion) interactions, however, many
common GGAs and the LDA fail. The PBE GGA66 is a partial
exception121, 152 because it works reasonably well near the equilib-
rium distance of the van der Waals bond, but PBE recovers only
the short-range behaviour and does not describe correctly the long-
range asymptotic regime of the van der Waals interaction. To de-
scribe these very weak interactions, a variety of more specialized
approaches has been developed within DFT,73, 153–159 but it is too
early to say whether one of them will evolve into a reliable standard
method, comparable to the LDA or the GGA.

As the systems become larger and larger, DFT encounters com-
putational limitations, and must yield to semiempirical modelling.
At the other end of the spectrum, as demands on accuracy grow
beyond that attained by today’s best functionals, wave-function-
based methods such as CI, CC or MP reign supreme. Simultane-
ous progress in computing technology and construction of density
functionals, however, has pushed both frontiers of DFT further and
further out.
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VII. EXTERNAL ELECTRIC AND MAGNETIC FIELDS

In static fields, one can separately deal with electric and magnetic
phenomena. Electric fields couple to the charge density. Magnetic
fields can be further classified according to whether they couple to
the spin degrees of freedom (spin-only magnetic fields, as in pure
Zeeman coupling), to the orbital degrees of freedom (current-only
magnetic fields, as in classical physics) or to both. Although only the
latter case corresponds to physical magnetic fields, in the absence of
spin–orbit coupling (which is a relativistic effect) spins and currents
represent independent degrees of freedom, and the coupling of ex-
ternal fields to them can be described separately. Moreover, quite
frequently the coupling to currents (mediated by a vector potential
in the Hamiltonian) is much weaker than that to the spins. In this
situation one can in a first approximation neglect currents and vector
potentials altogether, and deal with charges and spins only. This is
the situation for which SDFT was designed.85, 109

Below we first offer some brief remarks on SDFT, and then turn
to the more complex problems posed by orbital currents, described
by CDFT. Both, SDFT and CDFT also have a relativistic version,
on which we make some brief comments in Sect. VII.2. Next, we
briefly consider the simpler (but still not trivial) case of external
electric fields. Finally, we describe the peculiar problems arising in
the calculation of the electric polarization and the orbital magnetiza-
tion of extended systems. We do not address, in this chapter, time-
dependent electromagnetic fields, for which we refer the reader to
reviews of the large and flourishing field of TD-DFT.164–166

1. Magnetic Fields Coupling to the Spins: SDFT

Up to this point we have discussed DFT in terms of the charge (or
particle) density n(r) as a fundamental variable. To reproduce the
correct charge density of the interacting system in the noninteract-
ing (Kohn–Sham) system, one must apply to the latter the effective
Kohn–Sham potential vs = v+vH+vxc, in which the last two terms
simulate the effect of the electron–electron interaction on the charge
density. This form of DFT, which is the one proposed originally,29

could also be called ‘charge-only’ DFT. It is not the most widely
used DFT in practical applications. Much more common is a formu-
lation that employs one density for each spin, n↑(r) and n↓(r), i.e.
works with two fundamental variables. To reproduce both of these
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in the noninteracting system, one must now apply two effective po-
tentials, vs,↑(r) and vs,↓(r). More generally, one requires one ef-
fective potential for each density-like quantity to be reproduced in
the Kohn–Sham system. Such potentials and corresponding densi-
ties are called ‘conjugate variables’.

The formulation of DFT in terms of n↑(r) and n↓(r) is known
as collinear SDFT.85, 109 Its fundamental variables n↑(r) and n↓(r)
can be used to calculate the charge density n(r) and the spin-
magnetization density m(r) from

n(r) = n↑(r)+ n↓(r), (84)

m(r) = μ0(n↑(r)− n↓(r)), (85)

where μ0 = qh̄/2mc is the Bohr magneton for particles of charge q.
More generally, the Hohenberg–Kohn theorem of SDFT states that
in the presence of a magnetic field B(r) that couples only to the elec-
tron spin (via the familiar Zeeman term

∫
d3r m(r)B(r)) the ground-

state wave function and all ground-state observables are unique
functionals of n and m or, equivalently, of n↑ and n↓. Almost the
entire further development of the Hohenberg–Kohn theorem and
the Kohn–Sham equations can be immediately rephrased for SDFT,
just by attaching a suitable spin index to the densities. For this rea-
son we could afford the luxury of exclusively discussing ‘charge-
only’ DFT in the preceding sections, without missing any essential
aspects of SDFT.

There are, however, some exceptions to this simple rule. One is
the fourth statement of the Hohenberg–Kohn theorem, as discussed
in Sect. III.1. Another is the construction of functionals. For the ex-
change energy it is known, e.g., that167

ESDFT
x [n↑, n↓] = 1

2

(
EDFT

x [2n↑] + EDFT
x [2n↓]

)
. (86)

In analogy to the coordinate scaling of (49)–(51), this property is of-
ten called ‘spin-scaling’, and it can be used to construct a SDFT
exchange functional from a given DFT exchange functional. In
the context of the local-spin-density approximation, von Barth and
Hedin109 wrote the exchange functional in terms of an interpolation
between the unpolarized and fully polarized electron gas which by
construction satisfies (86). Alternative interpolation procedures can
be found in Ref. [64]. GGA exchange functionals also satisfy (86)
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by construction. For the correlation energy no scaling relation of the
type (86) holds, so in practice correlation functionals are either di-
rectly constructed in terms of the spin densities or written using,
without formal justification, the same interpolation already used in
the exchange functional. In the case of the local-spin-density ap-
proximation, this latter procedure was introduced in Ref., [109] and
further analysed and improved in Ref. [64].

The Kohn–Sham equations of SDFT are
[

− h̄2∇2

2m
+ vsσ (r)

]

φiσ (r) = εiσ φiσ (r), (87)

where vsσ (r) = vσ (r)+ vH(r)+ vxc,σ (r). In a nonrelativistic calcu-
lation the Hartree term does not depend on the spin label [spin–spin
dipolar interactions are a relativistic effect of order (1/c)2, as are
current–current interactions], but in the presence of an externally
applied magnetic field vσ (r) = v(r) − σμ0 B (where σ = ±1).
Finally,

vxc,σ (r) = δESDFT
xc [n↑, n↓]
δnσ (r)

. (88)

The exchange–correlation magnetic field Bxc = μ0(vxc,↓ − vxc,↑) is
the origin of, e.g., ferromagnetism in transition metals.

References to recent work with SDFT include almost all practi-
cal DFT calculation: SDFT is by far the most widely used form of
DFT. In fact, SDFT has become synonymous with DFT to such an
extent that often no distinction is made between the two, i.e. a calcu-
lation referred to as a DFT one is most often really a SDFT one Some
recent work on SDFT is described in Ref. [168]. A more detailed
discussion of SDFT can be found in Refs., [7, 8, 85] and a partic-
ularly clear exposition of the construction of exchange–correlation
functionals for SDFT is the contribution of Kurth and Perdew in
Refs. [17, 18].

If the direction of the spins is not uniform in space, we are
dealing with noncollinear magnetism. Noncollinear spin structures
appear, e.g., as canted or helical spin configurations in rare-earth
compounds, as helical spin-density waves, or as domain walls in fer-
romagnets. To describe these, one requires a formulation of SDFT
in which the spin magnetization is not a scalar, as above, but a three-
component vector m(r). Different proposals for extending SDFT to
this situation are available.169–171
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2. Brief Remarks on Relativistic DFT

Frequently, noncollinearity is due to spin–orbit coupling. Although
spin–orbit terms can be added as a perturbation to the equations
of SDFT, a complete description requires a relativistic formulation.
A generalization of DFT that does account for spin–orbit coupling
and other relativistic effects is RDFT.20, 25, 26 Here the fundamental
variable is the relativistic four-component current jμ and the Kohn–
Sham equation is now of the form of the single-particle Dirac equa-
tion, instead of the Schrödinger equation.

In practice, one typically employs so-called relativistic SDFT
(R-SDFT), in which a Gordon decomposition of the four-current
is performed to separate orbital and spin degrees of freedom, and
only the spin magnetization is maintained as a fundamental variable.
This reduced RDFT is not Lorentz-invariant (which is not essen-
tial in solid-state physics and quantum chemistry, where a preferred
frame is provided by the laboratory) and does not account for orbital
magnetism (except, possibly, induced by spin–orbit coupling, which
can be treated as a perturbation). Relativistic CDFT (R-CDFT) can
overcome both limitations, but is less frequently used since it is
more complicated to implement, and less is known about approxi-
mate four-current functionals.

In both R-SDFT and R-CDFT there are also many subtle ques-
tions involving renormalizability and the use of the variational prin-
ciple in the presence of negative-energy states. For details on these
problems and their eventual solution the reader is referred to the
chapters by E. Engel et al., [12 page 1, 21 page 65] and to the book
by Eschrig.20 A didactical exposition of RDFT, together with repre-
sentative applications in atomic and condensed-matter physics, can
be found in the book by Strange,27 and a recent numerical imple-
mentation of R-SDFT is presented in Ref. [172].

3. Magnetic Fields Coupling to Spins and Currents: CDFT

There are at least four conceptually distinct ways in which orbital
magnetism can appear in a physical system. One is the presence of
external magnetic fields B(r), whose vector potential A(r) enters the
Hamiltonian via the usual minimal substitution in the kinetic energy

p̂2

2m
−→ 1

2m

(
p̂ − q

c
A(r)

)2
. (89)



394 E. Orestes et al.

This substitution is, formally, easy to perform in the many-body
and the Kohn–Sham Hamiltonians of SDFT, but the presence of
the vector potential complicates the task of solving these equations.
Maintaining gauge invariance is not trivial in approximate calcu-
lations. Moreover, in extended systems the vector potential breaks
translational invariance, so Bloch’s theorem cannot be used any-
more.173, 174 Still, couplings of external vector potentials become
relevant in many situations, and ways to deal with them have been
developed, e.g. for the calculation of nuclear magnetic shielding ten-
sors and spin–spin coupling constants.175–179

A second way in which orbital magnetism can appear is due
to current–current interactions, which are part of the Breit interac-
tion27, 180 and therefore a relativistic effect. The nonretarded part of
this interaction is

−q2

c2

∫
d3r

∫
d3r ′

jp(r) · jp(r′)
|r − r′| = −q

c

∫
d3r jp(r) · AH(r), (90)

which describes the Hartree-like coupling of currents to the self-
induced vector potential, corresponding to the Amperian currents of
classical electrodynamics.

Third, in the presence of spin–orbit coupling a nonzero spin
magnetization can induce an orbital magnetization. Orbital magnetic
moments induced by spin–orbit coupling can be treated even within
SDFT or R-SDFT, if spin–orbit coupling is added to the Hamilto-
nian. Such magnetic moments become important, e.g., in magnetic
solids, where spin–orbit coupling produces phenomena such as mag-
netocrystalline anisotropy181, 182 or magnetooptical effects such as
dichroism.183, 184

A consistent treatment of terms of second order in v/c requires
a relativistic formulation, and therefore both the Hartree vector po-
tential and spin–orbit coupling are often neglected in nonrelativistic
CDFT.

Finally, and most intriguingly, orbital magnetism can also oc-
cur spontaneously in a system with pure Coulomb interactions if
the system minimizes its energy in a current-carrying state.185, 186

The resulting currents are, in principle, functionals of the charge
and spin densities, because the original formulation of the SDFT
Hohenberg–Kohn theorem applies in the absence of magnetic fields,
but SDFT provides no explicit prescription for how to calculate
the spontaneous orbital currents and their effect on observables.
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This situation has changed with the advent of nonrelativistic CDFT,
developed by Vignale and Rasolt,185, 187 which describes sponta-
neous currents by introducing in the Kohn–Sham equations a self-
consistent exchange–correlation vector potential Axc, which can be
nonzero also in the absence of external magnetic fields and of rela-
tivistic effects.

In addition to possibly appearing spontaneously, Axc(r) also be-
comes nonzero as soon as currents are induced by one of the other
three mechanisms described previously. In this case, it constitutes
a correction to the external or Hartree vector potentials, or spin–
orbit terms, already present in the Hamiltonian. CDFT, with some
approximation for Axc, has been applied to the calculation of the
effects of orbital magnetism in atoms,188–190 quantum dots,191–193

molecules194, 195 and solids.186, 196–198

To briefly describe the formalism of CDFT, we first recall the
form of the traditional Kohn–Sham equation,

[

− h̄2

2m
∇2 + vd

s (r)

]

φk(r) = εd
kφk(r). (91)

Here an upper index d denotes DFT, and the effective single-particle
potential, vd

s (r), is defined as

vd
s (r) = v(r)+ vH(r)+ vd

xc(r), (92)

where v(r) is the external potential, vH is the Hartree-type electro-
static potential and vd

xc(r) is the exchange–correlation potential, in
which the entire complexity of the many-body problem is hidden.7, 8

By construction, the single-particle orbitals φk , solving the eigen-
value problem (91), reproduce the density of the interacting sys-
tem via

n(r) =
∑

k

φ∗k (r)φk(r). (93)

On the other hand, the paramagnetic current density,

jKS
p (r) = h̄

2mi

∑

k

[
φ∗k (r)∇φk(r)− φk(r)∇φ∗k (r)

]
, (94)

following from these orbitals, is, a priori, not guaranteed to have any
relation with the true current density of the interacting system.
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The corresponding equations of CDFT have a slightly more
complicated form:

[
1

2m

(
h̄

i
∇ − q

c
As(r)

)2

+ V c
s (r)

]

ψk(r) = εc
kψk(r), (95)

where an upper index c denotes CDFT,

V c
s (r) = vc

s (r)+
q2

2mc2

(
A(r)2 − As(r)2

)
, (96)

vc
s (r) = v(r)+ vH(r)+ vc

xc(r) (97)

and
As(r) = A(r)+ Axc(r). (98)

Here Axc and vc
xc are the exchange–correlation scalar and vec-

tor potentials of CDFT, respectively.185, 187 Axc, in particular, is a
gauge-invariant functional of the densities n(r) and jp(r), written
Axc[n, jp](r). By setting Axc ≡ 0, one recovers from CDFT the
equations of (S)DFT in an external vector potential A. If observables
for Axc ≡ 0, but B = ∇ × A �= 0, are considered functionals of the
external field B, one arrives at a formulation known as BDFT.199, 200

The novel feature of CDFT is that Axc accounts for the orbital de-
grees of freedom in the single-particle equations, even in the absence
of external fields, and allows calculation of orbital currents directly
from a set of Kohn–Sham-type equations.

The single-particle orbitals ψk , solving the more complicated
eigenvalue problem (95), reproduce by construction both the density

n(r) =
∑

k

ψ∗
k (r)ψk(r), (99)

and the paramagnetic current density

jp(r) = h̄

2mi

∑

k

[
ψ∗

k (r)∇ψk(r)− (∇ψ∗
k (r))ψk(r)

]
(100)

of the interacting many-body system. The paramagnetic current
alone is not gauge-invariant, but the gauge-invariant orbital current,
jorb(r), is simply obtained from
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jorb(r) = jp(r)− q

mc
n(r)A(r). (101)

An important property of the effective potential of DFT, vd
s (r),

[which is not shared by the CDFT potentials V c
s (r) and As(r)] is its

uniqueness: for any given ground-state density n(r) there is, up to
an irrelevant additive constant, at most one such local multiplicative
potential.7

For B = 0 the natural choice of gauge is A = 0 (the same
gauge universally chosen in solving (91)). The CDFT Kohn–Sham
equation (95) then takes the form

[

− h̄2

2m
∇2 + vc

s (r)+ Ŷ (r)

]

ψk(r) = εc
kψk(r), (102)

where the operator Ŷ (r) is defined by

Ŷ (r) = − h̄q

2mci
(∇Axc(r)+ Axc(r)∇) . (103)

A perturbative treatment of Ŷ has been suggested in Ref. [201].
Any CDFT calculation requires an approximation for the cur-

rent dependence of the Exc functional. For the homogeneous three-
dimensional electron liquid in strong uniform magnetic fields, the
exchange energy is known exactly,202 and the correlation energy has
been calculated within the random-phase approximation203 and the
self-consistent local-field-corrected Singwi–Tosi–Land–Sjolander
scheme.204 In weak fields, where linear-response theory applies,
the exchange–correlation energy can be expressed in terms of the
magnetic susceptibility, for which many-body calculations are avail-
able from.205 The exchange–correlation energy of two-dimensional
electron liquids in uniform magnetic fields has been much studied
in the context of the fractional quantum Hall effect in quasi-two-
dimensional semiconductor heterostructures, but as such systems
are less relevant for chemical applications, we refrain from describ-
ing this work here.

All these results for homogeneous electron liquids in uni-
form magnetic fields can be used to construct LDAs to CDFT.
The effect of nonuniform magnetic fields in inhomogeneous many-
electron systems is then obtained by solving the CDFT Kohn–Sham



398 E. Orestes et al.

equations with this LDA. Alternatively, the exchange–correlation
energy in special nonuniform magnetic fields has also been calcu-
lated directly, by Harris and Grayce,199 but such calculations are
very hard to generalize to magnetic fields of arbitrary form.

Finally, we note that the nonrelativistic time-dependent CDFT,
recently formulated by Vignale et al.206 does not include the cou-
pling to external magnetic fields. Time-dependent CDFT is thus very
different from static CDFT, which does include this coupling.

4. Electric Fields

Static external electric fields are much simpler to include in the basic
formalism of DFT than magnetic fields and vector potentials, since
they couple to the charge density only. The effective single-particle
potential in the Kohn–Sham equations is a sum of several terms,

vs(r) = vext(r)+ vH(r)+ vx(r)+ vc(r), (104)

where the Hartree, exchange and correlation terms arise self-
consistently from the electron–electron interaction. The potential
normally referred to as ‘external’ potential vext(r) in DFT is exter-
nal in the sense that it does not arise from the electrons it is acting
on, but, within the Born–Oppenheimer approximation, from the
protons in the nuclei.

Static electric fields applied in the laboratory, e.g. by placing
the system between plates of a capacitor or contacting it with elec-
trodes, are external to both the electronic and the nuclear subsys-
tems, and can simply be added to vext(r). No generalizations of the
Hohenberg–Kohn theorem are required to perform this step, and the
behaviour of observables of finite systems as a function of external
electric fields can be studied by means of the conventional Kohn–
Sham equations of SDFT. In fact, SDFT is now commonly used in a
wide variety of electrochemical calculations. Representative exam-
ples are found in Refs., [3–6] as well as in a previous volume of this
series.2

An interesting complication, requiring special care, occurs in
generalizing DFT in external electric or magnetic fields to the case
of extended systems, which we discuss in the next section.
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5. Polarization and Magnetization

The proper quantum mechanical treatment of the electric polariza-
tion of a dielectric material and of the orbital magnetization of a
magnetic material is rather subtle.207 To illustrate the main compli-
cation arising in the context of DFT, let us consider a homogeneous
electric field E = −∇Φ, entering the Hamiltonian via the corre-
sponding electric potential

Ĥel =
∑

i

qiΦ(ri ) = −
∑

i

qi ri · E, (105)

where the sum is over all particles in the system, with charges qi
and masses mi , and E is independent of ri. This potential diverges
for |ri | → ∞. As a consequence, there is no stable quantum me-
chanical ground state in homogeneous electric fields.208–210 The
variational principle then does not apply, and the Hohenberg–Kohn
theorem does not hold. The potential of the homogeneous electric
field is therefore not determined by the charge density. Equivalently,
the homogeneous electric field itself is not determined by its conju-
gate variable, the macroscopic electric polarization, related to n via
∇ · P = n.

