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Editorial

Multiphase flow in porous media is an extremely important process in
a number of industrial and environmental applications, at various spatial
and temporal scales. Thus, it is necessary to identify and understand
multiphase flow and reactive transport processes at microscopic scale and
to describe their manifestation at the macroscopic level (core or field
scale). Current description of macroscopic multiphase flow behavior is
based on an empirical extension of Darcy’s law supplemented with capil-
lary pressure-saturation-relative permeability relationships. However, these
empirical models are not always sufficient to account fully for the physics
of the flow, especially at scales larger than laboratory and in heterogeneous
porous media. An improved description of physical processes and math-
ematical modeling of multiphase flow in porous media at various scales
was the scope a workshop held at the Delft University of Technology,
Delft, The Netherlands, 23–25 June, 2003. The workshop was sponsored
by the European Science Foundation (ESF). This book contains a selec-
tion of papers presented at the workshop. They were all subject to a full
peer-review process. A subset of these papers has been published in a spe-
cial issue of the journal Transport in Porous Media (2005, Vol. 58, nos.
1–2).

The focus of this book is on the study of multiphase flow processes as
they are manifested at various scales and on how the physical description
at one scale can be used to obtain a physical description at a higher scale.
Thus, some papers start at the pore scale and, mostly through pore-scale
network modeling, obtain an average description of multiphase flow at
the (laboratory or) core scale. It is found that, as a result of this upscal-
ing, local-equilibrium processes may require a non-equilibrium description
at higher scales. Some other papers start at the core scale where the
medium is highly heterogeneous. Then, by means of upscaling techniques,
an equivalent homogeneous description of the medium is obtained. A short
description of the papers is given below.

Dahle, Celia, and Hassanizadeh present the simplest form of a pore-scale
model, namely a bundle of tubes model. Despite their extremely simple
nature, these models are able to mimic the major features of a porous
medium. In fact, due to their simple construction, it is possible to reveal
subscale mechanisms that are often obscured in more complex models.
They use their model to demonstrate the pore-scale process that underlies
dynamic capillary pressure effects.
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Valvatne, Piri, Lopez and Blunt employ static pore-scale network models
to obtain hydraulic properties relevant to single, two- and three-phase flow
for a variety of rocks. The pore space is represented by a topologically
disordered lattice of pores connected by throats that have angular cross
sections. They consider single-phase flow of non-Newtonian as well as
Newtonian fluids. They show that it is possible to use easily acquired data
to estimate difficult-to-measure properties and to predict trends in data for
different rock types or displacement sequences.

The choice of the geometry of the pore space in a pore-scale net-
work model is very critical to the outcome of the model. In the paper
by Kainourgiakis, Kikkinides, Galani, Charlambopolous, and Stubos, a pro-
cedure is developed for the reconstruction of the porous structure and the
study of transport properties of the porous medium. The disordered struc-
ture of porous media, such as random sphere packing, Vycor glass, and
North Sea chalk, is represented by three-dimensional binary images. Trans-
port properties such as Kadusen diffusivity, molecular diffusivity, and per-
meability are determined through virtual (computational) experiments.

The pore-scale network model of Kainourgiakis et al. is employed by
Yiotis, Stubos, Boudouvis, Tsimpanogiannis, and Yortsos to study drying
processes in porous media. These include mass transfer by advection and
diffusion in the gas phase, viscous flow in the liquid and gas phases, and
capillary effects. Effects of films on the drying rates and phase distribution
patterns are studied and it is shown that film flow is a major transport
mechanism in the drying of porous materials.

Panfilov and Panfilova also start with a pore-scale description of two-
phase flow, based on Washburn equation for flow in a tube. Subsequently,
through a conceptual upscaling of the pore-scale equation, they develop a
new continuum description of two-phase. In this formulation, in addition
to the two fluid phases, a third continuum, representing the meniscus and
called the M-continuum, is introduced. The properties of the M-continuum
and its governing equations are obtained from the pore-scale description.
The new model is analyzed for the case of one-dimensional flow. The
remaining papers in this book regard upscaling from core scale and higher.

A procedure for upscaling dynamic two-phase flow in porous media
is discussed by Manthey, Hassanizadeh, and Helmig. Starting with the
Darcian description of two-phase flow in a (heterogeneous) porous medium,
they perform fine-scale simulations and obtain macro-scale effective prop-
erties through averaging of numerical results. They focus on the study
of an extended capillary pressure-saturation relationship that accounts for
dynamic effects. They determine the value of the dynamic capillary pressure
coefficient at various scales. They investigate the influence of averaging
domain size, boundary conditions, and soil parameters on the dynamic
coefficient.
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The dynamic capillary pressure effect is also the focus of the paper by
Nieber, Dautov, Egorov, and Sheshukov. They analyze a few alternative for-
mulations of unsaturated flow that account for dynamic capillary pressure.
Each of the alternative models is analyzed for flow characteristics under
gravity-dominated conditions by using a traveling wave transformation for
the model equations. It is shown that finger flow that has been observed
during infiltration of water into a (partially) dry zone cannot be modeled
by the classical Richard’s equation. The introduction of dynamic effects,
however, may result in unstable finger flow under certain conditions.

Nonequilibrium (dynamic) effects are also investigated in the paper by
Tavassoli, Zimmerman, and, Blunt. They study counter-current imbibition,
where the flow of a strongly wetting phase causes spontaneous flow of the
nonwetting phase in the opposite direction. They employ an approximate
analytical approach to derive an expression for a saturation profile for the
case of non-negligible viscosity of the nonwetting phase. Their approach is
particularly applicable to waterflooding of hydrocarbon reservoirs, or the
displacement of NAPL by water.

In the paper by Pickup, Stephen, Ma, Zhang and Clark, a multistage
upscaling approach is pursued. They recognize the fact that reservoirs are
composed of a variety of rock types with heterogeneities at a number
of distinct length scales. Thus, in order to upscale the effects of these
heterogeneities, one may require a series of stages of upscaling, to go
from small-scales (mm or cm) to field scale. They focus on the effects of
steady-state upscaling for viscosity-dominated (water) flooding operations.

Gielen, Hassanizadeh, Leijnse, and Nordhaug present a dynamic pore-scale
network model of two-phase flow, consisting of a three-dimensional net-
work of tubes (pore throats) and spheres (pore bodies). The flow of two
immiscible phases and displacement of fluid–fluid interface in the network
is determined as a function of time using the Poiseuille flow equation.
They employ their model to study dynamic effects in capillary pressure-
saturation relationships and determine the value of the dynamic capillary
pressure coefficient. As expected, they find a value that is one to two orders
of magnitude larger than the value determined by Dahle et al. for a much
simpler network model.

Eichel, Helmig, Neuweiler, and Cirpka present an upscaling method for
two-phase in a heterogeneous porous medium. The approach is based on
a percolation model and volume averaging method. Classical equations
of two-phase flow are assumed to hold at the small (grid) scale. As a
result of upscaling, the medium is replaced by an equivalent homogeneous
porous medium. Effective properties are obtained through averaging results
of fine-scale numerical simulations of the heterogeneous porous medium.
They apply their upscaling technique to experimental data of a DNAPL
infiltration experiment in a sand box with artificial sand lenses.
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Bundle-of-Tubes Model for Calculating
Dynamic Effects in the Capillary-Pressure-
Saturation Relationship
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Abstract. Traditional two-phase flow models use an algebraic relationship between cap-
illary pressure and saturation. This relationship is based on measurements made under
static conditions. However, this static relationship is then used to model dynamic condi-
tions, and evidence suggests that the assumption of equilibrium between capillary pressure
and saturation may not be be justified. Extended capillary pressure–saturation relation-
ships have been proposed that include an additional term accounting for dynamic effects.
In the present work we study some of the underlying pore-scale physical mechanisms that
give rise to this so-called dynamic effect. The study is carried out with the aid of a sim-
ple bundle-of-tubes model wherein the pore space of a porous medium is represented by
a set of parallel tubes. We perform virtual two-phase flow experiments in which a wetting
fluid is displaced by a non-wetting fluid. The dynamics of fluid–fluid interfaces are taken
into account. From these experiments, we extract information about the overall system
dynamics, and determine coefficients that are relevant to the dynamic capillary pressure
description. We find dynamic coefficients in the range of 102 −103 kg m−1 s−1, which is in
the lower range of experimental observations. We then analyze certain behavior of the sys-
tem in terms of dimensionless groups, and we observe scale dependency in the dynamic
coefficient. Based on these results, we then speculate about possible scale effects and the
significance of the dynamic term.

Key words: two-phase flow in porous media, dynamic capillary pressure, pore-scale net-
work models, bundle-of-tubes, volume averaging

1. Introduction

Traditional equations that describe two-phase flow in porous media are
based on conservation equations which are coupled to material-dependent

∗Author for correspondence: e-mail: reshd@mi.uib.no
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constitutive equations. One of the traditional constitutive equations is an
algebraic relationship between capillary pressure, PcPP (the difference between
equilibrium phase pressures) and fluid phase saturation, SαSS (the fraction
of void space occupied by the fluid phase α). While this constitutive rela-
tionship is typically highly complex, including nonlinearity and hysteresis
as well as residual phase saturations, it is nonetheless algebraic. The alge-
braic nature means that a change in one of the variables implies an instan-
taneous change in the other, such that the relationship between PcPP and S

is an equilibrium relationship. For an equilibrium relationship to be appro-
priate, the time scale of any dynamics associated with the processes that
govern the relationship must be fast relative to the dynamics associated
with other system processes. Time scales to reach equilibrium in laboratory
experiments (Stephens, 1995) make this assumption questionable.

Recently, the relationship between PcPP and S has been generalized,
based on thermodynamic arguments by Gray and Hassanizadeh (see Has-
sanizadeh and Gray, 1990, 1993a , b; Gray and Hassanizadeh, 1991a , b).
The extended relationship reads:

(pnw −pw)−PcPP (Sw)=f

(
Sw,

∂Sw

∂t

)
, (1)

where f denotes an unspecified function depending on saturation and its
rate of change. Their contention is that this condition includes dynamic
effects and is valid under unsteady state and nonequilibrium conditions.
This kind of relationship has previously been considered by Stauffer (1978),
and similar results occur in the classic book by Barenblatt et al. (1990), see
also Silin and Patzek (2004). Dynamic effects may also occur as a conse-
quence of upscaling of effective parameters in two-phase flow, see Bourgeat
and Panfilov (1998). Recently, Hassanizadeh et al. (2002) analyzed experi-
mental data sets from the literature and showed that dynamic effects are
present in standard laboratory experiments to determine PcPP as a function
of S, although most laboratory experiments are designed to avoid dynamic
effects by using small pressure increments. Hassanizadeh et al. (2002) and
Dahle et al. (2002) also showed that this new relationship can easily be
included in numerical simulations, and that effects on problems involving
infiltrating fluid fronts could be significant, if the dynamic coefficient exhib-
its scale dependence.

In the present work, we consider some of the underlying physical mech-
anisms that give rise to this so-called dynamic effect. To do this, we ana-
lyze a simple bundle-of-tubes model that represents the pore space of a
porous medium. This model is analogous to the recent model of Bart-
ley and Ruth (1999, 2001), who used a bundle-of-tubes model to analyze
dynamic effects in relative permeability, Bartley and Ruth (2001) also pre-
sented initial calculations on dynamic effects on the PcPP − S relationship.
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Figure 1. Bundle-of-tubes model.

In the model we present herein, we use a bundle-of-tubes model to ana-
lyze system behavior in the context of Figure 1. We perform virtual two-
phase displacement experiments and mathematically track the dynamics of
each fluid–fluid interface in two-fluid displacement experiments. From this
we extract information about the overall system dynamics, and determine
coefficients that are relevant to the dynamic description. We analyze certain
behavior of the system in terms of dimensionless groups. Based on those
results, we then speculate about possible scale effects and the significance
of the dynamic term.

The paper is organized as follows. In the next section, we present back-
ground equations that are relevant to the derivations and calculations that
follow. In the following section, we present the bundle-of-tubes model that
is used to calculate system dynamics. We then describe the numerical exper-
iments performed, and proceed to investigate certain scaling dependencies
on the dynamic term. We end with a summary of the main findings and a
discussion section.

2. Background Equations

The new relationship between PcPP and S introduces a so-called dynamic cap-
illary pressure, and hypothesizes that the rate of change of saturation is a
function of the difference between the dynamic capillary pressure and the
static, or equilibrium, capillary pressure. Assuming that a linear relation-
ship holds, one will have, (Hassanizadeh and Gray, 1990):

−τ
∂Sw

∂t
=P dyn

cP −P stat
cP (Sw). (2)

In Equation (2), P stat
cP is the static or equilibrium capillary pressure, taken

to be the capillary pressure that is traditionally measured in equilibrium
pressure cell tests, see for example Stephens (1995); τ is a coefficient that
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we will call the ‘dynamic coefficient’; and P
dyn
cPP is the dynamic capillary

pressure, defined as the difference between the volume-averaged pressure in
the nonwetting phase and that in the wetting phase, viz.

P dyn
cP =〈pnw〉−〈pw〉, (3)

where the angular brackets imply volume averaging. Notice that the aver-
aging procedure introduces a length (and time) scale, so that the definition
of (3) will be linked to these scales of averaging. The dynamic coefficient
may still be a function of saturation as well as fluids and solid properties.
Stauffer (1978) has suggested the following scaling of the dynamic coeffi-
cient:

τ = φµ

k

α

λ

(pe

ρg

)2
, (4)

where k is the intrinsic permeability, µ and ρ are the viscosity and density
of the (wetting) fluid, g is the gravity constant, α=0.1 and λ, pe are coeffi-
cients in the Brook–Corey formula.

Ideally, in order to investigate the validity of Equations (2) and (4), one
should perform a large number of experiments, in which fluid pressures
and saturation should be measured under a number of different conditions
and for a variety of soil and fluid combinations. That, however, would be
extremely costly and time consuming. At these early stages of research on
dynamic capillary effects, it would be useful to carry out some theoretical
work in order to gain insight into the various aspects of this phenomenon.
Thus, in this paper, we try to gain insight into the underlying physics of
Equation (2) and the effect of various soil and fluid properties on the value
of τ . We carry out this work by studying fluid–fluid displacement at the
pore scale within a simple pore-scale network model, composed of a bun-
dle of capillary tubes. A schematic of the system is shown in Figure 1.

Consider a single capillary tube, with one end of the tube connected to
a non-wetting-phase reservoir and the other end connected to a wetting-
phase reservoir. The corresponding reservoir pressures are denoted by P nw

resPP

and P w
resPP , respectively. Assume that both reservoir pressures may be con-

trolled, and are set so that their difference is given by �P =P nw
resPP −P w

resPP . If
the tube has radius r, and is initially filled with wetting fluid, then non-
wetting fluid will invade the tube if the pressure difference exceeds the dis-
placement pressure given by the Young-Laplace criterion (Dullien, 1992)
�P >2σwn cos θ/r, where σwn denotes interfacial tension between the wet-
ting and non-wetting fluids, and θ is contact angle. Once this occurs, the
fluid movement may be approximated by the Washburn equation (Wash-
burn, 1921):

q =dl/dt =− r2

8µ(l)L¯ (−�P +ρ(l)Lg¯ sin 
+pc(r)). (5)
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In Equation (5), µ̄ and ρ̄ are length-averaged viscosity and density,
respectively, of the fluids within the tube, l = l(t) is the position of the
interface in the tube of length L, 
 is the angle the tube makes with the
vertical, and pc is the local capillary pressure, taken to be equal to the dis-
placement pressure,

pc(r)= 2σwncosθ

r
, (6)

To motivate the use of a bundle-of-tubes model, and to show the con-
nection to the larger (continuum–porous-medium) scale, consider the fol-
lowing simple scaling argument. Assume Equations (5) and (6), applied to
a large collection of pore tubes of different radii, govern the fluid flow
through some portion of a porous medium. Then the analogies between
the small-scale quantities in Equations (5) and (6), and those defined at the
continuum-porous-medium scale, may be identified, under both static and
dynamic conditions, as:

PS :
dl

dt
= − r2

8µ(l)L¯ (−�P +ρ(l)Lg¯ sin 
︸ ︷︷ ︸ + pc)

↓ ↓ ↓
CS : −dSw

dt
= −1

τ
( −P

dyn
cPP + P stat

cP )

Here PS denotes ‘pore scale’ and CS denotes ‘continuum scale’. We see
the direct correspondence between the dynamic displacement and the inter-
face movement, and the associated upscaled versions of average phase pres-
sure evolution and phase saturation changes. In particular, both dl/dt =
0 and dSw/dt = 0 at equilibrium, although the units are different due
to volume averaging. This provides motivation to use a bundle-of-tubes
model to investigate more complex aspects of dynamic phase pressures,
the associated dynamic capillary pressure, and its relationship to saturation
dynamics. For more details on the use of these ideas in conjunction with
pore-scale network models, we refer to Dahle and Celia (1999) and Has-
sanizadeh et al. (2002).

3. Bundle-of-Tubes Model

3.1. volume averaging

One of the main advantages of pore-scale network models is that variables
that are difficult or impossible to measure physically can be computed
directly from the network model. In the present case, we are interested
in calculation of volume-averaged phase pressures, local and averaged cap-
illary pressure, averaged phase saturations, and local interfacial velocities
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and associated changes in average phase saturations. To perform these cal-
culations, we let V denote an averaging volume within the domain of the
pore-scale network model, and introduce the indicator function γ defined
by

γαγγ (x, t)=
{

1 if phase α at (x, t),

0 otherwise. (7)

We then define

VpV =
∫ ∫ ∫

V

∫∫
(γnwγγ +γwγγ )dx, VwVV (t)=

∫ ∫ ∫
V

∫∫
γwγγ (x, t)dx, (8)

and

VnwVV (t)=VpV −VwVV (t). (9)

Here VpV is the total pore space of the averaging volume, φ =VpV /V is the
porosity, and VαVV (t) is the pore space occupied by phase α, with α =w for
the wetting phase and α=nw for the non-wetting phase. Average state vari-
ables like saturation and phase pressures can now be defined as follows:

Sw(t)= VwVV (t)

VpV
=1−SnwS (t), (10)

〈pα〉=
∫∫∫

V

∫∫
pα(x, t)γαγγ (x, t)dx∫∫∫

V

∫∫
γαγγ (x, t)dx

, α =w, nw. (11)

The bracket notation 〈〉 is used to denote average.

3.2. geometry of the bundle-of-tubes model

The bundle-of-tubes pore-scale model represents the pore space by a num-
ber, N , of non-intersecting capillary tubes. Each tube has length L, with
one end of the tube connected to a reservoir of nonwetting fluid and the
other end connected to a reservoir of wetting fluid (see Figure 1). Each
tube is assigned a different radius r, with the radii drawn from a cut-off
log-normal distribution

f (r;σndσ )=

√
2 exp

[
− 1

2

( ln r
rch

σndσ

)2
]

√
πσ 2

ndσσ r

[
erf
(

ln rmax
rch√

2
√√

σ 2
ndσσ

)
− erf

(
ln rmin

rch√
2

√√
σ 2

ndσ

)] . (12)

Here rch and σndσσ are the mean and variance of the parent distribution.
We have conveniently fixed the maximum and minimum radius to be
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rmax =102rch and rmin =10−3rch. Following Dullien (1992), let V =L3 be the
averaging volume of the bundle, and define the average of the pth power of
rk by:

〈rp〉=
N∑

k=1

r
p

k /N. (13)

Then the porosity is given by

φ = VpV

L3
= πN〈r2〉

L2
, or L=

(
πN〈r2〉

φ

)1/2

, (14)

In our computations we will specify the porosity φ and calculate the length
of the tubes L from this formula. From the parallel tubes model, we may
calculate an intrinsic permeability, k, for the bundle as

Q=∑k

πr4
k

8µ
�P
L

= πN〈r4〉
8µ

�P
L

Q= kL2

µ
�P
L

⎫⎬⎫⎫
⎭
⎬⎬

⇒k = φ〈r4〉
8〈r2〉 , (15)

where we have used Equation (14).

3.3. computational algorithm

Assume that the tubes are ordered by decreasing radius such that rk � rk+1,
k = 1,2, . . . ,N − 1, and that they are initially filled by wetting fluid. The
bundle is then drained by gradually increasing the non-wetting reservoir
pressure P nw

resPP , while the wetting reservoir pressure, P w
resPP , is kept fixed, say

equal to zero. The dynamics of each interface is assumed to be governed
by Equation (5). However, in order to save on algebra, the gravity will be
neglected in the following analysis and the two fluids are assumed to have
the same viscosity µ, leading to a pressure distribution within the tube as
shown in Figure 2. Thus, once the non-wetting reservoir pressure exceeds
the displacement pressure of tube k, the location of that interface at any
time t , l = lk(t), is given by,

lk(t)=qk · (t − t0)+ l0
k , (16)

where

qk =− r2
k

8µL
(−�P +pc(rk)), (17)

and l0
k is the position of the interface at time t0. When the interface reaches

the wetting reservoir, lk =L, that interface will be considered to be trapped,
with qk = 0, and the pressure in the corresponding drained tubes is kept
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p
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k

L

pnw – pw

Figure 2. Pressure distribution in a single tube containing two fluids of equal vis-
cosity separated by an interface located at l = lk(t).

constant at P nw
resPP . By averaging we obtain the following expression for the

saturation of the wetting phase at any given time t :

Sw(t)= VwVV (t)

VpV
=1−

∑
k πr2

k lk

VpV
. (18)

The time derivative of this saturation is

dSw

dt
=− 1

VpV

∑
k

πr2
k

dlk

dt
=− 1

VpV

∑
k

πr2
k qk. (19)

By using Equation (11) we obtain the average phase pressures (α =w,nw):

<pα >= 1
VαVV (t)

∑
k

πr2
k lαk (±1

2
�pα

k +P α
resPP ), (20)

where

�pα
k =
{

lαk
L
(−�P +pc(rk)), 0<lαk <L;

0 lαk =L.
(21)

Here lnw
k = lk(t), lwk =L− lk(t) and the plus sign is chosen if α =nw. These

phase pressures are then used in Equation (3) to define the dynamic capil-
lary pressure. At equilibrium the capillary pressure over an interface has to
exactly balance the boundary pressures. This leads to the following defini-
tion of a static capillary pressure:

P stat
cP (Sw)=pc(rk), Sk−1

w ≤Sw ≤Sk
w with Sk

w =1−
∑k−1

i πr2
i L

VpV
. (22)

Note that P stat
cP is defined stepwise as the displacement pressure of suc-

cessive tubes. In Figure 3 dynamic and static capillary-pressure–saturation



BUNDLE-OF-TUBES MODEL FOR CALCULATING DYNAMIC EFFECTS 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

2.2

2.4

2.6

x 10
4 Static and dynamic capillary pressure curves

Saturation – S
w

[–]

P
c

– 
[N

/m
–

2 ]
static P

c
∆ p = 1000 [Pa]
∆ p = 5000 [Pa]

Figure 3. Dynamic and static capillary-pressures–saturation curves.

relationships are compared for two different drainage experiments. The
only difference between these experiments is that different pressure incre-
ments, �pstep, are used to update the nonwetting reservoir pressure P nw

resPP .
Observe that the dynamic capillary-pressure curves in Figure 3 are always

above the static curve, which is consistent with the theory leading to Equa-
tion (2). Another interesting feature of this Figure is the non monotonicity
of the dynamic PcPP -curve for large saturation. Similar behavior has also been
observed in dynamic network simulations, e.g. Hassanizadeh et al. (2002).
To explain the behavior in Figure 3, consider a single tube, k, with a moving
interface at l = lk(t). Since the viscosities of the fluids are equal, the pressure
gradient has to be equal within each fluid phase of the tube, see Figure 2,
and the average phase pressures in that tube are given by:

p̄nw
k =P nw

resPP − lk

2L
(P nw

resPP −pc(rk)), p̄w
k = L− lk

2L
(P nw

resPP −pc(rk)). (23)

Thus, the average phase pressures in a single tube will decrease at the same
rate, whereas the difference is constant in time:

p̄nw
k − p̄w

k = 1
2
(P nw

resPP +pc(rk)). (24)

If we consider the ensemble of tubes, the average phase pressures, Equation
(20), may alternatively be written:
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〈pα〉= 1
VαVV (t)

∑
k

p̄α
k V k

αVV , (25)

where V k
αVV is the volume occupied by phase α in tube k, p̄nw

k =P nw
resPP if the interface

in tube k is trapped at lk =L, and p̄w
k =0 if the interface is trapped at lk =0. At

high saturations we may assume that all the non-wetting fluid is associated with
moving interfaces. Since the flow rate in each tube is constant, all the volumes
associated with the non-wetting fluids are then changing proportional to time
t . It follows that 〈pnw〉 has to be decreasing function of time (i.e. decreasing
saturation), since all the weights, p̄nw

k , are decreasing. At the point in time when
interfaces starts to get trapped at the outflow boundary, the associated weights
will increase, and 〈pnw〉 may start to increase in time. On the other hand, for
high saturations, the volumes occupied by the wetting fluid is mainly associ-
ated with interfaces that are immobile at the inflow boundary giving weights
p̄w

k = 0, so that 〈pw〉 ≈ 0. Thus, P
dyn
cPP ≈〈pnw〉 has to be a decreasing function

with time in this case. By looking at Figure 3, this behavior is clearly apparent
for 0.9<Sw <1 and �pstep =5000Pa. For Sw ≈0.9 a sufficient number of inter-
faces become trapped at the outflow boundary, leading to a change of slope in
the dynamic PcPP −S curve.

4. Numerical Experiments

In the numerical tests reported herein, a set of radii are generated based
on the log-normal distribution, and these radii define one realization of the
pore-scale geometry. For a given realization, the tubes are drained by impo-
sition of step-wise changes in pressure in the nonwetting reservoir. Initially
we choose P nw

resPP = pc(r1) + �pstep and then increase P nw
resPP subsequently by

�pstep each time an equilibrium is reached (meaning that no further inter-
faces will move). In this way the entire bundle is drained, and we can com-
pute P stat

cP − P
dyn
)

cPP and dSw/dt at a given set of target saturations StargetSS ∈
{0.1,0.2, . . . ,0.9}. To obtain a sufficiently large number of data points at
each target saturation we vary the pressure step according to

�pstep =n · δp, n=1,2, . . . ,NstepNN , with δp = (1.1pc(rN)−pc(r1))/NstepNN .

Observe that the largest pressure increment is chosen such that the bundle
will drain in a single step. We have chosen NstepNN =50, and if nothing else is
specified other parameters for the bundle are chosen as listed in Table I.

In Figure 4, P stat
cP −P

dyn
cPP is plotted against dSw/dt at target saturations

0.2, 0.5 and 0.8. Observe that the data points appear to behave linearly
somewhat away from the origin, while close to the origin we have that
P

dyn
cPP → P stat

cP as dSw/dt → 0 in a nonlinear fashion. We may fit a straight
line through the linear portion of the curve, with parameters τ and β

defined as slope and intercept,
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Table I. Parameters for bundle of tube model. Length L of tubes and intrinsic perme-
ability k are calculated from one realization of the bundle using Equations (14) and (15)

Parameter Description Value

N Number of tubes 1000
NstepNN Number of pressure increments 50
rch Mean value pore-size distribution 10−5 [m]
rmin Lower cut-off radius 10−3rch

rmax Upper cut-off radius 102rch

σndσσ Variance of pore-size distribution 0.2
µ Viscosity 0.5×10−2 [kg m−1 s−1]
σwn Surface tension 7.2×10−2 [kg s−2]
θ Contact angle 0 (radians)
φ Porosity 0.3
L Length ∼10−3 [m]
k Permeability ∼4.8×10−12 [m2]
τ Dynamic coefficient ∼274 [kg m−1 s−1]
β Intercept ∼1.5×103 [kg m−1 s−2]

Similarly, the dynamic coefficient τ and the intercept β is calculated from the same real-
ization at saturation Sw =0.5

−τ∂Sw/∂t +β =P dyn
cP −P stat

cP , (26)

where τ >0, β >0 may be functions of Sw and other parameters. Based on
Stauffer’s formula (4) we may conjecture that

τk/φµL2 =�τ(Sw, σndσ ). (27)

Here L should be interpreted as a characteristic length scale associated
with the averaging volume. We also conjecture that

β/σndσ P ch
cP =�β(Sw), (28)

where P ch
cP =2σwncosθ/rch and rch is the mean of the pore size distribution.

To determine values of the parameters τ and β, and to test the
conjectures put forth in Equations (27) and (28), we run a series of numer-
ical experiments and analyze the results. As part of this analysis, we deter-
mine a regression line through the linear part of the plots (see for example
Figure 4). To compute the regression line in a systematic manner, the data
points are first normalized to fall within the interval [−1,0]. A regression
line is then calculated for all data points associated with dSw/dt <−0.3 on
the normalized plot. The regression line is then transformed back to the
original coordinate system. The slope of the line gives the estimate for τ

while the intercept gives β. Note that β �= 0 corresponds to existence of a
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Figure 4. P stat
cP −P dyn

cP versus dSw/dt at saturations Sw =0.2, 0.5, 0.8.

nonlinear region near the origin. The magnitude of β reflects the degree of
this nonlinearity. In all our simulations, the slope of the regression line has
been positive and the curvature of the data points have been such that the
vertical axis intersection has been below the origin.

The proposed conjectures can now be tested by systematically varying
the parameters associated with our bundle-of-tubes model. For each new
value of a specified parameter, a new realization of the bundle is generated
and this bundle is then drained using the NstepNN different pressure steps to
obtain regression lines as in Figure 4. The parameters that are varied are N

(number of tubes), φ (porosity), µ (viscosity), rch (mean pore-size distribu-
tion), σndσ (variance of pore-size distribution), and θ (contact angle). Note
that varying θ is equivalent to varying the surface tension σwn. It is also

Table II. Results from varying different parameters, keeping the others fixed as in Table I

Parameter Range k L τ β

N 200–10,000 4.77×10−12 N 1/2 N indep.

φ 0.05–0.45 φ φ−1/2 φ−1/2 indep.

rch 10−6 −10−4 r2
ch rch indep. r−1

ch

µ 10−4 −10−1 4.79×10−12 0.11×10−2 µ indep.

θ 0−1.5608 4.79×10−12 0.11×10−2 indep. cos θ

σndσσ 0.1−0.6 * * * σndσ

The symbol * means that no obvious power law was found.
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possible to vary the lower- and upper-cut-off radius rmin and rmax indepen-
dently. However, for this study they are kept constant with values as given
in Table I. The findings of our numerical simulations are summarized in
Table II. For example, the number of tubes is increased from N = 200 to
N = 10000 with step size 200 tubes. As expected, we observe that the per-
meability k ∼ 4.77 × 10−12[m2] is essentially constant, i.e: k varies randomly
around a mean value of 4.77×10−12[m2] for various realizations of the bun-
dle. Furthermore, L∼N1/2, and τ ∼N , whereas β is essentially independent
of N as N =200,400, . . . ,10,000. Similar results are tabulated when varying
the other parameters, see Table II. However, it turns out that the variance of
the pore-size distribution σndσ , is a special parameter. We let σndσ vary linearly
between σndσ = 0.1 and σndσ = 0.6 using 50 steps. Both k and L increase with
σndσ but no obvious power law dependency is found. Similarly, we find no
obvious dependency with respect to τ and σndσ . In fact, τ -values for smaller
saturations increase with respect to σndσ whereas they decrease at the larger
saturation values. On the other hand it appears that β ∼ σndσ , although the
fluctuations in the data points are fairly large for the larger values of σndσ .

For each parameter that is varied, we have plotted the mean value for
the dimensional groupings �τ and �β at the specified target saturations,
see Figures 5–7. The error bars in these plots give the variance of the
fluctuations around the mean value, due to different realizations of the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Saturation – S
w

[–]

τ ch
K

ef
f/φ

µ
L ch2

[–
]

Vary: N

Vary: r
ch
r

Vary: φ

Vary: µ

Figure 5. Dimensional grouping �τ(Sw, σndσ )= τk/φµL2 as a function of saturation
is fixed at σndσ =0.2. Variance of the pore-size distribution is fixed at σndσσ =0.2.
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and variance of the pore-size distribution.

bundle for each update of the a specific parameter. We observe that Fig-
ures 5 and 7 reconcile the parameter dependencies of �τ and �β fairly
well. In Figure 8, we do not include the data related to varying the var-
iance of the pore-size distribution, simply because we are not able to make
this parameter fit into the dimensional grouping of �τ . In Figure 6, we
have plotted the dimensional grouping �τ when the number of tubes N is
varied from N = 200 to N = 10,000, and for three different values of σndσ .
This Figure illustrates the difficulty associated with the parameter σndσσ . We
are simply not able to include σndσ into the dimensional grouping �τ to
make this independent of σndσ , because the dependency of this parameter
is coupled to the saturations. We therefore suggest that �τ = �τ(Sw, σndσ ).
This surface is plotted in Figure 8. A possible explanation for the more
complicated dependency on σndσ is related to the observation that τ ∼ k−1.
When σndσ is increased we get more tubes with smaller and larger radius.
This means that when we estimate τ for larger saturations the ‘local’ per-
meability over that section of the bundle must increase with σndσσ . Since τ

is inversely proportional to permeability we should therefor expect τ to
decrease for larger saturations when σndσ is increased. On the other hand for
smaller saturations the ‘local’ permeability should decrease with σndσσ result-
ing in an increase in τ .

Finally, by Equation (27), we have that
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τ(Sw)= φµL2

k
=�τ(Sw), (29)

for a fixed variance of the pore-size distribution σndσ . Hence, from Figure 5,
it follows that the dynamic coefficient τ is a decreasing function of satura-
tion except for larger values of Sw, where τ is an increasing function.

5. Summary and Discussion

In this paper we have investigated dynamic effects in the capillary pressure–
saturation relationship using a bundle-of-tubes model. At the pore-scale,
fluid–fluid interfaces will always move to produce an equilibrium between
external forces and internal forces created by surface tension over the
interfaces. Because of viscosity, interfaces require a finite relaxation time
to achieve such an equilibrium. This dynamics of interfaces at the pore-
scale may for example be described by the Washburn Equation (5). This
is a simple model and the corresponding dynamic effect is expected to be
small. The calculated value of τ (∼ 274 kg m−1 s−1) is indeed very small.
For a more complicated pore-scale network model, larger values for τ are
obtained. For example, for a three-dimensional pore-scale network model
Gielen et al. (2004) obtained values of order 104 − 105 kg m−1 s−1. When
micro-scale soil heterogeneities are taken into account, even larger values
for τ are found. For example, experimental results reported by Manthey
et al. (2004) on a 6-cm long homogeneous soil sample yield a τ -value of
about 105 kg m−1 s−1. At even larger scales, dynamics of interfaces must be
associated with the time scale of changes in phase saturations.

Our analysis of the bundle-of-tubes model leads to the relationship (26)
involving a dynamic coefficient τ and an intercept of the vertical axis β.
We have investigated dimensionless groupings (27) and (28) containing τ

and β, respectively. The dimensionless grouping involving τ shows a clear
dependency on saturation, in particular for larger values of the variance
of the pore-size distribution. It also shows that the dynamic coefficient τ

increases as the square of the length scale L associated with the averag-
ing volume. This suggest that the dynamic coefficient may become arbi-
trarily large as the averaging volume increases in size. However, we suspect
that the length scale has to be tied to typical length scales associated with
the problem under consideration, e.g. length scales associated with mov-
ing fronts, and not necessarily the length scale of the averaging volumes.
We will investigate the dependency of τ with respect to typical length
scales in future work. The dynamic effect observed in our bundle-of-tubes
model is only due to the motion of single interfaces. The effect would have
been larger if effects such as hysteresis in contact angle would have been
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included; e.g. a smaller contact angle during drainage compared to when
the interface is at rest.

The relationship (26) may not be valid for small temporal changes in
saturation due to the nonlinearity introduced by local capillary pressure.
The magnitude of this nonlinearity is reflected in the size of the vertical
axis intercept β. In fact, the dimensionless grouping involving β shows that
this intercept is proportional to surface tension and contact angle of the
fluid–fluid interface. On the other hand, the dimensionless grouping that
contains β does not show any clear dependency on the saturation. If this
turns out to be the case, the β-term may have no importance with respect
to continuum scale models.
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Abstract. We show how to predict flow properties for a variety of rocks using pore-scale
modeling with geologically realistic networks. The pore space is represented by a topolog-
ically disordered lattice of pores connected by throats that have angular cross-sections. We
successfully predict single-phase non-Newtonian rheology, and two and three-phase rela-
tive permeability for water-wet media. The pore size distribution of the network can be
tuned to match capillary pressure data when a network representation of the system of
interest is unavailable. The aim of this work is not simply to match experiments, but to
use easily acquired data to estimate difficult to measure properties and to predict trends
in data for different rock types or displacement sequences.

Key words: multiphase flow, pore-scale modeling, relative permeability

1. Introduction

In network modeling the void space of a rock is represented at the micro-
scopic scale by a lattice of pores connected by throats. By applying rules
that govern the transport and arrangement of fluids in pores and throats,
macroscopic properties, for instance capillary pressure or relative perme-
ability, can then be estimated across the network, which typically consists
of several thousand pores and throats representing a rock sample of a few
millimeters cubed.

Until recently most networks were based on a regular lattice. The coor-
dination number can vary depending on the chosen lattice (e.g. 5 for a
honeycombed lattice or 6 for a regular cubic lattice). As has been noted
by many authors (Chatzis and Dullien, 1997; Wilkinson and Willemsen,
1983) the coordination number will influence the flow behavior signifi-
cantly. In order to match the coordination number of a given rock sample,
which typically is between 3 and 8 (Jerauld and Salter, 1990), it is possi-
ble to remove throats at random from a regular lattice (Dixit et al., 1997,

∗Author for correspondence: e-mail: m.blunt@imperial.ac.uk
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1999), hence reducing the connectivity. By adjusting the size distributions
to match capillary pressure data, good predictions of absolute and relative
permeabilities have been reported for unsaturated soils (Fischer and Celia,
1999; Vogel, 2000).

All these models are, however, still based on a regular topology that
does not reflect the random nature of real porous rock. The use of net-
works derived from a real porous medium was pioneered by Bryant et al.
They extracted their networks from a random close packing of equally-
sized spheres where all sphere coordinates had been measured (Bryant and
Blunt, 1992; Bryant et al., 1993a, b). Predictions of relative permeability,
electrical conductivity and capillary pressure were compared successfully
with experimental results from sand packs, bead packs and a simple sand-
stone. Øren and coworkers at Statoil have extended this approach to a
wider range of sedimentary rocks (Bakke and Øren, 1997; Øren et al.,
1998). It is usually necessary to create first a three-dimensional voxel based
representation of the pore space that should capture the statistics of the
real rock. This can be generated directly using X-ray microtomography
(Dunsmuir et al., 1991; Spanne et al., 1994), where the rock is imaged at
resolutions of around a few microns, or by using a numerical reconstruc-
tion technique (Adler and Thovert, 1998; Øren and Bakke, 2002). From
this voxel representation an equivalent network (in terms of volume, throat
radii, clay content etc) can then be extracted (Delerue and Perrier, 2002;
Øren and Bakke, 2002). Using these realistic networks experimental data
have been successfully predicted for Bentheimer (Øren et al., 1998) and Be-
rea sandstones (Blunt et al., 2002).

2. Network Model

We use a capillary dominated network model that broadly follows the work
of Øren, Patzek and coworkers (Øren et al., 1998; Patzek, 2001). The
extensions to three-phase flow are described by Piri and Blunt (2002). Incor-
poration of non-Newtonian flow is discussed in Lopez et al. (2003). Fur-
ther details, including relevant equations, can be found in Blunt (1998),
Øren et al. (1998) and Patzek (2001). The model simulates primary drainage,
wettability alteration and any subsequent cycle of water flooding, secondary
drainage and gas injection.

2.1. description of the pore space

A three-dimensional voxel representation of either Berea sandstone or a
sand pack (Table I) is the basis for the networks used in this paper. The
pore space image is generated by simulating the random close packing of
spheres of different size followed (in the case of Berea) by compaction,
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Table I. Properties of the two networks used in this paper

Network φ K(D) Pore radius range Throat radius Average coordination
(10−6 m) range (10−6 m) number

Sand pack 0.34 101.8 3.2–105.9 0.5–86.6 5.46
Berea 0.18 3.148 3.6–73.5 0.9–56.9 4.19

Figure 1. (a) A three-dimensional image of a sandstone with (b) a topologically
equivalent network representation (Bakke and Øren, 1997; Øren et al., 1998)

diagenesis and clay deposition. A topologically equivalent network of pores
and throats is then generated with properties (radius, volume etc.) extracted
from the original voxel representation, shown schematically in Figure 1.
The networks were provided by other authors (Bakke and Øren, 1997;
Øren et al., 1998) – in this work we simply used them as input to our
modeling studies. The Berea network represented a sample 3 mm cubed
with 12,000 pores and 26,000 throats while the sand pack network con-
tained 3,500 pores and 10,000 throats. With this relatively small number
of elements, a displacement sequence can be run using standard comput-
ing resources in under a minute.

The cross-sectional shape of the network elements (pores or throats) is
a circle, square or triangle with the same shape factor, � = A/L2, as the
voxel representation, where A is the cross sectional area and L the perim-
eter length. As the pore space becomes more irregular the shape factor
decreases. Compared to the voxel image, the network elements are obvi-
ously only idealized representations. However, by maintaining the measured
shape factor a quantitative measure of the irregular pore space is main-
tained. Fairly smooth pores with high shape factors will be represented by
network elements with circular cross-sections, whereas more irregular pore
shapes will be represented by triangular cross-sections, possibly with very
sharp corners.
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Using square or triangular shaped network elements allows for the
explicit modeling of wetting layers where non-wetting phase occupies the
center of the element and wetting phase remains in the corners. The
pore space in real rock is highly irregular with wetting fluid remaining
in grooves and crevices after drainage due to capillary forces. The wet-
ting layers may only be a few microns in thickness, with little effect on
the overall saturation or flow, but their contribution to wetting phase con-
nectivity is of vital importance, ensuring low residual wetting phase satu-
ration by preventing trapping (see, for instance, Blunt, 1998; Øren et al.,
1998; Patzek, 2001). Micro-porosity and water saturated clays will typically
not be drained during core analysis. Rather than explicitly including this in
the network representation, a constant clay volume is associated with each
element. The pore and throat shapes are derived directly from the pore
space representation. In this work they are not adjusted to match data. The
clay volume can be adjusted to match the measured connate or irreducible
water saturation after primary drainage.

3. Single-Phase Non-Newtonian Flow

There are many circumstances where non-Newtonian fluids, particularly
polymers, are injected into porous media, such as for water control in oil
wells or to enhance oil recovery. In this section we will predict the sin-
gle-phase properties of shear-thinning fluids in a porous medium from the
bulk rheology. Several authors (see, for instance, Sorbie, 1991) have derived
expressions to define an apparent shear rate experienced by the fluid in
the porous medium from the Darcy velocity. In practice, apparent viscosity
(µapp) and Darcy velocity (q) are often the measured quantities. Experi-
mental results suggest that the overall shape of the µapp(q) curve is sim-
ilar to that in the bulk µ(γ ), where γ is the shear rate. Using dimensional
analysis there is a length that relates velocity to shear rate. Physically this
length is related to the pore size. One estimate of this length is the square
root of the absolute permeability times the porosity, Kφ (Sorbie, 1991).
This allows the determination of in situ rheograms from the bulk mea-
sured µ(γ ) : µapp(q) = µ(γ = q/

√
Kφ). Many authors have remarked that

this method leads to in situ rheograms that are shifted from the bulk curve
by a constant factor, α (Sorbie, 1991; Pearson and Tardy, 2002):

µapp(q)=µ
(
γ =αq/

√
Kφ
)

(1)

Reported values for α vary depending on the approach chosen, but exper-
imental results suggest it generally lies in the range 1 to 15. Pearson
and Tardy (2002) reviewed the different mathematical approaches used to
describe non-Newtonian flow in porous media. They concluded that none
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of the present continuum models give accurate estimates of bulk rheology
and the pore structure and currently there is no theory that can predict its
value reliably.

We will consider polymer solutions – representing Xanthan – whose
bulk rheology is well-described using a truncated power-law:

µeff =Max
[
µ∞,Min

(
Cγ n−1,µ0

)]
(2)

where C is a constant and n is a power-law exponent. We can solve ana-
lytically for the relationship between pressure drop and flow rate for a
truncated power-law fluid in a circular cylinder (Lopez et al., 2003). Our
network models are, however, mainly composed of irregular triangular-
shaped pores and throats. To account for non-circular pore shapes we
replace the inscribed radius of the cylinder R in the relationship between
flow rate and pressure drop with an appropriately defined equivalent radius,
Requ. We use an empirical approach to define Requ based on the conduc-
tance, G, of the pore or throat that is exact for a circular cylinder:

Requ =
(

8G

π

)1/4

(3)

In a network of pores and throats we do not know each pressure drop �P

a priori. Hence to compute the flow and effective viscosities requires an
iterative approach, developed by Sorbie et al. in their network model stud-
ies of non-Newtonian flow (Sorbie et al., 1989). An initial guess is made
for the effective viscosity in each network element. The choice of this ini-
tial value is rather arbitrary but does influence the rate of convergence,
although not the final results. As a general rule, when one is interested
in solving for only one flow rate across the network, the initial viscosity
guess can be taken as the limiting boundary condition, µ0 (i.e. the viscos-
ity at very low shear rates). However, when trying to explore results for a
range of increasing flow rates, the convergence process can be significantly
speeded up by retaining the last solved solution for viscosity.

Once each pore and throat has been assigned an effective viscosity and
conductance, the relationship between pressure drop and flow rate across
each element can be found.

Qi = Gi

µi
eff

�PiPP (4)

By invoking conservation of volume in each pore with appropriate inlet
and outlet boundary conditions (constant pressure), the pressure field is
solved across the entire network using standard techniques. As a result the
pressure drop in each network element is now known, assuming the initial
guess for viscosity. Then the effective viscosity of each pore and throat is
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updated and the pressure recomputed. The method is repeated until satis-
factory convergence is achieved. In our case, convergence must be achieved
simultaneously in all the network elements. The pressure is recomputed if
the flow rate in any pore or throat changes by more than 1% between iter-
ations. The total flow rate across the network Qt is then computed and an
apparent viscosity is defined as follows:

µapp =µN

QN

Qt

(5)

where QN is the total flow rate for a simulation with the same pressure
drop with a fixed Newtonian viscosity µN . The Darcy velocity is obtained
from q =Qt/A, where A is the cross sectional area of the network.

3.1. non-newtonian results

We predict the porous medium rheology of four different experiments in
the literature where the bulk shear-thinning properties of the polymers used
were also provided. Two of the experiments (Hejri et al., 1988; Vogel and
Pusch, 1981) were performed on sand packs and for these we used the sand
pack network and two were performed on Berea sandstone (Cannella et al.,
1988; Fletcher et al., 1991), for which the Berea network was used. Table II
lists the properties used to match the measured bulk rheology to a trun-
cated power-law.

We can account for the permeability difference between our model and
the systems we wish to study by realizing that simply re-scaling the network
size will result in a porous medium of identical topological structure, but
different permeability. To predict the experiments we generated new net-
works with all lengths scaled by a factor

√
Kexp/Knet , where the super-

scripts exp and net stand for experimental and network, respectively. By
construction the re-scaled network now has the same permeability as the
experimental system, but otherwise has the same structure as before. Note
that this is not an ad-hoc procedure since the scaling factor is based on the
experimentally measured permeability.

Table II. Truncated power law parameters used to fit the experimental data

Experiment C n µ0 (Pa.s) µ∞ (Pa.s) φ K (D)

Hejri et al. (1988) 0.181 0.418 0.5 0.0015 0.34 0.525
Vogel and Pusch (1981) 0.04 0.57 0.1 0.0015 0.5 5
Fletcher et al. (1991) 0.011 0.73 0.012 0.0015 0.2 0.261
Cannella et al. (1988) 0.195 0.48 0.102 0.0015 0.2 0.264
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Figure 2. Comparison between network simulations (line) and the Vogel and Pusch
(1981) experiments on a sand pack (circles). The dashed line is an empirical fit to
the data, Equation (1), using an adjustable scaling factor α.
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Figure 3. Comparison between network simulations (line) and the Hejri et al. (1988)
experiments on a sand pack (circles). The dashed line is an empirical fit to the data,
Equation (1), using an adjustable scaling factor α.

