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PREFACE.

Geomechanics is the basic science for many engineering fields, including oil and gas
recovery, mining, civil engineering, water supply, etc., as well as for many environmental
sciences, including earthquake prediction, ecology, landscape dynamics, and explosion
works. Historically, the major concepts of geomechanics were founded on the methods
of the elasticity theory and the static equilibrium of joints with solid friction.
Underground hydrodynamics was developed quite separately and included only simple,
conventional ideas of elastic pore-space deformation.

Today, the situation is drastically different. Tremendous achievements in numerical
computer technique have eliminated many of the routine difficulties of problem solution
with respect to selected mathematical models. As the result, major efforts now are
applied to sophisticated experimental studies and to new applications of generalized
continuum theories. Of course, traditional rheological schemes have been adjusted to be
into account the real properties of such geomaterials as soils, rocks and ice. The main
changes have been connected with the kinematics of the internal structure of
geomaterials that influences their strength and that can play unusual roles in dynamic
processes. The theoretical considerations are in good agreement with experimental
observations in situ because of precise measuring devices, impact of modern physics
concepts and large-scale monitoring.

This book consists of two lecture courses given by the author to graduate and post-
graduate students of the Gubkin Oil and Gas Academy in Moscow. The first course
consists of lectures on underground hydrodynamics which I now give and which were
initiated long ago by my teacher, Professor Isaak A. Charny. The second course reflects
recent studies conducted by the laboratory on Applied Geomechanics in the United
Institute of Earth Physics. In addition, I address modern advances in geophysics
connected with continuum mechanics and my experience in Civil Engineering and in the
Russian National Program on Underground Explosions. The goal of such a course is to
unite separate investigations into a common science, to introduce students to this
science, and to open wider doors for future work.

Attendance at scientific seminars and my lectures at such in foreign organizations as
Brown University (Providence, Rhode Island, USA), The Royal Institute of Technology
in Stockholm, Universities in Milan, Minneappolis, Bonn, Stuttgart and Karlsruhe, and
participation in many joint research projects in my country, have aided me in selecting
themes and in understanding recent scientific interests.

This monograph focuses on adequate mathematical models of the deformation and
failure of geomaterials and corresponding experiments. Borehole stability and water, gas
and oil reservoir states are studied with respect to changes caused by dilatancy,
anisotropy, fluid flow and tectonic stress action. Gas-condensate flows are proposed as
the most intriguing part of underground physico-chemical hydrodynamics. Study of the
rupture zone of contained explosions is interconnected with the study of evolution of
radiated waves, including nonlinear effects. Nonlinear resonances, which play essential
roles in the vibro-stimulation of oil production from water-flooded seams, are discussed,
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and the effects of oil-water saturation on seismic waves are given with respect to the
Frenkel-Biot theory and usage of the effective stress concept.

With regard to rock strength and state at depth, the Earth’s crustal faults and water
circulation are studied. Their distributions are determined by tectonic plate dynamics,
including the local mobility of the upper brittle crust. Earthquakes mechanics and
precursor phenomena, as well as deep gas and fluid migration and accumulation, are
subjected to periodic changes and are discussed in the framework of space-time
dynamics. All considered problems have applications to reservoir engineering.

I am grateful to my colleagues Drs. K. Basniev, E. Detournay (University of
Minnesota), 1. Garagash, G.Gudehus (University of Karlsruhe), S. Kapustiansky, K.
Kirchgassner (Stuttgart), A. Maksimov, G. Martinelli (Bologna) and R. Nova (Milan) for
stimulating discussions and support and to Dr.S.Grafutko, Kathy Sikora and Mrs. S.
Pomytkina for providing help in realizing this publication.



CHAPTER 1
DEFORMATION AND FRACTURE OF GEOMATERIALS

1.1. Principles of continuum mechanics
1.1.1. AVERAGING PROCEDURE

Real geomaterials are extremely nonhomogeneous. They are composed of many pieces
(grains) of crystalline matter cemented into a soft or rigid matrix with pores and cracks
often filled with fluids and gases. Describing such a medium is complicated but it can be
simplified if the motions or flow patterns of the geomaterials have length scales, L , that
are much larger than the characteristic sizes, d, of individual grains. For continuum
mechanics, use is made of an intermediate scale, A, such that [152]

L>> A>>d (1.1)

In this case, the coordinate system X, X,, X, exists such that the elementary volume
of the considered medium

AV = AXAXAX,,  AX, =0(2) (12)

can be treated as a continuum element filled with uniform material whose properties
coincide with corresponding ones at the microlevel but which are averaged over volume
AV .

For example, the average density is determined by:

1
<p> = Z; A_’;pd’ﬁdxzdxs (1'3)

where p is equal to the density of the grain or fluid material or equal to zero if the
corresponding micropoint, x,, x,, ¥, belongs to an empty void.

The right-hand side of inequalities (1.1) corresponds to the assumption that the
volume includes the whole ensemble of grains and voids. As a consequence, result (1.3)
coincides with the statistical averaging:

p= [ ptwydy. [dg-1 (1.4)
4

ax
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where Ay is the ensemble of realizations, and y is the random parameter. The

independence of (1.4) on the choice of the coordinate inside AV is known as a property
of stationarity in probability theory or as a property of uniformity in continuum
terminology.

The averaged value < p> corresponds to the mass-center of volume AV | which the

also is interpreted as macropoint X, X,, X, . The field < p> is assumed to be smooth
at the scale L - that is, the Taylor expansion

o< p>,

<p>(X,-+AXi):<p>(Xi)+ Ay, +.. (1-5)

1

which is violated only at the singular surfaces of the discontinuity. The corresponding
representation of the microfield is valid only at the scale d :

0
p(xi+Axi):,0(xi)+a—f_dxi i (1.6)

At the microlevel, there are a number of discontinuity surfaces which correspond to a
number of grain contacts. Therefore, continuum description at the microlevel also needs
an averaging procedure to introduce additional mean microvariables as functions of
macrocoordinates.

The left-hand side of nonequality (1.1) means that it is possible to treat the increments
as differentials and that corresponding differential equations of continuum mechanics can
be treated as true balance equations in space and time.

1.1.2. DYNAMIC BALANCES

The first balance concerns mass:

9p _ Opv;
—+ =0 1.7
o 0X; (.7

where p is now the average density, and the symbol of space averaging is omitted. The
following averaging procedure was used for mass flux pv,:

<y, >,= [ pCe. 0w, (x,, Dy i, (1.8)

45;

RS
A8,
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Figure 1.1. Stress-tensor component O, acting at oriented cross-section AS,. with normal »,

The integration over surfaces AS, = AX;AX, , bounding the volume AV, is necessary

for all fluxes. This results in the determination of the mass velocity:

<pPv;>.
<y;> =1 (1.9)
T <p>

since the flux rate over oriented cross-section AS, =n,AS is valid. Here, n, is a normal
to AS, (Figure 1.1) .

The oriented cross-section concept is important. It can be imagined that some part of
the considered continuum is absent, but its action must be replaced by some proper set of

fluxes at its bounding - oriented cross-sections.
The second balance is completed for the momentum (impulse) - that is,

opv, + opvv, _ oy

+ F, 1.10
ot ox, ox, T (1.10)

Here, F, is the body-distributed force, and mass-flux pv, is averaged according to
rule (1.3); however it is interpreted here as a momentum contained in volume AV
Momentum fluxes as well as stresses are averaged over bounding cross-sections

according to procedure (1.8). It means a definite nonsymmetry of the following type:



4 CHAPTER 1

<SPV >, # <pvjv,. >

(1.11)

<oy E <o

although o; = o, and pyv, = pvy,

So, in a medium with microstructure (granular, polycrystalline), the averaged stress
tensor is not symmetrical, generally speaking - that is, it has both symmetric and
asymmetric parts:

6, = ob + of (1.12)

The symmetric part has a main coordinate system in which the tensor oj has a
diagonal form, with o, = 0,; 0,, = 0,; 03; = 0, as the main stress values:

g 0 0
O';- = 0 o, 0
0 0 o;
and which there are three scalars:
I, = O-ijéij - -3p, I = Oy 0y » Is = Oij O jk Oki

that are invariant to changes of the coordinate system. Here p is a pressure, 5, is the
unit tensor, and summation is done over repeating indices.

The stress, oj, is connected with the symmetric kinematic strain tensor e;, or with
the strain-rate tensors, De;/Dt. Part of oj has to be connected with the
antisymmetric kinematic tensor, which is g, w, , where @, is a rotational axial vector, or
gy Daw,/Dt, where Daw, /Dt is a rotational rate vector, and g is the alternating
tensor. Because internal stresses have to be independent on planar or rotational motion
of the coordinate system X;, the rotation vector must only be used relative to the mean
rotation of the medium. Therefore, the account of the antisymmetric part of a stress
tensor is connected to the introduction of the averaged microrotation @,+ @,, which is
kinematically independent on mean rotation @, = (1/2)¢&,, Ou,;/&,, where u, is a
displacement component. As the result, @, or Dw, /Dt can be interpreted as a spin
component of rotation or rate of rotation.

Dynamically, such a motion is controlled by the balance of moment of momentum.
The balance of its internal part has the form:
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0 M,
+ an ink((Dk+60k)v,' = X + & o (1.13)

j

aleJ(¢J + wj)
ot

Its derivation can be found in texts on generalized continuum mechanics (see, for
example, [220]).

Here, pJ; is a specific moment of inertia of a microparticle (grain), and #, is a
coupled stress. Equation (1.13) also possesses the body-distributed force couples,
& O, generated by the asymmetry of conventional stresses. It can be seen, that this
particular case of negligible microstructure effects is characterized by the condition of

tangential-stress equality:
Oy~ O0ji (1 . 14)

For an interpretation of couple stresses, we will examine the forces acting at an
arbitrary planar cross-section of a medium (Figure 1.2).

X;

Xy

X;

Figure 1.2. Local microtraction f;, the averaged value o, (broken line)
and the microcouples 44, at the cross-section.

The value of the averaged force is calculated by the following multiplication:
<f,> = oyn; = on (1.15)

where ¢; corresponds to a mean value of a microforce distribution f, which is non-
uniform due to the real nonhomogeneous microstructure of the considered media.
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Therefore, we can introduce the second moment of averaging, which is characterized by
microcouple distribution and which is equal to couple-stress M 5 mentioned above:

M, = <f'¢, > (1.16)

Here, f, is the force pulsation (relative to < f ;>), and ¢, is the polar-vector (relative
to the mass-center of AV'). So, M is generated by the nonuniformity of the microfields

and must be used in the formulation of adequate boundary conditions that take into
account, for example, asperity effects and wear phenomena.

1.1.3. KINEMATICS AND GOVERNING LAWS
The kinematic variables are created by displacement fields. Again, we have to assume

the existence of the Taylor expansion for mean displacements in the vicinity of a
mass-center of the elementary volume AJ :

Ou;
AX,+AX;) = w(X;) + ~AX; + ..
”( j J) u( J) an X;
(1.17)
1
= ui(Xj) + eijAXj + Egijk(DkAX}
Here, the deformation tensor
1 514,- au,
i = = + — 1.18
€jj 9 [aXJ 6X,J ( )

is determined as a symmetric part of the distortion tensor oy, / 0X ;.
The mean rotation, @,, is determined as an asymmetric part of the distortion tensor -

that is,
1 1 611,‘ aui
— & = —|— - — 1.19

Zglkq)k 5 [a ; P 1) ( )

In asymmetric Cosserat’s mechanics, the microrotation has a non-trivial spin
component, ¢ ,; therefore, consideration of equation (1.13) is necessary. If ¢, =0, than
equation (1.13) is a simple consequence of the momentum balance (1.10). In the case of
elastic rheology, constitutive laws, which connect stresses and strains, have the following
form:

c; = Ejuen (1.20)
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O'?j = e Yuo: (121)
o,
My = Ay o (1.22)

where Ej, is the elastic modulus tensor, v,, is the elastic coupling tensor, and 4, is a

tensor of elastic gradient coefficients. In isotropic cases, these tensors are simplified -
for example,

2
Eijkl = (K'EG) 5ij5k1 + 265;‘[(5]'] (123)

Yu = YOu (1.24)

where K is the volume modulus, and G is the shear modulus (rigidity). You can see that
the mass balance (1.7) and the elastic law (1.23) determine the density changes:

pP-p
-p, = =2 1.25
p-p, (1.25)

For fluids, the connection in (1.25) is introduced independently and is known as the
equation of state. In general, it can be nonlinear and include a temperature.

According to theories of hypo-elasticity [220], the connections in (1.20) and (1.21)
are valid only for increments Ag;, Aey, etc. In these more general theories, the
coefficients K, G, etc. are functions of the instant state; thus, the laws (1.20), (1.21) and
(1.22), must be formulated in rate form

Doy _ . Dew
Dt "Dt
(1.26)
Do . Do,
Dt Y

where the Oldroyd derivative is used [152]. For an arbitrary tensor v, , the Oldroyd

i
derivative is :

Dy, oy, oy,
—_— = =+
Dt ot 0X,

Va0 - V0w T Wby TV En 1.27)
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In the elastic laws (1.26), the displacement velocity field

aui + aui

" Yoy, (1.28)
is used for determination of the strain-rate tensor
Do. ) .
e _ 10w , Ov (1.29)
Dt 2\0x, O0X,

Only in the case of the Oldroyd derivative (1.26), the constitutive laws automatically
fulfill any space-time representations; also, the determination (1.29) of the strain rate
does not contradict the Almansi formula [220]:

e,.j 2

1 ay, o oy o
s R Bt 130
[ax, X, X, an] (130)

which is basic to the nonlinear theories of elasticity and a proper generalization of
equation (1.18).
The constitutive law of viscous media

De
A (1.31)

reflects Newton's idea that stresses are proportional to strain rates. Of course, in
conventional theories, g; is assumed to be symmetric and it results in permeability of

indexes i and j in law (1.31).
1.1.4. BOUNDARY AND DISCONTINUITY CONDITIONS

The formulated balance equations - (1.7), (1.10) and (1.13) - together with the
corresponding constitutive laws, represent a mathematical model for a barotropic type of
motion which is not needed in a thermal flux study. The differential balances have to be
considered with proper boundary conditions, which can be formulated for forces

o, =0;n; at a cross-section or for displacements y; either at the surfaces bounding the

medium or moving in it. The discontinuities which were generated by material
differences - or by special types of motion can be interpreted as a more general case of
boundaries.
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Consider the general case. The discontinuity moving with velocity U, separates two

parts, <<+ >> and <<->>, of the fields, and the material crosses the discontinuity.
Then, the following balances are formulated at the discontinuity:

p(vi-U)n, = o' (vi'-U)n, (132)
pv,(vi= Uny = oyn, = pvi(vi= Ujn—oin, (133)
where p; is the unit normal vector to the discontinuity surface. These balances can be

rewritten as normal flux-equalities at moving discontinuities (shocks) with the velocity
U=U "

p (v =U)=p(v-U) (1.34)

pva(va-U)-0m = PV (vi-U)-0m (1.35)

The variant of (1.34) and (1.35) for weak shocks (v, << v, <<U) is known as acoustic
approximation:

Om = om = P VU (1.36)

In a case of fluid dynamics (o = - p §;), it has the form

p-p =1[pl=pyvU (137)

where the square-bracket symbol denote for the pressure jump.
Only the impulse balance has to be formulated for tangential fluxes

PVi(va-U) - 6 = P vi(vi-U) - o (1.38)
and it coincides with equality of tangential forces
G = Om (1.39)
if the mass flux through the discontinuity is absent
ve = U (1.40)

Condition (1.40) corresponds to the process of replacement of one material by
another if U # 0. In this case, values p” and p' may not be interconnected at all.
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1.2. Thermodynamics and rheology of geomaterials
1.2.1. ENERGY CONSIDERATIONS

If density p is sensitive to temperature, the study of thermal states and fluxes is

necessary. The corresponding balance of total energies for the elementary volume AV -
that is, for the differential volume dx,dx,dx, , has the following' form:

2 g+m) . i,,(ﬁm)v] -
ot 2 axj 2

_ 60,-,-v,- 4 . aqj 4 Q

(1.41)

5xj X;

where ¢ is the internal energy, () is internal heat source, and g, is the thermal flux.

Multiplication of impulse balance (1.10) by the displacement velocity gives the balance of
the kinetic energy, pv;v,/2 - that is,

1{ o 0 Ooy
—|pPvivi T T pvivivi| = v + Fiv 1.42
Z[Gt PViv axjpv % v,) v 2%, Fiv ( )

The difference of (1.41) and (1.42) gives us the balance of internal energy inside
differential volume:

de aq]
pP—- = Oyey - EN
Xj

" + 0 (1.43)

d/dt=0/0t+vy;(0/0x;) is a substational derivative which was used earlier for the
determination of displacement velocity (1.27). The mass balance (1.7), the definition of
strain rate (1.28) and the suggestion of stress-tensor symmetry were used for this
expression (1.43) of the first law of thermodynamics.

The second law of thermodynamics introduces the entropy, s, of the medium

1 Further in this book usual symbol X, is used instead of X, because the microcoordinate

system will not be studied.
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aq,

pTdS = dw + Q-—a—’ dt (1.44)
Xi

Here, T is the temperature, and dW >0 is the irreversible part of internal work.
There are two possibilities for identifying di¥ - that is, the total strain can be treated as
the sum of elastic and plastic (irreversible) components:

dey = deg» + de,»f (1.45)

However, the analogous decomposition can be done also for stresses:

oy = o5 * of (1.46)

The traditional rheologic modeling given in Figures 1.3 and 1.4 underlines the

difference between (1.45) and (1.46). The expression for dW has two corresponding
forms:

dW = gydel (1.47)
dW = olde; (1.48)

which give two representations for the entropy increment:

plds = o-,-jde,-jp + (Q-iq—')dt (1.49)
Ox;
aq,

plds = o',-fde,-j + Q-a—l dt (1.50)
Xi

0‘—7’\/\/\/\/\#(—— —o
e e’ -

Figure 1.3. Rheological scheme with summation of elastic and plastic strains.
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O—e

O-P — O-P
—1

Figure 1.4. Reological scheme with summation of elastic and stresses.

The following combination of the thermodynamic laws - (1.43) and (1.49) - is known
as the Gibbs equation:

1
de = ;a,jde;; + Tds (1.51)

which shows arguments of the internal energy, & = £(s,¢;"), as a thermodynamic function

in case (1.47) and Figure 1.3.
The free energy, f, can be used instead of the internal energy:

df = de - Tds - sdT (1.52)

It is controlled by

g = L oydes + sdT (1.53)
P

which means that the free energy has measurable arguments - that is, elastic strains and
temperature.

The rheology, corresponding to Figure 1.4 and form (1.48), leads to Gibbs equation of
the following type

ds = Lotde, + Tds (1.54)
P

and requires the use of the thermodynamical potential, » = f-(// p) oje, -thatis
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dh = 1 e;dot + sdT (1.5%5)
P

Returning to the more conventional rheology (1.51), the quadratic form for the free
energy [63]

ChT (T - Ta)z

f= Z—i);Eqk,eg-eil - K2 (T-T,) e;6; - 7 7 (1.56)
gives the thermo-elastic linear constitutive law
oy = Eweu + Kz.(T-T,) 6y (1.57)
in accordance with the following sequences of equation (1.53)
ia,-j = ;; , s = Kz,e5, + C,,TLT—;,GM (1.58)

Here, z, is the thermo-dilatation coefficient, C,; is the specific heat capacity (at
I'=T,)), and the tensor E;, is expressed by (1.23) for the isotropic case. Using the

thermodynamic potential, # = h(a;,T ) gives elastic relations analogous to (1.57) but
with replacement of ¢ and o; by ¢, and o, respectively. Thus, (1.57) is a
generalization of the elastic law (1.20) and (1.23).

1.2.2. ENTROPY PRODUCTION AND VISCOELASTICITY

Let us now study the opportunities given by the second law - (1.49), (1.50) - of
thermodynamics which manifest the entropy growth. Entropy production IT is
determined by the following expression:

. aw  q.
pTTl = pT§ -0 - T—a—(q') BN LA . ZX.I, (159
dt 5x,» i

Here, X,, I, are the symbols of thermodynamic forces and fluxes. According to the
Onsager theory, linear kinetic relations between X, and J, exist as the first
approximation [77]. In the case considered here, (1.47) and (1.48) mean, respectively,

De?
Dt

= Byjuou (1.60)
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ej = Cijkl ok (1.61)

and rheologic interactions of heat flows and viscous forces are absent because of their
different tensor dimensions (the P. Curie principle):

oT A
= -K— K= = 1.62
4k on T (1.62)
However, the viscosity-coefficient tensor, s, , of geomaterials is sensitive to

temperature. In an isotopic case,
-1 1
Iuijld = Bifk’ = g';,u 5,‘,‘51:1 + ,u5ik 51‘1 (163)

where 4 is the usual shear viscosity, and ¢ is the volume viscosity essential for porous

geomaterials. For example, concrete possesses u =10’ Pa-s, limestone

1 =107 Pa-s, salt possesses 4 = 10" Pa-s and £ = 10" Pa-s for asphalt [175].
The temperature dependence of rock viscosity is usually [87] represented by

De

i~ B exp NOAIEA (1.64)
Dt ’ RT J\ 1, ‘

where Q' is the activization energy, R is the universal gas constant, » > 1, and 7, is
the second invariant of the stress tensor. This means that the thermal effects are
nonlinear. This effect is essential for intact materials at Earth’s depths.

Now, let us formulate constitutive laws for elasto-viscous media, limiting ourselves by

introducing by shear properties. Because o = Ge’ and o = u De’ / Dt, the
summation according to Figure 1.3 and (1.45) gives the Maxwell rheology [93]:

0—+9&_= &

1.65
ot Y (1.65)

where 8= u/ G is the relaxation time.
In accordance with Figure 1.4 and (1.46), the summation will give us the Voight
rheology:

De
= Ge + u— 1.66
o BT (1.66)
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The conventional generalized model is the combination of (1.65) and (1.66):
Do De
o+ 0— = Ge + u— 1.67
D * i (167

This model (1.67) was recommended for describing the elasto-viscous properties of
clays and weak soils. However, some dynamic properties discovered in recent
experiments [224,231] correspond to a more complicated model, which includes higher

time-derivatives.
We can formulate these derivatives for the stress tensor and the strain tensor, including
the deviatoric parts, g, and g;:

oy = -p& t & ey = €5;Téy (1.68)

in the following forms

-p - Zaq— = Ke + qu D - (1.69)

- -~ Doy v D%e,;
Gy 2 i 01 = 2G g, + 2 b, qu’ (1.70)
g=1

Figure 1.5. Generalized reological model including internal length-scale effect

It can be seen [152] that the case in which n =3 and m = 5 corresponds to Figure 1.5 -
that is, to a combination of the Voight-Maxwell rheology together with introduction two
internal concentrated masses, M, with the dimension [M]=[p][L?]. Because the
impulse itself includes the density, p, Figure 1.5 introduces the internal length scale such

that
& =M/p (1.71)
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This means that the rheology - (1.68) and (1.69) - corresponds to the fragmented media.
1.2.3. THERMODYNAMICS OF SHOCKS

A thermodynamic approach is also necessary for finding energy changes at
discontinuities. The corresponding balance

(1.72)

+ o+
Vi Vi +
= p+(£++_12-l_}vj _l/j)nj - O_ij_V;n,

has to be added to the mass (1.32) and impulse (1.33) balances.
The specific volume, V' = 1/ p, of the material, instead of density, is often used for

moving shocks. Then the state equation necessary for studies of shock condition can be
formulated [232] as

|14
e=¢eF)+ TV)(p-pO) (1.73)

where &°,p° = - 0¢°/0V are the "cold" energy and pressure (at 0°K), and
I = I,(V/V,) is the Gruneisen coefficient. The data for parameters Iy, ¥, and for the
function g°(V) are readily available for many materials in texts on physics.

In practice, the characteristic condition for very strong underground shocks is

measured in the form of dependence of shock-front velocity, I/, on the mass velocity, v,
behind the shock:

U= U, + Bv (1.74)

Breaks of this linear form are treated as phase transitions at the proper pressure levels.
Another accepted form of shock adiabate (1.74) is known as the Hugoniot adiabat:

Py = PuWu) »  enWn) = %pH(Vo-VH) (1.75)

and is often used to describe shocks in gas dynamics.
The first relation (1.75) can be measured experimentally - as well as (1.74). The
second one is a consequence of the balance (1.72) together with (1.33) and (1.34).
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The negligible role of the stress deviator is argued in such cases by extremely high
pressures under intense shock conditions. However, this hydrodynamic description is not
sufficient for minor stress levels. Moreover, if the equation of state can be formulated
only in a rate form, the shock depends on motion out of shock and is essential for intense
explosions in dilating geomaterials.
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1.3. Dilatant elasto-plasticity of geomaterials
1.3.1. FRICTION AND DILATANCY CONCEPTS

The irreversible deformation of geomaterials is generated by microslips and microcracks
of the polycrystalline and granular strata structure. Every elementary act of deformation
is connected with the overcoming of bonds or solid friction as governed by the Coulomb
law [44]

IR|= N tgp_+chs (1.76)

where R is the tangential force, N is the normal force acting at the slip contact, ¢_ is

the contact friction angle, and chs is the cohesion.

Implicitly, it is suggested that the limit condition (1.76) valid in reality at a number of
grain contacts corresponds to the bulk limit state formulated for stress invariants in a
form of the yield continuum condition:

O, = |o.|-ap-Y=0 (1.77)

Here, pressure p and shear stress intensity ¢, are involved, and Y is the yield value,
a is the internal-friction coefficient. If the yield condition is valid, irreversible (plastic)
deformation takes place.

According to rule (1.60), irreversible strain-rate must be determined by the
nonassociative flow rule [144]

De,’
Dt

D¢ DA
= - (p+H)s,~=+(5,+PS;) — 1.78
(p )51 Dt (0'1 Pé‘]) Dt ( )

which contains two unknown scalar functions: D&/ Dt and DA/ Dt. These scalar
functions have to equal zero if the condition (1.77) is not satisfied; then, the deformation
process is pure elastic.

If the limit condition (1.77) is fulfilled, it must be considered together with the
balance equations and, therefore, will determine one of the mentioned scalars. So, one
more condition is necessary to determine the second scalar function. This condition has
to reflect the kinematic connection of volume and shear increment strains (Figure 1.6)
typical of granular materials, found qualitatively by O. Reynolds in 1885 and named by
him as the dilatancy. Quantitatively, it has to have a connection between invariants of the
irreversible strain-rate tensor [143]:

=0 (1.79)

De . |Dy’
O, =~ g, l 4

Dt
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where A is the dilatancy rate (coefficient), and y” is the plastic shear intensity.

On the microscale level, the dilatant behavior can be explained by the repacking of
discs from a dense to loose state, with the distance between their centers being constant
(Figure 1.6). This is a sufficient explanation for soils and polycrystalline rocks with weak
bonds.

(XD (X
(X (D

Figure 1.6. Dilatancy can be explained as repacking of discs in contacts according to O.Reynolds(1885).

In the case of fracturing with the same length scale as the mineral grain diameter, the
dilatancy process is illustrated by growth of tensile cracks under the usual shear
(Figurel.7).

Phenomenologically, the dilatant process is described by the dilatancy rule (1.79) with
A ~0. The case A <0 corresponds to plastic enhancement of pore collapse.

The exclusion of D&/ Dt from (1.78) with the help of the dilatancy condition (1.79)

permits the use of only one additional unknown scalar function, DA/ Dt .

Figure 1.7. Crack dilating during shear [209].



20 CHAPTER 1

1.3.2. PLASTIC FLOW RULES

The idealized case of equality of the coefficients & and A corresponds to the so-called
associative rule [56]:
Deijp _ 0D, %

1.80
Dt ao',-j Dt ( )

Which was found to be valid for metal plasticity, where a = A =0 [140]. However,
experiments have shown that a« > A for all known geomaterials (sands, rocks,

polycrystalline ice). Correspondingly, the plastic potential 'f’(cr,.j) such that

Dt 0o, Dt
cannot coincide with the yield function &, [144].
The yield surface typical for geomaterials is represented (Figure 1.8) in the plane of
the stress invariants ¢, p as a number of straight lines. Every solid line corresponds to
the instant limit condition (1.77); broken lines correspond to plastic isopotential surfaces

| v M0

A<O
e’ p+H

Figure 1.8. Representation of yield surfaces with plastic strain increments (arrows).

VY=0l-2aA (p+HY =0’(p,+ HXa-A) (1.82)

and vectors correspond to plastic strain increments. The process of geomaterial plastic
compaction (A - 0) leads to pore closure, to internal friction, @, and cohesion
coefficient, H, growth. Correspondingly, the solid line moves up to the so-called critical
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state (A =0). The plastic-loosening process (A >0 ) creates new pores and diminishes
internal friction and cohesion [152].

It is necessary, therefore, to treat plastic states as being instant and depending on the
additional hardening (softening) parameter y: a=(x), Y=Y(x). The plastic active

process with hardening is determined correspondingly by the following conditions:

0Ps 4y 4 0P 45 = (1.83)

(2 2 7 = 0 » d’ ag =
@, (p.o.. %) @ po G0

In the case of softening, there are two conditions:

o, (po.x)=0 do,= a;:"dp + %da‘, <0 (1.84)
Neutral loading is determined by
o.(p,o,,%)=0 , d'@,=0 , di=0 (1.85)
and the unloading process is determined by
o <0 di=0 (1.86)

Becouse plastic-volume deformation (Figures 1.9 and 1.10)
e Sy=e’=% (1.87)

is a measurable value of the irreversible change of porosity, the hardening parameter y
can be identified with it. Another possibility is to use the plastic shear strain

x=7

which is equivalent approximately to (1.87) because of the dilatancy condition (1.79).
However, the value y” is much more difficult to measure than e?.



22 CHAPTER 1
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Figure 1.9. Solid friction, ¢ , and dilatancy, A , coefficients for river quartz sands
as functions of the same state parameter.

10 |
05 / N

e’/ e%
0 05 10

Figure 1.10. Usage of plastic volume deformation (irreversible porosity increments)
as hardening parameter, ¥ .

Conditions (1.82) through (1.85) contain the following increment
d'®=(0®, /dy)dy

and reflect the yield surface changes with plastic deformation.

(1.88)

The constitutive law (1.78) is the incremental flow rule, and it cannot be integrated
separately from the equilibrium equations - that is, the constitutive law of plasticity is
nonholonomic [144]. Only in the case of proportional loading (to any single parameter)
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at all boundaries (for example, o;n; = f,(t)) the corresponding state equation may be

found, but it will be not the same one for other variants of boundary conditions.
The total strains, ¢;, are determined by rule (1.45), where the elastic components are

governed by Hooke’s law - (1.20) and (1.22). In isotropic cases one has:

do, = (K —%G)éijde” +2Gde; (1.89)

1.3.3. EXPERIMENTAL DILATANCY OF ROCKS

Let us examine, the typical process of triaxial deformation of limestone sample,
represented in Figure 1.11. In this type of testing, the axial stress, o, and confining

pressure, p.=-g;, can be changed independently. You can see that initial hydrostatic
loading (o, = o3 =- p.) diminishes pore space and, thus, volume strains are negative.
The further loading is nonproportional because the axial force, o,, increases, although
the confining pressure, p,, is kept constant. This type of loading is characteristic for
stress anisotropy and enhances pore collapse.

1 T T T T T T T .
G, /
[}
2t Dilatancy cffect
Decrease of &
G G at g =const
E B Growthof 6y at
= 6= const
]
8, ]
5
2
Hydrostatic gir
unloading 5
Hy&hrustallv:
Hydrostatic reloading I~ loading, 6’ = 6)
L
G- L L ] 1 ) |
12 8 4 0 -4 -8
Laosering Consolidation

Volume strain, %

Figure 1.11. Limestone triaxial testing performed by Terra-Tek Corporation,
Salt Lake City (Courtesy of S. J. Green).
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When the pore volume reaches a certain level, an important change takes place - that
is, compaction is replaced by loosening because of dilatancy process. Diminishing the
axial stress component ¢, means the cessation of further plastic deformation, although
elastic deformation continues in accordance with the unloading process. In the first stage
of the unloading o ;= const; however at the second stage, o, =g, and both are
diminishing. The elastic nature of the corresponding stresses are proven by the
coincidence of the unloading and reloading paths (broken line).

The complexity of Figure 1.11 means that each loading process of a dilatant material
must be characterized by two stress parameters: p and o, .

In Figure 1.12, the dilatancy of granite is presented as a function of a shear stress
inensivity, o, for the constant pressure level.

1 1 1 1
0 Loosening 0 L fousalidatien 02

Volume deformation,%

Figure 1.12. Triaxial test of granite Westerly performed by Terra-Tek Corporation,
Salt Lake City (Courtesy of S. J. Green).

1.3.4. PLANE PLASTICITY

For planar problems, the yield condition (1.77) has the following form:

+
%\Ro,x-ayy)er40,‘,,2+—0ﬁ——aﬂsin(p=Hsinqo (1.90)

which uses the angle ¢ of internal bulk friction. Here, @ =sing,Y = Hsing, and
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ot 1
p=-22% = JGu-0,) 45, (1.91)

2 2

Using the Cartesian coordinates x, y, turned at angle y relative to the direction of the
main stress components,

2
gy =—72 (1.92)
the stress state can be expressed only in terms of pressure and the angle y [140]
ow=H-(p+ H)(-sinpcos2y)
o, =H-(p+ H)(I+sinpcos2y) (1.93)

oy =(p+ H)sinpsin2y

and the limit condition (1.90) will be satisfied.
For planar problems, the dilatancy connection (1.79) can be transformed to

den+de,’ =sinvy(de,-de,’ J+4(dey ) (1.94)

where v is the dilatancy angle. The condition of the collinearity of the stress and the
strain increment tensor must also be used

De:ryp De}, D e;;,
- - ’ 1.95
Dt [ ot Dt | &Y (1.95)

where the angle y of relation (1.95) is the same one as in relation (1.92).
If we consider the idealized case when the elastic part of strains are negligible

Dey De{; 1 av; an
= = > + 2% 1.96
Dt Dt 2 ax,- 5xx ( )
then,
20 Ovy , Oy Ov, Oy
tow = w =|ZVx 3 YVy ¥ 2Ty 1.97
g‘// Oxx~ Oy (ax ay )/[ ax ay ( )
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and total changes of density p can be interpreted as increments of the hardening
parameter y. Therefore, the mass balance equations (1.7) have to be added to the
equilibrium equations (1.10). They have the following form for planar problems

ap Qv Ovs)_ (1.98)
dt x oy
aO'xx aaxy
90, 9% _ 1.99
s (199)
06, 0o,
Gom 990 _ 1.100
x| o ( )

where the stress symmetry is assumed for simplicity - that is o, = o, .
If representation (1.93) is used, the equilibrium equations follow [152]

(1-sin ¢ cos 21//)6—‘0 + sin @ sin 2y/a—p +
ox oy
oy | . op| 0 .
-cos 2y =L +sin 2y =t —{(p+ H)s - 1.101
{ v V/ay}ap{(l’ )sin g} (1.101)

2(p+ H)sin (p{sin 2y 2 + cos 2y 6_1//} =0,
ox oy

sin ¢ sin 2y P +(1 +singpcos 2(//)6_‘” _
ox ay
. op op| © .
sin 2y —— - cos2y ——{(p+ H)sinp} + 1.102
{‘ i "/ay}ap{(p )sin o} (1.102)

2Ap+ H)sing cos2y/a—'//-sin2y/@/— =0,
ox oy

where the unknown variables are y, p and p. If the hardening effect is not essential,
0/ 0p){(p+ H)sing} =0,
and the equilibrium equations can be solved independently of the kinematic equations.

