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Preface

This is the first volume of a set of three within the Springer Series in Optical

Sciences, and is devoted to photorefractive effects, photorefractive materials,

and their applications. Since the publication of our first two Springer books on

Photorefractive Materials and Their Applications (Topics in Applied Physics,

Vols. 61 and 62) almost 20 years ago, a lot of research has been done in this

area. New and often expected effects have been discovered, theoretical models

developed, known effects finally explained, and novel applications proposed.

We believe that the field has now reached a high level of maturity, even if

research continues in all areas mentioned above and with new discoveries

arriving quite regularly.

We therefore have decided to invite some of the top experts in the field to put

together the state of the art in their respective fields. This after we had been

encouraged to do so for more than ten years by the publisher, due to the fact

that the former volumes were long out of print.

This first volume is devoted to the description of the basic effects leading to

photoinduced refractive index changes in electro-optical materials. As is com-

monly known, this photorefractive effect was originally discovered as undesir-

able optical damage in nonlinear and electro-optical crystals. Light- induced

changes of the refractive index limited the usefulness of crystals such as LiNbO3

with large electro-optic and nonlinear optical coefficients, because the index

changes give rise to decollimation and scattering of laser beams in devices such

as modulators and frequency doublers. Subsequently, materials exhibiting such

an optical damage effect—later called the photorefractive effect—were pro-

posed as holographic materials and when faster recording materials became

available as dynamic holographic materials used for beam amplification, real-

time interferometry, optical phase conjugation, and image processing applica-

tions. This class of photoinduced mechanisms has contributed to establish the

link between the fields of nonlinear optics and coherent Fourier optics.

The optically induced refractive index changes are generally explained in the

following way: When light of a suitable wavelength is incident on a crystal,

photoelectron holes or ions are generated, which then migrate in the lattice and

are subsequently trapped at new sites. The resulting space charges give rise to
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an electric field strength distribution in the material that changes the refractive

index via the electro-optic effect.

This first volume gives a comprehensive treatment of several aspects of

photorefractive effects. Besides the detailed description of the photoinduced

refractive index changes observed in anisotropic media, newer effects such as

the effects of photoinduced space charge waves, feedback controlled grating

recording, the description of spatiotemporal instabilities, and self-organized

optical pattern formation by self-induced refraction index gratings are covered.

Special recording methods by band-to-band photorefraction or two-step re-

cording are topics of two other chapters. The observation and theoretical

description of dark and bright solitons induced by the photorefractive effect

is another exciting, novel phenomena described in this volume. The status of

research in thermally or electrically fixing photoinduced gratings by ionic

charge transport and thermal treatment, or by domain reversal, is described

in two chapters of this book.

The volume reviews the present understanding of the fundamental origins of

the effect in a variety of materials from ferroelectrics, compound semiconduct-

ors to polar organic crystals and polymers. The parameters that enter into the

design of optimized materials are described and these parameters will be further

discussed in Volume 2, which will deal with ‘materials.’

The different beam interactions, self-induced optical effects, grating fixing

mechanisms, and so on that form the basis of the applications described in

detail in Volume 3 are also treated.

The three volumes on photorefractive effects, materials, and applications

have been prepared mainly for researchers in the field, but also for physics,

engineering, and materials science students. Several chapters contain sufficient

introductory material for those not so familiar with the topic to obtain a

thorough understanding of the photorefractive effect. We hope that for re-

searchers active in the field, these books should provide a useful reference

source for their work.

We would like to thank all authors of chapters for their great efforts in

presenting attractive overviews of the topics they present in this book. We are

very much indebted to Mrs. Lotti Nötzli for her great administrative support.

We also acknowledge the efforts of Dr. Hans Koelsch of Springer and his team

who made a great effort in efficiently producing this first volume.

Zürich, Orsay, April 2005 Peter Günter

Jean-Pierre Huignard
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1

Introduction

P. Günter and J.P. Huignard

The research and developments in laser physics and nonlinear optics rapidly

expanded over the last twenty years, and many applications of photonics are

now relevant to the industrial or consumer markets. Also, it is expected that

photonics will disseminate in the near future in new, important areas like

medicine, biology, or nano technologies. A major factor behind such impressive

growth is the advent of high powered and efficient solid state lasers in combin-

ation with the use of materials that exhibit large second or third order non-

linearities. In such conditions, nonlinear optics is becoming an important

technology in the design of new laser sources emitting in the visible or near

IR. Nonlinear optics also enables the attainment of new functionalities in laser

systems and optoelectronic signal transmission and processing. The class of

nonlinear phenomena based on the photorefractive effects in electro-optic

crystals will undoubtly play a major role for these different applications of

laser photonics.

To briefly introduce this particular field of nonlinear optics, let us recall in

the following the basic of the physical mechanisms and main characteristics:

when coherent laser beams interfere in the volume of the material, it generates a

photoinduced space charge field which modulates the crystal or polymer

refractive index through the linear electro-optic effects. In other words, photo-

refractive materials are very well suited to record dynamic holograms using

two-wave or four-wave mixing interactions involving continuous wave or

pulsed lasers. The magnitude of the hologram recording slope is proportional

to the absorbed incident energy and there is a trade-off between response time

and material saturation efficiency.

The result is that, in general, a photorefractive mechanism is not as fast as

other nonlinear effects such as Kerr, Raman, or Brillouin, but it can present a

dark storage time that provides attractive capabilities for memory applications.

Consequently, this particular type of optical nonlinearity exhibits very specific

properties that will be developed in the different chapters of this volume and

which have opened new advances in optical sciences.

Nonlinear photorefractive optics is now well established and it has reached

scientific maturity. It contributes to stimulate basic research in solid state
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physics to investigate with details the mechanisms of charge transport in

different types of ferroelectric or semiconductor crystals. It thus results in

great interest to grow new doped crystals whose photorefractive properties

can be tailored to the applications, encompassing materials that have no

photorefraction to materials that can exhibit large photoinduced index modu-

lations.

Another important aspect of the photorefractive materials is their ability to

perform efficient energy transfer between pump and probe waves interfering in

the volume of the crystal. This remarkable property opens a wide range of

applications, including image amplification, optical phase conjugation with

gain, or self pumped optical cavities. The amplitude of the energy transfer is

governed by the nonlinear photorefractive gain coefficient whose value is

deduced from the intrinsic values of the electro-optic and charge transport

parameters of the material. The importance of this parameter is outlined in

the chapters of this volume in order to evaluate and compare material per-

formances. All the remarkable properties of photorefractive materials are

challenging a lot of innovative beam interactions, even at very low power levels,

and permit the demonstration of unconventional optical functions and devices.

A fascinating example is the self pumped phase conjugate mirror, which re-

stores excellent images when the beam propagates through a phase disturbing

media. A photorefractive phase conjugate mirror has the ability to realize a

dynamic compensation of the thermal lensing effects and aberrations that occur

in laser cavities. The solid state laser source can now operate at high power with

a diffraction limited beam quality and optimum brightness. These few examples

clearly outline the importance of the nonlinear photorefractive mechanisms to

introduce new optical performances beyond traditional limits. As it often

occurs in nonlinear optics, the choice of the material is a critical issue due to

the diversity of parameters and material properties that are involved in the

interactions of the crystal with the incident optical field. It is the objective of

these new volumes to status on the most recent progress of the field, covering

both the fundamental and applied aspects relevant to solid state physics and

beam interactions or propagation in these complex media.

When we published the first edition on photorefractive materials and appli-

cations in 1987, it was the result of very intense research activity in the field, as

well as in other closely related subjects on optical phase conjugation and

information processing. These volumes remain a very good source of compre-

hensive coverage of the domain. Starting from the discovery of the effects in

lithium niobate at Bell Labs in the mid 60s, the book chapters already devel-

oped a first extensive analysis of the nonlinear mechanisms and applications in

materials like LiNbO3, BaTiO3, KNbO3, Bi12 SiO20, or GaAs. The basic of the

early works on the charge transport models and beam coupling phenomena in

these materials were investigated with details. Several chapters also highlighted

early demonstrations of high reflectivity phase conjugate mirrors using

photorefractive crystals as well as image amplification through dynamic hol-

ography. The capability of achieving high gain at low power levels in most
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materials was already well developed by analyzing and demonstrating several

types of selfinduced optical cavities. It was often outlined in these articles that a

critical issue is to identify and select the material having the required charac-

teristics. So it is now important to review the research works that have signifi-

cantly contributed to new advances during the last decade. An important

objective is thus to show that the discovery of new effects or continuing an

extended analysis of the physical phenomena lead to a better control of mater-

ial properties for further development of attractive applications.

This first volume reviews the basic effects of photorefractive nonlinear

optics. Chapters 2 and 3 develop the fundamental aspects of photoinduced

dynamic gratings and clearly present the major physical mechanisms as well as

the space charge field solutions relevant to different types of recording condi-

tions and beam configurations. The authors also review the effects of beam

coupling due to dynamic interaction of the two interfering beams with the

photoinduced phase shifted grating. Chapter 4 analyzes the anisotropic re-

sponses of the photorefractive media. It thus includes the contribution of the

light polarization, dielectric, electro-optic, and piezo-electric tensor coefficients

that play a role in the amplitude of the photoinduced index modulation.

Chapter 4 also takes account of the anisotropy of the photocarrier mobility.

This work leads to an optimization of the gain coefficient and diffraction

efficiency in media that exhibits a complex anisotropic response. Chapter 5

provides a description of the basic properties of low frequency space charge

waves. They are characterized by intrinsic parameters such as the wave vector,

the eigen frequency, and the damping coefficient. The conditions on material

properties to ensure propagation of the space charge waves are presented. Due

to their resonant character, space charge waves contribute to enhance the index

modulation in moving grating recording with a large applied field and to the

generation of spatial subharmonics in nearly degenerate two-wave mixing. In

the Chapter 6, the authors outline the interest of implementing an electronic

feedback loop to stabilize the experimental setups against phase fluctuations

and shape the characteristics of grating recording and beam coupling. These

effects are modeled by the introduction of the feedback term in the dynamic

coupled wave amplitude equations. The nonlinear feedback control opens

attractive capabilities for beam intensity and phase stabilizations over very

long time periods.

Chapter 7 deals with band-to-band photorefraction. The mechanism pro-

vides an efficient way to highly improve the response speed as well as the

robustness for long time storage and readout. These properties, which are

specific to interband photorefraction, open very attractive perspectives for the

processing and manipulation of visible laser beams when illuminating the

crystal with UV light. The experimental results are clearly supported by a

complete modeling of the UV recording process where the incident wavelength

is strongly absorbed and induces a large photoconductivity effect. In Chapter 8,

the authors develop the mechanisms of two-step recording in photorefractive

crystals like LiNbO3 or LiTaO3. The technique has been early used for storage
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applications but the recent research results reported in Chapter 8 provide a

complete understanding and control of the mechanisms. Two-step recording

provides the capability of sensitizing the crystal with near IR wavelengths, thus

ensuring nearly nondestructive read-out of the stored information. The doping

of the material with ions that exhibit real intermediate energy levels with long

lifetime permit a reduction of the peak intensity required for recording. Several

experimental results clearly illustrate this capability. A further approach is based

on the pyroelectric effect combinedwith an excitation of visible light.Most of the

interactions considered in this volume are relevant to free space propagation in

the bulk of the nonlinear crystal. However, as shown in Chapter 9, both dynamic

wave mixing and permanent gratings are of interest for the development of new

integrated optics components. Different types of optical waveguides are consid-

ered, including the technology for their realization. Demonstrations are shown

with materials like sillenites and ferroelectrics, and applications are considered

on some examples. Like with other nonlinear phenomena, spatio-temporal

instabilities can also be obtained with the photorefractive effects. These mech-

anisms, as well as self-organizations and pattern formations, are developed in

Chapter 10. Pattern formation can be observed due to a transverse coupling

between spatial regions of the nonlinear crystal. The conditions for pattern

control, selection and stabilization are also presented.

Chapter 11 address a new subject, the photorefractive spatial solitons, which

has led to very active original research in the field of nonlinear optics. The

diversity of photorefractive effects allows the investigation of a large variety of

new soliton phenomena and many of them have been firstly observed and

interpreted in photorefractive crystals. It concerns, for example, coherent or

incoherent solitons interactions, effect of solitons spiraling, fission, and anni-

hilation, or multimode solitons propagation. Besides the fundamental aspects

and their experimental demonstrations, the chapter also introduces applica-

tions to new active and passive electro-optic devices. Due to the rich new

phenomena of underlying solitons formation in various nonlinear media, it is

expected that the properties can be carefully controlled for further important

developments of this domains.

The long-term fixing of the recorded holographic information in a photo-

refractive crystal is an important objective, which is developed in Chapters 12

and 13. Since read-out of the volume hologram is done at the same wavelength

as that used for recording, the holographic information is erased due to space

charge field relaxation under uniform illumination. It was early proposed that

two techniques could be used to get quasi nondestructive readout: respectively,

thermal and electrical fixing. These two chapters provide an extended analysis

of the physical mechanisms involved for space charge field compensation, or

domain switching in different types of ferroelectric crystals. Experimental

results support the physical analysis and open attractive capabilities for mem-

ory applications.

In conclusion, this collection of chapters provides a broad survey of the

most advanced research developments relevant to the basics of photorefractive
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nonlinear optics. The chapters deal with a large overview of the physical

phenomena, and many of them contribute to establish the link with other

well-known nonlinear mechanisms used in laser physics. The authors of this

volume are major scientists in the field and their contributions bring a full

complement research efforts in material sciences, dynamic holography, and

applications. The volume should serve the needs of the scientific and engineer-

ing communities interested in multidisciplinary aspects of photorefractive non-

linear optics.

The editors of this volume express their warm regards to all the authors for

their outstanding contributions and very fruitful cooperation for the prepar-

ation of the book volume, which should contribute to stimulate further devel-

opments of the field. We also thank Mrs. Lotti Nötzli for her valuable

secretarial support.
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Light-Induced Dynamic Gratings
and Photorefraction

Hans Joachim Eichler and Andreas Hermerschmidt

TU Berlin, Institute of Optics, Straße des 17. Juni 135, 10623 Berlin, Germany
eichler@physik.tu-berlin.de

2.1 Introduction

The spatial superposition of two or more coherent light waves yields a spatially

modulateddistributionof theenergydensity, andthe interactionwith thematerial

leads to the creation of light-induced dynamic gratings. Many interesting effects

andapplications arebasedon suchgratings. In someapplications, e.g.whenusing

dynamic gratings for holographic storage applications [1, 2] or the nanofabrica-

tion of three-dimensional photonic crystals by holographic lithography [3], the

superposition of the beams defines the spatial structure of the grating. In other

applications like using Stimulated Brillouin Scattering (SBS) for the creation of

phase-conjugating mirrors for high-power laser systems [4, 5], the superposition

of the laser beam with initially randomly scattered beam components eventually

leads to the build-up of a dynamic grating acting as a phase-conjugating mirror.

The photorefractive effect, which is the topic of this volume, is as well based

on dynamic light-induced gratings and has many applications and very

interesting properties. For example, phase-conjugating mirrors based on

Four-Wave Mixing in photorefractive materials do not have a distinct thresh-

old in terms of laser intensity due to the entirely different physical process of the

grating creation [6, 7] in contrast to the previously mentioned case of mirrors

based on SBS. However, it is interesting that beam fanning as a driving effect

for the build-up of such a photorefractive mirror [8] is again based on the

transient evolution of scattered beam components, like in the SBS case.

Following a similar approach to the topic as used in [9] in this chapter, we

will first recapitulate some basic properties of coherent light fields, which are

usually derived from lasers [10], and discuss two-beam interference leading to

interference gratings. In Section 2.3, we will discuss how the material response

leads to changes in the absorption and the refraction of the material, which are

described as amplitude and phase gratings. The diffraction of light at the

gratings and wave mixing effects are described in Section 2.4.

7
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2.2 Two-Beam Interference and Interference Gratings

Many properties of laser beams related to dynamic grating physics and applica-

tions can be described by a plane-wave approximation of the light field. The

propagation of light in different types of media, the interference of light fields,

and the diffraction of light at periodic structures are also often described using

plane waves as a representation of the light field [11–13]. We will mainly follow

the same approach, but we will also discuss some deviations of real laser beams

from ideal plane waves, e.g., with respect to their limited size, duration, and

coherence.

2.2.1 Plane Waves and Gaussian Laser Beams

In many experimental configurations, a Gaussian beam corresponding to the

fundamental TEM00 mode of a laser resonator is used, which comes close to

the ideal plane wave,

E(r, t) ¼ A exp [i(k � r� vtþ f)]: (2:1)

Here E is the complex electric field vector dependent on the spatial coordin-

ate r and time t, A the real-valued wave amplitude, k its wave vector, v ¼ 2pf
its angular frequency, and f a constant phase offset. The electric field Er is

given by

Er(r, t) ¼ 1

2
(E(r, t)þ E�(r, t)) ¼ A cos (k � r� vtþ f), (2:2)

and can only take real values in order to retain its physical meaning [14]. For

many computations, however, it is convenient to use the complex-valued field E

(i.e., without adding the c.c.), but by doing so, the formulas for the relevant

quantities can be slightly different from the familiar form.

The time-averaged Poynting vector S of a plane wave using complex-valued

fields is given by [12]

S ¼ 1

2
Re(E �H�): (2:3)

For the intensity I of this plane wave at point r, time t, given by the time

average of the absolute value of the Poynting vector, we obtain

I(r, t) ¼ jSj ¼ «0cn

2
jE(r, t)j2 ¼ 1

2Z
jE(r, t)j2, (2:4)

where c is the velocity of light, «0 the vacuum permittivity, n the refractive

index, and Z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrm0=«r«0

p
the corresponding wave resistance of the material.

For most materials relevant in optics, the relative magnetic permeability mr is
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given by mr � 1, and the material properties are determined by the electric

permittivity « ¼ «0«r. To account for absorption and dispersion effects in

isotropic materials with one quantity, the complex permittivity

«r ¼ «0 þ i«00: (2:5)

is introduced. Assuming weak absorption («00 � «0), the complex-valued re-

fractive index n̂n is given by

n̂n ¼ ffiffiffi
«

p
r �

ffiffiffiffi
«0

p
þ i

«00

2
ffiffiffiffi
«0

p : (2:6)

The absorption coefficient a is introduced as

a ¼ 2v

c
Im(n̂n) � v«00

nc
; (2:7)

where n ¼ Re(n̂n) is the familiar real refractive index used in Eq. 2.4.

Theelectromagneticenergydensityassociatedwiththeelectric fieldE isgivenby

w(r, t) ¼ 1

2
«0«

0E(r, t) � E�(r, t): (2:8)

Often, the interaction of the field with the material (i.e., the creation of a

material excitation grating, see Section 2.3) is related to the rate of the dissi-

pated energy density of the field that is given by [15]

Wf (r, t) ¼ «0«
00v
2

E(r, t) � E�(r, t): (2:9)

For a plane wave and in isotropic materials, the rate of the dissipated energy

density Wf and also the energy density w are directly proportional to the

intensity as defined in Eq. 2.4

Wf (r, t) ¼ «0cna

2
jE(r, t)j2 ¼ aI(r, t): (2:10)

Please note that while the left part of this equation is a general expression for

weakly absorbing isotropic media, the right part obtained using Eq. 2.4 is valid

for plane waves, but does not hold always in the general case.

In anisotropic materials, the permittivity of the material is described by

introduction of the permittivity tensor «r. The resulting anisotropy of the

refractive index is referred to as birefringence and in the case of uniaxial optical

materials the propagation canbe describedusing polarization-dependent refract-

ive indices ne and no for a given direction of the wave vector of the light. In some

materials the anisotropy of the energy dissipation (referred to as dichroism) is

also relevant.
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The most relevant quantities describing the field in vacuum and within

weakly absorbing materials are summarized in the Table 2.1. The expressions

for the intensity are obtained for a single plane wave, while the other expres-

sions are valid for general fields as well. In anisotropic materials, «r, «
0 and «00

are tensor quantities. For the description of some effects, more sophisticated

quantities may be needed to cover material properties like e.g., the polarization

dependent quantum efficiency of the excitation processes involved [16].

In contrast to a plane wave, the amplitude of a field describing a laser beam is

not constant within the plane of a wave front. A TEM00 mode has a Gaussian

rotationally symmetric amplitude distribution

A(r) ¼ A0 exp [� r2=r20]; (2:11)

where r is the cylindrical coordinate perpendicular to the direction of propa-

gation z and r0 is called the spot radius. The intensity distribution of a

Gaussian beam is given by

I(r) ¼ I0 exp [� 2r2=r20]: (2:12)

At r ¼ r0, the electric field drops to 1=e ffi 37% of its maximum value A0

while the intensity is reduced to 1=e2 ffi 14% of I0. The total power or light flux

Pt of a TEM00 beam is

Pt ¼ 2p

Z 1

0

I(r)rdr ¼ p

2
r20I0: (2:13)

About 86.5% of this flux is contained within a radius equal to the spot radius

r0. The laser beam diameter changes during propagation. Thus, except when

going through a focus, the wavefronts are not perfectly plane and the spot

radius is not constant but a function of z. Since the divergence is inversely

proportional to the beam diameter, a sufficiently large spot radius r0 � l is a

necessary requirement for plane-wave-like behavior.

Short laser pulses are frequently used for grating excitation and detection. If

their duration tp is sufficiently small, the total pulse energy per unit areaF, i.e., the

exposure or fluence

F ¼
Z 1

�1
I(t)dt (2:14)

Table 2.1 Physical quantities used for the description of optical fields

Vacuum Isotropic material Anisotropic material

intensity I (plane wave) 1
2
«0cjEj2 1

2
«0cnjEj2 1

m0v
E � (k� E)

energy density w 1
2
«0jEj2 1

2
«0«

0jEj2 1
2
«0(E � «0E�)

energy dissipation rate Wf 0 1
2
«0«

00vjEj2 1
2
«0v(E � «00E�)
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and the total laser pulse energy

W ¼ 2p

Z 1

0

F (r)rdr ¼
Z 1

�1
Pt(t)dt (2:15)

are more relevant parameters than the instantaneous quantities intensity and flux.

2.2.2 Superposition of Two Plane Waves

Two-beam interference produces a spatially modulated light field, which is

called an interference grating. In many cases, the quantity used for the descrip-

tion of effects related to interference and the interaction with the material is the

intensity I. However, in other cases, for a feasible description of the interaction

of the interference pattern with the material, the energy density w, or the energy

dissipation of the field Wf as introduced in Eq. (2.9) should be used instead

[17]. Still in many relevant cases the approximation of the tensor «00 by a scalar

and the assumption of weak absorption are justified, and the three mentioned

quantities are proportional to jEj2 (see Table 2.1).
The principal experimental arrangement for the production of laser-induced

gratings is shown in Fig. 2.1. Light from a more-or-less powerful pump laser is

split into two beams, A and B, with wave vectors kA, kB and electric field

amplitudes AA, AB. The field amplitudes can be written using the polarization

vectors pA, pB as AA ¼ AApA and AB ¼ ABpB. The two beams intersect at an

angle 2u at the sample and create an interference pattern with an electric field

given by

E(r, t) ¼ exp (� ivt)(AA exp [i(kA � rþ fA)]þ AB exp [i(kB � rþ fB)]): (2:16)

Thus,

jE(r, t)j2 ¼ A2
A þ A2

B þ 2AA � AB cos (K � rþ Df) (2:17)

where the grating vector K and the phase difference Df have been introduced,

which are given by

Figure 2.1. Interference grating pro-

duced by interference of two incident

light waves with intensities IA, IB and

wave vectors kA, kB. For simplicity, we

have chosen K k x̂x.
IB

IA

2q

λ K||x

kA

kB

L
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K ¼ �(kA � kB)

Df ¼ �(fA � fB)
(2:18)

The energy density of the field in the material is therefore given by

w ¼ (wA þ wB) 1þ Dw

wA þ wB

cos (K � rþ Df)

��
(2:19)

where

Dw ¼ «0«
0(AA � AB) (2:20)

is the spatial modulation amplitude of the field energy density and wA

and wB denote the energy densities associated with the incident beams

A and B, respectively. To simplify the analysis, we will in the following

choose the coordinate system with respect to the grating so that K k x̂x and

fA ¼ fB.

The spatial period of the intensity grating is referred to as L and given by

L ¼ 2p=K (2:21)

where K ¼ jK j: L can be expressed in terms of the pump wavelength l and the

angle u.

L ¼ l

2 sin u
: (2:22)

For small angles u � 1, the grating period is approximately

L � l=2u: (2:23)

Note that, up to now, the wave vectors kA, kB, the wavelength l and intersec-

tion angle 2u are measured in the material with refractive index n. For nearly

normal incidence, Eq. 2.23 is also approximately valid if the wavelength l0 ¼ nl
and the intersection angle u0 � nu are measured outside the sample, so that

L ¼ l0=2u0 is obtained as long as u0 � 1 is satisfied. This means that by varying

the intersectionangleu0, thegratingperiodLcanbechanged.Themaximumvalue

ofL is limited by the diameter of the laser beam inducing the grating. Experimen-

tally, values up to approximately 100mm have been used. The smallest grating-

period values are achieved when the two excitation beams are antiparallel with

2u ¼ 1808, giving a minimum value of L ¼ l=2 ¼ l0=(2n). Using a visible laser

and highly refractive material, the grating periodmay be smaller than 100 nm.

2.2.3 Superposition of Beams with Different Polarizations

In many textbooks, interference of two plane light waves with parallel polar-

ization is considered [13]. However, excitation of dynamic gratings is also
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possible by interfering beams with different, e.g, perpendicular polarization.

Therefore, the general case of superposition of beams with different polariza-

tion is treated here. This leads to an interference grating with an amplitude

described by a tensor.

In most cases, the modulation amplitude of the energy density Dw or the

energy dissipation rate DWf are the significant parameters for optical grating

creation if both sample and interaction mechanism are isotropic. In anisotropic

media, however, or with anisotropic interaction, gratings may also be induced if

pA ? pB or DWf ¼ 0. To account for such a situation, we introduce the

interference tensor Dm, that is defined as

Dmi j ¼ 2AAAB

A2
A þ A2

B

pA, i pB, j, (2:24)

where pA, i and pB, j with i, j ¼ x, y, z are the components of the polarization

vectors of the incident fields. We can obtain Dw and DWf by evaluating the

absolute value of the trace of Dm, e.g.,

Dw ¼ w0jtr{Dm}j, (2:25)

where w0 ¼ wA þ wB is the spatially unmodulated contribution to the field

density, so that the spatially dependent field density is then given by

w ¼ w0(1þ jtr{Dm}j cos (Kx) ): (2:26)

We discuss four important special cases here, which are illustrated in Fig. 2.2:

(a) s polarization: pA k pB k ŷy. This is probably the most frequently used experi-

mental situation and also the simplest one. Dm degenerates into the one-

element tensor

Dm ¼ 2AAAB

A2
A þ A2

B

0 0 0

0 1 0

0 0 0

0

@

1

A, (2:27)

so that in this case, Dw ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
wAwB

p
. If, in addition, AA ¼ AB then

Dw ¼ w0 ¼ 2wA and

w ¼ w0(1þ cosKx): (2:28)

Thus, the energy density is fully modulated, varying between zero and four

times the value for a single beam.
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(b) p polarization: pA ? ŷy and pB ? ŷy. In this case, AA and AB are in the

xz-plane and the interference tensor is given by

Dm ¼ 2AAAB

A2
A þ A2

B

pAxpBx 0 pAxpBz
0 0 0

pAzpBx 0 pAzpBz

0

@

1

A, (2:29)

which can be written as

Dm ¼ 2AAAB

A2
A þ A2

B

cos2 u 0 1
2
sin (2u)

0 0 0

� 1
2
sin (2u) 0 � sin2 u

0

@

1

A, (2:30)

where 2u is the angle between the writing beams (see Fig. 2.1), and corresponds

to an energy density modulation

Dw ¼ w0jtr{Dm}j ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
wAwB

p
( cos2 u� sin2 u): (2:31)

(a)

(c) (d)

(b)

EB

EA

EA

EA

EB
EB

EA

EB

2q

X

Z

V

Figure 2.2. The four arrangement of pump beam polarizations as discussed in the text.

As usual, � and � indicate positive and negative directions normal to the paper surface,

respectively. The grayscale images illustrate the spatial dependence of the energy density,

and the symbols inside indicate the corresponding polarization directions. In (c), the

composite symbols indicate vectors that are given by the sum of the two vectors

indicated by the individual symbols.
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The physical interpretation of Dm is as follows: Depending on the relative

phase Kx of the two pump beams along x, the superposition of AA and AB

results in a polarization varying between linear (for Kx ¼ 0 and Kx ¼ p) and
elliptic. At 2u ¼ 908, the intensity modulation disappears completely since

pA ? pB in this case. The interference field polarization is particularly interest-

ing if, in addition, AA ¼ AB. It points into the x-direction for Kx ¼ 0, becomes

circular at Kx ¼ p=2, and finally, at Kx ¼ p, it is linear in the z-direction, i.e., a

longitudinal field with respect to the interference pattern (see Fig. 2.2(b)).

Interestingly, the polarization interference pattern can be made visible by

placing a dichroic medium such as a polaroid foil into the zone of interaction.

Thus, for the investigation of optically anisotropic media, perpendicular

polarization can be of interest.

(c) Mixed linear polarization: pA k ŷy, pB ? ŷy. In this case, the electric fields of

the excitation beams are perpendicular (AA ? AB) for any value of u. The
interference tensor is

Dm ¼ 2AAAB

A2
A þ A2

B

0 0 0

pApBx 0 pApBz
0 0 0

0

@

1

A: (2:32)

No energy density modulation exists. The field amplitude undergoes periodic

changes between linear and elliptic polarizations dependent on the relative

phase Kx similar to the case of two p-polarized beams with 2u ¼ 908 discussed

before.

(d) Opposite circular polarization with equal amplitudes: In this case, we have

AA ¼ AB and the polarization vectors of the two beams are given by

pA,B ¼ 1
ffiffiffi
2

p (� cos ux̂xþ iŷyþ sin uẑz): (2:33)

The interference tensor is

Dm ¼
� cos2 u i cos u 1

2
sin (2u)

�i cos u �1 i sin u
� 1

2
sin (2u) i sin u sin2 u

0

@

1

A; (2:34)

The modulation of the energy density is then

Dw ¼ 2w0 sin
2 u (2:35)

which becomes vanishingly small for u ! 0, while the polarization tends to

become linearly polarized and rotating with the grating period L across the

grating structure, as indicated in Fig. 2.2(d). This choice of polarization is

favorable for studying optically active interactions or media because circular

polarization is preserved when a laser beam propagates there.
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2.2.4 Superposition of Short Pulses

Present-day mode-locked lasers provide pulses of very short duration, ranging

down to the fs regime [18], equivalent to a physical lengths smaller than 0.1 mm.

In order to make the beams overlap, sophisticated experimental arrangements

have been devoleped [19, 20] The interference of two beams derived from such a

source depends on the delay between the pulse fractions traveling along paths A

and B. The time dependence of such pulses is close to Gaussian with half width tp

IA,B(t) ¼ ÎIA,B exp � t� t=2

tp

� �2( )

, (2:36)

where t is the delay of pulse B with regard to A, and ÎIA,B ¼ 1
2
nc«0ÂA

2

A,B are

the peak intensities of the two pulses. The magnitude of the interference

tensor in this case also depends on the overlap of the two pulses given by the

ratio t=tp, i.e.,

Dmi j ¼ 2AAAB

A2
A þ A2

B

pA, ipB, j exp � t

2tp

� �2( )

exp � t

tp

� �2( )

: (2:37)

Thus, the temporal behavior of Dm(t) is the same as that of the original

pulse(s), but its amplitude decreases in proportion to exp {� [t=2tp]
2}.

2.2.5 Influence of Coherence Properties

Interference of light beams will only be observed as long as the light beams are

mutually coherent. Coherence corresponds to the correlation properties

between quantities describing the optical field. The temporal coherence func-

tion G(t) of a light wave (or light pulse) is defined as the autocorrelation

function of the complex field amplitude E

G(t) ¼
Z 1

�1
E�(t)E(tþ t)dt: (2:38)

The normalized coherence function given by

g(t) ¼ G(t)

G(0)
(2:39)

is used to determine the coherence jg(t)j of a laser beam. For an ideal plane

wave of monochromatic light, a value of 1 is obtained for all values of t. For
real light sources, the coherence will decrease with increasing jtj, and the optical

coherence length is defined by the width of the coherence function jg(t)j. The
power spectrum of the light G (f) and the absolute value of the coherence
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function are related by a Fourier transform relationship, the Wiener–Khintch-

ine theorem [13]

G( f ) ¼
Z 1

�1
g(t) exp (i2pf t)dt: (2:40)

For a single longitudinal mode laser with Gaussian line shape, the coherence

function is given by a Gaussian distribution with its width being inversely

proportional to the laser linewidth. For laser light sources with discrete emis-

sion frequencies like, e.g., diode lasers in longitudinal multimode operation, the

coherence function is more complicated. It is given by a Gaussian envelope with

a width determined by the linewidth of a single longitudinal mode, containing

oscillations with a spacing inversely dependent on the frequency spacing

between the longitudinal laser modes.

It is possible to determine the absolute value jg(t)j by measurement of the

interference fringe modulation, e.g., using photorefractive index gratings in-

duced by pump and signal beam from the same source and variable optical path

delay t [21]. For the excitation of laser-induced gratings, the optical path length

difference of the involved beams must be adapted to the coherence function of

the used laser source.
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Figure 2.3. Relationship between power spectrum (left curve) and coherence function

(right curves) of a diode laser. The upper right curve shows the envelope of the coherence

function, its width given by the line width of a single longitudinal laser mode

df ¼ 140MHz.The lower right curve shows the modulation contained in the envelope.

Spatial periodicity of 2.18 mm corresponds to longitudinal mode spacing of

Dl ¼ 0:77 nm, equivalent to Df ¼ 136GHz. [21]
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Note also that the spatial coherence of a laser beam can be determined by

diffraction at laser-induced gratings [22]. The spatial coherence function of a

Gaussian laser beam with waist r0 is given by

G(s)

G(0)
¼ exp

�s2

2r20
exp

�f2
0(s)

2
; (2:41)

where f2
0(s) is the mean square change of the phase difference Df between two

points P1 and P2 in a plane normal to the direction of propagation. For a linear

dependence f2
0(s), the spatial coherence is also given by a Gaussian function

that was indeed observed in the diffraction experiment.

2.2.6 Finite Size Effects

The finite cross-section of the pump-laser beams limits the lateral extent of the

interference zone. Hence, the electric-field amplitudes and intensities in Eqs.

2.17–2.20 are slowly varying functions of all spatial coordinates x, y, and z in

addition to the modulation with respect to the x-direction. Calculation of the

spatial variation is straightforward assuming TEM00 beams, but involves a

lengthy notation. The interference between two TEM00 beams will obviously

come close to an ideal plane grating if the following three conditions can be met:

1. The minimum width w of the interaction zone must be large compared to the

grating period, i.e.,

Kw � 1: (2:42)

2. The overlap length z0 of the two beams in z-direction must be large com-

pared to the sample thickness d,

z0=d � 1: (2:43)

3. The attenuation of the exciting beamsmust be negligible within the sample, i.e.,

ad � 1, (2:44)

where a is the absorption constant of the material at wavelength l.
The first condition puts a limit on focusing of the pump beams to increase

intensity; the second puts a limit on the angle 2u between the beams; and the

third puts a limit on pump beam utilization by absorption.

The description of a laser-induced grating is particularly straightforward

if the above three conditions are satisfied experimentally. In the following

discussion, we shall assume this to be the case unless mentioned otherwise.
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Note that the results stay qualitatively correct even if one or several of the

conditions are satisfied marginally only.

Extremely large values of L would require inconveniently small angular

beam separations 2u. Under such circumstances, it is possible to use one

pump beam only, and to produce the grating by insertion of a comb-like

aperture. Values of L up to 4 mm were obtained in this way [23]. There is no

obvious upper limit to the period of gratings produced in this manner—except

that the laser beam’s cross-section has to be increased proportionally, thus

lowering the intensity available for the pumping process.

2.2.7 Frequency Offset Effects

The grating is stationary in position when the two beams have the same

frequency. When the two excitation beams have slightly different frequencies

vA 6¼ vB and wave vectors kA and kB, they can be described by the fields

Ei ¼ Ai exp [i(ki � r� vit], i ¼ A,B, (2:45)

where AA and AB are the amplitude vectors of the beams, which for simplicity

assumed to be parallel. In a region where the beams intersect, an energy density

w ¼ 1

2
«0«

0(A2
A þ A2

B þ AAAB exp {i[(kA � kB) � r� (vA � vB)t]}) (2:46)

will be created. When deriving this equation, averaging has been performed

over times that are long compared to the optical periods of the light fields

2p=vA and 2p=vB, but short compared to the period 2p=(vA � vB) corre-

sponding to the difference frequency.

The field energy density w exhibits a wavelike modulation with a grating

vector K and a frequency V given by

K ¼ kA � kB (2:47)

V ¼ vA � vBj j: (2:48)

The direction wave vector K is given without the ambiguity that exists in the

case of stationary interference patterns. If the material response is fast enough,

the frequency offset V between the two writing beams will cause traveling

grating structures in the material.

2.3 Material Response: Amplitude and Phase Gratings

The mechanisms of light-induced changes of optical materials properties are

often described as having two steps. First, the light produces some material

excitation, which then leads to a change of the optical properties. In the

simplest case, the absorption and the refraction of the material are changed,

resulting in amplitude and phase gratings.
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Light-induced refractive index changes can in general be referred to as

photorefraction. However, the term ‘‘photorefractive effect’’ is often used in a

more restricted way, describing refractive index changes due to electrooptic

effects generated by electric space charge distributions, which are caused by

inhomogenous light irradiation, as will be discussed in Section 2.3.6.

2.3.1 Material Excitation Gratings

When a material is placed into the interference region of the pump waves, some

light–matter interaction such as absorption creates a corresponding spatial

modulation (grating) of some material property [9], e.g., the population of an

excited electronic state, the conduction electron density (in a semiconductor

[24]), the space charges and their accompanying fields (in photorefractive ma-

terials [25]), or the temperature [26] , the molecular orientation (of liquid crystals

[27]), or the concentration (in polymer mixtures) [28].

Many of these changes can be described by the population of one, several, or

a whole continuum of excited (e.g., electronic or phonon) states of the sample

material. Hence, the corresponding gratings can also be considered population

gratings in a generalized sense.

The description in terms of excited-state populations is necessary if the local

population density is out of thermal equilibrium. This is usually the case if

the excited-state energy is far above the thermal energy kBT , which at

room temperature is about 25 meV. Strong deviations from thermal distribu-

tion can also occur during radiationless decay from the primarily excited

electronic state. In solids, the energy freed during such a process may create

hot phonons which, in turn, decay into cooler ones until thermal energies are

reached. This process is very fast because hot-phonon lifetimes are on the

subpicosecond scale. Since today’s mode-locked lasers provide pulses down to

femtosecond duration such transient effects can play a role in experiments with

extremely high-time resolution. In other materials, it is also possible that long-

lived intermediate states of different nature get populated during the decay,

particularly at low temperatures. This can considerably slow down the ther-

malization process, giving rise to secondary grating structures with their own

characteristic properties and decay times.

Once the absorbed energy is thermalized locally, the description of the

resulting grating in terms of the usual thermodynamic variables, temperature

concentration, etc., is appropriate and convenient (compare Fig. 2.4). The

sample as a whole is not in equilibrium as long as these quantities still vary

spatially. Their equilibration requires transport of heat, matter, etc., which

usually occurs by diffusion. Thus, their decay time depends on the magnitude

of the excitation gradients, and hence, the K vector of the grating.

Note that a diffusion process, in general, does not change the center position

of the excited region but tends to smear out its spatial profile. Hence, a grating

stays stationary during diffusive decay, i.e., its phase stays constant while its

amplitude decreases monotonically.
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The dependence of the material excitation on the light intensity or energy

density depends on its dynamics and cannot generally be expressed by a simple

function. The time dependence of the material excitation is often described by a

differential equation with the pump light intensity as a source term.

Under stationary conditions, the material excitation amplitude DX is pro-

portional to the modulated energy density amplitude Dw in the simplest case

DX ¼ gP(l)Dw(l), (2:49)

wheregP is acouplingcoefficient,whichdependson the typeofmaterial excitation

and the pump wavelength l. The right-hand side may be considered as the first

term of a power series describing the general relations between DX and Dw.
Depending on the nature of excitation, DX can be a scalar (temperature, etc.),

vector (electric field, flow velocity), or tensor (stress, strain, orientational distri-

bution of excited molecules). Thus, it is convenient for further discussions to

rewrite Eq. 2.49 in tensorial form and use the interference modulation tensor Dm

DXi j ¼
X

k, l
g
p

ijklDmkl : (2:50)

Here i, j, k, l stand for the spatial coordinates x, y, and z. In general, g
p

ijkl is a

fourth-rank tensor. Note that the tensorial product in Eq. 2.50 allows for a

nonvanishing DXi j even if pA?pB, i.e., vanishing intensity modulation. Such

odd contributions to DXi j are needed to account for polarization dependent

interactions such as the dichroic bleaching of a dye.

2.3.2 Refractive Index and Absorption Gratings

The material excitation, in general, couples to the refractive index and absorp-

tion coefficient, which then also exhibit a grating-like modulation with ampli-

Figure 2.4. Possible sequences of material excita-

tions produced by a short laser pulse. Nprim,Nsec: pri-

mary and secondary population density of excited

electronic levels, Esc: space charge field, DT : tempera-

ture change, DC: concentration change, Dr: density

change, D«: permittivity change, Dn: refractive index
change, and Da: absorption change.

Light (electric field),
coherent excitation

∆Nprim

∆Nsec

Esc ∆T

∆r

∆e,∆n, ∆a

∆C
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tudes Dn(l) and Da(l). Both Dn and Da are, of course, functions of the probe

wavelength l: The refractive-index modulation caused by a temperature grat-

ing, for example, is Dn ¼ (@n=@T) � DT , where DT is the temperature amplitude

and (@n=@T) the thermo-optic coefficient. Generally speaking, any modulation

of a material property with amplitude DX inside a medium will be accompanied

by an optical grating with amplitudes

Da ¼ (@a=@X )DX , (2:51)

Dn ¼ (@n=@X )DX , (2:52)

where the tensor character of DX has been ignored for the moment. Quite

frequently, one of the coupling constants (@n=@X ) and (@a=@X ) is very small;

the grating is then either of the phase or the amplitude type.

Using the complex refractive index n̂n, the more general expression

Dn̂n ¼ (@n̂n=@X )DX (2:53)

is obtained. The complex refractive index n̂n is related to the complex optical

frequency dielectric constant «r and the susceptibility x by

n̂n ¼ ffiffiffi
«

p
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
(2:54)

Dn̂n ¼ D«r
2

ffiffiffi
«

p
r

¼ Dx

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p : (2:55)

Thus, an optical grating corresponds to a spatial modulation of any of the

quantities n̂n, «r; or x. Following Eqs. 2.6 and 2.7, the relation to the refractive

index and absorption properties is given by

D«r ¼ Dx ¼ D(n̂n2) ¼ 2nDnþ c2

2v2
aDaþ i

c

v
(aDnþ nDa): (2:56)

In many cases, the absorption of the material is weak (a � 2v=c) and the

two addends directly proportional to a may be neglected.

2.3.3 Tensor Gratings

It is important that «r and x are tensors, in general, while n̂n is not. Therefore, if

anisotropic interaction is important, susceptibilities should be used for general

description. Specifically, the susceptibility component xi j connects the electric-

field component Ej, with the polarization density component Pi (where again i,

j ¼ x, y, z) by means of

Pi ¼ «0xi jEj (2:57)

DPi ¼ «0Dxi jEj: (2:58)
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The tensorial character of Dxi j includes induced birefringence and dichroism,

i.e., a polarization-dependent refractive index and absorption coefficient. Be-

cause both DX and Dx are generally tensors of rank 2, the coupling constant

between them is of rank 4, namely,

Dxi j ¼
X

k, l
(@xi j=@Xkl)DXkl : (2:59)

xi j , Dxi j, and (@xi j=@Xkl) are generally complex numbers to account for both

index of refraction and absorption. Eq. 2.59 shows that the anisotropy of Dxi j

may be either due to the sample medium itself (crystals, external forces, flow),

or be induced by the grating formation process. Even in an isotropic solid,

anisotropy may be introduced by, e.g., thermal expansion, and namely strain

along the direction of K but stress in the planes perpendicular to K. Eq. 2.59 can

be combined with Eq. 2.50 to connect the optical grating amplitude directly

with the pump field under stationary conditions

Dxi j ¼
X

k, l
fi jklDmkl ; where (2:60)

fi jkl �
X

k0, l0
(@xi j=@Xk0l0) � gp

k0l0kl : (2:61)

2.3.4 Population Density Gratings in Solids and Liquids

If an atomic system is excited from the ground to an upper state, the absorption

coefficient and refractive index change, which can be observed in a grating

experiment. In the following, we shall outline some basic equations connecting

the intensity of the exciting light field to the change of the optical properties

that determine the diffraction properties of the corresponding grating.

Light-induced changes of level population. We will consider simplified atomic

systems where the incident light couples only two electronic-energy levels with

population densitiesNa of the lower level andNb of the upper level, respectively.

The quantity DN ¼ Na �Nb can be determined by solving the rate equation

@Na

@t
¼ Nb

t
� swc

�v0

(Na �Nb); (2:62)

where t denotes the lifetime of the upper level, s the absorption cross section,

and �v0 the energy difference between the involved levels. Note that the

product wc corresponds to the intensity I in many cases.

Most of the relevant materials, however, are better described as 3-level-

systems in which only two levels are strongly populated. Excitation from the

ground state with population density N0 will create a small population in an

intermediate state, that rapidly decays into state with slightly lower energy,

having a population density N1 and a lifetime t. The rate equation is then
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@N0

@t
¼ N1

t
� swc

�v0

N0: (2:63)

In the steady state,

DN ¼ N
w=ws

1þ w=ws

with ws ¼ �v0

st c
: (2:64)

Note that the quantity DN will vary spatially with a spatially dependent

energy density w, leading to the creation of optical gratings.

Change of optical properties of the material. The 2-level system with transition

frequency v0 and a half width 1=tpd of the absorption curve will lead to a

polarization density of the material corresponding to a susceptibility [11]

x ¼ m2

�«0
(Na �Nb)

(v0 � v)þ (i=tpd )
; (2:65)

where tpd is referred to as polarization decay time or phase relaxation time, and

m denotes the dipole matrix element of the transition. Depending on the ratio

q ¼ (1=tpd )=jv� v0j, the grating can be approximated by a pure phase grating

(q � 1) or a pure amplitude grating (q � 1).

Population density gratings have been investigated experimentally in doped

crystals (e.g., Cr ions in ruby, Nd ions in YAG) and also in dye solutions [9].

Spatial holes burnt into the upper-level population of laser materials and

carrier distribution gratings in semiconductors can also be considered popula-

tion density gratings. In semiconductors, however, the effects need to be

described using spatially dependent equations as transport mechanisms for

the carriers need to be taken into account.

2.3.5 Gratings in Semiconductors

In solid state crystals like semiconductors, the electronic-energy levels are

not discrete with respect to their energy like in single atoms. Instead these levels

are contained in several energy bands, and their density within these bands,

referred to as density of states r, is dependent on their associated energy E.

Most relevant to the description of the optical properties of semiconductors are

the valence band and the conduction band, which are separated by a band gap

energy Eg ¼ Ec � Ev, where Ec is the lowest and Ev the highest possible energy

in the respective bands. Close to this band gap, the density of states for

electrons in the conduction band can be approximated by

rc(E) ¼
(2mc)

3=2

2p2� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � EC

p
, (2:66)
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where mc denotes the effective mass of an electron in the conduction band when

moving within the lattice. Please note that here and throughout this section,

similar expressions are obtained for the quantities related to the valence band,

but will be omitted as the relationships for the conduction band are sufficient to

understand the concepts of the model. If needed, quantities related to the

valence band will be denoted using the subscript v rather than c for the

conduction band without further notice.

In thermal equilibrium, the probability that an electronic state is actually

taken by an electron is given by the Fermi function fc of the conduction band

fc(E) ¼ 1

exp [(E � Fc)=kBT ]þ 1
, (2:67)

where kB denotes the Boltzmann number and Fc denotes the Fermi energy of

the conduction band. This Fermi energy determines the electron density in the

conduction band Nc by the integral

Nc ¼
ð1

Ec

rc(E ) fc (E )dE, (2:68)

and vice versa.

Each electronic state given by a certain wave function is also associated with

a certain momentum �k. While in general the relation between the associated

energy and wave number k of a state can be quite complicated; we will limit

our discussion to electronic states close to the band gap where the relationship

�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc(E � Ec)

p
(2:69)

holds. The density of states is approximately given by r(k) ¼ k2=p2 in both the

valence and conduction bands. The conservation of momentum �k needs to be

considered in processes like optical transitions.

Optical transitions in semiconductors. Absorption of light leads to transitions

of the electrons so that excited states are populated. The polarizability of the

excited electrons is different from the ground-state polarizability, similar to the

situation described in Section 2.3.4. In semiconductors, the transitions may

take place from the valence to the conduction band (interband transitions) or

within a band (intraband transitions).

The density of systems Nb in the excited state can be obtained from solving a

suitable rate equation describing the generation and recombination processes

@Nb

@t
¼ swc

�v
(Na �Nb)�Nb

t
: (2:70)

Here t is the recombination time, s the absorption cross-section of the transi-

tion, and Na the density of systems in the ground state. Note that there may be

several decay mechanisms involved that can make it necessary to replace the
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recombination rate Nb=t by a more complicated relationship, like a Taylor

expansionANb þ BN2
b þ CN3

b þ . . . ,where the coefficientsA,B,C are attributed

to different decay mechanisms, e.g., intraband relaxations. For small light inten-

sities, the density of excited electrons is obtained as

Nb

Na þNb

¼ stwc

�v
: (2:71)

In semiconductors, there are also grating decay mechanisms, that may not be

described solely by time-dependent equations. Diffusion of the carriers in-

volved will cause a spatially dependent current density Jdiff , that may signifi-

cantly contribute to the carrier grating that is eventually obtained and,

especially in experiments with pulsed laser sources, its lifetime.

Carrier diffusion. Because of the spatial gradient of the electron density,

diffusion processes will occur and create a current density of the electrons

Jdiff ¼ qDrNc, (2:72)

where D is the diffusion constant of the material, which in general is a tensor

quantity, and q ¼ �e the charge of the carrier. The holes will create a corre-

sponding diffusion current. The spatially dependent rate equation is then

@Nb(x, t)

@t
¼ scw (x, t)

�v
(Na �Nb)� Nb(x, t)

t
þ 1

q
r � Jdiff (x, t): (2:73)

Note that in this case, it becomes possible that the maximum of the light field

modulation will be spatially separated from the maximum number of excited

carriers. We will discuss such effects in Section 2.3.6.

The modulated carrier densities lead to corresponding changes of the optical

properties, thereby forming a grating. We will limit our discussion of the

grating creation to two effects: the bleaching of the interband absorption and

the absorption caused by free carriers in the bands.

Bleaching of the interband absorption. In direct semiconductors, interband

transitions lead to a depletion of the absorbing electrons in the valence band. In

addition, the density of the unpopulated energy states in the conduction band is

reduced. The wave number of the electronic states is determined by the con-

servation of momentum and by the band structure as

�k(v0) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mr(�v0 � Eg)

p
, (2:74)

where v0 is the frequency of the light wave, and mr ¼ (1=mc þ 1=mv)
�1 is the

reduced effective mass of the electron-hole pair (see Fig. 2.5). Electrons within

an interval of width Dk around this wave number may be involved in the

transition, because the energy of the involved states is also known within a

certain interval only (due to the uncertainty principle). This energy interval is

determined by intraband relaxation processes as DE ¼ �=trelax.
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The density of the states for each of the levels involved may be expressed as

N ¼ r(k) f (k)Dk (2:75)

so that the difference (Na �Nb) of the populations of the two states with their

respective energies Ea, Eb can be expressed as

Na �Nb ¼ (2mr)
3=2

p� 2trelax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v� Eg

p
( fc(Eb)� fv(Ea)) (2:76)

and the change of the absorption constant Da(v) ¼ s(Na �Nb) can be calcu-

lated.

The change of the absorption coefficient is accompanied by a change of the

refractive index Dn. It is possible to estimate Dn using the Kramers–Kronig

relation [29].

Dn ¼ c

p

Z 1

0

Da(v0)
v02 � v2

dv0: (2:77)

The change of the absorption coefficient and the refractive index can be

combined to express a change of the complex susceptibility. From Eq. 2.56 with

a � 2v=c, we obtain

D«r(v) ¼ 2nDnþ i
nc

v
Da: (2:78)

(a)

(a)

(b)

(b)

phonon

EgE= w 0

k (w 0)

Figure 2.5. Optical transitions in direct (left image) and indirect (right image) semi-

conductors. The curves shown indicate the electron energy of the valence band (lower

curve) and conduction band, respectively, as a function of the wavenumber k. Interband

transitions (denoted with letter (a)) can take place if Dk ¼ 0 in the direct semiconductor,

or involving a phonon in the indirect semiconductor material. Intraband absorption of

free carriers is denoted with letter (b).
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Free-carrier absorption. In indirect band-gap semiconductors like silicon, the

absorption of radiation at a frequency corresponding to the band-gap energy

does not lead to absorption bleaching. On the contrary, the absorption in-

creases due to transitions within the conduction and valence bands. The fre-

quency dependence of the corresponding change of the permittivity «r may be

approximately described by the classical Drude model that treats the electrons

and holes as quasifree carriers oscillating in the light field [30]

D«r(v) ¼ Ne2

«omrv(vþ i=trelax)
2
: (2:79)

HereN is the population density of the optically excited electron–hole pairs and

trelax is the relaxation time.

2.3.6 Photorefractive Gratings in Electro-Optic Crystals

The photorefractive effect is caused by free carriers, which are released due to

ionization of donors or acceptors in electro-optic materials. The light driving

the effect has an optical frequency v smaller than Eg=� , because the energy of

these so-called photorefractive centers is situated within the band-gap. Important

examples forphotorefractiveelectro-optic crystalsareLiNbO3, BaTiO3,KNSBN,

or Sn2P2S6.Wewill limit our discussion to a single centermodel, with a single trap

level, actingasadonor,andelectronsascarriers.Fordeeperunderstandingofmany

photorefractive materials, more sophisticated models are needed [31].

Like in semiconductors, a spatially dependent carrier distribution is created

by the light field. The corresponding space charge r creates an electric field Esc.

Apart from its influence to carrier transport processes, this field is responsible

for the change of the «r tensor by means of the electro-optic effect.

2.3.6.1 Generation and Recombination Processes

The generation and recombination processes are described by the densities ND

and Nþ
D of the donor atoms and the ionized donor atoms, respectively, and

by the density of the electrons in the conduction band Nc by the rate equation

@Nþ
D

@t
¼ scw(x, t)

�v
þ b

� �
(ND �Nþ

D )� gRNcN
þ
D , (2:80)

where b is a rate constant describing the thermal excitation, and gR denotes the

recombination constant. Note that the ionized donors cannot change positions,

while the electrons will create a current density J, so that the rate equation for

the electron density is

@Nc

@t
¼ @Nþ

D

@t
þ 1

e
r � J : (2:81)
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2.3.6.2 Transport Phenomena

The current density J consists of three important contributions. The creation of

a diffusion current density Jdiff has already been discussed in Section 2.3.5.

Here, we have two other important contributions: drift currents induced by an

electric field obtained as the sum of an initrinsic space charge field, and an

external electric field applied to the material and photovoltaic currents.

Drift. The spatially dependent carrier concentration causes a space charge

field Esc. This intrinsic electric field and a possibly externally applied field Eext

will add up, and create a current density

Jdrift ¼ qNcmc(Esc þ Eext), (2:82)

where mc denotes the mobility of the electrons. For the holes, an equivalent

correlation applies. The diffusion constant and the mobility are related by

D ¼ mckBT=q.
Photovoltaic effect. In piezoelectric materials, photoelectrons are excited into

the charge transfer band with a preferential direction of the velocity along the

direction of the polar axis. Additional current contributions due to anisotropic

electron trapping and ion displacement are also possible. The current density is

given by

Jph ¼ �bijkEjE
�
k: (2:83)

The overall current density is given by J ¼ Jdiff þ Jdrift þ Jph.

2.3.6.3 Space Charge Field and Electro-Optic Effect

The space charge field induced by the carrier distribution will satisfy Maxwell’s

equation

r � («E) ¼ r (2:84)

and can be determined from the space charge distribution using the Coulomb

law for anisotropic media [32]. For r ¼ r0 cos (K � r) as the first harmonic

component of the space charge distribution induced by the energy density

modulation in the material created by the incident light waves, the integration

leads to [6]

Esc ¼ r0
K

K � «K sin (K � r) ¼ E1 cos (K � r� p=2), (2:85)

where E1 k K has been introduced as the amplitude of the space charge field.

The phase shift of p=2 means that the space charge field is spatially shifted by

L=4 with respect to the energy density modulation, as indicated in Fig. 2.6.

When no external field is applied to the material (diffusion-driven effect), the
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amplitude E1 of the electric field can be obtained [6], using the interference

tensor Dm as

E1 ¼ 2p

L

kBT

q
1þ l2D

L2

� ��1

jtr{Dm}j, (2:86)

where lD denotes the Debye screening length of the material.

The modulation of the dielectric tensor caused by the electro-optic effect

caused by an electric field E can be written as

(D«r)i j ¼ �n2i n
2
j (rijkEk þ sijkmEkEm) (2:87)

where rijk and sijkm denote the components of the tensor quantities describing

the material properties for the first-order and second-order electro-optic effect,

and Ek and Em denote components of E. The magnitude of the components of

these tensors for a single material may vary significantly, which implies that the

strength of the photorefractive effect can vary considerably with the orientation

of the grating vector K, e.g., in BaTi03 (and other crystals with the same point

group symmetry, 4 mm) the modulation of the permittivity change due to the

electric field E1 is given by

D«r(E1) � «1 ¼ �
n4or13E1z 0 n2on

2
er42E1x

0 n4or13E1z n2on
2
er42E1y

n2on
2
er42E1x n2on

2
er42E1y n4er33E1z

0

B@

1

CA (2:88)

where no and ne are the ordinary and extraordinary indices of refraction,

and the ri j correspond to the material coefficients rijk used in Eq. 2.87 in a

shortened notation. For the equation above, we have chosen that the crystal

(a)

(b)

(c)

I

diffusion

L/4

Esc

Nc

ND
+

L

Figure 2.6. Photorefractive grating

build-up: (a) the stationary intensity

pattern with grating constant L, (b) dis-
tribution of ionized donors Nþ

D and

electrons Nc. The latter distribute by

diffusion. (c) The resulting space charge

distribution r induces a space charge

field Esc, spatially shifted by L=4.
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axis (also referred to as the c axis) is parallel to the z direction. As the coefficient

r42 is by far the largest in BaTi03, the effect is strongly anisotropic and because

the grating vector K and therefore also the vector E1 are in the x–z-plane, the

field component E1x is the most significant one.

2.4 Grating Detection by Diffraction and Wave-Mixing

Diffraction at dynamic or permanent gratings is a special problem in the more

general context of light-matter interaction. It can be treated by different the-

oretical descriptions with varying levels of sophistication, in which certain

assumptions simplifying the problem are made. For example, it is possible to

predict the diffraction angles correctly using simple geometrical considerations

about the constructive or destructive interference of partial waves created by

the gratings (see Section 2.4.1). In order to obtain information about the

amplitudes of the diffracted waves, solutions of the wave equation are obtained

for special cases by the Fraunhofer Diffraction theory or the Coupled Mode

Theory (see Section 2.4.2). Effects causing energy transfer between the involved

partial waves are referred to as wave mixing, where the probably most

important examples are Two-Wave Mixing (discussed in Section 2.4.3), and

Four-Wave mixing that can lead to the creation of optical gratings acting as a

phase-conjugate mirror.

2.4.1 Diffraction Angles

Gratings are usually divided into several subclasses. Probably, the most im-

portant distinction is between thin and thick gratings. The latter are often also

referred to as volume gratings.

Thin gratings. A light-wave incident at a thin periodical structure (a thin

grating) will produce a number of partial waves that may at a certain distance

from the grating interfere in a constructive or destructive manner, dependent

on the difference between their respective optical path lengths.

From geometrical considerations (see Fig. 2.7(a)), the familiar condition

for the directions of constructive interference, given by the diffraction angles wm

L[ sin (uþ wm)� sin (u)] ¼ ml, m ¼ 0, � 1, � 2, . . . (2:89)

is obtained, where u denotes the angle of incidence, l the wavelength of the

light, and L the spatial period of the grating. For sufficiently small angles u,wm,

the angle of mth order of diffraction is given by

wm ¼ m
l

L
(2:90)
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and, there, the angular separation between two adjacent diffraction orders is

approximately constant at a value l=L. For K k x̂x, the x-component of the

wave vectors km of the diffraction orders are given by

km, x � kx ¼ mK m ¼ 0, � 1, � 2, . . . , (2:91)

where kx denotes the x-component of the wave vector of the incident wave.

When the diffracting structure is thicker than a certain value, partial waves

created within different depths have to be in phase as well in order to observe

constructive interference. To estimate up to which thickness existing phase

differences may be neglected, the structure may be described as a succession

of a number of thin-grating structures (see Fig. 2.7(b))

The optical path difference Ds between partial waves originating from thin-

grating elements separated by a thickness d is given by

Ds ¼ d(1� cosw)= cos u: (2:92)

For small angles u and w that satisfy Eq. 2.90, the corresponding phase

difference Df is given by

Df ¼ 2p
ld

L2n(1� u2)
: (2:93)

(a)

(c)

(b)

(d)

q

q

q

q

L L

L

L

d

y

b

K

j
j

jj

Figure 2.7. Diffraction at a single thin grating (a), at a series of thin gratings (b), at a

thick (volume) transmission grating (c), and at a reflection volume grating (d). Incidence

angle is denoted as u, diffraction angle as w and grating period as L.
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This means that at normal incidence, the phase difference will be sufficiently

small (Df � 1), if the grating thickness satisfies

d � L2n

2pl
: (2:94)

Thick gratings. If the condition for a thin grating given by Eq. 2.94 is not

satisfied, the partial waves that are diffracted at angles according to Eq. 2.89 at

different depths must be exactly in phase in order to interfere constructively.

This leads to a condition for the incidence angles at which diffracted beams can

be observed. Deriving Eq. 2.94, we have neglected that every partial beam is

diffracted at a subgrating that appears to be spatially shifted by a distance

Dx ¼ d tan u. The Fourier transform diffraction theory for thin gratings (see

Section 2.4.2) shows that the diffracted beam will have a phase shift

Df ¼ 2pDx=L with respect to a beam diffracted at the untranslated grating.

Following Eq. 2.92, the resulting phase difference is then given by

Df ¼ 2p
d tan u

L
� d(1� cosw)

cos u

2p

ml
: (2:95)

The condition Df ¼ 0 and Eq. 2.89 describing the diffraction at the thin

subgratings can only be simultaneously fulfilled if w ¼ �2u and, therefore

2 sin u ¼ 2 sin (� wm

2
) ¼ ml

L
, m ¼ 0, � 1, � 2, . . . (2:96)

This equation is referred to as the Bragg condition, and indeed in the experi-

ment it can be verified that only one diffraction order is created from a volume

grating, and only if the incidence angle is chosen according to Eq. 2.96. Note

that the condition w ¼ �2u is also obtained if the diffracted waves are inter-

preted as reflections at planes formed by the structures of the thin subgratings,

as is illustrated in Fig. 2.7(c).

Using the wave vectors of the incident and the diffracted light waves, the

Bragg condition may be expressed as

km � k ¼ mK , m ¼ 0, � 1, � 2, . . . : (2:97)

Diffraction at a thick grating requires that all components of the wave

vectors involved satisfy conditions, in contrast to a thin grating, where only

one component of the wave vector is determined by the diffraction (compare

Eq. 2.91). The configuration shown in Fig. 2.7(c) is referred to as a transmission

volume grating. When the incidence angle u exceeds p=4 as shown in Fig. 2.7(d),

the grating is called a reflection volume grating. Here the grating vector K has a

slant angle b with respect to the z-axis. Note that the Bragg condition is valid

for the angle u ¼ (p=2� (c� b) ) for this configuration.
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2.4.2 Diffraction Amplitudes and Efficiencies

In order to gain information about the amplitudes of the diffracted waves,

solutions to the Helmholtz equation

r2E(x, z)þ k2«r(x, z)E(x, z) ¼ 0, (2:98)

where we have restricted our analysis to the x–z-plane, can be found using

different approaches. For thin gratings, the well-known classical boundary-

value approach of Huyghens and Kirchhoff may be used. For thick gratings,

the wave propagation inside the material has to be considered. For weakly

modulated gratings, a suitable approach is the coupled-wave theory in the two-

wave approximation as described by Kogelnik [33].

Fourier transform diffraction theory for thin gratings. Based on the assump-

tion that the light is linearly polarized, Eq. 2.98 is reduced to a scalar equation

for the one-dimensional field amplitude E. The thin grating will change the

incident wave

E(i) ¼ A(i) exp [i(vt� kz)] (2:99)

into the following wave by means of its transmittance t(x)

E(z ¼ 0) ¼ A(i)t(x) exp [i(vt)], (2:100)

where, for simplicity, normal incidence has been assumed. The transmittance

can be calculated from the spatially modulated permittivity «r. The wave

behind the grating is described by a superposition of plane waves with ampli-

tudes Am as

E ¼
X

m

Am exp [i(vt� kmx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2m

q
z)]: (2:101)

Substituting Eq. 2.91 into this equation we obtain

Am ¼ A(i)

L

ðL

0

t(x) exp (i2p
mx

L
)dx (2:102)

which means that the wave amplitudes Am are given by the Fourier coefficients

of the transmittance t(x). The diffraction efficiency for the mth diffraction

order is given by hd ¼ (Am=A
(i))2.

For the case of a sinusoidal refractive index grating, the transmission func-

tion can be written as

t(x) ¼ exp [if cos (2px=L)] , (2:103)
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where f ¼ 2pDn̂nd=l is determined by the modulation amplitude Dn̂n of the

refractive index grating. For a pure amplitude transmittance grating (i.e.,

Re(n̂n) ¼ 0), only the three central diffraction orders (corresponding to

m ¼ 0, � 1) are observed [34], and a maximum diffraction efficiency of

hd ¼ 6:25% is obtained for the first order m ¼ �1. In contrast, a pure phase

grating will diffract into higher orders as well. The maximum diffraction

efficiency for the first order is hd ¼ 33:8% for a value of the grating amplitude

f � 1:8.
Coupled-wave theory for volume gratings. For a volume grating with slant

angle b between grating wave vector K and the surface normal of the material

(compare Fig. 2.7(d)), the spatial modulation of material properties may be

written as

«r(x, z) ¼ «c þ «1 cos (K(x sinbþ z cosb)) (2:104)

A slant angle b ¼ 0 corresponds to an unslanted reflection grating, b ¼ p=2
to an unslanted transmission grating. We can substitute

E ¼
X

m

Am exp [i(ki �mK) � r] (2:105)

into the wave equation, and applying the approximation of weak absorption

(«r � n2 � ina=k) and neglecting the second-order derivative d2Am=dz
2 (which

is known as the slowly varying envelope (SVE) approximation), we obtain the

rigorous coupled-wave equations [9]

i cosc�ml cosb

nL

� �
dAm

dz
þm

p

L2
2L cos (c� b)�m

l

n

� �
Am

þ i
a

2n
Am þ pn«1

2l
(Amþ1 þ Am�1) ¼ 0

(2:106)

which is an infinite set of coupled differential equations. The real-valued

coefficient of the first addend proportional to Am will vanish only for the

transmitted wave m ¼ 0 and the one mth partial wave that satisfies the Bragg

condition given in Eq. 2.96. For all other waves, the nonvanishing coefficient

leads to oscillatory behavior with respect to the propagation direction z, a

continuous build-up of the amplitude Am is not possible. This corresponds to

the statement that (if any) only one diffracted-wave may be generated effi-

ciently by a volume grating. We will therefore reduce the coupled-wave equa-

tions in Eq. 2.106 to only two equations, for the two waves given by amplitudes

A0 and A1. In this two-wave approximation, using the definitions

� ¼ p«1
2nl cosc

(2:107)

d ¼ a

2 cosc
(2:108)
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we obtain the equations

dA0

dz
¼ �dA0 þ i�A1

� dA1

dz
¼ �dA1 þ i�A0:

(2:109)

These equations cover two cases: the plus sign in the second equation

corresponds to the unslanted transmission grating case (b ¼ p=2). For an

unslanted reflection grating (b ¼ 0), the minus sign applies. The quantity �
used in the equations is referred to as the coupling constant. It will take a

slightly different form when the coupling between waves of different polariza-

tion is to be described.

Let the polarization of two waves be given by the two polarization vectors

p1, p2, and the amplitude of the spatial modulation of the permittivity be given

by the tensor quantity «1 to account for anisotropy, the coupling constant takes

the form [6]

�i j ¼ p

2nil cosci«0
pi � «1pj, (2:110)

where i, j ¼ 1, 2. Note that two waves that are both polarized within the plane

of incidence have different polarization vectors and Eq. 2.110 needs to be used

rather than Eq. 2.107 obtained from the scalar wave equation [33].

Transmission volume gratings. The initial condition for solving the Eqs.

(2.109) for a transmission grating is given by the amplitudes A0(0) and A1(0)

when entering the interaction region, and the solution is given by

A0(z) ¼ (A0(0) cos (�z)þ iA1(0) sin (�z)) exp (� dz)

A1(z) ¼ (A1(0) cos (�z)þ iA0(0) sin (�z)) exp (� dz):
(2:111)

When a single beam is incident on the grating, the initial conditions are

A0(0) ¼ A(i) and A1(0) ¼ 0. The dependence of the intensities on the position is

depicted in Fig. 2.8. Because the absorption of the material is considered to be

weak, we may then use Eq. 2.78 to compute the amplitude and phase grating

amplitudes, and the diffraction efficiency of a grating of thickness d is obtained as

hd(d) ¼
I1

I (i)
¼ sin2

pDnd

l cosc
þ sinh2

Dad

4 cosc

� �
exp [� 2dd]: (2:112)

Reflection volume gratings. In the reflection case, the Bragg condition causes

the diffracted wave to travel into the region in front of the grating, while behind

the grating region, only the transmitted beam corresponding to diffraction

order m ¼ 0 is observed. Therefore, the diffracted beam is often referred to as

a reflected beam.
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Assuming a volume grating of thickness d, the initial conditions are deter-

mined by the wave amplitudes A0(0) and A1(d) as the beams enter the

interaction region from opposite directions. The solutions in this case are

obtained as

A0(z) ¼ A0(0) cosh (zz)� d

z
sinh (zz)

� �
þ iB

�

z
sinh (zz) (2:113)

A1(z) ¼ B cosh (zz)þ d

z
sinh (zz)

� �
� iA0(0)

�

z
sinh (zz) (2:114)

where we have introduced z and B as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ d2

p
, (2:115)

B � A1(0) ¼ iA0(0)� sinh (zd)þ zA1(d)

z cosh (zd)þ d sinh (zd)
(2:116)

and identified the quantity B as the amplitude of the reflected wave at the

boundary z ¼ 0. For a single wave incident on the grating A1(d) ¼ 0 and

neglecting the bulk material absorption (a ¼ 0), we obtain the diffraction

efficiency hd of a pure phase grating (Da ¼ 0) as

hd ¼ tan h2
pDnd

l cosc
: (2:117)
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Figure 2.8. Diffraction at volume gratings: Calculated normalized field densities for an

incidence angle c ¼ 108, assuming an absorption coefficient a ¼ 0:5 cm�1 and a phase-

only transmission grating with k ¼ 4 cm�1 (left figure) and a reflection grating with

k ¼ 2 cm�1 (right figure), respectively.
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2.4.3 Two-Wave Mixing in Electro-Optic Crystals

In this section, we will discuss the interaction of laser beams with the grating

that has been induced in a material due to the spatial modulation of their

intensity I, energy density w, or energy dissipation rate Wf , using the two-wave

mixing in electro-optic crystals as an example. At a light-induced grating

written by two writing beams A and B, each of the beams will be partially

transmitted (with amplitudes AA, 0 and AB, 0) and partially diffracted (with

amplitudes AA, 1 and AB, 1). The transmitted part of one beam happens to be

collinear with the diffracted part of the other beam and vice versa. As the

beams A and B are coherent (for simplicity we will assume ideal coherence

here), the field amplitudes of the respective transmitted and diffracted beams

will add up.

Depending on the material, the light field will produce a material excitation

and produce a modulation of the permittivity that can be approximately

described by

«r(x, z) ¼ «c þ «1 cos (K � rþ f), (2:118)

where f describes a spatial shift between the stationary field modulation and

the induced optical grating that can be caused by the physical mechanism of

grating creation. In a diffusion-driven photorefractive material without exter-

nal field, we have f ¼ p=2 as obtained in Eq. 2.85.

The modulation amplitude «1 of the dielectric tensor is dependent on the

interference tensor of the incident writing beams, i.e.,

«1 ¼ jtr{Dm}j~««1 (2:119)

as can be seen from Eqs. 2.86 and 2.88 for the case of electro-optic crystals. As

diffraction will change the amplitudes of the writing beams (and consequen-

tially the interference tensor Dm) while they propagate through the material,

following the discussion of transmission volume gratings in Section 2.4.2 and

Eq. 2.24, the case of codirectional two-wave mixing can be described by a set of

coupled differential equations for the beam intensities IA and IB

dIA

dz
¼ g

IAIB

IA þ IB
� dIA

dIB

dz
¼ �g

IAIB

IA þ IB
� dIB,

(2:120)

where the coupling constant

g ¼ ppA � pB
nl cosc«0

( pA � ~««1pB) sinf (2:121)
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has been introduced. When there is no spatial shift between the stationary field

modulation and the induced optical grating (i.e., f ¼ 0), the coupling coeffi-

cient is zero, while it reaches a maximum for f ¼ �p=2. As can be seen from its

definition, the orientation of the polarization vectors of the beams with respect

to each other and to the crystal axes is significant for the magnitude of g.
Following Eq. 2.88, we obtain for a wave mixing of beams with polarization

vectors pA ¼ (pAx, pAy, pAz) and pB ¼ (pBx, pBy, pBz) in BaTiO3

(pA � ~««1pB) / r42 sin j(pAxpBz þ pAzpBx), (2:122)

where the c-axis of the crystal is again assumed to be parallel to the z direction,

and the K vector of the grating is contained in the x–z-plane with an angle j to
the c axis. In Eq. 2.122, we have only considered the contribution of the

dominant nonlinear coefficient r42, and it can be seen that only beams with a

polarization parallel to the x–z-plane (i.e., e–o polarized beams in this case) will

create a significant coupling coefficient g. In order to determine the incidence

angles so that the largest value of g can be obtained, the influence of material

parameters (e.g., the Debye screening length, compare Eq. 2.86) as well as the

limit to the interference contrast given by pA � pB need to be considered.

The solution of Eq. 2.120 is found as

IA(z) ¼ IA(0)
1þm�1

1þm�1 exp (gz)
exp (� dz)

IB(z) ¼ IB(0)
1þm

1þm exp (� gz)
exp (� dz);

(2:123)

Figure 2.9. Calculated inten-

sities of the writing beams in

the interaction region of a

two-wave mixing process as-

suming m ¼ 10, g ¼ 5 cm�1

and d ¼ 0:2 cm�1. After an

interaction length of 1 cm,

beam B has reached maximum

intensity.
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where m ¼ IA(0)=IB(0) denotes the input intensity ratio of the two beams. In

Fig. 2.9, it can be seen that the intensity of one of the beams may be almost fully

transferred into the other beam, only limited by the material absorption.

2.5 Conclusions

Dynamic gratings can be induced by interfering laser beams in almost any

optical material. Some selected works related to laser-induced gratings have

been used as references of this chapter, but inevitable these publications cover

only a small fraction of the research activities in this widespread field. There are

certainly many other important contributions that we could not include here.

The following chapters of this volume are devoted to the photorefractive

materials and will provide a detailed review of the effects related to this

important class of materials, in particular, of the effects related to laser-induced

gratings in photorefractive materials.
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In this chapter, the standard model accounting for the photorefractive non-

linearity in a material is presented. The mathematical formalism of the rate

equations has been introduced and developed under the adiabatic approxima-

tion. Through a perturbative treatment, it leads to a single nonlinear equation

relating the general space-charge field to light intensity. Steady-state and tran-

sient solutions are discussed in certain detail for the particular case of sinus-

oidal (harmonic) light excitation at low modulation. The analysis includes the

effect of a running interference pattern (dc frequency detuning) as well as dc

and ac fields. Subsequently, the consequences of high light modulation such as

cross-talk, subharmonic and combination grating generation, as well as para-

metric oscillation are summarily described. Some complicating features to the

standard model are briefly touched upon. A second part of the chapter is

devoted to the relevant case of the photorefractive response under localized

optical beams which constitutes the basis to further describe in later chapters of

the book soliton behavior. Both 1D and 2D approaches within the strong

nonlinear regime (high contrast) are presented. For the 1D case, steady-state

solutions for the different transport regimes are worked out. Moreover, the

singular features associated to the presence of an ac-field are described.

3.1. The Photorefractive Nonlinearity: Introductory Remarks

Electro-optic photoconductive materials present a very interesting phenom-

enom, known as photorefractive effect, with a variety of applications in pho-

tonics and optoelectronics [1–10]. The effect was discovered by Ashkin and

coworkers [11] in 1966, as degradation of a linearly polarized laser beam

43
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traversing a plate of LiNbO3 whose large faces contained the trigonal c-axis of

the crystal (see Fig. 3.1). For beams polarized along a direction orthogonal to

the c-axis (ordinary waves), no degradation was observed. However, beams

polarized along a direction parallel to the c-axis (extraordinary waves) exhibited

a spreading along this axis and gave rise to an elongated light spot on an

observation screen. It was proposed by these authors, and it is now generally

accepted, that the phenomenon involves a light-induced modification of the

refractive index. The recorded index profile, measured by a compensator tech-

nique, is illustrated in Fig. 3.2. It was obtained for LiNbO3 excited with a He-

Ne laser beam (power density ’ 50mW=cm2). The index change Dn became

negative at the illuminated spot and reached a value of jDnj ’ 5 � 10�5. The

authors explained the observed degradation of the beam as its self-diffraction

by the refractive index pattern generated during light propagation. One should

Laser

LiNbO3

c-axis
Screen

Figure 3.1. Distortion of a collimated laser beam across a LiNbO3 plate caused by the

photorefractive effect.

Light

−2

−3

0 2 cm

(�10−2)

∆n (�10−5)

Figure 3.2. Change in the extraordinary refractive index profile induced by a localized

optical beam in LiNbO3.
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make clear that the light-induced change of refractive index (and not the beam

degradation) constitutes the photorefractive (PR) effect, although the two

phenomena (index and light distortions) are intimately coupled.

Before a more thorough discussion, one should mention here that the PR effect

is an optical nonlinearity mediated by transport of the electronic charge carriers

generated by the light and the build-up of a space-charge field in the material.

Therefore, it cannot be properly described by a power expansion of the polariza-

tion in terms of the field and so by anym-order susceptibility x(m). Some effective

susceptibility can be introduced [12], although it has a limited practical signifi-

cance. Then, its magnitude is largely determined by the values of the electro-optic

coefficients that convert that field into a refractive index change. This basic

mechanism is responsible for the very high sensitivity of the effect to the nature

and concentration of defects and impurities present in thematerial acting as donor

centers or traps for the carriers. Under suitable conditions, it leads to observable

effects for intensities down to mW=cm2. On the other hand, the response time is

determined by the time needed to build up the space-charge field and so is related

to light intensity and carrier mobility. At room temperature, the induced PR

damage has a persistence in the dark ranging from microseconds or less for

semiconductors to months or even years for LiNbO3. However, the effect is

reversible and can be erased by intense uniform illumination.

The theoretical description of the effect is based on a rather simple kinetic

model initially put forward by the Kiev’s group [13]. It leads to a set of non-

linear rate equations that are commonly solved under a linearized approxima-

tion. This linear treatment accounts for a large body of experimental

information. However, it is becoming more and more interesting to exploit

the consequences of the nonlinear terms and the coupling to the wave equation

to account for exciting effects such as propagation of spatial solitons [10,14],

beam break-up, filamentation, and collapse [15–18], surface waves [19], modu-

lation instability [20], pattern formation [21], subharmonic generation [7,22],

parametric instabilities [23,24] and scattering [25], space-charge singularities

[26], critical enhancement [27], and cross-talk [28]. Most of these effects were

developed after the publication of the first Springer review books [1,2] and so

here they will deserve special attention. In particular, the final part of our

treatment is devoted to the PR effect associated to localized optical fields in

the large contrast regime. This analysis, particularly in the case of two dimen-

sions (2D), is of key relevance to study beam propagation effects and soliton

behavior. On the other hand, since some of the topics constitute the objective of

special chapters in this book, we will only mention them or provide a short

description to maintain the coherence of the text. In particular, we will con-

centrate exclusively on the PR effect leaving aside the consequences on light

propagation (discussed in Chapters 2, 4, 11, and 12).

We can now anticipate a summary of the main distinctive features of the PR

nonlinearity:

a) Critically dependent on material imperfections and so on intentional doping.

b) High sensitivity making the effect observable down to mW=cm2 intensities.
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c) Noninstantaneous: Relatively slow response (dependent on light intensity and

carrier mobility).

d) Nonlocal effect: Phase shift between light and index patterns leading to wave

coupling effects (amplification).

e) Low or high persistence in the dark depending on the material.

f) Erasable by homogeneous illumination.

3.2 Physical Mechanisms: Standard Microscopic Model

Leaving aside some old models of historical interest, the physical mechanism

generally accepted to discuss the PR effect is illustrated in Fig. 3.3. The electro-

optic material has both donor and acceptor centers ND and NA, respectively,

which may correspond, for instance, to two valence states of the same impurity

(or defect), such as Fe2þ (donor) and Fe3þ (acceptor). Nonuniform illumin-

ation with light of suitable wavelength ionizes the donors and generates free

carriers (either electrons or holes or both). They move through the conduction

and/or valence band and are finally trapped at acceptors. As a result, a charge

redistribution between the illuminated and dark areas is induced. The associ-

ated electric field causes a refractive index pattern via the electro-optic effect

[5,29]. Although most experiments rely on the linear (Pockels) effect, the role of

the quadratic (Kerr) effect has also been demonstrated (e.g., in the paraelectric

phase of some ferroelectric PR materials such as potassium lithium tantalate

niobate, in transparent electro-optic ceramics, and multiple-quantum-well

semiconductor structures).

For the most common Pockels case, the local change in the refractive index

can be written as

D
1

n2

� �

ij

¼ rijkEk, (3:1)

where E is the space-charge electric field and rijk the Pockels electro-optic

coefficients. In contracted notation, i.e., using a single index m (from m ¼ 1

++ + ++ + ++ + ++ + ++ ++ +

Conduction band

Valence band

E0
Applied Field Photoexcitation

e−
Recombination e−

ND
NA

Drift + Diffusion + Photovoltaic

Figure 3.3. Band diagram for the standard PR one-center model.

Gunter / Photorefractive Materials and their Applications 1 chap03 Final Proof page 46 28.10.2005 9:02pm
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to m ¼ 6) for the 6 nonequivalent i, j pairs, (3.1) can be equivalently

expressed as,

D
1

n2

� �

m

¼ rmkEk: (3:2)

The tensorial character of the electro-optic effect is a main factor accounting

for the strong anisotropy of the PR response.

Note: The electro-optic coefficients to be used in (3.1) are those correspond-

ing to a zero frequency (static). However, the question of whether clamped or

free (unclamped) coefficients apply is not trivial. The solution, a combination of

them, has been provided by P. Günter and M. Zgonic [30].

3.3 Theoretical Modeling: Rate Equations

The above physical model for the PR effect can be easily translated into

mathematical equations. For simplicity, we will consider one single type of

free charge carrier having concentration n (i.e., monopolar transport), as well

as a single impurity center. Let N be the concentration of those active centers

presenting two valence (charge) states acting as either donors (concentration

ND) or acceptors (concentration NA) for the carriers, so that N ¼ ND þNA is a

constant independent of the presence of light. The rate equations governing the

evolution of the system under a nonuniform photon flux I(r,t) (h̄vI is the light

intensity pattern) write [13],

@n

@t
¼ sIND � gnNA � 1

q
r � J, (3:3a)

@ND

@t
¼ � @NA

@t
¼ �sIND þ gnNA, (3:3b)

J ¼ qmnE� qDrnþ qsINDLPVuPV, (3:3c)

where q is the charge of the carrier (�e for electrons and þe for holes, e

being the elementary charge), s the photoionization cross-section, g the recom-

bination constant, m the mobility, D ¼ mkBT=q the diffusion coefficient, kB
Boltzmann constant,T the absolute temperature,LPV the photovoltaic transport

length (see the next section), and uPV the unit vector in the direction of the polar

axis. The expression (3.3c) for the current density J includes the drift, diffusion

and photovoltaic contributions. E is the total electric field including the one

externally applied and that associated to the generated space charge. For sim-

plicity, we have ignored the thermal ionization of donors in (3.3a) and (3.3b)1.

1 If thermal ionization of donors is taken into account, then the first terms in the
right-hand sides of (3.3a) and (3.3b) should be replaced by (bT þ sI)ND, with bT

being the thermal generation rate (see more on this in Section 3.15).
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Regarding the space-charge field, it obeys the Poisson equation

r � («0«E) ¼ q(nþND �ND(0) ) ¼ q(n�NA þNA(0) ), (3:4)

where «0 is the electric permeability of vacuum, « the relative static dielectric

constant. Here, ND(0) and NA(0) are the corresponding constant donor and

acceptor concentrations in the absence of illumination.

By adding (3.3a) and (3.3b), one obtains the continuity equation

@(ND þ n)

@t
¼ � 1

q
r � J: (3:5)

Differentiation of (3.4) with respect to time, and using (3.5), yields

r � «0«
@E

@t
þ J

� �
¼ 0: (3:6)

Then, from (3.5) and (3.6), one arrives at

@(ND þ n)

@t
¼ � 1

q
r � J ¼ 1

q
r � «0«

@E

@t

� �
� (3:7)

Eqs. (3.3b), (3.3c), and (3.7) constitute the starting point for the subsequent

analysis.

Note 1: The above rate equations are valid for both electrons and holes if the

corresponding sign of q and m is properly taken into account (m is negative for

electrons). Notice that D is positive for both electrons and holes.

Note 2: In many studies of the PR effect, a different notation is used for the

trap (acceptor and donor) centers. The equivalence is as follows: ND is used

instead of N, Nþ
D in place of NA, and NA replaces NA(0).

3.4 Photovoltaic Drift

The photovoltaic (PV) effect is a peculiar drift mechanism [3,7] operating in

some non-centrosymmetric crystals, such as LiNbO3, KNbO3, BaTiO3, and

LiTaO3. It involves an asymmetric excitation of carriers that, for the one

dimensional (1D) case (see Fig. 3.4), gives rise to a current density

e−(p−)

+ll−

e−(p+)

Donor

Figure 3.4. Simple scheme for the PV effect in a one-dimensional system.
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JPV ¼ qsNDLPVI ¼ qaLPVI , (3:8)

where a ¼ sND is the absorption coefficient. The characteristic parameter

LPV ¼ pþlþ � p�l� is the photovoltaic transport length (around 5 Å for

LiNbO3), which can be written in terms of the excitation probabilities pþ(�)

and drift lengths lþ(�) for positive and negative carrier displacement, respect-

ively. Rigorously, the PV effect is described by a third-rank tensor bijk ¼ b�
ikj

through JPV � Ji ¼ bijkEjE
�
k , where E is the complex amplitude of the polar-

ization state of the light field. For linearly polarized light, only the real part of

bijk contributes to Ji and therefore the corresponding tensor is symmetric in the

j, k indices (linear photovoltaic effect or LPV). In contracted notation, the LPV

tensor for LiNbO3 writes

bim ¼
0 0 0 0 b15 �b22

�b22 b22 0 b15 0 0

b31 b31 b33 0 0 0

0

@

1

A: (3:9)

Let us now consider linearly polarized light propagation in the XY plane. For

o-polarization:

Jx ¼ 0, Jy ¼ �b22I , Jz ¼ b31I , for k k Y and E k X , (3:10a)

Jx ¼ 0, Jy ¼ b22I , Jz ¼ b31I , for k k X and E k Y : (3:10b)

For e-polarization:

Jx ¼ 0, Jy ¼ 0, Jz ¼ b33I , for k k X or Y and E k Z: (3:10c)

For LiNbO3: Fe, b33 � b31 � b22, b15 and so the PV current is in all cases

mostly along the Z or photovoltaic axis. Comparing the current density for e-

polarization with the microscopic expression, one obtains b33 ¼ sqNDLPV, and

one may define an equivalent PV field as

EPV ¼ JPV

qmn
¼ sINDLPV

mn
(3:11)

which is characteristic of the material and doping.

One curious feature of the PV drift is that it may give rise to a modulated JPV
(i.e., to a PR effect) even if the crystal is subjected to a uniform light intensity.

In fact, the effect is associated to a modulation of the polarization.

Let us consider two linearly polarized waves propagating in the XY plane

(one o-polarized with E along X and another one e-polarized with E along

Z). The total amplitude of the wave field is

ET ¼ E0xuxe
ik�r þ E0zuze

ik0 �r, (3:12)
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which gives rise to a nonmodulated light intensity. However, the three com-

ponents of the LPV current density are

Jx ¼ b15E0xE
�
0ze

i(k�k0)�r þ c:c:, (3:13a)

Jy ¼ �b22I , (3:13b)

Jz ¼ b33I , (3:13c)

i.e., the x-component ismodulatedwith a grating vector k� k0. In otherwords, an
index grating is formed even if there is no interference light-intensity pattern.

3.5 Macroscopic Formulation

For a considerable range of phenomena, a more general and simpler phenom-

enological description exists that only relies on the spatial symmetry of the

medium and is free of the assumptions associated to any particular microscopic

model [31]. The key point of the macroscopic model is the expression that links

the current density J to the field E and light intensity I. The explicit answer for

1D (x variable) is

J ¼ sE þ bI þ j
@I

@x
: (3:14)

The first term describes the ohmic conduction, s being the electrical conduct-

ivity. The second term stands for the photovoltaic drift and the third one

represents the effect of the inhomogeneity of the light pattern (carrier diffusion).

The macroscopic parameter j is related to the diffusion coefficient through

j@I=@x ¼ qD@n=@x. By adding the Poisson and the continuity equations, one

has the basic equations for the macroscopic model. Together with the boundary

conditions, they allow the solution for the space-charge field if the macroscopic

parameters s, b, and j are known. Of course, the microscopic models are the

ones capable of giving physical meaning to the macroscopic parameters and so

providing a full understanding of the involved physical processes.

3.6 Low Intensities: Continuous Wave (CW) Regime

Since the space-charge field E is the key quantity to describe the PR response,

our first aim is to reduce the set of rate equations to one single equation

involving E and the light intensity I. From (3.3a) and (3.7), one finds

NA ¼
sNI þ «0«

q

@r � E
@t

� @n

@t

sI þ gn
: (3:15)
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Many practical situations involve the use of CW illumination. For this

regime and low intensity levels, the inequalities n � NA �NA(0), ND �ND(0)

hold. Therefore, (3.4) reduces to

«0«

q
r � Eþ

sNI þ «0«

q

@r � E
@t

� @n

@t

sI þ gn
�NA(0) ¼ 0, (3:16)

which is equivalent to

@n

@t
¼ s ND(0)þ «0«

q
r � E

� �
I þ «0«

q

@r � E
@t

þ g
«0«

q
r � E�NA(0)

� �
n: (3:17)

On the other hand, combining (3.3c), (3.6), and (3.15), one derives

«0«

q

@E

@t
þ m nE� kBT

q
rn

� �
þ
sLPV gNn� «0«

q

@r � E
@t

þ @n

@t

� �
IuPV

sI þ gn

¼ JTot

q
, (3:18)

where it has been assumed that the photovoltaic current is only significant

along the polar axis. The value of the total current density JTot has to be

determined from the appropriate boundary conditions.

3.7 Quasi-Equilibrium (Adiabatic) Approximation:
Nonlinear Equation for the Field

Except for the neglect of the carrier density in the expression for the charge

density, (3.17) and (3.18) constitute an exact reduction of the starting set of rate

equations, though, still a quite intractable one for the objective of obtaining a

single nonlinear equation for the field. To this end, it is useful to make a further

approximation. In many materials under normal conditions the relaxation time

of electrons, i.e., the recombination time tR, is much shorter than the charac-

teristic time scale for the variation of E, which is also referred to as dielectric

relaxation time tD. Consequently one can assume that @n=@t ¼ 0, which implies

that electrons are at any time in equilibrium (quasi-equilibrium) with the trap

distribution. Then, (3.17) reduces to

n ¼
s ND(0)þ «0«

q
r � E

� �
I þ «0«

q

@r � E
@t

g NA(0)� «0«

q
r � E

� �
:

(3:19)
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This expression can be now substituted into (3.18) and one may obtain the

general nonlinear equation for the electric field. We will explicitly write it for a

particular approximation (see next section).

3.8 Perturbative Approach to the Nonlinear Equation

The procedure to arrive at the nonlinear equation for the field is a complicated

task and requires some approximation techniques. In many cases, such as in

holographic recording experiments, one may use a perturbative scheme. It

considers that the dynamic variables are decomposed into a constant spatially

uniform average term (labeled with superscript 0) and a time-dependent spa-

tially modulated term (with superscript 1), i.e., X (r, t) ¼ X (0) þ X (1)(r, t).

Under the adiabatic approximation and small light intensity (see previous

sections), a useful equation has been obtained by Pedersen and Johansen for

the modulated space charge field in non-photovoltaic materials [24]. It writes

� E(0) @r � E(1)

@t
þ kBT

q

@r2E(1)

@t
�ˆ0E

(0)(r � E(1))þ kBT

q
ˆ0r2E(1)

� §I (0)E(1) � gN
(0)
A

m

@E(1)

@t
¼ §I (1)E(0) � kBT

q
§rI (1) þˆ0E

(1)(r � E(1))

þ E(1) @r � E(1)

@t
(3:20)

whereˆ0 ¼ sI0N=N (0)
A and § ¼ sqN=«0«. This expression also uses an additional

restriction N
(0)
A � N

(0)
D ’ N. The left-hand side of the equation is linear in E(1).