Figures 2–5 compare the predicted and measured porous medium rhe-
ology. Also shown are best fits to the data using Equation (1). Note that
the empirical approach requires a medium-dependent parameter α to be
defined, and does not accurately reproduce the whole shape of the curve.
In one of the sandstone experiments – Figure 4 – the viscosity at low flow
rates exceeds that measured in the bulk. This could be due to pore blocking
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Figure 4. Comparison between network simulations (lines) and Cannella et al.
(1988) experiments on Berea sandstone (circles). The dashed line is an empirical fit
to the data, Equation (1), using an adjustable scaling factor.
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Figure 5. Comparison between network simulations (line) and the experiments of
Fletcher et al. (1991) on Berea sandstone (circles). The dashed line is an empiri-
cal fit to the data, Equation (1), using an adjustable scaling factor α.

by polymer adsorption that we do not model. We also slightly over-predict
the viscosity in the other Berea sample – Figure 5. Overall the predictions
– made with no adjustable parameters – are satisfactory and indicate that
the network model is capturing both the geometry of the porous medium
and the single-phase non-Newtonian rheology. In the next section we will
extend this approach to the more challenging case of two-phase flow, albeit
with Newtonian fluids.
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4. Two-Phase Flow

Two and three-phase relative permeabilities for water-wet Berea sandstone
have been measured by Oak (1990). In previous work we have shown that
we can predict oil/water drainage and water flood relative permeabilities
accurately (Blunt et al., 2002; Valvatne and Blunt, 2004). In this case we
know we have an appropriate network with a well-characterized wettabil-
ity. The only issue is that during water injection a distribution of advanc-
ing oil/water contact angles has to be assumed – we find the uniform dis-
tribution of contact angles that matches the observed residual non-wetting
phase saturation and from that predict both oil and water relative perme-
abilities. In this section we will show how to adjust the pore and throat size
distributions to match two-phase data capillary pressure data and then pre-
dict relative permeability when we do not have an exact network represen-
tation of the medium of interest. In the following section we will predict
three-phase data from Oak (1990).

When using pore-scale modeling to predict experimental data it is clearly
important that the underlying network is representative of the rock. How-
ever, if the exact rock type has to be used for the network construction, the
application of predictive pore-scale modeling will be severely limited due to
the complexity and cost of methods such as X-ray microtomography. In this
section we will use the topological information of the Berea network (relative
pore locations and connection numbers) to predict the flow properties of a
sand pack measured by Dury (1997) and Dury et al. (1998). We do not use
our sand pack network, since in this case the network and the sand used
in the experiments have very different properties. Capillary pressure data is
used to tune the properties of the individual network elements.

Dury et al. (1998) measured secondary drainage and tertiary imbibition
capillary pressure (main flooding cycles) and the corresponding non-wet-
ting phase (air) relative permeabilities for an air/water system. The capil-
lary pressures are shown in Figure 6 (Dury et al., 1998). To predict the
data, first all the lengths in the Berea network are scaled using the same
permeability factor that was used for non-Newtonian flow. From Figure
6 it is, however, clear that the predicted capillary pressure is not close
to the experimental data. This indicates the difficulty of predicting mul-
tiphase measurements – the capillary pressure and relative permeabilities
are influenced by the distribution of pore and throat sizes as well as the
absolute permeability. The distribution of throat sizes is subsequently mod-
ified iteratively until an adequate pressure match is obtained against the
experimental drainage data (Figure 7), with individual network elements
assigned inscribed radii from the target distribution while still preserving
their rank order – that is the largest throat in the network is given the larg-
est radius from the target distribution and so on. This should ensure that
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Figure 6. Comparison between predicted capillary pressures and experimental data
by Dury et al. (1998). The size of the elements in the Berea network is modified
using a scaling factor based on absolute permeability and the predictions are poor,
indicating that the pore size distribution needs to be adjusted to match the data.
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Figure 7. Comparison between predicted and measured (Dury et al., 1998) capil-
lary pressures following a network modification process to match the drainage data.
Now the match is excellent, except at high water saturations. The trapped gas (air)
saturation is 1 minus the water saturation when the capillary pressure is zero.

size correlations between individual elements and on larger scales are main-
tained. Modifications to the throat size distribution at each iteration step
were done by hand rather than by any optimization technique. The results
are insensitive to the details of how the throat sizes are adjusted – the final
throat size distribution obtained was effectively a unique match since the
rank order of size and connectivity was preserved.
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Capillary pressure hysteresis is a function of both the contrast between
pore body and throat radii and the contact angle hysteresis. We distribute
advancing contact angles uniformly between 16 and 36 degrees, consistent
with measured values by Dury (Dury, 1997; Dury et al., 1998), while keep-
ing receding values close to zero. The radii of the pore bodies is determined
from Valvatne and Blunt (2004)

rp =max

⎛
⎜
⎛⎛
⎜⎜⎜⎝⎜⎜β

nc∑
i=1

ri

nc

,max (ri)

⎞
⎟
⎞⎞
⎟⎟⎟⎠⎟⎟ , (6)

where nc is the connection number and β is the aspect ratio between the
pore body radius rp and connecting throat radii ri . A good match to
experimental imbibition capillary pressure is achieved by distributing the
aspect ratios between 1.0 and 5.0 with a mean of 2.0. This distribution is
very similar to that of the original Berea network, though with a lower
maximum value, which in the original network was close to 50. This is
expected as the Berea network has a much larger variation in pore sizes.
The absolute size of the model, defining individual pore and throat lengths,
is adjusted such that the average ratio of throat length to radius is main-
tained from the original network. Pore and throat volumes are adjusted
such that the target porosity is achieved, again maintaining the rank order.

In Figure 8 the predicted air relative permeability for secondary drainage
and tertiary imbibition are compared to experimental data by Dury et al.
(1998). The experimental data were obtained by the stationary liquid method
where the water does not flow, while air is pumped through the system and
the pressure drop is measured. The relative permeability hysteresis is well
predicted. In imbibition snap-off disconnects the non-wetting phase leading
to a lower relative permeability than in drainage. However, there are two
features that we fail to match. First, the experimental trapped air saturation
is much lower than predicted by the network model (Figure 7) and is lower
than the value implied by the extinction point in Figure 8. Second, the extinc-
tion and emergence (when air first starts to flow) saturations are different in
the experiment, while the network model predicts similar values (Figure 8).
This behavior is difficult to explain physically, as the network model predicts
that the trapped air saturation and the emergence and extinction points are
all consistent with each other. Dury (1997) suggested that air compressibil-
ity could allow trapped air ganglia to shrink as water is injected, leading to
a small apparent trapped saturation. Furthermore, air could have escaped
from the end of the pack, even if the air did not span the system, leading to
displacement even when the apparent air relative permeability was zero. For
lower water saturations where there is more experimental confidence in the
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Figure 8. Comparison of network model air relative permeability predictions to
experimental data measured on a sand pack by Dury et al. (1998). The flooding
cycles shown are secondary drainage and tertiary imbibition (main cycles) and the
experimental data are obtained using the stationary liquid method. The emergence
point represents when gas first starts to flow during gas invasion (drainage) and the
extinction point is where gas ceases to flow during imbibition.

data, the predictions are excellent and give confidence to the ability of pore-
scale modeling to use readily available data (in this case capillary pressure)
to predict more difficult to measure properties, such as relative permeability.

5. Three-Phase Flow

Three-phase – oil, water and gas – flow can be simulated in the network
model (Piri and Blunt, 2002). All the different possible configurations of
oil, water and gas in a single corner of a pore or throat are evaluated –
Figures 9 and 10. Displacement is a sequence of configuration changes. For
each change a threshold capillary pressure is computed (Piri and Blunt,
2002). The next configuration change is the one that occurs at the low-
est invasion pressure of the injected phase. By changing what phase is
injected into the network any type of displacement can be simulated (Piri
and Blunt, 2002).

In this section we will predict steady-date three-phase relative permeabil-
ity measured on Berea cores by Oak (1990). The two-phase oil/water data
has already been predicted (Blunt et al., 2002; Valvatne and Blunt, 2004) –
we did not adjust any of the geometrical properties of the network (pore
and throat sizes or shapes) and assumed that the receding oil/water contact
angle was zero. As mentioned before, the distribution of advancing contact
angles was adjusted to match the measured residual oil saturation.
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Figure 9. One- and two-phase configurations for a single corner. The bold solid line
indicates regions of the surface with altered wettability. A phase may be present in
the center of the pore space or as a spreading or wetting layer, sandwiched between
other phases. Water is always present in the corner. The network model simulates
a sequence of displacement events that represent the change from one configuration
to another.

Piri and Blunt (2002) and Lerdahl et al. (2000) have presented three-phase
predictions for this dataset – in this work we will consider a typical yet diffi-
cult case – gas injection after waterflooding – and compare predictions and
experiment on a point-by-point basis. We assume that we have a spreading oil
(Piri and Blunt, 2002) with oil/water and gas/oil interfacial tensions typical
of light alkane/water/air systems as studied by Oak (1990). Figure 11 shows



36 PER H. VALVATNE ET AL.

Altered wettability
surface

Water

Oil

Gas

(F-1) (F-2) (F-3) (F-4)

(G-1) (G-2) (G-3) (G-4)

(H-1) (H-2) (I-1) (I-2)

(J-1) (J-2) (K-1)(J-2) (K-2)(K-2)

Figure 10. Three-phase configurations continued from Figure 9.

the saturation path for an experiment where gas is injected into waterflood
residual oil. This is a particular challenge for pore-scale modeling since at the
beginning of the displacement some of the oil is trapped and must become
reconnected at the pore scale through double drainage and oil layer forma-
tion before it can be displaced (Lerdahl et al., 2000; Piri and Blunt, 2002;
van Dijke et al., 2004). The network model simulates gas displacing either
water or oil in order to track the saturation path seen experimentally.



PREDICTIVE PORE-SCALE MODELING OF SINGLE AND MULTIPHASE FLOW 37

Measured

 Tracked

So

Sg

Sw

Figure 11. Saturation path for a steady-state experiment by Oak (1990) for gas
injection into oil and water (crosses). The network model undergoes a series of dis-
placements of water or oil by gas to reproduce a similar path (line).
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Figure 12. Experimentally measured oil relative permeability for gas injection after
waterflooding (crosses) from Oak (1990) compared to predictions from network
modeling (line).

Figures 12–14 show the predicted and measured three-phase oil, gas
and water relative permeabilities respectively. The quality of the predictions
is similar to that obtained for gas injection into higher initial oil satura-
tions (Piri and Blunt, 2002). The three-phase predictions are satisfactory,
although not as good as for two-phase flow. This is because the pore scale
physics is more complex and uncertain when three phases are flowing – in
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Figure 13. Experimentally measured gas relative permeability for gas injection after
waterflooding (crosses) from Oak (1990) compared to network model predictions
(line).
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Figure 14. Experimentally measured water relative permeability for gas injection
after waterflooding (crosses) from Oak (1990) compared to network model predic-
tions (line).

particular we do not know how well the fluid configurations in Figure 10
represent the true arrangements of fluid.

For the oil relative permeability, Figure 12, the network model tends
to over-predict the relative permeability at low saturation. At low oil
saturation the oil is flowing in layers (see Figure 10G) and the relative
permeability is controlled by our assumptions of layer connectivity and
conductance. It appears that we over-estimate the connectivity of the lay-
ers and that in reality oil layers do not have the rather high effective
conductance that we assume using our idealized model of the pore space
geometry. The gas relative permeability is well predicted at high gas satu-
ration. However, at low saturation finite size effects in the network mean
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that we predict that gas is not connected even though it does flow in the
experiments. The predictions of water relative permeability are excellent.

6. Discussion and Conclusions

We have demonstrated that pore-scale modeling combined with geologically
realistic networks can reliably predict single-, two- and three-phase data for
water-wet media. The predictions of the single-phase shear thinning rhe-
ology of polymer solutions in porous media were excellent and superior
to empirical scaling approaches, since the results did not depend on an
unknown porous-medium-dependent factor. For two-phase flow the results
were also excellent if the pore structure of the porous medium is known,
although the distribution of contact angles for waterflooding needs to be
estimated. If the pore structure is not known a priori, we showed how to
adjust the pore size distribution to match capillary pressure data and then
use this to make good predictions of relative permeability. For three-phase
flow modeling is more of a challenge because of the complexity of the
pore-scale physics. However, we were able to predict relative permeabilities
with reasonable accuracy for gas injection after waterflooding.

We did not address wettability in this paper. Most natural media that
have been in contact with oil or other non-aqueous phase liquids change
their wettability and often display mixed-wet or oil-wet characteristics. The
network model presented in this paper can handle media of any wettability
and has made accurate predictions of relative permeability and oil recovery
for mixed-wet reservoir samples (Piri and Blunt, 2002; Valvatne and Blunt,
2004). Figures 9 and 10 show all the possible two- and three-phase config-
urations including wettability alteration: after primary drainage, where oil
contacts the solid surface directly the oil/water contact angle may change
to any value (indicated by the bold lines in Figures 9 and 10). During gas
injection different gas/oil and gas/water contact angles can also be assigned
to these regions (Piri and Blunt, 2002). Regions of the pore space that
remain water filled remain water-wet. Extensive experimental verification of
the models for media of different wettability, particularly for three-phase
flow, remains the subject of future study.

The aim of pore-scale modeling is to predict properties that are difficult
to measure, such as relative permeability, from more readily available data,
such as drainage capillary pressure. In addition, the model can readily be
used to predict the changes in flow properties as the pore structure or wet-
tability varies. As such it can be used to characterize multiphase properties
in geological models. We have already shown that using pore-scale model-
ing to characterize variations in relative permeability leads to significantly
different predictions of recovery at the field scale than traditional empirical
modeling approaches (Blunt et al., 2002).
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Abstract. The basic aim of this work is to present a combination of techniques for the
reconstruction of the porous structure and the study of transport properties in porous
media. The disordered structure of porous systems like random sphere packing, Vycor
glass and North Sea chalk, is represented by three-dimensional binary images. The ran-
dom sphere pack is generated by a standard ballistic deposition procedure, while the chalk
and the Vycor matrices by a stochastic reconstruction technique. The transport properties
(Knudsen diffusivity, molecular diffusivity and permeability) of the resulting 3-dimensional
binary domains are investigated through computer simulations. Furthermore, physically
sound spatial distributions of two phases filling the pore space are determined by the use
of a simulated annealing algorithm. The wetting and the non-wetting phases are initially
randomly distributed in the pore space and trial-and-error swaps are performed in order
to attain the global minimum of the total interfacial energy. The effective diffusivities of
the resulting domains are then computed and a parametric study with respect to the pore
volume fraction occupied by each phase is performed. Reasonable agreement with avail-
able data is obtained in the single- and multi-phase transport cases.

Key words: reconstruction, diffusion, permeability, simulated annealing, adsorption

1. Introduction

The structural characterization and prediction of sorption and transport
properties in porous materials is of great importance in various fields of
technological and environmental interest such as catalysis, separations, oil
recovery, aging of building materials, study of hazardous waste reposito-
ries etc. A large number of theoretical and experimental studies concerning
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transport in porous materials and the dependence of the transport coeffi-
cients on the main structural parameters of the media have been pub-
lished. The evolution of the modeling approaches for the representation of
the porous structure, is a result of advances in theoretical and experimen-
tal techniques as well as in computational resources. A turning point in
this respect has been the development of statistical methods that generate
binary 3-dimensional images based on certain statistical properties of the
medium, usually the porosity and the two-point correlation function (Alder
et al., 1990; Alder, 1992). The experimental information on the aforemen-
tioned statistical properties can be obtained either directly from SEM or
TEM images or indirectly by small angle scattering techniques (SAS) (Levis
et al., 1991; Levitz and Tchoubar, 1992).

In contrast to the statistical methods, process-based models try to account
for the physical processes underlying the formation of certain microstructure.
Recent attempts include the generation of controlled porous glasses (CPG’s)
through a dynamic simulation of the actual spinodal decomposition process
(Gelb and Gubbins, 1998), which is believed to be the main mechanism respon-
sible for the formation of these materials. In the same context (although using
a more phenomenological and thus less computationally intensive approach)
is the grain consolidation model (Roberts and Schwartz et al., 1985), which
focuses on the modeling of diagenetic processes. These process-based recon-
struction methods, although more sound from a physical point of view, suffer
frequently from severe computational requirements and are limited to the spe-
cific material considered in each case.

In many cases of practical interest, however, the pore volume is filled by
more than one fluid phases and the accurate representation of the porous
structure is not the only parameter to be concerned with. The detailed dis-
tribution of the phases that occupy the pores strongly affects the overall
transport properties and a reliable method must be applied for its determi-
nation. Recently, Lattice-Boltzmann two-phase flow simulations have been
used to obtain the spatial distribution of the phases (Bekri et al., 2002; Mar-
tys, 1999), however, their demands on computational resources are usually
very high. For the simplest case, where only two phases are present in the
pores, one wetting and one non-wetting, Knight et al. (1990), have proposed
an attractive mesoscopic technique, assuming that the desired distribution is
characterized by minimal total free interfacial energy. Silverstein and Fort
(2000a,b) applied this method for the prediction of air-water interfacial area
in wet unsaturated porous media, Mohanty (1997) calculated the thermal
conductivity of 2-dimensional cuts of geologic media while Berkowitz and
Hansen (2001) studied the distribution of water in partially saturated sand-
stone microstructures.

In this chapter the main principles (without focusing on details) of the
aforementioned techniques are presented. Furthermore, their combination
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is employed to study in an efficient and sufficiently accurate manner trans-
port properties in porous media.

2. Reconstruction of Porous Structure

2.1. representation of porous structure

The spatial distribution of matter in a porous medium can be typically rep-
resented by the phase function Z(x), defined as follows:

Z(x)=
⎧⎨⎧⎧
⎩
⎨⎨1 if x belongs to the pore space

0 otherwise
(1)

where x is the position vector from an arbitrary origin.
Due to the disordered nature of porous media, Z(x) can be considered

as a stochastic process, characterized by its statistical properties. The poros-
ity, ε, and the auto-correlation function Rz(u) can be defined by the statis-
tical averages (Alder, 1992):

ε =〈Z (x)〉 (2a)

Rz(u)= 〈(Z(x)− ε) · (Z(x +u)− ε)〉
ε − ε2

(2b)

Note that < > indicates spatial average. For an isotropic medium, Rz(u)

becomes one-dimensional as it is only a function of u=|u| (Alder, 1992).

2.2. stochastic reconstruction

The purpose of the stochastic reconstruction procedure is the generation
of a digitized 3-dimensional snapshot of Z(x) with a specified statistical
behavior which is assumed to be described by the first two moments of
Z(x), the mean value and the two point correlation function. The algo-
rithm used for the reconstruction was first proposed by Joshi (1974) and
was extended in three dimensions by Quiblier (1986) and Alder et al.
(1990). The details of this algorithm can be found in the above references
and only the main idea is outlined here. The space is discretized in N3

cubic elements, the position of which is characterized by the vector x′ =
(i, j, k) where i, j, k integers with values 1,2, . . . ,N and a random value
X(x′) is assigned to any element. The values X(x′) are uncorrelated and
normally distributed with a mean equal to 0 and a variance equal to 1. A
correlated field Y with a correlation function Ry(u) can be deduced from
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the X field by the inverse Fourier transform:

Y (x′)=N3/2
∑

m

(
R̂ym

)1/2
· X̂m · e−2iπkmx′

(3)

where R̂ym and X̂m are the coefficients of the discrete Fourier transform of
Ry and X, respectively. The values Y (x′) are real and normally distributed
with zero mean and unit variance, hence the distribution function P(y) is
given by:

P (y)= (2π)−1/2
∫ y

−∞

∫∫
e−t2/2 dt (4)

The extraction of the binary phase function Z(x′) from the real array Y

can be accomplished by the condition:

Z(x′)=
{

1 if P [Y (x′)]� ε

0 otherwise (5)

The most difficult step of the overall technique is the determination of the
correlation function Ry(u) from the experimentally observed Rz(u). After
some tedious manipulations (Alder et al., 1990) Rz(u) can be expressed as
a series of Ry(u), specifically:

Rz(u)=
∞∑

m=0

C2
m ·Rm

y (u) (6)

The coefficients Cm are given by

Cm = (2πm!)−1/2
∫ +∞

−∞

∫∫
c(y)e−y2/2HmHH (y)dy (7)

where

c(y)=
{

ε−1
[ε(1−ε)]1/2 if P(y)� ε

ε

[ε(1−ε)]1/2 if P(y)>ε
(8)

and HmHH (y) is the Hermite polynomial of mth order:

HmHH (y)= (−1)mey2/2 dm

dym
e−y2/2 (9)

Ideally, a representative reconstruction of a porous medium in three dimen-
sions should have the same correlation properties as those measured on a
single two-dimensional section, expressed properly by the various moments
of the phase function. In practice, matching of the first-two moments, that
is, porosity and auto-correlation function, has been customarily pursued
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since the first application of the method. This simplification however is not
generally valid as one can find examples of porous media exhibiting quite
different morphological properties while sharing the same Rz(u) ((Kainour-
giakis et al., 2000)). In this case one should try to match multi-point corre-
lation functions. Such an approach is however tedious rendering the whole
exercise quite difficult to handle. Instead, the determination of the chord
length distribution function, pi(r), which gives the probability for a chord
of length r to lie in the phase i of the medium, has been pursued, by
the calculation of the length of a sufficiently large number of random line
segments that lie in the mass or pore phase respectively, with ends at the
solid–void interface. Such a property is related to the multi-point corre-
lation functions and can be easily determined in digitized biphasic media
(Pavlovitch et al., 1991; Levitz and Tchoubar, 1992; Coker and Torquato,
1995). In recent publications Yeong and Torquato (1998a, b) and Manwart
et al. (2000) have incorporated the use of both the two point correlation
function and the lineal-path function in the reconstruction process for a
Fontainebleau sandstone sample.

In this work two porous materials are stochastically reconstructed, with
typical pore sizes in the nano- (Vycor glass) and micrometer (North Sea
chalk) regimes. As already mentioned above, the stochastic reconstruction
procedure requires as input the porosity and the autocorrelation function
of the actual porous material. For both media the autocorrelation func-
tion, Rz(u) is taken from the literature (Kainourgiakis et al., 1999; Bekri
et al., 2000). The porosity of the chalk is 0.383 while that of Vycor is 0.28.
In Figures 1 and 2, images of the reconstructed 3-D domains are shown
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Figure 1. Image and two point autocorrelation function of reconstructed chalk with
porosity 0.383. The pixel length is 0.333 µm.
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Figure 2. Image and two point autocorrelation function of reconstructed Vycor glass
with porosity 0.28. The pixel length is 3 nm.

as well as the corresponding autocorrelation functions. The pixel size of
the reconstructed domains is 0.333µm and 3 nm for the chalk and Vycor
respectively. In all cases, the agreement between the autocorrelation func-
tion of the reconstructed and the actual medium is excellent. Since the
internal surface area, Sv, can be determined from the slope of Rz(u) at zero
distance, through the relation originally derived by Debye et al. (1957):

Sv =−4ε (1− ε)R′
z(0) (10)

good agreement is obtained for this structural property too.

2.3. ballistic deposition

Random packings of hard spheres, discs, and spheroids of prolate or oblate
geometry have been the subject of considerable attention for many years,
mainly due to their importance in powder technology (Vold, 1960; Visscher
and Bolsterli, 1972) and in understanding the structure of liquids (Bernal,
1959) or amorphous, porous and random materials (Reiss, 1992; Bryant
et al., 1996). For the purposes of this work the random sequential depo-
sition of non-overlapping spherical particles is employed as a simple pro-
cess-based reconstruction technique of alumina membrane samples. In such
a ballistic deposition, the packing rule differs from other methods in that
the spheres position themselves under the influence of a unidirectional (ver-
tical) force, rather than toward a center of attraction.

The basic idea of the algorithm is as follows: Balls are dropped sequen-
tially from a random point well above the simulation box of size L×L×L.
When a ball, i, is dropped, it hits ball m or the floor of the box in which
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case it stops. If it has contacted with ball m, it rolls down in a vertical
plane on m until it is in contact with ball n. Then it rolls downwards in
contact with both m and n until it hits ball p. If the contact with m,n

and p is stable then ball i stops. If not, it rolls on the double contact that
goes down most steeply, and so on. Such a procedure can be systematically
followed through the use of a steepest-decent method followed by a conju-
gate gradient algorithm (Coelho et al., 1997). An alternative procedure has
been pursued in the present study based on a Monte Carlo method: Each
time we drop N “test” balls but allow only the one whose final position is
lowest (provided that no overlapping with the spheres in the stack occurs)
to remain and become a part of the stack. If N is large enough (N >105)

then we can recover random sphere packs with the same structural prop-
erties found by the more rigorous deposition algorithms. The number of
spheres in the packs varied from 1000 up to 2000 and the length of the
edge of the simulation box is ten times the sphere radius. Porosities rang-
ing from 0.53 to 0.4 can be obtained with N ranging from 100 to 106. This
Monte Carlo modification of the usual ballistic deposition algorithm offers
significant computational time gains as well as programming simplicity.

In order to study structural properties such as correlation function and
chord length distribution in the simulated random sphere packs, it is con-
venient to first digitize them and then work on the 3D digitized images.
The simple algorithm proposed in Martys and Garboczi (1992), has been
employed in the present study. Figure 3 shows the autocorrelation function
and the respective 3D image of the medium.

The autocorrelation function, Rz(u), obtained is in excellent agreement
with the respective ones obtained elsewhere (Coelho et al., 1997) on a ran-
dom sphere pack of ε ∼ 0.4, generated by the more rigorous and time
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Figure 3. Digitized sphere pack domain and the corresponding two-point autocor-
relation function. The porosity is equal to 0.41.
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consuming ballistic deposition algorithm. Hence we observe first zero cross-
ing in Rz(u) around u/Rs = 0.9 followed by an anti-correlation up to
u/Rs = 2. For u/Rs > 3, Rz(u) drops practically to zero indicating the
absence of significant correlation at distances larger than 1.5 particle diam-
eters.

3. Spatial Distribution of the Pore Filling Phases

The distribution of the fluid phases in the reconstructed porous media can be
achieved assuming that the total interfacial free energy, Gs , is minimal. Denot-
ing the solid phase of the porous medium as σ , the wetting phase as α, the
non-wetting phase as β and the interfacial free energy per unit area of σα, σβ,
αβ interfaces γσαγγ , γσβγγ , γαβγγ respectively, the following condition is fulfilled:

γσαγγ =γσβγγ −γαβγγ (11)

The function Gs then, can be evaluated by:

Gs =
∑

n

Anγnγγ (12)

where An is the elementary interfacial area and n=σα, σβ or αβ.
To determine the minimum of Gs the method of simulated annealing (SA),
introduced by Kirkpatrick et al. (1983) for the minimization of multidimen-
sional functions, is employed. Initially, a specified number of voxels, in ran-
dom positions of the pore space, are marked as wetting sites, the rest ones
are marked as non-wetting. The number of wetting and non-wetting sites
corresponds to a desired volume fraction occupied by each phase (denoted
as SαSS and SβS for α- and β- phases, respectively). Then a wetting and a non-
wetting site exchange their positions. This change results in a variation of
Gs by �Gs . If at a certain step �Gs � 0, the new configuration is uncon-
ditionally accepted while if �Gs >0 the new configuration is accepted with
a probability given by:

P = exp
(

−�Gs

Gref

)
(13)

where Gref is an analog of kBT parameter in Metropolis algorithm
(Metropolis et al., 1953) and kB , T the Boltzmann constant and the ambi-
ent temperature, respectively. After a sufficient number of iterations, the
system approaches the equilibrium state, for specific Gref . By gradually
decreasing Gref and repeating the simulation process, using every time as
initial configuration the one found as equilibrium state for the previous
Gref value, new lower energy levels of Gs become achievable. The pro-
cess is considered complete when despite the change in Gref , the num-
ber of accepted changes in different configurations becomes lower than a
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pre-specified value (the ratio of the number of acceptable moves to the
total number of trials becomes lower than 10−5).

The numerical scheme based on simulated annealing as described above,
can be used for the determination of the condensate configuration during
capillary condensation where α- phase corresponds to the condensate while
β-corresponds to its vapor. Figure 4 illustrates the picture obtained from
the simulation procedure for a single slit-like pore. Initially, a certain frac-
tion of the void space is occupied by condensate distributed in a random
mode (Figure 4(a)) and the system is evolving towards the minimum of
total interfacial energy. The initial random distribution of the condensate
clearly converges to the formation of a bulk liquid phase, separated from
the gas phase by a concave meniscus (Figure 4(b)).

Recalling that during adsorption in mesoporous media capillary
condensation occurs above a certain relative pressure, the simulated anneal-
ing can be used for the determination of the spatial distribution of
adsorbate in reconstructed domains. Three-dimensional “wet” Vycor and
alumina (sphere pack) domains, obtained during the course of the SA are
shown in Figure 5. It is clear that when equilibrium is reached (starting
from the random fluid configurations of Figures 5(a) and (c)) the adsor-
bate forms clusters localized in narrow pores (Figures 5(b) and (d)), in
accordance to the basic principles of adsorption in mesoporous media. The
adsorbate accumulation is further elucidated by Figures 5e and 5f, where
the solid phase has been subtracted from the alumina images.

4. Determination of Transport Properties
4.1. flow in darcy’s regime

On the macroscopic level, the superficial velocity, q, of a viscous fluid in
a given sample of homogeneous and isotropic porous material is described
by Darcy’s law:

Figure 4. 3D simulated images of a single partially filled rectangular pore through
the course of SA simulation: (a) starting random configuration, (b) final configura-
tion (for illustrational purposes only one half of the pore is shown).
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Figure 5. Spatial distribution of a condensed adsorbate in 3-D reconstructed Vycor
(a, b) and random sphere pack (c, d, e, f) images as produced by the SA simu-
lation. The left column refers to the corresponding starting random configurations
and the right to the final, optimized ones.

q =−k

η
·∇p (14)

where ∇p is a prescribed pressure gradient, k is the permeability coefficient,
which depends on the spatial distribution of solid and void phase and η is
the fluid viscosity.

Turning to the microscale, the creeping flow of a Newtonian incompress-
ible fluid within the pore space of the medium is described by the Stokes
equation coupled with the continuity equation:

η∇2v =∇p (15a)

∇ · v =0 (15b)

where v and p are the local fluid velocity vector and the pressure, respec-
tively. The boundary conditions for v are spatial periodicity and no-slip at
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the surface of the solid unit elements. Hence, in order to determine the per-
meability from Equation (14), one needs to determine first the superficial
velocity by calculating the flow field from Equations (15) with the appro-
priate boundary conditions.
The numerical solution of Equations (15) is achieved by the use of a finite-
difference scheme in conjunction with the artificial compressibility relaxa-
tion algorithm (Alder et al., 1990). The pore space is discretized through
a marker-and-cell (MAC) mesh with the pressure defined at the center of
the cell, and the velocity components defined along the corresponding face
boundaries. The resulting linear system of equations is solved by the suc-
cessive overrelaxation method (Press et al., 1992).

In Table I the fluid permeability values are presented. The calculated
permeability of the stochastichally reconstructed domains of Vycor lies
within the experimentally determined range reported by Lin et al. (1992)
while for the ballistic deposition structures (alumina) an excellent agree-
ment is observed with the predictions of the well known Blake-Kozeny
equation (Bird et al., 1960):

k = 4R2
S

180
· ε3

(1− ε)2
(16)

where, RS is the radius of each sphere of the random sphere pack.

4.2. diffusion in the knudsen and molecular regimes

The effective diffusivities of inert tracers in the reconstructed porous struc-
tures are determined from the mean-square displacement 〈r2〉, of a statisti-
cally sufficient number of identical point-like molecules injected in the void
space of the medium, according to the well known equation:

D = lim
t→∞

〈
r2
〉

6t
(17)

Table I. Calculated and reported permeabilities for the γ -alumina membrane (ε=0.42), for
the porous Vycor glass (ε =0.28) and for the North Sea Chalk (ε =0.383)

k(m2)

Simulation Reported values

Alumina membrane 4.3×10−19 4.9×10−19 (from Equation (16) for RS =10 nm)
Vycor 7.8×10−20 4×10−20−1.0×10−19 (Lin et al., 1992)
North Sea Chalk 5.5×10−15 5.68×10−15 (Bekri et al., 2000)
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where t is the travel time of the molecules. For the case of Knudsen gas
diffusion this quantity is monitored through the distance traveled by the
molecules assuming that they move at a constant speed equal to the ther-
mal speed u0 = (8kBT /πm)1/2 , as indicated in similar studies (Tomadakis
and Sotirchos, 1993; Kainourgiakis et al., 1999, Kainourgiakis et al., 2000),
where kB is the Boltzmann constant, T the ambient temperature and m the
molecular mass. The travel time is related to the mean thermal speed by the
equation t = s/u0 hence Equation (17) can be written as:

D = lim
s→∞

〈
r2
〉

6s
u0 (18)

A random position in the pore space is first defined as the initial position
of the molecule to travel within the porous medium. Subsequently, direc-
tion angles are randomly assigned to the molecule which starts its random
walk moving from voxel to voxel along this direction. At each step a check
is made whether the molecule hits a solid wall and if this happens it under-
goes a diffuse reflection according to the cosine law (Bird, 1976).

For the determination of the molecular diffusivity of inert tracers the
“blind random walk” method is applied (Schwartz et al., 1995). For a spe-
cific walker, a random pixel of the void phase is selected as initial position.
At every time t a random trial move, of length l, to one of the six neigh-
boring pixels is performed and the time is increased by δt which is selected
to satisfy the condition l2 = 6D0δt , where D0 the diffusivity of the tracer
at the phase that occupies the void phase. The trial position is accepted
unconditionally for moves from void to void pixels but for the case that
the trial position lies in the solid phase the attempt move is not allowed.
The procedure is repeated for sufficiently large number of time steps and
the ratio D/D0 is computed by:

D

D0
= lim

n→∞

〈
r2/l2

〉
n

(19)

where n= t/δt .
The travel time has to be large enough to ensure that the molecules feel

the effect of all the structural details of the porous medium, in determining
the macroscopic diffusivities. In this sense, the material can be considered
as macroscopically homogeneous in terms of its structural and diffusion
characteristics.

At all times a test is made to determine whether the molecule reaches
the boundaries of the 3D medium where periodic boundary conditions
have been employed.

A final point has to be made regarding the calculation of diffusivity. In
general diffusivity calculations are based on the motion of the fluid in the
pore space of the material. Nevertheless, in many cases effective diffusivity
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results have been reported in the literature which are basically diffusivities
multiplied by the porosity of the material. In the remaining sections of this
study we will use the term effective diffusivity, De, to include the porosity
of the material, and distinguish it from the pure diffusivity values.

The calculated values of averaged effective diffusivity for each mesoporous
reconstructed system are presented in Tables II and III. The experimental value
of Knudsen diffusivity for the sphere pack model corresponds to the transport
of He at 308 K through an alumina membrane (with porosity 0.42) fabricated by
compaction of alumina microspheres of diameter 20 nm (Kainourgiakis et al.,
2000). For the Vycor glass membrane the porosity is equal to 0.28 and the exper-
imental results used for comparison with the computed value correspond to
diffusion of He at 298 K (Makri et al., 1998).

The influence of porosity of the chalk structure on the diffusivity is pre-
sented in Figure 6. It is well known that the relation of diffusivity (or con-
ductivity) with the porosity can be described by the empirical equation,
originally proposed by Archie (1942).

D

D0
=Aεm (20)

where A and m empirical parameters. The value of A is usually near to
unity and the exponent m varies from 1 to 3 depending on the microgeom-
etry of the porous medium under consideration (Bekri et al., 2002; Glover,

Table II. Calculated and experimental Knudsen diffusivities of He in the γ -alumina mem-
brane (ε =0.42) and in porous Vycor glass (ε =0.28)

De (Knudsen) × 103 (cm2/s)

Simulation Experiment

Alumina membrane 7.7 8.0 (Papadopoulos, 1993)
Vycor 0.84 0.85 (Makri et al., 1998)

The temperatures for the diffusion in alumina and in Vycor are 308 K and 298 K respectively.

Table III. Calculated and reported molecular diffusivities for the γ -alumina membrane
(ε =0.42), for the porous Vycor glass (ε =0.28) and for the North Sea Chalk (ε =0.383)

De (molecular)/D0

Simulation Values from literature

Alumina membrane 0.25 0.25 (Kim and Torquato, 1992)
Vycor 0.062 0.064 (Lin et al., 1992)
North Sea Chalk 0.11 0.131 (Bekri et al., 2000)
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Figure 6. The diffusivity dependence on the porosity of reconstructed chalk matrix.

et al., 2000; Boving and Grathwohl, 2001) although some extreme values
like 7.56 have been reported (Rosanne et al., 2003). In the present study
least square fitting of the results in Figure 6 yields A=1.063 and m=2.35.
When two phases occupy the pore volume the relative diffusivity of an
inert tracer for a given degree of saturation for either phase, SkS , where k=α

or β, is determined through the relation:

Dk
R = D(SkS )

D(SkS =0)
(21)

The simple (but very interesting) case where the tracer has zero diffusivity in
one of the pore filling phases and finite to the other has been investigated. Fig-
ure 7 presents the corresponding relative molecular diffusivity of the sphere
pack structure versus the saturation of the wetting phase. In the same figure
computational results obtained by Martys (1999) for domains of non-overlap-
ping spheres and experimental data for unconsolidated sand from the work
of Leverett (1939) are also shown. It is observed that the diffusivity vanishes
before the zero-diffusivity (non-conducting) phase totally occupies the pore
space, indicating that below a given critical saturation the finite-diffusivity (con-
ducting) phase forms isolated clusters not contributing to the transport. The
critical saturation, Sk,cS , of the conducting phase below which the overall diffu-
sivity vanishes depends on the wettability of the conducting phase. When the
conducting phase is wetting Sα,cSS ∼0.15 while when it is non-wetting Sβ,cS ∼0.3.
Additionally, Figure 7 shows that the relative diffusivity is more influenced by
the degree of saturation when β-phase is the conducting one. The above lead to
the conclusion that β-phase is less capable, compared to α-phase, to form sam-
ple-spanning clusters prefering to distribute itself in isolated blobs. The same
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Figure 7. Relative diffusivity versus saturation of the α-phase for the sphere pack
domain. Fitting with Equation (22) is presented by the dot line (...) while the
dashed line (- - -) corresponds to fitting of Equation (23).
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Figure 8. Relative diffusivity versus saturation of the α-phase for the stochastically
reconstructed chalk. Fitting with Equation (22) is presented by the dot line (...)
while the dashed line (- - -) corresponds to fitting of Equation (23).

behavior can be deduced for the reconstructed chalk (Figure 8) although the
difference between the critical saturations is smaller in this case.

To correlate the relative diffusivity with the saturation of the finite-diffu-
sivity phase the following empirical relations are used:

D
(k)
R =BSn

kS (22)
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where B,n empirical parameters and

D
(k)
R =

(
SkS −Sk,cS

1−Sk,cS

)µ

(23)

where µ empirical parameter and Sk,cS the critical saturation of the conduct-
ing phase below which DR vanishes. By fitting Equation (22) to the cal-
culated relative diffusivity when α-phase is conducting, we obtain for the
sphere pack domain B = 1.022 and n = 2.082 while for the reconstructed
chalk B = 1.035 and n= 2.95. When finite diffusivity is assigned to the β-
phase, the fitting process yields for the sphere pack domain B = 1.01 and
n=2.41 but for the reconstructed chalk the fitting results are poor. The fit-
ting functions based on Equation (22) are also presented in Figure 7 and
Figure 8, where a clear deviation from the calculated DR values is observed
as Sk,cS is approached, since in the vicinity of Sk,cS the relative diffusivity is
expected to diverge. Better correlation, even close to Sk,cS is achieved using
Equation (23). For the random sphere pack the corresponding best-fitting
values are µ = 1.59 when α-phase is conducting and µ = 1.41 when diffu-
sion occurs only in β-phase. Turning to reconstructed chalk we obtain µ=
1.75 and µ=1.1 for diffusion in α- and β-phases respectively.

In Figure 8 an additional remark must be made. The computed relative
diffusivity values fall upon a single curve despite the significant variation
of γijγγ components. This demonstrates that the spatial distribution of the
phases is not affected significantly by the actual values of γijγγ involved (as
long as Equation (11) is satisfied), in agreement with the notion that under
equilibrium the fluid phases must occupy the same positions, regardless of
the absolute values of the individual interfacial energies.

The relative diffusivity in Knudsen regime can be investigated experi-
mentally by partially filling a mesoporous matrix with a stationary con-
densed phase and subsequently measuring the permeability of a second
non-adsorbable gas, which does not condense in the pores, at least under
the specific conditions. This type of experiment is known as gas relative
permeability, and it is usually performed at low pressures where the mean
free path of the gas molecules is much greater than the characteristic pore
length. In this way, intermolecular collisions are rare and the transport pro-
cess is determined primarily by the collisions between the molecules and
the solid walls. This mechanism resides within the Knudsen regime and
thus permeability reduces to Knudsen diffusivity.

Helium diffusivity was calculated for the case of binary domains represent-
ing the wet Vycor and alumina structures for various degrees of saturation, SαSS .
The effect of the nature of the adsorbate on its spatial distribution within the
mesoporous matrix and therefore on the transport properties of the system,
was investigated by considering different sets of interfacial energies. For each
of the resulting systems the relative diffusivity, DR (gas relative permeability)
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Figure 9. Simulated and experimental gas relative permeability curves of He for
Vycor porous glass partially filled with a condensable adsorbate phase. The solid
line is used only as a guide.

was determined by normalizing the effective He diffusivity computed for a cer-
tain SαSS value by the one for the dry material (SαSS = 0). The simulation results
are compared against experimental data obtained from the measurement of He
permeability in Vycor preadsorbed with CH2Br2.

For the case of the reconstructed Vycor domains, a good agreement
between simulation and experiment (Stefanopoulos et al., 2000) occurs (Fig-
ure 9), demonstrating that the suggested approach can reproduce adequately
the concentration profile of a condensable adsorbate in this specific type of
material. The simulation results manage to capture not only the overall decay
behaviour but also specific features of the experimental relative permeabil-
ity curve (e.g. prediction of the percolation threshold, Sα,cSS ). In addition, it
is interesting to point out again that despite the significant variation of γijγγ

components, always under the condition of complete wetting (γσβγγ >γσγγ
ασσ ), the

computed relative permeability values fall upon a single curve.

5. Conclusions

A combination of techniques for the reconstruction of the porous structure
and the study of transport properties in porous media is described. The
disordered pore structure of alumina membranes (in the form of random
sphere packs), Vycor porous glass and North Sea chalk, is represented by
three-dimensional binary images generated on the basis of statistical infor-
mation from the original material. The alumina membrane (random sphere
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pack) is generated by a standard ballistic deposition procedure, while the
chalk and the Vycor matrices were produced by a stochastic reconstruction
technique. Transport properties (Knudsen diffusivity, molecular diffusivity
and permeability) of the resulting 3-dimensional binary domains are then
computed and compared successfully to available data. Furthermore, spatial
distributions of two fluid phases filling the pore space (wetting and non-wet-
ting) are determined by the use of a simulated annealing algorithm based
on the assumption of thermodynamic equilibrium (global minimum of the
total interfacial energy). The effective diffusivities of the resulting multi-phase
domains are then computed (for the whole saturation range) and found to
be in good agreement with experimental measurements.
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Abstract. In this paper we present numerical results obtained with a pore-network model
for the drying of porous media that accounts for various processes at the pore scale.
These include mass transfer by advection and diffusion in the gas phase, viscous flow
in the liquid and gas phases and capillary effects at the liquid–gas interface. We extend
our work by studying the effect of capillarity-induced flow in macroscopic liquid films
that form at the pore walls as the liquid–gas interface recedes. A mathematical model
that accounts for the effect of films on the drying rates and phase distribution patterns
is presented. It is shown that film flow is a major transport mechanism in the drying of
porous materials, its effect being dominant when capillarity controls the process, which is
the case in typical applications.

Key words: drying, films, corner flow, pore network

1. Introduction

Drying of porous media is a subject of significant scientific and applied
interest. It is involved in the industrial drying of products such as food,
paper, textile, wood, ceramics, granular and building materials, etc. Drying
is also involved in distillation and vaporization processes associated with
soil remediation (Ho and Udell, 1995), as well as in the recovery of volatile
oil components from reservoirs by gas injection (Le Gallo et al., 1997).

In general, a single- or multi-component liquid phase gradually evap-
orates during drying and is removed from the porous structure via com-
bined heat and mass transfer. Traditional descriptions of the process rely

∗Author for correspondence: e-mail: stubos@ipta.demokritos.gr
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on phenomenological approaches, in which the porous medium is a contin-
uum, the dependent variables, like moisture content, are volume-averaged
quantities and the relation of fluxes to gradients is through empirical coeffi-
cients. Such approaches essentially ignore the effect of the pore microstruc-
ture which is of key importance for a quantitative understanding of the
process. Drying is a two phase flow process that involves many pore-scale
mechanisms, for example the motion of individual gas–liquid menisci resid-
ing in the pore space, diffusion in the gas phase (for a single-component
liquid) and the liquid phase (for a multi-component liquid), viscous flow in
both phases, capillarity and liquid flow through connected films. All these
mechanisms need to be accounted for at the pore scale.

Pore-network approaches are used extensively in recent years to model
various processes in porous materials such as drying, immiscible two- and
three-phase flow, solution gas-drive and many other (Li and Yortsos, 1995a;
Valavanides and Payatakes, 2001; van Dijke et al., 2001). Pore network
models describe processes at the pore- and pore-network scale and they
offer better understanding of the physics involved in these processes than
macroscopic continuum models that were used in the past.

Several studies used a pore-network approach to model drying in porous
media in recent years. Key to these approaches is the consideration of mass
transfer, elements of which were described by Li and Yortsos (1995b) and
Jia et al. (1999), among others. Various pore-network models with spe-
cific applications to drying were proposed originally by Nowicki et al.,
and more recently in a series of papers by Prat and co-workers. Nowicki
et al. (1992) presented a numerical simulation of the process at the pore-
network level without expanding further on the particular patterns and
regimes obtained or on the associated effects on drying rates. Prat’s stud-
ies represent the first attempt to characterize theoretically drying patterns
and their rate of change in porous structures. Prat (1995) studied drying
patterns assuming capillary control, neglecting viscous effects and consider-
ing mass transfer only by quasi-static diffusion. Laurindo and Prat (1996,
1998) also provided a macroscopic assessment of the importance of liquid
films that form at the pore walls as the liquid–gas interface recedes. Based
on percolation patterns (Wilkinson and Willemsen, 1983) and isothermal
conditions, they computed drying rates by solving a quasi-static diffusion
equation in the gas phase. Prat and Bouleux (1999) focused on diffusional
mass transfer and the effect of gravity on the front structure, but also com-
mented on viscous effects.

In earlier experiments using horizontal glass-bead packs (Shaw, 1987),
viscous forces were found to be important for explaining the formation
of an evaporating front (separating continuous liquid from gas) of a finite
size. More generally, we expect that advection and viscous effects will have
an impact on patterns and drying rates. Existing pore-network models



PORE-NETWORK MODELING OF ISOTHERMAL DRYING IN POROUS MEDIA 65

address mostly slow drying, controlled by capillarity and/or gravity and by
diffusion, ignoring advection and/or viscous effects. They also neglect the
role of liquid films in the process.

In the first part of this paper we present numerical results from a pore
network simulator for the drying of porous media that accounts for all
major mechanisms at the pore scale but ignores the effect of liquid films.
We study mechanisms that have not been accounted for before such as vis-
cous flow in both the gas and the liquid phases and the effect of viscous
flow on the movement of the liquid–gas interface. A detailed description of
this first part, including mathematical formulation, the algorithm and more
extensive results can be found in a recent publication of the present authors
(Yiotis et al., 2001). In the second part of the paper, the presence of liquid
films is considered. We model capillarity-driven liquid flow in a 2D pore
network and propose a mathematical model that accounts for viscous flow
in the liquid films as well as all the other mechanisms presented earlier.
This part is a detailed description of the study by Yiotis et al. (2003) (pub-
lished elsewhere as a brief report) and an extension of that work.

2. Pore-Network Modeling of Drying without the Presence of Liquid Films

We consider the isothermal drying of a fractured porous medium initially
saturated with a volatile liquid. The liquid is trapped in the pore space due
to capillary forces and may vaporize as a result of an injected purge gas
flowing primarily in the fractures. This process is applied to enhance oil
recovery from reservoirs (Stubos and Poulou, 1999).

The actual overall problem is quite complex, requiring the consideration
of the network of fractures and the medium continuum, gas flow and mass
transfer in the fracture network and the multi-dimensional mass transfer
from the medium continuum to the fracture network. For simplicity, we
consider a 2D square pore network with all but one boundaries imperme-
able to flow and mass transfer (Figure 1).