The corresponding works are known as the limit statics [205] of geomaterials.
However, in the most practical cases, the boundary conditions are formulated for
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displacements. In addition, the hardening effect is extremely important for dilating

geomaterials.
Let us formulate effective kinematic equations. The dilatancy condition (1.94) can be
rewritten as:
2 2
0 0 0
%+i:siny —a—‘-)—x-l + avx+ Vy (1103)
x Oy ox oy &y ox

Using the angle y as one of unknown variables can transform collinearity (1.97) and
dilatancy (1.103) conditions to field equations for displacement velocities:

. ov . oy
cos2y -sin v)—=+ (cos2y + sinv) —< =0 1.104
(cos2y )ax (cos2y +si )6y ( )
. .0 )
sinZW%+smv%+smv—v—y-+sm2y/% =0 (1.105)

These equations are linear if y is known from equilibrium equations (1.101), (1.102).

1.3.5. SLIP SURFACE CONDITIONS

The main problem of the theory is to find slip surfaces which are created due to
localization of plastic shear into thin bands. The localization process was studied by J.
Rudnicki and J. Rice [186], who identified it with the bifurcation of deformation inside a
plane band. Besides the dilatant elastoplastic pressure-sensitive model [144] was
supposed to be valid inside the band [186] and it was assumed also that there is no
stress-strain changes outside the band. However, it is only valid initially because, in
reality, slip-surface appearance changes the stress distribution. For example, the bulk
plasticity can disappear totally after a slip surface is created.
According to Coulomb, the limit condition (1.76) can be formulated for the slip
surface
|G| = O 18 @, + Chs, (1.106)

and has to be valid for the case of a tangential relative motion of edges <<+>> and <<-
>>, which are in contact at the slip surface. Here ¢_ is the solid friction angle along the

slip surface, and the cohesion, chs,, is the asperity strength. Moreover, it is not at all

necessary to have plastic states (1.77) inside the edges.
The continuity condition for forces at the slip plane are:

[om]=0m ~m =0 (1.107)
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[6ml=0m -0m =0 (1.108)

Implicitily, the slip along the Coulomb surface means the possibility of tangential
velocity discontinuity:
[vil=vi-vi#0 (1.109)

Let us now consider the case of plastic fields with symmetrical stress tensors but
different internal frictions in parts adjoining the slip surface. Introduction of expression
(1.93) into force balances (1.107) and (1.108) gives the following two relations:

(p" + H)(1+sing cos2y™) = (p + H)(1+sing cos2y’) (1.110)
(p'+H)sing'sin2y = (p + H)sing'sin2y~ (1.111)

These can be reduced to the connection between inclination angles w* and y~ of the
slip surface to the main compression:

sing sin2y " -sing’sin2y +sing sing’sin2 (y -y) =0 (1.112)

We need to remember that, in a plastic field, the tangential jump of displacement
velocity (1.109) could be realized only, [158], along the characteristics of the velocity
field due to linear-type equations (1.104) and (1.105). The velocity characteristics are
inclined to the main compression at the angle:

v (1.113)

N

In the simplest case of the constant bulk solid friction angle ¢ and dilatancy angle v
outside of the slip surface,

p=9 =9, (1.114)
vy =y (1.115)

the relation (1.112) has the form:
cos(y " -y)=cos(y -y )sing (1.116)

and the following expression can be found
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\u*:i(g—e)+kn (1.117)

where
sinp-1g(v/2)

1-1g(v/2) (1.118)

6=arctg

Moreover, the normal ( ¢, = ¢;,) and the tangential (o, = o7,) force components at
the slip surface

om=H-(p" + H)1+singsin v) (1.119)

om=(p"+H)sinpcosv (1.120)

will satisfy the Coulomb limit condition (1.106) if [46,158]

tgq)sz% (1.121)
chs, = H tgo, (1.122)

Thus, (1.121) is equivalent to the following expression [120]:
sing, = cos(¢, - v)sing (1.123)

The real slip occurs along the Coulomb surface with the surface solid friction angle ¢,
which is smaller than the bulk value ¢ therefore, the bearing capacity of a body
decreases due to slip-surface appearance (Figure 1.13).

B %
AL X T ) om

Figure 1.13. Stress conditions at slip surface as the Morh circles intersection.

The stress conditions at the slip surface are, shown in Figure 1.13 as a crossing of two
Mohr circles (see Section 1.4); bulk, ¢, and surface, @, solid friction angles are also
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shown. Bulk plastic states inside both edges in contact are shown here by the circle
touching line BA with the solid friction angle ¢ .

1.3.6. DILATANCY INSIDE THE LOCALIZATION BAND

Mathematically, slip surfaces are thin zones, of high-gradient change. Let us suppose
that the same equations of dilatant plasticity (1.93), (1.103) are valid inside these zones
[202] and that the axis x, is tangential to the band, and the axis x, is in a normal

direction to it. Because the band is narrow and the shear is intensive, the prevailing
velocity gradients across the band,

6v2 aV| av2 6V1
PES—— 5 —_— >> — , —_—
Ox, Ox, Ox; Oxy

In this case, the dilatancy condition (1.103) reduces to the ordinary equation

dvz - (dw)z (dw)z
—==sinv || —=| +|— 1.124
dX2 \/ dx; dJC2 ( )

which determines the proportionality of velocity-component increments:

dv, /dv, =1gv (1.125)

The integration of equation (1.125) across the thickness of the shear band gives the
following result if the dilatancy angle is constant:

v,1=[v11gv (1.126)
So, the jump of tangential velocity
[vl ] =V (+h) -V ('h)

which is nonequal to zero at the slip surface, has to be accompained by the jump of its
normal component

v, ]1=v,(+h)-v,(-h)

where 2 is the band thickness. The shear band can increase or decrease its thickness
during slip, depending on the sign of dilatancy. As a result, there is a tendency to
diminish internal friction inside the band or, in other words, the effective Coulomb
friction at the slip surface.
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1.4. Particle rotation effects in granulated materials
1.4.1. THE MOHR CIRCLE FOR ASYMMETRIC STRESSES

Let us consider the equilibrium of triangle ABC with sides AB and BC corresponding
to coordinate lines x = const, y = const (Figure 1.14).

Figure 1.14. Stress equilibrium taking into account asymmetry, Oy # 0y,

and couple stresses, M, , M v My,

If the side lengths of triangle ABC are also taken into account, two balance equations
can be written for the X and y - components of force [140]:

omCOSY + g, SNy = g, COSY T g, 8in ¥ (1.127)
OmSIMY - 5, COSY = gy Siny + g, COSY (1.128)

These equations can be transformed to:

- - +
o = O'xeO'yy + O Ox oo )% .,_%sm 2y (1.129)

am=Msin2w+ny;ay”-axy;a’“cosh/ (1.130)

If the angle y is excluded, then the quadratic algebraic equation can be found:

2 2 2 2
_Oxtoy _ O Op| _[(Op-0Ox Ont O
(crm, Y ) +(crm 3 ) ( 3 ) +( 3 ) (1.131)
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which generalizes Mohr's geomaterial interpretation [140]. We can see here, pressure
p = (0wt o,) /2 for planar problems and, instead of the second invariant, (1.91)
the asymmetrical generalization:

2 + 2
— Oy~ Oxx + Oxy Oyx 1.132
o \/( o) o227 %) (413

So, it is possible to rewrite relation (1.131) as follows:

(Gm-a0) +(om-ba) = R (1.133)
where:
+ -
aﬁp:-g’fz—aﬂ R el (1.134)

The stress conditions at any cross-section of the solid body belong to the circle
presented in Figure 1.15.

!
{
-

Figure 1.15. The Mohr stress circle moves upward in the asymmetric case [193].

In the case of stress symmetry, o =0, the center O is at the axis o, ; the bulk yield

condition (1.90), formulated earlier as a linear relation between invariants of stress-
tensor, can now be interpreted as a limit relation between the radius and the center
coordinates of the Mohr circle.

The limit line BA can be introduced as the yield condition (in Figure 1.15) for
asymmetrical stress tensor; hence, the limit condition (1.90) will be generalized to

lo.|— psing +|o,|cose — chscosp =0 (1.135)
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Stresses at the cross-section, corresponding to point A, are limited by the Coulomb

condition
|G|t ountgp = chs (1.136)

where H 1gp = chs — o,
However, if ¢, # o, the triangle ABC (in Figure 1.14) can rotate as a whole and

must be prevented by the couple-stresses, M > distributed over its sides.

The corresponding moment-of-momentum balance must now be introduced
. h .
Az,,sz-szcosy/-szsmy/Aﬁ(o-yx-gw)smw/ (1.137)

Here, A, is the disbalance of the couple-stresses, which equalize the asymmetry of
conventional stresses. Because the balance equations - (1.127), (1.128) and (1.137) - are
formulated for the vicinity of the point A, the characteristic size & of triangle ABC has
to be infinitely small, but not smaller than the microstructure scale d (for example, the
mineral grain diameter) which is implicitly included in the couple-stresses M ,,. If
h << d, the intact solid material inside grains is considered; here, it is supposed to be
devoid of microstructure. The symmetric mechanics is also valid if d / 4 is negligible -
that is, if the granular microstructure is absent (4 = d).

1.4.2. STRESS-SPACE CURVE
As you can see, the balance equations - (1.127), (1.128) and (1.137) - determine a space
curve (Figure 1.16) in the coordinate system o,,, o, M ,,, Which is a generalization of

the Mohr plane for a nonsymmetric case. This curve depend on a single parameter y
and has a radius-vector [72]

7 =(a,co82y - ¢, 8in 2y) i +(a,sin2y - ¢, cos2y) j + b, v2sin 2pk  (1.138)
where the notations (1.134) are used together with

¢, =(0,+0,)/2 (1.139)

and i, j, k are the unit axial vectors of the space.
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Figure 1.16. Space curve representing the stress state in the case of nontrivial moment-of-momentum.

Figure 1.17. The elliptic cross-section of the cylinder characterizing the stress-state inside geomaterials.
The derivative of 7 with respect to ¥

o (- @, Sin 2y + ¢, cos2y) i +
oy (1.140)

2 (@, €082y + ¢, 80 2y) J + 2 b, 2 cos 2yk

determines the vector tangential to the curve (1.138). Vectorial multiplication of (1.138)
and (1.140) determines the normal to the plane created by 7 and dF / dy. As can be
seen, this normal is independent of the angle y :

fi, =F x(OF / OW)=-bocol - a,b,] *(a’ + B2)K (1.141)

Consequently, as (Figure 1.17) shows, the curve (1.138) lies in the plane oriented
orthogonal to the normal (1.141); the plane equation is:
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boV2(co omt a5 0m) - (a2 + B2 An / B) = a0 bo(bo + N2 (1.142)

So, the space curve (1.138) is really the plane curve and, moreover, the ellipse:

2 2
_’I‘_Z+2’_2=1 (1.143)

o

Here,

X = (0w - a,) €08 B+ (on: - bs) Sin Bcos 6 + %sin pcosé,

Y =(om- a,)sin B+ (o - b,)cos fcosh + % cos fsin 6, (1.144)

1
12=12+Z(O'yx'0'xy)2 P D2=JZ

and the Euler angles f§ and € are used:

B = arctg Om=bo , O@=arctgp, /i (1.145)
Onm =~ Qo J2
This ellipse has invariants
I 1 1

- + - 3 (l . 146)

I D (ID)

or, equivalently, their ratio and the ellipse eccentricity:

Oy~ Ty (1.147)

Z+2
I"tD TR

The ellipse is inclined at the angle 6 to the horizontal plane A, =0, where its
projection is the Mohr circle (1.131).

1.4.3. DILATANT KINEMATICS WITH ROTATION

To study the internal kinematic properties of granulated material, it is necessary to use
the difference between the mean velocity field, v, and the rigid rotation,

@, =£,(92, +w,), of particles in the vicinity of the same point 4. Here, (2, is the
rotational velocity of mean displacement field, @, is the spin (microrotation)
component, and @, is the total rotational velocity. This gives the following expression
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for the relative velocity of two particles, A and A’, which are separated by the distance,
h:
Av, = (0v, / ox,)hn; - ® hn; + O(h?)

(1.148)

= %(av,- / ox; +ov, / ox)hn, - e hno, + O(K)

Figure 1.18. Velocity characteristics BB, B’B’ and shear without
dilatancy along orthogonal lines AA, A’A’.

Further multiplication of (1.148) by normal », determines the elongation rate, Av,,
of the distance, 4, and multiplication by unit vector /,, such that n, I, = 0, determines the
tangential velocity component, Av_, of the particle relative displacement. Using the
angle y between the normal and the coordinate x, (see Figure 1.18),

n =siny , Mm=cosy (1.149)
L =-cosy , L =siny (1.150)

we can get the following two expressions:

Ay 10y, ,1(0v, Ov 1(0ov oy, ) .
n=_ D4 "X lcos2y +—| —=+"2|sin2 1.151
h 20x 2(6y ax) v 2(ay ax) v (115D
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Av, _ o [ 1{0v, Ov.).. 1(0vx , Ov
=@ 10y Ova ), 1[0V Ovy) o5 1.152
p 5 2[6y 6x)m % Z(Gy ax)co v ( )

where @ = w, is the nonzero spin velocity. According to these expressions, Av, and
Av, belong to the circle

(Av,-ha) +(Av,-hp,) =B R (1.153)
where
oL (v 0ve) (2w on) Dy
’ oy ox ox oy Dt
(1.154)
v, Ov,)_De
a‘: _& vy ¢ b£:a)l
a o) Dt

The dilatancy condition (1.94), that has not accounted for the grain rotation effect,
can be rewritten as:

a:= R.sinv (1.155)

meaning that the relative velocity circle (1.153) crosses the axis Av, =0 while the
rotation velocity is determining the circle displacement along the vertical line in the plane
of Figure 1.19.

Ave/p
/A

Figure 1.19. Relative velocity circles crossing the AV, axis due to the dilatancy condition.



38 CHAPTER 1

It also means that there is a line, A4, in the vicinity along which pure tangential relative
motion of particles in contact is possible. Line A4 must be orthogonal to the velocity
characteristic BB (Figure 1.18). This tangential motion may be interpreted as initial slip.
However, the line AA cannot be a real discontinuity as the velocity characteristic BB
that connects the relative motion of the adjointed smooth plastic or rigid velocities fields.
Moreover, according to Figure 1.19, the relative motion along BB is connected
necessarily with thickening of the band along BB. We can get the result (1.126) if
b, =£2. So, the conventional (symmetric) mechanics is sufficient to find slip-surfaces.

Inside slip bands the deformation needs irreversible changes of microstructure. So, the
microplasticity has to be studied more carefully.

1.4.4. LIMIT CONDITION FOR ASYMMETRIC PLASTICITY

One needs a more general theory for continuum description of plastic states inside a
transition zone corresponding to the slip line..

Such a theory includes asymmetrical parameters in the limit condition for slip, as, for
example, is done in equation (1.135), while the Coulomb condition (1.136) is the same
one. However, the friction angle ¢ will be a function of the rotation angle ¢ such that

o =dg/dt (1.156)

Correspondingly, the dilatancy rate A will be the function of the same angle ¢. Then
condition (1.94) will be rewritten as

DA
2€=_|7|=A_D|7‘+|7|a,.”.’4 (1.157)
Dt Dt Dt d¢
The planar case will be described by the generalized dilatancy law:
De _ Dy, . .
— =|—=—{sin v+ wsin 6, 1.158
o Iplsinvte (1.158)

This means that volume changes can be created by the grain’s internal rotation effect.
Here, 0.is the new angle parameter.

However, three additional limit conditions are needed, two of which correspond to the
solid friction effects of rotation, torque, and to microdilatancy limitation of higher
gradient kinematics. In other words, the rheological connections between ¢, and @ and
between M, and O@; / Ox; must be determined and the limitation for gradient

coefficients in (1.22) be found.
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1.4.5. EXPERIMENTAL DAMAGE IN THE PLANE SAMPLES

Prof. J. F. Labuz (University of Minnesota) found some experimental evidence of initial
damage along line A4 by acoustical emission methods during biaxial testing of plane rock
samples (Figures 1.20 and 1.21). Initial damage has a form of the diffusion (random)
cloud in the vicinity of initially round notch. Then the damage is concentrated roughly

along line AA4.
However, finite rupture takes place along another line which is closer to the main

compression (vertical) axis.

Berea Sandstone

100 100

/
L.__

Figure 1.20. During initial stages of deformation the internal damage is concentrated along lines
orthogonal to velocity characteristics. (Courtesy of J.F.Labuz.)
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Berea Sandstone

100 100 100

Figure 1.21. Finally, the damage is removed to the rupture lines along the velocity characteristics.
(Courtesy of J.F.Labuz.)

One can speculate that there is no room for necessary microstructure changes along
line A4 because the corresponding band cannot be thicker. Necessary microstructure
changes inside the shear bands - that is, grain rotation, decreasing the cohesion and the
friction, needs the lateral thickening due to the dilatancy, and this is possible only along
the velocity characteristic BB.
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1.5. Brittle fracturing of rocks
1.5.1. GLOBAL THERMODYNAMICS OF FRACTURING

Geomaterial at contacts have different properties than the same geomaterial inside the
body of rock or soil masses, as manifested by the specific friction conditions at slip
surfaces. The localization process has shown that the contacts, joints and cracks, which
can be treated as singular surfaces or mathematical discontinuities, have thin but finite
thickness in reality.

As a result, we can introduce the internal energy, &,, for geomaterial at the surface
which is non-equal to its bulk value, s(a,.j,T ) determined by equation (1.51) for the

elementary volume, AV, of the body. The fracturing process is usually identified with
the loss or changes of the bearing capacity of the rock masses. Correspondingly, the
thermodynamical analysis has to be performed for a whole body.

Let us introduce a symbolic total load P and a total displacement A, together with
the total internal energy £ and heat flux Q [177]. Then the first law of thermodynamics

is formulated as

PdA+Qdt = dE (1.157)

The entropy production, S, is controlled by heat flux, Q, and internal dissipation, IT -
that is,

TNldt + Qdt = TdS (1.158)

where 7 is the mean body temperature. Introduction of free energy
F=E-TS (1.159)

permits the internal dissipation as a difference of total load work and free energy
increment

T,IT= PA—(dE—-T,5) = PA—dF (1.160)

if the isothermal case (T = T;) is considered.
The free energy, F', can also be expressed as the sum of elastic bulk energy of the
body W, (P, I) and the surface energy at the crack that is proportional to its length, / , -

that is,

F=W, (P,)+20y,1 (1.161)
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Here, the specific energy, y,, equals the difference between surface energy, &;, and
bulk energy, £, and corresponds to the unit length of a crack (Section 1.5.4).
1.5.2. CRITERION OF ELASTO - BRITTLE FRACTURE

Usually, the nondissipative case (IT=0) is considered, for which we can find the
connections between admissible variations of body strain, dA, and crack length, &/ :

P5A—6F=(— agl/” —2y0)6l+(—?—;—g—”—+P)5A=0 (1.162)

According to equality (1.162), the crack can grow if changes of elastic bulk energy
corresponding to its unit-length increment are equalized by increasing the specific energy
of new surfaces:

oW
———2=2y.>0 1.1
al Yo (1.163)

Only in this case, will any disturbance lead to crack growth. The secondary sequence
of the equality (1.162) is the elastic constitutive relation for the whole body:
P=awW,/oA.

The fracture critical condition (1.163) was suggested by A Griffith (1922) and is the
basis of conventional fracture theory. The irreversible work, y., spent for an unit of new

surface can be included into the specific surface energy if corresponding dissipation is not
dependent on crack length, in which case, the effective surface energy, y, is the sum:

y=vrotv. (1.164)
1.5.3. FRACTURE GROWTH IN DISSIPATING STRATA

A more sophisticated condition is formulated for plastic or viscous effects in
geomaterials when IT = 0 and the dissipation is dependent on crack scale. For such a
case, let us suppose that the dissipation function, ¥, includes: (1) the bulk dissipation
rate, Z, (P, 1), for a body with a crack; (2) the part of the work, 2./, which is spent
irreversibly to create new crack surfaces; and (3) additional dissipation inside the thin
layer, 2&1, due to differences between the surface and bulk viscosity of geomaterials.
Then, the following definition [145] is used:

TY=2,(P1)+2y.i+28 (1.165)
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According to the Onsager principle [77], the critical condition of fracture with
dissipation is formulated as

S(I1-¥)=0 (1.166)

This means that changes of the entropy production, I, and the dissipation rate, ‘¥,

must be equal.
Variations of IT and ¥ are determined by the two following equalities:

SIT = ASP - 6F = Aép-i(aW")aP-ﬁ(aW”)al (1.167)
P\ ar )7 e
SV = 57, + 2851 =‘3a—i}5p+aa—zlb51+ 2661 (1.168)

Then the generalized fracture critical condition [145] of the crack growth without
changes of stresses (6P = 0) is

) oW, . Oy
. = <L
6I(Zb+ 5t) 26+20— (1.169)

Let us consider elastoviscous geomaterial. In this case, superfluous elastic energy,
W, and rate of dissipation, Z,, are proportional to the area of stress concentration -

that is, to /. Then we have:
2 2
m:—31%12+cl , Zb=BZ;4ﬂf+C; (1.170)

where B, , B, are numerical coefficients, E is the elastic modules, u is the viscosity and
C:, C: are constants independent of crack length /. Substitution of the expressions
(1.170) into (1.169) gives the differential equation

P dl

P
———B,—I+2E=0 1.171
B B P 4 (1.171)

relative to crack length.
The dissipation rate, &, corresponds to the unit length of cracks and is assumed to

depend only upon crack velocity, d/ / dt. For viscous dissipation, there is reason to
suggest that
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1 (dlY
5‘533(5) (1.172)

Thus, equation (1.171) determines the crack velocity dl / dt as a function of its
instant size / :

dry P (dl P?
— | +Bi—=| = |-B.—1=0 1.173
Bs(dt) B, 3 [dt) B; ( )

1.5.4. CRACK - TIP AUTONOMICS

There is another simple approach to crack-growth study. Consider a growing crack and
use the system of coordinates X;, x,, which moves with the velocity [J; of the crack-tip.
Usually, it is assumed that fracturing is independent near the crack-tip and that fields of
stresses and strain (or strain-rate) are stationary inside the contour
=T, +T, + T, + T, around the tip (Figure 1.22).

transfer from bulk to
surface state

rfﬂ
/ bulk
+ + +/+ + +|+ + + material
+ + +/+ + [¥[+ + + o
[ai ri

surface material

Figure 1.22. The control volume moving with the crack tip illustrates the change
of geomaterial from the bulk to the surface state.

The energy fluxes in and out of this contour need be equalized - that is,

J= j{ (£+v’v‘)U,--v,-)+o-,qvk—qj}nde=0 (1.174)
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If the fluxes at the crack edges are absent, then the fluxes at I'; and I; are equal to
each other. Because we have to discriminate bulk internal energy &, and the surface
energy &, of the body, the corresponding contour integral for I'y has the surplus part

[ p(ec- e Wi-vi) dy = lim Aslpld = 27,1 (1.175)

To

The energy difference, [&], for the masses, 20d , adjacent to new surfaces determines the
Griffith surface energy , 7, . We can also see that, here, U, —v, = i. Accounting for
dissipation [145]

D~(&"¢) ~ dlh (" . ¢ ~§ (1.176)

localized inside contour 7, with the area A, ~ d” permits addition of the dissipate term
2y =243V (1.177)

to the right-hand side of (1.175). For example, for plastic dissipation, n =1 /2, - that
is, y. = 7.(T). However, in the case of viscous dissipation, n=/ and

ye=mn.l (1.178)

where 77, is the viscous resistance.

For further details it is necessary to also use the contour integral for heat fluxes. The
difference of the contour integrals for total energy and for heat fluxes gives us the
possibility of using the free energy f (o, T'), which is conventionally used as the elastic
potential. This operation leads to the well-known J -integral [94,152] which is valid in
the isothermal case:

J = J-{p(f + Yk Vk)dX oy gX }njdl“ Wy, *y)=2y (1.179)
The non-zero right-hand side term is motivated by the transition from the general specific
free energy / value [63] to its bulk equivalent, £,. In the adiabatic case, the constant y
(or y, and 7.) has to be different.

Viscous geomaterials may be fractured also with the stationary stress distribution in
the vicinity of the crack tip, but this condition corresponds to stationary of strain-rate
fields. Therefore, the following equation must be integrated over the contour T":
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d | de o, q;
; L+ =( 1.180
dt{ dt G’ax, ax]} ( )

The preliminary differentiation of the heat balance equation over time is also necessary.
In the isothermal case, the result is

of Oy oy ;
N=[L+27 lix, - 5,, Ly dr =26 +2°L§ 1.181
i(at ”) 27O e Y (1.181)

If the velocity field can be separated into viscous and elastic parts,
vi=vtv (1.182)
then the integral (1.181) can be represented as

N=-%% L W,
ol 61

oy ;
=26+2-2L1 1.183
s+277 (1.183)
which coincides with the criterion (1.179).

1.5.5. MATERIAL TOUGHNESS CONCEPT

The additive condition (1.182) opens the possibility of using some viscous solutions. For
example, the plate under tension [145] is characterized by

2
2y L (1.184)
Su
2
G=- 5Zb—( +1)‘1K (1+v) (1.185)

where K is the coefficient of stress concentration, i is the coefficient of strain condition
(that is, ¥ = 3 —4v for plane strain and x =(3—-4) /(1 +v) for the plane-stress
state), and v is the Poisson's coefficient [94]. The introduction of (1.184) and (1.185)
into criterion (1.183) leads to the differential equation

K’ _j20+v) 3K
7 E ol

=16(1+ rc)(§+%§l') (1.186)
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The solution of (1.186) determines the values K, of crack growth in viscoelastic plate.
For the pure elastic case,

, I+x
;= 8E 1.187
I+v 4 ( )
For the viscous case,
K. =16(I1+x)éu (1.188)

On the other hand, the concentration coefficient, K, can be represented as a function
of stresses applied to the body. For example, for the plate with a crack,

K=PJz(/2) (1.189)

The measurement of P at the initial moment of crack growth allows the possibility of
determining the critical values, K. (or foughness), of materials experimentally. If
K. = const, equality (1.189) is valid and the fracturing is elasto-brittle.

The data for KC(I ) corresponding to fracturing under tension are given in the Table
1.1. The variability of K. for the same geomaterials is connected with its
nonhomogeneity and the influence of crack-growth velocity.

TABLE 1.1. Critical stress concentration values for geomaterials.

Geomaterial Kc( 1) Geomaterial Kc( 1)
Coal 0.27 Anhydrite 0.62-0.89
Alevrolite 0.53 Mergel 0.71-0.89
Sandstone 0.36-1.42 Metasomatite 1.24-1.42
Granite 0.567 Basalt 0.62-1.60
Fused quartz 0.640 Diorite 0.89-1.77
Shale 0.55-0.93 Gabbrodiabase 1.50-1.77
Dry alevrolite 0.73 Porphyrite 1.24-1.77
Saturated one 0.74 Dolerite 1.60-2.13
Dolomite 0.71 Amphibole 1.60-1.95
Marble 0.36-1.06 Porphyritic 2.04-2.49
basalt
Limestone 0.36-1.24

If the experiment shows the proportionality of X, to crack velocity, we have the case
of pure viscous fracturing and expression (1.188) is valid. The following suggestion is
reasonable for the specific viscous dissipation:

e~y , K.~ (1.190)

c
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The viscous type of fracturing is observed for a long observation interval and is
typical for the creep growth of the Earth crustal fault. As can be seen, lower creep-
fracture velocity needs a lower stress concentration.

Critical values of the stress-concentration factor for other modes of fracturing are
parameters independent of K, (7). So, for sandstone with fine grains,

K.(I)=147TMPa/m , but its shear toughness, K. (II) is 475MPa/m .
The critical factors are functions of the confining pressure. For limestone’s, that
K.(I) =093 (MNmm) if p<20 MPa,but

K.(I)=1{093+0.07(p - 20 MPa)} (MNm-/m)

if p>20 MPa. This effect is connected with the pressure-dependent plastic dissipation
or solid friction at the crack tip.

1.5.6. TRIAXIAL RUPTURE TESTING

The general dependence of rock strength on pressure and temperature is illustrated by
Figure 6.1, where data of triaxial tests are gathered. Because it is possible to study the
residual damage and fracture types in rock, their rupture data are known in more detail
than in the case of granular media.

At the moment of rupture, the force applied to testing machine is diminished sharply.
The magnitude of this diminishing is known as a stress drop. If the stress drop is not
equal to zero, the failure is brittle in the macroscale; if it is absent, the macrofailure is
ductile, although the microdamage can be yet brittle. Therefore, this brittle-ductile
transition [34] does not coincide with the same transition estimated by the presence or
absence of brittle cracks in the finite states of samples (Figure 6.1).

Sometimes instant stress drop is interpreted as a blast type of rupture, but this is not
adequate because the energy released at the moment of rupture depends not only on the
stress drop but also on the path increments of the loading disk. These path increments
are limited by deformation of the machine itself. If the deformation is small, the process
of unloading can be smooth. It is also be influenced by the form of the sample.

The quantitative values of the bearing capacity of the sample at the rupture moment is
interpreted as the strength of the geomaterial. Sometimes it does not correspond to the
peak value of the bearing capacity because of the delay of the localization of the internal
crack into be macrofracture. By wave sounding, by cutting, or by acoustic emission, it
was found that cracks begin to appear at a limit of elasticity much lower than the surface
strength. Acoustic emissions will reappear only after stress reaches the upper level of the
previous loading (the Kaiser effect) [104]. Because of the unavoidable opening of
cracks or pores in most geomaterials due to their polycrystalline microstructure, this limit
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can be also called the dilatancy limit. The quantitative description of such complicated
brittle features are given in the Table 1.2.

TABLE 1.2. Main strength parameters of some geomaterials.

Geomaterial Young’s Poissonn Compression Extension
(at room modulus coefficient strength strength
temperature) g 10° ifPa v MPa (a;=0) MPa (o3 =0)
Granite 0.5-0.9 0.21-0.28 210 9-13
Gabbro 1.0 0.34 200 22
Basalt 1.0 0.28 290 16
Marble 1.1 0.28 250 15-20
Limestone 0.2-0.9 0.23-0.20 30-180 2.1-10
Sandstone 0.02-0.7 0.3-0.4 10-42 0.3-1.1
Chalk 0.05-0.7 0.4 15-19 0.5-0.9
Concrete 0.17 0.3 30 2.5
Coal 0.4 5-7 1.9-2.4
Quartzite 0.1-0.3 250 14

According to some experimental measurements, dynamic and static strengths are
different at strain rates, characteristic of explosions, laser and electronic pulses, etc.
[148]. However, this difference is explained by the limit velocity for fracture growth
(see, Section 5.1). The effect was also mentioned [100] for individual cracks and
influences dilatant changes of internal rock and soil voidness (Figure 1.23). Slippage
along existing crack edges has the same limit-velocity [29].

0 0.0025 0.005

Figure 1.23. Dynamic (1) and static (2) dilatant curves under confining conditions and without
confining pressure (3). Here, [o] = 1000 pounds / sq.inch [41].



CHAPTER 2
MECHANICS OF A SATURATED GEOSTRATUM

2.1. Interpenetrating continua
2.1.1. DYNAMICS OF SATURATED POROUS MEDIA

Porous media saturated with gases or fluids can be described by the method of
continuum mechanics if the sizes of all elements of microstructure such as pores and
cracks - that is, if fluid channels in a solid matrix, fluid drops and gas bubbles are much
less than the average scale of space, which is equal to the linear dimension of an
elementary (differential) volume of the medium. It is also assumed that every differential
volume has a complete statistical ensemble of micro-elements and the macroscale of the
considered object (problem) is much more than dimensions of the elementary volume
[156].

From another perspective, a porous saturated medium is a mixture of two phases -
that is, of a solid deformable matrix and a fluid. Such a medium is modeled by a mixture
of two (interpenetrating) continua which are presented in the same macropoint
simultaneously. A very close continuum model has been in development for a gas
multicomponent mixture since the works of Maxwell and Stefan [220], but a saturated
porous medium is a multi-phase mixture. The difference consists largely in the existence
of phase boundaries at the microlevel. Correspondingly, the averaging procedure
(Section 1.1) includes integration over these boundary surfaces, with the result being the
momentum balances in a nondivergent form due to phase interaction terms (as will be
shown). The method of space averaging will be illustrated by its application to problems
of dispersion in filter flows (Section 3.5); here however the formal continuum approach
is used.

Two sets of averaged balance equation can be formulated directly, including
interaction terms. Let us begin with mass balances [156]

0 ), O () (s)

—(-m +—(-m =0 2.1

at( )p ax,-( )P vi 2.1
o xn, 0 ()
— +——m =0 2.2
5P x P i (22)

where m is a porosity and indices § and f are symbols of solid and fluid phases
respectively. If phase transition takes place (from a solid to a fluid state, for example,

50
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due to melting), then the right-hand sides of equations (2.1) and (2.2) are not equal zero,
although their sum must be equal zero because of the law of matter conservation.

The next step concerns the formulation of momentum balances. Let us begin with the
total momentum balance, because it does not yet include unknown forces of interaction:

0 5) (s 0 5 () (s

_{(1 —m) p( )Vi( ) 4 mp(f)vi(/)} +_{(1 - m) p( )v,-( )Vi( ) 4 mp(f)vi(f)} -

ot Ox;

or (2.3)

= Y T+ m oM g
o {A-m) g +mp"}g,

Here, g, is the gravity acceleration and ['; are the total stresses applied to the
arbitrary cross-section of the medium (Figure 2.1):

ry = (-moy; — mps, 2.4)
In addition, gy is the true stress in the solid matrix, and p is the pore pressure. The

distribution (2.4) accounts for the phase areas at the arbitrary cross-section of the porous
saturated medium.

Figure 2.1. Scheme of stress distribution in a porous saturated medium [156].