The first two terms on the right-hand side represent the driving force due to light

excitation, and the two last terms are the nonlinear terms responsible for the

nonlinear coupling. Note also that the equation is first-order with respect to time

and higher-order with respect to space. The same or similar equation has been

used in several works [32–34]. Then, in order to further exploit the perturbative

scheme, one assumes that the modulated values are small in comparison to the

constant ones. The first-order approximation is discussed in the next section.

3.9 Sinusoidal Light Excitation at Low Modulation Linear
Equation for the Field

A large number of experiments can be described within a linear approximation

to Eq. (3.20) that accounts for the key features of the PR response. In what

follows, we will consider, for simplicity, a 1D sinusoidal light pattern along the

X axis, i.e., the real part of the complex expression I ¼ I0(1þmeiKx), where the

modulation m is defined by m ¼ (Imax � Imin)=(Imax þ Imin) with Imax and Imin

being the maximum and minimum values of I, respectively. This is the situation

that applies to the experiments using an holographic set-up. If m is small, all
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variables are expected to write X (t) ¼ X (0) þ X (1)(t)eiKx (X � n, ND, NA, E),

where X (1) stands for the amplitude of the sinusoidal component2. Then,

substituting those sinusoidal expressions into equation (3.20) and neglecting

all terms involving products of the modulated variables, one obtains a simple

linear equation for the amplitude of the modulated space-charge field [35]

@E(1)

@t
þ pE(1) ¼ mh, (3:21)

where

p ¼ Eq þ ED þ i(E0 þ rEPV)

EqH
, (3:22a)

h ¼ i
ED þ i(E0 þ EPV)

H
, (3:22b)

H ¼ tD 1þ ED þ iE0

EM

� �
, (3:22c)

tD ¼ ««0=emn
(0) being the dielectric relaxation time corresponding to a carrier

concentration n(0) ¼ sI0N
(0)
D =gN

(0)
A and r ¼ N

(0)
A =N is an oxidation/reduction

ratio. Also, for convenience, we have set E0 � E(0) as the applied field. The

characteristic fields in (3.22) are defined as

ED ¼ kBKT

q
, EM ¼ gN

(0)
A

mK
, Eq ¼ qN

(0)
D r

««0K
, EPV ¼ LPV

tRm
, (3:23)

where tR ¼ 1=gN (0)
A is the carrier recombination time. These characteristic

fields play a crucial role in the possible charge transport regimes under sinus-

oidal light excitation. Their physical meaning is given in Section 3.10.

3.9.1 Steady-State Solution

By making @E(1)=@t ¼ 0, one immediately obtains from (3.21) the steady-state

amplitude E(1) of the modulated space-charge field,

E(1) ¼ m
h

p
¼ im

ED þ i(E0 þ EPV)

1þ ED þ i(E0 þ rEPV)

Eq

: (3:24)

One should note that, within our linearized standard model, the steady-state

space-charge field is independent of the average light intensity and proportional

to the modulation depth (index).

2 Note that for high light intensities, N
(0)
D and N

(0)
A may not coincide with ND(t ¼ 0)

and NA(t ¼ 0), respectively.
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If E0 ¼ 0, EPV ¼ 0, so that diffusion is the only operative transport mechan-

ism, and assuming ED � Eq (valid in many cases) then

E(1) ¼ im
ED

1þ (ED=Eq)
ffi imED, (3:25)

i.e., a phase-mismatch f ¼ p=2 appears between the light and space-charge

field gratings. Eq. (3.25) may also be written as,

E(1) ffi ED

K

1

I0

@I

@x
¼ kBT

q

1

I0

@I

@x
, (3:26)

i.e., the response is proportional to the gradient of the light intensity

(gradient response).

When diffusion is negligible and the material is not photovoltaic (e.g., under

common experimental situation in Bi12SiO20), ED � E0, Eq, the steady-state

solution is

E(1) ’ �m
E0

1þ (iE0=Eq)
: (3:27)

For moderate applied fields, (E0 � Eq). E
(1) ’ �mE0, indicating that the

field is approximately in phase with the light, as expected for a local response.

For a PV material such as LiNbO3(EPV � ED), in absence of applied field,

one has

E(1) ¼ �m
EPV

1þ irEPV

Eq

, (3:28)

i.e., the generated phase-shift depends on the ratio EPV=Eq (f ¼ 0 or f ¼ p
for EPV � Eq, f ¼ �p=2 for EPV � Eq). Moreover, when EPV � Eq,

E(1) ¼ �mEPV.

3.9.2 Transient Response

a) Recording of a Grating

Assuming that the initial condition for the fundamental component of the space-

charge field isE(1)(t ¼ 0) ¼ 0, the general time-dependent solution of Eq. 3.21 is,

E(1)(t) ¼ E(1)(1� e�pt): (3:29)

If p is real, the recording curve is a (monotonic) exponential. However, the

imaginary part of p, which is associated to the motion of the index fringes, may

introduce oscillations in the transient response. In order to clearly observe these

oscillations, Im(p) > Re(p).
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For nonphotovoltaic materials,

p ’ 1

tD

1þ (iE0=Eq)

1þ (iE0=EM)
: (3:30)

In the case of Bi12SiO20, oscillations have been predicted [36,37] and ob-

served for a certain range of characteristic fields [38]. On the other hand, for

photovoltaic materials such as LiNbO3 oscillations have been also reported

[39–41].

The rise time, defined as the reciprocal of the initial growth rate, is

t ¼ 1

Re(p)
, (3:31)

and so it is of the order of the dielectric relaxation time (both are propor-

tional to the light intensity). However, remarkable differences between t and tD
appear, depending on the material and the recording conditions (applied field

and grating period). For a PV material, like LiNbO3, where EPV and EM are

large, the parameter p is (for E0 ¼ 0),

p ¼ 1

tD
1þ i

rEPV

Eq

� �
(3:32)

and so t ¼ tD. For a nonphotovoltaic material (EPV ¼ 0) and assuming

ED � E0, it yields

t ¼ tD

1þ E2
0

E2
M

1þ E2
0

EqEM

: (3:33)

Then, if Eq > EM (e.g., Bi12SiO20), t > tD. If Eq < EM (e.g., BaTiO3 or

SBN), t < tD.

b) Initial Recording (Short-Time Limit)

The short-time solution for the fundamental component is

E(1) ¼ im
EM[ED þ i(E0 þ EPV)]

EM þ ED þ iE0

t

tD
: (3:34)

For common experimental situations in sillenites, E0 > EM > ED and

EPV ¼ 0. Then,

E(1) � im
EMt

tD
¼ im

qaI0
««0K

t: (3:35)
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The initial rate increases on increasing absorption (a ¼ sN
(0)
D ) due to en-

hanced ionization cross-section and on decreasing dielectric constant due to

reduced screening.

We have now the ingredients to obtain the sensitivity S of a PR material,

which is defined as the energy required to produce a given refractive index

change (or diffraction efficiency). For m ¼ 1

S ¼ jDnj
tI0

¼ 1

2

n3reff jE(1)j
I0t

¼ 1

2

ean3reff
««0K

, (3:36)

where reff is the effective electro-optic component. Eq. (3.36) illustrates that

n3reff=« is an appropriate figure of merit for the PR sensitivity.

c) Dark and Light-Induced Erasure

Under homogeneous illumination or in the dark (due to homogeneous thermal

ionization), the photorefractive gratings fade out. The decay for the complex

amplitude of the space-charge field is described by

E(1) ¼ E(1)(0)e�Re(p)te�iIm(p)t: (3:37)

Therefore [42], the decay is exponential with a time constant t ¼ 1=Re(p) as

for the case of recording. It is easy to show that t / 1þ CK2, where C is a

constant. On the other hand, fringes move during erasure at aconstant velocity

v ¼ Im(p)=K .

3.10 Summary of Characteristic Times, Lengths and Fields

Here we summarize a number of characteristic parameters used in the semi-

conductor literature and that determine the PR response.

a) Characteristic Times

Recombination time or carrier life-time: tR ¼ 1=gN (0)
A .

Dielectric relaxation time: tD ¼ «0«=(emn
(0)) ¼ «0«=s, or time needed to screen

a given (arbitrary) field in the medium (only depends on the conductivity and

dielectric constant of the medium).

b) Characteristic lengths

Diffusion length: lDiff ¼ (DtR)
1=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBTtR=e
p

, is the average forward dis-

tance traveled by a carrier during its life time.

Drift length: l0 ¼ mE0tR, is the drift distance traveled by the carrier under the

field E0 before recombination.
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Debye screening length: lD ¼ (DtD)
1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT«0«=e2N

(0)
A

q
, is the distance

needed to screen a charge or field perturbation in the medium.

Photovoltaic length: LPV is the average distance traveled by a carrier on photo-

excitation.

c) Characteristic Fields

Diffusion field: ED ¼ KkBT=q. For a sinusoidal carrier grating is the field

amplitude causing the same currents as diffusion or, equivalently, the one

that exactly balances the diffusion current. It is also the maximum field that

can be achieved by carrier diffusion. For a localized beam of transversal size ds
(see Section 3.15), the equivalent diffusion field would correspond to K ¼ 1=ds,
i.e. ED ¼ kBT=qds.

Characteristic field EM ¼ gN
(0)
A =mK ¼ 1=tRmK is the electric field that moves a

carrier a distance 1=K ¼ L=2p during its lifetime.

Limiting or saturation field: Eq ¼ qrN
(0)
D =(K««0). If N

(0)
A � N

(0)
D (e.g., sillenites),

it reduces to Eq ¼ N
(0)
A q=K««0 and represents the maximum field that can be

obtained when all traps are used (saturation limit). For a localized beam of

transversal size ds (also in sillenites), the limiting field writes Eq ¼ qdsN
(0)
A =««0.

One notes that for a grating with period L ¼ 2plD (K ¼ 1=lD) or a beam of

transversal size lD, ED ¼ Eq ¼ EL. On the other hand, for an applied field E0,

the transversal size of a localized beam whose saturation field Eq ¼ E0 is

designated as the saturation length ls ¼ «0«E0=(eNA(0) ).

3.11 Grating Enhancement Methods

Fast photorefractive materials such as sillenites and semiconductors show a

small electro-optic coefficient and so, also, a weak response. There are two

main techniques for enhancing the refractive index change in these materials.

The first method involves detuning the frequency of the interfering optical beams

while a dc field is maintained across the crystal [35]. The appropriate choice of

the detuning frequency leads to resonant coupling between the induced drift of

charges and the motion of the optical interference pattern. The other method

involves the use of an ac field with frequency much higher than the dielectric

relaxation frequency [43,44,58]. The two methods are now briefly analyzed.

3.11.1 Applied dc Field plus Light Frequency Detuning

Here we impose on the crystal a dc field along the X-axis and a traveling

interference pattern generated by two monochromatic waves with close fre-

quencies v1, v2, so that (v2 � v1)=v1 � 1, i.e.,

E(x, t) ¼ E1e
i(k1r�v1t) þ E2e

i(k2r�v2t): (3:38)
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The light intensity pattern writes,

I(x, t) / jEE�j ¼ Re I0 1þmei(Kr�Vt)
� �� �

, (3:39)

with I0 ¼ jE1j2 þ jE2j2, m ¼ 2jE1E2j=I0, the detuning V ¼ v2 � v1 and

K ¼ k2 � k1. The grating vector K is assumed to be parallel to the field and

so K ¼ Kx. Eq. (3.39) represents a grating of wave vector K moving at a

constant speed v ¼ V=K . The differential equation for the amplitude of the

modulated field is still (3.21) after substituting mhe�iVt for mh. Therefore,

assuming a solution E(1)(t) ¼ E(1)(V)e�iVt, one obtains

E(1)(V) ¼ mh

p� iV
: (3:40)

Resonance conditions and, thus, enhancement of the response, will occur for

VR ¼ Im(p). In the conditions usually prevailing for Bi12SiO20,

VR ¼ �EM

tDE0

: (3:41)

For Bi12SiO20, VR is around 0:1� 1:0VD (VD ¼ 2p=tD) and the correspond-

ing space-charge field will be

E(1)(VR) ¼ imEq, (3:42)

i.e., one produces a traveling space-charge wave moving at the same velocity as

the light pattern but having a p=2 phase shift. So, the response is diffusion-like

but markedly enhanced with regard to the pure diffusion case since usually

Eq � ED.

One may also calculate the enhancement factor

R ¼ E(1)(V)

E(1)(0)
¼ p

p� iV
, (3:43)

which, in the case of optimum detuning V ¼ VR ¼ Im(p), yields

R(VR) ¼ p

Re(p)
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E2
q

E2
0

s

� Eq

E0

: (3:44)

for EM � E0 � Eq. Enhancement of about one order of magnitude can be

readly achieved.
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3.11.2 Application of an ac Field

Let us assume a fixed light grating I ¼ I0(1þmeiKx). We can use the first-order

equation (3.21) with a total field E(x, t) ¼ E(0)(t)þ E(1)eiKx applied along the K

vector (X-axis). Then,

@E(1)

@t
þ p(t)E(1) ¼ mh(t), (3:45)

where

p(t) ¼ 1

tD

1þ (ED=Eq)þ (iE0(t)=Eq)

1þ (ED=EM)þ (iE0(t)=EM)
, (3:46)

and

h(t) ¼ 1

tD

�E0(t)þ iED

1þ (ED=EM)þ (iE0(t)=EM)
: (3:47)

A simple approximate method to solve Eq. (3.45) is the averaging procedure

developed by Stepanov and Petrov [43]. It is applicable when the temporal

period of the applied field is much larger than the carrier recombination time

and much shorter than the grating relaxation time. Under these conditions, E(1)

can be considered constant in time and equal to E(1) ¼ mhhi=hpi. The solutions
for two particular cases are as follows:

a) Applied square-wave field, E0 ¼ E00sign( sinVt). Then,

E(1) ¼ im
ED þ hsqE00

2(1þ ED=Eq þ hsqE00=Eq)
: (3:48)

with hsq ¼ j ¼ �E00=(ED þ EM). One sees that the field is exactly the same as

for a diffusion nonlinearity after substituting ED þ hsqE00 for ED, so it provides

an enhanced gradient response.

b) Applied sinusoidal wave field, E0 ¼ E00 sinVt. One arrives at the same solu-

tion (3.48) with hsq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� 1

h i
=j, leading to a smaller enhancement than

for case a). Again the response is diffusion-like as corresponds to the symmetry

of the ac field without any privileged direction. A complete theoretical model

describing the formation of the space-charge field in a PR material exposed to a

sinusoidal ac field, dc field and a running light pattern that is valid for all time

scales has been given in [45].

Enhancement factors under ac fields are similar to those obtained in the

detuning method.
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3.12 High-Contrast Effects

3.12.1 Higher Harmonics and Cross-Talk Effects

The linearized approximation requires a low light contrast (m � 1). When m

approaches 1, the general rate equations (3.3) are no longer linear and have

more complicated solutions exhibiting new features: i) the growth kinetics of the

recorded (fundamental) grating ismodified aswell as its steady-state level; ii) other

gratings with K vectors that are multiples of that of the fundamental grating

develop and become important. A number of approximate treatments have been

developed to deal with the solution of the nonlinear material (rate) equations

[36,46–48]. As an illustrative example, we can quote the analytical (nonperturba-

tive) method by Serrano et al. [48], valid for the diffusion regime. It gives for the

steady-state amplitude of the fundamental component of the space-charge field

E(1) ¼ i
mED

2
1þ (m=2)2 þ 2(m=2)4
� �þO(m7): (3:49)

One sees that the dependence of that amplitude on m is superlinear, in

accordance with experiments as illustrated in Fig. 3.5. Note that for m ¼ 1,

the effect of the nonlinear terms is to increase by a factor 2 the value derived

from the linear approximation. The same model yields the dependencies of the

steady-state levels for the various harmonics of the fundamental grating. They
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Figure 3.5. Dependence of the amplitude of the first three Fourier components of the

field E(1), E(2), E(3) on the modulation depth m. The amplitude of the fundamental

component correponding to the linear solution is displayed for comparison.
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show an even steeper dependence on m. The lower order terms go as m2 for the

second harmonic, as m3 for the third-harmonic and so on, as expected from the

nonlinear mixing of the various harmonic gratings. Anyhow, the most useful

way to discuss high-m effects is the use of numerical methods that have been

applied to steady-state as well as transient situations [36,37,49].

The nonlinear terms in the rate equations are also responsible for the occur-

rence of combinatorial gratings and cross-talk effects when several light

gratings are imposed on the material [28,50–53]. Figure 3.6 shows the com-

binatorial gratings, i.e., the ones having K vectors that are linear combinations

of those of the light, when two holograms are sequentially recorded in LiNbO3

[52]. Cross-talk effects have also been observed during simultaneous recording

of two gratings in Bi12SiO20 [50,51] and BaTiO3 [53]. A theoretical study of

these effects, including a comparison between simultaneous and sequential

recording (see Fig. 3.7), can be found in Ref. [28].

3.12.2 Grating Instabilities: Generation of Subharmonics

Under certain conditions, a Bi12SiO20 crystal (and other sillenites) exposed to a

running light interference pattern generates secondary gratings with spacings

that are two, three, or four times that of the fundamental grating [32,54,55].

Therefore, they are subharmonics of that grating with K-vectors equal to K/2,

K/3, K/4, . . . . The experiment is schematically illustrated in Fig. 3.8 for the first

subharmonic (K/2). The same phenomenon was observed when the crystal is

illuminated with a stationary light pattern under an ac field [56–58]. In other
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Figure 3.6. Square root of the diffraction efficiency of the observed gratings as a function

of the grating’s Bragg angles. The corresponding K vector of each grating is shown.
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words, the generation of subharmonics has been observed applying the two

techniques used to enhance the PR response. It is now clear that the primary

mechanism for the generation of subharmonics is the instability of the non-

linear material equations.

The usual way to discuss the phenomenom is to propose an ansatz solution

for the rate equations (including the nonlinear terms) or for the nonlinear field

equation. It should consist of the fundamental grating and a seed for the

subharmonic grating, i.e.,

E(1)(x, t) ¼ A(1)(t)eiKx þ A(1=2)(t)eiKx=2 þ c:c: (3:50)
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Figure 3.7. Time evolution of the combinational grating (K1 þ K2) in simultaneous

(a) and sequential (b) recording. For case (b), the time scale refers to the recording of the

second grating. For applications, the recording of this second grating is stopped at point

A where the two fundamental gratings reach the same amplitude.
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Figure 3.8. (a) Schematic set-up for the observation of subharmonic generation.

(b) K-vector diagram.

Gunter / Photorefractive Materials and their Applications 1 chap03 Final Proof page 62 28.10.2005 9:02pm
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For the purposes of an instability analysis, it is reasonable to assume that the

subharmonic has no influence on the fundamental space-charge field grating

that can therefore be independently calculated. In this way, one can obtain the

region of physical parameters that lead to subharmonic generation. The analy-

sis consists of monitoring the amplitude of the subharmonic grating and

determine under which parameters this amplitude overcomes a certain thresh-

old representative of the instability. The problem of obtaining the steady-state

amplitude of the subharmonic grating is much harder [34,59].

We will, here, concentrate on the threshold determinations. Let us, first,

consider the case of a running interference pattern Ip ¼ mI0 cos (Kx�Vt),

with V being the detuning. Using a simplified version of the nonlinear equation

(3.20) and applying the Routh-Hurwitz criterion for instability, one derives the

condition

E0

EM

¼ 2 2� (m2 � b2)1=2
h i

, (3:51)

defining the boundary of the instability region. b is the detuning frequency

normalized to 1=tD. It has a typical banana shape and so it is multivalued.

Now let us comment on the case where the recording is performed under

an applied ac field E0(t) ¼ E00 cos bt. One can assume that the light inten-

sity pattern includes both the fundamental and a seed harmonic beam

(in fact, this does not modify the results and can be neglected), i.e.,

I ¼ I0[1þm1 cosKxþm1=2 cos (Kx=2)]. By substituting this expression into

the approximate nonlinear equation (3.20), one obtains two coupled equations

that can be solved numerically. So, one can determine the conditions leading to

growth of the subharmonic amplitude. The boundary separating the stability

and instability regions in a E00 �m diagram is now single valued. The stability

increases for a sinusoidal ac field in comparison to a square wave.

3.12.3 Grating Instabilities: Parametric Processes

Under certain conditions, the subharmonic gratings become also unstable and

the fundamental grating splits into other secondary gratings [60,61]. In fact, a

large diversity of instability schemes are possible. In [61], this problem is linked

with the more familiar optical parametric oscillation (OPO) processes in the

field of nonlinear optics. Here, the analogous schemes are termed parametric

photorefractive oscillation (PPO) processes and refer to the instability of space-

charge waves, which will be briefly introduced in the next section. Three

different schemes are possible: degenerate, longitudinal, and transversal (see

Fig. 3.9). In all cases, the phase-matching conditions

K1 þ K2 ¼ Kp, (3:52a)

v1 þ v2 ¼ vp, (3:52b)
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should be obeyed, where Kp and vp correspond to the fundamental or light

grating (pump) and Ki, vi(i ¼ 1, 2) to the parametrically generated gratings.

The subharmonic generation refers to the particular case K1 ¼ K2 ¼ Kp=2 and

v1 ¼ v2 ¼ vp=2.

3.13 Space-Charge Waves

In the case of a complex parameter p, the homogeneous equation

@E(1)=@tþ pE(1) ¼ 0, under uniform illumination, presents damped wave-like

solutions, E(1) / e�Re(p)tei(Kx�Vscwt), with Vscw ¼ Im(p). They correspond to

traveling waves, known as space-charge waves [7,59], moving at a speed

vscw ¼ Vscw=K .

The concept of space-charge waves offers an adequate physical basis to

discuss the gain enhancement techniques described in Section 3.11 as well as

the instability of the recording grating versus a variety of parametric processes.

One can use the space-charge waves formalism to study the recording of a PR

grating under a running interference pattern or an ac field. Let us consider a

running sinusoidal light pattern I ¼ I0[1þm cos (Kx�Vt)] moving at a speed

v ¼ V=K . Assuming that Re(p) is negligible, the equation for the complex

amplitude A(1) of the modulated field E(1) ¼ A(1)eiVt can be written as

dA(1)

dt
þ i(Vscw �V)A(1) ¼ mh, (3:53)

which has the structure of a forced oscillator. The steady solution is

DPO

LPO

TPO

ks = K/2 kl = K/2

ks Kl

ks

kl

K

K

K

Figure 3.9. K-vector diagram for parametric processes. DPO stands for degenerate

parametric oscillation or subharmonic generation. LPO and TPO respectively, represent

longitudinal and transversal parametric oscillations.
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E(1)(t) ¼ mh

i(Vscw �V)
e�iVt, (3:54)

which provides a simple explanation of the enhancement of the grating ampli-

tude as a resonance effect between the oscillating light excitation and the space-

charge wave eigenmode. The space-charge waves formalism is also particularly

adapted to understand grating instabilities and generation of subharmonics

discussed in the previous sections. A detailed description of space-charge waves

and their applications is offered in Chapter 5 of this volume.

3.14 Complicating Features to the Standard Model

Although the standard simple model described above has shown a very wide

range of validity, there are experimental situations that demand some modifi-

cations. One of such situations arises when dealing with several active centers

(see Subsection 3.14.1), or under bipolar transport, i.e., simultaneous electron

and hole transport (see Subsection 3.14.2). Another example is provided by

band-to-band transitions that can also cause bipolar photorefractivity (see

Chapter 7 in this volume). In the case of PR polymers, field-dependent photo-

excitation and transport parameters have to be introduced as well as additional

molecular reorientation and birefringence effects. Moreover, when describing

the response of semiconductors and multiple-quantum-well (MQW) structures

at frequencies close to the band-gap, the electro-optic response is neither

Pockels or Kerr-type, but it is mostly governed by the resonant Franz-Keldysh

effect [5] (see Chapter 10, vol II).

3.14.1 Multiple Active Centers

Some experimental data have been obtained that are not consistent with the

standard model and suggest that more than one type of trap may contribute to

photorefraction. These effects have been observed in several crystals such as

Bi12SiO20 [62], KNbO3 [63,64], or in LiNbO3 [64,65], to cite only a few ex-

amples. One may quote a strong dependence of the shape of the recording curve

on light intensity and temperature. For example, maxima of the grating amp-

litude can appear before the steady-state is reached. Also, the decay curves in

the dark or under illumination are not any longer exponential and present

singular features. The theoretical description and some detailed computer

simulations for recording and erasure are given in Refs. [66–68]. A particularly

relevant case investigated in this reference is a material containing an optically

active center and a thermal trap that appears to be a common situation [68].

More recently, some techniques applied to achieve long hologram lifetime

have taken advantage of the existence of two photosensitive centers that are

active at different wavelengths [69,70]. For instance, Buse et al. [69] report on a
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permanent hologram written by IR excitation of a shallow photosensitive

center, which is then stored in a deeper trap not affected by the recording

wavelength. To initially fill the shallow traps, the sample has to be illuminated

with visible light acting as a gate. For further details see also Chapter 8 of

this book.

3.14.2 Bipolar Transport

Here, both electrons and holes simultaneously contribute to transport. A simple

model leading to bipolar transport also involves donor and acceptor centers.

However, under illumination, the donors can be ionized to generate holes (or

trap holes) as well as electrons (or trap electrons), as illustrated in Fig. 3.10.

Also, acceptors can trap electrons and holes. The rate equations should be

slightly modified to include the new processes. For simplicity we will consider

that diffusion is the only charge transport mechanism. Then, one easily arrives

to the steady-state solution [6,7,71–73]

E(1) ¼ i
mj(K)EDEq

ED þ Eq

, (3:55)

where j(K) ¼ (1� C)=(1þ C) is the so-called electron-hole competition factor.

The parameter C is given by

C ¼
tDe(1þ ED

EMe

)

tDh(1þ ED

EMh

)

, (3:56)

where tDe and tDh are the dielectric relaxation times corresponding to electrons

and holes, respectively. It is easy to show that

Conduction
Band

Electron transport

Hole transport

E

+ + + + + +

+ + + + + +

− − − − − − − −
− − − − − − − −

Space Charge

Valence
Band

Figure 3.10. Illustration of the bipolar PR mechanism. Photoionization transitions are

represented by solid gray arrows and recombination with dashed arrows.
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j(K ! 0) ¼ se � sh

se þ sh

, (3:57a)

j(K ! 1) ¼ ae � ah

ae þ ah

, (3:57b)

with se(h) and ae(h) being the conductivity and absorption coefficients, respect-

ively, associated to electron (hole) carriers and centers. The electron-hole

competition factor gives rise to the following effects:

a) Reduces the space-charge field.

b) Leads to a variation of the relative contribution of electrons and holes

depending on grating spacing.

c) The sign of the space-charge field depends on the difference between electron

and hole photoconductivities (for K ! 0) or between absorption coefficients

(for K ! 1).

3.15 Localized Optical Beams

Another prolific research area in PR media has been that of localized optical

beams (i.e., those having finite transversal width), mainly in connection with

spatial solitons [10] (see Chapter 11 where the subject of PR solitons is covered

in detail). Since their prediction by M. Segev and coworkers [74], several

different types of PR solitons have been identified [15,18,75–78] and experi-

mentally demonstrated [79–92], each exploiting distinct aspects of the charge

transport mechanism. As for Kerr nonlinearities, spatial solitons refer to op-

tical beams that preserve their transversal profile during propagation due to the

balance between nonlinearity and diffraction.

The first aim here, as it occurred in the periodic case, is to reduce the set of

rate equations (3.3) to a single equation involving the space-charge field E and

the light intensity I. However, at variance with the former case, the expansion

of all relevant variables in Fourier components does not provide, in general, an

adequate theoretical framework. The main reason is that most applications

exploit the strong saturation regime, where the spatial modulation of the light

intensity is no longer a small quantity in comparison to its average value.

In order to deal with localized beams, it is convenient to express the rate

equations in a suitable form. To this end, we normalize (3.3) by introducing the

variables t ¼ t=tB and r � r=ds, where ds represents a characteristic spatial

length for the variation of the light intensity profile. We assume that electrons

are the sole charge carriers. Also, we use the Debye screening length

lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«0«kBT=e2NA(0)

p
, the characteristic limiting field EL ¼ kBT=elD (e is

the elementary charge), the impurity concentration ratio rN ¼ ND(0)=NA(0),

and the normalized electric field E ¼ E=EL. Most of the values corresponding

to these characteristic magnitudes are in the ranges lD � 0:01� 0:4mm,

EL � 0:5� 15 kVcm�1, and rN � 10� 103 for many materials (an important

exception is LiNbO3 doped with Fe, where rN � 10�2 � 1).
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In applications with localized spatial light beams and solitons, it is very

convenient to use an additional incoherent background illumination IB (that

may include the equivalent illumination level corresponding to the thermal

emission of carriers) superimposed to the light intensity I [93]. Thus, one may

introduce a background dielectric relaxation time tB ¼ «0«g=emrNsIB associated

to the background illumination, which will be used from here on.

With the help of the above definitions, the set of Eqs. (3.3) is transformed

again into two equations. Within the adiabatic approximation (@n=@t ¼ 0), the

carrier density is governed by

n

NA(0)
¼ 1

2
1þ lD

ds
r�Eþ tRn

tBrN
(1þ I)

� �

� �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4tR n(1þ I) 1� lD

rNds
r�E

� �
� lD

ds

@r�E
@t

� �

tB 1þ lD

ds
r�Eþ tRn

tBrN
(1þ I)

� �2

vuuuuuut

8
>>>><

>>>>:

9
>>>>=

>>>>;

,

(3:58)

where n ¼ «0«=emtRNA(0), I � I=IB, and the space-charge field satisfies

J0

emNA(0)EL

¼ n

NA(0)
Eþ lD

NA(0)ds
rnþ tRn

tB
� @E

@t
þ

tRn

tB

EPV

EL

(1þ 1

rN
)

n

NA(0)
þ tR
tBrN

lD

ds

@r�E
@t

n

NA(0)(1þ I)
þ tRn

tBrN

2

664

3

775uPV,
(3:59)

with J0 being the boundary value of the current density and EPV ¼ LPV=mtR a

characteristic photovoltaic field that is measured across an open-circuited

crystal. In photovoltaic crystals, typical values of EPV ’ 10---50 kVcm�1.

We can nowmake some useful further approximations by taking into account

that Eqs. (3.58) and (3.59) depend on the ratios tRn=tB and lD=ds. Despite the

large spread of tR=tB, (varying from 10�3 in sillenites to 10�12 in lithium

niobate), the presence of n makes the quotient tRn=tB be typically around

10�5 � 10�7 for most PR materials. On the other hand, for spatial beams with

characteristic widths ds & 10mm, the ratio lD=ds & 10�2 is also satisfied. There-

fore, Eq. (3.58) can be cast in the approximate form

n

NA(0)
¼

tR n(1þ I) 1� lD

rNds
r � E

� �
� lD

ds

@r � E
@t

� �

tB 1þ lD
ds
r � E

h i : (3:60)

Regarding Eq. (3.59), it is necessary to specify an experimental configuration

to determine self-consistently the value of J0. In the overwhelming majority of

Gunter / Photorefractive Materials and their Applications 1 chap03 Final Proof page 68 28.10.2005 9:03pm
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experiments involving the propagation of spatial light beams in PR materials,

the experimental setup includes the scheme shown in Fig. 3.11. Denoting by V

the terminal voltage (constant or time-dependent) between two electrodes

placed at opposite faces of a crystal of thickness L, one has the line integral

V (t)

ELds
¼ �

Z þElectrode

�Electrode

E � dl, (3:61)

where l denotes the normalized line element. In what follows, we shall briefly

discuss the most often encountered scenarios.

3.15.1 Steady-State Solution

In steady-state under a time-constant voltage, the situation becomes simpler

and it is possible to obtain, from Eqs. (3.59) and (3.60), a single nonlinear

equation for the space-charge field

E ¼ J 0 � lD

ds
r (1þ I)

1� lD

rNds
r � E�

1þ lD

ds
r � E

2

664

3

775

2

664

9
>>=

>>;

½1þ lD

ds
r � E

�

(1þ I) 1� lD

rNds
r � E

� �

8
>><

>>:

�EPV

EL

1þ lD

ds
r � E

� �
uPV, (3:62)

where J 0 ¼ tBJ0=emNA(0)ELtRn.

V

L

ds

x

z

Light
beam

Electrodes

Figure 3.11. Simplified diagram of the experimental setup to study the propagation of

a localized light beam through a PR crystal.
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With appropriate approximations, Eq. (3.62) allows one to calculate

E ¼ E(I). Let us first consider the one dimensional situation.

One Transverse Dimension

Let x be the only transverse coordinate and dx the corresponding characteristic

spatial length of the beam. Assuming dx � L, one can consider that away from

the central beam spot the light intensity approaches asymptotically a constant

value I1. On the other hand, the field in this region also becomes independent

of x so that E ! E0 ¼ �V=ELL and @E=@x ¼ 0. With these conditions and

after some algebra, one finds from Eq. (3.62)

(1þ I1)E0 ¼ J 0 � (uPV � ux) EPVEL (1þ I1), (3:63)

which allows us to obtain J 0. For simplicity, let us ignore the photovoltaic

contribution in Eqs. (3.62) and (3.63). Upon substitution of J 0 into Eq. (3.62),

one arrives at

E ¼
(1þ I1) 1þ lD

dx

@E
@x

� �
E0

(1þ I) 1� lD

rNdx

@E
@x

� � � lD

dx

@

@x
ln

(1þ I) 1� lD

rNdx

@E
@x

� �

1þ lD

dx

@E
@x

2

664

3

775: (3:64)

In the above equation, one can distinguish the drift and diffusion contribu-

tions, represented by the first and the second terms, respectively. These regimes

are strongly dependent not only on the particular material but on the boundary

conditions: Open- or short-circuit conditions, applied external voltages, and so

on. Diffusion is always present, but its effect on the global electric field profile

is usually small under strong bias. Let us mention the main features of the

particular regimes where diffusion and drift are the dominant transport mech-

anisms. To that end, the full Eq. (3.64) is solved numerically and we assume, for

illustrative purposes, that the light intensity profile is described by a Gaussian

beam of the form I(x) ¼ I1 þ I0 exp (� 4x2=d2
x), encompassing bright and dark

Gaussian beams when I1 ¼ 0 and I0 ¼ �I1, respectively.

a) Diffusion Regime

In the diffusion regime, Eq. (3.64) reduces to

E ¼ � lD

dx

@ ln (1þ I)

@x
þ lD

dx

� �2 (1þ 1

rN
)
@2E
@x2

1þ lD

dx

@E
@x

� �
1� lD

rNdx

@E
@x

� � : (3:65)
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For the usual parameters found in many PR materials (lD=dx � 1 and

rN > 1), the field profile can be described accurately by

E ’ � lD

dx

@ ln (1þ I)

@x
: (3:66)

This nonlinear gradient dependence of the electric field with the light inten-

sity is caused by the symmetric redistribution of acceptors, described by Pois-

son equation. Figure 3.12 depicts the profiles of E(x) induced by bright and

dark Gaussian beams. If lD=dx becomes comparable to 1, the strong diffusion

regime appears: The field exhibits a stronger steepening at the origin. The

influence of rN on the field profiles is only noticeable when rN < 1 and reduces

the maximum amplitude of E.
b) Drift Regime

When a sufficiently strong field is applied, one expects that the tendency of

carriers to move symmetrically owing to diffusion will be overcome by the the

drift component of the current. Figure 3.13 shows representative profiles of the

electric field induced by bright and dark Gaussian beams for E0lD=dx � 1 and

rN > 1. One can see that E essentially follows a local dependence on the light

beam intensity I(x). This local behavior appears because the contribution of the

terms lD
dx

@E
@x (just as it happens in the diffusion regime for the usual parameters

found in many materials) is small. This means that the electric field is given

approximately by

E ’ E0

(1þ I1)

(1þ I)
� lD

dx

@ ln (1þ I)

@x
, (3:67)

where the first term corresponds to the well-known case of a saturable non-

linearity [75,77], with the diffusion term being a small correction.
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Figure 3.12. Diffusion regime. Normalized electric field E(x) induced by (a) a bright

and (b) a dark Gaussian beam for lD=dx ¼ 0:01 and rN ¼ 100. The numbers displayed

correspond to the values of I0 and I1, respectively.
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Two Transverse Dimensions

We have seen that for the usual parameters encountered in most nonphotovol-

taic PR materials, the light-induced electric field in one transverse dimension

can be approximately represented as the sum of two independent contributions:

A local drift term and a gradient diffusion component. Higher dimensionality

introduces one key ingredient: anisotropy [94–100]. This is so because the

applied field is oriented along one specific direction and so the response

depends on the relative orientation of that direction with respect to the crystal

axis.

For convenience, let us introduce the electrostatic potential f through

E ¼ E0 �rf. The direction of the applied field E0 ¼ E0ux is chosen along

the x-axis. Therefore, we will be interested in the x-component of the light-

induced electric field E, E(x) � E, and disregard the y-component whenever the

associated value of the electro-optic coefficient to this direction is much

smaller.

We focus our approach on the experimental configurations encountered in

applications of (2þ 1)D PR screening solitons. This implies that the drift

mechanism is the relevant contribution to charge transport, whereas diffusion

is often small. Ferroelectric strontium barium niobate has been the most widely

used crystal in applications to observe bright [96, 101–103] and dark [104]

(2þ 1)D needle solitons because it fulfills such requirements. Typical values

of the external field applied to generate needles, having characteristic widths ds
in the range ds ’ 10� 30mm, vary between 1� 2 kV=cm. In the case of bulk

strontium barium niobate crystals, the characteristic Debye length lD and field

EL are of the order of lD ’ 0:3mm and EL ’ 1 kV=cm at room temperature.

Hence the ratio E0lD=ds ’ 0:03 � 1. We may then neglect the terms lD
ds
r � E in

Eq. (3.62) that are associated to the spatial modulation of NA. Obviously, this

implies that the values of the normalized light intensity I cannot be taken

arbitrarily large in principle.
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Figure 3.13. Drift regime. Normalized electric field E(x) induced by (a) a bright and (b)

a dark Gaussian beam with E0lD=dx ¼ 0:01. The remaining parameters are as in

Fig. 3.12.
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Taking into account the above assumptions, Eq. (3.62) reduces to

r2
?fþr? ln (1þ I) � r?f� E0 � r ln (1þ I) ¼

¼ lD

ds
r2

? ln (1þ I)þ [r? ln (1þ I)]2
� �� (3:68)

Equation (3.68) has been employed in several numerical studies of (2þ 1)D

propagation of solitons [89, 96, 98, 105–108] and it has shown a remarkable

agreement with experiments [16, 89, 96, 98, 109] performed in cerium-doped

SBN: 60. Notice that, in the one-dimensional case, Eq. (3.68) leads to an electric

field represented by Eq. (3.67).

In order to show the new features arising in higher dimensionality, let us

consider for simplicity a circular flat-top hat beam of radius R defined as

I(r, w) ¼ I0 if r #R,

I1 if r > R.

�
(3:69)

For this particular case, the solution of Eq. (3.68) leads to [100]

E(r, w) ¼

2(1þ I1)E0

2þ I0 þ I1
if r le R,

E0 þ (I0 � I1)E0

2þ I0 þ I1

R2 cos 2w

r2
if r > R.

8
>>>><

>>>>:

(3:70)

Equation (3.70), illustrated in Fig. 3.14, exhibits several interesting features.

The constant value of E inside the beam perimeter differs from that obtained by

using Eq. (3.67). That is, one expects a fundamentally different type of saturable

dependence with the light intensity that deviates from the model E / (1þ I)�1.

Outside the beam perimeter, other features inherent of the higher spatial

dimension arise as well: The electric field decays with the distance following a
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 /ε
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Figure 3.14. Electric field created by a circular flat-top light beam (I0 ¼ 1, I1 ¼ 0): (a)

two-dimensional distribution, (b) profiles along the x-axis (black solid curve), y-axis

(dotted curve). The gray curve in (b) corresponds to the local case given by Eq. (3.67).
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dependence of the form E / r�2 (nonlocality), and it is a function of the

azimuthal angle w (anisotropy). One may notice that the profile in Fig. 3.14

very closely resembles the experimental results depicted in Fig. 3.2. These

nonlocal and anisotropic properties cannot be predicted by lifting the one-

dimensional form given by Eq. (3.67) to two transverse dimensions. For a

more detailed description of the form of the electric field in two transverse

dimensions, see Ref. [99], where analytical solutions of Eq. (3.68), in the case of

circularly symmetric beams, were found.

3.16 Transient and Quasi-Steady-State Effects

In the rest of the chapter, we touch on time-dependent and quasi-steady state

situations. To simplify our analysis, we concentrate on a one dimensional case.

The temporal response of the electric field can be obtained by combining

Eqs. (3.59) and (3.60). Here it is implicitly assumed that the beam intensity

varies slowly in time in comparison with the temporal evolution of the electric

field. Following a similar procedure as in steady-state conditions, the boundary

condition for J 0(t) is

J0(t) ¼ tRn

tB
(1þ I1)E0 þ @E0

@t
þ E(x)

PV(I1 þ IB)

� �
, (3:71)

where E(x)
PV ¼ (uPV � ux)EPV. Thus, the resulting equation for E is

@E
@t

þ E þ lD

dx

@

@x

� � (1þ I) 1� lD

rNdx

@E
@x

� �
� lD

ndx

@2E
@t@x

1þ lD

dx

@E
@x

2
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3
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þ E(x)
PV 1� lD

rNdx

@E
@x

� �
(1þ I) ¼ @E0

@t
þ (1þ I1)E0 þ E(x)

PV(1þ I1)�

(3:72)

The left-hand side terms of Eq. (3.72) represent the displacement current, the

drift, diffusion, and photovoltaic contributions, respectively, whereas those on

the right-hand side are the corresponding boundary values. An accurate esti-

mate of the boundary value of the electric field, E0, can be obtained if the

characteristic length dx of transverse variation of the beam is much smaller than

the crystal thickness L. Then, from Eq. (3.61), it follows that E0 is given

approximately by

E0(t) ¼ �V (t)

ELL
, (3:73)

where V (t) is the voltage between the two electrodes that are in contact with the

opposite faces of the crystal (perpendicular to the x-axis).

Gunter / Photorefractive Materials and their Applications 1 chap03 Final Proof page 74 28.10.2005 9:03pm
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3.16.1 Transient Effects

Let us first consider the situation where E0 is independent of time (this implies

by Eq. (3.71) that J 0(t) is a constant). In order to find the main features of the

temporal dynamics of the electric field, we use analogous simplifying assump-

tions as under steady-state conditions. When the ratios E0lD=dx, EPVlD=dx � 1

(together with rN > 1), it is possible to neglect the derivative terms

j lD
dx

@E
@x j, j lD

rNdx

@E
@x j � 1. An additional approximation consists of neglecting the

term lD
ndx

@2E
@t@x as compared to 1þ I . This last approximation is only justified for

ferroelectric crystals but not for sillenites and semiconductors since the param-

eter n � 1 for the latter. The smallness of this parameter plays an important

role in the electric field distribution of sillenites and semiconductors, and we

defer its proper inclusion into the material equation when analyzing quasi-

steady situations.

Therefore, taking into account the above-mentioned approximations, Eq.

(3.72) reduces to

@E
@t

þ (1þ I)E þ lD

dx

@(1þ I)

@x
þ E(x)

PV(I � I1) ¼ (1þ I1)E0, (3:74)

whose solution is given by

E(x, t) ¼ E0

(1þ I1)

(1þ I)
� lD

dx

@ ln (1þ I)

@x
þ E(x)

PV

(I1 � I)

(1þ I)

� �
1� e�(1þI)t
� �

þ E(x, 0)e�(1þI)t, (3:75)

where E(x, 0) denotes the initial distribution of the electric field. Eq. (3.75)

generalizes Eq. (3.67) to the temporal domain and includes the photovoltaic

contribution. Notice also that the exponential factors depend on the local

intensity I. This implies that the electric field build-up time constant is a

function of the transverse spatial coordinate and is, in particular, shorter

where the optical intensity is larger. A more detailed account of transient effects

under constant applied fields can be found in Ref. [110].

3.16.2 Applied ac Fields

As already envisaged in Section 3.11.2, the application of ac fields during PR

recording is a well-known method to markedly enhance the space-charge field

and optical gain in fast materials such as sillenites (Bi12SiO20, Bi12TiO20,

Bi12GeO20) and semiconductors (GaAs, CdTe, GaP, etc) [43,44,111]. We have

shown there that under low contrast illumination, the PR nonlinearity is of

gradient type, i.e., the induced space-charge field is proportional to the deriva-

tive of the light intensity profile. As mentioned in Section 3.12, high contrast

illumination gives rise to some peculiar features in the PR recording as multiple
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harmonics, cross-talk, and instabilities such as generation of subharmonics

[57,59,112]. For localized beams [26], the main effects rely upon the occurrence

of very strong and narrow peaks (so-called singularities) of the light-induced

charge density coupled to abrupt changes (discontinuities) in the space-charge

field distribution. This intriguing behavior was qualitatively in accordance with

previous experiments performed on Bi12SiO20 in which there was some indica-

tion of the existence of high electric field gradients near to the peak of the light

intensity [17].

Let us consider an optically isotropic bulk crystal subjected to an strong

applied ac field E0(t) ¼ E0p(t) parallel to the x-axis, with p(t) ¼ �1 a square-

wave function of period T0 having a temporal average hp(t)iT0
¼ 0. The main

reason to employ an applied ac field having square-wave temporal form instead

of other profiles (such as e.g., sinusoidal form or an exponential-edge form) is

based on the mentioned fact that for periodic gratings, it provides the max-

imum enhancement for the imaginary component of the space-charge field

(which governs the energy transfer between interfering plane waves), for a

given peak voltage [44].

Two important characteristic length scales arise in our problem, the so-called

drift length l0 ¼ mtRE0 and the saturation length ls ¼ «0«E0=eNA. These two

characteristic scales are related to parameter n as the ratio n ¼ ls=l0, and satisfy

the inequality ls=l0910�2. Moreover, for sillenites we have the condition rN0103

and for semiconductors rN010, and together with the fact that lD=dx � 1, we

may neglect all terms lD
rNdx

@E
@x. Now, in ac experiments, the usual values of the

applied field are within the rangeE0 � 10� 40 kV=cm, so the inequalityE0 � EL

is always fulfilled, since EL ’ 2� 3 kV=cm for most sillenites and semiconduct-

ors. This implies that the diffusion contribution can also be neglected. In the

approach presented henceforth, we concentrate on bright beams.

Let us now set E ¼ ES þ EF, where ES and EF are the slow and fast dimen-

sionless components of the space-charge field, respectively. By averaging over

the fast oscillations of the ac field, i.e., assuming that the period T0 of the ac

field is much smaller than tB, then, in the leading approximation in T0=tB, the
following averages hold true hEF(x, t)iT0

¼ 0, hES(x, t)iT0
¼ ES(x), and

EFj(x, t)j � jES(x, t)j. Taking into account all the above conditions, the gov-

erning material equation in the quasi-steady state [26] reads as

@

@x

(1þ I)(1� E2
S)

1þ ls

dx

@ES

@x

2

664

3

775þ dx

l0
(1þ I)ES ¼ 0: (3:76)

Eq. (3.76) contains two nonlinear terms. The term E2
S originates from the

drift contribution, whereas the term ls
dx

@ES

@x in the denominator comes from

the recombination product in the band transport equation and describes the

saturation of aceptors. It can be larger than 1, but it is assumed to be much

smaller than rN . In other words, Eq. (3.76) includes situations where the modu-

lation of acceptors dNA ¼ NA �NA(0) is locally comparable to or even larger
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than its average value (although it remains much smaller than N). When
ls
dx

@ES
@x &1, a strong localization of the charge density is produced (a singularity).

The narrow central peak and the broad symmetric profile in Fig. 3.15(a) illus-

trate the relationship between the charge density and symmetric/asymmetric

intensity distributions. The size of the charge singularity is dramatically smaller

than the beamwidth.We see that the singularity is pinned exactly to the intensity

maximum only under symmetric illumination. The central part of the charge

distribution induced by a Gaussian beam is depicted in Fig. 3.15(b) for several

values of I0. The profile of the charge density exhibits a sech-type form and its

size is of the order of ls. By Gauss’s Law, these charge density singularities are

coupled to an strong steepening of the electric field placed at the maximum of the

charge density distribution (formation of discontinuities, see Ref. [26]). The

existence of such strong gradients in the field distribution (resembling shock

waves) has a striking consequence on beam propagation and leads, under

suitable conditions, to the formation and propagation of stable spatial

solitons [18].

The generation of charge singularities with a characteristic width of the order

of ls � 0:5mm is a striking feature of the ac technique attractive for semicon-

ductor and optical applications. This feature goes, in fact, beyond the scope of

the PR effect because it has nothing to do with the linear electro-optic effect.

For PR applications based on weak optical nonlinearities (like displacement

sensing [111,113–115]), the steepening of the field profile is a positive effect

because it increases the sensitivity of measurements.

3.17 Conclusions

Photorefractivity constitutes a rather special class of nonlinearity since, at

variance with many other optical nonlinearities, it cannot be described by a

nonlinear susceptibility. It occurs at low light-intensity levels and offers an

−0.4 −0.2 0 0.2 0.4
x/dx

0

1

2

δN
A
/N

A
(0

),
I(

x)

(a)

δNAδNA

−2 −1 0 1 2
x/ls

0

1

2

δN
A
/N

A
(0

)

(b)

dx/l0=0.6
ls/l0=7×10−3

I0=1

I0=2

I0=5

I0=10

Figure 3.15. (a) Correspondence between space charge dNA ¼ NA �NA(0) and inten-

sity I(x) profiles (a.u.). The dotted curves refer to an asymmetric light profile. (b) Core of

the charge singularity for different peak intensities.
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excellent scenario for the investigation of a rich variety of nonlinear physical

processes. The main purpose of this chapter has been to show that the key

ingredient in almost all photorefractive phenomena is the development of an

electric space-charge field, via a non-instantaneous light-induced charge trans-

port mechanism. The formation of this field has been described within the

standard band transport model.

Although the basic ‘‘standard’’ model for photorefraction is well established,

the area has markedly evolved in several directions during the last decades. The

model has been thoroughly investigated beyond the linear (low-contrast)

approximation and the consequences of the intrinsic nonlinearities in the rate

equations have been largely exploited (high-contrast and nonlinear coupling

effects). Extensions of the model to describe new physical situations (e.g.,

several traps and active centers) have been developed. Finally, 2D and 3D

geometries, posing real theoretical challenges, have been analyzed in connec-

tion with beam propagation phenomena and soliton physics.

Further developments may be expected from novel experimental situations,

such as new materials, high light intensities, short pulses, 2D geometries (op-

tical waveguides and semiconductor nanostructures), composite media, and

others. Moreover, the coalescence of photorefractivity with other emerging

areas exhibiting new linear and nonlinear (and even genuine quantum) phe-

nomena could eventually open the path to exciting theoretical and experimental

advances in the realm of Optics.
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4.1 Introduction

Most photorefractive materials treated in this book trilogy are anisotropic in

nature. The anisotropies may involve the electro-optic and dielectric response,

but also the transport and photoexcitation properties. In crystals, the perturb-

ation induced by the locally periodic illumination fringes leads to a complex

mechanical response of the material, which, on its turn, influences the dielectric

and electro-optic responses being observed. On the other hand, the resulting

space-charge field holograms can also be significantly affected by an anisotropy

of the photoexcitation properties with respect to light polarization. Two-wave

mixing amplification is influenced by such effects. This chapter summarizes

the above mentioned effects as well as the main results of a coupled wave

analysis of light diffraction at anisotropic volume phase and absorption

gratings in anisotropic media, which extend the isotropic coupled wave theory

of Kogelnik [1].

4.2 Basic Considerations

Space-charge holograms in photorefractive materials are characterized by an

inhomogeneous charge density distribution in response to an inhomogeneous

distribution of photoexcited charges that are mobile. The latter inhomogeneous

distribution may be induced by an inhomogeneous light intensity of illumin-

ation. However, since in dichroic materials the photoexcitation cross-section

can depend on the light polarization, in general, the photoexcited charge
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density and the light intensity do not possess the same degree of modulation.

Further, after photoexcitation, a carrier might have a different mobility in

various directions. Therefore the grating formation time is influenced by the

anisotropy of the carrier mobility tensor in the given material. The charge

density distribution gives rise to a spatially modulated space-charge electric

field and the functional dependence involves an effective dielectric constant. In

anisotropic materials, the latter depends strongly on the direction of the charge

density gradients (grating vector direction) and on mechanical deformation

fields, which in their turn, depend on these directions again. Finally, in elec-

tro-optic materials, the resulting electric field produces a change of the optical

properties that is proportional to an effective electro-optical coefficient. Unlike

often assumed, the latter quantity cannot be determined by a simple projection

of the (usually anisotropic) unclamped electro-optic tensor along the grating

direction, but is influenced by the above mentioned mechanical deformations.

As evident from the above arguments, the formation of space-charge holo-

grams is a complex process that involves a large amount of material properties,

the vastmajority of which are or can be anisotropic, that is tensorial in nature. As

we will try to summarize in this section, the treatment of space-charge hologram

formation and its optical response must take into account all these effects.

4.2.1 Photoexcitation

In doped photorefractive crystals, absorption is in general an extrinsic property

of the material. It is not uncommon that the absorption constant differ for

different polarization of the incident photons. Such a dichroism is expected to

influence the formation of photorefractive gratings [2, 3]. For photorefraction,

even more fundamental than the absorption constant is the probability for a

carrier to be photoexcited to the conduction or valence band. It has been shown

that if this photoexcitation process depends on light polarization, the complex

amplitude Esc,0 of the modulated photoinduced internal electric field is being

strongly influenced and can differ significantly from what would be expected on

the base of the light intensity distribution [4]. This is because it is the modula-

tion m of the photoexcited free carriers and not the light intensity modulation

that drives the formation of the space-charge field.

Let us consider a signal (S) and a pump wave (P) in the form of plane waves.

The total complex amplitude of the electric field vector E resulting from their

coherent superposition may be written as

E(r) ¼ Es(r)êese
iks : r þ Ep(r)êepe

ikp : r, (4:1)

where r is the position vector, êes and êep are unit vectors, and Es and Ep are the

scalar electric field amplitudes. In general, the wavevectors ks and kp can be

assumed to be complex vectors with the imaginary part that possibly has a

different direction from the real part [5].
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ks ¼ ks,r þ iks, i (4:2a)

kp ¼ kp,r þ ikp, i: (4:2b)

The real part, as usual, is related to the wavefront propagation direction for an

eigenpolarization in the material, while the imaginary part is related to the

linear absorption experienced by the waves, for instance, ks,i � �s�̂� and

kp,i � �p�̂�. In this case, it is assumed that the waves S and P enter the absorbing

material through the same flat surface characterized by the normal unit vector ẑz
and the amplitude absorption parameters as and ap are given along this

direction [6]. Note that the magnitude of these absorption parameters depends

on the direction of the real parts of the wavevectors ks and kp, explicit expres-

sions for as and ap will be given in Section 4.3.2. It is important to notice that,

in the sense given above, the complex amplitudes Es(r) and Ep(r) are cleaned

from the absorption contribution. This means that, even in presence of absorp-

tion, they are always constant in absence of coupling between the waves or of

other nonlinear effects.

The interference of the two waves expressed by Eq. (4.1) leads to a plane-

wave grating associated to the grating vector K ¼ ks,r � kp,r. The driving term

for the photorefractive charge redistribution is given by what we may call the

‘‘usefully dissipated energy’’ w; that is, the optical energy that is locally dissi-

pated for the generation of mobile charge carriers. It is defined as

w(r) ¼ 1

2
«0[E(r) � � � E�(r)], (4:3)

where «0 is the electric field-constant. The real second rank tensor � describes

the anisotropy of the photoexcitation process and is related to the absorptive

part of the dielectric tensor, i.e., to the symmetric imaginary part «00 of the

complex dielectric tensor « ¼ «0 þ i«00 of the material. It is defined as

�kl � fkl(«
00)kl , (4:4)

where no summing over equal indices is performed. The quantities fkl describe

the light polarization dependence of the quantum efficiency, that is, the prob-

ability that an absorbed photon of given polarization produces a photoexcited

mobile carrier. With the combined wave (4.1) the ‘‘usefully dissipated energy’’

takes the form

w(r) ¼ w0Re[1þm exp (iK � r)]: (4:5)

The photorefractive space-charge electric field vector resulting from this modu-

lation points in direction of the unit grating vector K̂K � K=jK j � K=K and

reads

Esc(r) ¼ K̂KEsc,0 exp (iK � r)] (4:6)
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Its amplitude Esc, 0 is determined by the (complex) modulation index m of w

(4.5), which is expressed by [6]

m(r) ¼ 2Es(r)E
�
p(r)[êes � � � êep]e�(as þ ap)ẑz_

r

jEp(r)j2[êep � � � êep]e�2ap ẑz�r þ jEs(r)j2[êes � � � êes]e�2as ẑz�r
: (4:7)

If the tensor � is anisotropic, as might be expected in dichroic materials, the

above modulation index (4.7) can be strongly different from the modulation

amplitude of the light intensity fringes. As will be discussed in Section 4.4, this

fact has important consequences for the strength of the resulting refractive

index gratings as well as for the magnitude of the two-wave mixing gain

coefficients. Examples will be given in Section 4.5.

4.2.2 Mechanical Response to Modulated Electric Field

As pointed out by several researchers [7, 8, 9, 10], the magnitude of the effective

dielectric constant and effective electro-optic coefficient being active in a par-

ticular photorefractive experiment does not depend only on the primary tensor

properties, but is also influenced by the mechanical state of the crystal. Let us

consider specifically the case where the photorefractive medium is a piezoelec-

tric crystal. Its response to external electrical and mechanical fields is described

by the relationships [11]

Tij ¼ CE
ijklSkl � ekijEk, (4:8)

and

Di ¼ eijkSjk þ «0«
S
ijEj: (4:9)

Here the Einstein summation convention over equal indices is used, and Tij

is the elastic stress tensor, CE
ijkl is the elastic stiffness tensor at constant

electric field, eijk is the piezoelectric stress tensor, «Sij is the clamped static

dielectric tensor, Ej is the electric field vector, Di is the electric displacement

vector, and

Skl ¼ 1

2

@uk
@xl

þ @ul
@xk

� �
(4:10)

is the strain tensor corresponding to the symmetrized part of the displacement

gradient matrix @ul=@xk.
The crystal response can be easily calculated in the case of a homogeneous

field E. In contrast, for a photorefractive periodic electric field of the form (4.6),

the mechanical response is more complex. In order to determine the effective

dielectric constant and electro-optic coefficient, it is therefore necessary to
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calculate the modulated displacement vector field u(r) for this situation. Since

the piezoelectric effect is linear, u must have the form

u(r) ¼ u0Re[exp i(K � r� p=2)], (4:11)

where the displacement amplitude vector u0 in general differs from the direction

of the normalized grating vector K̂K with Cartesian components K̂Ki. In steady-

state, the equation of motion for a crystal volume element leads to the equilib-

rium condition [11]

@Tij

@xj
¼ 0 ¼ CE

ijkl

@2uk(r)

@xj@xl
� ekij

@Esc, k(r)

@xj
, (4:12)

where uk(r) and Esc, k(r) are the k-th cartesian component of u(r) and Esc(r),

respectively. Eq. (4.12) can be rewritten as

CE
ijklK̂KjK̂Klu0, k ¼ Esc,0

K
ekijK̂KkK̂Kj, (4:13)

or in the form Aiku0, k ¼ Bi(Esc, 0=K), which allows us to write the result as

u0, k ¼ A�1
ki Bi(Esc, 0=K): (4:14)

The matrix Aik and the vector Bi are defined as [9],

Aik � CE
ijklK̂KjK̂Kl , (4:15)

Bi � ekijK̂KkK̂Kj: (4:16)

Fig. 4.1 shows schematically the periodic crystal deformations in the case of a

crystal with point group symmetry 4mm such as BaTiO3 at room temperature.

The partial clamping of some deformation modes leads to complex displace-

ment fields (see, for instance, case (d)).

4.2.3 Effective Static Dielectric Constant

The effective scalar static dielectric constant «eff that acts in a photorefractive

experiment is the quantity connecting the space-charge field amplitude Esc,0 to

the modulation amplitude of the charge density rsc, 0 by means of the Gauss

equation r �D ¼ r. By using this equation, the dielectric relationship (4.9) and

the displacement field u determined above (4.14), one obtains [9]

«eff �
rsc, 0

«0KEsc, 0
¼ K̂KiK̂Kj «Sij þ

1

«0
eijkA

�1
kl Bl

� �
: (4:17)

The quantity in the square bracket represents a new second-rank tensor

whose components depend on the direction K̂K of the grating vector. In general,
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even in the principal system of coordinates of the crystal, this tensor is no

longer diagonal. It differs significantly from the unclamped (free) dielectric

tensor «Tij measured at constant stress. The latter can be expressed as [11]

«Tij ¼ «Sij þ
1

«0
eilmdjlm (4:18)

by using (4.9) and the relationship Slm ¼ djlmEj for the inverse piezoeffect, with

djlm being the inverse piezoelectric tensor. Examples visualizing the consequence

of Eq. (4.17) will be given in Section 4.5.

4.2.4 Electro-Optic Response to Electric Field Grating

Let us first consider a spatially homogeneous electric field E(r, t) ¼ E0(t)

applied to an electro-optic crystal. In this case, the change of (t)he optical

indicatrix due to the linear electro-optic effect is given by the well-known

relationship

a

c

+ −

Eo ||c

a

c

K

a

c
(c)

(a) (b)

(d)

a

c

K

Figure 4.1. Elastic deformations of an ideal crystal belonging to the 4mm point group

symmetry. (a) undisturbed crystal; (b) homogeneous strain induced by homogeneous

electric field along the 4-fold c-axis; (c) periodic dilation/compression under the effect of

a periodic space-charge field with grating K-vector k c-axis. (d) same as (c), but for a K-

vector in the ac plane, the deformations are a combination of dilation/compression and

shear deformations. The space-charge field in cases (c) and (d) is assumed to interest

only the central part of the crystal. The deformation amplitudes are highly exaggerated.
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D
1

n2

� �

ij

¼ rijkEk, (4:19)

where the third-rank electro-optic tensor rijk depends on the frequency v of the

applied field.

For a spatially inhomogeneous deformation (4.11) of the kind resulting in the

presence of a periodic space-charge grating of the type (4.6) the situation is

slightly more involved. The change of the indicatrix is then expressed as

D
1

n2

� �

ij

¼ rSijkEk þ p
0E
ijkl

@uk
@xl

, (4:20)

where rSijk is the clamped electro-optic tensor that contains the electronic as well

as the optical phonon contributions, and p
0E
ijkl is the modified elasto-optic tensor

at constant electric field. The latter tensor contains also the roto-optic contri-

butions and has no symmetry upon interchange of the last two indices [12]. By

inserting (4.14) and the space-charge field amplitude Esc ¼ Esc, 0K̂K in the above

equation, after a small index rearrangement, one obtains [9]

D
1

n2

� �

ij

¼ Esc, 0 rSijk þ p
0E
ijlkA

�1
lm Bm

h i
K̂Kk: (4:21)

The expression in the square brackets represents an effective third-rank

electro-optic tensor

r
eff
ijk � rSijk þ p

0E
ijlkA

�1
lm Bm (4:22)

and differs considerably from the expression

rTijk � rSijk þ pEijlmd
T
klm (4:23)

for the unclamped electro-optic tensor rTijk calculated in analogy to (4.18) by

starting from (4.20) and assuming a homogeneous electric field. Note that in

the latter case, the tensor p
0E
ijlk is replaced by the conventional elasto-optic

(Pockels) tensor pEijlk � pEijkl because for a homogeneous field, roto-optic con-

tributions do not lead to a change in refractive index in a free crystal.

Due to the symmetry breaking brought about by the periodic field in direc-

tion K̂K and the resulting mechanical response, the tensor r
eff

ijk may possess a

lower symmetry than rSijk, which is in full analogy with the above discussion in

relation to the Eq (4.17) for the effective dielectric constant. The elastic,

piezoelectric, and elasto-optic contributions contained in the second term on

the right-hand side of (4.22) can have a dramatic influence on the photorefrac-

tive nonlinearity in several circumstances. Therefore, the full knowledge of the

corresponding tensors CE
ijkl , eijk and p

0E
ijlk is required for the correct evaluation

of the electro-optic response.
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Finally, we want to give an expression for the scalar electro-optic coefficient

reff , which is active in a specific photorefractive geometry. This scalar coeffi-

cient enters the expressions describing light diffraction and two-wave mixing

that will be presented in Sections 4.3 and 4.4. Let us consider a grating directed

along the vector K̂K and the interaction of a pump wave P polarized along the

unit vector d̂d
P

(corresponding to the direction of the optical electric dis-

placement vector) with a signal wave S polarized along d̂d
S
. The scalar effective

electro-optic coefficient is then expressed by

reff � d̂d
S

i � r
eff

ijk K̂Kk

� �
� d̂dP

j : (4:24)

Note that the expression in the brackets can also be summarized into an

effective (photorefractive) second-rank electro-optic tensor, r
eff
ij � r

eff

ijk K̂Kk [13].

The use of the scalar quantity (4.24) will become clear later.

4.2.5 Mobility Anisotropy

Since the Maxwell dielectric time tdie is inversely proportional to the carrier

drift mobility, the latter is one of the principal quantities influencing the build-

up time of the photorefractive space-charge grating. In general, in anisotropic

materials, the carrier drift velocity vector y is not necessarily parallel to the

electric field E driving the charges and the two quantities are related by a

tensorial drift mobility y ¼ m � E. In the bulk of a photorefractive grating,

any charge movement in a direction perpendicular to the grating vector K̂K

does not lead to charge separation because the light energy is homogeneous

along such directions. Therefore, one is interested only in the component of the

drift velocity parallel to the modulated field Esc, i.e., parallel to K̂K . The scalar

(parallel) effective drift mobility mk can then be easily calculated as

mk ¼ K̂K � m � K̂K : (4:25)

For a specific geometry where the grating wavevector is in the ac- or bc-plane of

a crystal with a symmetry higher than orthorhomic and makes an angle u with

the c-axis, the above relationship can be rewritten as

mk ¼ mc( cos
2 uþ ma, b

mc

sin2 u), (4:26)

where ma, b, c are the principal mobilities along the three crystallographic

axes.

It turns out that dynamic photorefractive holographic experiments are a very

effective method for the contact-free determination of the ratio of mobilities

and the shape of the mobility tensor, as performed for instance in [14, 15, 16]

for BaTiO3 and KNbO3. Note also that, while the absolute values of the

effectively observed mobility may be influenced by trapping effects and the
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observation time scale, the ratio between the mobility in different directions

is not.

4.3 Light Diffraction at Thick Anisotropic Phase
and Absorption Gratings

Before discussing the consequences of material anisotropies on photorefractive

two-wave mixing, we summarize in this section the main features of a coupled

wave model applying to anisotropic gratings in anisotropic materials [6], which

extends the results of the coupled-wave theory of Kogelnik [1]. Note that this

model does not apply only to photorefractive gratings, but is relevant for any

holographic materials having strong birefringence and/or containing gratings

with strongly anisotropic properties, such as organic crystals [17], liquid crys-

tals [18, 19], or polymer dispersed liquid crystals [20, 21, 22].

4.3.1 Coupled-Wave Equations

Let us consider a plane phase and/or amplitude grating in the form of a slab of

thickness d. By whatever mechanism it might have been recorded, following

Gaylord and Moharam [23], this grating (hologram) is considered to be thick if

the following two conditions are fulfilled simultaneously:

Q0 � K2ld

2pn cos g
> 1 (4:27)

and

r � K2l2

(2p)2ns
$ 10, (4:28)

where s ¼ Dn for dielectric gratings and s ¼ Dal=2p for absorption gratings.

In our specific case of anisotropic materials, the (pseudo-scalar) refractive index

change Dn and the absorption modulation Da will be defined later. In (4.27)

and (4.28), l is the vacuum wavelength, n is the average refractive index of the

medium, and g is the angle between the incident wave and the fringe planes as

measured inside the medium.

As shown by Kogelnik [1], the diffraction properties of thick gratings may be

calculated by considering the propagation of only two plane waves P and S.

Since we consider the general case of anisotropic materials, the waves P and S

should represent eigenwaves of the medium and the coherent superposition of

their electric fields was already given in Eq. (4.1). The combined wave expressed

by (4.1) has to fulfill the time independent vector wave equation

r� (r� E)� k20e � E ¼ 0, (4:29)
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where « ¼ «r þ i«i is the complex second rank dielectric tensor that includes the

effects of the material refractive index and absorption [24], and k0 ¼ 2p=l is the

free space wavenumber.

We treat a general case of plane hologram where a phase and an amplitude

grating (with common grating vector) may coexist and are mutually phase

shifted by a phase angle f. The complex dielectric tensor « can then be written as

« ¼ [«0r þ «1r cos (K � r)]þ i[«0i þ «1i cos (K � rþ f)], (4:30)

where the superscripts 0 and 1 denote the average value and the amplitude of

the modulated component, respectively. The grating vector K can have an

arbitrary direction with respect to the geometrical or crystallographic axes of

the anisotropic medium. The phase grating is associated with the modulated

term in the real part of (4.30), while the absorption grating is associated with

the modulated term in the imaginary part.

One may choose the coordinate system to coincide with the main axes of the

optical indicatrix so that the tensor «0r contains only diagonal elements. In

contrast, the modulated part «1r of the real dielectric tensor is generally non-

diagonal. That is

«0r ¼
«0r,11 0 0

0 «0r,22 0

0 0 «0r,33

0

B@

1

CA, (4:31)

«1r ¼
«1r,11 «1r,12 «1r,13
«1r,12 «1r,22 «1r,23
«1r,13 «1r,23 «1r,33

0

B@

1

CA: (4:32)

For example, nondiagonal elements can be produced by shear acoustic waves

and by space-charge induced electro-optic effects. For crystalline materials with

orthorhombic or higher symmetry, the main axes of the imaginary dielectric

tensor coincide with those of the real one [24]. For these materials «0i and «1i also
are diagonal tensors,

«0i ¼
«0i,11 0 0

0 «0i,22 0

0 0 «0i,33

0

B@

1

CA, «1i ¼
«1i,11 0 0

0 «1i,22 0

0 0 «1i,33

0

B@

1

CA: (4:33)

For crystals with lower symmetry, the main axes of the absorption ellipsoid

may differ from those of the refractive index ellipsoid [25] and the tensors «0i
and «1i may therefore also contain nondiagonal elements in our system of

coordinates. Note that the formalism presented here can be used to describe
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the behavior in gain media (negative absorption) as well, as long as the system

remains in a non-oscillating regime.

One may consider a general holographic wave interaction geometry as the

one depicted in Fig. 4.2(a). The medium input surface (? ẑz) does not need to

contain any of the main axes of the optical indicatrix of the medium. The

relative directions of some important vectors associated with the wave S are

shown in Fig. 4.2(b).

By inserting (4.1) and (4.30) into the wave Eq. (4.29), after a rather lengthy

but straightforward calculation [6], it is possible to obtain the coupled-wave

equation applying to the anisotropic case. With Es ¼ Esêes and Ep ¼ Epêep,

they read

rEs � ûus ¼ k0

4nsgs
[iAr � Aie

if]Epe
iDk�r, (4:34a)

rEp � ûup ¼ k0

4npgp
[iAr � Aie

�if]Ese
�iDk�r, (4:34b)

.

∆kr

ks,r

kp,r

konp

kons

ζ̂
ζ̂ ⋅ r = 0

K

(a)

x̂

ŷ

(b)

•
•

ês

d̂s

ĥs

ûs k̂s,r
k̂s,i = ±ζ̂

βs

ẑ •

Figure 4.2. (a) General interaction geometry for coupled-wave theory. A projection of

the wavevector diagram for the holographic interaction is schematically shown. The

coordinate axes are parallel to the main axes of the optical indicatrix. The input surface

plane ẑz � r ¼ 0 does not necessarily contain the axis ẑ. The vectors ks, r, kp, r,K and Dkr do
not need to be all coplanar. (b) Schematics showing the relative orientation of important

vectors associated with the signal wave S. The unit vectors in direction of the electric field

(êes), the dielectric displacement (d̂ds), the magnetic field (ĥhs), the energy propagation (ûus),

and the real and imaginary component of the propagation vector (k̂ks, r, k̂ks, i) are shown. It

holds that êes ? ûus ? ĥhs, d̂ds ? k̂ks, r ? ĥhs, and êes � d̂ds ¼ ûus � k̂ks, r ¼ cosbs.
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where ns and np are the unperturbed refractive indices seen by the signal and

pump wave, respectively, gs ¼ êes � d̂ds ¼ cosbs and gp ¼ êep � d̂dp ¼ cosbp are the

projection cosines between the electric field (êe) and the electric displacement

vectors (d̂d) of the waves, and ûus and ûup are the Poynting vector directions. The

scalar coupling constants Ar and Ai are defined as

Ar � êes � «1r � êep ¼ êep � «1r � êes, (4:35)

and

Ai � êes � «1i � êep ¼ êep � «1i � êes, (4:36)

where the second equalities are valid because the tensors «1r and «1i are sym-

metric. The coupling constant Ar reflects the effect of the phase grating, while

Ai reflects the effect of the absorption or gain grating. The term exp (� iDk � r)
in (4.34a) and (4.34b) takes into account (small) deviations from the Bragg

conditions as well as differences in absorption between the incident (pump) and

diffracted (signal) wave. Note that in general, the wavevector mismatch Dk is a

complex vector given as

Dk � Dkr þ iDki ¼ (kp, r � ks, r þ K)þ i(kp, i � ks, i): (4:37)

Eqs. (4.34a) and (4.34b) describe the coupling of two plane waves in any

general geometry in anisotropic media containing phase and/or absorption

gratings. It is important to notice that the coupling terms must describe the

projection of the amplitude gradients along the Poynting vector direction ûu of

the corresponding wave, and not along the wavevector direction k̂kr.

For later use, it is useful to give at this point the form of the coupling

constant Ar in the case where the grating is of photorefractive nature. It is

easy to show that in this case

Ar ¼ �êes � «0r � reff � K̂K� � � «0r � êepEsc, 0, (4:38)

where the tensor reff is the third-rank effective electro-optic tensor defined in

(4.22) and takes into account all mechanical coupling effects. Performing the

tensor multiplications in the above expression leads to

Ar ¼ �n2s n
2
pgsgpreff Esc, 0, (4:39)

where reff is the scalar effective electro-optic coefficient defined in (4.24).

4.3.2 Diffraction Efficiency of Transmission Gratings

We apply the coupled wave theory developed above first to the case of trans-

mission gratings. A transmission grating is characterized by the condition

ûup � ẑz
� �

ûus � ẑz
� � � cos up cos us > 0, (4:40)
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where us and up are the angles between the Poynting vectors and the normal ẑz to
the entrance surface. The boundary conditions corresponding to diffraction at

such a grating are

Es(ẑz � r ¼ 0) ¼ 0 (4:41)

and

rEs � ûus(ẑz � r ¼ 0) ¼ k0

4nsgs
[iAr � Aie

if]Ep0e
iDk�r, (4:42)

where Ep0 ¼ Ep(ẑz � r ¼ 0) is the pump wave amplitude at the entrance face of

the anisotropic holographic medium. For a grating with infinite extent in the

lateral direction, it can be shown that both the real and the imaginary part of

the complex wavevector mismatch Dk have to be parallel to the surface normal

ẑz, that is Dk ¼ (Dkr þ iDki)ẑz. By using this and inserting the boundary condi-

tions (4.41) and (4.42) into the coupled-wave equations (4.34a) and (4.34b), one

can calculate the diffraction efficiency h as described in more detail in [6]. The

diffraction efficiency is defined as the ratio of the output signal intensity to the

incident pump intensity; that is,

h � Is(ẑz � r ¼ d)

Ip(ẑz � r ¼ 0)
¼ EsE

�
s nsgs

Ep0E
�
p0npgp

cos us
cos up

e�2ks, i �r, (4:43)

where the factor cos us= cos up is an obliquity term that assures consistent results

in a general case when we are interested in the optical energy flow through the

input and output surfaces of the medium. The existence of the term nsgs=npgp has
been often overlooked in the literature. Neglecting this term is allowed only in

isotropic materials or in anisotropic materials in the case of a configuration fully

symmetric with respect to the axis ẑz and the optical indicatrix.

Mixed Transmission Gratings

For a mixed grating as given by (4.30), consisting of a combination of a phase

and absorption grating, the diffraction efficiency is expressed as [6]

h ẑz � r ¼ d
� � ¼ k20

16nsnpgsgp cos us cos up

A2
r þ A2

i � 2ArAi sinf

jW 2j
� { sin2 (Re[W ]d)þ sinh2(Im[W ]d)}e�(asþap)d ,

(4:44)

where the quantity W is a complex number found as the square root

(W ¼
ffiffiffiffiffiffiffiffi
W 2

p
) of

W 2 ¼ Dk � ûup
2 cos up

� �2

þ k2o
16nsnpgsgp cos us cos up

� (A2
r � A2

i þ 2iArAi cosf),

(4:45)
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which depends itself on the coupling constants Ar and Ai defined in (4.35) and

(4.36) and on the phase-shift angle f. The quantities as ¼ jks, ij and ap ¼ jkp, ij
in (4.44) are the effective amplitude absorption constants (in direction of the

surface normal ẑz) experienced by the signal and pump wave, respectively. They

are expressed as [6]

as ¼ k0(êes � «0i � êes)
2nsgsj cos usj , ap ¼ k0(êep � «0i � êep)

2npgpj cos upj : (4:46)

It should be noticed that the effective absorption constants for the waves S

and P can differ from each other even in the case where the tensor «0i is

isotropic. This is the case when the directions of propagation are not symmetric

with respect to the surface normal.

Eq. (4.44) describes completely the diffraction at a mixed anisotropic phase

and absorption transmission grating in anisotropic media. To give an example,

we show in Fig. 4.3 that the total diffraction efficiency strongly depends on the

phase- shift f between the phase and absorption grating, which is in agreement

with a previous analysis of mixed phase and absorption gratings in isotropic

media [26]. This behavior is easily explained by the interference of the waves

scattered off the phase and absorption grating, respectively, and leads to a

nonreciprocal behavior of light-diffraction [27].
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Figure 4.3. Diffraction efficiency at a mixed transmission grating vs. the real grating

mismatch parameter Dkr for three values of the phase-shift angle f between phase and

absorption grating. The parameters are: Ar ¼ 3� 10�5, Ai ¼ 2� 10�5, l ¼ 633nm,

d ¼ 1 cm, as ¼ 0:2cm�1, ap ¼ 0:3cm�1, ns ¼ 2:2, np ¼ 2:0, gs ¼ 0:98, gp ¼ 0:96,us ¼ 20�,
and up ¼�40�.
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Phase-Only Gratings

In most cases, a grating created by the photorefractive effect can be considered

as a phase-only grating. Therefore, it is useful to look specifically at this case. In

absence of absorption modulation, we have Ai ¼ 0 and the quantity W 2 can be

simplified and rewritten as

W 2 ¼ 1

d2
(n2 þ j2 þ ix2), (4:47)

where the real quantities n2, j2 and x2 are defined as

n2 ¼ k20A
2
r

16nsnpgsgp cos us cos up
d2, (4:48)

j2 ¼ Dk2r � Dk2i
4

d2 ¼ Dk2r
4

� (ap � as)
2

4

" #

d2, (4:49)

x2 ¼ Dkr � Dki
2

d2 ¼ Dkr(ap � as)

2

� �
d2: (4:50)

The diffraction efficiency of Eq. (4.44) reads then

h(d) ¼ n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2 þ j2)2 þ x4

q sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n2 þ j2)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2 þ j2)2 þ x4

q

2

vuut

8
>><

>>:

þ sinh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�(n2 þ j2)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2 þ j2)2 þ x4

q

2

vuut

9
>>=

>>;
e�(asþap)d : (4:51)

Note that the arguments of the sin2 and sinh2 functions are always real, although

j2 and x2 can be negative numbers. We notice also that the sinh2 term (second

term in the curly bracket of (4.44)) survived even though there is no longer an

absorption modulation. This term takes accurately into account the effect of

different absorption constants for the pump and signal waves on the diffraction

efficiency. Figure 4.4 shows the dependence of the diffraction efficiency on the

Bragg mismatch Dkr as calculated from (4.51). The behavior for different values

of the amplitude absorption constants ap and as of the twowaves is shown. Note

that at the minima, one has a complete destructive interference only when the

absorption constants ap and as are exactly equal. For a ‘‘given total’’ absorption

ap þ as, the most favorable situation is found if the absorption values are as

different as possible, in which case the peak diffraction efficiency is maximum.
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This is accompanied by a certain broadening of the curve due to the fact that

destructive interference at the minima is only partial.

The sinh2 term in (4.51) vanishes if the effective absorption constant seen by

the two waves is the same (as ¼ ap ¼ a, x2 ¼ 0), in which case (4.51) simplifies

further to

h(d) ¼ sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ j2

p

(1þ j2=n2)
e�2ad : (4:52)

This equation has exactly the same form as Kogelnik’s relationship (43) in [1].

However, here the quantities n2, j2 and a are defined differently to take into

account the effects of anisotropies. The quantity j2 in this case reduces to

j2 ¼ Dk2r
4

d2, (4:53)

n2 is redefined according to (4.48) and the effective amplitude absorption

constant a is given by (4.46). Eq. (4.52) simplifies further in the case of perfect

Bragg matching; that is, Dkr ¼ 0, j2 ¼ 0. One gets then

h(d) ¼ sin2
pArd

2l(nsnpgsgp cos us cos up)
1=2

 !

e�2ad , (4:54)

where we recall that l is the wavelength in vacuum. The argument of the sin

function is of the form (pDnd=l cos u) in analogy with the well known expres-

−10 −5 0 5 10
0.001

0.01

0.1

∆kr [cm−1]

D
iff

ra
ct

io
n 

ef
fic

ie
nc

y

0.6

as = ap = 1 cm−1

as = ap = 0 as = 0 cm−1

ap = 2 cm−1

as = 2 cm−1

ap = 0 cm−1

or

Figure 4.4. Effect of absorption on the diffraction efficiency and phase mis-

match selectivity for diffraction at a phase-only transmission grating. Parameters:

Ar¼5�10�5, Ai¼0, l¼633nm, d¼1cm, ns¼2:2, np¼2:0, gs¼1:0, gp¼0:95, us¼10�,
and up¼�40�.
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sion (45) in Ref. [1]. In our description, the effective refractive index change Dn
corresponds to

Dn ¼ Ar

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsnpgsgp

p (4:55)

and cos u ¼ ( cos us cos up)
1=2. In nonabsorbing materials, the maximum pos-

sible diffraction efficiency is exactly 100% for phase-only gratings, regardless of

whether isotropic or anisotropic diffraction processes are considered.

Even for a simple case where the refractive index change is treated as a scalar

quantity, the effects of material birefringence contained in (4.54) can lead to

substantial differences from Kogelnik’s expression. This is shown in the ex-

ample of Fig. 4.5, where the highly birefringent organic material 4-N,N-

Dimethylamino- 4’-N-methyl-stilbazolium tosylate (DAST) [28] is being con-

sidered. The refractive indices of this material at l ¼ 860 nm are

n1 ¼ 2:315, n2 ¼ 1:660, n3 ¼ 1:604 [4.29]. For a crystal cut along the dielectric

principal axes (x1, x2, x3) and pump and scattered signal beams with k-vectors

in the 1,3-plane and directed at �25� to the x3-axis, one obtains

np ¼ ns ¼ 2:119. The energy propagation vectors ûup and ûus are then directed

at �44:2� to the x3-axis, giving a big walkoff angle of the order of 208 and
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Figure 4.5. Diffraction efficiency vs. refractive index change Dn (4.55) predicted by the

coupled wave theory for anisotropic materials described here (solid line) and the iso-

tropic coupled wave theory of Kogelnik [1] (dotted line). The diffraction is modeled for

the organic crystal 4-N,N-Dimethylamino-4’-N-methyl-stilbazolium tosylate (DAST)

with symmetric p-polarized signal and pump wave propagating in the 1,3-plane

(ẑz ¼ x̂x3) and the grating wavevector parallel to the 1-axis. The Bragg condition is

fulfilled and the angle between the k̂kp or k̂ks vectors and the x̂x3-axis is 25 degrees, which

leads to us ¼ �up ¼ 44:2� and ns ¼ np ¼ 2:119, gs ¼ gp ¼ 0:945. The other parameters

are: Ai ¼ 0, l ¼ 860 nm, d ¼ 1 cm, and as ¼ ap ¼ 0.
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gs ¼ gp ¼ 0:945. The curves in Fig. 4.5 show how in birefringent materials

the use of the isotropic Kogelnik’s expressions can lead to large errors even

for fully symmetric beam geometries like the one considered here.

The above example applies to the case of an isotropic grating in an aniso-

tropic material. As might be expected, the difference between the above rela-

tionships and Kogelnik’s theory become even more important in the case where

the grating itself is anisotropic. The latter situation is often encountered in

photorefractive physics or acousto-optics and is also typical of gratings

recorded in liquid crystals or polymer-dispersed liquid crystals. Since the dif-

fraction properties are being strongly influenced, their detailed measurement

allows the determination of the degree of grating anisotropy, as shown in the

example of Fig. 4.6 for the case of a polymer filled with a nematic liquid crystal

[21]. In this example, the Bragg angle was varied for a specific grating by

changing the read-out wavelength. It is clearly seen that the isotropic theory

fails to appropriately describe the measurements.

4.3.3 Diffraction Efficiency of Phase-Only Reflection
Gratings

The case of reflection gratings is treated here in less detail and we concentrate

uniquely on the solutions for lossless phase gratings. Solutions for the general

case of mixed refractive index and absorption gratings are given in [6].

In analogy to (4.40), a reflection grating is characterized by the condition

cos up cos us < 0. Let the pump wave P enter a parallel plate holographic
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Figure 4.6. Comparison of anisotropic (solid line) and isotropic (dashed line) coupled-

wave theory for the description of light diffraction at a grating recorded in a photo-

polymer filled with nematic liquid crystals. See Ref. [21] for details. The best parameters

for the solid-line are «0r, 11 ¼ «0r, 33 ¼ 2:56; «1r, 11 ¼ 0:22 and «1r, 33 ¼ 0:07. (Reprinted with

permission from [21], � Optical Society of America.)
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medium from the face defined by ẑz � r ¼ 0. The only change with respect to the

case of transmission gratings are the boundary conditions, which are now

Es ẑz � r ¼ d
� � ¼ 0 (4:56)

and

=Es � ûus(ẑz � r ¼ 0) ¼ k0

4nsgs
[iAr]Ep0e

iDk�r, (4:57)

where Ep0 ¼ Ep(ẑz � r ¼ 0). The diffraction efficiency is now defined as

h ¼ Is(ẑz � r ¼ 0)

Ip(ẑz � r ¼ 0)
¼ EsE

�
s nsgs

Ep0E
�
p0npgp

cos us
cos up

����

����, (4:58)

where, as in (4.43), an obliquity factor cos us= cos up is introduced in the

definition.

For lossless materials (as ¼ ap ¼ 0), one finds for the diffraction efficiency

h ¼ �n2

j2 þ (n2 þ j2) cot2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ j2

p , (4:59)

where n2 is still given by (4.48) and is now a negative real number. Note that

with (4.55), one has the equivalence n2 ¼ (pDnd=l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos us cos up

p
)2. The quan-

tity j2, on the other hand is given by (4.53) in the present limit. Since for small

values of j2 the argument of the cotangent function in (4.59) is purely imagin-

ary, for perfect Bragg matching (j ¼ 0), one retrieves the well known expression

h ¼ tanh2(jnj): (4:60)

Dielectric reflection gratings are interesting, for instance, for applications as

sharp wavelength filters. Therefore, we will soon discuss the Bragg selectivity of

such gratings. Let us note first that, if the wavevector mismatch Dkr is due

uniquely by a mismatch Dl in the read-out wavelength l, the relation between

these two quantities is given as

Dl ffi Dkrl
2=(4pn): (4:61)

Fig. 4.7 shows the reflectivity of a grating as obtained from (4.59). The curves

are given as a function of the wavevector mismatch Dkr for different values of
the coupling constant Ar and of the grating thickness d. For fixed d, besides the

increase of the peak diffraction efficiency, there is also a broadening of the

Bragg selectivity with increasing coupling constant Ar (Fig. 4.7(a)). Ultimately,

for large enough values of Ar, this leads to the formation of a stop band with

reflectivity equal to 1 for a broad range of wavelengths around the perfectly
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phase matched one. One may eventually speak about one dimensional photonic

band-gap structures in this context. The broadening of the selectivity curve for

larger Ar is physically due to a shorter average distance traveled by the pump

wave inside the grating structure (smaller effective thickness). The effect of the

thickness on the Bragg selectivity can be seen explicitly on Fig. 4.7(b). Evi-

dently, thicker gratings lead to sharper reflection filters, however, this is true

only as far as the refractive index change (/ Ar) is not too large. Therefore, the

simultaneous optimization of the grating reflectivity and reflected bandwidth

requires a careful balance between the grating thickness and the amplitude of

the refractive index modulation.

4.4 Two-Wave Mixing in Anisotropic Dichroic Media

The gratings considered in the previous section are assumed to be unaffected by

the read-out wave and can therefore be considered as being ‘‘pre-existing’’ in

the material. In contrast, in the case of photorefractive two-wave mixing, the

grating responsible for the coupling between light waves is a dynamic grating

being recorded by the interacting waves themselves. Such a grating can adapt

with a case-specific time constant to modifications in the shape and phases of

the input waves.

In order to treat two-wave mixing in anisotropic photorefractive media, one

can take advantage of much of the formalism developed in the previous section.
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Figure 4.7. Diffraction efficiency (reflectivity) of a phase-only reflection grating as a

function of the phase mismatch parameter Dkr as obtained from (4.59).

(a) d ¼ 1 cm,Ar ¼ 2� 10�5 (solid curve), Ar ¼ 2� 10�4 (dashed curve); (b)Ar ¼
5� 10�5, d ¼ 0:5 cm (solid curve), d ¼ 2 cm (dashed curve); The other parameters are:

l ¼ 633 nm, as ¼ ap ¼ 0, ns ¼ 2:2, np ¼ 2:0, gs ¼ 1:0, gp ¼ 0:95, us ¼ 10�, up ¼ 170�.
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By using the fact that for two-wave mixing the Bragg condition is fulfilled

automatically (Dkr ¼ 0), the coupled wave Eqs. (4.34a) and (4.34b) become

=Es � ûus ¼ k0

4nsgs
�iRmEp

~EEsce
(as�ap)ẑz�r

h i
, (4:62a)

=Ep � ûup ¼ k0

4npgp
�iRm�Es

~EE
�
sce

(ap�as)ẑz�r
h i

, (4:62b)

where R � n2s n
2
pgsgpreff , and reff is given by (4.24). We recall that ûus and ûup are

unit vectors in direction of the Poynting vectors of the waves S and P, respect-

ively. The quantity

~EEsc � Esc, 0=m � ~EEsc, r þ i ~EEsc, i (4:63)

is the complex amplitude of the first Fourier component of the internal space-

charge field normalized by the complex modulation m given in (4.7). Its real

part ~EEsc, r corresponds to the component of the space-charge field being in

phase with the energy density distribution (4.5), while the imaginary part ~EEsc, i
is the p=2 out-of-phase component. The latter predominates in the case where

the charge redistribution is ruled by charge diffusion.

4.4.1 Undepleted Pump Approximation

In the regime where the pump wave is not significantly depleted by the inter-

action, its energy is always much larger than the one of the signal wave

everywhere in the crystal, i.e., jEpj2[êep � � � êep] exp (� 2apẑz � r) � jEsj2
[êes � � � êes] exp (� 2asẑz � r) in (4.7). In this case, Eqs. (4.62a) describing the

evolution of the signal wave amplitude transforms to

rEs � ûus ¼ k0R

2nsgs

êes � � � êep
êep � � � êep

� �
~EEsc, i � i ~EEsc, r

� �
Es, (4:64)

which can be easily solved for Es leading to

Es(ẑz � r ¼ d) ¼ Es0 exp ( (G=2)d) exp (idd): (4:65)

With (4.1) and (4.2a), this corresponds to

jEsj(ẑz � r ¼ d) ¼ jEs0j exp ( (G=2� as)d), (4:66)

where Es is the part of Eq. (4.1) associated with the signal wave S and Es0 and

Es0 are incident amplitudes at the entrance surface ẑz � r ¼ 0. The two-wave

mixing exponential gain G and the phase coupling factor d in (4.65) are given by

G ¼ 2p

l

nsn
2
p

cos us
gp

êes � � � êep
êep � � � êep

� �
reff ~EEsc, i, (4:67)

Gunter / Photorefractive Materials and their Applications 1 chap04 Final Proof page 103 28.10.2005 9:04pm

4. Space-Charge Driven Holograms in Anisotropic Media 103



and

d ¼ �p

l

nsn
2
p

cos us
gp

êes � � � êep
êep � � � êep

� �
reff ~EEsc, r: (4:68)

The most important fact to notice in (4.67) is that the exponential gain

depends on the photoexcitation anisotropy through the factor (êes � � � êep=
êep � � � êep). If the tensor � is sufficiently anisotropic, by choosing appropriate

geometries, this factor can become very large with respect to 1, thus giving an

enhancement of the two-wave mixing gain. Experimental evidence for the

influence of this factor will be given later in this chapter. Note that for the

isotropic case, the above factor transforms to (êes � êep), which can be derived

using the light intensity as the driving term for the photoexcitation.

In order to predict the magnitude of G and d in a particular geometry, the

knowledge of the values of ~EEsc, i and ~EEsc, r is necessary. In the undepleted pump

approximation, the modulation m is always small and the space-charge field

amplitude is linearly proportional to m. Therefore, the normalized amplitudes
~EEsc, i and ~EEsc, r do not depend at all on m in this regime. Here we limit our

considerations to the predictions of the simplest photorefractive model that

considers a single defect level and a single carrier type [30]. More involved

models involving additional charge redistribution channels are described in

several chapters of this book. In absence of photogalvanic effects [31] and of

externally applied fields, for the simplest model, the normalized space-charge

field amplitude ~EEsc reads

~EEsc ¼ �i
EqED

Eq þ ED

, (4:69)

and therefore, ~EEsc, r ¼ 0 under these assumptions. The þ sign in the above

equation holds for hole conduction and the � sign holds for electron charge

transport. The trap-limited field Eq and the diffusion field ED are described in

the previous chapter of this book. The latter field is directly proportional to the

grating vector magnitude K, while the former is inversely proportional to K and

to the effective dielectric constant «eff in (4.17).