At any time during the process, evaporation of the liquid at the
liquid–gas interface leads to the receding of the liquid front (denoted as
evaporating interface (I) or percolation front (P) in Figure 1), leaving
behind disconnected clusters of liquid and liquid films, the size and loca-
tion of which change continuously with time. In general, three different
spatial regions can be identified:

(i) a far-field (from the fracture) region consisting of the initial liquid (con-
tinuous liquid cluster, CC);

(ii) a region where the liquid phase is disconnected and consists of individ-
ual liquid clusters of variable sizes (disconnected clusters, DC); and

(iii) a near-field (to the fracture) region consisting primarily of the contin-
uous gas phase, with the liquid phase in the form of pendular rings,
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Figure 1. Schematic representation of a drying process in a 2D matrix driven by the
injection of a purge gas through a fracture along the upper size of the matrix.

corner films or thin films on the solid surface, the thickness of which
is progressively reduced towards a “totally dry” regime.

In Figure 1, the fracture running along the upper side of the 2D net-
work is represented as a 1D chain of pore bodies and throats. The two
ends of the fracture are open to flow and mass transfer. The network con-
sists of spherical pore bodies connected through cylindrical pore throats.
Pore bodies serve as containers for either of the two phases and it is
assumed that they have no capillary or flow resistance. Therefore, when a
liquid–gas interface lies within a pore body, the pressures of both phases
are taken to be equal and the interface recedes without any capillary forces
restraining its movement. The throats serve as conductors of the flow and
mass transfer and they act as capillary barriers.

Initially the network is saturated by a single-component liquid (hexane).
The fracture, however, contains only air at the beginning of the drying pro-
cess. A purge gas (air) is injected at a constant volumetric rate from one
end of the fracture. The concentration of the liquid component vapors is
assumed to be zero at the entrance and the exit of the fracture at all times.
The gas injection results to a pressure gradient along the fracture, which
eventually develops inside the pore network as well. As a result of the gas
flow, the liquid evaporates initially at the interface pore throats along the
fracture. Vapor flows by advection and diffusion to the exit of the fracture.

Mass transfer of the vapor in the gas phase obeys the convection-diffu-
sion equation

∂C

∂t
+u ·∇C =D∇2C (1)
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where C is the vapor concentration, D is the diffusion coefficient and u is
the gas-phase velocity vector.

Both in the liquid and gas phases the fluxes Q between adjacent pores
are computed by Poiseuille-law type flow resistances, where the viscosity µ

is taken constant

Qij =
(

PiPP −PjP

�

)
πr4

ij

8µ
(2)∑

j

Qij =0 (3)

where P is the pressure at the center of each pore, rij is the throat radius
between pores i and j and � is the distance between pore centers.

Liquid menisci that reside at interface throats recede due to evapora-
tion of the liquid and the gas invades the adjacent liquid pores. We assume
that the menisci recede instantly because throats have no volume. At every
liquid cluster, at least one liquid pore empties at any time during drying
while all other liquid menisci may remain stationary due to capillary forces.
A pore is invaded when the pressure difference across its throats exceeds
the capillary pressure threshold 2γ /r, where γ is the surface tension. If the
pressure difference is not sufficiently large and all menisci of a cluster are
pinned then the pore where the pressure difference is closer to its throats’
capillary pressure threshold is invaded.

The problem is mainly characterized by two dimensionless parameters,
a diffusion-based capillary number, CaD, and a Peclet number, Pe, in addi-
tion to the various geometrical parameters of the pore network

CaD = DµlCe

γ �ρl
(4)

Pe= VfVV �

d
(5)

where Ce is the equilibrium concentration of the vapor, VfVV is the mean
velocity of the purge gas in the fracture and the liquid phase is denoted
by subscript l. The capillary number expresses the ratio of viscous to cap-
illary forces, based on a diffusion-driven velocity, while the Peclet number
expresses the ratio of inertial to diffusion forces. We note that liquid films
are neglected in this formulation. The details of the algorithm followed for
the numerical solution of the problem can be found in Yiotis et al. (2001).

We present here two runs on a 50 × 50 pore network that are charac-
teristic of the two limiting regimes that develop in this process. In the first
run the gas flow rate through the fracture is very low and the process is
characterized by a very low value for the Peclet number (Pe = 0.66 – run
15) (Figures 2 and 4). In this case capillary forces are dominant and mass
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transfer occurs primarily by diffusion. In the second run the purge gas is
injected at a very high flow rate leading to a very high value of the Peclet
number (Pe = 331 – run 4) (Figures 3 and 5). In this case viscous forces
dominate at the liquid–gas interface while mass transfer occurs primarily
by advection.

In the low Peclet number case, viscous forces are not sufficiently strong
and the capillary pressure variation is negligible at the perimeter of liquid
clusters. Assuming the absence of liquid films that could provide hydrau-
lic conductivity between macroscopically disconnected liquid clusters (DCs)
and the continuous liquid cluster (CC), every cluster takes the pattern of

Figure 2. Phase distribution patterns for a low Peclet number (Pe = 0.66 – run 15).
The process follows Invasion Percolation rules at all times. Air is white and liquid
hexane is black.

Figure 3. Phase distribution patterns for a high Peclet number (Pe = 331 – run 4).
At early stages the process follows Invasion Percolation in a Stabilizing Gradient
rules. Later on patterns become Invasion Percolation-like. Air is white and liquid
hexane is black.



PORE-NETWORK MODELING OF ISOTHERMAL DRYING IN POROUS MEDIA 69

Figure 4. Concentration contours for a low Peclet number case (Pe = 0.66 – run 15).
The snapshots correspond to the phase distribution patterns shown in Figure 2.
Darker colors indicate lower vapor concentration.

Figure 5. Concentration contours for the high Peclet number case (Pe = 331 – run
4). The snapshots correspond to the phase distribution patterns shown in Figure 3.
Darker colors indicate lower vapor concentration.

Invasion Percolation (IP), in which the next throat to be invaded by the gas
is that with the smallest capillary threshold (here, the one with the largest
size) among all perimeter throats of that cluster (Figure 2). In the related
study of Li and Yortsos (1995a, b) this process was termed local percola-
tion.

Clusters closer to the open boundary are subject to a faster evaporation,
compared to those further away, and are emptied faster (Figure 4). The end
result is the development of gradients in the size of the isolated liquid clus-
ters, with clusters closer to the fracture having smaller size. These gradients
reflect mass transfer, rather than viscous effects. Clearly, however, the over-
all pattern would be a function of the drying rates, namely of the value of



70 A. G. YIOTIS ET AL.

the Pe. We must note that under this regime of local percolation, different
clusters may have different-size throats being invaded at the same time.

In the high Peclet number case the process is controlled by viscous
forces and capillarity is negligible at early times (Figure 3). Pore throats
closer to the inlet of the fracture, where the gas is injected, are subject to
stronger viscous effects than pore throats away form the fracture. Phase dis-
tribution patterns deviate substantially from IP and almost follow a piston-
like displacement (PD). The receding of the CC has some of the properties
of IPSG in a fracture-matrix system. Under these conditions, the capillary
resistance of a throat is negligible, and the pattern is exclusively determined
by mass transfer considerations, much like in the dissolution of a solid. The
rate of generation of DCs and their size are smaller and the liquid phase
consists mostly of a CC. As the liquid–gas interface recedes in the pore
network away from the fracture, viscous forces become weaker and the pro-
cess gradually becomes of IP type, namely controlled by capillarity.

Concentration contours for these two limiting cases are shown in
Figure 4 for the low Peclet number case and Figure 5 for the high Peclet
number case. The concentration contours are smoother in the first case
because mass transfer is controlled by diffusion. In the second case, the
concentration contours are very steep close the liquid–gas interface and the
vapor concentration is very low close to the fracture.

Typical drying curves for the process are presented in Figure 6. The high
Peclet number case (Pe = 331) shows a clear constant rate period (CRP) for
the drying rate that lasts approximately as long the CC remains in contact
with the fracture. This CRP is much shorter for lower values of the Peclet
number (i.e. Pe = 132) because the CC recedes form the fracture sooner
(with respect to the liquid recovery volume). However, the overall drying
rate is much shorter in the high Peclet number case as expected. More
results and discussion including cases of intermediate Peclet numbers are
shown in Yiotis et al. (2001).

Figure 6. Drying curves for various Peclet numbers.
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3. The Effect of Liquid Films

In this section we study the role of wetting films in the context of drying.
The objective is to determine if film flows can be a significant mechanism
of drying as purported to be in the experiments cited below. A 2D pore-
network model, very similar to the one described above, is used for the rep-
resentation of the porous medium. In this case however we consider that
the velocity of the purge gas in the fracture is very low and that viscous
forces due to flow in the gas phase on the liquid–gas interface are negligi-
ble. Our focus is on the effect of viscous flow through the liquid films that
develop at the corners of the pore network.

Flow through macroscopic films has been analyzed in the context of
imbibition by many authors (Lenormand and Zarcone, 1984; Lenormand,
1992; Dullien et al., 1989; Constantinides and Payatakes, 2000). Lenor-
mand (1992) described in detail the expected mechanisms due to film flow
in imbibition. Dullien et al. (1989) reported flow along surface microchan-
nels that provide hydraulic connectivity between macroscopically isolated
liquid regions during immiscible displacement in packed glass beads with
rough surfaces. This was found to be negligible in the case of smooth
glass beads. Dillard and Blunt (2000) examined mass transfer from liquid
films in dissolution processes, while Blunt et al. (2002) presented a detailed
review of flow through films in the context of three-phase flow.

In the context of drying, past experimental work has emphasized the
existence and speculated on the role of film flow (Shaw, 1987; Laurindo
and Prat, 1998; Tsimpanogiannis et al., 1999). In a series of experiments
Shaw (1987) found that, under comparable conditions, the drying front
in a cell containing packed beads moved one order of magnitude faster
than when the cell was empty. Shaw attributed this “unorthodox” result
to liquid counterflow through films which form along particle contacts,
and argued that it is the dominant mechanism for the drying of porous
materials. Laurindo and Prat (1998) performed drying experiments in two-
dimensional etched-glass micromodels and compared their results with pre-
dictions from a pore-network simulator, which did not contain films. The
experimental rates were found to be about six times higher than the numer-
ical. These authors also attributed the flow enhancement to wetting liquid
films and presented a simplified model for the associated transport mecha-
nism. Liquid films were described in the form of a bundle of microcapillar-
ies on the pore surface. However, no quantitative models for film flow were
developed in these studies.

3.1. problem formulation

We consider the isothermal evaporation of a single-component liquid in a
porous medium one side of which is open to the environment. The latter
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is kept dry through the flow of a purge gas, while all other three sides are
impermeable to fluid flow and mass transfer. The porous medium is again
represented by a 2D square lattice of pores connected through throats with
square cross-section. The radii of the throats, hence the corresponding cap-
illary thresholds, are distributed randomly. In the presence of films, at any
stage of drying, the pore space can be characterized by three kinds of pores
(close-ups in Figure 7): pores L, fully occupied by liquid, pores G, fully
occupied by gas, and pores F, occupied by gas but also containing liquid
films. The existence of pores of type F is the distinguishing feature of this
work, compared to previous (Prat, 1995; Laurindo and Prat, 1998; Prat
and Bouleux, 1999; Tsimpanogiannis et al., 1999; Yiotis et al., 2001, Plo-
urde and Prat, 2003). Our focus is on thick films, e.g. which form in the
corners of polygonal pores, and where flow is driven by capillary pressure
gradients. Here, we will account for viscous effects both in the films (F
pores), as well as in the continuous liquid phase (region L). Mass trans-
fer in the gas phase is assumed only by diffusion, which is usually valid in
drying problems (Prat, 1995; Laurindo and Prat, 1996, 1998).

Due to the applied concentration gradients, the liquid evaporates along
the liquid–gas interfaces and the liquid vapors are transferred by diffusion
in the gas phase towards the dry end. During this process, the macroscopic
gas–liquid interfaces (denoted by P in Figure 7) recede, both in the contin-
uous and the discontinuous clusters.

3.2. liquid flow through macroscopic films in a single capillary

We first study the case of long capillary with square cross-section where
the liquid meniscus has just receded leaving behind liquid films at the four
corners of the capillary (Figure 8). The thickness of each liquid film can

Figure 7. Schematic of liquid and gas phase patterns, indicating the various types
of pores in drying used in this study.
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Figure 8. Liquid films along the corners of a capillary with square cross-section.

be parameterized by its radius of curvature r, which is a function of time
and distance. We assume that all four films have the same thickness at any
cross-section along the capillary. Assuming local capillary equilibrium at
the film interface, we have

PcPP =PgPP −PlPP = γ

r
(6)

By neglecting variations in the gas pressure, we can take without loss, PgPP =
0. Then, the pressure in the film, PlPP , is

PlPP =−γ

r
(7)

According to Equation (7) the liquid pressure in the film is inversely
proportional to its thickness. Any gradient in the film thickness along the
capillary results in a pressure gradient along the liquid films. A capillarity-
induced flow develops along the film from the cross-section where the film
is thicker (Figure 9(a)) towards the cross-section where the film is thinner
(Figure 9(b)).

Several authors (Lenormand and Zarcone, 1984; Ransohoff and Radke,
1988; Zhou et al., 1997) have studied film flow along the corners of long
smooth capillaries with polygonal cross-sections. Assuming uni-directional

Figure 9. Evolution of the film radius that develops at the corners of a capillary
with square cross-section. Cross-section (a) is closer to the bulk liquid phase and
the films are thicker than in cross-section (b).



74 A. G. YIOTIS ET AL.

(direction x) viscous flow, a Poiseuille-type law applies in these geometries,

Qx =−αr4

µl

∂PlPP

∂x
(8)

where Qx is the volumetric flow rate and α is a dimensionless geometric
factor. By combining Equations (7) and (8), we obtain

Qx =−αγ r2

µl

∂r

∂x
(9)

Parameter α was determined previously for various model geometries
(Ransohoff and Radke, 1988, Dong and Chatzis, 1995). The latter authors
studied film flow in one corner of a capillary with a polygonal cross-section
and found the following expression

α = C∗

β
where C∗ =4

(
cos θ cos(π/4+ θ)

sin(π/4)
− (π/4− θ)

)
(10)

the shape factor C∗ being expressed in terms of the contact angle θ . The
dimensionless resistance β was earlier calculated by Ransohoff and Radke
(1988). In the case of a capillary with square cross-section and a perfect
wetting liquid (θ =0) we have C∗ =4−π , β =93.5 and α =0.0088. We note
that parameter α is of order 10−3.

We consider the mass balance for the evaporating liquid in the capillary

(4−π)
∂r2

∂t
=−∂Qx

∂x
−Qev (11)

where Qev is the evaporation rate. Assuming a simple diffusion model we
take

Qev =
(

2πrD

ρl

)
(Ce −C)

r0
(12)

where C is the average gas-phase mass concentration (mass per unit vol-
ume) of the evaporating liquid and r0 is the radius of curvature where the
films emanate. The particular details of film evaporation, particularly near
the tip of the film are very complex. Equation (12) is only a first-order
approximation, and the value of D acts as a lumped parameter to account
for many of the neglected phenomena.

Combining Equations (9), (11) and (12) leads to

∂r

∂t
= 2αγ

(4−π)µl

[
r
∂2r

∂x2
+2
(

∂r

∂x

)2
]

− πD

(4−π)ρl

(Ce −C)

r0
(13)
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For dimensionless notation, we introduce the diffusive time τ = Dt

r2
0

, a
rescaled radius of curvature, ρ = r

r0
, a rescaled axial distance, ξ = x

r0
, and

a dimensionless concentration ζ = C
Ce

based on which we write(
(4−π)ρl

πCe

)
CaF

∂ρ

∂τ
=ρ

∂2ρ

∂ξ 2
+2
(

∂ρ

∂ξ

)2

+CaF (ζ −1) (14)

Here we introduced the capillary number in the form CaF = πDCe2µlβ

ρlC∗r0γ
. As

in other mass-transfer driven processes, this capillary number expresses the
ratio of the viscous forces due to flow driven by mass transfer to capillary
forces.

The mass balance in the gas phase reads

∂C

∂t
=D

∂2C

∂x2
+ 1

2
πrD

r3
0

(Ce −C) (15)

and in dimensionless notation,

∂ζ

∂τ
= ∂2ζ

∂ξ 2
+ 1

2
πρ(1− ζ ) (16)

Equations (14) and (16) are coupled and solved for the dimensionless film
thickness ρ and the dimensionless concentration ζ as a function of time τ

and capillary length ξ with the appropriate initial and boundary conditions.
We find that for realistic values of the capillary number CaF , a steady-
state profile for ρ and ζ is quickly established (Figure 10). This is consis-
tent with other diffusion-controlled problems in porous media (Witten and
Sanders, 1981; Peitgen and Saupe, 1988). In addition, the restriction of the
evaporation to a narrow region is a consequence of the exponential decay
of the concentration: Due to the confined pore geometry, the gas phase
becomes rapidly saturated, limiting evaporation to a narrow region near the
film tips, where the liquid flux is supplied by capillarity-driven film flow
(Yiotis et al., 2003).

Given that ζ =1 along the film region and that a steady-state profile for
ρ is quickly established, Equation (14) can be simplified as follows

ρ
∂2ρ

∂ξ 2
+2
(

∂ρ

∂ξ

)2

=0⇒ ∂2ρ3

∂ξ 2
=0 (17)

In the dry region, between the film tip and the open end of the capillary,
the film thickness is ρ = 0 and liquid vapors are transferred by diffusion
towards the open end of the capillary. Equation (16) becomes

∂2ζ

∂ξ 2
=0 (18)
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Figure 10. Steady-state profiles for the dimensionless film thickness ρ and vapor
concentration ζ along a single capillary. The film emanates at ξ =0.

We note that Equations (17) and (18) apply along the film and in the
totally dry part of the capillary, respectively. The mass balance at the film
tip reads

π

6CaF

∂ρ3

∂ξ
= ∂ζ

∂ξ
and ρ =0, ζ =1 (19)

Given that the location of film tip is unknown, we consider a simple trans-
formation that leads to a rather straightforward solution.


≡ ρ3 + ζCaF

1+CaF

(20)

Function 
 satisfies Equations (17) and (18) in their domains and is con-
tinuous at the film tip. Equations (17) and (18) can be replaced by

∂2


∂ξ 2
=0 (21)

The location of the film tip is calculated from the solution of Equation (21)
by applying the appropriate boundary conditions at the beginning of the
film and the open end of the capillary. Note that in our model the distance
of the film tip from the open end of the capillary actually determines the
effect of films in the drying process. The closer is the film tip to the open
end of the capillary the higher is the drying rate.

3.3. drying through macroscopic films in a pore network

The single-capillary physics described above are also expected to apply to
the general problem, where films exist in a network of pores connected
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through capillaries similar to the one considered above. As described in
Section 3.1, the gas region of such a network contains F pores adjacent
to capillaries that contain films (film region) and G pores adjacent to dry
capillaries (dry region) (Figure 7). Given that Equation (17) applies in the
film region of a single capillary, we can assume that the film thickness in
the film region of a 2D pore network is described by the following Laplace
equation

∇2ρ3 =0 (22)

Assuming a quasi-steady state in the concentration in dry region and
evaporation occurring where the films terminate, namely at the interface
I between pores F and G, the vapor concentration in the dry region is
described by the following Laplace equation

∇2ζ =0 (23)

The mass balance at the film tips where the liquid evaporates (interface I
in Figure 7) reads

π

6CaF

∂ρ3

∂n
= ∂ζ

∂n
and ρ =0, ζ =1 (24)

The film region is saturated with liquid vapors, ζ = 1, and the film thick-
ness is zero in the dry region, ρ =1.

Assuming that we know the location of the percolation front P at any
time, we can solve the full problem using the transformation proposed in
Section 3.2. Equations (22) and (23) become

∇2
=0(in regions G and F) (25)

We assume that the film thickness ρ is approximately constant at the per-
colation front P


=1 at the percolation front P (26)

and that drying is driven by imposing ζ =0 at the open side of the network


=0 at the open end of the network (27)

Using the above transformation, the solution of the Laplace equation (25)
can be used to determine the profiles of the film radius and the concentra-
tion, the rates of drying through each film, as well as the location of the
interface I, where the films terminate and evaporation occurs. Interface I is
located simply as the position where


= CaF

CaF +1
(28)
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The location of the percolation front P is determined by solving for the liq-
uid fluxes in the liquid phase and films, simultaneously. In all pores occu-
pied fully by liquid (pores of type L), the viscous flow is described by
Poiseuille-type expressions. For these pores, the liquid mass balance at any
pore i reads in dimensionless notation∑

j

(pi −pj)σ
4
ijσ =0 (29)

where j denotes a neighboring pore, σ is the normalized pore radius, and
we have normalized pressure drops with the characteristic value P ∗ = γ

r0
.

For pores at the perimeter P , however, the mass balance is different and
we need to further distinguish two cases.

If the pressure difference at a pore that belongs to the percolation front
is not sufficiently large for the gas phase in the neighboring pore to pene-
trate the connecting throat, the meniscus remains stationary. Because of the
films, however, there is always net liquid outflow from the liquid pore. The
mass balance at every such pore at the percolation front reads

∑
j

(pP −pj)σ
4
ijσ =−32α

3π
(1+CaF )

∑
F

∂


∂ξ

∣∣∣∣∣∣∣∣∣∣
P

(30)

where the first sum denotes the liquid arriving at the perimeter pore P and
the last sum denotes the contributions from the films in pores of type F

draining the perimeter pore.
If the capillary pressure at a perimeter throat is sufficiently high, namely

if the following condition is satisfied

−pP >
1
σijσ

(31)

the adjacent pore is penetrated by the gas phase. As in Yiotis et al. (2001),
in such pores we assume that the capillary pressure is zero. Then, the cor-
responding mass balance reads in dimensionless notation

∑
j

pjσ
4
ijσ − 32α

3π
(1+CaF )

∑
F

∂


∂ξ

∣∣∣∣∣∣∣∣∣∣
P

= 8µlQP

πr2
0 γ

(32)

where we have taken pP =0. QP is the flow rate at which the pore empties.
Equations (30) and (32) are solved for the pressure field in the liquid

phase and the flow rates QP that penetrated pores empty given the solu-
tion of the Laplace equation (25) in the gas phase that determines the liq-
uid fluxes through the liquid films at the perimeter of the liquid clusters.
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The gas saturation at every pore that has been penetrated by the gas
phase is calculated explicitly in time

�Si = �t

VPV
·QP (33)

where VPV is the pore volume, �t is the time step and QP is assumed con-
stant during the time step.

The algorithm used in our simulator is based on the work by Yiotis
et al. (2001) and can be summurized as follows: At any given time, pores
have one of the designations L, F or G (Figure 7). The L pores can be part
of the original liquid cluster (CC) or of the disconnected finite-size clus-
ters (DC). At every time step, the overall rate of evaporation from each
of the liquid clusters is evaluated using the Laplace equation (25). Pres-
sure fields in the liquid clusters are calculated with Equations (30) and (32)
and Partly Empty pores at the percolation front are emptied according to
Equation (30). The time step is selected such that it equals the minimum
time required to empty completely any of the available Partly Empty pores.
If at the current time no Partly Empty pores are available to any (or all) of
the clusters (namely if all pores are of the CE type, Yiotis et al., 2001), the
throat with the smallest capillary threshold in the perimeter of any given
cluster is invaded next, at which time the invaded pore becomes of the PE
type. To determine this throat, the liquid pressure is lowered uniformly in
space inside the cluster, until the capillary pressure exceeds for the first time
the smallest capillary threshold. Invasion must occur, since due to evapora-
tion there is a continuous loss of mass from the liquid clusters through film
flow. Then, the interfaces are updated, the equation for 
 is solved again,
the rates of flow through the film obtained and the process continues. All
calculations are done explicitly in time. The fields for the pressure and 


are computed using Successive Over-Relaxation.

3.4. numerical results and discussion

We performed a series of numerical simulations in 100×100 pore networks
for different values of CaF to study the effect of liquid films on the extent
of the liquid films, the phase distribution patterns and drying rates. The
pore network consists of spherical pores connected through throats with
square cross-section. All pores have the same radius 500 µm while the size
of the throats follows a random distribution between 170 and 270 µm. We
assume that the film flow occurs practically only in the throats that also act
as capillary barriers. Pores serve as containers of either of the two phases
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3.4.1. Phase Distribution Patterns
Equations (30) and (32) show that the pressure drop at the percolation
front P (at the perimeter of liquid clusters) scales as (1 + CaF ). For val-
ues of CaF less than order of 1 (which is the typical case in most physical
problems) we expect that the effect of the capillary number on the phase
distribution patterns is negligible. In that range, phase distribution patterns
follow Invasion Percolation rules. The left panel in Figure 11 shows two
snapshots of the percolation front for CaF = 10−4 that correspond to IP
patterns.

As the capillary number increases, the patterns eventually depart from
IP, particularly at the early times of the process. However, Figure 11 shows
that quite large capillary number values are needed for a noticeable effect
on the pattern. For example, the middle panel of Figure 11 shows that even
for CaF = 1 the pattern is almost identical to IP, except for a few small
differences at the start of the process. It takes larger values, of the order
of CaF = 10 (right panel of Figure 11), for the effect to be pronounced.
Then, the pressure drop at the front becomes relatively significant, and the
pattern exhibits the expected behavior of viscous “stabilization” (Tsimpan-
ogiannis et al., 1999), as Invasion Percolation in a Stabilizing Gradient
(IPSG)).

As drying progresses, the recovery rate diminishes due to the receding
of the percolation front. In the large CaF case, this results to a transi-
tion from IPSG patterns to capillary-dominated IP patterns. It follows that
under typical conditions and for all practical purposes, the drying front can
be accurately described as an IP front. This is in contrast to the behavior
of external drainage, where viscous effects on the pattern become important
for values of the capillary number as low as 10−3.

3.4.2. Extent of Liquid Films
The film properties are determined from the solution of the Laplace equa-
tion (25) for 
. Figure 12 shows a snapshot of the iso-potential contours
of 
 around the percolation front of the liquid clusters. The patterns reflect
the solution of the Laplace equation around a fractal object, hence follow-
ing the fractal features at distances close to it, but becoming smooth at
a small distance away. Because of the assumed boundary condition 
= 1
at the cluster perimeter, all clusters act as sinks, therefore there is no fluid
flow from one cluster to another.

For low values of CaF , which is typically the case, the films extend all
the way to the open boundary (where 
=0). By contrast, when CaF is of
order 1, the films are short and the film tips (evaporation interface I) reside
closer to the liquid cluster interface P (where 
=1).

Figure 13 shows the evolution of the film radius profiles for two values
of CaF . The film radius has the approximate profile ρ ∝ξ 1/3 where ξ is the
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Figure 11. Two snapshots of the drying front for Ca = 10−4 (left), Ca = 1 (middle)
and Ca =10 (right). Liquid-occupied pores are in red.

distance from the front, and which corresponds to the solution of Equa-
tion (25), as discussed above. The location of the film tips (interface I) is
the contour with the value 
 = CaF

CaF +1 . Figure 13 shows that at low CaF

(left panel), the films extend all the way to the open end, which is the place
where practically all evaporation occurs. When CaF is of order 1 or larger,
however, the films are shorter (right panel in Figure 13), and lead to the
formation of a completely dry region G, the extent of which increases with

Figure 12. Iso-contours of the solution of the Laplace equation around the liquid
clusters, for Ca =0.5, with boundary conditions 
=1 at the front and 
=0 at the
open end.
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time. Even though the film region is short and a fully-dry region has devel-
oped, the drying front is still of the IP type (as in the left panel). In the
O(1) case, the film tips mimic the protuberances of the drying front, being
closer to the open boundary if associated with a corresponding protuber-
ance. Films that end at such points will have a larger drying rate, since the
gradient of 
 (and of the concentration) there is larger, (Figure 14).

In the typical problem, where the capillary number is generally less than
O(1), we anticipate the existence of long films that drain liquid through the
above “wicking” action, and all the way to the open end where it subse-
quently evaporates. For instance, in the experiments in Laurindo and Prat
(1996, 1998) we have made the rough estimate CaF ∼ 10−4 suggesting that
liquid films (film region F in Figure 7) likely existed in all gas-invaded
pores in the experiments and that a completely dry region (gas region G
in Figure 7) did not develop, (Figure 13, left panel).

3.4.3. Drying Curves
Based on the analysis in Section 3.3 the overall drying rate at the open side
of the pore network is

Figure 13. Profiles of the rescaled film radii for CaF =10−4 (left) and CaF =1 (right)
at two different stages of the process. Liquid clusters are in black, the fully dry
region is in blue.
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Figure 14. Drying curves calculated with a numerical model that does not account
for the effect of liquid films and a model that accounts for liquid films for CaF =
0.1 under comparable conditions.

F = DCer
2
t

�

1+CaF

CaF

FDF (34)

where rt is the average throat radius along the open boundary, FDF =
− ∫

a0

∂

∂n

da is the dimensionless drying rate and subscript 0 denotes the open

boundary. The dimensionless rate FDF depends on the geometry of the
porous medium.

Equation (34) shows that the drying rate scales as CaF +1
CaF

. The drying
rate increases as CaF decreases and the film tips are closer to the open
boundary. At smaller values of CaF , capillarity helps to transport liquid
over larger distances and to keep the film extent longer. This is favored by
larger interfacial tension, larger values of the film thickness r0 at the perco-
lation front (where films emanate) and smaller viscosity and effective diffu-
sivity. It is readily shown that in the region of small CaF , the drying rate
scales as

F ∼ γ r0

µl
(35)

showing the dominant effect of capillarity in this region. Conversely, at val-
ues of CaF of order 1 and larger, the film extent is smaller, films do not
contribute substantially, and the drying rates are smaller. There we have
roughly,

F ∼ Dr2
t Ce

�
(36)

All previous pore-network models (Prat, 1995; Laurindo and Prat, 1996,
1998; Prat and Bouleux, 1999; Yiotis et al., 2001) correspond effectively to
such condition.
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Figure 14 shows a drying curve calculated using a pore-network model
that does not account for liquid films and a drying curve calculated with
our model for CaF =0.1 under comparable conditions. The presence of liq-
uid films increases the drying rate by approximately a factor of 10 even for
a relatively large value of CaF .

4. Conclusions

In this work, we first presented results from a 2D pore-network model
for isothermal drying in porous media that includes mechanisms like mass
transfer by advection and diffusion in the gas phase, viscous flow in liquid
and gas phases and capillary effects at the gas–liquid menisci in the pore
throats. In a further step, we proceeded to study the effect of capillarity-
driven flow in macroscopic liquid films during the drying process. A math-
ematical model that accounts for viscous flow both through the liquid films
and the bulk liquid phase was developed. Using a novel transformation, it
was found that film flow is a major transport mechanism, its effect being
dominant when capillarity controls the process, which is the case in typical
applications.

We have shown that capillarity-induced flow through the films that form
in cavities at the pore walls is favored by larger interfacial tension, larger
values of the film thickness at the percolation front (where the films ema-
nate) and smaller liquid viscosity. In typical drying problem the extent of
the liquid films is approximately proportional to the surface tension. The
liquid is transferred from the liquid clusters through the films towards the
film tips where it evaporates. The longer is the film region the closer to the
open boundary the liquid is transferred and the higher is the drying rate.
Our results are in qualitative agreement with previous experimental work
which shows accelerated drying when films contribute to flow.

The approach we followed was subject to several simplifying assump-
tions that may preclude the precise quantitative comparison with exper-
imental results. However, we believe that we have provided a good first
approximation to the complicated problem of film flow in drying processes.
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Abstract. A new macroscale model of a two-phase flow in porous media is suggested. It
takes into consideration a typical configuration of phase distribution within pores in the
form of a repetitive field of mobile menisci. These phase interfaces give rise to the appear-
ance of a new term in the momentum balance equation, which describes a vectorial field
of capillary forces. To derive the model, a phenomenological approach is developed, based
on introducing a special continuum called the Meniscus-continuum. Its properties, such as
a unique flow velocity, an averaged viscosity, a compensation mechanism and a duplica-
tion mechanism, are derived from a microscale analysis. The closure relations to the phe-
nomenological model are obtained from a theoretical model of stochastic meniscus stream
and from numerical simulations based on network models of porous media. The obtained
transport equation remains hyperbolic even if the capillary forces are dominated, in con-
trast to the classic model which is parabolic. For the case of one space dimension, the
analytical solutions are obtained, which manifest non-classical effects as double displace-
ment fronts or counter-current fronts.

Key words: capillary, two-phase flow, meniscus, hyperbolic equation, displacement, flow
model, shocks, non-equilibrium.

1. Introduction

1.1. two-phase structures in porous media

At a fixed phase saturation, a two-phase flow through porous media may
be characterized by various geometrical structures of phase distribution
within the pore space. The basic examples of phase structures are: (a) a
film: both the phases are present in each pore and are separated by a large-
scale interface, whose normal vector is perpendicular, in average, to the
mean flow direction in each channel; (b) a meniscus structure: both the
phases are present in a number of pores and are separated by an inter-
face of a pore scale; (c) a channel structure: each phase occupies its own

∗Author for correspondence: e-mail: michel.panfilov@ensg.inpl-nancy.fr
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pores forming continuous channels crossing the overall medium; the inter-
face between phases is absent or minimal. The basic difference between
these structures is the form and the dimension of the interface.

Therefore, a phase distribution in a porous medium is characterized by
two (at least) macroscale parameters: the phase saturation s and a config-
uration parameter η, responsible for the interior structure of phase distri-
bution. In general, the traditional parameters used to describe two-phase
flow as the relative permeabilities and capillary pressure should be the func-
tions of two (at least) variables (s, η). In other words, the parameters of
two-phase flow should be different for various phase structures. Moreover,
it is natural to expect that the mathematical type of the flow model may
be different for various phase structures, not only the model parameters.

In this situation, the question which follows directly from this short
analysis is about to what extent the classic Buckley–Leverett model may be
used to describe the two-phase displacement in porous media, the process
which has a high importance in petroleum engineering and groundwater
theory. Indeed, the classic model is based on the assumption of a capil-
lary equilibrium, which can really be reached only after the displacement
is already finished and each phase flows inside its own channel sub-system.
At the same time, the displacement process, characterized by a meniscus
structure, is highly non-stationary, with a fast and high variation of the
local saturation in time, so it is far away from any equilibrium state.

In the present paper we develop a new entirely closed model of two-
phase flow through porous media, developed especially for the meniscus
structure. This model is qualitatively different from all the other models
suggested for two-phase flows. The basic difference is in the description of
the interface movement and capillary phenomena.

The comprehension of the fact that the classic model is probably not
sufficient to describe fluid displacements in porous media is manifested in
a number of attempts to develop other models, based on other principles.
Among these attempts we distinguish three main approaches: (i) introduc-
tion of phase interaction across the interface in the form of cross-terms
(cross-term model); (ii) introduction of non-equilibrium (“dynamic”) effects
(dynamic models); (iii) introduction of the fluid–fluid interface as an inde-
pendent third phase (model with an interface transport).

1.2. model with cross terms

The model with cross terms was initially suggested independently in Kur-
banov (1968), Raats and Klute (1968) and Shvidler (1961). According to
this model, the phase velocity is proportional both to the pressure gradient
in this phase and to the pressure gradient in the second phase, which reflects
an interaction between the phases across the interfaces. Later, this model was
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developed within a phenomenological approach (Marle, 1982, Marinbah and
Lusternik, 1985, Thigpen and Berryman, 1985, Barci et al., 1990, Kalaydjian,
1990). In Whitaker (1986) and Quintard and Whitaker (1988) this model
was obtained using the volume averaging method applied to the Stokes two-
phase flow. A similar model was derived from the Stokes equations, using
the asymptotic homogenization method in Auriault and Sanchez-Palencia
(1986). In Whitaker (1986), Quintard and Whitaker (1988) and Auriault and
Sanchez-Palencia (1986) the film phase structure was accepted: each phase
was continuous, both phases were present in each porous channel. The form
of the cross relative permeabilities was obtained by numerical simulations
of the film structure in a single pore in Kalaydjian (1990), by a laboratory
experiment in Kalaydjian et al. (1989), Zarcone and Lenormand (1994) and
Rose (1989), and by the lattice-gas microscale simulations of Stokes flow in
a representative elementary volume Rothman (1989).

The cross-term model reflects such a viscous interaction between two
stratified fluids, when one fluid moving tangentially to the interface cur-
ries the other fluid into the flow. Therefore, this model can not be directly
applied to describe the meniscus flow structure which is characterized by a
frontal displacement of a fluid by another.

1.3. non-equilibrium (dynamic) model

Another approach to modify the flow model was developed in Barenblatt
(1971), Barenblatt and Vinichenko (1980) and Vinichenko (1978). Assuming
that the displacement is a non-equilibrium process, the authors introduced
a non-equilibrium in the form of relative permeabilities as the functions
of saturation and the time derivative of saturation. The non-equilibrium
behaviour of phase permeabilities (a long-term stabilization) was shown in
Entov and Chen-Sin (1987), Singal and Somerton (1977) and Blunt and
King (1991), using numerical simulations in network models of porous
media and experimental data.

The mechanisms which cause a non-equilibrium are various, therefore
a number of different model versions exists. In Nikolaevskii et al. (1968),
the non-equilibrium model was developed in terms of a phenomenological
approach.

A physical mechanism to obtain this model was suggested in
Barenblatt and Entov (1972) or Zarubin (1993). It is based on assuming
the existence of two components of each phase: an active and a passive
component. The exchange between them leads to a non-equilibrium behav-
iour. A differential exchange mechanism was suggested in Buevich and
Mambetov (1991), where each phase was considered as a system of clus-
ters of various scales. The exchange between every two clusters produces a
non-equilibrium behaviour.
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Another mechanism was illustrated in Bourgeat and Panfilov (1998)
where the non-equilibrium is caused by medium heterogeneity. Between
various components of a heterogeneous medium the non-instantaneous
exchange takes place. The closed model with capillary relaxation was devel-
oped theoretically using an asymptotic homogenization procedure for two-
phase flows in a heterogeneous medium.

The basic problem of this model is to construct the closure
relation for a characteristic relaxation time. In Bocharov (1991) the relax-
ation time was estimated using experimental data; in Bourgeat and Pan-
filov (1998) an explicit analytical relation was obtained for the relaxation
time.

The new interest in this kind of models was arisen in papers
(Hasanizadeh and Gray, 1993b; Hasanizadeh, 1997).

The dynamic models, describing a relaxation of flow parameters, may
thus be considered as a low deviation from the classic equilibrium model.
This means that the interior phase structure represents a weak deviation
from the classic channel structure which does not correspond to a meniscus
structure.

1.4. model with the transport of interfaces

In the paper (Marle, 1982) where a system with a number of interfaces
was examined within the framework of a phenomenological approach, a
new idea was suggested to examine the highly dispersed interface as an
individual continuum while formulating the mass and momentum balance
equations for it. In a particular case, the cross-term model was obtained
as a justification of the developed approach. Similar ideas but based on
the thermodynamics methods of the mixture theory were developed in
(Hasanizadeh and Gray, 1990, 1993a, b). The basic results of this approach
was: (i) the insufficiency of the saturation as a unique function to describe
the two-phase flow structure; (ii) the specific interface appearing as a new
variable determining the two-phase system behaviour (the configuration
parameter); (iii) a necessity to construct supplementary equations defining
the interface movement; (iv) a possible modification of the momentum bal-
ance equation for each phase produced by the capillary forces. To simplify
and to close the generic equations obtained for the interface movement the
authors used the hypothesis of a weak non-equilibrium behaviour, which
provided a possibility to use a simple kinetic equation. Thus, the interface
behaviour is examined as a weak perturbation with respect to the equi-
librium state. In the final form the model is qualitatively similar to the
dynamic models examined in the previous paragraph.

The results of all these works opened new perspectives in the theory
of two-phase flows. The concept of the specific interface as a new flow
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function was a sufficient advancement of the theory. At the same time, a
weakly non-equilibrium description may be applied to such a highly non-
equilibrium process as fluid displacement only as a first approximation,
which is not much better than the classic equilibrium model.

1.5. suggested approach

In the present paper the meniscus structure is examined independently of
weakly non-equilibrium approaches.

In Section 2 we will show that the two-phase system in the vicinity of a
meniscus behaves in a highly different manner than usually accepted. First
of all, the flow velocities of both phases are identical near the meniscus,
regardless of the individual mobility of each phase. The two-phase system
behaves here as a unique continuum. Second, the movement of each menis-
cus is highly controlled by the capillary forces applied to it: this force can
accelerate or decelerate the meniscus movement, thus playing the role of a
vectorial function (a true force) determining the momentum transfer to the
meniscus.

According to these observations, we suggest two new elements as a basis
of the two-phase model. First, we introduce the concept of a meniscus con-
tinuum (M-continuum) as a third fluid phase (along with two traditional
continuums associated to each individual fluid) which has some particular
properties influenced by the individual properties of each fluid and by the
presence of a system of rigid meniscus between them. Second, we intro-
duce the concept of a vectorial field of capillary forces which enter, due
to their vectorial origin, in the momentum balance equation. These two
ideas are sufficient to develop a constructive phenomenological two-phase
flow model. The closure relations are obtained using the results of numer-
ical capillary network simulations.

The concept of the M-continuum is an advancement of the concept of
a supplementary continuum presented by the interface suggested in Marle
(1982) and Hasanizadeh and Gray (1990). The M-continuum is not simply
an interface dissipated in space, it is a more complicated object including a
part of both fluids with the interface and possessing some combined phys-
ical properties.

The concept of the vector capillarity is a new approach to describe the
highly non-equilibrium capillary processes associated to the meniscus phase
structure. According to this concept, a highly non-equilibrium capillarity
has another vectorial origin (the classic capillarity is scalar). Such a radical
change in the qualitative behaviour can not be evidently captured within a
weakly non-equilibrium thermodynamic approach.

The first attempts to develop the meniscus model was published in Pan-
filova et al. (1998) and Panfilova and Panfilov (2000).
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2. Properties of a Repetitive Meniscus Field

The following basic properties of the meniscus configuration may be
revealed before constructing a mathematical model: (i) the law of meniscus
passage through a pore, (ii) the roles of meniscus passage across a vertex,
(iii) the statistical law of meniscus birth/death (compensation mechanism),
(iv) a mechanism ensuring the formation of a spatially repetitive meniscus
field.

2.1. passage of a meniscus through a pore

Let us examine the piston displacement of a fluid by another in a capillary
channel, as shown in Figure 1.

Let us assume that the interface between the fluids called a meniscus
has the following properties: (i) it crosses the pore wall along a closed
curve which is a triple-contact curve, (ii) it is non-deformable, and (iii) it
is plane but produces a Laplace capillary pressure calculated for a spher-
ical interface. Within the framework of these assumptions, it is hard to
apply the Navier–Stokes equations to describe the flow. Indeed, due to the
non-slip conditions the triple-contact curve can move only if the creep-
ing mechanism is triggered. However this mechanism leads to the inter-
face deformations. In other words, the accepted assumptions are not strictly
compatible with the microscale flow pattern. At the same time, they are
correct on average, i.e. they are compatible with the Navier–Stokes equa-
tions integrated over the channel cross-section. When the cross-section is
assumed to be uniform, or when the Reynolds number is assumed to be
low, the mentioned averaging leads to the Poiseuille law. It can then be
shown that the system of Poiseuille equations for each fluid does not con-
tradict the assumptions mentioned above.

The system of Poiseuille equations (1a,b) with the interface (1c), exterior
boundary-value and initial conditions (1d) takes the following form:

Figure 1. Two-phase displacement in a capillary.
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−UαUU = γ r2

µα

dPαPP

dx
, 0<x<xξ , (1a)

−UβU = γ r2

µβ

dPβP

dx
, xξ<x<l, (1b)

when x =xξ ,

UαUU =UβU ≡U, PαPP |x=xξ −0 = PβP
∣∣∣∣
x=xξ +0 −PcPP ,

dxξ

dx
=U, (1c)

PαPP |x=0 =PAP , PβP
∣∣∣∣
x=l

=PBP , xξ

∣∣∣∣
t=0 =0, (1d)

PcPP (r)≡ 2σ cos θ

r
,

where l is the channel length, γ is a channel shape parameter (1/8 for a
circular cross-section), r is the channel radius, xξ is the local coordinate of
the mobile meniscus, P is the pressure, µ is dynamic viscosity, U is the flow
velocity averaged over the channel cross-section, t is the local time calcu-
lated from the instant of the meniscus appearance at the inlet section, x is
the local coordinate calculated from the inlet section, and σ , θ and PcPP are
the surface tension, the contact angle and the Laplace capillary pressure at
the meniscus. The conditions at the interface represent the flow rate con-
servation, a pressure jump due to the capillary effect and the fact that the
meniscus velocity is equal to the physical fluid velocity.

Mathematically this problem is correctly formulated and has a unique
solution. Indeed, by eliminating consecutively the velocity and the pressure,
we obtain a non-linear differential equation with respect to the meniscus
coordinate, known as the Washburn equation

dxξ

dt
= γ r2 (δP +PcPP (r))

µαxξ +µβ(l −xξ )
, xξ (0)=0; δP≡PAP −PBP , (2)

which has a unique differentiable solution.
Let us rewrite this equation differently, by introducing ξ=xξ/ l

U = γ r2

〈µ〉
(δP +PcPP (r))

l
, (3)

where 〈µ〉=µαξ + µβ(1 − ξ) is the averaged fluid viscosity in a pore. By
introducing the volume saturation of the displacing phase, we note that

〈µ〉=µαs +µβ(1− s). (4)

Equation (3) shows two particular properties of the two-pase system
behaviour in the vicinity of a meniscus. First of all, the system behaves as
a united pseudo-phase advancing with a single velocity common for both
true phases and with a viscosity of a weighted mean value between two
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individual viscosities. Second, let us rewrite Equation (3) in the vectorial
form

〈µ〉
γ r2

�U =−
(

∂P

∂x
− PcPP (r)

l

)
�ex, (5)

where �ex represents the unit vector along axis x.
This is evidently a version of the momentum balance equation saying

that the friction forces are balanced by a sum of pressure forces and cap-
illary forces, with a negligible inertia force. Thus, the capillarity becomes a
vectorial concept and enters into the momentum equation.

2.2. passage of a meniscus through a vertex. compensation mechanism

The passage of a meniscus through a branching point of pore channels is
highly different from the continuous motion in a regular channel. First of
all, the birth of new mobile menisci is observed in a vertex, as well as the
probable immobilization (“a death”) of some menisci due to the capillary
trapping mechanism. Second, the passage through a vertex constitutes an
instantaneous jump, resulting from the surface instability. The variety of
these phenomena observed on a random meniscus set is governed by some
general statistical laws which enable us to describe its behaviour in an effec-
tive way.

According to the previous remarks, we assume that the time of meniscus
jump through a vertex is much lower than the time of a slow viscous flow
along a pore, so that the passage of a meniscus through a vertex may be
considered as instantaneous. Thus, a vertex only plays the role of a menis-
cus source, which may be positive (a meniscus birth) or negative (a menis-
cus death).

We acknowledge next the meniscus conservation law: the average num-
ber of the mobile meniscus is conserved, so that the birth of new menisci is
compensated, on average, by the death of other menisci. This conservation
is ensured by the meniscus compensation mechanism. Let us examine an ele-
mentary network, called “the doublet” (Rose, 1967), which represents two
channels of different radii connected between them in vertexes located peri-
odically as shown in Figure 2.

The displacing phase (grey) enters into the network via the left-hand
cross-section and forms two mobile menisci (1 and 2 in Figure 2(a)).
Meniscus 1 reaches the first vertex more rapidly (Figure 2(b)), crosses it
and forms two new menisci, 3 and 4. At the same time, meniscus 2 and
4 are immobilized by the trapping of the displaced phase between sections
2 and 4. Thus, the birth of the new meniscus 3 will be compensated by
the death of meniscus 2. As a result, after a vertex is passed, the number
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Figure 2. Illustration to the meniscus compensation mechanism.

of mobile menisci is conserved. These two menisci, 1 and 3, continue their
advancement. In the next vertex, similar events will be observed.

The compensation mechanism completed by assuming an instantaneous
passage through each vertex enables us to neglect the vertex impact on the
two-phase flow on average.

2.3. a repetitive meniscus field: duplication mechanism

The basic assumption of the present paper says that the mobile menisci
form a repetitive space field. This assumption enables us to examine the
meniscus field on average. However, the formation of such a field is not
evident. In particular, in a simple doublet model, used in the precedent sec-
tion, no mobile menisci exist behind two frontal menisci. However, numer-
ical simulations in the network capillary models show that this assumption
is true when the medium is heterogeneous. Figure 3 illustrates a typical
fluid repartition within the porous space for a displacement process. This
image is obtained as a result of numerical simulations based on the net-
work model of porous media, which is described both in Section 4.2 and
in Panfilova (2003) and Panfilova and Muller (1996).

The displacing phase enters via the top section; the lateral vertical sec-
tions are impermeable; the square network is made of cylindrical tubes of
random radius; the displacement in a tube is piston-like; the flow of each
phase in each tube is governed by the Poiseuille law. The displaced phase
cannot be displaced if this phase is not connected to the outlet section, or
when stopped by a capillary counter-pressure. The inlet and outlet pres-
sures are maintained invariable in time.

