
Trends in

Continuum

Mechanics of

Porous Media

Reint de Boer



TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA



Theory and Applications of Transport in Porous Media

Series Editor:

Jacob Bear, Technion – Israel Institute of Technology, Haifa, Israel

Volume 18

The titles published in this series are listed at the end of this volume.



Trends in Continuum

Mechanics of Porous

Media

by

REINT DE BOER

University of Duisburg-Essen,

Germany



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 1-4020-3143-2 (HB)

ISBN 1-4020-3144-0 (e-book)

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Sold and distributed in North, Central and South America

by Springer,

101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed

by Springer,

P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

© 2005 Springer



Dedicated to my relatives
in Germany and

United States of America



Preface

In the last decade and in particular in recent years, the macroscopic porous
media theory has made decisive progress concerning the fundamentals and
the development of mathematical models in various fields of engineering and
biomechanics. This progress attracted some attention and therefore conferences
(colloquia, symposia, etc) devoted almost exclusively to the macroscopic porous
media theory have been organized in the last years, e.g., in Cambridge, United
Kingdom (1996), Prague, the Czech Republic (1997), Essen, Germany (1997),
Metz, France (1999), Stuttgart, Germany (1999), Chicago, USA (2000), and
Kerkrade, The Netherlands (2003) in order to collect findings, to present new
results, and to discuss new trends. Also in national and international journals a
great number of important contributions have been published which has brought
the porous media theory, in some parts, namely for binary models, to a close.
During the last years ternary models have been the subject of intensive research
and characteristic phenomena have been investigated again. This was possible
because, today the porous media theory has been developed to a great extent,
and the constitutive theory, in particular, has made great progress. The elastic,
elasto-plastic and viscous behavior of the constituents have been treated and
the constitutive equations have been extended so that they are able to describe
the fundamental effects uplift, friction, capillarity, effective stress and phase
transition, in liquid and gas filled porous solids in a clearer way. It could be
shown that the specific weights of the solid and gas phases are both reduced by
uplift. Moreover, the concept of effective stress has been extended to a ternary
model and a formula for the effective stress of the solid phase has been derived
which is similar to the known relation by Bishop (1960). In recent times the
capillarity problem has been revisited and has been successfully investigated;
this was a real breakthrough in the continuum mechanical treatment of this
complex field.

Moreover, in Biomechanics the transport of multi-electrolytes in charged
hydrated biological soft tissues has been incorporated in the Theory of Porous
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Media. Even in Botanic, the theory of porous media has been applied to the
analysis of plant growth.

Therefore, the time seems to be ripe to review the state of the art and to show
the trends in various fields of the Theory of Porous Media.

However, one should not assume that with the above stated contributions,
the Theory of Porous Media has come to a close. In this context I would like to
remind of the statement of the great poet Hermann Hesse: “All knowledge and
every increase in our knowledge doesn’t end with a period, but rather with a
question mark. An increase in knowledge means an increase in questions to be
posed, and each of them is always replaced in turn by new questions.” In this
sense the contents of this book should be understood.

The Introduction is devoted to the historical development up to the end of the
1980s and the beginning of the 1990s (readers interested in an extended descrip-
tion of the historical development of the porous media theory are referred to de
Boer, 2000 a). The volume fraction concept is formulated in Chapter 2. An ex-
tensive review of the kinematics in porous media theory is presented in Chapter
3. The balance equations and the entropy inequality are discussed in Chapter
4 and 5. Chapter 6 is devoted to the investigation of the constitutive theory
with the closure problem and the saturation condition. Moreover, constitutive
equations with the description of elastic, elastic-plastic, and viscous states of
the porous solid as well as some reflexions on the constitutive behavior of the
pore fluids are developed in this Chapter. Fundamental effects in saturated and
partly saturated porous solids such as uplift, friction, capillarity, effective stress,
and phase transitions are treated im Chapter 7. In Chapter 8 and 9 introductions
to Poroelasticity and Poroplasticity are given. Finally, some applications of
the porous media theory in various fields (soil mechanics, chemical engineer-
ing, biomechanics and building physics as well as in environmental mechanics,
soil physics, the petroleum industry, and material science) will demonstrate the
usefulness of the macroscopic porous media theory.

I would like to thank Professor Z. Liu, University of Chongqing (PR China)
and Professor M. Svanadze, Tbilisi State University (Georgia) for proofreading
the Sections 8.5 and 8.4. I would also like to thank Dr.-Ing T. Ricken for many
discussions and correcting some sections of the book. Also a big thank-you
goes to the editors of Applied Mechanics Reviews for the permission to use parts
of my review-article (de Boer, 2000 b).

Mrs. G. Bujna, responsible for word processing, has brought the manuscript
to its present form. I would like to express my deepest gratitude to her. This is
also valid for the work of Mr. J. R. Cambell and Mrs. L. Mensah, who corrected
my English. I record here also my heartful thanks to Springer for the careful
publishing and the pleasant cooperation.

Essen, July, 2004 Reint de Boer
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Chapter 1

INTRODUCTION

In many branches of engineering, for example, in chemical engineering,
material science, and soil mechanics, as well as in biomechanics, the different
reactions of material systems undergoing external and/or internal loadings must
be studied and described precisely in order to be able to predict the responses
of these systems. Subsequently, the most important point of the investigation
is to determine first the composition of the body, because one must know the
physically and chemically differing materials that constitute the system under
consideration. The material systems (or bodies) in these fields of engineering
can be composed in various ways. On the one hand, solids can consist of
different solid components, such as dense concrete, without considerable pores.
On the other hand, solids can contain closed and open pores, such as ceramics
and soils, as well as concrete. The pores can be filled with fluids and, due to the
different material properties and the different motions, there may be interaction
between the constituents.

Because the exact description of the location of the pores (empty or filled with
fluids) and solid material is nearly impossible, the heterogeneous composition
can be investigated by using the volume fraction concept (see Chapter 2). This
concept results in the effect that “smeared” substitute continua with reduced
densities for the solid and fluid phases arise, which can then be treated using
elements of the mixture theory.

The combination of the mixture theory with the volume fraction concept
touches on the microscopic scale. The question that arises is: at what scale
should the mechanical or thermodynamic investigations be performed, on the
macro- or microscopic scale? In principle, both strategies are possible. How-
ever, the micromechanical approach, with all its averaging processes, is a large
field (see, e.g., de Boer and Didwania, 1997, Didwania and de Boer, 1999) and
the review of the micromechanical approach would exceed the scope of this
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2 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

book. This is also valid for homogenization processes and other micromechanic
approaches. Therefore, only the macroscopic theory, which has recently come
to consistent conclusions, will be discussed in the following pages. Of course,
the micromechanical effects which are raised by the volume fraction concept
and other phenomena will be considered using macromechanical quantities.

Another major problem arising in macroscopic porous media concerns the
closure problem. It can easily be shown that, for porous media consisting
of α constituents, α − 1 field equations are missing taking into account the
saturation condition. However, this results only from the macroscopic point
of view. Nevertheless, as was mentioned, the porous media theory touches
the microscopic scale due to the volume fraction concept. Thus, concerning
the closure problem, the microscopic scale should be taken into consideration.
Following this idea, the discussion of the closure problem results in some very
reasonable conclusions.

Porous media theory has a long tradition (see de Boer, 1996, 2000 a). The
purely mechanical theory was founded by Fillunger (1936). Unfortunately,
his masterpiece was completely forgotten and ignored. It was rediscovered
only fifteen years ago. Also, the valuable contributions of Heinrich (1938) and
Heinrich and Desoyer (1955, 1956, 1961) were not noted by the international
scientific community.

After the redevelopment of the mixture theory at the end of the 1950s and in
the 1960s, it seems that Morland (1972) was the first scientist to use the volume
fraction concept with elements of the mixture theory to construct “a simple
constitutive theory for a fluid-saturated porous solid”.

Goodman and Cowin (1972) presented a theory for granular materials with
interstitial voids making use of formal arguments from continuum mechanics.
In order to overcome the lack of their continuum mechanical approach, namely,
that one field equation is missing, they defined a balance equation of equilibrated
forces and of equilibrated inertia. Such balance equations remain obscure from
the physical point of view and should be rejected in light of the modern theory
of porous media.

In an extensive paper entitled Ideal Multiphase Mixtures with Chemical Re-
actions and Diffusion, Nunziato and Walsh (1980) gave a review of known
theories and extended the multiphase mixture theory to include chemically re-
acting materials.

It seems that the correct formulation of the amount of constraints in fluid-
saturated granular materials with incompressible constituents can be credited to
Nunziato and Passman (1981). They consequently introduced Lagrange multi-
pliers to the entropy-inequality, in order to gain restrictions for the constitutive
relations. In addition, they considered the volume fraction condition, namely
that the sum of the volume fractions had to be equal to one, as a constraint.
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The theory of multiphase mixtures was reviewed and extended by Passman,
Nunziato, and Walsh (1984). In particular, they clarified the role of the internal
constraints.

In two long papers, Bowen (1980, 1982) treated incompressible and com-
pressible porous media by use of the theory of mixtures restricted by the volume
fraction concept. He chose another method to describe the thermodynamic be-
havior of porous media than that of Nunziato and Walsh (1980). In his work on
porous media theory with incompressible constituents, Bowen (1980) summa-
rized all the findings of the mixture theory and introduced the volume fraction
concept. He defined several new notions and investigated the incompressible
porous media model on the basis of second-order materials. This led to a vast
formalism, making it difficult to read the paper. In a second paper, Bowen
(1982) extended his porous media theory to compressible porous media. In his
reflections on the constitutive theory, Bowen (1982) used an idea exploited by
Drumheller (1978), “in adopting a rate law to govern the volume fractions”.
This assumption is hard to understand from the physical point of view and
should therefore be avoided.

Mow et al. (1980) published a paper Biphasic Creep and Stress Relaxation of
Articular Cartilage in Compression: Theory and Experiments which is mainly
concerned with biomechanical problems. However, in this paper an incom-
pressible binary mixture model was independently developed which is similar
to Bowen’s (1980) approach.

In the time to follow, in the second half of the 1980s and at the beginning
of the 1990s, the research in porous media theory was mainly focused on three
directions: first, the implantation of the developed porous media models into
numerical algorithms; second, the incorporation of different material behavior
into the developed mathematical models; and third, the investigation of special
phenomena appearing in saturated and empty porous solids.

Different models have been used for the numerical treatment of initial and
boundary-value problems ranging from improved classical models proposed by
Biot (1955, 1956) to the model based on the mixture theory restricted by the
volume fraction concept. In this connection, one may see, for example, the
extended paper by Zienkiewicz et al. (1990), which contains an improved Biot
model as well as the treatise by Schrefler et al. (1993), in which a model based
on the mixture theory is treated.

The incorporation of different material behavior has been performed, for
example, by de Boer and Kowalski (1983), de Boer and Ehlers (1986 a, b), and
de Boer and Lade (1991).

Many efforts were made starting in the early 1980s and the beginning of
the 1990s to explain and describe special phenomena occurring in saturated
and empty porous solids, which had already been partially recognized a long
time ago but which had, however, never been fully founded. Within this frame-
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work, the paper by Baer and Nunziato (1986), which was concerned with the
deflagration-to-detonation transition in reactive saturated granular materials, is
mentioned. In this paper, the authors adopted, in addition to the balance equa-
tion of equilibrated force, Bowen’s (1982) procedure of assuming an evolution
equation for the volume fractions.

Another interesting phenomenon in saturated and partially saturated granular
media was investigated by different authors on the basis of the mixture theory
(see Passman and McTigue, 1984, and McTigue et al., 1983), namely the con-
cept of effective stresses. In the treatise by de Boer and Ehlers (1990 b), in which
Bowen’s (1980) model for incompressible constituents was used to prove this
important concept, an extended section about the historical development of the
concept of effective stresses can be found.