The implications of the photoexcitation anisotropy and other material ani-

sotropies on the photorefractive gain were discussed in detail in [32] with

specific examples related to the crystals KNbO3 and BaTiO3. In Fig. 4.8 we

visualize by means of contour plots the gain landscape for all possible inter-

action geometries of two p-polarized waves propagating in the ac-plane of

BaTiO3, which is the plane of maximum nonlinearity. Note that, since the

related information would be redundant (see [32] for details), we choose a

representation where the pump (qp) and signal (qs) angles span a range of

solely 180 degrees instead of 360. The plots are obtained using (4.67) and (4.69)

by using the complete set of material parameters determined in [33], which are

necessary for determining the quantities such as «eff (4.17) and reff (4.24) for
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each individual geometry. The cases of isotropic (�22=�33 ¼ 1) as well as aniso-

tropic photoexcitation are considered. Note that the gain is given along the

Poynting vector direction; that is, it corresponds to G cos us (see (4.67)). In this

way the representation becomes independent from a specific crystal cut. The

thick lines in the graphs connect points where the gain is zero, positions of the

peak values are indicated by triangles. The shadowed areas indicate angular

regions which, as a result of Snell law, cannot be directly accessed from air in a

crystal with the surfaces cut perpendicular to the crystallographic a- and c-axes.

However, these regions may be accessed for other crystal cuts or by using

external wedges.

It appears evident from Fig. 4.8 that the gain landscape is dramatically

modified by the anisotropy of the photoexcitation constant. The position of
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Figure 4.8. Contour plot of the exponential gain G cos us (Eq. (4.67)) for p-polarized
beams in the ac-plane of BaTiO3. (a) Angle convention, all angles are measured inside the

medium; (b) Isotropic photoexcitation, �22=�33 ¼ 1; (c) Anisotropic photoexcitation

�22=�33 ¼ 0:1; (d) �22=�33 ¼ 100. Contour line distance ¼ 20 cm�1. Effective density of

traps Neff ¼ 1017 cm�3. For the meaning of shadows and special symbols, see text.

Gunter / Photorefractive Materials and their Applications 1 chap04 Final Proof page 105 28.10.2005 9:04pm

4. Space-Charge Driven Holograms in Anisotropic Media 105



the maximum gain in the diagram moves by changing the parameter �22=�33:

Some of the mountains grow, while others decrease in height. For �22=�33 � 1,

the optimum condition is found for a pump beam propagating under an angleqp

close to 0: that is, nearly perpendicular to the c-axis. In contrast, for �22=�33 � 1,

the optimum is for a pump beam nearly parallel to c. Provided that the photo-

excitation is sufficiently anisotropic, a significant gain G can be observed also for

geometries along themain diagonal (qs ¼ qp � 90) for which the k-vectors of the

two waves cross at right angles and the gain almost vanishes for �22=�33 ¼ 1.

Such geometries are interesting because of a reduced linear scattering. It is also

interesting to notice that the case where the tensor � is isotropic constitutes, in

general, a worst case scenario for the maximum gain that can be obtained in a

given crystal. As discussed in [32], any asymmetry in the tensor elements of �
leads to an increase of the maximum achievable gain.

4.4.2 Pump Depletion

For large gain-length product Gd and low enough initial pump-to-signal inten-

sity ratio, the pump wave can be significantly depleted during the interaction.

This situation is more complex than the one found in the weak signal regime. In

order to determine the spatial evolution of the signal and pump waves, one has

then to rely in most cases to a numerical integration of the coupled Eqs. (4.62a)

and (4.62b). This is necessary, for instance, if the two beams enter the crystal

from surfaces that are not parallel to each other, in which case the surface

normal vectors differ (ẑzs 6¼ ẑzp) and the waves S and P are no longer homoge-

neous in a direction perpendicular to the corresponding surface normal. It

should also be remarked that for a general geometry, the absorption constants

as and ap for the two waves usually differ from each other (this statement is

true even in fully isotropic materials for asymmetric geometries). Therefore, in

this case, the coupled wave equations may be integrated numerically.

For simplicity, we consider here only cases where the two waves enter the

crystal from a common surface or from opposite parallel surfaces. The þz

direction is defined as being parallel to the direction of the normal to the

incidence surface for the S wave (ẑz � ẑzs ¼ (0, 0, 1)). Furthermore, the absorp-

tion is assumed to be moderate (asd � 0, apd � 0 with d being the interaction

length), so that we can neglect the absorption terms in the coupled wave

equations (4.62a) and (4.62b).

Transmission Gratings

In this case, bymultiplying (4.62a) byE�
s nsgs and (4.62b) byE

�
pnpgp and inserting

the modulation ratio (4.7), one obtains the coupled equations in the form

d

dz
~IIs ¼ G

~IIs~IIp

G~IIs þ ~IIp,
(4:70a)
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d

dz
~IIp ¼ �G

~II s~IIp

G~IIs þ ~IIp
, (4:70b)

where it was assumed that the space-charge field contains only the p=2 phase

shifted component (Esc ¼ iEsc, i). The quantity G is the same exponential gain

constant given in (4.67). We recall that the light intensities for the waves are

proportional to the product EE�ng, with n and g being the refractive index and

the projection cosine of the appropriate wave. The intensities ~IIs � Is cos us and
~IIp � Ip cos up appearing in (4.70a) and (4.70b) correspond to the projections of

the Poynting vectors along the surface normal ẑz and give the energy flow per

unit area through a surface parallel to the input surface. The constant G is a

kind of anisotropy parameter and depends on the geometry of interaction and

on the shape of the photoexcitation tensor �. It is is defined as

G � npgp cos up

nsgs cos us

(êes � � � êes)
(êep � � � êep) : (4:71)

For isotropic photoexcitation and symmetric configurations, one has G ¼ 1

and the above coupled equations reduce to the commonly used ones [34]. The

total projected energy flow ~II0 � ~II s þ ~IIp is conserved, as can be verified by

summing (4.70a) and (4.70b). Using this, one obtains the differential equation

d~IIs=~IIs þ [G=(~II0 � ~IIs)]d~IIs ¼ Gdz, which can be integrated with the boundary

conditions ~IIs(z ¼ 0) ¼ ~IIs0, ~IIp(z ¼ 0) ¼ ~IIp0 proper of transmission gratings and

leads to the simple solution

x(z) ¼ x0 exp (Gz), (4:72)

where

x(z) �
~II s(z)

~IIp(z)
� �G � b(z) ~IIp(z)

� �1�G
(4:73)

and

x0 ¼ x(z ¼ 0) ¼ ~IIs0=~IIp0
� �

~II
1�G

p0 � b0
~II
1�G

p0 : (4:74)

Therefore, x is a modified intensity ratio which for G ¼ 1 reduces to the

conventional intensity ratio b ¼ ~II s=~IIp. The evolution of the signal and pump

wave intensities can thus be expressed as

~IIs(z) ¼ ~IIs0
1þ b�1

0

1þ b�1
0

~IIp=~IIp0
� �1�G

exp (� Gz),
(4:75)

and

~IIp(z) ¼ ~IIp0
1þ b0

1þ b0
~IIp=~IIp0

� �G�1
exp (Gz)

: (4:76)
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In absence of photoexcitation anisotropy and for nearly symmetric incidence

of signal and pump beams, the factor G is always very close to 1. For G ¼ 1, the

above expressions reduce to the well known ones derived by Kukhtarev and

coworkers [35]; that is,

~IIs(z) ¼ ~II s0
1þ b�1

0

1þ b�1
0 exp (� Gz)

, (4:77)

and

~IIp(z) ¼ ~IIp0
1þ b0

1þ b0 exp (Gz)
: (4:78)

It should be noted that for the case of transmission gratings considered here,

the factor G is bound to be positive because the tensor � contains only positive

elements. Although for strong anisotropies the factor G may depart signifi-

cantly from 1, in (4.75) and (4.76), the influence of the term (~IIp=~IIp0)
�(1�G) on

the beam intensities is still weaker than the one given by the exponential term.

However, the corrections brought about by this term are not negligible. The

saturation of the amplified signal beam to its maximum value is slower for

G > 1, and faster for G < 1 than for the case G ¼ 1. This can be seen in Fig. 4.9

where ~IIs(z)=(~IIs0 þ ~IIp0) and ~IIp(z)=(~II s0 þ ~IIp0) are plotted for different values of

G and for a common value of the gain G. It is worth noticing that in the

saturation region the depleted pump wave intensity decreases as ~IIp(zþ Dz)
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Figure 4.9. Signal wave amplification and pump wave depletion as a function of

the propagation distance z in transmission geometry. The normalized intensities
~IIs(z)=(~IIs0 þ ~IIp0) and ~IIp(z)=(~IIs0 þ ~IIp0) are plotted according to (4.75) and (4.76) for

G ¼ 20 cm�1. The factor G used as parameter is defined in (4.71).
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¼ ~IIp(z) exp (� GDz=G), as can be clearly recognized in Fig. 4.9. In order to get

an impression of the possible range for the quantity G in a typical transmission

geometry, let us take the example of a BaTiO3 cut along the crystallographic

axes and with both interacting beams entering the sample from air through the

a-face of the crystal. Considering all possible two-beams interaction geometries

in such a configuration, we have 0:936 < G < 1:07 for �22=�33 ¼ 1, 0:944 <
G < 1:06 for �22=�33 ¼ 0:1, and 0:43 < G < 2:30 for �22=�33 ¼ 10. The ranges

for KNbO3 in the same kind of geometry are very similar. For crystals cut

under 45 degrees to the crystallographic axes, G varies between Gmin � 0:25 and
Gmax � 4 for both �22=�33 ¼ 0:1 and �22=�33 ¼ 10.

Reflection Gratings

In this case, the signal and pump wave enter from opposite surfaces and one has

cos us cos up < 0. The coupled wave equations (4.62a) and (4.62a) can be

brought again exactly in the form of (4.70a) and (4.70b) if one allows one of

the two projected intensities to take negative values. If we choose the signal

wave to propagate toward positive z and the pump wave to propagate toward

the negative z axis, then ~IIs(z) > 0 and ~IIp(z) < 0. Such a negative intensity value

reflects the fact that the energy flow for the pump wave is in a direction that is

opposite with respect to the considered surface orientation (vector ẑz). There-
fore, as in the above case of transmission gratings, the conserved quantity is still

the sum of the (this time signed) intensities and the solution of the coupled

equations (4.70a) and (4.70b) is still of the form given by (4.72) and (4.73).

However, the exponent G (still defined by (4.71)) is now bound to be a negative

number. For a plate of thickness d, the boundary values are now given at z ¼ 0

for the signal wave, and at z ¼ d for the pump wave. Using these boundary

values in (4.72) and (4.73) and reintroducing a positive intensity

j~IIp(z)j ¼ �~IIp(z) for the pump wave, one can easily find the expressions for

the transmitted intensities ~IIs(z ¼ d) and j~IIp(z ¼ 0)j; that is,

~IIs(d) ¼ ~IIs(0)
1þ jb0j�1

1þ jb0j�1j~IIp(0)=~IIp(d)j1�jGj
exp (� Gd)

, (4:79)

and

~IIp(0) ¼ ~IIp(d )
1þ jb0j

1þ jb0jj~IIp(0)=~IIp(d )jjGj�1
exp (Gd )

, (4:80)

which are in full analogy to (4.75) and (4.76). The intensity ratio jb0j is defined
here as jb0j � ~IIs(0)=j~IIpj(d) and differs from the definition used for transmission

gratings. For samples cut along the dielectric axes, symmetric interaction

geometries and in absence of photoexcitation anisotropy, we have G ¼ �1. In

this case, the two above expressions reduce to the well known conventional

relationships [36]. The new correcting factor j~IIp(0)=~IIp(d)j�(1�jGj)
brings about a
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similar influence on the output intensities as in the case of transmission gratings

discussed above. Fig. 4.10 shows an example of the G-dependence of the signal

and pump output intensities as obtained by solving the above transcendent

equations. As in the case of transmission gratings, for a fixed value of the gain

coefficient G, the saturation of the signal intensity is the faster the closer the

exponent G is to zero.

4.5 Examples

In this section, we give a few additional examples that illustrate the conse-

quences of some of the relationships given in the previous sections.

4.5.1 Effective Dielectric Constant and Mobility

We start by showing the effect of Eq. (4.17) for the effective dielectric constant

that is active in a photorefractive experiment. The quantity «eff depends obvi-

ously only on the direction of the grating vector K̂K , and not on the individual

polarization vectors of the two interacting waves. Therefore, in a contour plot

diagram such as the one of Fig. 4.8, except for small corrections due to

birefringence, the contour lines for «eff are all essentially parallel to the diag-

onal, going from top-left to bottom-right. Keeping that in mind, we choose to

plot the values of «eff in a conventional diagram while we move solely along the

main diagonal (from left-bottom to top-right) in Fig. 4.8. This is shown in Fig.
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Figure 4.10. Transmitted signal [~IIs(d)] and pump intensity [~IIp(0)] for reflection grating

two-wave mixing as a function of the exponent G. A value G ¼ �1 corresponds to a fully

symmetric and isotropic geometry. Parameters: gain coefficient G ¼ 20 cm�1; sample

thickness L ¼ 0:2 cm; input intensities Is~(0) ¼ 1, ~IIp(d) ¼ 100.
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4.11 for the cases of KNbO3 and BaTiO3 crystals and beam interaction in the

bc- and ac- plane, respectively. The plots use the parameter sets determined in

[33] and [13], respectively. An extremely strong dependence of the dielectric

constant on the interaction geometry as well as the deviation of «eff from both

«T and «S are evident. Note that, for completeness, the top axes in Fig. 4.11 also

give the angular direction u of the corresponding grating vector K̂K , these axes

are slightly nonlinear with respect to the bottom one as a result of the material

birefringence.

The dielectric constant does not influence only the magnitude of the space-

charge field gratings, but also the grating response dynamics. If an experiment

is performed at small beam crossing angle (large grating spacing) the build-up

or erasure times are given by the dielectric relaxation time tdie, which is directly

proportional to the effective dielectric constant «eff and inversely proportional

to the mobility mk given in (4.25). Therefore, provided that the behavior of the

dielectric constant has been determined by other means, grating erasure meas-

urements as a function of the grating direction can give information on the

form of the mobility tensor. Fig. 4.12 shows an example for hole conducting

BaTiO3 as reported in [16]. Unlike for the case analyzed in Fig. 4.8, here the
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Figure 4.11. Effective dielectric constant «eff (solid curves) calculates according to

(4.17) for KNbO3 (a) and BaTiO3 (b) and the material parameters determined in [13]

and [33]. The values are given for geometries corresponding to the main diagonal

(bottom-left to top-right) of a diagram such as the one of Fig. 4.8, with the a axis

replaced by the b axis for KNbO3 (Fig. 4.8(a)). The behaviour expected by erroneously

using the unclamped (K̂Ki«
T
ij K̂Kj , dashed curves) or clamped (K̂Ki«

S
ij K̂Kj , dotted curves)

dielectric constants are also shown for comparison. Note that in a representation such

as in Fig. 4.8, the values of «eff remain essentially constant by moving away from the

main diagonal in the normal direction (i.e., «eff (qp � b,qs � b) ’ «eff (qp, qs)). The top

axis shows the grating angle u defined in the inset.
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grating vector K lies parallel to the entrance surface of the medium and the

angle u between K and the c-axis is changed by rotating the crystal around the

b-axis. Such a measurement permits to determine the ratio ma=mc among the

elements of the mobility tensor, which is found to be ma=mc ¼ 19:6� 0:6 for p-

type BaTiO3 [16]. The measurements shown in Fig. 4.12 also give clear evidence

for the deviation of the photorefractively active effective dielectric constant

from the clamped or unclamped value. While the solid line is drawn using «eff
obtained from (4.17), the dashed line is fitted with the help of the clamped («S)
or unclamped («T ) dielectric constant, and clearly fails to describe the experi-

mental data accurately.

4.5.2 Effective Electro-Optic Coefficient

In order to illustrate some of the consequences of Eqs. (4.22) and (4.24) for the

effective scalar electro-optic coefficient, we keep with the example of BaTiO3.

Fig. 4.13(a) shows a contour plot diagram similar to the one in Fig. 4.8. Here

the quantity being plotted is reff for every interaction of p-polarized waves in

the ac-plane of BaTiO3. A scalar electro-optic coefficient of the order of

800 pm/V can be accessed even for conventional crystal cuts. Fig. 4.13(b)

shows the magnitude of reff if the electro-optic response is incorrectly calculated

using the unclamped electro-optic tensor rTijk (4.23) to insert in (4.24). As seen by

comparison with Fig. 4.13(a), the shape of the contour lines differ significantly

from the case where the mechanical coupling is correctly considered. By using
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Figure 4.12. Erasure time of photorefractive gratings written in nominally pure p-type

BaTiO3 as a function of the angle u between the grating vector K and the c-axis of the

crystal. The solid curve represents the fit using (4.25) and the correct form for the

effective dielectric constant «eff given by (4.17) and leads to a mobility anisotropy

ma=mc ¼ 19:6� 0:6. The dashed line is the fit obtained when using the uncorrected

clamped or unclamped dielectric constants. (Adapted from [16].)
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the correct expressions, for most of the geometries the effective electro-optic

coefficient is somehow smaller with respect to what would be expected on the

base of rTijk.

In BaTiO3, the discrepancy between r
eff

ijk and rTijk is even stronger if one

considers wave interactions outside the ac crystallographic plane. Fig. 4.14(a)

shows a photograph of the far field light fanning distribution as observed on

the backside of a BaTiO3 crystal illuminated with a single c-polarized laser

beam (l ¼ 514 nm) propagating parallel to the crystal a-axis [37]. Fanning can

be viewed as photorefractively amplified broadband light scattering. Therefore,

in this configuration, its distribution depends primarily on the symmetry of the

electro-optic tensor. On the base of the conventional electro-optic tensor rTijk,

the upper and lower fanning lobes are not predicted to exist. However, their

existence can be fully understood with the help of the tensor r
eff

ijk (4.22) resulting

from the mechanical coupling [37]. Fig. 4.14(b) shows the expected far field

intensity distribution using (4.24) and the wave mixing expressions of section

4.4, which evidences an excellent agreement with the observations.

4.5.3 Photoexcitation Anisotropy

Finally, we want to illustrate the influence of a photoexcitation anisotropy on

two-wave mixing (Eq. (4.67)) with the help of the example of dichroic KNbO3

crystals doped by 3000 ppm Ni. Grating photoerasure experiments as a func-

tion of light polarization permit to independently determine the ratio �22=�33

between the elements of the photoexcitation tensor to be �22=�33 ¼ 3:4� 0:1
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Figure 4.13. Contour plot of the scalar effective electro-optic coefficient reff (4.24) for

each possible two-wave interaction geometry (qp,qs) in the ac-plane (see Fig. 4.8) of

BaTiO3. Contour line distance ¼ 100 pm/V. (a) Correct values obtained by considering

mechanical coupling according to (4.22). (b) Incorrect values obtained by using rTijk
instead of r

eff
ijk in (4.24).
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[4]. The important effect of such an anisotropy is better proved by using a

geometry such as the one depicted in Fig. 4.15(a), where the signal and pump

wave cross at large angles.

Two sets of experiments were performed in this kind of geometry. In the first

set, the angle g between the two beams was kept constant while the angles a
and b were changed simultaneously by rotating the crystal sample. For this

case, the angles qp and qs for the pump and signal wave in the crystalline

coordinate system move along the trajectory given by the bended arrow point-

ing toward the bottom left of the contour plot diagram in Fig. 4.15(b). In the

second set of experiments, only the pump beam angle was changed while

the crystal orientation and the direction of the signal beam were left

fixed, which corresponds to the arrow pointing to the right in Fig. 4.15(b).

The results of the two experiments are shown in Fig. 4.15(c) and Fig. 4.15(d),

respectively. The solid curves are plotted using (4.67), with the independently

determined anisotropy �22=�33 ¼ 3:4, and with the value of the space-charge

electric field Esc, i calculated using the known material properties, i.e., the

effective number of traps Neff ¼ 5:3� 1016 cm�3, determined independently

for this crystal [38]. No parameters were adjusted to plot the solid curves,

which describe the measurements very well. The dotted curves, in contrast,

are plotted using conventional photorefractive theory, which neglects the

40�

20�

(a) (b)

Figure 4.14. (a) Experimentally observed far field distribution of amplified scattered

light (fanning) for a pump beam (l ¼ 514 nm) propagating along the a-axis of BaTiO3.

Both the pump and the fanning have extraordinary polarization. The crystal c axis

points to the right. After the crystal, the pump beam is blocked by the dark spot in the

middle. (b) Corresponding theoretical far-field light fanning distribution calculated with

the help of the photorefractively active electro-optic tensor r
eff

ijk (4.22). The clamped or

unclamped electro-optic tensors do not predict the upper and lower lobes. The angles are

outside the crystal and the initial noise is assumed to have a cylindrical symmetric

Gaussian distribution around the incoming beam in wavevector space with a character-

istic divergence of 248. (Adapted from [37].)

Gunter / Photorefractive Materials and their Applications 1 chap04 Final Proof page 114 28.10.2005 9:04pm

114 Germano Montemezzani and Marko Zgonik



S

P

a

b

c

−90 −45 0 45 90
0

45

90

135

180

ϑ
s

[d
eg

]  −10 

40

  0

−46.3

  0   0 
−20.1

63.7

ϑ P [deg]

 20 

 [c
m

−1
]

−60 −40 −20 0 20 40 60

−15

−10

−5

0

5

10

15

 [deg]

Anisotropic

B A

Isotropic
 = 1

 = 3.4
22/ 33 = 10

 = 3.4

 = 1

(c)

−40 −20 0 20 40
−25

−20

−15

−10

−5

0

5

10

15

20

25

β [deg]
(d)

(a) (b)

 [c
m

−1
]

ˆ eS

ˆ eP
ˆ ePκ

ˆ ePˆ eP

ˆ eS

Γ Γ 

κ κ

22/ 33κ κ

22/ 33κ κ

22/ 33κ κ

22/ 33κ κ

β

α

γ

α

κ

Figure 4.15. (a) Experimental configuration for two-wave mixing in dichroic KNbO3.

The pump wave P amplifies the signal wave S. As drawn here, the angles a,b and g are

taken to be all positive so that aþ bþ g ¼ 90�. (b) Contour plots of the exponential

gain G for dichroic Ni-doped KNbO3. The experiments of (c) and (d) correspond to the

trajectories shown by the arrows pointing to the bottom left and to the right, respect-

ively. Parameters: �22=�33 ¼ 3:4, Neff ¼ 5:3� 1016 cm�3. The angle convention is the

same as in Fig. 4.8(a). (c) Measured gain G (circles) upon variation of the angle a for

g ¼ 60�. The insets show the orientations of the relevant vectors (all in the same plane)

for the two gain zero-crossing points A and B. (d) Gain G (circles) as a function of b for

a ¼ �30�. The upper theoretical curve for �22=�33 ¼ 10 (dashed line) evidences the

possible gain enhancement for larger anisotropy. (See [4].)
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effects of a photoexcitation anisotropy, and clearly fail to describe the meas-

urements accurately. This corresponds to the case �22=�33 ¼ 1 in (4.67) and

therefore to the replacement of the ratio inside the bracket in (4.67) by the

simple scalar product êes � êep.
The kind of geometry used for the measurements in Fig. 4.15 is particularly

interesting from a technological point of view because, due to the large angle

between pump and signal wave, scattering and fanning noise in direction of the

signal wave are strongly reduced. For crystal characterization pourposes, how-

ever, one usually employs a geometry with both beams entering the sample

from the same surface (transmission geometry). In this case, the photoexcita-

tion anisotropy brings about quantitative but not qualitative differences with

respect to the fully isotropic case, which may lead to overlooking its effect. Let

us assume that the above crystal is operated in a symmetric transmission

geometry with interference fringes having a grating spacing of L ¼ 0:4mm for

which the gain is close to a maximum. If the beams enter through the b crystal

face, the grating vector is directed along the c-axis, and both beams are p-

polarized, the gain coefficient is reduced by about 37% for �22=�33 ¼ 3:4 with

respect to the isotropic case (�22=�33 ¼ 1). This reduction factor changes only

slowly with the beam interaction angle. It is well known that in general, other

effects also can lead to a reduction of the measured gain coefficients, such as

electron-hole competition [39, 40], incomplete crystal poling, bad surfaces or

bulk scattering effect leading to a reduction of light fringes modulation [41], or

partial grating erasure due to surface reflections [42]. A discrimination between

all these effects is difficult in symmetric transmission geometries.

4.6 Conclusions

In this chapter, we summarized the effects of the various anisotropic material

properties on light diffraction, space-charge field formation, and photorefrac-

tive two-wave mixing interactions. These properties include the birefringence,

the dielectric constants, the dichroism, the electro-optic constants, the elastic

and photoelastic constants, the piezoelectric constants, the mobility tensor, and

the cross-sections for free carrier photoexcitation. All these material properties

have a substantial influence on the observable quantities. In particular, the role

played in photorefractive materials by an anisotropy of the photoexcitation

process with respect to light polarization, often over-looked, was discussed in

detail here. Also, light diffraction in anisotropic media was treated in deeper

detail. While the coupled wave model presented in Section 4.3 does apply to

photorefractive volume gratings, it is equally important for any holographic

materials having strong birefringence and/or containing volume gratings with

strongly anisotropic properties.
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5

Space-Charge Wave Effects
in Photorefractive Materials

Boris I. Sturman

Institute of Automation and Electrometry, 630090 Novosibirsk, Russia
sturman@iae.nsk.su

This chapter provides the first systematic description of the basic properties

of low-frequency space-charge waves (SCWs) in photorefractive materials,

and the effects caused by these weakly damped eigen-modes. The basic prop-

erties incorporate the dependences of the wave frequency and damping on

the wavevector, and the restrictions on the material parameters necessary to

ensure weakness of the wave damping. The unifying feature of the SCW effects

is their resonant character. These effects include the known DC and AC

enhancement of the photorefractive response (treated as the linear resonance),

the subharmonic generation (treated as parametric excitation of SCWs), the

low-frequency peculiarities of the nonlinear response, and also a number of

effects caused by the joint action of the optical and material nonlinearities.

While an exposition of the concepts lies at the center of this chapter, it also

gives a review of experimental studies relevant to the subject matter and a

historical sketch.

5.1 Overview

5.1.1 What Are Space-Charge Waves?

The subject of this chapter is low-frequency space-charge waves and the effects

caused by these waves in photorefractive (PR) materials. By waves, we mean

weakly-damped eigen-modes that can be characterized by the wavevector k,

eigen-frequency vk, damping gk, and also by the amplitude, phase, and group

velocity. These terms are common for waves of any nature: light waves, sound

waves, and so on. Weakness of the damping means that gk � jvkj. This

condition allows waves to propagate over distances larger than the wave length

2p=k; it is responsible for various resonant wave effects.
It is assumed that a uniform illumination excites free carriers—electrons or/and

holes—and makes the medium conductive. Furthermore, a uniform electric field

Eex is applied in the general case (see Fig. 5.1a). Then, under certain additional
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conditions, the density of space charge r experiences spatio-temporal oscillations

in the form of wave,

r ¼ Re [ rk exp (i k � r� ivkt� gkt) ]: (5:1)

The absolute value of the complex amplitude rk characterizes the wave

strength, while arg(rk) represents the wave phase. The frequency vk and

damping gk do not depend on the wave amplitude for its sufficiently low values.

The dependence of the eigen-frequency on the wavevector k is referred to as the

dispersion law.

The space charge induces the space-charge field Esc, which is of prime

importance for PR phenomena. Since the actual values of vk are very small,

this field can be treated as static. In other words, it possesses an electrostatic

potential and its direction is parallel to the wavevector, Esc ¼ (k=k)Esc. The

spatio-temporal dependences of Esc and r are similar. The complex field

amplitude Ek is coupled with rk through Poisson’s equation.

To link the concept of space-charge waves with the photorefractive concepts,

one can imagine that a space-charge grating with the grating vectorK equal to the

light wavevector difference is recorded by a pair of coherent light beams (see Fig.

5.1b). This grating vector represents a particular choice of the variable k. When

one of the recording beams is blocked, the grating decays under uniform illumin-

ation. If it is moving during the relaxation and propagating over the distances that

are larger than the period 2p=K , we are dealing with the eigen-mode.

The characteristics of space-charge waves (SCWs) are determined by the

charge transport properties under illumination. The charge transport is always

accompanied by energy dissipation. In this connection, the situations when

jvkj � gk are not common. In reality, weakly-damped SCWs occur only under

certain restrictions on the material parameters and only within limited ranges of

the wavevectors. Even then, the ratio Qk ¼ jvkj=gk, referred to as the quality

factor, can seldom exceed ten. One more distinctive feature of SCWs is the

absence of general macroscopic equations for their description. The use of

particular microscopic models of charge transport has no alternative here.

E0

I0

z

y x

k, ωk Eex

K k = K

k1, ω+Ω

z

y x

K
K/2

z

y x

K/2

K/3
K/3
K/3

(a) (b) (c)

k2, ω k2, ω

k1, ω+Ω

Figure 5.1. Diagrams illustrating SCW propagation (a), grating recording (b), and

subharmonie generation (c). The external field Eex can be constant (E0) or alternating.

The difference between cases (b) and (c) can be in the value of the frequency detuning V

and in the input intensity ratio.
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In contrast to photorefraction, the space-charge waves are not restricted to

media possessing the linear electro-optic effect. They can exist in both noncen-

tro- and centro-symmetric materials. However, the importance of SCWs and

the breakthrough in the studies of the relevant effects are inextricably linked

with PR phenomena. And we need to answer the question why:

First, the presence of the linear electro-optic effect allows us to visualize

SCWs via Bragg diffraction on the corresponding refractive index grating. This

gives a versatile tool for investigation of space-charge-wave effects.

Second, an extensive experience (experimental and theoretical) accumulated

in the studies of PR phenomena is largely the experience in the excitation and

description of space-charge fields. It allows us to sort out numerous factors

relevant to SCWs in a wide range of materials.

Third, SCWs are closely involved in numerous and important PR effects.

The root of this involvement lies in the general phenomenon of resonance.

5.1.2 Historical Sketch

To the best of our knowledge, the studies of SCWs date back to 1972–73 [1].

The authors considered the simplest semiconductor model (the one-species

model) in the absence of illumination, derived a dispersion relation for two

branches of space-charge waves (trap recharging waves), and analyzed some

cases relevant to semiconductors. It was predicted that these eigen-modes result

in oscillations of the impedance of semiconductors. These oscillations were

found in 1978 in experiments with Ge:Au crystals [2]. The mentioned papers

remained practically unknown in the PR domain until 1992–93.

In 1981–82, the so-called DC enhancement of holograms (of space-charge

field) during two-wave mixing, see Fig. 5.1b, was detected in Bi12SiO20 crystals

[3, 4]. The interpretation of this phenomenon, given in [4] in the PR terms, can

nowadays be easily recognized as the linear excitation of weakly damped SCWs

predicted in [1]. However, in the subsequent numerous publications on the DC

enhancement, see, e.g., [5–7], it was not treated as an SCW effect. The same is

valid with respect to the AC enhancement of the PR response [8, 9], which is

also caused by the presence of weakly damped SCWs and requires application

of an alternative electric field. The lack of recognition of the role of SCWs in

the enhancement phenomena had no visible negative consequences for practice.

The basic relations of the DC and AC enhancement techniques, expressed in

the conventional PR terms, were fully correct.

The turning point in the studies of nonlinear SCW effects was the discovery of

the subharmonic generation (i.e., generation of fractional spatial frequencies,K/2,

K/3 etc. (seeFig. 5.1c) in two-beam coupling experimentswithBi12SiO20 crystals in

1988 [10]. As was proven experimentally in 1990–93, this effect is of a general

nature; it is inherent in the whole family of sillenite crystals (Bi12SiO20, Bi12TiO20,

Bi12GeO20) as well as in both DC and AC excitation techniques [11–17].

The initial attempts [18–20] to explain the major features of this effect by PR

beam coupling were not successful. Along with them, it was suggested [12, 21]
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that the subharmonic generation can be caused by the material nonlinearity.

Independent efforts to describe the subharmonic instability on the basis of

nonlinear material equations have been made in [22] and [23] in 1991. They

resulted in 1992–93 in the development of a theory of parametric excitation of

SCWs in fast PR crystals [24–31]. This theory includes the basic properties of

the eigen-modes, the thresholds and increments of the instability for the DC

and AC excitation methods, as well as explanation of the main experimental

facts. Its most advanced version is presented in [28, 31]. The link to the early

semiconductor papers, including the one relevant to the parametric excitation

[32], was also established at this time.

In 1994, using a special experimental arrangement, it was proven unambigu-

ously that the subharmonic generation occurs even in the absence of PR beam

coupling [33]. Importance of the effects of material nonlinearity in the sillenite

crystals was widely recognized since then. Furthermore, the use of the above

‘‘non-coupling’’ geometry has opened the possibility to separate experimentally

the effects of optical and material nonlinearity [34–36].

After 1993–94, the studies of SCW effects are typically marked by the

feedback between theory and experiment. Knowledge of the subject was greatly

extended and refined. The burst of publications concerned at first with the

subharmonic generation [37–61]. New materials, including the semiconductor

CdTe, were used. A number of new features were found and explained. Many

results were multiply reproduced. Several wrong calculations were made. Some

of experimental findings still remain unclear and some of predictions still have

no experimental confirmation.

Several new lines have appeared in the studies of SCW effects:

� It was realized in 1995 that weakly-damped SCWs are possible not only in

fast but also in slow PR materials, typically ferroelectrics [62]. Their proper-

ties and the relevant SCW effects are expected to be strongly different from

those typical of the sillenites. First experimental steps in this direction have

been recently made [63].

� The factors limiting SCW effects in photorefractive GaAs crystals, as well as

the prospects for detection of these effects, have been analyzed in [64, 65].

� Various high-contrast effects in the PR response have been investigated

theoretically and experimentally in crystals of the sillenite family [66–71].

� Formation of light-induced discontinuities of the refractive index and their

impact on the nonlinear beam propagation in AC-biased sillenite crystals

were predicted in 1999–2001 [72–75].

� The effect of critical enhancement of PR beam coupling near the threshold of

subharmonic generation was presented in 2000–02 [76–78].

� The effects of temporal and spatial rectification of SCWs in the sillenites

have been investigated recently in [79, 80].

Note also that special efforts have been made to measure the fundamental

characteristics of SCWs—the quality factor Qk and the dependence of the
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eigen-frequency vk on the light intensity, applied field, and wavevector. The

corresponding data can be found in [34, 63, 81, 82].

5.2 Space-Charge Wave Characteristics

The analysis made in [1] is not sufficient for PR materials. To a lesser degree,

this is due to the necessity to take into account a uniform illumination, to

distinguish between the low- and high-frequency waves, and to consider the

general case when the wavevector k is not parallel to Eex. To a greater extent,

this is caused by the fact that the possibility and conditions for the existence of

two kinds of low-frequency SCWs (relevant to fast and slow PR materials) were

not revealed.

5.2.1 Basic Equations

We consider first the space-charge wave characteristics within the simplest one-

species model of charge transport (see Fig. 5.2a). The photoexcited charge

carriers are supposed to be electrons. While the corresponding set of equations

for the space-charge field Esc, the density of ionized traps Nþ, the density of

non-ionized traps N, and the electron concentration n is well known [7, 9, 83],

we write it out to have a reference point for the subsequent considerations:

= � Esc ¼ q

ee0
(Nþ �NA) (5:2)

@Nþ

@t
¼ si I N � sr nN

þ (5:3)

¼ �= � (mnEþD=nþ bNIz): (5:4)

electrones

N N+

N+

holes

N

(a) (b)

electrones

Figure 5.2. Diagrams of charge transfer for the simplest one-band (a) and two-band

(b) models.
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Here q is the elementary charge, ee0 is the static dielectric constant, NA is the

concentration of compensating centers (acceptors), si and sr are the ionization

and recombination constants, and I is the light intensity. The total concentra-

tion of the active centers, N0 ¼ Nþ þN, is constant. The bracket in (5.4)

represents the current density divided by q. Correspondingly, E ¼ Eex þ Esc is

the total electric field, m is the mobility of electrons, D ¼ mkBT=q is their

diffusion coefficient with kB and T being the Boltzmann constant and the

absolute temperature. The last term in the current density accounts for the

photovoltaic contribution [84, 85]; b is the photovoltaic constant and z is a unit

vector along the polar axis (if it is present in the medium). This term is

important for ferroelectrics LiNbO3 and LiTaO3.

The coefficients entering the set (5.2)–(5.4) are coupled with simple charac-

teristics of the system: The light absorption coefficient a ¼ siN=�v, where v is

the energy of the light quantum; the electron lifetime t ¼ 1=srN
þ, and the

photovoltaic field Epy ¼ �b=simt.
The following general approximations have been used: The electrons’ con-

tribution to the total charge density, r ¼ q(Nþ �NA � n), is neglected as

compared to the ionic one and the derivative @n=@t is neglected as compared

to n=t. We have also ignored the thermal excitation of electrons; this is justified

for most of PR materials.

The set (5.2)–(5.4) can be applied to three different situations:

� Three-dimensional (3D) wave effects in optically isotropic materials includ-

ing the crystals of the sillenite family (Bi12SiO20, Bi12TiO20, Bi12GeO20) and

semiconductors GaAs, GaP, etc. The photovoltaic contribution is negligible

here and the z-axis is parallel to the applied field.

� Three-dimensional propagation in ferroelectrics LiNbO3 and LiTaO3 under

the condition that the applied field is directed along the polar axis, E0 ¼ E0z.

� One-dimensional propagation in materials possessing strong optical aniso-

trophy, like BaTiO3 and SBN, when the applied field is parallel to one of the

principal crystal axes.

By considering the 3D-case, it is useful to express the space-charge field by

the scalar electrostatic potential w,Esc ¼ �=w.

5.2.2 Dispersion Relation for Space-Charge Waves

By setting I ¼ I0 ¼ const in (5.2)–(5.4), one can easily find the steady-state

uniform concentration of electrons, �nn ’ aI0t=�v. For moderate light inten-

sities, it is very small as compared to the nonperturbed ion densities. The space-

charge field is zero in this spatially uniform background state.

To find a solution in the form of free waves, it is necessary to linearize the set

(5.2)–(5.4) with respect to small perturbations dNþ ¼ �dN, dn, and w. Assum-

ing them to be proportional to exp (i k � r� ivkt� gkt), one arrives at a linear

uniform set of algebraic equations for the perturbations. The condition of

solvability of this set—the equality of its determinant to zero—gives the
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necessary dispersion relation for the eigen-frequency and damping. By setting

Eex ¼ E0z with E0 ¼ const, one can obtain for the above specified 3D-cases:

vk � igk

v0

¼ Eq þ ED � i(E0 �NþN�1
0 Epy)

E0 þ i(ED þ EM)
: (5:5)

Here v0 ¼ aI0=�vNE is the characteristic frequency, NE ¼ NNþ=N0 is the

effective trap concentration, while Eq, ED, and EM are the characteristic sat-

uration, diffusion, and drift fields, respectively,

Eq ¼ qNE

kzee0
, ED ¼ k2kBT

qkz
, EM ¼ 1

kzmt
: (5:6)

The characteristic frequency v0 is proportional to the light intensity I0 and

independent of the wavevector k. The characteristic fields Eq,ED, and EM

depend on the wavevector, but do not depend on I0. In the 3D-case, when the

wavevector possesses not only the longitudinal (kz) but also a nonzero trans-

verse component k? ¼ (kx, ky), our notation for the characteristic fields differs

slightly from the standard one [7, 83]. In the 1D-case, where k? ¼ 0 and kz ¼ k,

the difference disappears. By dealing in the 1D-case with strongly anisotropic

crystals, like BaTiO3 and SBN, we have to assume that the values of m and e
correspond to the chosen propagation direction.

As seen from (5.5), there are only two possibilities to fulfill the inequality

gk � vkj j. They correspond to the dominating real and imaginary parts of both

numerator and denominator. Physically, they are relevant to the fast and slow

PR materials. We consider these important cases separately.

5.2.3 Fast Photorefractive Materials

In the fast materials the photovoltaic effect is negligible and we can set Epy ¼ 0

in (5.5). It is evident then that the inequalities

Eq � E0, E0 � EM , E0 � ED (5:7)

ensure the presence of weakly damped SCWs. The eigen-frequency and

damping obey the relations [28, 31]

vk ¼ v0

Eq

E0

� q

ee0E0

aI0
�v

1

kz
(5:8)

gk ¼ v0 1þ EqEM

E2
0

þ EDEq

E2
0

� �
: (5:9)

� aI0
�v

1

NE

þ q

��0E
2
0��

1

k2z
þ kBT

��0E
2
0

k2

k2z

� �
:

Several remarkable features follow from here: The damping is positive,

gk > 0, it is an even function of k and E0. In contrast, the eigen-frequency is
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an odd function of k and E0, it can be as positive as negative. The expression for

vk includes only well defined material and experimental parameters. Both vk

and gk are proportional to the light intensity I0.

In the case when holes are the photoexcited charge carriers, the expression

for vk changes its sign. The expression for gk experiences no changes.

The dispersion law of SCWs, predicted first in [1], is rather special, vk / k�1
z .

The group velocity vg ¼ =kvk is anti-parallel to the applied field and does not

depend on the sign of kz. The free path length lk � ykj j=gk ¼ Qk= kzj j, where
Qk ¼ vkj j=gk is the quality factor.

The expression for the damping gk consists of three positive contributions

that are due to recombination, drift, and diffusion of photo-electrons. Only the

last (diffusion) contribution depends on the transverse component of the wave-

vector; it grows with increasing k? � (k2x þ k2y)
1=2.

The quality factor does not depend on the light intensity; it can be repre-

sented as

Qk ¼ ( E0=Eq

�� ��þ EM=E0j j þ ED=E0j j)�1: (5:10)

According to (5.7), each of three contributions to Q�1
k is small; this ensures the

inequality Qk � 1.

Consider the quality factor as a function of kz, k?, andE0. SinceED / k2z þ k2?,
it is evident that Q decreases with growing k?. By setting k? ¼ 0, kz ¼ k, we

analyze now the dependence Q(k,E0). For a fixed value of E0, the function Q(k)

possesses a maximum. The corresponding peak values are given by

Qp(E0) ¼ Qmax E0j j
(E2

0 þ E2
c )

1=2
,

1

kp(E0)
¼ mtkBT

q
1þ E2

0

E2
c

� �� �1=2
, (5:11)

where

Qmax ¼ (qNEmt=4ee0)
1=2, Ec ¼ (NEkBT=ee0)

1=2: (5:12)

These relations exhibit important properties of SCWs: The optimum period

2p=kp grows monotonously with E0 with no saturation. The optimized (with

respect to k) value of the quality factor increases monotonously with E0j j and
experiences a saturation for E0j j � Ec. The quantity Qmax is the maximum

value of Qk achievable in a particular material. The inequality

qNEmt=4ee0 � 1 (5:13)

is the criterion for the existence of weakly damped SCWs in fast PR materials.

The major material parameter entering this criterion is the mobility-lifetime

product mt. To approach closely the value of Qmax , it is sufficient to apply an

electric field that exceeds the characteristic field Ec by a factor of 2–3; further

increase of E0 is inefficient. In the region E0j j � Ec, the diffusion contribution

to Qk is negligible and the contributions related to the drift and saturation are

equal to each other at k ¼ kp.
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Table 5.1 represents the values of e, NE , mt, Qmax , Ec, and Lc ¼ 2p=kp(Ec)

for a number of PR materials meeting (5.13). They all are fast PR crystals

distinguished by fairly high values of mt. Furthermore, they are isotropic so

that the above relations are fully applicable to the 3D-case. The value of the

eigen-frequency vk is typically within the range 102---103s�1 in continuous-wave

experiments with the fast materials.

Fig. 5.3a shows the dependence Q(k, E0) for k? ¼ 0 and representative

parameters of Bi12SiO20 crystals. For modestly high values of E0, weakly

damped SCWs exist in a wide range of the wavelength L ¼ 2p=k. The satur-

ation of Qp(E0) is clearly seen for E0*6 kV=cm. The values of the quality factor

in this range are close to Qmax ’ 7.

The linearized equations for the perturbations give not only (5.8) and (5.9)

but also relations for the amplitudes wk, dNþ
k , dnk. They look especially simple

when the small terms relevant to the wave damping are omitted,

k2wk ¼ qdNþ
k =ee0, dnk ¼ ivktdN

þ
k : (5:14)

Relations (5.14) are important for analysis of nonlinear SCW effects because

they allow us to compare different nonlinear terms in the basic Eqs. (5.2)–(5.4).

The second relation shows also that the inequality dnk � dNþ
k , used earlier, is

valid for vkt � 1, i.e., in the low-intensity range.

Table 5.1. Representative parameters of some fast cubic PR crystals [7, 9, 83].

Material e NE
1

cm3

� �
mt cm2

V

h i
Qmax Ec

kV
cm

� �
Lc[mm]

Sillenites 40–56 � 1016 10�6 � 10�7 � 101 � 3 � 10

GaAs 13 � 1015 10�4 � 10�5 � 102 � 2 � 100

CdTe 9.5 � 1015 10�5 � 10�6 � 101 � 2 � 30
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Figure 5.3. Contour lines Q(E0, 2p=k) ¼ 1, 2, . . . for Bi12SiO20 (a) and LiNbO3:Fe
(b) crystals. In the case (a) mt ¼ 6� 10�7 cm2=V, NE ¼ 1016 cm�3, e ¼ 56 and in the

case (b) mt ¼ 0:25� 10�13 cm2=V, NE ¼ 1018 cm�3, ek ¼ 30, Epv ¼ 80 kV=cm.
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Experimental evidences of the dependence vk / I0=E0k for the sillenites can

be found in [5, 34, 82] and other papers. They are obtained with the use of

different excitationmethods, see Section 5.3.Measurements of the quality factor

Qk have been performed in [81]; estimates of this parameter can also be made on

the basis of the data on the subharmonic generation, see Section 5.4.

5.2.4 Slow Photorefractive Materials

Leaving provisionally aside LiNbO3 and LiTaO3 crystals, we set Epv ¼ 0 and

consider the case when the imaginary parts are dominating in the numerator

and denominator of (5.5). This bring us to the inequalities

EM � E0, E0 � Eq, E0 � ED, (5:15)

which differ strongly from the inequalities (5.7). Here we have [62]:

vk ¼ �v0l0kz, gk ¼ t�1
d þ v0(l

2
0k

2
z þ k2l2D), (5:16)

where td ¼ ee0=qm�nn is the dielectric relaxation time, l0 ¼ mtjE0j is the drift

length, and lD ¼ (Dt)1=2 is the diffusion length of photoelectrons. Again, the

eigen-frequency and damping are even and odd functions of k, E0 and gk is

positive and growing with k?. The dispersion law is, however, completely new,

vk / E0kz. The group velocity is constant here and directed against the applied

field vector. Switching from photoelectrons to photo-holes results in the chan-

ging sign of the eigen-frequency.

The expression for the quality factor has the form:

Qk ¼ (jE0=EM j þ jEq=E0j þ jED=E0j)�1: (5:17)

The inequalities (5.15) ensure that Qk � 1. The maximum of Q(k?) occurs at
k? ¼ 0; it corresponds indeed to the longitudinal wave propagation.

By setting k? ¼ 0, kz ¼ k, we consider again the dependence Q(k) for a fixed

value of E0. The corresponding peak values kp and Qp are given by

1

kp(E0)
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l20 þ l2D)v0td

q
, Qp(E0) ¼ l0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0td

l20 þ l2D

s

: (5:18)

The value of Qp grows monotonously with jE0j and for jE0j � Ec ¼
(kBT=qmt)1=2 saturates on the level of

Qmax ¼ (ee0=4qNEmt)
1=2: (5:19)

This is the maximum possible value for the case considered. The inequality

ee0=4qNE mt � 1 (5:20)

is the criterion for the presence of weakly damped SCWs in slow materials

[62]. In contrast to (5.13), it requires small values of the mobility-lifetime

product.
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Note that the inequalities (5.13) and (5.20) are not exactly opposite; for the

combination qNEmt=ee0, there is a gap from � 1/4 to � 4 where weakly

damped SCWs cannot exist. Quite a lot of PR materials belong to this gap.

The literature data evidence [9, 83] that the effective trap concentration

ranges within roughly two orders of magnitude, from � 1016to � 1018 cm�3.

The mobility-lifetime product ranges within much wider limits, from

� 10�5to � 10�13 cm2=V. This is why PR materials with low values of mt are

indispensable for the SCWs in question. Typically, such materials are ferro-

electrics. High values of the dielectric constant, which are typical of them, favor

large values of Qk. Furthermore, many ferroelectrics are strongly anisotropic;

the longitudinal (k) and transverse (?) values of e and m can be strongly

different. If so, our theory can be applied only to the 1D-case.

Table 5.2 lists the relevant material parameters, the values of Qmax , Ec, and

Lc ¼ 2p=kp(Ec) for a number of ferroelectrics. Fairly high values of Q can

potentially be achieved here.

Note that the condition (5.20) can be insufficient to employ SCW effects

because of unrealistically high values of E0. The characteristic field

Ec ¼ (kBT=qmt)1=2, which has to be exceeded to approach Qmax , can seldom

be smaller than 10 kV/cm for the listed materials. The best candidate seems to

be SBN:75.

One more distinctive feature of the slow materials is relatively small values of

the wavelength Lc ¼ 2p=kp(Ec) � 2prd , where rd ¼ (ee0kBT=NEq
2)1=2 is the

Debye screening length. The wavelength Lc does not typically exceed (1–2)

mm. In SBN:75 crystals, it is expected to be relatively large.

Since the parameters mt and Lc vary strongly over the slow materials, the

range of variations of the eigen-frequency is also expected to be big.

Consider now the case of LiNbO3 and LiTaO3 crystals with dominating

photovoltaic charge transport [84, 85]. The upper limit of the photovoltaic

field Epv is here around 100 kV/cm and the values of the mobility-lifetime

product are extremely low, mt&10�13 cm2=V. Furthermore anisotropy of the

dielectric permittivity and mobility is not high and can often be neglected.

It is important that the simplest one-species model is well justified for

LiNbO3 and LiTaO3 crystals doped with Fe (or Cu) within a fairly wide

range of concentrations [83, 86]. The Fe2þ (Cuþ) ions serve as donors and the

Fe3þ (Cu2þ) centers as acceptors. The total concentration N0 and the ratio

Table . 5.2. Representative parameters of some slow ferroelectric PR crystals [9, 62, 83].

Material ek NE [
1

cm3 ] mt cm2

V

h i
Q

k
max Ec

kV
cm

� �
Lc[mm]

BaTiO3:h 135 � 3� 1016 � 3� 10�12 � 25 � 102 � 0:5

SBN:75 3400 � 5� 1015 � 5� 10�10 � 25 � 7 � 6

SBN:60 880 � 1016 � 3� 10�10 � 10 � 10 � 2

KNbO3 50 � 1016 � 3� 10�11 � 8 � 30 � 0:5

LiNbO3:Fe 30 � 1018 � 3� 10�14 � 20 � 103 � 0:05
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Nþ=N can be controlled in experiment and the major model parameters are

known. Typically, NE ’ NA � N0 and the effective trap concentration NE

ranges from� 3� 1017to � 3� 1018 cm�3. Larger values ofNE lead to a strong

light absorption while for smaller values, the influence of residual defects

cannot be excluded. The photovoltaic field Epv does not depend on NE for

NA � N0.

With these preliminaries, one can find from (5.5) that the inequality

gk � jvkj is fulfilled under the conditions

jE0 �NþN�1
0 Epvj � Eq, ED, EM � E0: (5:21)

For the eigen-frequency and damping we get, compare with (16):

vk ¼ �v0l
�
0kz, gk ¼ t�1

d þ v0(l0l
�
0k

2
z þ k2l2D), (5:22)

where l�0 ¼ mt(E0 �NþN�1
0 Epv).

Since l0 and l�0 can be opposite in sign, one can suspect that the damping gk

can be negative in a range of E0. This would mean an exponential grows of

SCWs, i.e., instability of the medium. In reality, gk is always positive. To

explain it, we point out that the necessary condition for the instability is the

inequality lpv � mtjEpvj > 2lD. However, both experiment and theory evidence

[85] that the photovoltaic length lpv is smaller than lD. Prediction of the

instability of SCWs in LiNbO3 made in [87, 88] is groundless.

The possibility to realize weakly damped SCWs without applied fields (owing

to the photovoltaic effect) is slim [62]. To ensure the values Qk � 1, it is

profitable to apply an electric field that is larger than Epv but smaller than

Ec � 103 kV=cm. In this case, l�0 ’ l0, kp ’ r�1
d , and Qp ’ E0(ee0=4 kBTNE)

1=2.

The possibility to apply fields up to 650 kV/cm to LiNbO3:Fe crystals has been
shown recently [89]. Thus one can obtain the values of the quality factor

Q � 5� 6 (see also Fig. 5.3b). The corresponding SCW wavelengths are com-

parable with (or smaller than) a typical light wavelength inside the crystal and

the typical values of vk can be estimated as 10�2 � 10�1s�1. The dependence of

the quality factor on E0 is not even here owing to the photovoltaic effect. The

use of strong ‘‘negative’’ fields, whose direction is antiparallel to the spontan-

eous polarization, is hardly possible because of the domain reversal. Experi-

mental evidences of the dependence vk / I0E0 for LiNbO3:Fe crystals can be

found in [63].

5.2.5 Two Generalizations

Two generalizations of the above results are worth mentioning. The first one is

taking into account the electron-hole competition within the simplest two-band

model (see Fig. 5.2b). The major effect of this competition is subtraction of the

partial contributions to vk and addition of the contributions to gk [62]. Thus,

the e� h competition is harmful for SCWs. This is in line with e� h models of

the DC enhancement [90].
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The aims of the second generalization are to explain why the SCW char-

acteristics of a promising fast PR material—GaAs:EL2 crystals—are much

worse than the expected ones, and to see how to improve these characteristics.

Optical and photoelectrical characteristics of semiconductor GaAs:EL2 have

been studied in many details [83, 91, 92]. The native defect EL2 with the

concentration N0 ¼ (1� 3)� 1016 cm�3 is the main local center for undoped

GaAs crystals. At room temperature it exists in the ionized and neutral states.

Within the infrared wavelength range (0:8� 1:6) mm, the model depicted in

Fig. 5.2b works well and the main transport parameters are known. The hole

and electron transport dominate for the low- and high-energy parts of the

spectral range. The values mt ¼ 7 and 80� 10�5 cm2=V can be taken as repre-

sentative for electrons and holes, respectively. This gives Qmax � 90 and 300.

The same have to be the amplification factors for the space-charge field with

the use of the DC and AC enhancement techniques, see Section 5.3. However,

the experiments carried out with GaAs:EL2 crystals show neither large en-

hancement of the PR response nor the subharmonic generation [93, 94].

A similar situation takes place in GaAs:Cr crystals [95].

The most probable reason for the unexpectedly low values of the quality

factor of SCWs is nonlinearity of charge transport [94]. This argument origin-

ates from the measurements of the electron-capture cross-section in high

( > 10 kV=cm) applied fields [96]. The detected strong increase of this param-

eter, caused presumably by high values of the drift mobility m, has to lead to a

sharp decrease of the carrier lifetime and to the negative differential resistance

of the crystal. In turn, this leads to the field instability for E0 > Ec [64, 65],

which is similar to the well-known Gunn instability. In n-GaAs crystals, the

critical field Ec is expected to be about 1 kV/cm.

Modeling of the nonlinear charge transport in n-GaAs has shown [64] that

weakly damped SCWs have to exist only for moderate fields, E0 < Ec, and light

wavelengths l < 1:2mm. The quality factor peaks at E0 � Ec=2 and

2p=k ¼ (100� 200)mm, here Qmax � 10. Pronounced SCW effects are expected

in the indicated range of parameters.

5.3 Linear Excitation of Space-Charge Waves:
Enhancement of Photorefractive Response

5.3.1 General Features

The simplest way of excitation of SCWs has much in common with recording of

elementary PR gratings. Let two coherent light beams interfere in a PR medium

(see Fig. 1b). The light intensity pattern I (r, t) has generally the form of a

running grating,

I ¼ I0 [1þm cos (K � r�Vt)], (5:23)
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where K and V are the differences of the light wavevectors and frequencies

(referred to as the grating vector and frequency detuning), I0 is the total

intensity, and m is the light contrast. Correspondingly, a running grating of

space-charge field is induced.

Within the linear approximation in m, only the spatial frequency K is present

in medium response and the space-charge field can be expressed as

Esc(r, t) ¼ 1

2
EK(t) exp (iK � r)þ c:c: (5:24)

The complex grating amplitude Ek obeys then the differential equation

d

dt
þ ivK þ gK

� �
EK ¼ mFK exp (� iVt), (5:25)

where the complex quantity FK is an effective driving force. The structure of

this equation is quite general while the parameters vK, gK, and FK are model-

dependent. Within the basic one-species model vk and gk obey the dispersion

relation (5.5) and the ratio jvkj=gk is not necessarily large. In other words, the

structure of (5.25) carries no special features relevant to SCWs. It describes

buildup of the fundamental grating within the linear-contrast approximation

and decay of this grating under a uniform illumination (m ¼ 0). Recall lastly

that the uniform applied field Eex is generally time-dependent.

Suppose now that Eex ¼ E0 ¼ const, jvKj � gK, and V � vK, i.e., the res-

onance between the driving-force frequency V and the eigen-frequency vK

takes place. Eq. (5.25) gives then in steady state:

EK ¼ mFK

gK þ i(vK �V)
exp (� iVt): (5:26)

The grating amplitude experiences an obvious resonant enhancement when V
approaches vK. The half-width of the resonant profile jEK(V)j2 is the damping

gK and the enhancement factor for jEKj at the resonance center (as compared to

the case V ¼ 0) is the quality factor QK. The argument of the ratio

FK=(gK þ ivK � iV) is the phase shift between the field and intensity gratings;

it is an important characteristic of the PR response. Switching V from 0 to vK

produces a � 90� change of the phase shift. The resonant excitation thus

modifies the type of the response in addition to its enhancement.

In short, the place of the DC enhancement in the SCW concept can be

commented as follows: Only one spatial frequency k ¼ K is selected from the

whole spectrum of the wavevectors in the presence of the low-contrast intensity

pattern. So we are dealing with the excitation of an elementary weakly damped

oscillator by a periodic driving force.

Instead of the running grating technique, a phase-modulation technique can

also be used for the excitation of SCWs in the DC case. If the phase of one of

the pump beams is modulated as u cosVt, the light intensity is I ¼ I0
[1þm cos (Kz� u cosVt)], i.e., the positions of the light fringes are oscillating
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in time. The Fourier spectrum of dI(t) is more complicated now; it includes the

harmonics 0, �V, � 2V, . . . The modulation method is useful for the studies

of the linear and nonlinear SCW effects in the low-contrast-low-modulation

range, see Section 5.5.2. For m, u � 1, the intensity components I0m cos (Kz)

and I0(mu=2) sin (Kz�Vt) are of prime importance. At V ’ �vK, we have

again the resonant DC enhancement.

Consider now the AC enhancement. To make it, we set V ¼ 0 (static light

pattern) and Eex(t) ¼ pE0, where p(t) ¼ �1 is a periodically alternating func-

tion whose period is much shorter than the decay time g�1
K . As soon as

jvKj � gK, the eigen-frequency is an odd function of Eex; it rapidly changes

its sign. As for gK, it remains unchanged. Quickly alternating term vKEK can be

removed from the left-hand side of (5.25) and the major question is now

whether the driving force FK is alternating in time. If so, the AC enhancement

is impossible. If FK(t) ’ const, we have in steady state:

EK ¼ mFK=gK: (5:27)

Again, the enhancement factor for jEKj (as compared to the case V ¼ 0,

Eex ¼ E0) is QK and an almost 90� change of the phase shift between the field

and intensity gratings takes place.

The strongest enhancement occurs indeed for K k Eex. In what follows, we

restrict ourselves to this most interesting situation.

5.3.2 Particular Cases

Fast materials: Here the driving force FK ’ �ivKEex for sufficiently strong

applied fields (when QK � 1). Since vK / E�1
ex , it does not depend on Eex.

The DC and AC enhancement techniques give here the same result. For V ¼ 0

and Eex ¼ E0, the phase shift between the field and light fringes is close to 0 or

p (the local PR response) and the energy exchange between the light beams is

weak. Under the DC or AC enhancement conditions, the phase shift is almost

�p=2 (the nonlocal response) and the rate of energy transfer is high. Since 1985

both DC and AC techniques have been successfully used for a number of fast

materials (predominantly for crystals of the sillenite family) [7, 9]. It was proven

also that the square-wave shape of the applied electric field provides the best

AC enhancement [9, 97]. Experimental dependences of the resonant detuning

(V ’ vK ) on I0, E0, and K, obtained for the sillenites in the DC case, show that

the eigen-frequency vK is proportional to I0 and inversely proportional to E0

and K [5, 34, 82].

While the mentioned characteristics of the DC and AC enhancement tech-

niques are the same, there are essential differences. The DC method requires a

precise adjustment of V to the resonant frequency vK / I0. If, as often hap-

pens, the intensity I0 noticeably decreases across the sample because of light

absorption, the nonuniform broadening of the resonance takes place and the

efficiency of the DC enhancement falls down. The AC technique requires no

adjustment to the resonance; it is robust in the nonuniform environment.
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Furthermore, the highest applied fields (up to 60 kV/cm) have been used in AC

experiments [98]; in the DC case, the field E0 did not exceed 15 kV/cm.

One more difference concerns the field of applicability of the linear-contrast

approximation. In the DC case, Eq. (5.25) is valid for m9Q�1
K if the detuningV

is close to vK . For larger values of m, excitation of the higher spatial harmon-

ics, E2K , E3K , . . . becomes important and the function jEK j(m) experiences a

saturation on the level of E0. In the AC case, the field of applicability is even

narrower, m9Q�2
K (see Section 5.5.2 for more detail.)

Slow materials: In this case, the driving force FK ’ vKEq / Eex so that only

DC enhancement is possible. At the resonance (V ’ vK ), the absolute value of

the fundamental grating amplitude is jEK j ’ mEqQK and the enhanced PR

response is local in contrast to the previous case.

Since the space-charge field cannot exceed the saturation field, applicability

of the linear-contrast approximation is also restricted by the inequality m9Q�1
K

at the resonance. The use of larger values of m results in saturation of the

dependence EK (m) and broadening of the frequency dependence jEK (V)j be-
cause of excitation of the higher harmonics [62].

Experimental conditions necessary to employ the resonant excitation in slow

materials are rather tough. A reflection geometry should be used to meet the

requirement of high spatial frequencies. The applied field has to be fairly strong

(E0 � 102 kV=cm for lithium niobate). Finally, the resonant detuning is

expected to be small and the necessary waiting time rather long.

Despite the difficulties, the resonant excitation has been realized recently in

LiNbO3:Fe crystals [63]. The light beams were counter-propagating, the ap-

plied field ranged from 0 to 650 kV/cm, and the stabilization was achieved with

the help of a feedback loop. By maximizing the diffraction efficiency of the

recorded grating, this feedback introduced a detuningV, minimizing the energy

exchange. This detuning was growing linearly with E0 and identified as the

eigen-frequency of SCWs. The quality factor was estimated as QK � 5.

5.4 Parametric Excitation of SCWs: Subharmonic
Generation

5.4.1 Main Experimental Facts

Discovery of the effect of subharmonic generation in 1988 was the turning

point in the studies of SCWs. Initially the subharmonic generation was ob-

served in a Bi12SiO20 crystal during experiments on DC enhancement of the PR

response [10]. Numerous subsequent DC and AC experiments with fast mater-

ials (Bi12SiO20, Bi12TiO20, Bi12GeO20, and CdTe) have revealed a number of

apparent features of this general phenomenon [11–17, 41, 47–49, 52, 61]:

� If the frequency detuning V is increasing, an additional central light beam

emerges spontaneously at the output at a certain value Vm. This beam is due
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to diffraction of the pump from the subharmonic grating (the main subhar-

monic) with the spatial frequency K/2 (see also Fig. 5.1c).

� Further increase of V results in the longitudinal (along K) split of the central

beam, progressing angular separation of its parts, and their decreasing

intensity. For sufficiently high values of V, the additional light beams disap-

pear. The spatial frequencies of the gratings responsible for the outgoing

beams are sometimes close to K/3 and K/4.

� The described regularities take place only for sufficiently large values of the

light contrast (the threshold value mth ranges from � 0.6 to 1), for sufficiently

high applied fields, and within a restricted interval of jKj.
� Reversal of the sign of E0 (or V) eliminates the subharmonic generation.

� The above restrictions on the light contrast, the value of the applied field,

and the spatial frequency hold true as applied to the AC case.

There are also a number of other remarkable features of the effect that are

relevant to particular experiments. Probably, the most exciting among them is

the transverse subharmonic split—the non-planar (? K) angular separation of

the central beam—observed in some DC experiments with Bi12SiO20 crystals

[41, 48, 100]. Below, we consider the main elements of theory that is capable of

explaining the main observations.

5.4.2 Phase-Matching Conditions for Parametric Excitation

Phase-matching conditions, which are the conditions of the spatio-temporal

resonances, are the most general tools for classification and characterization of

various nonlinear wave processes [99]. Let K and V be the fundamental grating

vector and the frequency detuning relevant to the DC excitation technique.

Then the phase-matching conditions for the parametric excitation of a pair

SCWs with wavevectors k1, 2 are [28, 31]:

K ¼ k1 þ k2, V ¼ vk1 þ vk2 : (5:28)

They can be considered as the conditions for decay of the fundamental grating

into two eigen-modes.

The tips of the vectors k1, 2 fill a surface in the space of SCW wavevectors

(the resonant surface). Each vector k1 is uniquely related to a vector k2.

Assuming that K k E0, which is the case of the subharmonic experiments, and

recalling that vk / k�1
z , we obtain that k1? ¼ �k2? and

k1z ¼ K

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4vK

V

r !

, k2z ¼ K

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4vK

V

r !

: (5:29)

The presence of the double signs in (5.29) expresses the symmetry with

respect to the interchange of k1 and k2. It is sufficient to find the allowed values

of k1 for the upper sign. We see that the longitudinal component k1z is fixed

Gunter / Photorefractive Materials and their Applications 1 chap05 Final Proof page 135 28.10.2005 9:06pm

5. Space-Charge Wave Effects in Photorefractive Materials 135



while there is no restriction on the transverse component k1?. Thus the reson-
ant surface consists of two plains perpendicular to K, see Fig. 5.4a.

The phase-matching conditions can be fulfilled only for sufficiently large

values of the frequency detuning, V$ 4vK . The minimum value, Vm ¼ 4vK ,

exceeds the resonant one by a factor of four. In the 1D case, it corresponds to

the excitation of the subharmonic K/2. With V increasing from Vm to 1, the

components k1z and k2z are changing from K/2 to 0 and K (see Fig. 5.4b). The

found features are closely related to the dispersion law vk / k�1
z .

Each resonance has indeed a finite width. Therefore the waves whose wave-

vectors lie in the close vicinity of the resonant surface can also be excited.

Besides, the parametric excitation cannot die immediately for V > Vm.

The described consequences of the phase-matching conditions already allow

us to understand some of the above-listed experimental facts on the subhar-

monic generation.

In the case of AC excitation, the only remaining phase-matching condition is

k1 þ k2 ¼ K; it does not fix the longitudinal components of the wavevectors.

A wide spectrum of the longitudinal spatial frequencies can be excited here.

5.4.3 Simplified Nonlinear Equation

To exhibit and investigate the instability of the fundamental grating against

parametric excitation of SCWs, we use the set of basic Eqs. (5.2)–(5.4). It can be

considerably simplified and reduced to a single equation for the electrostatic

potential w if we assume that the inequalities (5.7) hold true.

The basic equations include linear and nonlinear terms with respect to the

spatially-oscillating perturbations dn, dNþ, and w. The linear terms are respon-

sible for SCW propagation. The biggest of them in (5.3) and (5.4) are dNþ
t , dn=t

and Eexdnz, �nnDw, respectively, with the subscripts z and t denoting differenti-

ation. Retaining these terms leads to propagation without damping. The biggest

nonlinear term is m= � (dnEsc); it corresponds to the drift nonlinearity. The

x

(k
1,

2)
z

/ K

0.8

0.4

0.2

0.6

4 5 6 7
Ω/ωK

zk1

K

(a) (b)

1

2

k2

Figure 5.4. (a): Geometric scheme for the phase-matching conditions (28).

(b) Dependence of the allowed values of (k1, 2)z on V=vK .
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nonlinear recombination term srdndN
þ in (5.3) can be neglected. To see it, one

can compare the nonlinear and the major linear terms using (5.14). Expressing

algebraically dn and dNþ by w, we obtain finally [31]:

Dwzt �
v0

ls
Dwþ v0Dwz �

1

l0
Dwt þ

l2D
l0
D2wt

¼ � q

ee0

adIz
�v

þ q

ee0

a

�v
1

Eex

= � (dI=w)þ 1

Eex

= � (Dwt=w):

(5:30)

HereD ¼ r2, dI ¼ I0 cos (Kz�Vt) is the nonuniform part of the light intensity,

and ls ¼ eeoEex / qNE . The field Eex can be constant, E0, or alternating, �E0.

Eq. (5.30) includes all linear and nonlinear terms relevant to SCW effects in

the fast materials. It is applicable to the DC and AC cases in the whole range of

light contrast. Two first terms of the left-hand side correspond to lossless wave

propagation, while the subsequent three terms describe wave damping. The

first term on the right-hand side is the effective driving force for SCWs caused

by the spatial modulation of the light intensity. The next term describes

coupling between dI and w. The last term describes the intrinsic nonlinear

wave coupling. Often the last two terms partially compensate each other. In

the 1D case, Eq. (5.30) undergoes additional simplifications [31].

5.4.4 Thresholds and Increments of Parametric Instability

To consider the DC-case, we set Eex ¼ E0 and use the ansatz:

w ¼ wK exp (iKz)þ w1 exp (i k1 � r)þ w2 exp (i k2 � r), (5:31)

where wK ¼ iEK=K / exp (� iVt) is the amplitude of the electrostatic potential

for the moving fundamental grating and w1, 2 are small amplitudes of SCWs 1

and 2 whose wavevectors meet (5.28). By substituting it in (5.30) and keeping in

mind that the derivatives of (w1, 2)t in the nonlinear terms have to be equalized

to �ivk1, 2w1, 2 within the leading approximation, we obtain, after separation of

the spatial harmonics:

d

dt
þ ivk1 þ gk1

� �
w1 ¼ �i

v0

ls
f12

EK

E0

w�
2 (5:32)

d

dt
� ivk2 þ gk2

� �
w�
2 ¼ i

v0

ls
f21

E�
K

E0

w1, (5:33)

where f12 ¼ [2k1zk
2
2z þ k2?(k1z � k2z)]=2k1zk2zk

2
1. The contributions to f12 come

from two last terms in (5.30).

The structure of (5.32), (5.33) is generic for the parametric wave processes.

The left-hand sides express the resonant properties of the eigen-modes. The

right-hand sides can be considered as the driving forces caused by the presence

of quadratic nonlinear terms; these forces are proportional to the wave
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amplitudes and the amplitude of the fundamental grating. If the phase-match-

ing conditions are fulfilled, the forces are in resonance with the eigen-modes.

By setting w1 / exp (� ivk1tþ Gt), w�
2 / exp (ivk2 tþ Gt), we obtain for the

increment G:

G ¼ � 1

2
(gk1

þ gk2
)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
(gk1

� gk2
)2 þ G2

0

r

, (5:34)

where

G0 ¼ mvK

2(1� «)
F («, k2?=K

2); F («, x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4«3 þ (4«� 1)x(x� 2«)

«2 þ (1� 2«)xþ x2

s

, (5:35)

and « ¼ vK=V. The values of e compatible with the phase-matching conditions

range from 1/4 to 0. The positive values of G correspond to instability of the

fundamental grating; they occur only for the upper sign in (5.34).

The threshold condition for the excitation of a pair of SCWs with wavevec-

tors k1, 2, which corresponds to the equality G ¼ 0, looks especially simple,

G2
0 ¼ gk1

gk2
: (5:36)

It is evident that (5.36) can be satisfied only for sufficiently large values of the

contrast m. It can be checked furthermore that the function F («, k2?=K
2) is

decreasing with increasing k2? for any allowed value of «. Since gk1, 2 are

growing with k2?, we conclude that for any V, the lowest threshold value of

the light contrast occurs in the 1D case, k? ¼ 0. Here

mth ¼ V� vK

vK (Qk1Qk2 )
1=2

, (5:37)

where k1 ¼ k1z and k2 ¼ k2z are expressed by V=vK and K through (5.29).

The minimum threshold value,

mmin
th ¼ 3=QK=2, (5:38)

takes place at V ¼ 4vK (« ¼ 1=4); it corresponds to the excitation of the main

subharmonic K/2. This is an important corollary of the theory. Above the

threshold, the biggest value of G(V) also corresponds to the generation of the

main subharmonic. The minimum value of the quality factorQK=2 necessary for

the subharmonic generation is 3. The requirement QK=2 > 3 can be fulfilled in a

wide range of K and E0, see Fig. 5.3a. With QK=2 � 6, the threshold value

mth(V) reaches 1 for V ¼ (6� 7)vK .

Consider now the AC case. This can also be done with the help of (5.32),

(5.33) if we replace theE0 byEex ¼ p(t)E0 and use the relationEK ¼ �imvK (Eex)

Eex=gK for the fundamental amplitude (see Section 5.3). The only parameters

changing their signs at the AC switching are vk1, 2 / E�1
ex . The correspond-

ing terms can be removed when the period of the AC oscillations is much
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shorter than the response time g�1
K . Using the ansatz (5.31) and restricting

ourselves to the 1D case, we proceed to (5.34) with G0 ¼ (vk1vk2 )
1=2jEK=E0j.

Exactly the same expression for G0 is valid in the DC case. However, the ratio

jEK=E0j is the highest in the AC case because the requirementV$ 4vK excludes

the resonant enhancement of EK in the DC case Correspondingly, the threshold

value of the contrast is lowest in the AC-case,

mth ¼ Q�1
K (Qk1Qk2 )

�1=2, (5:39)

where k1 þ k2 ¼ K . The minimum threshold value, mmin
th ¼ 1=QKQK=2, corres-

ponds again to the excitation of the main subharmonic. The results obtained in

the limit of quickly oscillating AC field admit a generalization on the case of an

arbitrary alternation period [31]. The instability is getting weaker and disap-

pears with increasing this period.

Recalling that the expression EK ¼ �iQKE0 for the fundamental amplitude is

valid for m9Q�2
K in the AC case, one can expect that taking into account the

higher spatial harmonics, E2K ,E3K , . . . , can modify (5.39). An analysis shows

[60] that this modification is reduced to an increase of mth by a factor of 2–3.

For moderate values of the quality factors, the threshold values of the light

contrast can be comparable in the DC and AC cases.

5.4.5 Further Developments of Subharmonic Theory

Several important issues have been analyzed in addition to the above consid-

ered within the simplest one-species model:

An attempt to explain the transverse subharmonic split was made in [48, 54].

The authors analyzed stability of the fundamental grating in the DC case

for m � 1 and V � vK using an expression for EK which is valid in the

low-contrast approximation, i.e., skipping the high-contrast effects. Within

this oversimplified model, the strongest instability took place for (k1, 2)z ¼
K=2 and k? 6¼ 0. The reason of this is simple: The postulated sharp increase

of EK (V) with V approaching vK compensates the growing distance from the

parametric resonance and destroys the compensation of nonlinear terms.

The influence of the higher spatial harmonics (2K, . . . 20K) on the parametric

instability was analyzed in [55] by combining analytical and numerical

methods. A new region of the instability, found for V � 2:5vK and m � 1,

corresponded to the excitation of the split subharmonic.

However, it was later found that this result is the consequence of a numerical

error. Using the same method, it was shown later [57, 59] that the high-contrast

effects modestly modify the initial results but lead neither to a new (inV) region

of the instability nor to the transverse subharmonic split. This complies with the

numerical 1D analysis of the influence of the higher spatial harmonics on

the subharmonic instability [42]. Thus, the transverse subharmonic split is not

consistent with the basic equations.
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The major effect of the higher harmonics for m � 1 is as follows: The

minimum value of the frequency detuning, Vm, is shifted from 4vK to � 3vK .

Within the interval Vm < V < 4:3vK , the excitation of the main subharmonic

K/2 takes place. Further increase of the detuning frequency results in the

longitudinal split in accordance with the phase-matching conditions.

The next issue to deal with is the problem of stability of the DC enhanced

fundamental grating. It was expected first that this grating is unstable via the

following mechanism [66]: At V ’ vK , the second harmonic, E2K ’ �E2
K=E0 ’

Q2
Km

2E0, is excited. This harmonic becomes unstable owing to the allowed

parametric process defined by the phase-matching condition 2vK ¼ vk þ vK�k.

The threshold value of contrast was estimated as
ffiffiffi
6

p
Q

�3=2
K and the wavevectors

of the excited SCWs were expected to be close to K (modulation instability).

However, the subsequent more accurate analysis has shown that the funda-

mental grating remains stable in the sillenites for any realistic values of the

material parameters [71].

Several attempts have been made to describe the final state of the system

above the threshold [25, 51, 56, 58]. It is shown that the nonlinear frequency

shifts for SCWs are important in the saturated state. The mode of excitation

seems to be ‘‘soft’’, i.e., the subharmonic amplitude follows the law

jEK=2j / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�mth

p
above the threshold. Build-up of the subharmonics should

result in the back action on the fundamental amplitude EK ; it decreases in the

absolute value and acquires an additional imaginary component leading to an

energy exchange between the pump beams. Fine details of the final wave state

can be complicated and superimposed by fluctuations typical of critical phe-

nomena.

Very little is known about nonlinear SCW effects in the slow materials [62].

Owing to the linear dispersion law, there is little likelihood that effects similar

to the subharmonic generation may occur here.

5.4.6 Experimental Data and Comparison with Theory

To understand properly the experimental situation, one should keep in mind

that the data of initial subharmonic experiments, performed in the coupling

configurations, were strongly affected by the optical nonlinearity and the

spatial inhomogeneity. The sillenite crystals were typically thick, d � 1 cm,

and the light absorption was fairly strong, ad > 1. Under these conditions,

the light contrast was changing considerably because of beam coupling and the

intensity I0 decreased substantially towards the output crystal face. Further-

more, the beam coupling in the sillenite crystals is vectorial: The changes of the

light intensities are inseparable here from the polarization changes (see [101]

and references therein). Despite the complicating circumstances, there is a

qualitative agreement between the apparent features of the subharmonic gen-

eration, described in the beginning of this section, and the above theory.

This agreement becomes even more convincing with the use of the non-

coupling experimental arrangement depicted in Fig. 5.5. The electro-optic
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coefficient is zero here for the pump beams. They excite the space-charge field

but cannot diffract from the induced gratings. Optical activity (of the sillenites)

does not influence the intensity distribution and the pump contrast remains

constant across the sample. Only the total pump intensity I0 is decreasing

during propagation because of light absorption. A narrow nondisturbing

Bragg-matched read-out beam propagates perpendicular to the [001] axis pass-

ing through the area of an almost constant pump intensity I0. The electro-optic

coefficient is not zero here and the diffracted beam carries information about

the value of the space-charge field at the relevant spatial frequency, K, K/2, etc.

The influence of optical activity, polarization degrees of freedom, and light

absorption on the diffraction efficiency can be taken into account [101, 102].

The degree of influence of the effects of nonuniform broadening is determined

by the transverse size of the read-out beam and, possibly, by the degree of

inhomogeneity of the applied field.

Turn now to the first experiments performed in the noncoupling geometry

[33, 34]. The used Bi12SiO20 crystal had dimensions 10� 11� 5mm3 along the

[1̄10], [110], [001] axes, respectively. Its absorption coefficient a ’ 1:1 cm�1 at

the pump wavelength 514 nm. The grating vector K was parallel to the [110]

axis and the period 2p=K ’ 20mm. A DC field, applied parallel to K, ranged

from 0 to 7 kV/cm. The input pump intensity was varied from 15 to

70mW=cm2
. A read-out beam (lr ¼ 632:8 nm) had a diameter of 3 mm and

an intensity of 1:5mW=cm2
. The distance between the read-out beams and the

input pump plane was a variable parameter.

With this arrangement it was not possible to see any sign of beam coupling

involving the pump beams and no additional beams appeared between them.

Nevertheless, the presence of the fundamental and subharmonic gratings was

easily detected with the use of the read-out beam. This excludes the possibility

that the optical nonlinearity contributes to the subharmonic grating and con-

clusively demonstrates the prime role of the material nonlinearity.

Figure 5.5. The noncou-

pling geometry. Two pump

beams, 1 and 2, are propa-

gating near the [001] axis

and the read-out beam, inci-

dent onto the (1̄10)-face, can

be Bragg-matched to the

fundamental and subharmo-

nic gratings [33].
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Fig. 5.6a,b show the diffraction efficiencies hf and hs for the K and K/2

gratings versus the detuning frequency. The found dependences represent two

neat peaks centered at Vf � 115 and Vs � 350 s�1 ’ 3Vf . In contrast to the

fundamental grating, the subharmonic exists in a limited range of V.

The subharmonic grating near its maximum exceeds the fundamental one; the

peak value of hs is, however, smaller than that of hf .

The optimum detunings Vf , s depend on I0 and E0. The corresponding data

are presented in Figs. 5.7a,b. One sees that in the whole range both Vf and Vs
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are very accurately proportional to I0 and E�1
0 . The ratio Vs=Vf is close to 3.

For E0 < 2 kV=cm, the subharmonic is not excited. It has been found also [34]

that the values of Vf , s are decreasing by a factor of �2 with increasing distance

between the read-out beam and the input pump plane. This shows the degree of

spatial inhomogeneity caused by light absorption.

The effect of varying the pump ratio (light contrast) on the subharmonic

excitation is shown in Fig. 5.8. The peak value of hs(V) is decreasing monot-

onously with the reduction of m turning to zero at mth ’ 0:8. The peak position

and width remain approximately constant. The situation with the peak value

Vf (m) is different. When m is decreasing from 1 to 0.23, the optimum detuning

Vf decreases by a factor of�1.4. This is the evidence of the nonlinear frequency

shift, see also Section 5.5.2.

The angular distribution of SCWs excited in the DC case is also investigated

in the noncoupling geometry [36]. The main finding in steady state are as

follows (see Fig. 5.9): The main subharmonic K/2 appears first when the

detuning V exceeds a certain minimum value Vm � 2Vf . Its amplitude grows

gradually with increasing V to reach a maximum at V � 4vK . Further in-

crease of the detuning frequency leads to decreasing amplitude of the main
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Figure 5.8. Dependence of the diffraction efficiency of the subharmonic grating hs on

the detuning frequency V for different values of the input pump ratio [34]. The indicated

numbers correspond to the contrast values m ’ 0:99, 0.98, 0.92, and 0.83.
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subharmonic and its noticeable longitudinal broadening and split. The longi-

tudinal component of the wavevector of the excited SCWs, kz, ranges here from

� K=3 to � 2K=3. For sufficiently large V, the instability disappears. It is

remarkable that the transverse subharmonic split, observed in the coupling

geometry [41, 48], is absent in the noncoupling configuration in agreement

with theory. Most probably, this split is caused by the optical nonlinearity.

Comparison of the subharmonic characteristics for the coupling and non-

coupling configurations has also been performed in the AC case [35]. With no

coupling, a wide spectrum of longitudinal spatial frequencies is excited within a

wide interval of light contrast, 0:19m < 1. In the coupling geometry, the

output characteristics are different. This shows that optical coupling strongly

affects the subharmonic generation in the AC case. This is not surprising

because the effects of optical nonlinearity are especially strong here.

A number of other features relevant to the subharmonic generation, which

are found in the coupling configurations, are worthy of attention:

ε = 0.165 ε = 0.24

ε = 0.28

ε = 0.36

ε = 0.44

ε = 0.55

ε = 0.17

ε = 0.18

ε = 0.19

ε = 0.20

ε = 0.21

Figure 5.9. Intensity distributions on the observation screen for successfully decreasing

values of « ¼ vK=V (increasing detuning). The bright areas on the left and right sides

correspond to diffraction of the read-out beam, Bragg-matched to the main subharmo-

nic, from the fundamental grating [36].
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� The expected region of the subharmonic instability on the E0, V-plane

corresponds to the observations [39]. It is located nearby the curve

V ¼ const=E0 in agreement with the property vk / E�1
0 .

� Characteristics of the subharmonic generation in CdTe crystals (the only

semiconductor where this effect is found to date) show a good agreement

with the theoretical predictions [61].

� The space-charge field distribution shows the presence of subharmonic do-

mains distinguished by the opposite signs of EK=2 [17, 49], which is fully

consistent with the symmetry considerations. The boundaries of these do-

mains are moving with the group velocity of SCWs.

� The fine structure of the light beams diffracted from the subharmonic

gratings is much more noisy as compared to the structure related to the

fundamental grating [46]. This evidences that space-charge fluctuations serve

as the seed for the subharmonic instability.

One more interesting point is to estimate the values of the quality factor from

the subharmonic experiments using the threshold relations. The data of [12, 39,

52, 100] allow us to estimate the maximum achieved value of QK=2 as (7–9),

which is in a good agreement with the expectations. Special measurements of

QK made in the noncoupling geometry gave the numbers (4–5) [81]. A claim

about the values QK � 102 has been made on the basis of an observation of

anomalously long relaxation of SCWs [103]. This fact was explained later (with

moderate values of QK ) by the critical slowing down near the threshold of an

optical oscillation [104].

5.5 High-Contrast Effects in Photorefractive Response

In this section, we set aside the subharmonic generation and consider nonlinear

SCW effects in the fast materials that are beyond the linear-contrast approxi-

mation. The DC and AC cases will be treated separately. We restrict ourselves

to the 1D case when Eex and Esc are parallel to the z-axis.

5.5.1 Low-Frequency Peculiarities in the DC-Case

As follows from Sections 5.3 and 5.4, the ranges V � vK and V*4vK are

relevant to the resonant and parametric excitation of SCWs in the fast PR

materials. However, this classification of SCW effects would be incomplete if

we ignore the low-frequency range V9vK . New nonlinear resonant phenom-

ena and apparent peculiarities of the PR response occur here.

New nonlinear wave processes can be qualified as confluence processes; they

lead to an effective excitation of higher spatial harmonics, 2K, 3K, etc. The

phase-matching condition for the excitation of the n-th harmonic is nV ¼ vnK .

The frequency nV should be attributed to a driving force whose amplitude is

proportional to mn in the low-contrast region. The presence of such a force
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is due to nonlinearity of the material equations. The confluence processes are

not expected to be accompanied by instabilities.

Since vnK / 1=nK, we have for the resonant detuning Vn,

Vn ¼ vK=n
2: (5:40)

Thus, there is a sequence of nonlinear resonances, vK=4, vK=9, . . . Zero detun-

ing frequency is the point of accumulation of them. The effects of damping and

nonlinear coupling lead to broadening and shifting the resonances, so that the

neighboring frequency peaks may overlap. Furthermore, the quality factor QnK

sooner or later becomes small with increasing n and the concept of resonant

excitation fails.

Turn now to numerical results for the frequency dependence of the first three

Fourier harmonics of space-charge field, EK , E2K , and E3K , obtained within

the basic model [67, 68]. The parameters used are typical for the sillenites:

NE ¼ 1016 cm�1 and mt ¼ 3:75� 10�7 cm2=V. Thirty spatial harmonics of the

space-charge field were taken into account to ensure correct results for arbi-

trary detuning V and light contrast m. For convenience, we use below the

normalized quantities en ¼ EnK=E0.

Figs. 5.10a–c showwhat happens with the spectral dependences with increasing

m. At m ¼ 0:05 the function je1(V)j is characterized by a pronounced maximum

at V ¼ vK . The peak value and width fit well the results obtained in the linear-

contrast approximation. The resonant enhancement of the fundamental harmonic

leads (owing to nonlinear coupling) to the corresponding peaks for je2, 3(V)j.
These peaks are relatively weak because they correspond to forced oscillations

driven far from resonance. Besides, one sees from Fig. 5.11a that for V ’ vK=4,
there is an additional peak for je2(V)j. It corresponds to the resonant amplification

of the second harmonic under the action of a very weak driving force with

frequency 2V. Remarkable changes occur atm ¼ 0:5, Fig. 5.10b. The fundamen-

tal peak of je1(V)j is wider now, it is displaced to the right and clearly asymmetric.

The peak value is considerably smaller than mQK . The displacement and asym-

metry are manifestations of the positive nonlinear frequency shift of the eigen-

frequencyvK mentioned in the previous section. In the vicinity of zero, one can see

an additional narrow and structured peak in the dependence je1(V)j. It arises
because of the nonlinear nonresonant coupling with the higher harmonics. The

function je3(V)j peaks near the eigen-frequency vK=4. The peak of je3(V)j looks
rather complicated because of an overlap between the eigen and forced oscilla-

tions. The values of second and third harmonics remain fairly small yet.

For m ¼ 1, the nonlinear effects are most pronounced, see Fig. 5.10c. The

fundamental peak of je1(V)j now looks as a broad shoulder of the main peak,

which is situated at V ¼ 0. This new zero peak is fairly narrow; it has a

substructure. The second and third harmonics are also characterized by sharp

zero peaks; the corresponding peak values are comparable with the maximum

value of je1(V)j. For V*3vK , the higher harmonics are negligibly small.

How many harmonics are effectively excited at m ¼ 1? The answer depends

strongly on the value of V. Fig. 5.11 shows the dependence jenj for three
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representative values of the detuning. For V ¼ 0, the decrease of jenj with
growing n is very slow, about one order of magnitude for 10 numbers. For

V ¼ 2vK , which corresponds roughly to the middle of the shoulder, a few

harmonics are excited. Lastly, for V ¼ 4vK , which belongs the subharmonic

region, the higher harmonics are not important at all.

One more feature of the spectral dependences is worth mentioning. The

positive nonlinear shift of the eigen-frequency vK may result not only in

asymmetry and steepening of the fundamental peak, but also in ambiguity of

the dependence e1(V). For mt*4� 10�7 V=cm2 and m$ 0:3, bistability of the

fundamental grating takes place within a certain narrow interval of V located
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Figure 5.10. Absolute values of the normalized amplitudes je1, 2, 3j versus the ratio

V=vK for m ¼ 0:05 (a), 0.5 (b), and 1 (c) [68]. Note the use of different scaling factors in

the subfigures.
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nearby 2vK . Increase and decrease of the detuning has to be accompanied by

jumps of jEK (t)j and hysteresis.

Spatial inhomogeneity of the pump intensity and external field leads to

nonuniform broadening of the resonances and blurring of fine spectral features.

Fluctuations of the positions of the light fringes owing to uncontrollable air

draughts give a similar result.

Let us summarize the experimental observations made in the noncoupling

geometry with a Bi12SiO20 sample [67, 68]. The presence of the zero peak (in

addition to the distorted fundamental peak) is clearly seen from Fig. 5.12. With

decreasing contrast, this peak disappears. The positive nonlinear frequency

shift for the fundamental peak has been detected as well. The second and

third harmonics can only be observed in a narrow detuning range near zero.

No effects of bistability and hysteresis were observed. Similar results on the

zero and fundamental peaks were also obtained in a coupling geometry with the

use of a thin (3 mm) Bi12SiO20 crystal [69]. The positive shift of fundamental-

maximum position was as large as � 50%. Thus, there is a reasonable qualita-

tive agreement between theory and experiment with respect to the rough

distinctive features of the spectral dependences.

5.5.2 Rectification Effect

With the phase modulation technique, employing the intensity modulation

dI=I0 ¼ m cos (z� u cosVt) (see Section 5.3.1), it is possible to detect and

describe new SCW effects for m, u � 1 [79, 80]. The most interesting of them
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Figure 5.11. Dependence of the absolute value of the amplitude of spatial harmonic

jenj on the number n for different values of the frequency detuning [68].

Gunter / Photorefractive Materials and their Applications 1 chap05 Final Proof page 148 28.10.2005 9:06pm

148 Boris I. Sturman



is perhaps the rectification effect: excitation of additional spatially and/or

temporally constant electric fields and currents. Consider briefly this issue.

Among the quadratic nonlinear terms in the basic equations, there is the

spatially uniform one that is proportional to m2u exp (� iVt)=(V� vK þ igK )
for V � vK . It gives a correction to the uniform field (and to the direct current

passing through the sample), which is oscillating as exp (iVt). The resonant

frequency dependence of the field correction can be measured electro-optically.

The corresponding result for a Bi12GeO20 crystal is shown in Fig. 5.13. The

presence of the effect and its expected resonant behavior is evident. An oscil-

lation structure of the left wing can be attributed to the low-frequency peculi-

arities of PR response.

The nonlinear terms proportional to m2u2 are relevant to the correction to

the applied field which is spatially-uniform and time-independent; it is referred

to as the overall rectification. The experimental measurements of this effect

show a reasonable qualitative agreement with the theory [80].

Figure 5.12. Measured de-

pendence je1j(V) for m ¼ 0:9,
E0 ¼ 4:5 kV=cm, and L ¼ 20

mm. The solid line is fit the the-

ory to the experiment, see [68].
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5.5.3 Singularity of Photorefractive Response in AC-Case

We suppose that the AC field has a square-wave shape, Eex(t) ¼ pE0, and the

period of p(t) ¼ �1 is much shorter than g�1
K . We neglect the diffusion contri-

bution to the current density, which is valid for E0 � (kBTNE=ee0)
1=2 and well

justified for AC experiments with the sillenites. Then it is possible to addition-

ally simplify the nonlinear Eq. (5.30) using the method of averaging over fast

temporal oscillations. Initially, this method was used within the low-contrast

approximation [8, 9].

Prior to proceeding particular results, we mention that the AC technique is

useful not only for beam coupling applications but also for nonlinear beam

propagation. In this connection, the relation I ¼ I0 þ dI for the light intensity

will be used for two purposes: First, it will be applied for an analysis of grating

recording; in this case, I0 is the total pump intensity and dI ¼ mI0 cos (Kz).

Second, it will be used in an analysis of the field profile, which is induced by a

single light beam. Here I0 and dI ¼ dI(z) are the background and beam

intensities and dI is typically much larger than I0.