As seen, the mobile menisci form a statistical highly dispersed repetitive
field uniformly covering all the space.

The hypothesis on a repetitive meniscus field may be clearly justified
when using classical methods of analysis suited to heterogeneous media. In
particular, this can be done by using the effective medium method.

Let us examine the model of porous medium formed by an individual
porous channel connected to the effective medium, as shown in Figure 4.
The general effective medium method is based on immersing a medium
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Figure 3. A typical phase structure in porous space for a displacement process: grey
lines: the displacing phase; the black points are the mobile menisci.

Figure 4. The duplication mechanism in an effective medium model for transport
phenomena: 2 is the effective medium, 1 is a highly permeable individual porous
channel.

inclusion into the effective medium. We examine a particular case of the
method when the individual inclusion is a pore channel with all its con-
nections. In this case, the effective medium is evidently averaged over the
transverse sections, not over the volume.

In the individual channel, the motion of a true meniscus is analyzed,
whilst in the effective medium one studies the average displacement front.

Let us establish the laws of meniscus propagation through such a model.
Two different cases may be observed. First of all, let the flow velocity in
the individual channel be lower than that in the effective medium. Once
the average front in the effective medium reaches a vertex, the meniscus
in the individual channel is blocked, thus forming a trapped phase. This
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mechanism is similar to that described in the doublet model of the preced-
ing paragraph.

Let us now examine the second case, when the flow velocity in the indi-
vidual channel is greater than in the effective medium. Due to this, we will
call such an individual channel “percolating”. Once the meniscus in the
individual channel reaches a vertex, it penetrates into the effective medium
and gives rise to a new average front. The new front does not block the
precedent front as in an effective medium, the displaced phase can always
find a way to leave the medium. Thus, each vertex crossed by the true
meniscus in the individual channel gives rise to new mobile fronts, by form-
ing a repetitive mobile meniscus field, as seen in Figure 4.

As shown, the repetitive meniscus field is formed if the pore radii are
not uniform and if at least one individual channel more penetrable than
the average channel exists. The total structure of a mobile meniscus field is
presented in Figure 5 which shows an average channel with branches ensur-
ing the duplication mechanism. The value hc, which is the mean distance
between two neighbouring mobile menisci, plays the role of a phase con-
figuration parameter.

3. Phenomenological Approach to Construct the Meniscus Model

We assume that the total two-phase system in a porous medium represents
a superposition of three crossed continua coexisting at each space point
and at each time instant

(I) the M-continuum (“meniscus continuum”) which represents a repetitive
mobile meniscus field,

(II) the α-continuum which corresponds to the system of pore channels
occupied by the displacing phase only, and

(III) the β-continuum which corresponds to the channels filled up by the
displaced phase only.

A phenomenological approach ignores any interior phase configuration,
so the true configuration formed by a repetitive meniscus field should be
introduced into the properties of the M-continuum.

Figure 5. Total structure of a mobile meniscus field.



98 M. PANFILOV AND I. PANFILOVA

3.1. m-continuum

We admit that the M-continuum is formed by the repetitive system of
mobile menisci together with the two fluid phases separated by these
menisci.

Based on the properties of the repetitive meniscus field described in the
previous section, let us introduce the notion of the M-continuum.

1. At each space point and each time instant, the M-continuum has a
unique flow velocity U=UαUU =UβU . This means that, within the M-con-
tinuum, both phases move as a unit ensemble.

2. The viscosity of the fluid in the M-continuum is µ=µαs
I+µβ(1 − sI )

with sI as the local saturation of the α-phase within the M-continuum.
3. A continuous vector field of capillary forces is distributed over the M-

continuum with the density per unit length

PcPP �ec

hc
, PcPP ≡ 2σ cos θ

〈r〉 (6)

where �ec is the local unit vector of this field, PcPP is the Laplace capillary
pressure applied to an average meniscus, 〈r〉 is the mean pore radius, σ

and θ are the surface tension and the contact angle.
4. The unit capillary vector �ec is parallel to the flow velocity of the M-

continuum and is directed from the wetting phase towards the non-
wetting one.

Note that the equivalence of phase velocities takes place only within the
M-continuum, i.e. in the vicinity of menisci. At the same time, the total
phase velocities defined as 〈UαUU 〉=UMαM +Uααα and 〈UβU 〉=UMαM +Uβαβ

are not identical.
The mentioned properties are necessary in order to obtain the momen-

tum balance equation similar to (3). Indeed, an elementary volume of the
M-continuum undergoes the action of three kinds of forces: the pressure
force imposed by the environmental fluid; the friction force which is pro-
portional to the flow velocity and continuum viscosity and the distributed
capillary force defined above. Then the momentum balance equation takes
the form

−grad P + 〈µ〉 �U
KM

− PcPP �ec

hc
=0. (7)

Rewriting this equation in the explicit form with respect to the flow
velocity, we obtain

�U =−KM

〈µ〉 grad P + KM

〈µ〉
PcPP �ec

hc
, (8)

which is similar to (3).
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3.2. phenomenological flow equations

We can now formulate the total system of flow equations for three crossed
continua. We examine only the isothermal processes when the energy equa-
tion may be ignored. Let the superscripts I, II and III be used to indicate
the M-continuum, the α-continuum and the β-continuum correspondingly.
Let Ki and φi be the intrinsic permeability and porosity of the continuum
i, αi be the volume fraction of the continuum i, sI be the internal satura-
tion of the displacing phase in the M-continuum. The intern saturation is
1 for continuum I and 0 for continuum II . Let us use the Darcy velocity
�V instead of the true velocity �U , using the following relation: �

yy
V i = �Uiφi ,

(i = I, II, III ). This system of mass conservation and momentum balance
equations for three continua is

φi
∂
(
ρiαi

)
∂t

+div
(
ρiαiUi

)=0, i=I, II, III, (9)

�V I = KI

µI

(
−grad P I + PcPP

l
ηc�ec

)
, (10)

�V II =−KII

µα

grad P II , (11)

�V III =−KIII

µβ

grad P III , (12)

αI +αII +αIII =1, (13)

where ρI = ραs
I + ρβ(1 − sI ) et µI =µαs

I +µβ(1 − sI ) are the density and
viscosity of the M-continuum; ρII =ρα, ρIII =ρβ , l is a mean pore length.

The meniscus concentration, ηc, is introduced instead of the distance
between menisci, hc

ηc ≡ l

hc
.

Note that ηc is the intern concentration within the M-continuum.
This value is consistent to the definition of a concentration, which varies

between 0 and 1. The value 0 is reached when the distance between menisci
is much larger than the pore length, whereas 1 corresponds to the minimal
admissible distance between two neighbouring menisci, which is equal to l

(a pore may contain no more than one mobile meniscus).
We also accept the condition of a uniform phase distribution within the

pore space

KI =KII =KIII ≡K, φI =φII =φIII ≡φ (14)

and the condition of an equilibrium between continua

P I =P II =P III ≡P. (15)
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We also accept that both phases are incompressible.
The systems (9)–(15) may be transformed into the following system:

φ
∂
(
ρIαI

)
∂t

=div
(

KρIαI

µI

(
gradP − PcPP

l
ηc�ec

))
, (16)

φ
∂αII

∂t
=div

(
KαII

µα

gradP

)
, (17)

φ
∂αIII

∂t
=div

(
KαIII

µβ

gradP

)
, (18)

αI +αII +αIII =1. (19)

This system contains four equations and six variables: P , {αi}3
i=1, sI (or

ρI ), and ηc.
To close this system, two supplementary relations must be added.

4. Closure Relations

The definition of two variables, sI and ηc, which are responsible for the
internal structure of the M-continuum, can not be determined within the
framework of the phenomenological approach. They are thus free param-
eters of the model. To determine them, another finer approach should be
applied, based either on a theoretical quantitative analysis of the micro-
mechanisms of the repetitive meniscus configuration, or on the statistical
treatment of data resulting from microscale numerical simulations.

4.1. theoretical model of a stochastic meniscus stream

Let s be the total α-saturation. When the system becomes single-phase
(s = 0 or s = 1), then the meniscus concentration is zero. For a rather
uniform presence of both phases, the meniscus concentration is maximal.
Thus, the meniscus concentration seems to be correlated with the satura-
tion. In the present section we develop the model of a stochastic meniscus
stream which yields a strict theoretical relationship between ηc and s which
will be justified next by numerical simulations.

Let us introduce the total meniscus concentration in the overall medium:
η≡αIηc, instead of ηc. Let us examine a fragment of the capillary network
between two neighbouring vertexes (Figure 6(a)).

It represents a bundle of N parallel capillaries of a same length l equal
to the mean size of a pore (Figure 6b). The mean distance between two
adjacent capillaries in the examined fragment is also l. The capillary radii
are random. Each capillary is filled up by β-phase at the initial state.
Let a family of meniscus approach to the inlet section of the examined
medium fragment and enters into it during the period (0, TapTT ). Let tap be
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Figure 6. Theoretical model of a random meniscus appearance in a fragment of the
capillary network.

the random time of meniscus appearance in the segment, V be the menis-
cus velocity. The time origin corresponds to the instant of the appearance
of the first meniscus. We assume that a fixed part of capillaries when the
velocity is below a critical value V0VV is not accessible to meniscus and is
always filled up with β-phase. To introduce the residual α-saturation, we
assume that these non-accessible pores contain also a trapped α-phase in a
dispersed form. The volume fraction of the dispersed α-phase in non-acces-
sible pores is ω. The total trapped α-saturation is s∗. Let f (V ) and ψ(tap)

be the probability density of the meniscus velocity and the appearance time
normalized such that∫ ∞

0

∫∫
f (V )dV =1,

∫ ∞

0

∫∫
ψ(tap)dtap =1.

For a fixed time instant t , all the pores form three classes shown in (Figure
6(c))

– the class III where V �V0VV will contain β-phase and trapped α-phase,
– the class I where V0VV <V and V (t − tap)� l will contain mobile menisci,
– the class II where V (t − tap)> l will be filled up with α-phase.

The volume of mobile α-phase is l in a pore II and V (t − tap) in a pore
I , if a meniscus entered into this pore during the period (0, t). Then we
obtain for the α-phase saturation

s(t)= 1
l

∫ t

0

∫∫
ψ(tap)

∫ l/(t−tap)

V

∫∫
0VV

V · (t − tap)f (V )dV dtap

+
∫ t

0

∫∫
ψ(tap)

∫ ∞

l/(t

∫∫
−tap)

f (V )dV dtap + s∗.
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The meniscus total concentration η ≡ ηcα
I is l/〈h〉 by definition, where

〈h〉 is the mean transverse distance between two neighbouring menisci
which is equal to H/NI ; H is the transverse length of the medium. The
number of pores-I , NI , may be determined as NI = N

∫ t

0

∫∫
ψ(tap)

( ∫ l/(t−tap)

V

∫∫
0VV

f (V )dV
)
dtap, with N the total number of pores. Taking into account that

H/N = l, we obtain for η

η(t)= l

〈h〉 = lNI

H
=
∫ t

0

∫∫
ψ(tap)

∫ l/(t−tap)

V

∫∫
0VV

f (V )dV dtap.

Let us introduce dimensionless variables: v =V/〈V 〉, τ = t/T , θ = tap/T ,
T = l/〈V 〉, τ∗ = TapTT /T . Then the saturation and meniscus concentration
become

s(τ )=
∫ τ

0

∫∫
ψ(θ)(τ −θ)

∫ 1/(τ−θ)

v

∫∫
0

vf (v)dvdθ +
∫ τ

0

∫∫
ψ(θ)

∫ ∞

1

∫∫
/(τ−θ)

f (v)dvdθ +s∗,

η(τ )=
∫ τ

0

∫∫
ψ(θ)

∫ 1/(τ−θ)

v

∫∫
0

f (v)dvdθ.

These two relationships determine parametrically the function η(s).
For a uniform distribution of the appearance times and an asymmetric

Rayleigh distribution of the velocities

ψ(θ)=
{ 1

τ∗
, 0<θ � τ∗,

0, θ >τ∗,
f (v)=2ξve−ξv2

, v >0, ξ = π

4
,

the results of calculations are shown in Figure 7(a) for three various
parameters v0 (the lower curve corresponds to a greater value of v0). Note
that parameter v0 determining that part of pores which is non-accessible
for the invading fluid is inversely proportional to the capillary number (the
ratio of the pressure difference to the mean capillary pressure).

If ψ(θ) is the delta-function, then it is possible to obtain an analytical
relation for η(s) in a parametric form

η(τ)=ω
{
e−ξv2

0 − e−ξ/τ 2
}

, (20a)

s(τ )= τe−ξv2
0 + τ

2

√
π

ξ

[
erf
(√

ξ
√√
τ

)
− erf

(√
ξ v

√√
0

)]
+ s∗, (20b)

where ω is a new parameter introduced in order to fit the data of numeri-
cal simulations (see the next section).

According to the results obtained we conclude that: (i) the variable η

may be examined as the function of s; (ii) the function η(s) is always non-
monotonic and asymmetric; (iii) this function may depends parametrically
on the capillary number; (iv) the qualitative behaviour of this function may
be described by relations (20).
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Figure 7. Total meniscus concentration versus saturation: (a) – theoretical meniscus
stream model; (b) – results of capillary network simulations: Ca = 102 (1), Ca = 1
(2), and Ca =10−3 (3).

4.2. closure relations for η(s) from capillary network simulations

To justify the accepted hypothesis concerning the meniscus concentration
we performed a series of microscale numerical simulations based on the
capillary network model of porous media. The corresponding numerical
algorithm, developed by the authours, is described in various preceding
publications (Panfilova and Muller, 1996; Panfilov, 2000; Panfilova and
Panfilov, 2000).

Shortly, the geometrical model of porous medium represents a uniform
cubic network of vertexes connected by cylindrical capillary tubes. The tube
radius is considered as a stochastic stationary space function with given
global distribution, correlation function and mean value. The two-phase
distribution structure in porous space is of meniscus type, so if two phases
are present in a pore tube, the interface between them has a form of a
meniscus. The flow of each phase in each pore tube is described by the
Poiseuille law with a pressure discontinuity at each meniscus (1). The flow
conservation applied to each vertex yields a system of recurrent equations
formulated with respect to the vertex pressures. As this system may be con-
sidered as a discrete form of a differential Laplace-like equation, the solu-
tion to this system is constructed by using standard methods of solving the
elliptic equations.

The passage through a vertex is instantaneous when permitted. A menis-
cus may pass through a vertex into a tube connected to this vertex, if the
capillary counter-pressure in this tube is not sufficient to stop it.

A supplementary condition limiting motion is imposed by the phase
connectivity. A part of the displacing phase is assumed to be immobile if
this part has no connection to the inlet section. A part of the displaced
phase is immobile if this part has no connection to the outlet section.
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As a result, the numerical algorithm consists of two basic modules: (i)
the hydrodynamic module and (ii) the logical module. The hydrodynamic
module calculates the pressure field and the local coordinates of the mobile
menisci for fixed time instants. The time step is variable in time and is
determined as the minimum time which is necessary for all the mobile
menisci to reach the outlet of the corresponding pore tube. This means that
at each time instant we have exactly one mobile meniscus which is located
in a vertex. The logical module verifies two kinds of mobility conditions:
the conditions of the phase connection with the inlet/outlet sections, and
the conditions of meniscus passage through a vertex.

To calculate the total meniscus concentration, η(s), we have used the
numerical data obtained for various sections orthogonal to the macroscopic
flow direction. In each section we have calculated the mean meniscus con-
centration (inversely proportional to the mean distance between the neigh-
bouring menisci) and the saturation. Thus, we have obtained the pair of
points {s, η}. The results of simulations are shown in Figure 7b for a fixed
viscosity ratio (0.5) and three different values of Ca.

The non-monotonous form of this function, predicted by the theoretical
analysis, is weakly variable and, thus, may be considered as independent of
parameters Ca and µ. All these curves may be approximated by relation
(20) with v0 =0.5, s∗ =0.16, ω=0.4.

4.3. closure relation for the internal saturation of the
m-continuum sI

Saturation sI can be obtained by examining the evolution of the saturation
field in the effective medium model (Figure 4). In this paper, we only sug-
gest the outline of such a qualitative analysis, which is sufficient to propose
a simpler closure relation.

The filling of each cell of the effective medium by the displacing phase
coming from the percolating channel (Figure 4), starts from the inlet cell
and then continues, with a delay, in the consecutive cells. Therefore, the
cell saturation varies in space and in time. Nevertheless, if we assume that
the filling velocity of the effective medium is much lower than the veloc-
ity of medium percolation through the percolating channel, the delay and
the difference between the cells will be removed. Within this approxima-
tion, the cell saturation is independent of space coordinates.

In an arbitrary cell, the saturation grows in time but up to that instant
only when the mobile front (meniscus) meets the immobile front which
marks the inlet section of any new cell. After this, the cell saturation
remains invariable and equal to the constant value s∗. The filling time,
tfiltt hc is much lower than the macroscopic time (L, with L the macroscale),
if hc �L (a high meniscus concentration). Hence, it is admissible to ignore
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the details of the true saturation variation during these short periods and
to accept that

sI ≈ const = s∗. (21)

The value s∗ can be estimated as s∗ =1− s
trap
β where s

trap
β is the classical

residual saturation of the displaced phase.
It is necessary to note that the volume of the displacing phase in the

M-continuum should disappear when the total saturation tends to zero.
This does not contradict relation (21) because the volume of the displac-
ing phase in the M-continuum will decrease due to the decrease of the total
volume of the M-continuum it-self.

5. Closed Meniscus Model

5.1. model formulated in terms of the total saturation

First of all, the density ρI becomes constant due to (21) and then may be
removed from Equation (16). Using closure relations (21) and (20), we can
now transform the models (16)–(19). Let us introduce the total saturation
of the displacing phase, s

s =αI sI +αII . (22)

Multiplying Equation (16) by sI (which is constant due to (21)) and
adding Equations (16) and (17), we obtain the equation for the total sat-
uration s (23). Adding all three Equations (16)–(18), we obtain Equation
(24). The third equation of the system remains invariable (we take Equa-
tion (17)). The new system is

φ
∂s

∂t
=div

(
λαgrad P −VcVV sIη(s)�ec

)
, (23)

div(λgrad P −VcVV η(s)�ec)=0, (24)

φ
∂αII

∂t
=div

(
KαII

µα

grad P

)
, (25)

where VcVV = KPcPP

µI l
is the characteristic capillary flow velocity

λ=λα +λβ, λα = Kkα

µα

, λβ = Kkβ

µβ

, µ= µα

µβ

with new relative permeabilities

kα

(
s, αII

)= (s −αII
)
µα

µI
+αII ,

kβ

(
s, αII

)=1−αII −
(
s −αII

)
µα

µI
,

(26)

µI =µαs
I +µβ(1− sI ). Function η(s) is defined as (20).
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Note that the relative permeabilities depend also on two constant
parameters, sI and µ.

First Equation (23), may be transformed into a saturation transport
equation

φ
∂s

∂t
− (λ grad P −VcVV η(s)�ec)grad F +div(VcVV FcFF �ec)=0 (27)

with F and FcFF the fractional flow and the capillary flux defined as

F(s, αII )= λα

λ
= kα

kα +kβµ
, FcFF (s, αII )= (sI −F

)
η(s). (28)

To obtain this relation, let us note that

div(λαgrad P)=div(λF grad P)=Fdiv(λ grad P)+λ grad P grad F.

Then, using (24)

div(λα grad P)=Fdiv(VcVV η(s)�ec)+λ grad P grad F.

=div(VcVV Fη(s)�ec)+ (λ grad P −VcVV η(s)�ec)grad F,

which leads directly to (27).

5.2. asymptotic model of relative permeabilities

Systems (23)–(25) might be sufficiently simplified, if we accept the asymp-
totic model for the relative permeabilities, by assuming that the volume of
the M-continuum is small. In this case sI →0, then αII → s, which follows
from (22). Then the asymptotic relation for αII may be presented in the
following form:

αII =αII (s)= sγ+1, γ =γ (s)→0, when s →0. (29)

Let us determine parameter γ in such a way that relation (29) would
be also used in the vicinity of the limit s → 1, not only when s → 0. The
exponent γ must satisfy an evident condition: αI + αII � 1. According to
(22): αI = (s −αII )/sI , thus using (29) we obtain the following inequality:
f (s) ≡ s − sγ+1(1 − sI ) � sI . For two limit values of s, function f (s) veri-
fies this inequality: f (0)=0� sI , f (1)= sI � sI . If the behaviour of f (s) is
monotonous, then the inequality is satisfied. Hence, it is sufficient to elim-
inate the maxima of this function.

For a derivative we have: f ′ = 1 − (γ + 1)sγ (1 − sI ). At peak: s
γ
max =

1/[(γ + 1)(1 − sI )]. The maximum between points 0 and 1 is not reached
if smax �1. This condition is satisfied if 0�γ � sI /(1− sI ). In particular, a
linear function γ = (sI /(1− sI )

)
s satisfies these conditions.
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Due to this approximation, the relative permeabilities become the func-
tions of the saturation only, as well as of three parameters: sI , µ and γ .

This approximation replaces Equation (25) (which degenerates when the
volume of the M-continuum is small) and reduces systems (23)–(25) to two
Equations (23) and (24), or (27) and (24)

φ
∂s

∂t
− (λ(s)grad P −VcVV η(s)�ec)grad F(s)+div(VcVV FcFF (s)�ec)=0, (30a)

div(λ(s)grad P −VcVV η(s)�ec)=0. (30b)

5.3. single dimension case

In the case of a single dimension flow, system (30) may be reduced to a
single differential equation of saturation transport

φ
∂s

∂t
+ ∂

∂x

[
V (t)F (s)+VcVV ecFcFF (s)

]
=0, (31)

where

ec =
{

1 if the displacing phase is wetting,

−1 otherwise. (32)

V (t) is the total Darcy velocity of both phases, which appears as the result
of an explicit integration of Equation (30b)

λ(s)
∂P

∂x
=VcVV η(s)ec −V (t). (33)

5.4. qualitative effects

Certain physical effects associated to the suggested model can be detected
without solving any mathematical problem.

5.4.1. Hyperbolic Capillarity
Model (31) is a hyperbolic non-linear first-order equation. All its proper-
ties are determined by the structure of the sum of two functions: the non-
capillary fractional flow F(s) and the capillary flux FcFF (s). According to the
physical meaning, function F(s) is equal to the displacing phase flow rate
divided to the total flow rate when the capillarity is nil. Function FcFF (s)

is equal to the displacing phase flow rate caused only by capillary forces
divided to the total flow rate.

Therefore, the capillarity entering in the model is in the form of
an advection flux and keeps the hyperbolic type of the transport equa-
tion. This is qualitatively different from the classical Buckley–Leverett (or
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Rapoport–Leas) model where the capillarity, appearing in the form of a
diffusion flux, determines the parabolic type of the saturation transport
equation.

5.4.2. Viscous Deceleration (by the M-continuum)
According to (26), the new relative permeabilities now depend on the
viscosity ratio. This has a physical explanation. The mobility of the displac-
ing phase is the M-continuum is determined by the mean viscosity µI =
µαs

I + µβ(1 − sI ), whilst in the continuum I its mobility is controlled by
its own viscosity µα. Let the displacing phase have no viscosity (µα = 0).
Nevertheless, its integral mobility will be controlled by the viscosity of the
M-continuum, which will be finite: µI = µβ(1 − sI ). So, the M-continuum
decelerates the motion of the non-viscous displacing phase, which produces
a decrease in the relative permeability kα.

6. Analysis of the Model

6.1. formulation of a displacement problem

Let us examine a 1D problem of fluid displacement in a porous media,
using model (31). In the initial state the medium is filled up with the phase
β. The phase α is injected into the medium via the inlet section x =0 with
a permanent inlet saturation s =1. The injection rate, Q, is known and con-
stant in time; the lateral injection section is A, the medium length is L; the
medium is homogeneous. For a qualitative analysis, let us neglect the resid-
ual (trapped) saturation of both phases. These conditions are sufficient to
determine the flow velocity in (31): V =Q/A.

Let us introduce the dimensionless variables: x scaled using L; τ scaled
using the time t∗ =Lφ/V . Then the described displacement problem can be
described by the following initial problem using model (31)

∂s
∂τ

+ ∂G(s)

∂x
=0, G(s)≡F(s)+ ec

Ca
FcFF (s), τ >0, x ∈R1,

s|τ =1−H(x),
(34)

where H(x) is the Heaviside function, G(s) is the summary flux; functions
F(s) and FcFF (s) are defined using (28), (26), (29) and (32).

The solution is controlled by the structure of function G(s), which
depends on four parameters: sI , µ, ec and γ . For the analysis we have
fixed two parameters: sI = 0.8 and γ = 4.9. Using different values of other
parameters, we obtain different versions of the problems which have qual-
itatively different solutions. Functions F(s) and FcFF (s) are presented in
Figure 8.
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Figure 8. Fractional flow F(s) and capillary flux FcFF (s).

6.2. supplementary conditions for discontinuous solutions

As usual for hyperbolic systems, a problem similar to (34) may have dis-
continuous solutions only. A saturation discontinuity will be called “the
front”. Each front is characterized by its true transport velocity, UfUU , the
saturation on the upstream side of the front, s−, and the saturation on
the downstream side, s+. These three values can be defined through three
relations, which are the necessary and sufficient conditions of solution exis-
tence and uniqueness (and stability), (Rhee et al., 1986)

(i) the Hugoniot mass balance condition, which is the integral analog of
the differential equation in the vicinity of the front

UfUU = G+ −G−

s+ − s− , (35)

(ii) the Lax local evolutionary (or entropy) condition, Lax (1971)

G′(s+)�UfUU �G′(s−), (36)

which says that the front velocity cannot exceed the transport velocity
of the saturation before the front and cannot be lower than the satu-
ration behind the front.

(iii) the Oleinik global evolutionary condition, (Oleinik, 1959), which says
that any tangent line G′(s−) should be located above any straight line
relating points (s−,G−) and (s+,G+).

In the example considered here, the saturation transport velocity can be
equal to the front velocity on only one side of the front.
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6.3. counter-current capillary imbibition

Examine the problem (34) when Ca →0 and the total flow velocity is zero.
Keeping the time derivative (otherwise, the equation changes type) and
rescaling the time (τ → τ/Ca), we obtain the following problem:

∂s

∂τ
+ ∂FcFF (s)

∂x
=0, τ >0, x ∈R1,

s|τ =1−H(x).
(37)

According to the meaning of this equation, each saturation value is
transported with transport velocity F ′(s), which is a non-monotonous
function of saturation, as this results from Figure 8. In particular, the
transport velocity is positive for small saturations and is negative for rather
high saturation values. The formal solution to this equation, shown in
Figure 9(b) (dashed line), is a non-unique function that has no physical
meaning. Therefore, the problem has no continuous solutions. A physically
admissible solution can be obtained only in the class of discontinuous func-
tions.

It is possible to show that in the case of function G=FcFF , the Hugoniot,
Lax and Oleinik conditions determine two fronts

(i) a positive front is defined as:

s+ =0, s− = s2, UfUU =F ′
cFF (s2),

where the value s2 is the solution to a non-linear equation

F ′
cFF (s2)= FcFF (s2)

s2
, (38)

a b

Figure 9. Graphical construction of the discontinuous solution using the diagram
FcFF − s (a), and solution to the problem of capillary imbibition (b).
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(ii) a negative front is defined as

s+ =1, s− = s1, UfUU =F ′
cFF (s1),

where the value s1 is the solution to the equation

F ′
cFF (s1)=−FcFF (s1)

1− s1
. (39)

The geometrical interpretation for these relations is shown in Figure 9a
through the use of triangles OAS2S and 1BS1.

For instance, for Equation (38), the right-hand part is equal to the ratio
of two legs AS2S and 0S2S , whilst the left-hand part is equal to the tangent
of the line OA. Thus, saturation s2 is defined as the coordinate of the tan-
gent point of the curve FcFF (s) by a tangent line coming from point (0,0).

In a similar way, saturation s1 is defined by the tangent line coming
from point (1,0).

The lines 0A and 1B are known as the Weldge tangents in the theory
of oil recovery, or the Oleinik envelop is the theory of hyperbolic systems.

The discontinuous solution to the problem (35) is show in Figure 9(b)
(solid curve).

It is seen that along with the usual front going into the medium,
another second, “negative”, front comes out of the medium with a negative
velocity. Physically, this corresponds to the counter-current flow across the
inlet section. Therefore, the suggested model is able to describe the counter-
current imbibition, having a serious advantage with respect to the classic
model. In the classic model, the counter-current imbibition is described in
terms of a parabolic equation which requires two boundary-values con-
ditions at the inlet and at the outlet of the medium. At the same time,
the inlet saturation cannot be imposed in the true process, as its value is
established automatically. In the suggested model, the first-order differential
equation does not require the inlet condition; the inlet saturation is estab-
lished automatically according to the structure of the capillary flux func-
tion only.

6.4. displacement by a wetting fluid

Examine the displacement process in terms of the problem (34) in the case
when the capillary vector is directed along the positive sense of the axis x:
ec = +1. This means that the displacing phase is more wetting. The total
flux G(s) is then illustrated in Figure 10.

For small Ca, the solution is qualitatively similar to that presented in
Figure 9(b) for the case of a capillary imbibition, with the negative front
slower than the positive front, and the inlet saturation closer to 1. Two
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fronts are entirely determined by two tangent lines, OA and CB, con-
structed in Figure 10(a).

For large capillary numbers (without capillary forces), the problem is
similar to the classical Buckley–Levertt problem. In this case, the solution
contains a single front advancing into the medium. The disappearing of the
beak front is explained by the fact that the high injection flow rate imposed
at the inlet section eliminates any counter-current flow.

For moderate Ca, a new situation appears when the total flux G has the
form shown in Figure 11(a).

The solution which is presented in Figure 11b contains two fronts,
but both are now “positive”, however their velocities are highly different
from one other. The back front is much slower. Both fronts verify the
Hugoniot–Lax–Oleinik conditions.

In all the cases, the inlet saturation is established automatically, which
is conform to the physics of the process.

Figure 10. Total flux G(s) in the case of wetting displacing phase: Ca =0.1 (a) and
Ca =1 (b).

Figure 11. Graphical construction of the solution for moderate Ca: diagram G(s)

(a) and saturation profile (b).
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6.5. displacement by a non-wetting fluid

In this case, the capillary vector is opposed to the flow direction: ec =−1.
For large Ca, the capillary forces are neglected, and, thus, the wettabil-

ity does not play any role. The saturation behaviour is close to that studied
in the previous case of the wetting displacing phase.

For small Ca, another behaviour is observed. The total flux G(s) is
shown in Figure 12(a).

A critical capillary number, Cacr, arises, from which the function G(s)

has no more positive tangent lines starting from extremal points (0,0)
and (1,1). This means that the problem has no discontinuous solutions
describing the fluid penetration into the medium. This critical situation
is shown in Figure 12(b). Physically, this means that below Cacr the
displacing fluid cannot penetrate into the medium due to the capillary
counter-force.

The critical capillary number Cacr is determined as the maximal value
for which the following non-linear equation has solution s− (0 < s−

<1):

G′(s−)≡F ′(s−)− 1
Ca

F ′
cFF (s−)= F(s−)− (1/Ca)F ′

cFF (s−)

s− ,

which satisfies a supplementary condition: G′(s−)>0.

6.6. comparison to the microscale numerical simulations

The fluid displacement process with a wetting displacing phase was simu-
lated using the network numerical algorithm described above. We studied
a 3D flow in a parallelepiped. Initially, the medium was filled up with a
single fluid. The displacing phase entered via a side and left the medium
via the opposite side. All the other sides were impenetrable. Thus, the

Figure 12. Total flux G(s) for a non-wetting displacing phase and small Ca.
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macroscale flow is one-dimensional and may be compared to the analyti-
cal 1D solutions obtained in Section 5.

The capillary number was 2, the viscosity ratio 0.5. The calculated sat-
uration averaged over the cross-section is shown in Figure 13 (the solid
line).

To construct the corresponding analytical solution, it is sufficient to
determine the equivalent total flux G(s). This function was calculated
according to its definition: as the flow rate of the displacing phase divided
to the total flow rate in various flow cross-sections characterized by various
saturations s. In the examined case, we have obtained function G(s) of the
same qualitative type as in Figure 11(b).

The analytical solution which corresponds to this function G(s) is
shown in Figure 13.

A difference between two solutions which is visible in the vicinity of the
advancing front is not a defect of the new model. It is simply the corollary
of the fact that the analytical solutions are obtained for a homogeneous
medium which does not cause the dispersion effect.

It is clearly seen that the numerical simulation manifests the effect of
two fronts described in Section 6.4. This effect can not be captured within
the framework of classic models.

A clearly observed defect of the analytical solution is the monotonous
behaviour. It is not entirely consistent to the numerical curve, which has a
minimum. Such a behaviour of the numerical curve reflects a more com-
plicated interior process within the M-continuum than that determined by
closure relations (21) and (20). In reality, the internal saturation sI varies
in time, which is the result of a mass exchange between various continua.
This opens a perspective to improve the model.

Figure 13. Saturation distribution in a displacement problem: results of numerical
network simulations (oscillating curve) and analytical solution (monotonous curve).
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6.7. qualitative results. comparison to the classic model

6.7.1. Capillary Imbibition in a Homogeneous Medium
Let us examine the capillary imbibition in a porous medium presented by a
bundle of equivalent and uniform capillary tubes. The propagation of each
meniscus in each tube is absolutely identical, so the macroscopic displace-
ment front will have the form of a Heaviside step-function and will propa-
gate as a travelling wave without any dissipation. Mathematically, this may
only be obtained as the solution of a hyperbolic first-order equation. This
is absolutely conform to the suggested model (34).

In contrast, this expected saturation profile can not be obtained within
the framework of the classic Buckley–Leverett model which describes the
capillary imbibition in terms of a parabolic diffusion equation.

6.7.2. About a Square-Root Time Evolution of the Displacement Front
The multiple experimental data obtained for a capillary imbibition (water
penetrates into a medium saturated by air) show that the coordinate of
the displacement front varies as a square-root of time. This is frequently
used as a justification of the parabolic character of the modelling transport
equation. For a linear hyperbolic process, the propagation of a front xf is
governed by the linear law: xf t .

At the same time, the square root dependence is not necessarily the
property of a parabolic equation. This may be the result of a hyperbolic
but non-linear character of the system. To illustrate such a possibility,
it is sufficient to examine the meniscus propagation in a porous channel
described by the Washburn equation (2). If the viscosity of the displaced
phase is zero (the air) then the solution is

xf

√
2PcPP

µw

with a square-root dependence. At the same time, the system is purely
hyperbolic, with no dissipation mechanisms.

Thus, the hyperbolic character of the capillary flow prescribed by the
suggested model does not contradict the observed experimental data.

6.7.3. About a Finite Velocity of Perturbation Propagation
A supplementary advantage of the suggested model consists in the finite
velocity of a front propagation. This is absolutely conform to the experi-
mental observations. At the same time, the parabolic classic model has an
infinite propagation velocity for any perturbations in general cases. Only in
some particular situations, defined by a special type of nonlinearity, may a
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parabolic equation have weakly discontinuous solutions with a finite prop-
agation velocity (Barenblatt et al., 1990; Samarsky et al., 1995).

Thus the finite front velocity is a supplementary justification of the
meniscus model.

7. Conclusions

In the present paper, we have developed a model describing the fluid dis-
placement in porous media, the process which is highly non-equilibrium
with respect to the local phase distribution. Two new constructive elements
of the two-phase flow field are suggested: the concept of a M-continuum
playing the role of a third phase, and the vectorial capillarity.

The M-continuum is presented by two fluids located in the vicinity of
menisci, examined as a unite phase possessing some particular dynamic
properties: a unite flow velocity common for both true phases and a
viscosity being a weighted mean value between two individual viscosi-
ties.

The vectorial capillarity concept results from the examination of the
meniscus flow inside a pore (5). For a meniscus structure, the capillary
forces play the role of true forces as a vectorial notion. They can accelerate
or decelerate the flow, by changing the system momentum. It is then natu-
ral that the capillarity appears in the momentum balance equation for the
M-continuum.

These two elements are sufficient to develop phenomenological two-
phase flow equations. To close the system we have suggested two supple-
mentary relations which result from the microscale analysis of the meniscus
structure and numerical simulations based on a capillary network model of
porous media.

The mathematical form of the new model is qualitatively different from
the classic Buckley–Leverett model with capillary pressure. The suggested
model is hyperbolic of the first order in all the cases, even when the capil-
larity dominates. This is not traditional, as the classic model with capillary
forces is parabolic and, thus, of the second order. In the last two sections
of this paper we have shown, through the use of analytical solutions to test
problems and various physical examples that the hyperbolicity corresponds
well to the physical nature of the capillary meniscus movement.
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Abstract. It is known that the classical capillary pressure-saturation relationship may be
deficient under non-equilibrium conditions when large saturation changes may occur. An
extended relationship has been proposed in the literature which correlates the rate of
change of saturation to the difference between the phase pressures and the equilibrium
capillary pressure. This linear relationship contains a damping coefficient, τ , that may
be a function of saturation. The extended relationship is examined at the macro-scale
through simulations using the two-phase simulator MUFTE-UG. In these simulations, it
is assumed that the traditional equilibrium relationship between the water saturation and
the difference in fluid pressures holds locally. Steady-state and dynamic “numerical exper-
iments” are performed where a non-wetting phase displaces a wetting phase in homoge-
neous and heterogeneous domains with varying boundary conditions, domain size, and
soil parameters. From these simulations the damping coefficient τ can be identified as
a (non-linear) function of the water saturation. It is shown that the value of τ increases
with an increased domain size and/or with decreased intrinsic permeability. Also, the value
of τ for a domain with a spatially correlated random distribution of intrinsic permeabil-
ity is compared to a homogeneous domain with equivalent permeability; they are shown
to be almost equal.

Key words: two-phase flow, dynamic capillary pressure-saturation relationship, macro-scale,
damping coefficient

1. Introduction

For the simulation of two-phase flow processes, as e.g. the flow of an
organic contaminant through an aquifer, a correctly determined constit-
utive relationship between saturation and capillary pressure plays a par-
amount role. Whereas fluid and structure properties such as porosity
or permeability are well examined and known the determination of the
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fluid-structure interaction still poses a lot of questions. Thus during recent
decades many experimental and methodical works have dealt with mea-
suring or theoretically deriving this functional relationship. Beside hyster-
esis phenomena, researchers have identified a non-uniqueness arising from
dynamic flow conditions. A review of experimental evidence from the liter-
ature is given by Hassanizadeh et al. (2002).

The influence of the flow conditions on capillary pressure (PcPP )-satura-
tion (SwSS ) relationships is illustrated with experiments carried out by Topp
et al. (1967). They measured three Pc–Sw curves in the laboratory under a
variety of flow conditions for quasi-static, steady-state and dynamic condi-
tions (Figure 1). The curves for the quasi-static and the steady-state cases,
where the rate of change of water saturation ∂SwSS /∂t is zero at the shown
data points, differ only slightly. In contrast, the dynamic curve, arrived at
by increasing the gas pressure at the upper end of an initially fully water-
saturated soil sample within �t = 100 min from PnPP = 0 Pa to PnPP = 550 Pa,
lies above the two other ones. Consequently, the relationship between sat-
uration and capillary pressure cannot be regarded as unique. Many other
experimental results have shown a dependence on the flow conditions, too
(see Hassanizadeh et al., 2002 for reference). With an increasing pressure
gradient, induced at the boundaries, the difference between the equilibrium
and the dynamic PcPP – SwSS relationship becomes larger.

In numerous applications, such as the decontamination of a NAPL spill,
in oil recovery, or technical applications such as paper production or filter
technology large gradients may occur. For the simulations of the two-phase
flow processes, nevertheless, unique relationships between capillary pressure

Figure 1. Three PcPP –SwSS relationships (primary drainage) measured in the laboratory
under static, steady-state and dynamic conditions after Topp et al. (1967).
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and water saturation are assumed most of the time. To deal with the non-
uniqueness described above and to be able to incorporate the dynamic
effects into numerical models, some functional relationship has to be pro-
vided. Furthermore, parameters for this relationship need to be determined.

In this paper, first we will introduce different model concepts dealing
with non-equilibrium effects in two-phase flow, choosing one of them to
examine further. The study is carried out by means of numerical simula-
tions that resemble laboratory experiments for the measurement of capil-
lary pressure-saturation relationships. At the local scale, it is assumed that
Darcy’s law and the traditional capillary pressure theory hold.

2. Extended Capillary Pressure-Saturation Relationships

In the following, different model concepts will be described which capture
non-equilibrium effects in the constitutive relationships of two-phase flow.

Hassanizadeh and Gray (1993) volume averaged pore scale balance
equations for mass, momentum, energy and entropy. The authors arrived
at a functional relationship between the rate of change of water saturation,
∂SwSS /∂tww , and the difference between the pressures of the non-wetting phase,
PnPP , the wetting phase, PwPP , and the capillary pressure at equilibrium, P

eq
cPP ,

(static or steady-state) at a given saturation. As a first approximation, they
linearised the relationship, assuming that under static or steady-state condi-
tions the rate of change of saturation and thus the difference between the
three pressures would be zero (see Equation (2.1)). The negative sign on the
right hand side ensures that the entropy production is always larger than
zero.

PnPP −PwPP −P eq
cPP (SwSS )=−τ

∂SwSS

∂t
. (2.1)

Here τ can be regarded as a damping or relaxation coefficient, in this
paper we will call it a damping coefficient. For the sake of brevity, the rate
of change of water saturation ∂SwSS /∂t will be abbreviated to saturation rate.

Under dynamic flow conditions the difference in the phase pressures
may not equal the equilibrium capillary pressure. For the sake of brevity,
we shall refer to PnPP –PwPP as “dynamic capillary pressure”, such that Equa-
tion (2.1) becomes:

PnPP −PwPP =P dyn
cPP =−τ

∂SwSS

∂t
+P eq

cPP (SwSS ) . (2.2)

This equation suggests that a new equilibrium between the dynamic
and the equilibrium capillary pressure is not attained instantaneously. The
damping coefficient might depend on the water saturation. The Equation
(2.2) will be referred to as the extended PcPP –SwSS relationship in the following.
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Based on experimental evidence Stauffer (1978) came up with a similar
relationship suggesting that the damping coefficient τ can be quantified for
different soils as given in Equation (2.3).

τ = α ·φ ·µw

λ ·K
(

PdPP

ρw ·g
)2

. (2.3)

In Equation (2.3) α is a dimensionless parameter (assumed to be α =
0.1), φ is the porosity and K is the intrinsic permeability; µw is the dynamic
viscosity and ρw the density of water; PdPP and λ are the Brooks and Corey
parameters (see Section 3.1 and Equation (3.5)).

Stauffer (1978) also examined dynamic effects in the relative permeability-
saturation relationship but found them to be of minor importance for the
analysed cases.

Concluding from pore scale flow processes Barenblatt et al. (2002) state
that during imbibition processes non-equilibrium effects arise due to redis-
tribution processes on the pore scale. During imbibition the relative perme-
ability of the wetting phase might then be higher than the one evaluated at
the actual water saturation due to the system’s relaxation. They, therefore,
suggested the introduction of an apparent water saturation η, which differs
from the actual saturation SwSS as defined in Equation (2.4). The constitu-
tive relationships, which are not altered, would be evaluated based on the
value of η instead of the actual water saturation. For example, for imbibi-
tion processes the apparent saturation of the wetting phase would be larger
than the actual water saturation, consequently, the relative permeability krw

would be higher than if evaluated based on SwSS . This is in agreement with
laboratory observations. At equilibrium the saturation η equals the actual
water saturation. In order to define a relation between the non-equilibrium
and the actual saturation the authors assume a functional dependence on
the relaxation time τBττ and the saturation rate arriving at Equationn (2.4)
after a dimensional analysis.

η−SwSS = τBτ
∂SwSS

∂t
. (2.4)

The authors not only deal with non-equilibrium effects in the capillary
pressure-saturation relationship but link it with a non-equilibrium relative
permeability-saturation relationship.

Barenblatt et al. (2002) remark that non-equilibrium effects should be
taken into account for fast flow processes whose time scale is small com-
pared to the relaxation time τBττ . For slow flow processes, whose time scale
is in the order of the relaxation time, the assumption of local equilibrium
is justified. The authors have applied their model in numerical calculations,
as did Silin and Patzek (2004) with their study on the Barenblatt model.
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Bourgeat and Panfilov (1998) applied homogenisation theory to the bal-
ance equations for two immiscible fluids in a porous medium with periodi-
cal heterogeneities made up of a coarse background material (superscript c)
with embedded fine lenses (superscript f). The water saturation rate within
the fine material, damped by the coefficient τBPττ , is found to be a function
of the difference in capillary pressures of the fine and coarse material (see
Equation (2.5)).

1
Ca

P f
cPP
(
Sf

wSS
)−P c

cPP
(
Sc

wSS
)=−τBPτ

∂Sf
wSS

∂t∗
with Ca = �pw

pc
. (2.5)

In contrast to the coefficient τBττ of Barenblatt et al. (2002), which has
the dimension of time, the τBPττ parameter of Bourgeat and Panfilov has the
same dimension (MT−1L−1) as τ in Equation (2.1).

Equation (2.5) is somewhat similar to Equation (2.2) suggested by Has-
sanizadeh and Gray (1993). In this analogy, P c

cPP
(
Sc

wSS
)
, the capillary pressure

of the coarse material may be considered to be similar to the equilibrium
capillary pressure, as the equilibrium in the coarse material may be reached
rather fast. The capillary pressure of the fine sand, P f

cPP
(
Sf

wSS
)
, may consid-

ered to be similar to the dynamic capillary pressure as equilibrium will be
attained slower.

The approach of Bourgeat and Panfilov (1998) is limited to periodic het-
erogeneities made up of two kinds of materials. However, in the balance
equations of two-phase flow we would prefer a more universal approach,
that can be included in the balance equations for two phases easily.

For this paper we will more closely examine the relationship proposed by
Hassanizadeh and Gray (1993) as it is applicable to all kinds of heterogene-
ity pattern and has not been analysed in detail on the macro-scale. Also, for
the moment, we do not want to consider possible dynamic effects in the rel-
ative permeability-saturation relationship. It must be noted that the dynamic
effect considered here is present only for transient flow, e.g. when the satu-
ration rate is unequal to zero. Thus, cases where PcPP may depend on the flow
velocity (see e.g. DiCarlo and Blunt, 2000), which might also be the case
under steady-state conditions, are not dealt with here.

Before applying the linear relationship between saturation rate and the
difference in pressures as proposed by Hassanizadeh and Gray (1993) the
linearisation has to be tested. Furthermore, functional dependencies, e.g. of
τ on the water saturation, the soil parameters, or the domain size, have to
be determined. We will study these issues in this paper based on numerical
experiments with a continuum-scale model.

For work determining τ on the pore scale we refer to Dahle et al. (this
book), Gielen et al. (2003, 2004), Hassanizadeh et al. (2002), and Singh and
Mohanty (2003).
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3. Numerical Experiments

In order to investigate the linear relationship (Equation (2.2)), numerical
experiments are performed on a number of computational domains, with
dimensions between 0.03 m and 1.0 m. The domains may be homogeneous
or heterogeneous with respect to the permeability and/or entry pressure dis-
tribution.

At first, the equilibrium capillary pressure-saturation relationship for a
given domain is determined. In a second step, dynamic numerical drainage
experiments are performed where for each time step the domain averaged
phase pressures and the saturation rate are computed. Using these data in
Equation (2.2), we can then calculate the value of the damping coefficient
τ as a function of water saturation.

It must be emphasized that it is not the purpose of this paper to show
that a heterogeneous domain can be replaced with a homogeneous domain
with effective parameters. In other words, we are not performing a full up-
scaling of equations. Instead, we are assuming that Equation (2.1) holds at
all various scales and calculate τ at various scales. This is similar to the
concept of dynamic viscosity. When upscaling turbulence, the same phe-
nomenological equation is assumed to apply and the corresponding coeffi-
cient, dynamic viscosity, is assumed to grow with (time) scale.

In this section, the underlying physical-mathematical model, the numeri-
cal experiments (initial and boundary conditions, soil parameters), and the
averaging procedures will be described.

3.1. physical-mathematical model

The governing equations of two-phase flow in a porous medium on scales
larger than the pore scale for an incompressible wetting phase (subscript w)
and an incompressible non-wetting phase (subscript n) are given as below
(see Equations (3.1) and (3.2)). Gravity and the contribution of source/sink
terms are neglected. The solid phase is regarded as rigid and the intrinsic
permeability K as isotropic.