The effects of uplift, friction, and capillarity in liquid saturated porous solids
have been extensively discussed by de Boer and Ehlers (1990 a), see also de
Boer and Ehlers (1988), in which the historical development of the discovery
of these phenomena has also been traced.

In recent times, there have again been new attempts to improve the funda-
mentals of the porous media theory in such a way that the basic equations be
mathematically and/or physically better understood. In particular, the huge for-
malism of the mixture theory due to the introduction of the barycentric velocity
with all its consequences for the kinematics of the mixture body and other av-
erage quantities has been abandoned (see, e.g., Kowalski, 1994, de Boer, 1992,
1995 b, and Bluhm, 1997).

Li and Li (1992) constructed a theory on the thermo-elasticity of multi-
component, fluid-saturated, reacting porous media. The authors pointed out
that Bowen’s (1982) theory had to be expanded through additional constitutive
equations. The treatise of Li and Li (1992) remains in some parts unclear. In
de Boer (1994) and de Boer and Kowalski (1995), the closure of the theory was
obtained by assuming α constitutive equations for the interface pressure of a
porous medium consisting of α constituents. However, this model considers
only the compressibility due to the interface pressure. New investigations con-
cerning the compressibility of porous solids have been performed by de Boer
(1996, 2000 a) and Bluhm (2002).

Recently, some important new findings in the porous media theory have
been worked out and partly published, which has led to a widely consistent
theory. The main features of this theory are discussed in this book, whereby
purely experimental and numerical investigations will not be addressed. Those
contributions which repeat older basic approaches which have failed will also
not be included.



Chapter 2

VOLUME FRACTION CONCEPT

In the volume fraction concept, it is assumed that the porous solid always
models a control space and that only the liquids and/or gases contained in
the pores can leave the control space. Furthermore, it is assumed that the
pores are statistically distributed and that an arbitrary volume element in the
reference and the actual placement is composed of the volume elements of the
real constituents.

The basis of the description of porous media, using elements of the theory
of mixtures restricted by the volume fraction concept, is the model of a macro-
scopic body, where neither a geometrical interpretation of the porestructure nor
the exact location of the individual components of the body (constituents) are
considered.

As mentioned above, the volume fraction concept is a very rigorous condition
used in order to create homogenized continua. Therefore, there have been
many attempts to improve this concept. A well-known concept is due to Kubik
(1979) (see also Kubik and Sawczuk, 1983), who introduced a second-order,
symmetric tensor of structural permeability P, which turns in the isotropic case
into P = h̄I, where h̄ is a scalar representing the surface porosity. It seems
that these promising investigations have not been continued.

In order to develop the volume fraction concept we proceed from the fact that
a porous medium occupying the control space of the porous solid BS , with the
boundary ∂BS in the actual placement, consists of constituents ϕα, with real
volumes vα, where the index α denotes κ individual constituents. The boundary
∂BS is a material surface for the solid phase and a non-material surface for the
liquid and/or gas phases.

The concept of volume fractions can be formulated as follows:

nα(x, t) =
dvα

dv
, (2.1)

5
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where x is the position vector of the actual placement and t the time. Moreover,
the volume elements of the real materials and the bulk volume are denoted by
dvα and dv. The volume fractions nα in (2.1) satisfy the volume fraction
condition for κ constituents ϕα,

κ∑
α=1

nα = 1 , (2.2)

as can easily be proven. The volume fraction concept leads to the result that
the constituents, which are bound against each other, are “smeared” over the
control space (partial bodies), which is shaped by the porous solid, i.e., that
each substitute constituent occupies the total volume of space simultaneously
with the other constituents.

Let the real density and the partial density of the constituent materials be
denoted as:

ραR = ραR(x, t) , ρα = ρα(x, t) . (2.3)

Between the relations (2.3)1,2, there exists the relation

ρα(x, t) = nα(x, t)ραR(x, t) . (2.4)

Eq. (2.4) is well-known in porous media theory.
The volume fraction concept formulated in the reference state at t = t0 can

be derived from the corresponding expressions in the actual placement.
The concept of volume fractions, introduced in the preceding forms, is an

important part of the theory following in the next sections.
Due to the volume fraction concept, all geometric and physical quantities,

such as motion, deformation, and stress, are defined in the total control space,
as mentioned above, and thus, they can be interpreted as the statistical average
values of the real quantities. Within the framework of the general porous media
theory, a saturated porous medium will be treated as an immiscible mixture
of all constituents, with particles Xα. This immiscible mixture is, of course,
a substitute model; it can be treated with the methods of continuum mechan-
ics, especially with the elements of the mixture theory. For the individual
constituents, the kinematics and the balance equations will be discussed exten-
sively; the connection between the balance equations of the partial constituents
and those of the mixture body will also be noted. Moreover, the entropy in-
equality, which yields important restrictions in the constitutive theory, will be
addressed.



Chapter 3

KINEMATICS

The kinematics in the porous media theory are based on two fundamental
assumptions:

(1) Each spatial point x of the actual placement is simultaneously occupied by
material points Xα of all κ constituents ϕα at the time t. The material points
proceed from different reference positions Xα at time t = t0.

(2) Each constituent is assigned an independent state of motion.

Kinematics, developed on this base, is widely accepted in the literature. In the
last years, however, the kinematics of porous media have been specified and
extended. We will come back to these contributions later.

3.1 Basic Relations
If the motion of the constituent is understood as a chronological succession of

placements χα, then for the spatial position vector x of the material points Xα,
which can be identified with the reference position vector Xα at time t = t0,
the following relation holds at time t:

x = χα(Xα, t) . (3.1)

The position vector x is an element of the control space of the porous solid at
time t. In general, it is not necessary, e.g., in a ternary model (solid, liquid,
and gas), to demand that the reference positions XL and XG of the liquid and
gas particles be elements of the reference placement of the solid phase at time
t = t0, i.e., XL �∈ B0S and XG �∈ B0S . Only for those deformation processes
in which the fluid phases leave the control space of the solid phase are the
reference positions XL and XG elements of B0S (see Bluhm, 1997).

A geometrical interpretation of the motion function (3.1), concerning the
motion of a solid and a liquid particle, is shown in Fig 3.1.1. Eq. (3.1) represents

7



8 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

Fig. 3.1.1: Motions of a solid and liquid particle
in a liquidsaturated porous solid.

the Lagrange description of motion. The function χα is postulated to be unique,
and uniquely invertible, at any time t. The existence of a function inverse to
(3.1) leads to the Eulerian description of motion, viz

Xα = χ−1
α (x, t) . (3.2)

A mathematically necessary and sufficient condition for the existence of Eq.
(3.2) is given, if the Jacobian

Jα = detFα (3.3)

differs from zero. In (3.3), Fα is the deformation gradient, which is defined as

Fα = Gradαχα . (3.4)

The differential operator “Gradα ” denotes the partial differentiation with re-
spect to the reference position Xα of the constituents ϕα. The inverse of (3.4)
is given by

F−1
α = grad Xα (3.5)

with the differential operator “grad” referring to the spatial point x. During the
deformation process, Fα is restricted to

detFα > 0 . (3.6)
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With the Lagrange description of the motion (3.1), the velocity and the accel-
eration of a material point of a constituent ϕα are defined by

x′
α =

∂χα(Xα, t)
∂t

, x′′
α =

∂2χα(Xα, t)
∂t2

. (3.7)

Using (3.2), the Eulerian description is gained for the velocity vα and the
acceleration aα:

vα = x′
α = x′

α(x, t) , aα = x′′
α = x′′

α(x, t) . (3.8)

As the individual constituents follow, in general, different motions, different
material time derivatives must be formulated. This will be shown for an arbitrary
scalar functionΓ(x, t). Analogous material time derivatives of vector and tensor
functions result. If Γ(x, t) is a differentiable function, then its material time
derivative, following the motion of the constituent ϕα, is defined by

Γ′
α =

∂Γ
∂t

+ grad Γ · x′
α . (3.9)

With (3.7)1, the material velocity gradient of the constituent ϕα is obtained:

(Fα)′α = Gradαx′
α . (3.10)

The spatial velocity gradient can be calculated from (3.8)1 and results in

Lα = grad x′
α = grad vα , (3.11)

which is connected to the material velocity gradient and the deformation gra-
dient by

Lα = (Fα)′αF−1
α . (3.12)

Usually, no distinction is made in the literature between x′
α and vα, nor between

x′′
α and aα, because it is, in many cases, obvious in connection with the operator

as to whether x′
α(Xα, t) or x′

α(x, t), as well as x′′
α(Xα, t) or x′′

α(x, t), is meant;
see, for example, (3.10) and (3.11).

The additive decomposition of Lα yields the symmetrical part Dα of the
spatial velocity gradient and the skew-symmetric spin tensor Wα

Lα = Dα + Wα (3.13)

with

Dα =
1
2
(Lα + LT

α) , Wα =
1
2
(Lα − LT

α) . (3.14)
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Since the local deformations Fα contain, in general, parts of a rigid body mo-
tion, they are less suitable to serve as measurements for the deformations in
constitutive equations. For this reason, it is convenient to use the line-elements,
in the form of the difference of the squares of the line-elements, in the actual
and the reference placements for the measurement of the deformation, in or-
der to avoid irrational operations and to take out the rigid body motions. For
the evaluation of the squares of the line-elements, the transport mechanism
dx = FαdXα gained from (3.4) will be used. After elementary calculations,
the following relations are obtained:

dx · dx − dXα · dXα = dXα · 2EαdXα = dx · 2Aαdx . (3.15)

The introduced symmetric strain tensors Eα and Aα are known, respectively,
as the Green strain tensor and the Almansi strain tensor. They depend on the
deformation gradient Fα in the following way:

Eα =
1
2
(Cα − I) , Aα =

1
2
(I − B−1

α ) , (3.16)

where

Cα = FT
αFα and Bα = FαFT

α (3.17)

denote the right and left Cauchy-Green deformation tensors, respectively. For
further investigations, it is useful to multiplicatively decompose the deformation
gradient Fα into volume-preserving and spherical parts denoted by the symbols

˘(. . .) and ˜(. . .), see Bluhm (1997):

Fα = F̃αF̆α (3.18)

with

F̃α = (Jα)1/3I , Jα = detFα ,

J̆α = det F̆α = 1 .

(3.19)

With the decomposition (3.18), we obtain for the right Cauchy-Green tensor
(3.17)1 :

Cα = (Jα)2/3C̆α , C̆α = F̆T
αF̆α . (3.20)

Considering (3.3), (3.12), and (3.13), the material time derivative of the
Jacobian, as well as of the right Cauchy-Green deformation tensor, the Green
strain tensor, and the volume-preserving part of the right Cauchy-Green tensor,
yields



Kinematics 11

(Jα)′α = Jα(Dα · I) , (Cα)′α = 2FT
αDαFα ,

(Eα)′α = FT
αDαFα ,

(C̆α)′α = 2 J
−2/3
α FT

αDD
α Fα ,

(3.21)

where DD
α is the deviatoric part of Dα.

So far, kinematics in the porous media theory has been applied generally.
There are, however, as mentioned above, two essential improvements and ex-
tensions, namely, the multiplicative decomposition of the deformation gradient
into a tensor which describes the deformation of the real material and into a
tensor which describes the change of the pores in shape and size. The other
extension is based on the classical Cosserat theory.