To perform the time-averaging, we set Esc ¼ E0(eþ ~ee), where e and ẽ are

slow and fast normalized components of space-charge field, such that hei ¼ e,

h~eei ¼ 0, and j~eej � jej. By taking the average of Eq. (5.30), recalling that

Esc ¼ �wz, and using the fact NE ’ NA � N0 in the sillenites, we obtain in

the leading approximation:

hp~eezti ¼ qsiNDI

ee0E0

e: (5:41)

Multiplying (5.30) by p(t) and repeating the averaging, we arrive at another

algebraic relation between e and hp~eezti. Combining it with (5.41), we obtain in

steady state [73]:

I(1� e2)

1þ lsez

� �

z

þ eI

l0
¼ 0; (5:42)

as earlier, l0 ¼ mtE0 and ls ¼ ee0E0=qNE are the drift and saturation lengths.

Thus, we have an ordinary second-order differential equation for the field

profile. Nonlinearity of this equation comes from the terms e2 and lsez in the

numerator and denominator. In the linear-contrast approximation we return to

relation (5.27) for the fundamental grating amplitude. As follows from (5.42),

an even intensity distribution I(z) gives an odd field profile e(z). This means

that the PR response remains nonlocal in the whole contrast range.

An important observation is that ls=l0 ¼ 1=4Q2
max � 1, i.e., ls is the smallest

characteristic length parameter in our problem. With NE ¼ 1016 cm�3, mt ¼
4� 10�7 cm2=V, e ¼ 56, and E0 ¼ 25 kV=cm we have ls ’ 0:4mm, l0 ’ 60mm,

and ls=l0 ’ 7� 10�3.

If the characteristic scale of the intensity profile is much larger than ls, it

would be natural to expect the same from the light-induced field profile. If so,
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the term lsez in (5.42) is negligible. However, with this term removed, Eq. (5.42)

becomes the first-order equation. Its solution cannot meet two always existing

physical constrains: e(z) ! 0 for z ! �1 in the case of localized beam and

hei ¼ 0 and e(z) ¼ e(zþ L) for grating recording. Hence the term lsez must be

kept. This means that the field profile possesses discontinuities, where the

derivative ez is very high.

Fig. 5.14a shows the distribution e(z) induced by a Gaussian beam,

dI=I0 ¼ f0 exp (� 4z2=d2), of the width d ¼ 0:6l0 for several values of the

amplitude f0. For f0 $ 0:5, the field profile is characterized by a very pro-

nounced discontinuity at z ¼ 0. Outside the narrow discontinuity region, the

term l0ez in is negligible. The broad maximum of e(z) occurs far from

the discontinuity; an increase of f0 shifts the position of the maximum to the

right and the maximum field saturates approaching 1. The low-contrast ap-

proximation is invalid for the main body of the field distribution. The field

discontinuity corresponds, indeed, to the singularity of the space-charge distri-

bution; the width of this singularity is about ls. The case of grating recording is

illustrated by Fig. 5.14b. The field profile has the same discontinuity up to very

low values of m. For d*8l0 (or L*8l0), the discontinuity disappears; nonlinear

SCW effects are weak in this range.

Using (5.42), one can find the amplitudes en(m) relevant to grating recording

in the whole contrast range [105]. These Fourier components are imaginary

quantities; it is sufficient to know their absolute values. Representative results

for n ¼ 1, 2, 3 are displayed in Fig. 5.15. The normalized fundamental amp-

litude e1 grows linearly with m up to m � 0:02 (the low-contrast range); for

larger values of the contrast, the growth of e1(m) is strongly slowed down. The

data of Fig. 5.15 correspond to QK ’ 6:2. It is remarkable that fairly wide

changes of the parameters NE , mt, and L ¼ 2p=K do not strongly affect the

dependence je1j(m), provided that the corresponding values of the quality

factor lie in the range (5–7); this range is of prime importance for experiment.

Thus, the solid curve in Fig. 5.15a can be considered as a characteristic one.

The data on e1(m) comply well with the early results of direct numerical

calculations and also with an empirical relation for the fundamental grating
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Figure 5.14. Normalized space-charge field e(z) induced by a Gaussian light beam of

the width d ¼ 0:6l0 (a) and periodic light pattern of the period L ¼ 0:4l0 (b) [73].
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amplitude [106]. They have also serious experimental confirmation obtained in

precise 2W-coupling experiments with Bi12TiO20 crystals [107]. As follows from

Fig. 5.15a, the region of very small contrasts is optimum for spatial amplifica-

tion of weak signals; enhancement of the fundamental grating results here in

extremely high available gain factors. The region of large contrast is best suited

for the applications based on distortionless grating recording.

Turn now to the dependences je2, 3j(m) shown in Figs. 5.15b,c. The first

function peaks at m ’ 0:5 and approaches zero for m ¼ 1. Its maximum

value, je2j(0:5), is about 0.2. The function je3j(m) looks differently. It tends

first to saturate at m ’ 0:2 but grows then up to � 0:4 with m approaching 1.

The described dependences can be considered as the fingerprints of the AC

response. It seems to be, they were never measured in experiment.

5.6 Joint Action of Material and Optical Nonlinearities

Joint action of the material and optical nonlinearities may lead not only to a

quantitative complication of the situation but also to qualitatively new optical

effects. Below we present two examples of such effects.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

light contrast m

light contrast m

light contrast m(a)

0.00

0.05

0.10

0.15

0.20

(b)

(c)

0.0

0.1

0.2

0.3

0.4

ha
rm

on
ic

s 
|e

1,
2,

3|

Figure 5.15. Dependences je1, 2, 3j(m) calculated forE0 ¼ 13 kV=cm andL ¼ 13mm; the

dashed line in the case (a) shows the result of the linear-contrast approximation [105].
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5.6.1 Critical Enhancement of Photorefractive Beam Coupling

Consider the arrangement depicted in Fig. 5.16a. Two pump beams, 1 and 2,

frequency detuned by V, propagate symmetrically near the x-axis of a DC

biased crystal appropriate for subharmonic generation. Additionally, a weak

signal beam 0, detuned by V=2, propagates along the x-axis. Under these

conditions, the pump forms a running grating with the grating vector K while

the light pairs 1, 0 and 0,2 contribute to a K/2-grating running with the same

velocity. By saying so, we imply that the x-components of the light wavevectors

are the same, see Fig. 5.16b. A small deficit (mismatch) D of the wavevector k0
can be treated within the envelope approximation.

Let now the detuning meet the parametric resonance condition V ¼ 2vK=2 ¼
4vK . It corresponds to the excitation of the subharmonic K=2. Furthermore, we

assume that the contrast of the pump interference patternm does not exceed the

threshold value mth ¼ 3=QK=2, i.e., the fundamental grating is stable against

parametric generation of SCWs.

Prior to writing down the material equation for the subharmonic grating, we

present the space-charge field in the form

Esc ¼ E0

2
e1e

i(Kz�Vt) þ e1=2e
i(Kz�Vt)=2 þ c:c:

h i
, (5:43)

where e1 and e1=2 are the normalized amplitudes of the K and K=2 gratings. The
complex amplitudes of the light waves 0, 1, and 2 we denote as a0, a1, and a2,

respectively. They are normalized in such a way that the total intensity

ja0j2 þ ja1j2þja2j2 ’ ja1j2 þ ja2j2 ’ 1. Correspondingly, the contrast of the

pump interference pattern m ¼ 2ja1a�2j. Then, taking into account the results

of Sections 5.3 and 5.4, we have for e1=2:

@

@t
þ gK=2

� �
e1=2 ¼ ijvK=2j

2

3
a1a

�
2e

�
1=2 � a0a

�
2 � a1a

�
0

� �
: (5:44)
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Figure 5.16. Schematic of an experiment (a) and wavevector diagram (b) relevant to

the critical enhancement; D is Bragg mismatch for the central beam.
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This equation combines the known constituents. The last two terms of the

right-hand side correspond to the linear resonant excitation of the K=2 grating

by the light pairs 0,2 and 1,0, whereas the first term is relevant to the parametric

excitation. This term was missed in the early attempts to explain the subhar-

monic generation by the optical nonlinearity [18, 19].

Resolving (5.44) in steady state, we get:

e1=2 ¼ � iQ

1� j2
a0a

�
2 1� 2i

3
Qja1j2

� �
þ a�0a1 1� 2i

3
Qja2j2

� �� �
, (5:45)

where Q ¼ QK=2 and j ¼ m=mth < 1. One sees that the subharmonic amplitude

increases drastically when the contrast m approaches from below the threshold

valuemth. This feature is robust; it reflects the fact that the subharmonic grating

is very liable to the driving force near the threshold.

The amplitude of the central beam a0 changes with the propagation coord-

inate x owing to diffraction of the pump beams 1 and 2 on the subharmonic

grating, (see Fig. 5.16). The corresponding governing equation has the form

d

dx
� iD

� �
a0 ¼ �i�(a1e

�
K=2 þ a2eK=2), (5:46)

where � ¼ pn30rE0=l, n0 is the refractive index, r is the effective electro-optic

coefficient, and l is the light wavelength. The term iD accounts for the Bragg

mismatch of the central beam.

Relation (5.45) for eK=2 yields a coupling between a0 and a�0. This parametric

optical coupling expresses the possibility for beam 1 (or 2) to diffract on the

grating that is recorded with the participation of beam 2 (or 1). Such a coupling

scheme is typical of PR four-wave processes [108].

By setting a0, a
�
0 / exp (Gx) in (5.45), (5.46), we obtain for two possible

values of the gain factor (spatial increment) G [76]:

G�
�Q

¼ W

1� j2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wj

1� j2

� �2

� D

�Q

6

Q

j2

1� j2
þ D

�Q

� �s

, (5:47)

where W ¼ ja1j2 � ja2j2 is the normalized difference of the pump intensities.

The signs + correspond to different choices of the phase of the complex input

amplitude a0(0). The positive sign of the product �W favors strongly the spatial

amplification. This sign is controlled by the pump ratio and polarization.

Below, we focus our attention on this case.

The most important feature of (5.47) is that the upper branch of G(m) grows

infinitely while m is approaching mth. In the close vicinity of the threshold the

mismatch D is not important and

G ’
j�jQmth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

th

q

mth �m
: (5:48)
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It is remarkable that the effect of mismatch D is negative for � > 0,W > 0 and

positive for � < 0,W < 0, and D(1� j2) < 6j�jj2. The physical meaning of this

feature is simple: Depending on the sign of k, the pump produces a positive or

negative correction dk0 to the wavevector k0; if this correction is positive, it can

be compensated by the mismatch. Optimization of the mismatch effect can be

achieved using the dependence of the sign of r on the pump polarization in

cubic crystals.

Fig. 5.17 illustrates the contrast dependence of G
0
� ¼ Re(G�) the sillenites.

The chosen parameters are: l ¼ 514 nm, E0 ¼ 7 kV=cm, n0 ¼ 2:6,
jrj ¼ 4:6 pm=V, QK=2 ¼ 6, and L ¼ 8mm. The solid curves 1,2 and 3,4 are

plotted for the cases �,W < 0 and �,W > 0, respectively. The dashed curve

shows the dependence G0(m) without the effect of material nonlinearity. The

curves 1, 2, 3, and 4 coincide for sufficiently small m, when the square root in

(5.47) is imaginary. With increasing contrast, the function G0(m) experiences a

bifurcation; the bifurcation point is closer to zero for �,W < 0. After the

bifurcation, the upper branch goes up rapidly and tends to infinity.

Indeed, the gain factor G cannot be infinitely large. The corresponding

restriction is, however, rather weak, G9L�1. It gives saturation of G on the

level of � 103 cm�1. To avoid the pump depletion, the input intensity of the

central beam and the crystal thickness have to be sufficiently small.

To distinguish the critical enhancement from the usual 2W-amplification, it

is sufficient to block the weakest pump beam. A strong drop in the gain will

prove unambiguously an anomalous strength of the initial effect and the prime

role of coupling between the K and K/2 gratings.

Among the factors that are beyond the above model are the effects of vectorial

beam coupling and spatial inhomogeneity. They influence quantitatively the
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Figure 5.17. Dependence of the gain factor G
0
� on the pump contrastm. The curves 1, 2

and 3, 4 correspond to the cases � < 0,W < 0 and � < 0,W < 0, respectively. The

dashed curve is plotted by setting j ¼ 0 [76].
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output characteristics of interacting light beams but do not suppress the major

effect. Particular recommendations for experiment, given on the basis of nu-

merical modeling, include the use of thin (� 1 mm) crystals and also the choice

of optical configurations and light polarizations [77, 78]. No substantial efforts

have been made yet to detect the critical enhancement.

Possibly, the effect in question has manifested itself in early experiments with

Bi12SiO20 crystals [109]. Using an optical arrangement similar to that shown in

Fig. 5.16 and extremely weak input central beams, the authors obtained sur-

prisingly high (up to 104) amplification factor despite the strong negative effect

of spatial inhomogeneity reducing the net interaction length.

5.6.2 Soliton-Like Beam Propagation in AC-Biased Crystals

We know from Section 5.5 that a localized light beam creates in the AC case a

narrow discontinuity of the space-charge field (and refractive index) at the

intensity maximum. This discontinuity separates the regions of strong self-

focusing/defocusing. Two opposing tendencies occur here. On the one hand,

the material nonlinearity works to support the discontinuity. On the other

hand, diffraction by the abrupt index profile tends to wash it out. What kind

of nonlinear beam propagation is expected in this situation? Is it beam broad-

ening accompanied by disappearance of the charge singularity, or soliton

propagation coupled with the field discontinuity, or something else? This

question is of interest for both theory and experiment.

To illuminate the background of the problem, we mention that the soliton

propagation is not possible in the case of nonlocal gradient response driven by

diffusion transport [110, 111]. The known cases of soliton propagation in PR

materials are associated with the local response [112].

To describe the nonlinear beam propagation, Eq. (5.42) for e(z) was solved

numerically together with the nonlinear 2D Srödinger equation for the beam

envelope C,

2ikn0Cx þCzz ¼ k2n40rE0eC, (5:49)

where k ¼ 2p=l, jCj2 ¼ I , and x is the propagation coordinate.

The simulation results for the distributions of light intensity I(x, z) and index

change dn(x, z) are presented in Fig. 5.18 [75]. The propagation distance

x0 ¼ 6mm exceeds considerably the characteristic nonlinear length of the

intensity changes (kn30rE0)
�1 ’ 0:5mm. Thus, the depicted spatial evolution is

strongly nonlinear.

The solid lines in Fig. 5.19 are the snapshots of the transverse intensity

profile for several values of the propagation distance. As seen from Fig.

5.19b, already at x ¼ 1mm the beam experiences remarkable changes. It splits

into the main central component (core) and two side filaments. These changes

are mainly due to diffraction at the discontinuity and focusing/defocusing on
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the negative/positive regions of the input (x ¼ 0) index profile. The subsequent

evolution involves strong changes of the index profile. The core of the light

beam remains of the same width after the initial compression (see Fig. 5.19c–f).

Its amplitude pulsates modestly with x. The index discontinuity persists; it runs

toward the right with a roughly quadratic displacement in x, Fig. 5.18. The

main beam is attached to the discontinuity, it shows a permanent bending. In

the gradient case, the beam disperses quickly because of diffraction.

The described behavior resembles the soliton propagation [112, 113].

Trapping of the beam core certainly takes place. However, identification of

the trapped component with a soliton would not be fully correct. Energy

leakage from the core permanently takes place so that the beam would be

dispersed for sufficiently long propagation distances. For moderate distances,

which are of practical interest, the energy losses can be disregarded. The

robustness of the trapped component is due to the specific properties of

the AC response.

The only experiment relevant to the subject was performed with a Bi12SiO20

crystal [114]. The observed filamentation of a Gaussian beam is in line with the

model results. However, optical activity affected strongly the nonlinear propa-

gation. To avoid this harmful effect, the use of Bi12TiO20 crystals is needed. The

above scalar model is applicable to this material.
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Figure 5.18. Spatial evolution of the light intensity (a) and the light-induced index

(b) for an input Gaussian beam. The bright areas correspond to the high values of the

variables. The model parameters correspond to Fig. 5.14, the normalized beam ampli-

tude f0 ¼ 10, and the input beam width d ¼ 36mm.
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5.7 Conclusions

We have considered above a broad spectrum of the effects relevant to the

excitation of weakly damped eigen-modes in fast and slow PR materials.

These SCW effects are fully due to large values of the quality factor, Qk � 1.

They include a great deal of the fundamental physical content owing to

generality of the concept of resonance. Instability of the light-induced

gratings—one of the pillars of the photorefractive science—is a good example

of importance of the subject matter. The SCW effects are typically very pro-

nounced because of an interplay between the space-charge and light waves.

Many of them are important (or potentially important) for applications.

Involvement of the material nonlinearity is a remarkable feature of the SCW

effects. This involvement becomes already pronounced at low levels of the light

contrast. It makes illusive the hopes to describe universally the medium
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Figure 5.19. Normalized beam profiles (a)–(f) corresponding to the propagation

distance x ¼ 0, 1, 3, 4, 5, and 6 mm, respectively. The dotted lines refer to the case of

the gradient response of the same strength [75].
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response in the whole contrast range on the basis of low-contrast approxima-

tions. Variety of charge transport properties in photorefractive materials leads

to a wealth of expected resonant phenomena combining the optical and ma-

terial nonlinearities.

A number of SCW effects are already well established. Among them are the

DC and AC enhancement of the space-charge field, generation of spatial

subharmonics, high-contrast peculiarities of the photorefractive response in

the sillenites, the effect of rectification. At the same time, vast and promising

areas of the studies remain almost unexplored. Among them are semiconduc-

tive PR crystals like GaAs and CdTe, ferroelectrics like LiNbO3 and SBN, the

effects occurring above the threshold of instability of the fundamental grating,

the effects combining strong material and optical nonlinearities.

The terms and methods of wave interactions provide the natural language for

understanding and description of the effects involving weakly damped space-

charge waves. They give a link with the other known and important wave

phenomena. The ratio gk=jvkj � Q�1
k serves as the small parameter in analyz-

ing the characteristics of SCW effects.

Acknowledgements: I am grateful to P.M. Johansen and S.G. Odoulov for

discussions and to M.V. Gorkounov and O.S. Filippov for technical support.
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Implementation of certain electronic feedbacks between the optical output and

input is able not only to stabilize the photorefractive setups against phase

fluctuations, but also to shape the characteristics of grating recording and

beam coupling. In particular, the feedback can make the index gratings fully

diffractive and transparent. We summarize the results of experimental and

theoretical studies of the feedback-controlled beam coupling. This includes

the feedback loop specification, an analysis of the operation modes of the

whole nonlinear system, a description of the observable characteristics, and

comparison with experiment. We consider both the transmission and reflection

coupling geometries and touch upon the major applications.

It is important that the feedback-controlled beam coupling represents a fun-

damentally new nonlinear system, which has no close analogs among the known

optical phenomena. This is concerned with several aspects: Formulation of the

feedback conditions for the light amplitudes requires a refined notion of the dif-

fractive properties of dynamic index gratings—it cannot be accomplished in the

terms of spatially-uniform gratings. Inertia of the feedback loop ensures the per-

manent operation of the whole system. The conventional set of dynamic equa-

tions for the light and grating amplitudes, being supplemented by the feedback

conditions, ceases often to admit both the traditional means for analytical analy-

sis and the familiar steady-state solutions. Instead of a steady state, the system

arrives at a periodic state that is characterized by a strong phase modulation.

6.1 Introduction

The photorefractive (PR) nonlinearity implies charge separation under light

and refractive index changes via the linear electro-optic effect [1–3]. It is often

saturated in the mW-intensity range and manifests itself in numerous optical

effects already in fairly thin (� 1mm) samples. These effects include recording

of diffraction gratings, spatial amplification of weak signals, phase conjuga-
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tion, optical oscillations, formation of spatial solitons, and others. Among the

relevant PR materials are ferroelectric crystals (LiNbO3, BaTiO3, SBN . . . ),

crystals of the sillenite family (BSO, BTO, and BGO), semiconductors GaAs,

CdTe, InP . . . , and numerous polymers. The strength and availability of the

photorefractive effects make them attractive for many applications [4].

An inherent feature of the PR nonlinearity is its slowness. The characteristic

response (build-up) time is usually inversely proportional to the light intensity

and ranges (depending on the material) from 10�2 to 102 s in continuous-wave

experiments [1, 2]. This time is attributed to the processes of drift and/or diffusion

of photo-excited electrons (holes). The buildup time of the index changes in-

creases by several orders of magnitude in the case of thermal fixing, whichmakes

the light-induced gratings permanent and implies migration of low-mobile ions

[5, 6]. The condition of stability of the light-interference pattern during such long

times, which is necessary for employment of the PR effects, is often inaccessible

because of various mechanical fluctuations and air draughts.

The idea of an active stabilization of the photorefractive setups by means of

introduction of electronic feedbacks goes back to the late 1960s, see [7–9]. It

makes use of the property of slowness of the PR nonlinearity. A number of

feedback schemes were aimed first at compensation of the input phase differ-

ences, i.e., at prevention of movement of the light-interference pattern at the

input, by using linear optic elements. Such schemes do not lead to new non-

linear optical effects.

The photorefractive schemes that we shall deal with are distinguished by the

fact that the feedback condition couples the input and output values of the light

amplitudes. The nonlinear behavior of the amplitudes inside the medium is

expected to obey the conventional dynamic equations for the PR beam coup-

ling. The relevant feedback condition incorporates thus the coupling effects in

the bulk; it is essentially nonlinear and cannot be reduced to stabilization of the

input light pattern. At the same time, it compensates for the phase fluctuations,

i.e., is noise-free.

The electronic feedback loop in question, governing the input phase ws, (see

Fig. 6.1), was implemented first in 1986 in two-wave coupling experiments with

Bi12TiO20 crystals [10]. In this and the subsequent feedback experiments con-

ducted in the transmission geometry, it was found that the feedback produces

remarkable changes in the dynamics of two-beam coupling and in the diffract-

ive properties of the recorded index grating [11–16]. In particular, the grating

could be made almost fully diffractive or transparent whereas mechanical

instabilities and light-induced scattering, inherent in many PR experiments,

could be strongly suppressed [12, 13, 15]. The same feedback was successfully

used for stabilization of the thermal fixing procedure [17]. Recently, it was also

applied to stabilize two-wave coupling in SPS crystals [18] that are distin-

guished by strong charge competition and nontrivial grating dynamics [19].

Interpretation of the experimental data given in the above papers was based

on the assumption of a spatially-uniform grating whose amplitude is constant

across the sample and whose fringes are not bent. Unfortunately, this
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assumption is not compatible with the conventional basic relations for the PR

beam coupling. At the same time, this interpretation included the distinct idea

of �p=2 phase shift between the diffracted and transmitted components of the

signal wave (S-wave in Fig. 6.1). This idea was found to be fruitful in the

subsequent studies.

The first consistent formulation of the feedback problem for the transmission

geometry was proposed in 1997 [21]. It admitted arbitrary distortions of the

grating fringes, included the known dynamic equations for the light and grating

amplitudes, and included new boundary conditions properly expressing the

idea of the �p=2 phase shift Fs between the diffracted and transmitted com-

ponents of the signal beam. Despite its apparent simplicity, the formulated

physical problem turned out to be essentially new; it had no analogs among the

known nonlinear wave phenomena. This new quality is deeply rooted in the

peculiarity of the whole situation—the temporal development of a nonlinear

distributed system is constrained by a nonlinear feedback conditionFs ¼ �p=2
that couples the wave amplitudes on the opposite faces of the sample.

The progress ensuing the first formulation was greatly based on numerical

simulations. The main findings for the case of local PR response, typical of

LiNbO3 crystals, can be summarized as follows [21]:

� The feedback conditions Fs ¼ �p=2 are not always compatible with the

presence of steady-state solutions of the coupled-wave equations.

� Steady states, if they exist, can be achieved (after a transient stage) only

within a restricted (below-threshold) area of the input parameters—the

coupling strength and the intensity ratio.

� By adjusting the phase difference Fs to �p=2, the feedback introduces

generally a frequency shift V between the S- and R-beams in steady state,

i.e., makes the index grating moving.

� For sufficiently large values of the coupling strength and small differences in

the input intensities, the feedback leads the system to a state with h ¼ 1 or 0

Figure 6.1. Schematic of a feedback-

controlled two-wave coupling experi-

ment; PD is a photo-diode, LAI is a

lock-in amplifier and integrator, and

PM is a piezo-mirror. The bent lines

show schematically the grating

fringes.
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(h is the diffraction efficiency of the grating); the corresponding transient

time is comparable with the PR response time. The feedback signal, however,

inevitably turns to zero at this ultimate state so that the model remains

correct only within a restricted time interval. The permanent evolution of

the system, which is the case of experiment, cannot be governed by the

feedback conditions Fs ¼ �p=2, which will be referred to as the ideal ones.

The next step in modelling of the feedback-controlled beam coupling was

made in 2001 [23, 24]. It was found that weak inertia of the feedback loop is

responsible for the permanent operation of the whole system. With this factor

taken into account, the feedback conditions become dynamic—they include the

time derivatives and the feedback-loop response time tf . The inertial feedback

conditions possess an important general property: If the diffraction efficiency h
is not very close to the ultimate values 1 or 0 and the time tf is small as

compared to the PR response time tr, they are not significantly different from

the ideal �p=2 feedback conditions.

The inertial feedback conditions, as it was proven in numerical experiments,

ensure the permanent operation. At the initial stage, when h is far from its

ultimate values, they keep the phase difference Fs between the diffracted and

transmitted components of the signal wave very close to the ideal �p=2 values.

As the efficiency h approaches 1 or 0, the deviations of Fs from �p=2 become

more and more pronounced and the inertia becomes more and more important.

Finally the system arrives at a periodic state (attractor) that is controlled by

the feedback inertia. At this state, the diffraction efficiency h experiences small

periodic oscillations nearby the ultimate values 1 or 0; the phase difference Fs

experiences strong anharmonic oscillations, whereas the input phase ws shows

strong quasi-harmonic oscillations superimposed on a linear trend. The last

feature means the introduction (by the feedback) of a permanent frequency

detuning V between the interacting light beams. The oscillation period T

decreases with decreasing tf . The predicted behavior differs dramatically from

the behavior typical of the feedback-free beam coupling.

It is significant that the periodic state is not unique. Different attractors are

distinguished from each other by such observable features as the period,

frequency detuning, and shape of the phase modulation. Which periodic state

has to be realized depends on the thickness of the sample, on the intensity ratio

of the incident beams, on the type of the PR response, and, sometimes, on the

recording history.

The input phase behavior remained almost unexplored during the initial

stage of experimental studies so that the presence of the predicted periodic

states required an experimental check. Special feedback experiments, carried

out with LiNbO3 crystals possessing the local PR response, gave solid evidences

of the presence of different periodic states and showed a good qualitative

agreement with the expected behavior [23, 24].

Considerable efforts have been undertaken in the subsequent studies to under-

stand various aspects of the feedback operation in the transmission geometry:
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� An analogy between the emergence of periodic states and the second-order

phase transitions has been established [25].

� The conditions for the achievement and specific features of the periodic

states have been analyzed for the nonlocal (diffusion) and the resonant

(inherent in fast PR materials) nonlinear response [26].

� A number of prominent features of the periodic states were interpreted in the

terms of theory of fast phase modulation [27].

� It was found that the light pattern distribution inside the sample, which is

relevant to the periodic states, consists of domains moving with the opposite

velocities [28].

� Special analytical methods for the description of the periodic states were

developed [29, 30].

� The influence of noise-factors on the operation of the feedback device was

analyzed [31].

� The effect of the feedbacks Fs ¼ 0, p, which can easily be realized experi-

mentally, has been studied [32].

In 2003, the studies of the feedback-controlled beam coupling took a new

direction that is relevant to the reflection coupling geometry. This geometry is

interesting and important in three respects. First, stabilization of the light

fringes is especially important here in view of ultimately small grating periods

(&0:1mm); it is crucial for long-term experiments. Second, we enter a new

physical domain. The combination of the small grating periods with the possi-

bility to apply extremely high electric fields (up to 650 kV/cm, see [33]) meets

the condition for the resonant excitation of low-frequency eigen-modes (space-

charge waves) in slow PR materials like LiNbO3 and LiTaO3 [34, 35]. Third,

the diffraction efficiency cannot achieve here the ultimate value h ¼ 1 owing to

counter-propagation of the interacting light waves. This should strongly affect

the feedback operation.

Experimental and theoretical studies of the feedback-controlled beam coup-

ling and grating recording in LiNbO3 crystals have led to the following main

results for the reflection case [36, 37]: The�p=2 feedback ensures maximization

of the diffraction efficiency of the dynamic index grating. The feedback brings

the system to a steady state (not to a periodic state); this state is characterized

by a frequency shift between the light beams (moving grating). The feedback-

introduced detuning frequency is resonant to the eigen-mode frequency—the

resonant excitation of weakly-damped space-charge waves takes place. By

introducing the frequency detuning, the feedback inhibits the energy exchange

between the light beams.

Our description of the feedback-controlled wave coupling possesses an im-

portant general feature. It is based on the decomposition of the wave ampli-

tudes into the diffracted and transmitted components without making use of

particular properties of the photorefractive response and the grating structure.

This new issue, having important implications for the description of various

readout processes, is considered in detail in the theoretical part of this chapter.
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6.2 Operation Principle of the Feedback Setup

6.2.1 Feedback Setup and Feedback Equation

It is assumed that two coherent light beams, referred to as signal and reference

ones, are coupled in a transparent sample of the thickness d via Bragg diffrac-

tion from a volume refractive-index grating (see Fig. 6.1). This grating can be

either dynamic (relevant to the photorefractive effect) or permanent. The

slowly varying complex amplitudes of the signal and reference beams we denote

as S and R, respectively; they are generally functions of the propagation

coordinate z and time t. For the input [S(0,t), R(0,t)] and output [S(d,t),

R(d,t)] wave amplitudes, we shall use the symbols S0,R0 and Sd , Rd .

We suppose that the input intensities jS0j2 and jR0j2 are constant, whereas

the input phases ws and wr can be functions of time. The input phase changes

are one reason for the temporal variations of the light amplitudes inside the

sample. Another reason is the dynamic processes of grating buildup. Of course,

only the phase difference ws � wr affects the observable characteristics of two-

wave coupling. It is convenient to prescribe the temporal fluctuations of this

difference to the input phase wr and treat the feedback-controlled phase ws as

fluctuation free. The last preliminary is the choice of normalization of the light

amplitudes. Since the total intensity of the S- and R-beams remains constant

during propagation, it is convenient to normalize the amplitudes in such a way

that jSj2 þ jRj2 ¼ 1. With this choice, the quantity m0 ¼ 2jR0S0j is the input

light contrast.

The function of the feedback loop is to adjust the input phase ws ¼ arg (S0)

depending on the output intensity jSd j2. The phase adjustment is accomplished

with the help of a modulation technique. An auxiliary oscillating component

dws ¼ cd sinvt, whose amplitude cd and period 2p=v are much smaller than 1

and the PR response time tr, respectively, is introduced into ws. This component

cannot affect the grating; it serves for initiation of the electronic feedback loop.

The output amplitude Sd consists obviously of the diffracted and transmitted

components. The first one is due to the diffraction of the incident R-beam from

the grating; it is proportional to R0. The second contribution is due to trans-

mission of the incident S-beam; it is proportional to S0 exp (icd sinvt). Thus,
we have in the general case:

Sd ¼ fD R0 þ fT S0 eicd sinvt, (6:1)

where fD and fT are certain complex coefficients characterizing the diffraction

and transmission properties of the index grating. Actually, this relation ex-

presses the superposition principle inherent in the linear diffraction problem.

The value h ¼ jfDj2 is nothing else than the grating diffraction efficiency. One

can guess (see also Section 6.3.2), that jfT j2 ¼ 1� h.
According to Eq. (6.1), the output intensity jSd j2 acquires high-frequency

components oscillating as sinvt and cos 2vt. Their amplitudes are
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Iv ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(1� h)

p
cd sinFs, I2v ¼ 0:25m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(1� h)

p
c2
d cosFs, (6:2)

where Fs ¼ arg (fDR0=fTS0) is just the phase difference between the diffracted

and transmitted components of the signal beam. The amplitudes Iv and I2v are

generally functions of time; they are expected to vary slowly as compared to

sinvt and cos 2vt.
Further steps of the feedback operation can be commented with the help of

Fig. 6.1. The photo-detector (PD) transforms linearly the output intensity

jSd j2(t) into an electric-voltage signal. This signal is filtered using the hetero-

dyne principle and the components Iv(t) and I2v(t) are extracted. Lastly, they

arrive at a lock-in amplifier and integrator (LAI). One of the amplified and

integrated signals drives a piezo-mirror (PM). Details of the electronics can be

found in [12, 17].

Since the PM displacement is proportional to the driving voltage, the time

derivative of the input phase _wws is proportional to Iv or I2v. Supposing for

definiteness that the integrated I2v signal is chosen to govern the input phase,

we arrive at the feedback equation:

_wws ¼ �m0

tf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(1� h)

p
cosFs, (6:3)

where tf is a new time constant determined by the LAI and PM specifications.

It will be referred to as the feedback loop response time. The feedback inertia is

weak when tf � tr; this case is indeed of our prime interest. Note the possibility

of choice between the signs þ and � in the feedback equation. As we shall see,

the operation modes for the signs þ and � are strongly different. The feedback

equation relevant to the use of Iv signal can be obtained by the replacement of

cosFs by sinFs in Eq. (6.3).

6.2.2 The Case of Spatially-Uniform Index Grating

To illustrate the simplest applications of the feedback equation, we consider the

case of permanent refractive index grating. Let the index change be given by

Dn ¼ nK cosKx with the amplitude nK being a positive constant. Then the

complex light amplitudes are given by the Kogelnik relations [38]

R ¼ R0 cos gzþ iS0 sin gz, S ¼ S0 cos gzþ iR0 sin gz, (6:4)

where g ¼ pnK=l cos u, l is the wavelength, and u is the half-angle between the S-
and R-beams in the medium. Correspondingly, we have fD ¼ i sin gd,

fT ¼ cos gd, h ¼ sin2 gd, cosFs ¼ ( sin 2gd=j sin 2gdj) sin (ws � wr), and the

feedback Eq. (6.3) acquires the form

_wws ¼ �m0 sin 2gd

2tf
sin (ws � wr): (6:5)
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With this simple differential equation, one can make the following observa-

tions: If fluctuations of wr are slow on the scale of the feedback response time

tf , the input phase difference ws � wr relaxes quickly to 0 for �þsin 2gd < 0 and

to p for �þsin 2gd > 0. The input light pattern is fully stabilized; it is in phase or

in counter-phase with the refractive index profile. The phase difference Fs

between the diffracted and transmitted components relaxes to þp=2 for the

upper sign in Eq. (6.5) and to�p=2 for the lower sign; the signal I2v relaxes to 0

in both cases. This is why the feedback conditions given by Eqs. (6.3) and (6.5)

are replaced often by the ideal conditions, Fs ¼ �p=2, and I2v is called the

error signal. It is evident also from Eq. (6.5) that the relaxation rate tends to

zero when h(1� h) ! 0.

The use of Iv as an error signal forces the phase differenceFs to relax quickly to

0 or p(Iv / sinFs ! 0) unless h(1� h) ’ 0. The spatial phase shift between the

input intensity profile and the refractive index distribution relaxes here to�p=2.
The above described feedback scheme for stabilization of the light fringes,

which is based on the use of permanent gratings, is known since 1977 [9]. Its

inconvenience is in the spatial separation of the master sample (permanent

hologram) from the actual object.

6.2.3 General Remarks on the Impact of Dynamic Effects

Employment of the electronic feedback loop in photorefractive schemes leads

generally to qualitatively new phenomena. A dynamic grating, which is being

recorded under the feedback control, serves as a reference for the feedback

signal. In addition to the stabilization function, the feedback changes dramat-

ically the apparent characteristics of grating recording and beam coupling. The

thicker the sample, the stronger are the changes.

Fig. 6.2 illustrates the feedback-controlled grating recording in a 1.78 mm-

thick LiNbO3. The �I2v signal is used to drive the piezo-mirror while the Iv
signal is monitored. During the first stage of recording (segment 1), the error

signal isþI2v. The Iv signal grows initially, passes a maximum, reaches zero, and

then holds this value. Switching the error signal from þI2v to �I2v results (see

segment 2) in a negative oscillation of Iv that ends up on a zero level. Switching to

the þI2v error signal leads again to the positive oscillation of Iv, etc. The zero

values of Iv(t) can be kept indefinitely long. The described behavior is observed

in a wide range of the input beam ratio r0 ¼ jR0j2=jS0j2 [12, 13].
Interpretation of the data given in [12, 13] was based on the Kogelnik

relations (see Section 6.2.2). Since the value of sin2 Fs is expected to be unity

here, it was concluded that the diffraction efficiency h grows from 0 to 1 during

the first stage. This growth was associated with the constructive interference of

the R- and S-beams. The negative oscillations of Iv were interpreted as erasure

of the recorded grating (decrease of h from 1 to 0) owing to the destructive

interference caused by the p-change of the phase shift between the light and

index fringes. Furthermore, the conclusion about achievement of the ultimate

values of the diffraction efficiency was confirmed by direct measurements of h.
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It was also found that the feedback considerably modifies the intensity

coupling between the R- and S-beams and significantly suppresses the harmful

effect of light-induced scattering [12, 13, 15]. Generation of a frequency detun-

ing between the R- and S-beam in feedback experiments with sillenite crystals

(Bi12RO20, R ¼ Si, Ti,Ge) has been detected as well [16, 20]. This detuning

corresponds to the linear phase changes, ws / t.

While the conclusion about the impact of the feedback on the recording and

wave-coupling characteristics is beyond dispute, the understanding of the rele-

vant dynamic effects is not satisfactory:

� First, the gratings recorded during PR coupling are generally bent, tilted, and

spatially nonuniform in the amplitude [1, 2]. This is especially true for

nonlinearly thick samples that provide strong coupling effects and large

values of the diffraction efficiency. The beam-coupling effects make invalid

the particular expressions for the diffracted and transmitted parts of the

amplitude Sd , used in Section 6.2.2.

� Second, the behavior of the system in the vicinity of h ¼ 1 or 0 requires a

careful consideration. The feedback signal is very weak here; it cannot

govern the evolution of the input-phase ws. Correspondingly, the notion of

a fixed phase difference Fs breaks down in this region. It is unclear, in

particular, whether the states with h ’ 1 or 0 can be treated as steady states.

The absence of theory of the feedback-controlled beam coupling makes

uncertain the status of this phenomenon and the prospects for its practical

use. Below we provide the reader with the basic knowledge of this new subject.
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Figure 6.2. Measured signal Iv during feedback-controlled grating recording in a

LiNbO3:Fe sample at r0 ’ 2. The odd and even cycles correspond to the use of þI2v
and �I2v as the error signal. Diffraction efficiency h measured at the end of the cycles is

� 1 and � 0, respectively. After [13]
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6.3 Basic Relations for Feedback-Controlled Beam
Coupling

6.3.1 Coupled-Wave and Material Equations

In the case of dynamic diffraction, the refractive index change is due to

formation of the space-charge field under light and the linear electro-optic

effect. In accordance with Fig. 6.1, we present the space-charge field as

Esc ¼ (1=2)EK exp (iKx)þ c:c:, where EK ¼ EK (z, t) is the complex slowly-vary-

ing grating amplitude. The index change is given by Dn ¼ �rn3Esc=2, where r is
the relevant electro-optic coefficient and n is the background refractive index.

The coupled-wave equations for the light amplitudes S and R, which describe

Bragg diffraction from the grating, follow from Maxwell equations. For the

transmission geometry, they can be presented as [1, 2]

@R

@z
¼ i� EK S,

@S

@z
¼ i�E�

KR, (6:6)

where � ¼ pn3r=l is the known real coefficient and the asterisk means complex

conjugation. It is essential that Eqs. (6.6) are linear in R and S and they do not

include the time derivatives. The last feature means that light follows slow index

changes. The total intensity jRj2 þ jSj2 is a conserving quantity within Eqs.

(6.6); it equals 1 for the chosen normalization of R and S.

The grating amplitude EK obeys a material equation that accounts for the

processes of charge separation under light. In what follows, we restrict our-

selves to the following fairly general model equation:

tr
@

@t
þ 1

� �
EK ¼ F

2RS�

jRj2 þ jSj2 , (6:7)

where tr is, as earlier, the nonlinear response time and F is a complex coefficient

characterizing the PR nonlinearity. The absolute value of the fraction in the

right-hand side is nothing else than the light contrast m.

In steady state, with R and S being time independent (standing light pattern),

we have EK ¼ F � 2RS�=(jRj2 þ jSj2). The absolute value jF j is here the coeffi-
cient of proportionality between jEK j and m while C ¼ arg F is the spatial

phase shift between the standing grating and light fringes.

Material Eq. (6.7) is valid for any coupling geometry. In the actual case of

transmission geometry, where the total light intensity is conserving, we have

jRj2 þ jSj2 ¼ 1 for the chosen normalization of R and S.

The limiting cases of real and imaginary F (C ¼ 0,p and� p=2) correspond
to the so-called local and nonlocal PR response, respectively [1]. The local

response is usually due to the drift of photo-excited charge carriers and/or the

bulk photovoltaic effect [39, 40]. The nonlocal response is often due to diffusion

of the charge carriers.
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The rate coefficient t�1
r is usually proportional to the total light intensity [1–

3]. In certain special cases, it possesses a relatively large imaginary part which

means the presence of weakly-damped space-charge waves [34, 35, 41]; Eq. (6.7)

can be restricted there to the values of light contrast m � 1. Unless such cases

are indicated, we will treat tr as a real relaxation constant and use Eq. (6.7) in

the whole contrast range, 0 < m# 1.

In the literature, one can find numerous model relations expressing F and tr
through the applied field E0, the grating vector K, and material parameters [2].

For many PR ferroelectrics (LiNbO3, LiTaO3, BaTiO3, KNbO3, etc) and the

transmission case, it will be sufficient to suppose that F ’ Epv � E0 � iED and

tr ¼ tdi, where Epv is the photovoltaic field, ED ¼ KkbT0=e is the diffusion field,

kb is the Boltzmann constant, T0 is the absolute temperature, e is the elemen-

tary charge, and tdi is the dielectric relaxation (Maxwell) time. The upper and

lower signs correspond to the photo-excitation of electrons and holes, respect-

ively. For many fast PR materials (including the sillenites) and the transmission

case, it will be sufficient to set F ¼ �E0 � iED and t�1
r ¼ gK � ivK , and accept

that jvK j � gK within a certain range of E0 and K. This range is relevant to the

presence of weakly damped space-charge waves [35, 41] and to the resonant

enhancement of the PR response [2, 42]. The necessary relations for the reflec-

tion geometry can be found in Section 6.5.3.

Quite a lot of characteristics of beam coupling and grating recording can be

described with the help of the set (6.6), (6.7). These includes the output inten-

sities and phases of the S- and R-beams in steady state (with R,S,EK being time

constants or in the presence of a frequency shift V when RS�,EK / exp (iVt)) )

and the diffraction efficiency of the recorded dynamic grating [1, 2, 43, 44]. The

Kogelnik relations (6.4) are applicable only in the limit of weak coupling when

j�F jd � 1 and h � 1.

The feedback equation has to be presented in the form of a boundary

condition for Eqs. (6.6) that couples the light amplitudes on the input (z ¼ 0)

and output (z ¼ d) faces of the sample. The form of Eq. (6.3) does not meet this

requirement because the phase difference Fs between the diffracted and trans-

mitted components of the S-beam is not expressed yet by S0,Sd ,R0,Rd . Below

we obtain the necessary general relation for Fs.

6.3.2. Fundamental Amplitudes

Since the problem of Bragg diffraction is linear, we can represent the ampli-

tudes S and R as linear combinations of the transmitted (first) and diffracted

(second) components [21, 45],

S ¼ S0 f
s
T þ R0 f

s
D, R ¼ R0 f

r
T þ S0 f

r
D: (6:8)

The fundamental amplitudes f rT (z, t) and f sD(z, t) correspond to testing of the

grating by a unit R-beam, see Fig. 6.3a. They meet the same coupled-wave

equations as R and S, respectively; the boundary conditions for them are
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f rT (0, t) ¼ 1, f sD(0, t) ¼ 0. The fundamental amplitudes f rD(z, t) and f sT (z, t) cor-

respond to testing of the same grating by a unit S-beam, see Fig. 6.3b. Their

input values are 0 and 1, respectively. The amplitudes f rT,D and f sT,D fully

describe the transmission and diffraction properties of the dynamic grating in

the absolute reference frame.

At first sight, Eqs. (6.8) are useless because we cannot express four funda-

mental amplitudes by S and R. However, by making the complex conjugation

of the coupled-wave equations for f rT and f sD, one can see easily that

f sT ¼ (f rT )
�, f sD ¼ �(f rD)

�: (6:9)

In other words, only two fundamental amplitudes (let them be f sT and f sD) are

independent owing to the symmetry properties of the coupled-wave equations.

Using Eqs. (6.8) and (6.9), we express f sT and f sD through the recording ampli-

tudes,

f sT ¼ S�
0S þ R0R

�, f sD ¼ R�
0S � S0R

�: (6:10)

Some other properties of the fundamental amplitudes are useful as well. In

accordance with our definitions (see also Fig. 6.3) and Eqs. (6.9), we have

h ¼ jf sD(d)j2 ¼ jf rD(d)j2. These relations prove that the result of measurements

of h does not depend on which of the recording beams (R of S) is blocked. They

allow us to express h explicitly through the recording amplitudes [44]. Further-

more, we have jf sT (d)j2 ¼ jf rT (d)j2 ¼ 1� h. Note an obvious consequence of

these equalities: The output intensities of the recording waves coincide with

the input ones (jSd j2 ¼ jS0j2, jRd j2 ¼ jR0j2) in the case h ¼ 0 and interchange

with each other (jSd j2 ¼ jR0j2, jRd j2 ¼ jS0j2) when h ¼ 1.

Using Eqs. (6.8) and (6.9), we calculate now the phase difference Fs between

the diffracted and transmitted components of the S-beam,

Fs ¼ wr � ws þ arg[(S0S
�
d þ R�

0Rd)(R
�
0Sd � S0R

�
d )]� (6:11)

This expression represents the difference of the feedback-controlled input phase

ws and the terms which vary slowly on the scale of tf . This is why the adjust-

ment of Fs to �p=2, 0, or p is not much different from that considered above

for the permanent grating.

fD
s fT

s

fT
r fD

r

1

1

(a) (b)

Figure 6.3. Geometrical

schemes relevant to the defin-

ition of the fundamental ampli-

tudes in the transmission

geometry.
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The ideal feedback conditions Fs ¼ �p=2 and the feedback conditions given

by Eq. (6.3) acquire now the form of explicit relations that couple the recording

amplitudes at the input and output. They serve as nonlocal and nonlinear

boundary conditions to the set (6.6), (6.7).

It is worth noting that the role of the fundamental amplitudes goes beyond

the purposes of our feedback studies. Broadly speaking, the method used

allows to express any readout characteristic of the dynamic grating through

the input and output recording amplitudes regardless of the type of PR

response. Particular applications of this method can be found in [44].

6.3.3 Steady-State Solutions

In the general case, a frequency detuning V exists between R- and S-beams in

steady state so that the light and index fringes are moving with a constant

velocity V=K . We attribute this detuning to the linear change of the input phase

ws(t). It is sufficient to set S / exp (� iVt) and EK / exp (iVt) to take it into

account. Eqs. (6.6), (6.7) then give the known relations for the wave amplitudes

[1, 2, 43],

R ¼ R0 exp (Gz=2)=D, S� ¼ S�
0 exp (� Gz=2)=D, (6:12)

where the denominator D ¼ D(z) is given by

D ¼ [jR0j2 exp (G0z)þ jS0j2 exp (� G0z)]G=2G
0

(6:13)

and G ¼ G0 þ iG
00
is the complex rate constant,

G ¼ iG0=(1þ iVtr) with G0 ¼ 2�F � (6:14)

Its real part G0 is referred to as the amplitude gain factor; the imaginary part G00

characterizes the phase coupling.

Using Eqs. (6.10), (6.12), and (6.13), one can find the following explicit

relations for the fundamental amplitudes:

f sT ¼ [jR0j2 exp (G�z=2)þ jS0j2 exp (� G�z=2)]=D� (6:15)

f sD ¼ �R�
0S0 [ exp (G�z=2)� exp (� G�z=2)]=D�: (6:16)

Since h ¼ jf sD(d)j2, we obtain for the steady-state diffraction efficiency:

h ¼ m2
0

2

cosh (G0d)� cos (G00d)
cosh (G0d)þW0 sinh (G

0d)
, (6:17)

where W0 ¼ jR0j2 � jS0j2 ¼ (r0 � 1)=(r0 þ 1) is the normalized input intensity

difference. This relation incorporates the coupling effects; it is equivalent to the

expression known since 1979 [43].

Let us maximize and minimize h with respect to the coupling parameters G0d
and G00d. The maximum value of the efficiency hmax ¼ 1. The maximizing value
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of G00d meets the condition cos (G00d) ¼ �1, i.e., G00d ¼ �p, � 3p, . . . The
maximizing value of G0d is unique; it is given by tanh (G0d=2) ¼ �W0. The

minimum value hmin ¼ 0 is achieved when G0 ¼ 0 and G00d ¼ �2p, � 4p, . . .
Two different conditions have to be satisfied thus to turn h to 1 (or to 0). The

reason is simple: The value h ¼ 1 (or 0) is achieved when both real and

imaginary parts of f sT (d) (or f
s
D(d)) are zeros.

The derived conditions play an important role in analysis of the feedback-

controlled behavior. The condition h ¼ 1 (or h ¼ 0) gives us a sequence of

branches for jG0jd as a function of r0, i.e., a sequence of curves on the jG0jd, r0-
plane. These curves, as we will see, separate the regions with essentially differ-

ent feedback behavior. They will be referred to as the separatrices or threshold

curves. Each point of a separatrix corresponds to a unique value of the fre-

quency detuning, i.e., V ¼ V(r0).

Let us go further. Using Eqs. (6.15) and (6.16), we easily calculate the steady-

state phase difference Fs,

Fs ¼ arg[W0 cos (G
00d)þ i sin (G00d)� sinh (G0d)�W0 cosh (G

0d)]: (6:18)

It is well-defined unless h(1� h) ¼ 0.

The feedback is able to adjust Fs by varying the detuning V. Consider the

main possibilities:

� Fs ¼ �p=2. In this case, the following two conditions are fulfilled:

sinh (G0d)þW0 cosh (G
0d) ¼ W0 cos (G

00d), sin (G00d)00: (6:19)

� Fs ¼ 0, p. In this case, we have instead of Eq. (6.19):

G00d ¼ jp, sinh (G0d)þW0 cosh (G
0d)9W0(� 1) j, (6:20)

where j ¼ 0, � 1, . . .
If we replace the sign 0 by the sign ¼ in Eqs. (6.19) and (6.20), we obtain

new curves on the r0, jG0jd–plane that separate the regions where steady states

with Fs ¼ p=2 and �p=2 and Fs ¼ 0 and p can take place. Different separa-

trices and regions look fairly simple when we restrict ourselves to not very large

values of the coupling strength jG0jd. Below, we consider a number of import-

ant particular cases.

Particular Cases

The local PR response: Here we set first, see Eq. (6.14), G0 ¼ jG0j to obtain

G0 ¼ jG0jVtr

1þV2t2r
, G00 ¼ jG0j

1þV2t2r
: (6:21)

With V ¼ 0 the rate coefficient G is pure imaginary.
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The condition h ¼ 1 is fulfilled when

jG0jd ¼ jp þ 1

jp
ln2 r0, (6:22)

where j ¼ 1, 3, . . . Separatrix 1 in Fig. 6.4a shows the coupling strength jG0jd
versus the input intensity ratio r0 ¼ jR0j2=jS0j2 for j ¼ 1 (the branches with

j ¼ 3, 5, . . . correspond to higher values of jG0jd). This dependence is symmet-

ric to the replacement r0 by r�1
0 . The minimum value of the coupling strength,

(jG0jd)min ¼ p, takes place at r0 ¼ 1. The detuning relevant to the condition

h ¼ 1 is given by Vtr ¼ � ln r0=p; it changes sign when r0 is replaced by r�1
0 .

The condition h ¼ 0 is fulfilled when V ¼ 0 and jG0jd ¼ 2p, 4p, . . . (see line 3
in Fig. 6.4a).

Turn now to the feedback-controlled steady states [32]. Two additional lines,

2 and 4, are necessary to specify the regions of different behavior for jG0jd < 3p
(see Fig. 6.4a). Below line 2, i.e., for jG0jd < p, the only possible steady state

corresponds to Fs ¼ p=2. This state is stable, it is achievable via a feedback-

controlled transient stage. The value of steady-state diffraction efficiency

ranges here from 0 to 1. The use of ‘‘forbidden’’ feedbacks �p=2, 0, and p
leads (for jG0jd < p) to very large values of V and a strong erasure effect.

Two additional states with Fs ¼ 0 (or with Fs ¼ p) can formally be found

within the region restricted by the curves 1, 2, and 4. Only one of these new

states is stable and can, in addition to the old one, be realized in practice. The

number of instable steady states increases dramatically with increasing jG0jd,
see, e.g., the regions restricted by curves 1 and 4; such states are of little interest.
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Figure 6.4. Lines separating different regions on the r0, jG0jd– plane for the local

(a) and nonlocal (b) responses. Separatrix 1 corresponds to the condition h ¼ 1; above it

(within the gray regions), the periodic states take place. The signs 0, p=2, . . . mean that

steady state solutions with Fs ¼ 0, p=2, . . . can be found formally within the indicated

regions. Repetition of the same sign means the frequency degeneration—two, three, . . .

steady states with the same value of Fs but different values of V correspond to the same

r0 and jG0jd.
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Consider finally the gray region restricted from below by separatrix 1. All

steady states that can formally be found are not stable in this region. The use of

the p=2 feedback leads to periodic states with h ’ 1, see the Section 6.4.

It should be emphasized that the feedback influence on stable steady states is

reduced to the introduction of a proper frequency shift V. The same state can

be achieved when the feedback is switched off and the necessary shift is

introduced at the input.

To clarify for the reader the meaning of the term ‘‘unstable steady state,’’ we

describe the results of two numerical experiments [21]. Initially, the feedback is

switched off and the frequency detuning V is chosen in such a way that the

temporal evolution brings the system very near to the steady state with

Fs ¼ p=2 (see curve 1 in Fig. 6.5). Then the p=2 feedback is switched on.

One sees that within a time interval comparable with the response time tr, the

system departs far away from the steady state (with h ’ 0:2) and reaches a state

with h ’ 1. Within a similar simulation, the input detuning was chosen in such

a way to bring the system very near to the steady state with Fs ¼ �p=2. The
corresponding steady-state efficiency is close to 1 (see curve 2). Switching the

feedback Fs ¼ �p=2 on results in a quick drop h to zero. The above numerical

results are in line with experiment (see Fig. 6.2). They show that steady states of

the system governed by the �p=2 feedback are unstable for sufficiently thick

samples. What happens if the sign of the local response is inverted, G0 ¼ �jG0j?
The answer is simple: Within all above regions, the feedback sign (and the sign

of V) has to be inverted to ensure the same behavior of the system. The form of

separatrix 1 remains unchanged.
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Figure 6.5. Up to the point t=tr ¼ 20, curve 1 corresponds to the input phase ws ¼ Vt,

W0 ¼ �0:5, and jG0jd ¼ 7:3; the value Fs(20tr) ’ 1:01(p=2). Then the feedback

Fs ¼ p=2 is on. For curve 2, the feedback Fs ¼ �p=2 is switched on at t ’ 13tr. The

relevant figures are jG0jd ¼ 7:3, W0 ¼ 0:5, and Fs(13tr) ’ �1:01(p=2).
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The nonlocal response: Here we set first G0 � ijG0j, which gives the relations

G0 ¼ jG0j
1þV2t2r

, G00 ¼ � jG0jVtr

1þV2t2r
: (6:23)

The rate coefficient G is real for V ¼ 0 and S ! R energy transfer occurs.

The condition h ¼ 1 is fulfilled when [26]

jG0jd ¼ �( ln r0 þ p2= ln r0): (6:24)

This relation describes the lowest branch of the dependence of jG0jd on r0 (see

separatrix 1 in Fig. 6.4b). The allowed values of r0 are smaller than 1 so that the

contrast m is increasing during beam propagation. The absolute minimum of

the coupling strength, (jG0jd)min ¼ 2p, is two times higher than that for the

local response; it occurs at r0 ¼ exp (� p) ’ 0:043. The relevant dependence

V(r0) is given by Vtr ¼ p=ln r0; the optimizing value of Vtr is �1.

Apart from separatrix 1, lines 2 and 3 shown in Fig. 6.4b are important to

describe possible steady states. For sufficiently small values of the coupling

strength, the only possible state corresponds to the conditionFs ¼ p. This state
is stable and achievable via a feedback-controlled temporal evolution. Diffrac-

tion efficiency h is small at this state. The use of ‘‘forbidden’’ 0 and �p=2
feedback conditions leads to very large values of V and a strong erasure effect.

Two additional steady states with Fs ¼ �p=2, which can be found formally

within the region restricted by the lines 2 and 3, are not stable. The only

stable state corresponds here to Fs ¼ p. Within the gray region, the only stable

steady state meets the condition Fs ¼ p. The feedbacks �p=2 and 0 lead to

periodic states.

What happens if the response sign is inverted, G0 ¼ þijG0j, i.e., the energy

transfer is R ! S? Separatrix 1 in Fig. 6.4b is replaced by the mirror-reflected

one, i.e., the allowed values of r0 are larger than 1. The sign of V has also to be

inverted.

The resonant response: This case is relevant to the sillenite crystals [2, 35]. The

actual values of the applied field E0 are much higher here than ED (typically

E0 ¼ 6� 10 kV=cm and ED&1 kV=cm) and t�1
r ¼ gK � ivK (see Section 6.3.1).

The rate coefficient G can be presented as

G ¼ iG0vK

V� vK � igK

, (6:25)

with G0 ¼ �E0 The dependence G(V) exhibits a resonant behavior [35, 42].

When V��vK , the rate coefficient G becomes real and its value is enhanced

by a factor of Q ¼ jvK j=gK � 1 as compared to the value relevant to the static

case (V ¼ 0). The resonant enhancement is restricted to small values of the light

contrast, m&Q�1 � (0:15� 0:3).
Achievement of h ¼ 1 is not the prime aim for the resonant case. A more

important task is to ensure the maximum resonant value of the rate of spatial

amplification, Qj�E0j, in steady state. This can be done with the use of the
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feedback condition Fs ¼ 0 or p (depending on the sign of �E0). The feedback

loop automatically adjusts the frequency detuning to the resonance, V ’ vK .

Such an adjustment has been demonstrated in experiments with Bi12TiO20

crystals [16, 20]. The steady states with Fs ¼ �p=2 are not possible for mod-

estly thin samples.

It is worthy of mentioning that the scalar wave coupling can be achieved only

in special cases in the sillenite crystals. In the general case, because of optical

isotropy and optical activity, the changes of light amplitudes and phases cannot

be separated from polarization changes (see [46, 47] and references therein).

This circumstance has to be taken into account on analysis of experimental

data.

6.4. Periodic states

6.4.1. Results of Numerical Simulations

Ideal Feedback

First numerical simulations of the feedback-controlled beam coupling [21] dealt

with the case of an almost local response, G0 ’ jG0j, and were based on the use

of the ideal feedback conditionsFs ¼ �p=2. These simulations were relevant to

experiments with LiNbO3 crystals [12, 13]. A small seed value of the grating

amplitude EK was used as the initial condition.

The essence of the results obtained for the feedback Fs ¼ p=2 is presented in

Fig. 6.6. Line 4 corresponds to a coupling strength of 2.2 and r0 ¼ 19, i.e., to

the under-threshold region in Fig. 6.4a. The efficiency h(t) grows monoton-

ously and approaches the value ’ 0:33 relevant to the feedback-controlled

steady state. The light and grating fringes are moving with a constant velocity.

Curves 1, 2, and 3 are plotted for r0 ¼ 1, 9, and 19, respectively; the coupling

strength is 6.6. In other words, we are inside the above-threshold region and

recede step by step from separatrix 1. The behavior of h(t) is different here. The
efficiency reaches unity within a finite time. The smaller ln r0 and larger jG0jd,
the shorter is the transient time.

In fact, when h reaches a certain value that is very close to 1 (the grade of

proximity depends on the calculation accuracy), the ideal feedback ceases to

govern the temporal evolution. This is due to the fact that the transmitted

component f sT (d) becomes very small and an accurate calculation of its phase

becomes impossible. Artificial means for regularization of the numerical pro-

cedure were used in the close vicinity of 1. For example, the input phase ws was

kept equal to the last controllable value; this resulted in decreasing h and made

it possible to switch the feedback on again. Each new switching on returns h
quickly to a unit value (see the inset in Fig. 6.6). The described regularization

procedure has indeed nothing to do with the real operation of the feedback

loop; it shows, however, how robust the feedback effect is.
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The situation with the ideal feedback Fs ¼ �p=2 is as follows: Any switching

on of this feedback makes the grating transparent (h ’ 0) within a finite time

irrespective of the initial state and the values of jG0jd and r0, see, e.g., Fig. 6.5.

In the close vicinity of zero, the ideal feedback cannot govern the input phase ws

and some regularization means are needed again for numerical calculations.

In the case of local response G0 ¼ �jG0j, the feedback sign has to be inverted

to ensure the same effect on the diffraction efficiency.

Inertial Feedback

Inertial feedback Eq. (6.3), supplemented by the exact relation (6.11) for the

phase difference Fs, allow the system to operate permanently in all cases where

the ideal feedback fails. The feedback-controlled system here exhibits a great

variety of periodic states (attractors) instead of familiar steady states [24, 23].

Basically, such states are inherent in complicated dynamic systems [48, 49]

Consider first the case of local response G0 ¼ jG0j and accept the upper sign

in Eq. (6.3); the latter means that inertia of the þp=2 feedback is taken into

account. By turning to the operation modes, we set jG0jd ¼ 6:6 and start with

an intermediate beam ratio r0 (between 1 and the value rmax
0 =�^27 belonging

the separatrix 1 (see Fig. 6.4a).

Fig. 6.7 shows the time dependences of ws, h, and cosFs for tf =tr ¼ 10�3,

and r0 ¼ 4. After a relatively short initial stage, 0 < t&tr, the phase ws shows a

quite regular but not periodic behavior. It is characterized by almost periodic

steps upward, each of them as large as ’ 3408. The time distance between them

is ’ 0:35tr. The steps produce a considerable positive average slope of the

dependence ws(t), i.e., a considerable average detuning frequency, Vstr � 1.

The phase steps are accompanied by apparently periodic oscillations of the

diffraction efficiency in the vicinity of 1. The period of these oscillations

(’ 0:35tr) is the same as the distance between the phase steps. The phase Fs,

responsible for the error signal, remains close to p=2 only during the initial

stage; further time development is characterized by strong quasi-periodic

Figure 6.6. Dependence h(t) for

the ideal feedback condition

Fs ¼ p=2. Curves 1, 2, 3 are plotted

for r0 ¼ 1, 9, and 19 and jG0jd ¼
6:6; curve 4 corresponds to jG0jd ¼
2:2 and r0 ¼ 19. The insert shows in

detail the region with h ’ 1 for

curve 2. Normalized time,  t / tr 
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oscillations of cosFs. The subsequent evolution makes the phase steps of ws

and the oscillations of h and cosFs perfectly periodic.

In addition to the time dependences of ws, h, and Fs, it is useful to charac-

terize the system by the trajectory f sT (d, t) on the complex plane. In particular,

the distance to the origin jf sT (d, t)j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h(t)

p
. The solid closed line in Fig. 6.8a

exhibits this trajectory for 6tr # t# 8tr; about 7 revolutions occur during that

time. This shows clearly that the point Ref sT (d, t), Imf sT (d, t) moves along a limit

cycle (an attractor). This motion is clockwise and strictly periodic; its period,

T ’ 0:354tr, corresponds to the period of h(t) and cosFs(t) and to the the

duration of one step of ws(t). While f sT (d, t) moves along the attractor, the point

f sD(d, t) (characterizing the diffracted component) moves with small and con-

stant angular velocity V along the unit circle, jf sD(d, t)j ’ 1. The latter motion is

superimposed by fast periodic oscillations of the same period T.

At this point the reader may ask, how it is possible to combine the

periodic behavior of f sT (d) and cosFs with the nonperiodic behavior of f sD(d)

and ws? To clarify this important point, we represent ws and the argument of

f sD(d) as

ws ¼ wp
s þVst, arg[f sD(d)] ¼ arg[f sD(d)]

p þVt, (6:26)
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Figure 6.7. Dependences ws(t), h(t), and Fs(t) for the initial stage of feedback-con-

trolled behavior at jG0jd ¼ 6:6 and r0 ¼ 4. The feedback response time tf ¼ 10�3tr.
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where wp
s (t) and arg[f sD(d, t)]

p are T-periodic time functions with zero average

value, Vs is the apparent frequency detuning for the signal beam, and V is the

average angular velocity for the amplitude f sD(d, t). Then, keeping in mind that

Fs ¼ arg[R0 f
s
D(d)=S0 f

s
T (d)], one can see that the only possibility to meet the

feedback Eq. (6.3) is to demand that

Vs ¼ Vþ 2pN=T , (6:27)

with N ¼ 0, � 1, � 2, . . .. The number N determines the shape of the limit

circle; it can be considered as a global characteristic of the periodic states. For

the attractor presented in Fig. 6.8a, we have N ¼ 1. The replacement r0 ¼ 4 by

r0 ¼ 1=4 changes the sign of N (and the sign of Vs).

An interesting feature of the described behavior is the relatively long period

of the oscillations, T ’ 0:354tr. It is not much shorter than the PR response

time tr and much longer than the feedback response time, tf ¼ 10�3tr. The

following numerical experiment was performed to investigate the dependence

T(tf ) [24]: Starting from t ¼ 12tr (when the periodic state with r0 ¼ 4 is prac-

tically achieved), the time tf decreased from 10�3tr to 4 � 10�5tr with a very

small rate causing very slow (adiabatic) changes of the periodic state charac-

teristics. During this procedure, the attractor decreased in size, preserving the

bagel-like form. The period T also decreased with decreasing tf . Another

interesting question that has been answered within this adiabatic procedure is

how the average h1� h(t)iT depends on the feedback response time. With good

accuracy, the found dependences of T and h1� h(t)iT on tf meet the scaling

relations

T ¼ CT (tf =m0)
1=2, h1� hiT ¼ Chtf =m0 (6:28)
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Figure 6.8. Periodic trajectories for jG0jd ¼ 6:6, and three different values of the input

intensity ratio r0. Weak asymmetry of the orbits is due to a small admixture of the

nonlocal response.
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with CT ’ 14 and Ch ’ 6:6. The same scaling relations (but with different

values of CT and Ch) hold true for other periodic states. Fast oscillations of

the input phase ws remain strong even when tf ! 0.

Now we turn to the case r0 ¼ 6, keeping the other parameters the same. The

corresponding attractor (with N ¼ 0) is shown in Fig. 6.8b. It consists of two

loops and the trajectory moves around zero in an anti-clockwise direction. The

size of this attractor is considerably smaller than that of the previous one. Only

one revolution around the origin occurs during the period T ’ 0:33tr. Fig. 6.9a
shows the corresponding dependence ws(t). The average slope is now negative;

it corresponds to Vstr ’ �0:924, which is much smaller than earlier. This

feature is favorable for experiment because it requires fewer resets of the

piezo-driver.

Lastly we consider the case of equal input intensities, r0 ¼ 1. Here the

temporal development of f sT (d) ends up by attraction to the limit cycle shown

in Fig. 6.8c. Its geometry is new again and the number N ¼ 3. The full period

corresponds here to three revolutions around zero. This leads to a

period tripling of ws(t), h(t), and other variables. The size of the attractor is

noticeably larger than earlier; this gives larger periodic oscillations of h(t) in the

vicinity of 1. The time dependence of ws is shown in Fig. 6.9b. Here the period

T ’ 0:97 tr; it is approximately three times larger than before. The average

slope of ws(t) is positive and pretty large, Vstr ’ 19:3.
The questions arise about what happens if we choose other values of the

beam ratio and what kind of transitions take place between different periodic

states with changing r0. The answer to the first question is simple: No new types
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Figure 6.9. Time dependence of the input phase ws(t) for the intensity ratio r0 ¼ 6 (a)

and r0 ¼ 1 (b); the coupling strength jG0jd ¼ 6:6.
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of attractors occur in the whole above-threshold range of the pump ratio for

jG0jd ¼ 6:6. The answer to the second question is more complicated.

Imagine first that we gradually increase r0 starting from 1. Then a gradual

convergence of different loops of the attractor shown in Fig. 6.8c takes place.

At r0 ’ 2, the three-loop structure has already transformed into one-loop

trajectory similar to that shown in Fig. 6.8a. Correspondingly, the period

tripling disappears. This behavior is similar to the second-order phase transi-

tion [50, 51]. It is not accompanied by dramatic changes of Vs(r0), but the value

of N transforms sharply from 3 to 1.

Increase of r0 from 2 to � 6 results in gradual changes of the form of the

bagel presented in Fig. 6.8a. With r0 approaching ’ 6:8, these changes accel-

erate and within the interval 6:8&r0&7:3, the trajectory f sT (d, t) becomes

apparently irregular. Then, for r0 ’ 7:4, a new two-loop attractor correspond-

ing to N ¼ 0 is formed. This transition is similar to the first-order phase

transitions because it cannot be performed continuously [51]. In particular, it

is very pronounced for the time dependence of ws. The change of Vs(r0) and of

the shape (but not the period) of the oscillations is very sharp.

With r0 increasing from 7.4 to the threshold value ’ 27, the attractor with

N ¼ 0 experiences only quantitative changes. The amplitudes of the temporal

oscillations tend to zero and a gradual transition to the steady state (where

h < 1) takes place.

The described behavior is robust. It is not subjected to considerable changes

when the PR response is not purely local (i.e., G0 is not purely real).

Introduction of a weak noise source into the dynamic equations does not

produce any strong effect on the periodic states; it can, however, make the

transient stage shorter [31]. The use of different initial conditions for the grating

amplitude EK does not change the final result of the feedback-controlled

evolution; that is, the establishment of a certain periodic state.

Some efforts have been undertaken to simulate the feedback operation for

the nonlocal and resonant PR responses [26]. Within the below-threshold

region of jG0jd and r0, the feedback leads the system to a steady state, if such

a state exists (see Section 6.3.3). Otherwise we have a state with h ’ 0. Above

threshold, i.e., for jG0jd > 2p, the system is able to reach a periodic state with

h ’ 1. No such states are realized yet in experiment.

Some analytical methods were developed during the last years to describe the

periodic states [29, 30]. It was found that the number of different attractors

(with different values of N) increases rapidly with increasing coupling strength.

Near the threshold, however, the only possible periodic state corresponds to

N ¼ 0, i.e., to a small value of Vs. Similarities between the periodic states

relevant to h ¼ 1 and 0 were established. It was also shown that the degree of

inhomogeneity of the grating, being small at r0 ¼ 1, increases noticeably with

increasing j ln r0j for the case of local response. Quantitatively, this feature is

described by the curves presented in Fig. 6.10. One sees that both the amplitude

and phase distortions are important in the case of nonequal input intensities;

these distortions grow with increasing coupling strength.
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6.4.2 Experimental Results

The time dependence of the input phase ws was not reported in the first

feedback experiments. Special measurements were therefore needed to check

the main elements of the concept of the periodic states. The relevant experi-

ments have been performed with a 0.35 mm thick sample of LiNbO3:Fe [24, 23].

Its 4� 5mm2 input/output faces are parallel to the polar axis. The crystal has a

congruent composition and contains 0.1 wt. % of Fe2O3. The dominating

charge-transport mechanism is the photovoltaic effect. The main elements of

the feedback setup are similar to that described in Section 6.2.1.

The feedback operation has been studied at two wavelengths for extraordin-

arily polarized laser beams. Two light sources were used: A 100 mW frequency-
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Figure 6.10. Dependences of the parameters jEK (d=2)j=jEK (0)j and arg [EK (d=2)=
EK (0)], characterizing the degree of the amplitude and phase distortions of the grating,

on the input intensity ratio for the local response and p=2 feedback. Curves 1, 2, 3, and 4

are plotted for jG0jd ¼ 4, 6, 8, and 10, respectively.
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doubled YAG:Nd3þ laser (l ¼ 532 nm) and a 50 mW He-Ne laser

(l ¼ 633 nm). At 532 nm, the response time tr was about 60 s for the total

intensity I0 ¼ 130mW=cm2
, whereas the characteristic photovoltaic field

Epv � 100 kV=cm and the coupling strength jG0jd � 8. At 633 nm, the time tr
was about 240 s and the coupling strength is about 3.5. The angle between the

incident light beams was ’ 128. At 532 nm, this corresponds to the grating

period 2p=K ’ 2:2mm and to a diffusion field of ED ’ 0:65 kV=cm. At

633 nm, the corresponding numbers are ’ 3mm and ’ 0:54 kV=cm. In both

cases, ED � Epv so that the PR response is almost local.

To verify the fact that the feedback loop meets the feedback condition (6.3),

the transmission factor of the integrator, Kv, was measured as a function of the

frequency v of an input harmonic signal. It was found that Kv / v�1 within a

wide frequency range v# 102 s�1 � 104 t�1
r . Therefore, the Fourier component

of the mirror displacement xv / v�1 and the Fourier component of the mirror

velocity, �ivxv, do not depend on the modulation frequency. This proves the

validity of the linear relation (6.3) between _wws and the error signal with a great

safety margin. The value of the response time of the feedback loop was

estimated as tf � 10�3tr.

Turn now to the experimental results for the þp=2 feedback. No auto-

oscillations were observed at 532 nm for sufficiently large and small beam

ratios, r0&0:03 and r0*50. The diffraction efficiency h remains here smaller

than 1 and the feedback effect is reduced to the introduction of a frequency

detuning V ¼ _wws (see Fig. 6.11). The sign of V is determined by the sign of ln r0
and the absolute value jVj (the value of the tilt of the line ws(t)) is increasing

with growing j ln r0j. This is in full agreement with the properties of steady

states considered in Section 6.3.3.

Within the interval 0:03&r0&50, the situation was different. Fig. 6.12 gives

an example of the experimental dependences of h(t) and ws(t) for r0 � 1=9 and

tr � 200 s. In agreement with theory, the efficiency monotonously approaches 1

during the initial state, whereas the input phase ws shows a quasi-linear growth.

Figure 6.11. Experimental time

dependences of the input phase ws

in steady state for the sample of

LiNbO3. Curves 1 and 2 correspond

to r0 ¼ 120 and 0.013, respectively;

the wavelength l ¼ 532nm.
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The initial stage ends up at t � 350 s when the phase first experiences a jump;

the value of h is practically saturated at this stage. Note that the dependence

ws(t) looks noisy as compared to h(t). This reflects the stabilizing effect of the

feedback loop.

Fig. 6.13 shows the saturated value of h versus r0 for l ¼ 633 and 532 nm,

which corresponds to two different values of the coupling strength. It is clearly

seen that the ultimate value h ’ 1 is achieved within a certain interval of the

input beam ratio. The larger is the coupling strength, the wider this interval.

This feature is also in full agreement with the expected one.

A number of recognizable periodic states (with permanently operating feed-

back and the diffraction efficiency h ’ 1) have been observed within the

interval r0 ¼ 0:03� 50 for l ¼ 532 nm. It seems that all the states described

in Section 6.4.1 were observed. Figure 6.14a shows a typical fragment of the

feedback-controlled dependence ws(t) for r0 ¼ 10. A large average slope and

quasi-periodic phase steps are clearly seen in this plot. These elements are

similar to those presented in Fig. 6.7. The time distance between the subsequent

steps can be estimated as ’ 0:2tr. The next Fig. 6.14b corresponds to r0 ¼ 6:6.
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It shows a considerably smaller slope and clearly pronounced quasi-periodic

phase oscillations. The period of the oscillations is estimated here as ’ 0:3 tr.
These features are similar to those presented in Fig. 6.9a. Lastly, Fig. 6.14c

shows a representative dependence ws(t) for r0 ¼ 1; it corresponds to the period

tripling, compare with Fig. 6.9b. The full period, � 0:82tr, is approximately 3

times larger than it is in the previous case.

It would be unreal indeed to expect an exact coincidence between the experi-

ment and numerical simulations because of mechanical perturbations, air

draughts, and other factors affecting the experimental results and also because

of some uncertainty in the values of material parameters. Nevertheless, a good

semi-quantitative agreement is evident.

6.4.3 A Simple View on the Periodic States

As we already know, the periodic states with h ’ 1 or 0 are due to the presence

of a proper frequency detuning Vs and a proper periodic oscillation wp(t) in the

input S-beam. Furthermore, we know that the modulation period T is consid-

erably shorter than tr for sufficiently small feedback time tf . These general

features allow us to gain a simple view of the feedback operation.

Fast modulation of the input phase ws produces an erasure effect on the

grating. The same effect comes from the large frequency detuning, Vstr � 1.

Figure 6.14. Fragments of ex-

perimentally obtained feedback-

controlled phase dependences ws(t)

at l ¼ 532 nm. The subfigures (a),

(b), and (c) correspond to the input

intensity ratio r0 ¼ 10, 6:6, and 1,

respectively. Note the different ver-

tical scales for the cases a), b), and c).
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Both of these factors work to compensate the overshot that takes place when

the coupling strength jG0jd exceeds the value given by the threshold equation

h(jG0jd, r0) ¼ 1 (see Fig. 6.4). Adjustment of Vs cannot compensate the over-

shot because two conditions, Re[f sT (d, Vs)] ¼ 0 and Im[f sT (d, Vs)] ¼ 0, cannot

be fulfilled with only one variable parameter in hand. From this general

viewpoint, the appearance of the periodic component wp(t) looks natural.

To extract the net effect of periodic phase modulation, it is helpful to recall

that ws ¼ wp þVst and Vs ¼ 2pNT�1 þV, where V � t�1
r . The input phase ws

enters all physical relations via the exponent exp (iws) � exp (iwp þ 2piNt=T)�
exp (iVt). The first factor in the right-hand side is a T-periodic function of time;

it is the genuine mediator of the fast-modulation influence. The reduced detun-

ing V characterizes the slow degrees of freedom.

In fact, the major effect of the periodic modulation on the grating recording

and beam coupling is determined by only one real characteristic parameter [27]

« ¼ hexp (iwp þ 2piN t=T)iT
�� ��, (6:29)

where the brackets mean averaging over the period. This assertion stems from a

simple idea: The inertial process of grating formation is sensitive not to fine

features of the fast external changes, but to their average properties. Parameter

« ranges from 1 to 0; these limit values correspond to zero and ultimately large

phase modulation, respectively.

Leaving aside technical issues, one can say that the observable characteristics

of the periodic states, such as h, Sdj j2, Rdj j2, are algebraically expressed by «
and V in the leading approximation in T=tr. This approximation leaves aside

small and fast oscillations of the grating amplitude; the latter can be taken into

account in the next approximation. By setting h(«, V; G0j jd, r0) ¼ 1 or 0, it is

possible to find the values of « and V as functions of G0j jd and r0 within the

above-threshold region of the experimental parameters.

Fig. 6.15 shows «2 and V versus r0 for the states with h ’ 1 and the local

response. These results are in agreement with those obtained by the averaging

of the numerical data of section 6.4.1. The value of « decreases rapidly with

increasing coupling strength for G0j jd > p, i.e., the strength of the fast modu-

lation is increasing. The detuning is an odd function of the beam ratio; its

absolute values are fairly small.

The above results allow us to understand the rough features of the periodic

states. They say nothing, however, about the shape of the phase oscillations and

other fine characteristics of the periodic states. This information becomes

available within the next approximation in tf =tr [29].

6.4.4. Light Domains

In this subsection, we focus on the spatial structure of the light and grating

fringes that are relevant to the periodic states. This structure possesses distin-

guishing features that cannot be realized in steady states. For definiteness, we
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consider the case of local response G0 ¼ G0j j, the feedback p=2, and the coupling

strength G0j jd ¼ 6:6. The characteristics in question are the spatial distributions

of the intensitymodulationDI(x, z) ¼ (1=2) S(z)R�(z) exp (iKx)þ c:c: and of the
light-induced space-charge field Esc(x, z) ¼ (1=2)EK (z) exp (iKx)þ c:c: The lat-

ter is proportional to the index changes.

Fig. 6.16 exhibits a spatial distribution Esc(x, z) for r0 ¼ 1 obtained by the

direct numerical simulations. The grating fringes experience only very weak

T-periodic oscillations around average positions. Moreover, they are practic-

ally straight, which is in line with the discussion in the end of section 6.4.1. The

relevant time dependence ws(t) is presented in Fig. 6.9.

Figure 6.15. Dependences «2(r0)
and V(r0) for the periodic states

with h ’ 1 in the case of local PR

response G0 ¼ i G0j j. The curves 1, 2,
3, 4, and 5 are plotted for G0j jd ¼
3:5, 4, 5, 7, and 10, respectively.
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Fig. 6.17 shows four representative distributions DI(x, z); they are plotted

for four sequential time moments. In contrast to Fig. 6.16, the light-interference

pattern experiences remarkable changes. It consists actually of two domains

moving in the opposite �x directions. The boundary between these

domains, where fringe breaking periodically takes place, is situated at

z ¼ d=2. The fringe switching occurs six times a period, the total change of

ws(t) is ’ 6p. During the time intervals where ws(t) remains almost constant

(see Fig. 6.9b), the light pattern looks uniform.

The described behavior of the index and light fringes changes only in details

for the periodic state with r0 ¼ 6. The main distinctions from the case r0 ¼ 1 are

as follows: The grating is noticeably nonuniform, its fringes are bent, and its

amplitude is considerably larger at the center (z ¼ d=2) as compared to that

nearby the input and output crystal faces. The grating is moving (in average)

with a small velocity V=K .

The presented physical picture contrasts strongly with the conventional one,

known for recording of dynamic index gratings in the absence of the feedback.

Within the conventional concept, the light and index fringes are strongly

coupled with each other in steady state; they are moving (for V 6¼ 0) with the
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Figure 6.17. Light intensity distributions at four time moments within one period

T ’ 0:97tr; the numbers 1, 2, and 3 mark the domain fringes at the input and output

faces. The pictures (b) and (c) show in detail the switching process.
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same velocity and experience no breaking. Below we explain the apparently

peculiar behavior of the light fringes in the periodic states.

Let us revisit the case r0 ¼ 1. The input phase of the S-beam is here

ws ¼ Vstþ wp, where wp(t) is a T-periodic function and the detuning Vs ’
6p=T . Obviously, the corresponding light-interference pattern is moving with

an average velocity Vs=K at the input face (z ¼ 0). Diffraction of such a phase

modulated S-wave and a nonmodulated R-wave from a fully diffractive (h ¼ 1)

static index grating results in an interchange of the amplitudes R and S at the

crystal output (z ¼ d). The light-interference pattern is traveling here in the

opposite direction. Moreover, the Kogelnik theory gives the following simple

relation for the spatio-temporal dependence of the light intensity in the case of

spatially-uniform static grating with h ¼ 1:

DI ¼ cos2 (pz=2d) cos (Kx� ws)þ sin2 (pz=2d) cos (Kxþ ws): (6:30)

It describes all of the above described features of the light fringes. It is clear, in

particular, from this relation that the fringe switching occurs for z ¼ d=2 at the

time moments when cosws ¼ 0, which corresponds to the numerical data.

The remaining question is: How can the moving two-domain light pattern be

consistent with the static index grating?

To answer this question, we recall first that the factor exp (iws) entering the

input amplitude S0 is a periodic quickly oscillating function of time. It possesses

not only a zero Fourier harmonic but also higher harmonics with the temporal

frequencies 2p=T , 4p=T , . . . The amplitudes of the latter are not small. The same

assertion is applicable indeed to the input intensity pattern. The higher intensity

harmonics are inefficient for grating recording because of its inertia. This does not

mean, however, that the higher harmonics of S0(t) can be neglected. The point is

that diffraction from a static (or quasi-static) grating transforms instantaneously

the fast component of the S-beam into the R-beam. Interference of fast S- and R-

components contributes then to the slow component of the light intensity. There-

fore, the higher Fourier harmonics of exp (iws) affect the grating formation in

thick crystals. The recorded grating is static for r0 ¼ 1 because the reduced

detuning V ¼ 0. The higher intensity harmonics result in small oscillations of

the fringe positions.Quantitative side of the grating formation in the case of strong

phase modulation and beam coupling can be found in [27, 28].

In the case r0 6¼ 1, the reduced frequency detuning V is not zero so that the

index fringes are moving. The assumption of a spatially-uniform index grating

works badly for nonequal input intensities and the light pattern inside the

sample cannot be satisfactorily described by the Kogelnik theory.

It should be emphasized that the unusual behavior of the light fringes in the

feedback presence comes from a fine balance between the effects of periodic

phase oscillations (wp) and the linear growth (Vst). Distortions of the form of

the phase steps and/or the average slope of the dependence ws(t) produce

qualitative changes in the fringe behavior.
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6.5. Feedback Operation in Reflection Geometry

6.5.1. General Features of the Reflection Case

The key feature of the reflection geometry is counter-propagation of the inter-

acting waves (see Fig. 6.18). It causes a number of important distinctions from

the transmission case considered in sections 6.2–6.4.

The light and grating fringes are parallel now to the input/output faces. The

fact that the R-wave is traveling in the negative direction results in modification

of the coupled-wave equations. They read now:

@R

@z
¼ �i�EK S,

@S

@z
¼ þi�E�

K R, (6:31)

Compare to Eqs. (6.6). Not the sum but the difference of the light intensities is

conserving in the reflection case, R(z)j j2� S(z)j j2¼ const. The input light ampli-

tudes are now S0 and Rd , while the output amplitudes are Sd and R0. The

structure of the material Eq. (6.7) for the grating amplitude EK remains

unchanged.

An inherent feature of the reflection configuration is the fact that the dif-

fraction efficiency h cannot reach the value of 1. It is evident already within the

Kogelnik theory relevant to the case of spatially-uniform grating,

EK (z) ¼ const; within this theory, h ¼ tanh2(� EKj jd) < 1. One can expect that

the feedback does not lead to periodic states with h ’ 1.

The grating period is ultimately small for the reflection geometry. As the

propagation angles inside the sample are small, it can be estimated as

L ’ l=2n, which is � 100 nm for typical experimental conditions. Charge

saturation effects are often strong in this range. This means, in particular,

that the PR response time tr has to be treated as a complex quantity.

The requirement of mechanical stability is especially tough for the reflection

geometry owing to the smallness of L. One can say that reproducible long-term

experiments with such materials as lithium niobate, and also the use of thermal

fixing technique [5, 6], are inconceivable without an active stabilization. Since

eiϕsS0

R0

Rd

Sd

0 d

PD

LAI

PM

E0

K

z

Figure 6.18. Schematic of a feed-

back experiment in the reflection

geometry; the grating vector K and

the applied field E0 are parallel to

the propagation axis z and the light

beams are incident onto the opposite

crystal faces, z ¼ 0 and d.
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the feedback stabilization is a strongly nonlinear phenomenon, sensitive to the

PR response of the medium, it is important to know what can be expected in the

actual cases.

Feedback experiments in the reflection geometry have become available only

recently [33]. They deal with LiNbO3 crystals subjected to very large electric

fields (up to 650 kV/cm). Application of such high fields would be extremely

difficult in the transmission case. The combination of ultimately small spatial

periods with very large applied fields brings about a new wealth of photore-

fractive phenomena.

The reader can find below a number of general issues relevant to the feed-

back use, as well as particular applications to the case of LiNbO3 crystals.

6.5.2. Feedback Conditions

Separation of the recording amplitudes R and S into the diffracted (D) and

transmitted (T) components is again the key point for understanding the

feedback operation. It is given by:

S ¼ S0 f sT þ Rd f sD, R ¼ Rd f rT þ S0 f rD, (6:32)

Compare with Eqs. (6.8). The first and second contributions correspond to the

T- and D-components, respectively. The fundamental amplitudes f sT,D(z, t) and

f rT,D(z, t) correspond to testing of the reflection grating by single beams of a

unit amplitude (see Fig. 6.19). The diffraction efficiency is given by the expres-

sions h ¼ f sD(d)
�� ��2¼ f rD(0)

�� ��2; its value does not depend on which of the input

beams (S or R) is blocked.

The fundamental amplitudes are expressed by the recording amplitudes as

follows [44]:

f sT ¼ (S�
dS � RdR

�)=I1, f sD ¼ (S0R
� � R�

0S)=I1 (6:33)

f rT ¼ (S0S
� � R�

0R)=I1, f rD ¼ (S�
dR� RdS

�)=I1, (6:34)

where I1 ¼ S0S
�
d � R�

0Rd is a complex constant. As follows from here, the pairs

f sT , f
r
T and f sD, f

r
D are coupled with each other by the symmetry relations

f D
r

f T
s

1

f T
r

f D
s

1

(a) (b)

Figure 6.19. Geometrical schemes relevant to the definition of the fundamental ampli-

tudes in the reflection geometry.
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f sT ¼ f r�T (0 $ d), f sD ¼ f r�D (0 $ d) that generalize Eqs. (6.9) for the transmission

case. The sign $ means interchanging of the subscripts 0 and d. Using Eqs.

(6.33) and (6.34) one can, in particular, express h by the input and output

values of the recording amplitudes.

If ws ¼ arg S0 is the feedback-controlled phase of the input S-beam and

wr ¼ arg Rd is the phase of the incident R-beam, then Fs ¼ wr � ws þ arg

[f sD(d)/f
s
T (d)] is the phase difference between the D- and T-components of the

signal wave.

Apart from the differences in expressing Fs through the recording ampli-

tudes, implementation of the feedback in the reflection case is not much

different from that in the transmission geometry (see Section 6.2.1). As far as

h(1� h) 6¼ 0, the use of I2v as an error signal leads to adjustment ofFs to�p=2
during the time � tf . The use of Iv ensures the adjustment of Fs to p or 0. The

feedback equation (6.3) is applicable to the reflection geometry if we accept that

the input contrast is m0 ¼ 2 S0Rdj j=( S0j j2þ Rdj j2).

6.5.3. Application to LiNbO3: Fe crystals

Photorefractive Response

The PR response of LiNbO3:Fe crystals can be satisfactorily described within

the one-species model where the ions of Fe2þ and Fe3þ serve as donors and

acceptors and the photo-excited charge carriers are electrons [3]. This model

gives the following expressions for the parameters tr and F in Eq. (6.7):

1

tr
’ jSj2 þ jRj2

tdi

Eq þ ED þ i(Epv � E0)

Eq

, (6:35)

F ’ Eq(Epv � E0 � iED)

Eq þ ED þ i(Epv � E0)
: (6:36)

Here tdi is the dielectric relaxation time calculated for the total input intensity,

Epv is the photovoltaic field, ED is the diffusion field, and Eq ¼ eNt=ee0K is the

saturation field with Nt ¼ N2þ
Fe N

3þ
Fe =(N

2þ
Fe þN3þ

Fe ) � N2þ
Fe being the effective

trap concentration. The light amplitudes are normalized now in such a way

that jS0j2 þ jRd j2 ¼ 1. The material parameters entering Eqs. (6.35) and (6.36)

are known in experiments with LiNbO3: Fe crystals.

In the transmission geometry, where the grating period L*l, the saturation
field Eq exceeds the other characteristic fields for typical concentration Nt �
N2þ

Fe � 1018 cm�3 and ED � Epv � 105 V=cm. In this case, tr � tdi and F �
Epv�E0, i.e., the PR response is almost local.

In the reflection geometry, the situation is different because the saturation

field Eq is relatively small. To clarify this difference, we make numerical

estimates relevant to experiment. By setting l ¼ 488 nm, L ¼ 100 nm and

Nt ¼ 1018 cm�3, we obtain Eq ’ 100 kV=cm. The photovoltaic field does not

depend on Nt when the fraction of donors is small; it can be estimated as
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Epv � 100 kV=cm. The diffusion field is considerably smaller, ED ’ 16 kV=cm.

If the maximum value of E0 is about 650 kV=cm, we have a range of applied

fields where jE0 � Epvj � Eq,ED. Within this range, the relaxation rate t�1
r is

almost imaginary, Re(t�1
r ) � Im(t�1

r ). Physically, this means that the grating is

running during relaxation (under a uniform illumination) with the velocity of

Im(t�1
r )=K and decays relatively slowly. In other words, we have an eigen-

mode—weakly damped space-charge wave [34].

The main outcome of the presence of the eigen-mode for the grating record-

ing is as follows: If the frequency detuning V between the light beams is zero

(static fringes), the grating amplitude in steady state is EK � �2iEqS
�R=

(jSj2 þ jRj2). In other words, the grating is p=2 shifted against the light inter-

ference pattern and an energy exchange occurs between the light beams. If the

detuning V ¼ Im(t�1
r ), i.e., the resonant excitation of the eigen-mode takes

place, then EK � (Epv � E0)2S
�R=(jSj2 þ jRj2). The PR response is local (the

energy exchange is suppressed) and the grating amplitude is enhanced by a

factor of jEpv � E0j=Eq � 1.

The question is now whether the �p=2 feedback leads to the enhanced local

response by introducing the necessary frequency detuning into the S-beam.

Both analytical and numerical calculations give a positive answer to this

question [36, 37]. Thus the feedback is expected to lead to the resonant excita-

tion of weakly damped space-charge waves. The dependence of the feedback-

introduced detuning V on E0 should follow the field dependence of the eigen-

frequency, vK ¼ Im(t�1
r ) / E0 � Epv.

Experimental Results

A congruently melted LiNbO3:Fe crystal with an iron concentration

NFe ’ 18� 1018 cm�3 and a thickness d ¼ 0:22mm was used in the feedback

experiments [36, 37]. The polar axis was perpendicular to the input faces. The

concentration of Fe2þ ions was varied by annealing treatments between � 0:7
to � 2:3� 1018 cm�3. The field E0 ranged from 0 to 650 kV=cm and was par-

allel to the spontaneous polarization vector. Application of larger fields leads to

electric breakdown. Equally strong fields of the opposite direction would

reverse the spontaneous polarization.