φρw
∂SwSS

∂t
−∇ ·

{
ρw

krw (SwSS )

µw
K∇PwPP

}
=0, (3.1)

φρn
∂SnSS

∂t
−∇ ·

{
ρn

krn (SnSS )

µn
K∇PnPP

}
=0 (3.2)

In Equations (3.1) and (3.2) the primary variables are the saturations SwSS

and SnSS and the pressures PwPP and PnPP . 
 denotes the porosity, ρ the density,
µ the dynamic viscosity, kr the relative permeability, and t the time. These
two equations are strongly coupled by the relative permeabilities and the
two restrictions given in Equations (3.3) and (3.4).
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SwSS +SnSS =1.0, (3.3)

∇PcPP =∇PnPP −∇PwPP with PcPP =PcPP (SwSS ) . (3.4)

The capillary pressure is assumed to be a unique function of the water
saturation (Equation (3.4)). It will be parameterised with the Brooks and
Corey (1964) relationship (see Equation (3.5)). Consequently, in our sim-
ulations local dynamic effects are neglected. The relative permeability-
saturation relationships are calculated after the approach of Burdine (1953)
based on the Brooks and Corey PcPP –SwSS relationship (Equation (3.6)).

PcPP (SeSS )=PdPP S−1/λ
eS , SeSS = SwSS −SwrSS

1.0−SwrSS −SnrSS
, (3.5)

krw =S2+3λ/λ
eS , krn = (1.0−SeSS )2[1.0−S2+λ/λ

eS ]. (3.6)

Here SeSS denotes the effective water saturation. Alternatively, we should
have employed the extended capillary pressure-saturation relationship after
Equation (2.1). The value of the damping coefficient would have been
unknown. Typical values could have been chosen on the basis of pore-
network model simulations. Values determined by Gielen et al. (2004) are
less than τ =105 Pa s. Dahle et al. (2003) calculated τ -values in the order of
τ =102 Pa s for a bundle of capillary tubes model. The effect on the solu-
tion of these values are expected to be small (Hassanizadeh et al., 2002).
For now, we choose τ to be zero for the numerical calculations.

The balance equations are solved with the multiphase flow simula-
tor MUFTE-UG (Bastian, 1999) based on a node-centered Finite-Volume
discretisation in space, the so-called BOX-method (Helmig, 1997; Huber
and Helmig, 1999), and a backward-difference Euler scheme for the time
discretisation. A quasi-Newton–Rhapson algorithm solves the nonlinear
system of equations. The linear system of equations evolving during
the Newton–Rhapson algorithm is handled with a BiCGStab (stabilised
biconjugate gradient) scheme applying a V-multigrid cycle as pre- and post-
smoother.

3.2. initial and boundary conditions

The damping coefficient τ for a given sample may be determined if P
dyn
cPP ,

P
eq
cPP and the saturation rate ∂SwSS /∂t are known at a given saturation. To

obtain such data, two kinds of numerical experiments have to be carried
out: steady-state (yielding P

eq
cPP for a given water saturation) and dynamic

experiments (yielding P
dyn
g

cPP and �SwSS /�t). The corresponding simulations
were set up to mimic a flow-through cell.

In a flow-through cell experiment initially the sample is assumed to be
fully saturated with water. The wetting phase pressure varies linearly (from
PwPP to 0) from top to bottom and the non-wetting phase pressure is set to
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Table I. Boundary conditions for the numerical experiments mimicking the flow through cell

Boundary t = 0 s t > 0 s t > 0 s
both exp. steady-state dynamic

Top (Dirichlet) PwPP ={0Pa, PwPP ={0Pa,102Pa,103Pa} PwPP ={0Pa,102Pa,103Pa}a
102Pa,103Pa} PnPP =PwPP +P B

cPP with PnPP =PwPP +P B,Max
cPP with

PnPP =PwPP +PdPP P B
cP =PdPP +∑

l

1.5l P B,Max
cP ={2.0 ·103Pa,

4.0×103Pa,1.0×104Pa}a
Bottom (Dirichlet) PwPP =0 PwPP =0 Pa PwPP =0Pa

PnPP =PdPP PnPP =P B
cP with PnPP =P B,Max

cPP with
P B

cP =PdPP +∑
l

1.5l P B,Max
cPP ={2.0×103Pa,

4.0×103Pa,1.0×104Pa}a
Sides (Neumann) qw =qn qw =qn =0 kg/(m3·s) qw =qn =0 kg/(m3·s)

=0 kg/(m3·s)

equal the wetting phase pressure plus the entry pressure PdPP . The bound-
ary conditions are imposed on the sample (read the modelling domain) as
given in Table I and depicted in Figure 2.

Here P B
cPP denotes the boundary capillary pressure. It is evident that a

pressure difference of �P within both the wetting and the non-wetting
fluids across the sample is imposed. In the steady-state experiment, the
boundary capillary pressure P B

cPP is increased stepwise following a geometric
series. �P is kept constant. This means that only the non-wetting phase
pressure is increased. Simulations are run until equilibrium

Figure 2. Boundary conditions for the steady-state and dynamic numerical experi-
ments.
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(i.e. steady-state flow for both fluids from top to bottom) is established for
a given boundary capillary pressure. To determine whether equilibrium is
reached the change of the averaged water saturation (see Equation (3.7))
and averaged water pressure (see Equation (3.9)) between two subsequent
time steps is less than a residual of εS < 1.0 × 10−6 for the water satura-
tion and εP <1.0×10−2 Pa for the water pressure. Then the index l of the
geometric series is by one (see Table I) and a new boundary capillary pres-
sure is imposed. The average water saturation of the sample at equilibrium
and the corresponding P B

cPP provide one data set for the equilibrium PcPP –SwSS

function.
In the dynamic experiment the boundary capillary pressure is raised at

once to a high value P B,Max
cPP . As a result, the non-wetting phase satura-

tion in the sample rises quickly. After each time step average saturation
and average phase pressures are calculated. These results are used to obtain
P

dyn
cPP =PnPP −PwPP and the saturation rate as a function of average saturation.

Note that here, contrary to steady-state experiments, the boundary capil-
lary pressure P B

cPP is not representative of the average capillary pressure P
dyn

p
cPP

at intermediate times (see Figure 5). In the dynamic experiment counter-
current flow may occur.

3.3. materials and properties

In order to analyse the extended Pc–Sw relationship, numerical experiments
were performed with four different set-ups:

• Homogeneous coarse sand (domain size 0.12 m × 0.12 m); this is effec-
tively one-dimensional flow.

Figure 3. Simple heterogeneity pattern (left) and intrinsic permeability distribution
for spatially correlated isotropic random field (right).
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• Simple heterogeneity pattern (domain size 0.12 m × 0.12 m) made up
of a background material (coarse sand) with two embedded fine sand
blocks (see Figure 3, left).

• Heterogeneous permeability distribution based on an isotropic spatially-
correlated random field (domain size 1.0 m × 1.0 m, see Figure 3, right)
but with homogeneous entry pressure.

• Heterogeneous permeability and entry pressure distribution based on an
isotropic spatially-correlated random field (domain size 1.0 m × 1.0 m).

The soil parameters of the coarse and fine sand are listed in Table
II, where also the statistical parameters of the random field are given.
For the parametrisation of the equilibrium PcPP –SwSS relationship, the Brooks
and Corey (1964) (BC) formula was chosen. For the relative permeability-
saturation relationship the Burdine (1953) formula was applied. The non-
wetting phase (NAPL) viscosity (µn = 0.9 × 10−3 kg m−1 s−1) is 10% less
than the wetting phase (water) viscosity (µn =1.0×10−3 kg m−1 s−1).

The isotropic random heterogeneity field was generated based on an
approach by Dykaar and Kitanidis (1992) with an exponential covari-
ance function. As the grid consisted of 1012 nodes, one correlation length
(a = 0.05 m) was covered by five nodes, which means there are 20 correla-
tion lengths in the x- and y-directions.

3.4. representative elementary volume (REV)

Before calculating the parameters for different heterogeneous set-ups, one
needs to establish that a Representative Elementary Volume (REV) for the
domain considered here exists. For the simple heterogeneous set-up (see
Figure 3, right) this was shown by Ataie-Ashtiani et al. (2001). For the
random heterogeneity field, the arithmetic means of the logarithm of the
intrinsic permeabilities were calculated for four different starting points and

Table II. Parameters of the random field as well as the coarse and fine sands used for
the simple heterogeneity pattern

Parameter Random field Coarse sand Fine sand

Porosity φ [−] 0.4 0.4 0.4
Intrinsic Permeability K [m2] 5.11×10−12 5.0×10−9 5.0×10−12

BC Pd [Pa] 5.0×102 3.5×102 1.0×103

BC λ [−] 2.0 3.0 3.0
Res. Water Saturation Swr [−] 0.05 0.08 0.1
Variance σ 2 of ln K 0.5
Correlation length a [m] 0.05
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subsequently increasing averaging domains (see Figure 4). For the starting
point 1, the final value does not yet equal the average of the ln K distribu-
tion. For all other starting points, an REV is reached even before the whole
domain is taken into account. Subsequently the averaging of the pressures
and the saturations is performed over the whole domain including bound-
ary nodes for the simple heterogeneity pattern and the spatially correlated
random field.

3.5. average pressures and saturations

To arrive at averaged parameters for the extended PcPP –SwSS relationship aver-
age phase pressures and water saturations after each time step at time
level t during the numerical experiments have to be computed. The average
water saturation S̄wSS (t) is the weighted arithmetic mean (Equation (3.7)).

S̄wSS (t)=
m∑

i=1

SwSS ,i(t) ·wi with wi = ViVV

VdomVV
(3.7)

ViVV designates the volume belonging to a node of the node-centred Finite-
Volume grid consisting of m nodes. VdomVV denotes the volume of the whole
domain. As we have a node-centered grid the volumes belonging to a node
differ even for a regular grid. But basically, Equation (3.7) results in an
arithmetic mean of the saturation. Based on the averaged water satura-
tions, the saturation rate is calculated. It is approximated based on a cen-
tral difference scheme (Equation (3.8)) for each time level t at the time
step n.

Figure 4. Arithmetic average of lnK as a function of values included for the hetero-
geneous permeability distribution (starting point 1: x =0.3, y =0.3, starting point 2:
x =0.6, y =0.3, starting point 3: x =0.3, y =0.6, starting point 4: x =0.6, y =0.6).
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�S̄tn

wSS

�t
= S̄tn+1

wSS − S̄tn−1

wSS

tt
n+1 − t t

n−1 . (3.8)

In many experimental set-ups or when applying the method of capillary
equilibrium the boundary pressures of the phases yield an average capillary
pressure. Whereas this is an appropriate choice for static or steady-state
conditions it is not applicable to dynamic experiments. Here, the average
phase pressures of the wetting phase 〈PwPP 〉 and the non-wetting phase 〈PnPP 〉
at time t are calculated after Equatin (3.9), where the phase pressure at
each node i is weighted by the volume VαiVV of the phase at node i.

〈PαPP 〉(t)=

m∑
i

PαPP i(t) ·VαVV i(t)

m∑
i

VαVV i(t)

, VαVV i(t)=SαSS i(t) ·φi ·ViVV with α =w, n. (3.9)

Based on the average phase pressures the average capillary pressure can
be calculated after Equation (3.10).

〈PcPP 〉(t)=〈PnPP 〉(t)−〈PwPP 〉(t). (3.10)

4. Interpretation of the Simulation Results

In the following we will show the variations of the average capillary pres-
sures and the average water saturation rate as a function of the water sat-
uration. These two quantities provide the basis for a regression minimiz-
ing the sum of squared differences between the extended PcPP –SwSS relationship
and data points.

But, first we want to draw attention to the temporal development of the
capillary pressures of a steady-state experiment in comparison to a dynamic
experiment (see Figure 5). We compare three capillary pressures as function
of time:

• The boundary capillary pressure for the steady-state experiment P B
cPP as

defined in Table I.
• The averaged capillary pressure as given in Equation (3.10) for the

steady-state experiment.
• The averaged capillary pressure as given in Equation (3.10) for the

dynamic experiment.

During the steady-state experiment, the boundary capillary pressure is
a good approximation (at least for the first eight pressure steps) of the
difference in the averaged phase pressures 〈P̄nPP 〉−〈P̄wPP 〉. On the contrary, the
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Figure 5. Capillary pressures as functions of time for a steady-state and a dynamic
(P B

cPP (t >0)=4.0×103 Pa) experiment with the spatially-correlateed random heteroge-
neity field (see Figure 3 and Table II).

averaged capillary pressure does not equal the boundary capillary pressure
during the complete dynamic experiment.

A plot of the difference between the average phase pressures as a
function of saturation for the simple heterogeneity pattern is shown in
Figure 6. The very large dynamic capillary pressure in the vicinity of SwSS =
1.0 (corresponding to the initial time steps of the computations) is a
numerical artefact. If the first time step were increased from �t =0.001 s to
�t > 0.005 s, this local maximum in the dynamic capillary pressure would
not be noticed. The question remains how to identify the extended PcPP –SwSS

relationship in a consistent manner at water saturations of SwSS →1.0. In the
following analysis, the first time steps are neglected when examining the
dynamic numerical experiments.

Next the difference between the dynamic and equilibrium capillary pres-
sures �PcPP =〈P dyn

cPP 〉−〈P equil
cPP 〉 and the rate of change of saturation are plotted

as functions of water saturation (see Figure 7). The difference between the
dynamic and equilibrium capillary pressures as a function of the water sat-
uration is not monotonously decreasing. It has a local maximum at a water
saturation S̄wSS ∼= 0.78. For saturations less than this, the difference decreases
monotonously for decreasing water saturations. At the same time, the satu-
ration rate is monotonously decreasing for all water saturations. The non-
monotonous behaviour of the difference between dynamic and equilibrium
capillary pressures is not caused by the large difference in the phase pres-
sures during the first two time steps. These are not taken into account. A
similar behaviour can be observed for different heterogeneous set-ups. This
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Figure 6. Difference of the averaged phase pressures of the steady-state and the
dynamic (P B

cPP = 4.0 × 103 Pa, �P = 100 Pa) experiment for the simple heterogeneity
pattern.
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Figure 7. Saturation rate and difference between the dynamic and equilibrium capil-
lary pressure as a function of water saturation for a dynamic numerical experiment
with the simple heterogeneity pattern (P B

cPP =4.0 ·103 Pa, �PwPP ,n =100 Pa).

is probably related to the fact that at an averaged water saturation of S̄wSS ∼=0.7
the fine sand lenses are still fully water saturated.

From these curves a plot of the difference between the dynamic and
equilibrium capillary pressure vs. saturation rate at a fixed saturation can
be prepared to determine τ and to test the validity of Equation (2.1).
A typical data set is shown in Figure 8 for three different dynamic
experiments with boundary capillary pressures of P B

cPP = 2.0 × 103 Pa,
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Figure 8. Regression based on the linear relationship (Equation 4.1) for three differ-
ent dynamic experiments at a water saturation of SwSS = 0.6 for the homogeneous
coarse sand (�P =1.0×102 Pa).

P B
cPP = 4.0 × 103 Pa, P B

cPP = 104 Pa for a water saturation of S̄wSS = 0.6. Such a
plot, according to Equation (2.1) should indicate a linear relationship pass-
ing through the origin. The slope of this line equals the damping coefficient
τ .
A regression minimising the sum of the squared differences between the
data and the extended PcPP –SwSS function was performed (least-squares Leven-
berg-Marquard algorithm) based on the formula

�PcPP =P dyn
cPP −P eq

cPP (SwSS )=b− τ
∂SwSS

∂t
, (4.1)

where b represents the y-axis intercept.
In this way, τ can be determined for various water saturations. This has

resulted in the graph plotted in Figure 9 where �PcPP (�SwSS /�t) is shown
for S̄wSS =0.3,0.4, . . . ,0.8. From Figure 9 it is again obvious, that the linear
functions do not run through the origin, there is an intercept b.

The values determined for τ and b depend on the water saturation (see
Table III). The value of the damping coefficient, τ, increases with decreas-
ing water saturation from τ =1.4 ×103 Pa s at S̄wSS =0.8 to τ =9.4 ×105 Pa s
at S̄wSS =0.2. A non-linear relationship can be discerned. The values of b also
show this trend although not as clearly as in the case of τ .

Clearly three data points for one regression are not enough to test a
linear relationship. However, especially the highly negative values for b
suggest, that the linear relationship is at least questionable, because the
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P B

cP =2.0×103 Pa, P B
cPP =4.0×103 Pa and P B

cPP =1.0×104 Pa, �P =1.0×102 Pa.

Table III. Values of τ and b for given water saturations for homogeneous coarse sand,
data from numerical experiments with P B

cPP =2.0×103 Pa, P B
cPP =4.0×103 Pa and P B

cPP =1.0×
104 Pa, �P =1.0×102 Pa

S̄wSS τ [Pa s] b [Pa]

0.2 9.4×105 −606
0.3 9.2×104 −478
0.4 1.8×104 −360
0.5 1.6×104 −774
0.6 1.0×104 −552
0.7 4.5×103 −303
0.8 1.4×103 −109

difference in the pressures should always be positive for drainage processes.
A value of b smaller than zero means that at a saturation rate of zero
the difference in phase pressures and equilibrium capillary pressure equals
−552 Pa when it is expected to be zero. Also, at equilibrium between the
phase pressures and the equilibrium capillary pressure the saturation rate
would be (in this case) negative. Dahle et al. (this book) also determine
b-values unequal to zero based on a bundle of capillary tubes model.

Kalaydjian (1992) calculated values of τ = 2 × 106 Pa s for a water–oil
system under imbibition conditions using a constant influx in a sandstone
with an intrinsic permeability of K = 2.1 × 10−13 m2 and an entry pressure
of approximately PdPP = 2.5 × 103 Pa. In our case the intrinsic permeability
is a factor of 104 larger and the entry pressure is a factor of 10 smaller.
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According to Stauffer’s formula (Equation (2.3)) the value of τ should be
decreasing for increasing permeability and decreasing entry pressure. These
trends are confirmed by the results of the simulations compared to the
results of obtained Kalaydjian (1992).

In the following the damping coefficient τ will be determined based
on the assumption that the linear relationship holds for all ranges of the
saturation rate and that the extended PcPP –SwSS relationship runs through the
origin. This assumption reduces the number of simulations required signifi-
cantly and should show trends in the τ (SwSS ) even if the relationship cannot
be regarded as linear for all saturation rates.

5. Influence of boundary conditions

In order to show the influence of the boundary conditions we compare
here the results of three simulations for the simple heterogeneous set-up
applying three different boundary capillary pressures (see Figure 10). For
water saturations SwSS >0.7 the difference in the functions τ

(
SwSS
)

is not pro-
nounced, implying that a linear relationship could hold for high water sat-
urations. However, for smaller water saturations the functions differ. This
can be interpreted as a functional dependence of τ on the saturation rate.

In order to interpret the results, the influence of the driving forces can
be contemplated, e.g. the capillary number determines dominating forces of
a two-phase flow system. The application of the capillary number would
require a steady-state flow field. We will here assume that for a given water
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saturation we can compare the saturation rate (and thus the flow velocities)
of the three different experiments although steady-state is not given. The
capillary number can be defined according to Equation (5.1) after Hilfer
(1996), where vw denotes the flow velocity of the wetting phase, L denotes
a characteristic length and P ∗

cPP denotes a typical capillary pressure of the
system. In the three numerical experiments described above, the viscosity,
the characteristic length and intrinsic permeability K do not differ.

Ca = viscous forces
capillary forces

= µw ·vw ·L
P ∗

cPP ·K . (5.1)

For the influence of the capillary forces, the typical capillary pressure,
we can apply the boundary capillary pressure. We may assume here the sat-
uration rate to be proportional to the flow velocity of the wetting phase.
In the numerical experiments the saturation rate increases with increas-
ing boundary capillary pressure. Thus, the viscous as well as the cap-
illary forces would increase which complicates the interpretation of the
results. One should apply Neumann boundary conditions to make the con-
ditions less ambiguous. Kalaydjian (1992) determined values for τ (SwSS ) for
two imbibition processes varying the influx. For higher flow velocities he
obtained smaller τ values as compared to τ values of a laboratory experi-
ment inducing lower flow velocities. Assuming that the capillary forces can
be considered as equal for the two experiments, τ would decrease with
increasing viscous forces.

Summarising, we would like to state, that τ should rather be interpreted
as a function of water saturation, of soil and fluid parameters, and perhaps
of the saturation rate rather than interpreting it as a function of dominat-
ing forces.

There are approaches analysing a functional dependence of capillary
pressure on the flow velocity (see e.g. DiCarlo and Blunt, 2000).

6. Influence of the Domain Size

To investigate the influence of the domain size, in addition to the 0.12 m
high domain studied so far, three other domains namely (0.03, 0.5 and
1.0 m high) are considered for a boundary capillary pressure of P B

cPP =
4.0 × 103 Pa. In order to minimise the influence of the pressure differ-
ence within the phase pressures from top to bottom the initial pressure
gradient was set to ∇P = 8.33 × 103 Pa/m for all three domain sizes. All
domains were discretised with the same grid spacing of �y = 0.0025 m
in the y-direction, except for the 0.03 m high domain, which was discre-
tised finer (�y = 0.000625 m). The damping coefficient τ was determined
based on the assumptions that the linear relationship holds and that it runs
through the origin (see Equation (2.1)).
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With increasing domain size, the value of the damping coefficient
increases (see Figure 11) This is to be expected, as for increasing domain
size the saturation rate decreases and the difference between the aver-
age dynamic and equilibrium capillary pressures increases. At any given
node, the difference between the dynamic and equilibrium capillary pres-
sure would always be zero because we assume local capillary equilibrium.

Similar effects have been observed in pore-network simulations (Gielen,
2003).

In order to show that our results are not affected by numerical discreti-
sation, we have determined and compared the functions τ

(
SwSS
)

of two sim-
ulations with the same domain size (height = 1.0 m) but with different grid
spacings (see Figure 12). The grid size has a small influence on the function
τ
(
SwSS
)

when the water saturation approaches SwSS → 1.0. The discretisation
needs to be fine enough to resolve the front correctly and to minimise
numerical dispersion, thus a finer resolution is needed when calculating
τ(SwSS → 1.0). But, on the whole, it is clear that even for the 1 m × 1 m
domain, the discretisation is fine enough and our results are hardly influ-
enced by numerical dispersion.

7. Influence of Heterogeneity

One presumption is that the dynamic effects as captured in the extended
PcPP –SwSS relationship can be caused by soil heterogeneities in intrinsic
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permeabilities or constitutive properties. In order to test this assumption,
a spatially-correlated isotopic random field was generated (see Section 3.3)
for a 1 m × 1 m domain. Three numerical experiments with the same initial
and boundary conditions (see Table I) were performed.

• Case 1: homogeneous set-up as reference case based on the parameters
as given in Table II under the column “random field”.

• Case 2: heterogeneous distribution of intrinsic permeabilities and homo-
geneous PcPP –SwSS relationship.

• Case 3: heterogeneous distribution of intrinsic permeabilities with entry
pressure PdPP scaled for each node based on the Leverett formula (Equa-
tion 7.1).

PdPP ,i =P ref
dP ·

√
Kref/ki. (7.1)

Here PdPP ,i denotes the entry pressure at node i. Porosity and the relative
permeability-saturation relationship are assumed to be homogeneous and
the same for all three cases.

Compared to the homogeneous reference case 1 the inclusion of a het-
erogeneous permeability (case 2) has an influence on the function τ

(
SwSS
)

(see Figure 13). For water saturations of SwSS < 0.6 the damping coefficient
τ is higher for case 2 and for SwSS > 0.6 τ is lower for case 2 compared to
case 1. Whereas the differences between the phase pressures and the static
capillary pressure does not differ significantly for the two cases, the satura-
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Figure 13. Damping coefficient τ (on log scale) as a function of water saturation
for case 1 (homogeneous) and case 2 (heterogeneous permeability distribution) for
a 1 m × 1 m domain.

tion rate of case 2 is up to 50% smaller than the one of case 1. The lower
saturation rate would be caused by the regions of low permeabilities (see
Figure 4) especially near the boundaries. The values for the intrinsic per-
meability differ by a factor of about 50. In order to eliminate the possi-
bility that the shown influence on τ is only caused by the location of the
low permeabilities with respect to the boundaries e.g. a Monte–Carlo sim-
ulation is required.

If a heterogeneous distribution of the entry pressure is generated based
on the permeability field the functions τ

(
SwSS
)

do not differ for large water
saturations (see Figure 14). Notice that the maximum entry pressure PdPP =
1286 Pa of the scaled entry pressure distribution is still lower than the
boundary capillary pressure. Consequently also in case 3 the entry pres-
sure is overcome during the first time steps. An influence on the function
τ
(
SwSS
)

can be discerned for water saturations smaller than SwSS < 0.5. Here
the values of the function τ

(
SwSS
)

for case 3 are lower than the ones for
case 2. However, the influence is not pro-nounced.

8. Influence of the Intrinsic Permeability and the BC-Parameter entry
Pressure P d

According to Stauffer’s formula (see Equation (2.3)) the value of τ should
be inversely proportional to intrinsic permeability and directly proportional
to the square of the BC parameter entry pressure PdPP .
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Figure 14. Damping coefficient τ (on log scale) as a function of water saturation
for case 2 (heterogeneous permeability distribution) and case 3 (heterogeneous per-
meability and scaled entry pressure distribution) for a 1 m × 1 m domain.

Here the value for the entry pressure was varied by 100%. In the first
case we apply the heterogeneous permeability distribution described in Sec-
tion 7 and a homogeneous PcPP –SwSS with an entry pressure of
PdPP = 5.0 × 102 Pa. In the second case the entry pressured is increased to
PdPP =1.0×103 Pa.

For water saturations S̄wSS > 0.75 the resulting values of τ
(
SwSS
)

dif-
fer only slightly (see Figure 15). For decreasing water saturations the
values of τ for the numerical experiment with the smaller entry pres-
sure of PdPP = 5.0 × 102 Pa exceeds those of the higher entry pressure
(PdPP = 1.0 × 103 Pa) which obviously contradicts the functional relation-
ship proposed by Stauffer. What is more, the damping coefficient τ for
the numerical experiment applying an entry pressure of PdPP = 1.0 × 103 Pa
changes sign. As τ was determined after Equation (6.1) it should be posi-
tive for drainage processes. However, at water saturations 0.23 <S̄wSS < 0.45,
the difference between the phase pressures and the equilibrium capillary
pressure becomes negative.

Additionally, we will compare τ
(
SwSS
)

of case 1 (homogeneous) to the
curve τ

(
SwSS
)

of the 1 m × 1 m domain shown in Figure 11. The domain sizes
of these two numerical experiments are the same. The entry pressure PdPP of
case 1 is 43% higher than in the case of the coarse sand used for the results
shown in Figure 11 and the intrinsic permeability is reduced by a factor of
nearly 1000. We find that the value of τ at a water saturation S̄wSS = 0.6 is
increased by a factor of 1000, which suggests that the value of τ is inversely
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proportional to the intrinsic permeability. With the function τ(SwSS ) of case
3 (see Figure 14) we have shown that the entry pressure only has an influ-
ence for small water saturations. Consequently, it stands to reason that on
the macro-scale the influence of the intrinsic permeability on τ

(
SwSS
)

is more
significant than the influence of the static capillary pressure-saturation rela-
tionship applied at the local scale.

9. Summary

In many two-phase flow situations, high pressure gradients can occur where
the flow processes are far from the equilibrium conditions employed to
determine the relationship between water saturation and capillary pressure.
Some authors have proposed extended functional relationships to account
for the varying flow conditions (see Section 2). Here the approach of
Hassanizadeh and Gray (1993), an extended capillary pressure-saturation
relationship (Equation (2.1)) has been analysed for the macro-scale based
on numerical drainage experiments with the following results:

• The numerically determined values for τ may be as large as τ ≈107 Pa s.
Assuming the linear relationship holds and forcing it to run through the
origin, τ is identified as a (non-linear) function of the water saturation
on the macro-scale.

• The extended, linear PcPP –SwSS relationship (Equation (2.1)) does not hold
over the full range of saturation rates.
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• The boundary conditions (boundary capillary pressure) show an influ-
ence on the function τ(SwSS ).

• The values of τ(SwSS ) are influenced by a heterogeneous distribution of
intrinsic permeabilities as compared to a homogeneous one.

• The magnitude of τ varies inversely proportional to the magnitude of
the intrinsic permeability.

• During some of the conducted numerical drainage experiments the
difference between the dynamic and equilibrium capillary pressures was
not always larger than (or equal to) zero. So far, this could not be
explained especially for the example described in Section 8 where only
the entry pressure was varied. It needs to be investigated why this neg-
ative difference occurs.

The conducted numerical experiments and the subsequent determination
of the damping coefficient τ revealed varying magnitudes of τ depending
on the boundary conditions, the domain size and the soil parameters. For
larger domain sizes, larger values of τ are obtained. That is, τ seems to be
scale-dependent.
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Abstract. Several alternative mathematical models for describing water flow in unsaturated
porous media are presented. These models are based on an equation for conservation
of mass of water, and a generalized linear law for water flux (Darcy’s law) containing
a term called the dynamic capillary pressure. The distinct form of each alternative model
is based on the specific form of expression used to describe the dynamic capillary pres-
sure. The conventional representation arises when this pressure is set equal to the equilib-
rium pressure given by the capillary pressure – saturation function for unsaturated porous
media, and this conventional approach leads to the Richards equation. Other models are
derived by representing the dynamic capillary pressure by a rheological relationship stat-
ing that the pressure is not given directly by the capillary pressure – saturation function.
Two forms of rheological relationship are considered in this manuscript, a very general
non-equilibrium relation, and a more specific relation expressed by a first-order kinetic
equation referred to as a relaxation relation. For the general non-equilibrium relation the
system of governing equations is called the general Non-Equilibrium Richards Equation
(NERE), and for the case of the relaxation relation the system is called the Relaxation
Non-Equilibrium Richards Equation (RNERE). Each of the alternative models was ana-
lyzed for flow characteristics under gravity-dominant conditions by using a traveling wave
transformation for the model equations, and more importantly the flow described by each
model was analyzed for linear stability. It is shown that when a flow field is perturbed
by infinitesimal disturbances, the RE is unconditionally stable, while both the NERE and
the RNERE are conditionally stable. The stability analysis for the NERE was limited to
disturbances in the very low frequency range because of the general form of the NERE
model. This analysis resulted in what we call a low-frequency criterion (LFC) for stability.

∗Author for correspondence: e-mail: nieber@umn.edu
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This LFC is also shown to apply to the stability of the RE and the RNERE. The LFC
is applied to stability analysis of the RNERE model for conditions of initial saturation
less than residual.

1. Introduction

The instability of unsaturated flows during infiltration or redistribution of
water within soils and the vadose zone has been identified to be one form of
preferential flow through which fast transport of contaminants might reach
ground water resources (Glass et al., 1988; Nieber, 2001). Due to the rec-
ognition of the importance of this process, much effort has been expended
in the experimental and mathematical analyses of gravity-driven unstable
flows in unsaturated porous media with the idea that the development of
a complete theory and parameterization of unstable flows should provide
important components of soil hydrology and solute transport models.

The importance of gravity-driven unstable flows in unsaturated soils
was first recognized upon the publication of the first definitive study of
gravity-driven fingering in layered porous media in the paper by Hill and
Parlange (1972). Several earlier reports of gravity-driven fingering had been
reported by other investigators (e.g. Tabuchi, 1961; Smith, 1967) but those
studies were not definitive enough with relation to gravity-driven finger-
ing to capture the interest of soil physics and soil hydrology researchers.
The work of Hill and Parlange did indeed capture that interest and moti-
vated extensive experimental and theoretical work. A number of experimen-
tal studies of gravity-driven fingering followed, using two-dimensional slab
chambers filled with porous media packed either as two homogeneous lay-
ers of different texture (Diment and Watson, 1985; Glass et al., 1989a,c;
Baker and Hillel, 1990; Wang et al., 1998a, b), as completely homogeneous
systems (Selker et al., 1992a; Liu et al., 1994b; Bauters et al., 2000; Dein-
ert et al., 2002), or as heterogeneous systems (Sililo and Tellam, 2000). The
first definitive experimental study for fingering in field soils was given by
Starr et al. (1978).

Experimental data quantifying unstable flow have been derived using
visual observations of finger width and velocity, flow within individual fin-
gers, water pressure measurements within individual fingers (Selker et al.,
1992b), and water saturation distributions within fingers using either light
transmission (Glass et al., 1989a), gamma-ray attenuation (Bauters et al.,
2000), or neutron radiography (Deinert et al., 2002). One point that comes
out of all of these studies is that fingers are observed to occur when the
initial saturation is below the residual. For conditions where the initial sat-
uration is above residual, fingers of width less than the width of the exper-
imental chamber are not observed to occur, at least by the methods of
observation utilized to date.
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The first mathematical analysis of gravity-driven unstable flow was for-
mulated by Raats (1973) wherein he used the Green-Ampt model of infil-
tration, a sharp front model, as the basis for his analysis. The same basic
model was used in the linear stability analysis presented by Philip (1975a,
b) for gravity-driven flows. Philip’s analysis was similar to that presented by
Saffman and Taylor (1958) and Chuoke et al. (1959) for viscous fingering,
and showed that flows become unstable when the pressure gradient opposes
the flow. His spectral analysis provided expressions to calculate the criti-
cal perturbation wavelength and estimates of finger widths, but the derived
expressions contained properties related to Hele-Shaw cells and not to real
soils. Philip (1975a) explained that the Green-Ampt approximation has sig-
nificant limitations as the basis for the stability analysis of infiltrating flows
in real soils, and argued the need to perform analysis of flow instability
for the conditions where the wetting front is not sharp. As explained by
Philip (1975a) this would mean a stability analysis of the Richards equa-
tion, which he stated would prove to be difficult. This need was partially
met by the work of Parlange and Hill (1976) wherein the stability analysis
of the Green-Ampt type of model was extended to real soils by impos-
ing a diffuse structure to the wetting front. Their analysis provided expres-
sions for estimates of finger width as a function of imposed flow, saturated
hydraulic conductivity of the soil, initial moisture content, and sorptivity.
The analysis of Parlange and Hill has had a lasting impact as many for-
mulae for estimating finger size have been derived based on their original
work (Wang et al., 1989a; Glass et al., 1989b; Liu et al., 1994a; deRooij
and Cho, 1999).

The first stability analysis to the full Richards equation was presented
by Diment et al. (1982). In their analysis the basic equation of flow was
given by the Richards equation, and the pressure for the flow field was
perturbed. The form of their resulting perturbation equation was not trac-
table to analytical solution, so a numerical solution was sought instead
and results were reported by Diment and Watson (1983). For the lim-
ited cases considered they concluded that flows governed by the Richards
equation are stable to infinitesimal perturbations. But their results were
based on a numerical solution and therefore it was not possible to provide
a general result for all conditions wherein linear stability analysis would
apply.

Kapoor (1996) presented an analytical solution to the perturbed steady-
state Richards equation and concluded that steady-state flows governed by
the Richards equation are unconditionally stable for the exponential form
of the hydraulic conductivity – pressure function and conditionally sta-
ble for other forms such as the Brooks and Corey (1964) and van Ge-
nuchten (1980) forms of the hydraulic conductivity – pressure function.
Ursino (2000) performed a similar analysis to that of Kapoor except in
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her case time-dependent flows were considered. She showed that for the
exponential form of the hydraulic conductivity – pressure function, Rich-
ards’ equation is unconditionally stable, and therefore concluded that flow
instabilities must originate from some pore-scale process not included in
the conventional upscaling of the flow equation.

In the most recent published analyses the saturation flow field gov-
erned by the saturation form of the Richards equation has been sub-
jected to stability analysis by Du et al. (2001) and Egorov et al. (2002,
2003). The resulting perturbed flow equation was evaluated analytically
by Du et al. but due to it complex nature their analysis was incomplete,
leading them to the conclusion that the Richards equation is condition-
ally stable. One important feature of the work by Egorov et al. was that it
provided a complete analytical result for the perturbed flow equation and
the results led to the conclusion that the Richards equation is uncondition-
ally stable. Their result is consistent with the nonlinear stability analysis
given by Otto (1996, 1997), which concluded that the Richards equation
is unconditionally stable to all perturbations (infinitesimal and finite) in
homogeneous unsaturated porous media. Egorov et al. (2003) extended
the nonlinear analysis of Otto by showing that the Richards equation is
unconditionally stable to all perturbations even for heterogeneous porous
media.

These final results point to the fact that flow instabilities that occur in
gravity-driven flows must result from a flow process not included (explic-
itly or implicitly) in the Richards equation, and therefore we must con-
clude that the flow process is not described adequately by the conventional
Darcy law. In line with the conclusion of Ursino (2000), we conclude that
the process that causes flows to become unstable must arise from pore-scale
phenomena not included in the conventional governing equations. Going
further and following the work of Hassanizadeh and Gray (1993) we would
postulate that one possible pore-scale process that could cause instabilities
is the process described by dynamic capillary pressure – saturation rela-
tions. The results presented to date in Egorov et al. (2002, 2003) seem to
support this postulate.

This manuscript will provide an overview of the current state of under-
standing from a mathematical analyses standpoint, of gravity-driven flow
instabilities in unsaturated porous media. The presentation will review the
results presented to date by Egorov et al. (2002, 2003) with respect to the
unconditional stability of the Richards equation, and the conditional sta-
bility of flows described by models that include the dynamic capillary pres-
sure effect. In addition, we will present some new results that relate to the
extension of the models of Egorov et al. to the (dry) range of saturations
below residual saturation.
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2. Overview of Selected Governing Equations for Unsaturated Flow

The three-dimensional mass balance equation is written in non-dimensional
form as

∂s

∂t
−∇ · (K(s)∇p)− ∂K(s)

∂z
=0, (1)

where s is the effective saturation equal to (S −SrSS ) / (1−SrSS ), S is the water
saturation, SrSS is the residual saturation, p is the water pressure, K(s) is the
unsaturated hydraulic conductivity, and z is the z-coordinate taken positive
upward opposite to the direction of gravity, and t is the time. This equation
is based on the substitution of Darcy’s law into the equation for conserva-
tion of mass. Different forms of the mass balance equation can be obtained
depending on the form of the pressure function p. The forms available to
define the pressure function are numerous. The first one is based on a con-
ventional formulation and thereby leads to the Richards Equation (RE)
and is given by

p =P(s). (2)

This equation describes the conventional equilibrium relation between
water pressure and water saturation, and can be non-hysteretic or hyster-
etic. The substitution of p from relation (2) into equation (1) yields the
conventional RE given by

∂s

∂t
−∇ · (K(s)∇P(s))− ∂K(s)

∂z
=0 (3)

or in saturation form the equation is

∂s

∂t
−∇ · (D(s)∇s)− ∂K(s)

∂z
=0, (4)

where D(s)=K(s)P ′(s). Substitution of relation (2) into Darcy’s law (q =
−K(s)∇p −K(s)ez) gives

q =−K(s)∇P(s)−K(s)ez, (5)

where ez is the unit vector in the vertical.
A more general form of the pressure function is given by the relation

F

(
s,p,

∂s

∂t
,
∂p

∂t
, . . .

)
=0. (6)

This equation indicates a non-equilibrium relation between water pressure
and saturation. The dependence of the pressure on the saturation and tem-
poral derivatives of the saturation and the pressure are indicated by the
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terms included in the argument of the function. The idea for non-equilib-
rium relations for water pressure and saturation is based on experimental
evidence presented in various studies (Kirkham and Feng, 1949; Nielsen
et al., 1962; Rawlins and Gardner, 1963; Topp et al., 1967; Smiles et al.,
1971; Wildenschild et al., 2001) and theoretical considerations (Hassan-
izadeh and Gray, 1993; Hassanizadeh et al., 2002; Dahle et al., 2002).
Since this function has a generalized form it is not possible to introduce
it directly into the mass balance equation and thereby provide a distinct
equation. But an analysis of Equation (1) coupled with relation (6) is pos-
sible as will be shown in Section 3. The combination of equations (1) and
(6) will hereafter be referred to as the NERE model.

A specific form of relation (6) that we will spend a significant part of
the next sections describing is given by the relaxation equation

τ(s,p)
∂s

∂t
=p −P(s), (7)

where τ(s,p) is a relaxation parameter in the kinetic rheological relation
for non-equilibrium capillary pressure – saturation relations. Substitution
of function p from relation (7) into Equation (1) leads to

∂s

∂t
−∇ · (K(s)∇P(s))−∇ ·

(
K(s)∇

(
τ(s,p)

∂s

∂t

))
− ∂K(s)

∂z
=0 (8)

and into Darcy’s law we get

q =−K(s)∇P(s)−K(s)∇
(

τ(s,p)
∂s

∂t

)
−K(s)ez. (9)

The equations given by equation (1) and relation (7) or alternatively Equa-
tion (8) will hereafter be referred to as the RNERE model. In relation (9)
we have the usual gradient of the equilibrium pressure term, but also the
gradient of the relaxation term which contains the temporal rate of change
of saturation.

For most of the analyses to follow we consider conditions where the sat-
uration falls in the range 0 < s < 1, however, in Section 4.2.2 we consider
the case where the initial saturation is less than residual.

3. Review of Stability Analyses of the RE

Linear stability analyses of the RE have been presented by Diment and
Watson (1983), Ursino (2000), Kapoor (1996), Du et al. (2001) and Egorov
et al. (2002, 2003). Diment and Watson, Ursino, and Kapoor all started
with the pressure-based form of the RE, while Du et al. and Egorov et al.
utilized the saturation-based form of the RE.
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Starting with the saturation-based form of the RE the traveling wave
equation is derived using the transformation variables

s = s (ξ) , ξ = z+V t (10)

subject to the boundary conditions

s(−∞)= s−, s(+∞)= s+, 0<s− <s+ <1, (11)

where the velocity V of the traveling wave is given by

V = K (s−)−K (s+)

s− − s+
. (12)

Applying these variables to equation (4) yields the traveling wave form of
the RE,

V
ds

dξ
− d

dξ

(
D(s)

ds

dξ

)
− dK(s)

dξ
=0. (13)

The solution for equation (13) subject to the boundary conditions at infin-
ity (ξ =+∞) is given as (Philip, 1957)

ξ(s)− ξ∗ =
∫ s

s

∫∫
∗

∫∫
D(s)ds

v(s − s+)−K(s)+K(s+)
, (14)

where ξ∗ is the coordinate location of the arbitrarily selected saturation s∗
(s− <s∗ <s+). The inverse of the function ξ(s) is called the basic solution
and will be designated as s0(ξ). A typical plot of this solution is presented
in Figure 1. By the nature of the solution and the included functions (K(s)

and P(s)) the saturation decreases monotonically from s+ at +∞ to s− at
−∞.

The stability analysis is based on a small perturbation applied to the
basic solution so (ξ). The perturbed saturation field is represented as

s(x, y, z, t)= so (ξ)+ εeiωxx+iωyy+kt s1 (ξ)+O
(
ε2) , (15)

where the ωx and the ωy are characteristic wave numbers in the x and y

directions, respectively, the k is the amplification factor (or growth factor),
the function s1(ξ) describes the variation of the bounded perturbation in
the ξ coordinate and vanishes at ±∞, and ε scales the magnitude of the
perturbation.

The perturbed solution is obtained by substituting expression (15) into
equation (4) and dropping terms of order ε2. Accounting for the equa-
tion for the basic solution and collecting like terms we arrive at a locally
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Figure 1. A typical plot of saturation s versus dimensionless variable ξ as a result
of the solution of the traveling wave form of the RE. This solution comprises the
basic solution so.

linearized perturbation equation in the form of a spectral problem for
determining nontrivial s1 and k =k(ω) for arbitrary ω, that is

− d2

dξ 2
(D(so)s1)+ d

dξ

((
V −K ′(so)

)
s1
)+ω2D(so)s1 =−ks1, −∞<ξ <∞.

(16)

An equation of similar form to equation (16) was also derived by Du et al.
(2001).

Now the problem is the analysis of the spectrum of the problem (16).
If the equation admits a solution (s1, k) with k > 0 then we have instabil-
ity of the RE. If all solutions have k<0 then the flow governed by the RE
is stable. Analytical investigation of the spectral problem is difficult in the
form of equation (16) because the equation is not self-adjoint. To make the
analytical study tractable we perform a transformation using new variables
ζ and θ to replace ξ and s1 respectively,

ζ =
∫

dξ√
D (so)

, θ = D1/4 (so)√
s

√√ ′
o

s1, (17)

which leads to

−d2
θ

dζ 2
+ (ω2D +F

)
θ =−kθ, −∞<ζ <∞, (18)
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where

F = 1
B

d2
B

dζ 2
, B =D1/4√s

√√ ′
o.

Equation (18) is self-adjoint and therefore has been made tractable to the-
oretical analysis.

In mathematical physics equation (18) is known as the Schrodinger¨
equation, and for different forms of the potential (ω2D + F) the spectral
problem for the Schrodinger equation has been studied (Carmona and Lac-¨
roix, 1999), and therefore known techniques can be used to investigate the
problem presented by equation (18). Such an analysis was performed in
Egorov et al. (2003) in which it was shown that the spectrum of the prob-
lem is negative (i.e., k < 0) for all non-zero frequencies ω of the perturba-
tion.

So we can now state that the RE is unconditionally stable to infinites-
imal perturbation. But it is legitimate to ask whether the occurrence of
finite perturbations to the basic flow would be stable. This query has been
addressed by Otto (1996, 1997) and by Egorov et al. (2003). It was shown
by Otto that the type of equation given by the RE is unconditionally stable
for perturbations of finite magnitude in the case of homogeneous porous
media. Otto’s work was extended by Egorov et al. to show that the same
conclusion is found for the case of heterogeneous media. While the lin-
ear stability analysis outlined in the foregoing description points toward
unconditionally stability of the RE it does not prove the stability of the
RE for all conditions. But the nonlinear stability analyses of Otto and Ego-
rov et al. provides strong proof that the RE is unconditionally stable for
all conditions. This also means that upscaling of the RE over a heteroge-
neous domain will lead to a governing equation that possesses the property
of unconditional stability.

4. Stability Analyses of Selected Nonequilibrium Models

In this section we will consider the two types of nonequilibrium models
that were outlined in Section 2, that is the NERE and the RNERE. The
NERE will be described under the heading of the general nonequilibrium
model, while the RNERE will be described under the heading of the relax-
ation nonequilibrium model.

4.1. general nonequilibrium model

The general nonequilibrium model was presented in Section 2 by the cou-
pling of equation (1) and relation (6) and referred to as the NERE. Due to
the non-specific form of relation (6) it is not possible to derive an explicit
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equation for analysis, but as shown by Egorov et al. (2003) it is possible to
derive a useful stability criterion for the NERE.

A linear stability analysis is performed on the NERE using the same
procedure we used for the stability analysis of the RE. First we define a
basic solution based on the traveling wave form of the NERE. The travel-
ing wave form of equation (1) for that model is independent of the form
of the rheological relation. That traveling wave equation is given by

V
ds

dξ
− d

dξ

(
K(s)

dp

dξ

)
− dK(s)

dξ
=0. (19)

After integrating once and applying the boundary conditions we have the
following result,

dp

dξ
= V (s − s+)+K(s+)−K(s)

K(s)
. (20)

The transformation to the traveling wave variable for relation (6) gives

F

(
s,p,V

ds

dξ
,V

dp

dξ
, . . .

)
=0. (21)

Let us suppose that the solution to the traveling wave equation (20) and
relation (21) exists and are represented by s0(ξ) and p0(ξ), respectively. The
exact form of these basic solutions will depend on the form of the rheolog-
ical relation (6), but it is not necessary to specify the form of that relation
to perform the following stability analysis.

The next step in the linear stability analysis is to superimpose three-
dimensional perturbations in saturation and pressure onto the basic solu-
tion in the form

s(x, y, z, t)= so (ξ)+ εeiωxx+iωyy+kt s1 (ξ)+O
(
ε2) , (22)

p(x, y, z, t)=po (ξ)+ εeiωxx+iωyy+ktp1 (ξ)+O
(
ε2) . (23)

These perturbation expressions are substituted into equation (1) and rela-
tion (6), and terms of order ε2 are dropped to yield a system of locally
linearized perturbation equations in the form of a spectral problem for
determining nontrivial p1 and s1, corresponding to spectral parameter k for
arbitrary frequencies ω. This spectral problem is expressed by

dA

dξ
+ω2K(s0)p1 =−ks1, (24)




(
s1, p1,

ds1

dξ
,

dp1

dξ
. . . ; s0, p0,

ds0

dξ
,

dp0

dξ
, . . . ; k

)
=0, (25)
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where A is the flux perturbation given by

A=−K(s0)
dp1

dξ
−K ′(s0)

(
1+ dp0

dξ

)
s1 +V s1. (26)

Integration of equation (24) with the boundary condition such that A van-
ishes as ξ →±∞, leads to the integrals

ω2
∫ +∞

−∞

∫∫
K(s0)p1dξ =−k

∫ +∞

−∞

∫∫
s1dξ. (27)

It is not possible to evaluate the signs of the integrals in equation (27)
and thereby be able to find the sign of k = k(ω) without knowing the spe-
cific forms for s0, s1 and p1. However, it is possible to perform an asymp-
totic analysis to derive an asymptotic solution for the eigenvalue k0 at low
frequency(ω � 1). This analysis begins by establishing the fact that the ei-
genfunction for s1 and p1 are equal to ds0/dξ and dp0/dξ when ω = 0 as
shown in Egorov et al. (2003). At low frequency the eigenvalue k0 and the
eigenfunctions s1 and p1 can be expanded in powers of ω2 as

k0 =0+bω2 +· · · ,

s1 =ds0/dξ + s∗ω2 +· · · ,

p1 =dp0/dξ +p∗ω2 +· · ·
Substituting these expressions into equation (27) and dropping terms of
order ω4 leads to

b=− C

s+ − s−
with

C =
∫ +∞

−∞

∫∫
K(s0)

dp0

dξ
dξ. (28)

Therefore we have

k0 =− C

s+ − s−
ω2 +O(ω4). (29)

Since ω2 and (s+ − s−) are inherently positive, the condition given by
equation (29) means that flows will be unstable (k0 >0) when C <0. Exam-
ining the expression for C in equation (28), the value of C will be nega-
tive when the pressure field is sufficiently non-monotonic. This result about
the pressure gradient being opposed to the flow for gravity-driven unstable
flows was also found by Raats (1973), Philip (1975a) and Parlange and Hill
(1976).