Since perfectly homogeneous electric fields do not exist in na-
ture, it seems that this lack of a Hohenberg–Kohn theorem would be
of little consequence for real materials and systems. However, the
electronic structure of real dielectrics is very frequently calculated
under the assumption that the system is infinitely extended, and for
such macroscopic dielectrics it thus appears that DFT in its usual
formulation cannot be applied.

One obvious solution is to treat the system as finite, in which
case the boundary conditions to the electric field (e.g. capacitor
plates) and the surface of the sample must be taken into account
explicitly during the calculation. As an alternative, an additional
variable can be included in the density-functional formalism to
account for the information not contained in the charge density.
Perhaps the simplest choice is the homogeneous external electric
field itself.211, 212 Alternatively, it has been proposed to include the
macroscopic polarization among the basic variables of DFT, lead-
ing to a density-and-polarization-functional theory,210, 213–217 but it
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has been argued that no combination of the purely local variables
n(r), P(r) and E(r) fully determines the corresponding Kohn–Sham
potential.212

An alternative approach that avoids many of the problems as-
sociated with electric polarization in dielectrics is TD-DFT. In the
time-dependent case, the time change of the polarization induces a
current, which may be considered an ultra-nonlocal functional of the
charge density, and has been successfully used as an alternative ad-
ditional variable for the description of dielectric properties of both
solids and molecular systems.216–218

In homogeneous magnetic fields, a very similar, though some-
what less explored, set of questions arises. The magnetization is a
quantity analogous to the electric polarization. In a spin-only mag-
netic field, such as used in SDFT, the homogeneous magnetic field
couples to the spin magnetization via the Zeeman term

ĤZ = − h̄

2c

∑

i

qi

mi
�σi · B. (106)

For a system of electrons, h̄qi/2mi c = −h̄e/2mc. The contribution
of this term to the total energy does not diverge in infinite homo-
geneous systems, unlike the coupling to electric fields, and there-
fore the calculation of spin magnetizations is more straightforward
than that of electric polarizations. The orbital magnetization, how-
ever, arises from the coupling to vector potentials, which in linear
order is given by

Ĥorb = − 1

2c

∑

i

qi

mi
[A(ri ) · pi + pi · A(ri )] , (107)

= − 1

2c

∑

i

qi

mi
B × ri · pi , (108)

where we used the gauge A = 1
2 B × r. This coupling again features

a linear term in the position operator, and diverges for |r| → ∞.
The calculation of orbital magnetizations in DFT is thus subject to
the same questioning as that of electric polarizations, but that of spin
magnetizations is not. Highly nonlocal, e.g. orbital-dependent, func-
tionals of the current density are required to calculate orbital mag-
netizations of extended systems.219–222
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For finite systems, the complications arising in infinite peri-
odic systems disappear, but now the surface prohibits application
of Bloch’s theorem, and calculations on finite clusters must be car-
ried out for the specific geometry of the system under study. In
either case, the orbitals used to calculate orbital currents and or-
bital magnetizations should, rigorously, be those of CDFT. SDFT
orbitals calculated in the presence of external vector potentials (but
no exchange–correlation vector potentials) are not guaranteed to re-
produce the correct many-body orbital currents and magnetizations,
regardless of whether the system is finite or infinite. How large the
influence of Axc is in a given system is a separate question. The em-
pirical success of SDFT with external vector potentials in calculat-
ing nuclear-magnetic shielding tensors175–178 and the smallness of
Axc in such calculations,194, 195, 223 as well as in calculations of mag-
netic moments of solids196, 198 and of ionization energies of current-
carrying states,189, 189 suggest that CDFT corrections are small in
most cases, and SDFT provides at least a useful starting point.

VIII. OUTLOOK

Extensions of DFT to time-dependent, magnetic, relativistic
and a multitude of other situations involve more complicated
Hamiltonians than the basic ab initio many-electron Hamiltonian
defined in (2)–(6). Frequently, the inverse strategy is also useful:
instead of attempting to achieve a more complete description of the
many-body system under study by adding additional terms to the
Hamiltonian, it can be advantageous to reduce the complexity of
the ab initio Hamiltonian by replacing it by simpler models, which
focus on specific aspects of the full many-body problem. DFT can
be applied to such model Hamiltonians too, once a suitable density-
like quantity has been identified as a basic variable. Following
pioneering work by Gunnarsson and Schönhammer,224 LDA-type
approximations have, e.g., recently been formulated and exploited
for the Hubbard,225 the delta-interaction226 and the Heisenberg227

models. Common aspects and potential uses of DFT for model
Hamiltonians are described in Ref. [228].

Still another way of using DFT which does not depend di-
rectly on approximate solution of Kohn–Sham equations is the quan-
tification and clarification of traditional chemical concepts, such
as electronegativity,8 hardness, softness, Fukui functions and other
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reactivity indices8, 229 or aromaticity.230 The true potential of DFT
for this kind of investigation is only beginning to be explored, but
holds much promise.

All extensions of DFT face the same formal questions (e.g.
interacting and noninteracting v-representability of the densities,
meaning of the Kohn–Sham eigenvalues, nonuniqueness of the
Kohn–Sham potentials) and practical problems (e.g. how to effi-
ciently solve the Kohn–Sham equations, how to construct accurate
approximations to Exc, how to treat systems with very strong cor-
relations or with a very large number of electrons) as does standard
(S)DFT. These questions and problems, however, have never stopped
DFT from advancing,7–21 and at present DFT emerges as the method
of choice for solving a wide variety of quantum mechanical prob-
lems in chemistry and physics, and in many situations, such as large
and inhomogeneous systems, it is the only applicable first-principles
method at all.
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I. INTRODUCTION

The present volume is devoted to the issues of modeling and
numerical simulations in electrochemistry. With the continuing
development of more and more powerful computer hardware and
software systems, the nature of modeling keeps evolving and ex-
panding. Workers in industry and academia keep developing, testing,
and understanding and producing new products. Those in most cases
require new materials which benefit from modeling as it obviates the
need to actually try every possible new material. Indeed, owing to
the growth in the development of material science and technology,
the requirements for high-quality, reliable materials have become
more stringent. That is so especially in the nano 3D space indus-
tries. It is more often than not difficult for conventional materials
to completely meet those new more stringent requirements. In this
case, closer study of nanostructured materials is often called for.
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However, such study/search is not possible if no data for securing
reliability and safety of the nanostructured materials can be assured.

Generally speaking, when it comes to evaluating “conventional”
materials, test samples for service life time estimation, quality, and
safety analyses are collected. Data showing material characteristics
are typically secured by means of optical and electron microscopes
through destructive tests such as pull, compression, bending, torsion,
creep, fatigue, impact, and corrosion. The same methods may be
applied to a nanoscaled material.

Currently, scanning probe microscopy (e.g., atomic force mi-
croscopy) is often used for testing instead of optical and electron
microscopes. A few advanced destructive techniques have been re-
ported for the evaluation of nanostructured material.1–3 However,
they are still not good enough for the evaluation of a nanoscaled
thin film system (such as electrochemically/electrolessly deposited
metal films) owing to critical defects such as voids, delaminations,
and debonding sites of the system which often exist in the interior.
Therefore, microscopy designed for surface analysis may not be suit-
able for application to the system directly.

Attempts at exposing the defects located in the interior by cut-
ting or eliminating the system in layers may cause the following
problems:

1. The shape of the defects might be changed when cutting or
eliminating layers of the system.

2. There is no guarantee that all defects are exposed.
3. Certain specimens are difficult to cut or it is difficult to elim-

inate layers.
4. When the sizes/dimensions of the defects are less than a

1 μm, it is difficult to see their 3D distributions by eliminating
layers.

At least two nondestructive evaluation methods have been sug-
gested for the visualization of the internal structure of an opaque
nanoscaled thin film system and to characterize the same by instru-
ments utilizing basic features of ultrasound (e.g., reflection, trans-
mission, refraction, and diffraction). One is a laser-based ultrasonic
technique which is known as “picosecond acoustics.”4–8 Acous-
tic waves with frequencies ranging from approximately 10 GHz to
1.0 THz, corresponding to acoustic wavelengths in the range from
approximately 5 to 500 nm may be generated and detected with a
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single microscope objective. The detection of acoustic echoes on
reflection from buried interfaces reveals details of bonding, sound
velocities, film thicknesses, ultrasonic attenuation and ultrafast
acoustic generation mechanisms. However, this method cannot form
a highly resolved image showing internal structure. Second is ul-
trasonic atomic force microscopy,9, 10 which is a dynamic operation
mode of the atomic force microscope11 that permits the measure-
ment of elastic properties and the visualization of the surface and/or
the subsurface of the system with high spatial resolution.12–14 Al-
though this method is promising for characterizing the system,
development of the apparatus itself is still in progress at the time of
writing this chapter.

The mechanical scanning acoustic reflection microscope15

(SAM) utilizes ultrasound to produce magnified images of the mi-
croscopic structures of materials. In other words, the SAM is an
instrument that subjects an object to ultrasound, and detects the
variations of the elastic properties of the object. The elastic proper-
ties are determined by the molecular arrangement of the material,
molecule size, intermolecular force, and the like, with each material
having its unique characteristics. Accordingly, each object reacts in
its own characteristic way when subjected to ultrasonic waves. The
waves that return from the object may be converted into an image.
Since the ultrasonic waves penetrate into the object interior, not
only the surface, but also the interior can be visualized. Since the
beam is focused (up to submicrometer size) and is of high frequency
(100 MHz to 3 GHz), the resolution of the system is on the order of
that of optical microscopes. In addition to the image formation, the
SAM can also detect the amplitude and the phase of the reflected
wave. By analyzing those, one can quantitatively determined the
elastic properties of the specimen.

The SAM has been used to characterize thin or thick film sys-
tems,16–34 but not nanoscaled ones.

This article is presented with the view to clarify whether
scanning acoustic microscopy, which is one of the more advanced
ultrasonic imaging technologies, can be applied to nanoscaled elec-
trochemically deposited thin film systems (e.g., electroless deposi-
tion of ultrathin metal film systems).
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II. PRINCIPLE OF THE SCANNING ACOUSTIC
MICROSCOPE

1. Imaging Mechanism

In this application, instead of a pulse wave, a tone-burst wave is
used (see Fig. 1), and the frequency domain is such that the wave-
lengths of the ultrasound (i.e., in water range from 15.0 to 1.5 μm;
see Table 1). The penetration depth of the waves is limited by attenu-
ation. The SAM is used for penetrations substantially up to 300 μm.

Figure 1. Waveform. (a) Pulse wave; (b) tone-burst wave.
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Table 1.

Wavelength in water at various frequencies.

100 MHz 200 MHz 400 MHz 600 MHz 800 MHz 1.0 GHz
15.0 μm 7.5 μm 3.7 μm 2.5 μm 1.8 μm 1.5 μm

Isotropic Glass Substrate

Buffer Rod

Transducer

X-Y Scanning Stage

Transmitter Receiver

Coupling
Medium

Z Scanning

+

–

RF Input RF Output

Spherical Wave

Plane Wave

Nano-Scaled Thin Metal Film

Figure 2. A mechanical scanning acoustic reflection microscope.

Figure 2 shows the schematic diagram of the SAM. Referring to
Fig. 2, we describe the imaging mechanism of the SAM below.

An electrical signal is generated by an RF tone-burst source.
In the beginning, a Colpitts oscillator, or the like, was used as the
RF tone-burst source. Nowadays, however, burst waves are gated out
from continuous waves by a single pole double throw switch for fre-
quency stability. The output (i.e., voltage) of the source is approxi-
mately 10 V.

The electrical signal is transmitted to a piezoelectric transducer
located on the top of a buffer rod through a circulator (or the sin-
gle pole double throw switch). The electrical signal is converted to
an acoustic signal (i.e., ultrasonic plane wave) at the transducer. The
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ultrasonic plane wave travels through the buffer rod to a spherical
recess (hereinafter called simply the “lens”) located at the bottom of
the buffer rod, wherein the lens is coated by the acoustic impedance
matching layer which is the so-called acoustic antireflection coating
(AARC). The lens converts the ultrasonic plane wave to an ultra-
sonic spherical wave (i.e., ultrasonic beam). The ultrasonic beam
is focused within the specimen, and reflected from the specimen.
The reflected ultrasonic beam, which carries acoustic information
of the specimen, is again converted to an ultrasonic plane wave by
the lens. The ultrasonic plane wave returns to the transducer through
the buffer rod. The ultrasonic plane wave is again converted to an
electric signal at the transducer. The voltage of the electric signal
ranges from 300 mV to 1 V. When the operating frequencies range
from 100 MHz to 1 GHz, the corresponding insertion loss is approx-
imately 30 and 80 dB. Therefore, the electric signal must be am-
plified by 30–80 dB at a receiver. Furthermore, the electric signal
comprises transmission leaks, internal reflections from the interface
between the lens and the AARC, and reflections from the specimen.
Therefore, the reflections must be selected by a rectangular wave
from a double balanced mixer, the so-called the first gate. Then, the
peak of the amplitude of the electric signal is detected by a circuit,
which includes a diode and a capacitor (i.e., the peak detection tech-
nique). The gate noise is removed by using the second gate existing
within the first gate (the blanking technique). The peak-detected sig-
nal is stored in a memory through an analog-to-digital signal con-
verter. The stored signal is again converted into an analog signal by
a digital-to-analog signal converter. This flow of processes allows
the information that is collected at a single spot on a specimen to be
displayed as intensity at a certain point on the TV monitor.

To form a 2D acoustic image, an acoustic lens and/or an X–Y
stage is mechanically scanned across a given area of the specimen.

The acoustic lens is able to translate axially along the z direction
by variation of the distance between the specimen and the lens for
subsurface visualization. That is, when the surface of the specimen
is visualized, the acoustic lens is focused on the specimen (we denote
z = 0 μm), and when a subsurface of the specimen is visualized, the
acoustic lens is mechanically defocused toward the specimen (we
denote z = –x μm, where x is the defocused distance).
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2. Description of Acoustic Lens

The acoustic lens is made of a piezoelectric transducer and a buffer
rod. The transducer is deposited on the top of the buffer rod, and a
lens covered by an AARC is located on the bottom of the buffer rod.

(i) Piezoelectric Transducer

The role of the piezoelectric transducer is to convert electric
signals to acoustic signals, and back again. Zinc oxide is used typ-
ically for the transducer at frequencies of 100 MHz or more. The
transducer is sputtered onto the electrode (lower portion) deposited
on the polished surface of the buffer rod. Electrode is made from
either chromium–gold or titanium–gold. The electrode (upper por-
tion) is deposited on the zinc oxide using a mask plate for matching
the center of the electrode (upper portion) and that of the lens.

When an electric signal is incident upon the transducer, the
transducer is excited at its resonance frequency fr. The condition
for resonance is expressed as

2n − 1

fr
= 2d

c
, (1)

where d is the thickness of the transducer, n is an integer positive
number, and c is the velocity of the longitudinal wave set up in the
transducer.

Therefore, by modification of (1), the thickness of the trans-
ducer is determined as

d =
(

2n − 1

2

)(
c

fr

)
=
(

2n − 1

2

)
λ, (2)

where λ is the wavelength of the acoustic wave.
However, it ought to be remembered that the relationship be-

tween the acoustic impedance of the buffer rod and that of the trans-
ducer is also considered to determine the thickness. Let us denote
the acoustic impedances of the buffer rod and the transducer as Z1,
and Z2, respectively. Then, the relationship of these impedances with
each other can be either Z1 > Z2 or Z1 < Z2. The thickness (d) is
determined as λ/4 when the relation is Z1 > Z2, and as λ/2 when
Z1 < Z2.
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(ii) Buffer Rod

The diameter of the buffer rod is set to be larger than the diame-
ter of the transducer. The length of the buffer rod is generally chosen
to be longer than the near-field region (i.e., Fresnel zone), which is
in turn calculated through the following equation:

N = D2

4λ
, (3)

where N is the near-field region, D is the diameter of the transducer,
and λ is the wavelength in the material used for the buffer rod.

Considering the presence of acoustic energy loss, a material
having a high velocity compared with that of a coupling medium
and low attenuation (e.g., fused quartz or sapphire) is generally se-
lected. The selection of the material directly relates to the design of
the lens in terms of spherical aberration that needs to be minimized.

(iii) Lens

The paraxial focal distance of the acoustic lens (F0) is approxi-
mately expressed as follows:

F0 = R

(1 − C ′)
, (4)

C ′ = C2

C1
, (5)

where R is the radius of curvature of the surface of the lens, C1
is the longitudinal wave velocity in the buffer rod, and C2 is the
longitudinal wave velocity of the coupling medium.

The radius of curvature of the surface of the lens is deter-
mined by considering the operating frequency and attenuation
coefficient. Table 2 shows the range of the radii corresponding to
various frequencies. The aperture angle of the lens (denoted as θα)
is determined by the focal distance. When the focal distance and the
aperture angle are known the radius of the aperture (r) is determined
by the following equation:

r = F0 sin
(
θα

2

)
. (6)

Referring to Fig. 3, we describe the spherical aberration of the acous-
tic lens below.
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Table 2.
Range of radius due to

frequency.

Frequency Radius
100 MHz 1–2 mm
200 MHz 500 μm to 1 mm
400 MHz 500 μm
800–1,000 MHz 125 μm
1.5–3 GHz 50 μm

Figure 3. Calculation of the spherical aberration of the acoustic
lens. A(θ) is the spherical aberration, F0 is the paraxial focal
distance of the acoustic lens, F is the zonal focal distance, R
is the radius of curvature of the surface of the lens, θ is the in-
cident angle of the acoustic wave, and θ ′ is the refracted angle
of the acoustic wave.

When the acoustic wave from the lens is emitted into the speci-
men, the following equation holds by Snell’s law:

C1 sin θ ′ = C2 sin θ, (7)

where θ is the incident angle of the acoustic wave and θ ′ is the re-
fracted angle of the acoustic wave.

Then, the zonal focal distance (F) is expressed as follows:

F = R

(
(1 − cos θ)+ sin θ

tan (θ − θ ′)

)
. (8)
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Figure 4. Spherical aberration of optical and acoustic lenses. A(θ) is
the spherical aberration, R is the radius of curvature of the surface
of the lens, C1 is the longitudinal wave velocity of the buffer rod,
and C2 is the longitudinal wave velocity of the coupling medium.