The momentum balance for fluid phase can be written in the following form:

0x; ' O xi

0 o
= PV

+9,+ 0 mg, 2.5
Y Y. tp mg, (25)

where ¥, is the interaction force. It can be determined on the base of experience as:
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om
= p— . 2.6
Y Pan + R, (2.6)

because only in this case is the driving force within the fluid-saturated reservoir the
gradient of pore pressure, p. As aresult [156],

d 0 9
EmpPy P+ Lmp Dy Dy = m—p+R,-+mp‘f’gi (2.7)

ot an 6x:

Expression (2.6) as well as balance (2.7) also include viscous resistance, R;, to the
relative fluid flow.

The case, for which ¥, = R;, corresponds to multicomponent models typical of
gas mixtures where, according to the Dalton law, the driving force is proportional to the
gradient of concentration (the latter being equivalent to the porosity). You can see now
that the variant (2.6) is correct, because the flow is absent in a nonhomogeneous
medium when p = const but not when mp = const.

The difference of equations (2.3) and (2.5) gives us the momentum balance for the
solid matrix:

5 P 0 5 (5) (s
5(1 - m)P( )vi(S) +6—x-(l ‘m),D( )vi( )v,-( )
J

(2.8)
= 5o a-m g,
Here, the effective stresses are introduced (see [47]):
o;’ = (1-m)oy+pSy) = Ty+pSy (2.9)

that correspond to the difference of the total stress at a cross-section and the pore
pressure.

The second term on the right-hand side of equation (2.8) shows that the pressure
gradients corresponding to filter flow acts at the solid matrix exactly as the gravity
forces. However, it also shows the nondivergency of the dynamic nonlinear equations
(2.7) and (2.8) and is explained by the reaction of the solid walls porous channel to fluid
microflows. It leads to the conclusion that the Bernoulli equation is valid along a
microstream line.
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2.1.2. THERMODYNAMICS OF POROUS SATURATED MEDIA

The energy balances for solid and fluid phases can be written in the following form

(5) d: 5 vi(S) st) 0 (s) (s)
( m)p dt +— :-—{(1 m)O'ny }+(1 m)p g1V1

2 Ox;
. . (2.10)
+(-myg¥ -2 W
mp(f)if_ (f)+Vi(f)Vi(f) :—i(mpv‘-f’)whm Sy D
@2.11)

0q,” . S

+mQ(/)_ e =
J

where the mass balances - (2.1) and (2.2) - are taken into account, &%, &/ are the
phase internal energies, Q°’, Q' are the body-distributed heat sources and q,.m, qi(f )
are the phase heat fluxes. The interface work rates are then introduced; in general, their

sum is not equal to zero [156] - that is,

6W(Sf) aw(ﬁ)
¢ p—

2.12
ot ot 212)

This inequality is due to the heat produced by this type of work [152]. The special
“phase” derivatives used in (2.10) and (2.11) are:

d_ 0 L O d_90 . 9 (2.13)

a o 7 oox; da o 7 dx

The equations of kinetic energy result from multiplication of the momentum balances
by the corresponding phase velocities:

(Lm)ME%mﬁﬂ._
a’” 2 ax
+(1-m) p(”g, vi -\ Vim

5 a (s)
(1 m) i 1( ) ‘(l-m) i~ Vj
oL mv} “ox,” (214)
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) )
nds pnvi. _ 0 ) Oy,

mp'EL, DY = — mpy e mp Y
P dtv 5 ox, P v p o)

(2.15)

(f) ) (03]
+mp g,-v,-f +‘P1v:’f

The differences equations (2.10) and (2.11) and (2.14) and (2.15) give the
corresponding heat balances for phases, which include the effective stresses and pore
pressure working on the corresponding rates of matrix deformation and specific volumes

Veo=1/ P(s) , Vin=1/ p(f) - that s,

) ) & oq"
1-m) o™ d;& + a;V = ig&-{- 1-m .99 ,(2.16
(1-m)p { a P a M (1-mQ Oxi (216)

3 ) f
njdre iV~ 04
m + =m - 2.17
p { =+ p } e @17)
Of course, this corresponds to the choice of interface energy exchange (2.12) that could
be found.

The next step in our thermodynamic study is the introduction of phase entropies
ORETN
PO

N
s 5 ds ) s 0 '(S) [ s i'p
A-mp Ot = (1-mg?- s oy df i)
drs? og" .
m p T fdt = mQ - (;Ix' + RG99 (2.19)

where T , 7 are the phase temperatures and ¢;” is the irreversible part of the matrix
strain.

Thus, there are mechanical sources of heat produced by plastic or viscous works in
the solid phase (due to deformation of the matrix) and by viscous dissipation in the fluid
phase (due to filter flows).

The exclusion of heat fluxes gives the Gibbs equations, which reveal the
thermodynamic variables acting in the porous saturated media:

(1-m)p"d.e” - of deey’ +(1-m)p” pd. v =
(2.20)

=(1-m) o' 1 d, s
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pdr &+ p pd v = P15 2.21)

where ¢f = ¢, - ¢} is the elastic part of the matrix strain e,”.
Correspondingly, equations (2.20) and (2.21) can be rewritten using the free energy
concept:

A-m) ¥ d, [ =0 dse-1-m)p pd, VO +(A-m) p°sOd T (222)
P(f)d/f(f) — _p(f)pd/V(/)+mp(f)s(/)dT(f) (2'23)

This means that the state equations for the solid matrix have the general forms:

g af(:) _ V(:) af{s)
oo P TUemlor
€y ) y) pts) e T

S(S) _ V(:) af(s)
(1 'm) aT(S) eije’p(:)

(2.24)

In the linear case, they are equivalent to the following poro-thermo-elastic law [156]:
2 € K 5
of = (K-EG)ee5fj+2Ge,,. -a K195+ B Kp s, (2.25)

where the elastic coefficients K, G of the porous matrix, the compressibility #* and the

coefficient of thermal expansion ot correspond to the equation of state of the solid

intact phase:

9, G 1 -
P/ e = 1-§ﬁ‘)oy5g-a"T" (2.26)

The corresponding state equation for a fluid saturating porous space corresponds to
the thermodynamic parameters of the Gibbs equation (223) - that is,

p(f) — p(f)( 2, T) (227)
The linear variant of (2.27) can be written as

P p = 1+ p-a T (2.28)
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2.1.3. ENTROPY PRODUCTION AND KINETIC RELATIONS

For a proper account of entropy production, we have to use the fixed space elementary
volume through which both phases move. It allows the possibility of finding out the
phase interaction which also leads to entropy growth in the system being considered. So,
the entropy production, X, is determined by the following equations:

0 9 d o
a{(l-m)p( )s( )+mp(f)s(f)} +a{(l-m)p( )S( )V p(f)s(f) (/’)}

J

) (2.29)

_ a qj N q(f) . Z
axj T 7"
s = _( 1 )quaT“’_(_1_)2q</>6T‘f’+
T(s) J 5x, T(f) J ax,
(2.30)

R ooy, Q( 1 )

T(f) T(S) T(f)

Here, we assume that internal heat sources are connected only with the phase heat
exchange: Q®'(1-m)=-Q = Q.

In the case of local stationary, the Onsager rule can be used to formulate proper
rheological laws. The proportionality between the thermodynamic forces and fluxes,
from which the products are composed in expression (2.30), is valid [152]:

R = ryo"-v+ T:j)’ 66T(/) , (2.31)
y = }% , (2.32)

Q= x,(TV-TY) (2.33)

o = }mLT , (2.34)

@ = - Dij_(s)aT‘” ’ 235
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(s)
..(s) = L']

Dy TOTG (2.36)
o (f)
qi(f) - _ Dy(f) aT ) 2.37)
X
)
o — Ly
Dy THTH (2.38)

Here, the symbols L correspond to kinetic coefficients [152] and P. Curie's principle of
tensor symmetry is used. The kinetic relations (2.31) through (2.38) complete the
system of dynamic equations for saturated porous media.

2.1.4. CONDITIONS AT BOUNDARIES AND MOVING DISCONTINUITIES

Mathematical problems also include boundary conditions, which can have kinematic or
static origin. For example, if there is no flux of matter at the impermeable boundary, the
adequate condition is

mp” -+ A-m) p G- = 0 (2.39)

where U; is the velocity of the boundary itself. The simplest variant of (2.39)
corresponds to the immovable boundary (U, = 0) and to the immovable porous matrix
(v = 0). Then (2.39) gives the condition v =0.

The induced movement of the boundary is formulated as

v =U, (2.40)

The fluid velocity, y”, is determined by other conditions.
At the shock surface, condition (2.39) is replaced by the mass balance for a
discontinuity:

mp” G -U)+A-m) )G -U)] =0 (2.41)

where the square brackets are the differences of the values at the sides <<+>> and <<->>
of the considered jump.

The boundary can be treated as a special type of discontinuity and balance (2.41),
which includes the conditions (2.39) and (2.40) as particular cases, can be considered.
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The boundary parameter values have to be given at outer side <<->> of the medium.

These values are denoted by the star symbol.
With regard to traction conditions, the load can be applied to the matrix and the pore

fluid (Figure 2.2) - that is,

* — o
ry(-0)n, =Iyn, = (a,-j (+0)-p(+0)5,-j)nj (2.42)
where p; is the normal to the boundary and the lefti-hand side of condition (2.42)
corresponds to the given boundary value. This condition must be added to the mass
balance condition (2.39).

Figure 2.2. Three types of loading must be accounted for (a) - fluid piston;
(b) - permeable piston; (c) - intact piston [156].

However, the load can only be applied to the porous matrix, in which case the
effective traction is given by

ry(-0)n,=ryn, = of(+0)n, (2.43)
and the pore pressure is continuous and can be found from the problem solution:
[p] = 7 - p(+0) = 0 (2.44)
When the load is applied only to the fluid, the pore pressure is
p = p(-0) (2.45)
and will be a jump if p(+0) = p,, where p, is the initial value.

In the case of shock fronts, the inertial forces must be added to the tractions - that is,
the momentum fluxes should be equal at both jump sides:



MECHANICS OF A SATURATED GEOSTRATUM 59

im0, -U)+ (1-m) p2p O (v, -U )~
(2.46)

~(1-m)oyv,”-mpy, 1 = 0

Conditions (2.41) and (2.46) are sufficient for barotropic case when the temperature
changes are not essential at the jump. The total energy balance at the jump has the form

(s)

v g wviw s
[mp '2—("] -U)+(1-m)p T(Vj -U)+

(2.47)

+mp(f)g(f)+ (1-m) p(s) g(‘)-(l-m) O-xj(S) vi(S)+mp v,-(f)] _—

Remember that the total momentum and energy balances (2.47) are not sufficient to
determinate shock adiabats in saturated porous media. The momentum and energy
distribution over phases must be added, resulting in the unsolved problem of phase
interaction inside the shock structure [152]. However, the phenomenological dynamic
equations considered here may not be valid; the determination of ¥, and dw"®/dt
values, as well as the Onsager kinetic relations, must be re-estimated for the structure.

The energetic condition for the gas outflow from porous media under high pressure
appears to be necessary because of the sudden expansion of gas after passing the
boundary. It has to be formulated as isoentropical condition:

[mp(v-v)s] = 0 (2.48)
if m(+0) << m(-0).
The shear forces acting at the surface of porous media must be proportional to the
gradient of tangential velocity, v,, in the flow adjacent to the porous boundary.

However, in the case of a permeable wall, the usual nonslip condition at the intact wall
v, =0 (2.49)

will change to the Beavers-Joseph condition [16]

e,

v‘[
B on

= 0=y ym (2.50)

The right-hand term corresponds to the fluid-flow relative velocity inside the porous
space. The second left-hand term is determined by the outside fluid and includes the new
empirical parameter B of a porous medium besides its permeability & .
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2.2. Microstructure and permeability
2.2.1. ANISOTROPY OF FILTER RESISTIVITY

The force interaction between phases depends mainly on the relative velocity
R = ry ") 2.51)

and includes the symmetrical resistance tensor ;. Its components are functions of the
fluid viscosity, the internal length (grain) size, d, the porosity, 7, and the vector-
director, v,, determing the anisotropy.
Accordingly the resistance tensor must be the following of vector combination
L = Koy t+rv Vj (2.52)
where scalar coefficients, r, , %, are functions of other scalar arguments mentioned

above.
The dimensional analysis shows [11, 80] that

2

r, = ﬁd’?—(lo 8t 2 viv)) (2.53)
Here y,, 7. are the anisotropy coefficients of a porous medium and the fluid viscosity u
is given evidently.

The vector-director v, is induced as a generalized continuum variable [220] which
describes the microstructure properties, that is, the distribution of fluid channels or grains
and their packing in a porous matrix. It is a dynamical variable and is governed by the
balance of moment of momentum (1.13):

d _ oM,
—J‘P.Iyd)] = . Eijk O';‘{z - N (2.54)
dt Ox y)
where J; is the specific inertia tensor, @ is the total rotational velocity, M ; are the
couple stress, &, is the alternation tensor
e = - g, em=1l, .., e3=0, .. (2.55)

and, consequently, the effective stress tensor, c;;-f, must include antisymmetrical part.
Here the bulk moment of momentum 4/, acting at the porous matrix and created by a
fluid filter flow is also introduced. The inertia tensor has dimension of d° but it has to be
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divided by the grain volume d” to find its specific value. Therefore, J ; has the same
order as permeability of a porous medium [11]

J; T 48 Tk (2.56)

This means that there is a strong link between microstructure dynamics and permeability

changes.
We can also consider the moment of momentum balance for the fluid phase, but here,

we limit ourselves to the introduction of the moment of interface forces (.
The local angular momentum can be expressed by the vector-director rate [11]:

. dv
pli®; = Jew VjTtk (2.57)

and dynamic variablesas f§; , w, , G; canbe introduced such that:

4

M, = euviBy 5 Ni = ewn;Ge,

(2.58)
0 ¢
MY, = & [ﬂ By- kal)
Equation (2.54) can now be expressed as
d'v; OB
=——+4y, +G; 2.59
Tar T o YO @39

The density of the bulk moment of momentum is assumed to be proportional to
relative phase velocity [11] :

G, = G- (2.60)

This means that individual grains can rotate under fluid flow and diminish the viscous

resistance of the medium. In the linear theory, the coefficient K,(j"” is supposed to be

independent on the vector-director v,.

Of course, this rotation is limited by grain contacts with the neighboring grains;
therefore, the free energy of the solid matrix depends on the gradient of the vector-
director, and the elastic laws for the porous matrix are changed accordingly:
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2 0 Ov;
O'g‘f = (K-EG)ekké‘;j+2Ge;j+KﬂP5zj+01(—Vi5y-eml)

O x 0 xx
(2.61)
_ 6Vk 61/,- _ aVkaVk _ ﬁ{c_?_"i
2 dxi Ox; T 0x: Ox; ‘Ox Oxi
B, = 5% 545 45, g, . v = -av, @62
0 x 0x; 0 x;

where the temperature effects mentioned above are omitted. Introduction of (2.61) and
(2.62) into the balances of momentum and moment of momentum describe the effect of
induced anisotropy in porous media.

2.2.2. THE DARCY LAW AND ITS DEVIATIONS

The constitutive law (2.51) corresponds to Darcy’s experiment when the porous matrix
is immovable. Because inertial forces are negligible, the fluid flow equation (2.7) has the
following form:

» .o, 1 )
—6—x,~+p & T TV (2.63)

This equation can be rewritten conventionally as [169]

ki 0

(pt6c7:xi) (2.64)
u 0x;

w = m =

where y, = o g, 1s the specific weight of the fluid, and £ is the permeability tensor:

-1
ky = u(’—g) (2.65)
m

Introduction of the permeability corresponds to using of the filter velocity, w;, as well
as the fluid viscosity, ¢. The filter velocity concept is very convenient, because it is
measured as the flow rate through a unit area of the cross-section of the porous medium
without having to measure the porosity 7. Another measurable quantity is the pressure,
p (or the head, A), at the flow cross-section.

One-dimensional vertical flow is considered in the Darcy experiment and results in
the proportionality of the filter velocity and the head gradient
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w=—c,2—i' , h=2 +; (2.66)
%

where the filter coefficient ¢, is used:
cr=——=—— 2.67)

The dimension of ¢, is L /T and the isotropy of permeability is assumed to be
valid:

k, = ks, , k= p

2
n (2.68)
.

It can also be seen that the characteristic (hydraulic) length, /,, of the internal
microstructure

L =\Jk/m (2.69)

corresponds to the true mean velocity, v ,-m The latter determines the deviations of

Darcy’s law (2.66) or the equivalent deviations of Onsager’s rule (2.31).
The inertial losses can violate Darcy’s law (2.64). If so,

—_ (s) f) > (s) (f) (s) )
R = rij(Vjs'ij)+rij(Vjs'ij)IVj:-Vj(fl (2-70)

The velocity, v j(s) , 1s kept in Darcy’s law if the reservoir matrix motion is required to
account for. The corresponding Reynolds number has the form [156]

(s) _ . ()
Re = PV _ AVO-v f\ﬁ 2.71)
Iz H "

and rule (2.70) can be rewritten as

R = <I>(Re)y%(v(” - ) (2.72)

The function ®(Re) is given in Figure 2.3 and in Table 2.1 for some typical porous
media.



64 CHAPTER 2

b (Re)
of & —T T
2 T [Ce)s 3
[ a1 [xs LTk
0 T o ] s @02 %
10 L e -4 o X
8 i 1 1t 1
2 . 6 8107 2 L 6 8107 2 R e:mo
( 4
<P3 Re) l
L )7 2w *o
 Cogs T — ek
Sacal A fov
TTT] ‘&dq -
1005 Parariopplpmoons 8 &
1 1 TI1fK T 11
2 . 6 810 2 ¢ 6 8100 2 4 6 810
Re

Figure 2.2. Deviation of Darcy’s law due to inertial losses [156]:
sandstones (1-6) and sphere packing (7-11).

As you can see, the Chezy-Krasnopolsky law for "turbulent" flows through porous
media is asymptotically valid

_mky O
b ﬂ axj

lele = (p+5j171xj) (2.73)

where b is the "turbulent" parameter of the medium.

Another source of the Darcy law deviations are connected with violation of
continuum limits (for example, in the case of ultrasound wave propagation), because
their lengths have the same order as porous channels - in other words, as a
microstructure element. In such cases, formula (2.72) can be replaced by:

2
R = i‘,’f—F(x)(vi‘:’- ) (2.74)

where Biot’s correction is introduced [20]

2 4
F(r<)=1+f—‘5+;2‘5 o lz]<0624 , z =ik

2.75)
K=S\‘w/0)c s wc=m77/(/7,k) ’ §=5-12



MECHANICS OF A SATURATED GEOSTRATUM 65

Here, w is the wave frequency, and S is the parameter of pore shape. The product i@
appears because of differentiation in respect to time, and expression (2.75) is replaced by
the following operator [37]:

i i &
FE{lZt = 1-a—+b% 2.7
‘”{61} ¢ or’ (2.76)

where parameters @ , b can be expressed by the quantities in (2.75).
Interphase heat flux is proportional to temperature difference according to the
Onsager rule:

Q= k,(TV-TY) (2.77)

where the coefficient of heat interphase exchange, i, can be estimated in the following

manner:

5 0
Ky = % [D© pD (Fo"'Fq{B;}) (2.78)

Again, the operator, F,, is used to account for non-stationarity of microstreams and
F, is a constant. Of importance here is that the coefficient, x , is inverse - proportional
to the medium permeability, £ [152].

The permeability of an anisotropic medium can be expressed as a combination of the
vector-director [80]:

If vector y; can change its orientation, then the case of induced anisotropy results, see
(2.52). The scalar coefficients of the resistance tensor (2.53) can now be expressed as

v (2.80)

2.2.3. PERMEABILITY AND POROSITY

The permeability, &, is proportional to some power of porosity 72, and as it follows from
the direct measurement of porous samples during the deformation process [156],

k _l_n_”
P (mo) (2.81)
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The case for which # =3 corresponds [233] to representation of porous space as a
ensemble of flat channels. The case for which # = 10 corresponds to a real sandstone.

The mass balances - (2.1) and (2.2) - show us the dependence of porosity, m, on
thermodynamic forces. Consider the linear variant of (2.1)

(5) om d p(s) oo (s) an(s) _
W L= Z+a- i =9 2.82
Ny (1-my) o ot (I-m) p, ox, (2.82)
which can be rewritten as
1-my)(dp”
dm = %(-ﬁ-}daﬂl-mo)dey 5 (2.83)
o

This shows that the porosity depends mainly on the volume deformation of porous
media as well as on the pore pressure, p, since the true stress, o, can be expressed as

o= -pt(l-ms? (2.84)
and, further, as a linear combination of pore pressure, p, and matrix strain, e = e; 8y

TABLE 2.1. Diameter, porosity and permeability of samples in Figure 2.2

No d, cm m, % k,10%cm? No d, cm m, % k, 107 cm?
1 0.01 19.7 0.182 7 0.016 22.1 3.3

2 0.0065 19.2 0.130 8 0.246 40.5 27

3 0.025 11.9 1.13 9 0.319 38.9 4.1

4 0.014 15.9 0.35 10 0.246 39.4 25

5 0.017 26.9 2.5 11 0.319 38.5 3.64

6 0.014 13.6 0.355
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2.3. Dynamic poro-elasticity
2.3.1. LINEAR WAVE DYNAMICS

The linearized system of the dynamic equations for porous saturated media is based
on the state equation for both phases. For the solid matrix,

(s) 1

£ = 1-3870y6,- T (2.86)

because the true stress, g;, determines the pressure inside the solid material which is
equal to o = (-1 / 3) g; §; and which is connected with pore pressure, p, and effective

stresses, according to (2.84).
The equation of state for the fluid phase has the same form:

p” P
p T = 1= ﬂ( p- a(f) T(f) (2.87)
0

The constitutive law connecting the strain and effective stress in the solid matrix [156]
2 s
of =(K - 30)es,t2G e, + B Kp 5, o KT 5, (2.88)

is analogous to the thermoelasticity law but includes pore-pressure effect. Equations
(2.86) through (2.88) allow us to rewrite the mass balances - (2.1) and (2.2) - as follows:

om w 1 oo,
- lom) g% o _
= A1~ my) p Jix Sy

t 3 2t
(2.89)
1 av,-m_*_ o o .
~( —”’o)—a—; a1 —my _a‘t—_
om . «n 0P ovi” ., TV
om @y, Cvi 4 e S— 9
ot 4 T T ey @ Ty (2.90)

According to the Gibbs equations - (2.20) and (2.21) - the porosity, m, is not the
parameter of state. It plays the role of volume concentration and can be excluded from
mass balances (2.89) and (2.90).

The linear form of the momentum balances can be written as
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s av'(J) o av_(f) 60'~-8f U
1-m Vi i = AN SN O B O 2.91
(1-m)(p o P o ) ox, k(v, Vi) (2.91)
d (2] F)
NOovi~ . 0P H N_ .
= -y -y, 2.92
P o K (v =) (2.92)

Equation (2.91) includes the fluid acceleration force, which is not the Biot effect of
the adjoined fluid mass but a sequence of effective stress introduction. Equation (2.92)
corresponds to simple addition of the fluid inertial force to the filter equation traditional
for flows in porous media if w, = mv!/) is taken into account.

Heat transfer equations are necessary, for example, to describe the dynamics of oil-
saturated strata if gases are dissolved:

a-m) ¢y 2T = (- m) p,v 1+
(2.93)
) O s
H(1-m) 2T~ ey (10 - TV)
(f)
m Crp” g =my D,V T +my 2, Ty g"t’ (2.94)
where 0 = —(1 / 3)o,;0, is the true solid "pressure".

Let us now introduce the scalar, @, and vector, §;, wave potentials for both phase
velocities such that

Lo, 0w
' aXi " Ox

J

(2.95)

Shear waves (S-waves) propagate through a porous medium in accordance with the
following equation [150]:

62115 2 2 azik 2 2 6
- V + | — - 'S V —0 29
@pat( atz Cso Wi atz Cs0 Yr ( )

that includes the two wave velocities

G G
2 = 2 —
Csw=——"735 o, Cso0=— 2.97)
*1-mp? * p

which are determined only by rigidity of the matrix.
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Equation (2.97) has the typical form for relaxation dynamics with characteristic time

k po(s)po(f)
o ==Fro P (2.98)
" pmy(1-my) p,

and which depends on the permeability and inertial properties of the medium:.

The wave velocities (2.97) show that the "frozen" state corresponds to motion of the
matrix alone because the effective density is determined only by the solid phase, see
(2.97). In the "equilibrium" state, both phases are involved in motion, and the effective
density is changed to the mean value of saturated porous media:

py=(1-my) po(s) +m, po(f) (2.99)

So, the initial impulse is distributed only over the solid matrix because shear stresses
are absent in the fluid phase. However, the viscous fluid is involved in shear-wave
motion due to the interphase force proportional to permeability.

The longitudinal waves (P-waves) propagate according to the following equation

[75]:
8(62®_c2 azd>)+®p(_ai_czi)(az®_czaz<1>)zo (2.100)

at\ or o o \arf T ax?

where temperature effects are omitted, the coefficients are:

czzpi(K+g-G+aa+az+Zal), 2cf:c12+c22i\/(c12—c22)2+40122c221
0
2 1 ( 4 ) 2 a,
¢=——|K+-G+a;| , ¢g=—2—
: mo po(S) 3 ? ’ (1 - mo) po(f)
) 2 — 4
=—2_ , g=—>%3 _ (2.101)
? my po( ) i (1-my) po(f)
al=m0(1'”lo‘,3(S)K) az=ﬂ?
B ’ B
g =08 - My -2m(l-my-f7K)  _ mu
3 ’ 4

B k
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and the mean compressibility of a porous medium is used:

B = (1-m) g +m " (2.102)

You can see that P-waves are described by more complicated dynamic equations of a
higher order than usual wave equations because there are two types of possible particle
motion and two corresponding wave modes. In addition, the phase compressibilities are
limited by porous matrix rigidity.

2.3.2. WAVE DYNAMICS OF SOFT STRATA
In the case of soft rocks, the small parameter appears [156]

AOK << 1 (2.103)

and the method of expansion in a series can be used. Then, the initial system - (2.89)
through (2.92) - in the isothermal case splits into two systems corresponding to the two
wave modes mentioned previously. For the first mode,

ap av.(-‘) av(f)
X +n- i + i
ﬁat (1-m,) o ™o

(s) OWi* L+ 0P M B e o)
—_— — $7 - = 0 2.104
Po EY, ox; 1- P2 (v vi’’) ( )

()
OV O B s (1)) = 0
v ) (v -v{7’)

That is, at the first mode motion the soft porous media are equivalent dynamically to
fluid with suspended solid grains. The system (2.104) can be deduced to the form:

o,.8p ap _
@,,—a-t ?—Cﬁw VZP)JF(?—C;O vip)=0 (2.105)

where "frozen" and "equilibrium" wave velocities are used:

- 1 1om , m 2 =1 (2.106)

Cro s == T o =
p.B P P P P

Let transform the system (2.104) to the equivalent system
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oU. , op. P, oV

=0 , + =0 |,
P o T o, ot dx

(2.107)
Vi poU, _ U.-Vi

o p, Ot 0,

for interpretation of these wave velocities. Here, the mean mass and volume velocities
are introduced [156]

L (s)
U= (1-my) Po ! Vim +m, Po(f)ui(f)
(2.108)
vi=(- m,) Vi(s) +m, Vi(f)
You can now see directly that in "frozen" state
pUi = pV; (t,/ ©,—0)
which means that
po(s) Vi(s) — po(f) Vi(f) (2 109)
The "equilibrium" state is characterized by
ui =vi (t,/0,>)
which means that
v = (2.110)

Here, ¢,is a characteristic time in the dynamic process under consideration, and the
relaxation time, ® , is determined by (2.98). So, the "frozen" wave velocity corresponds

to the equal pulse distribution over two phases (2.109). The interphase force is
proportional to difference of phase velocities, and therefore the "equilibrium" state
corresponds to condition (2.110). The wave velocities (2.106) do not depend on the
rigidity of the pore matrix but only on phase compressibilites.

Both phases move in one direction in the P-wave of the first mode. The second mode
is characterized by phase motions in the opposite directions.

For soft media, the corresponding system of equations has the form
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av_(s) av.(f)
1-m) 2y Y= g
(1-m) Ox; " Ox;
; a i(s) a “(ef) a 2 s
(1-my) o Y =290 (1 - my) B TRE (00, )
ot 0x; O xi k @.111)
o) 0" B mMu, »__» .
L = - Ec S T ST
TP, ”’oaxi 2 w7 =)

€ 2
a,.jf=(K-§G)e5,.j+2Ge,j

You can see that phase compressibilities are absent here. System (2.111) is the basic
system for conventional soil mechanics if inertial forces are negligible. The dynamic
variant (2.111) includes P-waves of the second mode and the S-waves considered above.

Thus,

ﬁ?—cfvz¢+ﬁ§1‘—’wi&q—) =0 2.112)
ot km, ot

for P-waves. Here, the corresponding wave velocity is determined by the following
expression:

ct = I(K+£G) (2.113)
s 3

which is determined by the elastic modulus of the porous matrix and by the following
effective density:

o= (I-mo) po(s)po(f) _ o p
my Pe my ’

I-my (s (f)((l'mo) +. "
0 2]

) (f)) (2.114)

The important case of negligible density of fluid phase 2" — 0 ("dry" porous media)
is characterized by the effective density

. = (L-my)p,"” (2.115)

which is equal to real-matrix density. This means that, in the limit case, the P-waves of
the second mode coincide with the usual seismic waves, but the waves of the first modes
disappear because p — 0 simultaneously with ") — 0. However, in the case of media
saturated with fluids, the waves (2.112) can be seen only at very short distances because

of their intense dissipation (see the third term of equation (2.112)).
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2.3.3. WEAK NONLINEAR WAVES

Now let us consider a more complicated case of non-linear waves, accounting for high-
frequency deviations - (2.74)-(2.75) - from Darcy’s law. We use the balance equations
2.1, (2.2), (2.7) and (2.8) for one-dimensional motion with regard to nonlinear
convective terms. The following two dynamic equations must be considered

(5) (5) (5)
%{(1 - m)(p“)———av + v‘”———ap +p" v‘”—av )} +

ot ot ox
) (2.116)
%) %)
Oy nop N OV _ & () )
+ A ARSI ) - Y= (a v+
m(p a e A o e )
o nov oo pdv?” | pop”
at( o PV T TV T
i s 2.117)
um 0
A el i p T )0y =0
k ( ot 6t2)6t(v ")

In order to get the evolution equation for such waves, the moving coordinate system
must be used:
E=p"(x-ct) , t=1t (2.118)

where 77 << 1 is a small parameter used simultaneously for representation of dynamic
variables in the form of series:

(s} __ (s) (s) 2 (9
pr=py tmpl ey
(f) —

) ) 2 ()
= + + +...
P Po U . 7(7)/72 (2.119)
YO =qav® v+
W= 4 v
The difference of phase velocity can to be estimated by the same parameter, n [37],
¢ = v v = o) (2.120)

because, from the previous linear analysis, we know that this difference has to have the
same order for the first mode of P-waves. So, we can assume that ¥ >1 and the first
approximation of equations (2.116) and (2.117), where the interphase force is omitted,
gives us
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e (f)
(al '(l'mo)po(s) 2)62 _(mpo(f) ? (12)
o o o @11
a o =(p 73} F-a )a
3 652 0 4 65

The condition of comparability of these equations determines the wave velocity for
the first mode:

G = {N/2(N/-4R:0,)"2/ QR (2.122)
where

— ()
N; = 4

_ f) _
= (l‘mo)Po Po , @ = aa,-aa,

(0, may) (- m)p,"a,

The second approximation gives us the evolution equation:

3¢ o¢ 3¢

—ZF(gr- T wl)—=-0 = ¢— 2.123

or (O’ w: H ;) ag ; 652 ( )
where constants o, v, u.,0,¢ can be expressed in terms of a,b,a,... . Here,

wp—>0if m—>0 orm—>1; §=0(um/k); v.=0; and ¢=0 if the
operator F =1. The transitions to the usual scales of time and distance were completed.
The evolution equation has a sink (& > 0) of energy due to interphase force action

and the Burgers term, which is on the right-hand side of (2.123) and which disappears
along with the Darcy’s law deviations when 6 — 0, ¢ — 0.

The waves of the second mode are determined by the condition [37]
¢ = - =0() (2.124)

The wave velocity is determined by the same expression (2.122) but with other values
of constants. The corresponding evolution equation

2 2
§+( "+uH§)ag = .,g?g—vm% (2.125)

has the form of the Burgers equation with the additional term on the right-hand side.
Again the second-order terms are connected with the Darcy’s law deviations:
Vee, Ve = 0 (@) - see (2.76). So, for the Darcy law validity, both P-waves are
evaluated according to the nonlinear equation for simple waves. As was shown recently
[119], equation (2.125) would include the third derivatives with respect to & if the
gradient viscous forces were accounted for in the dynamic equations of interpenetrating
continua
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2.4. Pore pressure and induced deformation of saturated strata
2.4.1. DEFORMATION OF STRATA

Let us consider the dynamic deformation process in a saturated porous stratum.
According to this theory, essential strains of the porous matrix are created by P-waves of the
second type and by S-waves when volume changes are developed simultaneously with fluid
drainage. This can be seen from the different one-dimensional dynamic action on a soft
saturated porous medium (Figure 2.4.).

{a)

PP
+1

O/IP*H -
X = Coet X

akF Xz gt

A " T '.,' =
ARl el S
R A
P
+1 —
- e p—
3]
M =
- X
X=Cxt
bk Xz C,m(‘

Figure 2.4. Scheme of stress waves of two modes in a saturated soft medium [156].
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If fluid can leave the medium (case @) through a permeable piston, pore pressure and
effective stress are essentially diminished. Therefore, poro-elastic deformation is also essential
behind the second P-wave front with wave velocity c..

The first P-wave changes initial conditions for pore pressure from the value p, to p..
Practically, p. has the order of total applied load (o. , p. or I'. depending on the type of
loading). Because of this, the condition of zero strain ahead of the second P-wave front is
more convenient for soft-saturated media and is used in practical soil mechanics.