In what follows, some considerations on the microscopic scale are needed
in order to describe the compressibility and incompressibility of the real ma-
terials. For this purpose, a macroscopic control space filled with a granular
solid phase, and a gas without any physical properties, will be considered. The
grains in the control space are represented by small balls. It is assumed that the
grains are incompressible, i.e., a hydrostatic stress state in the grains produces
no volume change. Although the grains are incompressible, contact forces act-
ing on them cause a volume change of the control space; this results from the
change of the porestructure and the volume fraction due to the change of the
shapes of the individual grains (see Bluhm, 1997). Therefore, the incompress-
ibility condition cannot be expressed by the deformation gradient FS of the
partial solid constituent. Rather, the incompressibility condition must be for-
mulated by physical quantities at the microscopic scale. Moreover, statements
on the compressibility and other real properties of the constituents must also
be expressed by physical quantities at the microscopic scale. In the case of
describing compressibility and incompressibility, this means a motion function
at the microscopic scale

xSR(micro) = χSR(micro)(XS + ξSR, t) (3.22)

must be introduced, where XS is the center of the volume element dv and ξSR

the vector in the center directed to the material points. From (3.22), the defor-
mation gradient FSR(micro) can be determined in a way similar to that in (3.4).
Then, the incompressibility condition can be reformulated at the microscopic
scale:

detFSR(micro) = JSR(micro) = 1 . (3.23)

The crucial point of this procedure is however the fact that the motion function
χSR(micro) in (3.22) is completely unknown and cannot be determined by a bal-
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ance equation within the framework of the mixture theory (microscopic scale).
Therefore, it is advisable in order to describe the phenomena of compressibility
and incompressibility, to transfer the microscopic scale deformation behavior
of the real solid phase to the macroscopic scale. For this reason, the deformation
tensor FSR is introduced, which is understood to be a part of the deformation
Gradient FS and is assumed to reflect the microscopic scale deformations of
the real solid material at the macroscopic scale. In general, the tensor FSR

is not integrable at the macroscopic scale i.e., the microscopic deformations
FSR(micro) are represented by incompatible deformations at the macroscopic
scale. Since

FS �= FSR (3.24)

it is necessary to choose a second tensor FSN to transfer the relation (3.24)
into an equation. The part FSN of the deformation gradient FS , as well as
FSR is in general not integrable. On the contrary, the deformation tensor FS

is integrable; thus the deformation gradient at the macroscopic scale must be
multiplicatively decomposed into FSR and FSN .

In the following, some parallels to the theory of the elastic-plastic deforma-
tions of metals will be discussed. It is well-known that within the framework of
a finite theory a multiplicative decomposition of the deformation gradient into
an elastic and a plastic part is widely used. The plastic part of the deformation
at the macroscopic scale is caused by dislocations at the microscopic scale.
These microscopic dislocations are also in general, represented by incompati-
ble strains at the macroscopic scale. Therefore, the reason for a multiplicative
decomposition of the deformation gradient at the macroscopic scale is the same
as in the porous media theory, namely, to bring physical phenomena from the
microscopic scale to the macroscopic scale.

There are two possibilities of multiplicatively decomposing the deformation
gradient Fα of the constituent ϕα, of which only the following one is suitable
(see the extensive discussion of this problem and the consequences concerning
the kinematics in Bluhm and de Boer, 1997):

Fα = FαN F̂αR . (3.25)

F̂αR is the part of Fα describing the deformation of the real material, whereas
FαN describes the remaining part of the deformation of the control space,
namely the change of the pores in size and shape. The parts FαN and F̂αR are
to be understood as local mappings of tangent (vector) spaces in each material
point of the body. In the case of homogeneous deformations, the multiplicative
decomposition (3.25) leads to an intermediate state ˆ(. . .) (see Fig 3.1.2). The
proof of the multiplicative decomposition (3.25) ofFα into quantities describing
properties of the microscopic scale is still awaiting research. However, the
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Fig. 3.1.2: Geometrical interpretation of the decomposition
Fα = FαN F̂αR

multiplicative decomposition is a useful concept to describe the effects on the
microscopic scale. In analogy to (3.12) through (3.14), material time derivatives
of the deformation tensor F̂αR can be introduced:

L̂αR = (F̂αR)′α(F̂αR)−1 , L̂αR = D̂αR + ŴαR ,

D̂αR =
1
2
(L̂αR + L̂T

αR) , ŴαR =
1
2
(L̂αR − L̂T

αR) ,

L̂αR =
∂(x̂α)′α
∂Xα

∂Xα

∂x̂α
=

∂(x̂α)′α
∂x̂α

(homogeneous deformations).

(3.26)

The introduction of the material time derivative of FαN , namely LαN , is less
useful due to the fact that LαN is not a spatial velocity Gradient (see Bluhm and
de Boer, 1997). Now, the volume fraction concept and the incompressibility
condition under consideration of the multiplicative decomposition of the defor-
mation gradient Fα of the constituent ϕα will be discussed. We proceed from
(3.25) and split the two parts, FαN and F̂αR, of the deformation Gradient into
volume-preserving and spherical parts denoted by the symbols ˘(. . .) and ˜(. . .).
Thus,



14 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

FαN = F̃αN F̆αN , F̂αR = F̃αRF̆αR (3.27)

with

F̃αN = (JαN )1/3I , JαN = detFαN ,

J̆αN = det F̆αN = 1 ,

F̃αR = (ĴαR)1/3I , ĴαR = det F̂αR ,

J̆αR = det F̆αR = 1 .

(3.28)

With these quantities, kinematic expressions corresponding to those of F̃α and
F̆α can be formulated. The following derivatives in particular, are valid:

(ĴαR)′α = ĴαR(D̂αR · I) ,

(JαN )′α = JαN (DαN · I)
(3.29)

with

DαN · I = Dα · I − D̂αR · I . (3.30)

For further investigations, the volume elements in the reference and actual
placements have to be considered. The relations between the volume elements
in the two placements and the intermediate configuration give a deeper insight
into the volumetric strains in the various placements.

In continuum mechanics, it is well-known that the following transport theo-
rem concerning the volume elements is valid:

dv = Jαdv0α , (3.31)

where

dv0α = dv0α(Xα, t = t0) , dv = dv(x, t) (3.32)

are the volume elements in the reference placement at the position Xα, denoted
by the subscript index α, and in the actual placement at the position x. In
consideration of (3.25) through (3.28),

dv = JαN ĴαRdv0α (3.33)

is gained. By using (3.25), a differential volume element dv̂α, at a material
point Xα of a local intermediate placement in the tangent space is related
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to the differential volume elements in the reference placement and the actual
placements by (see de Boer, 1996, and Bluhm and de Boer, 1997):

dv̂α = ĴαRdv0α , dv = JαNdv̂α . (3.34)

With the relations (3.31) through (3.34), it is easy to formulate various kinds
of volume strains which will be important for the investigations in the follow-
ing paragraphs. In analogy to the volume strain of the partial material of the
constituent ϕα,

eα =
dv − dv0α

dv0α
=

dv

dv0α
− 1 = Jα − 1 , (3.35)

where (3.31) has been used, the volume strain of the real material of ϕα is
defined as

eαR =
dvα − dvα

0α

dvα
0α

=
nαdv − nα

0αdv0α

nα
0αdv0α

=
nα

nα
0α

dv

dv0α
− 1

=
nα

nα
0α

Jα − 1 =
nα

nα
0α

JαN ĴαR − 1 ,

(3.36)

where dvα
0α = nα

0αdv0α as well as (2.1), (3.31), and (3.33) have been used. In
consideration of the transport theorems (3.34), further real volume strains can
be formulated:

êαR =
dv̂α

α − dvα
0α

dvα
0α

=
n̂α

αdv̂α − nα
0αdv0α

nα
0αdv0α

=
n̂α

α

nα
0α

dv̂α

dv0α
− 1 =

n̂α
α

nα
0α

ĴαR − 1 ,

ẽαR =
dvα − dv̂α

α

dv̂α
α

=
nαdv − n̂α

αdv̂α

n̂α
αdv̂α

=
nα

n̂α
α

dv

dv̂α
− 1 =

nα

n̂α
α

JαN − 1 ,

(3.37)

where the part dv̂α
α of the differential volume element dv̂α, in the local inter-

mediate placement in the tangent space, is defined via the volume fraction n̂α
α

as

dv̂α
α = n̂α

αdv̂α . (3.38)
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The determinants of F̂αR and FαN can be expressed depending on the real
volume strains êαR and ẽαR, namely

ĴαR =
nα

0α

n̂α
α

(êαR + 1) , JαN =
n̂α

α

nα
(ẽαR + 1) . (3.39)

With (3.39), the real volume strain (3.36) can be reformulated as

eαR = êαR + ẽαR + êαRẽαR . (3.40)

The tensor F̂αR is interpreted as that part of the deformation gradient which
includes the whole deformation of the real material of the constituent ϕα. Thus,
the determinant JαR must reflect the volume strain of the real material of ϕα, i.e.,
the real volume strain is the difference between the part dv̂α

α = n̂α
α dv̂α of the

differential volume dv̂α in the local intermediate placement in the vector space
and the part dvα

0α = nα
0α dv0S of the volume element dv0S in the reference

placement at the position XS . Therefore, the following relations concerning
the real volume strains hold:

eαR = êαR , ẽαR = 0 . (3.41)

Furthermore, the transport theorem (3.34)1 excludes the change of the volume
fraction by mapping dv0α from the reference to the local intermediate place-
ment, i.e.,

n̂α
α = nα

0α . (3.42)

With (3.41) and (3.42), the determinants ĴαR and JαN , see (3.39), read as
follows:

ĴαR = êαR + 1 = eαR + 1 , JαN =
nα

0α

nα
. (3.43)

In the case of incompressibility,

eαR = 0 , ĴαR = 1 , and D̂αR · I = 0 (3.44)

are valid, whereby (3.44)3 is the rate formulation of the incompressibility con-
dition (see Bluhm and de Boer, 1997) and where D̂αR can be interpreted as the

Lie derivative of the strain tensor EαR =
1
2
(FT

αRFαR − I).
With the help of the multiplicative decomposition of the deformation gra-

dient Fα (3.25), it can be shown that the statement of Mills (1966, 1967) and
Bowen (1980) concerning the incompressibility of the real material which was
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described by setting the real densities of the constituents constant, is only identi-
cal with the kinematic constraints (3.44) in the case of a thermodynamic process
without any mass exchange (see Bluhm and de Boer, 1997).

As there is no difference in the volume changes of the real material in the
actual and intermediate placements, we will omit the superscript sign ˆ(. . .) in
the following sections.

3.2 Kinematics of Microscopic Polar Constituents
Diebels and Ehlers (1996) and Diebels (1999) extended the kinematics of

the porous media theory to porous microscopic polar continua. In this case, the
material points are assumed to be rigid particles on the microscopic scale. Each
particle in the reference placement possesses an attached director dR

α which is
rotated into the director dα of the actual placement. The microscopic motion
is described by an orthogonal tensor R̄α:

dα = R̄αdR
α , R̄αR̄T

α = R̄T
αR̄α = I ,

det R̄α = 1 .
(3.45)

In order to describe the deformation of microscopic polar continua two addi-
tional deformation tensors, the first Cosserat deformation tensor Uα and the
curvature tensor Kα are required. They are defined by (see Diebels, 1999):

Ūα = R̄T
αFα ,

K̄α = −1
2
[
3
E (R̄T

αGradαR̄α)3]2 .

(3.46)

In the relation for the curvature tensor K̄α, the third-order tensor
3
E is a funda-

mental tensor and the underlined superscript denotes the order of the resulting
tensor (de Boer, 1982). Diebels and Ehlers (1996) showed that the first Cosserat
deformation tensor Ūα is related to the scalar product of the direction vector
and line elements of the actual and reference placements:

dα · dxα = dR
α · ŪαXα . (3.47)

Moreover, Diebels and Ehlers (1996) revealed that K̄α is a generalized Christof-
fel symbol.