Therefore, the spherical aberration, A(θ), is expressed as follows:

A(θ) = F0 − F. (9)

For example, when sapphire and water are used for a buffer
rod and a coupling medium, respectively, A(θ) is calculated to be
0.003R. For an acoustic lens operating at a frequency of 1.0 GHz, R
is approximately 100 μm; therefore, A(θ) is calculated as 0.3 μm.
Considering the wavelength of the ultrasonic wave having a fre-
quency of 1.0 GHz in water (i.e., 1.5 μm), this value is small enough
for a single spherical lens to form a well-focused image. Therefore,
sapphire (z-cut) is considered as the best material although it is dif-
ficult to make the spherical recess by mechanical polish.

For reference, a comparison of the ratio of the spherical aberra-
tion and the radius, A(θ)/R, between the acoustic lens and the optical
lens is shown in Fig. 4. The spherical aberration of the acoustic lens
is much smaller than that of the optical lens. This is an important
advantage.

(iv) Acoustic Antireflection Coating

When acoustic waves are emitted from sapphire into water, used
as a coupling medium directly, 88% of the acoustic waves will be
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reflected back from the interface between the lens and water. This
is due to their impedance mismatch. Thus, it becomes necessary to
coat the lens with an AARC. The thickness of the AARC should
be λ/4, where λ is the wavelength of the acoustic wave to have an
optimized result, and the acoustic impedance Z of the AARC is

Z = √Z1 Z2, (10)

where Z1 is the impedance of the lens rod and Z2 is the impedance
of the coupling medium.

Evaporated silicon oxide is typically used as the material for the
AARC although silicon oxide does not completely satisfy (10).

III. RESOLUTION

Two types of resolutions must be considered for the SAM. One is a
lateral resolution (�r ), and the other is a vertical resolution (�ρ).
These may be expressed as follows:

�r = Fλ = F

(
vw

f

)
, (11)

�ρ = 2F2λ =
(

2F2
)(vw

f

)
=
[

2
(

fo

D

)2
](

vw

f

)

=
[

2
(

1

2 tan θ

)2
](

vw

f

)
=
(

1

2 (tan θ)2

)(
vw

f

)
, (12)

where F is a constant related to the lens geometry, λ is the wave-
length in the coupling medium (i.e., water), f is the frequency of
the wave generated by the transducer, vw is the longitudinal wave
velocity in the coupling medium, fo is the focal distance of the lens,
D is the diameter of the lens aperture, and θ is half of the aperture
angle of the lens.

Figure 5b shows the surface and demonstrates the resolution at
a frequency of 1.0 GHz. The resolution is seen to be substantially the
same as that obtained by a conventional optical microscope (Fig. 5a).
However, it is not of a quality sufficient for evaluating the nanoscaled
thin film system. This is the main reason for not using the SAM for
the evaluation of nanoscaled thin film systems. It is very important
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Figure 5. Resolution. (a) Optical image of a stan-
dard specimen having patterns for measuring resolu-
tion (i.e., resolution chart) for the scanning acoustic
microscope in C-scan mode using a tone-burst wave;
(b) acoustic image. The acoustic lens is focused onto
the surface of the resolution chart. The acoustic lens is
operated at a frequency of 1.0 GHz.

to note that the actual resolutions in the images, however, tend to
be higher than the calculated resolutions. That is significant and it
means that contrast is as important as the calculated resolution in
determining the actual resolution in the image. We discuss the con-
trast factor in a separate section later.

Resolution of an image formed by the SAM is determined by the
frequency of the wave, the velocity in the coupling medium, and the
lens geometry. Therefore, three approaches were pursued by many
workers to increase resolution.
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The first approach was to raise the acoustic frequency. By means
of this approach, Hadimiooglu et al achieved a resolution of 0.2 μm
by operating at about 4.4 GHz with the specimen in boiling water to
minimize the attenuation of the coupling medium.35

The second approach was to use lowvelocity coupling media
such as liquid nitrogen36 and ethanol37 to increase resolution. Foster
et al were able to obtain a resolution better than 500 Å using super-
fluid liquid helium as the coupling medium at a temperature of 0.2◦K
at 4.2 GHz.38 Muha et al. were able to obtain a resolution of 150 Å
using an acoustic microscope operating at 15.3 GHz, wherein the
coupling medium was pressurized superfluid 4He, and wherein the
temperature of the medium was less than 0.9 K.39 These approaches
are excellent in increasing resolution on the surface of a specimen,
but not necessarily in its interior. In the first approach, the ultrasonic
wave is attenuated in proportion to the square of its frequency; there-
fore, when the highfrequency ultrasonic wave is used as a probe, the
wave will not penetrate the interior of the specimen, and the internal
information may not be obtained. In the second approach, the acous-
tic impedances between the coupling medium and the specimen are
very different, so most of the ultrasonic waves are reflected at the in-
terface between the coupler and the specimen, and it is unlikely that
an image from any significant depth will be obtained. Thus, acoustic
microscopy’s most important and unique feature, namely obtaining
subsurface information may not be realized by these two approaches.
However, since the ultrasonic penetration depth is not so crucial for
the case of a nanoscaled thin film system, those techniques could be
suitable for application to the system.

The third approach, which was to design a new acoustic lens,
has been considered to be the best approach for maintaining the most
important feature of the SAM. By means of the third approach, the
following new acoustic lenses were proposed. Chubachi et al devel-
oped the concave transducer to increase the resolution by removing
a spherical aberration.40 Davids et al., Atalar et al., Yakub et al., and
Miyasaka et al. proposed new acoustic lenses having restricted aper-
tures using Rayleigh waves41 a nonspherical aperture using Lamb
waves,42 a pinhole aperture for near-field imaging,43 and a center-
sealed aperture substantially using shear waves,44 respectively. A
new lens may have to be designed for the nanoscaled thin film sys-
tem to optimize the quality of the acoustic image.
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IV. PRINCIPLE OF QUANTITATIVE DATA ACQUISITION

In 1979, Weglein et al. found that a change in the voltage of the trans-
ducer deposited on the top of acoustic lens, which is known as the
V (z) curve, when defocusing the acoustic lens toward a specimen,
is uniquely related to the elastic properties of the specimen.45 This
phenomenon was modeled using ray tracing by Parmon et al.,46 and
using Fourier optics by Atalar.47 These workers also found that the
velocity of surface acoustic waves traveling within a spot of an ultra-
sonic beam could be obtained by measuring the distance between the
periods of the V (z) curves. By the establishment of these fundamen-
tally significant theories, the SAM became the universally accepted
apparatus not only for imaging but also for quantitative data acqui-
sition.

1. V (z) Curve

The transducer output voltage may be periodic with the axial motion
as the acoustic lens advances from the focal plane toward the speci-
men. The period of this variation is characteristic of the specimen’s
elastic material properties involved and results from interaction be-
tween two ray components, shown in Fig. 6, that radiate into the
liquid from the solid–liquid interface. Specifically, Fig. 7 shows an
example of a V(z) curve for fused quartz. An acoustic lens having an
aperture angle of 120◦ and a working distance of 310 μm was used
at an operating frequency at 400 MHz. The specimen was located in
the water tank. The temperature was set at 22.3◦C in the coupling
medium (i.e., distilled water) and it was measured by a thermocou-
ple. The temperature was substantially stabilized (changes less than
±0.1◦C). The movement of the acoustic lens along the Z -axis was
monitored by a laser-based measuring instrument. The transducer
output voltage was periodic with axial motion as the acoustic lens
advanced from the focal plane toward the specimen. The contrast
changed in accordance with the same period.

The V (z) curve is expressed as follows:

V(z) = C−1
∫ ∞

0
u2 (r)P2 (r)R

(
r

f

)
exp

⎡

⎣i2kz

√

1 −
(

r

f

)2
⎤

⎦ r dr,

(13)



Figure 6. Cross-sectional geometry of the spherical
acoustic lens, explaining the mechanism of the V (z)
curves.

Figure 7. V (z) curve for fused quartz; specimen fused quartz, coupling medium
distilled water, temperature of the coupling medium 22.3◦C (change less than
±0.1◦C). The parameters of the acoustic lens are as follows: frequency 400 MHz,
aperture angle 120◦, and working distance 310 μm.
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where

C =
∫ ∞

0
u2 (r) P2 (r) r dr, (14)

where u is the acoustic field, P is the pupil function defined as the
lens geometry, R is the reflectance function, k is the wave number in
the coupling medium, and f is the focal length.

Equations (13) and (14) are expressed using r = f sin θ as fol-
lows:

V(z) = C−1
∫ ∞

0
u2(θ)P2(θ)R(θ) exp(i2kz cos θ) sin θ cos θdθ,

(15)

C =
∫ θ0

0
u2(θ)P2(θ) sin θ cos θdθ, (16)

where θ is half the aperture angle of the lens.
When kz = k cos θ is used, (15) and (16) are expressed as

follows:

V (z) = C−1
∫ k cos θ0

k
Q2 (kz) R(kz) exp (i2kzz) dkz, (17)

C =
∫ k cos θ0

k
Q2 (kz) dkz, (18)

Q2(k2) = u2(kz)P2(kz)kz . (19)

From (17), the following equation is obtained:

F−1 {V (z)} = C−1 Q2(kz)R(kz), (20)

where F−1 { } is the inverse Fourier transform.
The material characterization is implemented by using (20) to

monitor amplitude and phase changes of R(kz).

2. Phase Change

Figure 8 shows amplitude and phase changes of the reflectance func-
tion due to the incident angles of the acoustic waves from water to
fused quartz.

Figure 8a shows the relation between the incident angle and the
amplitude of the ultrasonic beam emitted from the acoustic lens
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Figure 8. Reflectance function. (a) Amplitude; (b) phase spec-
imen fused quartz, coupling medium distilled water, tem-
perature of the coupling medium 22.3◦C (change less than
±0.1◦C). The parameters of the acoustic lens are as follows:
frequency 400 MHz, aperture angle 120◦, and working dis-
tance 310 μm.

operating at a frequency of 400 MHz onto the specimen (i.e., fused
quartz) via the coupling medium (i.e., water). When the incident
angle is close to the critical angle of the longitudinal wave (i.e.,
14.58◦), the amplitude of the reflectance function becomes abruptly
strong, and becomes the maximum value at the critical angle. After
passing the critical angle of the longitudinal wave, when the incident



426 C. Miyasaka

angle increases, the amplitude decreases to about 0.8. Then, the in-
cident angle is close to the critical angle of the shear wave (i.e.,
23.49◦), the amplitude is again abruptly strong, and assumes the
maximum value at the critical angle. After passing the critical an-
gle of the shear wave, the amplitude remains constant.

Figure 8b shows the relation between the incident angle and the
phase of the ultrasonic beam emitted from the acoustic lens operat-
ing at the frequency of 400 MHz to the specimen (i.e., fused quartz)
via the coupling medium (i.e., water). The phase changes marginally
at the critical angle of the longitudinal wave, but changes signifi-
cantly in the neighborhood of the Rayleigh critical angle. This sig-
nificant phase change is the key factor of the contrast change.

Using a ray-tracing technique, one may understand this mecha-
nism understood as follows. The period of this variation results from
interference between the two components. Figure 6 shows one com-
ponent which is spectrally reflected at normal incidence, while the
second one undergoes a lateral shift on incidence and reradiates at
the critical phase-matching angle for the surface acoustic wave (also
referred to as “leaky Rayleigh waves”).

When the acoustic wave is focused onto the surface of the speci-
men, the phases of the acoustic waves traveling path I and path II are
identical. Let this phase be denoted as Φf. When the acoustic lens is
defocused toward the specimen by a distance z, the phase changes
of the waves traveling paths I and II are expressed, respectively, as

ΦI = Φf −
(

2OC

λW

)

2π = Φf − 4πz

λW
, (21)

ΦII = Φf −
(

2AC

λW

)

2π +
(

2AB

λR

)

2π + π

= Φf − 4πz

λW cos θR
+ 4π tan θR

λR
+ π, (22)

where λW is a wavelength of the coupling medium (i.e., water), λR.is
the wavelength, and θR is the Rayleigh critical angle.

The phase difference is calculated by the following:

�Φ = ΦII −ΦI = 4πz

(
1 − 1

cos θR

λW + tan θR
λR

)

+ π. (23)
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Applying Snell’s law, we obtain the following equation:

VW

VR
= λW

λR
= sin θR, (24)

where VR is the surface acoustic wave (e.g., Rayleigh wave) velocity
on the surface of the specimen with a penetration depth of about one
wavelength:

λR = λW

sin θR
. (25)

Then, inserting (24) into (23), we obtain the quantitative contrast
factor as follows:

�Φ = 4πz

(
1 − cos θR

λW

)
+ π. (26)

3. Theory of the Surface Acoustic Wave Velocity Measurement

When (ΦII −ΦI) = (2n − 1) π, where n is a positive integer num-
ber, the V (z) curve is at a local minimum. Hence, the period of V(z)
is obtained as follows:

�z = λW

2 (1 − cos θR)
. (27)

By rewriting (25), we obtain

VR = VW

sin θR
. (28)

λW is expressed as

λW = VW

f
, (29)

where λ is a frequency used for an acoustic lens.
Therefore, from (27) to (29), we finally obtain the following

equation for calculating the surface acoustic wave velocity:

VR = VW√

1 −
(

1 − 1
2

VW
�z f

)2
. (30)
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4. Optimizing Measurement Precision

Assume 1 � VW
2 f�z , then (30) is approximately expressed as follows:

VR ∼=
√

VW f ·�z (31)

To enhance the precision of the surface acoustic wave velocity mea-
surement by the V (z) curve technique, the two sides of (31) are dif-
ferentiated and after taking logarithms of both sides, we obtain the
following equation:

dVR

VR
= 1

2

dVW

VW
+ 1

2

d f

f
+ 1

2

d�z

�z
. (32)

Equation (32) shows that the errors in the measurement of the sur-
face acoustic wave velocity are the sum of the errors in the values
of the velocity of the coupling medium, the frequency of the acous-
tic wave, and the distance of the period. Therefore, to minimize the
measurement error, it is necessary to maintain constant temperature
for the coupling medium to stabilize the frequency of the acous-
tic wave, and measure accurately the movement of the acoustic lens
along the Z -axis.

Many of refinements in the techniques for precision measure-
ment have been reported. Liang et al developed a SAM which can
obtain complex V (z) curves based on a nonparaxial formulation of
the V (z) integral, and a reflectance function of a liquid–solid inter-
face by inverting the V (z) curves formed at frequencies of 10 MHz
or less.48 Endo et al. improved the above-mentioned SAM in terms
of a mechanical movement and an increased frequency range (up to
3.00 GHz) to obtain higherprecision measurement.49

Quantitative data (i.e., velocities of surface acoustic waves) ob-
tained by a spherical lens, which is commonly used for acoustic
imaging, may not be expected to provide information on the elas-
tic anisotropy of materials. A cylindrical lens (i.e., line-focus lens)
and a measuring method were developed to overcome this issue.50–56

This technique is especially useful when the substrate is anisotropic
in the nanoscaled thin film system.
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V. CONTRAST

Acoustic properties (i.e., reflection coefficient, attenuation, and ve-
locity of acoustic wave), and surface condition (i.e., surface rough-
ness and discontinuities) of the specimen are factors in forming
acoustic images. For a nanoscaled thin film system, (1) deference
in the velocity of the surface acoustic wave propagating through the
portion of the system and (2) increase of the amplitude of the acous-
tic wave caused by returning of the acoustic wave from the disconti-
nuity located within the system are important for contrast factor.

1. Reflectance Function

Contrast in an image formed by a SAM for the simplest structure of
the nanoscaled film system is mathematically expressed as V (z) as
follows (see Fig. 9):

v(z) = ei2k0
[
z+ f

(
1+c̄2)]

V (z). (33)

Omitting ei2k0
[
z+ f

(
1+c̄2)]

, we can express the V (z) curve as
follows:47

z 
R 

zl f 

r 

at

Transducer 
Plane 

Back Focal 
Plane 

Front Focal 
Plane 

Specimen Surface 
Plane 

u1
+(r)

Figure 9. An acoustic lens for expressing the V (z) curve with an angular-spectrum
approach to a nanoscaled thin film system. at is the radius of the transducer, zl
is the distance from the transducer to the back focal plane, R is the radius of the
aperture of the lens, f is the focal distance of the lens, and u+1 is the acoustic field
at the back focal plane.
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V (z) =
∫ ∞

0

[
u+1 (r)

]2
[P (r)]2 R

(
r

f

)
e
−ik0z

(
r
f

)2

r dr , (34)

where u+1 (r) is the an acoustic field at the back focal plane, R
(

r
f

)

is the reflectance function, e
−ik0z

(
r
f

)2

is the lens defocusing factor,
and P (r) is the pupil function and is expressed as follows:

P (r) =
{

1 r ≤ R
0 r > R

(35)

Note that u+1 (r) may be used as a Gaussian function determined by
the size of the transducer for the calculation.49

From (34), the contrast depends on the reflection reflectance
function of a specimen. The reflectance function is determined by
the structure of the specimen. Now, we need to assume two cases,
i.e., the system has a good adhesive condition at the interface be-
tween the film and the substrate (case I), and the system has a bad
adhesive condition (i.e., delamination) at the interface (case II).

2. Reflectance Function for Layered Media

Case I
Referring to Fig. 10a, the relations among a particle velocity, a

particle displacement, and a stress are as follows:

vx = ∂#

∂x
− ∂�

∂z
(36)

vz = ∂#

∂z
− ∂�

∂x
(37)

ux = 1

−iω
· vx (38)

uz = 1

−iω
· vz (39)

zx = λ ·
(
∂ux

∂x
+ ∂uz

∂z

)
+ 2μ · ∂uz

∂z
(40)

zz = μ ·
(
∂ux

∂z
+ ∂uz

∂x

)
(41)
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b
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−Φ3
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+Ψ1
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+Ψ2

−Ψ2
+Φ2

+Φ2

Figure 10. Acoustic wave propagating within the nanoscaled thin film sys-
tem. (a) The system has good adhesion at the interface. (b) The system has
poor adhesion, such as delamination.

where ω is an angular frequency, d is a thickness of the nanoscaled
thin film, Φ is a potential of a longitudinal wave, Ψ is a potential of
a shear wave, ux is a particle displacement (i.e., X -axis component),
uz is a particle displacement (i.e., Z -axis component), vx is a parti-
cle velocity (i.e., X -axis component), vz is a particle velocity (i.e.,
Z -axis component), zx is a stress (i.e., X -axis component), zz is a
stress (i.e., Z -axis component), and λ and μ are Lamé’s constant.

The potential of a longitudinal wave in water is expressed as
follows:

Φ3 =
(
Φ+

3 eiα3z +Φ3 − e−iα3z
)

ei(σ x−ωt). (42)

The potentials of longitudinal and shear waves in the thin film are
expressed as follows:

Φ2 =
(
Φ+

2 eiα2(z−d) +Φ−
2 e−iα2(z−d)

)
ei(σ x−ωt), (43)

Ψ2 =
(
Ψ+

2 eiβ2(z−d) + Ψ−
2 e−iβ2(z−d)

)
ei(σ x−ωt). (44)
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The potentials of longitudinal and shear waves in the substrate are
expressed as follows:

Φ1 = Φ+
1 eiα1(z−d)ei(σ x−ωt), (45)

Ψ1 = Ψ+
1 eiβ1(z−d)ei(σ x−ωt). (46)

where k is the wave number of the longitudinal wave, κ is the wave
number of the shear wave, α is the longitudinal wave propagation
vector (i.e., Z -axis component), β is the shear wave propagation vec-
tor (i.e., Z -axis component).