The low frequency criterion established here will be used in later sec-
tions to evaluate the stability of the RNERE models presented in those
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sections. But here we should end with a note about the use of the low fre-
quency criterion as a tool to evaluate the stability of the RE model. It was
established in Section 3 that for infiltrating flows the pressure and satura-
tion profiles in the RE model are monotonic, meaning that the pressure
gradient dp0/dξ is positive for all cases of the RE model. Using this result
in equation (28) leads to C >0, and from expression (29) the value of k0 <0
for all small ω, meaning that infiltrating flows governed by the RE will be
stable.

4.2. relaxation nonequilbrium model

The relaxation non-equilibrium model is a special case of the general-
ized nonequilibrium model where the dynamic pressure is given by a first
order kinetic rheological relation as in relation (7). For this model we
have examined two conditions, one in which the initial saturation is above
the residual, and the other where the initial saturation is less than the
residual. These distinct cases are both important because most models of
unsaturated flow have involved saturation conditions above residual, while
in many realistic field conditions, and also in many laboratory experi-
ment conditions the saturations within the flow domain can be below
residual. Each of these cases will be examined in the following subsec-
tions.

4.2.1. RNERE Model for Initial Moisture Greater than Residual
The RNERE model is given by the combination of equations (1) and rela-
tion (7). The traveling wave form of those equations are given by the cou-
pled equations

ds

dξ
= p −P(s)

V τ (p, s)
, (30)

dp

dξ
= V (s − s+)+K(s+)−K(s)

K(s)
(31)

subject to the initial conditions s(−∞)= s− and p(−∞)=P(s−). Equation
(31) was obtained after once integrating with respect to ξ and applying the
boundary condition s = s+ at ξ =∞.

We now investigate the situation where τ is factorized into a constant
τoττ , a function of pressure τpττ (p) and a function of saturation τS(s). This
factorization is expressed by

τ(s,p)= τ0ττ τpττ (p)τS(s). (32)
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A number of functions could be used to express the pressure and the sat-
uration dependencies. We have used the following functions:

τS(s)= dP(s)

ds
, (33)

τS(s)= sγ (1− s)δ , (34)

τpττ (p)= (p∗ −p)η, η>0. (35)

The other parameters that need to be specified are those defining the
capillary pressure – saturation relation, and the hydraulic conductivity –
saturation relation. The more common types of forms used in modeling
unsaturated flows are those referred to as the van Genuchten relations and
the Brooks–Corey relations. Both of these types of relations were used in
the present study. The van Genuchten relations (van Genuchten, 1980) are
given by

P(s)=−(s−1/nm −1)1/n, (36)

K(s)=√
s

√√ [
1− (1− s1/m

)m]2
, (37)

where n and m are porous media dependent parameters. The relation for
the hydraulic conductivity is for the special case of a Mualem–Burdine type
of pore-scale model where m=1−1/n.

The relations for P(s) and K(s) for the Brooks–Corey formulation
(Brooks and Corey, 1964) are given by

P(s)=−s−β, 0<β <1, (38)

K(s)= sα, α >2. (39)

For these models hysteresis in the P(s) function was represented by the
Mualem (1974) independent domain model.

4.2.1.1. Basic Solution. In this section we will present numerical solutions
of equations (30) and (31) with the associated initial condition. A simi-
lar analysis was presented by Cuesta et al. (2000) wherein they analyzed
the existence, uniqueness and monotonicity of the solution to Equation (8)
instead of the system of equations (1) and (7). In the following we will
show results from our own calculations about monotonicity of the solu-
tion of this system of equations, and where it is pertinent we will relate our
results to those of Cuesta et al.

Solutions (that is basic solutions) to Equations (30) and (31) were per-
formed numerically using the relaxation function expressed by relation (32)
with relations (33) and (35) in particular. A sample set of solutions are
illustrated in Figure 2, where all parameters are kept constant except for
the value of τ0ττ . The invariant parameters are: s+ = 0.6, s− = 0.1, n = 10,
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α=2.5, and η=0. The value set for η makes the relaxation coefficient inde-
pendent of pressure for these simulations. The results for six values of τ0ττ

are presented in the plot. It is seen that as the value of τ0ττ increases the
solution becomes more non-monotonic. For the case with τ0ττ = 0 the solu-
tion is the same as the solution to the RE, and the profile is seen to be
monotonic.

The magnitude of the relaxation coefficient necessary to produce non-
monotonicity in the basic solution is estimated from the parameter τF (s+),
given by,

τF = τF (s+)=
(
s+P ′ (s+)

)2
4 (s+K ′ (s+)−K (s+))

. (40)

Equation (40) is derived from analysis of the traveling wave equations (30)
and (31) with the underlying assumption that s+ � s−. For the parameters
used in producing Figure 2, equation (40) gives τF (s+)= 0.036. Therefore,
when τ(s+)� 0.036 the traveling wave solution is non-monotonic. For the
cases shown in Figure 2, this occurs for the values of τ0ττ exceeding about
0.08.

It is observed that the tails of the non-monotonic profiles shown in Fig-
ure 2 are oscillatory. This feature can be understood upon viewing the
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Figure 2. Plots of saturation versus traveling wave variable for various values of τ0ττ .
The curve labels 1 to 6 correspond to the following values of τ0ττ =0, 0.07, 0.1, 0.2,
0.5 and 1.0. The relaxation function τ (s,p) is given by relation (32) in conjunction
with (33) and (35). The critical value of τF for non-monotonicity is 0.036. The first
two curves are monotonic and τ (s+, p+)>τF , while curves 3–6 are non-monotonic
and τ (s+, p+)>τF . The larger the value of τ , the more non-monotonic the satura-
tion profile.
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phase plane shown in Figure 3(a), which is derived from the same solu-
tion for τ0ττ =0.5 shown in Figure 2. There we see that the trace starting at
s− ends at a focus point around s+. In contrast, as shown in Figure 3(b)
for the monotonic solution (derived with τ0ττ = 0.07) the end point at s+ is
nodal and therefore the tail is non-oscillatory. Although the result is not
shown here, we found the tail of a non-monotonic solution to be non-oscil-
latory (ends at a nodal point at s+) when the equilibrium capillary pressure
– saturation relation P(s) is hysteretic.

For the model just presented we used relation (33) which yields a satu-
ration dependence to the relaxation coefficient similar in behavior to that
derived by Panfilov (1998) in his analysis for upscaling dynamic capillary
pressure for two-phase flows. This relation shows (see Figure 4) that the
saturation dependent part of the coefficient is unbounded at the extreme
ends of the effective saturation range. In using this model we found that
as s− →0, the pressure at the wetting front becomes unbounded and phys-
ically unrealistic. A sample result of this is shown in Figure 5(a). The
parameters used to derive this were the same as those used to derive Fig-
ure 2, with τ0ττ = 0.5. It is observed that as s− progressively decreases, the
water pressure at the wetting front increases to the point where it becomes
positive, which is a physically unrealistic result. Even further reduction in
s− leads to pressure at the front approaching infinity.

A solution we discovered to resolve this problem of unbounded pressure
was to apply a non-unity pressure factorization into the relaxation coeffi-
cient, such as the factorization given by relation (35). With this factoriza-
tion, as s− →0 the pressure at the wetting front is limited to p∗. A sample
result of this solution is shown in Figure 5(b), wherein the parameters are

Figure 3. A typical phase plane plot for the basic solution to the RNERE equa-
tions for two cases of τ : (a). Where the τ is sufficiently large (τ � τF ) to lead to a
non-monotonic saturation profile, and (b). where the τ is small enough (τ � τF )to
lead to a monotonic saturation profile.
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Figure 4. Alternative forms of the saturation component of the relaxation coeffi-
cient. These are based on Equations (33) (solid line) and (34) (dash line).

Figure 5. The effect of a pressure limit function used in the relaxation coefficient
function. As the initial saturation decreases, the pressure at the front increases. In
(a) the pressure limitation is not imposed and as s− →0, the pressure at the front
increases without bound. In (b) the limitation on pressure is imposed and is in the
form of a water entry pressure p∗ and therefore the pressure at the front is bounded
from above.

all the same as for the solution shown in Figure 5a, but in this case the
pressure factorization is applied. For this case the parameter values in the
pressure function were set to η=1.0 and p∗ =−0.1.

An approach different from this was presented by Cuesta et al. (2000).
In their analysis the hydraulic functions were taken from the Brooks–Co-
rey functions. For the relaxation coefficient they used the formula τ = τ0ττ sγ

(same as relation (34) but with δ=0). A qualitative description of this func-
tion is illustrated in Figure 4 with γ >0, where it is seen that the relaxation
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Figure 6. Phase plane diagrams showing the effect of porous media hydraulic and
non-equilibrium characteristics on the shape of the phase plane trace. The divid-
ing point between the two behaviors is the parameter γ = (α −2−2β). For (a) the
γ > (α −2−2β), and the solution to the traveling wave equation is bounded from
above. For (b) the γ <(α −2−2β) and the traveling wave solution is not bounded,
and therefore the solution does not exist.

coefficient approaches zero as the saturation approaches zero while it is
finite and non-zero at full saturation.

Cuesta et al. (2000) stated that the solution to the traveling wave form
of the RNERE exists and is unique for all intial conditions when s− > 0.
However, for the condition where s− →0, they found the same result as we
did where the pressure at the front became unbounded. Rather than use a
pressure factorization as we did, they instead defined the range of parame-
ters that would allow the solution pressure to be bounded as s− →0. Their
analysis showed that for the solution to be bounded the parameter γ needs
to be constrained by the inequality γ >(α −2−2β).

A qualitative result showing the effect of setting γ according to this cri-
terion is illustrated in Figure 6 where the phase plane for saturation versus.
pressure is plotted. Shown on each plot are the equilibrium pressure curve
and the trace set by the evolution of saturation in the traveling wave solu-
tion. For the case shown in Figure 6(a) the value of γ >(α −2−2β). For
this case the trace makes a tangential departure from the equilibrium curve,
and at the end the trace reaches a pressure that is bounded from above. In
contrast, for the case shown in Figure 6(b), the value of γ < (α −2−2β),
and for this situation the trace makes a vertical departure from the phase
plane, effectively causing the trace to reach pressures that are not bounded
from above.

4.2.1.2. Stability Analysis for the RNERE. The linear stability analysis for
the RNERE is performed similarly to that for the NERE (see equations
(24) and (25)). We need only to specify the equation due to the relaxation
law. The resulting perturbed equations are given by
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Figure 7. Plots of the critical eigenvalue as a function of wave number of distur-
bance for various values of τ0ττ . The curve labels 1–6 correspond to the following
values of τ0ττ =0, 0.07, 0.1, 0.2, 0.5 and 1.0.

dA

dξ
+ω2K(s0)p1 =−ks1, (41)

V τ0ττ
ds1

dξ
+
(

P ′(s0)+V
∂τ(s0, p0)

∂s

ds0

dξ

)
s1

+
(

V
∂τ(s0, p0)

∂p

ds0

dξ
−1
)

p1 =−kτ0ττ s1 (42)

with the same definition for A given by equation (26).
Equations (41) and (42) are in the form of a spectral problem for which

we are interested in the sign of the spectrum especially for the sign of the
critical eigenvalue k0 if it exists. The equations are not readily amenable to
analytical solution, so a numerical solution for the eigenvalue problem will
be presented.

Results of the numerical solution of the eigenvalue problem given by
equations (41) and (42) for the critical eigenvalue k0(ω) are presented in
Figure 7 for various values of the parameter τ0ττ . The other parameters
needed for the solution are the same as those used in developing Figure 2.
The result for τ0ττ = 0 (curve 1) is essentially the same result that would be
obtained for solving the RE eigenvalue problem given by equation (18) for
equivalent sets of porous media parameters. From Figure 7 it is observed
that the critical eigenvalue for the solution with τ0ττ = 0 (RE solution) is
negative for all perturbation frequencies, and therefore the RE is uncondi-
tionally stable, and this agrees with the conclusion derived in Section 3 by
analytical means. The critical eigenvalue is also negative for all frequencies
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for τ0ττ = 0.07. However, for τ0ττ > 0.07 the saturation profile is sufficiently
non-monotonic (see curves 3–6 in Figure 2) for the critical eigenvalues to
be positive over a range of frequencies. For this set of parameters then
we can establish the critical value of τ0ττ for instability to be slightly less
than 0.1. Also, we can say that somewhere within the range of 0.08<τ0ττ <

0.10 the critical eigenvalues will be negative although the saturation profiles
within that range are somewhat non-monotonic. These results on the con-
ditional stability of the RNERE have shown that the advancing flow can
be unstable if the parameters fall within a specified range.

The low frequency criterion derived in Section 4.1 also applies to the
results obtained here for the RNERE model. Equation (29) indicates that if
the value of C is negative then the flow will be unstable. As shown earlier
in this section, the pressure profiles generated by the basic solution of the
RNERE model can be non-monotonic if the value of the relaxation coeffi-
cient is large enough. However, it was just shown that non-monotonicity
by itself is not a sufficient condition to guarantee instability. Instead, the
degree of non-monotonicity has to be large enough to lead to instability.

As a reminder we should note that the results presented up to this point
have all been for the condition where the initial saturation is at or above
the residual saturation. Therefore, one might argue that our results are con-
tradictory to experimental evidence that overwhelmingly has shown that
flows generally become unstable where the initial saturation is below the
residual. This argument then motivates us to investigate the case where
SinitSS <SrSS . This is done in the next section.

4.2.2. RNERE Model for Initial Moisture Less than Residual
Most models of unsaturated flow are concerned with flows that occur at
saturations above the residual. For the case where the initial saturation is
less than the residual, an extended model is required. We will now present
analyses for an extended model for unsaturated flow. Both the basic solu-
tion and a stability analysis for the basic solution will be presented.

4.2.2.1 Basic Solution for the Extended Model. The governing equations are
changed slightly using saturation S as the primary variable, as opposed to
effective saturation s as before. The traveling wave form of the RNERE
therefore becomes (analogous to equations (30) and (31))

dS

dξ
= p −P(S)

V τ (S)
, (43)

dp

dξ
= V (S −S+)+K(S+)−K(S)

K(S)
. (44)

The usual pressure-saturation and conductivity-saturation relations apply
for the saturation range from residual to full saturation. To apply equations
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(43) and (44) over the full range of saturation from S =0 to S =1 we need
an extended model for pressure-saturation and conductivity-saturation. For
this we use the approach of Rossi and Nimmo (1994) who extended the
modified Brooks–Corey model for the range 0 � S � Sj , except that we
use the conventional Brooks–Corey function for the range Sj �S � 1. The
parameter Sj is the value of saturation joining the two ranges of satura-
tion. The pressure-saturation model now becomes

P(S)=−p0 exp(−aS), 0�S �Sj ,

P (S)=−
(

S −SrS

1−SrS

)−β

, Sj �S �1. (45)

The conductivity-saturation relation is given by

K(S)=
√

S [I (S)/I (1)]2 , (46)

where

I (S)=1− 1
ap0

eaS, 0<S <Sj , (47)

I (S)=1− 1
ap0

eaSj + 1−SrS

β+1

[(
Sj −SrS

1−SrS

)β+1

−
(

S−SrS

1−SrS

)β+1
]

, Sj <S �1.

(48)

The computed parameter a and Sj provide first-order continuity for these
functions. The Sj is set at a saturation slightly above SrS .

For the relaxation coefficient we used relation (34) with δ = 0. Asymp-
totic analysis showed that for bounded solutions as SinitSS → 0 we need
γ >0.5.

Parameter values for the model were chosen to fit the experimental data
of Bauters et al. (2000), who performed experiments to evaluate the effect
of initial saturation on flow stability. They examined initial water contents
ranging from air-dry conditions to residual water content. For the analy-
sis to follow we examined a subset of their experiments, using initial water
contents θinit :0.001, 0.01, 0.02, 0.03, 0.04 and 0.047. The residual water
content for their porous media was 0.047 and saturated water content was
0.348. Parameter values obtained from the published moisture retention
data were SrS = 0.135 and β = 0.18, while for the conductivity function we
used p0 = 105 m and a = 1.5. We also calibrated the relaxation coefficient
relation using the published water content and pressure profiles for the
experimental run for θinit =0.001, and obtained τ0ττ =1.5 and γ =1.5.

The saturation profiles resulting from the solution to equations (43) and
(44) with the specified parameters are shown in Figure 8 for the various
values of SinitSS corresponding to the various initial water contents. The pro-
files for the very dry initial conditions are clearly non-monotonic, while
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Figure 8. Water content as a function of dimensional time at any particular point
within the flow domain. The cases θinit = 0.01 and 0.03 represented in Table I are
not shown.

the profiles for the higher initial saturations are essentially monotonic. The
characteristics of these profiles with respect to flow stability will be dis-
cussed in the next section.

4.2.2.2. Stability Analysis for the Extended Model. The analysis of flow sta-
bility for the extended RNERE model follows the same procedures as for
the RNERE model outlined in Section 4.2.1. The resulting spectral prob-
lem is essentially the same as that shown by equations (41) and (42). The
main difference between the current model and the previous model is in the
parameters of the system due to the extension to dry conditions. As before,
the complexity of the resulting perturbation equation makes it necessary to
solve the eigenvalue problem by numerical means.

When we attempted the numerical evaluation of the spectral problem
for the extended RNERE we found the numerical procedures used previ-
ously to be inadequate to get accurate results. The reason for the numeri-
cal difficulty is the extremely steep wetting front that develops for the basic
solution in the case of the dry initial condition (see Figure 8). Therefore,
to derive some useful results the direct evaluation of the spectral problem
was abandoned for the time being and the low-frequency criterion analysis
derived by Egorov et al. (2003) and outlined in Section 4.1 was applied.
Revisiting the direct spectral problem will have to await further investiga-
tion into more accurate means to solve the steep front problem.

The low-frequency criterion for flow stability was given by equations
(28) and (29). These equations state that when the pressure profile is suffi-
ciently non-monotonic the value of C will be negative, and this will then
lead to a positive value of k0, indicating the flow will be unstable. So the
determination of the stability of flows generated from dry initial conditions
is to simply evaluate expression (28) with the K(s0)dp0/dξ derived from the
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Table I. Finger widths as a function of initial water content observed
in the experiments of Bauters et al. (2000), and corresponding values
of C evaluated by Equation (28)

θinit 0.001 0.01 0.02 0.03 0.04 0.047

Finger (cm) 2.5 1.25 3.0 7.5 11.0 30.0
C −2.46 −2.85 −0.96 −0.087 −0.093 0.009

traveling wave solution for a specific set of porous media parameters, and
if the value of C is negative to then conclude that the flow will be unstable.

The value of C evaluated with equation (28) for the various initial water
contents is presented in Table I. Finger widths reported by Bauters et al.
(2000) for the corresponding cases are also listed. The experimental cham-
ber had a width of 30 cm. It is observed from the table that as the initial
water content approached the residual of 0.047 the finger width increased
to the size of the experimental chamber.

From the values presented in the table it appears that the only case of
stable flow (C > 0) occurs for θinit = 0.047. All the other cases have nega-
tive values of C, indicating instability of flow. The finger widths observed
by Bauters et al. (2000) are in agreement with this result. The largest fin-
ger width was observed for θinit = 0.047, with the finger width being at
least equal to the width of the chamber. The next largest finger width was
11.0 cm for the case with θinit = 0.04. While the plot in Figure 8 for θinit =
0.04 does not appear to be non-monotonic, it was sufficiently non-mono-
tonic so that the value of C was negative in the evaluation of equation
(28). For the other two cases shown in Figure 8, θinit =0.001 and θinit =0.02,
the saturation profiles are clearly non-monotonic, and this is manifested in
the values of C presented in Table I.

5. Summary and Conclusion

We have presented several alternative forms of the equations for flow in
unsaturated porous media. All of the various forms contain two coupled
equations, the mass balance equation derived from a combination of con-
servation of mass and a linear flux law, and a relationship for the pres-
sure that appears in the mass balance equation. The differences between
the different forms of equations are contained completely in the definition
of the pressure function. For the conventional equation for unsaturated
flow, given by the RE, the pressure function is given by the equilibrium
capillary pressure – saturation relationship. A more general equation sys-
tem is derived using a generalized non-equilibrium relationship of the
pressure function, and this is called the NERE. A specific form of the
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non-equilibrium relationship is given by a relaxation function expressed by
a first-order rate process. The equation system using this relaxation func-
tion is referred to as the RNERE.

The traveling wave solution was studied for each of these models and
stability analysis of these traveling wave solutions was performed. The
characteristics of the traveling wave solutions for the RE and the RNE-
RE were analyzed in detail, and expressed in terms of the monotonicity
or non-monotonicity of the traveling wave saturation and pressure profiles.
These solutions were derived for the standard case where the initial satu-
ration is above residual saturation. The RNERE was also extended to the
case where the initial saturation is less than the residual, since this corre-
sponds better with conventional laboratory experiments on unstable flows.

For the linear stability analysis the solution to the system of equations
in the traveling wave variable yielded a basic solution that was then per-
turbed by infinitesimal fluctuations. Stability of the perturbed flow was
then analyzed by the method of spectral analysis. The stability of the
NERE was analyzed at low-frequency only because of the general form of
the non-equilibrium pressure function, and the resulting criterion is called
the LFC. The stability analysis for the RNERE for initially dry conditions
was also limited to the LFC because of the numerical difficulty to accu-
rately solve the perturbation equation with extremely sharp fronts.

From the analyses presented here we can conclude the following.

(1) The RE is unconditionally stable to any perturbation, whether infinites-
imal or finite in magnitude, in homogeneous or heterogeneous porous
media. The traveling wave saturation and pressure profiles for the RE
are monotonic for standard type boundary conditions.

(2) The analysis of the stability of the NERE model using the LFC shows
that infiltrating flows governed by the NERE can become unstable for
conditions where the flow profile is sufficiently non-monotonic.

(3) The saturation and pressure profiles for the RNERE model were found
to be non-monotonic for a sufficient large value of the relaxation coeffi-
cient parameter τ0ττ . The larger this parameter the larger is the degree of
non-monotonicity of the profiles. Assessments of stability over a wide
range of perturbation frequencies were completed showing that flows are
stable even for slight non-monotonicity, but transition to unstable as the
degree of non-monotonicity increases.

(4) For initially dry conditions, the LFC assessment of the RNERE indi-
cated unstable flow for initial conditions from absolutely dry up to near
residual saturation. With initial saturation equal to the residual, the
LFC indicated that the flow may be stable. These stability assessments
were in good agreement with the stability experiments of Bauters et al.
(2000).
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Abstract. We study counter-current imbibition, where a strongly wetting phase (water)
displaces non-wetting phase spontaneously under the influence of capillary forces such
that the non-wetting phase moves in the opposite direction to the water. We use an
approximate analytical approach to derive an expression for saturation profile when the
viscosity of the non-wetting phase is non-negligible. This makes the approach applicable
to water flooding in hydrocarbon reservoirs, or the displacement of non-aqueous phase
liquid (NAPL) by water. We find the recovery of non-wetting phase as a function of
time for one-dimensional flow. We compare our predictions with experimental results in
the literature. Our formulation reproduces experimental data accurately and is superior to
previously proposed empirical models.

Key words: imbibition, counter-current flow, fractured reservoirs

Nomenclature
a, b, c, f exponents.
A area, L2, m2.
A(t),B(t) functions of time, dimensionless.
C integration constant, dimensionless.
J Leverett J-function (dimensionless capillary pressure).
J ′ J-function gradient at S =1.
J ∗ Prefactor in Equation (51).
K permeability, L2, m2 or D.
Kr relative permeability.
L, l length, L, m.
m,n exponents in van Genutchen and Lenhard & Parker models.
PcPP capillary pressure, mL−1 t−2, Pa.
P ∗

cP minimum capillary pressure, mL−1 t−2, Pa.
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R recovery.
S saturation.
t time, T, s.
V volume, L3, m3.
α,β, η, κ, γ, η dimensionless rate constants.
χ rate constant, T−1, s−1.
φ porosity, dimensionless.
λ mobility, M−1 Lt, Pa−1 · s−1.
µ viscosity, ML−1 t−1, Pa · s.
ρ density, ML−3, kg · m−3.
σ interfacial tension, L−1 t−2, Nm−1.
AFO All-Faces-Open boundary condition.
OEO One-End-Open boundary condition.
TEO Two-End-Open boundary condition.
TEC Two-End-Closed boundary condition.

Subscripts
D dimensionless.
i initial.
o oil.
r residual.
t total.
w water.
∞ ultimate (at infinite time).

Superscripts
max maximum.

1. Introduction

One of the most important recovery mechanisms in hydrocarbon reservoirs
is spontaneous imbibition, where capillary pressure causes water to invade
into water-wet and mixed-wet rock containing oil. In fractured reservoirs,
injected water flows rapidly through the fracture network and then can
imbibe into low permeability matrix that contains the majority of the oil.
In many cases this is a counter-current imbibition process: water and oil
flow in opposite directions with the sum of the water and oil Darcy veloc-
ities being zero. The same situation is seen in fractured aquifers polluted
by non-aqueous phase liquids (NAPLs) – again the imbibition of water can
recover NAPL present in the less permeable matrix.

It is possible to study counter-current imbibition at the core scale in
the laboratory. A core sample containing oil is surrounded by water and
the recovery of oil is measured as a function of time. In this set-up the
only force mediating the displacement is capillary pressure with water and
oil flowing in opposite directions. For a recent review of these experiments
see Morrow and Mason (2001). The recovery of oil can be fitted by a
simple exponential function of time (Aronofsky et al., 1958). Zhang et al.
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(1996) proposed the following expression that matched a range of imbibi-
tion experiments on samples with different geometry and fluid properties:

R =R∞
(
1− e−αtDE

)
(1)

where R is the recovery and R∞ is the ultimate recovery. The subscript E in
the dimensionless time tDE stands for empirical. The constant α is approx-
imately 0.05 and the dimensionless time is defined by:

tDE = t

√
K

φ

σ√
µwµo

1
Lc2

(2)

where σ is the interfacial tension and Lc is a characteristic or effective
length given by:

Lc = V
n∑

i=1

Ai

li

(3)

where V is the matrix block volume, Ai is the area open to flow in the ith
direction and li is the distance from the open surface to a no-flow bound-
ary. Equation (1) can be re-written in terms of the average water saturation
in the core, S̄w:

R

R∞
= S̄w −Swi

1−SorSS −Swi

(4)

where Swi is the initial water saturation (typically a connate or irreducible
value) and SorSS is the residual oil saturation, or, more precisely, the oil sat-
uration that is reached after spontaneous imbibition only. Defining a nor-
malized saturation:

S = Sw −Swi

1−Swi −SorS
; 1�S �0. (5)

S̄ =1− e−αtDE (6)

For mixed-wet systems, an approximately exponential recovery is also seen,
but with values of α that are 100–10,000 times lower than for strongly
water-wet media (Morrow and Mason, 2001).

Zimmerman and Bodvarsson (1989, 1991) used an approximate ana-
lytical technique, the integral method, to study counter-current imbibition
in one dimension. Later Zimmerman et al. (1990) extended the approach
to study imbibition into blocks of various shapes and sizes and showed
good comparisons with numerical solutions. Zimmerman and Bodvarsson
(1989, 1991), Zimmerman et al. (1990) considered water/air systems with
the assumption that the displaced phase (air) had a negligible viscosity. For
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hydrocarbon or NAPL problems, however, the non-wetting phase viscosity
cannot be neglected.

Barenblatt et al. (1990) derived expressions for the early and late-time
recovery from counter-current imbibition where both phases have non-neg-
ligible viscosity. At late times, using a similar technique to Zimmerman and
Bodvarsson (1989, 1991), they found an exponential variation of recovery
with time, Equation (1), but with a different dimensionless time.

Many other authors have also studied this problem. Pooladi-Darvish
and Firoozabadi (2000) constructed numerical solutions for one-
dimensional counter-current flow using power-law forms of the relative per-
meability. They demonstrated that the saturation gradient at the inlet is
infinite, but did not compare the results to experiment or propose a closed-
form expression for the average saturation as a function of time. Kashchiev
and Firoozabadi (2003) found analytic solutions for early time imbibition
(before water reaches any boundaries) in different flow geometries and
compared their results with numerical solutions and experiment. Reis and
Cil (1993) found a closed-form analytical model for capillary imbibition in
one dimension. They assumed that the oil and water saturations behind
the imbibition front varied linearly with distance, the capillary pressure was
a linear function of water saturation, and the ratio of the capillary pres-
sure to the sum of the oil and water mobilities was constant. Chen et al.
(1995) derived integral solutions for late times in one and two dimensions
by extending the approach used in Chen et al. (1990) for the infinite-acting
flow period. Using a more empirical approach, Zhou et al. (2002) suggested
a new scaling group, similar to that derived by Barenblatt et al. (1990), that
unlike Equation (2) tended to the correct limit for a negligible non-wetting
phase viscosity. They validated their expression through comparison with
experiment on diatomite cores. A new approach to this problem was pro-
posed by Barenblatt et al. (2003) who used an extended theory of multi-
phase flow with a relaxation time to explain counter-current imbibition. In
our work, we will assume that a traditional Darcy-like formulation of the
flow equations is sufficient for the analysis.

In this paper we will follow the approach of Zimmerman and Bodvars-
son (1989, 1991) and Zimmerman et al. (1990) to analyze counter-current
imbibition in one dimension for oil/water or NAPL/water systems. We pro-
pose both early and late time solutions and make fewer approximations
about the functional form of the saturation profile, capillary pressures and
relative permeabilities than previous authors. We will derive a simple ana-
lytical form for the average water saturation that gives a better match to
experimental data than the exponential expression, Equation (6). The key
difference between this work and that of Barenblatt et al. (1990) is the
treatment of the boundary conditions – for strongly water-wet systems the
water mobility is zero at the inlet. As we show later, this leads to an infinite
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saturation gradient and results in a different functional form from the
exponential recovery previously proposed.

2. Analysis

Conservation of water volume in one dimension with no overall flow can
be expressed as follows (Barenblatt et al., 1990):

φ
∂Sw

∂t
+ ∂

∂x

(
λwλo

λt

K
∂PcPP

∂Sw

∂Sw

∂x

)
=0 (7)

where K is the permeability, PcPP is the capillary pressure, the mobility
λ = Kr/µ where Kr is the relative permeability and λt = λw + λo. In what
follows, for simplicity, we will refer to the non-wetting phase as ‘oil’ repre-
sented by the subscript o. The other terms are defined in the nomenclature.

We rewrite Equation (7) in terms of dimensionless variables: the normalized
saturation, S, Equation (5) and a dimensionless length xD =x/L. The boundary
conditions for flow in 1 � xD � 0 are: at xD = 0, S = 1; and at xD = 1 there is
no flux, meaning that ∂S/∂xD =0. The conservation equation, assuming a
constant permeability, is then:

∂S

∂t
+ K

φ (1−Swi −SorS )L2

∂

∂xD

(
λwλo

λt

∂PcPP

∂S

∂S

∂xD

)
=0 (8)

Rather than attempt a solution of the non-linear Equation (8) directly,
we will construct a solution of the weak or integral form of the equation
(Zimmerman and Bodvarsson, 1989, 1991; Zimmerman et al., 1990):

1∫
0

[
∂S

∂t
+ K

φ (1−Swi −SorSS )L2

∂

∂xD

(
λwλo

λt

∂PcPP

∂S

∂S

∂xD

)]
dxD =0 (9)

which gives:

∂S̄

∂t
= K

φ (1−Swi −SorS )L2

(
λwλo

λt

∂PcPP

∂S

∂S

∂xD

)∣∣∣∣∣∣∣∣∣∣
xD=0

(10)

where:

S̄ =
∫ 1

0

∫∫
SdxD (11)

The solution to Equation (10) is controlled by the functional form of the
capillary pressure and mobilities at the inlet, where S tends to 1. For con-
venience we will assume the following Corey-type functional forms for the
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mobilities and the imbibition capillary pressure (Bear, 1972; Dullien, 1992):

λw =λmax
w Sa (12)

λo =λmax
o (1−S)b (13)

PcPP =σ

√
φ

K
J(Sw) (14)

∂PcPP

∂Sw

∣∣∣∣∣∣∣∣∣∣
Sw=1−SorS

=−σ

√
φ

K
J ′ = 1

(1−Swi −SorSS )

∂PcPP

∂S

∣∣∣∣∣∣∣∣∣∣
S=1

(15)

where λmax
w = kmax

rw /µw and λmax
o = kmax

ro /µo · a, b > 0. In Equation (14) we
have assumed Leverett J-function scaling (Bear, 1972; Dullien, 1992) where
J (Sw) is a dimensionless capillary pressure and −J ′ is the dimensionless
gradient of the capillary pressure at S =1.

We now rewrite Equation (10) with 1−S = ε and take the limit as
ε →0, xD →0:

∂S̄

∂t
= −

√
K

φ

kmax
ro σJ ′

µoL2
εb ∂S

∂xD

∣∣∣∣∣∣∣∣∣∣∣∣∣
xD=0

(16)

Now define a dimensionless time tD:

tD = t

√
K

φ

σ

µoL2
(17)

and Equation (16) becomes:

∂S̄

∂tD
= kmax

ro J ′εb ∂S

∂xD

∣∣∣∣∣∣∣∣∣∣
xD=0

(18)

Since the oil mobility vanishes for ε = 0, it is necessary that either
∂S/∂xD or ∂PcPP /∂S diverges at xD =0 to obtain sensible solutions to Equa-
tion (18). If we assume that the capillary pressure gradient and therefore J ′

is finite, this means that the saturation gradient must be infinite at xD =0,
in accordance with previous numerical solutions of the problem (Pooladi-
Darvish and Firoozabadi, 2000). Physically the inlet boundary condition
states that the oil saturation is at its residual value where its mobility is
zero. However, oil must be able to flow out of the system. The only way
to resolve this impasse is to allow an infinite saturation gradient such that
the oil flow rate is finite.

Many empirical expressions for capillary pressure, particularly those
widely used in the hydrology literature due to van Genutchen and Lenhard
and Parker, have an infinite saturation gradient at S = 1 (van Genutchen,
1980; Lehnard and Parker, 1987a,b,c; Parker et al., 1987). The theory for
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these cases follows a very similar development to that given below and is
outlined in the Appendix.

The time-scale for imbibition, given by tD, Equation (17), is similar to
Equation (2), except for the scaling with viscosity. In our analysis the imbi-
bition time is inversely proportional to the oil viscosity and is independent
of the water viscosity. Zhang et al. (1996) suggested that an imbibition time
inversely proportional to the geometric average of the oil and water viscos-
ities more accurately matched experiment. We will test this against experi-
mental data later in the paper.

2.1. early time solution

First we propose an early time solution, before the advancing water front
reaches the boundary. This solution is also equivalent to imbibition in a
semi-infinite medium. We write down a simple analytical form for the spa-
tial variation of the saturation and then find the time-dependent coeffi-
cients that obey Equation (16) and the boundary conditions.

S(xD, tD)=1−A(tD)x
f

D; xD �x0
D, 0<f <1

=0; xD �x0
D (19)

This automatically obeys the boundary condition at xD = 0. x0
D(tD) is the

length at which the saturation first becomes zero. Since S
(
x0

D, tD
)=0, from

Equation (19) we find:

x0
D =A(tD)−1/f (20)

and the average saturation is:

S̄(tD)= f

1+f
x0

D = f

(1+f )A(tD)1/f
(21)

We now use Equation (18) to find A(tD). From Equation (19):

ε =A(tD)x
f

D (22)

Hence in Equation (18):

A(tD)−1/f −1

1+f

∂A(tD)

∂tD
=−kmax

ro J ′f εb+1−1/f A(tD)1/f (23)

For the right-hand-side of Equation (23) to be finite in the limit ε→0, we
require:

f = 1
1+b

(24)
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This specifies f and gives acceptable solutions for any b>0. Then Equation
(23) becomes:

A(tD)−1−2/f

f (1+f )

∂A(tD)

∂tD
=−kmax

ro J ′ (25)

Integrating once:

A(tD)= 1

(βtD +C)f/2 (26)

where:

β = 2(2+b)

1+b
kmax
ro J ′ (27)

and C is a constant.
Then from Equation (21) and choosing the constant C = 0 to obey the

initial condition x0
D(0)= S̄(0)=0:

S̄(tD)= (γ tD)1/2 (28)

where:

γ = β

(2+b)2
= 2

(2+b)(1+b)
kmax
ro J ′ (29)

The leading edge of the water front advances as (Equations (20) and (26)):

x0
D(tD)= (βtD)1/2 (30)

This solution is valid for tD ≤ tD1 until the water reaches the boundary,
when x0

D(tD = tD1)=1, where:

tD1 = 1
β

(31)

Notice that the average saturation and the location of the leading edge
of the water front increases as the square root of time. This is readily
explained, since the advance rate is proportional to the capillary pressure
gradient which is inversely proportional to the distance the water front has
already traveled. This scaling of average saturation has been noted by other
authors (Zimmerman and Bodvarsson, 1989, 1991; Barenblatt et al., 1990;
McWhorter and Sunada, 1990; Kashchiev and Firoozabadi, 2003) and con-
firmed experimentally (Rangel-German and Kovscek, 2002; Zhou et al.,
2002). However, the dimensionless rate constant γ or β is different from
that derived in other work – in particular the behavior is controlled by the
inlet boundary condition in this analysis.
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2.2. late time solution

At late times, tD � tD1, we propose a similar functional form for the satu-
ration profile:

S(xD, tD)=1−A(tD)x
f

D +B(tD)xD; 1xD1, 0<f <1 (32)

The extra linear term in xD is added to fulfill the no flux constraint at
xD =1, ∂S/∂xD

∣∣∣∣
xD=1 =0. Hence:

B(tD)=f A(tD) (33)

and:

S(xD, tD)=1−A(tD)
(
x

f

D −fxD

)
(34)

The average saturation is:

S̄(tD)=1−A(tD)

(
1

f +1
− f

2

)
(35)

We now use Equation (18) to find A(tD) in the limit as ε → 0, xD → 0 as
before and using Equation (22):(

1
f +1

− f

2

)
∂A(tD)

∂tD
=−kmax

ro J ′f εb+1−1/f A(tD)1/f (36)

Once again for Equation (36) to be finite in the limit ε→0, we require f =
1/(1+b), Equation (24). Then:

1
A(tD)1+b

∂A(tD)

∂tD
=− 2(2+b)

b(3+2b)
kmax
ro J ′ (37)

Integrating once:

A(tD)= 1

(ηtD +C)1/b
(38)

where:

η= 1+b

3+2b
β = 2(2+b)

(3+2b)
kmax
ro J ′ (39)

and C is a constant. We determine the constant by insisting that the aver-
age saturation is continuous at tD = tD1. From the early time solution,
Equation (28) and the late time solution Equations (35) and (38) we find:

C =
[
b(3+2b)

2(1+b)2

]b

−ηtD1 (40)
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Then we can write:

S̄(tD)=1− 1+b

(2+b) (1+κ (tD − tD1))
1/b

(41)

where:

κ =
[

2(2+b)

3+2b

][
2(1+b)2

b(3+2b)

]b

kmax
ro J ′ (42)

As mentioned previously the solution is controlled by the boundary con-
dition at the inlet (xD = 0). The behavior is dominated by the insistence
that the flow rates of oil and water are equal but in opposite directions as
the oil mobility tends to zero. Note that unlike the empirical correlation,
Equations (1)–(3), in our formulation the imbibition rate is independent of
the water relative permeability and viscosity. However, the imbibition rate
– given by κtD/t – is proportional to the interfacial tension and inversely
proportional to the length of the system squared, as demonstrated experi-
mentally (Zhang et al., 1996; Morrow and Mason, 2001).

3. Comparison with Experiment

In this section we compare the early and late time predictions against
experimental imbibition data on cores. The expressions for the average sat-
uration use multiphase flow properties, namely the dimensionless capillary
pressure gradient at S = 1, J ′, the oil relative permeability exponent, b,
and the maximum oil relative permeability, kmax

ro . In the experiments we
study, the capillary pressure and relative permeability were not measured.
In order to obtain genuine predictions obtained using independently mea-
sured experimental data, we will take the values of b and kmax

ro measured
in steady state for waterflooding strongly water-wet Berea sandstone by
Oak (1990) – in this case kmax

ro = 1 and the oil relative permeability varies
approximately linearly with saturation, giving b=1. While we do not have
imbibition capillary pressure measurements from Oak, the relative perme-
ability data is well predicted using pore-scale network modeling (Blunt
et al., 2002, Valvatne and Blunt, 2004) where predictions of capillary pres-
sure were also made. Using the network model the predictions of capillary
pressure as function of water saturation are given for a strongly water-wet
sandstone of porosity φ = 0.24, permeability K = 2554 mD, and interfacial
tension σ =30 mN/m. We then use Equation (14) to find the dimensionless
capillary pressure J (Sw) and plot it against water saturation Sw in Figure
1. The gradient of the dimensionless capillary pressure at S =1, J ′, is then
obtained by measuring the slope of the tangent at Sw = 1 − SorS , which is
plotted in Figure 1. We then obtain J ′ = 0.19 (see also typical imbibition
capillary pressures in Bear (1972) that give similar or larger values for J ′
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Figure 1. Dimensionless capillary pressure J versus water saturation Sw derived from
a pore network model of Berea sandstone (Blunt et al., 2002; Valvatne and Blunt,
2004). The solid line is the tangent at Sw =1−SorS .

on sand and bead-packs). With these values we can write our predictions
as follows. At early times tD < tD1, S̄(tD) is given by Equation (28) with
γ =0.063, tD1 =1.75. For late times tD >tD1, S̄(tD) is given by Equation (41)
with κ =0.36.

To evaluate our theoretical solution, we use three different published
experimental data on imbibition (Mattax and Kyte, 1962; Hamon and
Vidal, 1986; Zhang et al., 1996), in which the oil recovery was measured
as a function of time. These data sets are for different porous media,
core dimensions, boundary conditions, and oil and water viscosities. All of
the systems were strongly water-wet. Mattax and Kyte (1962) performed
experiments to test a scaling theory for imbibition oil recovery from frac-
tured reservoirs. Two sets of experimental data were used: one set was
for two cylindrical sandstone core samples of different sizes with all-faces-
open (AFO) to imbibition. The other set was for four alundum cylindri-
cal cores of different lengths with only one-end-open (OEO) to imbibition.
The two sets of data had different oil/water viscosity ratios. The two sets,
therefore, provided examples of boundary conditions, viscosity ratio, and
porous media that were all different. Hamon and Vidal (1986) studied the
effect of height and boundary conditions on recovery. The cores used were
made of aluminum silicate with different lengths and boundary conditions
of AFO, OEO and two-ends-open (TEO). The same water and oil phase
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with constant viscosity ratio were used in all the experiments. In order to
test the applicability of Equation (2) an extensive experimental study was
performed by Zhang et al. (1996). Imbibition measurements were presented
for cylindrical Berea sandstone cores of different sizes, and different bound-
ary conditions of AFO, TEO, OEO, and two-ends-closed (TEC). The vis-
cosity of oil varied in these experiments. Ma et al. (1995, 1997) applied
the modified scaling group to all the above-mentioned data on oil recov-
ery (Mattax and Kyte, 1962; Hamon and Vidal, 1986; Zhang et al., 1996)
and found a close correlation between them.

In Figure 2 we plot oil recovery as a function of the empirical dimen-
sionless time tDE, Equation (2), for the different experiments studied.
Experiments with different boundary conditions, core sizes and fluid viscos-
ities all plot on approximately the same universal curve that is reasonably
well fitted by the empirical exponential function, Equation (1). The empir-
ical fit is a good match to the Zhang data but is not such a good fit at
early and late time to the data from Hamon and Vidal and Mattax and
Kyte.

In this work for simplicity we considered a boundary condition of type
OEO applied to a matrix block of length L. In order to extend the results
to other boundary conditions of TEO, TEC and AFO, which were used
in the experiments, we replace L by the modified characteristic length Lc,

Figure 2. Experimental recovery data as a function of dimensionless time, tDE ,
Equation (1) and an exponential empirical fit to the data, Equation (2).
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Equation (3) in the equations for recovery and average saturation. This
then enables us to compare our theory against all sets of experimental data
(Mattax and Kyte, 1962; Hamon and Vidal, 1986; Zhang et al., 1996) with
different sample sizes and shapes and boundary conditions. Starting from
the experimental data we obtain the results of oil recovery as a function
of time, and plot them as a function of the dimensionless time, Equation
(17). The results are shown in Figure 3, where for comparison we have
also plotted the analytical oil recovery from Equations (28) and (41) with
tD1 =1.75, γ =0.063 and κ =0.36. The fraction of recoverable oil, plotted in
Figure 3, is the same as the average normalized saturation, S̄. The experi-
mental data plot approximately onto one universal curve, although there is
noticeably more scatter than in Figure 2, indicating that our dimensionless
time tD is not as good a scaling group as tDE since we ignore any depen-
dence on the water viscosity. However we obtain a good match between
the theory and experiments for the majority of the data, especially those
of Hamon and Vidal and Mattax and Kyte.

Figure 3. Experimental oil recovery data as a function of dimensionless time tD ,
Equation (17) compared to analytical predictions from Equations (28) and (41).
Notice that in comparison with Figure 2 there is slightly more scatter in the data,
implying that the dimensionless time tD , which ignores the water viscosity, is not
such a good scaling group as tDE . However, the match to the data by the analyti-
cal solution is superior to the empirical correlation, Equation (1), and involves no
adjustable parameters.
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Figure 4. Experimental data compared with early, Equation (28), and late time,
Equation (41), analytical recovery solutions versus dimensionless time tD . The early-
time solution over-predicts recovery at late times. The transition time tD1, from early
to late time solutions is where the dashed and solid lines first intersect.

Comparing Figures 2 and 3 it is evident that while Equation (2), that
includes the water viscosity, provides a slightly better correlation than the
dimensionless time we propose, Equation (17), our analytic predictions of
recovery match the data significantly better than the empirical exponential
correlation. Furthermore, our expressions are first-principles predictions
based on independently measured data, while the empirical exponential
form is a fit to the data.

The same experimental data are plotted in Figure 4, where early and
late time analytical solutions are also plotted separately. Figure 4 shows the
transition time tD1, from early to late time solutions, where the dashed and
solid lines first intersect. In Figure 4 we can also see that the square root
of time behavior, which is represented by the early time solution, is not a
good approximation for the recovery at late time in a finite-sized medium.
Furthermore, extrapolating the late time solution to earlier times predicts
negative recoveries for tD less than around 1.

4. Conclusions

We have used the integral method to construct an approximate analytical
expression for the water saturation during one-dimensional counter-current
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imbibition in a strongly water-wet medium. We assign a finite viscosity to
the displaced phase (oil or NAPL) and show that the boundary condition
at the inlet, where the displaced phase flow must be finite as its mobility
tends to zero, controls the overall character of the solution.

The predictions of analytical expressions for early and late times are
compared with several sets of experimental data, and with an empirical
exponential form for the recovery proposed in the literature. Our expres-
sion fits the experimental data well and gives a better estimate of recovery
than the exponential form without any adjustable parameters.
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Appendix A. Solutions with an Infinite Capillary Pressure Gradient

Several empirical models – notably those proposed by van Genutchen
(1980), Lehnard and Parker (1987a,b,c) and Parker et al. (1987) – assume
that the capillary pressure gradient diverges at S = 1. We now consider this
case. We write in analogy to Equation (15):

∂PcPP

∂Sw

∣∣∣∣∣∣∣∣∣∣
Sw=1−SorS

=−σ

√
φ

K
J ∗ε−c = 1

(1−Swi −SorS )

∂PcPP

∂S

∣∣∣∣∣∣∣∣∣∣
S=1

(A.1)

where c is some exponent and J* an appropriate pre-factor. Then Equation
(18) becomes:

∂S̄

∂tD
= kmax

ro J ∗εb−c ∂S

∂xD

∣∣∣∣∣∣∣∣∣∣
xD=0

(A.2)

The analysis follows exactly as before with the same expressions for the sat-
uration profile. The only difference is that to produce sensible solutions we
require:

f = 1
1+b− c

(A.3)

The expressions for average saturation etc are the same as before but with
b− c substituted for b and J* for J ′.