Two pump beams of equal intensity (� 0:1W=cm2
each) at 488 nm were

incident at small angles onto the opposite crystal faces. The corresponding

grating period was L ’ 105 nm. The temporal evolution of the output inten-

sities, the diffraction efficiency h, and the feedback signal driving the input

phase ws were measured.

It has been mentioned first that the sign of the error signal �I2v has to be

different in the regions E0 � Epv < 0 and E0 � Epv > 0 to ensure maximization

of the diffraction efficiency. This observation is in full agreement with the

theoretical expectations.

It was found then that the piezo-signal governing the input phase ws is

generally linear in steady state; no periodic (or quasi-periodic) oscillations of
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this signal were observed. The detuning V ¼ _wws was negative for E0&
100 kV=cm and positive for E0*100 kV=cm. Within the range 100&E0&
200 kV=cm operation of the feedback loop was not stable enough to ensure

reproducible measurements of the frequency detuning.

The experimental data on the field dependence ofV are presented inFig. 6.20a.

The dots are well fitted by a linear function. Furthermore, it was estimated that

the maximum value ofV exceeds the reciprocal dielectric relaxation time t�1
di by a

factor of � 4:3. The main source of a spread of experimental dots are fluctu-

ations of the input phase difference, which are compensated by the feedback

loop. Extreme precautions are necessary to diminish these fluctuations.

The dots in Fig. 6.20b show the data on the field dependence of h; the solid
line is a theoretical fit. Agreement between experiment and theory is pretty

good. The dip in h(E0) occurs at E0 � Epv ’ 130 kV=cm; it is caused by the

compensation of the drift and photovoltaic contributions to the PR response.

It was found lastly that the energy exchange between the R- and S-beams is

fairly weak, which is due to the presence of the frequency detuning.

The presented experimental data show that the expected space-charge waves

do exist in iron-doped lithium niobate crystals in the range of high spatial

frequencies, that the �p=2 feedback generates a grating moving with a constant

velocity, and that the feedback-introduced detuning is resonant to the fre-

quency of space-charge waves, i.e., the resonant excitation of these eigen-

modes and the expected modification of the PR response take place.

6.6 Summary

We have given above an extended introduction into a new field of photore-

fractive studies—the feedback-controlled wave coupling. It includes a historical

sketch, theoretical and experimental aspects of the feedback operation and

implementation, as well as a review of feedback effects and applications.
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Figure 6.20. Field dependences the frequency detuning V and the diffraction efficiency

h measured in feedback experiments with LiNbO3:Fe.
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The electronic feedback loop not only ensures an active long-term stabiliza-

tion of the fringe positions in noisy environments. It is able to carry additional

useful functions—to modify the type of nonlinear response, to maximize and

minimize the diffraction efficiency of dynamic gratings, to keep this efficiency

near the ultimate values 1 or 0.

For sufficiently small values of the coupling strength, the feedback brings the

system to a steady state unless the presence of this state is incompatible with the

chosen feedback condition. A frequency detuning V between the interacting

beams exists generally in the steady state; it serves as an adjustable parameter to

meet the feedback condition. The value and sign of V depend on the type of PR

response and the feedback condition in question.

There are many situations when the imposed feedback is incompatible with the

presence of steady states. A typical scenario of the feedback operation in such

cases is erasure of dynamic gratings and achievement of zero diffraction efficiency.

New possibilities appear in the range of large coupling strength jG0jd for the

transmission geometry. This range is bounded by the threshold curve (separa-

trix) on the plane of coupling strength–input beam ratio; this curve is given by

the steady-state relation h(jG0jd, r0) ¼ 1. The form and position of the separ-

atrix depends on the type of PR response.

Within the above-threshold region, the �p=2 feedback leads the system to a

variety of periodic states. A periodic state is characterized by periodic oscilla-

tions of h(t) in the close vicinity of 1 or 0, by the presence of a frequency

detuning between pump beams, and by strong periodic oscillations of the

feedback-controlled input phase ws. Different periodic states are distinguished

by the values and shapes of the above observable quantities.

Reflection geometry occupies a special place in the feedback studies. It allows

us to study the photorefractive processes (including charge-separation effects)

in the range of ultimately small grating periods (� 10�1 mm). Stabilization

effect of the feedback loop is highly important for long-term experiments

with slow ferroelectrics (like LiNbO3, LiTaO3, SBN) and also for the purposes

of thermal fixing of dynamic gratings. The use of the feedback technique has

allowed us to detect the presence of weakly damped space-charge waves and

modification of the PR response in LiNbO3:Fe crystals.
A correct description of the feedback-controlled wave coupling is not pos-

sible within the Kogelnik theory, which deals with spatially-uniform index

gratings. This description requires a refined knowledge of the diffraction and

transmission properties of dynamic gratings. Inertia of the feedback loop is

crucial for the periodic states with h ’ 1 and 0. The notion of the ideal

feedback conditions (with a fixed value of the phase difference between the

diffracted and transmitted components of the signal wave) is applicable only to

the feedback-controlled steady states.

The potential and specific features of the feedback-controlled devises are not

fully recognized yet. This is applicable not only to photorefractive crystals but

to all materials possessing relatively slow nonlinear response [52], liquid crys-

tals, orientational polymers, structural glasses, and so on.
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7.1. Introduction

In conventional photorefraction, which is the matter of most of the chapters in

this book series, the photoexcitation at the origin of the charge transport

process occurs from mid-gap defect levels introduced by intentional or unin-

tentional doping of the material being used. The doping level is usually mod-

erate as compared to the intrinsic density of potentially available charges,

which in the example of crystalline materials is of the order of the density of

states at the top of the valence band or at the bottom of the conduction band.

In the case of conventional photorefractive effects, the moderate doping level

leads to a rather inefficient photoexcitation process and therefore to a rather

slow photorefractive response. As discussed in detail in Chapter 3 of the second

volume of this book series, the Maxwell dielectric time tdie and the excitation

time tex are both inversely proportional to the photoexcitation rate and limit

the response speed in different regimes. Therefore, for a given material, a

significant enhancement of the response speed can only be achieved by improv-

ing in some way the efficiency of the photoexcitation process.

An effective way to increase the photoexcitation rate is to forget the dopants

altogether and concentrate on phototransitions between the intrinsic levels

across the band-gap of the material. These transitions are allowed if light of

sufficient photon energy is used. Since every electron promoted to the upper

mobile state will leave behind a hole in the lower mobile state, a photorefractive

space-charge field will be created only if the motion of the electrons differs from

the one of the holes, which is usually the case. This interband photorefractive

effect presents characteristic features differing from those of the conventional

effect, which involve specially the photoconductive properties and the depend-

ence of the effect on light intensity. Besides the highly improved response speed,

its other main advantage is the robustness of the involved gratings. The latter

refers to the fact that a grating recorded by the interband photorefractive effect

can be simultaneously read out by a very intensive light wave possessing a sub-

band-gap photon energy without significantly erasing it. Speed and robustness

open interesting perspectives of such interband photorefractive gratings for
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parallel optical processing and optical wave manipulation tasks, such as dy-

namic splitters, switchers or filters.

This chapter will present the basics underlying interband photorefractive effects

under cw illumination and highlight the main differences with respect to the

conventional case. The considerationswill be limited here to one-photon processes

in bulk materials. It should be noted, however, that interband phototransitions

may be induced also by two-photon processes at wavelengths significantly longer

than the material band-edge. In semiconductors, such an approach can lead, for

instance, to valuable information about two-photon, free-carrier, and deep-level

cross sections [1]. Also, in semiconductors, a strong resonant electro-optic re-

sponse can be obtained by illuminating the sample at wavelengths near the

material band-edge and making use of the Franz-Keldysh effect [2, 3, 4] or, in

structuredmaterials, of the quantum-confined Stark effect [5, 6]. In contrast to the

optical nonlinearity discussed in this chapter, these resonant effects are strong only

in a limited wavelength range around the band-edge of the bulk semiconductor or

of the multiple quantum-well structure. A vast literature exists on these subjects in

semiconductor materials and the reader is referred to several excellent reviews [7,

8] and particularly to two chapters appearing in the second volume of this book

series. The two-photon processes mentioned above have to be distinguished from

two-photon excitation out of impurity levels which does not directly involve band-

to-band transitions. With the help of short-pulse excitation, the latter approach

was already used in the early stages of the photorefractive field to create stable

holograms that could be read out nondestructively using a weaker intensity at the

same wavelength, which is unable to create a significant amount of two-photon

transitions [9, 10]. This is closely related to more recent investigations involving

two-photons and two-colors hologram recording, performed with the aim to

obtain quasi-fixed holograms for storage applications. The interested reader is

referred to the next chapter in this volume.

The present chapter is structured in the following way. Section 7.2 will present

the theoretical backgroundwith the help of a highly simplifiedmodel of the charge

redistribution under interband photoexcitation conditions. The consequences for

the photoconductivity, the space-charge fields, the grating dynamics, and the

grating thickness will be discussed. Section 7.3 shortly discusses observed results

in different materialsm, specifically KNbO3, LiTaO3 and Sn2P2S6 while Section

7.4 describes some demonstrated potential applications for dynamic light-induced

waveguides, switches and filters, and for parallel processing with the examples of

incoherent-to-coherent conversion and optical correlation.

7.2 Interband Photorefraction with cw Recording Waves

This section describes very shortly the simplest theory and summarizes the main

features of interband photorefractive effects recorded under cw illumination.

The most important differences with respect to conventional photorefraction

are pointed out.
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7.2.1 Basic Equations

For interband photorefractive effects, the photoexciting light wavelength is in

the high absorption spectral region for electronic resonances. Therefore the

primary charge transfer mechanism is the phototransition of electrons between

the valence and conduction band. In the simplest approximation, one may

completely neglect all transitions involving mid-gap levels and write the mater-

ial equations valid for an ideal trap-free material. This leads to a significant

simplification in the mathematics. Here we will limit ourselves to the descrip-

tion of this limiting case. More complete models that consider the influence of

recombination into mid-gap traps and photoexcitation out of them were given

in [11]. It can be shown that for a sufficiently high cw illumination intensity, the

solutions obtained with such models converge to the solutions of the trap-free

model described here, which is based on following equations [11]

@n(r)

@t
¼ gI(r)� gdirn(r)p(r)þ

1

e
r � Je(r), (7:1a)

@p(r)

@t
¼ gI(r)� gdirn(r)p(r)�

1

e
r � Jp(r), (7:1b)

J e(r) ¼ en(r)meE(r)þ kBTme � rn(r), (7:1c)

Jp(r) ¼ ep(r)mpE(r)� kBTmp � rp(r), (7:1d)

r � E(r) ¼ e

eeff e0
(p(r)� n(r) ), (7:1e)

where r is the position vector and all space-dependent variables are also time-

dependent. Here E is the total internal electric field, e0 is the permittivity of

vacuum, eeff is the (scalar) effective dielectric constant for the given photore-

fractive configuration (see Chapter 4 of this volume), e is the absolute value of

the elementary charge, kB is the Boltzmann-constant, and T is the absolute

temperature. Further, n and p are the electron density in the conduction band

and the hole density in the valence band, respectively, J e, Jp, me and mp are the

electron and hole current densities and mobility tensors, respectively, gdir is the

direct recombination constant between the two bands. Here the direct band-to-

band photoexcitation process is expressed by the term gI(r), where g is a

photoexcitation constant given by g ¼ adir=(�k0c) ¼ adir=hn, adir being the

(intensity) absorption constant for the band-to-band transition, k0 ¼ 2p=l
being the free space light wavevector, and hn being the photon energy. By

writing the photoexcitation term in this form, we have implicitly assumed

that the photoexcitation process is isotropic with respect to the polarization

of the interacting waves. If this is not the case, the light intensity I has to be

replaced by a term containing a dissipated energy density, in a way similar as

described in Chapter 4 for the case of conventional photorefraction.
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The set of Eqs. (7.1a)–(7.1e) can be solved by taking the same kind of

approach used for the equations describing the conventional photorefractive

effect and discussed in other chapters of this book [12]. By assuming a sinus-

oidal light illumination, the space- and time-dependent variables are developed

in a Fourier series that is being broken after the first harmonic term in space, a

procedure that is well justified for small light modulation amplitudes.

7.2.2 Photoconductivity

Given a certain light intensity, the terms up to zero-order in the Fourier series

give information about the average density of free electrons and free holes in

the conduction and valence band, respectively.

Since Eqs. (7.1a)–(7.1e) neglect any charge recombination into trap levels

and are symmetric with respect to electrons and holes, they predict an equally

large free electron (n0) and free hole (p0) concentration; that is,

n0 ¼ p0 ¼
ffiffiffiffiffiffiffi
gI0

gdir

s

: (7:2)

The inclusion of recombination channels involving deep traps breaks this

symmetry at low intensities (see [11]). However, it can be easily shown that for a

sufficiently high light intensity, the limit above is always retrieved. Therefore,

the free carrier concentration, and thus also the photoconductivity sph �
e(men0 þ mhp0), are expected to increase with the square root of light intensity,

as opposed to the linear increase expected for the simplest model of conven-

tional photorefraction.

The deviation from the the relationship (7.2) at low intensities is shown in the

example of Fig. 7.1, which shows measured photocurrent in pure KNbO3

illuminated at the wavelength l ¼ 364 nm. In this case, a nearly linear increase

of the photocurrent is observed at intensities below 1mW=cm2, while above

this limit, the behaviour expected from (7.2) is well reproduced.

7.2.3 Space-Charge Fields

Under a sinusoidal light intensity distribution of the type

I(r) ¼ I0Re[1þm exp (iK � r)], (7:3)

the Eqs. (7.1a–7.1e) can be solved in a similar way as in the case of the single

carrier band transport model. For the steady-state scalar space-charge field

amplitude E1 one obtains [11]

E1 ¼ K̂K �im
[ED(ERh � ERe)� iE0(ERe þ ERh)]Eqf

[(2Eqf þ ED)(ED þ ERe þ ERh)þ E2
0 ]þ iE0[ERe � ERh]

� �
, (7:4)
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where K̂K is the unit vector in direction of the grating vector K ,E0 is the

projection of an externally applied electric field in direction K̂K , and

ED � Kj jkBT=e is the diffusion field. The fields Eqf ,ERe and ERh are less

familiar,

Eqf � e

e0eeff Kj j n0 (7:5)

is the free charge limiting field and stays in full analogy with space-charge

limiting field Eq found in conventional photorefraction, while

ERe � 1

Kj jme

gdirp0 (7:6)

and

ERh � 1

jK jmp

gdirn0 (7:7)

are the electron and hole recombination fields, respectively. Their magnitude

can be interpreted as the average internal electric fields in which electrons (or

holes) drift for an average distance (K)�1 ¼ L=2p before a recombination to

the other band takes place. The scalar mobilities me and mp in (7.6) and (7.7)

correspond to the projection of the electron and hole mobility tensors along the

direction K̂K , as described in Chapter 4 of this volume.
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Figure 7.1. Photocurrent as a function of light intensity under interband illumination

of KNbO3. In the low intensity regime, the photocurrent increases linearly and charge

recombination in deep traps plays a major role. In the high intensity regime, the

photocurrent increases with the square root of light intensity and interband transitions

dominate the process. (After [13])
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Fig. 7.2 shows the typical dependence of the space-charge field amplitude on

grating spacing for the interband case. At long grating spacings, one finds a

saturation value in presence of an applied field of E1 ¼ mE0=2, which is half as

big with respect to the case of conventional photorefractive effects. The reason

for this is the quadratic recombination process leading to relationship (7.2) for

the free charge density; as a consequence, the modulation amplitude of the

photoexcited charges is only half as big as the one of the light intensity. Another

big difference with the conventional photorefraction is the behavior at small

grating spacings L. While in the conventional case the space-charge field rises

proportional toL, in interband photorefraction the initial rise is proportional to

L3. This is due to the fact that not only the free-carrier limiting field Eqf is giving

a limitation to the space-charge field amplitude, but also the recombination

fields ERe and ERh. The overlinear increase of Im(E1) with grating spacing

was confirmed experimentally in pure KNbO3 by means of interband two-
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Figure 7.2. Dependence of space-charge field amplitude on grating spacing for inter-

band photorefractive effects in absence of deep traps (4). a) No applied field; b) With

externally applied field.
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wave mixing investigations [11, 14]. Figure 7.2 (a) also shows that in absence

of an external field the space-charge field is bound by the function

(m=2)EDj(me � mp)=(me þ mp)j, therefore, as expected, no space-charge field

can build up in this regime if the electron and hole mobilities are the same.

The role of the pseudo-fields Eqf , ERe and ERh merits some additional

discussion. A significant space-charge field amplitude can be reached only if

Eqf and at least one among the recombination fields ERe and ERh are large

enough, say, of the order of 1 kV/cm. Looking at Eq. (7.5) one recognizes that

the requirement of a large field Eqf means nothing else than the charge density

n0 should be large enough to sustain the modulated space-charge field. The

second condition implies that at least one of the carrier mobilities should be

small enough so that, before recombination, the carrier is prevented from

drifting too far as compared to the fringe distance. If the drift or diffusion

distances are too long, the carrier looses coherence with the illuminating light

distribution and the resulting space-charge field modulation amplitude de-

creases. In pure KNbO3, the limitations due to Eqf , ERe and ERh normally

become important only at grating spacings below � 0:5mm. In general, signifi-

cant space-charge field amplitudes at submicron grating spacing can be easily

achieved already for an illuminating intensity of the order of few tens of

mW=cm2
(l ¼ 364 nm). For experiments where the typical distances are larger

(5� 10mm), such as the dynamic waveguides described in Section 7.4.3, the

constraints on Eqf , ERe and ERh, and thus on the illumination intensity, are

even less stringent.

7.2.4. Grating Dynamics

The dynamic behavior of interband photorefractive effects is more complex

than the one for the conventional case. In the latter situation, the carriers are

photoexcited from mid-gap levels and the equilibrium average carrier density in

the conduction (or valence) band is reached in a time, which is short as

compared to the build-up time of the space-charge field. This is no longer

true for interband gratings. The large free carrier density has to build up first

and the time required for this process may be comparable or even longer than

the characteristic time constants for the charge redistribution process, such as

the dielectric time tdie � emn0=(«0«eff ) or the diffusion time tD � e=(K2kBTm)
for electrons or holes. As discussed in more depth in [11], it is clear that the

space-charge field cannot reach a steady-state before the average charge density

n0(t) also does so. Upon switching on the illumination at time t ¼ 0, in absence

of deep traps, the latter grows approximately as

n0(t) ¼ n0(t ¼ 1) tanh (Gdirt), (7:8)

where n0(t ¼ 1) is the steady-state value given by (7.2) and

Gdir � gdirn0(t ¼ 1) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gI0gdir

p
(7:9)
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is the recombination rate that governs the charge density build-up. Corres-

pondingly, upon switching off the illumination, the free charge density initially

decays in the dark as

n0(t) � n0(t ¼ 0)
1

1þ Gdirt
: (7:10)

In pure KNbO3 at wavelengths around 350 nm, the time rate Gdir is typically of

the order of (10ms)�1 for illumination intensities of the order of 100mW=cm2
.

As will be shown later, the photorefractive response time in the interband

regime is also in the 10� 100ms range, which is faster by at least two orders

of magnitude with respect to the typical speed of the same material in the

conventional photorefractive regime.

Eqs. (7.8) and (7.10) describe the build-up and decay of the average charge

density and therefore do not consider any charge transport issues that are

important to describe the formation of the space-charge field. An exact ana-

lytical solution of the dynamic Eqs. (7.1a)–(7.1e) is made difficult by the above

time dependence of n0. Therefore we rely here on a simpler approach that

assumes that the build up of the modulated space-charge field starts from a

state in which the average free carrier density is already established. In other

words, at time t ¼ 0, only the modulation m in (7.3) is being switched on.

Following [15], the dynamic solution of the set (7.1a)–(7.1e) takes the form

E1(t) ¼ E1, sat{1� 1

2
[(1� B=C)e�G1t þ (1þ B=C)e�G2t]}, (7:11)

where E1, sat corresponds to the steady-state solution (7.4) and

B � (ED þ Eqf )(ERe þ ERh)þ iE0(ERe � ERh)þ 2EReERh, (7:12)

C � {[(ED þ Eqf )(ERe � ERh)� iE0(ERe þ ERh)]
2 þ 4EReERh(Eqf

� ERe)(Eqf � ERh)}
1=2: (7:13)

The exponential time rates G1, 2 are given by

G1, 2 ¼ Gdir

2EReERh

(B� C): (7:14)

Fig. 7.3 shows the dependence of the time rates Gdir, G1 and G2 on light

intensity. Note that in general, depending on material parameters, the time

rates G1 and G2 may be either larger (as in the case represented here) or smaller

than the direct recombination rate Gdir. Note also that despite of this, in the

former case, if the experiment starts from an unilluminated crystal, the grating

build-up time is still limited by the time needed to build up the average charge

distribution and therefore, cannot be faster than 1=Gdir.

Fig. 7.3 contains also experimental data from [16] which confirm the

expected square-root dependence of time rate on intensity. It has to be noticed
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that the value of the recombination constant gdir has been adjusted in such a

way as to normalize the value of Gdir to the experimentally measured data.

It is worth noting that in some limits, the time rates G1 and G2 may be

expressed in a simpler form. First, for small grating spacings (L ! 0), the

rates G1 and G2 converge toward the diffusion rates for holes and electrons

GDh � kBTK
2mp=e and GDe � kBTK

2 me=e, respectively. In the opposite limit,

for large grating spacings L, one has (ED � Eqf ) and for the case where the free

charge limiting field is the dominating quantity (Eqf � ERe,ERh) the expression

(7.11) takes the simpler form

E1(t) ¼ �im K̂K
ED

2

mp � me

mp þ me

{1� exp [� (Gdie þ Gdih)t]}, (7:15)

where Gdie � (emen0=e0eeff ) ¼ (tdie)
�1 is the dielectric rate for electrons and Gdih

is the corresponding dielectric rate for holes. Eq. (7.15) is valid for E0 ¼ 0.

Therefore, multiple measurements of the time dynamics in the latter regime

allow the determination of the ratio of the effective bipolar mobility mp=me

along the different crystallographic directions, as performed in [13].

7.2.5. Grating Thickness

For conventional photorefractive effects, the thickness of the recorded grating

usually correspond to the thickness of the nonlinear sample being used. Since the

incident recording light is being strongly absorbed, this is no longer true for
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Figure 7.3. Intensity dependence of the direct recombination rate Gdir and of the

photorefractive time rates G1 and G2 according to Eqs. (7.9) and (7.14). The parameters

used for the plots are g ¼ 1024 J�1m
�1
, gdir ¼ 8 � 10�19 m3=s, me ¼ 10�9 m2=(Vs), mh ¼

3 � 10�9 m2=(Vs), L ¼ 4:7mm and E0 ¼ 2:2 kV=cm. The points show corresponding

measured time rates in pure KNbO3 under illumination at the wavelength l ¼ 351 nm

[16], which are found to follow well the expected square root dependence on intensity.
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interband photorefraction. For the ideal ‘‘trap-free’’ case (7.2) and (7.4) predict

that the space-charge field should depend on the square root of the light intensity

and thus should decay exponentially inside the sample. This behaviour can be

effectively observed near the surface where the light intensity is large and inter-

band processes dominate over processes involving the residual deep traps. For

specific situations, such as in the case where the sample is flooded by an intense

sub-bandgap light [11], the exponential decay can extend over longer distances.

However, in the general case, the grating strength departs from the exponential

decay at depths where the recording intensity is so low that the carrier recom-

bination into deep traps is dominating. The total extension of the grating reaches

the depth where the remaining nonabsorbed photons are still able to create a

photoconductivity larger or equal to the material dark conductivity. This depth

can largely exceed the 1=a level of the typical decay depth of the light intensity.

For instance, in KNbO3 at typical intensities of 100mW=cm2
(l ¼ 364 nm,

c-polarized light), the grating is found to extend until about 200mm below the

surface. Since the corresponding intensity absorption constant is ac � 550 cm�1,

this depth corresponds to about 10 times the 1=a level.

Aswill be seen also later, experimental evidence show that in general, the crystal

contains two distinct regions, one close to the surface where the grating is domin-

ated by free charges, and a deeper one where trapped charges dominate. The

position of the transition region between the two regions depends on intrinsic and

extrinsic properties of the sample (purity, doping level, . . . ), on wavelength and

polarization, and, of course, on light intensity. Detailed investigations on the

influence of light intensity on grating shape was performed in [15].

7.3. Materials

It has to be expected that any electro-optic photoconducting crystal should

exhibit interband photorefractive effects when illuminated with light whose

photons have an energy exceeding the band-gap. For oxide type crystals

typically used in conventional photorefraction, such as lithium niobate

(LiNbO3), potassium niobate (KNbO3), and lithium tantalate (LiTaO3), for

example, the high absorption spectral region lies in the ultraviolet. But mater-

ials exhibiting interband photorefraction also in the visible spectral range are

also available, e.g., tin hypothiodiphosphate (Sn2P2S6, SPS).

In this section, we will shortly summarize the main characteristics of band-to-

band photorefractive gratings recorded in the crystals KNbO3, LiTaO3, and

Sn2P2S6. Before starting, let us shortly recall that holographic investigations of

the interband photorefractive effect are typically performed in two kinds of

geometries: The longitudinal geometry, where the planes of incidence of the

recording waves and of the read-out wave is the same, and the transverse

geometry, where the two planes of incidence are perpendicular to each other.

In the latter case, the read-out wave propagates parallel to the input surface of

the recording beams and can be used to probe the grating at a well defined depth.
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7.3.1. Potassium Niobate (KNbO3)

Potassium niobate has a room temperature band-gap energy of 3.3 eV, there-

fore near ultraviolet light in the region of 350 nm to 365 nm leads to direct

transitions between the valence band (related to the 2p orbitals of the oxygen

ions) and the conduction band (related to the 4d orbitals of the Nb ions). The

interband photorefractive properties of nominally pure KNbO3 under illumin-

ation in the above mentioned spectral range were studied in Refs. [11, 13, 15–

19]. Here we mention solely the most relevant features observed under cw

illumination at the wavelengths 364 and 351 nm.

� The photoconductivity deviates from a linear dependence on light intensity

for intensities of the order of 1mW=cm2
. Above this level, one reaches a

regime with square root dependence (compare Fig. 7.1), an indication of

interband effects.

� The interband gratings are composed of two principal components. The

modulated charges giving rise to the first one are energetically located in

the two bands and in shallow trap levels with fast thermal exchange with the

bands. This component dominates for local light intensities above

50mW=cm2
(l ¼ 364 nm) and is referred to as the band grating. The second

component is composed of a carrier modulation in deep trap levels and is

hence referred to as the trap grating. It dominates for local light intensities

below 0:1mW=cm2
and therefore it is the dominant component far enough

from the entrance surface illuminated by the UV light. The average ampli-

tude of the first grating component is about 5 to 10 times stronger than the

one of the second one. In undoped crystals and in absence of externally

applied electric fields, the two components are mutually phase shifted by p,
which is supported by several pieces of evidence.

(a) Direct depth resolved Bragg diffraction investigations in trans-

verse geometry [11] show a minimum of diffraction efficiency at

an intermediate depth for which band and trap grating have a

comparable amplitude but cancel each other;

(b) Off-Bragg angle Bragg diffraction investigations in longitudinal

geometry [15] evidence the interesting and expected feature that at

steady-state the maximum of diffraction efficiency is not observed

at the Bragg angle, but at a nearby angle for which the destructive

interference between the waves diffracted off the band and the

trap grating turns to a constructive interference. This is illustrated

in Fig. 7.4, which shows the angular dependence of the diffraction

efficiency h (rocking curve) for various recording intensities in a

47mm thick sample. Thus the grating evolution leads to very

interesting time dynamics of the rocking curve measured in lon-

gitudinal geometry, as discussed in detail in [15]. As a result, the

curve h(t) shows a complex behavior that strongly depends on the
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light intensity (see Fig. 7.5) and on the angular deviation with

respect to the Bragg angle. Despite the apparent complexity of the

behavior, the dynamics can be satisfactorily modeled by consider-

ing solely the evolution of the two grating components discussed

above, being displaced in space and in phase [15]. Note also in this

respect, that if the intensity is large enough so that the band

grating component dominates the diffraction, the slow evolution

of the trap grating component loses importance and the dynamics

measured in longitudinal geometry becomes simpler.

(c) The effective UV two-wave mixing gain coefficient has opposite

signs for low and high wave intensities [15] as seen in Fig. 7.6. The

fitted curves show that the trap-freemodel of Section 7.2.1 describes

well the behaviour of the photorefractive gain at large light inten-

sities, where the band grating dominates. However, this model

cannot predict the observed zero crossing at low intensities. Inclu-

sion of the charges trapped in deep levels is necessary. A highly

simplified model of this kind was shown to correctly predict the

observed transition with increasing light intensity [18].

� The average refractive index change modulation Dn obtained by the inter-

band photorefractive effect is few times 10�5 and is of the same order of

magnitude to what can be reached by conventional photorefractive effects

in the same material.

� While the grating component stored in deep traps is affected by below band-

gap visible illumination, the free carrier grating component is not. There-
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Figure 7.4. Measured internal angular selectivity of the diffraction efficiency for

isotropic Bragg diffraction obtained in a 47mm thin sample of KNbO3 for different

ultraviolet writing intensities (l ¼ 364 nm, grating spacing L ¼ 0:5mm, grating vector

along the c axis). The modulation depth is m ¼ 0:2 and all the light beams are p-

polarised. The solid lines are calculated from a simple model involving two grating

components. See [15] for details.

Gunter / Photorefractive Materials and their Applications 1 chap07 Final Proof page 214 29.10.2005 11:25am

214 Germano Montemezzani, Philipp Dittrich, and Peter Günter



fore, the near surface grating is extremely robust against optical erasure at

wavelengths longer than those used for recording. In KNbO3, it has been

shown that incoherent visible light more than five orders of magnitude more

intense than the ultraviolet recording beams does not significantly affect the

free carrier component of the grating.

� At the intensity of 1W=cm2
, the fast grating component shows a build-up

and decay time of about 10ms for l ¼ 351 nm and b-polarized light, where

the intensity absorption constant is � 5500 cm�1. This response time is

increased by less than a factor of 4 for l ¼ 364 nm and c-polarized light,

which are associated with a 10 times lower intensity absorption constant of

540� 50 cm�1. As predicted by theory, the response time depends inversely
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Figure 7.5. Intensity dependence of the dynamics of the diffraction efficiency measured

in longitudinal geometry during the build-up (left) and the dark decay (right) obtained in

a 47mm thin sample of KNbO3 for a fixed angle of incidence very close to the exact

Bragg angle (Dq < 2mrad). The oscillating dynamics is due to the interference between

a fast band grating close to the front surface and a slower trap grating deeper inside the

sample. The gray lines are calculated according to a simple model involving the evolu-

tion of these two gratings, as discussed in detail in [15].
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proportional to the square root of light intensity (see Fig. 7.3). Note that the

response times for conventional photorefraction in KNbO3 range typically

between � 1ms and few seconds depending on doping and chemical treat-

ment. These are about two to six order of magnitude slower than the

interband photorefractive gratings.

� For most samples, at typical intensities of 100mW=cm2(l ¼ 364 nm, c-polar-

ization), the grating is found to extend until about 200mm below the illumin-

ated surface, that is about 10 times the 1=2a level. Themaximum depth can be

characterized by the point where the remaining nonabsorbed photons are still

able to create a photoconductivity larger than the material dark conductivity.

Therefore, as expected, the grating depth depends on light intensity, polariza-

tion, and wavelength. The position of the border between the two regions

mutually dominated by the free carrier grating components and by the trapped

grating component also depends on these quantities as well as on intrinsic and

extrinsic properties of the sample (purity, doping level, . . . ) [15]. For condi-

tions under which the trapped grating is not being significantly erased, the

point at which the two gratings components have the same amplitude (but

opposite sign) can extend up to about 100mm below the surface.

� In the framework of the simple model presented in Section 7.2, all meas-

urements in pure samples are consistent with an effective mobility for the
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Figure 7.6. Intensity dependence of two-wave mixing gain for interband photorefrac-

tion in KNbO3. The curves show the behavior predicted by ‘‘trap-free’’ model of the

interband photorefractive effect (Eq. (7.4) ). The zero-crossing point at the intensity of

about 1mW=cm2
is not predicted by Eq. (7.4) and is due to the fact that at low intensity,

a deep trap grating being out of phase by 180 degrees with respect to the free charge

grating becomes the dominant component. Electrons are the dominant charge carriers at

low intensities (electron-type conductivity dominates) while at large intensities, the

conductivity is dominated by hole motion. l ¼ 364 nm, grating vector jjc-axis, wave
polarization in the bc-plane, modulation index m ¼ 0:11. After [15].
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slowest carrier (electrons) slightly smaller than 10�5 cm2=(Vs). This small

value is given by a trap limiting effect due to carriers falling into shallow

trap levels (mainly oxygen vacancies) in thermal equilibrium with the band.

The effect of shallow traps is not explicitly included in themodel of Section 7.2

and the band grating is in reality a grating induced by carriers sitting in the

pseudo-band formed by the true band and the nearby shallow levels [11, 14].

� In principle, due to the strong absorption of the UV light, thermal effects

such as direct thermooptic gratings [20], thermoelectric gratings [21], or

gratings induced by pyroelectric space-charge fields [22, 23] could also

give a contribution to the observations in diffraction experiments. However,

direct experimental verification in several different geometries as well as

theoretical estimations of the size of the effects based on the known material

parameters show that none of these effects give a significant contribution at

the cw intensities up to� 1W=cm2
relevant for our investigations. Attempts

performed with the aim to detect a possible presence of surface gratings

using a reflection type geometry showed that also this effect is negligible.

7.3.2 Lithium Tantalate (LiTaO3)

Due to its wide band-gap, lithium tantalate (LiTaO3) is a promising material

for short-wavelength holographic data storage and dynamic holography.

The renewed interest in this materials is driven mostly by the successful growth

of near-stoichiometric crystals, i.e. crystals with a composition very close

to stoichiometry [24, 25, 26]. Compared to congruently grown LiTaO3, near-

stoichiometric LiTaO3 shows a significant reduction of optical damage in the

visible and an enhancement of the photosensitivity and of the diffusion-type

photorefractive effect in the near ultraviolet [27, 28, 29]. Further, the absorp-

tion edge is shifted from about 275 nm for congruent LiTaO3 toward about

260 nm [30]. It has been shown that for near stoichiometric LiTaO3, the two-

wave mixing gain coefficient is doubled compared to congruent LiTaO3 at the

UV wavelength l ¼ 364 nm. At the same time, the typical photorefractive

build-up and decay time constants are decreased by a factor of five [28].

Further, a distinct reduction of the saturated space-charge field is observed,

which is due to a larger increase in the photoconductivity relative to the

photogalvanic effect [27, 29].

Reviews about the conventional photorefractive properties of congruent and

stoichiometric LiTaO3 can be found in two chapters in the second volume of

this book series. In the following, we will summarize the main properties of

near stoichiometric pure and Mg doped LiTaO3 regarding interband photore-

fraction [31, 32]. Investigations were performed at the deep UV wavelength

l ¼ 257 nm, a wavelength lying lower than the absorption edge of LiTaO3.

� As for KNbO3, the photoconductivity of near stoichiometric LiTaO3 devi-

ates from a linear dependence on light intensity for intensities of the order of

10mW=cm2
.
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� In analogy to KNbO3, the presence of a band grating and of a trap grating

could be identified and are also found here to be mutually out-of-phase. The

first component reaches approximately from the surface until the depth db at

which therecording UV intensity equals approximately the characteristic in-

tensity Ic separating the linear and square root intensity regimes of the photo-

conductivity. Because of the exponential decrease of the UV light inside the

crystal, this transition depth is given by db ffi a�1
UV ln(I0=Ic). The second com-

ponent extends approximately from the depth db until the depth at which the

light intensity equals the dark intensity Id. The latter is defined as the intensity

where the induced photoconductivity equals the dark conductivity. The thick-

ness of this second component is given approximately by dt ffi a�1
UV ln(Ic=Id). A

direct, depth resolved observation of these two grating components by diffrac-

tion measurements in transverse geometry is shown in Fig. 7.7.

� The partial compensation between band and trap grating components can be

undone by optically erasing the trap grating component using an intense

nonresonant illumination unable to induce interband phototransitions. A

significant increase of diffraction efficiency in longitudinal geometry is ob-

served under such illumination conditions.

� Typical time constants for the interband effects for pure near-stoichiometric

LiTaO3 are in the order of a few tens of milliseconds for UV light intensities

of about 100mW=cm2
, three orders of magnitude faster than the time

constants reported previously for lithium tantalate [28].

� It is well known that Mg ions act as compensators for intrinsic defects related

to the deviation from stoichiometry in crystals of LiNbO3 and LiTaO3 [33,

34, 35, 36]. This compensation results in an increased photoconductivity and
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Figure 7.7. Bragg diffraction efficiency h as a function of the depth of the read-out

beam d beneath the illuminated crystal surface, which is indicated by the solid vertical

line at d ¼ 0mm. The region 0# d# 65mm is characterized by a dominant band grating.

Its strength follows the exponential decrease (a ¼ 450 cm�1) of the UV intensity inside

the crystal, indicated by the solid curve. The trap grating is dominant at larger depths, as

recognized by the structure with its maximum at approximately 150mm. The UV

intensity at the crystal surface was IUV ¼ 140mW=cm2
.
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a significantly reduced optical damage in Mg-doped samples as compared to

congruently grown undoped samples. In the same way, in near-stoichiomet-

ric crystals, inclusions of a small amount of Mg helps compensating the

remaining smaller amount of intrinsic defects. Recently it has been demon-

strated that Mg doping (1 mol %) of near-stoichiometric LiTaO3 increases

the response rate of interband photorefractive gratings by a factor of 20

compared with the one in undoped crystals [32]. For UV light intensities

larger than 500mW=cm2
, the response time is faster than one millisecond.

Note that in the near UV (l ¼ 351 nm), a sensitivity enhancement by doping

with Mg has been also demonstrated recently for lithium niobate crystals [37]

in the conventional photorefractive regime.

The high spatial resolution of UV holography and the present response speed

of less than one millisecond in Mg-doped near stoichiometric LiTaO3 are such

that applications of this type of crystals for the realization of high resolution real-

time optical processing elements appear promising. Integrated optical functions

that can be dynamically modified can also potentially be realized in this techno-

logically very important crystal by means of interband photorefraction.

7.3.3. Tin Hypothiodiphosphate, Sn2P2S6

Tin hypothiodiphosphate (Sn2P2S6, SPS) is a ferroelectric crystal with large

electro-optic coefficients [38] and a moderate band-gap energy of 2.3 eV. In the

conventional sense, this material exhibits very good photorefractive properties

in the red and near infrared spectral range [39, 40, 41, 42, 43, 44]. More detailed

information about this material and its properties in connection with conven-

tional photorefractive effects can be found in Chapter 9 of the second volume

of this book series.

Since blue and green light are being strongly absorbed, SPS is suitable for

hologram recording via interband photorefraction using visible light. Here we

summarize some of the observations in this regime [45, 46, 47].

� For the wavelengths 514 and 488 nm, which are well within the interband

absorption regime, the photoconductivity sph follows well the square-root

dependence on light intensity predicted from (7.2) for incident intensities

larger than few mW=cm2
. The same is true for the wavelength l ¼ 532 nm,

which is at the edge of the absorption band, but only at elevated temperat-

ures of about 508C [47]. At this temperature and wavelength, the absorption

constant exceeds 100 cm�1 (X-polarization) and is increased by more than a

factor of 4 with respect to room temperature, where the photoconductivity

behavior evidences a mixed regime. For incident intensities I well below

1mW=cm2
, two kinds of behaviors have been observed depending on crystal

sample. Either a linear regime where sph depends linearly on I (as for KNbO3

and LiTaO3), or a regime where the photoconductivity tends to approach a

nearly constant plateau with a very weak dependence on intensity [48]. The

latter behavior is expected if one of the conducting bands is being charged
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with carriers as a result of a highly asymmetrical level of carrier exchange

between the two bands and deep impurities [11].

� The refractive index change induced associated with interband photorefrac-

tive gratings in Sn2P2S6 can reach few times 10�4 at l ¼ 514 nm and inten-

sities exceeding 500mW=cm2
, as confirmed by Bragg diffraction angular

dependent measurements in longitudinal geometry and recent beam coupling

investigations in thin samples [48].

� The contribution of possible mechanisms other than the photorefractive

effect, such as absorption gratings, space-charge gratings induced by the

pyroelectric effect, thermo-optic gratings, or surface deformation gratings

are found to be negligible as compared to the observed effects [47, 49].

� The build-up of the space-charge grating, as measured in the cw regime in

longitudinal geometry, can be described satisfactorily by a double exponen-

tial behavior. The associated fast and slow time constants for the recording

wavelength l ¼ 488 nm are of the order of 10ms and 100ms, respectively (Y-

polarization, I � 0:7W=cm2
[47]). At l ¼ 514 nm, these times become

slightly longer.

� The response can be made even faster if the energy deposition is made more

rapidly, such as in the case of pulsed excitation. For instance, using 50 ns

pulses at 532 nm and a fluence of 100mJ=cm2
(corresponding to the energy

deposited in the cw regime during 100ms at the intensity of 1W=cm2
), one

observes the rise of the diffraction efficiency to its maximum within about

1ms with a consequent decay (see Fig. 7.8, [45]). Note that if a high pulse

repetition rate is necessary, such as in the case described later in Section 7.4.2,

it is also important, after the signal peak, to have a quick return of the

diffraction efficiency to zero, which is the case here.

To conclude, interband photorefraction in SPS is characterized by fast

response times and large nonlinearity as a result of the high electro-optic
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Figure 7.8. Dynamics of the diffraction efficiency in Sn2P2S6 under pulsed grating

recording at 532 nm. Pulse length ¼ 50 ns; Fluence ¼ 100mJ=cm2
. (After [45])
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coefficients. This is combined with the advantage that the effect can be induced

using visible wavelengths, a spectral range where cheaper light sources and

compact sources offering a high pulse repetition rate for processing applica-

tions are readily available.

7.4 Applications

Owing to the large absorption constant, interband photorefractive effects are

not useful for applications in which the recording light needs to be used further,

such as two-wave mixing light amplification and related applications, self-

pumped or four-wave mixing phase conjugation, and so on. In contrast, due

to the faster dynamics with respect to conventional photorefraction, interband

effects are very interesting for applications requiring a large parallel processing

speed or a relatively quick switching time.

Four examples are demonstrated here: An optically addressed spatial light

modulator (incoherent-to-coherent converter) based on interband photorefrac-

tion in KNbO3, a high speed optical correlator based on interband photore-

fraction in SPS, and again in KNbO3, reconfigurable light induced 1D

waveguides with switching times in the 100ms region, as well as a tunable

Bragg filter operating at telecommuncation wavelengths near 1:55mm.

7.4.1 High-Speed Optical Processing in KNbO3 with High
Resolution: PICOC

The fast response time of band-to-band photorefraction, combined with the

high resolution proper to short-wavelength light, leads to an extremely high

effective parallel processing rate. This may be demonstrated by a photorefrac-

tive incoherent to coherent optical converter (PICOC) operated in the inter-

band regime. A PICOC is basically an optically addressed spatial light

modulator (SLM) based on the photorefractive effect by which an incoherent

wave is transferred onto a coherent beam as illustrated in Fig. 7.9. The infor-

mation transfer between incoherent and coherent light occurs through diffrac-

tion at a modulated holographic phase grating. The latter is the key element

that determines the time response and influences the optical resolution. Several

implementations making use of conventional photorefraction were demon-

strated [50, 51, 52, 53, 54].

An experimental demonstration of a PICOC based on interband photore-

fractive effects has been performed using a 47mm thick sample of nominally

pure, single domain KNbO3 crystal and the approach schematically depicted in

Fig. 7.9 [55]. A very important figure of merit for a incoherent-to-coherent

converter is its resolution. In the experimental implementation, an excellent

resolution of 124 line pairs/mm (lp/mm) was obtained, which is close to

the resolution of 148 lp/mm allowed by the optical system for the incoherent
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illumination, and to the limiting resolution of 160 lp/mm set by the Bragg

diffraction process. The latter depends on the grating thickness and the wave-

length used [56, 52].

PICOCs based on interband photorefraction are interesting not only because

of the achievable resolution, but obviously, also because of the short build-up

and reconfiguration time. For the experimental parameters giving the max-

imum resolution (recording intensity ¼ 85mW=cm2
, average incoherent eras-

ure intensity ¼ 70mW=cm2
, read-out intensity ¼ 5W=cm2

), a response time of

35ms with an overall contrast better than 10:1 was measured. The diffraction

efficiency for the read-out wave was h ¼ 0:4%.

The intensities mentioned above elucidate another important feature of the

interband photorefractive effect. The fact that the gratings are robust against

illumination with light of sub band-gap photon energy allows to use very

intense read-out waves without affecting the PICOC operation.

The demonstrated write-read-erase cycle was tc ¼ 70ms and represents the

achievable frame time. It is possible to combine this with the corresponding

resolution and define an incoherent-to-coherent conversion rate by the expres-

sion G � (2R)2=tc, which corresponds to a number of switchable pixels per unit

time and unit area. For the PICOC described here, one has G ¼ 88Gbit=
(s cm2), a number rivaled only by optically addressed spatial light modulators

based on multiple quantum wells devices [55, 57].

The key performance characteristics mentioned above can be easily extrapo-

lated to other optical processing devices at low intensities such as, for instance,

optical correlators. In the next section, we describe a further example where one

Figure 7.9. Principle of a photorefractive incoherent-to-coherent optical converter

(PICOC): A projected input image, caried by incoherent light, modulates a superim-

posed photorefractive Bragg grating that is produced by two interfering recording

waves. The (anisotropically) Bragg diffracted read-out laser beam carries the contrast

reversed image.
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makes use of the favorable properties of interband photorefraction for the

demonstration of a high repetition rate optical correlator.

7.4.2 Joint Fourier Transform Correlation

In the past, the speed of optical correlators was often limited by the input

electronic interface device, such as the input spatial light modulator (SLM)

used in one or both arms of the joint Fourier transform (JFT) scheme first

proposed by Weaver and Goodman [58]. Today, the advent of faster display

devices such as ferroelectric liquid crystals SLMs has shifted the limiting factor

back to the nonlinear device element [59]. It is therefore important to provide a

material where the optical processing operation can be performed at a rate at

least equal to the input data rate. Among the low-power nonlinear optical

effects coming into consideration, the interband photorefractive effect dis-

cussed in this chapter is particularly attractive because of the high sensitivity

and speed, and because the relatively small thickness of the recorded gratings

leads to higher spatial resolution and an increased shift invariance of the

correlator.

If an optical correlator has to compete with the steadily improving purely

electronic alternatives, its operation frame rate has to be high enough. For

electronic correlators, the processing time T required for calculating the cor-

relation between two images of pixel size Npx �Npx is T / N2
px log2 Npx. A JFT

optical correlator with 10 kHz frame rate is therefore faster than a 2 GHz clock

rate state of the art dedicated digital processor as long as the number of pixels

exceeds Npx � 50.

A system was built to perform fast JFT correlations using Sn2P2S6 as non-

linear optical processing element and an angularly multiplexed holographic

storage memory [46]. Fig. 7.10 shows the conceptual idea, while a scheme of

the setup can be found in the original reference [46]. The system was operated in

the pulsed regime using a high repetition rate frequency doubled Nd:YAG laser

at the wavelength of 532 nm. The use of the holographic memory permits us to

overcome the available speed limitation of the electronic/optic interface device

and to operate the JFT correlator at a rate of 10 kHz. As discussed earlier in

this chapter, if the holograms performing the correlation operation are being

recorded in SPS, the operation can be performed in less than the pulse distance

of 100ms.
The library images were recorded in an angularly multiplexed holographic

memory implemented using a thick LiNbO3 crystal. High speed image sequences

were produced by reading out 10 phase modulated images of the kind shown on

top in Fig. 7.11 at a rate of 10’000 frames/s from the holographic memory. Each

image was then compared with an image presently displayed through a ferro-

electric liquid crystal spatial light modulator (SLM). The comparison was per-

formed by means of the thin dynamic hologram recorded in real-time in the SPS

crystal by the interband photorefractive effect. Two typical correlation traces are

shown in Fig. 7.11. The 10 mutual correlation peaks can be clearly identified.

Gunter / Photorefractive Materials and their Applications 1 chap07 Final Proof page 223 29.10.2005 11:25am

7. Band-to-Band Photorefraction 223



Peak 4 in (a) and peak 10 in (b) are the highest and correspond to the correctly

identified displayed images on the SLM.

It can be concluded that, by a combination of a holographic memory with

fast dynamic holography, realization of a joint Fourier transform optical

correlator working at a frame rate of at least 10 kHz is possible, thus competing
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Figure 7.10. Principle of operation of a high-rate JFT correlator with an image library

stored in a holographic memory.
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Figure 7.11. Intensity of the correlation peaks produced by comparing image 4 (a) and

image 10 (b) with an image sequence extracted from the holographic memory at the rate

of 10 kHz.
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favorably with current electronics. Typical applications of such correlators are

pattern and position recognition (fingerprints, faces, industrial tools, ob-

jects, . . . ), tracking of unknown objects or search in large databases of page

coded information.

7.4.3 Light Induced Waveguides

The creation of waveguides that can be dynamically reconfigured at will is a very

desirable feature, for instance for applications for optical switching or dynamic

optical interconnection. The photorefractive effect, by its own nature, offers the

possibility for such reconfigurability. While photorefractive waveguides may be

created by several means [60, 61, 62, 63, 64], only the interband photorefractive

effect offer the possibility of reconfiguration in the microsecond time range.

The technique discussed here makes use of a controlling beam illuminating

the top surface of an electro-optic crystals (pure KNbO3) and imposing the

desired waveguide shape [65]. By using interband absorbed light, the latter can

be reconfigured in a time of few tens of microseconds with moderate light

intensities of the order of 1mW=cm2. The mechanism underlying waveguide

formation is the local screening of an externally applied electric field E, as

shown in Fig. 7.12. This is analogous with the mechanisms acting in the case

light induced waveguides are produced by beam self-focusing [61] or light

induced domain switching [66]. If the light polarization and field direction are

chosen properly, the refractive index decreases homogeneously across the

sample apart for the regions that are externally illuminated. There the field is

screened by bipolar charge transport. Because the desired structure can be

Figure 7.12. a. Schematic view of the setup to produce light induced waveguides. An

electric field is applied along the c-axis. The controlling UV light, which induces the

waveguide, has a photon energy larger than the 3.3 eV bandgap of KNbO3. Due to the

strong absorption of UV light in pure KNbO3 (intensity absorption coefficient

ac ¼ 540� 50 cm�1) [11], the UV stripe can induce field screening only for about

150mm below the surface. b. CCD images of the intensity distribution of a HeNe

probe beam at the exit face of the crystal (picture size is 240� 240mm) show the

diffracted beam without applied E field and without UV illumination (top), as well as

the guided beam for applied E field and with UV illumination (bottom).
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imaged onto the surface by a deflector or a photolithographic like process,

various waveguide configurations can be easily produced in this way.

With this technique, straight waveguides, Y-branches, and 1� 4 and 1� 8

connectors have been demonstrated [67] for guiding red probe light as well as

light at the telecommunication wavelengths of 1.3 and 1:55mm. Obviously, due to

the larger natural diffraction, larger fields are required to achieve the same

waveguide width in this case. The guided beam full-width-at-half maximum scales

roughly as l=E1=2. Note that the guiding properties are found to be unchanged as

the intensity of a HeNe probe beam is increased from 0.004 to 200W=cm2
,

confirming therefore the robustness of refractive-index changes induced by

band-to-band photorefraction. The total losses in the induced waveguide corres-

pond to an intensity loss coefficient a < 0:02 cm�1, i.e., less than 0.1 dB/cm.

On the base of the method described above, attractive all-optical devices may

be created, such as switches, real time beam deflectors, tunable Y-branches, or

reconfigurable optical interconnects compatible with telecommunication wave-

lengths. Alternatively such low loss light induced waveguides might be used

also in connection with nonlinear optical frequency conversion.

7.4.4 Tunable Bragg Filters

In wavelength division multiplexing (WDM) and dense WDM (DWDM) sys-

tems, tunable optical filters are needed to manipulate or select a desired wave-

length from the band of available channels and a suitable tunable optical filter

needs both a large tuning range and a narrow bandwidth. Among the various

possible approaches [68, 69], tunable filters based on volume holograms offer the

important advantage of a very high wavelength selectivity of the filter [70, 71].

Interband photorefraction in pure KNbO3 were used in [71] to implement

dynamic narrow-bandwidth thick holographic reflection gratings for telecom-

munication wavelengths near 1550 nm. The tuning can be done in microsec-

onds and is achieved by using an acousto-optic deflector to control the

direction of the recording beams and hence the spacing of the photorefractive

gratings, as shown in Fig. 7.13. A bandwidth of 0.13 nm and fast tuning

between channels spaced by 50 GHz frequency were demonstrated.

Any crystal that exhibits interband photorefractive effect could be used for

such a task instead of KNbO3: In particular materials like Sn2P2S6 where

interband photorefraction at visible recording wavelengths is possible, as dis-

cussed in Section 7.3.3.

7.5 Conclusions

In this chapter, we have given a short introduction to interband photorefractive

effects and described them by a simple model for the limiting case of neglecting

any mid-band-gap states. The principal advantages of interband photorefrac-

tion are the much faster response speeds than achievable through conventional
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photorefraction, and the great robustness of the induced refractive index vari-

ations against erasure with light at longer wavelengths.

On the other hand, the drawbacks of interband photorefractive effects are

related with the large absorption constant. Any application where the recording

light has to be reused or detected after the nonlinear material is better per-

formed using conventional photorefractive effects. Examples of such applica-

tions can be found in the fields of holographic storage, adaptive interferometry,

coherent image amplification, laser beam cleanup, and phase conjugation.

Many of these examples are discussed in this book series. If, in contrast, the

recording light can be fully sacrificed in the nonlinear sample, one is better off

by using the interband processes.

Three electro-optic materials, KNbO3, LiTaO3, and Sn2P2S6 have been dis-

cussed in more detail. In the first material, the band-to-band processes occur at

near ultraviolet wavelengths; in the second one, at deep ultraviolet wavelengths;

in the third one, they occur already in the blue-green spectral region. For

KNbO3 and Sn2P2S6, response times of a few ms can be achieved at conven-

tional cw intensity levels, while response times for LiTaO3 are in the few ms

region for near-stoichiometric crystals and slightly faster than 1 ms for Mg

doped near stoichiometric LiTaO3. Due to the speed of response, the interband

photorefractive effect is interesting for applications in fast parallel optical

processing. Examples of an optically addressed spatial light modulator and of

a Joint Fourier transform optical correlator were given. Other examples were

given in connection with the manipulation and guiding of an optical beam by

means of a controlling light pattern, and with the recording of dynamically

reconfigurable narrow-bandwidth holographic reflection gratings for wave-

length filtering.
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Figure 7.13. (a) Principle of a tunable optical filter by volume holography. The Bragg

wavelength of the filter is tuned by changing the mutual angle 2uRec between the interfer-

ing writing beams symmetrically. This induces a change of the grating constant but no

change in the direction of the grating vector K. From the multiple wavelengths of an

incidentWDMbeamonly the one corresponding to the Braggwavelength of the grating is

diffracted if the filter’s bandwidth is smaller than the WDM channel spacing. (b) Wave-

length selectivity scan for three different grating vectors separated by 0.4 nm (50 GHz).

The three peaks are obtained by using three different grating constants. (After [71])
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The existence of interband photorefractive effects is not expected to be

limited to the materials discussed here; depending on the required wavelength

of operation, other electro-optic compounds may be selected and investigated

in this context.
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Two-Step Recording in Photorefractive
Crystals
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Germany

2 Institute of Physics, University of Bonn, Wegelerstr. 8, D–53115 Bonn, Germany

Two-step excitation processes have been used for hologram storage in photo-

refractive crystals. By this means the interference pattern can be formed with

red or near-infrared (near–IR) light and nondestructive readout of informa-

tion is possible. Often shallow levels are involved in the holographic recording

process in photorefractive crystals. The shallow levels can be populated by

illumination with visible or UV pulses forming states with relatively long

lifetimes, thus sensitizing the crystals for holographic recording with IR

pulses. In LiNbO3 and LiTaO3, the most important shallow levels have been

identified. They result from Nb5þLi and Ta5þLi antisite defects (Nb5þ or Ta5þ on

Liþ site). The crystals can also be preilluminated with visible light of a cw

argon ion laser or of a Xenon lamp and holograms can be recorded with red

light of a laser diode. The sensitization process is possible for other photo-

refractive crystals, too. A further approach is based on the pyroelectric effect.

In all cases, the holograms can be read nondestructively with infrared (IR)

light and can be erased with green light. The hologram lifetime is

limited by electron tunneling or by an ionic conductivity. Lifetimes up to

years can be achieved. Recording of components for telecommunication ap-

plications with IR light allows us to create reconfigurable, and thus more

versatile devices.

8.1 Introduction

Storage of volume phase holograms in electrooptic crystals like LiNbO3

offers fascinating possibilities for many applications, as can be seen from the

scope of this book. The involved photorefractive effect is based on the

transposition of a light pattern into a refractive index pattern. Under nonuni-

form illumination, charge carriers—electrons or holes—are excited and

trapped at new sites. By this means electrical space-charge fields build up

that give rise to an electro-optic modulation of the refractive index. The

trapped charge can be released and the field pattern erased by uniform

illumination or by heating.
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But there are two main drawbacks: First, the crystals are insensitive in the

interesting near-IR region. Second, retrieval of stored information requires

homogeneous illumination and thus necessarily leads to erasure effects.

To overcome these drawbacks, the use of two-photon excitations has been

proposed for hologram recording by von der Linde et al. [1]. Then the holo-

grams can be recorded with near-IR pulses. Furthermore, read-out without

erasure is possible using pulses of reduced light intensity. The Bragg condition

is fulfilled because the light wavelength remains unchanged, but the energy of

one photon is not sufficient to excite an electron to the conduction band and

thus redistribution of electrons does not occur. On the other hand, optical

erasure may be performed with the help of two-photon processes.

A serious disadvantage of two-photon recording using virtual intermediate

states is the necessity of extremely high peak intensities of the light pulses. If

impurity ions exhibiting real intermediate states with long lifetimes can be

utilized, a considerable reduction of the peak intensity required for two-photon

recording is possible, though the intensity has to be still much larger than in the

case of usual one-step recording.

Since about 1990 it became clear that shallow levels are often involved in the

holographic recording process in photorefractive crystals. The shallow levels

can be populated by illumination with visible or UV light forming states with

relatively long lifetimes, thus sensitizing the crystals for holographic recording

with IR light.

A further approach for two-step IR recording is based on the pyroelectric

effect. A thermal grating is created by interfering IR beams leading to a

pyroelectric field via absorption processes. By excitation of electrons with

visible light, this pyroelectric field is converted into a stable space charge field.

In the present contribution, two-step processes for holographic recording in

different photorefractive crystals are investigated. We discuss the use of near-

IR light and nondestructive read-out. Models for the underlying physical

processes are presented. Recent data about hologram lifetimes will be shown

and general considerations for the application of two-step methods with the

fabrication of telecommunication components will be discussed.

8.2 Early Experiments

First two-step excitation measurements in photorefractive crystals have already

been performed in 1974 [1]. Frequency-doubled light pulses of a mode-locked

Nd:YAG laser (wavelength 0:53mm, pulse duration 10 ps) induced a phase

retardation in doped LiNbO3 crystals. It was found that the measured refractive

index changes depend quadratically on the exposure energy. The influence of

additional IRpulses (1:06mm)was demonstrated, too. Furthermore, LiNbO3:Cr

and LiTaO3:Cr crystals have been investigated [2] to utilize the long living 4T2

excited state of Cr3þ (lifetime 500 ns). In this case, the peak intensity is reduced

and pulse lasers with higher repetition rates can be used.
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We have demonstrated nondestructive read-out in LiTaO3:Fe [3]. Holograms

were recorded by simultaneous illumination with 30 ps pulses of a mode-locked

Nd:YAG laser at 1:06mm, forming the interference pattern, and with spatially

homogeneous frequency-doubled pulses of the same laser at 0:53mm. Results

are shown in Fig. 8.1. The holograms can be read nondestructively at 1:06mm.

From the experimental accuracy it was concluded that more than 10 000 read-

out processes are possible. Similar results were obtained for LiNbO3:Cr using

40 ns pulses of a Q-switched ruby laser at 0:694mm [4].
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Figure 8.1 a) Two-photon recording-erasure cycle. The refractive index amplitudeDnTP

is plotted versus the product I532 � I1064 � t of green and IR intensities and time.

b) Experiment as in a), but now DnTP is plotted only versus the product I1064 � t of IR

intensity and time. Without green light (I532 ¼ 0, hatched region), no erasure is observed.
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8.3 Shallow Levels, Two-Level Models

Since about 1990 it became clear that—at least at high light intensities—

shallow levels are nearly always involved in the holographic recording process

in photorefractive crystals. Two-level models—the two-center and the three-

valence model—were developed and successfully applied for the description of

the light-induced charge transport in many photorefractive crystals.

A very important step for the understanding of photorefractive properties of

ferroelectric perovskites was the discovery of light-induced absorption in

BaTiO3 by Motes and Kim [5]. This increase of absorption under illumination

was interpreted in terms of two kinds of centers involved [6], each of them

occurring in two different states. Holtmann successfully applied this two-center

model to describe the transport properties of BaTiO3 [7].

Because the photoconductivity of ferroelectric perovskites is mostly domin-

ated by holes in the valence band [7, 8], in the following discussion of the two-

center model only hole transport is assumed. For electron transport, an analo-

gous argumentation holds. With the help of Fig. 8.2, the transport of charge

may be described as follows: We consider two different photorefractive centers

C1 and C2. For each species, i ¼ 1, 2, there are hole sources and traps. We

denote the concentration of sources Cþ
i by Nþ

i and the concentration of traps

C0
i by N0

i . The total concentration of centers of type i is

Ni ¼ Nþ
i þN0

i : (8:1)

Charge conservation requires

Nþ
1 þNþ

2 þNh ¼ Nc, (8:2)

where Nh is the concentration of holes in the valence band and Nc a constant

concentration. The first center has to be a deep-level impurity, e.g., iron, and

VB

e−

e−
e−

e−

CB

C0
1 / C+

1

C0
2 / C+

2

Figure 8.2. Band diagram of the two-center charge-transport model (CB: conduction

band, VB: valence band, C1: center 1, C2: center 2).
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the second one should be a more shallow trap with respect to the valence-band

edge. The center C2 has a relatively low thermal activation energy, such that

N0
2 � Nþ

2 holds in the dark. Upon illumination, holes are generated by excita-

tion of electrons from the valence band into Cþ
1 centers. The holes migrate in

the valence band and are trapped either by C0
1 or by C

0
2 centers. Trapping at the

latter creates Cþ
2 centers. With increasing light intensity, more and more holes

are generated and Nþ
2 grows, too. By this means absorption processes become

possible, which result from optical excitations of valence band electrons to Cþ
2

centers. This leads to light-induced absorption changes, if Cþ
1 and Cþ

2 have

different photon absorption cross sections. The rate equations read:

dNþ
i

dt
¼ �(qiSiI þ bi)N

þ
i þ ri(Ni �Nþ

i )Nh, i ¼ 1, 2: (8:3)

Here qi denote the quantum efficiencies for generating a hole upon absorp-

tion of a photon, Si the absorption cross sections, bi the thermal generation

rates, and ri the recombination coefficients.

Many experimental results can be understood on the basis of this two-center

model, among them the nonlinearity of the photoconductivity in the light

intensity; details are described, e.g., in Ref. [9].

But there exists a further possibility to explain the charge transport proper-

ties of perovskites. As we pointed out [10], the assumption of one impurity

center occurring in three different valence states—the so-called three-valence

model—leads to similar conclusions as the two-center model.

The situation is illustrated in Fig. 8.3. The three valence states of the center C

are denoted by 0, þ and 2þ. The arrows indicate the considered excitation and

recombination processes of electrons. At low intensities, only C0 and Cþ states

are present, because thermally excited valence band electrons fill C2þ. Illumin-

ation excites electrons from the valence band into Cþ and generates holes that

CB

VB

e−

e−
e−

e−

C0 / C+

C+ / C2+

Figure 8.3. Band diagram of the three-valence model (CB: conduction band, VB:

valence band; the valence states of the center C are indicated by 0, þ and 2þ).
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are annihilated by electrons from C0. For sufficiently high light intensities, the

hole concentration becomes large enough that an appreciable number of elec-

trons from Cþ can recombine with holes and generate C2þ contributing to

absorption. Thus light-induced absorption changes appear.

Furthermore, participation of C2þ in the charge transport may provide a

photoconductivity increasing nonlinearly with light intensity.

Rate equations, charge conservation, and constant trap density may be

written as:

dNþ

dt
¼þ r0N0Nh � (bþ þ qþSþI)Nþ

� rþNþNh þ (b2þ þ q2þS2þI)N2þ, (8:4)

dN2þ

dt
¼ þrþNþNh � (b2þ þ q2þS2þI)N2þ, (8:5)

2N2þ þNþ þNh ¼ Nc, (8:6)

N0 þNþ þN2þ ¼ N: (8:7)

Here again N0, Nþ, and N2þ are the concentrations of C0, Cþ and C2þ, N is

the entire impurity concentration, Nh is the concentration of holes in the

valence band, bþ and b2þ are the thermal generation rates, qþ and q2þ are

the quantum efficiencies for hole generation upon absorption of a photon, Sþ

and S2þ are the photon absorption cross-sections, r0 and rþ are the recombin-

ation coefficients, and Nc is a constant concentration. It should be emphasized

that the above equations of the three-valence model cannot be derived from

those of the two-center model by introducing a special relation between the

concentrations of deep and shallow traps. But both models lead to similar

conclusions.

Though it is often difficult to decide between the two-center and the three-

valence model [10], in both cases shallow levels are involved, which may be

utilized for two-step excitations.

These models that were developed originally for perovskite-type crystals can

be applied to other materials as well. One special case of the two-center model is

the situation of two deep centers, i.e., the thermal generation rates bi are both

negligible. Such a system is, e.g., LiNbO3 doped with Mn and Fe where

Mn2þ=3þ is a deeper impurity than Fe2þ=3þ. The material can be used for

persistent optical data storage [11]. Homogeneous UV light excites electrons

from Mn3þ into the conduction band. These electrons are partially trapped by

Fe3þ forming Fe2þ centers. From these Fe2þ centers, electrons can be excited by

red or by green light. By this means the material is sensitized for red or green

recording. The hologram is partially stored in the Mn and in the Fe centers.

Reconstruction of the hologram with the reading light erases only the hologram

in the Fe centers since the photon energy is not large enough to excite electrons
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from Mn2þ. Thus, part of the hologram is resistant against reading. This

method works with continuous-wave light since there are no competing thermal

processes. But it is not useful for near-IR recording since two deep centers are

involved.

8.4 Two-Step Excitations via Shallow Levels

Population of shallow levels with nanosecond pulses of visible light (frequency-

doubledNd:YAG laser, l ¼ 0:53mm) and hologram recordingwith nanosecond

IRpulses (Nd:YAG laser, l ¼ 1:06mm)have been demonstrated in the ferroelec-

tric perovskite BaTiO3 [12]. Similar experiments have also been performed in the

tungsten-bronze-type crystal Sr1�xBaxNb2O6:Ce (0:25 � x � 0:75) [13], in the

nonferroelectric sillenites Bi12SiO20 (BSO) [14] and Bi12TiO20 (BTO) [15], in

Sn2P2S6 (SPS) [16], and in the semiconductors CdZnTe:V [17] and CdTe:Ge [18].

But also the early experiments in LiNbO3 and LiTaO3 [1, 3, 4, 19] have to be

discussed with respect to the new knowledge about the light-induced charge

transport. In these materials shallow levels have been identified [20, 21]. They

result from Nb5þLi and Ta5þLi antisite defects (Nb5þ or Ta5þ on Liþ site) that are

present in great quantities in congruent crystals. The highly charged Nb5þ or

Ta5þ ions trap mobile electrons and form small polarons.

There are two possibilities for two-step excitations in these crystals, via

excited states of the deep traps and via shallow traps. These possibilities are

explained in Fig. 8.4 for LiNbO3:Fe.
To decide between the two possibilities, measurements with time-delayed

pulses have been performed [22, 23]. Results are summarized in Fig. 8.5 for

LiNbO3:Fe. The crystal is illuminated with a homogeneous green (0:53mm)

pulse and two intersecting IR (1:06mm) pulses of about 20 ns duration. In order

to sensitize the crystal for IR holographic recording, previous or simultaneous

Excited states Shallow traps

CB CB

VB

Nb5+
Li Nb4+

Li

VB

Fe2+ Fe3+
Fe2+ Fe3+

Figure 8.4. Two possible two-step excitations in LiNbO3:Fe, via excited states of Fe2þ

(left) and via Nb5þLi shallow traps (right).

Gunter / Photorefractive Materials and their Applications 1 chap08 Final Proof page 237 28.10.2005 9:10pm

8. Two-Step Recording in Photorefractive Crystals 237



illuminationwith the green light is necessary. If the green pulse impinges after the

IR pulses, no refractive index change is obtained. These results clearly indicate

that indeed shallow traps are involved in the two-step excitation process; the

photon energy of the IR light is not sufficient to populate shallow traps. Analo-

gous results have been obtained for LiNbO3:Cu [23] and LiTaO3: Fe [24].

Furthermore, we have investigated the dependences of the inverse time

constant t�1 and of the saturation value Dns of the refractive index changes.

The inverse time constant t�1 is proportional to the photoconductivity sph,

t�1 ¼ sph=(««0), (8:8)

where « is the static dielectric constant and «0 the vacuum permittivity. The

quantities t�1 and Dns depend on the concentrations of the impurity ions

involved and on the intensities of the IR and the visible light. Experimental

results are shown in the Figs. 8.6 and 8.7.

From these results, the following relations have been deduced, which are

valid for LiNbO3:Cu [22], LiNbO3:Fe [23] and LiTaO3:Fe [24]:

sph / (cfD=c
e
D)I

VIS, (8:9)

Dns / ceDI
IR, (8:10)

where cfD denotes the concentration of filled deep traps (Fe2þ, Cuþ), ceD the

concentration of empty deep traps (Fe3þ, Cu2þ), IVIS the intensity of the

LiNbO3:Fe
670 ppm

GREEN before IRGREEN after IR

∆n
s 

/ 1
0−5

∆t / ns

5

10

0

15

20

03060 −30 −60

Figure 8.5. Saturation value of refractive index change Dns versus delay time

t532 � t1064 between IR and green pulses in LiNbO3:Fe. The squares represent measured

values and the solid line is a guide to the eye.
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visible light, I IR the intensity of the IR light, and Dns the saturation value of the

refractive index amplitude.

These relations can be derived from the above model assuming the partici-

pation of shallow levels [24] (Fig. 8.4, right-hand side). The light-induced

charge transport in doped LiNbO3 and LiTaO3 is mainly determined by the

bulk photovoltaic effect [25]. The photovoltaic current density jpv contains the

modulated intensity I IR of the IR light:

jpv ¼ �IR
ShI

IRcfSh, (8:11)

where �IR
Sh is the photovoltaic constant and cfSh the concentration of filled

shallow traps (Nb4þLi , Ta4þLi ). The photoconductivity sph ¼ emece ¼ emegete
(me mobility, ce concentration, ge generation rate, te lifetime of excited carriers)
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Figure 8.6. Saturation value of refractive index change Dns versus Cu
2þ concentration

cCu2þ (upper part) and inverse writing time constant t�1
w (proportional to the photocon-

ductivity sph) versus ratio cCuþ=cCu2þ of the Cuþ and Cu2þ concentration (lower part)

for LiNbO3:Cu.
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may result from excitations from filled deep traps (Fe2þ, Cuþ) and filled

shallow traps (Nb4þLi , Ta4þLi ):

sph ¼eme(S
VIS
D qVISD IVIScfD þ SVIS

Sh qVISSh IVIScfSh þ SIR
Shq

IR
ShI

IRcfSh)

� (rDc
e
D þ rShc

e
Sh)

�1, (8:12)

where S denotes the cross-sections (for filled deep and shallow traps), q the

quantum efficiencies (for filled deep and shallow traps), and r the recombin-

ation coefficients (for empty deep and shallow traps).

The description of the experimental results requires the following assump-

tions:

sph ¼ eme(S
VIS
D qVISD IVIScfD)(rDc

e
D)

�1 / (cfD=c
e
D)I

VIS,

jpv ¼ �IR
ShI

IRcfSh / I IRIVIScfD: (8:13)
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Figure 8.7. Saturation value of refractive index change Dns and inverse writing time

constant t�1 versus intensity I1064 of the IR light (upper part) and versus intensity I532 of

the green light (lower part), respectively, for LiNbO3:Fe.
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Then we obtain

Dns / jpv=sph / ceDI
IR: (8:14)

The Eqs. (8.13) and (8.14) are in perfect agreement with the experimental

results, Eqs. (8.9) and (8.10). The photoconductivity is mainly determined by

excitations of filled deep traps (Fe2þ, Cuþ) with VIS (or UV) light (homoge-

neous intensity), the photovoltaic effect by excitations on filled shallow traps

(Nb4þLi , Ta4þLi ) with IR light (modulated intensity). The shallow centers are

populated by direct excitation of electrons from filled deep centers by VIS (or

UV) light (cfSh / IVIScfD).

Excitations via shallow levels have been established for many crystals. Samples

may be sensitized with visible light of a cw laser or a Xenon lamp and hologram

recording is even possible with a laser diode [26, 27, 28]. Two-photon excitations

via intermediate states cannot be excluded in some cases, but have not yet been

demonstrated unambiguously.

Holographic experiments have also been performed with laser pulses in the

100–fs range [29, 30]. Then undoped BaTiO3 crystals are sensitive even in

the 1:5� mm wavelength regime [29], but it is again difficult to decide whether

excitations via intermediate states or via shallow traps are involved.

8.5 Hologram Recording Utilizing Pyroelectric Fields

Of special interest is holographic recording at telecommunication wavelengths

around 1:5mm. However, the relatively large optical activation energy of small

polarons is a serious difficulty. For this reason, a further method has been

suggested based on the pyroelectric effect [31]. As demonstrated earlier [32], this

effect also provides a charge driving force which may be utilized for two-step

processes. A thermal grating is recorded by two interfering IR beams. The

corresponding pyroelectric field is compensated by electrons excited by visible

light. To obtain sufficiently large pyroelectric fields, a considerable absorption

at the IR recording wavelength is required. The method has been demonstrated

with stoichiometric LiTaO3:Fe crystals that contain only very few Nb4þLi polar-

ons [31]. IR pulses of a Nd:YAG laser (duration 7 ns, l ¼ 1:06mm) generate

the pyroelectric field and a homogeneous green pulse (second harmonic gener-

ation, l ¼ 0:53mm) excites electrons. Using only IR pulses, no holographic

recording is possible. If the green pulse impinges on the crystal before the IR

pulses, the refractive index changes are very small, one order of magnitude

smaller than in congruently melting crystals indicating that indeed very few

Nb4þLi polarons are present. However, if the IR pulses impinge upon the crystal

before the green pulse or simultaneously, considerable index changes are ob-

served (Fig. 8.8).

The saturation value of the refractive index changes increases linearly with

the intensity of the IR recording light (Fig. 8.9) and does not depend on the
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intensity of the green light in the intensity range investigated (< 600GW=m2
).

Furthermore, the saturation value increases linearly with the absorption at

1:06mm that is proportional to the concentration of Fe2þ ions (Fig. 8.10).

The build up of holograms follows a monoexponential law with a time constant

t. The photoconductivity sph ¼ ee0=t (e0 is the permittivity of the vacuum and

e the permittivity of the material) does not depend on the intensity of the

IR light and increases linearly with the intensity of the green light. These
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Figure 8.8. Saturation values Dns of the refractive index changes as a function of delay

time t532 � t1064 between the infrared and the green pulse for a LiTaO3:Fe crystal. The

refractive index change is normalized to the infrared intensity I1064. At positive delay

times, the green pulse reaches the crystal after the infrared pulse. The dotted line is a

guide to the eye.

0

0.5

1.0

1.5

2.0

0 200 400 600

I1064 [ GW/m2]

∆n
s

[1
0−

5 ]

Figure 8.9. Saturation value Dns of refractive index change as a function of infrared

recording light intensity I1064. The solid line is a linear fit to the measured data.
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experimental results cannot be explained by excitations via shallow traps, but

are in perfect agreement with recording via pyroelectric fields [33]. We assume

that the IR recording pulses impinge on the crystal before the green pulse and

generate a thermal grating with the maximum amplitude [31]

DTmax ¼ mtpaI0
rcp

: (8:15)

Here m denotes the modulation of the light pattern, tp the duration of the

recording pulses, a the absorption at 1:06mm, I0 the total intensity of

the recording pulses, r the density, and cp the specific heat capacity of the

material. The pyroelectric effect yields the field with the amplitude [33]

Emax
pyro ¼ � 1

ee0

@Ps

@T
DTmax, (8:16)

where @Ps=@T is the pyroelectric coefficient. There is no bulk photovoltaic

field, the crystal is short-circuited to rule out external fields, and diffusion can

be neglected. Thus only the pyroelectric field is responsible for the build up of

the space-charge field with the saturation value [33]

Esc(t ! 1) ¼ m
1

ee0

@Ps

@T

tpaI0

rcp
: (8:17)

The electro-optic effect yields the refractive index change for extraordinarily

polarized light

Dns ¼ � 1

2
n3er333m

1

ee0

@Ps

@T

tpaI0

rcp
, (8:18)
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Figure 8.10. Saturation value Dns of refractive index change versus absorption coeffi-

cient a1064 at l ¼ 1:064mm. The solid line is a linear fit to the measured data.
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with the refractive index ne for extraordinarily polarized probe light and the

corresponding electro-optic tensor element r333. Eq. (8.18) describes the ob-

served dependences very well. The relations Dns / I0 ¼ I1064 and Dns / a ¼
a1064 are in perfect agreement with the results shown in the Figs. 8.9 and 8.10.

Furthermore, the value Dns ¼ 4:9� 10�5 calculated from Eq. (8.18), which has

to be compared with the measured value Dns ¼ 1:8� 10�5, yields the right

order of magnitude. The results clearly reveal the possibility to record holo-

grams in LiTaO3:Fe via the pyroelectric effect. This two-step process offers the

opportunity to store nonvolatile holograms with light of any wavelength at

which a large absorption can be achieved. In the LiTaO3:Fe crystals, the

absorption at 1:06mm is caused by Fe2þ ions, the same dopant from which

the electrons are excited to form space-charge fields. Other compositions are

possible, especially for holographic recording at telecommunication wave-

lengths. Then a doubly-doped pyroelectric and photoconductive crystal is

needed. One dopant may be, e.g., a rare earth element with high absorption

at the desired recording wavelength and the other one a filled electron trap

sensitive for the light generating free charge carriers by homogeneous illumin-

ation. The magnitude of the achieved refractive index change then depends on

the concentration of the rare earth dopant and the recording light intensity

used, whereas the time constant for recording and erasure depends on the

concentration ratio of filled and empty traps.

8.6 Lifetime of the Holograms

For practical applications in, e.g., telecommunications, the lifetime of the

components is a critical issue. Wavelength filters that are based on holographic

gratings in photorefractive LiNbO3 crystals [34, 35, 36, 37] utilize so far the

method of ‘‘thermal fixing’’ [38]. Holograms are recorded at a higher tempera-

ture (typically 1808C) where ions are mobile. These ions migrate and compen-

sate for the electronic space-charge field. Spatially modulated concentrations of

filled and empty electron traps as well as a spatially modulated concentration of

the compensating ions build up. After cooling to room temperature, the ions

are practically immobile. Homogeneous illumination now generates spatially

modulated currents because of the modulated densities of filled and empty

electron traps. Space-charge fields and electro-optic refractive index changes

arise (see [39] and references therein). After reaching a steady-state, further net

charge redistribution is not possible since the ionic grating is fixed.

From accelerated aging experiments assisted by a theoretical description of

the processes, it can be shown that the lifetime of thermally fixed holograms in

LiNbO3 can reach hundreds of years at room temperature [40]. Usually protons

(Hþ) form the ionic grating [39, 41]. The key to get good lifetimes is a dehy-

dration of the LiNbO3 crystals [40, 42]. Then the compensating ions are—most

probably—lithium ions instead of hydrogen [42]. Since the mobility of Liþ in

LiNbO3 is less than that of Hþ, the lifetime of the thermally fixed gratings is

Gunter / Photorefractive Materials and their Applications 1 chap08 Final Proof page 244 28.10.2005 9:10pm

244 Eckhard Krätzig and Karsten Buse



improved. By this means the telecommunication lifetime standards (Bellcore,

Telecordia) can be easily fulfilled.

However, thermal fixing has two drawbacks: (1) Optical erasure and rewriting

of components is not possible. Formany applications, an all-optical control of the

diffractive components is desirable. Just to name one example: Guiding one light

beam into one of many fibers can be done by recording of a proper hologram that

provides this coupling. For switching the channel into another fiber, a new

hologram is required. Optical erasure of the old hologram and recording of a

new hologram can provide such a reconfigurable switch. Thermally fixed holo-

grams do not provide this flexibility. (2) Photorefractive crystals show, in general,

an anisotropic thermal expansion. Thus after recording and cooling to room

temperature, the Bragg condition is typically not fulfilled anymore. This can be

compensated by, e.g., a change of the angle of incidence or of thewavelength of the

reading light. However, this is limited to gratings only. For other waves, Bragg

matching cannot be achieved by a simple modification of the reading light.Waves

with so-called ‘‘wavevector spectra’’ might be one solution [43], but this limits the

quality of the component, i.e., the focal spot of nominally spherical waves would

be enlarged and the cross-talk for wavelength-division-multiplexing components

would be increased. Another solution to this problem is the ‘‘low-high-low’’ fixing

schedule where the hologram is recorded at room temperature and heated after-

wards. However, for this method the obtainable refractive index changes, i.e., the

diffraction efficiencies, are smaller. To summarize this point: Thermal fixing

works well for applications where elementary gratings are involved but fails for

more sophisticated components.

By two-step excitation processes, these problems can be overcome. Such

components are optically erasable and rewritable; the recording light always

fulfills the Bragg condition. However, there is one drawback: The lifetime is not

as good as that of thermally fixed holograms. Recent studies reveal the mech-

anisms that are responsible for the erasure of unfixed holograms in LiNbO3 [44,

45]. Because of the two-step recording process, reading with IR light does not

erase the holograms. However, there is always a dark conductivity sd present

that limits the hologram lifetime given by

tlife ¼ (ee0)=sd: (8:19)

The lifetime in the dark is the same for holograms recorded by one-step or by

two-step processes.

Two situations need to be distinguished: For LiNbO3 crystals containing a

high amount of iron or copper (typically in excess of 0.05 wt. % Fe2O3 or CuO),

the dark conductivity is dominated by tunneling of electrons between these

deep impurities [44]. Fig. 8.11a shows the dark conductivity of a LiNbO3:Fe
crystal where the Fe2þ=Fe3þ concentration ratio was changed by thermal

annealing. As it can be seen, the dark conductivity is proportional to the

effective trap density Neff that is defined as Neff ¼ (1=cFe2þ þ 1=cFe3þ)
�1. For

small Fe2þ concentrations cFe2þ the number of electrons that can tunnel is given
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by cFe2þ itself while for high Fe2þ concentrations a lack of empty Fe sites, i.e., of

Fe3þ, limits the tunneling and hence the dark conductivity is proportional to the

density of cFe3þ . This explains the dependence sd / Neff and at the same time,

shows that electron tunneling is indeed responsible for the dark conductivity.

Since the tunneling probability depends exponentially on the distance between

the ions, the overall iron concentration also plays an important role. As Fig.

8.11b shows, the dark conductivity (normalized to Neff ) indeed increases

exponentially according to exp (� ac
�1=3
Fe ), where c

�1=3
Fe is the averaged spacing
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Figure 8.11. a)Darkconductivitysd versusFe
2þ concentration cFe2þ ofaLiNbO3 sample

doped with 51� 1018 cm�3Fe. The solid line shows a fit of sd / Neff to the experimental

data,whereNeff is the effective trap density (see text) and cFe is the fit parameter. The result

of the fit, cFe � 65� 1018 cm�3, agrees pretty well with the known iron concentration. b)

Normalized dark conductivity sd versus the cubic root of the iron concentration cFe for

crystals with various iron concentrations. Here sd, 0 is an iron-independent background

dark conductivity and Neff is again the effective trap density. The solid line is a fit of

conductivity (sd � sd, 0)=Neff / exp (� ac
�1=3
Fe ), where a is a fit parameter.
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between the iron centers and a is a fit parameter. Based on this curve—for the

case of iron-dominated conductivity—the dark storage time of the holograms

can be deduced.

The secondsituation is thatofa relatively lowdoping level. In this case, the ionic

conductivity at room temperature dominates the charge transport [44, 45]. This

conductivitycanbereducedbydehydrationofthecrystal.Thusthebestlifetimesare

obtainedinweaklydopedcrystalswithasmallHþ content.However,weakdoping

implies small refractive index changes as it can be inferred, e.g., fromFig. 8.6. For

realistic conditions and after optimization, hologram lifetimes at room tempera-

tureoftheorderofmonthstoyearscanbeachieved.Athighertemperatures,e.g.,at

508C, lifetimes of only days or weeks are expected. This is not satisfactory for

telecommunication applications. The consequence is that such components need

either to be temperature stabilized or they must contain an apparatus that can

rewrite or refresh the components on demand. For dynamic components, this is

notnecessarily adrawback since theymay contain inany case a recording laser.

8.7 Advantages of Infrared Recording

For single-step volatile recording in photorefractive crystals usually ultraviolet

or visible light is required. Only in a few cases is single-step recording with near-

IR light possible [46]: Crystals of the sillenite type are sensitive to near-IR light,

and two-step recording processes have been demonstrated in this material as

well [15], but the dark storage time is not satisfactory for most applications.

Semiconductor crystals like CdTe and GaAs are sensitive in the telecommuni-

cation wavelength region (1.3 to 1:6mm), but the refractive index changes are

too small since the electro-optic coefficients are tiny. Only photorefractive

multiple quantum wells provide large refractive index changes for recording

in the telecommunication wavelength region, but the operational wavelength

range is small. In very few cases, e.g., for highly-doped KNbO3 waveguides, a

photorefractive response in the telecommunication region has been reported

[47]. Thus two-step recording has—besides the resistance against reading with

IR light—still one more substantial advantage: Devices can be fabricated with

light of the wavelength where they are finally used. This is different compared

to the current approach where gratings are recorded by, e.g., green light and

finally read by IR light [34, 35, 36, 37]. Since volume effects are used, this

approach is limited to gratings only. For other elements, Bragg matching in the

IR spectral range would be impossible.

Fig. 8.12 shows that recording with IR light that has exactly the wavelength

of the light used in the final device can be very helpful. A four-channel

wavelength-demultiplexer (DEMUX) is depicted. In the input fiber, many

wavelengths, e.g., 128 or 256, might be multiplexed. A gradient-index

(GRIN) lens forms a parallel beam that passes the photorefractive material

and is coupled by another GRIN lens into the throughput fiber. However,

inside the photorefractive material, there are four holograms that are Bragg-
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matched to four of the channel wavelengths li, lj, lk, and ll . The diffracted

waves should have a spherical shape. At the focal point, a fiber end is posi-

tioned that collects the dropped light. Since the four waves are diffracted from

different holograms, the focal spots can be separated and the light is coupled

into four independent fibers. Compared to other devices, this approach has the

advantage that no additional optics in front of these four fibers are required.

This makes such a device more compact, simpler, and cheaper.

For fabrication of devices like that shown in Fig. 8.12, one problem typically

appears that can be also solved by IR recording: It is the alignment issue. The

hologram must not only be properly recorded, the photorefractive material and

all the fibers must also be precisely positioned in order to keep the insertion loss

and the drop losses small. For IR recording, this can be achieved easily: The

device can be built first and after fixing the fibers, e.g., with glue, recording can

be performed. Two-step writing requires the presence of sensitizing light. The

IR recording light is then provided through the fibers, which ensures for the

final operation perfect alignment of the hologram and of the fibers. Although

this method has not been experimentally demonstrated so far, it seems to be

likely that next-generation components may use this technology.

8.8 Conclusions

Many photorefractive crystals that are insensitive in the IR spectral region may

be sensitized for IR recording by two-step processes. Nondestructive readout of

the holograms recorded by two-step processes is possible. In contrast to other

Sensitizing
light

Photorefractive
material Through

portGRIN
lens

DEMUX

DEMUX

i

j

Input

k

l

Figure 8.12. Filter for demultiplexing (DEMUX) of four channels (li, lj , lk, ll) in a

wavelength-division-multiplexing network. Only the input and the through port require

gradient-index (GRIN) lenses to collimate the beam. Holograms can be multiplexed in

such a way that the diffracted light is coupled into the four separate fibers without any

additional optics. The required holograms can be recorded in the device itself by a two-

step process if sensitizing light is present. The sensitizing light is not required for

operation of the device.
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methods for hologram stabilization, e.g., thermal fixing, the versatility of

desired optical erasure is maintained. Utilization of the pyroelectric effect

even promises to shift the recording wavelength to the region of the telecom-

munication wavelengths around 1:5mm. The lifetime of the holograms can

approach years in materials like LiNbO3 if the doping level is optimized and

if the crystals are dehydrated. Direct IR recording with light of the operational

wavelength has two practical advantages: (1) Not only gratings, but also more

sophisticated components can be fabricated. A wavelength filter that focuses

the diffracted light into a fiber is one example. (2) The holograms can be

recorded in the final device. This simplifies assembling and adjustment of the

components.
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Spontaneous generation of patterns, pattern formation and complex spatio-

temporal structures in nonequilibrium systems [1] are one of the most intriguing

current topics in science. Spanning as diverse disciplines as biology, chemistry,

sociology, economics, hydrodynamics, solid-state physics, and optics, the phe-

nomena identified as effects of self-organization [2–5] have been actively re-

searched for several decades. Spirals formed by chemical reactions, ripples in

the sand, convection cells in a heated fluid layer are all examples of extended

nonlinear systems under nonequilibrium conditions. Pattern formation can be

observed in these systems if a transverse coupling correlates spatial regions and

dissipation allows for the existence of attracting fixed points.

Although the microscopic nature of each of these experimental situations is

completely different, the resulting effects are strikingly similar (Fig. 9.1). A

homogenous state (e.g., a steady fluid layer, drying layer of paint, plane light

wave) spontaneously bifurcates into an ordered state. The transverse scale of

the pattern evolving is generally independent of initial and lateral boundary

conditions and intrinsic microscopic scales. Instead, the properties of the

spatial coupling (i.e., gradient terms and external feedback) determine the

instabilities. General features such as nonlocality of the coupling can lead to

long-distance correlations, resulting in preferred symmetries. An example is the

prevalent hexagonal or honeycomb structure observed not only in nonlinear

optics but in many other systems, e.g., Rayleigh-Bénard convection.

The aim of this contribution is to provide an introduction to transverse

instabilities and pattern formation in photorefractive media. The authors

would also like to present in detail the large number of different experimental

configurations using photorefractive materials. As a concession to the limited

space, we combine an overview of effects observed in experimental situations

using photorefractive nonlinearities with an exemplary in-depth presentation of

a single specific system. Finally, we introduce the current topics of pattern

control, selection, and stabilization.
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9.1 Pattern Formation in Nonlinear Optics

During the last two decades, nonlinear optical materials have been proven to be

excellent media for the investigation of spontaneous pattern formation [9–13].

Optical experiments allow for direct observation of amplitude and phase in the

lateral plane. Furthermore, analysis of spatial frequencies contained in any

pattern is easily performed using a single lens to obtain an optical Fourier

transform. Controlling self-organizing phenomena is a straightforward task in

optics. Light can be influenced in amplitude and phase by spatial light modu-

lators (SLMs). Spatial frequency filtering is as convenient as local filtering, a

feature distinguishing optics from every other field where self-organization is

observed. Time scales of self-organizing phenomena in optics using photore-

fractive materials are typically in the range of tens of milliseconds up to several

seconds, permitting real-time measurements of dynamics with commonly used

laboratory equiment.

Since the beginning of laser physics, nonlinear optics had been largely

confined to the temporal and longitudinal domain. Applications of lasers and

fiber optics naturally prefer TEM00 modes. Additionally, many scenarios allow

for neglection of the transverse derivative in the wave equation, thus working

under a plane wave approximation. Therefore, transverse effects observed

in the past were often considered unwanted and summed under transverse

(a) (b) (c)

(d) (e) (f)

Figure 9.1. Examples of transverse pattern formation: (a) Bénard convenction cells [6],

(b) wrinkles in dried paint [6], (c) typical hexagonal near field in an optical system

(LCLV) [7], (d) patterned tortoise shell [6], (e) patterns in a chemical reactor [8],

(f) hexagonal pattern in photorefractive two-wave mixing. Images courtesy of

S. Camazine (a,b,d), O. Jakoby (c). H.L. Swinney (e),
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perturbations. While this is still true in many applications, the success of self-

organization in hydrodynamics, chemistry, and discrete systems, as well as the

rising potential for applications in nonlinear optics as e.g. reconfigurable optical

waveguides, has finally raised interest in similar phenomena in nonlinear optics.

In the late 1980s, transverse nonlinear optics began to grow as a discernible

field of optics. Starting from the investigation of nontransverse laser dynamics,

transverse effects in cavities were increasingly considered. Primary attention

was given to lasers as the prototype of pattern forming system in optics [9, 10,

11]. Currently semiconductor lasers in general and vertical cavity surface

emitting lasers (VCSELs) in particular are preferred systems due to their

inherent large apertures, high Fresnel numbers, and their technological rele-

vance. While the observation of pattern dynamics in lasers usually touches the

limits of available image capturing equipment, an equivalence of oscillators

with photorefractive gain to class A lasers can be used to provide a photore-

fractive model system for laser dynamics (see section 9.2.3).

Due to strong inherent instabilities, counterpropagating beams in passive

nonlinear media are current prominent systems exhibiting pattern formation.

Experiments are realized employing a number of different nonlinearities, such

as liquid crystals [14, 15], atomic vapor [16, 17], optically addressable spatial

light modulators (OASLMs or LCLVs) [7], organic films [18], and photore-

fractive materials [19].

9.1.1. Mechanism of a pattern forming instability

Let us adopt as an introductory example what is probably the conceptually

most simple pattern forming system: A thin slab of Kerr medium with a

feedback mirror and a single incident plane wave (in one transverse dimension,

(Fig. 9.2). The feedback mirror creates a second counterpropagating wave.