In this case, we can have the following equations:

α2 + σ 2 = k2 (47)

β2 + σ 2 = κ2 (48)

The boundary conditions are (1) when z = 0, Z -axis components of
the particle velocities are equal, (2) Z -axis components of stresses
applied to the Z plane are equal, and (3) X -axis components of
stresses applied to the Z plane are equal, and their values are zero.
Then we have the following equations:

vz
3

∣∣z=0 = vz
2

∣∣ z=0 (49)

zz
3

∣∣z=0 = zz
2

∣∣ z=0 (50)

zx
3

∣∣z=0 = zx
2

∣∣ z=0 = 0 (51)

vz
2

∣∣z=d = vz
1

∣∣ z=d (52)

vx
2

∣∣z=d = vx
1

∣∣ z=d (53)

zz
2

∣∣z=d = zz
1

∣∣ z=d (54)

zx
2

∣∣z=d = zx
1

∣∣ z=d (55)

Solving the above equations, we obtain the reflectance function (i.e.,
R1 = #−

3 / #+
3 ) as follows:

R1 =
(d31d43 − d33d41)+ λ3k2

3
α3ω

(d21d43 − d23d41)

(d31d43 − d33d41)− λ3k2
3

α3ω
(d21d43 − d23d41)

, (56)
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where

d21 = C21 + C22 (57)

d23 = C23 + C24 (58)

d31 = C31 + C32 (59)

d33 = C33 + C34 (60)

d41 = C41 + C42 (61)

d43 = C43 + C44 (62)

Note that

C = A2 (−d)

⎡

⎢⎢⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 μ1
μ2

⎤

⎥⎥⎥
⎦

P1 (0) =

⎡

⎢⎢⎢
⎣

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

⎤

⎥⎥⎥
⎦
,

(63)
where

A2 (−d) = P2 (−d) P−1
2 (0) , (64)

Pn:n=1,2,3 (x)

=

⎡

⎢⎢⎢
⎣

iσ cos (αx) −σ sin (αx) −iβ cos (βx) β sin (βx)
−σ sin (αx) iσ cos (αx) −σ sin (βx) iσ cos (βx)

−i
(
λk2+2μα2)

ω
cos (αx) λk2+2μα2

ω
sin (αx) −i2μαβ

ω
cos (βx) 2μαβ

ω
sin (βx)

αω
ω

sin (αx) −iασ
ω

cos (αx) σ 2+β2

2ω sin (βx)
−i
(
σ 2+β2)

2ω cos (βx)

⎤

⎥⎥⎥
⎦
.

(65)

Case II
In case II, only the boundary conditions are different (see

Fig. 10b):

vz
3

∣∣z=0 = vz
2

∣∣ z=0 (66)

zz
3

∣∣z=0 = zz
2

∣∣ z=0 (67)

zx
3

∣∣z=0 = zx
2

∣∣ z=0 = 0 (68)

vz
2

∣∣z=d = vz
1

∣∣ z=d (69)
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zz
2

∣
∣z=d = zz

1

∣
∣ z=d (70)

zx
2

∣∣z=d = zx
1

∣∣ z=d = 0 (71)

Therefore, similarly, we obtain the reflectance function as follows:

R2 =
m32 − λ1k2

1
α1ω

m33 + λ3k2
3

α3ω

(
m22 − λ1k2

1
α1ω

m23

)

m32 − λ1k2
1

α1ω
m33 − λ3k2

3
α3ω

(
m22 − λ1k2

1
α1ω

m23

) , (72)

where

m22 = a22 − a21a42

a41
(73)

m23 = a23 − a21a43

a41
(74)

m32 = a32 − a31a41

a41
(75)

m33 = a32 − a31a43

a41
(76)

Note that ai j are components of the matrix A2 (−d).
When a specimen is a multilayered nanoscaled thin film system

(see Fig. 11), this theory is easily extended as follows:

Φ (t) =
(
Φ+
(t)e

iα(t)[z−z(t)] +Φ−
(t)e

−iα(t)[z−z(t)]
)

ei (σ x − ωt) ,

(77)

ψ(t) =
(
Ψ+
(t)e

iβ(t)[z−z(t)] + Ψ−
(t)e

−iβ(t)[z−z(t)]
)

ei (σ x − ωt) ,

(78)

⎡

⎢⎢⎢⎢
⎣

vx
(t)

vz
(t)

zz
(t)

1
2μ(t)

zx
(t)

⎤

⎥⎥⎥⎥
⎦

z=z(t−1)

= A(t) [−d (t)]

⎡

⎢⎢⎢⎢
⎣

vx
(t)

vz
(t)

zz
(t)

1
2μ(t)

zx
(t)

⎤

⎥⎥⎥⎥
⎦

z=z(t)

, (79)

A(t) [−d (t)] = P(t) [−d (t)] P−1
(t) (0) , (80)
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Figure 11. A multilayered and nanoscaled thin film system.

⎡

⎢⎢⎢⎢
⎣

vx
(t)

vz
(t)

zz
(t)

1
2μ(t)

zx
(t)

⎤

⎥⎥⎥⎥
⎦

z=z(t−1)

= A(t) [−d (t)]

⎡

⎢⎢⎢⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 μ(2)
μ(1)

⎤

⎥⎥⎥⎥
⎦

A(2) [−d (2)]

· · ·

⎡

⎢⎢⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 μ(n)
μ(n−1)

⎤

⎥⎥⎥
⎥
⎦

A(n) [−d (n)]

⎡

⎢⎢⎢
⎢
⎣

vx
(n)

vz
(n)

zz
(n)

1
2μ(n)

zx
(n)

⎤

⎥⎥⎥
⎥
⎦

z=z(n)

. (81)

Then, we need to use the following matrix Atotal for the calculation:

Atotal = A(1) [−d (1)]

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 μ(2)

μ(1)

⎤

⎥⎥
⎦ A(2) [−d (2)] ×

· · · ×

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 μ(n)

μ(n−1)

⎤

⎥⎥
⎦ A(n) [−d (n)] . (82)
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3. Contrast Enhancement Caused by Discontinuities

When a specimen includes an elastic discontinuity, such as an edge,
a step, a crack, or a joint interface, an acoustic image of the elasti-
cally discontinuous and peripheral portions visualized by the SAM
shows unique contrast such as fringes or black stripes when the lens
is defocused toward the specimen. As a model shown in Fig. 12, this
type of contrast appears as an interference effect of surface acous-
tic waves incident on and reflected from elastic discontinuities.57–59

Since the thickness of the film is about 100 nm, the same effect may
not be remarkable at the operating frequency ranging from 0.6 to
1 GHz for the discontinuities. However, this technique is useful for
enhancing existence of surface microcracks that conventional micro-
scopes may not be able to visualize

With use of a ray tracing technique, the directions of acoustic
waves emitted from the lens onto the specimen having the disconti-
nuity (i.e., vertical crack as ξ ) through a coupling medium are shown
in Fig. 13.

The acoustic fields are expressed by u±i or U±
i (I = 0, 1, 2,

and 3), where u±i is the spatial distribution and U±
i is the fre-

quency distribution, where numbers 0, 1, 2, and 3 represent the
transducer plane, the back focal plane, the front focal plane, and
the surface of the specimen, respectively. The ± superscripts indi-
cate that the acoustic field travels in the direction from the acous-
tic lens to the specimen or from the specimen to the acoustic lens,

Figure 12. Mechanism of an extra surface acoustic wave generation
from a discontinuity such as a crack.
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Figure 13. Acoustic waves reflected from a discontinuity. (a) Acoustic
waves incident onto a material having a discontinuity; (b) acoustic waves
reflected from a material having a discontinuity.

respectively. Using the Fourier transformation, we can express the
relation between u±i and U±

i as follows:

U±
i

(
kx , ky

) = F
{
u±i (x, y)

}
, (83)

u±i (x, y) = F−1 {U±
i

(
kx , ky

)}
. (84)
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The pupil function of the lens is again defined as follows:

Pf (x, y) = circ (r) =
{

1 r < 1
0 r ≥ 1

, (85)

where r is the radius of the lens.
In this case, the pupil function may be divided into the following

two parts for analysis of its acoustic fields:60

Pf1(x, y; z, ξ ) =
{

1
(−xa ≤ x ≤ xq

)

0
(
xq ≤ x ≤ xa

) , (86)

Pf2(x, y; z, ξ ) =
{

1
(−xq ≤ x ≤ xa

)

0
(
xq ≤ x ≤ xa

) , (87)

where |xa | is the radius of the whole pupil function, and xq is ex-
pressed as follows:

xq = −ξ f

z
, (88)

where f is the focal length of the lens.
When the acoustic waves are reflected back from the specimen,

the pupil function must be considered within the region expressed as
−xa ≤ x ≤ xa in accordance with the directions of wave propaga-
tion shown in Fig. 13b. Using the angular spectrum approach,47 we
can express the intensity of the wave at the transducer of the acoustic
lens as follows:

V (ξ, z) = V1(ξ, z)+ V2(ξ, z), (89)

where z < 0, V1(ξ, z) is the intensity relating to the acoustic wave
incident on medium 1 passing through Pf1, and V2(ξ, z) is the in-
tensity relating to the acoustic wave incident on medium 2 passing
through Pf 2. It is needless to say that medium 1 and medium 2 can
be the same materials.

V1(ξ, z) and V2(ξ, z) are expressed as follows:

V1(ξ, z) =
∫∫ ∞

−∞
u+1 (−x,−y)u+1 (x, y)Pf1(−x,−y; z, ξ )Pb(x, y)

×R1

(
x

f
,

y

f

)
exp

⎛

⎝i2kz

√
1 − (x2 + y2

)

f 2

⎞

⎠ dx dy,

(90)
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V2(ξ, z) =
∫∫ ∞

−∞
u+1 (−x,−y)u+1 (x, y) Pf1 (−x,−y; z, ξ) Pb (x, y)

×R2

(
x

f
,

y

f

)
×exp

⎛

⎝i2kz

√
1 − (x2 + y2

)

f 2

⎞

⎠dx dy,

(91)

where k is the wave number in the coupling medium, and R1 and
R2 are the reflectance functions of medium 1 and medium 2, respec-
tively. Pb is the pupil function of the acoustic lens for the acoustic
wave reflected from the specimen and is expressed as follows:

Pb (x, y; z, ξ ) =
{

1
(
x2 + y2 ≤ x2

a

)

0 otherwise
. (92)

Considering the excited surface acoustic wave at the jointed inter-
face, we can express a new acoustic field of the plane as follows:

û−3 (x, y) = u−3 (x, y)+ ρu−3R (2ξ − x, y) , (93)

where u−3R is an acoustic field of the surface acoustic wave excited
at the jointed interface and ρ is the reflectivity of surface acoustic
wave at the jointed interface. ρ may present the characteristic of the
discontinuity. Then, (93) is rewritten by (84) as follows:

Û−
3

(
kx , ky

) = U−
3

(
kx , ky

)+ρ exp (−i2kxξ)U−
3R

(−kx , ky
)
. (94)

The relation between U+
3 and U−

3 is expressed as follows:

U−
3

(
kx , ky

) = R
(
kx , ky

)
U+

3

(
kx , ky

)
. (95)

The relation between u+3R and u−3R is expressed as follows:

U−
3R

(
kx , ky

) = RR
(
kx , ky

)
U+

3

(
kx , ky

)
, (96)

where RR is a reflectance function for the surface acoustic wave
excited on the discontinuity.61, 62
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Using (14) and (15), (13) is rewritten as follows:

Û−
3

(
kx , ky

) = R
(
kx , ky

)
U+

3

(
kx , ky

)

+ ρ exp (−i2kxξ)RR
(−kx , ky

)
U+

3

(−kx , ky
)

(97)

The field propagations from 0 to 3 and 3 to 0 have been formulated
in the V (z) analysis by Atalar.47 Using (95) instead of the condition
of surface reflection U−

3 = RU+
3 , we can express (89) as follows:

V (ξ, z)

=
∫∫ ∞

−∞

⎡

⎢
⎢⎢
⎣

Pf1 (−x,−y; z, ξ )R1

(
x
f ,

y
f

)

+ρ exp
[
−i2kξ

(
x
f

)]
Pf1 (−x,−y)

×RR1

(
− x

f ,
y
f

)

⎤

⎥
⎥⎥
⎦

u+1 (−x,−y)

×u+1 (x, y) Pb (x, y) exp

(
−ikz

(
x2 + y2

)

f 2

)

dxdy

+
∫∫ ∞

−∞

⎡

⎢⎢⎢
⎣

Pf2 (−x,−y; z, ξ )R2

(
x
f ,

y
f

)

+ρ exp
[
−i2kξ

(
x
f

)]
Pf2 (−x,−y)

×RR2

(
− x

f ,
y
f

)

⎤

⎥⎥⎥
⎦

u+1 (−x,−y)

× u+1 (x, y) Pb (x, y) exp

(
−ikz

(
x2 + y2

)

f 2

)

dx dy. (98)

4. Computer Simulation

Based on (56) and (72), we have completed the computer simulation
(see Figs. 14, 15). The simulation is implemented as the following
conditions such as parameters of the acoustic lens and the specimen
(see Tables 3,4).

Figure 14 shows the sensitivities of the V (z) curves in accor-
dance with the acoustic lenses, operating frequencies at 1, 0.8, and
0.6 GHz, respectively, for the nanoscaled thin film system, wherein
the film material is copper, the thickness of the film is 120 nm, and
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Figure 14. V (z) curves calculated in accordance with the acoustic lenses, op-
erating at frequencies of 1, 0.8, and 0.6 GHz, respectively, for the nanoscaled
thin film system, wherein the film material is copper, the thickness of the film
is 120 nm, and the substrate is silica glass. The V (z) curves illustrated with
the solid lines are for the system and those illustrated with the broken lines
are for the silica glass.
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Figure 15. The V (z) curves in accordance with acoustic lenses op-
erating at frequencies of 1, 0.8, and 0.6 GHz, respectively, for the
nanoscaled thin film system having the delamination (i.e., defective
system) at the interface between the film and the silica glass substrate,
wherein the film material is copper, and the thickness of the film is
120 nm. The V (z) curves illustrated with solid lines are for the sys-
tem having no delamination at the interface (i.e., normal system) and
those illustrated with broken lines are for the defective system.



Acoustic Microscopy Applied to Nanostructured Thin Film Systems 443

Table 3.
Parameters of acoustic lenses used for the computer

simulation.

Frequency 1.0 GHz
Buffer rod Sapphire
Radius of the transducer 216.5 μm
Distance from the transducer to the back focal plane 5,033 μm
Focal distance 144.38 μm
Aperture angle 120◦
Frequency 0.8 GHz
Buffer rod Sapphire
Radius of the transducer 216.5 μm
Distance from the transducer to the back focal plane 5,033 μm
Focal distance 144.38 μm
Aperture angle 120◦
Frequency 0.6 GHz
Buffer rod Sapphire
Radius of the transducer 361.00 μm
Distance from the transducer to the back focal plane 7,690.00 μm
Focal distance 288.76 μm
Aperture angle 120◦

Table 4.
Parameters of the specimen
(film) used for the computer

simulation.

Material, copper
Thickness 120 nm

Substrate, silica glass
Type of defect Delamination
Thickness 1.0 nm

the substrate is silica glass. The V (z) curves illustrated with the solid
lines are for the system and the broken lines are for the silica glass.
As can be appreciated, those acoustic lenses can visualize a flaw
when the lenses are defocused within a few micrometers from the
surface.

Figure 15 shows the sensitivities of the V (z) curves in ac-
cordance with acoustic lenses operating frequencies at 1.0, 0.8,
and 0.6 GHz, respectively, for the system having the delamination
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(i.e., defective system) at the interface between the film and the sub-
strate. The V (z) curves illustrated with solid lines are for the sys-
tem having no delamination at the interface (i.e., normal system)
and the broken lines are for the defective system. The results of
the simulation inform us that the delaminated portion of the sys-
tem forms the acoustic image with high intensity compared with a
portion having good adhesion.

5. Experimental Result

Figure 16 shows the optical image of the nanoscaled thin film sys-
tem, wherein the film material is copper, the thickness of the film is
120 nm, and the substrate is silica glass, and wherein the image is
formed with an optical microscope (Olympus, model BH2) with ×
50 objective lens. Portions of the system where the films have come
off (i.e., dark areas) are observed. Cracks are observed at the upper-
left corner.

Figure 17 shows the acoustic images of the system. Since the
film is so thin, the details of the subsurface of the system, such as de-
laminated portions and poor adhesive portions, in addition to those

50µm

Figure 16. Optical image. A × 50 objective lens is used to form the image.
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Figure 17. Acoustical image. (a) the acoustic lens is focused at the surface
(denoted as Z = 0 μm); (b) the acoustic lens is mechanically defocused by
3 μm toward the specimen (denoted as Z = −3 μm). The acoustic lens is
operated at a frequency of 1 GHz.

of the surface, such as cracks and the elevated portion of the film,
are visualized when the acoustic lens is focused at the surface (see
Fig. 17a). The cracks are clearly observed when the acoustic lens is
defocused toward the specimen. This means that extra surface acous-
tic waves are generated from the cracks and enhanced the existence
of the cracks in the acoustic image (see Fig. 17b).
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Figure 17. (continued)

Figures 18, 19, and 20 show flaws of the systems, wherein the
film materials are nickel, cobalt, and nickel–cobalt, and wherein the
thickness of the film is 120 nm, and the substrate is silica glass. An
acoustic lens operating at 600 MHz is used to visualize the flaws.

The experimental results show that the SAM with an operating
frequency ranging from 0.6 to 1.0 GHz may be able to detect the
flaws of the system.
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Z = 0µm Z = –3.5µm

Z = –5.5µm

50µm

a b

c

50µm

50µm

Figure 18. Nickel film; frequency 600 MHz; scanning width X = 0.25 mm.

Z = –4µm

Z = –8.5µmc

a bZ = 0µm

50µm 50µm

50µm

Figure 19. Cobalt specimen; frequency 600 MHz; scanning width
X = 0.25 mm.
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Z = –3.5µmZ = 0µma b

c Z = –5.5µm

50µm 50µm

50µm

Figure 20. Nickel–cobalt specimen; frequency 600 MHz; scanning width X =
0.25 mm.