Moreover, because of the high filter damping of the wave motion, equation (2.112)
changes practically from the "telegraph" type to the Fourier type:

op _ ) _ m, k
= = gV , K= —(K +4 /3G) 2.126
ot P (A-m) p / ( )

where the pore pressure can be used instead of the scalar wave potential, @ .
The problem, illustrated by case @ in Figure 2.4, corresponds to "cooling” of a porous
space "heated" by the first P-wave. The solution of (2.126) has the form [152, 156]

267 %
= _ 4 dz ,
p(¢) - b[e

(=x/Vaxt , p(x,0)=-c7 (2.127)

(O 0=0? , p01)=0

and is known as the one-dimensional plane process of filter consolidation. The displacement
of the "piston"

o? k

TJKT (4G 5) \at @128

u(0,t) =

is developed in time and corresponds to the settlement of a foundation on a saturated soil.
The more general case of planar or three-dimensional slow (quasistatic) motion
corresponds to linear system (2.111) but without inertial forces:
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om oy om GBI
—tm =0 , -=—+(0- il S

=0

dof R R R
—4-(1- ~ T v T =0
ox, ( )axi . W = v
(2.129)

op _ I o0y
dx: k i i

2
Ugf = (K“EG)&yeklé'kz'*'zGeg

The following Biot form is used for this system for planar problems of stress-strain states
in saturated soils or for the upper part of sedimentary rocks [156]:

GVul® + (K + G/ 3)(e/dx,)— (@p/ dx,) = 0
GVl + (K +G /3) e/ dx,) - (p/ dx,) = 0 (2.130)

Oe _
ot

kO

xVie |, K=s——"——
1 (K+4G/3)

if the displacement components #* , u{" are used and the physically reasonable initial

condition of strain absence in the initial moment is
et x,x)=0 , t=0 (2.131)

Equations (2.129) describe the process of pore-pressure "diffusion", including the
biharmonic operator [156]:

d _, 4
— = x 2132
ath vV'p ( )

The operator V* is common for elasticity theory. The difference between equation (2.126)
and (2.132) is explained by including both the shear and volume strains of the solid matrix in
the second. Only in one-dimensional planar problems and in some plane-strain (e;, = 0) and
plane-stress (o7, = 0) problems equations (2.126) and (2.132) are equivalent.
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McNamee and Gibson [125] suggested an effective approach for studying the system
(2.130). They introduced two potentials, S and ®, such that

ul(s) = gﬂ + x2 .QASL
X, ox,
(2.133)
u = -?*xzﬁ's
X, ox,
and, correspondingly,
e=Vv' o
(2.134)

p=(K +36)vo-26%
3 ox,

These potentials satisfy the following two equations which can be solved separately by
integral transformation:

%vup = V' (2.135)

VS =0 (2.136)

2.42. DEFORMATION OF A LAYER

Reservoirs are usually modeled as thin porous layers in a highly stratified rock mass.
Consider a small element of such a layer under uniaxial vertical load I';; = I'", created by the
weight of overcovering strata. Displacements of the porous matrix are also uniaxial
(2= x):

u=u® , u®=u"=0 (2.137)
If there is no drainage, then the condition for the fluid phase is
v =y (2.138)

In the isothermal case, the mass balances (2.89) and (2.90) give the following differential
connection:
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op 1 0067 | du
It —  +Z _ =9 2.139
ot 3’8( ot ozot ( )
Because
e = e, = 0u/oz (2.140)

equation (2.136) can be represented in the form
ﬁp—%/f“o‘“e =0 (2.141)
Additionally, we have the two following sequences of Hooke’s law
o, = (K+ %G)e +Kp9p (2.142)

é_o_ef = Ke+ K9 p (2.143)

Excluding the strain, €, and the mean effective stress, ¢, gives the following connection
between phase stresses:

A-Kpof = - (K+5OBTKFGG+0)p 149

which allows determination of the distribution of total load
r' =o%-p (2.145)

over phases for undrained conditions [152, 156]

*

O-gj; = (l—nund)r‘ ) P = _nundr
(2.146)
1_ Kﬂ(s)

1+(K+%G)ﬂ—21(ﬁ(”(1+§Gﬁ“))

und =

In Table 2.2, the numerical value of the distribution parameter »,,, is given for different
compression modulus ratios K 8, which show the consolidation levels of the porous matrix.
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TABLE 2.2. Load distribution over phases.

K5 <01 01 0.2 03 0.4 05
Hund 1.00 0.75 057 0.4 033 025
Har 1.00 0.9 038 0.7 0.6 05

The following additional data taken for this calculation are valid if Poisson’s coefficient
equals v=102 and g / f = 25.

K +%G)=5Kﬁ“’ . 2G/3=(1/K

The ideal drainage condition means that fluid can escape from the layer element during
loading so that the initial pressure, p,,, is kept constant. Then, Hooke’s law (2.88) gives

e oh-Kfp . pT (2.147)

» K+4G /3 K+4G /3 '
that is, the uniaxial strain of the layer element is proportional to the effective pressure, pef,
which is the part of the applied load:

pEf = —r*_ndrp() y Ry = I_Kﬂ(S) (2148)

The correction coeflicient, #,,, is also given in Table 2.2.

Both considered situations can be modeled by special tests with rock samples in uniaxial
cells (analogous to Figure 2.1, case ¢) when pore pressure is being measured under
undrained conditions according to deformation law (2.148). During the testing of sandstone
under drainage, it was found that 7, = 0.85, which means that K 8’ = 0.15 in this case.

In the case of soft soil K f* << 1. Then, according to the Fillunger-Terzaghi concept
[47, 216], normal strains are proportional to effective stresses. The generalized Hooke law
(2.88) determines the connection of strains with both the effective stresses and the pore
pressure. However, the advantage of the effective stress, g/, is explained by its being a
difference (2.145) of two other measurable variables : applied total stress, I";, and pore
pressure, p. Moreover, the failure criteria of saturated layers are formulated in terms of

effective stress (Section 2.5) rather than the true stress, ;.
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2.4.3. PIEZOCONDUCTIVITY OF SATURATED FORMATIONS

As discussed previously, the load distribution inside a porous medium, including pore
pressure, depends on fluid motion relative to the matrix. Therefore, deformation of the
saturated layer is determined by the filter flow inside it, and these two processes are
interconnected.

There is a simplifying hypothesis for analysis of seam deformation. In it, the main axis of
the strain-stress state is vertical (two others are in the seam plane.), the matrix deformation,
e;» 1s not equal to zero only along this axis (i = j = 3), and it is in accordance with the

following estimations:
e,=e,=0u /ox,; > ou/ox , ou, / ox, (2.149)

Hooke’s law (2.88) can be used here in the form

ef_ﬂ(s)K
= Oz P 5. = 3Ke,+ 57K 2.150
(24 K+(4G/3) ’ T 51] ez /B( 4 ( )

and the total mass balance can be written as

avi(s) + m 3 vi(f)

48 _100]
O x; 0 x;

=0 2.15
ot 3 ot (@151

&y T (1—my)

Their combination, together with Darcy’s law, gives the equation of pore and effective
pressure distribution in the saturated seam:
ef

— iy S
a = ,B_ ﬁ,(:)ﬂ(s)K _ (1 K”?_)((iG 53)K) (2152)

1-m - 0K
K +(4G / 3)

where i , j =1, 2 and displacements of the solid matrix in the layer plane are assumed to be
negligible [152, 156].
At the impermeable upper and lower boundaries of the layer, the following condition is
valid:
of-p = T. (2.153)
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but there are two variants for total load determination. According to the first,

I,=const , 0p/ot=20dg,/ ot (2.154)
and the well-known Fourier equation follows

op op
= 2.155
at Kaxiaxi ( )

with the coefficient of piezoconductivity [156]

k= |pg-pB K- (2.156)

my BOK J&

K+AG /3) | u

According to the second variant, the total stress is determined by the elastic solution for
surrounding strata. Such a solution has to connect the pore pressure changes inside the
reservoir with settlement of ground surface above the reservoir. Because the boundary
condition (2.153) includes two variables, it is necessary to add one more condition - for
example, one concerning the boundary displacement:

u; = nzo-if , n, = h/E (2.157)
where & is the layer thickness, and E is the Young modulus. Consider the plane case and
model the upper strata as an infinite elastic plate with effective rigidity, E.H”, under the

lithostatic pressure , I' = yH , determined by its own thickness, H (that is, by the depth,
H | of the reservoir). Then the strata equilibrium is governed by the equation [156]

4
EJP%} = T+¢7-p (2.158)

and higher-order derivatives appear in the nonlocal piezoconductivity equation:

a EnH® &p Lo _ Kazp_E.hH3aﬁp
a+b E x‘or ot ax? E ox*

K= [5)(0 +b)"!
M

(2.159)
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The vertical displacements, &, (that is, the ground settlement), can be calculated for pore
pressure changes found from equation (2.159):

v = _% Tp(&,t)exp(_x—g HEJSin(_x—f HE+£Jd§

E HA\2 \ hE. H2\hE. 4
(2.160)

L b fet), [ a(x-¢) [HE
~ T [ 8H" hE,de

Of course, more detailed calculation, found numerically or analytically in combination with
the equation (2.152), includes the full elastic solution for the upper overloading strata. In the
case of axial symmetry, the piezoconductivity equation following from (2.152) will have the
integro-differential form [152]

ap ThE S| at _ 5_5_( a_p)
az+bK*£'———d-§h {ar!ylo(éy)p(y,t)dy}dé = 5] e

where K. is an effective volume modulus, J, is the Bessel function, and

n. K+(4G /3)
G K+(G/3)

Equation (2.161) is valid for deep and thin layers determined by the nonequality
H > h (2.162)

Some calculations have shown that simultaneous changes of pore pressure and effective
stress can cause local extreme values of pore pressure inside saturated strata. This is the
Mandel-Crayer effect, which is explained by deformation of porous space [152]; it is
impossible for the simple piezoconductivity equation of the Fourier type as (2.155). This
could open an approach to the liquifaction phenomena.
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2.5. Hydrofailure and hydrofracturing of rocks
2.5.1. IRREVERSIBLE DEFORMATION OF SATURATED STRATA

The theoretical study of nonelasticity and fracture of saturated geomaterials is based
on the effective stress principle. This means that all critical states of a porous matrix, as
a conglomerate, are controlled by the effective stresses [216].

For example, the plastic state of geomaterials appears if the following limit condition
is fulfilled [152]:

o,tasc?-Y =0 (2.163)

Then, the corresponding constitutive law for plastic is

Der [ . 2 2. ) gl di
i :{05+5AY5,-,—[1+§A05) f5}dt (2.164)

and the elastic parts of strain-rates are valid:

Doy 2 De de; dp
K- ZG DK 2.165
Dt =( 3 D ar dt -# dt ( )
As usual, they are combined by the simple summation into total deformation
e P
De; — De; + Def 2.166)

Dt Dt Dt

and a new scalar parameter, d1 / dt, is unknown a priori. This scalar must be found by
solving equations (2.89), (2.90), (2.91) and (2.92), together with (2.163) through
(2.166). Generally speaking, it is proper to solve problems in displacement velocity form
and to obtain the displacements themselves after integration.

Although, formally, condition (2.163) is analogous to the one for dry porous
geomaterial, there is the difference in the weakening of geomasses due to pore pressure
increase. This effect is very essential and can be seen from another form of (2.163) - that
is,

o, ta(lT-p)-Y =0 (2.167)

The elastic modules, K, G, and dilatancy rate, A, are assumed to be the same as in
the dry states of the medium. However, there are some experimental data which show a
definite diminishing of K and G due to fluid presence at particle contacts in soils.

Typical deformation curves for saturated Berea sandstone during triaxial tests are
given in Figure 2.5 (according to J.Handin, see [8]). You can see that stress-strain
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curves are different if the pore pressure is a parameter, but they coincide if effective
confining pressure plays such a role.

According to the same data, there are two upper limits for shear stress. The first one
corresponds to the peak value of curves and can be easy seen at low confining pressure.
It can be interpreted as the strength of matrix internal bounds. The second one can be
interpreted as the strength of saturated sandstone and corresponds to plastic matrix flow
(unlimited deformation). The same experiments [8] show that if one used the effective
stress concept, the second one corresponded to the Coulomb line (2.163) with friction
angle y = 29° and cohesion ~ 20 MPa. The disappearance of "peak” strength at high
confining pressure may be understood as the transition to plastic flow without the
preliminary brittle crushing of matrix contact bounds.

O, MPa
3001 Iy '=-50 MPa
200} [;:-IOO; p=50
100 3 =-50; p= 0 [dry porous rock )
e, %
0 TR U N W B | Y SORE S SN S Y|
500[_ My = - 200 MPa
400 .0
p:
O 50 ——
3004~
200,
100

p = 200 MPg
T T T L L i V. |

I= 1 1 1 L
2 & 6 8 10 12 W 16 18 20 22 ¢,%

Figure 2.5. Handin’s data shows that the effective stress governs the strength of a
porous sandstone.

In Figure 2.6, the effect of sand-grain rupture is shown at pressures above 70 bars,
according to [86]. You can see that it creates a kink of yield surface (2.167)
corresponding to the change of friction angle values. The same phenomenon is observed
in tuffs (Figure 2.7) and can be explained by the rupture of bonds and the change of
internal strength mechanisms.
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Figure 2.6. Crushing of grains causes diminishing of internal friction angle [86]

6:-6—‘1—%{& ~  (kbars)

Figure 2.7. Yield surface of tuffs (Courtesy of R.N.Schock).

In accordance with the effective stress concept, the viscoelastic porous matrix
saturated with fluid is governed by the following stress-strain connection [35]:

avk(s)
0 xk

(s) (s) (s)
+,u[5v,- L 0v, " 20w 5

)+
ox;  Oxi 3 O 5") ¢
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where u,¢ are shear and volume viscosity’s of the matrix, respectively. This
constitutive law can be used to study clay stratum deformation or rock creep.

2.5.2. PLASTICITY OF A WELL VICINITY

Consider the problem of plastic zone creation around an uncased well due to pumping
fluids from the stratum (a problem studied by the author and T.K. Ramazanov). The
axisymmetrical equilibrium equations for total stresses in saturated media can be written

as
o

%
lé—( on’) -T2 y9oa_ O _

r or r 07 or
(2.169)

10 of 10 o 517 (s5) (f)\ —
— + - - —(1- =
ra ( oy ) ror (" O ) 2 ( ”1)(/0 P )

where arr/ ’ O’ggf , O 7 and o',z are the radial, hoop, axial and shear effective stresses,

respectively.
We can now use the Westergaard stress functions f and F for total stress ["; such

that

p s 1 F
0. f = (0 = D)z + 662 {er

g s 0
f=(p()_p(f))z+a_l:+p

(o)1}
(2.170)
¢ 5 1 3F
ou’ = ("= p" )zt -t p
g 1OF
Or r oroz

For this stress solution, the compatibility equations are used, which utilize the
condition that six strains, e; , are generated by only three displacement functions, y;, in

the elastic zone. The analysis shows that

A(z) o F
Cr+——= ,
f= P

~0

Correspondingly, the effective stresses are
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o =" - p)z-

Az
f2)+cl_p

(2.171)

o s Az
aefe—(p"—p‘f’)z+—£2)+cl—p

If the saturated stratum is sealed by the impermeable layer of thickness, H, and
density, o, then the parameter C, can be determined:

¢ s Az
f—pH+(p() (f))(z_H)_ ’(.2)_,_
(2.172)
s Az
o= ol - (- pe- 1)+ 2%+
Assume that the plastic state takes place in a form of plane flow inside the ring zone
r, <r < b(z), where r, is the well radius, and b(z) is the elastoplastic boundary. It is

suggested that the disturbances of axial normal stresses in this zone are negligible. So,
the limit condition (2.163) can be rewritten as

ol -(N+)o?=¢q (2.173)

The introduction of (2.169) into (2.173) permits us to find the stress function, f, for
the plastic zone and determine the stresses there:

op dr
ef_C N _ q + N
A A IarrN
(2.174)
o — ap dr
ot = (N +1C, ¥ - L+ (N +D[ 2

The constant C, unknown function A(z) and elastoplastic boundary 5(z) are
evaluated from the following boundary conditions. The first is the equality of total radial
stresses at the uncased well surface to pore pressure - that is,

=0 , r=p, (2.175)

The second condition means equality of the radial stresses at the elastoplastic
boundaries:
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l6Z1=0 , r=>52) (2.176)

The third condition means the continuity of the solid displacement velocity at the

same boundary:
W1=0 , r=b() (2.177)

Sometimes the equality of hoop stress components is used instead of (2.177):
lo%l=0 (2.178)

Physically, this means that the same limit condition is used as a criterion for
geomaterial failure and for plastic flow in a failure state inside the zone of plasticity. In
other words, condition (2.173) is used at both the <<+>> and <<->> sides of the
boundary r = b(z). This is a particular case.

The evaluation of fluid flow can be done on the basis of the simple dilatancy condition

)6, (2.179)
P

the momentum balance for fluid flow (equivalent to the following form of Darcy’s law)

k 0
;a_l; = —m(y) — ) (2.180)
and the mass balances
6 K 1 a s
2 AU my (A (L= m) ) = 0 (2.181)
%p‘f)m+%£—(rpmmv(f’)=0 (2.182

Here, A. is the dilatancy rate for this type of flow geometry:
®, = sign(ov / or-v / r)= sign (o7 - o%).

The integration of (2.179) gives the first dilatational connection inside the plastic zone
r<b

1+ A0
SO = ngt) n= y (2.183)

P 1- A0,
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Then, the porosity distribution follows from (2.181)

1-n

m=1-1—m) " {y"*" = (1—n)W}n (2.184)

if p(” = const and m = mj, at t = 0. Here,

¢ (s)
W=jc2(t)dt , C,(H)=- 0 r <0 (2.185)
° 2rhr,
and the "sand production”, Q' is determined by the solid particle velocity at the well

surface:
0¥ = 2 v(r, )1 - m,) (2.186)

Using the porosity (2.184) in the fluid equations - (2.180) and (2.182) - permits us to

find
kp_ G, B@)

u or ¥ r
(2.187)

_ Q(f) _ Q(S)
B =",

where Q(f ) is the well’s fluid production. Further, it is possible to find the stress
distribution in the vicinity of the well due to sand production. The output productions
0 and Q" can be measured or calculated, for example, on the basis of assumptions
on far pore pressure and total (lithostatic) stress constancy.

This sand production is connected with reservoir failure and has a catastrophic
character. Additional minor damage of the reservoir is connected with the transportation
of fine particles inside the fluid or gas flow to the well. Creation of fluid channels inside a
weak porous matrix also takes place in reality [200].

2.5.3. HYDROFRACTURE OF SEAMS

The elastic stresses around a well can lead to the hydrofracturing of rocks that may be
used to increase well productivity [59, 233]. Consider the following solution, which
corresponds to the nonequal horizontal pressures A, = —I; and P, = -TI,, which are
assumed to be smaller than the vertical pressure. The problem is planar:

] 2 ] 4 2
on=-=(P1+ P 1-D2 |- (P - Po)| 1+ 305 4D |cos 20 (2.188)
2 r 2 r r
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1 .1 !
m:_3(p,+Pz)(1+£rw7)+3(p,+p2)[1+3’rL4Jcos29 (2.189)

4 2
O'ra=+§(P1+P2)[]_3%+2%)Sin26 (2.190)
r r

According to these expressions, the lowest compression stress exists at the well radius
at the angles =0, 7 / 2:

O'aa=—(3P2—P1) , P;> Py (2.191)

So, if a small crack of rock exists at this point, it is necessary to overcome not only
the lithostatic pressure (2.191) but also the tensile strength, o, [197], which is resistant
to fracture process (Section 1.5.5).

Practically, crack growth can be reached by the hydrofracturing (that explain the
entrance of fluid into defects in the porous layer, which has a form of radial
microcracking). The pressure of injected fluid must be equal the total resistance
mentioned above:

Puy =B P,—Pi—p)to (2.192)

Here, it is assumed that, in accordance with the effective stress concept, pore pressure
existing in the reservoir, p,, at ¥ = r, diminishes lithostatic forces. The tensile strength,
o3, 1s essentially smaller for a porous matrix than for intact rocks.

If injected fluid enters into pore space, the real fracturing develops inside the matrix
and the effective stress, created by lithostatic forces, is diminished according to the
expression (2.146). Then,

1

Rund

(B3P, -Pi-p)to: (2.193)

Pus =

and p,, is chosen for fast fracturing when the injected fluid has no practically possibility
for drainage. If the process is very slow, drainage conditions are fulfilled and the bigger
coefficient, g, is introduced into (2.193) instead of n,,. This means that then
breakdown-fracture pressure is lower in the case of a low-viscosity fluid and a low rate
of injection. So, the vertical fracture appears. Because the horizontal lithostatic pressure
grows faster with depth then the vertical lithostatic pressure, the horizontal
hydrofracturing occurs more often at deep reservoirs.
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Well pressure can be measured during the injection process. The typical curve and its
interpretation are given in Figure 2.8 according to [59], where more useful details and
technological methods are described.

Breakdown .
Pressure, pp | Tensile Strength, O
Re-Opening —f—f — — I -_— == f_ng__ '
Pressure, po.,

Pressure

Open
Propagating Valves
Pressure
Instantaneous - T l
Shut-In Pressure Cycle 1 Cycle 2

Time

Figure 2.8. Borehole pressure as a function of time during a cycle hydrofracturing
(Courtesy of M.J. Economides)

Additional fracture propagation is connected with the pressure drop inside the narrow
channel in which width W is unknown. There are two approximations for this
estimation. The first accounts for the rigidity of elastic matrix:

w=allo, (2.194)

where x is the normalized distance from the crack tip, and @ is the numerical constant.

The second approximation is based on the elastic displacement in the direction
orthogonal to the crack:

W=_P—_P0ﬁ (2.195)

Here, 4 is the thickness of the layer. Introducing one of these expressions into the fluid
balance inside the crack results in the nonlinear Fourier equation [59]:

_a_w_ = £ _6_ (w3 a_w) (2.196)
ot  hu ox ox

The second necessary boundary condition must be formulated for the fluid mass
injected into the crack, where the permeability of the crack is proportional to w’ and
fluid percolation from the crack is ignored. The initial and boundary conditions are:

wx,t=0)=0 ; wl,H=0 , x2x/ (2.197)
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Recall that equation (2.196) determines the finite zone of the nontrivial solution
w(x, t) > 0 as the nonlinear diffusion equation (see, Section 3.1).

The tensile strength is negligible comparative to the lithostatic forces, which must be
in equilibrium with the fluid pressure distribution in the crack vicinity - that is,

0 X; - X

according to the Barenblatt analysis (see [59, 233]). Here, " is the mean compression
stress, and the stress concentration is taken into account. Singularities at a crack tip

have to be studied carefully [48].
The sand is injected together with the fracturing fluid to keep the crack in an open

state after the pressure decline.
The diminishing values A , P, in comparison with such averaged estimations

asP ~ y H, indicates that there is some global geological reason for the local unloading
of a porous matrix can be explained by further geomechanical studies. As seen in
Figure 2.9, hydrofracturing pressures are higher at the vicinities of the fault and are also
dependent on geological structure.

xs
T

Figure 2.9. The map of fracture pressure excess above hydrostatic pressure for Umbaki oil
reservoir in Azerbaijan (1 = tectonic fault, 2 = depth, 3 = relative excess),
according to the author diploma thesis (1957).



CHAPTER 3
HYDRODYNAMICS OF RESERVOIRS

3.1. Basic nonstationary flows of a homogeneous fluid
3.1.1. HYDRAULIC THEORY OF GROUNDWATER FLOW

According to the conventional approach, reservoir pore pressure and well productivity
are determined by more simple mathematical models than those discussed above.

In the case of water flows in soils above rigid and impermeable basements (Figure
3.1), the mass balance (2.2) is averaged over the cross-section and Darcy’s law (2.66) is
used with the assumption that the porous matrix is immovable. Thus,

oh  Ohw,
+ -

— 4+ —>=0 3.1

because p , m = const, water content A coincides with the cross-sectional flow area,
and

w (3.2)

;='Cf"5-x— » Ccr
J

where A also plays the role of a filter head assumed to be uniform in a cross-section of
flow. The combination of (3.1) and (3.2) gives the Boussinesq equation

?ﬁ:c_fi ha_h (3.3)
ot mc’}xj ax,

Here, c; is the filter coefficient (2.67) whose dimension coincides with the filter velocity

dimension and i , j =1, 2. The main sequence of its nonlinearity possibly has moving

fronts with sharp changes of unknown variables, while the linear variant of equation
(3.3), which is the nonlinear Fourier equation [169], permits smooth solutions only for
t>0.

94
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Figure 3.1. The hydraulic theory of groundwater flow is based on assumption that
head is constant in a cross-section.

In the case of infiltration or water inflow from the deeper reservoirs through the half-
permeable basement, sources will appear in the mass balance (3.1) and subsequently on
the right-hand side of the resulting equation (3.3) for the hydraulic theory of
groundwater flow.

Equation (3.3) is nonlinear and can be solved by an asymptotic [169] or numerical
method. An example is given in Figure 3.2 where the following variables are used:

7
U
J,g \\
a¢ \
44 N
N
A 44
”:z P §§/4
/’ql-“’ ﬁ;’
04z 4% 45 498%. 1 4z ¢ #6

Figure 3.2. Groundwater planar flow (with water front if f=w )
into a porous barrier.
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h-H x
U= z = 34
AH d 1/2cft 34
with f as a parameter
p=22  Am-m,-H (3.5
H,
of the nonstationary groundwater flow with the following boundary conditions:
h(x,0)=h(w,t)=H, , h(0,¢) = H, (3.6)

You can see the principal peculiarity of the nonlinear equation (3.3). In the case of a
zero initial condition (H, = 0 or # = ), there is a value &, which corresponds to the
front of water presence moving with finite [169] velocity

de c;
dt 2 2mt SR
At this front, the conditions
h(&)=0 , [dh / dE) =0 (3.8)

of the second-order discontinuity is valid. In the case of any nonzero initial water head,
H, # 0 in the porous barrier, the initial discontinuity, Ak (0,0) = AH,, will disappear
instantly and only a smooth solution will be valid everywhere - that is,

[dh/ dé]=0 x,t >0 (3.9)
3.1.2. ELASTIC REGIME OF FILTER FLOW

Head-filter flows are characterized by the total sealing of cross-sections by rigid
impermeable walls. The pore space is filled completely with moving fluid, pore pressure
is not directly connected to fluid presence, and fluid and pore space compressibilities are
accounted for. The corresponding set of equations has the following form:

(f) (f)
omp +6p Wi _ g
at 5x,-
(3.10)

ky O
w=—-—= (P + P(f)g5i3x3)
H Ox;
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where i, j=1,2,3, x, is the vertical coordinate, and the matrix displacement is
neglected - compare with (2.129). Fluid compressibility can be taken in linear form
(2.87) for water (or oil) with coefficients independent of pore pressure. For gases,
relation (2.87) changes to

©=_F_ 3.11
P = Rr7 (.11

Here, R is the universal gas constant, T is the absolute temperature, and Z is the
supercompressibility coefficient which accounts for the real deviation from the perfect
gas equation of state. However, the state equation (3.11) is usually utilized in another
form:
(g) — (8) P
=p - (3.12)
Po

where po(g) , D, are values corresponding to the reference state (at normal conditions
when p, = I bar = 0.1 MPa, and T, = +20°C).
Here, the deformation of pore space is accounted for by the porosity changes with
pore pressure:
m(p)

=l+a,(p- 3.13
m, a,(p - py) (3.13)

Connection (3.13) uses the assumption [156]
r=oc -p=const , i=j (3.14)

because it allows the use of the true constitutive law (2.88), the consequence (2.89) of
the mass balance of the solid material, and to avoid more complicated analyses (Section
2.4).

The simplest linear form of the piezoconductivity equation is valid for planar head
flows in layers with constant temperature and permeability, & :

6p 2 k
._=’(V R =
a P *

B Hy Py

(3.15)

which follows from equations (3.10), (2.87), (3.13) and (3.14). Here, f=a, *+a, is

the effective compressibility of the layer, and x is the piezoconductivity [196]. If the
layer is inclined, then the gravity effect has to be included [14, 195]:

op _ 2 (f) <2
E_K(V ptegp 'V z) (3.16)
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where z (x;, x,) is the height of the seam middle plane above the reference horizontal.

Nonlinear piezoconductivity corresponds to essential changes of porous space when

[156]

ﬂ = e-am(P—Po) , ﬁ— = e~ak(p—1io) (317)

mo ko

and the analogous exponential connections can be used for fluid density and viscosity as
well as for seam thickness

S/ h
% — e—(lp(p“PO) R ﬂﬁ = e—ﬂy(P—Po) 5 h— = e—a;,(P-Po) (318)
0 0 0

Their introduction into the system (3.10) gives the nonlinear equation [156]

op 2 7 -B(p-py)

— =K , _ 0

a Ve p=e

y=l | =k (3.19)
B Moy

a=acrta,tan—a, , B=amta,+an
and Darcy’s law (3.11) has now the form

W, zhw,.=—£’—hia—¢
Hya Ox;

The ideal gas-filter flows are governed by the Leibenson equation, which follows from
(3.10) and (3.11) if the porous space is not deformable:

op 2.2 k

-V , == 320
py p K= m (3.20)

In the more general case, equations (3.19) and (3.20) can be represented by the
nonlinear form [156]

ﬂ¢ﬁ§:vﬁ) (3.21)
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where the Leibenson function is used [152] because the substitution (3.18) changes
pressure, p, by @ in every function:

and

3.1.3. NONSTEADY FLOWS IN RESERVOIRS

Nonstationary fluid flows are extremely simple for layers with constant thickness because
the corresponding basic solutions are self-similar. Consider plane flow with following
initial and boundary conditions and governed by the equation (3.19):

p(x0=1, ¢(x)=1, ¢(0,1)=g, (3:22)

The transition to the variable
(3.23)

g= X
 Vaxt

where X is the coordinate along the layer, reduces (3.19) to the ordinary differential
equation

2 7
‘fj;’; + 5-‘;—? =0 (3.24)

and three conditions (3.22) properly correspond to the following two conditions:
p(é=w) =1 |, (0,1) = ¢, (3.25)

The nonlinear ordinary equation (3.24) was solved numerically, and the results are
shown in Figure 3.3 for different values of the parameter y. The solutions do not
deviate essentially from linear variant (‘¥ =1) of the equation (3.14). This means that
the linear equation

0 _ Fo
ot

ST =g (3.26)
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is a sufficient approximation for all nonlinear types of pore-pressure changes in infinite
reservoirs.
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Figure 3.3. Nonlinear (points) and linearized calculations for planar
underground flows in a infinite reservoir [156].

The axisymmetric filter self-similar flows are governed by equation (3.19) in the form

op x 0 _0¢
e I I T 3.27
ot ror (r or ) ( )

for the following initial and boundary conditions

og Que .
ro)y=1;r = 0 =Q,r-0; p(o,t)=1 (3.28
9 (r,0) o Zahken 0 @ (, 1) (3.28)

Here, Q is the constant well production rate. The variable

r

$= o

permits the reduction of (3.27) to the ordinary differential equation

(3.29)
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d2 ¢7

4
Lo Ldo
g

de 7 ds

1
! 3.30
+ z ( )

Again the three conditions of (3.28) are transformed into the following two conditions:

=¥ s =w)=1 .
i Tnhken p(E=w) (33D

The numerical solutions are given in Figure 3.4 for different values of well production.
These data conform to the requirements for using the linear equation (3.26) for the
Leibenson function as the approximation of nonlinear piezoconductivity in infinite
TEServoirs.
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Figure 3.4. Nonlinear (points) and linearized calculations for pumping from a planar infinite reservoir.

The considered solutions have shown that the depression or pressure increase is
limited by the boundary & = &, ~ 2, - that is, by the moving front

x,(f) ~ V8t (3.32)
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or, in the axisymmetric case,

r(f) = V8xt (3.33)

When the front reaches the outer boundary of the reservoir, R = const, the self-
similar solution becomes invalid. The numerical solutions of the gas filter equation
(3.20) are illustrated in Figure 3.5 for the impermeable condition at the outer boundary:

w =0 |, r/R =1 (3.34)

Figure 3.5. Finite reservoir radius effects on pore-pressure distribution at longer times.

As can be seen, the self-similar solution is valid not everywhere, and the deviations
suggest that dependance is separate upon time and radial distance, 7 / R, which is given
here in the form & and r / R. Of course, the deviations begin earlier for the bigger
production rate, Q". The curve 7 / R =1 would correspond to a pore-pressure decline
at the reservoir boundary. The interval of self-similar solution validity can be defined as
the first stage of a nonstationary flow. Then, the second stage corresponds to the time
intervals of the deviations from self-similarity.
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3.1.4. PORE PRESSURE BUILD-UP PROCESS
Pressure changes at the well after instant closure are important. The analytical solution

of linear equation (3.25) is used to interpretate the field measurements. The pore
pressure is searched for in the form of a nonstationary disturbance

2%:5 ®. (r, 1) =  (r, £) - @, (r) (335)

of an initial distribution, @, (), for which the following limitation is necessary

6<D0 — Q,U
—_—= 0 3.36
"o =2 70 (3.36)

Then equation (3.26) with initial and boundary conditions

O, (rt)=®. (0, 6)=0 , raép‘z—l (r—0) (3.37)
r

must be solved. Problem (3.37) is also self-similar but, now, the linear variant of
equation (3.30)

ﬂ+(§+l)u=0 , u=d£ (3.38)
g 4 d¢
can be integrated:
o, C 2
u= =—exp|-& (3.39)
- e el-¢)
where C is the constant determined by condition (3.37). The second integration gives
1. 7
. (r,t)==Ei|-—— 3.40
(r, ) =5 Ei ( 3 Kt) (3.40)

|
&
|
Py
R
Il

[&de~ing*-05772 (3.41)
’:2

You can see now that
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AD = D(r,, 1) - ,(ry) ~ 0.1832 L Jp 2240K1
kh re
(3.42)
~0.1832 22 (1 22405 4 ks
kh I'w

0 25 S0 75 Int

Figure 3.6. Two build-up curves measured at fissured reservoirs with pressure-sensitive pore volumes.

where condition (3.37) at » — 0 and the actual well scale (7, / r ~ 0) permits use of
the result (3.40) at the well surface (r = r,).

Therefore, the half-logarithmic system of coordinates is used (Figure 3.6) for
interpretation of measurements of pressure build-up curves in the well after closure
{172, 211]. Deviations from the straight line in the plane A®, lg¢ or Ap, lgt are
initiated by different sources of additional visco-elastic pressure relaxation and will be
discussed later. The straight line shown in Figure 3.6 gives us two parameter
combinations which are used for the reservoir technology design:

2.246
kil

ri

A=1ilg ,

. Qu
= 01832 == 3.43
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3.2. Stationary flows and well spacing
3.2.1. STATIONARY WELL PRODUCTIVITY

Pore-pressure fields in the vicinity of the infinite drainage gallery

Qzuo
px)=pt+—"—mI(x-x%) , X <X, 3.44)
( ) hobkopo( )
and of the well
Q,Uo (")
r)= + ——— ln s r<r+ 345
P = Pt 5 e (3.45)

can be treated as stationary during the time interval that the front x, (¢) or r,(t) has
moved nonessentially - see (3.32), (3.33). This front can be treated as a feeding contour
because it is characterized by conditions for the radial flow case

p=~const=p, , r=r =~const = R (3.46)

(or ® = const, see Section 3.1).

Distributions (3.44) and (3.45) can be found to be stationary solutions of the
piezoconductivity equation (3.9) when it has a form of the Laplace equation V°® = 0.
Correspondingly, one obtains the following formulae for the fluid output of the drainage

gallery:

0= kobhpy p. - p. (3.47)

y7i L

where b is the width of the plane layer and x, — x, = L.
The expression for well production determined by radial pressure field (Figure 3.7) is

2rkohopy, Pr-D
0= 0 R_Tw 3.48
w IR/ ) 3.48)

This formulae corresponds to the straight line in the plane Q , Ap = p, - p, which is
used to estimate well productivity. The deviation from the straight line requires that
nonlinear effects be accounted for. They can be described by the Leibenson function @,
in the expression (3.48), instead of p.
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Figure 3.7. Depression curve for an axisymmetric reservoir with a producing well.