Optical systems with counterpropagating beams can be modeled by two

coupled paraxial propagation equations using the slowly varying envelope

amplitude approximation (SVEA).

Pattern
observation

beam
splitter

nonlinear
optical
material mirror

input
beam

L

Figure 9.2. Schematic illustration of a thin Kerr slice with single mirror feedback.
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@zA1 � ifD?A1 ¼ gN 1(A1, 2) (9:1)

�@zA2 � ifD?A2 ¼ gN 2(A1, 2) (9:2)

where Ai are the envelope amplitudes of the light field, e.g.,

E1(r, t) ¼ A1(r, t) exp (ik1r) exp (� ivt)þ c:c: (9:3)

N is a nonlinear function of the fields. It is scaled by the control parameter g.
In the Kerr case considered here, N depends on the total intensity.

Additionally, the boundary conditions for A1 and A2 have to be considered.

Open boundary conditions are feasible [20]; however, single mirror feedback

has become a common experimental setup [21]. This is largely due to the fact

that it allows—combined with a thin slice of nonlinear material—for simplifi-

cation of (9.1) – (9.2). Within the thin nonlinear material, the diffraction term

D?Ai can be neglected, while for the round-trip propagation to the mirror, the

nonlinearity is absent (N ¼ 0). Hence, the analytical and numerical treatment

of the model equations is tremendously simplified. With photorefractive media,

the large longitudinal extension of the nonlinear medium with respect to the

diffraction length forbids this reduction, but leads to the generation of a rich

variety of patterns (see section 9.3).

The initial condition for our exemplary system, before the onset of modula-

tional instability, is completely symmetric with respect to any lateral transla-

tion. For its two - dimensional (2d) counterpart, the same would be true for

rotations, as well. Any random variation in local intensity or phase will diffract

and diminish during the round-trip propagation to the mirror. In Fourier space

we would observe corresponding modes,

A(x, z, t) ¼ a0(z, t)þ
X

kx

akx(z, t) exp (ikxx) exp (lkx t), (9:4)

to be damped in time (lkx < 0 for all kx). If the nonlinearity is increased, a

threshold is found where one Fourier mode becomes undamped (lkx ¼ 0 for a

single kc). The plane wave is now unstable with respect to a modulation corre-

sponding to this mode. Beyond the threshold, this active mode will grow expo-

nentially in time, from the slightest initial perturbation. Oversimplified, a local

increase in intensity leads (via the Kerr effect) to the formation of a local

focussing region. Hence, the beam is focused into areas where its intensity is

already increased and defocused in darker regions. Diffraction leads to a coup-

ling of neighboring areas with a preferred lateral distance corresponding to the

active mode: For a given mirror distance L, there are several wave numbers, for

which the phase modulation acquired by propagation through the Kerr slab is

transformed into an in-phase intensity modulation by the linear propagation to

the mirror and back (Talbot effect, [22]). Hence, the mirror distance governs the

transverse wave number of the modulation growing in this scenario [23].

Continuous translational symmetry is lost as a modulation appears: only

translations corresponding to the unstable mode map the light field to itself.

Gunter / Photorefractive Materials and their Applications 1 chap09 Final Proof page 256 28.10.2005 9:13pm

256 Cornelia Denz and Philip Jander



Therefore, the transition from a homogeneous to a modulated state is a sym-

metry breaking bifurcation. For one - dimensional systems, the bifurcation is

usually transcritical, comparable to the bifurcation of a laser at threshold. In the

language of self-organization, the nonlinearity is the control parameter of the

bifurcation while the amplitude of the modulation (akx) is an order parameter.

Passing the bifurcation point and slightly beyond, the degrees of freedom of our

system are immensely reduced. We can now describe its evolution by just deter-

mining the active modes, their respective growth rates, and interactions. A linear

stability analysis can be employed to find the initially unstable wave number and

the range of wave numbers that are undamped at and slightly above the threshold

(Fig. 9.3a). In two dimensions, this corresponds to a ring of unstable or active

modes (Fig. 9.3b). If all of these modes were independent, arbitrary 2d patterns

could be observed. However, unequal growth rates, nonlinear interaction of

modes, and symmetries imposed by the mirror feedback limit the number of 2d

patterns that can actually grow. Thus, the rotational symmetry is broken by

nonlinear interaction of modes. A nonlinear stability analysis can be employed

to determine the growth rates of twodimensional modes. Very often, one finds a

resonant excitation of three wave vectors with equal modulus at angles of 2p=3, a
hexagon, to be the strongest growing 2d mode. That is also the case for many

experiments using a photorefractive nonlinearity.

9.2 Overview of Pattern Formation in PhotorefractiveMedia

In contrast to Kerr media, pattern formation in photorefractive media is based

on wave mixing. Energy can be exchanged between beams, mediated by

wave number k

stable
regime

unstable
regime

co
nt

ro
l p

ar
am

et
er

 γ

kc

γc

(a) (b)

ky

kx

kc

Figure 9.3. (a) Sketched diagram of marginal linear stability for a system displaying

modulational instability. The curve of marginal stability (zero growth rate) separates the

stable and unstable regime. It indicates the minimum control parameter gc required for

any mode with wave number k to become active. The mode with minimum gc is the first

mode (kc) to grow exponentially when the control parameter is slowly increased. (b) Ring

of active modes for the indicated value of g slightly above the critical threshold gc.
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refractive index gratings. The latter results from intensity modulations by

interference between mixing beams.

Longitudinal boundary conditions are essential for determining the possible

effects of self-organization found in a system. One observes increasing com-

plexity with the addition of feedback boundary conditions.

In single beam propagation, wave propagation in time and in longitudinal

direction is analogous. Beam filamentation and related optical spatial solitons,

generated through nonlinear self-focusing of beams, can be observed. Since

solitary beam propagation is an important part of nonlinear transverse optics,

especially where photorefractive media are used, an entire chapter of this

volume (Chapter 11) is devoted to that subject. For pattern formation, single

beam propagation is less interesting, as no symmetric patterns are observed.

Additionally, any transverse modulation can only grow exponentially in propa-

gation direction, but not locally in time. As real media are limited in extension,

the development of instabilities requires a finite seeding. Therefore, we restrict

ourselves to a brief introduction to beam filamentation and present current

developments in this area.

Systems with counterpropagating beams show distinct effects of self-organ-

ization and are prominent experimental scenarios for demonstration of pattern

formation. Two beams are initially coupled via photorefractive two-wave

mixing. The second beam can be an external pump beam or it can be obtained

by means of a mirror. In both cases, feedback allows for the growth of absolute

instabilities. Note that it is not necessary for the light to stay inside a cavity to

enable absolute instabilities. The modulation actually grows in time in the

spatial correlation of the nonlinear response (i.e., refractive index change).

The light field only couples the spatial regions and drives the nonlinearity.

Most of the systems considered in this contribution are of this type.

Systems with two mirror boundaries, i.e., cavities, display rich transverse non-

linear phenomena, leading from competition of few cavity modes up to complex

spatio-temporal chaos. In contrast to the single counterpropagating scenario,

cavities do not allow fields consisting of arbitrary plane waves. Instead, any

system state is a superposition of linear cavity modes. The nonlinear interaction

of these modes then becomes the basic mechanism for pattern formation.

9.2.1 Filamentation of a Single Beam

Already a single beam propagating through a photorefractive crystal can show

modulational instability [24]. Thin, near one-dimensional stripe beams, as well

as broad two-dimensional beams, locally self focus into equidistant spots of

comparable size. As the filaments arising out of local self-focusing are of the

same size as solitons, beam filamentation is generally seen as a precursor to

soliton formation. Due to the anisotropic electrooptic coefficients of photore-

fractive media, a broad 2d beam first breaks into an array of stripe beams.

However, since the stripes are also unstable with respect to filamentation, they

again break up into individual spots after short propagation (Fig. 9.4).
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The modulation developing in the beams arises from initial noise, given a

sufficiently long propagating distance. The further evolution of the filaments is

dynamic and does not reach a symmetric state, as patterns in systems with

feedback do.

Recently, the filamentation of incoherent beams in nonlinear media has

attracted increased interest, following the observation of partially incoherent

solitons in photorefractive materials. Soljacic et al. predicted a threshold for the

onset of modulational instability in noninstantaneous saturable media [25].

Increasing transverse incoherence, as well as saturation, were seen to eventually

take the system below that threshold. Subsequent experiments using SBN as a

focusing nonlinear medium confirmed filamenting beam propagation of inco-

herent beams as predicted [26, 27, 28].

9.2.2 Spatial Instabilities with Two Coupled Beams

Coupling of two beams in longitudinally extendedmedia increases the potentional

complexity of modulational instability beyond filamentation. Inherent feedback

appears as a result of longitudinally extended coupling between the counterpro-

pagating beams. Therefore, the growth of instabilities is no longer limited to the

longitudinal propagation of light. Instead, modulations can grow in time from

practically smooth initial conditions: an absolute instability. Feedback and dif-

fraction provide transverse coupling leading to preferred symmetries. Due to

bidirectional feedback, the system needs not to reach a final steady state. Instead,

dynamical behavior is possible on time scales governed by the photorefractive

effect. This is in contrast to unidirectional beam propagation, where a steady state

in any transverse plane (the ‘‘first’’ plane is the input boundary condition) ensures

a steady state in ‘‘later’’ planes, after transient dynamics.

In this subsection, we introduce different experimental scenarios with coun-

terpropagating beams leading to transverse modulational instabilities. Single-

mirror feedback setups are the most important class of systems. Here, we give a

short introduction to the history of experiments using these setup and will

(a) (b) (c) (d)

Figure 9.4. Numerical evolution of a radially symmetric Gaussian beam in a photo-

refractive SBN crystal biased with an external field. (a) At propagation length z¼0,

(b, c, d) z¼5,15,25. The initial break-up into stripes and subsequently into small

filaments due to anisotropy is clearly visible. After [24], reproduced with kind permission

of Mark Saffman.
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return to them in more detail in Section 9.3. A couple of variations that have

been investigated will be presented in the remaining part of this subsection.

Photorefractive Single Feedback Systems

The first experimental observation of pattern formation in photorefractives was

reported by Honda in 1993 [19], using a nominally undoped KNbO3 crystal.

A second pump beam was obtained by a BaTiO3 self-pumped phase conjugate

mirror (Fig. 9.5a) as well as by reflection at the exit face of the crystal. In the far

field, Honda reported six sidebands at an angle of about one degree around the

central beam. However, the sidebands were azimuthally unstable, i.e., rotating

about the pump beam such that the hexagonal structure was only observable in

short time exposures. Tilting of the beams led to excitation of a stable roll (stripe)

pattern instead of the hexagonal one.

Honda observed the patterns’ disappearance in case of mutually incoherent

pumps and hence identified two-wave mixing through photorefractive gratings

as the underlying mechanism. In standard two-wave mixing, the coupling for

reflection and transmission gratings was compared in BaTiO3 [30], which

exhibits similar phenomena. The difference of about a factor of 20 was a strong

indication that pattern formation is mainly supported by reflection gratings.

(a)

(b)

(c)

Figure 9.5. (a) Schematic illustration of Honda’s original experiment [19] using a phase

conjugate mirror and a KNbO3 cyrstal in immersion oil. To the right, a typical far field

hexagon is shown, as obtained from two counterpropagating waves in KNbO3.

(b) Standard single-mirror feedback setup as used in many experiments. The mirror is

projected into a virtual mirror, in this case, located at the end of the crystal. A Fourier

plane is accessible in the center of the 4f setup. (c) Setup for single-mirror feedback

system without second pump beam [29]. The central beam is blocked by an annular

aperture transmitting only a small band of wave vectors. (The arrows along the crystals’

c-axes represent the direction of energy transfer.)
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Due to the dominantly diffusive redistrubution of charge carriers in KNbO3,

the photorefractive nonlinearity is nonlocal in this configuration; i.e., a phase

shift of p=2 between intensity modulation and resulting refractive index grating

leads to pure energy coupling. The reflected beam is amplified and the original

pump beam is depleted. In this context, it is interesting to note that a minimum

reflection off the back surface of the crystal is sufficient to seed the backward

propagating beam. Amplification by energy coupling will ensure that the beam

power is sufficient to attain the same order of magnitude as the primary pump.

Following the initial reports, the dynamical behavior of the patterns became

a topic of systematic investigation [31]. An additional beam was used to

partially destroy the pump grating, stabilizing the orientation of the hexagonal

patterns. Banerjee et al. [32, 33] reported the observed rotation of the far field

to depend on the crystal tilt. For very small misalignments, a locking behaviour

of the steady state is observed and the rotation ceases. Beyond that limit, the

near field begins to flow in the direction corresponding to the misalignment [34,

35]. The far field starts a periodic ‘‘rock-and-roll’’ motion: Rotations of the

hexagon are followed by rapid reorientations back to the original position.

When using a crystal face as mirror, the phase retardation w(kx) for each

transversemode kx due to linear diffraction is fixed. In the introductory example,

we already noted that change of the mirror distance from the nonlinear medium

is an important experimental parameter, leading to a variable phase retardation.

Therefore, externalmirrors arewidely used in photorefractive systems, too. It has

become customary to image a mirror to the desired location using a 4f assembly

(Fig. 9.5b). Thereby, the projected (‘‘virtual’’) mirror can be positioned within

the photorefractive medium. This formally results in phase retardations corre-

sponding to negative mirror positions, allowing for the experimental investiga-

tion of new nonhexagonal patterns and patternmultistability (Section 9.3). Also,

access to a Fourier plane allows spatial frequency filtering of the feedback signal.

This is exploited by Fourier control techniques (Section 9.4).

Modulational instability in two-wave mixing using a nonlocal nonlinearity

was investigated theoretically by Saffman et al. [36]. A threshold condition was

obtained by means of a linear stability analysis. However, a disagreement with

the experimental observations was already seen by the original authors. In a

subsequent analysis by Honda and Banerjee, a slightly modified approach led

to improved agreement with experiments [37]. In the same letter, the authors

experimentally confirmed a dependence of the transverse wave numbers on the

mirror distance. For positive feedback mirror distances (i.e., well outside the

crystal), a constant relation

2DkL ¼ p (9:5)

can be found, indicating again reflection gratings [30] and relevance of the

Talbot effect [22, 23] (compare Section 9.1) for pattern formation in photore-

fractives: this distance corresponds to an inversion of the intensity modulation

for the observed wave numbers during free-space propagation.
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In more recent experiments with larger photorefractive coupling, non-hex-

agonal patterns were observed using an external feedback mirror [35, 38 – 40].

We will focus on current results of single mirror feedback systems with KNbO3

and the theoretical description in more detail in the remaining sections of this

contribution. But first, we will present a number of systems related to but

distinct from the type presented before.

Variations to the Theme

Two Pump Beam Coupling Without Mirror

Feedback through an external mirror is not a necessary prerequisite for pattern

formation in photorefractives. Through the inherent feedback provided already

by the counterpropagation of light waves, two external pump beams are

sufficient to observe modulational instability. Mamaev and Saffman demon-

strated this by counterpropagating two incoherent pump beams (derived from

two separate lasers) in slightly Cerium-doped SBN:60 [41]. Obviously, reflection

gratings cannot form in this scenario. Instead, the instability is now mediated

by transmission gratings formed by pump beams and copropagating sidebands.

The photorefractive effect is also somewhat different in this setup. Instead of

diffusion dominated gratings induced by interference, an externally applied field

is screened by the photorefractive space charge field. The resulting nonlinearity

can be described as an anisotropic saturable Kerr nonlinearity, identical to that

used for the generation in optical spatial solitons and also by Soljacic et al. for

spatially incoherent single beam propagation (Section 9. 2.1). Due to anisotropy,

roll patterns are stable above threshold, with their orientation fixed by the

anisotropy. However, upon increasing the nonlinearity, hexagons are stabilized

and no remaining sign of anisotropy in the generated pattern is observed.

In experiments with dominant reflection gratings, pattern formation is also

observable without external feedback. Schwab et al. showed theoretically and

experimentally the existence of transverse patterns in KNbO3 for two coherent

pump beams without a mirror [42]. However, one of the pump beams had to be

frequency detuned with respect to the other one. Although this is not a general

requirement, frequency detuning lowers the threshold for modulational in-

stability. Microscopically, frequency detuning corresponds to a longitudinally

moving reflection grating in the crystal sample and also leads to a frequency

shift in the sidebands. A linear stability analysis (see Section 9.3.2) covering the

case of external pump beams with frequency detuning is published in [43, 44].

Sideband Feedback Without Second Pump Beam

All counterpropagating pattern formation schemes rely on interaction of two

counterpropagating pump waves. However, this is also not a strict requirement,

as Lushnikov and Mamaev showed using again a single feedback system with

KNbO3 [29] (Fig. 9.5c). A circular band-pass aperture can be inserted in the

Fourier plane in the 4f feedback setup. Thereby it is possible to block the pump

beam but allow feedback of sidebands with a selectable range of wave numbers.
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When the aperture permits a large range of sidebands, the resulting near and far

field show speckled scattered light with complex spatio-temporal dynamics. By

reducing the band pass to about the size of 3–4 far field speckles, the near field

starts to develop hexagonal symmetry and the far field shows the familiar six

symmetric sidebands in a steady state. In this case, the forward scattered field

serves as a seed wave for the growth of a hexagonal mode. However, this mode

only remains stable if most other wave numbers are forcibly suppressed by

means of the aperture stop.

Materials with Local Response

Most scenarios leading to pattern formation with photorefractive materials are

based on two-beam coupling via reflection gratings with a nonlocal nonlinear-

ity; i.e., materials with dominant diffusive charge transport and hence refractive

index gratings with a phase shift of about p=2 with respect to the intensity

modulation are used. For the case of a local nonlinearity, a mechanism called

‘mirrorless coherent oscillation’ was previously known to support an absolute

instability leading to spontaneous emission of two sidebands [45]. A similar

mechanism was proposed to result in transverse modulational instability and

hexagon formation for local photorefractive nonlinearities [46]. A threshold

condition was obtained but yielded too high quantitative values and indicated

the locality of the nonlinearity as a requirement for the oscillation.

Using a modified model, the same group later proposed a revised linear

stability analysis for the case of local response through dominant photovoltaic

fields [47]. Odoulov et al. experimentally demonstrated the generation of hex-

agonal patterns in LiNbO3:Fe [48] with a strong photovoltaic effect. Also, the

temporal development of pattern formation was considered. However, a

detailed experimental analysis of the threshold was never performed for this

material, probably in a large part due to the extremely long time constants. As

the photorefractive coupling was decreased toward the threshold, the authors

report rise times for the patterns up to one hour.

Coherent Oscillation in Materials with Nonlocal Response

With the modified analysis published in [47], the mechanism called coherent

oscillation became feasible for the case of nonlocal photorefractive nonlinear-

ites as well [49]. In fact, the semantically different approaches called transverse

modulational instability in two-wave mixing [37] and mirrorless coherent os-

cillation as a four-wave mixing effect [47, 49] are seen to be equivalent ap-

proaches to identical effects. Hence, it is not surprising that the respective

threshold conditions obtained by linear stability analyses in both approaches

were found to be in good agreement.

We will revisit the linear stability analysis for the single-mirror feedback

system in Section 9.3.2. For the remainder of the present section, we shall

briefly look at systems where the photorefractive medium is enclosed by two

mirrors: cavities.
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9.2.3 Pattern Formation in Cavities

Using a cavity, a laser beam can be repeatedly fed back into a nonlinear medium,

creating an actively oscillating system. Such a cavity with a photorefractive gain

offers increased complexity of nonlinear effects [50]. Within a photorefractive

oscillator, the competition between linear cavity losses and nonlinear gain

coupled with diffraction provides a basic mechanism for self-organization.

The control parameter of this nonlinear system is the photorefractive gain.

A threshold is found below which existing modes are only finitely amplified as

cavity losses limit the growth rates. Above threshold, active modes can arise

from noise. Depending on the number of modes allowed by the cavity, mode

competition can lead to arbitrarily complex patterns.

Naturally, the modes in cavities are not plane waves with continuous spectra

of transverse wave numbers. Rather, a discrete set of Laguerre-Gaussian and

Hermite-Gaussian modes represent the basis for self-organization. The number

of allowedmodes depends on the Fresnel number of the cavity, which is defined as

the smallest aperture in the cavity divided by resonator length and wavelength

(Fig. 9.6). For low Fresnel numbers, the system dynamics are limited to a few

competing modes [53]. Higher Fresnel numbers allow for complex spatio-

temporal states [51, 54]. In the latter case, the system can be described based on

phenomenological amplitude equations in analogy to hydrodynamical system. [1])

It can be shown that in a limit, the photorefractive oscillator is formally

equivalent to class A laser systems [55]. However, the temporal dynamics of

photorefractive systems are considerably slower than that of their laser coun-

terparts. Therefore, operating with a low Fresnel number and a low number of

modes, the dynamics of lasers can be modeled by photorefractive oscillators.

Not surprisingly, in the investigation of these systems, some emphasis has been

placed on nonlinear coupling of a few fundamental modes [56, 57, 58].

Beyond this application, resonators with photorefractive gain offer distinct

characteristics, making them interesting experimental systems in themselves.

Exemplarily, owing to the extremely narrow wavelength selectivity of photore-

fractive gratings, the gain line of photorefractive media is orders of magnitude

(a) (b) (c)

Figure 9.6. Transverse patterns in cavities with different Fresnel number. (a) Low

fresnel number (F � 3), (b) medium Fresnel number (F � 10), (c) high Fresnel number

(F � 1000) [51, 52].
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narrower than of conventional laser gain media. As a consequence, the mode

spectrum of a resonator can be accurately investigated by tuning the frequency

of the pump beam (Fig. 9.7). A discussion of self-organization in a photore-

fractive unidirectional ring resonator can be found in a recent publication by

one of us (C. Denz, [52]).

9.3 Spotlight: KNbO3:Fe Single Feedback System

In this section, we will present a specific photorefractive (PR) pattern forming

system in detail. We consider the single mirror feedback setup with potassium

niobate (KNbO3:Fe) as the photorefractive nonlinearity (Section 9.2.2). Being

close toHonda’s initial experiment, this configuration has received wide attention

in the past. Today, it is one of the few PR systems where analytical and numerical

results have been compared with detailed experimental data. Experimentally, a

rich variety of stationary and nonstationary patterns is observed, including coex-

istence and competition of patterns with nonhexagonal symmetries.

Starting with the experimental and analytical models, the outlines and results

of a linear stability analysis (LSA) are discussed in this section. In addition, a

recently developed experimental verification for LSA predictions is presented.

Nonlinear stability analyses are briefly outlined, discussing the implications for

stability of nonhexagonal patterns. We continue with presenting selected ex-

perimental observations. A brief introduction to the numerical treatment of the

model equation closes this section.

9.3.1 Experimental and Theoretical Model

A typical setup is shown in Fig. 9.8. A focused laser-beam illuminates the

crystal (A1) and interferes with its reflection (A2) from the feedback mirror.

The PR crystal is oriented to provide maximum amplification of the reflected

beam via photorefractive two-wave mixing (c-axis nearly parallel propagation

direction, a-axis along light polarization).

In early experiments, the feedback mirror was located directly behind the

crystal (initially, Honda used a BaTiO3 self pumped phase conjugate mirror

Figure 9.7. Illustration of mode competition and the possibility to ‘‘scan’’ the cavity

modes with the very narrow photorefractive gain line. While the cavity modes have

bandwidths in the MHz range, the gain line has less than 1 Hz. In the situation depicted

here, competition between the two modes and mode beating would be observed [52].
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[19]). However, it is convenient to use a feedback assembly that contains a 4f

projection setup. Effectively, a virtual mirror can be created in any desired

location, including within the photorefractive crystal. This configuration gives

access to the Fourier plane of the feedback system. This can be exploited to

control pattern formation using the method of Fourier filtering (Section 9.4).

Virtual mirror positions inside the crystal are required for investigation of

nonhexagonal patterns (Section 9.3.4). The virtual mirror’s distance L from

the crystal’s exit face is normalized to the length l of the crystal:

d ¼ n0L

l
(9:6)

where n0 � 2:33 is the linear refractive index for KNbO3:Fe. When the virtual

mirror is located at the back face of the crystal, the normalized diffraction

length (or normalized feedback distance) d is equal to 0, and d ¼ �1 when the

virtual mirror is located at the front face of the crystal.

The strength of the nonlinearity, the photorefractive coupling gl, can be

selected experimentally by rotating the polarization angle a of the pump

beam using a half-wave plate (l=2). Effectively, the b-polarization component

Figure 9.8. Experimental setup for pattern formation in counterpropagating two-wave

mixing using KNbO3. The crystal is oriented to provide amplification of beam A2 and

tilted by a few degrees to avoid on-axis reflections at the faces. The 4f feedback arm

projects a virtual mirror (M) at a distance L off the crystal exit face. Additionally, the

Fourier plane is accessible in the feedback arm (F ). o.d.:optical diode; M: mirrors; BS:

beam splitters; MLS: mircoscope lens system.
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induces a second grating. However, the influence to both polarization compon-

ents is small: coupling to the b-component is weaker by nearly an order of

magnitude, due to the different electro-optic coefficients of KNbO3

(r113 ¼ 10�11pm=V , r223 ¼ 0:2r113 for light polarized along the crystal’s a- and

b-axis respectively [59], compare (9.14) ). For the a-component, the Bragg

condition is not met due to the anisotropic linear refractive index. Thus,

changing the polarization influences the amplitude of the induced refractive

index modulation and the photorefractive coupling:

gl ¼ g0l cos2 (a)þ r223

r113
sin2 (a)

� �
(9:7)

where g0l is the maximum possible coupling for the crystal sample.

Typical experimental conditions are a frequency doubled Nd:YAG cw laser

focussed into a beam of several hundred microns waist diameter at the back

face of the crystal. Incident powers on the crystal are in the range of a few to

30 mW. Crystals vary in iron dopant level and medium length. Exemplary

values are 2000–5000 ppm Fe in the mold and 5–8 mm crystal length along

the c-axis.

Model Equations

Consider two counterpropagating plane waves interfering in a photorefractive

medium. Ignoring the vectorial nature of the electromagnetic field and assum-

ing the same polarizations, the interference of the waves

E1(r, t) ¼ A1(r, t) exp (ik1r) exp (� ivt)þ c:c: (9:8)

E2(r, t) ¼ A2(r, t) exp (ik2r) exp (� ivt)þ c:c: (9:9)

results in an interference pattern

I(r, t) ¼ jE1 þ E2j2 ¼ jA1j2 þ jA2j2 þ A1A
�
2 exp (iDk � r)þ c:c: (9:10)

The intensity modulation is characterized by its grating vector K ¼ Dk ¼
k2 � k1, the mean intensity I0 ¼ jA1j2 þ jA2j2, and the fringe visibility

m ¼ A1A
�
2=I0 þ c:c:

In our case of frequency degenerate waves counterpropagating along the z-

direction, we can rewrite (9.10) as

I(z, t) ¼ I0[1þm cos (2kz)] (9:11)

Using the Kukhtarev model (see Chapter 3), the intensity modulation resuts

in a modulation of the space charge field. Assuming a linear medium response,

we can recover a space charge field, which follows the intensity modulation

with a phase lag of p=2 due to the predominant diffusion in KNbO3:Fe.

ÊEsc ¼ Esc sin (2kz) (9:12)
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The approximation of a linear response requires that the modulation m is

small compared to 1 [60]. Due to the mirror boundary condition in our case,

however, m � 1 throughout the interaction region. Nevertheless, it was shown

that a constant correction factor can accomodate this mismatch [61].

Via the linear electroopic effect, the static space charge field induces a change

in the refractive index:

Dn ¼ � 1

2
n30 < pjr � Escjp > (9:13)

[59] where p is the unit vector of light polarization and r is the electro-optic

tensor of rank 3. As Esc is parallel to the propagation direction, which is also

the c-axis of the PR crystal, (9.13) reduces to

Dn ¼ � 1

2
n30[r113 cos

2 aþ r223 sin
2 a]Esc (9:14)

where a is the angle between the polarization and the crystallographic a-axis1.

The nonlinear refractive index and the ansatz of two coupled waves are

inserted into the paraxial wave equation. The final model [61, 62] consists of

two coupled partial differential equations describing the propagation in the

nonlinear medium

@zA1 � ifD?A1 ¼ �QA2 (9:15)

�@zA2 � ifD?A2 ¼ Q�A1 (9:16)

and the time evolution of the refractive index grating Q:

t@tQþQ ¼ 1

2
g

A1A
�
2

I0 þ Id
(9:17)

where g ¼ k0L=n0 D̂Dn is proportional to the largest attainable refractive index

change, Id is the dark intensity (typically several orders of magnitude smaller

than the laser intensity), and f ¼ L=2k0w
2
0 collects the scaling of spatial coord-

inates (L: crystal length, k0: wave number of the pump waves, w0: transverse

beam waist). Note that the material response does not depend on total inten-

sities but only on the ratio of the pump beams. However, the dynamics can still

be influenced by the total intensity, as the photorefractive time constant t
decreases with increasing intensity.

For characterization and analysis of the patterns generated, the wave num-

bers and symmetries of a modulation developing in the pump beams are

primary observables. The former can be compared with wave numbers of

unstable modes obtained by linear stability analysis.

1 Strictly speaking, for KNbO3, one should distinguish the refractive indices along the
a- and b-axes. However, their difference is minute and hence usually neglected at this
point.
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9.3.2 Linear Stability Analysis and Experimental Verification

A linear stability analysis yields the threshold of marginal stability of the plane

wave solution against growth of transverse modulations. For simplicity we

consider the model (9.15–9.17) in one transverse dimension:

ifD?Ai ! if @2
xAi (9:18)

A plane wave ansatz (Fig. 9.9) with a weak single mode transverse perturb-

ation is assumed:

An ¼ An, p[1þ anþ(x) exp (ikxxþ Lt)þ an�(x) exp (� ikxxþ Lt)], (9:19)

with n ¼ 1, 2, dropping terms quadratical in an�. Here, A1, 2 are the counter-

propagating envelope amplitudes; kx is the wave number of the transverse modu-

lation, and x is the transverse direction. The corresponding boundary conditions

are open at the input face of the crystal (z ¼ 0) and a mirror in a distance d (9.6)

from the z ¼ l face.

a1�(x, z ¼ 0, t) ¼ 0 (9:20)

a2�(x, z ¼ l, t) ¼ �
ffiffiffiffi
R

p
F I{ exp [iwd ]F{a1�(x, z ¼ l, t)} } (9:21)

F and F I are forward and backward Fourier transforms and R is the mirror

reflectivity. fd is the phase lag introduced by the round trip to the mirror and

back

fd ¼ kdld; kd ¼ k2x
2k0n0

(9:22)

and can be easily derived by integrating the free space propagation equation.

Here, kd is a normalized transverse wave number (but with a square relation to

kx), n0 is again the refractive index of the medium (n0 � 2:33 for KNbO3:Fe),
L in (9.19) is the complex growth rate of the considered transverse mode,

L ¼ lþ id: (9:23)

Figure 9.9. Schematic interaction geometry for linear stability analysis. Counterpro-

pagation of two plane waves (A1, p, A2, p) and 4 weak sidebands at angles Q. A sideband

emitted at angle Q corresponds to a modulation with transverse wave number kx � Qk0,

where k0 is the wave number of the pump beam.
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In the following, we restrict ourselves to nonoscillating modes (d ¼ 0)2. The

real part of the growth rate l determines whether the unperturbed plane wave

solution is stable:

for l < 0, the unperturbed solution is stable

for l > 0, the unperturbed solution is unstable

for l ¼ 0, we find neutral or marginal stability.

As we are interested in determining the threshold of instability, we set L ¼ 0.

After some calculation, we can obtain [37, 44, 61, 63] a threshold condition

connecting the control parameter gl, feedback distance d and modulation wave

number kdl:

cos xl cos kdl þ kdl

xl
sin xl sin kdl þ gl

2xl
{ sin xl cos (kdl(1þ 2d) ) } ¼ 0 (9:24)

with xl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kdl)

2 � (gl)2

4

q
.

Discussion of linear stability analysis Results

The condition for marginal stability (9.24) is evaluated numerically. Fig. 9.10a

displays a curve of marginal stability typical for this system. In contrast to

experiments using thin media, we do not necessarily observe separate balloons

of unstable regions. Instead, given a sufficiently high control parameter, broad

bands (in the case shown a single band) of unstable modes are found.

Generally, results of linear stability analyses should only be considered close

to the first threshold (denoted ‘‘I’’ in Fig. 9.10a). However, experiments show

Figure 9.10. Numerical evaluation of the threshold condition (24): (a) Marginal stabil-

ity curve for feedback distance d ¼ 0. For eachmode kdl, theminimum control parameter

value gl is determined, where the plane wave becomes unstable with respect to this mode.

(b) Evolution of the modes with minimum gl for different mirror positions d. The first (I)

and second (II) minimum from (a) are marked in both plots. A comparable plot (not

shown) can be created tracking the control parameter values of the minima.

2 Nonoscillating modes were considered in the initial linear stability analyses for this
system [36, 37]. A recent expansion includes oscillating modes that are important for the
analysis of open boundary conditions [43, 44, 63].
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that even when driving the system far above threshold, the principal modes’

wave numbers do not change appreciably. Hence, the evolution of the minima

(I, II) is of special interest. Fig. 9.10b plots the change of the wave numbers of

the first two minimas, as the feedback mirror is moved. Note that according to

(9.6), feedback distances �1 < d < 0 correspond to virtual mirror positions

within the photorefractive crystal.

The wave numbers can be converted into an angular sideband separation. As

this corresponds directly to the lateral size of the far-field pattern, experimental

data concerning this quantity had been published earlier [30, 38, 40]. A good

agreement for virtual mirror locations outside of the crystal has been con-

firmed. For mirror positions around d ¼ �0:5, a disagreement between ob-

served pattern size and LSA prediction had been reported [38].

Experimental Stability Analysis

A recently developed technique [64] for directly measuring the curves of marginal

stability in nonlinear optical systems in general was employed by us to investigate

this disagreement:Amaskpermitting only transmissionof pumpbeams anda single

sideband pair is inserted in the feedback assembly’s Fourier plane. Subsequently,

the photorefractive coupling is increased slowly until onset of modulational

instability is observed. Scanning all available wave numbers and all availablemirror

feedback distances, the complete threshold curves are determined. Being very close

to the analytical version, this procedure is an experimental stability analysis.

Figure 9.11a gives exemplary results of this procedure O. Kamps, Ph. Jander,

C. Denz, ‘‘Instability threshold of a photorefractive pattern-forming system’’,

Phys. Rev. E 72 (2005) 016215. Qualitatively, the shape of the curves of marginal

stability was confirmed. However, a significant disagreement in the values of

photorefractive coupling was observed. Given the maximum PR coupling avail-

able from the PR crystal, many of the modes detected should not have been

accessible. Wave numbers of modes corresponding to minima of the threshold

and their dependence on the mirror position are shown in Fig. 9.11b. For mirror

positions within the nonlinear medium, a significant deviation is observed, in

complete agreement with earlier reports based on the transverse size of rolls and

hexagons in the free-running system [38].

The discrepancies found are presently unclear and therefore are topics of

ongoing research. They are actually further investigated with respect to their

consequences for the observation of non-hexagonal patterns in this system.

Beyond the initial wave numbers, the evolution of the full 2d pattern is still a

challenge to theory and numerics. As we will see in Section 9.3.4, the single

feedback system with KNbO3:Fe supports a rich variety of basic and composite

patterns. At the time of writing, numerical treatment of this problem (Section

9.3.5) is still not able to yield sufficient 1d data for investigating the experimental

data reported in this section. Two-dimensional simulations are computationally

expensive and suffer the same convergence problems as 1d numerics.

Therefore, the only theoretical access to 2d pattern formation is the non-

linear analysis of the bifurcation.

Gunter / Photorefractive Materials and their Applications 1 chap09 Final Proof page 271 28.10.2005 9:13pm

9. Spatio-Temporal Instabilities and Self-Organization 271



9.3.3 Nonlinear Stability Analysis

Performing a nonlinear analysis, it is possible to attain more insight to the

evolution of the two-dimensional patterns beyond the initial threshold. A

nonlinear analysis takes into account interactions between the weak sidebands

neglected in the linear stability analysis, which determine the final two-dimen-

sional pattern. For analyzing the evolution of two-dimension modes, one first

needs to select the relevant wave vectors, whose interaction is to be examined.

Unfortunately, selection of these basic modes is a manual task and essentially

guesswork. An initial nonlinear analysis by Lushnikov [65] concentrated on

three primary modes with intermode azimuthal angles of 2 � p=3 and degener-

ate wave numbers. As for each wave vector k?, a conjugate wave �k? exists,

the stability of hexagons vs. roll patterns and the unperturbed solution can be

(a)

(b)

Figure 9.11. (a) Experimental stability analysis for d ¼ 0. Qualitative agreement of the

shape of the LSA curves (Fig. 9.10a) and the minimas’ wave numbers is visible. The

control parameter values disagree significantly. (b) Wave numbers of threshold minima

vs. mirror distance. For virtual mirror positions within the PR crystal, a significant

disagreement is observed. Figures courtesy of O. Kamps.
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analyzed using this approach. One obtains a set of three order parameter

equations of the Ginzburg-Landau type

@tAi ¼ n0Ai þ mA�
j A

�
k � [g0jAij2 þ 2gp=3(jAjj2 þ jAkj2)]Ai (9:25)

where i, j, k ¼ 1, 2, 3. The first term describes the linear instability of the mode

Ai. It is proportional to the distance g � gth from the threshold. The second

term corresponds to a geometrical interaction of the modes and supports an

explosive resonant excitation of hexagonal patterns that is saturated by the

generation of higher harmonics by four-wave mixing (third term). This kind of

order parameter or amplitude equation is common to many systems developing

hexagonal patterns [1]. Essentially, all specifics of a given system are contained

in the coefficients for the individual terms.

The resonant excitation and generation of higher harmonics is sketched in

Fig. 9.12. Higher harmonics can be generated by wave mixing of the basic

modes (corresponding to geometric addition of their wave vectors in the Four-

ier plane), e.g., 2k1 (with modulus 2k0), k1 � k2 (with modulus
ffiffiffi
3

p
k0), etc. A

special case is ki þ kj, which results in �kk. Here the mixing of two modes is in

resonance with the third mode, leading to the characteristic explosive instability

of hexagon solutions.

Eqs. (9.25) have four pure classes of stationary solutions: The homogenous

state (Ai ¼ Aj ¼ Ak ¼ 0), roll or stripe solutions (Ai 6¼ 0, Aj ¼ Ak ¼ 0), and

positive and negative hexagonal solutions, depending on the relative phases of

the three modes. From the resonant second-order term, one can already infer

the stability of hexagonal solutions over rolls above the threshold. In fact, for

other systems described by (9.25), a potential minimum for hexagonal solutions

can be shown (e.g., Bénard instability, [2]).

Lushnikov determined the coefficients for the photorefractive KNbO3 non-

linearity with external feedback mirror in [65]; the corresponding bifurcation

diagram is shown in Fig. 9.13. Negative hexagons bifurcate subcritically and

Figure 9.12. Two-dimensional hexagon composed of three basic wave vectors with

degenerate modulus (A1, A2, A3). Two examples of higher harmonics are highlighted:

2�A1 and A1 �A2. Note the condition for mutual resonant excitation of all three wave

vectors is only available in hexagonal arrangement: A1 þA2 þA3 ¼ 0.
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are stable above threshold. Only for very high order parameter values, they lose

stability to roll patterns. Coexistence of stable roll and hexagon solutions is

known to be connected with penta-hepta defects in hexagonal structures [66],

which are readily observable in experiment. Subcritical bifurcation of hexagons

has been experimentally verified and interpreted as a first-order optical phase

transition [67].

Taking into account only three transverse modes at fixed angles, the initial

nonlinear analysis was unable to make predictions about the stability of ex-

perimentally observed squares and dodecagonal patterns (see Section 9.3.4).

Sandfuchs et al. generalized the analysis to include 6 fundamental modes, thus

supporting all named classes of patterns [68]. The subcritical bifurcation of

hexagons was reproduced. Squares and dodecagons were shown to be stable far

above threshold for a mirror distance of d ¼ 0, but this has not yet been

confirmed experimentally. The required nonlinearity is still too high for cur-

rently available crystal samples. In the parameter ranges where squares and

dodecagons were observed in experiment, no nonlinear stability analysis has

been executed to our knowledge.

9.3.4 Experimental Observations: Multiple Pattern Region

The typical pattern in the single-mirror feedback system with KNbO3 as photo-

refractive nonlinearity is the hexagonal pattern (Fig. 9.14). The corresponding

far field shows six primary sidebands and several higher harmonics. Many

experimental observations for this system have already been described in Section

9.2.2 of this contribution. Here we would like to concentrate on the observation

of nonhexagonal patterns for a small parameter range of the virtual mirror

Figure 9.13. Bifurcation diagram for three mode patterns. After an initial subcritical

bifurcation, negative hexagons are stable. Around the bifurcation, single roll patterns

are relatively unstable but can coexist and finally become the only stable solution for

higher control parameter values.
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position, as the available variety of nonhexagons is a unique characteristic of

single-mirror feedback systems with a photorefractive nonlinearity.

Patterns with hexagonal symmetry are observed for normalized feedback

mirror distances d < �0:8 and d > �0:3 for any photorefractive coupling

above the threshold, i.e., for all virtual mirror positions far enough away

from the crystal center. With the range �0:8 < d < �0:3, multiple types of

non-hexagonal patterns are observed.

‘‘Squeezed hexagonal’’ patterns (Fig. 9.15b), which consist of three modes

with two distinct wave numbers, are dominantly observed. In contrast to

experiments with noncollinear pump beams (Section 9.2.2, [34]), this pattern

can be observed with different azimuthal orientation. Hence, symmetry break-

ing by misalignment can be ruled out. It is interesting to note that the two wave

numbers present in this pattern lie on different branches of wave number

development (see. Fig. 9.11b). Observed at about d ¼ �0:7, the two inner

spots correspond to the lower left-hand branch, increasing toward the crystal

center while the four outer spots have wave numbers on the lower right hand

branch, which features increasing wave numbers through the crystal center.

Indeed, changing the mirror position d leads to wave number changes in the

squeezed hexagon corresponding closely to these branches’ evolution.

Less commonly, one can observe patterns with 12-fold symmetry (Fig. 9.15d,

upper row). This class is only observed immediately after the onset of modula-

tional instability. There are two kinds of this ‘‘dodecagonal’’ pattern that can

be distinguished by observing the near field. The common type has a near field

consisting of two hexagonal domains rotated by 30 degrees and separated by a

line of penta-hepta defects. The second, rarer type shows a quasicrystalline near

(a) (b)

Figure 9.14. (a) Typical hexagonal honeycomb structure in the near field. The beam

leaving the crystal is imaged in the input face plane. Beam diameter approx. 350mm.

(b) Far field, Fourier transform of (a). The far field pattern is primarily observed as it

shows the wave vectors contrubuting to the pattern. Angle between central beam and

primary sidebands here approx. 0.8 degree.
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field (Fig. 9.15d, lower row). The latter kind of patterns are well known as

quasipatterns in experiments with sodium vapor [69].

The second prominent pattern class are ‘‘square’’ patterns (which are in fact

sometimes closer to parallelograms, Fig. 9.15a,c). They exist for mirror posi-

tions �0:7 < d < �0:3 and can coexist and compete with simultaneously ex-

cited hexagons (Fig. 9.16h) and squeezed hexagons. When competing, two

patterns will usually share a single roll component.

Other combinations of competing and coexisting patterns are shown in

Fig. 9.16(a–g). Some can obviously be composed into basic patterns, however,

in many cases, the underlying patterns no longer can be recognized.

Due to the rich variety of patterns observable in a small parameter range, this

region of normalized feedback distances �0:8 < d < �0:3 has been called

multiple pattern region [40]. For most virtual mirror positions within this

region, more than one pattern type is accessible in experiment. The probability

for each pattern to be generated after an experiment is switched on shows a

strong dependence of the mirror position d, with overlapping nonzero prob-

abilities for different patterns. If two patterns have about equal probability,

very often, switching between one type and the other can be observed on a long

time scale (tens of seconds to minutes vs. 1–5 seconds for initial pattern build-

up) [44]. In between periods of coexistence can be in the range of 30 seconds.

As the existence of nonhexagonal patterns has only been hinted at by theory,

but no stability analyses comparable to experimental scenarios are available at

present, a numerical investigation of the model (15–17) could lead to further

insight.

Figure 9.15. Pure patterns observed in the multiple pattern region. (a) Square pattern,

(b) squeezed patern, (c) rectangular pattern, (d) dodecagonal pattern. Upper row: Far field;

lower row: Typical near field pattern.
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9.3.5 Numerical Treatment

In contrast to many other optical nonlinear pattern formation setups, the

photorefractive medium is not a thin slice, but a bulk medium. Thereby, the

numerical treatment is considerably complicated. Recall (9.1):

@zA1 � ifD?A1 ¼ gN 1(A1, 2): (9:26)

For the thin Kerr medium considered in Section 9.1, diffraction could be

neglected within the medium while no nonlinearity was present outside of the

medium. Therefore, Eq. (9.1) could be separated into a nonlinear part and a

linear part, which can both be readily solved, even with a full 3d model (in

which the nonlinearity is essentially only a 2d plane). This separation is impos-

sible with photorefractive media. The medium length required for any appre-

ciable reflection grating is such that the diffraction during propagation cannot

be neglected.

Figure 9.16. Complex patterns observed in the multiple pattern region. (a) Two square

patterns rotated by 45 degrees such that higher harmonics of the interior pattern

conincide with the exterior’s fundamental wave numbers, (b) two rectangular patterns

rotated such that they can share one component wave vector, (c) two rectangular

patterns rotated by 90 degree, (d) square and rectangular patterns, (e) complex coexist-

ence of several rolls without obvious decomposition into basic patterns, (f) square

pattern missing two fundamental spots while their wave vector is still present in the

total pattern, (g) complicated pattern, consisting of an elongated hexagon with 2 extra

rolls, (h) competing hexagonal and square pattern. While both patterns share a common

wave vector, state (h) falls into one of its component state after about 10 seconds. Note

that this is considerably longer than the average build-up time of a pattern.

Gunter / Photorefractive Materials and their Applications 1 chap09 Final Proof page 277 28.10.2005 9:13pm

9. Spatio-Temporal Instabilities and Self-Organization 277



As the propagation part is solved in Fourier space, while the nonlinear term

is only treatable in real space, every propagation step requires two Fourier

transforms. For each step, the propagation part is solved independently and a

nonlinear correction is applied. This procedure is known as split step beam

propagation method [68]. Concurrent beam propagation in a fixed material is

iterated within a relaxation procedure until convergence. This is again con-

tained in a loop for the temporal evolution of the material (9.17). Especially for

full (2þ1þtime)d treatment of the problem, this procedure [61] is computation-

ally highly expensive.

Fig. 9.17 shows the A2 (back-propagating) component. The temporal devel-

opment starts with an unperturbed plane wave solution. The increase in power

due to energy exchange with the incident pump A1 is clearly visible. A trans-

verse modulation develops within a time corresponding to 4 seconds. The

transverse modulation of the second pump (not shown) has a phase shift of p.
Using the numerical procedure described here, Sandfuchs [61] investigated

the threshold and the transverse wave numbers of modulational instability for

different mirror distances with one-dimensional numerics (Fig. 9.18). The

resulting wave numbers are in agreement with both the linear stability analysis

and experimental data. For the multiple pattern region, where a strong dis-

agreement between experiment and theory was found, the model was not solved

numerically due to strong divergences. The comparison of numerical with

linear stability analysis and experimental data in this highly interesting param-

eter region still remains an open task. Further theoretical understanding is

crucial, especially for the employment of this system as a model for the

investigation of control techniques in extended nonlinear systems.

9.4 Controlling Pattern Formation

The key to any application of pattern formation is its control. External control

of self-organization enables the experimenter to choose any state out of mul-

tiple existing solutions. Accessing data storage or processing capabilities of

nonlinear systems requires the ability to address and stabilize any desired

Figure 9.17. Numerical simulation of the model equations 15–17 (A2 component is

depicted). The mirror is to the right of each time frame, such that the beam propagates

to the left.
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solution, preferably without changing the physical system and its spectrum of

solutions (noninvasive control).

The aim of controlling pattern formation is to select and stabilize solutions of

the system that are relatively unstable with respect to another solution. This

could mean stabilizing the homogeneous solution, thus suppressing undesired

modulational instability. However, specific pattern states could also be

exploited as basic units of self-organizing data storage or processing devices.

Pattern formation in photorefractives offers unique properties for the investi-

gation of control schemes in transversely extended optical systems.

Control of nonlinear systems started with the pioneering work by Ott,

Grebogi, and Yorke, who proposed stabilization of unstable orbits in chaotic

systems by application of small well-chosen perturbations [70]. As choosing the

control signal requires knowledge of the systems’ phase space, its direct appli-

cation to many optical systems is difficult. Pyragas proposed continous driving

with small perturbations derived from a measurable system quantity [71], where

prior analytical knowledge of the system is unnecessary (delayed feedback

method). Following the technologically highly relevant suppression of spatio-

temporal dynamics in lasers [72], spatial control of patterns has now been

z

Figure 9.18. Threshold value and wave number derived from numerical solution of 1d

model equations (15–17). Crosses represent stationary, open marks oscillating thresh-

olds. Due to divergences, no data could be obtained for the multiple pattern region.

Reproduced from [61] with kind permission of Oliver Sandfuchs.
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established as a essential branch of transverse nonlinear optics, including the

systems presented in this contribution [73].

With the ability to manipulate a system in real time in the Fourier plane

without any computational effort, Fourier control is a prominent control

method in optical systems [73 – 79].

In the single-mirror feedback system using KNbO3 as nonlinearity, several

control schemes have been implemented and analyzed. Besides few experiments

considering control in local space [80], control was primarily performed using

masks in the Fourier plane of the feedback arm [76, 81]. A binary mask changes

the system by strongly inhibiting the feedback-blocked modes. Forcing a

desired solution changes the underlying system appreciably, therefore noninva-

sive control methods are desirable [82, 83]. A minimally invasive Fourier

control mechanism was investigated in [84]. In this scheme (Fig. 9.19), the

feedback arm is replaced by a Michelson interferometer, which offers two

Fourier planes. A part of the intensity is reflected into the second arm, where

it passes an arbitrary mask in the Fourier plane. The central pump beam is

blocked in the ‘‘control arm,’’ to avoid interferences with the main pattern arm.

By adjusting the relative phase of the two Michelson arms, both positive and

negative feedback can be generated. In the latter case, a minimally invasive

Fourier control scheme has been realized.

n

Figure 9.19. Experimental setup for Fourier control. M mirrors, L Feedback distance,

M virtual mirror plane, F Fourier plane for filters. Inset: Different Fourier filters

permitting roll square and hexagonal modes without central pump beam.
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Positive feedback leads to preference of modes passing through the Fourier

mask. Thereby, it is possible to stabilize patterns with a preferred orientation

and symmetry (Fig. 9.20a). While the control signal does not vanish upon

reaching the desired state, still a significant improvement over invasive control

schemes is reached. For the experiments reported in [84], the intensity in the

additional control arm was only 5% of that in the total pattern arm. Therefore,

the basic pattern forming system can be considered essentially unaltered.

Negative control is obtained by adjusting the relative phase between the two

Michelson arms to obtain destructive interference between the sideband signals.

Hence, any modes passing through the mask are damped. This scheme has been

used to control the orientation of hexagons by inhibition of undesired states

(Fig. 9.20b). In the case of negative feedback, minimally invasive control is

achieved. The control signal (corresponding directly to the undesired system

state), vanishes as the hexagon assumes the target orientation. However, noise

inherent in this system always causes a small control signal.

To test the efficiency, negative Michelson Fourier control has been modeled

using a slow cubic nonlinearity. In a configuration comparable to this experi-

mental scenario, the remaining control signal was seen to be below 0.4% of the

total power in the feedback arm [84].

Fourier control is a simple yet effective method for manipulating, selecting,

and stabilizing patterns in nonlinear optical systems. By using the minimally

invasive scheme with Michelson geometery outlined in this section, unstable

solutions can be targeted and stabilized without changing the system and its

spectrum of solutions. By tracking relatively unstable states, Fourier control

has been used to investigate the spectrum of solutions and their respective

growth rates (Section 9.3.2). The possibility for control of pattern formation

in the Fourier plane practically is an exclusive realm of optics. Hence, systems

using a photorefractive nonlinearity are excellent objects of study to investigate

general aspects of pattern control with implications far beyond optics.

(a) (b)

Figure 9.20. Patterns observed under Fourier control (Michelson scheme). (a) Positive

feedback, left: Hexagonal far and near field without control; center: Reduction to roll

pattern by using a slit mask; right: Stabilization of square pattern. (b) Selection of

azimuthal orientation by negative feedback. Original hexagon was rotated by 30 degrees

and destabilized by out-of-phase feedback. [84]
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9.5 Summary and Outlook

In this contribution, we discussed the concept of modulational instability and

self-organization for beam propagation in photorefractive media. Nonlinear

optics and photorefractive systems in particular offer several distinct advan-

tages for investigating general pattern forming behaviour. An essential feature

is the easy observation and manipulation of the system state in the transverse

Fourier plane. We combined a brief overview of instability with a more detailed

presentation of a specific system.

Filamentation is the basic form of an instabiliy and closely related to the

topic of spatial optical solitons (see Chapter 11). By introducing coupling

between two counterpropagating beams, the possibility for an absolute insta-

biliy and the observation of self-organized patterns arises. In most experimental

scenarios used today, the second pump beam is obtained by means of a mirror,

providing external feedback and lowering the threshold for the onset of pattern

formation. Prominent patterns using a photorefractive nonlinearity are of

hexagonal symmetry, comparable with many other optical and nonoptical

pattern forming systems. Generally, the basic mechanism is photorefractive

two-wave mixing, mediated by reflection gratings formed by the counterpro-

pagating beams. Symmetry and transverse size of the patterns depend on the

distance of the mirror from the crystal face.

Considering a single-mirror feedback system with an iron-doped potassium

niobate crystal, the derivation of model equations was outlined. At the thresh-

old, a linear stability analysis of the model equations has been carried out to

determine the wave number of the initial modulation. Experimental results

generally agree with the predictions, however, a significant deviation is found

in a parameter region highly of interest to experiment. In the multiple pattern

region, several nonhexagonal patterns are observed—pure, coexisting and

competing. This parameter range corresponds to positions of the projected,

virtual mirror inside the crystal.

The existence of multistability marks this system as a model for the investi-

gation of control in pattern formation. We briefly presented a specific control

scheme, a Michelson-type feedback assembly. Results of positive, in-phase

feedback were demonstrated, showing the stabilization of roll and square

patterns over hexagons. Using negative, out-of-phase feedback, a minimally

invasive control method for selecting the orientation of patterns was described.

While most applications for pattern formation consist of inhibiting undesired

modulational instability, a few positive applications have been envisaged.

These include usage of self-organized configurable hexagonal spot arrays for

multiplexing of information flow or self-organized system states as basic units

of information processing devices. Some are presented in volume three of this

edition. Many ideas for applications are currently in very early stages. In any

case, a thorough knowledge of the system, its mechanisms, spectra of solutions

and accessibility for control is required. While quite a bit of experimental data
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and theoretical understanding has been accumulated on the different systems,

there remain many open questions, from the theoretical and numerical model-

ing of basic mechanisms to experimental realization of control schemes. Maybe

the most promising application is the actual usage of optical pattern forming

systems for investigating fundamental mechanisms of self-organization and

synergetic phenomena.
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10.1 Introduction

In photorefractive crystals, the materials’ refractive index can be altered by

light illumination with spatially inhomogeneous intensity. This allows for a

wide spectrum of applications, e.g., optical data storage, pattern recognition,

adaptive optics, or dynamic holography [1, 2]. In this chapter, we will focus on

a special geometry of photorefractive materials: Optical waveguides. On the

one hand, due the high light intensities that are inherent in waveguide geom-

etries, photorefractive effects in optical waveguides [3, 4] are feared as optical

damage, as they can degrade the performance of integrated optical devices. On

the other hand, both dynamic wave mixing and permanent holographic grat-

ings in waveguides are of considerable interest for the development of new

components for integrated optics.

In this contribution, we will focus on photorefractive waveguides in oxide

crystals, and have to redirect the interested reader to other chapters of this

book for materials like semiconductors or photorefractive polymers. After

some basics on optical waveguide properties, a review of recent results and

techniques for waveguide formation is given. Here investigations in materials

with illmenite structure (LiNbO3, LiTaO3), perovscites (BaTiO3, KNbO3),

crystals with tungsten-bronze structure (SBN, KNSBN), and sillenites (BSO,

BTO, BGO) are discussed. As an outlook, the suitability of photorefractive

waveguides for applications is demonstrated in some examples.

10.2 Fundamentals of Photorefractive Waveguides

In this section, we will briefly discuss the fundamentals of photorefractive

optical waveguides as well as the experimental techniques for, e.g., the deter-

mination of refractive index profiles, electrooptic properties, and light-induced

refractive index changes in waveguide samples.
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10.2.1 Optical Waveguides

Optical waveguides are the key components for the development of integrated

optical devices. In integrated optics, several optical components, like lasers,

beam splitters, or modulators, are integrated on a suitable substrate material

[5]. Here optical waveguides provide the connections between these components.

An optical waveguide consists of a dielectric material that is surrounded by

another dielectric material of lower refractive index. Guidance of light is based

on total internal reflection of electromagnetic waves at the boundaries of the

inner medium so that radiation into the surrounding medium is forbidden. One

can distinguish between planar waveguides, where the light is confined along

one transverse direction while diffracting along the other transverse coordinate,

and two-dimensional waveguides, where the light is guided in both transverse

directions (Fig. 10.1). In the latter case, typical geometries are either channel or

strip waveguides, respectively, and optical fibers with radial symmetry.

To discuss some fundamental properties of dielectric waveguides, we con-

sider a planar structure as in Fig. 10.1a. In a ray-optics picture of waveguiding,

light is guided by multiple reflections from two parallel infinite plane bound-

aries that act as lossless mirrors. For an electromagnetic analysis of this

structure, each ray is described by a plane wave, where the total electromagnetic

field consists of the sum of these plane waves. Here the self-consistency condi-

tion requires that, as a wave is reflected twice at the upper and lower boundary,

its phase has to undergo a phase shift of multiples of 2p, i.e., the wave has to

reproduce itself. In this way, discrete solutions for the electromagnetic field are

obtained that are called the modes of the waveguide. These modes have a

certain transverse electromagnetic field that is maintained during propagation

along the waveguide. Depending on the light polarization, one can distinguish

between TE (transverse electric) modes, where the transverse electric field

points perpendicular to the waveguide normal and the propagation direction,

and TM (transverse magnetic) waves, where the magnetic field is along this

direction. Each mode is fully described by its transverse mode profile, its

polarization, and the propagation constant b ¼ k0neff , where k0 is the wave

number and neff is the effective refractive index of the mode.

(a) (c)(b)

Figure 10.1. Different types of optical waveguides. a) Planar waveguide; b) channel

waveguide, and c) optical fiber.
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The most simple case of a planar waveguide is that with a step-like refractive

index jump at the boundary (x ¼ d ) of substrate and waveguiding layer, and

another jump at the boundary of the waveguide and the top cladding (x ¼ 0),

which is usually air (see left part of Fig. 10.2a). In analogy to the eigen-

functions of a step-like potential well, the waveguide modes are harmonic

functions, where the field amplitude exponentially decays in the cladding

and substrate layers, respectively. For these modes, the effective refractive

index neff is larger then the two indices of the surrounding layers. If neff is

close to but slightly lower than the index of the substrate material, leaky or

substrate modes of the waveguide can be excited that continuously loose energy

to the substrate.

A more general profile is that of a graded-index waveguide, where the

refractive index of the waveguiding layer continuously decreases from a higher

surface value to the substrate refractive index. Typical examples for this type

are in-diffused waveguides where the refractive index profile is determined by

the diffusion profile of some in-diffused species. As a main difference to step-

like profiles, different modes of a graded-index waveguide propagate in differ-

ent effective depths deff of the waveguiding layer. Examples of the electric field

distribution Em of the first modes m ¼ 0, 1, and 2 of a step-like and a graded-

index waveguide are given in Fig. 10.2.

A universal method for coupling light into and out of a planar waveguide is

the use of prism coupler. Prism coupler allow a direct measurement of the

coupling efficiency as well as a mode selective excitation of the waveguide,

which may be preferred for the investigation of multimode waveguides where

depth dependent measurements of waveguide properties become possible in this

way. Grating couplers may be used as well, but fabrication is difficult and

coupling efficiencies are often low. Direct endface coupling is of particular

interest for waveguides in BaTiO3, KNbO3, or SBN, because sample dimen-

sions are usually small, and mechanical stress that is inherent in the prism-

waveguide coupler may not be applied to these materials.

x

n(x)
0

d

1 ns ns
(a)

m=0 m=1 m=2

x

n(x)
0

deff

1
(b)

m=0 m=1 m=2

Figure 10.2. Typical refractive index profiles and electric field distribution Em of the

lowest guided modes for a) step-like and b) graded-index planar waveguide.
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10.2.2 Photorefractive Effects in Waveguide Samples

Photorefractive effects in planar waveguides can be studied by two principal

holographic methods: A two-beam interferometric setup, or by monitoring the

output intensity and the beam shape of a single guided beam. Here, similar as

for bulk samples, a wide range of different holographic measurement tech-

niques exists, which allow for the determination of photorefractive parameters

like saturated refractive index changes, dark and photoconductivity, photovol-

taic constants, or holographic sensitivity. For the investigation of channel

waveguides often pump-probe techniques are utilized, where a low-power

beam of larger wavelength is used to probe the refractive index change that

are induced by a stronger pump beam.

An overview of different geometries for recording of elementary refractive

index gratings in waveguide samples is given in Fig. 10.3. In a standard setup

gratings are written by two guided beams of the same polarization and mode

number intersecting inside the waveguide (Fig. 10.3a and 10.3b). For light

coupling into and out of the sample, either prism couplers or direct endface

coupling can be used. Alternatively, the two beams may differ in polarization or

mode number. Furthermore, gratings may be written in planar (Fig. 10.3c) or

channel waveguides (Fig. 10.3d) by external beams that impinge upon the

surface of the waveguiding layer. To record grating coupler for in- and out-

coupling of light from the waveguide the interaction of substrate and guided

modes can be used, too (Fig. 10.3e).

a)

c) d)

e)

b)

Figure 10.3. Geometries for recording of holographic gratings in waveguides using

either guided waves or external writing beams. a) Two-beam interference of guided beams

using prism couplers or b) endface coupling, c) grating recording with external beams,

d) reflection holograms in channel waveguides, and e) recording of grating couplers.
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The light-induced charge transport in photorefractive oxide crystals is trea-

ted in detail in other chapters of this book. In general, the obtained models and

equations for one and more photorefractive centers and for different mechan-

isms of charge redistribution can be transferred to waveguide samples, too.

However, in most investigations of photorefractive waveguides, averaged quan-

tities have been used to describe both, the light distribution inside the sample

and the photorefractive properties. Examples are effective widths and propa-

gation depths of the excited modes, averaged light intensities, or refractive

index changes and photovoltaic constants where the values are averaged over

the depth of the waveguiding layer [6]. For these averaged quantities, the

Kogelnik theory of the interaction of plane waves can be used to interpret

the results. As an example, the averaged refractive index change of mode m of a

y-cut planar waveguide is described by

( < Dn > )m ¼
R jEm(y)j2Dn(y) dyR jEm(y)j2dy

, (10:1)

where the diffraction efficiency h of a grating of length d that is read out with a

wavelength l is described by a modified Kogelnik equation

h ¼ sin2
p( < Dn > )md

l

� �
: (10:2)

However, in some cases, the simplified treatment of the interacting beams as

plane waves has failed to describe the experimental observations. In this case,

the exact two-dimensional intensity distribution has to be taken into account.

For example, the two-wave interaction of Gaussian beams in a multimode

planar waveguiding layer can be interpreted in terms of a two-dimensionally

varying time constant for the grating build-up time. This time constant is

smallest in the beam center and shows an additional variation with depth [7],

thus the resulting time dependence of the wave mixing, i.e., the build-up of a

refractive index grating, may show significant deviations from a mono-expo-

nential behavior.

When only a single beam is coupled into a planar photorefractive waveguide,

both, light-induced phase changes in the beam path and holographic scattering

reduce the transmitted power in the beam direction [8, 9]. In this case photo-

conductivity, refractive index changes, and holographic sensitivity can be

quantitatively determined by variation of the input power and time dependent

measurements of the resulting changes in the shape of the outcoupled intensity

spectrum [10].

10.2.3 Experimental Methods

Different methods can be used for the fabrication of waveguides in photore-

fractive crystals. Typical examples are diffusion, ion exchange, implantation of

ions, or the deposition of thin epitaxial layers. As the different techniques are
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predominantly specific for one class of oxide crystals, a detailed description of

the waveguide fabrication method is given in the respective material subsections

of the next section. Here we will give a short overview on different techniques

for the reconstruction of refractive index profiles and the measurement of

electro-optic coefficients, as well as on the holographic investigation methods

that can be used for the determination of photorefractive properties.

Refractive index profiles with typical dimensions of only a few micrometers

can hardly be determined by direct measurement. Very often the reconstruction

of planar waveguide profiles is based on a set of measured effective refractive

indices neff, i, which can be determined by dark-line or mode spectroscopy [11].

Here two different strategies have been established. At first, one may assume a

family of plausible profiles that are characterized by a set of fit parameters.

With this method, good results have been obtained for ion-implanted wave-

guides [12, 13], where the profiles can be well predicted by using simulations of

the implantation process. A second procedure commonly used for profile

reconstruction of multimode waveguides is the inverse WKB method [14].

For channel waveguides, different numerical approximations are used to cal-

culate the effective refractive indices of the modes of an assumed or given

refractive index profile, e.g., the methods of finite differences or finite elements.

Although the electro-optic properties of substrate materials for waveguide

fabrication are well known in most cases, these values may differ for wave-

guides because of material changes that are due to the waveguide fabrication

itself. Therefore techniques have been developed to measure electro-optic co-

efficients in both planar and channel waveguides. In planar waveguides, at-

tenuated total reflection (ATR) spectroscopy may be used, a method that is

well known from the investigation of electro-optic polymer layers [15, 16].

Alternatively, interferometric methods can be applied [17, 18]. In channel

waveguides, the electro-optically induced phase changes in integrated Mach-

Zehnder [19] or Fabry-Perot interferometers [20] have been used to measure

electro-optic coefficients in LiNbO3 and LiTaO3 samples.

10.3 Materials with Illmenite Structure

Among all ferroelectric materials, photorefractive effects have been studied

most extensively in lithium niobate (LiNbO3) [1]. Crystals with diameters up

to six inches and of superior optical quality can be grown, which makes this

material the preferred candidate for applications in integrated optics. LiNbO3

has large electro-optic and SHG coefficients of r33 � 30 pm=V and d33 �
32 pm=V, respectively. Typical devices realized in LiNbO3 waveguides are

integrated lasers [21], electrooptic modulators with low half-wave voltages,

quasi-phase matched structures for frequency conversion, or integrated Sagnac

interferometers for high-precision rotation sensing.

Lithium tantalate (LiTaO3) possesses electro-optic, nonlinear optical, and

photorefractive properties similar to LiNbO3. On the one hand, in some aspects
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LiTaO3 is even more attractive for applications in integrated optics than

LiNbO3. It is less sensitive to optical damage, it has a larger transparency in

the UV down to 270 nm, and it has a smaller birefringence. However, high

temperature waveguide fabrication that exceeds the Curie temperature of about

6208C (for the congruently melting composition) requires additional repoling,

and crystal growth is more difficult because of the high melting point of LiTaO3

of about 16508C. Nevertheless, waveguide devices for electro-optic modulation

and frequency doubling in the visible spectral region are now commercially

available.

Advantages of LiNbO3 and also LiTaO3 are the possibility to form low-loss

waveguides, the chemical and mechanical resistance, a wide range of nonlinear

optical interactions, and finally the availability of large crystals at a reasonable

cost. Because of the relatively empty illmenite lattice structure, many metal ions

can be indiffused into LiNbO3 and LiTaO3 to form low-loss waveguiding layers

or channels. Titanium diffusion into LiNbO3 is by far the most common

technique for waveguide fabrication. On the other hand, diffusion is also an

easy method to increase the photorefractive sensitivity by surface doping of the

waveguide substrates. As an alternative method for waveguide formation the

proton exchange technique in LiNbO3 and LiTaO3 has proved to result in low-

loss waveguides, which are particularly well suited for applications where high

intensities occur, e.g., for second harmonic generation of blue and green light.

Besides the two methods mentioned above a wide range of different epitaxial

techniques has been developed in the past. A large number of oxide crystals

have been fabricated in thin film form by, e.g., sputtering of a suitable target

material, including the materials LiNbO3 and LiTaO3. These techniques in-

clude diode, reactive, ion beam, magnetron, bias sputtering, or pulsed laser

deposition (PLD), as well as liquid phase epitaxy (LPE) [22] and molecular

beam epitaxy (MBE) [23]. Here PLD and MBE allows fabrication of films with

high optical quality and nonlinear properties that are similar to the bulk

material [24, 25].

10.3.1 Titanium Diffusion

The diffusion of thin films of titanium evaporated or sputtered onto the

substrate surface is a widely used method for waveguide formation in

LiNbO3 and in part also in LiTaO3 crystals, and most of the integrated optical

devices available today are based on titanium-diffused LiNbO3 waveguides. In

LiNbO3 the extraordinary refractive index increases linearly with titanium

concentration, whereas the ordinary index shows a slightly sublinear behavior

[26]. Larger changes are obtained for extraordinarily polarized light. No sig-

nificant reduction of the electro-optic or nonlinear optical coefficients have

been reported. Diffusion of titanium has been used to produce waveguides in

LiTaO3 [27], too. The low diffusion coefficient requires temperatures of above

13008C, thus exceeding the material’s Curie temperature, which requires add-

itional poling of the samples.
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The diffusion process has been investigated in detail in LiNbO3 and consists

of several complex steps [28, 29]. Here annealing is usually performed at

temperatures around 10008C. At about 5008C, titanium is oxidized to TiO2,

and above 6008C LiNb3O8 epitaxial crystallites are formed at the surface,

connected with a loss of lithium. For temperatures larger than 9508C, a

(Ti0:65Nb0:35)O2 mixed oxide appears, which acts as the diffusion source for

titanium indiffusion. With increasing annealing time, titanium diffuses deeper

into the crystal, and the titanium-niobium oxide layer decomposes. For tem-

peratures above 6008C, a loss of Li or Li2O at the crystal surface is observed.

Because this mechanism increases the extraordinary refractive index Li, out-

diffusion has to be prevented in particular for channel waveguide formation.

This is often realized by annealing of the samples in water vapor or a Li-rich

atmosphere.

Besides titanium a large number of other metals can be diffused into LiNbO3

to form waveguiding layers, e.g., iron, copper, vanadium, nickel, niobium,

cobalt, silver, or gold [30]. Here zinc is of special interest as the diffusion of

zinc into LiNbO3 has been found to produce low-loss waveguides with higher

resistance to optical damage [31, 32] when compared to titanium.

Planar and channel LiTaO3 waveguides have been fabricated by diffusion of,

e.g., titanium [27], niobium [33], or zinc [20]. For this high-temperature process,

repoling of the samples is necessary to recover the electro-optic properties of

LiTaO3.

For application of the photorefractive effect, waveguides fabricated by com-

bined titanium and iron or copper diffusion, respectively, have shown consid-

erably improved holographic sensitivity [34, 35].

10.3.2 Proton Exchange

Proton exchange (PE) is a low temperature process (T < 2508C) that has been
successfully used for waveguide fabrication in LiNbO3 [36, 37] and LiTaO3 [38,

39]. Basically, hydrogen that is provided by an appropriate acid is partially

exchanged for lithium ions of the crystal. In the case of LiNbO3, the chemical

composition Li1�xHxNbO3 is formed where x, 0# x# 1, is the exchange degree.

A widely used technique for the formation of proton-exchanged waveguides

is the immersion of the substrate in a bath of molten benzoic acid [37]. This

liquid-phase treatment produces a mixture of crystalline b-phases on the sam-

ple surface with an exchange degree in the range of 0:5 < x < 0:85 [40], and a

nearly step-like refractive index profile. The maximum index change depends

on the used acid. Typical values for benzoic acid are dne ¼ 0:12, dno ¼ �0:05
(LiNbO3, [36]) and dne ¼ 0:02, dno � 0 (LiTaO3, [39, 41]), and higher changes

up to dne ¼ 0:145 [42] for LiNbO3 are obtained using phosphoric acid. When

using benzoic acid, the acidity of the melt can be diluted by the addition of

some mol percent of lithium benzoate [36]. In this way, LiNbO3 channel

waveguides fabricated with pure benzoic acid show typical propagation losses
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between 0.5 and 1 cm�1 for extraordinarily polarized light, while lower values

of about 0:2 cm�1 have been reported for the use of phosphoric acid [42].

A significant degradation of electro-optic and nonlinear optical properties of

proton-exchanged LiNbO3 waveguides was found very early [43], which is

caused by the lattice disorder and mixture of b-phases in strongly exchanged

layers [44, 45]. A partial solution to this problem is the use of an additional

post-annealing treatment at temperatures above 3508C [19]. These so-called

annealed proton-exchanged (APE) waveguides have a graded refractive index

profile. The waveguiding layer is completely converted to the a-phase [44] with
x < 0:12 and an index change of dne < 0:03 [16]. Furthermore, for APE wave-

guides, very small loss coefficients of about 0:03 cm�1 have been measured [46].

Alternatively, waveguides with well defined phases can be obtained by carefully

controlling the exchange degree. In this case, large electrooptic coefficients for

PE layers up to r33 ¼ 22 pm=V for LiNbO3 can be obtained without additional

annealing treatment [47]. In most work on proton-exchanged LiTaO3 wave-

guides, electro-optic coefficients have been found to be strongly decreased after

the exchange [48], and the values were at least partially restored after additional

annealing treatment [17, 18, 49].

Very recently a new method, vapor-phase proton exchange (VPE) has been

reported for LiNbO3 [50] and LiTaO3 [51], which results in high damage

resistance, low optical losses (a < 0:1 cm�1), and fully preserved electro-optic

and nonlinear properties. For this method, samples are treated in an evacuated

ampoule with benzoic acid powder at the bottom while the substrate is held in

the top of the ampoule. Typical annealing temperatures are about 3008C and

exchange times vary from several hours to a few days. As for the PE process,

the resulting VPE waveguides have a nearly step-like index profile, and for not-

too-long exchange times, a high-quality �2 phase structure can be obtained that

is well suited for nonlinear optical applications [52].

By using proton exchange in LiNbO3 and LiTaO3, waveguides with strongly

enhanced photorefractive sensitivity can be fabricated when the exchange of

protons is combined with a successive copper exchange from melts containing

Cuþ or Cu2þ ions [16, 53]. As this technique of copper doping is a low-

temperature process well below the Curie temperature of, e.g., LiTaO3, it is

of particular interest for the fabrication of photorefractive waveguides in this

material.

10.3.3 Lithium Niobate Waveguides

Light-induced refractive index changes in optical materials can be considered

from two points of view. On the one hand, these photorefractive effects are of

considerable interest for applications in information storage and optical com-

munication technology. On the other hand, the same mechanism is feared as

optical damage; e.g., in waveguide devices, light-induced phase shifts may

degrade the optical performance. The latter is particularly important for non-

linear applications of LiNbO3 waveguides, where the performance of integrated
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modulators and switches, lasers, or optical parametric oscillators may suffer

from optical damage effects.

Optical Damage in Planar Waveguides

The optical damage resistance of planar LiNbO3 waveguides fabricated by

proton exchange, annealed proton exchange, vapor-phase proton exchange,

metal diffusion, and epitaxy has been investigated in many works. However, a

detailed comparison of the different methods still remains difficult. Although

most of the used substrates are nominally undoped, they may differ a lot in the

remaining impurity concentration. What is even more difficult is the influence

of different light intensities and wavelengths when probing optical damage. In

general, steady-state refractive index changes, holographic sensitivity, and

photoconductivity depend on light intensity [54, 55]. For certain fabrication

methods, both dark and photoconductivity of the waveguiding layer are con-

siderably enlarged, and particularly at higher light intensities more than one

photorefractive center can be involved in the charge transport [56], thus making

the above quantities intensity dependent. Therefore, we restrict ourselves to

some general remarks regarding photorefractive effects in differently prepared

waveguides. A qualitative overview of some properties of LiNbO3 waveguides

is given in Table 10.1. For a more detailed comparison of photorefractive

LiNbO3 waveguide properties, see Ref. [4].

For titanium-diffused waveguides, high holographic sensitivity and large

light-induced refractive index changes have been found [10]. It has been recog-

nized that Fe2þ centers are stabilized by Ti4þ ions against oxidation [6], thus

increasing the sensitivity to optical damage. On the other hand, a higher

photorefractive damage resistance has been obtained for waveguides prepared

by the diffusion of zinc into LiNbO3 and for moderate light intensities of the

order of 105W=cm2
[31]. This may be attributed to a reduction of anti-site

defects, where zinc ions are build-in on empty lithium sites instead of niobium.

Proton exchange leads to lower values of holographic sensitivity both for

annealed (APE), non-annealed (PE), and vapor-phase (VPE) treated samples

Table 10.1. Overview of general photorefractive properties (optical damage or

saturated refractive index change, photoconductivity, holographic sensitivity, and

temporal stability of refractive index profiles) of LiNbO3 waveguides fabricated by

different methods: PE, proton exchange; APE, annealed proton exchange; VPE,

vapor-phase proton exchange. These properties are only a general tendency of the

different processes.

Fabrication Opt. damage Photoconduct. Hol. sensitivity Temporal stab.

Ti-Diffusion High Low High High

PE Moderate High Low Low

APE Moderate Moderate Moderate Moderate

VPE Moderate/Low Moderate Low Moderate/High
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[10, 50, 57] when compared with titanium diffusion. In strongly exchanged

waveguides, no light-induced refractive index changes are found [58], and this

effect has been attributed to both a large increase of dark and photoconduct-

ivity [54], and a strong degradation of the electro-optic properties [43]. Here a

conversion of Fe2þ to Fe3þ has been found for the proton exchange process

[59], which can explain the observed decrease in holographic sensitivity, too.

In thermal fixing of holographic gratings in LiNbO3 and LiTaO3 at elevated

temperatures, protons are believed to compensate for the electronic space

charge field [55, 60]. In proton-exchanged waveguides, a similar mechanism is

observed at room temperature, when light-induced electronic charge gratings

are compensated for by light-insensitive, positively charged ions [61, 62], which

may be explained by a considerably enlarged protonic conductivity of the PE

layers.

Annealing treatment of PE layers with a higher exchange ratio leads to a

recovery of the electro-optic coefficients [19, 47], while at the same time photo-

conductivity only slightly decreases [54]. Although the holographic sensitivity

of APE samples is thus increased with annealing time, it is still two orders of

magnitude lower than for titanium in-diffused samples. Excellent results have

been obtained for vapor-phase proton-exchanged layers, where the photore-

fractive damage threshold has been reduced by one to two orders of magnitude

when compared to APE samples [50]. On the other hand, the use of MgO-

doped LiNbO3 substrates for proton exchange has resulted in only slightly

enlarged photorefractive damage resistance [57].

Planar waveguides fabricated by LPE [22] have shown higher holographic

sensitivity than PE samples, but the values are still lower than for titanium

diffusion [10, 24]. Other methods of thin film deposition have recently been

used to grow epitaxial LiNbO3 layers, e.g., sputtering [63], the sol-gel process

[64], and PLD [25], but no photorefractive properties have been reported.

Wave-Mixing and Scattering

Quite a few optical wave mixing experiments have been performed in planar

LiNbO3 waveguides, and most of the used samples were treated to enhance

photorefractive effects, e.g., by iron or copper in-diffusion, or combined proton

and copper exchange. The published work may be subdivided into isotropic

wave mixing, where the interacting light beams have the same polarization, and

anisotropic wave mixing, where orthogonally polarized modes interact.

In contrast to wave mixing in the bulk where elementary refractive index

gratings are usually recorded utilizing plane waves, in waveguides the inhomo-

geneity of the interacting fields and the presence of different modes have to be

taken into account [34, 65, 66]. As a result, several photorefractive processes

have been identified in waveguides that have no true analogs in volume crystals,

e.g., polarization conversion of copropagating TE and TM modes [67, 68], or

the recording of gratings where the photovoltaic current flows perpendicular to

the grating vector [69].
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In multimode planar waveguides, light can be scattered under discrete angles

from an excited mode into other modes with different mode indices, but with

the same polarization. In this interaction, the pump and the scattered waves

have to fulfill a corresponding phase matching condition, thus stray light can be

amplified by parametric interaction. Because light waves that belong to differ-

ent modes of the waveguide are involved in this type of wave mixing, the

interaction is called parametric inter-mode scattering [34, 70, 71].

In LiNbO3 as well as in LiTaO3 waveguides, orthogonally polarized modes

can write holographic gratings via photovoltaic currents, enabling strong an-

isotropic wave mixing [67] and the generation of phase-conjugate [72] waves.

This interaction, also known as polarization conversion, was observed first in

y- and z-cut channel waveguides [73] and later also in planar y-cut waveguides

[72, 74, 75]. The interaction can be understood by redistribution of photoex-

cited charge carriers by the photovoltaic effect, where the generated space-

charge field is proportional to the polarization dependent photovoltaic current

density [76]

jk ¼
X

l,m
(bs

klm þ iba
klm)E

�
l Em: (10:3)

Here bs, a are the real linear and circular components of the photovoltaic

tensor, and El,m are the interacting light fields. Anisotropic interaction in

LiNbO3 and LiTaO3 is enabled through the nondiagonal elements b15 ¼ b24

of the photovoltaic tensor. The corresponding current is modulated with the

grating period L ¼ l=(no � ne), where l is the light wavelength in vacuum (see

Fig. 10.4).

The perturbation De of the dielectric tensor has a local contribution accord-

ing to bs and a nonlocal part according to ba [77]. As is well known, the

shifted (nonlocal) grating leads to an energy exchange between the two inter-

acting beams, where the direction of energy exchange depends on the sign of ba.

For iron-doped LiNbO3, ordinarily polarized light is converted to extra-

ordinary polarization, and for LiTaO3:Fe, an opposite coupling direction is

observed.

x

y

z

TM TE

x

z

y

TMTE

Λ Λ

Figure 10.4. Illustration of the photovoltaic current responsible for polarization con-

version in LiNbO3 and LiTaO3 channel waveguides. a) y-cut substrate, and b) z-cut

substrate. Here the c-axis is parallel to the z-axis of the sample.
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Optical Damage in Channel Waveguides

Different kinds of channel waveguides in nominally pure and MgO-doped

LiNbO3 have been formed by titanium indiffusion, PE, APE, VPE, and ion

implantation, and the corresponding photorefractive properties and damage

thresholds of these waveguides have been investigated. Fujiwara et al. have

compared the photorefractive properties of titanium-diffused, PE, and APE

samples using an integrated Mach-Zehnder interferometer [78, 79]. For low

intensities of someW=cm2
, saturated refractive index changes of titanium-diffused

samples are about three orders of magnitude larger than in PE, and two orders of

magnitude larger than in APE waveguides. This may be attributed to the large

increase of conductivity for the PE and APE samples [79], and partly reduced

electro-optic coefficients of the PE waveguides. Furthermore, holographic sensi-

tivity is increased by a factor of four forAPEwaveguides [78] when comparedwith

PE waveguides, mainly because of the restored electro-optic properties, and

probably because of a further enlarged conductivity in the APE samples, too.

The use of LiNbO3 doped with MgO has reduced the refractive index

changes in APE channel waveguides by nearly two orders of magnitude at

intensities of some kW=cm2 [80], and photoconductivity has been decreased at

the same time, too. Here it has been concluded that strongly reduced photo-

voltaic currents in LiNbO3:MgO waveguides are responsible for this effect.

Implantation of Hþ into LiNbO3 with subsequent annealing treatment has

resulted in waveguides with strong light-induced refractive index changes [81]

that are larger than for APE waveguides and almost comparable with titanium-

diffused samples. Simultaneously, both dark and photoconductivity are at least

as high as for APE waveguides. On the other hand, strongly reduced optical

damage has been found for a combination of proton exchange and ion im-

plantation, when APE waveguides are additionally implanted with 1MeV Hþ

through the existing waveguide channels [82].

In a more recent work, light-induced shifts in the phase matching curve of

second harmonic generation in both single domain and domain-inverted

LiNbO3 channel waveguides have been investigated by using a pump-probe

technique [83]. A high photorefractive sensitivity connected with a two-step

two-photon excitation has been found for single-domain samples, whereas

optical damage was strongly reduced for domain-inverted samples.

10.3.4 Lithium Tantalate Waveguides

A general problem of LiTaO3 waveguides is believed to be the observed

instability of optical damage or light-induced refractive index changes in

waveguides fabricated by diffusion or proton-exchange [84, 85]. A possible

explanation for this effect might be the obtained mixture of different phases

in proton-exchanged layers and a migration of protons at room temperature as

well as the high number of defect sites (tantalum on lithium site) and high strain

values that are inherent to crystals with non-stoichiometric composition.
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Optical damage effects in zinc-diffused LiTaO3 channel waveguides have

been investigated in [86], and refractive index changes of Dne � 5 � 10�5 at a

wavelength of 488 nm and an intensity of 1 kW=cm2 have been measured.

Proton-exchanged planar LiTaO3 waveguides have shown similar refractive

index changes of about 4 � 10�5 [87], but at a larger wavelength of 632.8 nm.

Anisotropic two- and four-wave mixing has been used to determine the

photorefractive properties of titanium-diffused LiTaO3:Ti:Fe waveguides

[88]. In a more recent work [53], photorefractive LiTaO3 waveguides were

fabricated by combined proton and copper exchange at low temperatures,

which avoids repoling of the samples. Here a post-annealing treatment resulted

in a full recovery of the preferred a-phase of LiTaO3 [53, 89].

Thin epitaxial LiTaO3 films have been grown by different methods, and

research has been stimulated again recently by the large interest in LiTaO3

waveguides with domain-inverted structures for second harmonic generation.

An overview of recent work can be found in [90].

10.4 Materials with Perovscite Structure

10.4.1 Ion Implantation

Because of the low-temperature phase transitions, large chemical inertness, and

the densely packed perovscite lattice, waveguide formation techniques like ion

diffusion or exchange are more difficult in crystals with perovscite structure like

BaTiO3 and KNbO3. For these reasons, the method of ion implantation is

especially well suited for perovscites [91, 92] as well as for crystals of the

tungsten-bronze family, in particular SBN [93]. The implantation of light ions

like Hþ and Heþ with energies of some MeV has successfully been used for

waveguide formation in a wide range of optical materials, including photore-

fractive ferroelectrics and sillenites. Apart from epitaxial techniques like PLD,

ion implantation today is the only method that reliably results in low-loss single

crystalline waveguides for BaTiO3, KNbO3, or SBN.

Impinging upon the crystal, the implanted ions slow down because of energy

loss from interactions with the electrons of the target. At the end of their path,

the ions’ energy is in the range of some keV. Here, nuclear collision sets in,

producing a well-defined damaged barrier layer with reduced refractive index.

Light is guided above the barrier layer in the region of electron excitation.

A typical magnitude of the refractive index decrease is about 5% of the sub-

strate value; deeper barriers up to 10% have been obtained for KNbO3 [13].

The ion-dose dependence of the refractive index decrease generally shows a

saturation behavior, whereas the initial growth rate and the saturation level

depend on ion energy [12]. Because of the well-defined penetration depth of the

ions, nearly step-like refractive index profiles are obtained by ion implantation.

Optical tunneling through the barrier, however, can lead to an increase of

propagation losses for large mode numbers. Besides this mechanism, the loss
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mechanism in ion-implanted waveguides is rather complex. It consists of con-

tributions by material and implantation-induced absorption as well as surface

scattering. A detailed overview on optical effects of ion implantation can be

found in [94].

To a large extent, the electro-optic and photorefractive properties of the bulk

crystal are maintained in the waveguiding layer. Frequently observed is a

chemical reduction of the waveguiding layer as a result of the implantation

process [95, 96]. Moreover, the electro-optic coefficients may be reduced due

to depolarization effects [97, 98]. For a low dose of the implanted ions in the

range of some 1013 to 1015 cm�2, a slight increase of the extraordinary refractive

index has been observed for several ferroelectric crystals [99]. This effect has

been used to fabricate nonleaky waveguides [100], where light is confined

without the possibility of barrier tunneling. Higher doses of 1016 cm�2 and

more have resulted in a decrease of both refractive indices. Furthermore, the

implantation through an appropriate mask on the substrate surface has enabled

the fabrication of both single and multimode channel waveguides in various

materials [99, 101].

10.4.2 Barium Titanate

Photorefractive barium titanate (BaTiO3) crystals are currently used for a wide

range of nonlinear optical applications [1, 102, 103]. One of the most interesting

features of BaTiO3 is its electro-optic coefficient r51 � 1600 pm=V, which is one

of the largest values known for any crystal. However, the practical use of

BaTiO3 crystals is at least partially limited by the relatively long response

time of grating formation. Obviously, a significant decrease in response time

can be achieved by using planar BaTiO3 waveguides, i.e., by making use of the

high intensities inherent in waveguide geometries. Another drawback of

BaTiO3 is a phase transition that occurs around 6 8C that is connected with

mechanical stress to the samples and therefore may result in cracking of the

crystal. Here BaTiO3 may be replaced by barium-calcium titanate (BCT)

crystals, a material with very similar electro-optic and photorefractive proper-

ties where this problematic phase transition is missing.

Planar optical waveguides in BaTiO3 were first fabricated by Moretti et al.

[91] in 1990 by implantation of 2MeV Heþ at a dose of 1016 cm�2. Both the

ordinary and the extraordinary refractive index were decreased in the region of

the implanted barrier [104]. Two-wave mixing in a 1:5MeV Hþ-implanted

BaTiO3 waveguide was reported by Youden et al. [105] in 1992. In Fig. 10.5,

a decrease of response time of about two orders of magnitude when compared

to the response time at same input power in the substrate has been observed.

Frequently, the beam coupling direction is reversed to that of the substrate.

This can probably be attributed to a change in the dominant charge carrier

species from holes to electrons because of electrochemical reduction of impur-

ities by the ion beam. Two-wave mixing even at 854 nm with a maximum gain

of 24 cm�1 has been achieved in a Rh-doped BaTiO3 crystal [106]. Both
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self-pumped phase conjugation [107] and mutually pumped phase conjugation

[108] in the same sample have been obtained, too.

Epitaxial and very smooth films have been fabricated by PLD combined with

in situ annealing of the growing film [109, 110]. Planar waveguides with propa-

gation losses of 2 to 3 dB/cm at 633 nm with an electro-optic coefficient of

r51 ¼ 86 pm=V have been obtained for c-axis films [98]. For a-axis films, an

electro-optic coefficient reff ¼ 536 pm=V has been found for low applied electric

fields. A variety of other deposition techniques has successfully been used for

the formation of BaTiO3 thin films on adequate substrates, e.g., by MBE, the

sol-gel process, or MOCVD. With MOCVD, channel waveguides have been

fabricated using an additional etching in HF solution. These waveguides have

shown moderate optical loss of 1 to 2 cm�1 at 1:55mm [111] and effective

electro-optic coefficients of about 50 pm/V [112].

10.4.3 Potassium Niobate

Potassium niobate (KNbO3) belongs to the most promising ferroelectric oxides

with excellent optical properties [113]. Large nonlinear and electro-optic coef-

ficients in the spectral range of visible and infrared diode lasers and a high

photorefractive sensitivity make the crystal a particularly attractive candidate

for applications in integrated optics.

Methods of waveguide formation that have been successfully applied to other

materials like diffusion or ion exchange have been found to be not applicable to

KNbO3, probably because of the densely packed lattice of the perovscite struc-

ture. The first permanent waveguides in KNbO3 were realized by implantation

of Heþ in 1988 by Bremer et al. [102]. Low-loss planar waveguides with damping

coefficients of about 1 cm�1 (wavelength 632.8 nm) can be formed by Heþ
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Figure 10.5. Time constant of two-beam coupling measured in a BaTiO3 planar

waveguide (�) and in the substrate (�) for the wavelength 488 nm as a function of light

power P [105].
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implantation at low doses of some 1014 cm�2 [114]. Even lower propagation loss

of only 0:2 cm�1 has been found for a slightly higher dose of 1:5 � 1015 cm�2 [115].

For Hþ implantation, doses of 1016 cm�2 and higher are used to produce good

optical waveguides; here damping coefficients of 1 to 3 cm�1 for visible light have

been reported [116, 117]. Channel waveguides in KNbO3 with damping coeffi-

cients as low as 0:3 cm�1 for red light have been realized by Fluck et al. [101] by

repeated Heþ implantation as well as by ultra-low dose implantation that leads

to an increase of the refractive index of the implanted area [100].

Two-wave mixing experiments have been performed to characterize the

photorefractive properties of iron-implanted planar waveguides in KNbO3.

Both Hþ and Heþ implantation have been used in nominally pure and iron-

doped substrate crystals. In all published work, the beam coupling direction in

the implanted waveguides in KNbO3 was reversed to that of the substrate [118],

and high logarithmic gain coefficients up to 40 cm�1 have been obtained [116].

Smaller beam coupling coefficients of 2:2 cm�1 and a response time of only

60 ms have been measured for a wavelength of 1:3mm in a Hþ-implanted

KNbO3:Fe waveguide [117].
To fabricate thin films of KNbO3, different deposition techniques like LPE,

MOCVD, PLD, ion beam, or rf-sputtering have been used to fabricate single-

crystal layers of KNbO3 for applications in nonlinear optics. For the last

method, a SHG coefficient of 5 pm/V, which is one third of the bulk value,

has been reported [119], and higher coefficients of almost the bulk value have

been measured in samples prepared by MOCVD [120].

10.4.4 Other Materials

In several other photorefractive perovscite crystals, waveguiding layers have

been fabricated. These crystals include potassium-tantalate niobate (KTN),

KTa1�xNbxO3, and barium-strontium titanate (BST), Ba1�xSrxTi2O6. In the

KTN crystallographic system, the largest electro-optic coefficients among all

photorefractive oxide crystals are found: The value of r51 can approach 104.