VI. CONCLUSION

In this article, (1) the imaging principles, including the description
of the acoustic lens, (2) resolution, and (3) the contrast mechanism
through V (z) curve analyses of layered media for the SAM were de-
scribed. Through the analyses, contrast is a key issue of the imaging
factor, not resolution. Computer simulations were implemented to
estimate the sensitivity of detection for the flaws (i.e., delamination)
of the nanoscaled thin film system. The simulation results show that
the SAM is applicable to the system. Finally, experiments were im-
plemented to confirm that the SAM operating frequencies ranging
from 0.6 to 1.0 GHz can be applicable to visualize the flaws of the
system.
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Current Distribution in Electrochemical
Cells: Analytical and Numerical Modeling

Uziel Landau
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I. INTRODUCTION AND OVERVIEW

The topic of current distribution modeling is central to the analysis
of electrochemical systems and has been addressed in textbooks,1

reviews (e.g., Refs. [2–4]) and numerous journal publications. New-
man’s textbook1 provides a meticulous and comprehensive treatment
of the subject. Prentice and Tobias2 present a review of the early (up
to about 1980) publications in the area. Dukovic’s more recent re-
view3 is very comprehensive, providing critical analysis of both the
electrochemical and the numerical aspects of the topic. A recent re-
view by Schlesinger4 focuses primarily on the numerical techniques.
The present monograph introduces the fundamental processes and
equations underlying the modeling of the current distribution, and
critically analyzes common assumptions and approximations. Focus
is placed on discussing scaling parameters for the characterization
of the current distribution. Commonly used algorithms for numeri-
cal determination of the current distribution are compared and a few
numerical implementations are discussed. Lastly, the modeling of

M. Schlesinger (ed.), Modelling and Numerical Simulations II,
Modern Aspects of Electrochemistry 44, DOI 10.1007/978-0-387-49586-6 10,
c© Springer Science+Business Media LLC 2009
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the current distribution in some special configurations and applica-
tions is introduced, emphasizing recent publications.

II. SIGNIFICANCE OF MODELING THE CURRENT
DISTRIBUTION

The current distribution is among the most significant parameters
characterizing the operation of the electrochemical cell. The current
density on the electrodes is directly proportional to the reaction rate
and its distribution critically affects the electrochemical process. In
electroplating, the deposit thickness distribution, and properties such
as the deposit surface texture and its morphology are directly linked
to the current distribution. When multiple simultaneous electrode
reactions are present, such as in alloy deposition or in hydrogen co-
evolution, the alloy composition in the former case and the current
efficiency in the latter are controlled by the overpotential distribu-
tion, which, as discussed below, is directly related to the current
distribution. Electrolytic processes which do not involve deposition
are also strongly affected by the current distribution. Examples in-
clude optimized utilization of catalytic electrodes and the need to
prevent the current density from surging on electrode sections, on
separators, and on membranes. The power required for operating an
electrochemical cell, and particularly the ohmic loss are also depen-
dent on the current distribution. Lastly, the correct interpretation of
experimental data hinges on understanding the range of current den-
sities to which the tested electrode has been subjected.

The current distribution can be analyzed on different scales. The
macroscopic current distribution, where the distribution is resolved
on length scale on the order of centimeters, is important in char-
acterizing the deposit thickness uniformity on a plated part, or in
selective plating, where a nonuniform current distribution is sought.
The microscale distribution, on the other hand, where the current
density is resolved on submillimeter length scales, affects primar-
ily parameters such as the deposit texture and roughness, nucleation,
and deposition within micron-scale and nanoscale features.

For many applications, numerical simulation capability which
provides the current distribution in a given configuration and plat-
ing conditions, or for a given set of such parameters, is sufficient.
However, for predictive process design and for scale-up of cells and
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processes (and scale-down of industrial processes for laboratory test-
ing) analytical models that elucidate the dependence of the current
distribution on the process parameters are more beneficial.

III. EXPERIMENTAL DETERMINATION
OF THE CURRENT DISTRIBUTION

Electroplating processes, where a solid deposit is formed and its
thickness can be directly measured, provide a relatively convenient
means for determination of the current distribution. The deposit
thickness can be measured by a number of commercially available
devices, based on, e.g., X-ray fluorescence, beta backscatter, mag-
netic properties, or controlled dissolution. A direct probe based on
the induced field associated with the current flow has recently been
introduced. Optical and electron microscopy of cross-sectioned de-
posits provide a common means for measuring the deposit thickness.
Once the deposit thickness, d, has been measured, it can be related
to the current density, i , through Faraday’s law:

d = Mt

Fnρ
εFi. (1)

Here, t is the plating time, F is Faraday’s constant, M , ρ, and n are
the plated metal atomic weight, its density, and the number of elec-
trons transferred in the deposition reaction, respectively, and εF is
the faradaic efficiency, accounting for side (“parasitic”) reactions.
Metals noble to hydrogen are typically plated from aqueous solu-
tions at εF ∼ 1 corresponding to close to 100% faradaic efficiency
(unless driven to the limiting current). When the faradaic efficiency
is less than 100%, (1) can be used to determine the fradaic current
efficiency once the current density has been evaluated.

For the case of redox or gas-evolving reactions, where no solid
deposit is formed, the current distribution on the electrodes can be
determined using segmented electrodes, or insulated probe elec-
trodes. Here, the electrode on which the current distribution is
sought is sectioned into multiple, electrically isolated segments, to
which the current may be individually fed and measured. If multi-
ple, narrow, segments are provided, the average segmental current
densities, obtained by dividing the segmental currents by the corre-
sponding segmental areas, provide an approximation to the current
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distribution. For the segmented electrode to resemble a continuous
electrode, all segments must be coplanar and essentially equipoten-
tial. To ensure that the potential of all segments is within a few
millivolts, multichannel potentiostats must be used. A less costly
approach is to connect each segment to the common bus via a very
low (typically milliohm) shunt resistor, which enables the measure-
ment of the current, yet introduces insignificant voltage variation.

IV. ANALYTICAL DERIVATION OF THE CURRENT
DISTRIBUTION

This topic is covered in significant detail in Newman’s textbook.1

A summary, relevant to the ensuing discussion, is provided here.

1. The Current Density

The current density is directly related to the ionic flux, N j , in the
electrochemical cell. The flux is typically described in terms of three
major components: diffusion of ions across a concentration gradient,
migration of charged ions down the electric field, and transport of
ions due to bulk electrolyte convection. Consequently, the flux of an
ionic species j is given by

N j = −D j∇c j − u j z j Fc j∇Φ + c jv. (2)

The current density is determined by assigning the charge Fz j to the
flux of each species j and summing over all ionic species:

i = F
∑

j

z j N j (3)

Substituting (2) into (3),

i = −F
∑

j

z j D j∇c j − F2

⎛

⎝
∑

j

u j z
2
j c j

⎞

⎠∇Φ+ F

⎛

⎝
∑

j

z j cJ

⎞

⎠ v.

(4)
Electroneutrality, expressed as

∑

j

z j c j = 0 (5)
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is present throughout the cell (except for the vanishingly thin double
layer) and renders the last term on the right of (4) zero, providing for
the total current density

i = −F
∑

j

z j D j∇c j − F2

⎛

⎝
∑

j

u j z
2
j c j

⎞

⎠∇Φ. (6)

We also recognize1 that the electrolyte conductivity, κ , is given by

κ ≡ F2

⎛

⎝
∑

j

u j z
2
j c j

⎞

⎠ (7)

Hence, we can rewrite (6) as

i = −F
∑

j

z j D j∇c j − κ∇Φ. (8)

Equation (8) indicates that the current density is determined by both
the potential and the concentration gradients. The explicit velocity
term is absent from (8) (owing to electroneutrality); however, con-
vection still affects the current density by controlling the concentra-
tion field. It should also be noted that the electrode kinetics which
do not appear explicitly in (8) establish the boundary conditions re-
quired for its solution. As subsequently shown, the electrode kinetics
may influence quite significantly the current distribution.

While representing the current density as a function of the
potential and concentration distributions, (8) does not provide the
necessary relationships required for solving the distribution. This is
derived from the constitutive equations described below.

2. Material Balance

The governing equations for a cell with diffusion, migration, and
convection are derived by performing a material balance on a volume
element, for each of the ionic species:

∂c j

∂t
= −∇ · N j + R j . (9)
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R j is the rate of species j generation due to a homogeneous reac-
tion within the volume element. Such reactions are uncommon in
electrochemical cells (but may be encountered, e.g., when a com-
plex dissociates, releasing the ionic species j), and therefore we set
identically R j = 0.

When the flux expression (2) is substituted into (9), the gen-
eral equation (“Nernst–Planck”) for the concentration and potential
fields is obtained:

∂c j

∂t
+ v · ∇c j = F∇ · (z j u j c j∇Φ)+ ∇ · (D j∇c j ). (10)

For a multicomponent electrolyte with j ionic species, (10) repre-
sents a system of j equations, one for each ionic species. Since the
potential is present in each equation, there are a total of j + 2 un-
knowns ( j species concentrations, c j , the electrostatic potential, Φ,
and the fluid velocity, v). The extra equations required for solving
the system are the electroneutrality condition (5) and the momentum
equation, which describes the fluid velocity at all locations within
the cell. The momentum equation is typically represented in terms
of the “Navier–Stokes” approximation:5

Vj
∂vi

∂x j
= − 1

ρ

∂P

ρ∂xi
+ (ν + νT)

∂2vi

∂x2
j

+ ∂νT

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (11)

The Navier–Stokes equation is written here for a Cartesian two-
dimensional coordinate system where i and j represent the two axes.
Accordingly, vi and v j are the velocity components in the direc-
tions i and j . P is the hydrostatic pressure, and ν and νT are the
molecular and the turbulent kinematic viscosity, respectively.5 For
systems involving forced convection, the fluid flow equations are
typically decoupled from the electrochemical process, and can be
solved separately.

The set of j + 2 equations ( j equations (10) plus electroneu-
trality equation (5) plus the momentum equation (11)) fully describe
the current, potential, and concentration distributions in the cell as a
function of time. This set of equations must be solved subject to the
electrochemical boundary conditions.
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3. Boundary Conditions

Two types of boundaries are present in electrochemical cells: (i) in-
sulating boundaries and (ii) electrodes:

(i) Insulator: Here, no current may flow into the boundary and,
accordingly, the current density normal to the insulating
boundary is specified as zero:

in = 0. (12)

(ii) Electrodes: On an electrode, an expression for the reaction
kinetics that relates the potential to the normal current must
be provided:

in|e = f (c j , Φ)|e. (13)

Electrode Kinetics and Overpotentials

Typically, the current density is related to the overpotential, η, which
is the driving force for the electrochemical reaction. The overall
overpotential at the electrode is given by

η = V − E −Φ, (14)

where V is the electrode potential. E is the thermodynamic equilib-
rium potential corresponding to the condition of no current flow, and
Φ is the electrostatic potential within the solution next the electrode,
measured at the outer edge of the mass transport (or concentration)
boundary layer.

The total overpotential at the electrode can be further resolved
into two overpotential components, ηs and ηc, The first, ηs, is the
surface (or “activation”) overpotential, which relates directly to the
kinetics of the electrode processes. The second overpotential compo-
nent, ηc, is the concentration overpotential, accounting for the volt-
age dissipation associated with transport limitations.

The surface overpotential, ηs, is typically related to the current
density through the Butler–Volmer equation:6

in = i0,e

[
exp

(
αA F

RT
ηs

)
− exp

(
−αC F

RT
ηs

)]
. (15)
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Equation (15) incorporates three empirically measured parameters:
the exchange current density, i0 (given here in terms of its value
on the electrode, i0,e), and the anodic and cathodic transfer coeffi-
cients, αA and αC, respectively. These parameters are obtained from
polarization measurements.7 Often, but not always, αA + αC = n.
It should be noted that while the Butler–Volmer equation correlates
well many electrode reactions, there are numerous others, particu-
larly when carried in the presence of plating additives, which do not
follow it.

The Butler–Volmer equation in the form presented by (15) re-
lates to pure electrode kinetics and does not consider transport lim-
itations, which cause the concentration at the electrode, ce, to vary
from its bulk value, cb. This concentration variation affects mostly
two parameters: the exchange current density, i0, which is a function
of the concentration, and the overpotential, η, which now also in-
cludes the component associated with transport limitations, ηc. We
can write

η = ηs + ηc, (16)

where the concentration overpotential, ηc, is given by

ηc = RT

nF
ln

ce

cb
. (17)

It should be noted that the division of the total overpotential into
a “pure” kinetics component (ηs) and a mass transport component
(ηc) as presented by (16) is somewhat arbitrary and is used mainly
to characterize the two types of dissipative processes. Both terms
are strongly coupled and it is very difficult to directly measure
either component separately. While chemical engineers often dis-
cuss the two overpotential components separately,1 chemists (e.g.,
Refs. [6, 7]) tend to combine both terms together and characterize
the electrochemical system in terms of the total overpotential, η.

To account for the concentration variations which are always
present at electrodes in current-carrying cells, a correction must be
introduced into (15). Either of two approaches is typically taken.
The first more characteristic to engineering publications,1 presents
(15) as

i = i0,cb

(
Co

e

Co
b

)γ (CR
e

CR
b

)δ (
e
αA F
RT ηs − e−

αc F
RT ηs

)
. (18)
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Written here for the general first-order reaction,

O + nē ⇔ R. (19)

γ and δ are parameters adjusting the value of i0 from its bulk value
to its value at the electrode and are generally determined empiri-
cally. If the reduced species does not dissolve within the electrolyte
(as in most plating systems), the concentration ratio for the reduced
species involving δ is identically 1. Furthermore,1 for many divalent
ions, γ ∼ 1/2.

Chemists typically tend to account for the concentration varia-
tion at the electrode through a modified Butler–Volmer equation of
the form6, 7

i = i0,cb

[(
CR

e

CR
b

)

e
αA F
RT η −

(
Co

e

Co
b

)
e−

αC F
RT η

]

. (20)

It can be shown that the Tafel approximation of the cathodic
branches of the two forms of the modified Butler–Volmer equa-
tion, ((18) and (20)) are identical when

γ = 1 − αC

n
. (21)

4. General Solution Procedure

Once the fluid-flow equations (11) have been solved and the veloc-
ity components have been specified within the cell, the system of
j transport equations (10), in conjunction with the electroneutral-
ity condition (5), is solved. The boundary condition at insulating
boundaries is specified by substituting (8), representing the current
approaching the boundary from the electrolyte, into (12), stating that
the current on the insulating boundary is zero:

in|insulator = −κ∇Φ − F
∑

z j D j∇c j = 0. (22)

On electrodes, we equate the current approaching the electrode from
the solution side (8) to the current entering the electrode, subject to
the reaction kinetics equation:

in|electrode = −κ∇Φ − F
∑

z j D j∇c j = f (c j , Φ)|e. (23)
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The function f (c j , Φ)|e appearing on the right-hand side of (23)
corresponds to the kinetics expressions given by either (18) or (20).
We recall that when (18) is applied, the overpotential is given by

ηs = V − E −Φ − ηc. (24)

When applying the kinetics expression (20), we use the total overpo-
tential as given by (14).

Clearly, the procedure outlined above is complex. It requires so-
lution of the flow field, in conjunction with the determination of the
distribution of the electrostatic potential and of all species concen-
trations within the cell. In addition to the mathematical complexity,
the transport properties (diffusivities, mobility) for all species must
be given. This is further complicated by the fact that most practi-
cal electrolytes are concentrated and hence transport interactions be-
tween the species must be accounted for, requiring the application of
the more complex concentrated electrolyte theory.1 Additionally, the
electrode kinetics parameters must be known. However, as discussed
below, simplifications are often possible, since most operating cells
are typically controlled by either the electric potential distribution or
by the concentration distribution (in conjunction with the electrode
kinetics), and only a few systems are influenced about equally by
both.

5. Thin Boundary Layer Approximation

A common assumption in engineering modeling of electrochemical
cells is the thin boundary layer approximation.8 Accordingly, con-
centration variations are assumed to be limited to a boundary layer
along the electrodes, which is considered to be much thinner than
the well-mixed bulk electrolyte region. This decoupling, depicted
schematically in Fig. 1, eliminates all terms involving concentration
gradients in (10) when the latter is applied to the bulk region. The
concentration effects are now all lumped within the thin boundary
layer and incorporated in the boundary conditions.

Following this procedure, and discarding all terms involving
concentration gradients, the Nernst–Planck equation (10) reduces in
the bulk to the Laplace equation for the potential:

∇2Φ = 0. (25)
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– +

‘well mixed bulk’

Cb

∇2Φ = 0

δ

Figure 1. An electrochemical cell, depicting the
thin boundary layer approximation. The bulk of
the cell is well mixed and all concentration varia-
tions are assigned to a thin boundary layer next
to the electrodes. Typically, the boundary layer
thickness, δ, is far thinner with respect to the bulk
than illustrated here. In the region of uniform con-
centration, the Laplace equation for the potential
holds.

In deriving (25), we also set the transient concentration term on the
left in (10) to zero, thus considering only steady-state (or pseudo-
steady-state) processes. One may still apply the approximation of the
thin boundary layer, as stated by (25), to transient problems, allowing
the concentration within the thin boundary layer to vary with time.
Detailed discussion of this class of problems is, however, outside the
scope of this review and can be found in publications focusing on
transients (e.g., Refs. [9–12]).

Equation (25) is solved for the bulk region by applying, in the
absence of concentration gradient in the bulk, simplified boundary
conditions.

On insulators we have a simplified form of (22):

in|insulator = −κ∇Φ|ins = 0 → ∇Φ|ins = 0. (26)

On electrodes we apply (23), recognizing that now, in the absence of
concentration gradients in the bulk, the current on the solution side
is driven only by electric migration:

in|electorde = −κ∇Φ = f (c j , Φ)|e. (27)
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As before, the right-hand side on (27) is given by either (18) or (20).
Alternatively, we can specify a potential balance at the electrode by
applying (lumped across the thin boundary layer) either (14) or (24),
rearranged in the form of (28):

Φ = V − E − η or Φ = V − E − ηs − ηc. (28)

Since the solution on the electrolyte side involves only the potential
Φ, as given by the Laplace equation (25), matching the potential
Φ in the solution, at the outer edge of the diffusion layer with the
corresponding potential satisfying the electrochemical kinetics on
the electrode (28), is occasionally easier.

An important additional advantage of invoking the thin bound-
ary layer approximation is that the velocity field needs no longer to
be fully computed. The concentration variation next to the electrode,
required for the determination of the concentration overpotential
and for correcting the kinetics expression, can often be accounted
for with acceptable accuracy by determining just the thickness of
the concentration boundary layer, typically reported in terms of the
equivalent stagnant Nernst diffusion layer, δN, along the electrode.
The latter is often available from correlations,13 textbooks,14 exper-
imental measurements,15 or interpretation of computational fluid dy-
namics software output. Obviously, δN may vary with position along
the electrode.

V. COMMON APPROXIMATIONS FOR THE CURRENT
DISTRIBUTION

Even when applying the thin boundary layer approximation, the
equations required for solving the current and potential distributions
in the electrochemical cell yield a nonlinear system requiring itera-
tive solution. The reason is that the boundary conditions incorporate
the unknown term (the electrostatic potential or the current density).
While this presents no serious hurdle for computer-implemented
numerical solutions, analytical solutions of nonlinear systems are
difficult and generally require a linearization procedure. To analyti-
cally characterize features of the current distribution, some simpli-
fying approximations are frequently applied. These are summarized
in Table 1, and are discussed below.