The material time derivative of dα can be described by the gyration tensor
W̄α:

(dα)′α = W̄αdα , W̄α = (R̄α)′αR̄T
α . (3.48)

From (3.45)2 it follows that W̄α is a skew-symmetric tensor. In this case, the
angular velocity is given by the axial vector of the gyration tensor:
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ω̄α =
1
2

3
E W̄T

α . (3.49)

The deformation rates (Ū)′α and (K̄α)′α are determined by

(Ū′
α)′α = R̄T

α(Lα − W̄α)Fα := R̄T
α L̄αFα ,

(K̄α)′α = R̄T
αgrad ω̄αFα .

(3.50)

Ehlers and Volk (1997 a,b, 1998, 1999) developed the corresponding Cosserat
kinematics for porous media within the framework of the geometrically linear
theory. They introduced the Gradient of the displacement uS of the solid
skeleton:

HS = GradS uS . (3.51)

With the displacement gradientHS , the classical deformation measures, namely
the Lagrange strain tensor ES = εS and the continuum rotation vector ϕs, can
be reformulated:

ES = HSsym =
1
2

(HS + HT
S ) =: εs ,

HSskw =
1
2

(HS − HT
S ) =: ϕs × I .

(3.52)

The cross tensor product between the vector ϕs and the identity I is defined by

ϕs × I = − 3
E ϕs , (3.53)

see de Boer, 1982.
From (3.52)2 ,

ϕs = −1
2

3
E (HSskw) (3.54)

is obtained.
For microscopic polar continua, the continuum mechanical description must

be extended and additional microscopic polar degrees of freedom have to be
introduced via the independent rotation

∗
ϕs.

Then, the total average rotation ϕ̄s (within the framework of geometrically
linear theories) is given as the sum of the continuum rotation and the additional
microscopic polar rotation:

ϕ̄s = ϕs+
∗
ϕs . (3.55)
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The linear Cosserat strain tensor εsc and the linear curvature tensor κ̄s are
determined by Ehlers and Volk (1999) as:

εsc = HS +
3
E ϕ̄s , κ̄s = GradS ϕ̄s . (3.56)

The symmetric and skew-symmetric parts of the Cosserat strain tensor can
easily be obtained:

εsc sym =
1
2
(HS + HT

S ) ,

εsc skw =
1
2
(HS − HT

S ) +
3
E ϕ̄s .

(3.57)

It is recognized that εsc sym is equal to the linearized Lagrange strain tensor
εs of non-polar materials, whereas

εsc skw =
3
E (ϕ̄s − ϕs) =

3
E

∗
ϕs (3.58)

is a tensorial measure for the additional microscopic polar rotation
∗
ϕs.

Ehlers and Volk (1999) rounded off their investigations on Cosserat kinemat-
ics in the theory of porous media by stating the microscopic polar compatibility
condition,

GradS εsc − Grad
23
T
S εsc = (

3
E κ̄s)3 − (

3
E κ̄s)3

23
T (3.59)

and by reformulating and solving (3.59) with respect to κ̄s:

κ̄s =
1
2

3
E (GradS εsc + Grad

13
T
S εsc −

− Grad
23
T
S εsc)2 .

(3.60)

In the papers mentioned above, the Cosserat kinematics for porous solids is
clearly developed and can easily be duplicated. However, the question remains
(raised in the scientific community since the first zenith of Cosserat mechanics
for one-component bodies in the 1960s) as to how the Cosserat kinematics
can be founded physically. It seems that the additional kinematic quantities
introduced in the Cosserat mechanics are, in many cases in the present-day, not
yet accessible and measurable. This is valid, in particular, for saturated porous
solids. Thus, much research and experience is needed in order to determine
whether the Cosserat kinematics is as valuable in describing the rotation of
granules as claimed by the authors above.

We will come back to the problem of including Cosserat kinematics into the
porous media theory in the sections on balance equations, constitutive theory
and numerical investigations.

Now, we will leave the development of kinematics and will turn to the for-
mulation of the balance equations.



Chapter 4

BALANCE PRINCIPLES

In the mixture theory and porous media theory, balance principles – balance
of mass, balance of momentum and moment of momentum, as well as balance
of energy – have to be established for each constituent ϕα in consideration of
all interaction and external agencies. There have been no substantial changes in
these equations in the recent past. This means that all quantities resulting from
long and short range effects which influence the individual constituents, as well
as the interaction effects between the constituents, have to be considered in the
balance principles.

The interaction effects (supply terms) have to be in the sum equal to zero.
These conditions are founded in the fact that – at least in the case of a common
velocity v and acceleration a, a common external acceleration b, as well as a
common internal energy ε, and external heat supply r – the sum of the balance
principles must formally become the corresponding balance principles of a
one-component body.

The following balance principles will be formulated in global and local forms
for the individual constituents in consideration of all interaction effects, and,
finally, some conclusions in view of the comparison with the balance principles
of the mixture body will be drawn.

4.1 Balance of Mass
As has already been mentioned, two possibilities exist concerning the formu-

lation of the balance principle of mass. On the one hand, this equation can be
given for the bulk mixture body; on the other hand, the mass balance principles
can be formulated for each individual constituent in such a way that the super-
position of the mass balance principles for the individual constituents turn, for
special cases, into the balance principle of the mixture body as a one-component
body.

21
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The balance of mass for the individual constituents ϕα requires that the rate

of the mass Mα equal a mass term
∫

Bα

ρ̂αdv caused by the other constituents,

where ρ̂α is the mass supply per volume element:

(Mα)′α = (
∫

Bα

ραdv)′α =
∫

Bα

ρ̂αdv . (4.1)

The integration in (4.1) covers the domain Bα of each individual constituent.
With the help of the transport theorem

(dv)′α = div vαdv , (4.2)

from (4.1) the local statement

(ρα)′α + ραdiv vα = ρ̂α (4.3)

or

∂ρα

∂t
+ div (ραvα) = ρ̂α (4.4)

is derived. Assuming a common velocity v for all phases ϕα, the summation
of (4.4) over all κ constituents ϕα leads to

κ∑
α=1

[
∂ρα

∂t
+ div (ραv)

]
=

κ∑
α=1

ρ̂α . (4.5)

With the statement that the sum of the densities of the individual constituents
is equal to the density ρ of the mixture body,

ρ =
κ∑

α=1

ρα , (4.6)

one obtains

∂ρ

∂t
+ div (ρv) =

κ∑
α=1

ρ̂α . (4.7)

For deriving Eq. (4.7), we have made use of the fact that the summation and
the derivative are interchangeable. Equation (4.7) only results in the form valid
for the mixture body if the constraint

κ∑
α=1

ρ̂α = 0 (4.8)



Balance Principles 23

is introduced, i.e., if the sum of the local mass supplies of all κ constituents ϕα

is equal to zero.
If all mass exchange is excluded, the relation (4.3) can be integrated, and it

follows that:

ρα = ρα
0α(detFα)−1

with (4.9)

ρα
0α = ρα

0α(Xα, t = t0) .

The quantity ρα
0α denotes the partial density of the constituent ϕα (superscript

index) in the reference placement at the position Xα (subscript index).

4.2 Balance of Momentum and Moment of Momentum
In this section, the consequences of applying the axioms of the balance of

momentum to each individual constituent will be discussed first.
The balance principle of momentum states that the material time derivative

of the momentum is equal to the sum of external forces. Thus,

(lα)′α = kα . (4.10)

Herein, the momentum lα for the constituent ϕα is defined by

lα =
∫

Bα

ραvαdv . (4.11)

The external forces kα are given by the sum of the forces fα, which are
caused by long- and short-range effects and are acting on the constituents as
volume forces ραbα and surface forces tα, as well as of the interaction forces
p̂α which belong to the volume forces. The resulting force vector kα is thus
given by

kα = fα +
∫

Bα

p̂αdv , (4.12)

where fα is composed of

fα =
∫

Bα

ραbαdv +
∫

∂Bα

tαda . (4.13)

Now, all the terms which are contained in the balance principle of momentum
have been listed. With Cauchy’s theorem,

tα = Tαn , (4.14)
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where Tα is Cauchy’s stress tensor of the constituent ϕα and n is the unit
normal at the surface of the individual constituent body. With the divergence
theorem, as well as with either mass balance principle, (4.3) or (4.4), Cauchy’s
first equation of motion (balance of momentum) for ϕα is obtained from (4.10):

div Tα + ραbα + p̂α = ραaα + ρ̂αvα . (4.15)

In this equation, the expression ρ̂αvα represents the exchange of linear momen-
tum through the density supply ρ̂α.

The balance of momentum for the mixture body can be gained by superim-
position of the momenta of all κ constituents ϕα, assuming a common velocity
v and acceleration a, as well as a common external acceleration b for all con-
stituents ϕα:

κ∑
α=1

(div Tα + ραb + p̂α) =
κ∑

α=1

(ραa + ρ̂αv) . (4.16)

Introducing the requirements

T =
κ∑

α=1

Tα , ρb =
κ∑

α=1

ραb ,

l̇ =
κ∑

α=1

[ραa + ρ̂αv] = ρa ,
κ∑

α=1

p̂α = 0 ,

(4.17)

where T, ρb, and l̇ are, respectively, Cauchy’s stress tensor, the volume force,
and the time rate of the momentum of the mixture body, the balance principle
of the mixture body is gained:

div T + ρb = l̇ . (4.18)

The material time derivative ˙(. . .) has to be formed with the velocity v. The
requirement of (4.17)4 is a constraint for the momentum supplies. Note that
the second summation in (4.17)3 disappears due to (4.8).

The balance of moment of momentum for non-polar materials states that the
material time derivative of the moment of momentum is equal to the moments
of all external forces, where the moments are referred to a fixed point 0:

(hα
(0))

′
α = mα

(0) . (4.19)

We do not consider local moment of momentum supply vectors m̂α or the
corresponding tensors M̂α. For the formulation of the moment of momentum
balance principle for polar materials, the reader is referred to Ehlers and Volk
(1997 a,b) or Diebels (1999).
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The moment of momentum hα
(0) for the constituent ϕα is given in consider-

ation of (4.11) by:

hα
(0) =

∫
Bα

x × ραvαdv . (4.20)

The moment of the external forces mα
(0) can be calculated considering (4.12)

and (4.13) from

mα
(0) =

∫
Bα

x × (ραbα + p̂α)dv +
∫

∂Bα

x × tαda . (4.21)

From (4.20), considering the mass balance (4.3), the material time derivative
of the moment of momentum leads to

(hα
(0))

′
α =

∫
Bα

x × (ραaα + ρ̂αvα)dv . (4.22)

Moreover, the evaluation of the expression for the moment mα
(0), considering

the balance principle of momentum (4.15), yields:

mα
(0) =

∫
Bα

x × (ραaα + ρ̂αvα)dv +
∫

Bα

I × Tαdv , (4.23)

from which the local statement

I × Tα = 0 (4.24)

is obtained.
The above statement is fulfilled, if

Tα = (Tα)T , (4.25)

i.e., if Cauchy’s stress tensor is symmetric.
The requirement that the mixture, as the sum of all κ constituents, should

behave as a one-component material contains the condition:

κ∑
α=1

Tα =
κ∑

α=1

(Tα)T , T = TT , (4.26)

whereby (4.17)1 has been considered. The result of the balance of moment
of momentum is the evaluation of the statement that the stress tensor of the
mixture body is also symmetric.
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For a binary model consisting of a micropolar skeleton and a non-polar fluid
the balance principle of moment of momentum for the skeleton is obtained as
(see Ehlers and Volk, 1999):

I × TS + div MS + ρScS = 0 , (4.27)

where TS and MS are the non-symmetric Cauchy stress tensor and the couple
stress tensor, respectively, and cS the external body couple per unit mass.