Waveguides in this material have been formed by ion-implantation [121]. By

PLD thin films of usually polycrystalline BST have been deposited on different

substrates like MgO(001) and sapphire, and a large quadratic electro-optic

coefficient of 1� 1015 m2=V2 has been measured [122].

10.5 Materials with Tungsten-Bronze Structure

10.5.1 Strontium-Barium Niobate (SBN)

Strontium-barium niobate crystals (SrxBa1�xNb2O6, 0:25# x# 0:75, SBN)

are characterized by particularly large pyro- and piezoelectric, electro- and

thermo-optic coefficients, robustness, and an excellent optical quality. The

electro-optic coefficients are about ten (SBN61) to forty times (SBN75) larger
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than those in LiNbO3. The most widely investigated composition is the con-

gruently melting one, x ¼ 0:61 (SBN61). Another interesting composition is the

strontium-enriched x ¼ 0:75 (SBN75) with a lowered phase transition tempera-

ture. The open tungsten bronze structure allows doping with a variety of rare-

earth and transition metal materials to improve the photorefractive sensitivity.

SBN permits many applications in optical data storage and processing [123,

124], and a lot of fundamental research has been done demonstrating the

excellent photorefractive properties of this material [125, 126]. Since the dis-

covery of the photorefractive soliton in 1992/1993 [127, 128], SBN has become

the most widely used material in this outstanding research field.

Planar waveguide formation in SBN by Heþ implantation was first men-

tioned by Youden et al. [105] in 1992, and later was investigated in more detail

in [103]. Low-loss waveguides (0:35 cm�1 at the wavelength 632.8 nm)

are obtained for low-dose Heþ implantation or intermediate doses using Hþ.
The photorefractive properties of SBN61 and SBN75 waveguides formed by

Hþ or Heþ implantation are investigated in Refs. [95, 129]. When compared to

data for the bulk material at the same intensity, the response time for two-wave

mixing in SBN waveguides is decreased by one or two orders of magnitude both

for Hþ [95] and low-dose Heþ [129] implantation. In the latter work, with an

increasing dose of implanted Heþ, a strong degradation of the photorefractive

properties was observed. High logarithmic gain coefficients of up to 45 cm�1

with time constants of the order of milliseconds have been obtained for extra-

ordinarily polarized blue light, adequate cerium doping, and optimized im-

plantation parameters [129].

Polycrystalline SBN thin films of various compositions have been obtained

by LPE, rf-sputtering, MOCVD [120], and the sol-gel process. Epitaxial SBN61

[130] and SBN75 [131] films on MgO substrates with high electrooptic coeffi-

cients r33 of 380 pm/V and 844 pm/V, respectively, have been fabricated by

PLD, but only little is known about the optical properties of such films [132].

Planar and channel waveguide formation in SBN substrate crystals has been

also performed using sulphur [133] and zinc [134] indiffusion, but the achieved

waveguides exhibit high losses greater than 2:5 cm�1. Recently, channel wave-

guides in SBN have been fabricated by a refractive index increase because of the

static strain-optic effect [135] and fast electro-optic modulation in the GHz

range has been demonstrated [136].

10.5.2 Other Materials

Apart from SBN, waveguides in other tungsten bronze crystals have recently

received considerable attention, too. Well known examples are potassium-

sodium strontium-barium niobate (KyNa1�y)2A�2(SrxBa1�x)2�ANb2O6

(KNSBN) and barium-strontium titanate-niobate Ba1�xSrxTiyNb2�yO6

(BSTN). Planar waveguides have been fabricated by ion implantation in

KNSBN, and two-wave mixing experiments have been performed [137, 138].

Low-loss, strain-induced waveguides have been also formed in BSTN [139].
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10.6 Sillenites

Sillenite crystals of the type Bi12MO20 with M ¼ Si (BSO), Ge (BGO), and Ti

(BTO) possess a large photoconductivity and holographic sensitivity for visible

and near-infrared light, which makes these materials attractive candidates for

applications of dynamic holography and optical phase conjugation. For the

fabrication of waveguides in sillenites, LPE, i.e., the thermally-controlled over-

growth of single-crystal films from the melt on a single-crystalline substrate

may be used. When compared to MBE, the uniformity and surface morphology

of LPE films are poor, but deposition rates are high. Together with PLD and in

part also ion implantation, LPE is the preferred method to form waveguides in

the sillenites BGO, BTO, and BSO.

The fabrication of optical waveguides in sillenites has been reported in quite a

few papers, however, only little is known about the photorefractive properties of

these samples. Waveguiding has been observed in epitaxial BTO films fabricated

by LPE on BGO substrates [140], as well as BGO and BSO layers formed by PLD

on single-crystalline zirconia and sapphire [141, 142]. For the latter, electrooptic

and nonlinear optical properties have been proved [143]. Two-wave mixing in

planar BTO waveguides grown on BGO and BSO substrates by LPE has been

observed in [144, 145]. To improve the photorefractive properties of these BTO

waveguides, the melts have been doped with d-(Cu, Cr, Fe, Co, Ni), p-(Ga) and s-

(Ca) elements of the periodic table. Themeasured electro-optic coefficients as well

as the beam coupling gain have been found to be lower than for the bulk material,

but high two-beam coupling coefficients up to 8 cm�1 have been found for copper

doping of BTO layers. An increase of the gain value has been also obtained by

applying an external electric AC field along the grating direction [146].

10.7 Applications

Since the first fabrication of optical waveguides in LiNbO3 in 1974, a large

number of different optical components based on photorefractive waveguides

has been proposed, and devices like spectrometers, optical amplifiers, phase

conjugators, reconfigurable optical interconnections, or narrow-bandwidth

filters have been experimentally demonstrated. Corresponding to the various

applications, quite different requirements of waveguide and photorefractive

parameters have to be fulfilled. In the following section, some of the applica-

tions of photorefractive waveguides will be presented.

10.7.1 Optical Interconnections

Different types of optical switches and interconnections using photorefractive

waveguides have been experimentally investigated. Holographic interconnec-

tions in a planar LiNbO3 waveguide have been proposed in [147] and further
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developed and experimentally confirmed about ten years later in [148]. In [149]

an array of intersecting parallel channel waveguides in LiNbO3, where coupling

is obtained via holographic gratings in the overlap regions, has been used.

Another method uses an array of reconfigurable photorefractive waveguides

for optical interconnections, where either a bulk LiNbO3 crystal is illuminated

by an interference fringe pattern [150] or by three dimensional scanning of a

focused laser [151, 152]. A recent review of these works can be found in [153].

Very recently reconfigurable optical interconnections have been also realized in

the crystal KNbO3. Here optical channel waveguides are formed by illuminat-

ing a crystal surface with a focused UV beam using the inter-band photore-

fractive effect in KNbO3. An even more promising alternative for dynamic

interconnections is the use of spatial solitons, which is explained in short in the

next subsection.

10.7.2 Spatial Solitons

Since their discovery in 1992/1993, photorefractive spatial solitons have

attracted considerable interest [127, 128]. Only low power levels of the order

of microwatts are necessary to form these non-diffracting beams. Solitons

possess unique properties, for instance in their interaction, which make them

attractive for all-optical switches and routers. Chapter 11 of this book exten-

sively treats the interesting properties of photorefractive solitons, so we will

here concentrate on special features of photorefractive solitons in waveguides.

In planar waveguides, spatial solitons are formed in a true (1þ1)-dimensional

medium, thus getting rid of the transverse instability that is inherent to soliton

formation in bulk crystals. Moreover, for applications in switching and rout-

ing, the planar waveguide’s geometry is easily compatible with fiber optics.

Photorefractive bright spatial solitons have been formed in Sr0:61Ba0:310Nb2O6

(SBN) waveguides produced by Heþ-implantation [154]. Here, photorefractive

solitons can be formed over a wide wavelength range, from visible to telecom-

munication wavelengths up to 1:5mm [97]. The suitability for beam steering

and forming as well as for switching and routing by interaction of solitons and

applications such as y-junctions has been demonstrated [155, 156]. Dark photo-

voltaic solitons have been studied in LiNbO3 planar waveguides fabricated by

indiffusion of titanium, iron, and copper [157].

10.7.3 Reflection Filters

In the last few years, fiber Bragg gratings (FBG) have achieved considerable

interest for applications as optical sensors for the measurement of, e.g., tem-

perature, vibrations, or mechanical stress, for uses as fiber laser resonators, or

for dense wavelength division multiplexing (DWDM). All of these devices

make use of the narrow spectral bandwidth of the recorded reflection gratings

in photosensitive glass fibers. In some of these devices, the peak reflection
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wavelength is adjusted by external mechanical stress on the fiber using piezo

drivers.

A promising alternative to FBGs in glass are holographically recorded

refractive index gratings in channel waveguides in LiNbO3 [158]. Such single

mode waveguides for infrared light around 1:55mm can be formed by titanium

in-diffusion. To increase their holographic sensitivity and light-induced refract-

ive index changes, the samples can additionally be diffusion-doped with either

iron or copper. In combination with a thermal fixing technique of the refractive

index patterns [21, 159], which makes the gratings insensitive against the

erasure with visible light, this allows to design a variety of devices that operate

in the infrared wavelength region.

A scheme of the holographic recording geometry is given in Fig. 10.6. Light

of the photosensitive blue or green spectral region is used to record a grating for

the infrared in a standard two-beam setup using external writing beams. The

grating is directed along the c-axis, and for proper choice of the waveguide

fabrication parameters the filter works polarization independent. In this way,

peak reflectivities exceeding 99.9% and bandwidths of 0.1 nm (FWHM) for a

15 mm-long grating have been obtained. Such gratings are of large interest for

application as electrically switchable add-drop-filters in DWDM [158] or for

use as mirrors for integrated lasers [21].

10.7.4 Integrated Sagnac-Interferometers

A practical example of integrated optics in LiNbO3 that suffers from photo-

refractive effects are laser gyros or Sagnac interferometer, respectively, which

are used for the precise measurement of small angular velocities with applica-

tion in car navigation, aviation, or rocket stabilization [160]. In such a device,

the light of a coherent polarized light source with frequency v0 is split in two

parts, then passes a polarization maintaining fiber coil in two opposite direc-

tions, and finally the two counterpropagating waves interfere on a photodiode.

1556
0

0.2

0.4

0.6

0.8

1.0

1557 1558 1559
λ [nm]

T
 [a

rb
. u

ni
ts

]

before
development

λ = 1.55 µm

λw = 514.5 nm

x
y

z

Figure 10.6. Holographically recorded reflection filters in LiNbO3:Ti:Cu channel

waveguides. a) Geometry for recording and read-out of the grating, and b) typical

transmission spectrum T(l) of a 15 mm-long filter.
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When the fiber coil of diameter D and length L rotates with an angular velocity

V, a phase difference

Dg ¼ LDv0V

c2
(10:4)

is measured in the output interference signal, where c is the speed of light in

vacuum. In a standard configuration, a phase modulator in one arm of the

interferometer leads to an additional difference phase modulation of the output

signal, which can be used for a closed-loop operation of the Sagnac interferometer.

Because of the high requirements on stability and exact reciprocity of the

device and the need for phase modulation of the optical signals, a realization of

a compact, integrated optical Sagnac interferometer in LiNbO3 is favorable.

Such a component where all optical components are integrated on a single chip

is shown in Fig. 10.7. Today, these devices are in use, e.g., in civil and military

aviation. However, although much work has been spent on the optimization of

design and production techniques, the fabrication yield is still heavily limited

and may be as low as about ten percent in some cases, which can be at least in

part attributed to undesired photorefractive effects in the LiNbO3 chip [161].

10.8 Conclusions and Outlook

In this chapter, recent results on formation and investigation of photorefractive

waveguides have been summarized, and some interesting applications of these

samples have been outlined. Further improvement and simplification of the

necessary fabrication technologies, e.g., by low-cost thin film deposition, as

well as tailored photorefractive properties and geometries of the waveguides,

will stimulate future developments in this active research area.
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68. D. Kip, R. Fink, T. Bartholomäus, E. Krätzig: Opt. Commun. 95, 33 (1993).

69. D. Kip, F. Rickermann, E. Krätzig: Opt. Lett. 20, 1139 (1995).

70. A.D. Novikov, S.G. Odoulov, V.M. Shandarov, E.S. Shandarov, S.M. Shandarov:

J. Opt. Soc. Am. B 8, 1298 (1991).

71. V.L. Popov, E.S. Shandarov, S.M. Shandarov: J. Opt. Soc. Am. B 9, 1661 (1992).

72. D. Kip, E. Krätzig: Opt. Lett. 17, 1563 (1992).

Gunter / Photorefractive Materials and their Applications 1 chap10 Final Proof page 312 28.10.2005 9:20pm

312 Detlef Kip and Monika Wesner



73. E.M. Zolotov, P.G. Kazansky, V.A. Chernykh: Sov. Tech. Phys. Lett. 7, 397

(1981).

74. I.I. Itkin, S.M. Shandarov: Sov. Tech. Phys. Lett. 16, 357 (1990).

75. Y. Solomonov, S.M. Shandarov, V.M. Shandarov: Ferroelectrics 201, 195 (1997).

76. V.I. Belinicher, B.I. Sturman: Sov. Phys: Uspheki 23, 199 (1980).

77. S.G. Odoulov: Sov. Phys. JETP Lett. 35, 10 (1982).

78. T. Fujiwara, X. Cao, R. Srivastava, R.V. Ramaswamy: Appl. Phys. Lett. 61, 743

(1992).

79. T. Fujiwara, R. Srivastava, X. Cao, R.V. Ramaswamy: Opt. Lett. 18, 346 (1993).
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11.1 Introduction

Solitons are universal phenomena that appear in awealthof systems innature. The

past few decades have witnessed their identification and observation in diverse

physical systems: shallow and deep water waves, charge density waves in plasma,

sound waves in liquid helium, matter waves in Bose-Einstein condensates, excita-

tions on DNA chains, ‘‘branes’’ at the end of open strings in superstring theory,

domain walls in supergravity, and many more. Solitons can even appear for

electromagnetic waves in vacuum, where they are supported by QED nonlineari-

ties. And, of course, in optics, where solitons were originally discovered as tem-

poral solitons in optical fibers [1, 2]. In the spatial optical domain, solitonsmanifest

themselves in a large variety of settings (for reviews of optical spatial solitons, see

Refs. [3, 4, 5, 6]). In all these diverse systems,which vary in every aspect fromsize to

dimensionality, fromunderlying forces tophysicalmechanisms, propagation leads

to a family of nonlinear waves—solitons—that have the same, universal, features:

They are all self-trapped entities possessing particle-like behavior.

In this chapter, we outline the mechanisms through which photorefraction

can support optical spatial solitons (for a specific review, see pages 61–125 in

[6]), give an account of the development of the main underlying ideas, and

describe the associated phenomenology. Since the discovery of photorefractive

solitons in 1992 [7], they have become one of the most important experimental
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means to study universal soliton features. The rich diversity of photorefractive

effects has allowed experimental investigations into a large variety of soliton

phenomena, many of which have been the first observation in any soliton-

supporting system in nature. For example, it was with photorefractive solitons

that specific interaction effects, such as 3D soliton spiraling, fission, and

annihilation, were first demonstrated. Likewise, random-phase (or incoherent)

solitons were first observed in photorefractives, and also multimode solitons,

both in 1D and in 2D. And, more recently, solitons in two-dimensional non-

linear photonic lattices were first demonstrated in photorefractives, the lattice

itself being optically induced in real-time. The intrinsic complexity of photo-

refractive effects, being driven by several charge transport mechanisms, utiliz-

ing linear and quadratic electro-optic effects, and having a polarization-

dependent tensorial behavior, contributes in giving rise to the rich phenomen-

ology underlying photorefractive solitons. Much is understood now about the

formation processes of the various types of photorefractive solitons, and many

of the parameters can be controlled individually: At the same time, numerous

questions are still open. Research on solitons in photorefractives has also

introduced a number of new ingredients to photorefractive studies at large.

For example, understanding the propagation of beams in photorefractives,

including the formation of self-oscillators (e.g., the so-called ‘‘double phase

conjugator’’) has considerably benefited from the understanding gained in

photorefractive soliton research. Likewise, exploring spatially-localized effects

that emerge and find their full realization directly within the sample, such as

instabilities and spontaneous pattern formation, with and without a cavity, are

now understood through the explicit connection between solitons and modu-

lation instability [6]. In this chapter, we provide an updated overview on the

fascinating phenomenon of photorefractive solitons.

11.2 The Discovery of Solitons in Photorefractives

In the wake of renewed interest in soliton propagation, triggered by studies of

temporal solitons, the early 1990s saw an intense effort aimed at finding

accessible physical systems in which to experimentally investigate spatial soli-

tons. ‘‘Conventional’’ schemes relying on the Optical Kerr effect presented

crippling limitations connected to the extremely high optical intensities in-

volved, and suffering from the fundamental constraints associated with the

instabilities and catastrophic collapse of Kerr solitons in bulk media (a process

which can be arrested in some systems [8]). Motivated by the strong nonlinear

response of photorefractive crystals, at low optical intensities, M. Segev,

B. Crosignani, and A. Yariv, proposed in 1992 the first photorefraction-

based self-trapping mechanism. This embryonic idea sets the beginning of the

field, and, indeed, of our description [7].

A spatial soliton is a beam that, by virtue of a robust balance between

diffraction and nonlinearity, does not change its shape during propagation. A

Gunter / Photorefractive Materials and their Applications 1 chap11 Final Proof page 318 28.10.2005 9:17pm

318 E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, and G. Salamo



direct observation of a spatial soliton in photorefractives is shown in Fig. 11.1.

Before the discovery of photorefractive solitons, nonlinear optics in photore-

fractives was centered on diffusion-drivenwave-mixing schemes, typically result-

ing in exchanges between the interacting waves, a mechanism at the heart of

photorefractive self-oscillation and ‘‘passive’’ phase conjugators. At that time,

other settings, which exhibited strong phase-coupling (and much lower energy-

exchange), attracted much less interest. Furthermore, diffusion-driven photore-

fractive wave-mixing is typically accompanied by massive amplification of scat-

tered noise (the so-called ‘‘beam fanning’’). During the fanning process, energy is

transferred from the incident beam(s) into modes not present in the launch,

resulting in a highly delocalized state: the exact opposite of self-localization

effects that are at the heart of solitary waves. Segev et al. [7] argued that since

wave-mixing was intrinsically accompanied by a mutual phase-modulation, one

could find a condition inwhich the plane-wave components of a diffracting beam

could mix so as to lead to a trapping self-phase modulation: Their mutual

exchange could compensate for the linear dephasing between the plane-wave

components of a beam, and thus counteract diffraction altogether. They ob-

served that, in contrast to schemes where the main mixing agent is diffusion,

leading to the highly asymmetric fanning process, a symmetric mutual phase-

modulation could be achieved through the application of an external bias field.

They concluded that, when the diffusion space-charge field could be neglected

with respect to the external bias field, a symmetric self-focusing occurs and self-

trapping effects should emerge, whereas fanning would have a minute effect [9].

It is essential to achieve phase-coupling that is symmetric with respect to the

propagation axis. In one simple scheme to do that, the beam should be

launched in a zero-cut uniaxial sample along the ordinary axis a, with the

external biasing field E0 applied along the poling optical axis c, through two

electrodes brought to a relative potential V. An optimal arrangement was iden-

tified in Stontium-Barium-Niobate (SBN) doped with rhodium impurities.

250µm

X

Z

(a)

(b)

(c)

Figure 11.1. Top view of spurious scattered light produced by transient photorefrac-

tive solitons in a biased sample of potassium-lithium-tantalate-niobate (KLTN).

(a) Linear diffraction from an input Full-Width-Half-Maximum (FWHM) of 6mm to

150mm. (b-c) Solitons formed with opposite values of external field. Taken from [14].
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Characterized by an r33 ’ 220 pm=V , for an extraordinary c polarized beam

launch, index modulations of the order of jDnj ’ (1=2)n3r33E0 � 2� 5 � 10�4

for achievable fields of the order of E0 � 1� 3 kV=cm could be reached, a

nonlinearity sufficient to support the formation of a 10mm wide soliton.

The first pioneering experiments, reported in [10] were carried out with the

setup shown in Fig. 11.2. In relating the first results, we more often delve upon

details of transient—as opposed to steady-state—effects, and miss the main and

revolutionary point: Where no previous phenomenology even hinted at self-

focusing, these first experiments indicated, unmistakably, that a visible con-

tinuous-wave beam propagating in a biased sample would actually self-trap, the

ensuing spatial soliton being readily accessible to direct observation (see Fig.

11.1). These pioneering results established that very narrow beams launched in

a properly-biased photorefractive crystal would self-trap, and propagate in a

robust fashion, undistorted by fanning and other noise sources in the crystal or

even fairly large deviations from optimal launch conditions [11]. For example,

it was established that a 15mm sized continuous-wave 457 nm mW beam would

not suffer fanning and self-trap for external fields from 400–500 V/cm. This

observation led to a rapid series of predictions and experiments, which now

form the phenomenological basis of photorefractive spatial solitons [11, 12, 13].

Mirror
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Figure 11.2. The original soliton observation scheme, as reported in [10]. The extra-

ordinarily-polarized launch beam is focused at the input facet. Transient dynamics were

detected recording the output intensity transmitted through an appropriate aperture

positioned before the output detector.
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As often occurs when scientific progress is in action, those first experiments

posed more questions that answers. First, the results indicated a transient self-

trapping process (see insert in Fig. 11.2), during a time window of several

hundreds of milliseconds, not characterized by stringent existence conditions

(as would have been expected for normal self-trapping, where diffraction is

exactly balanced by a specific value of nonlinearity). On the contrary, the beam

intensity and the applied bias field, two parameters determining the strength of

the nonlinear index change, could be considerably varied without significant

changes in self-trapping. But even more astonishingly, the tentative launch of

two-dimensional (circular) beam led to its stable self-trapping. This at once

indicated that the underlying nonlinear mechanism was not Kerr-like, since the

catastrophic collapse associated with self-focusing in Kerr media did not

occur. For some reason, the intrinsic anisotropy of the light-induced space-

charge-field, resulting both from the application of an external bias along one

transverse direction only, and the directionally resolved electro-optic response,

allowed for a two-dimensional soliton [10, 11, 12]. This observation of a two-

dimensional soliton in a bulk medium has attracted much interest yet also much

debate. At the same time, the transient nature was generally looked upon as an

undesired and limiting effect. It cast a shadow both as to the nature of the

interaction, but more importantly, as to its stability. Transient effects of the sort

had a history in photorefraction, and they were attributed to charge accumu-

lation in dark regions of the sample of the photoexcited charge, depleting

illuminated portions and possibly screening external bias.

This triggered the idea that the transient nature of the self-trapping was an

effect of charge accumulation screening E0: Free-charges would be photoex-

cited across the beam profile, and, drifting in the external field, would reach the

bordering dark regions, and get trapped there. These trapped charges would

give rise to an internal (space-charge) field with a polarity opposite to E0. In

SBN, this lowering (screening) of the applied field at the illuminated regions

would locally lead to electro-optic lensing. The decay of this (induced) lens with

time would then be a consequence of the fact that charge would continue to

separate until E0 was totally screened, thereby saturating and flattening the

induced ‘‘lens’’. In this, investigators found the solution: They would foresee a

compensating mechanism through which accumulated charge could be elimin-

ated by homogeneously illuminating the sample, which amounts to increasing

the dark sample conductivity (see Fig. 11.3). On the basis of the relative

intensity of the beam to the background, there would exist a dynamic equilib-

rium leading to a steady-state lensing effect [15, 16, 17, 18]. Photorefractive

solitons have since been observed in SBN, BSO, BGO, BTO, BaTiO3, LiNbO3,

InP, CdZnTe, KLTN, KNbO3, polymers and organic glass.

As the model was reformulated on this new, and to some extent simpler,

screening idea, foreseeing the artificial enhancement of crystal dark conductiv-

ity, David Iturbe-Castillo et al. [19] reported steady-state self-focusing, using a

homogeneous illumination to free accumulated charge. Finally, Shih et al. [20,

21] and Kos et al. [22] were able to observe this nontransient (steady-state)
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soliton phenomenology and relate it to the new model. This type of self-

trapping is since termed a screening soliton, and constitutes the most commonly

studied type of photorefractive soliton. Its explanation cannot rely on the

linearized equations commonly-used to describe the interaction between plane

waves in photorefractives.

11.3 A Saturable Nonlinearity

The formulation of a descriptive and predictive theory for photorefractive

solitons involves aspects and theoretical tools that differ from those employed

in traditional wave-mixing theories. First, no periodic structure is present, and

second, in most configurations, all the physical variables vary across the beam

profile by a large fraction (e.g., from peak to zero intensity) such that the

modulation cannot be treated as a small perturbation. However, steady-state

photorefractive solitons have two intrinsic symmetries that reduce the problem:

They are evidently time-independent, and their intensity I is independent of the

propagation coordinate z. Yet the heart of complexity is nonlinearity, and even

for a z-invariant photoionizing intensity I, there is still a wide range of param-

eters, of which only a small subset can support solitons.

In order to formulate a semi-analytic theory, a one-dimensional reduction

can be implemented: The beam should be such that no y-dynamics emerge, the

soliton intensity being solely x-dependent [I(x)]. Experimentally, this was

achieved by launching a beam focused down through a cylindrical lens, and

quite similarly, this has led to quasi-steady-state self-trapping in the absence of

background [12], and to steady-state screening solitons for appropriate values

of E0 (see Fig. 11.4) [22].

Laser

Beam
ExpanderCCD
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z

Figure 11.3. A scheme to generate screening solitons [20]. The extraordinarily-polar-

ized soliton-forming beam is copropagating with an ordinarily-polarized beam of

uniform intensity.
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In fact, in many aspects, these one-dimensional (stripe) waves, generally

termed one-plus-one dimensional screening solitons [(1þ1D)], share a similar

behavior to that of their needle-like counterparts, which are therefore called

two-plus-one-dimensional screening solitons [(2þ1D)]. Although (2þ1)D self-

trapping in photorefractive media is still not fully theoretically understood (see

Section 11.4), the theory of (1þ1)D photorefractive solitons [15, 16, 17, 18]

constitutes the basic confirmation that photorefraction supports self-trapping.

In most conditions of interest, the optical intensity distribution I(x) is such

that, for an electron-dominated photorefraction, the resulting concentration of

photoexcited electrons N, the concentration of acceptor impurities Na, and the

concentration of donor impurities Nd follow the scaling N << Na << Nd .

Under these generally valid assumptions, the space-charge field E is related to

the optical intensity I through the nonlinear differential equation [23]

E(Ib þ I)
1

1þ e

Naq

dE

dx

þ kbT

q

d

dx
(Ib þ I)

1

1þ e

Naq

dE

dx

0

BB@

1

CCA ¼ g: (11:1)

A

A

B

C

B

C

-58 58µm -58 58µm -58 58µm

Diffraction OutputInput Face Soliton Output

Experimental Profile
Theoretical Profile

Figure 11.4. A one dimensional soliton observed in biased SBN. Top: Input intensity

distribution, output linear diffraction (no bias), and output self-trapped beam. Center

and bottom: Profiles. As reported in [22].
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Here, e is the sample dielectric constant, q is the electron charge, kb is the

Boltzmann constant, T is the temperature, and g is a constant related to the

boundary conditions, i.e., to the voltage V applied on the x-facets Lx apart. Ib is

the effective background illumination, the homogeneous optical intensity

that controls the conductivity of the crystal. We emphasize that none of

the small-modulation methods can be used to linearize Eq. (11.1) and solve

for solitons.

11.3.1 Nonlinearity

The structure of Eq. (11.1) and the presence of the term (1þ e
Naq

dE
dx
) indicate a

natural normalization procedure to enact an approximate approach:

Y ¼ E=E0, Q ¼ (Ib þ I)=Ib, and j ¼ x=xq ¼ x=[eE0=(Naq)]. We might note

that, using the conventional scaling implemented for wave-mixing, xq can be

identified with a saturation scale, i.e., that spatial scale under which the max-

imum attainable charge (when the concentration of ionized donors Nþ
d � Na)

cannot screen E0 (which becomes comparable with the saturation field Eq).

From Eq. (11.1) Y and Q are now related through

YQ

1þ Y 0 þ a
Q0

1þ Y 0 �
Q

(1þ Y 0)2
Y 00

� �
¼ G, (11:2)

with a ¼ NakbT=eE2
0 and G ¼ gE0=Ib. The prime stands for (d=dj). Eq. (11.2)

can be rewritten

Y ¼ �a
Q0

Q
þ G

Q
þ GY 0

Q
þ a

Y 00

1þ Y 0 : (11:3)

We can now identify the various terms with precise physical processes, as we

shall see. Eq. (11.3) is rendered tractable by the fact that the greater part of

spatial soliton studies involve the trapping of beams with an intensity Full-

Width-Half-Maximum (FWHM) Dx � 10mm. For most configurations,

xq � 0:1mm, and h ¼ xq=Dx � 0:01 represents a smallness parameter. A di-

mensional evaluation of the various terms for the appropriate high-modulation

regime indicates that

Y (0) ¼ G

Q
þ o(h), (11:4)

since a � 2:5, and G ’ �1 [18]. A first correction is obtained by iterating this

solution into Eq. (11.3), and the resulting expression for Y is

Y (1) ¼ G

Q
� a

Q0

Q
�Q0

Q

G

Q

� �2

þo(h2): (11:5)

The first dominant term is generally referred as the screening term. It

represents, in our discussion, the main agent leading to solitons. It is local, in

that it does not involve spatial integration, has the same symmetry of the
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optical intensity Q, and represents a decrease in E with respect to E0 on

consequence of charge rearrangement (G ’ �1). So perhaps the most aston-

ishing fact of our discussion is that for a large variety of conditions, this form of

self-focusing (including self-defocusing) is the dominant effect, as the plentiful

family of reported observations that have followed the 1992–1993 discovery

imply. The second term, of first order in h, is simply the high-modulation

version of what is generally called the diffusion field (Ed ). The third, again of

first order in h, is the coupling of the diffusion field with the screening field, a

component sometimes referred to as deriving from charge-displacement [25].

Both these two last terms involve a spatial derivative, and thus provide an

antisymmetric contribution to the space charge field (Y) for a symmetric beam

I(x) ¼ I(� x). That is, these last two terms lead to a beam self-action with

symmetry opposite to that required to support solitons. For ‘‘conventional’’

photorefractive wave mixing, these antisymmetric terms play the central role,

leading to energy exchange etc. But for highly localized beams, under the

appropriate applied field and intensity conditions, such terms merely lead to

beam self-bending, which for most configurations amounts to a slight

parabolic distortion of the preferentially z-oriented trajectory. The subject

has attracted interest over the years and has helped build an understanding

into the limits of the local saturable nonlinearity model [13, 21, 25, 26, 27, 28,

29, 30, 31, 32, 33].

In order to identify the nonlinearity, we must now translate the space-charge

field E into an index modulation. The standard configuration for generating

screening solitons is such that a zero-cut uniaxial crystal is positioned so that

the x-axis is the direction along which E0 is applied, the soliton beam of

intensity I is extraordinarily-polarized and is propagating along z, while Ib is

obtained through a copropagating ordinarily-polarized plane-wave [20]. For a

noncentrosymmetric photorefractive crystal, like SBN, Dn ¼ � 1
2
n3r33E, n

being the unperturbed crystal index of refraction, and rij the linear electro-

optic tensor of the sample. Consistent with our iterative scheme of Eq. (11.4),

we obtain the nonlinearity

Dn(I) ¼ � 1

2
n3r33

V

Lx

1

1þ I=Ib
¼ �Dn0

1

1þ I=Ib
, (11:6)

which constitutes a saturable nonlinearity, identical (within a constant term) to

the nonlinear index change in a homogeneously-broadened two-level-system.

11.3.2 The Soliton-Supporting Nonlinear Equation

A soliton is loosely defined as a wave that preserves its shape and velocity

throughout propagation, while, very importantly, displaying a particle-like

behavior when made to interact (‘‘collide’’) with other solitons. As such,

solitons possess a number of conserved quantities, such as power, momentum,

Hamiltonian, etc. [6]. Optical spatial solitons, in their scalar manifestation, are

governed by the nonlinear equation for a monochromatic paraxial beam
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@

@z
� i

2k

@2

@x2

" #

A(x, z) ¼ � ik

n
DnA(x, z) (11:7)

where k ¼ 2pn=l is the wave-vector, A is the extraordinary component of the

slowly varying optical field, i.e., Eopt(x, z, t) ¼ A(x, z) exp (ikz� ivt),
v ¼ 2pc=nl, and I ¼ jA(x, z)j2. We seek stationary (non-diffracting) solutions

of the form A(x, z) ¼ u(x)eiGz
ffiffiffiffi
Ib

p
, normalize the transverse spatial scale to the

so-called nonlinear length scale d ¼ (� 2kb)�1=2, i.e., j ¼ x=d, which for

photorefractive solitons is obtained from the expression b ¼ (1=2)kn2r33
(V=Lx), and obtain [15, 18]

d2u(j)

dj2
¼ � G

b
� 1

1þ u(j)2

� �
u(j): (11:8)

The plus sign is for b > 0, the minus for b < 0. The sign of b corresponds

to the sign of Dn0, and implies a self-focusing, for b > 0, or a self-defocusing,

for b < 0, nonlinearity, having established that E decreases across the beam

profile. Applying the external bias in a particular direction with respect to

the crystalline axes uniquely establishes the sign of the nonlinearity through

the sign of r33. For example, in SBN, applying E0 in the direction of the

crystalline (ferroelectric) c axis implies b > 0, and we observe a self-focusing

nonlinearity. It is possible to apply E0 in a direction opposite to ferroelectric

axis, thus effectively changing the sign of b, and then E0 must be smaller

than the coercive field; otherwise, it may render the ferroelectric crystalline

structure unstable and de-pole the crystal. Both defocusing and focusing

nonlinearities support solitons. A self-focusing nonlinearity traps a conven-

tional bell-shaped beam into a bright soliton. A self-defocusing nonlinearity

can support a dark soliton: a notch in a uniform beam generated by a

p phase jump.

Eq. (11.8) can be integrated (by quadrature) once [15, 18] giving the rela-

tionship G=b ¼ log (1þ u20)= u20 for bright beams, and G=b ¼ 1=(1þ u21) for

dark, where u1 ¼ u(1) ¼ �u(�1), and u0 ¼ u(0)(u20 ¼ I(0)=Ib being referred

to as the intensity ratio).

11.3.3 Soliton Waveforms and Existence Curve

As can be imagined, the self-trapped waves u, solutions of Eq. (11.8), form an

isolated subset of all possible solutions of Eq. (11.7). The imposition of z-

invariance implies not only a specific relationship between beam parameters,

but fixes the actual waveform u in all its details (see Fig. 11.5). For solitons, we

have two countering effects, diffraction and self-focusing, which are coupled by

nonlinearity to form a feedback mechanism. The result is that most soliton

solutions are stable to perturbations, and represent an attractor to system

dynamics [6]. This, in turn, contains the beauty and physical appeal of soliton

physics: That a propagating beam, interacting in a nontrivial way with a host
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medium, should preferably be attracted to a robust, propagation-invariant, and

very specific wave-form.

Returning to our system, what are the soliton wave-forms, and, more import-

antly, what are the beam parameters,Dj (associated toDx) and intensity ratio u20,
that characterize the subset of soliton solutions? The issue is of particular

importance, because launch experiments are designed to deterministically lead

to a soliton, a scheme that requires the launch to be close enough to a self-trapped

wave in parameter space (intensity u20 and normalized width Dj) [22]. For the
family of integrable nonlinear equations, such as the Sine-Gordon, theNonlinear

Schroedinger, and the Korteweg and de-Vries equations, an explicit solution can

be found, forwhich the relationship between beamDj and u20 is unique.However,

for the saturable nonlinearity described by Eqs. (11.6) and (11.8) theDj versus u20
relation is not explicit and single-valued, but instead yields a continuous curve

commonly termed the soliton existence curve [18] (see Fig. 11.6).
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Figure 11.5. Soliton waveforms for bright solitons, as reported in [18].
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Figure 11.6. Soliton bright and dark existence curve, as reported in [18].

Gunter / Photorefractive Materials and their Applications 1 chap11 Final Proof page 327 28.10.2005 9:17pm

11. Photorefractive Solitons 327



The wave functions of bright photorefractive screening solitons are bell-

shaped functions that are neither a Gaussian nor a hyperbolic secant [34].

Experimentally, such solitons are generated by launching a focused-down

one-dimensional Gaussian beam with a Dx and peak intensity I0 such that,

for the given configuration of crystal parameters n, r33, and Ib, for the given

bias E0, the resulting values of Dj and u0 lie on the existence curve or close

enough to it. For dark solitons, in turn, the same procedure can be implemen-

ted for the relevant (u1, Dj) parameter space.

11.3.4 Experiments and Theory

The main advantage of having formulated the theory highlighting the saturable

nature of the nonlinearity is that, within the limits in which the underlying

approximations are valid, it allows the prediction of solitons as a specific feature

independent of the particular experimental configuration. Thus, a physically

identical soliton will emerge for two self-trapped beams of, say 10 and 20mm, as

long as the applied voltage V, material response, beam intensity, and back-

ground illumination are such as to project the two conditions on the very same

point on the (u0, Dj) parameter space. Note that this powerful tool breaks down

as soon as we consider the o(h) terms, or even simple corrections in the actual

nonlinearity, such as those deriving from dielectric nonlinearity [35].

The comparison between experimental results and theory are shown in Fig.

11.7 for bright solitons [22, 36, 37], and in Fig. 11.8 for dark [24]. The

qualitative agreement is full, but quantitative agreement is weaker. At present
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Figure 11.7. Comparison between experiments and theory for (1þ 1)D bright screen-

ing solitons, from [36]. Here the low-intensity regime is what we specifically term

screening solitons.
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it is believed that the discrepancy is due more to the presence of extraneous

effects than to a deficiency in the model. For example, it has been observed that

some of the background illumination, which is made to be ordinarily polarized

in order to not undergo substantial evolution (and stay uniform in space), is

actually guided (through the non-zero r13 coefficient) by the index change

induced by the soliton. Thus, the intensity ratio is not a constant, but is actually

slightly varying across the beam profile. Another source of uncertainty is

connected to the difficulty in establishing the precise value of rij for the given

sample: This can depend on the level of overall crystal poling, on the presence

of considerable clamping, and on temperature.

Concerning more fundamental aspects of the model, we note that although

the results shown in Fig. 11.7 support the approximation contained in

Eq. (11.4), the actual beam evolution shows a clear and reproducible self-

bending effect that is explained by the full expression of Eq. (11.5). It appears

that, even though these correction terms produce a parabolic trajectory, they

do not greatly influence the existence curve. From a different perspective, we

note that self-bending becomes an important issue when experiments are car-

ried in highly solitonic regimes, characterized by a large ratio between self-

trapped propagation distance and linear diffraction length Lz=Ld .

11.4 Two-Dimensional Solitons

The (1þ 1)D screening solitons represent the firm experimental and theoretical

footing on which a large part of research rests, especially because of the appealing

nature of the saturable nonlinearity that gives rise to numerous soliton interactions not

present with Kerr-type solitons. However, the most important achievement from the

physical point of view is the self-trapping of (2þ1)D solitons. As their lower-

dimensional counterparts, such self-trapped needles form both in the transient

regime—as quasi-steady-state self-trapping [10]—and in temporal steady state
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Figure 11.8. Comparison between experiments and theory for (1þ 1)D dark screening

solitons, from [24].
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as (2þ1)D screening solitons [20, 21]. Such needle-like solitons were originally

observed in SBN, and have been reproduced in most soliton-supporting photo-

refractive media, such as other ferroelectrics [38], semiconductors [39], para-

electrics [40], sillenites [41], and indeed for most types of self-trapping,

including photovoltaic solitons [42], multimode solitons [43–45], and incoher-

ent solitons [46, 47], to name a few. Furthermore, even (2þ1)D dark solitons

were observed in photorefractives, in quasi-steady-state [48] and in steady-state

[49] under a bias field, as well as photovoltaic [50] and incoherent [51] dark

‘‘vortex’’ solitons. An example of a dark vortex screening soliton is shown in

Fig. 11.12.

Two-plus-one dimensional solitons form when a circularly symmetric beam

is focused down onto the input face of the sample, and the initially diffracting

beam collapses into a nonspreading 2D beam having an almost ideally circu-

larly-symmetric shape (see Fig. 11.9). These studies, which constitute one of the

rare possibilities of observing (2þ1)D solitons, have greatly contributed to

the understanding of the physics associated with higher-than-one-dimensional
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Figure 11.9. The direct and detailed observation of a circularly-symmetric 12mm
needle phenomenology in a nonzero-cut sample of SBN, from [21].
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nonlinear waves. The observation of soliton spiraling in full 3D [52], as well as

fusion, fission, birth, and annihilation of (2þ1)D solitons [53, 54, 55], have

extended the very concept of soliton-particle behavior.

The description and understanding of the mechanisms that support (2þ1)D

solitons is still incomplete. This is because the propagation involves a nontrivial

three-dimensional, anisotropic, and spatially nonlocal nonlinear problem [56,

57, 58, 59, 60, 61]. The fact that photorefractives can support self-trapped

needles of (almost ideally) circularly-symmetric shape seems very surprising

right from the outset. More specifically, the external field is applied between

two parallel planar electrodes, and thus breaks the circular symmetry of the

problem. The explanation relates to the fact that the (space charge) field lines

bend in the regions of higher illumination, and, for some range of parameters

seem to yield a quasi-radial distribution of the field component giving rise to a

nonlinear index change. For example, in SBN this means that the c-component

of the space charge field has roughly a circular symmetry. The very fact that such

(2þ1)D solitons propagate in a stable fashion, not undergoing catastrophic

collapse (as such solitons in Kerr media would), is a direct indication that the

photorefractive nonlinearity is saturable also in two (transverse) dimensions.

However, during the temporal transients, and for various values of applied field,

self-trapping manifests considerable beam ellipticity [56], indicating that a

circularly-symmetric 2D saturable model is not really applicable. Nevertheless,

the large amount of experimental evidence on 2D solitons in almost every

photorefractive material in which solitons have been identified implies that a

modified model, possibly anisotropic and slightly nonlocal, should exist [59].

What clears the picture are the studies on (2þ1)D soliton interaction-collisions.

On the one hand, spiraling and large angle collisions show that whatever aniso-

tropic components emerge, they do remain localized around the beam [52, 62],

whereas lower angle collisions unmistakably indicate the presence of a saturable

yet anisotropic nonlinear behavior, as evidenced by the observation of repulsion

between (2þ1)D screening solitons undergoing an incoherent collision [63]. Such

collisions are always attractive when the nonlinearity is isotropic and local.

However, in [63], the interacting solitons, launched at a particular separation

between them, are observed to repel, as a consequence of the transverse anisot-

ropy of the photorefractive screening nonlinearity.

From a theoretical perspective, the system has two fundamental anisotropies:

The boundary conditions associatedwith the application of the external bias along

the x-direction, and the electro-optic response, which implies a complex tensorial

index modulation depending on the beam polarization, direction of the local

electric field E, and the relative orientation with respect to the crystal lattice. The

result is that the nonlinear response has a nonlocal component that is

superimposed on the saturable component [58]. In order for a quasi-circular

optical symmetry to appear, the underlying space-charge field E must be aniso-

tropic, manifesting two characteristic lateral lobes (see Fig. 11.10) [64]. The

appearance of these features, which have an increased complexity with respect to

the ionizing intensity I(x, y), are the basic manifestation of a nonlocal mechanism.
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In the 2þ1D case, we start from the basic relation, valid to zero order in h,

r � (YQ) ¼ 0 (11:9)

and the irrotational condition

r� Y ¼ 0: (11:10)

From these, the lobular structure illustrated in Fig. 11.11 emerges.

The fact that 2þ1D solitons are supported by this more complex nonlinearity

does not substantially modify our soliton picture. One consequence, however, is

that we do not have a means to formulate in a straightforward manner an
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Figure 11.10. Needle electroholography from [64]. (a) input beam, (b) diffracted

output beam at zero voltage, (c) output soliton beam, (d) the two ‘‘anisotropic lobes’’

on either side of the soliton visualized via electro-holography.
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existence curve for (2þ1)D solitons. Nevertheless, if we phenomenologically

build the set of points in which it is possible to observe circular-symmetric

self-trapping [21, 40], we find a single valued continuous curve that behaves and

looks just like the existence curve of (1þ1)D solitons (albeit at somewhat higher

values of Dj).
Evidence on both the existence of circularly-symmetric solitons and of their

intrinsic difference from (1þ1)D solitons in photorefractives is highlighted by the
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Figure 11.11. Numerically evaluated x-component of E (top) (@u=@x / Yx) for the

soliton beam profile (bottom) (jcj / I1=2), from [59].
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the vortex; (b) Diffracting vortex after linear propagation to the output of the sample;

(c) Self-trapped output intensity distribution in a biased sample. (bottom) Probe beam

guided propagation.
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experimental studies on transverse instability of (1þ1)D solitons in bulk media.

In those experiments, increasing the nonlinearity leads to a (1þ1)D soliton, at the

proper value of nonlinearity vs. intensity ratio, as determined by the existence

curve. Then, a further increase in the nonlinearity results in beambreak-up into an

array of circularly-symmetric solitons, as shown in Fig. 11.13 [65].

11.5 Temporal Effects and Quasi-Steady-State Dynamics

One of the main characteristics of photorefraction is that it is a process that builds

up in time. This is the origin of its high nonlinear response even at low optical

intensities. Evolution is dominated by a charge redistribution process that leads to

a time constant / 1=I . If I is almost constant (i.e., the beam is almost uniform in

space), then a single time constant can be identified. Otherwise, different regions in

the nonlinearmedium evolve at different time scales: Faster in illuminated regions,

and slower in darker regions. In this respect, a spatial soliton has strongly varying

Figure 11.13. Transition from (1þ1)D to (2þ1)D self-trapping, from [65].
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intensity both in the transverse plane, and, during the formation process, also

along the propagation axis. The result is an evolution that presents a number of

surprising phenomena that are complicated and difficult to describe (an example

that goes beyond soliton studies can be found in [66]).

Possibly the most important effect is observed when launching a diffracting

beam in a biased sample, without any appreciable background illumination. As

reported in the very first experiments on solitons by Duree et al. [10], the beam

is observed to form, after a time interval of the order of 10ms, a spatial soliton,

remain almost stationary for an interval of 20ms, and then decay into a once

again diffracting beam. This peculiar sequence, which involves a time plateau,

is referred to as a quasi-steady state soliton.

The time dependent version of Eq. (11.2) truncated at zero order in h reads

@Y

@t
þQY ¼ G, (11:11)

where t ¼ t=td , td ¼ e0er�Na=(qms(Nd �Na)Ib) is the characteristic dielectric

time constant, g is the recombination rate, m the electron mobility, s the donor

impurity photoionization efficiency. As occurs for most configurations of

interest to soliton dynamics, the charge recombination time tr ¼ 1=�Na is

much shorter than charge transport time, and no time dependence in the

boundary conditions is considered (G ¼ �1). For small modulation, Eq.

(11.11) gives the characteristic exponential dynamics with a characteristic

time constant td=Q, but as soon as Q is spatially dependent and evolving, a

continuum of different time constants contribute. Seen in a different perspec-

tive, soliton time evolution is highly time-nonlocal, as the formally equivalent

integral version of Eq. (11.11)

Y ¼ Ge
�
R t

0
Qdt0

1þ
Z t

0

dt0e
R t0

0
Qdt00

� �
, (11:12)

indicates [58]. The full complexity of this behavior emerges during transients,

i.e., when I changes in an appreciable manner with time. This occurs most

evidently during the very first collapsing stage, for times t# 1=(1þ u20), and

leads to a stretched exponential evolution [67]. A characteristic of multiscale

processes, this behavior is common to the entire family of soliton supporting

cumulative nonlinearities, which also include thermal and liquid crystal non-

linearities [67]. A numerical approach to Eq. (11.12) coupled to the parabolic

wave equation confirms experimental findings, but to date there is no clear

understanding why the soliton should pass through a plateau, and, more

importantly, how to evaluate the so-called threshold nonlinearity for which

self-trapping is achieved, the duration of the plateau, and the nonlinear equa-

tion, such as Eq. (11.8), for which the waves are eigen-functions. Furthermore,

we do not have a means to predict the actual trapping Dx at the plateau for a

given nonlinearity.
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In very special cases in which the beam does not undergo time evolution, we

can considerably simplify the prediction for the build of the space-charge field

[68]. In this case, Eq. (11.12) is simplified to give

Y ¼ e�tQ(1þ 1

Q
(etQ � 1) ): (11:13)

This approach can be meaningful and useful for conditions in which a soliton

(i.e., the beam I) is steady, such as for steady-state incoherent solitons that we

will describe below. It has been speculated that Eq. (11.13) could be valid when

a negligible amount of diffraction is involved [69, 70, 71, 72, 73].

While delaying the discussion of incoherent self-trapping, a (consequence of

a non-instantaneous time response), to Section 11.10, we mention here the wide

range of transient effects that occur for higher-dimensional needles [74], and

those associated to a time-dependent external bias E0 [14, 75, 76, 77]. Lastly, we

should mention the study of single pulse propagation and space-charge build-

up [78, 79].

11.6 Various Photorefractive Mechanisms Supporting
Self-Trapping

Several mechanisms can support solitons in photorefractives. Apart from the

solitons described in the previous section, which rely on an externally-applied

bias field, self-trapping in photorefractives can also arise from photovoltaic

effects [80], from diffusion-driven effects [81], or from effects caused by the

excitation of both electrons and holes [82]. In several cases, combinations of

two of these effects can also lead to solitons [e.g., solitons supported by the

photovoltaic and the screening nonlinearities simultaneously]. Furthermore, in

some cases, self-trapping can arise from semipermanent changes in the crystal-

line structure, either though clustering of ferroelectric domains [83], or through

repoling of macroscopic regions [84, 85], both being driven by the local space

charge field. Such permanent changes are in fact ‘‘fixed’’ (soliton-induced)

waveguides, acting as microstructure optical interconnects ‘‘impressed’’ into

the volume of the bulk nonlinear crystal. To this date, this is one of the very few

techniques to create intricate 3D optical circuitry. In this section, we briefly

review these additional mechanisms supporting self-trapping of optical beams

in photorefractive media.

11.6.1 Photovoltaic Solitons

Soliton-supporting mechanisms appear in photorefractives also in the absence

of electric fields, the major example being photovoltaic solitons [80, 86]. Here,

in open-circuit conditions and for the (1þ 1)D geometry, the nonuniform

optical excitation translates into a nonuniform photoinduced current. This, at
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steady state, must be countered by the drift of photoexcited charge (electrons)

in response to E. Under conditions analogous to those leading to Eq. (11.4), for

a beam with features Dx of the order of several microns, we arrive again at a

saturable nonlinearity

Dn(I) ¼ � 1

2
n3r33Ep

I

Id þ I
¼ �Dn0, p

I

Id þ I
, (11:14)

where Ep ¼ bphNag=(qms), Id the equivalent dark illumination, the constitutive

relation for the current along x being J ¼ qmNE þ bph(Nd �Nþ
d ). Much in the

same fashion of Eq. (11.8), this nonlinearity leads to a nonlinear wave equation

that supports bright and dark solitons on the basis of the sign of Dn0, p, i.e., on
the sign of bph [80, 86].

Most of the experiments with photovoltaic solitons have been carried out in

LiNbO3, for which bph is negative for an extraordinarily-polarized beam propa-

gating along the principal axis a. This has led to the observation of one-dimen-

sional dark photovoltaic solitons (see the experimental apparatus described inFig.

11.14) and results in Fig. 11.15 [87].

As occurs for the screening type nonlinearity, photovoltaic solitons can also

form in the higher-dimensional case. For LiNbO3, these form as dark vortex

solitons that are supported by a ‘‘spiraling’’ transverse phase modulation [50]

(see Fig. 11.16) ). In KNSBN, photovoltaic self-action is self-focusing, and

even bright (2þ1)D photovoltaic solitons have been detected [42]. Moreover,

it has been predicted and demonstrated that the use of a background illumin-

ation, not a strict requirement in photovoltaics, allows the transitions from the

defocusing to a focusing nonlinearity in LiNbO3 [88].

11.6.2 Resonantly-Enhanced Self-Trapping
in Semiconductors

One of the nicest features of photorefractive solitons is the very low power level

at which they can form, allowing soliton experiments withmicrowatt (and lower)

power levels. As will be discussed in the section on applications, photorefractive

Lens
LiNbO3

C

CCD array488 nm

P
Glass cover slip

Adjustable
slit

Microscope
objective

Figure 11.14. Photovoltaic dark soliton setup, from [87]. Note the use of a resolved

transverse phase-structure obtained by having part of the launch beam pass through an

appropriate piece of glass.
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solitons, and the waveguides they induce, combine properties that suggest

interesting applications ranging from reconfigurable directional couplers,

beam splitters, waveguide switching devices, tunable waveguides for second

harmonic generation, and for highly efficient optical parametric oscillators. In

general, however, the formation time of solitons in most photorefractive

materials is rather long, compared to Kerr or quadratic solitons [6], except

when very high intensities are used [36]. This is because the photorefractive

nonlinearity relies on charge separation, as discussed in Section 11.5, for which

the response time is the dielectric relaxation time, i.e., inversely proportional to

0 mm

(b)

(a)

5 mm 10 mm 15 mm 20 mm

Figure 11.15. Observations of dark photovoltaic solitons, from [87]. (a) Linearly

diffracting intensity distribution of a dark notch; (b) self-trapped intensity distribution,

for various propagation distances in the sample.

(a)

(b)

Figure 11.16. Self-trapping of a photovoltaic vortex, from [50]. (a) Output intensity

distribution before self- focusing begins, and phase pattern; (b) output intensity distri-

bution trapped by the photovoltaic field, and phase pattern.
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the product of the mobility and the optical intensity, and the mobility in

photorefractive oxides is low. In principle photorefractive semiconductors,

(e.g., InP, CdZnTe), have a high mobility and could offer formation times a

thousand-fold faster than in the other photorefractives. However, the electro-

optic effects in these semiconductors are tiny, which implies that solitons that

are as narrow as 20 optical wavelengths necessitate very large applied fields,

making solitons in them almost impossible to observe. But, in some of these

materials (InP and CdZnTe) that have both holes and electrons as charge

carriers, a unique resonance mechanism can greatly enhance the space charge

field by as much as 10 times (and more) over the applied electric field. This

enhancement yields large enough self-focusing effects that can support narrow

spatial solitons. The resonant enhancement of the space charge field has led to

the observation of solitons in photorefractive InP [39, 82] and CdZnTe [89].

As mentioned, the resonant enhancement of the space charge field occurs in

materials with both types of charge carriers, both being excited from a common

trap level: One excited optically and the other excited by temperature (or by a

second optical beam of a longer wavelength). These two excitations work in

opposing fashions: One fills (populates) the mid-gap traps whereas the other

empties them. At steady state, when a focused beam illuminates a biased crystal

of this kind, and the beam intensity is such that the photo-excitation rate of one

type of carrier is comparable to the thermal excitation rate of the other type of

carrier, the concentration of both free carriers at the illuminated region decrease

drastically. The intuitive explanation is as follows [90]. Under proper conditions,

the ratio between the concentrations of electrons and holes is equal to their ratio

in the absence of light, and thus has a constant (coordinate-independent) value.

The net excitation rate of the traps is the difference between the thermal (holes)

and optical (electrons) excitation rates. At resonance, the net excitation rate goes

to zero. At the same time, at steady state the excitation rate must be equal to the

recombination rate, which, in turn, is proportional to the free charge concentra-

tion. Hence, at resonance (when the excitation rates of holes and electrons are

comparable), the free charge concentration becomes extremely small. Conse-

quently, the local electric field is highly enhanced because the current at steady

state must remain constant throughout the crystal. For a given temperature, this

enhancement occurs at a specific intensity (the resonance intensity), for which

the thermal and optical excitation rates are comparable. It is a resonant enhance-

ment, although it is an intensity-resonance and not an atomic resonance. The

enhanced electric field compensates for the smallness of the electro-optic coeffi-

cient and enables a sufficiently large change in the refractive index to support

narrow solitons (see Fig. 11.17).

The observation of solitons in photorefractive semiconductors [39, 82, 89] is

especially important for several reasons. First, the solitons are generated at

optical telecommunications wavelengths. Second, they allow microsecond

soliton formation times even at very low (microwatt) optical power. These

features suggest that optical spatial solitons could form from light beams

emerging from ordinary optical fibers (conventional data-transmission lines)
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on nanoseconds time scales, and could be all-optically switched on-off by

employing the intensity resonance in photorefractive semiconductors.

11.6.3 Diffusion-Driven Self-Action

In a conventional noncentrosymmetric crystalline phase, such as that charac-

terizing SBN or BaTiO3 at room temperature, charge diffusion leads to an

asymmetric index profile, which translates into a transverse phase chirp that

produces self-bending. As discussed in Section 11.3.1 in conjunction with

Eq. (11.5), the diffusion field is typically just a small correction to the expres-

sion for the space charge field supporting screening solitons.

Consider now a situation where no external field is applied. On the basis of

Eq. (11.1) with g ¼ 0 (null current), E ¼ � kbT
q

1
IþIb

dI
dx
. Higher order corrections

due to saturation in this case are even less important, such that for a 10mm
beam, they represent a relative contribution of the order of er � 10�6, where er is
the relative dielectric constant. For a sample heated above the ferroelectric-

paraelectric phase-transition, manifesting a quadratic electro-optic response,

the resulting nonlinearity leads to a symmetric lensing effect, of the type

Dn(I) / ( 1
IþId

dI
dx
)2. Although in most conditions, such self-action is negligible,

in the very proximity of the phase-transition, where er attains values of the

order of 104, self-focusing, the precursor of soliton formation, has been ob-

served [81, 91]. The resulting nonlinear equation, which can be extended also to

the full (2þ1)D case, represents the singular situation in which a nonlocal

nonlinearity (involving a spatial derivative) allows for the explicit analytical

prediction of the observed nonlinear diffraction. In particular, we recall

50 µm

Input face
Output face

(No field)
Output face
(±9 kV/cm)

5-mm-
long
crystal

10-mm-
long
crystal

Figure 11.17. Observed transverse intensity distribution for (1þ1)D self-trapping in

InP, from [82].
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ellipticity recovery (see Fig. 11.18) that consists in a beam with an elliptical

transverse profile that, spreading, conserves the ratio between the two trans-

verse widths L ¼ Dy=Dx.

11.6.4 Fixing the Photorefractive Soliton: Self-Trapping
by Altering the Crystalline Structure

Solitons in photorefractives are typically supported by the linear response of the

dc crystalline polarization to the local (dc) space-charge field, P ¼ eE. However,

optical beams can also self-trap in photorefractive media by altering the crystal-

line structure of the nonlinear medium in which the beam propagates. This

happens when the local space charge field E becomes comparable with the

coercive fieldEc, and is directed in a direction different from the poling direction.

For low-modulation index gratings, such conditions rarely occur. But photore-

fractive solitons, being entities with an inherently high index contrast, are always

associated with locally high electric fields that can readily depolarize a sample.

Consider a screening soliton, which exists as a consequence of an external biasE0

directed along the poling axis x. Once the soliton has formed, charge has

redistributed so as to partially screen the field. This means that across the

beam profile, the charge distribution results in a field that is approximately

opposite the bias field. Removing the illumination (and the background) and

switching the external bias off exposes this field. The result is thatEV¼0 ’ �E0 in

the region that before gave rise to the soliton. In SBN Klotz et al., have shown

how this field can not only depolarize the sample, but also permanently fix the

waveguiding structure that accompanies the soliton, an achievement that can

have considerable impact in soliton based devices [84, 85].

Λ=1.5

Λ=1.5Λ=1.4Λ=0.8

T=30˚C T=30˚C

T=10.2˚CT=10.6˚CT=12˚C

(a) (b)

(c) (d) (e)

Λ=0.7

Figure 11.18. Diffusion-driven ellipticity recovery. The input ellipticity (a) L is recov-

ered at the output (b–e) as the crystal temperature T is brought closer to the Curie

temperature, enhancing diffusion- driven effects, from [91].
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Ferroelectric clusters, i.e., micrometer-sized regions in which spontaneous

polarization has a common orientation, can also play a more dynamic role in

spatial self-trapping, when they interplay with light-generated space-charge

during soliton formation. This has been observed in a metastable paraelectric

material, for temperatures near the transition temperature, where diffusion

fields become comparable to Ec [83]. The result is a complicated optical-domain

interaction which also leads, in appropriate conditions, to a form of spatial self-

action known as spontaneous self-trapping (see Fig. 11.19). The description of

these processes, which requires the modeling of domain formation, and their

light-matter interaction throughout propagation, is beyond the linear polariza-

tion approach. Such a theory has yet to be formulated.

11.7 Alternative Photorefractive Materials

Research into nonlinear beam propagation has also been carried out in

sillenites, such as BTO, BSO, and BGO, paraelectrics, such as KLTN, and

photorefractive polymers [92, 93] and organic gels [94].

In nonferroelectric sillenites, photorefractive self-trapping was obtained in a

configuration similar to that used for ferroelectric samples [19, 95, 96, 97].

The main difference between the physical processes is that sillenites present a

fairly strong natural optical activity, which leads to polarization rotation

(during propagation) of both the self-focused and the background beams.

This causes the effective nonlinearity to change in the direction of propagation

[98, 99, 100]. Strictly speaking, solitons cannot exist in such optically-active

materials, at least not in the typical scheme of screening solitons. However,

using very short samples (a typical value of optical activity is r0 ’ 6�=mm), and

employing precompensation (in which the beams are not extraordinarily- and

ordinarily-polarized, but evolve to these halfway through the sample), does

allow the observation of non-diffracting beams for some propagation distance.

Another difficulty in using sillenite crystals is in the weak effective electro-optic

coefficient reff ’ 5pm=V (for BTO), as compared to ferro-electrics. Altogether,

(a) (b) (c) (d)

50µm

Figure 11.19. Domain and cluster structure induced by a spontaneous self-trapped

process in metastable KLTN, from [83], (a–b) Underlying domain structure as seen with

the two principal polarizations; (c–d) melting away of domains into clusters, clusters into

a homogeneous structure, as temperature is increased from the Curie point.
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the sillenite crystals have served an important role in the first explorations of

steady-state self-focusing [19], but have been rarely used for solitons experi-

ments since then, simply because other materials offer more favorable condi-

tions for soliton generation.

Part of screening soliton studies are carried out in paraelectrics, where the

quadratic electro-optic effect supports a screening nonlinearity in all similar to

the noncentrosymmetric counterpart of the form Dn / (E0)
2=(1þ I=Ib)

2 [101].

In these, almost all the conventional photorefractive soliton phenomenology

can be observed, from (1þ 1)D [37] to (2þ 1)D solitons [40]. Dark solitons

have yet to find an appropriate material (with an accessibly low temperature

paraelectric phase), because in such crystals, the nature of the index change

cannot be reversed upon reversal of the applied field, as is the case for non-

centrosymmetric crystals with the linear electrooptic effect. Given the generally

weak electro-optic response in the high-symmetry phase, most studies are

carried out in proximity of the ferroelectric-paraelectric transition: The crystals

must be thermalized to stabilize their dielectric response.

11.8 Soliton Interaction-Collisions

Nonlinearity generally allows the coupling and energy exchange among beams

and modes. For solitons, nonlinearity not only supports their propagation-

invariant nature, but leads to a unique coupling dynamic in which the individ-

ual solitons behave as quasi-rigid particles when they are made to interact with

one another. In fact, this particle-like behavior is the reason for the term

‘‘soliton’’ [102]. Interactions between solitons are commonly referred to as

soliton collisions, and constitute the most fascinating features of soliton phe-

nomena. Soliton interactions can be generally classified into coherent and

incoherent interactions. Coherent interactions of solitons occur when the non-

linear medium can respond to interference effects that take place when the

beams overlap. The material responds to the interference introducing a mutual

attraction or repulsion, depending on the relative phase between the beams.

Incoherent interactions, on the other hand, occur when the relative phase

between the (soliton) beams varies much faster than the response time of the

medium. In this case, the resultant force between such bright solitons is always

attractive. Altogether, soliton interaction-collisions are universal, exhibiting the

same basic features in spite of the widely diverse physical origins for the self-

trapping. For a detailed review on soliton interaction forces, see [5].

Photorefractive solitons played an especially important role in the study of

soliton interactions, and in doing that have greatly contributed to soliton

research at large. This role is a consequence of a series of factors: The relative

ease in soliton generation, which lowers the complexity of multiple soliton-

supporting schemes; the saturable nature of the nonlinearity, which offers

many features that are simply nonexistent with ideal Kerr-type solitons; the

existence of both (1þ 1)D and (2þ 1)D solitons, in a 3D bulk medium; and the
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relatively slow response of photorefractive materials which facilitates the pos-

sibility of studying both coherent and incoherent collisions in the same material

system. Consequently, many soliton collision features have been demonstrated

first with photorefractive solitons, and only later on experiments in other non-

linear media followed up.

The physical intuition behind soliton collisions relies on the universal idea that

a soliton is a bound state of its own induced potential, or in optics a guidedmode

of its own induced waveguide . Having this in mind, one can understand soliton

collisions by comparing the collision angle to the (complementary) critical angle

for guidance in the single soliton-induced waveguides (the angle with the propa-

gation axis below which total internal reflection occurs). Whether or not energy

is coupled from one soliton into the waveguide induced by the other soliton,

depends on the relation between the collision angle and that critical angle. In

terms of ‘‘potential well,’’ capture depends on whether the kinetic energy of the

colliding wave-packets results in a velocity that is smaller than the escape

velocity. If the collision occurs at an angle larger than the critical angle, the

solitons simply go through each other unaffected—very similar to the behavior

of Kerr solitons (the beams refract twice while going through each other’s

induced waveguide but cannot couple light into it). If the collision occurs at

‘‘shallow’’ angles, the beams can couple light into each other’s induced wave-

guide. Now if the waveguide can guide only a single-mode (a single bound state),

the collision outcome will be elastic, essentially very similar to that of a similar

collision in Kerr media (with the exception that now some very small fraction of

the energy is lost to free radiation). However, if the waveguide can guide more

than one mode, and if the collision is attractive, higher modes are excited in each

waveguide and, in some cases, the waveguides merge and the solitons fuse to

form one single soliton beam. Such a fusion process is always followed by a small

energy loss to radiation waves, much like inelastic collisions between real par-

ticles. This naive picture of soliton interactions gives qualitative understanding

of the complex behavior of soliton collisions, yet it is incomplete. In reality, the

interacting solitons affect each other’s induced waveguide, and the true collision

process is much more complicated.

The first experimental papers on collisions between photorefractive solitons

were also the first papers reporting fusion of solitons in any medium (see Fig.

11.22) [53, 103] (in parallel to a similar observation with solitons in atomic

vapor, for which the nonlinearity is also saturable). These experiments reported

on incoherent collisions, between (2þ 1)D [53] and between (1þ 1)D solitons

[103], during which at large collision angles the solitons passed through one

another unaffected, whereas at shallow collision angles, they fused to one

another (see Fig. 11.20). Following these experiments, a team headed by W.

Krolikowski studied coherent collisions and demonstrated fission of solitons

(‘‘birth’’ and annihilation of solitons [54, 55], which also constitutes the first

observation of such effects in any solitonic system. Other groups have followed

and mapped out coherent interactions between (1þ 1)D and (2þ 1)D solitons

[105, 106]. All of these were collisions between solitons launched with trajec-
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tories in the same plane. However, because the photorefractive nonlinearity is

saturable, one can also look at collisions of (2þ 1)D solitons with trajectories

that also do not lie in the same plane: Full 3D interactions. When nonparallel

solitons with trajectories that do not lie in the same plane are launched simul-

taneously, they interact (attract or repel each other) via the nonlinearity and

their trajectories bend. A description of soliton trajectories suggests an intuitive

analogy to mechanics. Inertia is represented by the tendency of the beam to

evolve in a direction orthogonal to the constant-phase planes, velocity by the

component of the wavevector orthogonal to the propagation axis, and inter-

action forces those mechanisms that modify the direction of the constant phase

planes. These, modifying the direction of propagation, change the velocity and

therefore induce the equivalent of an acceleration. In this intuitive analogy to

mechanics, the soliton system can be thought of possessing initial angular

momentum: If the soliton attraction exactly balances the ‘‘centrifugal force’’

due to rotation, the solitons can capture each other into orbit and spiral about,

like two celestial objects or two moving charged particles. This idea was

suggested in the context of coherent collisions [107]. However, because coherent

interactions are critically sensitive to phase, in this case solitons can never attain

stable orbits, and spiral about each other. Instead, they always either fuse to

form a single beam, or escape away from each other. On the other hand, the

purely attractive nature of an incoherent collision between solitons and its

independence of the relative phase between these interacting solitons makes

such a scheme ideal for the orbiting observation. Under proper initial condi-

tions of separation and beam trajectories, solitons capture each other into an

elliptic orbit (see Fig. 11.23) [52]. If the initial distance between the solitons is

increased, their trajectories slightly bend toward each other, but their velocity is

larger than the equivalent escape velocity, and they do not form a ‘‘bound

pair.’’ On the other hand, if their separation is too small, they spiral on a

‘‘converging orbit’’ and eventually fuse. In reality, the 3D spiraling-interaction

mechanism is much richer and more complicated than initially thought. It turns

out that the two spiraling-interacting solitons exchange energy by coupling

light into each other’s induced waveguide. This is because the nonlinearity is

Soliton Collision

Diffraction

0.6�
I/Ib=20

1.2�
I/Ib=20

2.5�
I/Ib=20

Propagation Direction

1.2�(d)

(c)

(b)

(a)

Figure 11.20. Collisions, from [53]. Top view of colliding incoherent diffracting beams

and solitons for different relative angles.
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saturable and the trajectories are at shallow angles. But because the two

interacting solitons have equal power, the energy exchange is symmetric. The

coupled light is, of course, coherent with its ‘‘source’’ but incoherent with the

soliton into which it was coupled. Thus, even though the solitons are initially

incoherent with each other, the energy exchange induces partial coherence and

thus contributes to the forces involved, which are the result of beam overlap

and interference. The end result is that the two solitons orbit periodically about

each other and at the same time exchange energy periodically, with the two

periods (the spiraling period and the energy exchange period) being only

indirectly related [108]. This complicated motion is stable over a wide range

of parameters [108]. To some extent, whether or not the spiraling can go on

indefinitely is yet an open question, because it is possible that, after long

enough propagation distances (far beyond the present experimental reach),

the solitons eventually merge [109]. Another interesting feature of spiraling-

interacting solitons is the fact that if one adds a tiny seed of light in one of the

input solitons that is coherent with the other soliton, the relative phase between

these coherent components (the seed and the other soliton) controls the out-

come of the collision process, and can turn a spiraling motion into fusion or

repulsion [108]. Altogether, the observation of spiraling-interacting solitons has

introduced new concepts to soliton physics: Not only energy (power) and

momentum are conserved, but also the conservation of angular momentum,

which is the fundamental symmetry that enables spiraling.

It is interesting to compare soliton and plane-wave interactions in a photo-

refractive. The crossing of two plane waves, even at low angles of the order of

fractions of a degree, leads to energy transfer. Two solitons, on the other hand,

behave in a diametrically opposite manner: They cross each other without

appreciable energy transfer even when they are mutually coherent. This differ-

ence has a straightforward geometrical explanation: Even though no soliton

mechanism forbids the formation of a coupling grating in the region where the

two beams overlap, this overlap is spatially limited by the mutual angle u in

their propagation direction and their very narrow width Dx, which is typically

no more than 20 wavelengths wide. Thus, in two-wave-mixing terminology,

even though the coupling coefficient g can be reasonably high, the equivalent

energy transfer egL, where L is the effective interaction distance in the sample, is

negligible. Altogether, soliton interactions, even in photorefractives (which

could give rise to energy transfer driven by the diffusion field) is well described

by means of soliton interaction forces based on wave-overlap integrals, and the

intrinsic energy coupling mechanism that acts in two-wave-mixing is absent.

Photorefraction also allows the investigation of soliton collisions between

two solitons of different dimensionality (see Fig. 11.21) [110]. The possibility of

carrying out these studies arises from the saturable nature of the nonlinearity,

which facilitates stable (2þ1)D solitons, as well as the quasi-stable propagation

of (1þ1)D solitons in 3D bulk media.

A more recent series of studies targeted collisions of solitons propagating in

opposite directions [111, 112, 113, 114]. The concept actually applies to any
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(a) (b) (c) (d)

Figure 11.21. Hybrid-soliton collisions, from [110]. (a) Input launch of a two-

dimensional and a one-dimensional diffracting beam, output intensity distribution

with no applied field, output intensity distribution with applied self-trapping field;

(b) same as (a) but for a smaller collision angle; (c–d) single beam self-trapping in the

same experimental conditions.

(a)

(b)

Figure 11.22. Soliton fusion, from [54]. Two identical solitons fuse at the output of the

sample when they are in-phase (a), whereas they repel when they are out-of-phase (b).
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soliton-supporting system and introduces a different scenario for interacting

solitons [115]. Experimentally, thus far only incoherent collisions between such

solitons have been studied [112, 114], whereas the more interesting case of

coherent collisions [115, 113] is still unexplored, apart for the very specific

case of a vector soliton formed between counter-propagating components

[116]. In photorefractives, the interaction between the solitons occurs along a

spatially extended region (both through mutual phase-modulation and the

interference grating), hence spatially nonlocal effects, such as self-bending

driven by diffusion fields, have an important impact on the collision dynamics.

The experiments of [112, 114] show that the soliton collision dramatically

modifies the self-bending of both solitons, in a way that can be directly utilized

for all-optical beam deflection, steering, and control.

11.9 Vector and Composite Solitons

In their most basic form, solitons are described by a single optical field. The

simplest (so-called scalar) soliton occurs when the soliton constitutes of a single

field, which excites (‘‘populates’’) the lowest mode of its own induced-wave-

guide. A more complex soliton, a vector soliton, occurs when more than one

field populates the lowest mode of the potential induced jointly by the overall

intensity of the soliton. The first vector soliton was suggested by Manakov in

Kerr media, when self- and cross-phase modulation are equal [117]. Vector

solitons, however, can be also composite: They can be composed of fields that

populate different modes of their jointly induced potential (waveguide). In one

realization, composite solitons are made of a bell-shaped (bright) component

populating the lowest mode and a dark component being the second mode.

A more interesting situation occurs when the field constituents of the composite

soliton populate different bound modes of their jointly-induced potential.

These composite, multimode solitons can have two or more intensity humps,

and can appear in (1þ1)D and in (2þ1)D in a variety of intriguing combin-

ations, including (2þ1)D composite solitons carrying angular momentum

within their field constituents. As will be explained below, almost all the
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(a) (b) (c)
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A
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AB

50 µm

B

B

B

B

Figure 11.23. Soliton spiralling, from [52]. (a) Beams A and B at the input face of the

crystal, (b) the spiraling soliton pair after 6.5 mm of propagation, and (c) after 13 mm of

propagation. The centers of diffracting A and B are marked by white triangles. The

white cross indicates the center of mass of the diffracting beams A and B in (b) and (c).
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experiments with vector solitons, and practically all the experiments with multi-

mode solitons, were carried out in photorefractives.

A key issue regarding a vector soliton is that interference terms between

the soliton constituents should not contribute to the nonlinear index change

(otherwise the induced potential would vary periodically during propaga-

tion). Thus, the field constituents making up a vector soliton could originate

from orthogonal polarizations states, or from fields at widely-spaced fre-

quencies. In the polarization-based technique, there are no interference

terms, whereas in the widely spaced frequencies method, the interference

terms are not synchronized with either of the soliton constituents. Photore-

fractives, however, have offered a much more appealing technique to gener-

ate vector solitons: making up a vector soliton from field constituents that

are incoherent with one another; that is, their relative phases are randomly

fluctuating. When the relative phase between the fields making up the soliton

fluctuates much faster than the response time of the nonlinearity, the con-

tribution of interference terms to the nonlinear index change averages out to

zero. This method, suggested by Christodoulides et al. [118], has revolution-

ized the field of vector solitons. With this mutual incoherence method, first a

degenerate (Manakov-like) soliton was observed [119], the same year that the

first Manakov-type solitons were observed in Kerr media [120]. This was

followed by an observation of a vector soliton made up of a bright and a

dark component [121]. Shortly thereafter, the first multimode/multihump

solitons were observed (see Fig. 11.24) [122]. In this multimode soliton

experiment, the two input field distributions resembled the first and/or

second and third modes of a slab waveguide. Interestingly, the experiment

has also shown that it is possible to observe multimode solitons made up of

solely higher modes (the second plus the third modes, trapped in their

jointly-induced potential [122]). That is, the experiment has indicated that

multimode solitons can exist and propagate in a stable fashion for distances

much larger than the diffraction length, in spite of the fact they are made up

of only higher-order modes. Several years later, (2þ1)D dipole-type compos-

ite solitons were also demonstrated experimentally [43, 44]. These vector

solitons consist of a bell-shaped component jointly trapped with a 2D dipole

mode. The ability to generate (2þ1)D composite solitons opens up a whole

new range of possibilities that has no counterpart in a lower dimensionality.

One fascinating example is the observed rotating ‘‘propeller’’ soliton [45].

This is a composite soliton made of a rotating dipole component jointly

trapped with a bell-shaped component. It carries and conserves angular

momentum, although its constituents exchange angular momentum as they

propagate. This soliton is so robust even during inelastic collisions with other

composite solitons, the collision products are predicted to be also composite

rotating propeller solitons [123].

The relative ease with which vector and composite solitons are generated in

photorefractives, by employing the mutual incoherence technique, has also led

to a series of experimental efforts demonstrating interaction-collisions between
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vector solitons. It turns out that temporal optical vector solitons, and nonop-

tical vector solitons are very difficult to generate. For example, it has been

predicted, more than two decades ago, that collisions between Manakov-like

vector solitons give rise to a symmetric exchange of energy between the soliton

constituents [117]. This phenomenon was observed only recently, with photo-

refractive vector (Manakov-like) solitons [124, 125]. The energy-exchanges
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Figure 11.24. The observation of amultimode soliton, from [122], withmode 2/mode 1¼
1.0 (a),(b) input (18mm FWHM) and linear diffraction (27mm) of mode 1; (c),(d) input

(28mm) and linear diffraction (62mm) of mode 2; (e),(f) combined input (26mm) and

combined linear diffraction (58mm); (g) composite soliton formed (26mm)with application

of 800 V/4 mm; (h) first mode obtained after quickly blocking secondmode; (i) steady state

of first mode alone with nonlinearity on; (j) second mode obtained after quickly blocking

first mode; and (k) steady state of second mode alone with nonlinearity on.
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between the soliton components (which have nothing to do with photorefrac-

tive two-wave mixing) have direct implications in a new form of reversible

computing, in which a ‘‘state’’ is coded as the ratio between the soliton com-

ponents [126]. In this scheme, computation is performed through the energy-

exchange interactions (in which the ‘‘states’’ change) during collisions between

vector solitons. The experiments have shown that, not only do such symmetric

energy exchanges occur, but also information can be transferred through a

series of cascaded collisions between vector solitons [124, 125].

Finally, photorefractives were also the means for experimental studies of

interaction-collisions between multimode solitons, in which shape transform-

ations were observed [127]. These were the first ever experiments with collisions

of multimode solitons.

The general ideas behind multicomponent vector solitons proved invaluable

for later developments and in particular to the area of incoherent solitons

discussed in the next section.

11.10 Incoherent Solitons: Self-trapping of Weakly-
Correlated Wavepackets

Until 1996, the commonly held belief was that all soliton structures should be

inherently coherent entities. In that year, however, Mitchell et al. demonstrated

that self-trapping of a partially spatially-incoherent light beam [46] is possible if

the nonlinearity has a noninstantaneous temporal response. In that experiment,

the optical beam was quasi-monochromatic, but partially spatially-incoherent

and the nonlinear medium was photorefractive, with a response much slower

than the characteristic time of the phase fluctuations in the incoherent beam.

The resultant self-trapped beam is now commonly referred to as an ‘‘incoherent

soliton’’ or a ‘‘random-phase soliton.’’ One year later, Mitchell and Segev

observed a similar self-trapping effect with white light from an incandescent

light bulb emitting in the 380–720 nm band. This was the first observation of a

self-trapped beam made of light both temporally and spatially incoherent: A

white light soliton [47]. In yet another experiment, self-trapping of dark inco-

herent ‘‘beams’’, i.e., 1D or 2D ‘‘voids’’ nested in a spatially incoherent beam,

was also demonstrated [51].

For self-trapping of an incoherent beam (an incoherent soliton) to occur in a

local nonlinearity, several conditions must be satisfied. First, the nonlinearity

must be noninstantaneous with a response time that is much longer than the

phase fluctuation time across the optical beam. Such a nonlinearity responds

to the time-averaged envelope and not to the instantaneous ‘‘speckles’’ that

constitute the incoherent field. Second, the multimode (speckled) beam should

be able to induce, via the nonlinearity, a multimode waveguide. Otherwise, if

the induced waveguide is able to support only a single guided mode, the

incoherent beam will simply undergo spatial filtering, thus radiating all of its
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power but the small fraction that coincides with that guided mode. Third, as

with all solitons, self-trapping requires self-consistency: The multimode beam

must be able to guide itself in its own induced waveguide (pages 86–125 in

Ref.[6]).

The experiments demonstrating incoherent solitons have taken the solitons

community by surprise, because typically, in most of soliton research (also

beyond optics), all experiments were preceded by a theory predicting the main

effects. The experiments demonstrated beyond doubt that incoherent solitons

indeed exist. Yet, at the time, something quite important was still missing: A

theory! Unlike the case of coherent solitons, where the evolution equation can

be straightforwardly derived by adding the nonlinearity to the paraxial equa-

tion of diffraction, the description of incoherent solitons was far from being

clear. The experiments were of course based on insight and intuition, but then

again, they gave only few clues, if any, as to how one could develop a theory.

Only one thing was certain The theory of incoherent solitons had to be

derived from first principles. Within a year, two different theories were devel-

oped to describe incoherent solitons: The coherent density theory [128] and

the modal theory [129]. The coherent density theory is, by its very nature, a

dynamic approach that is better suited to study the evolution dynamics of

incoherent waves, their interactions, instabilities, and so on, as they occur in

experimental setups. In this formalism, the incoherent field is described by

means of an auxiliary nonobservable function from where one can deduce the

optical intensity as well as the associated correlation statistics. The modal

theory, on the other hand, by virtue of its inherent simplicity, allows the

identification of incoherent solitons, their range of existence, and correlation

properties. One year later, yet another theory was proposed: The theory

describing the propagation of the mutual coherence [130]. Interestingly

enough, even though at first sight these three theoretical approaches seem to

be dissimilar, they are in fact formally equivalent to one another, and there-

fore ultimately provide identical answers [131]. All describe quasi-monochro-

matic yet partially spatially incoherent solitons: They explain the behavior of

such entities, provide their statistical properties, and predict their behavior as

they interact with one another. As such, they became a very powerful analyt-

ical and numerical tool. More recently, these theories were expanded to

describe white light solitons: Solitons that are made of temporally and spa-

tially incoherent light [132, 133].

The pioneering experiments of Refs. [46, 47, 51] that were the first to show

the unexpected fact that random-phase solitons can exist with both spatial

and temporal incoherence, opened the way for several other important results.

These include for example, anti-dark incoherent states [134], elliptic incoher-

ent solitons [135, 136], coherence control using interactions of incoherent

solitons [137, 138], and more. Especially noteworthy are the fundamental

studies on modulation instability of incoherent waves and spontaneous pat-

tern formation in weakly-correlated systems (systems of partial coherence). It

has been found, theoretically and experimentally, that such systems indeed
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exhibit modulation instability: A uniform (homogeneous) partially incoherent

wavefront breaks up into an array of soliton-like filaments. However, for this

to occur, the nonlinearity needs to exceed a threshold value determined by the

coherence properties of the waves [139, 140, 141, 142, 143, 144]. This fact

stands in a sharp contradistinction with coherent systems, for which there is

no such threshold for modulation instability (in a coherent self-focusing

system, a uniform wave always breaks up into an array of soliton-like struc-

tures). Once this threshold is exceeded, the partially incoherent uniform wave

breaks up into an array of localized structures, each behaving as an incoher-

ent soliton. These solitonic ‘‘breakup products’’ interact with one another in

an incoherent fashion, exerting long-range attraction on each other. After

sufficiently large propagation distance, they aggregate and form clusters of

fine-scale structures, leaving large voids between adjacent soliton clusters

(aggregates of solitons) [145, 146]. More recent work along these lines is the

prediction of modulation instability of white light [147], along with its very

recent experimental observation [148], and the work on incoherent pattern

formation in cavities [149, 150, 151, 152].

Studies on incoherent solitons and incoherent pattern formation have estab-

lished that these are not some kind of esoteric processes, specific to photorefrac-

tives, but are a new class of solitons, whose existence is relevant to many other

diverse fields beyond nonlinear optics. For example, we envision that incoherent

modulation instability effects, soliton clustering, and incoherent pattern forma-

tion relate to many systems in nature: From clustering in a cooled atomic gas to

self-supported ‘‘stripes’’ of electrons in semiconductors, as well as to gravita-

tional-like effects. In fact, the underlying physics relates to any weakly-correl-

ated wave-system having a noninstantaneous nonlinearity. Altogether, it is fair

to say that incoherent solitons are most probably the single most important

discovery made with self-trapping effects in photorefractive systems. It has

introduced a new concept into soliton research, and has implications beyond

optics, into other areas where random-phase waves and nonlinearities are in-

volved.

11.11 Applications

11.11.1 Passive Devices

Photorefractive solitons have a series of useful attributes. A photorefractive

soliton can passively guide a second beam of longer wavelength, a consequence

of the fact that the nonlinear index change is only weakly wavelength dependent,

and will act on an infrared beam in much the same manner that it acts on the

soliton [153, 154, 155, 156, 157, 158, 159]. This property can be used to make a

waveguide in a bulk medium, and hence integrate, into the volume of the

material, a fiber or waveguide device without the development of a crystal-

specific technique to grow or tailor a waveguide.
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Passive waveguiding enables differentiating between a nonlinear and a linear

behavior. Consider, for example, a dark soliton, which consists of a nondiffract-

ing intensity notch generated by ap phase jump. In the very same conditions that

lead to its formation, the waveguide structure induced by the (dark) soliton can

passively guide a bright beam of a longer wavelength, even though such a bright

beam (at the shorter wavelength) could never self-trap in the same conditions.

More complicated passive devices can be demonstrated, such as reconfigur-

able directional couplers based on two bright solitons formed in close proxim-

ity, Y-junctions, along with more complex multisoliton structures and hybrid

soliton-fabricated-waveguides systems [160, 161, 162, 163, 164, 165, 166].

Moreover, in conditions in which the guided beam excites charges, a consider-

able advantage can be obtained by implementing the ferroelectric fixing tech-

nique of the soliton-induced routing device [167].

11.11.2 Active Devices

A second functionality is based on the fact that photorefractives offer all-

optical functionality even at low intensities, without any electrical input, even

though this is burdened by slow time response [168, 169, 170, 171, 172, 173].

For example, logic operations can be carried out simply by having two solitons

interact, or by modulating two different components of a single vector soliton

[124, 125]. Another alternative is to use the all-optical operation (via soliton

interactions) to steer signals borne on beams guided by solitons.

A second form of active device is that for which soliton dynamics are

controlled externally by means of a modulation in the supporting physical

parameters, for example, electrically. Thus, for example, the output direction

of propagation can be changed by varying the bias voltage, as a consequence of

self-bending [25]. Once again, whereas the signal can be delivered in a fast

capacity-limited regime (the time constant for charging the equivalent capacitor

formed by the sample), the optical response will be dominated by the photo-

refractive time constants.

11.11.3 Electro-Optic Manipulation

Passive electro-optic effects have been investigated for soliton-deposited space-

charge in paraelectric samples [174]. This allows the fast capacity-limited ma-

nipulation of optical circuitry through the electro-optic effect, much in the same

manner as electroholographic technology [175].

In order to grasp the phenomenon, note that in a linear electro-optic response,

once a soliton has been formed through a self-trapping Dns, the application of an
arbitrary control external bias Econ in combination with E0 leads to a

Dn(Econ) / (E þ Econ), which simply changes the constant pedestal on which the

soliton guiding pattern induced by the space-charge field E is embedded. This

means, for example, that passive guiding can be achieved also for a zero applied

external field. For a paraelectric, which is characterized by a quadratic response,
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Dn(Econ) / (E þ Econ)
2 ¼ E2 þ 2EEcon þ E2

con. The secondmixed term allows for

an electro-optic distortion of the pattern without any charge redistribution,

through a purely spatially resolved electro-response. This has allowed the dem-

onstration of a series of beammanipulation devices, culminating in a two-needle

switching device [176] (see Fig. 11.25).

11.11.4 Nonlinear Frequency Conversion in Waveguides
Induced by Photorefractive Solitons

The most promising application of waveguides induced by photorefractive soli-

tons is nonlinear frequency conversion [177–180]. The conversion efficiency in x2

processes is proportional to the intensity of the pump beam, so it is desirable to

work with very narrow beams. One easy way to achieve that is to use a focused

pump beam. However, in a bulk crystal, the more tightly focused a beam is, the

faster it diffracts, and diffraction limits the frequency conversion efficiency

because as the interacting beams diffract, (1) their intensities decrease, and (2)

the phase-matching condition cannot be satisfied across their entire cross-

section. Using waveguides for frequency conversion overcomes these problems

and can greatly improve the conversion efficiency. But thus far it has been difficult

to fabricate waveguides from most materials that allow for phase matching,

and two-dimensional waveguides are especially difficult to make. At the same

time, (2þ1)D photorefractive solitons induce 2D waveguides, and almost all

photorefractives are highly efficient in x2 frequency conversion. Hence, wave-

guides induced by photorefractive solitons seem promising for nonlinear fre-

quency conversion purposes. This said, the frequency conversion processes must

be phase-matched. In waveguides, phase-matching should take place among the

propagation constants of the guided modes, and is typically obtained through

birefringence or periodic poling. In a fabricatedwaveguide, however, the structure

is fixed, so tuning techniques rely on varying the temperature, or on lateral
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Figure 11.25. Electro-optic switching, from [176]. Output intensity distribution with a

positive applied field (a); a zero applied field (b); and a negative applied field (c). The

beam is routed onto two modes that are 16mm apart, with a corresponding peak

intensity (squares and circles) taken at the two points indicated in (a) and (c).
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translation in structures with several periods of poling parallel to one other. But

waveguides induced by photorefractive solitons offer much flexibility also with

respect to phase-matching, because their waveguide structure and propagation

axis (with respect to the crystalline axes) can be modified at will and in real time.

Working with photorefractive solitons, one can achieve wavelength tunability

while avoiding diffraction by simply rotating the crystal and launching a soliton

in the new direction. One can also fine-tune the frequency conversion process by

changing the propagation constants of the guided modes through varying the

intensity ratio and external voltage, allowing tuning with no mechanical movements.

The first step in the direction of nonlinear frequency conversion in wave-

guides induced by photorefractive solitons was the demonstration of efficient

second-harmonic generation (see Fig. 11.26 and Fig. 11.27) [177, 178]. The

experiments have shown that the conversion efficiency can be considerably

increased [177], and high tunability can be obtained by rotating the crystal

[178]. However, a much more important scenario occurs in a soliton-based

optical parametric oscillator (OPO). In an OPO, the threshold pump power is

dependent on the signal gain per pass through the crystal. To lower the

threshold, one has to increase the signal gain per pass. A waveguide that

confines the pump beam as well as the signal and idler in a small area is one

very effective way to achieve this. Consider a Gaussian beam at the pump

frequency launched into a nonlinear crystal and assume that phase matching is

satisfied at the waist, located at the input surface. The threshold pump power is

proportional to [z0arctan
2(L=z0)þ ln2(1þ L2=z20)=4]

�1, where z0 is the Rayleigh

(diffraction) length of the beam and L is the crystal length. For a given L, there

exists an optimum beam size for minimum threshold pump power, when

z0 ¼ L=2:84. However, if a waveguide is used to keep all beams at the same

widths throughout propagation in the crystal, the threshold is simply propor-

tional to z0=L
2, which continues to decrease as we focus the beam more. The

minimum threshold is determined by the smallest size of the waveguide that can
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Figure 11.26. Second harmonic generation in photorefractive solitons, from [177].
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be made. To estimate the improvement, consider a focused Gaussian beam with

a minimum beam waist of 21 mm and a 15 mm long crystal. An OPO con-

structed in a waveguide has a threshold pump power 60 percent lower than that

of an OPO with the same beam waist in bulk. Therefore, in a waveguide OPO,

the signal gain per pass can be considerably improved, and the threshold pump

power can be substantially lowered for the same cavity loss. This general idea

was recently demonstrated with a doubly-resonant optical parametric oscillator

in a waveguide induced by a photorefractive soliton [180]. The OPO threshold

was considerably lowered by constructing it within a soliton-induced wave-

guide. This technique should work even better with singly resonant OPOs and it

can substantially reduce the threshold pump power when very narrow solitons

are employed. For example, using a soliton beam with a beam waist of 8 mm

and a 15 mm long crystal, the OPO threshold pump could be reduced to only

3.5 percent of that for an OPO in the same nonlinear medium, using the same

mirrors but without the soliton.

11.12 New Ideas and Concluding Remarks

Aswehope transpires from thebrief review, there is stillmuch tobe understoodas

to the mechanisms underlying spatial photorefractive self-trapping, from the

formation of 2þ1D solitons to quasi-steady-state solitons, from dark incoherent

solitons to spontaneous self-trapping. The field, however, is in constant expan-

sion, and we cannot refrain from just mentioning the important achievements

in the field of lattice solitons (‘‘discrete solitons’’) which were recently demon-

strated in photorefractive SBN [181, 182, 183, 184], 2D arrays of solitons

[185–187] and in the trapping of more exotic excitations such as rings [188].
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Although we have attempted to give a detailed account of all aspects of

photorefractive self-trapping, the field has undergone such a rapid and exten-

sive evolution that we can hardly guarantee that all contributions have been

cited and described. Perhaps this is yet another accomplishment of photore-

fraction; that is, having given to the soliton science community a powerful and

accessible tool with which to further its research and develop new and possibly

useful scientific and practical tools.
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In this Chapter, the present knowledge on thermal fixing of photorefractive bulk

and waveguide holograms is reviewed. First, the basic technique together with the

phenomenological model for thermal fixing, mostly developed for LiNbO3, are

described. Then, a coherent and clear picture of thermal fixing is provided through

a recentmathematical formulation of themodel. The capabilities and reliability of

this general framework to explain and/or predict most experimental results via the

development of approximate models is illustrated with applications to relevant

situations such as the design of long lifetime photorefractive devices. Within the

experimental aspects of thermal fixing, details are given on experimental methods

and techniques together with comments on their advantages and drawbacks.