The van Genutchen (1980), Lehnard and Parker (1987a,b,c) and Parker
et al. (1987) models use (in our notation):

PcPP =nm1/nσJ ∗
√

φ

K

(
1−S−1/m

)1/n
(A.4)
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where m=1−1/n, and:

kro = (1−S)1/2 (1−S1/m
)2m

(A.5)

Then taking S =1− ε and taking the limit ε →0:

c=1− 1
n

(A.6)

b= 5
2

− 2
n

(A.7)

To be consistent with our analysis, we also need to use:

kmax
ro =m−2m (A.8)

n, the exponent in the van Genutchen model (Dullien, 1992), has a value
typically slightly greater than 1.
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Abstract. Reservoirs are often composed of an assortment of rock types giving rise to
permeability heterogeneities at a variety of length-scales. To predict fluid flow at the full-
field scale, it is necessary to be aware of these different types of heterogeneity, to rec-
ognise which are likely to have important effects on fluid flow, and to capture them by
upscaling. In fact, we may require a series of stages of upscaling to go from small-scales
(mm or cm) to a full-field model. When there are two (or more) phases present, we also
need to know how these heterogeneities interact with fluid forces (capillary, viscous and
gravity). We discuss how these effects may be taken into account by upscaling. This study
focusses on the effects of steady-state upscaling for viscous-dominated floods and tests
carried out on a range of 2D models are described. Upscaling errors are shown to be
reduced slightly by the increase in numerical dispersion at the coarse scale. We select a
combination of three different upscaling methods, and apply this approach to a model
of a North Sea oil reservoir in a deep marine environment. Six different genetic units
(rock types) were identified, including channel sandstone and inter-bedded sandstone and
mudstone. These units were modelled using different approaches, depending on the nature
of the heterogeneities. Our results show that the importance of small-scale heterogeneity
depends on the large-scale distribution of the rock types. Upscaling may not be worth-
while in sparsely distributed genetic units. However, it is important in the dominant rock
type, especially if there is good connectivity through the unit between the injector wells
(or aquifer) and the producer wells.

Key words: permeability heterogeneity, permeability upscaling, balance of forces

1. Introduction

Heterogeneities in permeable rocks exist over a wide range of length-scales,
from mm upwards. Often these heterogeneities arise in a hierarchical fash-
ion: for example, laminae occur at the mm–cm scale, and sets of laminae
combine to form beds at dm–m scales (e.g. Weber, 1986; Jones et al., 1993;
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Kjonsvik et al., 1994; Pickup and Hern, 2002). For multi-phase flow, in
addition to the effects of permeability structure, we need to consider the
interaction of small-scale heterogeneity with capillary pressure. Laboratory
experiments (Huang et al., 1995), and numerical simulation (Ringrose
et al., 1993; Van Lingen et al., 1996, 1997) of water floods in oil reservoirs
have shown that capillary trapping may occur between laminae, leading to
reduced oil recovery.

A multi-stage upscaling approach, called the Geopseudo Method, was
developed to take account of small-scale structures in reservoir-scale mod-
els (Corbett et al., 1992; Pickup et al., 2000). In this method, the upscaling
stages are defined by the predominant length-scales in the reservoir rocks
(e.g. the typical bed size). However, upscaling from small-scale models
increases the time taken for reservoir simulation, and we do not wish to use
it unless we know that the small-scale structures are important. Ringrose
et al. (1999) developed a set of guidelines based on parameters such as per-
meability contrast and layer thickness, to estimate when small-scale struc-
tures could be important. Jones et al. (1993) and Kjonsvik et al. (1994)
investigated the effects of heterogeneity in hierarchical models. They found
that large-scale structures had a dominant effect, but small-scale structures
were also important.

In this paper, we investigate the applicability of various methods for
upscaling two-phase flow, and demonstrate how multi-stage upscaling may
be carried out in a practical way in a real reservoir model, and we provide
further insights into the importance of upscaling small structures. Brief
reviews of the effects of different types of heterogeneities and of different
upscaling methods are presented in Section 2, followed by a discussion on
the choice of upscaling method (Section 3). In Section 4, we describe some
numerical tests which were performed to investigate errors in steady-state
upscaling. Then we introduce the field study, and describe the multi-stage
upscaling (Sections 5 and 6) procedure. The upscaling results are presented
in Sections 7 and 8, followed by a summary and conclusions in Section 9.

2. Description of Upscaling Methods

A number of people have written reviews on upscaling methods, for example:
Renard and Marsily (1997), Barker and Thibeau (1997) and Christie (2001). In
this paper, we do not wish to present a review of upscaling methods. We focus
on oil-water systems, and we describe the two-phase approaches which are used
here.

2.1. steady-state methods

When two phases are present (e.g. oil and water), we need to upscale rela-
tive permeability in addition to absolute permeability. The easiest approach
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to two-phase upscaling is to assume that the fluids are in steady-state, i.e.
∂SwSS /∂t =0, where SwSS is water saturation. This converts a two-phase prob-
lem into two single-phase problems (ignoring gravity):

∇.(kro kabs ∇PoPP )=0 ∇.(krw kabs ∇PwPP )=0, (1)

where kabs is the absolute permeability tensor, kr is the relative permeability,
P is pressure and the subscripts o and w refer to oil and water, respectively.
Steady-state methods are fast, and also have the advantage that they pro-
duce “well-behaved” effective relative permeability functions (Ekrann and
Aasen, 2000).

Steady-state upscaling may be carried out easily when a flood is in cap-
illary equilibrium (negligible viscous forces, i.e. negligible injection rate),
or when it is in viscous-dominated steady-state (negligible capillary forces).
(Note, also that when the flood is gravity-dominated, the fluids may reach
vertical equilibrium, which is also a steady-state.) Steady-state upscaling
methods have been discussed by a number of authors, e.g. Smith, 1991;
Kumar and Jerrauld, 1996; Pickup and Stephen, 2000.

When a viscous-dominated flood is in steady-state

ut.∇fwff =0, (2)

where ut is the total flow (oil and water), and fwff is the fractional flow
of water. This is equivalent to the fractional flow being constant along
streamlines (Ekrann and Aasen, 2000). In this study, we assume that the
fractional flow is constant on the inlet face of a model. For a system with
isotropic relative permeabilities, this means that the fractional flow is con-
stant throughout the model.

2.2. two-phase dynamic

This is the most difficult type of upscaling. It is time-consuming, because
a two-phase flow simulation is required (albeit on a local fine grid). Also,
the results may not be reliable (Barker and Thibeau, 1997). There are sev-
eral advantages in two-phase dynamic upscaling:

1. A fine-scale two-phase flow simulation is used to reproduce the water
saturation distribution for the correct balance of forces, provided appro-
priate boundary conditions are used.

2. The dispersion of the front due to permeability heterogeneities, or cap-
illary or gravitational forces is taken into account.

3. The upscaled relative permeabilities (pseudos) can compensate for the
increase in numerical dispersion as the grid is coarsened.
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We used the Kyte and Berry (1975) method in this study. In this method,
the total flow of each fluid is calculated at the outlet face of a coarse
block, by summing the fine-scale flows. Then the average pressure of each
phase is computed from the values in the central column (plane in 3D) of
the coarse block. Kyte and Berry (1975) used the product of the fine cell
height, the permeability and the relative permeability as a weighting factor.
The relative permeabilities are then computed using Darcy’s law.

3. Choice of Upscaling Method

When carrying out multi-stage upscaling, we need to choose a method or
methods which will provide reasonable results, but also we need to ensure
that the methods are feasible. For example, we are not likely to choose to
carry out two-phase dynamic upscaling at each level, because it would be
too time consuming. There are several factors to be considered, and these
are discussed below.

3.1. permeability structure and contrast

For single-phase flow, it has been shown that upscaling is robust when we
have a large separation of length-scales (e.g. Whitaker, 1969). Often this
condition does not hold, leading to inaccuracies in upscaling. (Errors may
be reduced to a certain extent, however, using non-uniform upscaling e.g.
Durlofsky et al., 1997). Permeability averaging may be used for upscaling
models with simple structures, such as continuous parallel layers, or corre-
lated random fields (assuming the correlation length is much smaller than
the size of a coarse grid cell). Often averaging, or a combination of aver-
ages (arithmetic–harmonic, or harmonic–arithmetic) is used for speed in
more complex models (e.g. Li et al., 2001). When the permeability varia-
tion is small (permeability contrast 5:1 or less), the errors will not be severe
(Pickup and Hern, 2002). However, large permeability contrasts are fre-
quently encountered in oil reservoirs, and complex structures such as cross-
bedded rocks, in which case the pressure solution method may produce
more accurate results.

3.2. balance of forces

We are concerned with two-phase flow in this study (oil and water), and
we need to take account of the balance of viscous, capillary and gravity
forces, which determine the paths of fluids through a reservoir. We assume
here that oil (the non-wetting phase) is being displaced by water (the wet-
ting phase). Upscaling is easiest when one force dominates, and the system
reaches a steady-state, and we consider the effect of each force in turn.
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3.2.1. Viscous-Dominated Flow
In a viscous-dominated flood, the injected fluid will tend to travel faster
in the high permeability regions, leading to a dispersion of the flood front
(e.g. Zhang and Tchelepi, 1999; Neuweiler et al., 2003). See Figure 1. Artus
et al. (2004) and Noetinger et al. (2004) take account of viscous cross-flow
between high and low permeability regions in layered and isotropic mod-
els, respectively. They show that the amount of dispersion depends on the
mobility ratio at the flood front, defined as:

Mf = λ(SfS )

λ(SwcSS )
. (3)

λ is the total mobility, defined as

λ=λo +λw =kro/µo +krw/µw, (4)

where µ is viscosity. SfS is the saturation at the Buckley–Leverett shock
front (Buckley and Leverett, 1942) and SwcSS is the connate (minimum) water
saturation. Artus et al. (2004) show that, for MfMM < 1 (stable flood), fluc-
tuations in the front due to heterogeneities become stationary, whereas if
MfMM > 1 (unstable flood), perturbations in the front grow. Noetinger et al.
(2004) show that this is also true for isotropic stochastic media. Zhang and
Tchelepi (1999) show that the amount of dispersion in a correlated random
model increased with the standard deviation and correlation length of the
permeability field.

Many engineers only perform single-phase upscaling in two-phase sys-
tems (e.g. Christie and Blunt, 2001), in which case the dispersion in the
front due to heterogeneities will not be taken into account. On the other
hand, in a finite-difference flow simulation, the flood front is spread out by
the finite size of the grid cells, giving rise to numerical dispersion (Lantz,
1971). In the case of immiscible flow, this is not a true dispersion, since
the width of the front does not grow with

√
t . The front is self-sharpen-

ing, and tends to a constant width (Hewett and Behrens, 1991). Therefore,
if only single-phase upscaling is performed, numerical dispersion will tend

Figure 1. (a) Example of a saturation distribution in a heterogeneous medium water
(dark colour) is being injected into the left side of the model. (b) The average sat-
uration profile (solid line), compared with the shock front from a homogeneous
medium.
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to compensate for loss of physical dispersion in a stable flood. (This effect
has been reported by Haajizadeh et al. (2000) for miscible floods.)

Ekrann and Aasen (2000) show that the viscous-dominated steady-state
method is most likely to apply for stable displacements and small-scale
heterogeneities (i.e. a correlated random permeability distribution with a
correlation length much smaller than the coarse grid cell). Obviously the
viscous-dominated steady-state method will suffer from the same inaccura-
cies as single-phase upscaling, in that it will not take account of the disper-
sion of the front due to heterogeneities. We describe additional tests carried
out on steady-state upscaling in Section 4.

3.2.2. Capillary-Dominated Flow
In this discussion, we assume that the rock is water-wet or mixed-wet, and
that the capillary pressure functions are similar to those used in the field
study (Section 5, Figure 11). Capillary pressure is high at low water satu-
rations, so water is imbibed into the oil-saturated zones, leading to a dis-
persion of the flood front in a homogeneous medium. In a heterogeneous
medium, since capillary pressure varies as

√
φ/k

√√
, water is imbibed from

high permeability regions into low permeability ones, and so capillary pres-
sure can help to stabilise the flood front. When a flood is capillary-domi-
nated, the imbibition is so strong that water travels preferentially through
the low permeability regions, leaving oil trapped in the high permeability
zones (e.g. Ringrose et al., 1993; Huang et al., 1995).

At small-scales, the capillary-equilibrium upscaling method is often
applied. For a homogeneous model, this method will be reasonably accu-
rate if capillary pressure spreads out the front so that the water saturation
varies negligibly over the length a coarse grid cell. A number of people
have assessed the effect of capillary pressure using capillary numbers which
describe the relative strength of the capillary pressure gradient compared
with the viscous pressure gradient. Although the balance of forces varies
throughout a flood (Stephen et al., 2001), capillary numbers are useful for
approximate calculations. Yortsos and Fokas (1983) define a capillary num-
ber as:

B = k(dPcPP /dS)char

vLµo
, (5)

where v is flow rate, (dPcPP /dS)char is a characteristic pressure gradient, and
L is the length of the system. Ekrann et al. (1996) used this capillary num-
ber to estimate that, for a typical North Sea sandstone (k =1 D), fluids are
in capillary equilibrium over a distance of about 20 cm.

Tests of the capillary-equilibrium method, on a range of heterogeneous
models, were described in Pickup and Stephen (2000). The method was
not as accurate as dynamic two-phase upscaling, but performed well. The
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accuracy depends on the type of permeability structure. In models where
high permeability regions are enclosed by low permeability regions, so that
oil trapping can occur, the residual oil saturation is very sensitive to the
capillary number. Using the capillary equilibrium method where it does not
apply, will over-estimate the amount of oil trapping.

Often the capillary equilibrium method is applied over regions which are
a few metres rather than a few centimetres across. However, this will not
have much impact on the results of a full reservoir simulation, where the
grid cells are commonly 100 m long.

3.2.3. Gravity-Dominated
In a gravity-dominated flood, the fluids segregate rapidly, with the low den-
sity fluid flowing above the high density one. In this case, vertical equi-
librium may be assumed, and a 3D simulation may be reduced to 2D.
Since the effect of gravity depends on the density difference between the
fluids, gas floods are more likely to be gravity-dominated than water floods.
We do not describe this method here, since we are focussing on oil–water
systems. However, water slumping is frequently found in simulations of
waterfloods. The amount of slumping depends on the vertical permeabil-
ity distribution: if permeability increases downwards, the effect of slumping
will be greater than if it increases upwards.

3.2.4. Intermediate Balance of Forces
Often a flood will not be dominated by a single force, so a combination of
forces will have to be taken into account. Steady-state methods may still be
used, but are more difficult to apply. For example Dale et al. (1997) con-
sider steady-state upscaling for 1D heterogeneous media, with a range of
viscous and capillary forces. Also, an intermediate viscous-capillary steady-
state method was developed by Stephen and Pickup (2000), which can cap-
ture capillary trapping more accurately in a flood with an intermediate
force balance. In general, though, when there is a mixture of forces, two-
phase dynamic upscaling is required to reproduce the flood at the coarse-
scale.

3.2.5. Balance of Forces Summary
In summary, permeability heterogeneities have different effects on a flood,
depending on the balance of forces. Focussing on viscous and capillary
forces: the flood front will move faster in the high permeability regions
when the flood is viscous-dominated, but will advance faster in the low per-
meability regions when the flood is capillary-dominated. At an intermedi-
ate viscous-capillary ratio, the front will advance at the same rate in high
and low permeability regions. The precise nature of the fluid distribution
will depend on the permeability structure and contrast, and the balance of
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viscous:capillary forces. At small scales, water floods tend to be capillary-
dominated and the capillary equilibrium method is useful for the first level
of a multi-stage upscaling process. At larger scales, we need to consider the
results of numerical tests before deciding which methods to use.

4. Numerical Tests

For full-field simulation, grid cells of around 100 m (in the horizontal) are
often used, and the effects of the grid size on the simulation results must
be considered. In this section we present the results of tests carried out to
assess the effect of various errors, including numerical dispersion, on scale-
up results.

The analytical approaches for estimating the effect of heterogeneities
on two-phase flow which were discussed above (e.g. Zhang and Techelepi,
1999), assume that the permeability variation is in the form of small fluc-
tuations about a mean value. In nature, however, permeability can vary
by several orders of magnitude over a small distance. We have conducted
a number of numerical experiments in order to examine upscaling in a
range of 2D models, including highly heterogeneous models. The object of
these tests was to examine the accuracy of performing single-phase only, or
steady-state upscaling in a two-phase system (water flooding).

Examples of these models are shown in Figure 2. We assume that the
permeability is a diagonal, isotropic tensor. Also, we assume that capillary
forces have been taken into account at a smaller scale, and we focus here
on viscous-dominated floods.

4.1. correlated random models

The first set of tests was performed on horizontal, isotropically correlated
random models (Figure 2(a)). The permeability distribution was log-nor-

Figure 2. Examples of models used for testing upscaling: (a) correlated random
model (horizontal plane and (b) layered model (vertical plane). In both cases darker
shades represent lower permeability.
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mal, and the relative permeabilities were given by:

krw =S2
nSS kro = (1−SnSS )2, (6)

where SnS is saturation normalised to go from 0 to 1. Table 1 lists the details
of the models and the values of parameters used. All combinations of these
parameters were tested. In the first set of simulations, a horizontal injector
was placed on the left side of the model and a horizontal producer on the
right side. In the second set, a quarter 5-spot pattern was modelled, with
the injector and producer at opposite corners. We refer to these cases as
the linear and diagonal models, respectively. Note that the linear flow case
could represent flow confined to a high permeability channel, or alterna-
tively could represent vertical flow of water from an aquifer at the bottom
of the model to a horizontal well across the top. A number of scale-up
factors was tested, as indicated in Table 1. In each case, the error in the
coarse-scale simulation compared to the fine-scale simulation was calcu-
lated follows:

RMS=

√√√√√√√√√√√√√ n∑
i=1

(Rci −Rfi)2

n
÷max(Rfi)×100% (7)

where R is the cumulative recovery. The subscripts c and f refer to “coarse”
and “fine”, and i =1,2, . . . , n refers to time steps.

The most obvious trend in the errors was that they increased with the
scale-up factor (Figure 3). This is partly due to the error in single-phase
upscaling increasing with the scale-up factor, but also the numerical disper-
sion at the coarse-scale model increases with scale-up factor. Apart from
this the results of the two sets of simulations (linear and diagonal) were
different.

Table I. Values of parameters used in the correlated random models

Parameter Values

Grid size (no. of cells) 64×64
Cell dimensions (m) 3.05×3.05×3.05
Mean of ln (k) 5.3 (corresponds to 200 mD)
Std. deviation in ln (k) 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5
Correlation length (in terms of total model size) 0.0, 0.1, 0.2, 0.3
No. of realisations 8
Mobility ratio at flood front, MfMM 0.6, 1.4
Scale-up ratio 2×2, 4×4, 8×8, 16×16
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Figure 3. Percentage error in cumulative oil recovery, for the diagonal flow model,
stable flood. The points represent different values of the standard deviation and
correlation length.

4.1.1. Linear Flow
In the linear flow case, the upscaling errors tended to decrease and then
increase as the standard deviation and correlation length were increased, as
shown in Figure 4(a) and (b). This is because the errors in the coarse-scale
simulation are due partly to the loss of fine-scale physical dispersion, and
partly due to numerical dispersion in the coarse-scale simulation. At inter-
mediate levels of heterogeneity (intermediate values of the standard devi-
ation and correlation length), the numerical dispersion partly compensates
for the loss of physical dispersion, and this reduces the errors. The errors
were larger for the unstable flood, but the trend was similar.

4.1.2. Diagonal Flow
In the case of diagonal flow, breakthrough at the production well is less
sharp, and the effect of numerical dispersion in the coarse-grid simula-
tions is less noticeable. This means that as the amount of small-scale phys-
ical dispersion increases (larger standard deviation and correlation length,
unstable flood), the errors in the coarse-scale simulation tend to increase.
Certainly the errors were much larger for unstable floods when the stan-
dard deviation was large (σ > 1.5). Contour plots of the percentage error
are shown in Figure 4(c) and (d) for the case where the scale-up factor was
4×4. The errors tend to be larger for an intermediate value of correlation
length (L = 0.1). This is because the coarse-scale blocks are similar in size
to the correlation length. (As mentioned previously upscaling is only accu-
rate when there is a wide separation of length scales, so the coarse grid
block should be much larger or much smaller than the correlation length.)

4.2. horizontal layers

The layered models consisted of five layers of alternating high and low per-
meability (high, low, high, low high). See Figure 2(b). Three models were
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Figure 4. Percentage error in cumulative oil recovery in the correlated random mod-
els, for a scale-up factor of 4×4. (The maximum standard deviation plotted for the
diagonal case is 2.5, because there was a large variation in the errors for cases with
larger standard deviations.)

created with different properties in the low permeability layer, referred to
below as models a, b, and c. The details of the models are described in
Table II. The values of the porosity and initial water saturation were cho-
sen to be similar to the field study described in Section 5. (The initial water
saturation increased with decreasing permeability). Water was injected at
the left and oil produced at the right. The densities of oil and water were
set similar to minimise gravity effects. In each case, the models were up-
scaled to a 1D model (using the arithmetic average). Different sizes for the
coarse-scale cells were used, as shown in Table II. The errors in the coarse-
scale simulations were again calculated using Equation 7. Figure 5 shows
the errors for the stable case. The main effect is that the errors increase
as the permeability contrast between the layers decreases. This is because
porosity varies with permeability, and the initial water saturation increases
with decreasing permeability. Therefore, there is very little oil in model a,
which almost behaves as if it were homogeneous. As the permeability in
the low permeability layers increases, the effects of dispersion are more
noticeable, and the upscaling errors increase. However, as the scale-up fac-
tor increases, the upscaling errors in cases b and c decrease slightly. This is
because numerical dispersion is compensating for physical dispersion. The
simulations with an unstable mobility ratio gave similar results, but with
slightly larger errors.
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Table II. Value of parameters used in the horizontal layer models

Parameter Values

Grid size (no. of cells) 64×64
Cell dimensions (m) 0.04×0.04
High perm. layers

Permeability (mD) 1000
Porosity 0.300
Initial SwSS 0.10

Low perm. layers Case a Case b Case c
Permeability (mD) 1 10 100
Porosity 0.130 0.185 0.255
Initial SwSS 0.70 0.60 0.25

Mobility ratio at flood front 0.53, 1.17
Scale-up ratios in x-direction 2, 4, 8, 16
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Figure 5. Percentage errors in cumulative oil recovery in the horizontal layer
models.

The results from these two types of model indicate the nature of the
errors likely to arise when upscaling a reservoir model. They suggest that
the errors in cumulative recovery, when upscaling by a small factor, will not
be severe, and that numerical dispersion will partly compensate for loss of
physical dispersion. (Note, however, that the average water saturation pro-
file for a simulation with fine-scale heterogeneity causing dispersion will
not, in general, be the same as the profile for a coarse-scale simulation
with numerical dispersion). The error from using only single-phase upscal-
ing will depend on factors discussed above, namely: permeability contrast
(standard deviation), correlation length, boundary conditions, and mobility
ratio. In a 3D model, however, the percentage errors may be larger, because
there is likely to be more physical dispersion (the fluid will have access to
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more high permeability pathways). Also, if the relative permeability curves
and their end points vary, this may cause larger errors.

In the tests described above, the relative permeability curves had the
same shape in every rock type. This means that the streamlines for two-
phase flow are the same as those for single-phase flow (Ekrann and Aasen,
2000), and so single-phase upscaling produces the same results as the
viscous-dominated steady-state upscaling. Therefore the results of these
tests can be used directly to assess the accuracy of the viscous-dominated
steady-state method.

4.3. 1d upscaling tests

Ideally, we would like to test the accuracy of a multi-stage upscaling pro-
cedure by comparing results at the finest and coarsest scales. However, it
is impossible to carry out simulations on a fine enough grid, unless we
use 1D models. We performed a series of upscaling tests in a 1D homo-
geneous model to assess which combination of methods steady-state and
dynamic methods is both feasible and reasonably accurate. The model was
horizontal, because there is usually a larger scale-up factor in the horizon-
tal than in the vertical. The size of cells used in the test was influenced
by the length scales in the field study, which is described below. The fine-
scale model consisted of cells which were 5 cm long (about the size of a
core plug). There were 10,000 of these cells, giving a total length of 500 m
for the model. (The length of the reservoir studied was about 5 km.) The
coarse-scale cells were 1 m for the first stage of scale-up, 25 m for the sec-
ond stage, and 100 m for the final stage. The permeability of the model was
set to 1200 mD and the porosity to 0.3. The injection rate was set to give
an interstitial velocity of 30 cm per day.

We applied the upscaling methods in every combination at each scale.
The water-cut and normalised oil recovery curves were examined for each
coarse-scale model, and compared with the fine-scale result. As expected,
some of the upscaling cases under-compensated for numerical dispersion,
and some over-compensated (Figure 6).

One of the best cases used the following combination of methods:

• Stage 1 – steady-state (capillary equilibrium)
• Stage 2 – Kyte and Berry (1975)
• Stage 3 – steady-state (viscous-dominated)

We chose this approach in our upscaling study.
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Figure 6. Comparison of water cut and production in the upscaling tests.

5. The Field Study

We have applied multi-level upscaling to a field in the UK central North
Sea, which is about 5 km long by 2 km wide. The sediments were deposited
in a channelised turbidite system, and comprise stacked sand-prone chan-
nels, over-bank inter-channel facies, and mud-rich debris flows. A detailed
analysis of core data was carried out, and 6 genetic units (GU) were iden-
tified:

1. Channel sandstone
2. Argillaceous sandstone (containing laminae and mud clasts)
3. Interbedded sandstone and mudstone
4. Mudstone with injected sandstone
5. Slumps/debris flows
6. Mudstone

Figure 7 shows the relative proportions of the genetic units, and Table 3
lists the average porosities and permeabilities.

These units are typical of the types of structures which are found in tur-
bidite environments, which act as oil reservoirs in the North Sea and in
many other parts of the world (e.g. Gulf of Mexico, off-shore West Africa).
Although all reservoirs are different, similar rock types exist in other tur-
bidite reservoirs, so our results are relevant to a large number of oil reser-
voirs.

1 Channel sandstone
2 Argillaceous sandstone
3 Interbedded
4 Injected intervals
5 Slumps / debris flows
6 Mudstone Facies

6

3

4

2

5

Figure 7. Relative proportions of the genetic units in the model.



MULTI-STAGE UPSCALING METHODS 205

Table III. Distribution of porosities and permeabilities

Genetic Unit Porosity Permeability

Average of ln(k) Equivalent perm (mD) Std. Dev.
of ln(k)

1 0.288 7.0 1060 3.5
2 0.255 5.1 168 1.5
3–6 0.184 3.7 42 2.3

A “fine-scale” stochastic geological model was generated using the
Roxar RMS package, and for convenience, we refer to this model as the
“RMS model”. A sector of this model, which was used to test upscaling is
shown in Figure 8. The cells in the RMS model were 25 m × 25 m × 1.5 m.
The horizontal size was taken from the resolution of the seismic data, and
the vertical size was chosen from an analysis of the thicknesses of the
facies. The stochastic modelling was carried out in two stages. First genetic
units 2, 3, 4 and 6 were modelled as flat ellipsoidal bodies to form the
background facies. The thicknesses and widths were modelled stochasti-
cally using uniform or triangular distributions. The thicknesses ranged from
1.5 to 5 m, and widths from 50 to 1000 m. The lengths were 1.5 times
the widths. (The distributions were slightly different for each unit.) The
dimensions of the bodies were chosen from outcrop studies, and the rela-
tive proportions were derived from cores (Figure 7). Genetic units 1 and 5
were then modelled as channels, the thickness of which varied from about
1.5 to 4 m, and the widths were approximately 100 times the thickness.
The orientations of all the bodies were distributed uniformly between east

Figure 8. Sector of the RMS model. North is along the y-axis.
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and south. The model consisted of approximately 4 million active cells. The
petrophysical properties of the model were assigned stochastically, and were
constrained to well log data. The porosities were derived from well logs,
and the permeabilities for the base-case model were estimated from core-
plug k–φ relationships. The permeability distribution in the model therefore
consisted of several log-normal distributions, as shown in Table III. A ful-
ler account of the geological interpretation and modelling is presented in
Stephen et al., 2002.

As can be seen from Figure 7 and Table III, 75% of the model con-
sisted of high and intermediate permeability channel sandstone (units 1
and 2). The remainder of the model was made up of ellipsoidal bodies a
few metres thick and a few hundreds of metres across. Thus, although this
study is specific to one reservoir, the results can be applied to reservoirs
with similar structure.

The cells of the RMS model were relatively coarse compared with the
size of the fine-scale structures within each genetic unit. Small-scale mod-
els were therefore created as follows, according to the geological modelling
hierarchy shown in Figure 9. The number of cells in the geological model
was too large for two-phase flow simulation, so the RMS model had to be
coarsened for full-field simulation.

GU1 consisted mainly of high permeability sand, but there was also
some inter-bedded sandstone and mudstone. As a base case, we assumed
that GU1 contained only homogeneous, high permeability sandstone. How-
ever, using the results of outcrop studies, we also included the inter-bedded
facies (GU3) in this unit as part of a sensitivity study (Section 7).

GU2 contained poorer quality sandstone compared to GU1, with mud
clasts which were modelled stochastically as shown in Figure 10(a).

GU3 consisted of laterally continuous layers of sandstone and mud-
stone, and was modelled stochastically, as shown in Figure 10(b). These

Figure 9. Schematic diagram of scales required for the models. The dimensions indi-
cate sizes in the horizontal and vertical directions.
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Figure 10. (a) Model used for GU2 (one realisation). (b) Model used for GU4
(4 realisations).

models are similar to the horizontal layer models, case a, described in Sec-
tion 4.

GU4 contained mainly mudstone, but with sandstone dykes and sills.
Sensitivity studies described in Stephen et al. (2002) showed that the
injected sandstone structures had a negligible effect, so in this paper, the
fine-scale structure in GU4 has been ignored.

GU5 and GU6 were low permeability, non-reservoir facies, and were not
modelled at the fine scale.

The field was produced by 4 horizontal wells, and pressure support was
provided by an aquifer. The densities of the fluids were 0.862 g/cm3 for oil
and 1.02 g/cm3 for water (atmospheric conditions), and the viscosities were
0.81 cP for oil and 0.44 cP for water. (These values varied with pressure).

The SCAL data for this field was unreliable, so we generated Corey-type
synthetic relative permeability curves with an exponent of 2 (Brooks and
Corey, 1964):

kro = (1−SnSS )2 krw =0.35S2
nSS . (8)

The flood was stable, with a mobility ratio at the front of MfMM = 0.5. Note
that in a real field study, there is not much point in spending a lot of time
with two-phase upscaling if the input data are unreliable. However, in this
work, we were more interested in studying the sensitivities, rather than in
producing an accurate prediction of recovery. The effect of using alterative
relative permeability curves in this field was investigated by Di Pierro et al.,
2003.

The average connate water saturation for each genetic unit, and for pure
mudstone was derived from the well logs. The residual oil was assumed to
be constant at 0.25. An oil–water capillary pressure curve for sandstone
was derived from air–brine drainage curve (by scaling). This curve was con-
verted into an imbibition curve for a mixed-wet rock by adding a negative
“tail”. The capillary pressure curves for the other genetic units were formed
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Figure 11. Input relative permeability and Pc curves. The numbers refer to the
genetic units, and “mud” refers to the curves used for pure mudstone in the small-
scale models.

by scaling the sandstone curve by
√

φ/k
√√

, using the average porosity (φ) and
average permeability (k) for each unit. Figure 11 shows the input curves
used for each genetic unit.

6. Application of Upscaling Methods

6.1. stage 1 – accounting for the small-scale structure

We performed upscaling on the models of small-scale structures within
GU2 and GU3. First single-phase upscaling was performed. The pressure
solution method, with no-flow boundary conditions, was used for GU2.
Since the models for GU3 were essentially 1D, they were upscaled using
the arithmetic average for along-layer flow and the harmonic average for
across-layer. The results of the single-phase upscaling were used to estimate
the kv/kh ratio (ratio of vertical to horizontal permeability) for those units
in the cells of the RMS model.

Next, two-phase upscaling was carried out on the GU2 and GU3
models. The models were upscaled using the capillary-equilibrium method
to obtain effective relative permeabilities. In the case of GU2, the up-
scaled curves were similar to the average of the input curves, because the
fluid flowed mainly through the sandstone, avoiding the mud clasts. How-
ever, for GU3, the resulting effective permeabilities were highly anisotropic
(Figure 12(a)). This was because, for vertical flow, oil became trapped in
the high permeability sandstone layers upstream of the low permeability
mudstone. (See, for example, Huang et al., 1995). The effective connate
water saturation was different in each realisation of the model (due to the
different amounts of sandstone and mudstone). However, when the water
saturations were normalised, the curves were all similar (Figure 12(a)).
When applying these relative permeabilities, we averaged the normalised
curves, so that only a single curve was required for all GU3, and we used
the average SwcSS from well logs.
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Figure 12. (a) Normalised effective relative permeability curves for GU3. (b) Pseudo
relative permeabilitie for GU1 (solid lines). The input curves are shown using
dashed lines.

The relative permeabilities for the other units were assigned an exponent
of 2 (as the input curves), with the connate water saturation set to the aver-
age from the well logs, for that unit. The residual oil was again set to 0.25.

6.2. stage 2 – upscaling to the rms model cell

Since the genetic units were laterally extensive, we assumed that each cell
of the RMS model contained only one type of genetic unit, so that each
25 m × 25 m × 1.5 m cell, consisted of 25 × 25 identical sub-units. Scale-up
in this case was only applied in the horizontal direction, and was only used
to reduce the numerical dispersion in the final simulation. The Kyte and
Berry (1975) method was used to calculate the pseudo relative permeabil-
ities for each genetic unit. An example of the results are shown in Figure
12(b), for GU1.

6.3. stage 3 – upscaling the rms model

The full-field RMS model contained over 4 million cells, and we reduced
these by a factor of 64 (4 in each direction), using single-phase upscal-
ing (pressure solution method in RMS). We also tested Stage 3 upscaling,
using the viscous-dominated steady-state method, on a sector model which
was small enough for us to perform a simulation on the RMS-scale grid.
The sector model (Figure 8) consisted of 24 × 44 × 64 cells, which were
upscaled to 6 × 11 × 16 (= 1056) cells. A regular cartesian grid was used,
because the upscaling software used this type of grid.

7. Comparison of Results

Simulations for sensitivity studies were carried out on the sector model
(Figure 8). This model contained one horizontal well and pressure sup-
port was provided by an aquifer, which was modelled using the Fetkovitch
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(1971) method. Since the well was controlled by oil rate (as observed in
the field), the models were compared by plotting the water cut (Figure 13)
and the bottom hole pressure as a function of time (not shown). Note that
the production schedule used in the simulation was the same as that used
in the real field, and includes periods when the well was shut in, giving
the graphs an irregular appearance. In the following cases, the RMS grid
(25 m × 25 m × 1.5 m) was used, except in the fourth model which was up-
scaled by a factor of 4 in each direction (as described above):

(1) Case 1 – the base case model – ignores fine-scale structure. Also ignores
capillary pressure (set to zero), and has SwcSS = 0.1 for all genetic units.

(2) Case 1a – the base case permeabilities, but with a different SwcSS for each
unit, and capillary pressure.

(3) Case 2 – Case 1a upscaled to account for structure in GU2 and GU3
(Stage 1).

(4) Case 3 – includes Kyte and Berry upscaling for Stage 2.
(5) Case 4 – accounts for small-scale structure (Case 2) and includes Stage

3 upscaling.
(6) Case 5 – similar to Case 2, but also accounting for heterogeneities in

GU1.
The results shown in Figure 13 indicate that modifying the base case
(Case 1) to take account of capillary pressure (Case 1a) has a significant
effect on the water cut. This is because capillary pressure produces a tran-
sition zone between the water and the oil, allowing earlier breakthrough of
water. Upscaling to account for fine-scale structure in GU2 and GU3 had
little effect (Case 2). This is not surprising because GU2 and GU3 make
up a small fraction of the volume.
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Figure 13. Comparison of water cuts in the sector model. Note that the curves for
Cases 1a, 2 and 3 are almost superimposed.
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The Kyte and Berry upscaling stage had a negligible effect here: the
curves for Cases 2 and 3 in Figure 13 are almost super-imposed. This
is because the flow was mainly in the vertical direction from the aquifer,
whereas the Kyte and Berry upscaling affected flow in the horizontal direc-
tion.

There is a significant difference between Case 4, which included the final
upscaling, and Case 2, which used the fine-scale RMS grid. Some of this
discrepancy could have been caused by the re-sampling of the RMS grid
to form a regular Cartesian grid for the upscaling package. However, the
main problem is that the single-phase upscaling at this stage is inaccurate,
due to the high permeability contrasts and the size of the heterogeneities.
Another problem is that the top of the aquifer is only 28.65 m (19 RMS
layers) below the top of the model. Therefore there are only a few coarse
grid layers between the aquifer and the horizontal well, so the upscaling
gives a very early breakthrough. The errors in the third stage of upscaling
were reduced when we considered a version of the model with vertical wells
(Section 8).

The reservoir model was dominated by GU1 (sandstone channels),
which was modelled initially as homogeneous, high permeability material,
and so most of the fluid therefore flowed through GU1. However, GU1
did contain some heterogeneities in the form mudstone layers (as in GU3).
Therefore, for Case 5, we constructed a simple model consisting of sand-
stone (GU1) with a layer of inter-bedded material (GU3), and upscaled
this using the capillary equilibrium method. The resulting effective relative
permeabilities (which were similar to those in Figure 12(a)) were used in
the sector model, in place of the GU1 relative permeabilities. Figure 13
shows that the heterogeneities in GU1 have a much larger effect than those
in GU2 and GU3, because GU1 was much more prevalent than GUs 2
and 3 (Figure 7).

8. Vertical Well Model

The reservoir studied here had horizontal wells and pressure support was
provided by an aquifer. This meant that the flow was mainly vertical. In
this section, we investigate the effect of vertical wells (horizontal flow). We
changed the sector model so that an injection well was located at coordi-
nates (7,7), and a production well at (18,38). Both wells were completed
in all the layers. The injector well was controlled by rate (which was con-
stant), and the producer was controlled by bottom-hole pressure. Figure 14
(a) shows a comparison of the water cut for several models with vertical
wells. As above, Case 1 is the base case, Case 2 contains small-scale upscal-
ing, and Case 3 also has Kyte and Berry upscaling. There is a significant
difference between the Case 1 and Case 2 but, as explained in Section 7,
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this is manly due to the addition of capillary pressure. This time, there is
a slight difference between Cases 2 and 3, due to the effect of compensa-
tion for numerical dispersion by the Kyte and Berry method.

We also compared Cases 2 and 4 using vertical wells, to investigate the
accuracy of the stage 3 upscaling (viscous-dominated-steady-state). (Once
again this level of upscaling was carried out using the results from stage
1, omitting the Kyte and Berry intermediate stage, which had little effect.)
Figure 14(b) shows that in the vertical well model, this stage of upscaling
is more accurate than in the original model, although there is still a sig-
nificant error. The error in cumulative oil recovery due to the third level
of upscaling (assuming the Case 2 results are “correct”) is 3.5%.

The error in the third level of upscaling (vertical well case) can be com-
pared with the results for upscaling stochastic models, described in Section
4. For the sector model, the over-all standard deviation in ln(k) was 3.7,
and the flood was stable. The correlation lengths of the permeability dis-
tribution were approximately Lx =Ly =0.5, and Lz=0.16 (in terms of the
model length). The correlation length is therefore larger than in the tests,
where the maximum correlation length was Lx = 0.3. The error in recov-
ery for the test models, with σ =3.5 and Lx =0.3, was about 1%, which is
smaller than the error in the field model. However, the field model is a 3D
model, rather than a 2D one, and we would expect small-scale dispersion
to be greater in 3D, so errors in upscaling would be larger.

9. Summary and Conclusions

In this study, we have investigated the feasibility of multi-stage upscaling.
The applicability of a range of different methods was discussed. In par-
ticular we considered steady-state upscaling, because it is quicker, and is
therefore feasible. We presented the results of tests of steady-state upscal-
ing in viscous-dominated systems. The errors caused by upscaling are due
to the loss of fine-scale dispersion, which depends on the model parameters
(standard deviation and correlation length), and also on factors such as the
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mobility ratio and the flow regime (linear or diagonal). However, numerical
dispersion can partly compensate for the loss of physical dispersion. This
reduces the errors, particularly where there is linear flow.

We then applied multi-stage upscaling to a real field model. The three
stages of upscaling were:

1. The capillary equilibrium method
2. The Kyte and Berry (1975) method
3. The viscous-dominated steady-state method

The results of sensitivity studies showed that the effect of small-scale struc-
ture was not really significant in the case of GU2 and GU3, because these
units are not very prevalent, and occur as small, disconnected bodies. Most
of the difference between the base case and Case 2 is caused by assign-
ing a different SwcSS for each genetic unit and applying capillary pressure
(Case 1a). However, small-scale heterogeneity in GU1 is important, because
it makes up about 2/3 of the model. The intermediate level Kyte and Berry
upscaling stage did not make any difference in the field case, where the flow
was mainly vertical. When vertical wells were used for injection and pro-
duction, so that the flow was mainly horizontal, the Kyte and Berry up-
scaling had a slight effect. However, it was small compared to the errors in
the third level of upscaling. (Compare Figures 14 (a) and (b)). Therefore in
this study, the intermediate stage of upscaling was unnecessary.

The error in the third stage of upscaling (which was the only level which
could be checked) was larger than predicted by the tests in Section 4. In
the original model (aquifer and horizontal producer), the error was very
large. This was due to the proximity of the aquifer to the well. (To improve
the results, we should perhaps have coarsened the grid more in the aquifer,
and retained the fine grid at the top of the reservoir). In the vertical well
case, the results were more satisfactory, although the error was still larger
than expected. However, the tests were conducted on 2D models whereas
the field study used a 3D model.

In summary, the most important level of upscaling in this study was
stage 3. Stage 2 was unnecessary. Stage 1 was also unnecessary in the base
case, but was important when heterogeneities were included in GU1, the
most prevalent rock type. This upscaling approach will also be viable in
other reservoirs containing a similar distribution of length scales (not nec-
essarily just turbidite reservoirs). In other words, it is applicable to reser-
voirs where there are two separate levels of heterogeneity: a small scale
(cm–dm) and a much larger scale (100 s m horizontally and a few metres
vertically).

This study highlights the fact that the importance of small-scale struc-
ture cannot be judged by examining only small-scale models. Previous
studies of the effect of heterogeneity have tended to assume that the same
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type of heterogeneity extends across a reservoir (e.g. Van Lingen et al.,
1997; Pickup and Hern, 2002), in which case, small-scale structure will have
a significant effect. However, in reservoirs where only some of the units
contain small-scale heterogeneity, the large-scale connectivity of the high
permeability units is obviously important. If there are high permeability
pathways between injector wells and producer wells (or between an aqui-
fer and producing wells), most of the fluid will follow these pathways rather
than flowing through lower permeability, heterogeneous units. This suggests
that upscaling studies should begin with an examination of the large-scale
structure and then focus on small-scale structure if it is likely to have a sig-
nificant effect.
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DYNAMIC EFFECTS IN MULTIPHASE FLOW: A PORE-
SCALE NETWORK APPROACH

Traditionally, multiphase flow in porous media is studied using pressure cells, in
which quasi-static displacement experiments are performed. In these experiments,
also referred to as multistep outflow experiments, fluid flow is controlled by cap-
illary forces. The difference between the pressures of the fluids across the inflow
and outflow boundaries is increased in small steps each time equilibrium between
fluid phases has been achieved. These pressure steps are shown as the dashed-
dotted line in figure 1. The equilibrium points are shown as the grey symbols.
From these equilibrium points, the capillary pressure-saturation curve is then con-
structed (the dotted line). However, following this procedure, the dynamics of the
flow inbetween the equilibria are not captured. The capillary pressure-saturation
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Abstract. Current theories of multiphase flow rely on capillary pressure and saturation
relationships that are commonly measured under static conditions. To incorporate tran-
sient behaviour, new multiphase flow theories have been proposed. These include an
extended capillary pressure-saturation relationship that is valid under dynamic conditions.
In this relationship, the difference between the two fluid pressures is called dynamic cap-
illary pressure, and is assumed to be a function of saturation and its time rate of change.
The dependency is through a so-called damping coefficient. In this work, this proportion-
ality between capillary pressure and saturation rate of change is investigated using a pore-
scale network model. It consist of a three-dimensional network of tubes (pore throats)
connected to each other by pore bodies. The pore bodies are spheres and pore throats
are cylinders. Numerical experiments are performed wherein typical experimental proce-
dures for both static and dynamic measurements of capillary pressure-saturation curves
are simulated. The value of the damping coefficient is determined for one realisation of
our network model. Then, the effect of different averaging domains on capillary pressure-
saturation curves is investigated.

1. Introduction



relationship one would expect to find when including the flow dynamics is shown
as the solid line in figure 1. This is illustrated in the paper by Dahle et al. (this
book).

Wetting fluid saturation (−)

C
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Reservoir pressure difference
Quasi−static Pc−Sw curve
Quasi−static Pc−Sw curve including dynamics

Figure 1. Determination of a capillary pressure-saturation curve. The dashed-dotted line shows the
boundary pressure differences. The grey symbols denote the equilibrium points, from which the
quasi-static Pc − S w curve is determined (the dotted line). The solid line shows the Pc − S w curve
one would expect to find when flow dynamics are not discarded.

As early as 1921, one has realised that the behaviour of capillary flow under
(quasi-)static and transient conditions is different [13]. In the 1960’s and 1970’s,
several researchers found different capillary pressure-saturation relationships for
static, steady-state and transient experiments [12, 10, 11]. An overview of the
experiments is given by Hassanizadeh et al. [8].

To account for the observed dynamic effects in multiphase flow, an extended
definition was proposed by Hassanizadeh & Gray, where the traditional (quasi-)
static relationship is replaced by [6, 7]:

Pn − Pw = Pc
stat − τ

dS w

dt
= Pc

dyn (1)

where Pc
stat is traditional capillary pressure, Pc

dyn is dynamic capillary pressure, S w

is wetting fluid saturation, Pn and Pw are nonwetting and wetting fluid pressures,
respectively, and τ is a damping coefficient that can be a function of saturation.

From experimental data published in literature, some average values for τ have
been calculated by Hassanizadeh et al. [8]. However, a detailed study of equation
(1), the proportionality between Pn − Pw and ∂S w

∂t , and the dependence of τ on
saturation has not been performed yet. Experimental studies to cover these issues
will be very expensive and time consuming. Therefore, for a preliminary study of
equation (1), we develop and employ a pore-scale network model.
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Network models consist of an assembly of tubes as pore throats and pore
bodies connecting them. These models can be used as a numerical surrogate for
laboratory experiments, where every step and every parameter can be controlled
and/d or determined.

Numerous pore-scale network models have been developed in recent years.
They are mostly static pore-scale network models, which are used to study quasi-
static displacements. The dynamics of flow are not computed. Based on the bound-
ary conditions and the curvature of the fluid-fluid interface, equilibrium positions
are found. These are then used to update saturations and capillary pressure. Time
is of no importance in these models. Boundary conditions similar to those of
traditional laboratory experiments are imposed. For an overview, see Dullien [5]
or Celia et al. [3].

Another type of pore-scale network models is the so-called dynamic network
models. In these models, fluid-fluid interfaces are tracked in time and the flow
of the fluids is simulated explicitly. Clearly, the interfaces do not have to be at
equilibrium positions. Instead of increasing inflow boundary fluid pressure in
small steps to a maximum value, the simulations are carried out with the boundary
pressure set equal to a large constant value from the start, see, e.g. Mogensen &
Stenby [9], Dahle & Celia [4] and Celia et al. [2]. Alternatively, one can impose
a constant nonwetting flux at the boundary (e.g. Blunt & King [1]). In contrast
to quasi-static pore-scale network models, dynamic models are generally very
CPU-time consuming.