4.3 Balance of Energy
The first law of thermodynamics (balance of energy), which has been repeat-

edly proven in the past, is the most fundamental relation in the thermodynamics
of one-component materials. It states that the sum of the material time deriva-
tives of the internal and kinetic energies equals the rates of the mechanical work
and the heat. This balance principle is transferred to the individual constituents.
Applying the above statement to the constituents, the following balance princi-
ple is obtained:

(Eα)′α + (Kα)′α = Wα + Qα +
∫

Bα

êαdv , (4.28)

where Eα, Kα, Wα, Qα, and êα are, respectively, the internal energy, the ki-
netic energy, the rate of the mechanical energy, the rate of the heat of the
constituent ϕα, and the energy supply to ϕα caused by all other constituents.
The internal energy, kinetic energy, and the rate of the mechanical work, as well
as the rate of the heat, are given by

Eα =
∫

Bα

ραεαdv , Kα =
∫

Bα

1
2
ραvα · vαdv , (4.29)

Wα =
∫

Bα

vα · ραbαdv +
∫

∂Bα

vα · tαda , (4.30)

and

Qα =
∫

Bα

ραrαdv −
∫

∂Bα

qα · da . (4.31)

Here, εα = εα(x, t) is the specific internal energy, rα = rα(x, t) the partial
energy source, and qα = qα(x, t) the partial heat flux vector, which is positive
when entering the body.

The balance principle of energy (4.28) yields, in connection with (4.29),
(4.30), and (4.31), the local statement:
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ρα(εα)′α + ρ̂αεα + ραvα · aα +
1
2
ρ̂αvα · vα

= ραrα − div qα + vα · (div Tα + ραbα) +

+ Tα · Lα + êα .

(4.32)

With Cauchy’s first equation of motion (4.15), the relation (4.32) can be refor-
mulated as:

ρα(εα)′α − Tα · Lα − ραrα + div qα

= êα − p̂α · vα − ρ̂α(εα − 1
2
vα · vα) .

(4.33)

Excluding all mass and moment of momentum exchanges, the relation (4.33)
simplifies to

ρα(εα)′α − Tα · Dα − ραrα + div qα

= êα − p̂α · vα .

(4.34)

It should be mentioned that at times it is useful to replace the specific internal εα

by the enthalpy or, in particular, by the free Helmholtz energy and the entropy.
In the latter case it is advisable to choose the free Helmholtz energy function
after the introduction of the notion of entropy, i.e. after the formulation and
discussion of the second law of thermodynamics. Thus, in this place we keep
the notion of specific internal energy.

In order to be able to compare the results stated above with those of a one-
component material and to gain restrictions for the energy supply terms it is
advisable to add the balances of energy of all individual constituents. Then
it is possible to introduce adequate abbreviations which can be identified as
appropiate terms of a one-component material.

The summation of (4.32) over all κ constituents results in

κ∑
α=1

[ρα(εα)′α + ρ̂αεα] +
κ∑

α=1

(ραvα · aα +
1
2
ρ̂αvα · vα)

=
κ∑

α=1

ραrα −
κ∑

α=1

div qα +

+
κ∑

α=1

[vα · (div Tα + ραbα) + Tα · Lα] +
κ∑

α=1

êα .

(4.35)
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With the assumptions stated at the beginning of this section, namely vα =
v, aα = a, bα = b, εα = ε, and rα = r, and the appropriate statements

ρε̇ =
κ∑

α=1

[ρα(ε̇) + ρ̂αε] , ρk̇ =
κ∑

α=1

[ραv · a +
1
2
ρ̂αv · v] ,

ρr =
κ∑

α=1

ραr , q =
κ∑

α=1

qα ,

w =
κ∑

α=1

[v · (divTα + ραb) + Tα · L] ,
κ∑

α=1

êα = 0 ,

(4.36)

we have

ρε̇ + ρk̇ = w + ρr − div q (4.37)

for the mixture body, an equation which is formally equivalent to the energy bal-
ance principle of a one-component material. Eq (4.36)6 represents a constraint
on the energy supplies.

In this section, the introduction of the so-called barycentric velocity – a mass
weighted average velocity – and its derivations have been avoided due to the
fact that the introduction of this velocity would lead to some obscure statements
in the mixture theory (see the extensive discussion of this problem in de Boer,
1995 b).

It should again be pointed out that, in the global form of the balance principle,
the integration process covers the body Bα of the constituent ϕα. Only in this
case do the local statements of the balance principles given in this section
come out right. If the global forms of the balance principles are referred to the
partial solid body ϕS , an additional term connected with the difference velocity
between ϕS and ϕα(α �= S) must be added. This is also valid for the entropy
inequality in the next section.



Chapter 5

BASIC INEQUALITY (ENTROPY PRINCIPLE)

5.1 Preliminaries

In order to gain restrictions for constitutive equations, the second law of
thermodynamics (entropy principle) has been usefully applied in continuum
mechanics, in the mixture theory and in the theory of porous media, in partic-
ular. This procedure was created by Coleman and Noll (1963) and modified
by Müller and Liu (see Müller, 1985). Coleman and Noll’s method has been
repeatedly examined in many fields of continuum mechanics and has yielded
excellent results. Its contribution to porous media theory has been in the form
of restrictions for the constitutive response functions which helped to formulate
a consistent theory for saturated elastic porous solids, where both constituents
(solid and fluid) can either be compressible or incompressible (see, e.g., de Boer,
1993, de Boer and Kowalski, 1995, and de Boer, 1996, 1997 b). Moreover, in
a recent paper de Boer and Didwania (2000, 2002, 2004) have exploited the
entropy inequality for capillary porous solids and have gained new constitutive
equations for the volume forces p̂α.

The second law of thermodynamics follows from the balance of energy, after
some manipulations with the absolute temperature. It can be shown (see, e.g.,
Planck, 1897) that the absolute temperature can serve as an integrating factor
for the sum of the rate of internal energy and that of the stress power (see also
Müller, 1979). This expression, the above stated sum (or the corresponding
heat) divided by the absolute temperature, is denoted as entropy; thermody-
namics is based on this notion (introduced by Clausius, 1865). However, this
conception seems to be clear only for reversible processes. For irreversible
processes, the entropy notion and the whole procedure of constructing a fun-
damental inequality remains in some parts obscure and mysterious (see Balian,
1991/92). For this reason, it is not surprising that it is extremely difficult to
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impart the entropy notion to students. Baierlein (1992) characterized this sit-
uation with the words: “Students find entropy a mysterious concept – and not
surprisingly so, for it is a difficult notion.” There have been of course, many at-
tempts to support the entropy notion for irreversible processes by results ob-
tained in other fields of science such as statistical mechanics and information
theory (see Balian, 1991/92). However, these efforts are not very convincing
and degenerate at times to purely philosophical discussions. There have how-
ever been attempts to avoid the notion of entropy, which is in general neither
accessible nor measurable (see Balian, 1991/92).

This critique of the notion of entropy seems also valid in part for other
concepts in thermodynamics. Balian (1991/92) stated:

“Still worse, thermodynamics is based upon many, more or less intuitive,
concepts which cannot be readily formulated mathematically and whose nature
is far from clear on a microscopic scale: temperature, pressure, work, heat,
entropy, ...”

5.2 Basic Inequality for Non-Polar Constituents and the
Mixture Body

As it is not the aim of this section to work on the entropy principle and
other concepts of thermodynamics, we will use the entropy principle in the
classical form in the porous media theory for gaining restrictions for constitutive
equations (see, e.g., de Boer and Ehlers, 1986 b), namely as the sum of all
entropy inequalities for the individual constituents. The assumption that the
entropy inequality has to be fulfilled for every individual constituent ϕα is
indeed a sufficient – though too restrictive – condition. At the same time, the
postulate of a common entropy inequality for all constituents is both a necessary
and a sufficient condition for the existence of dissipation mechanisms within
the mixture, and will therefore be preferred:

κ∑
α=1

(Hα)′α ≥
κ∑

α=1

∫
Bα

1
Θα

ραrαdv −
κ∑

α=1

∫
∂Bα

1
Θα

qα · da . (5.1)

The quantity

Hα =
∫

Bα

ραηαdv (5.2)

denotes the entropy of the constituent ϕα, whereby ηα is the specific entropy.
Moreover, Θα is the absolute temperature of ϕα. In consideration of the trans-
port theorem (3.31) in connection with (3.21)1 and the mass balance equation
(4.3), from (5.2) the material time derivative of the entropy is obtained:
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κ∑
α=1

(Hα)′α =
κ∑

α=1

∫
Bα

[
ρα(ηα)′α + ρ̂αηα

]
dv ≥

≥
k∑

α=1

∫
Bα

[ 1
Θα

ραrα − div
( 1
Θα

qα
)]

dv .

(5.3)

In (5.3), the divergence theorem has been used to transform the surface integral
into a volume integral. From (5.3), the local form of the entropy inequality is
gained:

κ∑
α=1

[
ρα(ηα)′α + ρ̂αηα − 1

Θα
ραrα + div

( 1
Θα

qα
)]

≥ 0 . (5.4)

Considering the balance equation of energy (4.32) and the free Helmholtz en-
ergy

ψα = εα − Θαηα , (5.5)

the entropy inequality (5.4) can be rewritten as

κ∑
α=1

1
Θα

{−ρα[(ψα)′α + (Θα)′αηα] −

−ρ̂α(ψα − 1
2
vα · vα) + Tα · Lα −

−p̂α · x′
α − 1

Θα
qα · grad Θα + êα} ≥ 0 .

(5.6)

If all constituents have the same temperature Θ, i.e., Θα = Θ, Inequality (5.6)
simplifies, using (4.36)6, to:

κ∑
α=1

{−ρα[(ψα)′α + (Θ)′αηα] − ρ̂α(ψα − 1
2
vα · vα) + Tα · Lα −

−p̂α · vα − 1
Θ

qα · grad Θ} ≥ 0 .

(5.7)

Apart from the forms of the entropy inequality of the mixture body represented
here, there are further alternative forms possible which however, essentially
contain only other transformations in energies. In order to gain restrictions
for constitutive relations in the constitutive theory the forms of the entropy
inequality (5.6) and (5.7) are both sufficient and convenient. Thus, we will not
mention other forms of the second law of thermodynamics.



Chapter 6

CONSTITUTIVE THEORY

6.1 Preliminaries

As has already been mentioned, in order to close the system of field equa-
tions, it is necessary to introduce constitutive equations. These equations con-
nect certain mechanical or thermodynamic quantities via material-dependent
constants which are determined by test observations. Thus, it is ensured that
the constitutive relations introduced are able to describe the test results.

In the past, a great number of constitutive equations for empty and saturated
porous media had been derived. However, many of them are very complicated
due to the use of inadequate mechanical or thermodynamic concepts. Without a
doubt, these constitutive equations may closely describe the stress-strain (rate)
relations of the special mechanical behavior of materials. However, in many
cases this can only be achieved by introducing many parameters and neglect-
ing requirements due to mechanical and thermodynamic “principles”. These
constitutive equations are meaningless in view of the calculation of general
boundary and initial value problems within the framework of geometrically lin-
ear and non-linear theories. The goal should be to formulate relatively simple
constitutive equations. This statement becomes even more evident in the field
of saturated porous media. In this field, not only the thermodynamic behavior
of the skeleton and the content of the pores but also various interaction phenom-
ena have to be described. Therefore, the idea of formulating relatively simple
constitutive equations is of relevance. In order to derive consistent constitutive
equations that are relatively simple, some strong assumptions have to be intro-
duced at times; for example, the compressibility of the solid matrix material
can be neglected in many cases in comparison with the compressibility of the
matrix. Thus, the mathematical model reduces to an incompressible model.
Another example is the elastic-plastic model, where some simplifying assump-
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tions also have to be introduced in order to predict the essential properties of
the porous solids under study by using relatively simple constitutive relations.