Current Distribution in Electrochemical Cells 463

Table 1.

Common approximations for modeling the current distribution.

Approximation Prevailing
overpotential

Controlling equation Boundary conditions

Primary η� � ηs + ηc ∇2# = 0 # = V − E
Secondary η� ∼ ηs >> ηc ∇2# = 0 # = V − E − ηs
Mass transport ηc � η� + ηs

∂C
∂t + ν∇C = D∇2C ce � cb or cb ∼ 0

Tertiarya (no
approximation)

η� ∼ ηs ∼ ηc ∇2# = 0 # = V − E − ηs − ηc

aThe tertiary distribution represents the formal thin boundary layer solution with no
further approximation.

1. Primary Distribution: η� � ηs + ηc

Here we assume that the prevailing overpotential is associated with
the ohmic drop within the electrolyte,

η� ≡ �Φ = (ΦA −Φc)� ηs + ηc. (29)

This assumption is tantamount to stating that the electrode reactions
are perfectly reversible and kinetics and mass transport limitations
are both negligible. Since the ohmic overpotential is given by1

η� = i
l

κ
(30)

we may conclude that the primary distribution is likely to prevail in
cells with large interelectrode gap, l, and low conductivity. Since the
surface and mass transport overpotentials must be small (in com-
parison with the ohmic overpotential), it is further expected that a
distribution close to primary will prevail on highly catalytic elec-
trodes or kinetically reversible reactions, at high temperatures (e.g.,
in molten salts, where the kinetics are very fast) and in systems op-
erating far from the limiting current (i.e., with negligible mass trans-
port limitations).

Consequently, the Laplace equation (25) is solved subject to the
following boundary conditions:

Insulator:
∇# = 0 (31)
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Electrode:

V − E −Φ = 0 → Φ = V − E = constant. (32)

Equation (32) is derived from (28) by setting the surface and con-
centration overpotentials identically to zero (ηs + ηc = 0), since
their magnitude is insignificant compared with that of Φ. As a con-
sequence of this simplification, the potential in solution next to the
electrode, Φ differs from the electrode potential, V , only by a con-
stant (the equilibrium potential, E). This provides for a simpler and
more direct solution of the Laplace equation. The primary distri-
bution has some unique characteristics. While the magnitudes of the
average and the local current densities depend linearly on the applied
potential across the cell and on the conductivity, the current distribu-
tion depends only on the geometry. Perhaps the most notable charac-
teristic of the primary distribution is that it is typically nonuniform,
and at a certain cell location it may exhibit singularities. These are
points within the cell where the potential gradient, which, according
to (27) is proportional to the current density, will approach infinity.
Hence, while the potential within the cell must be bound between the
anode and cathode potentials (after subtraction of the equilibrium
potential), the primary current density can approach infinitely large
values at singularities. The singularities are located at intersections
of cell boundaries: (1) an electrode and an insulator intersecting at
an angle larger than 90◦ and (2) two electrodes intersecting at an
angle larger than 180◦. The physical interpretation of this behavior
is related to the fact that while the potential driving force is finite,
the local resistance becomes vanishingly small at the singularities,
driving the current density to infinitely large values, irrespective of
the counter electrode position, or the applied voltage.

Other “special” geometric configurations of interest are (1)
intersection of an electrode and an insulator forming an angle
smaller than 90◦ and (2) two intersecting electrodes forming an
angle smaller than 180◦. In these two latter cases, the local cur-
rent density tends to zero at the intersection point, indicating an
infinitely large local resistance. In all those cases, the magnitude
of the intersection angle affects only how sharply the current den-
sity approaches its limiting values, but not the nature of the limit
itself. Practical cell boundaries do not intersect at a mathematically
sharp point. Nonetheless, if the radius of curvature formed by the
intersecting boundaries is small, and the intersection involves the
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geometrical features described above, the current density will still
become either very large or vanishingly small at these points.

While clearly being an approximation, the primary current dis-
tribution represents the worst (least uniform) current distribution a
system may exhibit. The presence of kinetics limitations, as dis-
cussed below, will typically lead to more uniform distributions. It
should also be stated that when the system is subject to mass trans-
port control under stagnant diffusion (typical for microscale fea-
tures), the controlling equation, as discussed below, is the Laplace
equation for the concentration:

∇2c = 0 (33)

Equation (33), in complete analogy to (25) (the Laplace equation for
the potential), also follows the “primary distribution,” and exhibits
the same characteristics as described above.

Practical Implications Associated with the Characteristics
of the Primary Current Distribution

• Small nodules or roughness elements on electrodes typically
form a sharp tip with small radius of curvature, causing the
(primary) current density at the tip to become very high.
As a consequence, these sharp tips tend to propagate very
rapidly,39–42 restricted only by the kinetics limitations at the
tip. Consequently, electrodes with very reversible kinetics,
e.g., lithium, silver, lead, and zinc, tend to evolve needles and
dendritic growth quite readily, while less reversible metals,
e.g., nickel and iron, do not.

• Electrodes bounded by coplanar insulators (forming 180◦ in-
tersection) tend to exhibit high current densities close to the
edge (limited only by the kinetics); therefore, such cell fea-
tures should be avoided where possible. Slight embedment of
the electrode will provide a finite current at the edge, while
presenting only minimal resistance to flow (typically mini-
mized by secondary flow eddies).

• Nonuniformities in the primary distribution usually originate
with geometric “perturbations” and typically do not propa-
gate very far. In cylindrical or spherical fields, generated by,
e.g., an insulating bubble, or spherical or cylindrical elec-
trodes, the current distribution perturbation diminishes to a
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small fraction (few percent) of its maximal value once the
distance from the curved surface exceeds about three diam-
eters. As a consequence, to effectively shield a curved elec-
trode or an edge region, the shield must be placed very close
to the surface. By the same token, to selectively plate a small
feature using a small-diameter wire or a sharp tip electrode,
one must place the tip very close to the surface.

The primary distribution is not unique to electrochemical systems
and other physical systems exhibit the very same distribution. Text-
books available in these areas provide information that can be di-
rectly applied to electrochemical systems operating under conditions
approaching the primary distribution. Examples include heat trans-
fer by conduction,16 diffusion in solids,17 electrostatics,18 potential
(ideal) flow,19 and mathematical texts on the theory of complex vari-
ables and conformal mapping. A comprehensive discussion of the
primary current distribution in electrochemical systems is provided
by Newman.1

2. Secondary Distribution: η� + ηs � ηc

Here, both ohmic and kinetics irreversibilities are considered; how-
ever, mass transport limitations are assumed to be negligible. Since
significant mass transport effects are present only when operating
close to the limiting current, e.g., in very dilute solutions, the sec-
ondary distribution presents a valid approximation for most electro-
chemical systems. Here, the Laplace equation, (25), is solved subject
to the following boundary conditions:

Insulator:
∇Φ = 0 (31)

Electrode:
V − E −Φ = ηs. (34)

ηs and i are related by

i = i0

[
exp

(
αA F

RT
ηs

)
− exp

(
−αC F

RT
ηs

)]
. (15)

It is significantly more complicated to analytically solve the sec-
ondary distribution (than the primary distribution), since the pres-
ence of the kinetics overpotential renders the system nonlinear.
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Figure 2. Examples of numerical solutions for the cathodic current distribution on
a plate electrode immersed in a cell with the counter electrode at the bottom. Three
cases are compared: (a) (left column) completely reversible kinetics (primary distri-
bution); (b) (center) intermediate kinetics (Wa ∼ 0.2); (c) (right column) irreversible
kinetics (Wa ∼ 10). The top row provides a comparison of the current distribution
or the deposit profile on the cathode (cross-hatched region). The center row provides
the current distribution along the electrode (“stretched”). The bottom row provides
the corresponding potential distributions. It is evident that the current distribution
uniformity increases as the electrode kinetics become more passivated (Cell-Design
software simulations68).

Available analytical solutions include among many others the disk
electrode,20 Wagner’s solution of the current distribution at a cor-
ner,21 current distribution within a through hole22 and a blind via,
and within a thin electrolyte layer.23 Most of the analytical so-
lutions employ linearization about some average current density.
Computer-implemented numerical solutions of the secondary dis-
tribution (example provided in Fig. 2) are readily obtained and do
not require linearization. A few examples include modeling the
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current distribution in the wedge24 and Hull cells,25–27 the rotat-
ing Hull cell,28 inside a channel,29 in pattern plating of printed cir-
cuits,30, 31 inside a via,32 and in the characterization of anodization
applications.33

The secondary distribution incorporates the effects of the ohmic
resistance, which gives the primary distribution its nonuniform char-
acteristics, in combination with the surface resistance associated
with the limited reversibility of the electrode kinetics. The latter
(with the exception of special cases, involving, e.g., the use of unique
additives) leads to a uniform distribution. While it is difficult to de-
rive accurate analytical solutions for the secondary distribution, we
can characterize the degree of nonuniformity by evaluating the rel-
ative magnitude of the resistances associated with the surface and
ohmic dissipative processes.

Accordingly, the degree of uniformity of the secondary distribu-
tion can be characterized in terms of a dimensionless number, named
after Carl Wagner, representing the ratio of the surface to the ohmic
resistance:

Wa = R∗
s

R∗
�

. (35)

The resistances in (35) are specific resistances (per unit area,
� cm2), corresponding to the local slope of the polarization curve,
∂η/∂i .

The ohmic resistance, which is a constant, independent of the
current density, is given by

η� = IR = i
l

κ
→ R∗

� =
∣∣∣∣
∂η�

∂i

∣∣∣∣ =
l

κ
. (36)

The surface (activation) resistance depends on the current density in
a relatively complex manner, and therefore it is convenient to con-
sider the system in terms of two separate regimes: the Tafel (“high-
field”) and linear (low current density) approximations.6

In the Tafel regime, we consider the Butler–Volmer equa-
tion in terms of two subregions, one for high anodic polariza-
tion (ηS � αA F/RT), the second for high cathodic polarization
(−ηS � αC F/RT). It can be shown that these approximations are
valid when |i |avg � i0. The mathematical representations for the
anodic and cathodic Tafel regions are similar:
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ηs,T ≈ RT

αF
ln

i

i0
≡ a + b ln i, (37)

where b = RT/αF (2.3b is the “Tafel slope”), a is a constant, and
α = αA for anodic polarization and α = αC for the cathodic process.
We now can derive the surface resistance for the Tafel regime:

R∗
S,T =

∣∣∣
∣
∂ηs

∂i

∣∣∣
∣ =

RT

αF |i | . (38)

For the linear polarization regime (equivalent to low current den-
sity or micropolarization, |i |avg � i0), recognizing that here
|ηS| � (αA + αC)F/RT , we can linearize the Butler–Volmer
equation:

ηs,L ≈ RT

(αA + αC) F

i

i0
≡ b′i, (39)

where b′ is the linear polarization slope. The linear regime surface
resistance is

R∗
S,L =

∣∣∣∣
∂ηs

∂i

∣∣∣∣ =
RT

(αA + αC)Fi0
= RT

nFi0
= b′. (40)

Unlike the constant ohmic resistance, the surface (kinetics) resis-
tance decreases with increasing current density in the Tafel range,
but is a constant in the linear regime.

Substituting the resistances (36)–(40) into the Wa number ex-
pression (35), we get the following:

Tafel:

Wa = κb

li
and b ≡ RT

αF
. (41)

Linear:

Wa = κb′

l
and b′ ≡ RT

nFi0
. (42)

b (the Tafel polarization slope) and b′ (linear polarization slope) in-
corporate the kinetics parameters.

A large Wa number designates a large surface resistance and a
small ohmic resistance, leading to a uniform current distribution. By
the same token, a small Wa number is indicative of prevalent ohmic
overpotential, leading to a nonuniform distribution, approaching in
the limit a primary distribution. Since the Wa number characterizes
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the current distribution uniformity, a relevant question is how large
must the Wa number be to ensure a high degree of uniformity, and,
conversely, how low should it be to indicate nonuniformity. Inspect-
ing numerically derived distributions, we find that when Wa > 5,
the distribution is quite uniform, and when Wa < 0.2, most distri-
butions exhibit significant nonuniformity. This also becomes quite
evident by inspecting Newman’s classical analytical derivation20 of
the current distribution on a disk electrode under mixed surface and
ohmic control (“secondary distribution”). The current distribution is
given here in terms of a parameter J which is equivalent to 1/Wa.

An important issue is the clear identification of the characteris-
tic length, l, in the Wa number. In some configurations the correct
selection of l is intuitively evident, but in many others it is not. For
example, the selection of the characteristic length in the plating of
blind vias has been controversial, with some authors selecting the
via depth, L , as the characteristic length (e.g., Ref. [34]), while oth-
ers (e.g., Ref. [22]) indicate that the proper characteristic length for
this configuration is L2/r , where r is the via radius. Akolkar and
Landau,35 pointed out that the characteristic length can be unam-
biguously identified only through an analytical solution.

3. Mass Transport Controlled Distribution: ηc � η� + ηa

This approximation pertains to systems where the ohmic losses
within the electrolyte and the kinetic limitations on the electrode
are considered to be negligible as compared with mass transport
limitations. Instead of solving the Laplace equation (25) for the
potential, which is a common approximation to the more general
Nernst–Planck equation (10), we need to solve the latter (10) for the
case when the potential gradients are negligible as compared with
concentration gradients, i.e.,

∇c � ∇Φ. (43)

Subject to (43), (10) can be approximated by

∂c j

∂t
+ v · ∇c j = ∇ · (D j∇c j ). (44)

The boundary conditions are reformulated, recognizing that since the
electric field driven current becomes negligible, the current density
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given by (8) now takes the form

i |n = −F
∑

j

z j D j∇c j . (45)

On the cell boundaries we have the following:
Insulator:

i = 0 → ∇CR = 0. (46)

Electrode:

V − E = ηc = RT

nF
ln

RT

nF
ln
(

1 − i

iL

)
. (47)

In deriving (47), we combine (14), (16), and (17), recognizing that
ηs and Φ are negligible compared with ηc. We furthermore rec-
ognize that the concentration overpotential (in boundary condition
(47)) cannot be significant unless i approaches iL. For this to happen
we must have

ce � cb or ce ∼ 0. (48)

Inspecting (44) and its boundary conditions (46) and (48), we
recognize that it is identical to the convective diffusion equation
common in representing transport problems in nonelectrochemical
systems.5 Accordingly, invoking the mass transport control approx-
imation causes the problem to lose all its electrochemical charac-
teristics, transforming it to a transient diffusion problem. Obtaining
general analytical solutions to the transient convective diffusion
problem is complex since it requires solving the transient concen-
tration distribution in the cell in conjunction with the fluid flow.

A common simplification, which often does not detract from the
usefulness of the solution, is to consider only the steady-state form
of (44):

v · ∇c j = ∇ · (D j∇c j ). (49)

Analytical solutions of (49) have been presented for special config-
urations where the velocity profile is well established, e.g., the ro-
tating disk electrode or laminar flow in a channel.1 An important
simplification has been proposed by Levich,8 who recognized that
electrochemical systems are typically characterized by a concentra-
tion boundary layer that is much thinner than the corresponding ve-
locity boundary layer. Levich recognized that in such systems it is
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not necessary to solve the entire velocity field, and knowing the ve-
locity gradient at the electrode is sufficient for obtaining analytical
solutions. Newman presents a number of such cases.1

A different approximation that applies to systems undergo-
ing transient polarization can be invoked. Assuming a stagnant
solution (no velocity) within the region of varying concentration
where the approximation is applied (usually the boundary layer),
(44) simplifies to

∂cR

∂t
= DR∇2cR. (50)

The subscript R in (50) indicates that it is applied to the reactant ion.
Also, it is assumed that the reactant diffusivity is constant, indepen-
dent of the concentration. Equation (50) is known as Fick’s second
law. Its solution is particularly relevant to problems of transient (pe-
riodic) current and potential applications such as pulse and periodic
reverse waveforms when the time constant is in the range of the con-
centration profile relaxation time, i.e., about 0.01 s or longer.9–12

Lastly, we can consider systems under steady-state (or pseudo-
steady-state) mass transport control with no flow (stagnant). Here,
within the region of varying concentrations, where the approxima-
tion is applied (usually the boundary layer), (44) simplifies to

∇2cR = 0. (51)

Equation (51) is the Laplace equation applied to the reactant con-
centration. It is identical in form to the primary distribution and
the characteristics of the primary distribution discussed above ap-
ply here as well. The approximation stated by (51) pertains partic-
ularly to small features such as plating within narrow trenches or
vias. Often on these scales, convective transport is not effective, and
the ionic transport progresses mainly through diffusion.36 Further-
more, the ohmic drop on these scales is negligible, rendering (51)
the relevant controlling equation.

4. Tertiary Distribution: ηc ∼ η� ∼ ηs (“Mixed Control”)

This is the most general case. Here, none of the dissipative processes
are controlling, and therefore no mechanism is assumed to be negli-
gible. The Nernst–Planck equation, (10), or its thin boundary layer
approximation (the Laplace equation (25)), is solved subject to the
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boundary conditions (22) and (23). Just about all solutions are nu-
merical. Methods of solutions and some examples are discussed in
subsequent sections.

VI. SCALING ANALYSIS OF ELECTROCHEMICAL
CELLS

It is evident from the previous discussion that significantly sim-
plified modeling of the current distribution can often be achieved
once scaling analysis has identified the controlling dissipative mech-
anisms in the cell. It has been shown that the current distribution in
most common systems can be characterized in terms of three ma-
jor dissipative processes: ohmic (within the electrolyte across the
cell), mass transport (across the concentration boundary layer), and
surface activation (on the electrode). These are designated in terms
of the corresponding resistances: R

∗
�,R

∗
C, and R

∗
S. The Wa number

characterizes the current distribution in terms of the relative impor-
tance of two of the three resistances: the surface (R

∗
S)and the ohmic

(R
∗
�) resistances.Clearly,more complete characterization of the sys-

tem requires the comparison of two additional resistance ratios and
the formulation of two additional dimensionless parameters.36

The relative significance of the ohmic (R
∗
�) and the mass trans-

port (R
∗
C) resistances is important in terms of characterizing the pre-

vailing transport mechanism in the cell. Equation (8) indicates that
the current flow is due to two mechanisms: mass transport down a
concentration gradient and migration due to the electric field. The
relative resistances associated with these will indicate which of the
two processes affects the current density (at the given conditions)
more significantly, or, to which of the two transport processes the
current density is more sensitive. Accordingly, a dimensionless pa-
rameter representing the ratio of the mass transport to the ohmic re-
sistance has been formulated36 and designated as the Tobias number
(after Charles W. Tobias):

To = R
∗
C

R
∗
�

= κ

l

RT

nFiL
(

1 − i
iL

) . (52)

When T o� 1, mass transport prevails over ohmic migration, vali-
dating the approximations indicated by (43)–(51). On the other hand,
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when To� 1, ohmic migration prevails, and the use of the Laplace
equation for the potential alone (primary distribution) or in com-
bination with the electrode kinetics (secondary distribution), disre-
garding mass transport, is justified. Further inspection of the Tobias
number indicates that it becomes much larger than 1, irrespective of
the fraction of the limiting current (i/ iL), for length scales signifi-
cantly smaller than a critical length scale given by36

lcrit = κRT

nFiL
(

1 − i
iL

) , (53)

i.e., on very small length scales, l � lcrit, mass transport will al-
ways prevail over ohmic migration. This conclusion is consistent
with observations that cells with large interelectrode gaps are typ-
ically more sensitive to the ohmic resistance than to mass transport
(providing that some circulation is present), and that the ohmic re-
sistance is insignificant in comparison with diffusion in very small
(e.g., submillimeter or smaller) features. We find that for electro-
chemical systems with κ ∼ 0.1 − 1 S/cm, iL ∼ 0.1 − 1 A/cm2,
and n = 1 or 2, the critical length below which mass transfer prevails
over the ohmic effects is on the order of 0.01 − 2.5 mm (depending
on the magnitude of κ, iL, and n). As the current density approaches
the limiting current, the critical scale, lcrit, below which mass trans-
port dominates over the ohmic resistance becomes larger.