For example, the permeability changes controlled by pore pressure are of the
following type [156]

1
® = —ep (-adp) Ap=pr-p (3.49)
The specific output rate (per unit pressure drop) is the well productivity, K, :

__ 0 _ 2tkimp, 1-exp(-aAp,)
pr ﬂOIn(R/rW) apr

Ko (3.50)

Its limit as @A p, — O corresponds to the Dupuit formulae (3.48) when K, = const.

o 200 Q,ton/day

Figure 3.8. Well production curve, with two sets (I, II ) of measurements, and its treatment [156].
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It is possible to determine parameters K, and a by the proper treatment of well
production data (Figure 3.8). Integrating equality (3.48) over the interval of A p,, and if
formulae (3.49) is valid, we get the values F; and F, , as shown in Figure 3.8:

Apy
F=[odap) ., F=0ap, (3.51)

0
This integration permits us to use the function [121, 124] shown in Figure 3.9:

Fi 1 1
F(A =— = - 3.52
(4p.) F, l-ep(-aAp,) aAp, (352

Here, the positive values of o A p, correspond to fluid production from the reservoir
and the negative ones correspond to the fluid injections.

8 F=E/F,

0 \

02F

Figure 3.9. Tabulated functions for interpretation of well production data.

The value o can be determined by comparing the graphical results in Figure 3.8 with
those in Figure 3.9 and then calculating well productivity by formula (3.50).
The data of Figure 3.8 correspond to the following numerical values:

, 0186 ko 845 ton
" MPa "’ ¢~ MPa day

(3.53)
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It is possible to represent maps of reservoir hydraulic deformability if the parameter «
is found for a number of wells. Such an example is given in Figure 3.10, where the
circles are proportional to the a-values. As can be seen, its maxima are concentrated at
the upper part of the geological structure disturbed by two tectonic faults.

Figure 3.10. Reservoir structure map and the pressure-dependent pore space factor o.

The nonlinear deviations of the Dupuit formulae are typical for gas wells, but not all
of them can be accounted for by introduction of the proper Leibenson function (® = p2
for the perfect gas). The reason for this is the "turbulent" filter resistance that appears
because of the high production of gas wells, see (2.70). The formula

2 2
Pr ~ Py él’w =a+bQ (3.54)

is often used, where Q is the well output rate (usually normalized to the normal
conditions). The following data are typical:

a=60 , b=015 at p=5MPa , Q=10°m’lday (3.55)
3.2.2. WELL PERFORATION EFFECT

The "turbulent" resistance can be essential because fluid flow drastically changes in the
vicinity of the well from radial to spherical. This is so because the well column is
perforated and fluid has to flow through a number of small holes. The flow is governed
by the equation

1 6( ,00
75(’257) =0 (3.56)
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inside the sphere with radius » = £ around every perforation (Figure 3.11). The
integration of this equation gives the pressure distribution [14]

p=p+ C[l— 1) (3.57)

L r

where the constant, C, can be determined from the expression for filter velocity

e _ KC

== (3.58)
27y hnp, Ho r,,2
where 7 is the number of holes and r, is the perforation radius. As the result,
o=27kohopy PPy [nfi) (3.59)
Ho 1~ (rp / n) T

where p. can be found from expression (3.48) with 7 and p. instead of #, and p,,
respectively. Numerical calculations have shown that the radius is # =~ (2-3)r,. In
this way, additional resistance due to perforation effect can be found.

&
L]
4

Figure 3.11. Flows in the vicinity of well-perforation holes.

Remember, however, that the perforation procedure includes now usage of cumulative
charges that create perforation channels and change permeability drastically in their
vicinities [171]. As during explosions (Section 5.1), grain crushing takes place and
induced permeability has a nonmonotonous distribution, which has to be accounted for in
the case of detailed calculations [152].
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3.2.3. INDUCED ANISOTROPY OF PERMEABILITY

Sometimes the coefficient, «, that accounts for changes of permeability induced by pore
pressure fields and which is calculated on the basis of well data, appears to be negative.
This can be explained by microstructure changes under the filter velocity action. To
account for this effect, resistivity (2.53) must be introduced into the system of equations
for axisymmetric flow in the well vicinity. Then,

dp __u Y
=~ +Xve W) T 3.60
ar = g ) (3.60)
The rule of grain rotation (2.60)
G, = —«"w (3.61)

must be introduced into the balance of moment of momentum - (2.59) through (2.62) -
which will be represented as the following equation for the vector-director and determine
induced matrix anisotropy:

dv, 1dy, ( 2 2) Z,0
s 18w (2,4, = 3.62
dr’ r dt Ze r v myr ( )

where Z, is the elastic coefficient, corresponding [11,80] to relative grain rotation, and
Z, is the aerodynamic coefficient proportional to x(®’ You can see that equation (3.62)
has the Bessel form.

So, the system of equations (3.60) and (3.62) includes pore pressure and a new
unknown variable, v, which is a measure of induced anisotropy. The case v, =0
corresponds to isotropy of the porous medium. However, because of the nonlinearity of
(3.60), the numerical calculation of the system is preferable. It is also possible to find the
solution of (3.62) at the beginning and then use the result in (3.60). The corresponding
solution is given in Figure 3.12 in the form of two production curves, 4 and B (without
and with induced anisotropy of a permeability), and the corresponding distribution of
vector-director, v,, its value equal to zero at ¥ = R. It is assumed that there is no
coupled stress at the well surface. (Grain rotation is free.)
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Figure 3.12. Depression curves for the reduced rate Q; =03, Q; =06, Q; =10
and well productivity changes due to induced anisotropy [80].
3.2.4. WELL SPACING AT RESERVOIRS
Well spacing is very important to reservoir development [102] because of the
interference effect between acting wells. The method of sinks and sources is usual for
the Laplace equation

Vid =0 (3.63)

because, in large scale, wells can be modeled by point singularities. In planar layer, the
potential field around each well (with index "7 ") is determined as

ouy=0 Inr+C (3.64)
and their cumulative action is the sum
o=3 0 Inr (3.65)
The filter velocity, w,, is also calculated by the summation procedure [14]

w= 3w (3.66)
i
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and, in every point of the layer, the individual velocity vector is oriented to the

corresponding sink (source):
o[
wi = [# (3.67)
J

The impermeable boundary can be accounted for by mirror introducing additional
sinks (sources) with the same intensity as in the corresponding points of reflection. If the
sign of O, changes during this procedure, then the boundary will be the feeding contour
[14].

The effective approximation was developed (by Yu.P.Borisov) for design of filter
flows between well rows at the oil reservoir [102]. In large scale, every j-row is
modeled by the drainage gallery (Figure 3.13), with cumulative production:

_2lnjkopph @ - @, (3.68)

0,

Hoy L

- Injection row
-

Figure 3.13. Scheme of well systems used for flooding of oil reservoirs [156].

The fluid flow corresponding to every individual well is directed to the linear element
of the row equal to 2/;. So, it can be treated as length of feeding contour, 2zR; :

I,
R =% (3.69)

The introduction of this result into the formulae for output production of the well
(3.48) results in

&: 275/(0,00}1 (Dj_(pw (370)
n; Hy In (lf / ”ij)
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The combination of equations (3.68) and (3.70) gives the following result:

_Q_j_zzﬂ'kopoh Or — Oy
n; to Ly /21)+In(1; / 7r,;)

(3.71)

The solution of the Laplace equation, which can be obtained by the sink-source
method [102]
_Q_j:27rk0p0/l Dr — Dy
ny U ln[2sinh(7rL,/Ij)]+ln([,/7rrwj)

(3.72)

contains the approximate solution (3.71) as the main part due to the asymptotic formulae
In(2sinhx)~x x<<1 (3.73)

where x=zL, /1, This suggests that expression (3.71) is valid if the distances

between rows are much larger than between the wells inside the row.

Recall that horizontal wells play the role of rows of vertical wells very effectively
[58] in the case of thin productive layers. "Feeding" contours inside the well system can
also be found from the proper approximation of formula developed by the method of
sinks and sources. The problem of well interference can be solved very effectively with
the use of modern computers.
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3.3. Two-phase flows in reservoirs
3.3.1. FLOODING FRONT MODEL

This type of flow is very important for oil and gas reservoirs because of the natural and
technological process of displacing one fluid by another. Usually, the displacing agent is
water, and the process is called flooding. It can maintain initial pore pressure, reserve
and delay gas release from an oil stratum.

The flooding front is a discontinuity. The “piston” displacement concept means that
the fluid particle has the same velocities, V™, V", as the front itself U :

+ - dx
m m dt

where x, is the front coordinate. The mass balance (1.32) discussed earlier,
p(v-U)=p(v"-0) (3.75)

determines the independence of densities, p , p', ahead and behind the displacement
front. Moreover, momentum balance (1.33) means that

a,y-nj:afn/ (3.76)
That is, for pore space, we have
p=r (.77

Because porous channels have different sizes, total frontal displacement is only useful
idealization. In reality, one part of the displacing fluid moves faster than the front,
another one moves slower, and the fluid which is being displaced partly remains behind
the front.

3.3.2. TWO-PHASE HYDRODYNAMICS

This adequate theory is based on a generalization of Darcy’s law, according to which two
fluids can be presented simultaneously in the same macropoint but move with different
filter velocities [108, 139]:
(2)
@ _— _ Kk o) a)0P
Wi - ﬂ(a) f( (9< ) ax, (3.78)

where 8/“’ is the saturation of pore space by fluid phase &



HYDRODYNAMICS OF RESERVOIRS 115

> =1 (3.79)

and p’® and u'*’ are the phase pressure and the viscosity, respectively.

The basic concept [139] consists of the relative phase permeability /*’(¢*’)
measured experimentally for rock samples under stationary conditions (typically
represented in Figure 3.14 for a two-phase system). The essential feature is the existence
of the intervals =’ < 8./*’ of the immovable phase a with threshold values 6{*’. At

small saturation, every phase is represented by individual drops or films separated by
another fluid phase in porous space. Therefore, there are no continuous streams in this
interval, and it cannot move by its own pressure gradient.

fo) [N T T 1LY
\ L/

% N\ .
o \\Q‘ oil 1 u{///
o AN
\\ = / /

pd
DA

z N Y,
2) 7/
,
10 .~ h
7 / .
o Z / - \
0 0 D D O H @ M ® D 0

0.%

Figure 3.14. Relative phase permeabilities for a water-oil system, changing with its
dispersivity [108] (for drop size D;<D,<Dj; and fixed porous space; broken

lines correspond to the absolute absence of capillary effects).

However, the drops can be removed by another pressure field and equation (3.78) be
further generalized in the following manner:

0 (a) N
_opr  _ Z"i/( T (3.80)
Ox; s
where r,f”ﬂ ? are the phase-resistance coefficients. Usually, calculations are based on the

(ap)

more simple expression (3.78) - that is, p; ~ are assumed zero if @ # .

The phase pressures are interconnected by the expression [157]
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de

(@) _ ,(B) _ (aB) (g ev
p -7 =p ()+rcdt

(3.81)

which corresponds to Onsager’s rules (Section 1.2). Here, pc("ﬁ ! (6) is the capillary
pressure, the function of saturation 8V =@ or % =1-0 for the two-phase system
(Figure 3.15)

7 (0)=y \/% J(6)cos g (3.82)

Here, y is the interface tension , ¢ is the contact angle of fluids at the solid surface of
the porous matrix, and J(6) is the Leverett function [14].

- J(@coso
1.2} Y

Figure 3.15. Capillary pressure dependence on saturation for
(1) wetting and (2) nonwetting phase [156].
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The second term of expression (3.81) takes account of delay in phase-local
redistribution in porous space with capillary relaxation time, 7,. In the case of local
stationarity, 7, /¢ — 0; correspondingly, the second term on the right-hand side of
equation (3.81) can be neglected.

The mass balances must be formulated for every phase separately when components
and phases are identical (Section 4.1):

d d
2 @y 2 =) =0 3.83
6tmp d +ax](p w; ) (3.83)

3.3.3. ONE-DIMENSIONAL PLANAR MIXTURE FLOW
The system of (3.78), (3.81) and (3.83) permits the study of fluid redistribution of
masses in an oil (or gas) reservoir that usually contains natural or injected waters.

Consider the simple planar one-dimensional water-flooding process in an oil reservoir. In

this case,
m=const , p =const , p,=const

and the system of equations is reduced to:

w24 02

ot 0 ox
(3.84)
1-6) o k ap”
ma(__l: = 751'(2)(‘9) P
ot ox H ox
Their sum has the following form [14]:
—a—{[f(l)(g) . f(Z)(a)Jka—P+ f(2)(9)k%@}
m ) 2
ox M M ox H do ox (3.85)

_(%(Wm +y) =0

where ( p(l) = p), and integration gives the first integral

W + @ = w(?) (3.86)
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If one excludes the pressure gradient

op _(wr)  f2(6) dp.(8 AN
_a:( C TP a—xJ/[ o ﬂ) (3.87)

the first equation (3.84) gives the following for water saturation:

20 £2(6) d p.(6) 20
—+—| F(0)w(t) + kF(6 2| = 3.
n%0+ 2 rowi+ w0 LA L2D L)
where 6 = 8 and F(6) is flow distribution function (Figure 3.16)
(1) 1

@7 ) (76 /)

if capillary pressure is negligible and equation (3.88) has the form of a nonlinear simple
wave equation:

w(t

26, M) 120 g (3.90)
ot m Oox

As usual, this equation is compared with the equation for characteristics

46 _06 o0dx (3.91)

dt ot oxdt
It follows that value @ = const propagates with the velocity:

dx _w(t)dF
—_= 3.92
dt m do ( )
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A F(0)
1

) 1

m

Figure 3.16. Rate distribution function F' (0) for two-phase flow in porous
media (the broken line corresponds to front discontinuity) [14].

3.3.4. FRONTAL SATURATION STRUCTURE

The typical form of curves F(6) and dF / d@ are shown in Figure 3.16. You can see
that there are two intervals: one of growing velocity of @-propagation, and one of its
decline. This means that there is value 8 = 8,, propagates with the highest velocity.
Therefore, a jump from some smaller value 6 to some value €, must be introduced.
This discontinuity moves with the velocity, U which can be found from balance (1.31)
and written now for the phase masses:

[WM - me(“)U] =0 (3.93)

where incompressibility is accounted for. Indeed, one can find (Figure 3.16) that
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1 —
U=—W+r — W (3.94)

from the first phase balance (@ = 7). The second balance will give the same result

because of integral (3.86).
This front is stable if

dx dx
v>= , 6>6, ; U<= , @<6 3.95
dt dt 0 (3:95)

and unstable in the opposite cases [17]. Really, higher saturations cannot move ahead of
the front, but smaller values of displaced fluid (oil) can be redistributed in this zone. The
condition of coincidence of velocities (3.92) and (3.94)

dc/dt=U (3.96)
will determine the dependence of &, on _ - that s,

F(0,)- F(6.)
6, -6

+

F(6,) = (3.97)

because W' = F(6)w .

Of course, the saturation discontinuity must coincide with the displacement front
found from the idealized scheme of one-phase calculation (3.74). The residual oil
amount can be found by integration of 6® behind the front.

Capillary effect is studied by adding the space derivative of second order in equation
(3.88). This means that the discontinuity must be changed into a thin continuous
"stabilized" zone with high gradient of saturation. For proper study, it is possible to find
the stationary solution of equation (3.88) in the coordinate system (&£ = x — Uf) moving

with the front velocity:

(2)
e w()(dF)de kd pgt O)dp.do_, (3.98)

de" m \do)dc mae 42 de de

The boundary conditions must be selected according to the requirement of coinciding
with the jump conditions (3.93) for saturation - that is,
O(-x) = 6

+ s

6(+) = 0. (3.99)
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If df / dé — 0 até — —oo, the first integral is:

w )
u(e, -6)+ " (r(6,)- F0) = —§F<e>%2%@ 2.9 6o

Further integration of (3.100) determines the saturation distribution inside the
stabilized zone as it is shown schematically in Figure 3.17, see also [105].

oA

Figure 3.17. Moving stabilized zone is the structure of front discontinuity from 6_ to €, (from

6, , initial water content, to &, , residual state in the scheme of “piston” displacement).

ro

3.3.5. UNIFORM VELOCITY CASES

The opposite case, of absolute negligible capillary effects (at supercritical states, for
example), can change even the form of phase permeability curves. It was found
experimentally that, in this case, their curvature is diminishing and tends to straight lines
(shown in Figure 3.14 by broken lines). Moreover, mass balances (3.83) become
identical with simple convection equations if phase densities are constant. The saturation
6 will play the role of volume concentration - that is, system (3.84) will have the
following form:

06 ok ap ow (1) (2)
-_ = —-6—— _— = O y = o=
"ot ox (,u ax) ox P P P
(3.101)
wl = 6 w , —_ .,.C_.a_p_ , ,u(l) — ﬂ(Z)
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Another practical and important variant of simplification is the case of gas
microbubbles moving with the same velocity, w;, as the fluid when their saturation, 8, in

the fluid volume does not change. Then the mixture density has the form
— = A1~ —( A2
p=A+Bp ,  A=p"(1-6) ,  B=(A"/p)e (3.102)

and its substitution into the balance equation (3.83) will give the nonlinear equation, as it
had been suggested by L. S. Leibenson (1932) before the phase permeability concept was
developed:

) , po=A+ Bp (3.103)

This declares the increase of potential of fluid underground flow in comparison with
usual pressure. Such an effect can be seen in oil reservoir data (measured by
A T.Gorbunov and given in Figure 3.18) as the sudden increase of well productivity at
gas-dissolving pressures and the reduction due to gas bubble growth. The latter interval
corresponds to the phase permeability (f*’ <1) concept.

0 40 80

Q

(ton /day)

40

)
S0 AP (bar) ‘

Figure 3.18. Typical well output curve for oil production, where p is the

pressure of gas release from the dissolved or adsorbed state.
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3.4. Flows in fractured reservoirs
3.4.1. STRESS DISTRIBUTION IN A DOUBLE-POROUS SYSTEM

Fractured rock masses can be treated as standard porous media but with high level of
anisotropy created by systems of cracks opened by the dilatancy effect - that is, by shear
stresses during tectonic activity.

However, if such fracturing takes place in a porous reservoir, the medium with double
porosity, m" and m®, appears, the first corresponding to tectonic cracks and the second
one to initial pores (Figure 3.19). The mathematical modeling is based on ideas of
interpenetrating porous continua [12, 156]. (The alternative is connected with the fractal
approach [50]).

F

\\\\\\\\\\\

W
P

Figure 3.19. Load distribution in the crack-pore system of a medium with a double-porosity.

The total (lithostatic) stresses, I';, created by tectonic processes in such a reservoir
are supported by the true stresses, I'Iij , and pore pressure, p(l), acting on a large scale

(that is, in the system of blocks and cracks):

= (1))l 05, @ 100

1)

The effective stress, IT;" /(1) can be introduced such that [152]

ry=1,7" - oV, (3.105)
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The total stress for the second ( porous) system appears to be equal to 1’[,-,-(1):
1y =,7" - p¥s, (3.106)

where H,]-ef ) is the second effective stress. Of course, this local stress distribution leads
to definite nonsymmetry of the piezoconductivity in the media with double porosity. So,

under constant I;, it is assumed that

mV) = m(l)(p(l)) , kD = x® (p(l)) (3.107)
and that the second system’s parameters are functions of both pressures in general:
m? = m(z)(p(l),p(z)) , 2 = k(z)(p(l),p(Z)) (3.108)
3.42. MASS BALANCES AND EXCHANGE

The prime feature of double-porous media is the mass exchange modeling by body
distributed sinks (sources) proportional to the pressure difference [233]:

In=2(p"- p?) (3.109)
X

Here, y is the dimensionless coefficient which is dependent on the permeability of
porous blocks, ®, and their specific (per unit volume) area (A ~ I"!, where / is the
fracture length). Therefore,

k(z)

According to this idea, the mass balances are formulated separately for both
interpenetrating porous continua:

o 0 (v —

+ w' +T =0 3.111
M P axip ; m ( )
9 0 (2)

+ w!< -] =0 3.112
a™ P e " (3.112)

altogether with the separate Darcy law formulations (@ = 1, 2)
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(a)
w(® = _ K op”

: PR (3.113)

3.43. ZONES OF PRESSURE CHANGES

The homogeneous fluid flow is governed by the following combination of equations
(3.109) and (3.111) through (3.113) in the form of total mass fluid balance and its
balance in the continuum of fractures [156]

op" ap” 2 2, 2
(’7(1)+’7(12)) of + of :"(77(2)V p+Vip )
(3.114)
opV  p¥_ p 1
(PR xV? pl!
where the two small parameters are introduced
(D) A1) (2)
_m p k
«<l1 , 17(2):—];(1-)<<1 (3.115)

Ny = 2
m(()2) ﬂ( )

So, the effective fluid capacity of the crack system and the fluid permeability of pores
are supposed to be relatively small. The relaxation time 7 is characterizing the delay due
to fluid exchange

c=um 2/ (3.116)

Here, the effective piezoconductivity is utilized:

The coeficient 77, reflects the relative compressibility of the porous continuum due
to pressure changes in the continuum of fractures; 7, is assumed to be even smaller
than 7).

The next step is connected with the dimension analysis of equations (3.114).
Introducing such variables [156] as

p(l) = p(l) R p(z) — np(2) , p(l) = O(p(Z)) (3118)
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we can obtain

o py 0 P kT

_ 2 2
(Crve + T T "E‘(V Pay* iy IV P(Z))
(3.119)
ap NP~ P T
w _ "PaTPugp _ KT
"5 T L
So, terms with coefficients 7,,, , 77,5, <<1 can be neglected only if
n=0(1) , T=0(7) , L=0Wxt) (3.120)
Then the flow is governed by
61’(2) _ KVZ n
ot
(3.121)
V2 p(l) _ Pm - Pm =0
T
Note that the system (3.121) is equivalent to the following equation:
op 0 o2 2
v Pl p (3.122)

where p could be p(l) or p(z). The difference is determined by the choice of initial and

boundary conditions.
For small time intervals but essential distances,

To=0(nyz) ,  L=0(kr) (3.123)
the second equation (3.119) gives the equation of piezoconductivity in the crack system
with sinks into porous blocks

)

M
op" ., P _ K
or iy Ty

K vz pn (3.124)



HYDRODYNAMICS OF RESERVOIRS 127

The asymptotic solution of this equation determines the changes of initial conditions
from zero values to the proper ones for equations (3.121). The effective relaxation time,
T 1> is much smaller in (3.124), but the effective piezoconductivity, & / My 18 much

bigger than in (3.121).
For intervals of usual times and small distances:

T.=0(z) , L. = O( [xr ) (3.125)

system (3.119) gives the following equation for pore pressure changes

P p(z) P(Z)

WpP =2 B 3.126
T2 P of . ( )
inside the narrow zone at the boundary of the medium. Here, the effective piezo-
conductivity, 7,k is diminished, and the sink of the intensity, p(z) / T, is compensated

by the source for the crack system:

@
W2 ph e 220 (3.127)
T

Equation (3.127) is the consequence of the same estimation as (3.126). The solutions
of (3.126) correspond to changes of boundary condition if the fluid penetrated into the
pore space of the medium, not through the crack system.

Let us suppose that the double-porous medium is in contact with another fluid system
via its porous space. Integration of equation (3.126) across the narrow zone L. gives:

op?|_ o 1
M) K|:71;~ = > < p(z) > +; < p(z) > (3.128)

where < p > is the average value over thickness L..
Because of the second condition (3.115) the fluxes can be neglected and the equation
can be obtained only for average pressure inside zone L, :

dt T

Integration of this equation determines the decay of this pressure in time

< p(z) > =< p(z) >, €xXp (—t / Z‘) (3.130)



128 CHAPTER 3

where the initial reservoir pressure, p,, and the boundary pressure, p. = p‘*. can be
used for the following identification:
P = p.=(py- p)exp(-t / 7) (3.131)

Here, pfz) is the effective boundary value for equation (3.126). Analogous analysis

can show that the pressure jump ( pﬁl) - pfz)) in the crack system decays instantly. So,

the measurement of nonstationary pressure at the well bottom can show principally its
contact condition with the reservoir.
The total filter velocity is determined by pressure gradients as follows:

k [ap(l) . ap(z)) N

- M2 ~
u\ ox; ox;

w; =

_k
7

(3.132)

k [apm ‘. azp(z)J

u\ ox; Ox;0t

where the previous approximation is used.

3.4.4. NONSTATIONARY AXIAL FLOWS IN FISSURED RESERVOIRS

It is possible to show that the following solution of equation (3.114) is valid in the
axisymmetric case, modeling the flow to the well in an infinite plane reservoir [156]:

Qrkh I
Z—Atp(l’o - P = Fi(rf) + 7 [ Fi(r.2) dz -y Fa(r,1)
0
(3.133)
2nkhp

1 t
Ou (Po'P(z))zﬂ(z)F1(",t)+'T“([F2(",Z)dZ+ M) Fs(r,1)

Here, M2y << ") and
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1 e t [zZ(l1-z t 2 1yl d
Fl(’:t)z’z‘e"/’Jlo[2; —(;———)]exp(——i__"__@}_i

4

t t 2 2
Fz(r,t)=;«fx?exp[——— r )W_m,o[ n’ ) (3.134)

r 8 MKkt 4 (2) K
Vit t r r
Fi(nt)=—exp|—-—- W 120
} r T 8yt 4 1yt

where W, , is the Witteker function, [, is the modified Bessel function of the first type,
and the following conditions are satisfied:

(] (

:pz)_—_pa , t=0 ; p(l):p(z) , r=r,=0

(3.135)

) ()
_er +”(2)6p __Ou
or or 2rkph

The approximate solution of equation (3.124), which does not include the parameter
N2> can be written as [228]

27k ph () 1, r
Z (p, ~ ~0.80908 — —In——
Ou (Po p ) ) n o

(3.136)

TNy 2 Ty

'%E{_ = n(l))]““ 1l )

These solutions correspond to nonstationary pressure field in the reservoir if the well
begin to act with mass production, @, and if

2O =p(r,0) , 120 (.137)

Its instant closure causes pressure to build-up. The measurement of pressure at the well
bottom, p, (f) = p(rw ,t), permits Laplace transformation, P, (s), according to the rule
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©

P(x,s5) = f PO (x,f) e dt (3.138)

0
The function P,(s) can be identified with pressure transformation, P"(s) or P\’(s),

depending on what combination shown in (3.139) coincides with the straight line in half-
logarithmic coordinate system (C = 0.5772):

s PO(s) = s(1+ 5s7) P(s) = 2Qk'L;h( In g ;ln e+ ;1’7( l)) (3.139)
Tt

In this way, the boundary condition that corresponds to proper hydraulic connection
of the well with the reservoir can be identified. As usual, the quantity

O _ pv— Do
= Y 3.140
27zkhp  In(R / r,) ( )

is determined from the well-productivity curve (3.50), and 7 can be found by the
comparison method. The time of relaxation, 7, may be very different (from the first
minutes to tens of hours, according to Dr. A. Ban).

3.4.5. NONLINEAR FISSURE-FLOW EFFECTS

In reservoirs with double porosity, the nonlinear effects are essential in the case of gas
filter flow or (and) due to permeability changes of the crack system. The first effect is
accounted by introduction of the Leibenson function into the mass exchange formulae
(3.110) and into the divergence of fluxes. For example, the ideal gas flow is governed by
system [234] instead of its linear variant (3.121):

o p®
ot

@ (T - )

The same approach was developed to account for permeability changes by introducing
the following as the Leibenson function:

o(p) = é exp (—a p“’) (3.142)

The resulting equations can be linearized for further analytical study, with fluxes
unchanged and introducing approximate into time derivatives [152].
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3.5. Filter-convective diffusion
3.5.1. AVERAGING OF CONCENTRATION FIELDS

The phenomenon of tracer spreading in underground flows is explained by the dispersion
of marked particles in numerous pore channels of different sizes [195]. Obviously, the
study should begin from the microlevel, where the concentration field C’ is governed by
the usual molecular diffusion with the coefficient D, and the convective velocity v,

oC’ _ a( ac')_ac'v; (3.143)

ot o\ "ox ) ox

4

Averaging this equation over fluid space AV, of the elementary macrovolume
AV = AX,AX,AX,, the mass balance of the marked particles in this volume results:

2| cav = jDaC dA - jcv,n,dA+

ot x,
(3.144)

J.D ndA J.C'v,'n,dA

Here, A Ay is the fluid part of the bounding surfaces of the volume, AV, and A4, is

the surface of solid matrix inside AV . So, the first two terms of the right-hand side
determine mass fluxes inside and out of AV, and the second couple of terms

corresponds to adsorption of the particles at solid internal surfaces.
The mean value of concentration can be introduced for the fluid volume:

C(X,, t)—A— [cav (3.145)

aNg
Its introduction into integral balance (3.144) gives us the macro-differential equation

aC oa oC oC

i f — 3.146
or ot aX(D’ D’)aX ~ o, (3.146)

where the following definitions are used:
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v,-=—]- V; das
ASf ASy

D, —

— = , dS .
X “hs, n (3.147)

o,

ASy i

00C 1 J‘DGC'

oC 1 1 .
D2 =L [ (- Cf-vds =L [ ¢y as
ToX, AS; AL AS AL

The area A 4, is composed of six boundary cross-sections, A S,, determined by
normal-vectors n; of the coordinate axis. Here, (8/ox,)n, = d/ox, , D) =t,D, , ¢, is

the tortuosity tensor, and the superscript asterisk (*) means the pulsation value. The
adsorption process is accounted for by body-distributed sinks (sources) [23]:

oa oC’
=D = +Cv |ndA 3.14
ot j( " ox v,)n, (3.148)

i

3.5.2. TENSORIAL DIFFUSION COEFFICIENT

Now we shall concentrate on the filter-diffusion coefficient, D;, which depends on
velocity-vector v; [142] . The isotropic microstructure of the porous medium does not
introduce additional vectorial parameters. Multiplying D, by two arbitrary vectors
b:i, d;. It gives us the scalar quantity

Dijbidjz(l’(bidi; bivi, diVi) (3~149)

which is a function of the shown scalar products. Because there is a linear form on the
left-hand side, the function ¢ depends linearly on the vectors p; and ;. This results in

following geometric connection
Dy=Aviv;+ By (3.150)
where the arbitrariness of §; and 4; isused.  The next step is to use the dimension rule:

Dim{p;}=1*T" , Dim {v}=LT™ (3.151)
y i
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which means
Dim{p;} = Ly, (3.152)

The proper combination of results - (3.150) and (3.152) - gives the resulting law of
the filter-convective diffusion [142]:

Wk Wi
Dy = Quuy - 3.153
O Tl m 615
O = (A1= 22) 8 55+ A28y 6 (3.154)

where the filter velocity, w;, is used according to (2.64), and connection (3.153) has a
general form but expression (3.154) corresponds to the particular case of an isotropic
porous medium...Here ;, A, are the internal characteristic lengths.

3.5.3. EXPERIMENTAL DIFFUSION PARAMETERS

If you compare the filter dispersion with the Brownian motion [194], then 4, and 2, are
the "mean free paths" in the longitudinal and lateral directions. The length, 4, is
proportional to grain diameter or to \/k / m, where k is the permeability.

These parameters, 1;, A,, may be functions of the Peclet (Pe) and Reynolds (Re)
numbers, which have the following relation:

Pe=|—"‘—————=Re Pr (3.155)
D

where Pr=(v / D,) is the Prandtl number and includes the kinematic viscosity of the

fluid, v. Pr =1 for gases, but Pr =107 — 10’ for liquids.

Therefore, Pe and Re are nonequivalent, and the experiments (Figure 3.20) show
that the longitudinal diffusion coefficients for gas and liquid flows coincide if the
Reynolds number, Re, is used.

It underlines the hydrodynamic (not molecular) character of the filter dispersion
for Re > 107, where the proportionality between D and V is evident. This means that
A = const. However, for smaller Re -values, the dependence of D or Pe (and of A on
w) was also found.
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Figure 3.20. Effective diffusion depends on the internal Re number [33].

Darcy’s law is violated for Re > (10'2 + 107! ) for the permeability interval [121]
0,1 darcy < k < 1 darcy (3.156)
Then, again, A = A(Re), but for
01 < Re < 10 (3.157)
another interval of invariance of the value A ~ (.1 m appears.

The following experimental results can be cited here for river sands:

Mm=0127cm, A1,=00089cm, 4/ 1,~14.2
(3.158)

(D1 /v)=83Re**, k=10""" m? =100 darcy
and for gravels:

(D, / v)=54Re"*, k=3x10"° m*=1000 darcy
(3.159)
(D,/ v)=295Re" , D,/ Dy~183
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3.5.4. RECOMMENDATION FOR THE PLANAR DISPERSION

For planar flow, it is possible to use "so-called" natural coordinate system
¢ = const , y = const, where

Vi =5 Vi )
Yoax, ox, ox,

with @ being the potential and y being the stream function. Then equations (3.146) and
(3.154) get the following form [15, 152]:

oC | da 0 oC 0 oC
EvaR v o0 ((lzlvl D) 20 ) v v ((lzlvl Do) 61//) ( )

This equation is used for complicated filter flows when the negative components of
the diffusion coeflicient tensor appear in coordinate systems not determined by filter flow
streams.

3.5.5. ADSORPTION AND ECOLOGY PROBLEMS

The adsorption rate is determined by the difference between concentration in the fluid
phase and the equilibrium value of absorbed mass [23]:

aa= 3
= PC-) (3.162)

The equilibrium value, ¥, can be determined by the Henry isotherm

y=a/y (3.163)

where y is the Henry constant, or by the Langmuir isotherm

y
a= (3.164)
q+tpy

where ¢ and p are also constants of fluid and the porous medium. All of them are very
sensitive to the temperature that permits control of the adsorption process.

The boundary conditions are formulated on the basis of mass balances. At the
entrance into the porous medium, the equality of concentration is sufficient
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c(t)=ct=c , x=0 (3.165)

where C, is the concentration in the fluid injected into the reservoir being considered or

added to the natural flow at the boundary (3.165).
At the exit from the porous media, the value C,(¢) can be measured but is out of our

control. Therefore, the mass balance is used, taking into account the intense diffusion
inside the porous medium and its absence outside [28]:

wC"=w(C - D(C / on) (3.166)
Because C" = (", the Dankwertz exit condition can be obtained:

aC /on=0 (3.167)

where 7 is the normal to the exit boundary.
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Figure 3.21. Dispersion A of neutral additives due to filter-convective diffusion.