In this paper, first the dynamic pore-scale network model is described, stating
the used assumptions and equations. Next, the numerical experiments to perform
are described. The value of damping coefficient τ is computed for one realisation
of our pore-scale network. Then, the effect of averaging domain size on capillary
pressure-saturation curves is investigated. The results are discussed, and finally,
conclusions are given.

This section describes our dynamic pore-scale network model. This model is
basically similar to the model of Blunt & King [1]. The main difference is that
Blunt & King used Neumann conditions at the nonwetting phase inflow bound-
ary. In our model, we have employed Dirichlet conditions, which enables us to
simulate quasi-static drainage experiments as well. For this purpose, algorithms
have been included for determining equilibrium between fluid phases after incre-
mental increase of boundary conditions. Also, while we focus on dynamic effects
in capillary pressure-saturation curvers, Blunt & King mainly focus on relative
permeabilities.
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The pore network is a regular lattice of pore bodies and pore throats. A pore
body is spherical in shape, a pore throat is a cylinder (see figure 2). Pore body
and throat sizes are assumed to follow a truncated log-normal distribution. The
following simplifying assumptions are made in this model:

− Both fluids are considered to be incompressible; the solid matrix is rigid.

− The pore throats have negligible volume, but they offer hydraulic resistance
to flow.

− The passage of a fluid-fluid interface through a pore throat occurs instanta-
neously (i.e. the residence time is negligible compared to the characteristic
flow time).

− Only one fluid resides in a pore throat at a time.

− Flow in pore throats is laminar and its rate is given by Poiseuille’s formula.

− Local capillary pressure is zero for all pore bodies. Thus, there is only one
pressure at a pore body.

− Gravity is neglected, hence fluid flow is driven by pressure gradients only.

From these assumptions, it follows that only one fluid pressure field for the whole
network has to be solved at any given time. Nevertheless, there is a local-scale
capillary pressure originating from pore throats entry pressure. It is equal to the
difference in pressures of nonwetting and wetting phases occupying pore bodies
adjacent to a given pore throat.

Figure 2. Schematic representation of a pore body and adjacent pore throats in a 3D network with
coordination number 6 (left) and a 2D network with coordination number 4 (right).
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In this section, pore-scale equations that are used in our network model under
the assumptions mentioned in section 2.1 are described. Subscript i denotes pore
body i, j denotes its neighbouring pore bodies, and i j the connecting pore throats.
Superscript w and n denote wetting and nonwetting fluid phases, respectively.

Continuity equations
In the absence of external sources and sinks, the principle of volume conservation
for pore body i connected to neighbouring pore bodies j ( j ∈ Ni) can be written
as:

ViVV
∆S αi
∆t
+
∑
j∈NiNN

Qαi j = 0, (α = w, n) (2)

where ViVV is volume, t is time, S αi is local α-phase saturation (fraction of volume
ViVV filled by fluid α), Qαi j is α-phase flux from pore body i to j, NiN is number of
pore bodies connected to

j
i.

Summation of equation (2) for both phases results in the following system of
equations:

∑
j∈NiNN

Qw
i j + Qn

i j = 0 (3)

This follows from restriction:

S w
i + S n

i ≡ 1 (4)

Flux equations
The flow of each phase within pore throat i j is assumed to be given by Poiseuille’s
formula. Wetting and nonwetting phase fluxes are expressed in terms of wetting
and nonwetting phase pressures (neglecting gravitational terms):

Qαi j = Kαi jKK
(
PαjP − Pαi

)
, (α = w or n) (5)

where Kαi jK is α-phase conductivity, Pαi and PαjP are α-phase pressures in pore body
i and j, respectively.

j
Kαi jK depends on the fluid occupancy of pore throat

j
i j:

Kαi jKK =
πRππ 4

i j

8µαLi j
(6)

where Ri j is radius, Li j is length, and µα is α-phase dynamic viscosity. For a given
pore throat, equation (5) will be written either for α = w or α = n depending on
the phase occupancy of that throat at that instance.

Final system of linear equations
Equations (3) and (5) can be combined to obtain a set of linear equations in terms
of P. For a given pore body i, the typical equation reads:
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∑
j∈NiNN

[(
Kw

i jKK + Kn
i jKK
) (

Pi − P jP
)]
= 0 (7)

Only one pressure field, rather than both fluid phase pressure fields has to be
solved. The summation of conductivities is allowed since only one fluid can oc-
cupy a pore throat at a time. When wetting phase occupies the pore throat, non-
wetting phase conductivity Kn

i jK equals zero, and vice versa.

The governing equations presented in the previous section are solved for fluid
pressure P and wetting fluid saturation S w using an IMPES (IMplicit Pressure -
Explicit Saturation) algorithm. Equation (7) is solved implicitly for P, assuming
that S w and throat conductances Kα are known from the previous time step. Then,
equation (5) is used to calculate fluid fluxes. The fluid fluxes are substituted in
equations (2) and local phase saturations are calculated. The procedure is then
repeated. The flow chart describing the steps taken in the pore-scale network
model is given in figure 3. To solve the set of equations (7), a Preconditioned
Conjugate Gradient Method (PCGM) algorithm is used.

Initialize network

Setup geometry

Setup boundary
conditions(P, SPP )

Identify mobile interfaces

Setup matrix

Solve for pressure

Determine fluxes
    and timestepp

Update saturations

Increase pressures

Equilibrium ?

yes
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w
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q
u

a
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s
ta

ti
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d
y
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Figure 3. Flow chart of the pore-scale network model. Simulations stop when maximum time or
maximum number of time steps have been exceeded (dynamic), or when final equilibrium has been
achieved (quasi-static).
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Pore-scale variables are averaged to arrive at the macro scale, where the results
can be interpreted. The macro-scale pressures are defined as:

〈Pα〉 =
1
δVα

∫
δ

∫∫
V

∫∫
α

Pα dV =

∑NnNN
i Pαi S αi ViVV∑NnNN

i S αi ViVV
(8a)

〈Pc〉 = 〈Pn〉 − 〈Pw〉 (8b)

where NnNN is number of pore bodies, Pαi is α-phase fluid pressure, S αi is α-phase
saturation and ViVV is volume. Average wetting and nonwetting fluid saturations are
defined as:

〈S w〉 =
Vw

Vn + Vw =

∑NnNN
i S w

i ViVV∑NnNN
i ViVV

(9a)

〈S n〉 = 1 − 〈S w〉 (9b)

For enhanced readability, the angular brackets are discarded in the remaining text.
From this point onward, average wetting fluid saturation is simply referred to as
saturation.

Volume averaging is performed over different domains in the network. The
averaging domains are always in the center of the network. Their size is deter-
mined by the number of layers from the top and bottom of the network that will
be discarded in the averaging procedure. Let the network size be nx·ny·nz, then
the number of pore bodies NnNN in the averaging domain is nx·ny·(nz-2·nskip). This
is sketched in figure 4.

nskip

nz

nskip

nxnyy

Figure 4. Illustration of different averaging domains in the network model, controlled by the
amount of layers to be skipped in the averaging procedure (nskip).
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The pore-scale network model is used to simulate typical laboratory experiments
for the measurement of capillary pressure-saturation relationships and calculation
of damping coefficient τ. As such, the pore-scale network is a surrogate for a
sample of a porous medium (see figure 5). The nonwetting fluid reservoir is at the
top of the network, the wetting fluid reservoir at the bottom.

Wetting fluid reservoir

Nonwetting fluid reservoir

Semi−permeable plate

Pressure cell

Porous medium sample

Schematic laboratory pressure cell and pore-scale network model.

For the research reported in this paper, two series of drainage simulations are
performed: quasi-static and dynamic simulations. The corresponding boundary
conditions are sketched in figure 6. In the first series of simulations, a small
fluid pressure is imposed on the nonwetting fluid reservoir. Fluid interfaces are
tracked until they reached equilibrium positions. Then, inflow boundary pressure
is increased with an increment and the interfaces are moved to new equilibrium
positions. This procedure is repeated until the boundary pressure is equal to the
boundary pressure used in the dynamic drainage experiment. Only at the equi-
librium points, volume averaged Pn, Pw and S w are determined. At equilibrium,
phase pressures Pn and Pw are equal to their corresponding reservoir pressures.
From this point onward, this series is called the quasi-static drainage experiment.

In the second series, a large fluid pressure is imposed on the nonwetting fluid
reservoir at time t = 0. Fluid interfaces are tracked in time until equilibrium
between both fluid phases is achieved. At each moment in time, volume averaged
Pn, Pw and S w are determined. From this point onward, this is referred to as the
dynamic drainage experiment.

In this research, only primary drainage is considered. Pore bodies and throats
follow a truncated log-normal distribution. Initially, the network is fully satu-
rated with wetting fluid. Fluid properties are partly based on those of PCE (per-
chloroethylene) and water and are given in table 1.
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Table 1. Fluids’ parameters

Contact angle (o) 0.0

Interfacial tension (kg s−2) 0.0475

Wetting fluid viscosity (kg m−1 s−2) 0.001

Nonwetting fluid viscosity (kg m−1 s−1) 0.010

The initial pressure is 0 kPa. Throughout all simulations, pressure at the wet-
ting fluid reservoir is kept constant at 0 Pa. Pressure at the nonwetting fluid
reservoir is different for the quasi-static and dynamic drainage experiments. In
quasi-static experiments, pressure at the nonwetting fluid boundary is initially
3 kPa. This value increases with increments of 50 Pa every time equilibrium
between the fluid phases has been achieved, until a given end value is reached.
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Figure 6. Fluid reservoir pressure difference in time for a quasi-static and a dynamic experiment.

Results of simulations of quasi-static drainage experiments and various dynamic
experiments, together with equation (1), can be used to determine τ as a function
of saturation. Values of dynamic and quasi-static capillary pressure and saturation
rate of change are obtained from our simulations at any given saturation. These are
then substituted in equation (1) to obtain damping coefficient τ at that saturation.
Following this procedure, there is a curve for τ for each of the chosen saturations.

The pore-scale network consists of 10×10×82 pore bodies. Geometrical prop-
erties are given in table 2. Pressures in the nonwetting reservoir are 10 kPa, 15
kPa, 20 kPa and 25 kPa for the different dynamic drainage experiments. For the
quasi-static drainage, end value of the pressure in the nonwetting fluid reservoir
is set to 25 kPa.
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To investigate the role of the averaging domain size on capillary pressure-saturation
curves, three networks are constructed with identical pore and throat distribu-
tion, but with different sizes: 10×10×100, 10×10×82 and 10×10×52. Geometrical
properties are given in table 2.

First, quasi-static drainage experiments are performed. Initial value of the pres-
sure in the nonwetting fluid reservoir is 3 kPa, end value is 10 kPa. Then, the same
experiment is performed under dynamic conditions. That is, fluid pressure in the
nonwetting fluid reservoir is kept constant at 10 kPa.

Averaging is performed over middle layers of the network. The amount of
layers to be skipped from the boundary varies from 0 to 25. Average wetting
fluid saturation and average capillary pressure are determined from the averaging
domain.

Table 2. Lattice network parameters

Lattice dimensions 10×10×82 10×10×100 10×10×52

Coordination number 6 6 6

Lattice spacing (10−4 m) 3.0 3.0 3.0

Min pore body radius (10−4 m) 0.16 0.16 0.16

Max pore body radius (10−4 m) 1.5 1.5 1.5

Mean pore body radius (10−4 m) 0.86 0.86 0.86

Min pore throat radius (10−4 m) 0.02 0.02 0.02

Max pore throat radius (10−4 m) 0.3 0.3 0.3

Mean pore throat radius (10−4 m) 0.16 0.16 0.16

Standard deviation of distribution 0.25 0.25 0.25

As mentioned before, the 10×10×82 network is used to determine τ. The capil-
lary pressures and saturations in the dynamic and quasi-static simulations were
averaged over the whole network. Based on the results shown in figure 7, it is
decided to determine τ for saturations 0.4 through 0.9. Since irreducable saturation
for the quasi-static drainage experiment is 0.33, the difference between dynamic
and quasi-static can only be determined for larger saturation values. That the
irreducable saturation of the quasi-static capillary pressure curve is larger than
that of the dynamic curves is also visible in figure 8, where saturation in time
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is shown for different dynamic boundary conditions. The explanation is that the
lower boundary conditions during quasi-static drainage give more possibilities
for bypassing. This increases the chance of wetting fluid becoming trapped. The
trapped fluid contributes to the irreducable saturation.
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Figure 7. Dynamic and quasi-static capillary pressure curves computed from the 10×10×82
network using all layers in the averaging. These curves are used in the determation of τ.
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Figure 8. Time-saturation curves for the same network as in figure 7. These curves provide
information on saturation rate of change as a function of saturation.
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The kink in the curves shown in figure 8 is due to the fact that under dynamic
conditions, the nonwetting fluid front passes like a piston through the network,
as the nonwetting fluid is much more viscous than the wetting fluid (see table 1).
Since it is not possible for nonwetting fluid to enter the wetting fluid reservoir,
drainage stops when the nonwetting fluid front reaches the wetting fluid reservoir.
All wetting fluid that remains behind the front then adds up to the irreducable sat-
uration. For higher boundary conditons, the piston will displace the wetting fluid
more effectively out of the network. This leads to a lower irreducable saturation.

The high initial average dynamic capillary pressures in figure 7 are not an
artefact of the averaging routine. It is an effect of including the boundaries in the
averaging procedure, in combination with averaging for all time steps, including
the initial one. Including the boundaries in the averaging also causes saturation to
be less than 1, initially.

The results for the determination of τ are given in figure 9. The curves for
different saturation are almost parallel. The damping coefficient τ can be evalu-
ated as the slope of the curves. Thus, contrary to expectations, τ does not show a
dependence on saturation. From the curves shown in figure 9, it can be concluded
that τ is approximately 1.2·105 kg m−1 s−1 for the chosen network.
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Figure 9. Determination of damping coefficient τ. Plotted are differences between dynamic and
quasi-static capillary pressure curves (∆Pc) versus − dS w

dt for saturations 0.4 through 0.9. τ is defined
as the slope of these curves, and is approximately 1.2·105 kg m−1 s−1.

Quasi-static drainage experiments
The results of the 10×10×100 quasi-static drainage experiment are given in figure
10. The averaging is performed over the middle 50 and 70 layers, and over all
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100 layers. When all layers are included in the averaging domain, saturation is
less than 1, since the nonwetting reservoir is taken into account as well. Similar
results that were obtained with a 10×10×82 and a 10×10×52 network are shown in
figures 11 and 12. For former simulation, averaging is performed over the middle
60 and 70 layers, and over all 82 layers. For latter, averaging is performed over
the middle 30 and 40 layers, and over all 52 layers. All three figures 10−12 show
that the average quasi-static capillary pressure curves are independent of the size
of the averaging domain.
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Figure 10. Numerical results of the 10×10×100 network. Shown are capillary pressure-saturation
curves from the quasi-static experiments for different averaging domain sizes.

Dynamic drainage experiments
To keep the output readable, a moving-median filter has been applied to the results
of the dynamic drainage experiments described in this section. Filter length is
200 data points. This filtering has no effect on the results and conclusions of our
simulations.

Figure 13 shows dynamic capillary pressure-saturation curves for a 10×10×100
network. Averaging is performed over the middle 50 and 70 layers, and over all
100 layers. What is evident, is that the dynamic capillary pressure increases for
increasing averaging domain size. This is due to the the chosen fluid properties in
combination with the Dirichlet boundary conditions. Most of the pressure drop
over the network will be in the nonwetting fluid as it is much more viscous.
An increase of nonwetting boundary pressure will therefore affect the average
nonwetting fluid pressure more than the average wetting fluid pressure. Thus,
capillary pressure will increase for increasing boundary conditions.
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Figure 11. Numerical results of the 10×10×82 network. Shown are capillary pressure-saturation
curves from the quasi-static experiments for different averaging domain sizes.
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Figure 12. Numerical results of the 10×10×52 network. Shown are capillary pressure-saturation
curves from the quasi-static experiments for different averaging domain sizes.

The irreducable saturation of the quasi-static capillary pressure curve in figure
10 is larger than the one of the dynamic curves in figure 13. This is a result of
trapping of the wetting fluid. The explanation is the same as in section 4.1.

In figure 14, saturation versus time is shown for different averaging domain
sizes in a 10×10×100 network. It is clear that − dS w

dt is larger for the smaller
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Figure 13. Numerical results of the 10×10×100 network. Shown are capillary pressure-saturation
curves from the dynamic experiments for different averaging domain sizes. Averaging is performed
over the center 50 (bottom curve), 70 and all 100 layers (top curve).
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Figure 14. Numerical results of the 10×10×100 network. Shown are saturation versus time from
the dynamic experiments for different averaging domain sizes. Averaging is performed over the
same domains as in figure 13.

averaging domains. Under the imposed dynamic conditions, the nonwetting fluid
moves as as stable front through the network, as the nonwetting fluid is much
more viscous. A small domain is then drained faster than a large domain.
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A similar set of experiments was performed with a 10×10×82 network and a
10×10×52 network, see figures 15−18. The same observations as with the 10×10×100
network can be made. Again, upscaled dynamic capillary pressure is higher for a
larger averaging domain. Here also, the dynamic irreducable saturations are lower
here than the quasi-static one.
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Figure 15. Dynamic capillary pressure-saturation curves of a 10×10×82 network. Averaging is
performed over 60 (bottom curve), 70 and 82 layers (top curve).
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Figure 16. Time-saturation curves for the same network and averaging domains as in figure 15.
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Figure 17. Dynamic capillary pressure-saturation curves of a 10×10×52 network. Averaging is
performed over 30 (bottom curve), 40 and 52 layers (top curve).
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Figure 18. Time-saturation curves for the same network and averaging domains as in figure 17.

Without computing τ explicitly, one can see from figures 13−18 that the value
of τ increases with increasing averaging domain size. Firstly, the difference be-
tween the dynamic and quasi-static average capillary pressure curve increases.
Secondly, the rate of change of saturation dS w

dt decreases. Both changes contribute
to an increase of damping coefficient τ.
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In this paper, a dynamic pore-scale network model is presented and used to inves-
tigate an extended relationship between capillary pressure and saturation. In this
definition, a dynamic correction term appears, with coefficient τ. To investigate
this coefficient, quasi-static and dynamic experiments are simulated.

For the chosen network, the value of damping coefficient τ is determined to be
1.2·105 kg m−1 s−1. Preliminary results indicate that the value of τ increases with
increasing averaging domain in a fixed-size network.
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Abstract. Intrinsic heterogeneities influence the multi-phase flow behavior of a dense non-aqueous
phase liquids (DNAPL) infiltrating into a natural soil. Typically, we cannot resolve the scale of these
heterogeneities so that upscaling techniques are required. The choice of the appropriate upscaling
method depends on the averaging scale, since the relative importance of capillary and gravity forces
change with scale. We present an easy and quick upscaling approach for cases in which the flow on
the length-scale of heterogeneities is dominated by capillary forces.
The approach is based on a percolation model and a single-phase flow-averaging method. We apply
the upscaling approach to experimental data of a DNAPL infiltration into a sandbox with artificial
sand lenses. The anisotropy of the structure results in anisotropic flow which is amplified by the non-
linear behavior of multi-phase flow. The residual saturation depends on the direction of flow, and the
anisotropy ratio of the effective permeability is a function of the DNAPL saturation. Furthermore,ffff

it appears necessary to regard the relative permeability–saturation relationship as a tensor property
rather than a scalar. The overall flow behavior simulated by the upscaled model agrees well with
simulations accounting for the distinct lenses and the experimental data.

1. Motivation

Multi-phase flow and transport processes in porous media play an important role
in the remediation of non-aqueous phase liquids (NAPL) in the subsurface. These
flow processes are affected by heterogeneities on all scales. Spatial variabilityffff

ranges from single pores to geological structures, thereby spanning length scales
from µm to km (see Figure 1).

Although the term pore scale is unambiguous, all other terms describing scales
like micro or macro scale are not necessarily consistently used. For example,
the typical length scales considered in petroleum engineering differ significantlyffff

from those in environmental engineering. While oil fields extend over hundreds
of meters to kilometers, the typical scales for environmental problems range from
meters to tens of meters (see Figure 2).

Different forces are likely to dominate on diffff fferent scales. While on smallerffff

scales capillary effects are more pronounced, the gravity effff ffects and the viscousffff

effects become more important at larger scales. For an environmental engineer,ffff

therefore, both the capillary and the gravity forces may be important. The dom-
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Figure 2. Different scales for diffff fferent applications.ffff

inating forces need to be determined prior to choosing a particular upscaling
method.

In our example, we analyze an experiment carried out by (Allan et al., 1998;
Kobus et al., 2000) at the research facility for subsurface remediation, VEGAS, at
the University of Stuttgart. In the experiment, a dense non-aqueous phase liquid
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(DNAPL) was infiltrated into a small sandbox. Figure 3 shows the distribution of
sand types and the dimensions of the domain. The typical length scale is on the
order of centimeters to decimeters, where gravity forces as well as capillary forces
have to be considered.

0,
5
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1,2 m

fine sand

coarse sand

z

x

Figure 3. Distribution of the sand types in the experiment.

It is well known that small-scale structures, such as small-scale sand lenses,
can influence multi-phase flow and transport significantly. Many laboratory exper-
iments have shown that capillary forces have a large impact on the two-phase flow
behaviour in porous media on almost all scales (Jakobs et al., 2003; Illangasekare
et al., 1995) .

This paper focuses on heterogeneities within larger-scale structures as seen in
Figure 3. As is commonly known, the NAPL cannot penetrate a region of finer
material as long as the capillary pressure has not yet exceeded the entry pressure.
Thus, small-scale layering can lead to significant lateral spreading of the NAPL.

In spite of increasing computational power, the simulation of multi-phase flow
in porous media is still restricted to comparably coarse grids, prohibiting the res-
olution of small-scale features. In the simulation of multi-phase flow on larger
scales, it is therefore necessary to parameterize the effects of small-scale het-ffff

erogeneities on the large-scale flow behavior. A variety of techniques have been
developed and applied to transfer the information from the process scale to the
simulation scale. These techniques are commonly referred to as upscaling. The
upscaling techniques may be classified into the following categories:

− A-posteriori methods (effective parameters are derived from the analysis offfff

highly resolved computation or measurement) [e.g. (Christie, 1996; Pickup
and Sorbie, 1996; Dale et al., 1997; Chang and Mohanty, 1997)]

− Stochastic methods (determination of the effective parameters through as-ffff

sumptions of the statistical distribution of the heterogeneities and a stochas-
tical averaging of the equations) [e.g (Desbarats, 1995; Yeh et al., 1985; Man-
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toglou and Gelhar, 1987; Chang et al., 1995; Neuweiler et al., 2003; Efendiev
and Durlofsky, 2003)].

− Analytical methods (computation of the effective parameters for simple con-ffff

figurations, volume averaging) [e.g. (Quintard and Whitaker, 1988; Ahmadi
and Quintard, 1996; Saez et al., 1989; Bourgeat and Panfilov, 1998)]

− Analogy methods (transformation of upscaling-approaches from other scopes
of research to multi-phase flow) [e.g. (Wu and Pruess, 1986; Pruess, 1994;
Pruess, 1996)]

− Equilibrium methods (simplification of the systems by assuming an equi-
librium of forces) [e.g. (Corey and Rathjens, 1956; Smith, 1991; Ekrann
et al., 1996; Yortsos et al., 1993; Kueper and Girgrah, 1994; Green et al.,
1996; Pickup and Stephen, 2000; Braun et al., 2005)]. The focus here lies on
the reduction of variables by assuming an equilibrium of (capillary) forces.
This assumption allows for the application of a percolation model which, to-
gether with an appropriate averaging method, results in effective constitutiveffff

relationships for the macroscale.

The purpose of our upscaling approach is to compromise between two goals. First,
we want to develop a relatively easy method, which is not restricted to a certain set
of boundary and flow conditions and therefore applicable to different scenarios.ffff

Second, we want to reproduce the most important physical effects.ffff

This paper is organized as follows. In Section 2, we present the experimental
model set-up. We evaluate the validity of the capillary-equilibrium assumption by
a dimensional analysis in Section 3. In Section 4, we introduce our upscaling ap-
proach. We compare the results of different models and the experiment in Sectionffff

5. In Section 6, finally, we draw conclusions and give an outlook to future studies.

2. Physical Model Setup

The physical experiment that we use as a reference was carried out by (Allan et
al., 1998; Kobus et al., 2000).

2.1.

A DNAPL is infiltrated into a water-saturated sandbox of dimensions
(L×W×H) 1.2 m × 0.08 m × 0.5 m. The porous medium comprises three differentffff

sands, a fine, a medium, and a coarse one. The medium sand is the background
material, while the other two are incorporated as lenses with a width of 0.2 m and
a height of 0.01 m, see Figure 3. The properties of the sands are listed in Table 1.
The medium sand occupies 80% of the domain whereas the fine and coarse sand
take each 10%. The lenses are randomly distributed.
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Table 1. Properties of the sands used in the experiment.

sand fine medium coarse

permeability k [m2] 6.38 · 10−11 1.22 · 10−10 2.55 · 10−10

entry pressure Pd [Pa] 882.9 539.55 353.16

form factor λ [-] 3.0 3.0 3.2

residual saturation wetting phase S wr [-] 0.06 0.06 0.06

residual saturation non-wetting phase S nr [-] 0.10 0.15 0.10

porosity φ [-] 0.38 0.38 0.38

volume wi [%] 10 80 10

2.2.

Initially, the entire domain is fully water-saturated, and there is no flow. This
results in a hydrostatic pressure distribution. Over the entire course of the ex-
periment, the left and the right faces of the domain are connected to a water
reservoir ensuring constant pressure conditions at the boundaries. Water that is
replaced by the infiltrating DNAPL can leave the system over these boundaries.
The bottom and top boundaries are non-permeable for both liquids, except for a
small stretch of two centimeters in the top, where the DNAPL infiltrates with a rate
of 0.4833 · 10−6 m3/s for 2970 seconds. The initial and the boundary conditions
are depicted in Figure 4.
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Figure 4. Initial and boundary conditions.
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3. Mathematical Model and Dimensional Analysis

Our upscaling approach is based on capillary equilibrium. This means, that capil-
lary forces are dominant on the small scale. In the following, we test this assump-
tion by a dimensional analysis.

The system of the two-phase flow equations expresses the conservation of
mass and generalized Darcys Law o f both fluids. We assume a rigid solid phase
and incompressible fluids. The following equations describe the flow on the local
scale.

φ(�x)��
∂S w

∂t
+ �∇ ·

(
−

kr,w(S w, �)��
µw

k(�x)��
(
�∇(Pw) + 	w�g

)
�

)
= qw (1)

φ(�x)��
∂S n

∂t
+ �∇ ·

(
−

kr,n(S n, �)��
µn

k(�x)��
(
�∇(Pn) + 	n�g

)
�

)
= qn (2)

where φ, 	, S , µ, g, P, and q are the porosity, the density, the saturation,
the viscosity, the acceleration constant due to gravity, the phase pressure and the
source/e sink term, respectively. k is the intrinsic permeability, kr is the relative per-
meability of the respective phase, and ke f f = krk is the effective permeability. Theffff

subscripts n and w denote the non-wetting and the wetting phase. For a detailed
derivation of this formulation see, e.g., (Marle, 1981; Helmig, 1997).

These two equations are coupled by the two following relations. First, the
two saturations sum up to unity. Second, the capillary pressure, defined as the
difference between the pressure of the non-wetting and the wetting fluids, is affff

unique function of the saturation.

S n + S w = 1, Pc(S n) = Pn − Pw. (3)

In the dimensional analysis, we assume that the source/e sink terms, qw and qn,
are zero. We sum up the two equations and introduce the total Darcy velocity
�utotal = �un+�uw. In that way, we eliminate the phase pressures and the phase Darcy
velocities from the equation. The two-phase continuity equation reads:

φ∂tS n + �utotal · �∇ f (S n) + �∇ ·

(
gk∆ρ∆
µn
Λ(S n)�ez

)
− �∇ ·

(
k
µn
Λ(S n)�∇Pc

)
= 0. (4)

The fractional flow function f (S n) of the non-wetting fluid is defined as:

f (S n) =
kr, n(S n)

kr, n(S n) + µn
µw

kr,w(S n)
, (5)

and Λ(S ) stands for

Λ(S n) =

µn
µw

kr, n(S n)kr,w(S n)

kr, n(S n) + µn
µw

kr,w(S n)
=
µn

µw
kr,w f (S n). (6)
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The density difference is defined asffff ∆ρ∆ = ρn − ρw.

As a first approximation we assume that we can neglect horizontal total flow
velocities due to pooling and have therefore only capillary forces acting in hori-
zontal direction.

We introduce typical scales for time, length, and capillary pressure. The time
is scaled with gravity. Typical length scales are the dimensions of the domain, X
and Z, and the capillary pressure is scaled by the entry pressure Pd,

t� =
t k∆ρ∆ g

Z µn
, z� = z/Z, x� = x/X, P�c = Pc/Pd (7)

in which the star denotes dimensionless variables. Thus, we obtain the follow-
ing dimensionless form of equation 4:

∂t�S n +Gr−1∂z� f (S n) + ∂z�Λ(S n) − Bo−1
z ∂z�Λ(S n)∂z�P�c (S n) (8)

−Bo−1
x ∂x�Λ(S n)∂x�P�c (S n) = 0

with the inverse gravity number Gr−1 and the inverse Bond numbers Bo−1 in
the x direction and in the z direction.

Gr−1 :=
viscous forces
gravity forces

=
µ · u
�ρ� · g · k

(9)

Bo−1
z :=

capillary forces
gravity forces

=
Pd

�ρ� · g · Z
(10)

Bo−1
x :=

capillary forces
gravity forces

=
Pd · Z

�ρ� · g · X2
(11)

The capillary effects are accounted for by the Bond numbers. As an alternative,ffff

one may use the capillary number Ca, which is related to the Bond number by:

Ca =
capillary forces
viscous forces

=
Gr
Bo
. (12)

We evaluate these quantities on the large (domain) scale. Considering the typ-
ical parameter values for the background sand material k = 1.22 · 10−10 m2,
Pd = 540 Pa, the length scales of the domain Z = 0.5 m, X = 1.2 m, and the
liquid properties ∆ρ∆ = 460 kg/m3, µn = 5.7 · 10−4 kg/(ms), the only quantity
that we have to evaluate is the characteristic velocity u. A rough estimation is
given by assuming only the vertical component. The injected volumetric flux is
Q = 4.8 · 10−7 m3/s, the width of the inlet is 2 cm, and the box is 8 cm
thick. This yields a maximum vertical darcy velocity of utotal = 3 · 10−4 m/s.
We assume that the velocity of the wetting phase is negligible. If we insert these
values into equations 9 – 11, we get the following values of the three characteristic
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dimensionless numbers.

Gr−1 = 0.31, Bo−1
z = 0.24, Bo−1

x = 0.04. (13)

For the detailed flow process we have to consider the small length scale, given
by the dimension of the inclusions. If we introduce the ratio between the length
scales of the inclusions and the domain (Duijn et al., 2002),

εvertεε . =
∆z
∆Z
= 0.02, εhorizεε . =

∆x
∆X
= 0.17, (14)

the spatial derivatives on the small and large scales can be separated. Having
chosen the base system to be the large (domain) scale, the spatial derivatives on
the small scale are multiplied by a factor of 1/ε. Since the expressions accounting
for “diffusive” processes have second-order spatial derivatives, they are scaled byffff

1/ε2 on the small scale, whereas the “advective” processes are scaled by 1/ε on
the small scale. In this way, the capillary processes are “magnified” on the small
scale, and their impact is higher than on the large scale. If the respective inverse
Bond numbers are small (the same order as ε), the “magnification” of the capillary
processes on the small scale cancels out and advective and diffusive processesffff

contribute on the small scale to the same extent.

If the capillary number is of order 1 and large compared to ε, the diffusive pro-ffff

cesses on the small scale are weighted by 1/ε compared to the advective processes.
In this case, the small scale is dominated by capillary forces, and the viscous and
gravity forces on this scale can be neglected.

In order to meet the criterion for capillary dominance, a clear separation of
scales must be given:

ε � Bo−1 � 1/ε ε � Ca−1 � 1/ε. (15)

In our case, the separation criterion is met in the vertical direction, ε = 0.02 <
Bo−1

z = 0.24 � 1/ε = 50. As the inverse gravity number is between 0.1 and 1, the
criterion (15) is also met for the inverse capillary number.

Although the criterion for capillary equilibrium is met in the experiment con-
sidered here, the following points should be considered:

− The analysis holds only when the inclusions are placed in distances in the
same range as the length scale of the inclusion. Otherwise we get the aver-
age distance of the inclusions as an additional intermediate scale. Also, the
contrast of the parameter properties, such as permeability and capillary entry
pressure has to be large compared to ε and small compared to 1/ε. Obviously
the difference of the functionffff Λ(S n) in the different materials should also notffff

be large, in order to keep the scales separated.
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− We could also use the small scale as the base system and scale all numbers
accordingly with the small length scales. By this, we would obtain identical
results.

− The actual experimental setup is more complex. The influx is not placed
over the whole width of the tank. The estimation for the resulting vertical
and horizontal total flow velocities is therefore not trivial.

4. Upscaling Method

In this section, we describe the different underlying assumptions and the stepsffff

comprising the proposed upscaling approach, used to derive effective parametersffff

on the macroscale for the simulation of two–phase flow processes. This is done
by a percolation model and a small-scale flow-averaging method.

4.1.

As outlined above, we assume that capillary effects dominate the processes on theffff

small scale. Changes of variables on the large scale are very slow compared to
changes of variables on the small scale. From the perspective of the large scale,
this implies that the small-scale reaction on a change of large-scale variables is
quasi instantaneously. Thus, we can neglect the dynamics on the small scale and
assume, on that scale, that the system is in capillary equilibrium. We make use
of that property in a percolation model for the small-scale features. Here, we
assume that, given a large-scale capillary pressure, the non-wetting phase enters
instantaneously all cells of the small-scale model in which the entry pressure
is exceeded. Therefore hysteresis does not play a role in this model. The fluid
distribution in the small-scale model is given from the local Pc − S relations that
are represented by Brooks-Corey type functions (Brooks and Corey, 1966), with
no residual saturation (S nr) on the local scale. By this means, we can construct the
functional relation between the capillary pressure and the large-scale saturation.

4.2.

In our application, we know the exact distribution of the materials with their
parameters and constitutive relationships. Applying the capillary equilibrium as-
sumption to a distribution of local Pc − S w relationships, we can determine the
saturation distribution for a given capillary pressure. We do this by applying a
static site–percolation model (Stauffer, 1985). The arithmetic mean of the satura-ffff

tion distribution gives one point on the macroscopic capillary pressure–saturation–
relationship. In Figure 5, three different capillary pressure levels and the associ-ffff

ated macroscopic saturations are shown. The three resulting points on the macro-
scopic curve are shown in Figure 6.
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S=0 S=1

Figure 5. Steps in the percolation model.

Cycling through this procedure with different capillary pressures, one can de-ffff

termine the complete macroscopic capillary pressure–saturation relationship.
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Figure 6. Macroscopic capillary pressure – saturation relationship
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In Figure 6, four differentffff P − c - S relationships are shown. The three dashed
curves indicate the relationships for the three individual sands, while the solid
line is the determined macroscopic Pc-S -relationship. The Pc - S relationship
resembles the curve of the medium sand quite closely (Figure 6). Only at high
saturations of the wetting fluid, the upscaled curve shows a dip that does not exist
in the retention curve of the medium sand. At this saturation the entry pressure of
the background sand is exceeded.

4.3.

As a first upscaling approach for the relative permeabilities, we test the renor-
malization approach as suggested by Williams and King (Williams, 1989; King,
1996). For a quadratic domain the effective horizontal conductivityffff khk can be
computed by a finite difference method. The indices are shown in Figure 7.ffff

khk =
2 · (k1 + k2) · (k3 + k4kk ) · (kh

12 + kh
34)

3 · (k1 + k3) · (k2 + k4kk ) + 1
2 · (k1 + k2 + k3 + k4kk ) · (kh

12 + kh
34)
, (16)

with kh
i j =

2 · ki · k jk

ki + k jk
. (17)

k

k

k

k

x

y

1kk

2kk

3kk

4

Figure 7. Indices used in the renormalization method.

For the effective vertical conductivity, the indices “2” and “3” have to be ex-ffff

changed. After determining the effective conductivity of a block of four cells, oneffff

proceeds to a higher scale on which the conductivities of four blocks are averaged.

For every specific global saturation, there exists a local saturation distribution
computed by the percolation model. The local ke f f = kr(S )k is thus known. The
renormalization is performed for the effective permeability. On the highest level,ffff

the procedure results in a single effective permeability for each phase in eachffff

direction. As the relative permeability kr is defined by

krii =
keffe ,ffff ii(S )

keffe ,ffff ii(S = 1)
, with i = x, y, (18)

the renormalization yields one point on the upscaled relative permeability - sat-
uration relationship. Repeating this procedure with different capillary pressures,ffff
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and thus different saturations, yields the two upscaledffff krwrr −S w-relationships. This
procedure is carried out for both spatial dimensions and both fluids.

It may be noteworthy that the strong anisotropy on the small scale and the har-
monic weighting in the renormalization procedure yields artefacts, as can be seen
in Figure 8. Here, the dashed lines indicate Brooks-Corey parameterized curves
(Brooks and Corey, 1966) used as parameterizations for all materials. The solid
lines represent the vertical kr − S -relationships computed by the renormalization
method. The horizontal kr− S -curves, which are not shown here, are closer to the
Brooks-Corey parameterizations.

The renormalization method leads to extremely high macroscopic residual sat-
urations caused by zones of relatively low permeabilities. This may be explained
by the illustrative example shown in Figure 9. In this example, a preferential,
curvilinear flow path exists. The unfortunate choice of the first renormalization
blocks, however, cuts the preferential flow path off. Thus, effective permeabilityffff

on the highest level is strongly underestimated.

0 0.2 0.4 0.6 0.8 1
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S

k r
ve

rt
ic

al

Figure 8. kr - S relationship obtained from the renormalization method.

ialpreferentiapreferentiia
flowpatht
pppp

Figure 9. Renormalization techniques for anisotropic systems.
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4.4.

The upscaled relative permeability - saturation relationship can be computed by
solving the pressure equation for a single phase (Dykaar and Kitanidis, 1992).
Periodic boundary conditions are chosen, so that the pressure fluctuations match
on opposing sides. Imposing a large-scale pressure gradient onto the system, the
pressure at the inflow boundary has a higher value than that at the outflow bound-
ary. This is accounted for by a uniform jump. The general setup of periodic cells
used for upscaling is well described by (Durlofsky, 1991).

Our procedure is as follows. For a given capillary pressure, the local saturation
distribution is known from the percolation model. This together with the known
local kr-S relationship and the permeability distribution, yields the local effectiveffff

permeability. We now solve the pressure equation for a single phase, imposing a
unit pressure gradient. It is assumed that the motion of one fluid has no impact on
that of the other fluid. From the pressure distribution of the single fluid we can de-
termine its velocity field. Then, the effective permeability of the phase considered,ffff

ke f f , can be calculated from the mean velocity and the applied pressure gradient.

Since the relative permeability is defined as the ratio between ke f f (S = 1) and
ke f f (S), the single-phase flow simulation yields a single point on the upscaled
relative permeability - saturation relationship. Repeating the analysis for differentffff

capillary pressures, and thus different saturations, we construct the entire relativeffff

permeability curve. The procedure is carried out for both fluids independently.

The effective permeability value obtained is one diagonal entry in the effff ffec-ffff

tive permeability tensor. In order to get the second diagonal entry, another set
of flow simulations is carried out, now with the pressure gradient perpendicu-
lar to the first direction. Applying periodic boundary conditions without jump
along the remaining boundaries, we also determine the off-diagonal entries of theffff

relative-permeability tensor. In the present application, however, these terms are
comparably small and are thus neglected in the following analysis.

Figure 10 shows the relative permeabilities for the above explained single-
phase flow averaging method, applied to the data of the sandbox. The solid lines
indicate the vertical relative permeabilities, the dashed lines represent the horizon-
tal relative permeabilities, while the dotted lines show Brooks-Corey parametriza-
tions for the medium sand as comparison. It is clearly visible that the vertical
relative permeabilities are highly reduced compared to the local Brooks-Corey
curves and that the horizontal ones are slightly increased. That is, the relative per-
meability exhibits strong anisotropy. Also, the macroscopic residual saturations
differ from the residual saturation of the Brooks-Corey curve. Both findings areffff

in agreement with the experimental results. The lenses lead to more horizontal
spreading and delay the flow in the vertical direction. In the coarse sand lenses
DNAPL gets trapped, while the fine sand lenses can be bypassed. Although the
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macroscopic residual saturations for flow in the vertical direction increases, they
are not as high as computed by the renormalization method.
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Figure 10. kr - S relationships obtained from the single-phase simulations.

Applying periodic boundary conditions in the single-phase flow simulations
implies that the domain with the small-scale features is interpreted as a unit cell of
a periodic domain, made of an infinite number of those unit cells. By construction,
the unit cell of such a system is a representative elementary volume. The peri-
odic boundary conditions also guarantee that the resulting effective permeabilityffff

tensor is symmetric and positive-definite. When the saturation of the considered
phase becomes extremely small, however, numerical errors may cause prohibited
effective-permeability tensors.ffff

5. Comparison of Measured and Simulated NAPL Distributions

We now compare the experimental saturation distribution (see Figure 11) with
a discrete, two-dimensional simulation (see Figure 12), in which the blocks of
different permeability are resolved explicitly. We use a boxmethod as described inffff

(Helmig, 1997) solving the discretized equations for water pressure and DNAPL
saturation. The grid cells are 1 cm high and 2 cm wide. The experimental results
are based on photographs taken after one hour. The exact saturation values cannot
be determined, nonetheless, the picture gives a good qualitative impression of how
far the NAPL distribution infiltrated.

The detailed simulation reproduces the experiment well with respect to the
overall NAPL distribution. The experimental data are almost binary, with NAPL
found in a few coarse-sand lenses. Here, the NAPL is entrapped by capillary
forces. The simulations predict quite well which coarse-sand blocks are occupied
by the NAPL. The simulations, however, show a higher residual saturation in the
medium-sand matrix than observed in the experiment. On the macro-scale, the
residual saturation is dominated by the entrapment in the coarse-sand lenses. In the
simulations, we can also identify some fine-sand lenses by the non-wetting phase
pooling on top of them. If we take two threshold values for the saturation, namely
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Figure 11. Experimental NAPL distribution after 1 hr (from Braun, 2000).

Figure 12. Discrete simulations. Left: full saturation distribution; right: two threshold values of 0.3
and 0.5.

0.3 and 0.5, we see how closely the numerical results match the experimental data.

After we have shown that the discrete simulation matches the experimental
results well; we now compare these results with two simulations based on up-
scaled constitutive relationships. This allows us to calculate and compare first and
second moments of the DNAPL body, which would have not been possible with
the experimental results.

The first is a simple upscaling approach, where the permeabilities and entry
pressure are just geometrically averaged to obtain the macroscopic parameters.
The absolute permeability should be anisotropic due to the different correlationffff

lengths but the influence is negligible. The relative permeabilities are approxi-
mated as Brooks-Corey parametrizations. In Figure 13, we see that the macro-
scopic parameters obtained by taking the geometrical average of the small scale
values, cannot capture the overall flow behaviour. In this example, the downward
velocity is overestimated dramatically, and the horizontal spreading is not repre-
sented.
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Sn: 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 13. Saturation distribution for upscaling by taking the geometric average.

Figure 14 shows the results for two different grids using the upscaled constitu-ffff

tive relationships from the percolation model and the single-phase flow-approach
for the relative permeabilities. The left simulation is computed on a grid which is
as fine as the one used for the detailed simulations. The results shown in right sub-
plot are obtained on a coarser grid. The predicted distributions are very similar.

For the simulations shown in Figure 14, we have upscaled the entire domain.
That is, the system is considered homogeneous with identical parameters and con-
stitutive relationships throughout the domain. Consequently, one cannot expect to
see small-scale features of the saturation distribution. However, two overall trends
are identical in the upscaled and detailed simulations as well as in the experiments.
First, the vertical velocity of the DNAPL is retarded, and second, the horizontal
spreading of the DNAPL is enhanced. The upscaled simulations reproduce those
features because the vertical relative permeability curves (solid curves) seen in
Figure 10 are well below the Brooks-Corey parametrizations indicated by the
dotted lines, and the horizontal relative permeability curve, at least of the DNAPL,
is larger. These curves reflect the effect of the lenses in the physical model thatffff

diminish downward movement of the DNAPL.

Sn: 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Sn: 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 14. Saturation distribution for the upscaled anisotropic parameters – left: Fine grid
simulation – right: Coarse (upscaled) grid simulation

In Figure 15, we overlay the numerical results of the discrete simulation with
the proposed upscaling approach. The contour lines show the saturation distri-
bution from the simulation with the upscaled values, while the gray and black
areas indicate regions where the DNAPL exceeds a saturation of 0.3 and 0.5,
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respectively.

On average, the lateral spreading is matched well. Obviously, coarse-sand lenses
extending beyond the region, that is reached by the DNAPL in the upscaled simu-
lation, cannot be captured fully. The vertical migration is slightly underestimated,
indicating an overestimation of macroscopic residual saturation by the upscaling
approach.

Figure 15. Comparison between numerical results with the resolved lenses (grey scales) and the
upscaled parameters (contour lines).

In order to compare the results we calculated the first and seconds moments
for the three different set-ups at three diffff fferent times. Figures 16 and 17 showffff

the saturation distributions after 20 and 40 minutes, respectively. The origin of
the coordinate system is located at the midpoint of the top boundary, with the
z-coordinate pointing downwards. The moments are given in Table 2. As the
geometric-average and the upscaled configuration are obviously symmetric with
respect to the z-axis the first moment in x-direction is not shown. The moments
calculated for the geometric averaging case after 40 and 60 minutes are written in
brackets, because at that time the DNAPL is already pooling at the bottom of the
domain.
Table 2 shows that the results for the upscaled simulation are better than in the
geometric averaging case. In the geometric averaging case the moments are sig-
nificantly overestimated in the z-direction and underestimated in the x-direction.
The moments for the upscaled case still underestimate all spatial moments of the
discrete case. This is expected for the second moment in x-direction, where the un-
derestimation is most pronounced, as the lenses transport DNAPL more efficiently
to boundary regions than can be captured by the effective upscaled parameters.ffff

6. Final Remarks

We have presented a quick and simple upscaling technique for DNAPL infiltration
at the laboratory scale. We have applied the method to experimental data of a
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Figure 16. Saturation Distribution after 20 minutes – left: discrete simulation – middle: geometric
averaging – right: upscaled parameters

Figure 17. Saturation Distribution after 40 minutes – left: discrete simulation – middle: geometric
averaging – right: upscaled parameters

sandbox experiment. The results are promising, since the overall spatial extent of
the DNAPL plume could be approximated well.

Our approach consists of a percolation model to obtain the macroscopic Pc-
S -relationship and of a single-phase flow-approach to determine the effectiveffff

permeabilities as a function of mean saturation. Currently, we use a site percola-
tion model, which should be replaced by an invasion percolation model in the near
future. The single-phase flow-model for the upscaling of relative permeability is
especially useful when the system is strongly anisotropic, and the renormalization
approach would fail. In the current application, both the single-phase flow-model
and the renormalization approach yield strong macroscopic residual saturations
and anisotropic behaviour as shown earlier by e.g. (Pickup and Sorbie, 1996).

The presented upscaling approach is subject to the following underlying as-
sumptions:

− Capillary equilibrium is assumed.

− The fluctuations of the flow velocities and the parameter functions are ne-
glected in the dimensional analysis.

− We have not upscaled the form of the equation but determined effectiveffff

parameters assuming that the form of the equation is conserved.

The approach is therefore restricted to capillary dominated systems. Also this
upscaling method is only applicable to the specific scales used in here.

Especially the capillary equilibrium assumption needs further analysis. The
method should also be compared to homogenization theory (cf. e.g. (Duijn et
al., 2002)). Further examinations of the influence of different heterogeneities onffff

multi-phase flow, e.g. pooling and the influence of lenses needs investigations
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Table 2. First and second moments of the DNAPL body.

time 20 min 40 min 60 min

1. moment z-direction [m]:

discrete 0.0650 0.1127 0.1582

geometric 0.1421 (0.2472) (0.3388)

upscaled 0.0472 0.0724 0.0993

2. moment z-direction [m2]:

discrete 0.0016 0.0039 0.0059

geometric 0.0069 (0.0195) (0.0220)

upscaled 0.0011 0.0023 0.0035

2. moment x-direction [m2]:

discrete 0.0181 0.0276 0.0381

geometric 0.0024 (0.0037) (0.0131)

upscaled 0.0087 0.0160 0.0229

which should be accompanied by more laboratory experiments.

Up to now, only the main axis of a full kr − S tensor is implemented in the
numerical code. An extension to include the full tensor is planned in the near
future.
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