It should be noted that the analysis associated with the Tobias
number compares only the ohmic with the mass transport processes,
while the relative importance of the electrode kinetics is not consid-
ered. Typically, the electrode kinetics effect is accounted for through
the Wa number, which compares the resistances associated with the
kinetics and the ohmic processes. However, in systems with large To-
bias number (e.g., small scale features and systems operating close
to their limiting current), the ohmic resistance is insignificant as
compared with the mass transport effects. Accordingly, the scaling
analysis based on the Wa number is irrelevant for such systems, and
one should consider instead a dimensionless parameter that com-
pares the two relevant resistances: kinetics and mass transport. The
leveling parameter, L , represents this ratio:36
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L = R
∗
s

R∗
c
=

iL

(
1 − i

iL

)

io
(linear polarization) , (54)

L =
niL

(
1 − i

iL

)

αi
(Tafel polarization) . (55)

For the convenience of obtaining an explicit expression, the leveling
parameter has been formulated separately for linear polarization (54)
and for the Tafel regime (55).

The leveling parameter is analogous to the Wa number since it
compares the resistance associated with the surface reactions with
the resistance associated with the transport process, except that here
the conventional, but irrelevant, ohmic resistance has been replaced
by the relevant mass transport resistance. It should be pointed out
that both the latter resistances (ohmic and mass transport) relate to
the transport process within the electrolyte; hence, they are sensitive
to the cell configuration and typically lead to nonuniformities in the
current distribution. The leveling parameter, being applicable to sys-
tems where mass transport rather than the ohmic resistance prevails,
typically pertains to small-scale systems. Here, L � 1 indicates
that the kinetics resistance, which typically leads to uniformity, is
significantly larger than the mass transport resistance, which leads
to nonuniformity. The leveling parameter can be used for the de-
termination of the degree of uniformity of the current distribution
on the microscale (where ohmic effects are negligible) and hence
it characterizes the “smoothness” of the deposit texture. To ensure
level deposits, one must have L � 1. This corresponds in the linear
polarization regime to36

i

iL
� 1 − i0

iL
(for smooth deposition under linear polarization) ,

(56)
or

i � iL − i0. (57)

Linear polarization is encountered when i < i0, i.e., mostly in sys-
tems with relatively large exchange current density. Such systems
exhibit according to (57) a very limited operation range, iL − i0,
where smooth deposition is expected. This is consistent with ob-
servations indicating that highly reversible metals such as lithium,
silver, tin, and lead, or the deposition from high-temperature molten
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salts (all characterized by high exchange current densities), tend to
produce rough, nodular, or dendritic deposits.37, 38

In the Tafel regime we obtain for smooth deposition (L � 1)
(

i

iL

)
<

1

1 + α
n

(smooth deposition under Tafel polarization) .

(58)
This expression explains the common observation that rough de-
posits are produced as the limiting current is approached. Equation
(58) indicates that for a relatively reversible electrode reaction with
two-electron transfer, i.e., n = 2, and α = 1, (i/ iL) < 0.66. Ac-
cordingly, for smooth deposition the current density may not exceed
about 66% of the limiting current. On the other hand, for a highly
irreversible electrode reaction with α = 0.1 (which can be realized
through the addition of strongly inhibiting additives) and n = 2,
(i/ iL) = 0.95; i.e. the current density can reach 95% of the limiting
current, while still producing smooth deposits.

Implications of the Leveling Parameter for the Prevention
of Rough, Nodular, and Dendritic Deposit Texture

Low exchange current density, i0, in the linear regime and a low
transfer coefficient, α, in the Tafel regime promote smooth elec-
trodeposition. These parameters may be controlled through the use
of inhibiting additives. Equations (57) and (58) indicate that for
smooth deposition it is beneficial to operate at a low fraction of the
limiting current, i/ iL, i.e., low current density and a high limiting
current. The latter is promoted by high reactant concentration and
vigorous agitation.

The radius of curvature at the tip of a surface roughness ele-
ment or a propagating dendrite is typically very small, on the or-
der of 10−5 cm.39–42 It can be shown (36) that such systems will
not support smooth deposition unless the exchange current density,
i0, is kept below 20 mA/cm2. This explains the difficulty of obtain-
ing smooth deposition of lithium, silver, tin, zinc, and lead since all
have significantly larger exchange current densities. It can be further
shown36 that such elements form their own characteristic diffusion
layer, which is inversely proportional to the radius of curvature, lead-
ing to extremely high limiting currents and low mass transport resis-
tance. This causes such features to grow very fast, at a rate limited
only by their kinetics resistance.
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VII. TRANSPORT EFFECTS ON KINETICALLY
CONTROLLED SYSTEMS

According to the analysis presented above, systems under ohmic
and kinetics control (secondary distribution) should not be sensi-
tive to transport effects. Yet numerous systems operating at high Wa
number, where the resistance to the surface kinetics is dominant,
exhibit noticeable effects of flow and agitation. This is particularly
evident in plating applications, where flow markings can be observed
in deposits near surface protrusions, even far from the limiting cur-
rent, i.e., when the concentration overpotential and the transport re-
sistance are negligible. The explanation for this puzzling behavior
hinges on more careful examination of the Butler–Volmer equation,
which is often applied to such systems. Although the flow does not
appear explicitly in the Butler–Volmer equation, the exchange cur-
rent density is a function of the surface concentration, which, in turn,
depends on transport. This becomes evident upon inspection of the
“chemists” form of the Butler–Volmer equation (20), which can be
approximated for deposition in the Tafel regime by

i = i0,cb

(
1 − i

iL

)
e−

αC F
RT η, (59)

i.e., the current density is linearly proportional to the fraction of the
limiting current (or to the surface concentration). This is in contrast
with the logarithmic dependence of the concentration overpotential
on the fraction of the limiting current. Unlike the logarithmic de-
pendence, which does not become appreciable until very close to
the limiting value, the linear dependence shown by (59) indicates
dependence on flow at all current densities.

Accordingly, systems which may be far from the limiting cur-
rent, i.e., exhibiting negligible mass transport overpotential, and
which are under kinetics control may still exhibit dependence on
the flow, through the mediated effect of the flow on the kinetics
as discussed above. An example has been provided by Galasco et
al.,43 who studied the pattern plating by copper of an isolated line,
which typically exhibits faster growth, often leading to its exten-
sion above the photolithographic mask, and occasionally resulting
in a “mushrooming” effect. Under typical conditions, such a system
operates under a very high Wa number (or a high leveling parame-
ter), expected to lead to uniform deposition. Yet, when considering
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Figure 3. Numerical simulation of the potential (top) and the current density (bot-
tom) in pattern plating of line clusters (left) and an isolated line (right). Patterned
lines (shown here in a cross section) are 2 mm wide × 2 mm high. Flow at a lin-
ear velocity of 10 cm/s is approaching from the left. Copper kinetics are assumed
with i0 = 10−3 A/cm2, αC = 0.5. Figures on the left correspond to the pri-
mary distribution. The figures on the right correspond to the secondary distribu-
tion, accounting for the mediated effect of transport on the kinetics. The height of
the cross-hatched bars represent the current density. While the primary distribu-
tion indicates a much higher plating rate of the isolated line, analysis43 indicates
that the process is carried out under prevailing kinetics control (ηs ∼ 180 mV,
η� ∼ 2 mV). The reason the isolated line is plated about 6.5% faster than the
cluster is the mediated transport effect on the kinetics (Cell-Design simulations).

the mediated effect of transport on the kinetics, one finds that the
isolated feature exhibits faster growth kinetics owing to the higher
surface concentration near the isolated feature. This is illustrated in
the numerical simulations shown in Fig. 3.

VIII. COMPARISON OF ANALYTICAL
AND NUMERICAL SOLUTIONS

Closed-form analytical solutions offer the advantage of providing
the functionality dependence of the distribution on the system pa-
rameters, elucidating also the significant dimensionless parameters.
These are important for predictive design, scaling, optimization, and
for determining the system’s sensitivity to variations in the differ-
ent parameters. However, most practical systems involve complex
configurations that are intractable to analytical solutions. By con-
trast, numerical solutions that have been implemented in software
packages can simulate a complex system fast, accurately, and with
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minimal user expertise. The major downside of numerically imple-
mented solutions is that these are simulation tools, lacking predictive
capability. Therefore, a number of cell configurations and operating
conditions must be explored to discern a trend or to identify ac-
ceptable or optimized conditions. Furthermore, since no a-priori
simplification is usually provided, a large set of process parameters
(many of which may not be critical) must be typically provided. In
the early years when desktop or minicomputers had just become ac-
cessible, great emphasis was placed on computational speed and on
memory requirements.24 Today, with the advent of powerful desktop
computers, many of these considerations have become irrelevant and
significantly more complex systems can now be readily solved.

IX. A SIMPLIFIED SOLUTION ALGORITHM

The procedure outlined below describes an algorithm for numerical
solution of the current distribution. It is typically not the one im-
plemented in practical software since is not efficient. However, for a
conceptual description of the procedure it is the simplest to discuss,
as it is not hampered by extraneous mathematical considerations.
The thin boundary layer approximation is invoked and rather than
a complete solution of the flow field, it is assumed that the equiva-
lent stagnant concentration boundary layer, δN, along the electrode is
available (may vary with position). The computational routine con-
sists of the following steps applied to numerous points along the
electrodes:

1. Guess:

i along electrodes (an acceptable initial guess is i = 0) . (60)

2. Calculate:

ηcathode
s = RT

αC F
ln

i0

i
; ηanode

s = RT

αA F
ln

i

i0
. (61)

3. Calculate:

ηc = RT

nF
ln
(

1 − iδN

nFDCb

)
. (62)

4. Calculate the potential in solution along the electrodes:

Φ(x, y, z) = V − ηs − ηc − E (63)
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5. Solve:

∇2Φ = ∂2Φ

∂x2 +
∂2Φ

∂y2 +
∂2Φ

∂z2 = 0 (Cartesian coordinate system) .

(64)
Boundary conditions:

Insulator : ∂Φ

∂n
|ins = 0. (65)

Electrode : Φ |e = V − ηs − ηc − E . (66)

Get Φ (x, y, z) . (67)

6. Calculate:

i = − κ
∂#

∂n

∣
∣∣∣
electrode

. (68)

7. Check and update step 1 (60) as necessary. Updating may in-
volve direct replacement of the previous guess with the newly
computed values. More advanced updating algorithms, e.g.,
Newton–Raphson, may be applied for faster convergence.

X. NUMERICAL PROCEDURES FOR SOLVING
THE LAPLACE EQUATION

The modeling of the current distribution in a general-geometry
cell nearly always requires a numerical solution. The following
discussion focuses on the thin boundary layer approximation, with
the overpotential components lumped within a thin boundary layer
which may be of a varying thickness. The Laplace equation for
the potential with nonlinear boundary conditions must be solved.
Similar considerations typically apply to the more comprehen-
sive solution of the Nernst–Planck equation (10); however, the
need to account for the convective fluid flow in the latter case
makes the application of the boundary methods more complex.
We focus our brief discussion on the most common methods:
the finite-difference method, the finite-element method, and the
boundary-element method, schematically depicted in Fig. 4. Since
the finite-difference method is the simplest to implement and the
best known technique, it is discussed in somewhat more detail.
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Figure 4. Numerical techniques for solving the Laplace equation.

A significantly more comprehensive discussion of the numerical
algorithms has been provided recently by Schlesinger.4

1. The Finite-Difference Method

The finite-difference technique is based on dividing the cell region
into a grid of square or rectangular elements (Fig. 5) and solving the
finite-difference equation for the potential at each grid point. Vari-
ous methods are available for solving the system of equations. The
technique is relatively simple to implement and its accuracy depends
on the mesh size and order of the difference formula. In general, a
finer grid leads to more accurate results since the error is propor-
tional to h2 (from the Taylor expansion), where h is the linear grid
dimension. However, the computational effort and the storage re-
quirements rapidly increase with a finer grid.

The grid may be rectangular such that hx need not be equal
to hy . Also, the grid size may vary with position in the cell to ac-
commodate necessary resolution in different regions. An extension
is an adaptive grid, where the grid is adjusted to accommodate cer-
tain geometrical features (e.g., a corner) or variations in the current
density.
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Φ0 Φ1Φ3

Φ2

Φ4

hx

hy

Figure 5. A meshed region.
The potentials assigned to an
arbitrary central point and
its four closest neighbors are
depicted.

The Laplace equation is first written in terms of a finite-
difference approximation. For simplicity, a two-dimensional Carte-
sian coordinate system is assumed:

∇2ϕ = ∂2ϕ

∂x2 +
∂2ϕ

∂y2 = 0 ∼= �2ϕ

�x2 +
�2ϕ

�y2 . (69)

The second derivatives are approximated in terms of the forward
(70) and backward (71), difference equations:

�fφ

�x
= φ1 − φ0

hx
, (70)

�bφ

�x
= φ0 − φ3

hx
. (71)

The second derivatives at the central point are given by

�cφ
2

(�x)2
= �fφ/�x −�bφ/�x

hx
= φ1 − 2φ0 + φ3

h2
x

, (72)

�cφ
2

(�y)2
= φ2 − 2φ0 + φ4

h2
y

. (73)

The finite-difference form of the Laplace equation at any grid point
(i, j) is accordingly

ϕi+1, j + ϕi−1, j − 2ϕi, j

�x2 + ϕi, j+1 + ϕi, j−1 − 2ϕi, j

�y2 = 0, (74)
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where�x = hx is the spacing between grid points in the x direction,
�y = hy is the spacing between grid points in the y direction, i is
the grid point index in the x direction, and j is the grid point index
in the y direction.

Interestingly, if we select �x = �y we find from (74) that

ϕi+1, j + ϕi−1, j + ϕi, j+1 + ϕi, j−1

4
= ϕi, j , (75)

or
φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi, j = 0, (76)

i.e., the potential φ at any point is the arithmetic average of its four
closest neighbors.

Applying the finite-difference form of the Laplace equation (75)
to each grid point in the cell yields a large set of equations to be
solved. For example, on a 30 × 30 grid there are 900 equations to
be solved. However, each equation has at most five unknowns. The
unknown potentials are solved by a numerical iterative procedure.
When calculating the secondary or tertiary distribution, exponential
terms will appear at the boundaries. These terms are linearized about
the potential of the previous iteration. The iterations are repeated
until the potentials converge to within the specified error, typically
10−4 or smaller.

Once the potential field has been solved, the current is deter-
mined from

x component: ix = −κ∇Φ = −κ
((

Φi, j+1 −Φi, j−1
)

2�x

)

, (77)

y component: iy = −κ�Φ = −κ
((

Φi+1, j −Φi−1, j
)

2�y

)

. (78)

(i) Methods of Solving the Finite-Difference Equation

A number of numerical techniques are available for solving the
large set of algebraic equations of the form of (75) or (76). Selection
depends to a large extent on the convenience of the programmer, the
type of computer, and the required speed.



484 U. Landau

(1) Relaxation method
An initial potential is guessed and assigned to each grid point.
Typically, the same potential, e.g., φ = 0 or φ = (VA+VC)/2,
is assigned to all points. Since the guess is not perfect, the
right-hand side of (76) will not be zero, but a finite resid-
ual R. The residuals at all points are then calculated and the
largest residual is identified. This residual is then set to zero
by reassigning the potential φij for this point per (76). All the
other potentials are left intact. The residuals are then calcu-
lated again and the procedure listed above is repeated until all
residuals are within the specified error tolerance.

(a) Advantages
This method uses a minimum of memory space. For N
points only N real numbers are needed for storing the
potentials.

(b) Disadvantages
The method is iterative and requires many repeat steps,
exceeding by a large factor the number of points.

(2) Overrelaxation or underrelaxation
The same procedure as in the relaxation method is followed
except that the potentials at each point are overcorrected or
undercorrected according to certain rules. This often provides
a faster convergence.

(3) Matrix method
The Laplace equation is written for each point and the re-
sulting matrix equations for all points are solved using Gauss
elimination. If we set

λ = �x/�y, (79)

we can rewrite (76) as
(
Φi−1, j +Φi+1, j − 2Φij

)
λ2 + (Φi, j−1 +Φi, j+1 − 2Φij

) = 0.
(80)

Each of the five points has a (different) coefficient. This sys-
tem of equation is put into an N × N matrix which is solved.

(a) Advantages
Using an efficient Gauss elimination routine, one can
solve the matrix equations quickly. Since all points are
coupled and only five points at a time are used, the matrix
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should be pentadiagonal. If a recursion formula for such
a set of equations is employed, the system can be solved
very quickly.

(b) Disadvantages
There are large memory storage requirements: for N
points, at least N 2 + N real numbers must be stored.

2. The Finite-Element Method

The finite-element technique is based on dividing the cell domain
into polygonal sections. The potential within each of the elements
is assumed to be a linear combination of the value at the ver-
tices. However, unlike the finite-difference method, which solves
the finite-difference approximation of the Laplace equation, the
finite-elements method seeks a solution for the potential distribution
within the cell, which best fits the Laplace equation and the bound-
ary conditions. The degree of accuracy is similar to that of the finite-
difference method; however, curved boundaries and narrow corners
can be described with more precision and ease. On the other hand,
the presence of electrochemical nonlinear boundary conditions leads
to ill-conditioned matrix equations which are more difficult to solve
than the finite-difference system.

3. Boundary-Element Methods

The boundary-element method is based on applying Green’s theorem
to convert the Laplace equation in the bulk to an integral equation
along the cell boundaries. Efficient solutions can be obtained, par-
ticularly for complex and moving boundaries; however, separated
regions in the cell are more difficult to model than with the grid
methods.