However, it is not sufficient to only fulfill requirements due to test obser-
vations; rather more general “principles”, which were developed in continuum
mechanics in the 1950s and 1960s, should be fulfilled; these are: determinism,
local action, material objectivity, and dissipation. Some of the above-stated
“principles” should however, not be understood as axioms, but rather be con-
sidered as convenient work hypotheses because the real mechanical or ther-
modynamic behavior of solids and fluids is in most cases, too complex to be
described by relatively simple “principles”.

From the above-stated “principles” the material objectivity and dissipation
principles are the most important. The material objectivity principle states that
the constitutive equations have to be formulated in such a way that they are
not influenced by superimposed rigid body motions. The dissipation principle
results from the second law of thermodynamics. Both principles have a big
impact on the development of consistent constitutive equations.

In the section on the constitutive theory, some known papers in this field
will be reviewed considering the above-stated requirements concerning test
observations and general “principles”.

In Section 3, only the dissipation principle will be discussed. Concerning
the objectivity principle, the reader is referred to Ehlers (1989 a,b) or de Boer
(2000 a).

6.2 Closure Problem and Constraints
Mixture theory – the basis of porous media theory – is closed, i.e., the num-

ber of unknown fields is equal to the sum of the balance principles and the
constitutive relations. This can easily be proven. However, by the introduction
of the volume fractions nS , nL and nG for the real constituents ϕS , ϕL and ϕG

in the porous media theory (in order to obtain homogenized (smeared) continua
which can be treated by continuum mechanical methods), a problem arises in
which two field equations are missing if (2.2) is considered. This causes a con-
siderable difference between the porous media theory and the mixture theory
as well as the continuum mechanics of one-component materials. Also, other
existing theories in continuum mechanics are closed and every new condition
leads to an equation in excess. This condition must be provided with a Lagrange
multiplier for the evaluation process of the entropy inequality. If the equation
in excess is a constraint of motion, then the Lagrange multiplier will become
an unknown reaction force.

In the porous media theory, on the other hand, one has to look for additional
equations in order to close the fields. It is however difficult to gain additional
fields since the volume fractions contain quantities of the microscale for which
balance or constitutive equations are not contained in the macroscopic mixture
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theory. Therefore, much effort has been made to overcome this crucial prob-
lem. This effort starts by introducing an additional balance principle to the
formulation of an evolution equation for the volume fraction. This procedure
solves – from the mathematical point of view – the closure problem. However –
from the physical point of view – this method is completely insufficient because
one must be aware of an important constraint namely, the saturation condition
(2.2). This constraint restricts, in the rate formulation, the rates of the volumet-
ric changes and must therefore, be considered in the evaluation of the entropy
inequality. By differentiating the saturation condition (2.2) with respect to the
solid phase (the same result can be obtained by differentiating with respect to
the fluid or the gas phase), we have

(nS)′S + (nL)′S + (nG)′S = 0 (6.1)

or

− (nS)′S − (nL)′L − (nG)′G +

+ gradnL · (vL − vS) + gradnG · (vG − vS) = 0 .

(6.2)

Considering (2.4), we obtain from (6.2):

− nS (ρS)′S
ρS

+ nS (ρSR)′S
ρSR

− nL (ρL)′L
ρL

+ nL (ρLR)′L
ρLR

−

− nG (ρG)′G
ρG

+ nG (ρGR)′G
ρGR

+ gradnL · (vL − vS) +

+ gradnG · (vG − vS) = 0

(6.3)

or considering the mass balance principles (4.3), in connection with (2.4),
(3.21)1, (3.27), (3.28), (3.29), and (3.43), as well as neglecting the mass sup-
plies,

nS(DSN · I) + nL(DLN · I) + nG(DGN · I) +

+ gradnL · (vL − vS) + gradnG · (vG − vS) = 0
(6.4)

or

nS(DS · I) − nS(DSR · I) + nL(DL · I) −

−nL(DLR · I) + nG(DG · I) − nG(DGR · I) +

+ gradnL · (vL − vS) + gradnG · (vG − vS) = 0

(6.5)
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is obtained. In (6.4) and (6.5), use is made of the relations

(nα)′α
nα

+ DαN · I = 0 , DαN · I = Dα · I − (DαR · I) (6.6)

and

(ραR)′α
ραR

+ DαR · I = 0 , (6.7)

which results from the balance principles of mass (4.3) or (4.4), excluding all
mass exchanges, considering (2.4) and (3.29) (see Bluhm, 1997).

The relation (6.5) clearly reveals that the rates of the volumetric strains of
the partial bodies Dα · I and of the real compressible materials DαR · I are
dependent. Please note in passing that, we have omitted the signs of DSR and
DLR as well as of DGR which characterize the intermediate state at this point
and in the following section, for the sake of simplicity.

The problem to be solved depends as to whether the constraint in the forms
(6.2), (6.3), or (6.4), (6.5) should be used. If all mass exchanges are neglected,
then the constraints in the forms (6.4) and (6.5) are convenient. If, however,
mass exchange occurs, then the forms (6.2) and (6.3) have to be used in the
evaluation of the entropy inequality.

As has already been mentioned, the saturation constraint (2.2) in the versions
(6.2) and (6.3), or (6.4) and (6.5) has to be considered in the evaluation of the
entropy inequality because the rates of either the densities or of the volumetric
strains of the solid and the fluid as well as the gas phases are dependent. In order
to obtain a stress-power-like expression, the constraints (6.2) and (6.3), or (6.4)
and (6.5), which contain the rates of the volumetric strains, will be multiplied by
a hydrostatic interface pressure λ. It is true that the saturation condition (2.2) is
an equation to further reduce the number of unknown volume fractions, but the
grade of indetermination does not change by the introduction of the interface
pressure λ. Therefore, it will be postulated that three constitutive equations for
λ must be introduced (or three constitutive relations for the hydrostatic pressure
in the solid material) which contain properties of both the constituents of the
partial solid and of partial fluid phases, in order to achieve closure. This is a
reasonable demand from the mechanical point of view, because the interface
pressure acts in the solid as well as the fluid and gas phases. It will be seen that
the introduced requirement leads to excellent physical results.

If the materials of the three individual constituents behave as incompressible
phases, then additional constraints have to be considered in the evaluation of
the entropy inequality.
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6.3 Reformulation of the Entropy Inequality
As has already been pointed out in Section 5.1, the entropy inequality has

yielded excellent results in the porous media theory (see the review article of
de Boer, 1996). However, in this field, one should be careful when evaluat-
ing the entropy inequality purely mathematically, because the mechanical and
thermodynamic behaviors of saturated porous solids are very complex. If one
evaluates the entropy inequality in a purely stereotyped way, without consider-
ing the special physical properties of the complex material under study, one can
arrive at results which fulfill the entropy inequality but fail to predict physical
phenomena arrived at by experiment. The second law of thermodynamics is
an inequality and there are many possibilities to satisfy this inequality. Some
evaluations may be less restrictive than others, without violating the inequality.

Therefore, the entropy inequality has to be manipulated in order to include
fundamental physical phenomena known from experience, test observations,
and theories, which appear independent of the special constitutive behavior of
the individual partial constituents, such as elastic, plastic, or viscous behavior.
These phenomena mainly concern the concept of effective stresses in different
versions (see, e.g., de Boer, 1996, Lade and de Boer, 1997). The concept of
effective stresses is caused by the saturation condition and is valid for all kinds
of material of the individual partial constituents. However, in order to describe
the different versions of the effective stress concept, the closure problem must
also be considered, whereby one must distinguish between the compressible
and incompressible behavior of the real material of the constituents.

As the second law of thermodynamics is an inequality where the entropy is
always greater than zero, this inequality can also be considered as a minimum
problem which reaches its minimum at zero. All additional constraints, like
the saturation or incompressibility conditions, provided with multipliers, can
be taken into consideration by adding to the entropy inequality. It depends on
the closure problem as to whether the multipliers are constitutively determined
or not.

The ternary model under study consists of an elastic porous solid filled with
a mixture of an inviscid, incompressible liquid and a compressible gas.

The goal of the following investigations is to gain from the evaluation of the
entropy inequality proper constitutive equations which meet the thermodynamic
restrictions and accurately describe physical observations.

The entropy inequality for the sum of all partial constituents states in local
form:

κ∑
α=1

{
− ρα[ψα′

α + (Θα)′α ηα] + Tα · Dα − p̂α · vα −

− 1
Θ

qα · grad Θα − ρ̂α(ψα − 1
2
vα · vα)

}
≥ 0 .

(6.8)
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In (6.8) it is assumed that no moment of momentum and no energy exchanges
occur. The consequence of this assumption is that Cauchy’s stress tensor is
symmetric. Moreover, it is assumed that the thermodynamic process is governed
by the same temperature for all constituents ϕα. In (6.8) ρα, ψα, and ηα denote
the partial density, the partial free Helmholtz energy function, and the specific
entropy, respectively, and Dα, p̂α,vα,qα and ρ̂α stand for the symmetric part
of the velocity gradient, the interaction force due to the influence of all other
constituents on ϕα, the velocity, the heat flux vector, and the mass supply,
respectively.

Before we can start with the evaluation of the entropy inequality (6.8), some
important constraints, which restrict the free motions of the phases, must be
considered in the entropy inequality. These constraints concern the saturation
condition, and the incompressibility of the liquid.

The rate version of the saturation condition is stated in (6.2).

− (nS)′S − (nL)′L − (nG)′G + gradnL · vLS + gradnG · vGS = 0 (6.9)

with

vLS = vL − vS vGS = vG − vS . (6.10)

The rate version of the saturation constraint (6.9) provided with the scalar mul-
tiplier λ will be added to the entropy inequality (6.8) in order to consider the
influence of the restricted motion, due to the saturation constraint, on the con-
stitutive relations.

Finally, the incompressibility of the liquid phase will be considered. The
incompressibility condition can be stated with the real density of the liquid:

ρLR = const. (6.11)

From (6.11) we have, by differentiating with respect to time and performing
some manipulations:

nL(ρLR)′L
ρLR

= 0 . (6.12)

This constraint (6.12) connected with a scalar multiplier κLR will also be con-
sidered in the entropy inequality.

Returning to the entropy inequality (6.8) and considering the constraints
discussed above as well as the mass balance (4.3) and relation (2.4), we obtain:

− ρS(ψS)′S − ρL(ψL)′L − ρG(ψG)′G − ρSηS(Θ)′S −

− ρLηL(Θ)′L − ρGηG(Θ)′G + TSD · DSD + TLD · DD
L + TGD · DD

G −
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−pS(ρSR)′S
ρSR

− (pS + λnS)
(nS)′S

nS
− (pL + κLRnL)

(ρLR)′L
ρLR

−

−(pL + λnL)
(ρL)′L

ρL
− pG (ρGR)′G

ρGR
− (pG + λnG)

(nG)′G
nG

−

−(p̂L − λ grad nL) · vLS − (p̂G − λ grad nG) · vGS −

− 1
Θ

(qS + qL + qG) · grad Θ − ρ̂L(µL − µS) −

−ρ̂G(µG − µG) ≥ 0 ,

pα =
1
3
(Tα · I) ,

µα = ψα − pα

ρα
− 1

2
vα · vα (chemical potential) .