Consider the characteristic feature of the filter-convective diffusion. The dispersion
zone, A, estimated as is usual in diffusion theory (Figure 3.21), gives the following result
because of (3.153):

A~~Dt ~ AL (3.168)
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This means that the dispersion, A, is independent of convection velocity and time but
dependent on the convection distance, L.

The mass transfer - (3.146) and (3.154) - takes into account of the adsorption effect
according to the Henry isotherm (3.163), which can be reduced to the simple relaxation
equation [157]

0,2(3C_ pFCL,2CY,(5€_ D FC, v C\_y
ot\ ot ox? ox ot 1+yox* 1+y ox

which is valid for one-dimensional plane flow.
Here, @, is the adsorption relaxation time:

_ r 1
= 3.170
0 17 5 ( )

IfT << @,, only the first diffusion operator acts and the usual diffusion process with
negligible adsorption takes place. However, if T >> @,, the effective time [157]

t

t(r) = (3.171)
(1+7)
is used in this equation:
oC _ ,&C oC
at(Y) = axz - V—g)—c— (3172)

Every chemical component of a mixture has its own parameters }/(“). Therefore, the
adsorption components, spreading with a joint convective velocity but with their own
diffusion coefficients, are separated drastically. This process is known as
chromatography.

With regard to the role of adsorption and diffusion in ecology, the higher is the
concentration C, the more intensive the adsorptive cleaning of fluid flow that takes place
in accordance with equation (3.162). So, the diffusion process diminishes the values of
C in the flow and hence the adsorption rate. As can be seen, all calculations of mass
transfer in filter flows without diffusion give the lower boundary of real penetration of
wastes or other dangerous matter. In Figure 3.22, the calculation of the spread of
radionuclides is given for 25 min after the underground nuclear explosion. The danger is
lower by order (broken line) if diffusion is not taken into account, in comparison with the
real process with diffusion and adsorption [152].
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Figure 3.22. Concentration fields of cesium (1,3) and xenon (2,4) with (1,2) and
without (3.4) diffusion in the vicinity of a spherical cavity (according to
N. A. Kudryashov).

Some efforts were made to account for crack presence in rocks on the basis of
probability theory and fractal techniques [50].



CHAPTER 4
COMPLICATED PHENOMENA IN RESERVOIRS

4.1. Miscible and gas-condensate flows
4.1.1. HYDRODYNAMICS OF MISCIBLE FLUIDS

In the case of mixture flows of miscible phases, mass balance has to be formulated for
every component in all phases - that is [157]

5 a a a a a a a)\ Q
E( @ (™ mgf ))_,_5;('0( ) Coet™ )l ))—E/}N(k)( ) @1
where the phase symbols (@), (B) correspond to values (1), ... , (J); (k)=(1),

.., (K), is the component index; C{¢; is the mass concentration of the component
k in the phase a ; @* is the saturation of the porous space by the phase « and
Nk )(”ﬂ ) is the mass exchange of the component k& between phases, @ and . The

number of equations (4.1) is equal to JK .
It is accepted that the generalized Darcy’s law can be utilized

" k(a) 9(:1) .
w® 2_—y$“’ )V,- e (4.2)

with usual phase permeability (Section 3.3)
K =k £ (6) (43)
the same relative phase permeability, f'*’ ((9( « ) and the phase pressure concept (3.82)

as in the case of immiscible phase filter flows. Of course, the interface tension y is
changing due to miscibility,

%, 07

and K is the absolute permeability of the medium.

139
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The most interesting case is of gas-condensate flows originated by so-called
"retrograde condensation" due to molecular interaction of different types of heavy
hydrocarbons if gas pressure p belongs to some interval (Figure 4.1):

p. < p = p, 4.4)

where p_, p, are corresponding threshold values. Then one can use only two types of
concentrations: g, and /., in gas (& = g) and liquid (8 = /) phases,

N N
28w=1 ,  Yly=1 45)
k k
4717~
9 r// \\\
/’ \\
N,
9, / ‘\
%| 7 \
\
\
6 U
\,
\ +‘
\
\ '
3 h—
===~= flash l
* differential condensation ,
0 |1 1 1 1
00 80 RO 120 Mo 0 180 200
P, 105 N/m?2

Figure 4.1. Experimental retrograde condensation of a hydrocarbon mixture
in a PVT-cell. (Saturation @ is the cell volume (%) occupied by a liquid phase).

The rate of mass exchange between phases must be proportional to the difference of
chemical potentials z,, “’ [150, 157]:

(a) (8)
(ap) — Xek)  — Xew)
Ny W =——"—m— (4.6)
T(k)

where 7% ’ is the relaxation time.
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4.1.2. RULE OF HETEROGENEOUS EQUILIBRIUM

Let us suggest that there is a local thermodynamic equilibrium - that is, instant mass
exchange takes place:

(g) _ )
X' = X 4.7
and that phase pressures and temperatures are equal:

T(g)=T(1) (49)

The important point here is the determination of independent equilibrium parameters, or
so-called chemical degrees-of-freedom, which will be arguments of component
concentrations g, , and /,. Consider the problem.

The total number of variables is the sum of a number of concentrations, J(K - 1),
number of saturation, J — 1, plus two (pressure and temperature):

JK-1)+2+(J-1)=JK +1 (4.10)

However, some of these variables are interconnected by the equalities shown in (4.7),
with a number equal to K(J ~1). Therefore, the number of component mass balances

(4.1) has to be equal to total number of components K and including mass contents in
both phases:

0 (g) (h) 1
(pg Ek)Wj +P(I)l(k)Wj( ))=0 (4.11)

0 !
___m(p(g) e(g) g(k)_+_ p( )9(“1(1:)) + .
J

ot

So, the number of independent variables corresponding to the effective system (4.11)
is equal to the following difference:

(JK+1)-K(J-1)=K+1 (4.12)

Therefore, one more equation must be added - the heat balance. In the isothermal case,
when T' = const, number (4.12) coincides with the number of equation (4.11).

If the chemical potentials, 7, )(a), also depend on the phase saturation, §®’, of a
porous space, then the number of arguments for g, and [, would be exactly
determined by (4.12), which included a number of saturation. If so, the data of
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concentration distribution found by the PVT-cell measurements for the mixture only
within a porous medium can be used (to account for capillary forces).

If the influence of phase saturation (in other words, of capillary forces) on the
chemical potentials is negligible, then the initial number (4.10) is diminished by the
number of independent saturation and is equal to

J(K-1)+2 (4.13)

Then, the degree-of-freedom, d, will be determined by the Gibbs phase rule as the
difference of (4.13) and K(J - 1):

dr=J(K-0)+2-K(J -1)=K-J+2 (4.14)

This means that the component distribution over phases of gas-condensate flows
(J = 2) in isothermal reservoirs has the value 4, = K —1. So, the isothermal case of a

gas solution in oil (K = 2) is determined by the value ¢, = 1, showing the gas content
in the liquid phase, /=1I(p), is the function of a pore pressure as well as its
concentration in the gas phase, g = g(p). Therefore, gassy oil is characterized by gas

solubility in oil depending on pressure (and on temperature as a reservoir-constant
parameter but not as a parameter of flow processes).

The three-component mixture of hydrocarbons is characterized by component
distribution in gas and liquid phases which is dependent on pressure and one independent
concentration, C, , according to the Gibbs phase rule (4.14):

g =g((pCp L=u(pcy T = const (4.15)

The C,-parameter can be chosen as follows [157,162]

_ Iy
Ccp=—t (4.16)
d la) Tl

However, this could be the "convergence" pressure instead of (4.16) as it was used in
some textbooks.

4.1.3. PVT-MODELING OF A RESERVOIR

The mass balances (4.11) can be useful for interpretation the measurement data of "flash"
and "differential" condensations in PVT-cell. To this aim, equations (4.11) is averaged
over space:
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d
-d—tV{gk P’ (1-0)+i,, P(I)} = _g(k)(l - ﬂ(k))Q (4.17)

where V' is the cell volume, Q is the average mass gas output, and By, is gas fraction
returned to the cell for special evaporation of the residual liquid condensate. You can
see that equation (4.17) can also be used to estimate hydrocarbon masses in the reservoir
volume as a whole. As a result, the PVT-cell sometimes plays the role of an experimental
volume-averaged model of the reservoir.

During "flash" condensation, volume V' = V() is a given function of time, but fluxes
are absent (Q =0). The differential condensation is characterized by the conditions
V = const and Q = const. The corresponding calculation is represented in Figure 4.2

which shows an essential difference in the condensate saturation field for illustrating a
"methane + butane + decane" mixture [162].
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Figure 4.2. Calculations of retrograde condensation with gas cycling (I variant -differential
condensation, = 0; II - reach gas return, =1 = =0,
'B(k) & 'B(I) ﬁ(Z) ﬂ(3)
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However, parameter (4.16) changes with pressure along the universal curve where the
gas return into the cell or reservoir is excluded (curves I in Figure 4.3).
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Figure 4.3. Cumulative curves for the Gibbs free concentration, C '+ » in gas-condensate flow for two
initially different gas mixtures (Cy = 0.38 ; C, = 0.149); p» = p / p, [162].

This point was used for some simplified mathematical modeling of gas-condensate flows
suggesting that g, and ], are functions of pressure only.

4.14. GAS-CONDENSATE WELL PRODUCTIVITY

The equations for gas-condensate stationary flows in a reservoir can be rewritten as:

)bl o

Ox; Ox; ox;\ Ox; Ox; \ Ox:

where T4, is the ratio of the mass flow rate of the corresponding components to the

total mass flow:
)
_ g(k)M+[(k) _ p(g W1(g)

M+1 ’ p(I)Wi(I) (419)

k

Accounting for the total mass balance:
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2 r @ 0,
Z Az

(g) (1)
_ - @t arwi
D A A

(4.20)

and according to (4.18), the scalar production of the two vector-gradients is equal to
Zero:

(8T / 8x:)0p / 8x) =0 4.21)
If the flow exists, the pressure gradient does not equal to zero and [157]
0T,/ 0x:i=0 , I'x = const (4.22)

along stream lines. The number of such conditions is K —1, and they give the
opportunity to determine all variables - that is, 6, &k, » lcx) as functions of pressure, p,

only.
Only the total mass balance must considered further. It has the form:

VH=0 |, H= jrdp (4.23)
and determines the rate of well production as [42]

2rkh
Q)= r(k)ln(R—ﬂ/rJ{H(R) - H(r,)} (4.24)

However, equation (4.22) is invalid if one of phases is immovable - that is, if M = 0
or M =o. Then, I', =J; or T, = g, and conditions (4.22) reduce to the condition of
zero pressure gradient that cancels the flow. Therefore, the quasistationary solution
[125] was suggested for the case in which concentrations /., , 81, are assumed to be
dependent only on space coordinates (although saturation can be functions of time and
space). This is possible if the permeability of the moving (gas) phase is independent of
liquid phase saturation (as is practically so for " < g"’, where ¢"’ is the threshold
value). The corresponding calculations illustrate the process of accumulation of liquid
phase around gas-condensate wells (Figure 4.4).
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Figure 4.4. Reduced gas flow rate into a productive well that is proportional to saturation rate.
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Figure 4.5. Gas-condensate flow parameters for the beginning
of constant well production, (/f = r/ Jt )

The C; changes are also situated practically in the vicinity of the same universal curve

seen in Figure 4.3 as well as in the case of nonstationary flow to the well, which begins
to act with constant mass production Q = const , t > 0. This flow is a function of one

variable: £ =r / J/t (Figure 4.5) [162].
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4.1.5. GAS RECIRCULATION PROCESS

Methane returns to the reservoir during the so-called cycling process, when the gas (with
some addition of intermediate fractions) diminishes the effect of liquid residual
condensation. This process is more complicated than flooding because injected gases
penetrate through the displacement front (the latter being moved with the velocity U/,).
At this boundary, the mass balances (1.31) account for the transfer in both phases for all
components: (k) =1,..., K:

[g(k)p(g)(w’(g) -m(1-6) U,-) + l(k)p(l)(w‘(l) —me Ui)] =0 (4.25)

Due to negligible inertia forces, the continuity of pressure at this front
([p] = p" — p = 0) is a sequence of the impulse balance.

Because the differential equations - (4.2) and (4.11) - are valid everywhere out of this
front, the Boltzman substitution, &= x/ Ve, permits determination of one-dimensional
self-preserving solutions to describe the gas-cycling process. The corresponding curves
are presented in Figure 4.6. The broken line denotes the front movements with time,
according to the rule x = & +\/; [162].

Ce [p/p* 8 -dp/dE
0.244f 092 0164 -0.06
0.240[ 0.90 0160 -0.05
0236} 088 o156 0.0+
0232} 086 o152 wo.o‘a
0228} 084 0148 4002
0.224F 082 Qlss -100t
0220- 0.3005‘ s 010 do

Figure 4.6. Gas-cycling process in a plane, one-dimensional layeré = X / \/; .
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4.1.6. OSCILLATIONS IN GAS-CONDENSATE FLOWS

V. Mitlin [99] has found that some gas-condensate filter flows are unstable. Consider
the mass-balances given in (4.11) written in the following form:

ONz
V(IT,,,Vp)=m *—ét_(kl (4.26)
where Z, is the local mass concentration of the component £,
p(g) p(l) 1
z(k)= e(g)g(k)-,_——_e()l(k) » Zkz(k)=] (427)
P P
and p= p" g + p®’ ¢# is the mean density of the mixture.
Disturbances of gas-condensate flows are described by linear equations
op' 2
—=1Vyp 428
ol p (4.28)
=(Tw—Zu,)—VD 4.29
P (Tw (k))mp p (4.29)
and can be represented in the following form:
o6 = 2y — 2y = =Lk xp(=igx)
(4.30)

p'=p-p = p" exp(-igx)

You can see that disturbances with wave number ¢ will grow if 7 <0, but they will
decay if 7 > 0:

dp" / dt=-1¢"p" 4.31)

So, the criterion of gas-condensate flow instability can be formulated in the following
form;

1=*r® g (4.32)
m dp
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where the derivative sense is determined by the following rule ( mentioned by my student
- L. Pausner, 1993), valid for isothermal conditions in accordance with equations (4.26):

k-1 dr
(93) +3 % 9z |9 _y (4.33)
op P = 0%¢)) P2 dp |dp

This derivative may be negative because of the mass concentration changes created by
nonequal phase fluxes. The numerical examples [134] are given in Figure 4.7, where
disturbances are generated by the calculation mesh.

Instability of gas-condensate well production is sometimes observed in situ, but it can
also be explained by the unstable regime of flows in the well column and at its boundary
with the stem. Some laboratory studies [134] of gas-condensate flow have also shown
instability, but it is unclear if it is connected with bulk flow instability or with boundary
effects.
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Figure 4.7. Gas-condensate unstable flow: calculations for y i»~¢ radial flows
(a.,b) and experiment (c) under plane one-dimensional condition [134].
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In all these calculations, the conventional phase permeability curves were used for gas
and liquid phases. However, more sophisticated curves would be used to account for the
decrease of capillary forces in the vicinity of supercritical thermodynamic states.
Asymptotically, these curves have to coincide with the corresponding saturation
(f*’(6’) ~ 6*’) see (3.101) and broken lines in Figure 3.14.

4.1.7. MICRO-EMULSION MASS TRANSFER

Another possible type of gas-condensate flow can be realized in the form of micro-
emulsion transfer with mean filter velocity, w;. In this case, the liquid phase is separated
into movable and adsorbed parts. A corresponding system of mass balances can be
formulated as follows:

amp(g) e(g) (g) 0 aa(g)
=F v 4.34
ot ax,( ow) ==, (434)

omp e . 8 ( w da"
+ Pwi) = - 435
ot E (W0 w) =5 (4.35)

1- (s) (g) (0

A=mp” _ 24", da (436)

ot ot ot

where w; is determined by Darcy’s law for homogeneous flow, p(s) is the solid matrix

density, g% =4, o =1-6, and the isotherms , i*’ | of gas phase and
microemulsion adsorption have to be measured:

a® _mp(g) (g) , a¥Y = mp(l) (3) 4.37)

V. Petrenko has discovered the possibility of such a transfer of liquid condensate by
the presence of distilled water films created around condensate drops in the gas well
production. The system - (4.34) through (4.36) - is interconnected with the approach
given in (3.101) which was suggested by A.A. Barmin and D 1. Garagash [13] for water-
oil transfer. They have shown that system - (4.34) through (4.37) - can be reduced to the
following one-dimensional plane wave equation:

26
E+Z(0)——0 (4.38)
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-1
dA) M_ (4.39)

0= (E 7(6)- 6
A) = m{1+ i (8) + i (6)},

B(6) =m{6 + ¥ (6)},

(my/m) =1+ (P(g)/P )l(g)(e) + (p(,,/p)i(“(b?)

_expﬁ ) . =2

0

You can see the analogy with equations (3.101) and (3.103), presented in Section 3.3
for the cases of nonlinear convective transfer in two-phase flows.

4.1.8. ANOTE ON THE SURFACTANT EFFECT

Some variants of two-phase flow theory were developed to account for chemical
changes of water by adding of some surfactants, polymers, etc. This procedure is done
for later displacement of crude oil from reservoir matrix. In such a theory the relative
phase permeabilities are suggested to the functions of saturation and concentration of
additives:

f' =50 (4.40)

This creates many new possibilities for boundary conditions at the front discontinuities as
well as for continuous flows [17,61].

However, we have to remember that the proper theory of two-phase flows with
surfactant additives will account for transition of oil ( water ) phases into microemulsion
states. This increases a number of balance equations and needs another variant of
kinetics.
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4.2. Permafrost and gas-hydrate mechanics
42.1. PERMAFROST THAWING

The problem of soil freezing was the initial impetus for the Stefan problem of heat
transfer with phase transition at the moving boundary. Here we consider the formulation
which accounts for processes inside geomaterial pore space under freezing or thawing
conditions.

Let the liquid phase (water) occupy a volume mé and the solidified phase (ice) a
volume m( - 8) joined to the solid matrix phase. The thermodynamic condition of
phase coexistence is formulated for temperature 7' which must be equal to the phase-
transition temperature:

T=T,(p.I) (4.41)

The latter is assumed to be the following function of mass salt concentration / in the
water and pressure

7jf(pll):Tw—Al_‘B(p—pa) (4.42)

where 7, is the phase-transition temperature of pure water at atmospheric pressure, p,,
and A, B are the coefficients.

The rate of water filtration, w;, is governed by the same generalized Darcy law (3.78),
although ice is in the immovable phase in the case considered here. Using the mass
balances in (4.1) gives the following nonlinear equation [118] for pore pressure:

®, g
ot

2 K
]__& ﬁ:,(f op +k fdeﬁ_aﬂ (4.43)

where K, is the effective compressibility of the medium, p, and p,, are the densities of
ice and water, and « , is the effective coefficient of piezoconductivity.
The energy balance must be formulated in this case and can be written as follows:

PCuy——tmg—=—| 1, (4.44)

oT 00 0 oT

axj

where Cy, is the effective heat capacity of the medium, i, is the effective thermal
conductivity, and g is the heat discharge for the phase transition. Heat convection with a
filter flow is assumed to be negligible.
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The third necessary equation is the balance of the dissolved substance, the salt, for
example:

o _ 3 pg2L (4.45)

where D(6) is the effective diffusion coefficient.

Equation (4.43) corresponds to the distribution of water saturation, including possible
discontinuities. Salt concentration, pressure and temperature have to be continuous:

(=0 [p]=0 |[T]=0 (4.46)

However, the finite jump of saturation has to be included into the following fluxes at the
front of thawing X (x;,#), which moves with the velocity, U, = dX, / dt:

w

m[f)](] - —;’—f)U,. =[wi]

m[6)IU, + m[D(& ) éai] =0 (4.47)
Xi

m(6)q U,-+[/1f£] =0
5x1

In the frozen (6 = 6,) and thawed (6 = 1) zones, the equations for temperature,
concentration and pressure conduction split, although the coeflicients are different:

or _ &T ol 1l ap _

ar dx,0%, y —==Do/———

&P
0P 448
ot ’ox,0x, * (4.48)

ot ox,0x,

One-dimensional calculation of the problem on the basis of equations (4.48) have
shown that in the front vicinity thermodynamic equilibrium is violated [118]. If a <«
the violation creates the “supercooling” effect in the frozen zone when the temperature is
lower than the phase transition temperature in the frozen zone. The “superheating”
effect takes place in the frozen zone if @ > x, when the temperature is higher than its
phase-transition value.
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AT
0.00;

-0.03¢,

Figure 4.8. Self-similar solution of one-dimensional planar permafrost thawing where AT is the
normalized deviation from 7, w and ¥ is the thawing front position [118].

Therefore, the model of partial phase transition was developed assuming that
continuous transition from the solid to liquid state is valid. In this case, the water
saturation is found based on equations (4.43) through (4.45). Some results of numerical
calculations for the self-similar solution are given in Figure 4.8, where the zone of
continuous thawing is shown and where X = }/\/; :

4.2.2. GAS-HYDRATE SOILS

Phase transitions must also be considered for the gas-hydrates present in some marine
soils and in the gas reservoirs in the vicinity of producing wells [91,116]. Gas-hydrate is
a solid material composed of natural gas, water or ice, including oil sediments.

During the creation of hydrates, the soil increases its volume from 5% to 12%, and
hydrate dissociation leads to decreasing soil volume. If drainage is impossible, the soil
can transfer to a unconsolidated state and the essential part of external loading is
transmitted to the pore water pressure. In Figure 4.9, the growth of pore pressure is
shown for triaxial tests together with shear stress [174]. As can be seen, these curves
have roughly the same form because the undrained conditions take place for soft
geomaterial and normal effective stress is unchanged. This situation is very unstable.

However, if the soil possesses a very high saturation of gases in the form of small
bubbles after hydrate dissociation, then the pore pressure grows proportionally to pore
volume decrease (Figure 4.10). The shear stresses are equalized by the normal effective
stress.
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Figure 4.9. Differential stress (a, - 03) and pore pressure as a function of axial strain (e,)

for triaxial soil tests with dissociating gas-hydrates (without drainage); pore pressure is
repeating external shear load due to the dilatancy effect because of small gas saturation.

In situ, the gas-hydrates can be found in soils because of the high seismic velocities
(from 2 km/sec to 5 km/sec) of formations with hydrates. The difference depends on the
presence of gas bubbles and on the rigidity of bonds between soil grains constructed
from the gas-hydrates themselves.

The process of hydratation can be observed by the increase of wave velocities with
temperature decrease. This means that the phase-transition zone is continuous and
limited by two curves (liquidus and solidus), corresponding to full liquid and solid states.

The temperature interval is of the order of 5° C' and corresponds to the state of partial
melting. Therefore, the Stefan frontal model must be changed into the moving
continuous zone with partial saturation, 0 < 8, < I, of gas-hydrates.
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Figure 4.10. Differential stress (o; — o;) and pore pressure as a function of axial strain (e;)

for triaxial soil tests with dissociating gas hydrate (without drainage); pore pressure grows
proportionally to pore space decrease without the dilatancy effect if gas saturation is high.

423. GAS-HYDRATE DISSOCIATION PROCESS

The mathematical model is formulated as a gas component balance

0 F
m-={6n g, pu+ (1-6:)1-6.) p} +=—(p w¥) =0 (4.49)
ot D)

and water balance
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0 0
m—{6:(1-g,) prt(1-64) 6w p,} +=— (o, w”) =0 (4.50)

where p, , p, are the densities of gas-hydrate and water, g, is the gas concentration in
gas-hydrates, (7 - g,) is the water concentration and (/ - g,) is the pore saturation by the
water and gas phase with density p,, the latter saturation being equal to (1-9,). The
filter velocities are determined by the generalized Darcy law:

k 0

wfw)='—fw(9h’9w)—p (4.51)
4, 0 xi
4 0

Wl(g) =- _fg (9}1 }ew)_p (452)
/ug axi

where 6, plays the role of an additional parameter of the relative phase permeability ( f,
for water and f, for gas). Physically, this means porosity, /7, diminishes by part 6.

The energy balance includes the specific discharge, g, for dissociation of the volume
unit of the gas-hydrate [117]:

oT 0 6, ap
—-mqp,—2-m(l-9)I-0,)—=+
pPCur Y q Py ot ( 9}:)( 6 ) ot
(4.53)
oT op 0 oT
(W) + (K) + (w)_=__ R
(ol Cut o, Cg)axi Y ox ox o

where p Cjr is the effective heat capacity of the porous medium, and ,, is its effective

thermal conductivity.
The condition of thermodynamical equilibrium for the mixture has the following form:

T=anp+a, (4.54)

which is equivalent to the chemical potential equality for hydrate and mixture free states,
and «, are constants.

At the moving boundary X,(x,,¢) of the phase transition, pore pressure and
temperature are continuous, the gas-hydrate is absent behind it, and saturations 6, and
6,, can be discontinuous.

The water mass balance must be valid at this discontinuity. It is represented here for
the one-dimensional case:
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dX

mp, 6" - p, 0 (1- o)~ (1- &) o Py} -

=p, (W -w¥)  (455)

The gas balance

m{(1-63) p, - 63 (1~ &) £i(1- L)1 - 9h)pg}%~pg( (5)-wi®)  (456)

must be added to the energy balance

(-)
dx (+)(6T)“' (_,(6T)
= e | — 4.57
mek” g = 27| o Ao ox (4.57)

Again, the one-dimensional plane problem permits a self-similar solution when all
unknown variables are functions of one new variable: £ = x / Jt. Numerical examples
are given in Figures 4.11 and 4.12.

Figure 4.11. Self-similar solution of a one-dimensional plane gas-hydrate soil under dissociation
(here, [ is the temperature T/ 1, profile; 2 is pressure, p/ Dy;and 3 is
the gas-hydrate saturation ,; 4 is the water saturation 8, ) [117].
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Figure 4.12. The same solution for water saturation 6‘w. under drainage condition (4) and without
drainage (5); the permeability values are shown as in Figure 4.11.

You can see that distributions of water saturation, g,, are essentially dependent on
water filter flows. The effect of the permeability value is also essential. Such
calculations must be accomplished by estimation of gas-hydrated soil failure, which can
be a serious danger for gas wells drilled in the marine conditions.

4.2.4. FROZEN SOIL STRENGTH

In Figure 4.13, the dependency of soil strength is given for two permafrost’s and a gas-
hydrated soil. You can see that the first two soils show the essential dependence on
strain-rate but the gas-hydrated soil has no practical creep behavior. Physically, it is
explained by the existence of water films in a permafrost that permit sliding at grain
contacts. The gas-hydrate case corresponds to more total solidification at the
microlevel.
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Figure 4.13. Peak strength of soil sample with gas-hydrate (a) is practically independent
of strain rate; permafrost (c, b) has a creep response [38].
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Although strain rate does not influence the peak strength of gas-hydrated soils, the
failure process is sensitive to the strain-rate effect. In Figure 4.14, it is shown that pure
brittle fracture is changed to plastic flow, or even to plastic flow with hardening, with
strain-rate growth.
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Figure 4.14. Gas-hydrate soil behavior depend on strain rate:
(a) - brittle rupture, de/ dt ~ 1073 1/ s; (b) - plastic flow;
(©) - plastic rupture with hardening, de/dt ~ 107 Ifs [167].

All these data support the idea that frozen soils possess the usual brittle dilatancy
properties.

4.2.5. ICE STRENGTH AND DILATANCY
The rheologic law for polycrystalline ice has the conventional form:

S n-1
é = At oy

with the coefficient sensitive to a temperature. However, the temperature changes can
create qualitative rheological changes.

V. Epifanov [62] has shown that polycrystalline ice also exhibits dilatant features
during irreversible deformation. These data are extremely important because they
provide an opportunity to study temperature effect [70]. For example, temperature
decrease leads to a more plastic type of deformation, as can be seen in Figure 4.15.
Moreover, it has been found that a volume strain is proportional to the modulus of shear
(Figure 4.16) and is a typical dilatancy property.
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Figure 4.15. Type of ice failure as well as ice strength depends on temperature
and strain rate (de/ dt) , according to H.C. Wu, K.J. Chang and J. Schwartz.

This rheology is typical for temperatures below T = - 30° and corresponds to finite
totally crashed samples. For higher temperatures the rheology is plastic because cracks
are healing.

Of course, the temperature effects have to be accounted for the proper description of
fracturing of ice. Strain-rates have the analogous effect as we can see in Figure 4.15.
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Figure 4.16. Triaxial compression of polycrystalline ice samples with measurements
€, and e, under the o, = @ condition (o = o,) [62].
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4.3. Electrokinetic effects

43.1. DOUBLE ELECTRICAL LAYER

This effect appears in the electropotential field of a water-saturated porous medium
during seismic wave propagation. The corresponding theory was developed by
Ya.l Frenkel [67] even earlier than the well-known wave theory of M. A. Biot [20].

Electrokinetic phenomena are the interactions of the electric field and phase relative
motions if one phase is represented by an electrolyte.

Consider the case of a porous medium saturated by an electrolyte, for example, salt
solution in water [156]. The relative electrolyte flow begins under the action of the
external electric field. (Vise versa, relative electrolyte flow has to create the electrical
field.) The relative flow of the electrolyte in the electrical field is termed the
electroosmosis. The electric field created by electrolyte flows through a porous medium
is called a flow potential.

The mechanics of an electrokinetic phenomenon is explained by the generation of a
double electrical layer at the interphase boundary. Signs of solid and fluid phase charges
are different and depend on their nature; however, solid phase is quite often charged
negatively. The face of a double electric layer that belongs to a fluid has a diffuse
structure with continuous decrease of ion concentration within a small distance from the
boundary of solid material. It is connected with the interaction between electrostatic
forces and molecular thermal motion inside the electrolytic solution. Ions from the
adsorption layer that is in intimate contact with the solid boundary are immovable during
electrokinetic phenomena because electrostatic forces are too high. Only the outer part
of the diffuse layer can be displaced because of the loose packing of its ions.

Consider the electro-osmosis phenomenon. If a capillary is filled by an electrolyte and
an external electric field is applied, then ions of one sign belonging to the outer part of
diffuse layer begin to move to the pole of the opposite sign. So, the directional flux of
ions of the diffuse layer appears. Due to viscous friction, this flux involves other parts of
fluid. As the result, some pressure difference is created and can generate secondary
back-fluid flow. The pressure difference will increase until the stationary state is reached
(when the direct and back-fluid flows become equal to each other).

In contrast, if a pressure difference is created, laminar fluid flow begins. Then the
ions of outer part of diffuse layer are displaced in the direction of the inducing flow. It is
equivalent to a convective surface electric current, which creates a potential difference at
the capillary ends. This potential difference creates the bulk current in the back
direction. Again, some equilibrium stationary state will be reached.
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432. STATIONARY ELECTROKINETICS

Consider, now, the quantitative description of electrokinetic effects, with the introduction
of the electrical potential, ®. In this case, Onsager’s rule (page 13) will give the
following relations for the filter velocity, w;, and for the electric current density, j;, for
the unit cross-section of an isotropic porous medium:

5} o0
We = - Ly b+ Ly (4.58)
5Xk an
op oo
iy = Lav——-La— 4.59
H 5Xk an ( )

In addition the cross kinetic coefficients must equal each other:
Liw = Lwi (460)

The first term of the filter velocity expression is standard (L, =k / u), and the
second term corresponds to electro-osmosis motion. For a porous medium, the electro-
osmosis coefficient, C,, can be expressed as:

Ce=LWi='M (461)
4ru

where ], is a dielectric constant of the saturating fluid, £, is electrokinetic potential,

and m is introduced as the porosity.
The first term of the current density, j;, corresponds to the convective surface
component created by the pore-pressure gradient. The second is the bulk current; and

therefore,
Ly, = mo (4.62)

where o is the specific electroconductivity of the fluid.
The stationary state mentioned above means that there is no flow

wi =10 (4.63)
and it determines the equilibrium between gradients of pressure and electric potential:

o _ Cep 00
an k 6Xk

(4.64)
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Then at the electro-osmosis stationary state, the electric current density is determined by

. Cep\ 00
=-mo| 1- =L | = 4.65
. mcr( mak)axk (4.69)

showing the decrease of electro-conductivity due to the electro-osmosis phenomenon.

In the same way, if the pressure gradient is given, the stationary state is determined by
the condition j, = 0. Therefore, the electromotive force, E, created by the pressure
gradient is

E=—vo=Ley, (4.66)
mo

Introducing expression (4.66) into the initial flux rule (4.58), the following relation of an
induced electric field with the filter velocity can be obtained:

_ uC. w
=— 4.67
ko(1-TI) m (4.67)

where IT= (Cfu / mo-k),

4.3.3. WAVE ELECTROKINETICS

If oscillation frequencies are such that the electric field can be treated as stationary at
every instant (if they are less than 70° Hz), formulae (4.67) is valid for seismic waves in
soils and rocks in the following form:

—_HCe (0_ o 4.68
E; ka(]-l’I)(v' W) (4.68)

where the matrix displacement velocity is taken into account.
It is possible to show that the wave model discussed in Sections 2.3 and 5.3 gives the
following dependency for relative velocities in the first mode of P-wave:

(1) _ . (s) kopo 2 P(I) (s)
o -y = Koo 2y Pl (4.69)
H Po
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where 1}’ is the displacement amplitude of the solid matrix. The combination of these
two expressions shows that the electric field is also proportional to the second power of
seismic frequency:

— Cep P(I) 2
EF=—r0 Jy. 4.70
o(1-1]) [ o @ (4.70)

For example, a sandstone with porosity m = 10 % and permeability 10 millidarcy
saturated by distilled water possess the electric field of the mV/cm order (N.Migunov’s
data) under an acoustic pressure /0 kPa with a frequency 20 kHz. The growth of
permeability leads to the exponential decrease of seismo-electric effect for sandstones
[132].

Electrokinetic effect increases the dissipation of seismic waves, especially for crude oil
which contains inorganic and organic electrolytes with very low electroconductivity. In
this case, electric dissipation can be even higher than viscous dissipation [170],
although, for salt water, it can be not more than a half the viscous dissipation. The
separate motion of ions under an electric field and gradient action can be used for
electromelioration of some salty soils.

It is found also that salty water can be used to flood reservoirs having a clay matrix.
In such a matrix, normal water flow is determined by nonlinear deviations of Darcy’s law.

The electrokinetic field can be created by the soil consolidation process, which
corresponds to the more essential relative phase displacements than occur in the first P-
wave, see also [26].

4.3.4. BOUNDARY CONDITIONS

Electric current, j;, must satisfy the continuity equation
Oir / 0xx =0 4.71)

which, due to the kinetic relation (4.59), can be rewritten as follows:

0 (0' X 4 ocP )=0 4.72)
an Xk an

The boundary condition must be formulated for the electric currents:

+CE=, (4.73)
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where # is the boundary normal. For example, at the ground surface the assumed
condition is i, = 0 and shows that
0
X_ 2 (4.74)
on on
In addition, the pore pressure gradient is interconnected with permeability of the layer at
the surface. Other variants of (4.73) have to account for interaction with the Earth’s
lower ionosphere. This problem is important for earthquake prediction programs and is
discussed here.