Relevant experimental data on bulk and waveguides geometries are provided

and discussed within the mentioned theoretical approach. In addition, thermal

fixing applications ofLiNbO3 to practical devices in both geometries are presented

and discussed. Situations out of the standard model as well as thermal fixing in

other materials different from LiNbO3 are briefly considered.

12.1 Introduction

The discovery of the photorefractive effect in LiNbO3 by Ashkin and coworkers

[1] in 1966 opened the door to a large variety of experiments and applications

[2, 3, 4, 5], many of them related to the memory effect of the photorefractive

phenomenon. However, photorefraction is a reversible effect by which the

reading-beam used to retrieve the recorded pattern continuously modifies it.

This is a major drawback in those applications requiring long lifetime of the

pattern such as information storage, beam modulators and deflectors, narrow-

band interference filters, and so on. Because of that, already early workers

investigated possible routes for increasing the lifetime of the recorded patterns,

and since then a considerable effort has been devoted to the subject.

Several methods have been developed for increasing the duration of recorded

patterns in LiNbO3, as well as in other materials that present a photorefractive

effect similar to that of LiNbO3. Some methods are based on using a reading
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wavelengthwith very lowphotorefractive efficiency, so optical erasing is negligible

(nondestructive read-out). This can be achieved by reading at a wavelength (for

example, infrared) different from the recording one (for example, green) and is

usually called two-wavelength technique. An alternative procedure is the so-called

two-photon recording. This method consists of shining the crystal with an add-

itional light source that is not present during reading. The additional light acts

as activator during recording and its absence during reading prevents pattern

degradation. These subjects are considered in other chapters in this book.

The methods named by fixing are based on the generation of a light-insensi-

tive replica of the electronic pattern via some structural property of the crystal

as the spontaneous polarization in ferroelectric crystals (electrical fixing), or

some mobile ionic charges as protons in LiNbO3 and other similar oxides

(thermal fixing). The latter method was first reported by Amodei and Staebler

for LiNbO3 in 1972 [6, 7] and has become a key technique for the fabrication of

diffractive devices either in bulk or in waveguide configuration. Since the

Amodei and Staebler work, many papers have been published on the subject,

discussing the origin of thermal fixing, trying to establish sound physical basis

for theoretical treatments, as well as to increase the pattern duration in appli-

cations. In fact, thermal fixing has produced the first marketed photorefractive

device consisting of a very narrow bandwidth interference filter [8, 9]. Experi-

ments and modeling have been even extended to photorefractive waveguides

because of their potential interest in optical communication devices. The pre-

sent chapter focuses on the physical basis of thermal fixing (including import-

ant experiments and theoretical developments), major recent advances to

increase the storage lifetime, and relevant applications.

12.2 The Thermal Fixing Technique

The basic procedure for the thermal fixing technique, first reported by Amodei

and Staebler for LiNbO3 [6, 7], continues almost unchanged. In brief, the

method consists of recording a pattern at room temperature, heating the

sample at high temperature (over 1008C) and, after cooling down to room

temperature, shining the sample with homogeneous light. Amodei and Stae-

bler’s explanation assumed the generation of a replica of the trapped charge

pattern (light-erasable), as that sketched in Fig. 12.1, into a fixed matching

ionic pattern (light-insensitive). It is now generally accepted that in LiNbO3 [10,

11, 12, 13, 14] thermal fixing is produced by migration of protons that are

present in common as-grown crystals. In bulk LiNbO3, protons become mobile

at temperatures above � 708C, whilst trapped electrons are thermally excited at

a much smaller rate between this temperature and � 1808C in nonreduced

LiNbO3. (In reduced samples, shallow electron traps are present with a detrap-

ping temperature much lower [15]). Between these two temperatures, typically

� 1508C, protons can migrate driven by the space charge field created by

trapped electrons, the process being much faster than electron detrapping.
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Photorefractive thermal fixing has been also observed in a number of other

materials such as BaTiO3, Bi12SiO20, and so on. Their properties will be listed

in Section 12.4.4. Anyhow, in these materials, the performance of fixed holo-

grams is substantially lower than in LiNbO3, greatly limiting their practical use

for permanent storage.

A fixed grating has inevitably a finite lifetime, although it is much longer

than the nonfixed hologram. Even in the dark, there always exists a slow decay

of the diffraction efficiency with a corresponding lifetime ranging between

weeks to years, depending on materials and dopants. On the other hand, the

developed pattern can be purposely erased by heating the sample above 200 8C.
This treatment gives rise to a completely fresh sample without any memory of

previously stored information.

12.2.1 Physical Model for Thermal Fixing

The following two basic stages take place during the fixing process. In the first

stage, at temperatures ranging within � 1008C�� 1808C, proton migration

proceeds till the trapped-electron space-charge field is compensated. On a

Traps
Protons

ρ(X )

ρ(X )

ρ(X )

ρ(X )

∆n(X )

(a)

(b)

(c)

(d)

(e)

Initial patterns

Fixing

Developing

Final charge
density pattern

Refractive index
pattern

x

x

x

x

x

Figure 12.1. Stages of photorefractive fixing. a) Initial trap pattern recorded at room

temperature, together with an homogeneous proton distribution. b) During thermal

fixing (1008CT1808C), ions migrate in the space charge field until charge compensation

is reached (electrons remain trapped). c) During developing with homogeneous illumin-

ation, migration of photoelectrons produces an amplitude decrease and a phase shift of

the trap pattern. d) Charge density pattern resulting from the proton and trap patterns,

and e) induced refractive index pattern. Vertical lines are references for phase comparison.
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subsequent cooling down to room temperature, ionic migration is frozen and

the pattern of ionic charge, matching the initial trapped electron pattern, is said

to be fixed. This first stage of the fixing process has been illustrated in

Fig. 12.1(a,b). Recording can also be performed at high temperature (between

� 100�C and � 180�C) instead of at room temperature. In that case, the

amplitudes of both trapped electron and proton patterns keep increasing,

because they electrically compensate each other along the process, until a

final saturating field is reached [16, 17]. This results in much higher final

amplitudes for both patterns, i. e., higher fixing efficiency, although electrical

breakdown can happen under certain circumstances [13].

The proton pattern is developed at room temperature by homogeneous

illumination, which gives rise to some redistribution of trapped electrons.

Electron redistribution involves both amplitude decrease and phase shift of

the electronic grating with respect to the protonic one. The phase shift is due to

the photovoltaic effect and becomes particularly important in LiNbO3 [18, 19,

20]. The result is a stable index grating originated by the partially uncompen-

sated protonic grating (see a microphotometric investigation in reference [21,

20] and a macroscopic confirmation in [13]). Fig. 12.1 c, d, and e schematically

illustrates the process. Further homogeneous illuminations during later read-

ings act as additional developings and will not at all erase the fixed-developed

pattern. When recording is performed at room temperature, the method is

called a three-step method in reference to the number of stages of the procedure.

Correspondingly, when recording is carried out at high temperature, simultan-

eously to proton migration, the method is called a two-step method. An alter-

native terminology that appears in some works uses low-high-low or high-low,

respectively in reference to the temperature of each step. The developing can be

also performed with a sinusoidal light pattern with an appropriate phase shift

[22]. In that case, the process is faster and a much greater transient developed

diffraction efficiency is obtained.

As LiNbO3 remains the most promising crystal for storage applications,

particularly via thermal fixing, and a large majority of work has been done

on this material, the discussion in this chapter will mainly refer to LiNbO3.

12.3 Mathematical Formulation of the Model

12.3.1 General Equations

A number of authors have investigated the mathematical formulation of the

physical model described above for thermal fixing. Early formulations [23, 24]

explained some aspects of the fixing kinetics. The main limitations of those

models were that they did not adequately deal with the photovoltaic transport

mechanism and dealt only qualitatively with the developing process, apart from

ignoring electron detrapping. Later models are more complete. In [25], the

developing process is studied in detail in a nonphotovoltaic material such as
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SBN. In [17, 26, 27], the photovoltaic effect (which plays a relevant role in the

photorefractive effect in LiNbO3) is taken into account, whereas electron

detrapping is considered in [16, 17]. In particular, dark electronic conductivity

has been shown to be of key importance to account for photorefractive phe-

nomena in the high temperature range ( � 200�C) [28]. The more recent model

developed by Carrascosa and Agulló-López [16, 18] and Sturman et al [17] has

provided a plausible explanation of most fixing features.

For the one-dimensional situation, under a photon flux I, the model involves

the rate and transport equations for free carriers, donors, acceptors, and

protons, apart from the Poisson and continuity equations, i.e.,:

@n

@t
¼ (ST þ SphI)(N �Nþ)� SrnN

þ � 1

e

@je
@x

(12:1)

� @(N �Nþ)
@t

¼ @Nþ

@t
¼ (ST þ SphI)(N �Nþ)� SrnN

þ (12:2)

@E

@x
¼ r

e
(12:3)

@jH

@x
¼ �e

@H

@t
(12:4)

je ¼ emenE þ eDe

@n

@x
þ eSphLpv(N �Nþ)I (12:5)

jH ¼ emHHE � eDH

@H

@x
: (12:6)

In these equations, both thermal and optical electron excitation are included.

The meanings of the used symbols are as follows:

n, electronic carrier concentration;

ST ¼ ST0 exp [� eTe =(kBT)], thermal ionization probability of donors per unit

time;

Sph, photoionization cross section;

Sr, trapping coefficient for acceptors;

N, total impurity concentration;

Nþ, ionized donor (electron acceptor) concentration;

(N �Nþ), electron donor concentration;

NA ¼< Nþ >, average acceptor concentration;

n0 ¼ (ST þ SphI0)ND=(SrNA), average electron concentration;

je, jH , electron and proton current density respectively;

E, field induced by charge distribution;

r, photoinduced charge density;

H0, H, average and spatially varying proton concentrations;

me, mH , electron and proton mobilities respectively;

De ¼ De0 exp [� eDe =(kBT)], diffusion constant for electrons;
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Lpv, photovoltaic transport length;

DH ¼ DH0 exp [� eH=(kBT)], effective diffusion constant for protons.

Note that we have just assumed Arrhenius expressions for thermal electron

excitation and for diffusion of electrons and protons with activation energies

eTe , eDe , eH , respectively. mH , me are related with DH , De through the Einstein

relation (D ¼ mkBT=e). Finally, e is the absolute value of the electronic charge,
e the dielectric constant, and kB the Boltzmann’s constant. When using light

beams of medium and low power, the free electron contribution to the charge

density can be neglected and it can be written

r ¼ [H �H0 þNþ �NA]e: (12:7)

12.3.2 Coupled First Order Equations: Relaxation Modes

For the practical simple case of a sinusoidal one-dimensional light pattern

(I ¼ I0(1þmeiKx), L ¼ 2p=K), a useful common approximation is to disre-

gard for all variables harmonics higher than the first one in the Fourier series

decomposition. For example, the space charge field will be written

E(x) ¼ EKe
iKx and analogous sinusoidal expressions will apply to other vari-

ables. This is the linear approximation in the contrast m of the light-fringe

pattern, which is strictly valid form << 1. Then, Eqs. (12.1–6) can be cast, after

some manipulations, in the form [17]:

dNþ
K

dt
þ �gge(1þ je)N

þ
K þ �ggeHK ¼ FK (12:8)

dHK

dt
þ gHN

þ
K þ gH (1þ jH )HK ¼ 0 (12:9)

where �gge ¼ ge(1þ K2De=(SrNA) ) (it is very close to ge as the last term is very

small) and the electronic ge and protonic gH relaxation rates are given by

ge ¼ gph
e þ gT

e ¼ emen0

e
, gH ¼ emHH0

e
: (12:10)

Here, gphe and gTe are the photon and thermal contributions to ge. In addition,

the parameters

je ¼
ED

Eq

� i
Epv

Eq

NA

N

gphe
ge

, jH ¼ ED

Eq

Nt

H0

(12:11)

have been also introduced for normalization; in most common cases they are

much smaller than one, i.e., je, jH << 1. Here, Nt ¼ NA(N �NA)=N is the

effective trap concentration and

ED ¼ KkBT

e
, Eq ¼ eNt

eK
, Epv ¼ LpvSrNA

me

(12:12)
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are the so-called diffusion, saturation, and photovoltaic fields. The right-hand

of Eq. (12.8) is the effective driving force

FK ¼ �i
m

2
Ntg

ph
e

Epv þ iED

Eq

: (12:13)

The space charge field EK (which is a key measurable value through the

diffraction efficiency) is obtained straightforwardly from Eq. (12.3) in terms of

Nþ
K andHK :

EK ¼ �iEq(N
þ
K þHK )

Nt

(12:14)

In order to solve the set of equations, they must be completed with the

experimental initial conditions. In principle, they permit to deal with any design

of fixing experiments, including measurements on the developing process and

the lifetime of the fixed hologram. In this latter case, the set of equations

becomes much simpler, since developing is performed at room temperature

where either proton migration or thermal electron detrapping can be disre-

garded. The structure of Eqs. (12.8) and (12.9) indicate that, when FK ¼ 0,

the time evolution of the amplitudes NK and HK , as well as, EK given by

(12.14), is characterized by two exponential solutions or relaxation modes,

proportional to e�Gf ; st with time constants Gf (called fast) and Gs (slow). The

values of these time constants depend, apart from the particular experimental

conditions, on the stage of the process, i.e., recording, fixing, developing, or

long-term storage.

In most common cases, in particular for bulk LiNbO3 which can be con-

sidered the reference material for thermal fixing, the parameters je and jH are

much smaller than one. Under this condition, the expressions for Gf and Gs are

considerably simplified and reduce to:

Gf ¼ ge þ gH , Gs ¼ gegH
ge þ gH

(je þ jH ): (12:15)

Eqs. (12.15) also indicate that the fast relaxation constant Gf is essentially

controlled by the greatest of gphe , gTe and gH , whereas the slow relaxation

constant Gs is basically controlled by the smallest of them.

The approximation je << 1, jH << 1 will be assumed henceforth. How-

ever, it is not fully valid for some special cases such as for heavily Fe-doped

LiNbO3 samples in a highly oxidized state, where je91.

12.3.3 Recording at High Temperature

Let us consider the recording of a photorefractive grating at high temperature

as the first step for getting a fixed hologram. Solving Eqs. (12.8) and (12.9) and

taking into account Eq. (12.14), the amplitude of the space charge electric field
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EK , can be written in terms of experimental boundary conditions and the time

constants Gf and Gs as follows

EK (t) ¼ Ef (1� e�Gf t)þ Es(1� e�Gst) (12:16)

where Ef and Es are the components of the stationary amplitude EK (1) related

to the fast and slow processes. Ef is the quasistationary amplitude of EK (t),

because it is the value reached at the end of the fast stage, which varies very

slowly afterward.

These fast and slow components can be also calculated [17] and written as

Ef ¼ m

2
Eeff

gphe
g

(12:17)

Es ¼ Eeff

gHjH � geje
ge(jH þ je)

(12:18)

where Eeff ¼ Epv þ iED is the effective driving field and g ¼ ge þ gh. Then, the
final electric field amplitude

EK (1) ¼ Ef þ Es ¼ m

2
Eeff

gphe
g

1

1þ je
jH

: (12:19)

The quasistationary amplitude Ef is controlled by the balance between the

diffusion and photovoltaic electronic currents on one hand (which are the origin

of charge separation), and the electronic and protonic currents driven by the

space charge field on the other side. During the slow process, both the protonic

and the electronic gratings grow simultaneously keeping a quasi-compensation

of charge. So, they could reach rather high values if the recording is long enough,

although the total space charge field EK remains small. (Fig. 12.2 illustrates this

situation). The corresponding slow component of the space charge field Es

associated to the little unbalance between the trapped electronic and the protonic

gratings deserves some attention. It can change its sign as a function of tempera-

ture. When Es has the same sign as Ef , i.e., gHjH > geje according to (12.18), it

follows from Eq. (12.16) that the electric field amplitude EK (t) grows monoton-

ically. This kind of behaviour is exhibited by EK in the example plotted in Fig.

12.2. Conversely, if gHjH < geje, the fast Ef and slow Es components have

opposite signs and consequently EK (t) has a maximum at t ¼ G�1
f , and then

decreases until it reaches the value EK (1) [29]. A typical case of this second

behavior is presented by high temperature recording in proton exchange LiNbO3

waveguides and it will be illustrated in Fig. 12.6 (see Section 12.5).

The critical point (if there exists) at which the type of kinetics changes is defined

by the condition Es ¼ 0 that is fulfilled when gHjH ¼ geje. It is possible to de-

monstrate (see reference [17]) that the corresponding critical temperature verifies

Tc ¼ eTe � eH

kB ln
m0
e

m0
H

� � : (12:20)
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12.3.4 Light and Dark Relaxation: Developing and Hologram
Lifetimes

When the light pattern is removed (i.e., m ¼ 0), EK will write

EK (t) ¼ Ef e
�Gf t þ Ese

�Gst (12:21)

which is applicable to either homogeneous light or dark relaxation with appropri-

ate parameters. In the case of light relaxation, i.e., under uniform illumination

(I ¼ I0, m ¼ 0), the fast stage at room temperature corresponds to the developing

process that complete the fixing procedure. Hence, in order to know the develop-

ing efficiency,wehave to find out the amplitude of the grating at the end of this fast

stage. This amplitude can be very easily obtained taking into account that at room

temperature, protons are nearly immobile and so dHK

dt
¼ 0. Then, using Eq. (12.8)

with m ¼ 0 (i.e., FK ¼ 0) and Eq. (12.14), one obtains:

EK ¼ e

e
HK

je
1þ je

: (12:22)

Therefore the fraction Dr of the protonic field, EH
K ¼ e

eHK , which is devel-

oped, is given by

Dr ¼ je
1þ je

: (12:23)

Note that je is a complex number whose imaginary part is controlled by the

photovoltaic effect. This imaginary part indicates the existence of a phase shift

between the protonic and the electronic gratings and this is the dominant effect
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Figure 12.2. Time evolution of the amplitude of the space charge field associated to the

trapped electronic grating (continuous line), the protonic grating (dashed line), and the

total charge grating (dotted line) during recording at high temperature.
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in the developing process for highly doped LiNbO3 crystals. This aspect is well

discussed in the next section and was reported in references [18, 19, 20].

In turn, the slow stage of the relaxation represents the long term behavior of

the photorefractive hologram. Therefore, 1=Gs determines the hologram life-

time, which is a very relevant parameter for applications. In general, its value is

different under light illumination than in dark because in the former case, there

is a contribution of photoelectrons that does not exist without light. However,

both values can be equal when gph
e << gT

e , gH .

Let us consider in detail the particular but very relevant case of bulk LiNbO3.

Under illumination, a simplified expression for the light hologram lifetime Gs is

obtained from Eq. (12.15), taking into account that at room temperature gT
e ,

gH << gph
e :

1

t
¼ Gs ¼ DHK

2 H0

Nt

þ 1

� �
: (12:24)

The above expression indicates that the lifetime is proportional to the square

of the grating spacing, L2 ¼ 4p2=K2 and decreases on increasing the ratio

H0=Nt. In addition, t is inversely proportional to the proton diffusion constant

DH , so it is controlled by the thermal activation of proton migration. This key

expression has been discussed in detail in references [14, 30].

On the other hand, under dark conditions, the developed hologram is com-

pensated by proton and thermal electron migration during the fast process

controlled by Gf according to Eqs. (12.15). Thus, the corresponding time

constant is independent of K and often proportional to 1=H0. This fading of

the diffraction efficiency does not indicate that the fixed grating has disap-

peared; only a small fraction of it has been destroyed (approximately that not

compensated by trapped electrons). The diffraction efficiency can be recovered

by further optical developing (see references [17, 31] for more details). A

complete hologram erasure without any possible retrieval occurs for longer

times i.e., during the slow dark relaxation process.

12.3.5 Fixing After Recording at Room Temperature

It is worthwhile to also devote a few paragraphs to the three-step method of

thermal fixing inwhich the grating is recordedat room temperature and afterward,

the sample is heated. In this case, protons move to compensate the previously

written holographic gratingNþ
K0 exp (iKr). Then, during the process at high T, the

protonic grating grows up, but the electronic grating also decays. In general, the

amplitude reached by the protonic grating is much lower than in the two-step

fixing method. The theoretical description of the process is based in Eqs. (12.8)

and (12.9) with homogeneous illumination (m ¼ 0). The solution is again a double

exponential but with different initial conditions: Nþ
K (0) ¼ Nþ

K0 exp (iKr),

HK (0) ¼ 0. More details can be found in the work by Carrascosa et al [16].
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A particular and simple solution is obtained assuming that electron detrap-

ping is negligible during proton compensation (as occurs in LiNbO3 crystals for

relatively low fixing temperature around 1008C). In that case, the maximum

amplitude reached by the protonic grating is obtained from Eq. (12.9) assuming

constant Nþ
K :

HK ¼ � Nþ
K0

1þ jH
: (12:25)

For the subsequent developing process and for hologram lifetimes, nothing

changes with regard to the two-step fixing method and the same expressions as

well as the same discussion of previous section are valid.

12.3.6 Situations Out of the Standard Model

There are some experimental situations that are not considered by the above

standard model. Let us briefly comment on them.

a) When the pattern modulation m is close to one, linearization is not

possible. A recent numerical study [32] has concluded that the solution for

the first harmonic obtained in the model is representative of the general

behavior in most cases. This result is similar to that of a previous work for

unfixed gratings [33]. It should also be remarked that the latter result does not

take into account the situation of very long fixings at high temperature, where

the modulations of either trap or ion concentrations may reach saturation (no

more traps or ions are available for charge compensation).

b) Depending on material conditions, more than one type of electron trap or

proton location may be present in the crystal. For example, reduced LiNbO3

presents some electronic contribution to the room temperature dark conduct-

ivity [15] involving Nb4þLi defects as electron donors [34]. These traps are not

considered in the ordinary Fe2þ-Fe3þ scheme used by the model. Under

low intensity illumination, typically they are not relevant compared with

the Fe2þ donors that dominate the photoconductivity [35]. However, at

higher intensities, the second center appears to strongly contribute to the

photovoltaic effect and plays a relevant role [36, 37]. In particular, it is likely

the origin of a greater developing efficiency at high intensities reported by Breer

et al [38].

c) When the proton concentration is purposely decreased down to

� 1023 m�3 (dehydrated samples), thermal fixing has been attributed to a

different ionic species [13] (likely a residual defect like lithium self-interstitial

[39]). In this case, the ionic conductivity seems to have a higher activation

energy (1.4 eV) [40, 41]. On the other hand, two or more different proton

sites are also inferred from the various peaks of the OH� infrared absorption

band [12, 42]. Up to the present, there has been neither experimental report on
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the possible effects of these sites on the transport properties of protons, nor

theoretical analysis of this type of situation. In addition, it has been suggested

that, apart from the standard electro-optic contribution of the space charge

field to the index grating, protons themselves could contribute up to 10�4 to the

index grating, much in the same way as they strongly modify the substrate

index in proton exchanged waveguides [43].

d) Finally, a new mechanism for thermal fixing that does not require light

developing has been recently reported for Cu-doped LiNbO3 crystals and

waveguides [44]. Obviously, this process, which will be briefly discussed in the

next section, cannot be described by the standard model.

12.4 Experimental Aspects of Thermal Fixing

12.4.1 Experimental Procedures for Thermal Fixing

As previously mentioned, two different procedures (three-step) and (two-step)

can be used to obtain thermal fixed holograms that differ essentially in the

recording temperature. Let us revisit these two methods, paying attention to the

experimental aspects.

a) Three-Step Method: Fixing After Recording

The usual holographic recording at room temperature produces the growth of

the spatial charge grating up to the saturation level, which in iron doped

lithium niobate, could lead to a refractive index change of about 10�3. A

maximum diffraction effciency of 1 can then be observed in a sample of less

than 1 mm thickness. For thermal fixing, the crystal is heated after recording to

a temperature in the range 100–1808C. Then, the ionic charges move by drift in

the field of the electronic spatial charge distribution. After some minutes,

depending on the selected temperature, the electronic charge field has been

compensated almost completely by the ionic field. An idea about the speed of

this process is given by the fact that almost complete compensation is achieved

in less than ten minutes at 1508C. The compensation is not strictly complete

because of the diffusion driving force of the protons at the fixing temperature,

which tends to redistribute them uniformly (see Eq. (12.25) ). In fact, this small

miscompensation between gratings produces a residual diffraction efficiency

that has been used to obtain the absolute hydrogen concentration in the crystal

[45]. Cooling down to room temperature highly reduces the mobility of pro-

tons. Then the hologram must be developed. This is usually done by uniform

illumination with white light. The light affects the electronic charge grating,

producing its amplitude decrease (by diffusion) as well as its phase shift by

photovoltaic effect [18, 19]. Both effects contribute to the resulting uncompen-

sated charge grating. Of course, the uniform light cannot fully remove the

electronic grating.
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b) Two-Step Method: High Temperature Recording and Fixing

In this case, the sample is kept at a temperature of about 1808C during

recording. This situation has been theoretically discussed in Section 12.3.3. At

this temperature, protons present a relatively large mobility and screen almost

instantaneously the recording space electric field. Because of this, the electronic

charge grating, as well as the compensating ionic grating, can grow continu-

ously to a rather high value. The essential difference with the three-step fixing

method is that this one usually leads to much deeper compensated gratings.

After recording, the sample must be cooled down to room temperature and

developed with uniform light for grating unbalance. The main experimental

difficulty of this fixing procedure is to keep stable the light pattern during the

recording time, which can last more than one hour. As the sample is heated at a

temperature higher than the surroundings, air convections are produced close

to the sample holder. These air currents perturb the beam optical paths, and

hence give rise to light pattern vibrations. A solution used against this effect is

to enclose the sample holder and heater inside a vacuum chamber provided of

big optical windows [28].

Another solution is the use of an active stabilization system similar to that

developed and generally used for recording at RT by J. Frejlich [46]. Light

pattern stabilization is achieved acting on the beam paths by moving a mirror

by means of a piezoelectric element to which it is attached. Breer et al [47] have

proposed two alternative ways of pattern stabilization differing in the nature of

the signal used. The first one uses a light interference pattern as a signal to

induce the required mirror movement. This is the interference produced by

superposition of one transmitted recording beam and a part of the other

recording beam that is reflected on a lateral face of the sample. The second

method uses as signal the intensity of one of the transmitted recording light

beams behind the sample as proposed in [46]. The intensity of this beam

changes depending on the instantaneous coupling condition, i.e., the instant-

aneous position of the light pattern with respect to the recorded refractive index

grating. A mirror movement modulated at frequency V provides the control

signal. The second harmonic component (of frequency 2V) of that light beam

intensity should be zero at any time during stable recording. Departure from

this value means a different light pattern position that could be restored to its

correct place by operating on the piezo-mirror mean position. This second

method of dynamic control is preferred because of several reasons: Both

transmitted and diffracted beams which give rise to the coupled wave travel

exactly through the same optical path behind the sample; further adjustment is

not required after a recording angle change for multiplexing, and the first

harmonic can be used to know the recorded grating amplitude [47]. The real

disadvantage of this method consists in the very small signal which can be

detected because of the almost instantaneous compensation of the recording

grating. This compensation is faster as the recording temperature is higher,

reducing the control signal appreciably.
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A local thermal fixing process by use of a CO2 pulsed laser has been also

reported [48]. This could be of interest for applications requiring gratings

stored in a small part of the sample.

The developing process is the last step of the thermal fixing technique in both

methods in order to produce an unbalance between the electronic and ionic

gratings. A uniform illumination of the hologram with light of a sensitive

wavelength range is commonly used for this purpose. In fact, it is preferable

to use incoherent light, which avoids the formation of interference gratings in

the sample. A practical important question is to know how large the developed

space charge field will be with respect to the initially recorded one. This is

evaluated by the final developed ratio Dr, which is given by Eq. (12.23) and has

been studied experimentally as well as theoretically by de Miguel et al. [19].

Assuming enough proton concentration, as it happens in almost all practical

cases, this ratio depends on the oxidation state of the crystal ([Fe3þ]=[Fe])
through je and on the spatial frequency of the hologram. This can be observed

in Fig. 12.3 [19]. It can be also noticed that for oxidized samples and gratings of

relatively large spatial frequency (small spacing), this ratio could reach values

close to 0.8. This means that for initial diffraction efficiency close to 100%, the

fixed hologram could have about 65% diffraction efficiency. In order to obtain

higher fixed diffraction efficiency, the initial hologram could be recorded up to

a space electric field in excess of that needed for one hundred percent of unfixed

efficiency at room temperature [49]. On the other hand, the dependence of the

developed field with the grating spatial frequency is relatively moderate to

produce appreciable loss of quality in the information stored in a hologram.

The previous theoretical study on the developing process (see Section 12.3.4)

shows that the light effect is to simultaneously produce a decrease of the

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

F
ie

ld
 D

ev
el

op
ed

 R
at

io
, D

r

Spatial Frequency, K (µm−1)

Figure 12.3. Developed spatial field ratio Dr versus the hologram spatial frequency,

after [18, 19]. Full triangles for an oxidized sample, [Fe2þ]=[Fe] ¼ 0:001, and full circles

for a less oxidized sample, [Fe2þ]=[Fe] ¼ 0:1.
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amplitude and a phase shift of the electronic grating [18, 19]. It has been

determined that the photovoltaic effect is of capital importance in the devel-

oped diffraction efficiency value. Higher diffraction efficiency can be expected

for iron doped LiNbO3 samples than for samples with other transition metal

dopants as copper because of its lower photovoltaic coefficient values [13].

When developed holograms are stored in the dark or used with infrared light,

they tend to lose diffraction efficiency. This is due to compensation of the

spatial field by thermally excited electronic charges. This effect is more import-

ant the more conductive is the crystal used and is well described by the standard

model as the fast relaxation process in dark (see Section 12.3.4). In practice, this

leads to the need of redeveloping the hologram after some time periods to

restore the initial diffraction efficiency.

Development without light. Nee et al. [50] studied the effect of electric fields on

the diffraction efficiency of fixed holograms. These authors found that for

holograms recorded and fixed simultaneously at 1808C, after recording during

90 minutes, the modulation of donors could reach a value of about 0.5. The

application of an electric field to the samples with these fixed holograms

resulted in an increase of the diffraction efficiency without light development

that was quadratic in the field value. An electric field of 5 kV/cm produced even

50% diffraction efficiency. This could be explained as an effect of spatially

modulated electric currents due to the modulation of Fe2þ donors in the

presence of the uniform external electric field. The research was done with

highly iron doped crystals that presented relatively large dark conductivity.

This dark developing could be interesting in the design of devices for infrared

light applications. In this case, it is not necessary to illuminate the crystals with

visible light from time to time.

Efficient diffraction without developing. It has been observed in Cu in-diffused

samples that fixed holograms produced by recording at high temperature

presented high diffraction efficiency without developing [44]. In fact, just

after recording/fixing the gratings presented a constant Bragg back reflection

of more than 90 percent of the light. This was observed in samples for which the

copper was in-diffused at high temperature in a reducing atmosphere. It is clear

that, since protons are mobile at the recording temperature of 1808C, no spatial

electric field could be present in the sample before developing. Then, the

refractive index grating must have a nonelectro-optic origin. An absorption

grating was discarded as origin of this high efficiency. To explain these gratings,

there are two possibilities. First, the deep modulation of Cuþ and Cu2þ can

already lead to local material changes that cause a refractive index modulation

in the crystal. Second, the Cu distribution itself could be changed during fixing

at 1808C. One has to take into account that the grating periods in that

experiment were as small as 350 nm, and that the diffusion constant of Cu at

high temperature is more than 500 times higher than for Fe under the same

conditions. Anyhow, the origin of these gratings is not yet clear. These gratings,

not being produced by space charge fields, do not present compensation effects;

they exhibit stable diffraction efficiency, and do not need to be periodically
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redeveloped. This could be a valuable advantage for application in inaccessible

devices.

12.4.2 Lifetime of Fixed Holograms

A very important aspect to be taken into account with fixed holograms is their

useful lifetime. The commonly used word ‘‘fixed’’ for these holograms does not

mean their everlasting existence. In fact, even at room temperature, the ions

responsible of this fixing effect can move to redistribute along the material. This

movement, although very slow, could be not negligible in a time scale of years

of device operation. Experiments of hologram lifetime have been performed at

temperatures that allow the measurement of diffraction efficiency decays. Two

kinds of measurements have been done. Diffraction efficiency time decays of

fixed holograms under continuous developing light [14], and holographic de-

cays in the dark during the fixing process itself at a constant fixing temperature

[51, 52]. Let us briefly comment these measurements:

Fixed hologram diffraction efficiency light decays versus temperature. The

experiment reported by de Miguel et al. [14] consisted of the measurement of

the diffraction efficiency decay of a fixed hologram at constant temperatures.

Several of these decays were observed for different temperatures in the range

50–1108C. During the process, the sample was illuminated with uniform devel-

oping light. This was done in order to avoid a possible screening in the dark by

thermally excited electrons. The conditions of the experiment guaranteed that

the decays corresponded to the movement of the hydrogen ions. In all cases,

good single exponential decays were obtained, proving that they are due to a

single process. These decays were measured for three different samples differing

only in the concentration of hydrogen and in the oxidation state of iron.

Arrhenius-like plots of the decay time constants versus inverse absolute tem-

perature resulted in a straight line ordering of points for each sample, as

correspond to a thermally activated process. As it can be seen in Fig. 12.4,

the same activation energy was obtained for all samples (parallel straight lines)

but with different pre-exponential factors. The values of Nt and H0 were

obtained separately for each sample from the visible and infrared absorption

spectra, respectively. In Section 12.3.4, we discussed the theoretical expression

(12.24) for the hologram lifetime in which the dependencies on the grating

period K, the temperature T, the effective trap Nt, and proton H0 explicitely

appeared. The accordance between theory and experiment was excellent. In

fact, even the dependencies with Nt and H0 were experimentally confirmed by

the data of Fig. 12.4 because when calculating the factors t[(H0=Nt) þ1] ¼
1=(DHK

2), all values for different samples appear ordered in a single straight

line. On the other hand, from this analysis, the activation energy and pre-

exponential factor of the diffusion coefficient of hydrogen in lithium niobate

were obtained: D0
H ¼ (1:4� 0:5)� 10�3 cm2 s�1 and Ea ¼ (0:95� 0:02)eV.

It is worthwhile remarking that, on one side, the absorption stretching band

of OH� was used to obtain the factors to convert the decay times to diffusion
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coefficient values according to Eq. (12.24), and on the other side, these values

follow a single straight line independently of the sample. Therefore, this con-

stitutes the proof that the hydrogen is responsible for thermal fixing of holo-

grams in lithium niobate, at least within the range of hydrogen doping and

oxidation levels used in the experiment.

The extrapolation to room temperature, using the values obtained, allowed

these authors [14] to plot expected curves of lifetimes versus the hydrogen density

in the crystals. In Fig. 12.5, the curves corresponding to grating spacings of 1mm
and 0:35mm at 208C are presented. The spacing of 0:35mm corresponds to a

grating that produces back reflection of light of 1:55mm. As it can be seen in the
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Figure 12.4. Arrhenius-like plot of the temperature dependence of decay time con-

stants of fixed holograms, for three different LiNbO3:Fe samples, after [14].
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the density of hydrogen impurity in the sample, for two different grating spacings [14].
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figure, lifetimes are longer as the hydrogen density is lower. Lifetimes longer than

ten years could be produced in samples with less than 1017 cm�3 of these ions.

The amount of hydrogen can be easily controlled and altered by thermal treat-

ments at very high temperatures (8008C–10008C) in the proper atmosphere.

Dark decays of diffraction efficiency during fixing. Dark decays of the difrac-

tion efficiency at a constant temperature in the range 1448C–1688C were meas-

ured for several different grating periods by Müller et al. [51]. These decays

presented a three-exponential time dependence with very similar activation

energies but differing in the pre-exponential factors. The activation energies

ranged from 1.0 to 1.3 eV. Those components where interpreted as due to

different proton sites in the lithium niobate gratings. After the theoretical

work of Sturman et al. [17], we know that one has to take also into account the

thermal excitation of electronic charges, and these activation energies cannot be

assigned purely to proton diffusion.

In the holographic scattering decay technique followed by Ellabban et al. [52]

with Mn-doped LiNbO3 crystals, light scattering was produced by a single laser

beam at room temperature, leading to a transmission decrease down to a steady

state level. After that, the sample is heated to a temperature in the range

60–1158C for fixing. Then the transmission of a weak beam is measured as a

function of time at each constant temperature. Between individual measured

points, the sample is kept in the dark. As a result of field screening by the mobile

ions, the scattering decreases with time, i.e., the beam transmission increases up

to amaximum constant value. These scattering decays were observed to be single

exponential and from them, time constants were extracted. These time constants

were dependent on the fixing temperature, and an Arrhenius-like plot of them

resulted in an activation energy of 1:06� 0:03 eV. Regarding the determination

of hydrogen parameters the same criticism expressed above to the results of

Müller et al. [51] can be applied to this work. Additionally, one has to take into

account that in the last experiment, there is an undetermined distribution of

spatial frequencies of gratings recorded in the crystal. This distribution does not

affect the fast relaxation process, i.e., the screening of the space charge field

controlled by Gf . However, it should markedly influence the slow decay deter-

mined by Gs that corresponds to the real decay of the trapped electronic pattern

origin of the light scattering.

Lengyel et al. [53] studied variations of the OH absorption components

bands at different temperatures. In fact, the components of the stretching

absorption band of OH near 3460 cm�1 are more resolved in stoichiometric

crystals even at room temperature. This has been used to observe and measure

changes of spectra with time at a given temperature, after equilibrium at a

temperature of 2508C was reached. The analysis of changes of four different

absorption bands resulted in activation energies from 0.9 eV up to 1.34 eV.

This could mean that OH ions in different lattice positions actually present

different activation energies. These authors also measured the decay of stored

gratings in the dark at different constant temperatures. They found for these

decays an activation energy of 1:14� 0:02 eV, for the same crystals used in the
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infrared absorption experiments. The value obtained is in the range of those

derived from absorption measurements, but is also slightly higher than that

reported in Ref. [14]. Nevertheless, in the results presented in Ref. [53], the two

simultaneous processes commented before should be involved in the decays

measured at a given temperature, the decay of the electronic grating due to

thermal excitation of electrons from traps and the ionic screening of the spatial

charge field. Both processes could have different activation energies and then

the result could be a somehow intermediate value.

12.4.3 Fixing of Multiple Holograms

Superposition of multiple fixed holograms could be of great interest for infor-

mation storage applications, optical correlation, and communications wave-

length demultiplexing. From the early times of thermal fixing in lithium

niobate, the fixing of multiple holograms with individual high diffraction

efficiencies was demonstrated by Staebler et al. [54]. In this first experiment,

the image bearing holograms were recorded and fixed simultaneously at 1608C.
The Bragg mismatch produced when those holograms were read at room

temperature was not important for those simple analog images. But for high

capacity digital data storage, the holograms must be recorded at RT and fixed

with a post-recording heating procedure. Heanue et al. [55] recorded and

fixed successfully 530 holograms containing digital information. These authors

observed that the bit error rate decreased in more than two orders of magnitude

with the fixing process, mainly due to the lower diffraction efficiency obtained

after fixing and developing. More recently, An et al. [56] recorded and fixed

10,000 digital holograms, using an incremental fixing schedule to obtain equal

diffraction efficiency for all of them. After recording each group of 1000 holo-

grams the crystal was heated for fixing, and only at the end of all the process the

crystal was illuminated for developing. Limeres et al. [57] studied the effect of

different recording-fixing-developing schedules in the formation of combin-

ational spurious gratings that can highly contribute to the optical noise in a

memory. These authors observed that a key factor in the formation of a com-

binational grating, a grating with sum grating vector for example, is the presence

of the modulated space electric field of a former hologram during recording of a

second one. The amplitude of the combinational gratings is much reduced if each

holograms is fixed but not developed before recording the next one. In this case,

the recording of a new hologram is not affected by the spatial electric field of the

former hologram because it is still compensated. This should be taken into

account to improve signal to noise ratio in multiple fixed hologram systems.

12.4.4 Thermal Fixing in Other Materials

Thermal fixing of holograms has been also experienced in many other photo-

refractive materials. However, there are important differences in the fixing

temperatures, activation energies, and lifetimes. The fixed diffraction efficiency
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ratios also depend strongly on the material. Developing is much more efficient

for photovoltaic samples. In nonphotovoltaic samples, an external electric field

is used to increase the diffraction efficiency. Table 12.1 presents a summary of

the main properties of fixed holograms in different photorefractive crystals.

It can be seen in this table that thermal fixing has been attributed to protons

in almost all cases. The determined RT lifetimes are, in general, in the range of

several hours to hundreds of days. This is well below the lifetimes of years

found for lithium niobate, and of course below the minimum lifetime necessary

for practical fixed devices. The activation energies for thermal decay of ionic

fixed gratings ranged from about 0.7 eV up to 1.44 eV, but for many materials,

the value was close to 1 eV. In general, the diffraction efficiency is quite lower

than that observed in holograms fixed in lithium niobate for the same crystal

thickness. This could be attributed to the important role of the photovoltaic

field in the developing ratio [18, 19].

12.5 Fixing in Photorefractive Waveguides

Photorefractive effects were soon noticed and studied in optical waveguides

and they are reviewed in Chapter 9 of this book as well as in previous review

articles [73] and [74]. A major reason for this fact is the relevant role played by

the photorefractive effect in many optical communication designs, either for

reducing the optical damage or for applications in useful devices. A variety of

photorefractive experiments and some devices have been performed in the

guiding geometry, soon after they were reported in bulk material. The fixing

process in photorefractive waveguides is particularly relevant because the

gratings recorded in the guiding configuration generally show much shorter

lifetimes than those of the bulk case.

Holographic gratings have been recorded and fixed in planar [75] and chan-

nel [76] LiNbO3:Ti:Fe waveguides. The amplitudes of either recorded or fixed

gratings are found to decrease near the guide surface, probably because of a

greater surface value of the ratio Fe2þ=Fe3þ [75]. In channel LiNbO3:Ti guides,
a lifetime for dark decay of a few days has been reported for fixed gratings [77],

whereas longer lifetimes are obtained under continuous illumination. More-

over, the peak wavelength for Bragg diffraction has been tuned between

1557.85 nm and 1558.08 nm within the temperature range 294 K–328 K [77].

Quasi-permanent holograms with diffraction efficiency above 90% have been

obtained by thermal fixing in LiNbO3:Ti:Cu waveguides. Fixed holograms last

unchanged for at least one year in the dark. They partially decay under

homogeneous illumination and recover again in the dark (dark developing).

Then, they do not require any optical developing at all and are attributed to

migration of Cu ions instead of protons [44].

In the case of soft proton-exchanged (SPE) LiNbO3 guides (a-phase),
recorded holograms show a short lifetime (a few hours). Two main contribu-

tions appear to be responsible for this behavior [78]: A much greater electron
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thermal excitation probability ST (about five orders of magnitude greater than

in bulk) and likely a much greater mobility of certain ion carriers located at the

sample surface (about nine orders of magnitude greater than in bulk). On the

other hand, high temperature photorefractive phenomena, closely related to

thermal fixing, which are not commonly observed in bulk LiNbO3 have been

recently reported. Let us comment some specific results.

As a first example, recording at temperatures above 808C in SPE-guides

exhibits a transient peak, i.e., a quick growth of the diffraction efficiency up

to a maximum, followed by a slower decrease down to zero [79]. Fig. 12.6

shows the normalized diffraction efficiency as a function of time during record-

ing at several temperatures (actual maximum values decrease on increasing the

temperature). A similar effect has been reported during recording in bulk

LiNbO3 [28]. This behavior is predicted by the model discussed in Section

12.3.3 when the recording temperature is above the critical temperature given

by expression (12.20). Thus, the critical temperature TC in SPE-guides, if there

exists, appears to be well below 1008C whereas in bulk, material is around

2008C. The reason for that change seems to be the higher thermal electron

excitation probability [78]. A second example is dark developing observed at

room temperature in SPE-guides [78], although the grating lifetimes are rather

short in this case. In addition, the last paper has provided values for most

photorefractive parameters in SPE-guides. These values appear very similar to

those of bulk crystals, except for those mentioned above (the thermal ionization

probability ST and the ion mobility). Finally, developing after fixing at high

temperature have been also carried out obtaining a diffraction efficiency of
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Figure 12.6. Recording behavior in a SPE LiNbO3 waveguide at different temperat-

ures. The normalized diffraction efficiency during recording has been plotted as a

function of time; the peak value tends to decrease on increasing the temperature.
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about 15%. The developed grating decays to zero in dark but can be recovered

by further developing as illustrated in Fig. 12.7.

12.6 Photorefractive Applications Using Thermal Fixing

12.6.1 Volume Holographic Devices

Several narrow band holographic optical filter devices based in bulk thermally

fixed holograms in Fe-doped LiNbO3 have been reported. The early prototype

of Rakuljic and Leyva [80] had a reflection peak of 12% at 656.45 nm with a

bandwidth as narrow as 0.0125 nm. These authors mentioned the possibility of

thermal fixing but they did not fix their filter. The fixed filter produced by

Müller et al. [9] had a measured reflection peak of 32.5% at 518.45 nm with a

bandwidth of 0.05 nm. This filter was recorded using reflection geometry and

fixed after recording. The reflection peak position could be elected prior to

recording by adjusting the recording beam angle or wavelength for the required

grating spacing. Fine tuning could be obtained by application of an electric

field or by changing the working temperature [81]. Using a configuration of

transmission geometry for recording and a sample of 10 mm long in the
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Figure 12.7. Diffraction efficiency h as a function of time (a) during recording at 908,
(b) during the first developing at RT, (c) during the second developing after a decay to

zero in dark, (d) during the third developing after the second one decayed.
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direction of reflection, Leyva et al. [8] produced a reflection filter for a

wavelength of 1548 nm with a bandwidth of 0.18 nm and a peak reflection of

98%, in a fixed device. Superposition of several reflection gratings in a single

filter device can be applied as wavelength demultiplexer for DWDM commu-

nication systems. This extension of the holographic filters has been also devel-

oped with fixed holograms in LiNbO3:Fe by An et al. [82]. The demonstration

device was produced by recording 16 gratings using a 908 geometry, and a

Bragg reflection geometry. The result was a 16 channel device of 0.16 nm

bandwidth separated 0.5 nm, in the region of 670 nm. This device diffracted

the light of each of channel wavelength in a different angle. Very recently Nee et

al. [83] presented a demultiplexer device with 16 channels of 0.1 nm bandwidth

and separated 0.4 nm for the communication band of 1550 nm. The device was

produced by angular multiplexing of holograms recorded in the transmission

geometry. The device was used in Bragg reflection geometry and had fixed

reflection efficiencies of about 20%. An holographic fixed optical correlator

with very interesting properties has been also demonstrated [84]. A photore-

fractive fixed volume hologram of high diffraction efficiency can be used in

confocal scanning microscopes in order to produce spatial filtering in advan-

tageous substitution of a pinhole [85]. The technique of optical phase encryp-

tion [86] can take advantage of thermal fixing for storage and portability of the

holographic phase keys. Finally, optical holographic memories formed by or

containing fixed holograms have similar features as the computer ROM (read-

only memory) but improved with parallel reading properties. An example of

such a memory is that demonstrated by An et al. [56].

12.6.2 Waveguide Devices

In an early work [87], a large-angle electro-optical switch/deflector was dem-

onstrated by recording and fixing a photorefractive grating in a Fe-indiffused

LiNbO3 guide. A strong reduction of the optical damage was also reported for

a Ti-indiffused LiNbO3 channel guide after submitting the sample to a ‘‘ther-

mal fixing’’ process [88]. More recently, interesting devices have been reported

with fixed gratings in photorefractive Ti:LiNbO3 waveguides. In a similar way

as that described in Section 12.6.1, integrated narrow-bandwidth Bragg reflect-

ors have been fabricated by fixing in planar [75] and channel [76] waveguides of

Ti:Fe:LiNbO3. A two-step method has been used to fix the photorefractive

holograms obtaining a reflectivity of 60% and a spectral line width of 110 pm.

Additionally, the Bragg reflector appears almost insensitive to the light polar-

ization. Moreover, thermal tuning has been also demonstrated in these wave-

guides inside a range of 0.2 nm [77]. Fixed Bragg reflectors have been used as

mirrors in an integrated Ti:Er:LiNbO3 laser emitting 5 mW power at

1531.7 nm and pumped with 110 mW at 1480 nm [89, 90, 91]. Very recently,

a similar device has been fabricated in a Ti:Er:Fe:LiNbO3 waveguide [92].

All these devices can take benefit of the fixing technique developed in Cu-doped

Ti:LiNbO3 waveguides [44], which apparently gives rise to much longer lifetimes
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than the conventional one based on protons. After high temperature recording

with green light, refractive index changes exceedingDn ’ 8� 10�5 for 1550 nm IR

light have been achieved in channel waveguides [93, 94].

12.7 Summary

This Chapter has reviewed our present understanding of thermal fixing phe-

nomena, the updated theoretical model, relevant experimental data and tech-

niques, and applications in photorefractive crystals, particularly LiNbO3. After

describing the physical model for thermal fixing, the recent mathematical

formulation of the model has been presented. This has emerged as a coherent

and clear picture from which particular models can be reliably developed to

explain and predict most experimental results, as well as to design long lifetime

photorefractive devices. Common experimental methods and techniques have

been discussed in detail, emphasizing their advantages and drawbacks. Rele-

vant experimental data are presented and discussed to the light of the theoret-

ical model, including those referred to photorefractive waveguides. Finally,

applications of the thermal fixing technique to practical devices have been

presented for both bulk and waveguide geometries. Many of them exhibit

excellent performances with LiNbO3 and they are very close to the market.

On the other hand, further improvements are needed with other materials

before they can be applied to real devices.
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13.1 Introduction

Perhaps the most important feature of the photorefractive effect is that it can be

used to perform real-time holography, in the sense that the photorefractive

medium can adapt instantly, or almost instantly, to changes of the light

intensity pattern produced by the optical interference of two or more waves.

This feature is vital to several applications of the photorefractive effect, such as

adaptive interferometry, laser beam clean-up, phase conjugation, to name a

few. As a rule of thumb, for a given intensity and wavelength, it takes essen-

tially the same time to write a photorefractive grating than to erase it.

However, there are applications where this feature is more of a nuisance than

an advantage. Holographic data storage is one of these applications: It is

desirable to be able to record a hologram very quickly with very little power,

and once recorded, the diffraction efficiency and fidelity of the hologram should

not degrade over time, even under the presence of an intense light beam. Ideally,

there should also be a mechanism to erase the contents of the hologram. Several

schemes to ‘‘fix’’ holograms have been proposed, such as thermal fixing, which

is discussed in detail in Chapter 12 of this book, two-wavelength recording,

also discussed in this book in Chapter 8, and electrical fixing. In this chapter,

we shall discuss the electrical fixing in ferroelectric photorefractive materials.

In 1972, Micheron and Bismuth [1] observed that photorefractive gratings

could be fixed in crystals that were also ferroelectric, i.e., crystals that have a

spontaneous polarization Ps that can be reversed when an electric field exceed-

ing a certain threshold (coercive field) is applied against Ps, without changing

the spontaneous strain. The method they used to fix the gratings consisted in

applying an electric field against Ps after a photorefractive grating had been

recorded. Once the electric field was applied, the sample could diffract a

properly Bragg-matched beam for an indefinite time without an appreciable

decay of the diffraction efficiency. This phenomenon was explained the follow-

ing way: The light interference pattern created by the beams produces a

space-charge field which, together with the biasing, externally applied electric
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field, reverses the spontaneous polarization wherever the total field exceeds the

coercive field. By adjusting the magnitude of the applied field to be slightly

lower than the coercive field, a spatially oscillating pattern of head-to-head

1808 ferroelectric domains is formed. The resulting ‘‘ferroelectric domain grat-

ing’’ was considered to be responsible for the nondecaying diffraction of light

incident on the sample. This effect was initially observed in barium titanate [1],

and subsequently in Sr0:75Ba0:25Nb2O6 [2, 3, 4].

The field of electrical fixing in ferroelectric photorefractives remained some-

what dormant till the beginning of the 90s. Qiao et al. [5] and Orlov et al. [6, 7]

fixed low-diffraction efficiency gratings in Sr0:75Ba0:25Nb2O6 using a similar

procedure. However, by repoling the crystal, that is, by reversing the ferroelectric

domains back to their original orientation, the diffraction efficiency increased

substantially and subsequently decayed. Using a similar (but not identical)

technique, Horowitz et al. [8] fixed both images and holograms in Sr0:75Ba0:25
Nb2O6. Kewitsch et al. [9, 10, 11] found evidence that the light induced space-

charge fields themselves were sufficient to produce spontaneous polarization

reversal and therefore fixing in Sr0:75Ba0:25Nb2O6. Cudney et al. [12] fixed

gratings in top-seeded solution grown BaTiO3 by simultaneously recording

gratings and depoling the sample in which they were recorded. Unlike the

previous cases, the fixed grating did not diffract light until the crystal was repoled

by an electric field. A following publication by the same authors showed that

photorefractive gratings could be fixed in a barium titanate sample if it was

depoled prior to their recording [13]; this method of fixing holograms led to an

increase of over a factor of 20 of the diffraction efficiency of the gratings.Ma et al.

[14, 15] found that both the diffraction efficiency and lifetime of multiplexed

holograms recorded in cerium-doped Sr0:75Ba0:25Nb2O6 increased by several

orders of magnitude if the holograms were recorded in a depoled crystal; using

this technique, they were able to record 1000 distinct holograms in the same

sample and read them out with a diffraction efficiency exceeding 0.005%. Similar

results were obtained in Sr0:61Ba0:39Nb2O6 [16]. Photorefractive hologram fixing

using ferroelectric domains has also been observed in KNbO3 [17], although the

diffraction efficiency reported for holograms fixed in this crystal was low. There

are other forms of ferroelectric domain fixing techniques that have been

reported. Tong et al. [18, 19] reported hologram fixing in K1�xLixTa1�yNbyO3,

although the fixing mechanism is not clear. Fixing of waveguide channels in

Sr0:61Ba0:39Nb2O6 has also been reported by Wesner et al. [20].

13.2 Basic Properties of Ferroelectric Crystals

13.2.1 Electrical Properties

As mentioned in 13.1, ferroelectric crystals posess a permanent polarization,

known as the spontaneous polarization Ps. In an ideal ferroelectric crystal, the

direction of the spontaneous polarization of the entire crystal will be inverted if
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an electric field with a magnitude equal to or higher than a threshold value Ec,

known as the coercive field, is applied [21, 22, 23]. Once Ps is inverted by the

applied field, it will remain in the new orientation until it is reversed by another

applied field, also with a magnitude equal to or higher than Ec, but of the

opposite sign. Suppose a perfectly insulating ferroelectric sample of thickness d

that has some form of electrodes on the surfaces perpendicular to Ps is placed in

a circuit like the one shown in Fig. 13.1a. For applied electric fields Eapplied ¼
V=d < Ec, where V is the voltage, the ammeter will not detect a current since

the crystal is an insulator. However, when Eapplied ¼ Ec, the polarization rever-

sal process begins and creates a displacement current that is detected by the

ammeter; ideally, the direction of Ps is inverted at the same time throughout the

entire crystal, producing a high but short-lived current spike, as shown in Fig.

13.1b. If the sign of the voltage is inverted, the same process occurs but with the

opposite sign. By integrating the current I(t) with respect to time, we obtain the

total amount of charge Q inverted,

Q ¼
Z

I(t)dt: (13:1)

If the spontaneous polarization of the entire crystal is flipped, it can be

shown that Q ¼ 2PsA, where A is the area of each electrode [24]. The corre-

sponding hysteresis curve for the spontaneous polarization of this sample,

shown in Fig. 13.1c, can therefore be determined by measuring the displace-

ment current. In fact, this is the most widely used method to determine the

spontaneous polarization of a material, and the circuit employed in this tech-

nique is known as the Sawyer-Tower circuit [25].

In reality, the spontaneous polarization of the entire sample does not flip at

the same time; instead, it begins to flip on small regions of the surface, creating

A

V

d
-Ec -Ec Ec

Ps

-Ps

Ec

I

E=V/d E=V/d

P

Ps

(a) (b) (c)

Figure 13.1. Ferroelectric hysteresis loop. (a) Sawyer-Tower circuit; (b) current vs.

applied field, (c) spontaneous polarization vs. applied field. The slant of the top and

bottom lines is due to the induced polarization present in any dielectric material,

P ¼ ee0E.
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small domains (regions where the spontaneous polarization has the same

direction). This process is called nucleation. Then these small domains grow

both longitudinally (along the direction of the spontaneous polarization) and

laterally; it is generally accepted that the longitudinal rate of growth is orders of

magnitude larger than the lateral rate. In addition, the voltage at which domain

reversal occurs may not be the same at different locations throughout the

crystal, due to inhomogeneities of the electrodes, inhomogeneities of the crys-

tal, or simply because the coercive field itself may not be well defined, as occurs

with relaxor or soft ferroelectric crystals such as SrxBa1�xNb2O6 [26]. A real

measurement performed by the Sawyer-Tower circuit actually shows broa-

dened current spikes, and the edges of the hysteresis loop are smoothed out.

By varying the magnitude of the field and the time it is applied, we can adjust

the degree of polarization g of the sample, defined here as

g ¼ Vþ � V�

Vþ þ V� , (13:2)

where Vþ and V� are the total volumes of the domains where the spontaneous

polarization points in the þ and � directions, respectively. For a plane-parallel

slab of area A, and assuming the crystal is initially well-poled along the þ
direction, the degree of polarization can be determined from the switched

charge Q by

g ¼ PsA�Q

PsA
: (13:3)

In general, the regions separating two adjacent 1808 domains (domains where

the spontaneous polarization of one domain is antiparallel to the spontaneous

polarization of the other), are charged due to the discontinuity of the spontan-

eous polarization. From Maxwell’s equations, it can be shown that the surface

charge density sb that arises at the domain walls is given by

sb ¼ 2Ps � n̂n, (13:4)

where n̂ is a unitary vector normal to the domain wall. Fig. 13.2 shows the surface

charge density in three different situations. In Fig. 13.2a the domains are side-by-

side and the bound charge at the domain wall is zero. In Fig. 13.2b the domains

are head-to-head and the bound charge is maximum, sb ¼ 2Ps; this configur-

ation is energetically unstable and requires a compensating free charge of the

opposite sign to make it stable. A theoretical analysis of requirements for an

internal space-charge distribution to induce and maintain a stable configuration

of head-to-head domains throughout the bulk of a ferroelectric crystal was given

in [27]. Finally, Fig. 13.2c shows an intermediate configuration in which

sb ¼ 2Ps sina, where a is the angle between the domain wall and Ps.

In general, ferroelectric domain configurations are not restricted to the 1808
domains discussed above. The possible orientations that Ps may take depends

on the symmetry of the crystal. For example, at room temperature lithium
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niobate belongs to the 3m point group in which Ps can only be parallel or

antiparallel to the crystal’s 3-fold symmetry rotation axis. Therefore, this

crystal can only have 1808 domains. On the other hand, barium titanate in

the paraelectric phase (above � 1308C) has cubic symmetry, and as it is cooled

below this temperature, the unit cell becomes tetragonal (4mm point group) in

which Ps can be oriented along any of the 3 pairs of anti-parallel orientations

corresponding to the normals of the original cubic cell. In addition to 1808
domains, this crystal can also have domains in which the spontaneous polar-

ization rotates 908 from one domain to the other (908 domains). If the sym-

metry of the crystal is even lower, such as is the case of potassium niobate,

which is orthorhombic at room temperature, the number of possible orienta-

tions of Ps increases, allowing 1808, 908, 1208, and 608 domains.

Finally, if instead of well-defined domains in which Ps varies discontinuously

from one domain to another the spontaneous polarization varies continuously,

the bound charge volume density that arises is given by

rb ¼ �= � Ps: (13:5)

13.2.2 Optical Properties

The refractive index of a ferroelectric crystal remains the same if the spontaneous

polarization is flipped by 1808 [23]; therefore, in principle, 1808 domains should

not be visible, at least if only linear optics is used to detect them. However, all

third-rank, second-order nonlinear susceptibility tensors x(2)(v3;v1, v2), which

relate the induced polarization P(v3) of the medium at a frequency v3 to the

driving electric fields E(v1) and E(v2) at frequencies v1 and v2 by

P(v3) ¼ e0x
(2)(v3; v1, v2):E(v1)E(v2), (13:6)

are in turn functions of the spontaneous polarization [23, 28]. In (13.6), e0 is the
permittivity of vacuum and v3 ¼ v1 þ v2. The electro-optic effect is a

special case of (13.6), in which v2 ¼ 0 and v3 ¼ v1. The elements rijk of the

σb = 0 σb = 2Ps σb = 2Pssinα

Ps

Ps

Ps Ps

Ps

Ps

n
αn

n̂

^ ^

(a) (b) (c)

Figure 13.2. Bound charge surface density at domain walls. (a) Adjacent 1808
domains; (b) head-to-head 1808 domains; (c) 1808 domains separated by a slanted

domain wall.
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electro-optic tensor, which describes the linear electro-optic effect, can be

shown to be of the form [28, 29, 30]

rijk /
Xl¼3

l¼1

gijklPs, l , (13:7)

where gijkl are the components of the quadratic electro-optic tensor and Ps, l are

the components of the spontaneous polarization vector. Consequently, a static

electric field of amplitude E will induce a change Dn(E) of the refractive index
that will depend on the orientation of Ps; in particular, if it is rotated by 1808,
the sign of Dn(E) will change while its magnitude will remain the same. Since

the direction of energy transfer in photorefractive two-beam coupling depends

on the sign Dn(E), a reversal of the direction of Ps, l will bring about a reversal

of the direction of energy transfer.

13.3 Domain Fixing Mechanisms

The main idea behind photorefractive grating fixing is to create a space-charge

distribution that does not decay under illumination. Normally, this is accom-

plished by first recording a normal photorefractive grating; that is, by letting a

light interference pattern optically excite charges, creating a spatially-varying

free-charge distribution rfree(r) among the trap sites, and then creating a replica

of rfree(r) with another source of electric charge that is not easily moved. In

thermal fixing, this source is ions, mostly single protons, which become mobile

once the crystal is heated to a certain temperature. By recording the grating at

high temperature, the ions move to electrically compensate the charge distrib-

uted among the traps, forming a space-charge replica but of the opposite sign of

the original space-charge distribution; in other words, a charge density distri-

bution rion(r) / �rfree(r) is formed. Once the temperature of the crystal is

lowered the mobility of the ions is significantly reduced, so that rion(r) can no

longer be altered. If rfree(r) is removed by some means, for example, uniform

optical illumination, rion(r) is left behind, producing an electric field given by

= � E(r) ¼ rion(r)

e0
/ � rfree(r)

e0
: (13:8)

In ferroelectric domain fixing, the principle is essentially the same; the differ-

ence is that the compensating charge is provided by the bound charge of the

domain walls, or more in general, by rb given in (13.5). Exactly how and where

this bound charge is produced depends on the material and the experimental

procedure used to fix the grating. In the simplest model, such as that proposed in

1973 byMicheron et al. [1, 2], one might think that the spontaneous polarization

is reversed in slab-shaped domains wherever the sum of the applied and the

internally developed fields exceeds the coercive field. However, the discontinuity

of the polarization between these head-to-head slabs is quite large; for barium
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titanate at room temperature 2Ps � 56mC=cm2
, whereas the typical value of the

space charge density of a photorefractive grating, integrated over half a period

(1mm), is only around 5� 10�2 mC=cm2
. The bound charge of the slabs would

largely overcompensate the free space charge, making this model highly improb-

able. In addition, this arrangement by itself would not produce a refractive index

grating, since the linear optical properties are the same for both orientations of

Ps. An externally applied field would be needed to reveal the domain grating, or a

strong change of the index of refraction at the domain walls.

As far as we know, it was not until 20 years later, in 1993, that publications in

this field appeared once again. As mentioned in 13.1, Qiao et al. [5] reported

domain fixing in Sr0:75Ba0:25Nb2O6, and during the same year Cudney et al.

independently performed similar experiments in BaTiO3 [12]. The domain

fixing techniques used in both cases followed basically the same procedure:

a) Grating recording. A photorefractive grating is recorded the usual way by

two interfering beams inside a single-domain photorefractive crystal.

b) Fixing. An electric field is applied to the crystal against the direction of the

spontaneous polarization. The magnitude of this field is above the coercive

field of the crystal, so it presumably depoles the sample, at least partially.

c) Erasure of the original grating. Once the fixing field is applied, an intense

light beam erases the original grating. During this period, the diffraction

efficiency of the grating is monitored by a probe beam, possibly one of the

original recording beams or another beam of a different wavelength, which

is incident at the correct angle to ensure Bragg matching.

d) Revealing. This step was not included in Micheron’s original work. An

electric field of the opposite polarity of the field used in the fixing step is

applied, which repoles the crystal. As we shall discuss below, this step

dramatically increases the diffraction efficiency of the grating.

The basic experimental setup for these experiments is described in Fig. 13.3.

Two mutually coherent beams (light gray lines) overlap inside a photorefractive

crystal, producing the interference pattern that creates the photorefractive

grating. A third beam (dark gray) is used to monitor the diffraction efficiency

of the gratings. For the specific case of experiments perfomed in top-seeded,

solution grown barium titanate [12], an ammeter was introduced to record the

displacement current produced by the reversal of the spontaneous polarization,

which was monitored to measure the degree of depolarization. Electrodes were

evaporated onto the c-faces of the sample, which were used to apply electric

fields and to monitor the current produced by polarization reversal. Previous

experiments with this crystal showed that Ps ¼ 28mC=cm2 and that, at very low

frequencies, it had a well-defined coercive field Ec ¼ 480V=cm at which the

switching process begins. Two l ¼ 488 nm laser beams of equal intensity were

used as the recording beams. The diffraction efficiencies of the gratings were

monitored by a weak He-Ne laser.

Figure 13.4 shows data obtained from a typical domain-fixing sequence

performed in a nominally undoped top-seeded solution grown BaTiO3 sample.
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First the crystal is poled by applying a high (much larger than the coercive

field), positive electric field along its c-axis for over a minute, as shown in the

upper graph of Fig. 13.4, to ensure that the crystal is well-poled (without 1808
domains) before the grating is recorded. At the same time, one of the recording

beams illuminates the crystal to help the poling process by optically exciting

charge that might be pinning some 1808 domains [31]. Then a photorefractive

grating of a large spatial periodicity is recorded (both recording beams now

illuminate the crystal) while a negative field is simultaneously applied. This field

serves two purposes. For jEapplied j > jEcj, this field depoles the crystal, forming

1808 domains that will provide the bound charge to fix the grating. In addition,

for jEapplied j < jEcj, it enhances the diffraction efficiency of the grating. If the

photogalvanic effect is neglected and the effective trap density is very large, the

steady-state amplitude Esc of the photorefractive space-charge field is the sum

of a diffusion-driven field and a drift-driven field, i.e.,

Esc � im
kBT

e
kg þ iEapplied

� �
, (13:9)

where m is the complex modulation of the interference pattern, kBT=e is the

thermal energy per charge carrier, kg ¼ 2p=L is the magnitude of the grating

wavevector. L is the grating spacing, and Eapplied is the amplitude of the applied

electric field. For the grating spacing used in this experiment, L ¼ 23mm, the

diffusion-driven field is negligible. However, once jEapplied j > jEcj, the diffrac-

tion efficiency is reduced. This is due to two reasons. First, the effective electro-

optic seen by the beams is reduced by the presence of 1808 domains [29, 30, 32,

33]. For light propagating perpendicular to c-axis of the crystal, the average

electro-optic coefficient is given by [33]

hri ¼ r
Vþ � Vþ

Vþ þ Vþ ¼ gr, (13:10)

A

shutters
detectors

V

â

c

Figure 13.3. Experimental setup for domain fixing.
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where r is the appropriate effective electro-optic coefficient for a single-domain

crystal that depends on the orientation of the grating wavevector and on the

polarization of the beams. For a completely depoled crystal, that is

Vþ ¼ V�, hri ¼ 0. Second, assuming the domain walls somehow produce a

bound charge distribution similar to the original free charge distribution but

of the opposite sign, the total charge and therefore the space-charge field is

reduced.

After the grating is recorded and fixed, one of the recording beams is

blocked; the other beam is left on to erase the grating. As can be seen in the

lower graph of Fig. 13.4, the diffraction efficiency is negligible until the 1808
domains are removed by a field applied along the same direction as the original

poling field. This repoling process, which is confirmed by the presence of the

positive current spike shown in the upper graph of Fig. 13.4, reveals a grating

that diffracts the probe beam. As can be seen in the lower graph of Fig. 13.4,

the diffraction efficiency reaches 70% and then decays like a normal photore-

fractive grating. Again, the diffraction efficiency suddenly increases once the

1808 domains are removed because the effective electrooptic coefficient is
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Figure 13.4. Fixing sequence. The upper graph shows the applied field and the

resulting current vs. time; the lower graph shows the charge, obtained by integrating

the current shown in the upper graph, and the diffraction efficiency of the probe beam.

The icons on top of the upper graph depict the status of the recording beams. Recording

beams: l ¼ 488 nm, o-polarized. Probe beam wavelength: l ¼ 633 nm, e-polarized.

Grating spacing: 23mm. (Adapted from [12].)
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restored to its full value and because the bound charge density that screens the

free charge is removed.

Figure 13.5 shows proof-beyond-reasonable-doubt that 1808 domains are in-

volved in the fixing process described above. Two grating recording and fixing

procedures were performed, one with Eapplied ¼ 450V=cm and another with

Eapplied ¼ 530V=cm, which are values slightly below and above the coercive

field, respectively. When Eapplied ¼ 450V=cm the current is zero during the fixing

stage and no diffraction occurs during the revealing stage, whereas when

Eapplied ¼ 530V=cmdomain reversal occurs in both the fixing and revealing stages,

and an unambiguous diffracted signal is detected during the revealing stage.

The diffraction efficiency of the revealed grating should depend on how well

the bound charge can compensate the free charge, which in turn should depend

on the density of domain walls available to provide bound charge; therefore,

one can expect the maximum diffraction efficiency of the revealed grating to

occur when the fixing is performed in a completely depoled crystal [34]. Fig. 13.6

shows the diffraction efficiency of the revealed grating as a function of the

degree of depoling g of the crystal during the fixing stage. Each data point was
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Figure 13.5. Relation between diffraction efficiency and displacement current. In the

upper graph, Eapplied ¼ 450V=cm < Ec and in the bottom graph, Eapplied ¼ 530V=cm >
Ec. A grating is only revealed if depoling occurred during the fixing stage. The icons on

top of the upper graph depict the status of the recording beams and the applied voltage.

Recording beams: l ¼ 488 nm, o-polarized. Probe beam: l ¼ 633 nm, e-polarized. Grat-

ing spacing: 23mm. (Adapted from [12].)
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obtained by first poling the crystal, then depoling it a certain amount, which

could be varied by changing the magnitude of the applied voltage and the time

it was applied, then erasing the original grating with an intense light beam, and

finally revealing the grating by repoling the crystal with an applied field. As

expected, the diffraction efficiency is high when g � 0; in other words, when the

grating is fixed in a completely or close to completely depoled crystal.

The diffraction efficiency of the fixed gratings in barium titanate depends

strongly on the periodicity of the grating [35]. Fig 13.7 shows the diffraction

efficiency vs. the grating periodicity; all other experimental parameters, such as

the degree of depoling g and the applied fields, were kept constant. In these

experiments, only the two recording beams were used; the probing of the
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Figure 13.6. Diffraction efficiency of the revealed grating vs. degree of polarization of

the sample during the fixing stage. (Adapted from [34].)
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Figure 13.7. Diffraction efficiency of the revealed grating vs. grating spacing. One of

the recording beams (488 nm, e-polarized) was used as the probe beam. Power per beam:

48 mW. (Adapted from [35].)
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diffraction efficiency of the revealed grating was accomplished by simply

blocking one of the recording beams and using the other as the probe beam.

The diffraction efficiency was calculated as the percentage of the total power

emerging from the crystal diffracted into the direction of the blocked beam. As

can be seen in the figure, the diffraction efficiency reaches its maximum, over

92%, at L � 20mm. Experiments performed in other nominally-undoped bar-

ium titanate samples and with different experimental parameters showed simi-

lar results: The maximum diffraction efficiency was always obtained using large

grating spacings, between 20 and 25mm.

It was also found that the lifetimes of these gratings depend strongly on the

grating spacing, where by lifetime we do not mean the time it takes for a

revealed grating to decay; instead, we mean the time it takes for a fixed but

dormant grating to decay under illumination. To measure this decay rate, the

gratings were fixed and revealed with the process described above, and the only

parameter that was varied was the time between the end of the fixing and

revealing processes, which we shall call the latency time. During this time, the

grating was illuminated by one of the recording beams. The lifetime for each

grating spacing was determined by fitting the revealed diffraction efficiency h(t)
to an exponential decay, h(t) ¼ h0 exp (� t=t). Figure 13.8 shows the fitted

values of the decay constant t vs. the grating spacing; the solid line in the figure

is an empirical fit to t(L) ¼ t0 exp (L=L0). Assuming this empirical formula to

be valid at L � 20mm, the expected lifetime of the fixed gratings even under

intense illumination would be of the order of days. It is clear that the grating

fixing process in barium titanate requires very large periodicities, of the order of

20mm or more, for both the diffraction efficiency and the lifetime to be large.

Similar results were obtained with Sr0:75Ba0:25Nb2O6 using essentially the

same technique; the diffraction efficiency of the revealed grating and the decay
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Figure 13.8. Decay time constant of the fixed gratings vs. grating periodicity. Solid

line: Empirical fit to t(L) ¼ t0 exp (L=L0), where L0 ¼ 1:7mm and t0 ¼ 8:7 s. Power per
beam: 60 mW.
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constant of the fixed grating increased with grating period [5, 6, 7]. However, in

contrast with BaTiO3, it was not necessary to reveal the fixed grating to obtain

a beam diffracted by the fixed grating, although the diffraction efficiency of this

grating was low, of the order of 1%.

We have not specified exactly what configuration domain walls take to com-

pensate the space-charge distribution and several models have been proposed.

One model invokes local switching of Ps wherever the total field exceeds the

coercive field [1, 2]; however, for reasons discussed above, this model is unsatis-

factory. A related model proposes that many small, ellipsoidally shaped do-

mains, of the order of microns or smaller, are formed throughout the bulk of the

material by the space-charge field produced by the interference pattern, without

requiring an additional electric field. This model stems from evidence of fixing in

Sr0:75Ba0:25Nb2O6 in which no external field was applied; all that was required

was to dramatically increase the time and light intensity used to record the

grating in the sample [9, 10, 11]. Another model proposes that needle-shaped

domains nucleated at one electrode propagate toward the other electrode until

they are stopped by the space-charge distribution [12]. Finally, deformation of

the domain walls by the space-charge field such that this field is screened has also

been proposed as the source of the compensating bound charge [13, 34]. Figure

13.9 gives a graphic explanation of this proposed mechanism. In 13.9a, there is

no free charge and the wall separating two domains is parallel toPs. In 13.9b, the

light interference pattern gives rise to free charge (circles). In 13.9c, the field

produced by the free charges warps the domain wall, producing a bound surface

charge density (squares) given by (13.4) which electrically compensates the free

charge. This rippled domain model implies that it may be possible to record and

simultaneously compensate an optically induced space-charge pattern in a ferro-

electric crystal by depoling it before the grating is created. This is indeed possible,

as was shown in [13].

Ps Ps Ps Ps Ps Ps

-

-

+
+ α

-

-

+
+
-
-

+

+

(a) (b) (c)

n n

Figure 13.9. Space-charge screening by domain wall deformation. (a) The wall separ-

ating two domains is initially parallel to Ps; (b) The light interference pattern redistrib-

utes free charge among the trap sites (circles); (c) The field produced by the free charges

warps the domain wall, in turn creating a bound charge surface density (squares) that

electrically compensates the free charge.
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The experimental procedure was the following. First a top-seeded solution-

grown BaTiO3 sample was poled and then depoled to a certain degree by

applying electric fields along its c-axis. A grating was then recorded in this

multi-domain crystal by two interfering light beams. Since the grating spacing

in these experiments was quite large, an auxiliary electric field was applied

during the recording stage to enhance the charge transport; the magnitude Eaux

of this field was low enough to avoid any further depoling (verified by the

absence of current during this stage). After some time tR (recording time),

the field was turned off and one of the beams was blocked. The diffraction

of the other beam off the grating decayed in a few seconds. The crystal could be

illuminated for a long time during the latency period and the diffracted beam

would not reappear. However, if the crystal was repoled by applying a field in

the original poling direction the diffracted beam reappeared, indicating that a

latent grating that could not be erased by light had been revealed. The crystal

could be illuminated with an intense beam for hours during the latency period

without significantly affecting the diffraction efficiency of the grating revealed

afterward. An example of the time development of the applied field and the

detected current is given in Fig. 13.10.

The diffraction efficiency of the revealed grating depended on the recording

time and the grating spacing, as shown in Fig. 13.11. For comparison, the

diffraction efficiencies of gratings recorded in a single-domain crystal (with-

out fixing) are also shown. Notice that the diffraction efficiency is about

20 times higher when the grating is recorded in a multidomain crystal and

then revealed.

The explanation given in [13] for these results is as follows. The light inter-

ference pattern that has the form I ¼ I0(1þ cos kgz) produces a spatially
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Figure 13.10. Fixing in depoled barium titanate: Applied field and detected current vs.

time. The icons on top of the graph depict the status of the recording beams. (Adapted

from [13].)
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periodic excitation of charge carriers located in trap sites. These charges

migrate through drift and diffusion currents to other places in the crystal and

then recombine into other trap sites, producing a nonuniform charge density

distribution rfree. This charge density is related to the space-charge field Esc that

it produces and to the spontaneous polarization by

rfree ¼ e0e= � Esc þ = � Ps (13:11)

where e is the dielectric constant of the medium. In a single-domain crystal, Ps

is constant so = � Ps ¼ 0. In multidomain crystals, Ps changes discontinuously

across domain walls producing a bound charge density given by (13.4). The

orientation of the walls depends on the domain structure configuration the

crystal acquires after partial switching and on the interaction between the

space-charge field and the domain structure. Suppose that the domain walls

existing before the space-charge grating is recorded have the ability to distort

themselves such that induced bound charge locally compensates the free charge

as it develops during the recording process. Let Esc(kg), rfree(kg), and rb(kg) be
the amplitudes of the Fourier components of Esc, rfree and rb that have the

spatial periodicity of the light pattern. Although the bound charge located at

the domain walls is actually a surface charge density, we assume that it can be

described macroscopically by a volume charge density given by (13.5). We
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Figure 13.11. Fixing in depoled barium titanate: Diffraction efficiency of the revealed

grating vs. recording time for three different grating spacings. The inferred value of the

amplitude of the space-charge field is shown on the right-hand axis. l ¼ 488 nm, o-

polarized; intensity per beam: 2.3 W/cm2; auxiliary field during the recording stage:

600 V/cm. (Adapted from [13].)
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assume that at steady-state the bound charge spatially follows the free charge to

a certain extent, so that in a multidomain crystal,

rrecordingb (kg) ¼ �grrecordingfree (kg): (13:12)

We have added the superscript ‘‘recording’’ to specify that rrecordingb and

rrecordingfree refer to the charge densities during the recording stage. The propor-

tionality constant g describes the degree of the compensation and therefore

must satisfy 0 < g < 1, i.e., we assume that the bound charge cannot overcom-

pensate the free charge. From (13.5), (13.11) and (13.12), during the recording

stage rfree(kg) and Esc(kg) are related by

rrecordingfree (kg) ¼ kgee0
1� g

Erecording
sc (kg): (13:13)

Since the grating decays very slowly during the latency time, the interaction

between rfree(kg) and rb(kg) must be strong enough such that any optical re-

excitation of charge is followed by the trapping of another charge at nearly the

same location. Therefore when the crystal is illuminated by homogeneous

illumination during the latency period, the fraction g of rfree(kg) that was

compensated is not erased. When the crystal is repoled, the compensating

rb(kg) provided by the domain walls is removed, leaving behind the previously

compensated free charge density. The revealed charge density is then given by

rrevealedfree (kg) ¼ grrecordingfree (kg), (13:14)

so that from (13.5), (13.11), (13.13), and (13.14), the final revealed space-charge

field responsible for the revealed diffraction efficiency is

Erevealed
sc (kg) ¼ g

1� g
Erecording
sc (kg), (13:15)

i.e., the revealing process enhances (or diminishes) the space-charge field cre-

ated during the recording stage by g=(1� g).
We compare the revealed space-charge field achieved in a multidomain

crystal with that obtained in a single-domain crystal. The steady-state is

reached once the drift current produced by the space-charge field balances the

drift current induced by the externally applied field Eaux plus the diffusion

current. For unity modulation of the interference pattern, if the density of

charges and trap sites is large enough such that at steady-state Esc(kg) is not

limited by its finite value, then according to the standard band conduction

model of photorefractives [36]

Erecording
sc (kg) ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT

e
kg

� �2

þ(Eaux)
2

s

: (13:16)

In (13.16), the contribution from the photogalvanic effect has been neglected.

Notice that Esc(kg) does not depend on the value of the dielectric constant nor
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on any other form of field screening, such as that provided by the bound

charge. This is because the electric field, not the electric displacement, is the

source of the drift currents. Therefore the steady-state value of Esc(kg) does not

depend on whether the grating is recorded in a single or multidomain crystal.

From this we conclude that the revealed space-charge field of a grating

recorded in a multidomain crystal is g=(1� g) times that of a grating recorded

in a single domain crystal. For the data shown in Fig. 13.11, the steady-state

field amplification is around 5, so that g � 0:83.
We now consider how the domain structure responds to the light-induced

charge distribution. On the basis of experiments performed with BaTiO3 using

different techniques [37, 38, 39, 40], it can be assumed that a partially depoled

crystal contains predominantly many needle-like domains with a square or

rectangular cross-section, with a width r0 of the order of 10mm; most of these

domains start at one electrode and reach the opposite one, and only a few end in

the bulk. From (13.4), the walls between neighboring domains have a bound

surface charge density given by

sb ¼ 2Ps sina: (13:17)

It is this surface charge density which, averaged over a volume enclosing

many domain walls, provides the compensating charge rb(kg). Let us assume

that the space-charge field modulates the width r of the domains so that

r(z) ¼ r0 þ Dr sin (kgz). For kgDr << 1, the surface charge density at the do-

main walls is given by

sb(z) ¼ 2PskgDr cos (kgz): (13:18)

Assuming the crystal is completely depoled, i.e., g � 0, from (13.12), (13.13)

and (13.16), it can be shown that the bending of the domain walls necessary to

provide the bound charge for the fixing process is given by

Dr

r0
� e0eEaux

2Ps

g

1� g
: (13:19)

Using e ¼ 135, Ps ¼ 0:26C=m2
,Eaux ¼ 500V=cm, and g ¼ 0:8 we obtain

Dr=r0 � 5� 10�4. For an average domain width r0 � 10mm [38], the ripple of

the wall is of the order of 5 nm; only a small ripple of the domain walls is

needed to fix the gratings.

13.4 Fidelity of Fixed Holograms

In order for domain fixing to be of any practical use, it is necessary to be able to

fix photorefractive holograms, not just plane wave gratings. It is not obvious if

this technique can be used to fix holograms of complex wavefronts, since the

size and distribution of the domains may greatly affect the quality of the

reconstructed wavefront. Photorefractive holograms of complex wavefronts
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have been fixed in Sr0:75Ba0:25Nb2O6 [5, 8, 9, 14, 15]; furthermore, angular-

multiplexing of over 1000 holograms fixed in depoled Sr0:75Ba0:25Nb2O6 has

been reported [14, 15]. As far as we know, the fidelity the reconstructed wave-

fronts diffracted by fixed gratings has only been studied in BaTiO3 [41].

Fig. 13.12 shows the results of holograms fixed in depoled BaTiO3. An

image-plane. (1:1 amplification) hologram was recorded in a depoled BaTiO3

sample. Fig. 13.12a shows the image of a resolution chart focused into the

barium titanate sample obtained by imaging the object beam, i.e., no holo-

grams are involved. The resolution of this picture, about 4mm, was limited by

the imaging lens employed and by the imperfect homogeneity of the sample.

Fig. 13.12b shows an image of the same portion of the resolution chart as in (a),

but obtained from the reconstruction of the object beam produced by a non-

fixed photorefractive hologram. The resolution is essentially the same as in (a),

indicating that the holographic recording process by itself did not significantly

degrade the resolution. Fig. 13.12c shows the image obtained from the fixed-

and-then-revealed hologram. Notice that the resolution is slightly degraded,

especially for the horizontal lines: The minimum thickness of the resolvable

vertical lines (resolution along the c-axis) is about 8mm, whereas for horizontal

lines (resolution perpendicular to the c-axis), it is about 18mm. The loss of

horizontal resolution is clearly due to striations along the c-axis. These hori-

zontal striations are due to the long 1808 domains, which extend throughout the

whole region imaged. The average thickness of these striations is in very good

agreement with the average thickness of 1808 domains obtained from other

experiments. Head-to-head domains would be revealed by vertical striations,

which do not appear in 13.12c. These experiments show that holograms of

complex wavefronts can be fixed in BaTiO3 with a fidelity close to what can be

obtained with a perishable photorefractive grating. In addition, the absence of

vertical striations give additional support to the rippled-domain wall model

ferroelectric domain fixing, at least for BaTiO3.

(a) (b) (c)
0.5 mm 0.5 mm 0.5 mm

Figure 13.12. Fidelity of holograms fixed in depoled BaTiO3. (a) Image of the object

beam; (b) image of the reconstructed object beam produced by a perishable (nonfixed)

hologram; (c) image of the reconstructed object beam produced by the revealed holo-

gram. Average grating spacing: 7:8mm. (Adapted from [41].)
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domain fixing 402, 413

domain walls 400, 409, 413

drift 29

drift length 56

dynamic grating 7, 102

dynamic holograms 1, 204

effective amplitude absorption

constants 96

effective dielectric constant 84, 86, 104,

110, 112, 205

effective electro-optical coefficient 84,

112

effective mobility 216

effective third-rank electro-optic

tensor 89

efficient diffraction without

developing 383

Einstein summation convention 86

elastic stiffness tensor 86

electric displacement vector 86

electrical fixing 397, 398

electro-optic coefficients 267, 299

electro-optic effect 30

electro-optic tensor 89

electrochemical reduction 303

electron density 205

electron tunneling 231

electron-hole competition factor 66

electronic feedbacks 163

energy density 12

energy transfer 2

excitation time 203

exponential gain 103, 107

feedback condition 164, 165, 166, 195

feedback equation 168, 169

feedback loop 168

feedback loop response time 169

feedback setup 168

feedback signal 171

feedback-controlled beam coupling 163,

167

feedback-controlled grating

recording 170

feedback-controlled steady states 177

Fermi function 25

ferroelectric domains 398

ferroelectrics 122

fiber Bragg gratings 308

fidelity 413, 414

filamentation 258

final developed ratio 382

fixed gratings 414

fixing after recording 378

fixing in photorefractive waveguides 388

flat-top hat beam 73

four-wave mixing 1

Fourier control is 281

Fourier transform 34

frame rate 223, 223

Franz-Keldysh effect 204

free charge limiting field 211

free-carrier absorption 28

gain media 93

gain-length product 106

Gaussian 77

Gaussian beam 8, 10

Gaussian beams 70

general equations 372

generation of subharmonics 61

Ginzburg-Landau 273

graded-index waveguide 291

grating anisotropy 100

grating coupler 292

grating enhancement 57

grating instabilities 61
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grating 34

grating period 12

Helmholtz equation 34

hexagonal structure 260

high-contrast effects 145

hole density 205

hologram lifetime 231, 377

holographic memory 223

holographic sensitivity 298

hysteresis loop 400

ideal conditions 170

ideal feedback 180

incoherent-to-coherent conversion 204,

221

inertial feedback 181

inertial feedback conditions 166

integrated optics 290

interband absorption 26

interband photorefractive effect 203

interference tensor 13

intrinsic levels 203

ion implantation 302

ionic conductivity 231

isotropic wave mixing 299

JFT correlator 223

K1�xLixTa1�yNbyO3 398

Kerr medium 255

KNbO3 90, 104, 111, 113, 206, 212, 213,

260, 398

Kogelnik [1] 91

Kogelnik’s expression 99, 100

Kramers–Kronig relation 27

large-angle electro-optical switch/

deflector 392

level population 23

lifetime of the holograms 244

light domains 190

light fanning 113

light induced domain switching 225

light induced waveguides 225

light intensities 107

light-matter interaction 31

linear electro-optic effect 88

linear excitation 131

linear polarization 15

linear stability analysis 269

liquid crystals 100

LiTaO3 212

lithium niobate 297

lithium tantalate (LiTaO3) 217, 301

local response 172

local thermal fixing 382

localized optical beams 67

long-term fixing 4

longitudinal geometry 212

low-frequency peculiarities 145

material excitation 19, 21

maximization of the diffraction

efficiency 167

Maxwell dielectric time 90, 203

mechanical deformation fields 84

Mg doped LiTaO3 217

mixed transmission gratings 95

mobile charge carriers 85

mobility 84

mobility tensor 84, 90, 111

modified elasto-optic tensor 89

modified intensity ralio 107

modulation depth 53

modulation technique 168

modulational instability 256

molecular beam epitaxy 295

multiple active centers 65

multiple pattern region 274

multiple quantum-well 204

Nb4þLi defects as electron donors

379
near-stoichiometric LiTaO3 217

nondestructive readout 231

nonlinear optics 1

nonlinear stability analysis 272

nonlocal response 172, 179

nonreciprocal behavior of

light-diffraction 96

nucleation 400

one-photon processes 204

optical correlation 204, 223

optical damage 289, 298, 301
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optical indicatrix 88, 92

optical interconnections 307

optical path difference 32

optical tunneling 302

optical waveguides 289

oxide crystals 289

parallel processing 204

parametric instability 137

parametric processes 63

pattern control 253

pattern formation 253

periodic state 166, 180

permittivity 9

phase conjugate 2

phase coupling factor 103

phase fluctuations 163

phase grating 92

phase-matching conditions 135

photoconductivity 206, 218, 298

photoexcitation 84, 203

photoexcitation anisotropy 104, 113

photoexcitation constant 205

photoexcitation tensor 107

photogalvanic effect 104, 217

photorefractive effects 1

photorefractive materials 119

photorefractive nonlinearity 43

photorefractive space-charge electric

field 85

photovoltaic current 299

photovoltaic drift 48

photovoltaic effect 300, 373

photovoltaic length 57

photovoltaic solitons

physical model for

thermal fixing 371

piezoelectric stress tensor 86

planar waveguide 291

plane hologram 92

Pockels electro-optic coefficients 46

polarization 11

polarization conversion 300

polarons 237

polymer-dispersed liquid crystals 100

population gratings 20

potassium niobate 213, 304

Poynting vector 8, 94, 105

prism coupler 291

proton exchange 295, 296

pulsed lasers 1

pulses 10

pump depletion 106

pump wave amplitude 95

pyroelectric 231

pyroelectric field 241

quality factor 120

quantum efficiency 85

quantum-confined Stark effect 204

rate equations 47

recombination fields 207

recombination time 56

reconfigurable optical interconnects

226

recording at high temperature 375

reflection filters 308

reflection gratings 100, 109, 226

reflection volume grating 33, 36

refractive index 91

refractive index change 292

refractive index profiles 294

resolution 221

resonant response 179

resonant wave effects 119

response speed 203

response time 303

rippled domain 409

rippled-domain wall 414

rocking curve 213

Sagnac interferometer 309

Sawyer-Tower 400

Sawyer-Tower circuit 399

SBN 259

scalar coupling constants 94

scalar effective electro-optic

coefficient 90, 94

scaling relations 183

screening nonlinearity

screening solitons 72

second harmonic generation 301

self-consistency 290

self-focusing 225

self-organizing phenomena 254

semiconductor 24, 204

separatrix 176
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shallow levels 231

shallow trap 217

sillenites 307

singularities 76

slowly varying envelope amplitude

approximation 255

Sn2P2S6, (SPS) 212, 219

soft proton-exchanged (SPE) LiNbO3

guides 388

soliton-induced waveguiding

space charge field 29, 48, 103, 107

space-charge field amplitude 89

space-charge waves 64, 119

spatial coherenc 18

spatial light modulator 223

spatial solitons 4

spatio-temporal structures 253

spontaneous polarization Ps 397, 398, 402

sputtering 295

Sr0:61Ba0:39Nb2O6 398, 408, 409, 414,

steady state 175

stop band 101

strain tensor 86

strain-optic effect 306

strontium-barium niobate 305

subharmonic generation 119

surface charge density 400

symmetry breaking

bifurcation 257

telecommunication applications 231

temporal coherence 16

tensor gratings 22

thermal fixing 309, 369, 370

thick gratings 33, 91

Ti:LiNbO3 waveguides 392

thin dynamic hologram 223

thin gratings 31

third-rank effective electro-optic

tensor 94

three-step method 372, 378

three-valence model 235

tin hypothiodiphosphate 219

titanium diffusion 295

transmission gratings 94, 106

transmission volume grating 33, 36

transverse effects 254

transverse geometry 212

transverse instabilities 253

transverse nonlinear optics 255

trap grating 213

trap-free model 205

trap-limited field 104

tunable Bragg filters 226

two-beam interference 11

two-center model 234

two-level models 234

two-photon processes 204

two-photon recording 370

two-step excitation 231

two-step method 372

two-step recording 4

two-wave mixing 102, 258, 260

two-wave mixing gain 214

two-wavelength technique 370

unclamped (free) dielectric tensor 88

unclamped electro-optic tensor 112

undepleted pump approximation 103

usefully dissipated energy 85

‘‘usefully dissipated energy’’ 85

vapor-phase proton exchange 297

walkoff angle 99

wave equation 91

wave-mixing 299

waveguide devices 392

waveguides 204

wavelength division multiplexing 308

wavelength filters 101

wavelength-demultiplexer 247

wavevectors 84

wavevector diagram 93

wavevector mismatch 94

Wiener–Khintchine theorem 17

WKB method 294

writing beams 14
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