(6.13)

Use is made of the additive decomposition (3.30) and the balance equation of
mass (4.3) as well as of the fact that

(nL)′L
nL

=
(ρL)′L

ρL
(6.14)

due to the incompressibility of the liquid phase.

6.4 Exploitation of the Inequality for Ternary and Binary
Capillary Porous Models

The goal of this section is the evaluation of the entropy inequality for a
ternary model within the framework of the geometrically non-linear theory in
order to gain restrictions for the constitutive equations involved. The ternary
model consists of an elastic skeleton filled with an incompressible, inviscid
liquid and a compressible gas. It is assumed that the liquid is the carrier for
the gas bubbles in the pores. This means that in the hydrostatic case the stress
state of the gas is influenced by the liquid pressure and by the surface tension
of the bubble. On the other hand, if the gas acts as carrier for liquid droplets,
the stress state of the liquid is composed of a part of the gas pressure and the
surface tension of the droplet. In the exploitation of the entropy principle use
will be made of the Principle of Phase Separation by Passman et al. (1984):

“The dependent variables of the α-th constituent that are material-specific
depend only on the independent variables of the α-th constituent. The growth
dependent variables depend on all of the independent variables.”
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They justified the Principle of Phase Separation as follows:
“In mulitphase mixtures, the individual constituents are clearly separated

physically, and it is plausible to think of the mixture as being ideal, or phase
separated.”

The Principle of Phase Separation is clearly physically founded by the au-
thors. However, one must bear in mind that the individual phases are described
by partial quanties involving the volume fractions and that volume fractions
are constraint by the saturation condition (2.2). Thus, one has to be careful
in exploiting the entropy inequality and must keep an eye on those problems
where the volume fractions are involved.

It has already been indicated that the model under study consists of an elastic
porous solid, an inviscid, incompressible liquid and a compressible gas. Fur-
thermore, it is the first goal of the subsequent investigations to include such
porous solids which possesses pores with a characteristic diameter in the range
between 1 mm and 50 nm (1 nm =̂ 10−6mm). That means that in these pores
capillary forces due to intermolecular effects occur. These capillary forces
cause motion of the liquid and gas in the pores. The constitutive equations
for the capillary forces should contain the interaction between the solid, liquid
and gas phases and the density change of the liquid. The rigorous thermody-
namical treatment of this model reveals that the capillary forces, as volume
forces, gained by the exploitation of the entropy inequality shows exactly these
properties (see also Chapter 7, Section 5).

The second goal is to make the elastic behavior of the porous solid more
transparent. It is principally possible to introduce the right Cauchy-Green de-
formation tensor CS as a process variable and to derive with this variable a
constitutive equation for Cauchy’s stress tensor TS . However, such procedure
suppresses several information of the behavior of the real elastic material in
the hydrostatic stress and deformation state such as compressibility and con-
figuration pressure. Moreover, no statement concerning the influence of the
hydrostatic stress upon phase transition is possible. Therefore, the following
procedure seems to be useful. First, the deformation tensor CS will be mul-
tiplicatively decomposed (see (3.17) through (3.20)) in a spherical tensor C̃S

permitting a volume change and a volume-preserving part C̆S . The volume
preserving part C̆S will be kept as a process variable because there is no way,
until now, to separate properties which are concerned with the microscopic
scale from this tensor. This is completely different to the spherical tensor C̃S .
This tensor contains the determinant of the deformation gradient FS . From the
mass balance (4.3) in the rate formulation it is recognized that the rate of the de-
terminant of the deformation gradient is proportional to the rate of density and
the density supply. Thus it is advisable to include the balance equation of mass
into the entropy inequality in order to bring the mass supply in consideration
for the description of phase transitions.
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Moreover, the mass of the partial solid can be multiplicatively decomposed,
according to (2.4), into the volume fraction nS and the real density of the solid
material. Due to the fact that nS and ρSR are completely independent it is
advisable to choose nS and ρSR as independent process variables hoping that
both variables bring us more information, than the process variable ρS , the
density of the partial porous solid in the exploitation of the entropy inequality.
We will see that this is the case.

Constitutive equations are necessary for the free Helmholtz energy functions
ψα:

ψα = ψα(s) . (6.15)

These functions may depend on the following set s of process variables or on
parts of it:

s = {nS , ρSR, C̆S , ρL, ρGR,vLS ,vGS , Θ, grad Θ} . (6.16)

The choice of the set s is motivated by the following statements. The vol-
ume fraction nS will describe the configuration pressure (intergranular forces),
ρSR the real hydrostatic deformation of the solid material and C̆S the volume
preserving part of the right Cauchy-Green tensor, see (3.20). The density of the
liquid governs the partial hydrostatic deformations of the liquid body and plays
an important role in the description of the capillarity phenomenon as we will
see later. The real density ρGR of the gas phase enter the constitutive equation
for the description of the hydrostatic deformations of the gas. The different
velocities vLS and vGS are responsible for the frictions forces amongst the
individual constituents and finally, Θ and grad Θ describe thermal effects.

In order to develop thermodynamic restrictions from the entropy inequality
(6.13), it is first necessary to calculate the material time derivatives of the free
Helmholtz energy functions of all three constituents. With

ψα = ψ̂α{nS , ρSR, C̆S , ρL, ρGR,vLS ,vGS , Θ, grad Θ} , (6.17)

the material time derivatives of ψα depending on the above process variables
yield:

(ψα)′α =
∂ψ̂α

∂nS
[(nS)′S + grad nS · vαS ] +

+
∂ψ̂α

∂ρSR
[(ρSR)′S + grad ρSR · vαS ] +

+
∂ψ̂α

∂C̆S

· [(C̆S)′S + grad C̆SvαS ] +

(6.18)
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+
∂ψ̂α

∂ρL
[(ρL)′L + grad ρL · vαL] +

+
∂ψ̂α

∂ρGR
[(ρGR)′G + grad ρGR · vαG] +

+
∂ψ̂α

∂vLS
· [(vL)′L − (vS)′S − (grad vS)vαS + (grad vL)vαL] +

+
∂ψ̂α

∂vGS
· [(vG)′G − (vS)′S − (grad vS)vαS + (grad vG)vαG] +

+
∂ψ̂α

∂Θ
Θ′

α +
∂ψ̂α

∂grad Θ
(grad Θ)′α .

The insertion of (6.18) into (6.13) yields the entropy inequality in the following
form:

− ρS ∂ψ̂S

∂nS
(nS)′S − ρS ∂ψ̂S

∂ρSR
(ρSR)′S − ρS ∂ψ̂S

∂C̆S

· (C̆S)′S −

− ρS ∂ψ̂S

∂ρL
(ρL)′L + ρS ∂ψ̂S

∂ρL
grad ρL · vLS − ρS ∂ψ̂S

∂ρGR
(ρGR)′G +

+ ρS ∂ψ̂S

∂ρGR
grad ρGR · vGS − ρS ∂ψ̂S

∂vLS
· [(vL)′L − (vS)′S ] +

+ ρS ∂ψ̂S

∂vLS
· (grad vL)vLS − ρS ∂ψ̂S

∂vGS
· [(vG)′G − (vS)′S ] +

+ ρS ∂ψ̂S

∂vGS
· (grad vG)vGS − ρS ∂ψ̂S

∂Θ
Θ′

S −

− ρS ∂ψ̂S

∂(grad Θ)
(grad Θ)′S − ρL ∂ψ̂L

∂nS
(nS)′S −

− ρL ∂ψ̂L

∂nS
gradnS · vLS − ρL ∂ψ̂L

∂ρSR
(ρSR)′S −

− ρL ∂ψ̂L

∂ρSR
grad ρSR · vLS − ρL ∂ψ̂L

∂C̆S

(C̆)′S −

− ρL ∂ψ̂L

∂C̆S

· grad C̆SvLS − ρL ∂ψ̂L

∂ρL
(ρL)′L −

− ρL ∂ψ̂L

∂ρGR
(ρGR)′G − ρL ∂ψ̂L

∂ρGR
grad ρGR · vLS +

(6.19)
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+ ρL ∂ψ̂L

∂ρGR
grad ρGR · vGS − ρL ∂ψ̂L

∂vLS
· [(vL)′L − (vS)′S ] +

+ ρL ∂ψ̂L

∂vLS
· (gradvS)vLS − ρL ∂ψ̂L

∂vGS
· [(vG)′G − (vS)′S ] +

+ ρL ∂ψ̂L

∂vGS
· (gradvS)vLS − ρL ∂ψ̂L

∂vGS
· (gradvG)vLS +

+ ρL ∂ψ̂L

∂vGS
(gradvG)vGS − ρL ∂ψ̂L

∂Θ
Θ′

L −

− ρL ∂ψ̂L

∂(grad Θ)
(grad Θ)′L − ρG ∂ψ̂G

∂nS
(nS)′S −

− ρG ∂ψ̂G

∂nS
grad nS · vGS − ρG ∂ψ̂G

∂ρSR
(ρSR)′S −

− ρG ∂ψ̂G

∂C̆S

· (C̆S)′S − ρ̂G ∂ψ̂G

∂C̆S

· grad C̆SvGS − ρG ∂ψ̂G

∂ρL
(ρL)′L +

+ ρG ∂ψ̂G

∂ρL
grad ρL · vLS − ρG ∂ψ̂G

∂ρL
grad ρL · vGS −

− ρG ∂ψ̂G

∂ρGR
(ρGR)′G − ρG ∂ψ̂G

∂vLS
· [(vL)′L − (vS)′S ] +

+ ρG ∂ψ̂G

∂vLS
· (gradvS)vGS + ρG ∂ψ̂G

∂vLS
· (gradvL)vLS −

− ρG ∂ψ̂G

∂vLS
(gradvL)vGS − ρG ∂ψ̂G

∂vGS
· [(vG)′G − (vS)′S ] +

+ ρG ∂ψ̂G

∂vGS
· (gradvS)vGS − ρG ∂ψ̂G

∂Θ
Θ′

G − ρG ∂ψ̂G

∂(grad Θ)
(grad Θ)′G −

− ρSηSΘ′
S − ρLηLΘ′

L − ρGηGΘ′
G +

+ TSD · DD
S + TLD · DD

L + TGD · DD
G −

− (pS + λnS)
(nS)′S

nS
− pS (ρSR)′S

ρSR
− (pL + κLRnL)

(ρLR)′L
ρLR

−

− (pL + λnL)
(ρL)′L

ρL
− pG (ρGR)′G

ρGR
− (pG + λnG)

(nG)′G
nG

−



44 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

− (p̂L − λ grad nL) · vLS − (p̂G − λ gradnG) · vGS −

− 1
Θ

qS · grad Θ − 1
Θ

qL · grad Θ − 1
Θ

qG · grad Θ −

− ρ̂L(µL − µS) − ρ̂G(µG − µS) ≥ 0 .