4.3.5. ELECTROMAGNETIC EMISSION

Because the dilatancy effect foreruns earthquake events (Section 7.3), induced water
flows can create the electric field anomalies observed in situ.

Rock fracturing is characterized by electromagnetic radiation as well as by acoustic
emission. The model of microfracturing or contact opening during irreversible
deformation of rocks and soils was developed for estimation of surface events at an
earthquake’s epicentral zone or just before avalanche along the slip surface. Physically, it
can be explained by electric dipole emission, depending on charges at the contact
surfaces and the time of opening.

Consider the following estimations [76]. The emission power of the single crack is

determined as
2 (dY
Mo ( ) 4.75)

3\«

where ¢ is the light velocity, d is the electric dipole moment, and 7 is the opening time.
Assuming that crack number N is proportional to deformation,

N= [ﬁﬂ"-)e (4.76)
e

max

Then the emission of the geomaterial unit is expressed by

a = M,,(M)ér 4.77)

Emax
where é is the strain rate. The peak density of cracks is estimated by

N =3 (4.78)
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and the opening time is estimated as
r=1/¢ 4.79)

where ¢, is the limit crack-growth velocity (~ 1000 m / sec).

Thus [76] _
M ~7(107° - 107) -2~ (4.80)
€max
and the emission frequency is
o~Lx10f - 107 Hz (4.81)
T

If é/e,, ~ 107 sec™, then M ~5(0,1-10) Wt. This is in accordance with
electromagnetic emission measurement for the Chilean earthquake that happened in

1960.
4.3.6. FLOWS WITH THRESHOLD PHENOMENA

Interaction of a one-phase fluid with a solid phase having an electric background can
influence flows through a porous matrix. The most essential effect is created by clay
components in the matrix or by special properties of asphalthenes and some other
components in crude oil.

Mathematically, the deviations of Darcy’s law are described by a special function,
@(w), of the filter velocity [12]:

)
cb(w)% N (4.82)

where ®(0) > 0, ®'(0), w=|w,]|, H is the generalized head, and the external potential

U can be added

a=kp+ky (4.83)

H H
Usually, stationary problems are considered when
ow, / ox, =0 (4.84)

In the planar case, the stream function y/(x, y) can be utilized:
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a—'/,=-wsin9 s a—w=wcos9 (4.85)
ox oy
o _ -®(w)cos6 o _ ~®(w) sin 0 (4.86)
ox oy
Using w and @ as independent variables,
2
06 wd'(w) ow ow w° 06
cos 6 sin @
dx=-+——dH +——d 4.88
( D ” t//) (4.88)
dy=-519 aiy + 50 4,
()
and equations (4.87) can be represented for stream function
o @ vl eV _, 4.89)
ow{wd'(w) ow | w? 0¢° '
and for the head
o (woH)  wd'(w) P H
|+ = 4.90
6w[<b aw) o’(w) 04 (4.90)
This is the hodograph transformation known in gas dynamics.
The viscoplastic flows are determined by the following Darcy law:
_ k G oH
==l |2
H [0H / dx|) ox,
(4.91)
G
=0 21
! |oH / ox]

More details can be found in Ref. [12].
Clays themselves can have essential volumes of internally connected water with its
own pore pressure corresponding to its high mobility under tectonic conditions.
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4.4. Physical measurements in wells
4.4.1. ACOUSTIC NOISE OF ACTING WELLS

Gas wells often have very high production which corresponding to extremely high filter
velocities in close vicinities. Sometimes, even intensive acoustic noise can be created by
such a flow through a porous medium. We can use the same ideas as in turbulence
theory because the sources are created by an internal microstructure which transforms
the mean velocity, y¥# ¥, of the flow into its local value [142]:

vi = Lyv¥ (4.92)

where L is the local tensor of the porous medium, which is a function of space
coordinates and the realization parameter, y, corresponding to the random character of
pore geometry. Usually, according to Onsager’s rule, the hypothesis on microstationarity
of flow is accepted - in which case, [; is independent of time. This tensor was used
earlier for problems of flow dispersion through porous media (Section 3.5).

In the isothermal case, the dynamic system discussed in Section 2.3 can be studied in a
more simple form consisting of the mass balances

E%(1 - m) p(”+aax' (1-m)p®v¥ =0 (4.93)
gmp(” + a—i__mp‘” W =0 (4.94)
and momentum balances
0 (5) _(s) + 0 () _(s) (5) _ (5) om
—(1-m) p7 v +——(1-m)( 0" vV - o) = (I - m) p gl+Ri+p,,— (4.95)
—m +— &y - m i 4.96
= mA” 5x m(p® vV - p,)=mp® g, - R;- Prgo  (4%9)

where the pore-stress tensor also includes the Reynolds turbulent stresses generated by
the local geometry tensor (4.92):

p;=-po+<p Vv > (4.97)

The expression (2.70) for bulk forces is utilized:
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R =r(v® - v®) + by - | (v - ¥ ) (4.98)

where r = ( unt’ /k) @(Re). The coefficient of inertial losses can be expressed as:
k p( g) m
H

b 4, (4.99)

where A; is the coefficient of microasperity.
The gas dynamic equations can be transformed [3] in the following way:

az(mp(g)) az(mp(g)vi(g))

+ =0 :
or ox,0t (109
& (m p(g) v,(‘)) & d om
" mp®y@y® - pY=—"\mp®g - R -p, 2| (4101
20 6x,~6x,~( PN p) =5 A e Ry ;) 41D

and their difference has the form

az(m p(g)) & 0 om
— ©_ ® @ (®
— mp b & o p’_. ——\mp gi - Ri - p‘“ —_— 4102
or ax,-axj( VeV ]) 6Xi( Y ax,)( )

The subtraction of the expression
& (c3mp®s,) / 0x0x,

where ¢, is the linear wave velocity in the gas at rest, leads to the wave equation of the
Lighthill type with acoustical sources

a2 (m p(g)) , Pd (m p(g))
o7 ¢

ax,-z a)aaxj 5x;

(4.103)

The quadripole, mT,,, and the dipole, G,, sources are expressed as sums of the filter

if»
flow parameters:

_ (® 2 (® —
Ty= P vEVY-p-c; P78, =

. . (4.104)
P B <> 4{p-G ),
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G= Rt p,(om/dx))-mp¥g, (4.105)
because, practically,
p=clp? (4.106)
the real quadripole sources of filter noise are connected with the dynamic head of the gas
flow

T; = ng) Qi v v (4.107)
where the dynamic coefficient is determined as
it = (P(g) / ng))(é'ij Sut < La Ly>)vEv¥ (4.108)

and can be anisotropic in a general case.
4.42. MEASUREMENTS IN GAS FLOWS

Noise "pressure", P,, is measured for rock samples and is shown in Figure 4.17,
where the dependency on the gas flow velocity is evident for very wide intervals of core
porosity. Noise dependence on Re number (gas output) is shown in Figure 4.18.

Example measurements in situ are given in Figure 4.19.

-
Py 10" GPa
1.
1 03_ / /4//'/
5 1 ;
2
m=17.7% W, cm/sec

102 L ] 1 ] 1 L 1 1

400 1200 2000 2800 3200

Figure 4.17. Noise pressure P, depends on the filter velocity and porosity (a free gas jet) [3].
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J, uv

495 y ,' 3 Re

Figure 4.18. Noise relative intensity depends on the Reynolds number corresponding to inertial
deviation from the Darcy law (according to Yu. P. Korotaev),
k is the sample permeability, millidarcy .
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Figure 4.19. Amplitude measurements of different frequency noise in acting oil well.
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4.43. THERMOELASTIC STATE OF SEAMS

The second problem considered is the well reaction to geodynamic changes [210]. If
the wave length of the tectonic disturbance is much larger then the reservoir thickness
and if the time interval is of the order of days and hours, the inertial forces in the dynamic
equations for porous media are negligible and equation (2.152) for pore pressure can be
represented as [159]

Py g 4y OT _ 2, (4.109)
or ot ot

.2 D= (4.110)

Here T, is the total stress identified with the tectonic stress, D = D)m + D(s)(l -m),
and a* , a'/’ are thermal expansion coefficients, - see (2.25), (2.26):

ko 1+m0)13( K _ KU myp
= "o s s b= ) _
k=g o Pmm ok (@”-a”) =
_ 1-p°k o= Tut3p I“kk+3P S8 p

3(1-m)pK 3(1-m)K

Let us formulate the boundary condition corresponding to the fluid level (or head), 4,
inside the observation well. The change of fluid volume, AV = SAA, creates the

pressure change, Ap = p? gAh. Accounting for fluid compressibility, %, changes the
effective cross-section, ', of the well with the volume, V', to the value

S.=5+p(dp / Ay

The fluid flux equalizes this volume change and gives the following boundary

condition:
(d6p+BaT) dh ) r=r,
or or dt
4.111)
1/
d=2mmr- | B=2pp2 D
S*ﬂ Cp

which is added to the expression for fluid pressure and temperature at the bottom hole:
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p=p"gh | VT = g dp (4.112)

4.44. WELL RESPONSE TO TECTONIC CHANGES

We must find the well reaction to the tectonic stress changes which are assumed:
D =f(t) (4.113)

The system - (4.109) through (4.110) - can be reduced to

v 0
KV"p-(H—KCP) 0 prp+ Cota?PTodp

D Jor D
(4.114)
0 C, &
= 0(5 V:Tu ’Ep?rkﬁ:)
Introducing the new variable
aC
p=p+———2 it 4.115
A il @.1s)
We can solve the equation
Co)\o209 L Cota®bT, 5 p _
Vip-|1+x—L |V 22+ =2 =0 4.116
P ( KD) ot D of (4.116)
represented in the form
_ 2 208 _
p=p,tp, , Vpt ,-—at—‘—O (4.117)

where 5,(i = 1,2) are the roots of the equation

1/
K‘S4+(I+K%)S2+—-——Cp+% 5T, =0

The boundary condition is rewritten in the form
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o, (n,)=n(t);  0p,/or=0 r—w (4.118)
and
c
0 =nt)=pgh+—2%2 1), =0 4.119
m () =n(t) = pg C,,+a"’bTof() ;) (4.119)

Then g, = 0 and

j‘aU(rt 7) n(z)dz

W(r,z)zdz

JO(er)+Y0(er) (4120)

Ulrit)=1+= jexp[z t)

W(rz)=Jo(rz)Yo(r,2)-Jo(r,2)Yo(12)

where J,, Y, are the Bessel functions of the first and second types of the zero order.
The temperature changes are determined by the pore-pressure field, g, and tectonic

stress, f(?):

aba(f)

BT =-(1+xs)p-—200
( SI)‘O Cp+a0)bT0

Vo, (4.121)

The introduction of (4.120) and (4.121) into the boundary condition (4.111) gives the
following equation [159]

% M ! W(: )z/)o o )(! exp{-(f)z(t- r)}n(r)dr)zdz

g=at (D+Kc - (xC, - DY 4Kba(f)DTJ (4122)

2xD

M=d-—§(1+rcs2)
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The linear equation (4.122) can be solved by the Fourier method:

h(t) = Ay + X(An cosnot + B, sinnowt)
If the tectonic stresses change in a harmonic way:

f(t) = Acos ot
Then
h(t) = A;cos ot + B;sin ot = A4, cos(wt - p) (4.123)
and the well production will be

Q,=-A,sinfot-y) , A =S40 (4.124)

An=VAI+ Bl , v =arctg-§5

1

where

Because of (4.123), ), is more sensitive to frequency changes.
You can see that the most important role belongs to the time of reservoir relaxation

Lpr, ambT)
Or = 1+ 4.125
R [ c, (4.125)

and the pore-pressure changes can be from / to /0 bars and the temperature changes can
be in the interval (+ 3)OC during earthquake events. Usually the temperature
fluctuation are much smaller, but they can be measured in practice.
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4.5. Rupture in dilating geomaterials
4.5.1. DYNAMICS OF UNDERGROUND CAVITY

Consider the important problem of underground empty-cavity stability [235] under the
action of an intensive convergent wave. The geomaterial behavior will be described by
an elastoviscoplastic model that has the following system of equations valid for spherical
symmetric motion

dv 0 S
—_ S +3=L 4.126
dt ar( p) r ( )
ds, _4—=(ov v 3.
L=—Gl—-—-218, 4127
dt 3 (ar r 2 S) ( )
dp _ —fov
—=-K +2Y_2Ak 4.
dt (ar r JZ) (4.128)

where v is the radial displacement velocity, §, =0, -0, o, is the radial stress,
o =-(1/3) o is the pressure in solid (one-phased) geomaterial, and G, K are normalized
shear and volume moduli, respectively:

G=G/(pc;), K=K /(pc) (4.129)
where p is the density, and ¢, is the P-wave velocity,
A=0 , ifE<0 ; A=uF , fE>0 (4.130)

Fi=®(J,p,x)/J, J*=(3/4)S, is the second stress invariant, ®, are statically
determined yield surfaces for the softening process down to residual strength, y is the
softening parameter (1.86), u is the viscous parameter, and A is the dilatancy rate.

The system - (4.126) through (4.130) - is written in dimensionless form based on the
time of peak loading, 7, the radial coordinate equal to c,z,,, the maximum applied stress,
+max» and the maximum velocity, 0, .. / (P¢,).

It is assumed that geomaterial cannot stand tension (compare [197]). The viscous
effect simplifies calculation under unloading conditions and corresponds to the physical
properties of geomaterials. Moreover, adding viscous effects permits more adequate
estimation of explosion wave length. In the limit case of elastoplasticity, the parameter
A has to be found from coincidence of the solution with the elastoplastic solution.

The Wilkins variant of numerical methods [235] is realized and based on finite-
difference schemes.

g
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Additionally, the following parameters were used. The first one is the geometric
parameter % = / r,, where r, is the underground cavity radius and # is the outer
boundary where the impulse load is applied. The loading intensity, K| = ,,,.. / R., is
determined relative to maximum strength, R., of the geomaterial at uniaxial
compression. The ratio R; = R? / R. is the reduced residual strength, R. = R, / ( pc’f)
is the dimensionless strength, and R, = R, / R, where R, is the strength under tension.

The rate of softening was estimated by the parameter G; = Gg / ( P cf,), where G;,’ is
the plastic modulus (0 < Gg < 0,5) of the unloading curve for uniaxial deformation.

The dilatancy rate A’ for the same unloading was introduced as well as s, and s, which
are exponents of the yield surface. The dependence of A on o was measured by the
parameter a,. All these complicated parameter systems correspond to the rheological
properties of rocks published elsewhere [96]. This representation was used in special
codes for computer calculations.

Physically sensible solutions have to be independent on mesh choice. It was found
that its space mesh step has to be less then 0.7 .. The diffraction parameter is
A=czt, /(2r), and R, = 0,;/0,, is a measure of initial static stress, o, acting at the
outer boundary, 7, before impulse action.

The impulse action is assumed as the stress, o,, added dynamically to o, at the
radius 7, = 20 r, proportionally to time in the interval 0 <¢ <¢,. The resulting stress,
o, oy, iSconstant at £ > ¢,

4.5.2. CALCULATIONS OF A CAVITY COLLAPSE

The following set of values was used for all calculations:
R, =002, R,=005 s,=065 s5=085 A=25 (4.131)

and the Poisson’s coefficient, v, is equal to 0.17 where

= 1K-2G /3

2K+G/3

The results are given in Figures 4.20 through 4.25. We can see the changes of hoop
stress, g,, at the cavity surface as well as the radial velocity, v, which is positive if
directed inside the cavity. Curve 1 corresponds to the elastic solution and curve 2
corresponds to the considered dilatancy theory (K, = /; R = 0.0005, Gg =05, N =1,

a, = 1); as do curve 4 (a, = 0.2) and curve 5 (K, = 2). Curve 3 corresponds to the
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plastic associative rule with the Mises limit condition (o, = const). Curves 6 and 7 are
given for larger values of viscous parameter ¢ and are close to elastoplastic solution 2.

Plastic deformation essentially diminishes hoop stresses and increases displacement
velocities. The latter effect is larger if the loading intensity (K';) is growing and the
dilatancy decreasing with pressure growth (the parameter g,) is diminishing. Maximum
dilatancy effect means a 20 % increase of the velocity.

The hoop stress represented by curve 2 in Figure 420 is in accordance with
experimental data. Its drop corresponds to the cavity wall rupture. Failed geomaterial
possesses a residual strength. The plastic incompressibility is in contradiction with the
experiments.

The displacement velocity at the cavity wall is given in Figure 4.21. Return
displacements are essential in the case of elastic solution /.

o4 048 12 1,620 t
Figure 4.20. Dynamics of hoop stress at the surface of an underground cavity under strong wave action.

The wave profiles are given in Figure 4.22 by solid lines for ¢ = 0.5; 0.7; 1.0;
1.3; 1.5; 2.0 when the dilatancy is accounted for. You can see the kink moving inside
the geomaterial from the cavity surface; it corresponds to the rupture front. Its velocity
is approximately equal to 0.13 c,; therefore, the effect of limit crack velocity is
negligible in this case. The kink motion is stopped at # > 1.5, determining the outer
radius of rupture, 7, (see Table 4.1).
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Figure 4.21. Temporal changes of displacement velocity at the surface
of an underground cavity under wave action.

Figure 4.22. Hoop stresses around the cavity for different times; kinks correspond
to the fracture front moving in toward the geomaterial.
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Figure 4.23. Radial stresses around the cavity for different times.

Variants /, 2, 3 and 5 correspond to the dilatancy theory (A’ = I), and variant 4
corresponds to the plastic associative rule given by the broken-dot lines. It gives a
rupture zone too big in comparison with experimental data, which are close to variant 5.
The parameter g, reflects the hardening role of dilatancy.

TABLE 4.1. Radius of rupture around an underground cavity under explosion action.

N r. K ao re/ ro
1 20 1 1.0 1.6

2 20 1 0.2 1.4

3 20 2 0.2 2.1
4 20 1 0.1 6.7

5 5 2 1.0 1.6

The broken lines correspond to the elastic solution with very low changes of velocity
along with the radial coordinates; plastic models give nonhomogeneous velocity fields.
The radial stresses have smooth wave profiles. The residual volume strains can have an
extremum in the cavity vicinity and correspond to new pore space formation.
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7

Figure 4.24. Displacement around the underground cavity for different times.

Figure 4.25. Residual volume deformation around an underground cavity
(1-K,=2 =1L a=02 2-K =1

4.5.3. SHEAR LOCALIZATION EFFECT

Localization of rupture can take place inside continuous elasto-plastic fields during active
deformation with hardening because of the principal internal instability of an elasto-
plastic pressure-sensitive geomaterial. It is possible to rewrite [70], the constitutive
laws given in Section 1.3, in the following form:
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5ey = qu160k1

v 1
I, = {'m 05 0u + 25(5;1( 9+ Ou 5;1)} + (4.132)

A ajj 1 Okl 1
ELS ZAS. —as.
G, (212 3 5")(212 3%

where G, is the instant plasticity modulus (Figure 4.26).
The equilibrium equations are formulated for stress increments, do,

0
gx-(sa,j) =0 (4.133)

J

and can be used to study the internal changes inside the plastic field without any
disturbances at its boundaries:

5(oyn) =0 (4.134)

The main idea [186] is to find nonunique solutions (bifurcation) inside a band
determined by its normal, /;, such that there exists a function

L=1LIx), Ih=1 (4.135)

1
that changes across the band and

_ oL | oN
ox,0x;  Ox,

__FL N
ox,0x;  0x,

U, ’ uz

(4.136)

1 L
5“3:— G[QIIV2L+G%4)

ap+ X3
if the initial state is

oli=06%=-0 oun=-4q (4.137)
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Coefficients g; are determined by elastic coefficients, A, and by the instant plastic

modulus

G =[—ad—“+ﬂ) (4.138)

whose physical interpretation is shown in Figure 4.26.

Ao,

Figure 4.26 Stress-strain curve at shear with instant plastic modulus, G,
and true elastic modulus, G, at unloading (scheme of J. R. Rice [160]).
The functions L and N have to satisfy the following equations:
V'V L+3 V(P L/ ox])+ 36" L/ oxf) =0 (4.139)
V' N+@N/ox;=0 , V=8 /0x]+d /ox? (4.140)

If N =0 and (4.135) is valid, then equation (4.139) is transformed into the following
characteristic equation:
1 _ = I8
5 1+

5‘+ 5, 5 + (4.141)
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where 3, , 3, are combinations of the coefficients @; [70]. Condition (4.141) indicates

loss of ellipticity of equation (4.139) inside the band when the critical state is reached.
Resolving (4.141) for the parameter G, / G determines the maximum value of

instant plastic modulus [186]

1 2

which corresponds to critical state

(l+v)1-2-x)

2
= 4.143
O Y (g (*.143)
A :sign(p-q)i, rc:sign(p-q)A (4.144)
NE] 3
In the simple case of plane deformation, criterion (4.142) has the form
2
G, (I+v) 2
Zel = _(a-A 4.145

You can see here that the critical modulus is positive and that growth of plastic strains
can take place in the band at the hardening regime. In the case of the associative flow
rule (@ = A), the critical value is zero, meaning that the band appearance can take place
only under softening conditions.

4.5.4. BOUDINE AND BAND SYSTEM BIFURCATION

According to I. Garagash [70], the solutions
L =y(x1,x2)f(x3) (4.146)
of equation (4.139) must satisfy the Helmholtz equation
Ny +ly=0 (4.148)

where ¢ is the parameter and
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3, a4f-3,¢252f+;‘f=0 (4.148)
0x5 0 x3

The latter equation has the following solution

f=aC; exp({s,-x3) P $; = i(’] + iﬂ);

o~ o~
1 3 1 3,

:_I_ + ﬂ:_I_ 2
TEE s RS

and 7= 0 is necessary due to the condition of finite stresses and displacements in the
material. Periodic solutions are also possible, - that is, the internal instability can also
lead to hexagon cell structures (known in geology as boudine systems), - see Figure 4.27
and [21].

Figure 4.27 Cross-section of a geomaterial body under boudine instability
with horizontal scale / = g7 [71].

The cells are determined by the following solution of equation (4.147):

v = —;—(2 cosi—%x1 cos23—7;x2 + cos‘;—;[xz) (4.149)
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In reality, shear bands appear inside the geomaterial as a system with definite
geometrical scales. The bands are separated by zones (Figure 4.28) with thickness g, of
elastic unloading. For pure shear,

18 I1-
a:=—3 Vz ai (4.150)

o’ (1+v)

where g, is the band thickness proportional to the grain radius [70].

.!" ..".:: l/.

Figure 4.28. Orientation and thickness of localization bands (according to I. Garagash).

4.5.5. ANISOTROPY AND TENSION EFFECTS

The appearance of the band or fracture system gives the anisotropy features to the
geomaterial. Correspondingly, the yield function

I

@, (/i) =0 (4.151)

and dilatancy condition
@, (I, 7,)=0 (4.152)

depend on a number of stress-strain tensor invariants, J;, [, including the initial
stresses and plastic strains determining the anisotropy [95].

Remember that the yield surface changes if one of normal stress components is
tensional, although the mean pressure, a=(I / 3)0',.].5,.], still corresponds to the

compression [70, 197].



CHAPTER 5
EXPLOSIONS AND SEISMIC WAVES IN GEOSTRATA

5.1. Elementary theory of underground explosion
5.1.1. STATEMENT OF PROBLEM

Underground contained explosions are characterized by minimal ground surface damage.
In this case only weak elastic waves can reach the ground surface due to the depth of the
explosive charge disposal. From mathematical point of view the underground contained
explosion is the simplest one [183] because this dynamical motion possesses the
spherical symmetry. The corresponding mass and momentum balances have the
following form

., op_ (v, 2

Lyl ¥ 2

or ¥ or '0( or r v) S
ov ov 60 o3
P yd)=C0ory0:

p( ot Y 6r) or r ¢-2)

where p = (I - m)p, is the rock density, v, o, are the radial component of mass velocity

and stress, o, = 0, - 0, and o, is the hoop stress.
These equations are valid for a rock stratum including a cavity filled by explosive
gases under high pressure. Such a cavity will expand into rocks according to the law

3y
P=p, (%) = —c,(a) (5.3)
with the gas adiabatic exponent . Here p is the cavity pressure, @ is the cavity radius,
P4, are the initial values changing with the cavity volume which is proportional to a’.
The right-hand part of (5.3) means the boundary condition for the radial stress o, at
r = a, which are positive in tension.

So, the expanding cavity is modeling the explosion dynamic action. The difference
between nuclear and chemical explosives is accounted for by gas masses and by initial
energy {183]

3 -
£ = zzm,,’l’;—_flé (5.4)

188
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which is proportional to the initial cavity pressure. Here p, is the lithostatic mean
pressure.

Nuclear explosions are characterized by a very high energy level and, simultaneously,
by very small gas masses created only by the evaporation of the nuclear device metal and
of the rock at the cavity surface. If the rock is wet, the water vapor could be added to
these gases and the effective nuclear explosion energy increased essentially [32].
Chemical explosions are characterized by essential masses of detonated gases although
their energy is much smaller. The different types of motion dissipation in rocks must be
taken into account, and the effective seismic wave radiated by explosions depends on
type of geomaterials surrounding the charge (Figure 5.1) [152].

7 ( Seismic waves

0O - granite ;A-tufl ; B- clay
Q- riolite ;¥%- salt
5r saturated

AN o
)4* 4(.://
=

o
T

Magnitude

alluvium

8 R ktons

1 1 i

40. 104 102 103

Figure 5.1. Seismic wave intensity of contained explosions is one order less in a high porous stratum
than in intact rock; water saturation effect is also essential [182].

In the close vicinity (zone /) of a nuclear explosion cavity, the rock behavior is fluid-
like because of the high pressure. The intensive plastic deformation takes place in zone
1 of the cavity vicinity, where the volume strain has a dilatant origin. The corresponding
dilatancy condition (1.78) has the form of a differential equation with the radial velocity
as an unknown variable:

ov v 2

@& LY
6r+r\/§

The dilatant equation (5.5) is valid only if the plastic limit (1.77) is also fulfilled - that
is,

av_v_

Frle (5.5)

|o—r-o'@|+0!(o',+20'9)+aH =0 (56)
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So, the system - (5.1), (5.2), (5.5) and (5.6) - includes four unknown variables and

permits the solution of the problem with boundary condition (5.3) added to the initial
conditions of the rest:

v=0, t=0, r>a 5.7
However, at infinity, the outer zone of the rest
v=0 r-ow (5.8)
is separated from the zone of motion by the moving front with the following conditions
pv(R)-U} = -p'U (5.9)
pV(R{¥(R)-U}-0,=0 (5.10)

according to the well-known shock balances (1.33) and (1.34). Here, R is the
discontinuity radius, and its velocity is determined by

U=dR /dt (5.11)

5.1.2. DILATANT KINEMATIC INTEGRALS

The integration of the dilatancy condition under constant A, gives the first kinematic
integral [143]:

C(¢ +
w(rt) = r(”) , n= % (5.12)
where C(¢) is the arbitrary function, and © is the sign of plastic shear:
dy /dt=(dv /dr)-(v/r) (5.13)
Experimental explosions in sand have shown [144] that
n=15-18 (5.14)

The values of (5.14) indicate that sands dilate with the rate interval [143, 152]

A=0.18 +0.09 (5.15)
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because v / r>dv /dr, ®=-1. The positive values (5.15) correspond to dilatant
loosening of dense geomaterials. In the case of plastic incompressibility, A =0 and
n =2, corresponding to explosions in water (or in metals).

Rock behavior is quite similar to the behavior of dense sand because of their
polycrystalline nature and weak intercrystalline bonds. Only very porous rocks are
characterized by the condition A < 0, and the explosion will compact the geomaterial in
the vicinity of the cavity.

Introducing integral (5.12) into the mass balance (5.1), the second integral for density
field [57, 191] can be obtained. Because of (5.12), balance (5.1) can be rewritten as
[152]

olnr™' _

Olnp =0 (5.16)

+n+ ) 288+ (1) 2-n)

n+l arml

The function C(f) can be determined by the displacement velocity, v(R), at the
moving front (5.10), giving the following form of the first kinematic integral (5.12):

v=wR) (5)" (5.17)

r

The front radius, R(t), can be used instead of time. Then equation (5.16) is transformed
further:

V(Ian Oln gI’;H) +(n+1) 6”; f’(: "o (5.18)
The new variables can be used in the equation (5.18):
z=lnpr®", dy=(U/v)dR™ (5.19)
which now has the form:
Z_; +=0 (5.20)

The second kinematic integral is valid in the following form of a simple wave:

R
z :z[r"”-jydR”“J (5.21)

or, equivalently,
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p= rn—zf[rnu_jz(_g_)_anHJ (5.22)

The mass balance (5.9) at the front can be used:

V_PP__€ PP

U P e+1’ Po

(5.23)

If volume deformation at the front is constant (that is, e(R) = e.), then one has

P=R7?flx)=p(Ite), xx=R"/(I+e) (5:24)

at the front (# = R), and the calculation is simplified.
The function f(x) as be defined as:

2-n
f(x)= pR*" = po(1 + e {x(1 +e.)} (5.25)

The kinematic integrals (5.17) and (5.25), together with the plastic limit (5.6) and the
momentum balance at the front (5.10), allows us to transform the dynamic equation (5.2)
to the ordinary differential equation which has to be integrated numerically.

5.1.3. NUMERICAL SOLUTION OF A CONTAINED EXPLOSION

Consider the variant of numerical study from the very beginning. Such an approach
gives the possibility of taking into account the changes of dilatancy rates (from positive
to negative values) accompanied by changes of the solid friction coefficient, «, and
cohesion, chs = aH . Moreover, there is also a possibility to account for the elastic part
of strain in plastic zone //, together with the existence of outer elastic zone //1.

In zone /11, the usual Hooke law is valid, but it is necessary to use the substantional

derivatives
do._ (0¥ ¥ 4o _ (v 1 ,Y (5.26)
dt or r dt or r

because the nonlinearity determined by displacement velocities is essential during an
explosion motion. In plastic zone /I, the elastic part must be eliminated before using the
dilatancy condition (5.5):

ov v 1 (oo oo 2 lov v
2|+ =+v—=|="=A
(ar r) I((at var) J3

5.27
or r ( )
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In both zones, the balance equations - (5.1) and (5.2) - are valid, but the plastic limit
(5.6) is used in zone /I instead of the first elastic constitutive laws (5.26). 1t is necessary
to note that the same plastic condition (5.6) is valid just before the boundary, R,
between zones /I and JII (that is, at ¥ = R - (), but, generally speaking, it includes
higher values of the coeflicients & and H , corresponding to the strength of the initially
intact rock. As the result, the hoop stress, o,, can be discontinuous here, although the
shock front may not coincide with this boundary. Because the computation method
includes the numerical viscosity concept, frontal discontinuities are modeled by moving
zones of high-gradient variables.

In Figures 5.2 through 5.4, some typical results of calculations are given for an
underground contained explosion. Here the reduced coordinate r/£"’ is used, where &
is the explosion energy (TNT equivalent of a charge weight). The explosion wave
profiles (Figure 5.2) are given for three moments of time, ¢ = 281,, 56t,, 84t,, where
t,=a,/c,, c, is the velocity of the longitudinal wave. Solid lines correspond to dilatant

loosening of geomaterials with A =(.]. Broken lines are for A =0. The specific
volume, V' = I/ p, is diminishing and the density is growing for the second case because
of pressure increase and elastic compressibility. The level of lithospheric pressure, p,, is

also mentioned here.

cmife

0,39+

0
’370 0,5 1,0 15 2w? m/Kg"’

Figure 5.2. Profiles of stress waves radiated by dynamic cavity growth in dilating
(solid lines) and nondilating (broken lines) strata.

In Figure 5.3, maxima of velocity, pressure and shear stresses in the stress wave are
also given for two cases, A=0/ and A=0. The kink at r/e"’ ~(0.4+0.5)

corresponds to the instant at which the shock front separates and begins to move with
elastic velocity - that is, faster than the plastic boundary.
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In Figure 5.4, the hodographs of the plastic boundary (curve /), cavity radius (2),
pressure maximum, identified with the shock front (3), and the second pressure
maximums, identified with residual stress (4), are given. You can see that the dilatancy
effect intensifies the outward motion and diminishes the cavity size because of pore
volume growth in the plastic dilatant zone [152].
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Figure 5.3. Decay of stress waves in the close vicinity of the explosion (solid lines correspond to

dilatancy accounting for; 1m/kg"’ =100 m/ kton"” ; energy is given in equivalent charge weight).
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Figure 5.4. Fronts of stress waves in dilating (solid lines) and nondilating (broken lines) rocks.
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The first stage of explosion motion is characterized by more essential compaction at
the shock front in the case of high initial porosity and by further consolidation with
negative dilatancy coefficient due to shear behind this front. The initial lithostatic
pressure also influences the compaction process. In Figure 5.5, the characteristic
intervals of dilatant loosening (1) and of compaction (3), together with the intermediate

case (2), are shown. The initial porosity decreases the amplitude of the explosion wave,
as can be seen in Figure 5.6.
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Figure 5.5. Initial porosity and lithostatic pressure control the predominant effects
of underground explosions [152].
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Figure 5.6. Decay of seismic waves depends on the initial porosity of the strata [152].



196 CHAPTER 5

5.1.4. EXPLOSION EXPERIMENTS

The physical modeling of underground explosions by small charges in grouted sands
gives the same picture of dynamic deformation of porous space as in the close vicinity of
the explosion cavity. The results are shown for initial porosity, s, in Figure 5.7. You
can see the residual density increase in the spherical zone around the explosion cavity,
and the corresponding increase of radial P-wave velocity is mentioned. There is no
change of the P-wave velocity in the hoop direction indicates the explosion residual
effects of high anisotropy. Although density (and porosity) changes are nonmonotonous,
the permeability decreases everywhere because of the simultaneous diminishing of sand
grain size to the powder state.

AV

v,
ull

RESIDUAL LOOSENING

Figure 5.7. Residual density (V =1/ p) distribution around the explosion cavity
depends on initial porosity [152].

Nonmonotonous changes of permeability are not suppressed only in the case of
extremely small values of initial porosity. The explosion in the rock sample with
m, = 10% is given in Figure 5.8. However, these permeability changes are not bigger
than 3 times the initial value. They are much smaller than the drastic changes (/000
times or even more) in granites due to fracture appearance and to extremely small initial
porosity (see Figure 5.9 and [198]).



EXPLOSIONS AND SEISMIC WAVES IN GEOSTRATA

A |
WY L

10 T X

Fallind

—

05 09 13 F

197

Figure 5.8. Nonmonotonous permeability field after explosion in porous grouted sand ( m, =10 %) .

tOr |
| . HARDHAT EXPLOSION
| e
i “ Cel2
~~ i %
| N [al3
L g e
o 0T N @] s
o | \
- Rk | {(7)
> o2t
10 | \ (16}
% l {2 /\\ 3
L4 }\[ 1 AN §
li" -3 1 Neo
3510 I~y a (16} E
& | i
@ |
04 | 8,
|
| a
15 1 1 It 1 L n i
[) 30 50 90 126 150 180 210

RADIAL DISTANCE , M

Figure 5.9. Data of well testing after nuclear explosions in granites
(I = cavity radius, II = the Hoggar explosion);
1, 2 - vertical and horizontal wells, 1964 measurements;
3, 4 - 1965 measurements; numbers in brackets correspond to wells.