The technique is similar to the eigenfunction method in that the
solution is written as an integral on the boundary using Green’s the-
orem, combined with a Green function solution of the Laplace equa-
tion. The Green function in this case is the fundamental solution,

G (x; y; XfYf) = 1

2
ln
[
(x − XF)

2 + (y − YF)
2
]
, (81)

written at any fixed point in the cell F = (XF, YF). The solution
is expressed as a well-conditioned integral equation for either the
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potential or the current specified on a segment of the boundary. A
spline function approximation to the current and potential on the
boundary is used and substituted into the integral equations. This
results in a matrix system for the spline coefficients. Once the coef-
ficients have been calculated, the potential and current on any bound-
ary or interior point may be evaluated. Singularities at corners can
be incorporated by constructing singular expansions for regions near
the corner. Also, multiply connected regions and curved boundaries
may be incorporated

The nonlinear boundary condition associated with surface over-
potentials and mass transfer effects necessitates the use of an itera-
tive procedure to solve the potential distributions. Newton’s method
with Broyden’s algorithm to update the Jacobian can be used.

4. Orthogonal Collocation

The orthogonal collocation method uses a series representation for
the potential and current and solves for the coefficients of the se-
ries by satisfying the governing equations with boundary condi-
tions at each fitting point. Again, treatment of nonconnected regions
is difficult, and some judgment and experience is usually required
of the user.

Table 2 provides a (somewhat subjective) comparison between
the numerical methods.

Table 2.
Comparison between common techniques for solving the Laplace

equation.

Feature FDM FEM BEM
Robustness OK OK Best
Speed Best Poor Poor
Applicability to arbitrary boundaries Poor Good Best
Computations primarily oriented to boundaries No No Yes
Computations oriented to internal values Yes Yes No
Applicability to nonlinear boundary conditions OK OK Best
Suitability to moving boundaries Poor OK Best
Order of number of boundary points as a

function of the total number of field
points (with the field precisely
computed)

N 1/2 N 1/2 N

FDM finite-difference method, FEM finite-element method, BEM boundary-element
method
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XI. NUMERICALLY IMPLEMENTED SOLUTIONS
FOR THE CURRENT DISTRIBUTION

Numerical solutions for the current distribution that have been
presented in the literature may be divided into three classes: (1)
“dedicated” code that has been developed to simulate a specific
class of problems, (ii) commercially available software, dedicated
to simulating electrochemical systems, and (iii) general scientific
CAD software that can be customized for solving electrochemical
systems. Each class is briefly discussed below:

1. “Dedicated” code developed to solve specific problems: Such
programs have been typically developed at academic institu-
tions (e.g., Refs. [31, 44]) or national laboratories.45 A very
broad range of such models have been described in the liter-
ature and comprehensively reviewed by Dukovic.3 The ma-
jor limitation of this class of numerical solutions is that they
are typically not publicly available, often cannot be general-
ized, lack robustness, are not user-friendly, and typically lack
instructions. Therefore, while providing insight into the spe-
cific analyzed problem, they usually do not lend themselves
to more generalized or broader applications.

2. Commercial software dedicated to simulating electrochemi-
cal systems: A few software packages dedicated to simulat-
ing electrochemical systems became commercially available
in recent years. The common denominator of these soft-
ware packages is that they have been specifically written for
electrochemical applications; hence, they incorporate elec-
trochemical boundary conditions and have a user interface
dedicated to electrochemical systems. Since these software
packages are backed by commercial companies that pro-
vide support, documentation, and updates, they can be used
by nonexperts. The two most popular packages are briefly
reviewed:

(a) Cell-Design by L-Chem: Cell-Design was the first
commercially released comprehensive electrochem-
ical modeling software (1985). Developed under a
DOE SBIR contract, the software was initially based
on a finite-difference algorithm,24 which was later
modified to include higher-order elements27 and the
boundary-elements algorithm. Cell-Design can be used
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for modeling two-dimensional cross sections of arbitrary
cell configurations and axisymmetric bodies of revo-
lution. The software package incorporates a properties
database. For chemistries not included in the database,
L-Chem offers a special device, the L-Cell,46 which
readily provides the kinetics parameters required for
modeling. Cell-Design is offered in a modular form, al-
lowing the user to customize the software. The software
focuses on ease of use by nonexperts, and a fast learning
curve. Cell-Design has a broad international user base,
with most applications in the plating and electrolytic
industries.

(b) Software packages by Elsyca: Elsyca’s software, released
commercially in 1998, is based on work at the Univer-
sity of Brussels VUB (Vrije Universiteit Brussel), by
Johan Deconinck.47 The software was originally based on
the boundary-element method. Various packages include
Ecmmaster, Elsy2D, and corrosion modeling software
(CPmaster and Catpro). The major strength of Elsyca’s
software is the capability of some modules to handle
complex three-dimensional configurations. The down-
side is that the software is more complicated to use. The
software is distributed internationally, with primary ap-
plications in metal finishing and corrosion.

3. General scientific CAD software that can be customized for
modeling electrochemical systems: There is a broad range
of commercially available scientific and/or engineering soft-
ware packages that can be customized to model electrochem-
ical systems. The packages range from general-science-based
software to software that is directed primarily at modeling
fluid flow, stress–strain, heat transport, casting, microelec-
tronics, magnetics, or a combination thereof, among many
others. These packages are generally very comprehensive,
and, consequently, their use is complex and often requires
special training. Since the software in this class is not de-
signed for modeling electrochemical systems (with the excep-
tion of a few fuel-cells modules), customizing it (mostly by
incorporating the appropriate boundary conditions) for simu-
lating electrochemical systems, is complicated. On the other
hand, most of the software in this class is capable of handling
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complex geometrical configurations. A very large number of
software packages (hundreds) are commercially available and
only very few representatives are briefly reviewed.

(a) Comsol Multiphysics (formerly Femlab) by Comsol: This
general science and engineering oriented software is
widely used, particularly in academia. Comsol Multi-
physics can handle a large variety of systems with quite
complex boundary conditions, including transients. In-
corporating the electrochemical boundary conditions is,
however, tedious since these must be introduced through
generalized functions. Using the software and inter-
pretation of the results requires expertise. A moving-
boundaries option has been added recently; however, at
this time, its use for electrochemical applications is lim-
ited. Introduction of complex geometry is also tedious.

(b) Fluent, Ansys, and Polyflow by Fluent: Fluent, among
numerous similar companies, offers a powerful and
very comprehensive set of software programs. They
are typically directed at a class of (nonelectrochemical)
applications, and thus incorporating the electrochemical
boundary conditions is complex. A special module has
recently been developed for modeling fuel cells. Use of
the software typically requires training.

XII. DETERMINATION OF THE CURRENT
DISTRIBUTION IN SPECIAL APPLICATIONS

A number of applications with specific modeling features are briefly
discussed below.

1. Multiple Simultaneous Electrode Reactions, Including
Alloy Codeposition and Gas Coevolution

Numerous electrochemical, systems involve multiple simultaneous
reactions. Some, such as alloy plating, are deliberate, others, e.g., gas
coevolution, may occur owing to the presence of multiple species in
solution. The modeling of such systems is complicated by the fact
that local fluxes at the electrode and partial currents are associated
with each of the reacting species, yet only the total current (and/or



490 U. Landau

potential) can be measured. Occasionally, significant partial reac-
tions may proceed in opposite directions, leading to a very small
overall current. A solution procedure has been outlined by Menon
and Landau48 and is based on assuming that each of the possi-
ble electrode reactions proceeds in parallel according to a modified
Butler–Volmer kinetics, written here in terms of the partial current
associated with reacting species j :

i j = i0,cb, j

[(
aR

e, j

aR
b, j

)

e
αA, j F

RT η j −
(

ao
e, j

ao
b, j

)

e−
αC, j F

RT η j

]

. (82)

Here, i0, j , αA, j , αC, j , and a j represent the exchange current density,
the anodic and the cathodic transfer coefficients, and the activity of
species j , respectively. The superscripts, R and o designate the re-
duced and oxidized form of the reacting species, j . The overpoten-
tial, η j , is given by

η j = V − E j −# (83)

It should be noted that while the electrode potential, V , and the elec-
trostatic potential in solution, Φ, are identical for all species, the
standard potential, E j , is species-dependent, and hence the driving
force for the electrode reaction, η j , will be different for each species.
When the standard potential for the different species are quite differ-
ent, or when the overpotential V −# is small, η j may even assume a
different direction for different species. The current within the elec-
trolyte is given by the algebraic sum of the partial currents of all
species,

i =
∑

j

i j (84)

The solution procedure is analogous to the general approach out-
lined above. For the thin boundary layer approximation, one solves
the Laplace equation (25) subject to the boundary conditions (26)
and (27). In boundary condition (27), the current on the electrode is
given by the sum of the partial currents, as indicated by (82). After
a solution has been obtained (through an iterative procedure), and
the partial currents have been computed, the deposit composition
can be determined from Faraday’s law (1). Parasitic hydrogen (or
for anodic processes, oxygen) evolution can be evaluated using an
identical procedure, providing thereby a quantitative measure of the
current efficiency.
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Menon and Landau48 point out a number of complications as-
sociated with modeling alloy deposition. First, the values for the ki-
netics parameters of the alloy species are likely to be different from
those measured for the pure components. Furthermore, these param-
eters may vary with the composition of the alloy. Determination of
such parameters can be done experimentally from measured alloy
composition in well-controlled deposition experiments. A second is-
sue has to do with the difficulty in determining the activities of the
alloy components in the solid phase. The activity, which affects the
electrode kinetics equation (82), is unity for single-component de-
position; however, in multicomponent alloy deposition it varies with
the nature of the deposited alloy.48

2. Moving Boundaries in Deposition and Dissolution
Applications

Modeling of deposition and dissolution processes, where the thick-
ness of the material added or removed is comparable to the character-
istic dimensions of the modeled feature, requires accounting for the
changing boundaries. Typical applications include the metallization
of small features, e.g., through-holes,22, 49 blind vias, and trenches
in microelectronics, pattern plating of printed circuit boards,43 mod-
eling the propagation of corrosion damage,50 and, on a larger scale,
electrochemical machining. Typically, there is no need to model the
truly transient process, and a sequence of pseudo-steady-state steps
provides adequate accuracy. The latter is ensured by selecting suffi-
ciently small steps such that each corresponds only to a small frac-
tional increment of the final thickness. To rigorously check if the
number of steps taken is sufficient, one may incrementally increase
the number of steps, until no further significant effect is noticed.
Time steps need not be uniform. Often small steps are advisable
in the early stages, when, typically, sharp corners become rounded.
Once a radius of curvature has been established, subsequent steps
may often be longer. The solution algorithm is typically based on
first calculating the current distribution in the initial geometry and
then using Faraday’s law (1) to calculate the displacement of the
boundaries at a number of selected points. A new boundary is then
associated with the relocated points and the solution procedure is re-
peated. Clearly the nature of the solution is such that it lends itself
only to numerical procedures;32 however, on occasion, semianalyti-
cal solutions coupled with geometry updating are adequate.51
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The major challenge for the numerical procedure is the updating
of the boundary. Boundary points near a corner or a small curvature
region may cross one another if the step size is large in compari-
son with the distance of the points from the corner. For geometrical
fidelity, it is desired to have large point density at high-curvature
regions, while still maintaining a step size which may be large com-
pared with the distance of the points, a situation that may lead to
“crossover” of boundary points. An algorithm must be provided to
properly account for these intersecting regions. Another challenge
has to do with surface perturbations. Small computational inaccura-
cies may give rise to surface perturbations, which, once formed, tend
to grow. The numerical algorithm must be capable of treating such
features without introducing excessive “smoothing,” which may lead
to overlooking valid textural changes.

3. Electropolishing, Leveling, and Anodizing

The common denominator to these anodic processes is the presence
of an anodic film that is typically highly resistive, thus leading to
a more uniform distribution. Electropolishing applications are of-
ten carried out in a concentrated electrolyte, e.g., phosphoric acid,
which tends to form a sparingly immiscible salt on the surface.52, 53

The high film resistance tends to smooth the current distribution on
the nano- and microscales, leading to polishing. Somewhat larger
features can be similarly leveled through mass transport controlled
dissolution across a concentration boundary layer.54–56 Anodization
processes are similarly controlled by a highly resistive oxide layer,
incorporating ionic transport that can be characterized by a Mott–
Cabrera-type hopping mechanism. Akolkar et al. have discussed the
current distribution in the anodization of aluminum, critically com-
paring experimental results with numerical modeling.33

4. Current Distribution on Resistive Electrodes

In most electrochemical modeling applications, a commonly in-
voked and valid assumption is that the electrode constitutes an
equipotential surface. This is due to the characteristically low
electrolyte conductivity (κ ∼ 0.1 S/cm) as compared with metallic
conductivities, which are larger by about a factor of one million.
However, in some applications, when very long and thin electrodes
are present, e.g., in reel-to-reel (“strip”) plating, or when only a thin
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metallic seed is present on an otherwise insulating substrate (such
as in the plating of semiconductor wafers or printed circuit boards),
this assumption may not hold. In these cases, the voltage within
the resistive electrode varies with the distance from the terminal
contact point due to ohmic (IR) drop within the electrode itself.
Tobias and Wijsman57 first analyzed this problem by conducting
a voltage balance across a parallel electrode cell, accounting also
for the voltage drop within the electrodes. They have shown that
the current nonuniformity depends on a dimensionless parameter
incorporating the ratio of the resistance within the electrode (leading
to the terminal effect) into the resistance within the electrolyte. This
analysis, which was limited to systems under linear polarization,
was later extended by Lanzi and Landau58 to more complex con-
figurations under Tafel polarization. Recent interest in metallization
of interconnects on semiconductor wafers led to further extension
of these analyses to the cylindrical wafer configuration59, 60 and to
exploitation of this concept to obtain more uniform deposition by
introducing a low-acidity, more resistive electrolyte.61 Clearly more
complex, general-geometry configurations necessitate numerical so-
lutions. An example of such an approach, comparing both numerical
and analytical solutions, has been presented.60

5. Current Distribution in the Metallization
of Through-Holes, Blind Vias, and Trenches

The fabrication of printed circuit boards by plating often involves the
metallization of through-holes. Because of their relatively small radii
(mills) and high aspect ratio (e.g., Refs. [10–20]) it is a challenge
to metalize such through-holes without first plating excessively at
the hole entrance, blocking further deposition. Kessler and Alkire62

were the first to present an analysis for the current distribution for a
plated through-hole. This was later extended by Lanzi and Landau,22

who quantified the minimal flow (agitation) required to eliminate
mass transport limitations, and furthermore highlighted the pres-
ence and analytically characterized an ohmic resistance which limits
the degree of achievable uniformity in the plating of such hole. In a
subsequent publication,63 Lanzi et al. analyzed and experimentally
demonstrated the use of nonuniformly distributed plating additives,
which are aggregated near the via entrance, to control the current
distribution.
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The recently introduced process of semiconductor interconnect
metallization by copper plating64 critically depends on the ability to
achieve a bottom-up fill by plating of submicron (currently down
to approximately 40 nm) blind vias and trenches. The bottom-up
plating process hinges on the use of a special additives mixture,
consisting of an inhibitor (typically a polyether, e.g., PEG), and an
antisuppressor [e.g., bis(3-sulfopropyl) disulfide]. The rationale for

Figure 6. Simulation of bottom-up
plating of a 0.5 μm radius × 5 μm
deep trench in the presence of
PEG and bis(3-sulfopropyl) disul-
fide (SPS). Nine 1-s time steps,
corresponding to the additive con-
centrations shown in Fig. 7, are
shown (Cell-Design software simu-
lations69).



Current Distribution in Electrochemical Cells 495

Figure 7. Modeled PEG and SPS coverage on the sidewalls and bot-
tom of a 0.1 μm radius × 0.5 μm deep trench at 1–8 s after immer-
sion/start of plating. Owing to surface shrinkage at the bottom66, 67

and competitive adsorption,51 the SPS saturates the trench bottom
after 8 s, fully displacing the PEG (Cell-Design software simula-
tions69).

this combination, which has been empirically formulated,64 has been
provided recently by Akolkar and Landau.51 They modeled the tran-
sient transport and competitive adsorption of the additives mixture,
relating the current density and the deposition rate to the position-
and time-dependent surface coverage by the additives. The transient
transport and kinetics model incorporates also the effect of enhanced
antisuppressor concentration at the shrinking via bottom, as intro-
duced by Moffat et al.65 and West et al.66 A number of customized
numerical models for this process have been reported recently.67, 68

An example of the simulation of the bottom-up fill using a module
of Cell-Design software69 which is capable of simulating transient
additive transport and competitive adsorption in conjunction with
moving boundaries due to deposition is shown in Figs. 6 and 7.

SYMBOLS

a constant (37), V
a activity, dimensionless
A local electrode area, cm2

b Tafel polarization slope, (=RT/αF), V
b′ linear polarization slope, V cm2/A
C concentration, g mol/cm3
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d deposit thickness, cm
D diffusion coefficient, cm2/s
E standard electrode potential, V
F Faraday constant, 96,487 C/equiv
h grid size, cm
i current density, A/cm2

i0 exchange current density, A/cm2

iL limiting current density, A/cm2

iave average current density, A/cm2

icrit critical current density for smooth deposition, A/cm2

l, L length, cm
L leveling parameter, dimensionless
M molecular weight of deposited metal, g/mol
N number of electrons transferred in the electrode reaction,

equiv/mol
N ionic flux, mol/s cm2

R universal gas constant, 8.314 J/mol K
R j rate of generation of species j , M/s cm3

R∗
S specific surface (activation) resistance, � cm2

R∗
C specific concentration resistance, � cm2

R∗
� specific ohmic resistance, � cm2

R� ohmic resistance, �
t time, s
T absolute temperature, K
To Tobias number, dimensionless
u ionic mobility, cm2mol/J s
v velocity, cm/s
V voltage of an electrode, V
Wa Wagner number, dimensionless
z j charge number of the ionic species j , equiv/mol

Greek

α transfer coefficient
γ parameter adjusting the exchange current density, (18),

dimensionless
δ parameter adjusting the exchange current density, (18),

dimensionless
δ mass transfer boundary layer thickness, cm
�x spacing between grid points in the x direction, cm
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�y spacing between grid points in the y direction, cm
�z spacing between grid points in the axial direction, cm
εF faradaic efficiency
η total overpotential, V
ηs surface (activation) overpotential, V
ηc concentration overpotential, V
η� ohmic overpotential, V
κ solution conductivity, S/cm
λ constant, (79), dimensionless
μ viscosity, poise = g/cm s
ν kinematic viscosity, cm2/s
νT eddy (turbulent) viscosity, cm2/s
ρ ADI iteration parameter, dimensionless
ρ density, g/cm3

# potential in the electrolyte, V

SUPERSCRIPTS

∗ specific, per unit area
o oxidized species
R reduced species

SUBSCRIPTS

A anode
Avg average value
B bulk
B backward
C cathode
C mass transport
crit. critical value
E at the electrode
Elec electrode
F forward
Ins insulator
J ionic species j
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L linear polarization
N normal to surface
N Nernst
R reactant
S surface overpotential or resistance
T Tafel region (high field)
� ohmic
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