According to these experiments, all residual changes are located in the zone
r<0.47(m/kg") in porous geomaterials, compared with r </(m/kg"’) for intact

rocks. The pore space changes take place without fracturing the surrounding strata.
Numerous rigid grains suppress development of long fractures in shock wave tails. The
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experimental data are in accordance with the numerical calculations done on the basis of
rock strength properties measured in static experiments.

5.1.5. DYNAMIC STRENGTH OF MATERIALS

The problem of the dynamic strength of materials has to be clarified. First, stress states
propagate in materials with the elastic wave velocities, but fracturing has its own limit
velocity that is essentially smaller. The limit velocity is explained by the growth of the
material toughness when the velocity is close to the Rayleigh wave velocity or by the
dynamic instability of cracks at high-velocity growth. The limit velocity has to be
measured relative to moving material - that is, to the particle velocity, v. For example,
in experiments with PMMA, it is equal to 500 m/s or the same order of 2-3 km/s as the
solid sliding [29] for granites. In confined sands, this velocity is equal to 450 m/s,
which is close to the Rayleigh value for sand masses [152].

This preliminary note explains the dynamic strength as the overloading phenomenon
[148]. The simple elasto-brittle calculation of the plane dynamic problem of shock action
with fracturing shows the distribution of stresses in the two-front wave (Figure 5.10).

(a)
¢
¢ B
0
A x
(b)
g
| —Cr
00
X
(c)
g
—lc a®
0‘ CF 0-

Figure 5.10. Scheme of loading (b) and unloading (c) waves taking account
of the fracturing front as dynamic discontinuity.
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The first front corresponds to the elastic precursor that moves along the line AB.
Fracturing of the material takes place at the second front. If the rupture condition
0~ = oy is fulfilled at the same line, AC, then the stress is calculated by discontinuity
balances. The difference of intact <<->> and crushed <<+>> states is accounted for in
the constitutive laws. However, if the front velocity, ¢, is equal to its real limit value,
then the stress o~ is much higher in the zone <<->> than the fracturing stress o .

The value o~ measured in experiments is sometimes interpreted as dynamic strength.
However, it depends on the condition of the shock, sample geometry, etc. - that is, the
dynamic strength is not a material property but the function of the dynamical process
[148, 152].

In the zone <<->>, small cracks begin to grow, but, for the case in which the duration
of ¢ is short, these defects disturb the internal structure of the material only and do not
change its bearing capacity. Crack length is proportional to the time duration of
overloading. The fineness of crashing depends on the amplitude of o, because the latter
determines the initial scale of cracks which begin to grow [148].

Thus, during explosive action, the fracturing process begins, as shown by static
strength data. The dynamic overloading effect determines the kinetics of fracturing and
microstructure changes. The large-scale calculation can be done on the basis of static
strength data.
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5.2. Fronts and evolution of seismic waves
5.2.1. ELASTODYNAMICS OF WAVE RADIATION

The shock front velocity decreases during underground explosive motion, but the elastic
wave velocities are constants of the surrounding geostratum. There is a moment after
which the shock front begins to radiate the elastic wave, sometimes called the elastic
precursor. For simplicity, the seismic waves are assumed to be radiated by the outer
boundary of damaged zone b.

Further calculation is based on the theory of dynamic elasticity, according to which
the displacement, ¥, and displacement velocity, v, can be expressed with the help of the
scalar elastic potential:

(D=f1(t"2)+fz[t+£) (5.28)

This potential includes divergent, f,, and a convergent, f,, parts, satisfies the wave
equation

)]
Z2=¢ivio (529)

and appears in the general expressions
i=V ®+rot ¥ (5.30)

together with the vector potential, ¥, such that

>

T P 4 (5.31)

Here, standard P-wave and S-wave velocities appear:

c,,2=i(1<+1(;) e (5.32)
P 3

However, the potential, f,, is sufficient for seismic wave radiation by the contained

underground explosion. This potential can be found from equation (5.29), where the
Laplace operator is simplified due to the spherical symmetry:
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10 0
el [ 533
v r 6r(r ar) (5.33)
Then [183]
oD 1df 1
= - - 5.34
or crd& 4 (é) (5:34)
r 1
=ft-— =— 535
g=t-2, =27 (539)

u(¢) =u0—b2(1-cosT) (5.36)

where T is the characteristic period, u, is the displacement at r =5, 0<&E<T ) and
u = 0 out of the interval (£ < 0,&> T).
The displacement velocity, V, has the corresponding form [183]

_ uh? . 2né
v(§)—cp‘;T227rsm T (5.37)

5.2.2. SEISMIC RISK ESTIMATION

It is now possible to make some estimations. According to Section 5.1, the
characteristic radius of damage is b~ Im/kg'”’ for explosions in intact rocks and
b~0,5mfkg'” in porous geomaterials. Field measurements have shown [8] that

velocities, V, in porous strata (tuff, for example) are much smaller than in intact rocks,
but displacements, 1, have the same order. This means that period 7' =27 u/v is much

larger (and frequency @ = 27/T is much smaller) in intact rocks than in porous ones.
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Figure 5.11. Ground motions from contained blasts in rocks [8].

The impact force, F, acting at the underground construction with plane cross-section

B, is determined as
F=Bpcv (5.38)

Therefore, the first criterion of seismic risk for constructions must be formulated in
terms of the maximum of the displacement velocity, v, as found by observation data
[183]. The smallest level of danger is estimated as /0 cm/s, the point at which fractures
can appear in old building walls. This level is larger for new buildings (20 cm/s) and very
high (150 cm/s) for small wooden houses. The estimate (5.38) shows that seismic risk
for porous rocks is less.

The second criterion is formulated in terms of frequencies, @, because there is a
possibility of resonance between ground waves and constructions. More detailed
calculations must be done for this phenomenon. It has been found from field experience
that there is a dominant wave frequency, ¢, for each type of geostratum.

TABLE 5.1. Dominant geomaterial frequencies
geomaterial gravel sand clay eroded granite

w,, Hz 8-10 25 40 100

The dominant frequency effect was utilized to generate working frequencies by
choosing explosion sites during seismic exploration [231].
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5.2.3. EVOLUTION OF SEISMIC SPECTRA

Evolution of seismic spectra can be explained by the nonlinear evolution of seismic
waves due to viscoelastic rheology of fragmented geomaterials. Corresponding, the
rheology is given by the constitutive law - (1.69) and (1.70) - and is illustrated by Figure

1.5
Consider this rheology together with nonlinear balances of mass and momentum:

9'0_+M=0 (5.38)
at axj
a(,OVi) + a(PVi Vj) - aO’g (5.39)
ot 6xj axj

and with the following nonlinear relation between deformation e; and velocity field:

De; _ Oey . Oey + oy 2V gy 2V =§(a"" +%) (5.40)

Dt ot kaxk 0 x 0 xk an 0x;

Here, as in (1.69) and (1.70), the Oldroyd time derivative is used because these two
determinations of the strain rate are noncontradictory to each other only in this case.
Introducing the following expansions

— el 2 (2 — (1)
vi=¢y t¢ v,~( +.. p=p,tlp " t+..

(5.41)
— ) 2 (2
oy =0y +¢ol +¢ af.j)+... ,

where ¢ is a small parameter, then equations (1.69) and (5.38) through (5.40) will give
the following relaxation equation for the vector potential [152]:

OZ\Pk-cszg ik £ + x5, a4\sz +
o o, o, 0,0t
(5.42)

oY , W ; O W
+0,2 - + =
O 5 [ of  “axax, " axoxor
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If the case =1, m=3 of (1.69) is considered, c,,c, are the frozen and
equilibrium shear wave velocities, x,, k,, are the “frozen” and “equilibrium” length
scales of oscillating fragments

/ ; f + , f
Cso = Gu y Cso Gi1*Gy , Kso= M y Kso= Mt My (5.43)
p0 pD po po

and @, is the relaxation time.

Equation (5.42) is the generalization of (5.31) as result of dissipation viscous effect
and the fragmentary microstructure of geomaterials. The analogous equation is valid for
scalar wave potential @ but with different coefficients.

The forth-order Bussinesq operators appear in brackets in equation (5.42) meaning
that we can get the Korteweg-de Vries equations [106] or its generalizations instead of
(5.42) in the approximation of weak nonlinear waves . The latter corresponds to the
nonlinear evolution of seismic spectra.

To get the nonlinear evolution equation, use the special coordinate system

=10 (xm-cmt) r=%rft (5.44)

where the same small parameter is used. Using (5.41) and (5.44) simultaneously for P-
waves gives the following standard acoustic expressions as the first approximation

(1)

cC=c Cc, e =-y
() — " " — [¢)] (545)
PoV _plcpa’ 6__pocpov
For S-waves, we obtain
c=c¢ Co¥ = _iv(l)
502 50 2 (546)

— = ()
Pr=Pys T= =PV

where 7,7 are shear and shear stress amplitude, respectively, and v is displacement
velocity which is orthogonal to direction of wave propagation.

The second approximation gives the nonhomogenous set of equations which is in
agreement with the results of (5.45) or (5.46) only if the following nonlinear evolution
equation is valid for P-waves [153]:

ov ov n 62p+1v m aZp v
—t MW=+ Tpu—=Z7=, To—= 547
az_ ag pzzl P+l a§2p+1 pz=; » a§2p ( )
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where N is the coefficient of nonlinearity, primarily dependent on the physical
nonlinearity in the rheological relations and I", are positive coefficients dependent on
seismic wave velocities and the rheological coefficients in (1.69). Here we consider
equation (5.47) with n = 2, m = 3 that correcponds to rheological law (1.69) illustrated
in Figure 1.5.

5.2.4. DOMINANT FREQUENCY AS A RESONANCE PHENOMENON

In linear approximation, standard disturbances
v =v, expi(@wr— x¢) (5.48)
propagate in the wave form according to the following dispersion connection:
CU:ZV*'FJZJ‘H"JZj+i12(r2‘r4,¥2+rd,¥4) (5.49)

where v, is the velocity value in whose vicinity the linearization is made.
The waves will dissipate if /m @ >0, but their amplitude will grow without limit in
linear approximation if /m @ <20 . The interval of this instability is between two roots,

,1/12 s );22, of the quadric equation (Figure 5.12):

F614'F4ZZ+F2=0 (5.50)

However, this amplitude growth can be limited by a nonlinear term which results in
oscillations with higher frequencies out of the interval being created and hence
dissipated. The numerical calculation has shown that the seismic signal with the "white
noise" spectrum is converted to oscillations with the dominant frequency, @y,
corresponding to the wave number, y, (Figure 5.13).

In accordance with this analysis, seismic wave fronts propagate with elastic wave
velocities, and traditional elasticity theory is valid for calculation of their front position at
every instant. Practically, however, only the fronts of different waves are utilized from
numerous observation records.

The seismic spectrum changes along the path and the dominant frequency appears.
Estimating [151] the characteristic parameters of the medium which correspond to @,

from Table 5.1,

T4
NCYy,~C 5.51
1 2
dun—n |2T8 e & (5.52)

Xa I'4 Ac
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Figure 5.12. Frequency domain of (signal) amplification (of negative dissipation) [153].
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Figure 5.13. Evolution of initial white-noise disturbance (a) for time interval Af to dominant (/2 Hz)
frequency oscillations (b) that are stable for the interval 7 At (c) [19].
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So, the values w,~25Hz, c=100m and particle size d~x ~ 0,4 mm,
characteristic of sands, correspond to 4, ~ 4 m , and have a practically negligible wave
velocity dispersion, Ac ~ 0,1 m / sec.

Distant nuclear explosions are observed in the frequency interval /-3 Hz, with
c~6 km/s. This means that 1, ~ 6 km and x ~(A4c/c) A, ~ 100 m if the relative wave
dispersion is estimated at /.5%. So, /00 m is the characteristic length scale of the
Earth’s crustal microstructure.

5.2.5. MACROSTRUCTURE WAVE EFFECTS

The P-wave fronts are described by equation (5.29) and the S-waves by equation (5.31).
However, there are two types of S-waves, each with a different polarization. SH-waves
have displacements in the horizontal plane and SV-waves in vertical direction. If the
rock masses have the system of fractures, the measured shear-wave velocities are
different depending on their polarization. If displacement is normal to the fracture, the
effective rigidity is smaller, as well as the wave velocity. In case of displacement
tangential to the fracture surface, the wave velocity is higher. This effect [45] was used
to determine fracture system orientation in situ and even to determine fracture changes
due to the fast tectonic movement characteristic of earthquake "preparation" (Section
7.3).

The free surface diminishes velocities of seismic waves which are connected to this
plane. In such a case the solution is developed in the form of an approximation sequence

(8=01,...) [135] - thatis,
W = vi(ﬂ)( Z}(ﬂ) X -ct+ Zz(ﬁ) x;) (5.53)

Substitution of (5.53) into the approximation sequences of nonlinear dynamic equations
corresponding to different orders of small parameters determines an integro-differential
equation which can be solved numerically [135]. The condition of traction absence at
the free surface gives the famous equation

6 4 2
¢’ oc 24 16 ¢
€8 + 2L 0 0-16|1-%|=0 5.54
sogrel )] o

of which one root, ¢ = ¢;, corresponds to the Rayleigh wave combination of SV- and
P-waves. ¢ approximately equals ¢, = 0,92 ¢, and particles displace along the elliptic

paths in the plane X, x,.
Analogously, the Love waves propagate along the layer at the free surface and include
the SH-component. The adequate solution exists if the S-wave velocity in the layer is
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smaller than in the base half-space. The stratification resonance effect will be discussed
in Section 5.5.

5.2.6. WAVE DISSIPATION

Attenuation of seismic waves is the major unsolved problem of conventional
mathematical theory because experiments have shown that the attenuation coefficient, b,
is proportional to the first power of frequency, w:

v=v, exp(-bx)expi(x-ct) , b~ aw (5.55)

oreven b=a,w", n=0.7, as follows from observation of seismic signals at long distances
[98].

Physical explanations of these data are based on visco-elastic models with some
special spectra of relaxation times or on the concept of nonlinear sublimit solid friction
[152]. In the latter case, dissipation is created by relative slippage at grain contacts or at
crack edges. These problems can be studied by the energetic method [161] and by the
harmonic linearization method [152]. It is possible to show that seismic wave has
practically no dispersion but possesses the attenuation b ~ aw or the damping decrement
@, independent of frequency:

= }[::)_b = const (5.56)

Connection (5.56) can be verified in experiments with resonance columns where a
single harmonic is used. Field observation, for example, has found that shear waves have
Q, = 20 + 50 in dry sands and P-waves have Q, = 100 - 200 in granite, limestone or

sandstone. Usually, O, /Qp ~ 2 for the same geomaterial. In intact minerals,
Q, = 2000, as found from ultrasound experiments. It means that main attenuation

mechanism inside real geomaterials is connected with the relative motion at the
microstructure level.
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5.3. Seismics of oil and gas reservoirs
5.3.1. RELAXATION OF SHEAR WAVES

The mathematical model of dynamic poro-elasticity with thermal relaxation, as
formulated in Section 2.3, describes two modes of P-waves and one mode of S-waves.
Equation (2.96), for the S-wave, is the simplest, and it gives the dispersion equation
[156]

1 (Atciytian ) - o*(1+i08,) =0 (5.57)

for harmonic one-dimensional waves:

v = V’oexPi(wt - Zx)’ X = Q'i5s (5.58)
Cs

Correspondingly, we obtain the following expressions for shear wave velocity
dispersion, ¢, and its attenuation coefficient, o, :

1 1 1/2
—=——{4’+B 5.59
poibw A ) (559)
=@ 142} 5.60
6=l B (5.60
where

: I + 2 2
— c4a( 460 2@,,2 (5.61)

cot o0 O

2 2 + 2 22

B= Cs0 (Cso Cso W @p) (562)

4 7 2.2
C50+C:ooa) ®p

The resulting velocity dispersion and the frequency dependence of attenuation
coefficient are given in Figures 5.14 and 5.15 in dimensionless form.
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Figure 5.14. Wave velocity depends on frequency caused by inertia relaxation [156].
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Figure 5.15. Attenuation coefficient depends on frequency caused by inertia relaxation [156].

5.3.2. TWO MODES OF P-WAVES

The system of dynamic equations, - (2.88) through (2.94), - for longitudinal waves is
very complicated because it accounts for the interaction of the matrix and particle
compressibilities together with thermal effect and filter-inertial relaxation, as in the

S-wave case.
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If the thermal effect is sufficiently small and the solid particles are much more rigid
than the entire matrix, see (2.103), as in the case of water-saturated soils, then the
effective system (2.104) is valid. The existence of two P-waves becomes evident
because their effective dynamic equations - (2.104) and (2.111) - separate. You can see
that the equation for the first P-wave mode (2.105) differs from the equation for the S-
wave (2.96) only due to other "frozen" and "equilibrium" states values. So, the
analogous dispersion equation

2 (chtchtioo,d, )- o’ (1 +i0e,)=0 (5.63)
is valid for pore pressure waves:

P = pyexpi(wt - xx) (5.64)

Therefore, Figures (5.14) and (5.15) can be used for cp, and §,. The first mode is

characterized by the identical direction of solid and fluid particle motions. However,
their motions have opposite directions in the P-wave of the second mode. It means that
the fluid has to leave pores to permit full deformation of the porous matrix. This leads to
very high filter dissipation, and the corresponding telegraph equation (2.112) has to be
used instead of the standard wave equation.

The dispersion equation for the second P-wave is

1el6,), =00, -ip./ p) (5.65)

where the corresponding wave number, y, is used for matrix deformation:

e=eepi(ot-zx) , y=-—-isy (5.66)
cn

The following expressions for wave velocity, ¢;;, and attenuation coefficient, §,,, are
valid (Figures 5.16 and 5.17)

P00,
Jpog 0)2 9p2+ poo2+ Po wap

2P0+ p, -1
Jj’,:f‘:_— A (5.68)

(5.67)

2 42
¢y =26
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Figure 5.16. Dispersion of the second P-wave velocity [156].
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Figure 5.17. Frequency dependence of attenuation coefficient for the second P-wave [156].

Water-saturated quartz sands are characterized by the following set of parameters
[151]:
m=03 , pf=25glen’ , p=1g/cn’
(5.69)

K=10°MPa , K®=05x10°MPa , K”=0.25x10°MPa

with wave velocities
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¢,, = 1900 m/s , c,, = 2200 m/s, c, = 140 m/s (5.70)

You can see that the first-wave mode has the features of observable seismic
P-waves in saturated soils and the second-wave velocity corresponds to observations of
seismic waves in nonsaturated soils.

5.3.3. GAS-FLUID CONTACT IN POROUS SPACE

The poro-elasticity model provides the opportunity to interprete properly seismic data
for strata saturated by water, gas and oil. First, the second P-wave mode, as well as the
S-wave, mode corresponds to the deformation of the porous matrix independently of its
saturation. If the geomaterial is saturated by gas and the pore pressure is very low, the
second P-wave and S-wave are the only observable waves. This is the case of a gas cap
in a depleted reservoir or gas underground storage in an aquifer. However, beneath the
oil (or water) level, the relative motion of the fluid and matrix creates a dissipation so
high that the second P-waves are practically excluded. As the result, only the first mode
of P-waves becomes observable, and the velocity jump, N p, of seismic longitudinal
waves at the boundary separating gas and fluid in the same porous medium is essential:

_ ¢ _ [K*¥(HG /3 [p.
Np=-2 /————-——Uﬂ \/;} (5.71)

This follows from (2.106) and (2.113) if the relative low frequencies of real seismic
waves are taken into account. Because p./p,=O(J), the large value N , 1s determined

by the ratio of mineral grain and porous matrix compressibilites. At the same time, the
velocity jump, N, of the seismic shear waves is much smaller; it has just the order of

density ratio {152] of the gas and fluid saturated media:

(I‘mo)/’om
N, = : (5.72)
\/(I' mo)Po()+moP(()/)

This follows from (2.97) in the case of p? >> po(g) .

The second P-waves can propagate as a component of the second Rayleigh wave
along the contact of gas and fluid inside the porous geomaterial or along the porous sea
(or river) bottom because, in this situation, the fluid can easily leave the porous space in
the lateral direction and essential deformation of the matrix becomes possible. The
corresponding boundary-layer procedure was developed [65]. Such Rayleigh waves can
be observed if geophones are situated exactly at the sea bottom [224].
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5.3.4. GAS-SATURATION EFFECTS

The first and second modes of P-waves can coexist in the form of body waves if the
porous fluid has small fraction of gas bubbles. The problem of the mechanism change of
observable seismic waves from the first to second mode is nontrivial. Such a problem
was studied for gas-saturated porous media for the case of growth of rigidity and initial
pore pressure [156]. It was shown that in the case of low pressure of a gas-saturated
porous medium, the second-wave velocity was determined by matrix rigidity and was
larger than the first-wave velocity. The latter is determined by effective gas
compressibility. Moreover, the distribution of loading impulse is dependent upon the
boundary condition (2.42)-(2.45). If a gas wave is incident on a porous gas-saturated
medium, the first P-wave, called also the "gas" or "air" wave, is generated and dissipated
due to losses inside the gas-saturated, ideally rigid, porous matrix. In this case, the load
applied to the solid phase is negligible, and the medium plays the role of sound absorber.
However, in the case of pulse loading of the solid matrix, the stress wave spreads mainly
in the second-wave form.

Sound damping in gas-saturated media is controlled by viscous resistance to gas filter
flow and by thermal effect. The latter corresponds to the heating of gas under
compression and to the heat irreversible flux into the solid matrix because of its high
thermal capacity. It is possible to show that the total wave attenuation is the sum of
viscous and thermal parts [156]; moreover, due to the estimation of porous media
parameters, they are both of the same order. This is why gas-saturated media have very
high damping effects.

The velocity dispersion due to filter-inertial relaxation is relatively small, and it can be
suppressed by the rigid growth of the porous matrix. This is the case for water-saturated
porous rocks. However, additional relaxation due to thermal damping, as in the case of
oil-saturated porous geomaterials, permits more essential seismic velocity dispersion (see
Table 5.2). Of course, the high thermal properties of reservoir oil are connected with the
gas dissolved in it.

TABLE 5.2. Dispersion of P-waves in thermoporoelastic saturated rocks.

Quartz Velocity C,, m/s
media Saturated by Water Saturated by Oil
o -0 @ > © w0 ® > ©

K901 2000 2160 1570 1880
Kp¥=01 2200 2340 1830 2100
Kp¥=02 2400 2500 2050 2300
Kp¥=03 2600 2660 2350 2520
Kp¥=04 2800 2830 2570 2720

Kp¥=05 3000 3000 2800 2920
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The calculations for Table 5.2 were performed according to the dispersion equation
resulting from the equations given in Section 2.3 for the general case [156].

5.3.5. MATRIX-VISCOSITY EFFECT

An additional source of wave energy dissipation is the viscosity of the geomaterial matrix
accounted by the constitutive law (2.198). Using this relation instead of (2.3), the
following equations valid for one-dimensional P-waves can be obtained from the system
(2.4) through (2.7):

2 3
%(He Co = (poe p”’é)—(ﬁ%n) aizgt (5.73)
5fci(ce Mg)—g—( Ve - pPem™) - ng (5.74)

Here, the Biot coefficients [20] and variable & are used:
H=K+ ‘G- (1-8°K)'M, C=(1- 7 K)M,

= (,3 - ,3(/),3(5) K)ﬁl; &=m(o / ox)(v® - v7)

(5.75)

The dispersion equation has the form

2
(1) =_r+§li\/,2_-41q (5.76)

1)
o H 4 JuH pLo 4
Lo M-2p7C + 2| B Py 2 .
=p"=-p, +k(4 377) l{ T m (4 377)} (5.77)
l:H(f+(72—ia)M(4’+in), qg=p"p"- p,,p ng (5.78)
3 m ko

Calculations [35] performed for equation (5.76) have shown that the viscosity of a
solid matrix can essentially change the attenuation coefficient, & ,, and even the type of

its frequency dependence, @.
In Figure 5.18 typical data are given for the different fluids that can saturate

geomaterials.
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Figure 5.18. Frequency dependence of the attenuation coefficient for P-waves [35].

As can be seen, the matrix viscosity can surpress the effect of fluid differences in the
interval of ¢,m~10°-10""I1, corresponding to sands, sandstones and limestones.
Geomaterial parameters used are given in Table 5.3.

TABLE 5.3. Effect of matrix viscosity for waves.

Parameters Sand Sandstone Limestone
p(s) g / om? 2.65 2.62 2.60

ﬁ(s) 10k cmZ/dyne 2.7 2.94 1.35

7,6, I 10 10 10

m 0.35 0.16 0.05

k, em?’ 107 10° 1077

G, dynefcm’ 4x10 4 x10"° 3 x10"
K dyne/cmz 7 x10° 6 x 10" 4 x 10"
c, (10" /), ks L7 27 36

¢, (10" H), kmfs 1.8 3.7 37
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The matrix-viscosity approach accounts for the difference between the seismic wave
velocity (at /00 Hz) and the ultrasound wave velocity (at 70,000 Hz). This difference is
essential for proper interpretation of experimental laboratory data and effects wave
energy transformation from seismic to ultrasound frequencies.

Another source of dissipation is explained by the wave interaction with
nonhomogeneities because of the second P-wave generation at each boundary. This
effect gives the following dependence in case of random distribution of inclusions in
geomaterial volume [152]:

S~aw”’? (5.79)

If nonhomogeneities are represented by a set of cracks, the splitting of S-waves with
different polarization appears to be essential. This effect is observable during earthquake
preparation processes and inside porous-fractured reservoirs [45].
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5.4. Microstructure transformation and wave generation
5.4.1. ONE-DIMENSIONAL MICRO-ELASTIC DYNAMICS

There is a possibility for kinematically independent motion of fragments composing a real
geomaterial, if its matrix is not too rigid. For a mathematical description of the resulting
effects, we can use the methods of generalized continua mentioned in Sections 1.1 and
2.2 and we shall use the balance of moment of momentum (1.13) in addition to the
balances of mass and impulse to study the dynamic processes in a porous medium.

Consider, for example, the one-dimensional micro-elastic dynamics described by the
following two dynamic equations [102], which are a sequence of equations (1.13) and
(1.20) through (1.22) with additional nonlinear terms:

SPu_ 2u_ oudu o' o0’ _ 0

“-q EEVE < ady E adit 5.80
a7 T e ot A ox (5.80)
o’v L, 9D 2, 0D ou _

th—-cz—a-x7+ad>- c, E;f-atb 5;—0 (5.81)

You can see that in equation (5.80), the usual wave operator is generalized by the
fourth space derivative, which has the same order as the microstructure effect of
fragment rotation at angle @ [30]. This requires using the so-called gradient-consistent
rheological law. The nonlinearity introduced here is the simplest way to account for
density dependence on deformation

p=p,(1 +ou/ox)" (5.82)

In the linear approximation, equations (5.80) and (5.81) are split.
The antisymmetrical part of the stress tensor is proportional to angle @ - that is,

o5 =Y & Di (5.83)

This does not include mean distortion, because the mean motion is purely longitudinal,
ou, /axj =0,i#j. Here, v,d, f,a are the material elastic constants, ¢, c, are the

wave velocities

(=2, o= (5.84)

Po pyd

The following rheological relations are used for stresses:



EXPLOSIONS AND SEISMIC WAVES IN GEOSTRATA

ou Ju ou ou
=F —~+CZ—+B——- P
o T o P P
and for couple-stresses:
ox

They are all in agreement with Section 2.2. Then

V=c12+2£, 5=_c_, a=_2./._.
Po Py pl

and y is determined by equation (5.83).

5.42. MODULATION OF HIGH FREQUENCIES
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(5.85)

(5.86)

(5.87)

The traditional usage of the running coordinate £ with change of length and time scales

E=n(x-ct), t=nt

transforms equations (5.80) and (5.81) into [102]:

a4 4 & Al
(CgZ'CJZ) a'fz '277Cg arag = Zﬂn2(q )] algzl
. 0A 2 nNTA _ 2 2
ZIZE'(CZ - Cg )—6? - (I c; t 2w )VA
where new variables 4 and V' are used
o= , v=2
o
and
Ja _ do
Wy = 7;03— E,G):Z‘f‘wf

with ¢, as the group velocity.

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

Equation (5.89) is formulated for the amplitude of seismic deformation, V. and
equation (5.90) is formulated for the amplitude of the rotation angle oscillation, A.
Because the parameters of equation (5.89) or (5.90) include small internal length scale,
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JJ , the mentioned oscillations correspond to wavelengths of the same order as the
matrix grains.
If ¢ = I in the exponent (5.89) and 77 — 0, then equation (5.8) gives the nonlinear

connection between V' and A
V=25 |A|2/(cg2 -¢) (5.93)

and the amplitude A is described by the Shroedinger nonlinear equation which follows
from (5.90):

. 0A ;. A Xt 2w’ 2
iy —+ - =252 "0 A A 5.94
P (C2 Ce ) o7 B PER [A] (5.94)

So, the envelope of high-frequency oscillations can have the soliton form because
equation (5.94) has the following solution:

2 (012 - cgz)

A= 4
’ 12022'2(002

X

(5.95)

 Bo& .[B,f 2) 3
expyi—7—=—=—1i| —- 4, |}Sech 4,| —=—=—-B,!
{ el 4 ver'-el

Some experimental data for seismic noise support this mathematical result.
5.43. LONG-SHORT WAVE RESONANCE

Another effect is connected with energy flux from seismic waves to ultrasound
oscillations in case of long-short-wave resonance when the group ultrasound velocity,
¢, . is equal to the seismic wave velocity, ¢;. In Figure 5.19, dispersion curves for the

linear variants of equations (5.80) and (5.81) are given for seismic and ultrasound
frequencies, respectively:

o=y +5y] . ol = v, (5.96)
You can also see the resonance condition in Figure 5.19:

c,=c = (5.97)
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Figure 5.19. Seismic and ultrasound dispersion curves for geomaterial with microstructure
(Wave number Y, = X. corresponds to long-short-wave resonance (LSWR)).

Then equations (5.89) and (5.90) convert into the canonical system [102]:

oL _ ST
— == 5.98
ot ox (5-98)
A
2i— =2LS 5.99
Yot ox (>-59)
where y, = x 7, and ¢ is such that equation (5.89) becomes simpler
QK:_M *20(1) (5.100)
or Yee 0 % '

Here, L and S are the special normalized variables V' and A.
From the resonance condition (5.97), we can obtain the wavelength of the generated

ultrasound, A, by
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.2
X =2 [o2 2 (5.101)

@,

This means A,, does not depend upon seismic frequencies and is proportional to

internal length scale because
1 fZ fZ J
Lo |42 |4 (5.102)
w a ¥

Using approximations for long-short-wave resonance is valid if
Aw / As=0() n<<l (5.103)
where 1, is the length of acting seismic waves and

A>> 8% /¢ (5.104)

It is also suggested that ¢, > ¢ - that is, ultrasound velocity must be larger than the
velocity of seismic wave (see Table 5.3). (This is essential for proper interpretation of
laboratory velocity measurements based on ultrasound technique.)

5.4.4. SEISMIC - ULTRASOUND ENERGY FLUX

Seismic energy transfer has the following form, which is standard for wave motion

0. = > ¢lo, 1,00 (5.105)

2

and the ultrasound energy transfer is analogous

qe:u = _12— 22wuslusp‘]q)2 (5 106)

Seismic deformation (5.91) can be expressed as

V_du_

=~ (5.107)

and



EXPLOSIONS AND SEISMIC WAVES IN GEOSTRATA 273
@ = |4 (5.108)

At the approximate resonance condition (5.97), the seismic energy flux is

1
Qs =57 PqY" (5.109)
and the ultrasound energy flux is
1 ., c1c22
G = = Pl A (5.110)
5 2 )4t

Their ratio permits the estimate of the energy-exchange coefficient between the two
wave modes.

5.4.5. SEISMIC NOISE OF ROCK CREEP

Due to the microstructure of rocks, the mechanical energy of slow rock creep can be
transformed into seismic noise. For a mathematical study of this phenomenon, it is
necessary to use Cosserat mechanics with the assumption that macromotion is viscous.

Let us begin by formulating the moment of momentum balance in following linear
form [51]:

a cD oo
g, L 1 -_A)__
( g anan
o, oy,
(A2+A3)52 + 23(26—?-gyk6—;i)+ (5.111)
k

1l  Oow
i-— i —_— _ 0
+ y[d) 2 Eijk axj)

where the couple-stresses (1.22) are characterized by the elastic coefficients, 4, The
last two interaction terms correspond to the viscous body source (with coefficient B)
and to the elastic body response (coefficient y ) of mean macromotion [41, 42].

The elastic microstructure potential must be written as
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Wt l 0000, iAZ[@)[@) W, (0(13,)[0@,) 5.112)

277 ox, ox, 2 ox; )\ ox, 2 ox ox,
where
2
— }’ * * ] I auk
=Lo o == ;- — e —= 5.113
Wo Z(I) () 27((1’ Zglkaxj) ( )

is the elastic interaction potential that can deviate from the quadratic form if y is itself a
function of acting variables.

According to (5.111), even the simplest one-dimensional S-wave includes rotation
effects. Assuming that

Vi SV(X,08,, U =u(x,0)38,, ®,=0(x,1)5,, x=ux (5.114)

i

the resulting equation has the form

2 2
642)_ A 0(123 4 B 0CI> 1 oW, _ (5.115)
or" p,J ox o, or pOJ oD
1 Oux oy
A= ‘2‘(A1+A2) ’ F—Zgyka +2B gy axlj (5.116)

This equation includes the wave operator, dissipation term and relaxing body source,
F, given by mean dynamics of rocks and describes the dynamic processes in granulated
and fragmented rocks.

Consider the situation [52] when mean shear rate field is stationary and

2V _ Fix) (5.117)
Ox;

Then, equation (5.116) can be transformed to

23 ’
oo +4B(3(D
ot

20 +Shrd' =0 (5.122)

for small perturbations @' = ® — ®,(x). Here, ®,(x)is the stationary solution, the
Shroedinger operator is
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62
Shr = _AEF +V(x) (5.123)
and
ow’ 2
V=—o0pm =y®(d-a) (5.124)
oo |,

It is possible to show that in the vicinity of @' = @/ 2, the solution (5.122) is unstable
[52]. The numerical procedure was developed for the following stationary field:

®o(x) = a(L-x)—~ (5.125)

The nonstationary @’ solution with spectra, presented in Figure 5.19, reveals the
features of the compact Hausdorf attractor for equations (5.122) through (5.124). These
spectra indicate that a source of energy such as mean creep flow can generate seismic
noise observable<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>