With

∂ψ̂G

∂C̆S

· (grad C̆S)vLS = vLS · (grad
13
T C̆S)

∂ψ̂L

∂C̆S

,

∂ψ̂G

∂C̆S

· (grad C̆S)vGS = vGS · (grad
13
T C̆S)

∂ψ̂G

∂C̆S

,

∂ψ̂S

∂vLS
· (grad vL)vLS = vLS · (gradTvL)

∂ψ̂S

∂vLS

= vLS · DL
∂ψ̂S

∂vLS
+ vLS · WT

L

∂ψ̂S

∂vLS
,

∂ψ̂S

∂vGS
· (grad vG)vGS = vGS · (gradTvG)

∂ψ̂S

∂vGS

= vGS · DG
∂ψ̂S

∂vGS
+ vGS · WT

G

∂ψ̂S

∂vGS
,

∂ψ̂L

∂vLS
· (grad vS)vLS = vLS · (gradTvS)

∂ψ̂L

∂vLS
,

∂ψ̂L

∂vGS
· (grad vG)vGS = vGS · (gradTvG)

∂ψ̂L

∂vGS
,

∂ψ̂L

∂vGS
· (grad vG)vLS = vLS · (gradTvG)

∂ψ̂L

∂vGS
,

∂ψ̂L

∂vGS
· (grad vS)vLS = vLS · (gradTvS)

∂ψ̂L

∂vGS
,

∂ψ̂L

∂vGS
· (grad vG)vLG = vLG · (gradTvG)

∂ψ̂L

∂vGS

= vLG · DG
∂ψ̂L

∂vGS
+ vLG · WT

G

∂ψ̂L

∂vGS
,

(6.20)
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∂ψ̂G

∂vLS
· (grad vS)vGS = vGS · (gradTvS)

∂ψ̂G

∂vLS
,

∂ψ̂G

∂vLS
· (grad vL)vLS = vLS · (gradTvL)

∂ψ̂G

∂vLS

= vLS · DL
∂ψ̂G

∂vLS
+ vLS · WT

L

∂ψ̂G

∂vLS
,

∂ψ̂G

∂vGS
· (grad vS)vGS = vGS · (gradTvS)

∂ψ̂G

∂vGS
,

∂ψ̂G

∂vLS
· (gradvL)vGS = vGS · (gradT vL)

∂ψ̂G

∂vLS

= vGS · DL
∂ψ̂G

∂vLS
+ vGS · WT

L

∂ψ̂G

∂vLS

it follows that:

− (nS)′S
nS

[pS + λ nS + nSρS ∂ψ̂S

∂nS
+ nSρL ∂ψ̂L

∂nS
+ nSρG ∂ψ̂G

∂nS
] −

− (ρSR)′S
ρSR

[pS + ρSRρS ∂ψ̂S

∂ρSR
+ ρSRρL ∂ψ̂L

∂ρSR
+ ρSRρG ∂ψ̂G

∂ρSR
] −

− (ρL)′L
ρL

[pL + λ nL + ρLρS ∂ψ̂S

∂ρL
+ (ρL)2

∂ψ̂L

∂ρL
+ ρLρG ∂ψ̂G

∂ρL
] −

− (ρLR)′L
ρLR

[pL + κLR nL] + DD
S · [TSD −

− 2ρSJ
−2/3
S (FS

∂ψ̂S

∂C̆S

FT
S )D − 2ρSJ

−2/3
S (FS

∂ψ̂L

∂C̆S

FT
S )D −

−2ρSJ
−2/3
S (FS

∂ψ̂G

∂C̆S

FT
S )D] + DD

L · TLD + DD
G · TGD −

−(nG)′G
nG

[pG + λ nG] − (ρGR)′G
ρGR

[pG + ρGRρS ∂ψ̂S

∂ρGR
+

+ρGRρL ∂ψ̂L

∂ρGR
+ ρGRρG ∂ψ̂G

∂ρGR
] −

− vLS · [p̂L − λ grad nL − ρS ∂ψ̂S

∂ρL
grad ρL −
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−ρG ∂ψ̂G

∂ρL
grad ρL − ρS (gradTvL)

∂ψ̂S

∂vLS
+

+ ρL ∂ψ̂L

∂ρGR
grad ρGR − ρL (gradTvS)

∂ψ̂L

∂vLS
−

−ρL (gradTvS)
∂ψ̂L

∂vGS
+ ρL (gradTvG)

∂ψ̂L

∂vGS
−

−ρG (gradTvL)
∂ψ̂G

∂vLS
] − vGS · [p̂G − λ grad nG −

−ρS ∂ψ̂S

∂ρGR
grad ρGR − ρS(gradTvG)

∂ψ̂S

∂vGS
−

−ρL ∂ψ̂L

∂ρGR
grad ρGR − ρL(gradTvG)

∂ψ̂L

∂vGS
+

+ρG ∂ψ̂G

∂ρL
gradρL − ρG (gradTvS)

∂ψ̂G

∂vLS
+

+ρG (gradTvL)
∂ψ̂G

∂vLS
− ρG (gradTvS)

∂ψ̂G

∂vGS
] −

− Θ′
S [ρSηS + ρS ∂ψ̂S

∂Θ
] − Θ′

L[ρSηL + ρL ∂ψ̂L

∂Θ
] −

−Θ′
G[ρGηG + ρG ∂ψ̂G

∂Θ
] − gradΘ · 1

Θ
qS −

−ρS ∂ψ̂S

∂(grad Θ)
· (grad Θ)′S − gradΘ · 1

Θ
qL −

−ρL ∂ψ̂L

∂(grad Θ)
· (grad Θ)′L − gradΘ · 1

Θ
qG −

−ρG ∂ψ̂G

∂(grad Θ)
· (grad Θ)′G − {(vL)′L − (vS)′S} · [ρS ∂ψ̂S

∂vLS
+

+ρL ∂ψ̂L

∂vLS
+ ρG ∂ψ̂G

∂vLS
] − {(vG)′G − (vS)′S} · [ρS ∂ψ̂S

∂vGS
+

+ρL ∂ψ̂L

∂vGS
+ ρG ∂ψ̂G

∂vGS
] − (DL)′L · [ρS ∂ψ̂S

∂DL
+ ρL ∂ψ̂L

∂DL
+

+ρG ∂ψ̂G

∂DL
] − ρ̂L(µL − µS) − ρ̂G(µG − µS) ≥ 0 .

(6.21)
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We assume that the terms connected with the time rates of the process variables,
see (6.16) in (6.21) do not depend on these time rates. The evaluation of the
entropy inequality then yields

pS + λnS + nSρS ∂ψ̂S

∂nS
+ nSρL ∂ψ̂L

∂nS
+ nSρG ∂ψ̂G

∂nS
= 0 , (6.22)

pS + ρSRρS ∂ψ̂S

∂ρSR
+ ρSRρL ∂ψ̂L

∂ρSR
+ ρSRρG ∂ψ̂G

∂ρSR
= 0 , (6.23)

TSD − 2ρSJ
−2/3
S (FS

∂ψ̂S

∂C̆S

FT
S )D − 2ρSJ

−2/3
S (FS

∂ψ̂L

∂C̆S

FT
S )D −

−2ρSJ
−2/3
S (FS

∂ψ̂G

∂C̆S

FT
S )D = O ,

(6.24)

pL + κLR nL = 0 , TLD = O , TGD = O , (6.25)

pL + λnL + ρLρS ∂ψ̂S

∂ρL
+ (ρL)2

∂ψ̂L

∂ρL
+ ρLρG ∂ψ̂G

∂ρL
= 0 , (6.26)

pG + λnG = 0 , (6.27)

pG + ρGRρS ∂ψ̂S

∂ρGR
+ ρGRρL ∂ψ̂L

∂ρGR
+ ρGRρG ∂ψ̂G

∂ρGR
= 0 , (6.28)

ηS +
∂ψ̂S

∂Θ
= 0 , ηL +

∂ψ̂L

∂Θ
= 0 , ηG +

∂ψ̂G

∂Θ
= 0 , (6.29)

∂ψ̂S

∂ grad Θ
= 0 ,

∂ψ̂L

∂ grad Θ
= 0 ,

∂ψ̂G

∂ grad Θ
= 0 , (6.30)

ρS ∂ψ̂S

∂vLS
+ ρL ∂ψ̂L

∂vLS
+ ρG ∂ψ̂G

∂vLS
= 0 , (6.31)

ρS ∂ψ̂S

∂DL
+ ρL ∂ψ̂L

∂DL
+ ρG ∂ψ̂G

∂DL
= O , (6.32)

ρS ∂ψ̂S

∂vGS
+ ρL ∂ψ̂L

∂vGS
+ ρG ∂ψ̂G

∂vGS
= 0 . (6.33)



48 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

Moreover, an important dissipation inequality remains:

D = − vLS · [p̂L − λ gradnL − (ρS ∂ψ̂S

∂ρL
+ ρG ∂ψ̂G

∂ρL
) grad ρL

− (gradT vL) (ρS ∂ψ̂S

∂vLS
+ ρG ∂ψ̂G

∂vLS
) +

+ (grad ρGR) (ρL ∂ψ̂L

∂ρGR
) − (gradT vS) (ρL ∂ψ̂L

∂vLS
+

+ ρL ∂ψ̂L

∂vGS
) + (gradT vG) (ρL ∂ψ̂L

∂vGS
)] − vGS · [p̂G −

− λ gradnG − (ρS ∂ψ̂S

∂ρGR
+ ρL ∂ψ̂L

∂ρGR
) grad ρGR −

− (gradT vG) (ρS ∂ψ̂S

∂vGS
+ ρL ∂ψ̂L

∂vGS
) −

− (gradT vS)(ρG ∂ψ̂G

∂vLS
+ ρG ∂ψ̂G

∂vGS
) + ρG ∂ψ̂G

∂ρL
grad ρL +

+ (gradT vL) (ρG ∂ψ̂G

∂vLS
)] − grad Θ · 1

Θ
[qS + qL + qG] −

− ρ̂L[µL − µS ] − ρ̂G[µG − µS ] ≥ 0 .

(6.34)

Inequality (6.34) can be simplified considering (6.31) through (6.33):

D = − [p̂L − λ gradnL − (ρS ∂ψ̂S

∂ρL
+ ρG ∂ψ̂G

∂ρL
) grad ρL +

+ (gradT vL)(ρL ∂ψ̂L

∂vLS
) − (gradT vS)(ρL ∂ψ̂L

∂vLS
+ ρL ∂ψ̂L

∂vGS
) +

+ grad ρGR(ρL ∂ψ̂L

∂ρGR
) + (gradT vG)ρL ∂ψ̂L

∂vGS
] · vLS −

− [p̂G − λ grad nG − (ρS ∂ψ̂S

∂ρGR
+ ρL ∂ψ̂L

∂ρGR
) grad ρGR +

+ (gradT vG)(ρG ∂ψ̂G

∂vGS
) − (gradT vS)(ρG ∂ψ̂G

∂vLS
+ ρG ∂ψ̂G

∂vGS
) +

+ (gradT vL)(ρG ∂ψ̂G

∂vLS
) + ρG ∂ψ̂G

∂ρL
grad ρL] · vGS −

(6.35)
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− grad Θ · 1
Θ

[qS + qL + qG] −

− ρ̂L[µL − µS ] − ρ̂G[µG − µS ] ≥ 0 .

Moreover, one can show that, in the case of the mixture equilibrium, the free
Helmholtz energy functions ψL and ψG do not depend on the relative velocities
vLS and vGS and of DL in (6.35) (see de Boer, 2000 a). Then,

D = −[p̂L − λ grad nL −
(
ρS ∂ψ̂S

∂ρL
+ ρG ∂ψ̂G

∂ρL

)
grad ρL +

+ ρL ∂ψ̂L

∂ρGR
grad ρGR] · vLS −

− [p̂G − λ grad nG + ρG ∂ψ̂G

∂ρL
grad ρL −

−
(
ρS ∂ψ̂S

∂ρGR
+ ρL ∂ψ̂L

∂ρGR

)
grad ρGR] · vGS −

− grad Θ · 1
Θ

[qS + qL + qG] −

− ρ̂L(µL − µG) − ρ̂G(µG − µS) ≥ 0 .

(6.36)

We assume that the expressions in the brackets depend on the set s (6.16) of
process variables.

Close to the mixture equilibrium state, we develop the first terms in a Taylor
series. In this connection the mixture equilibrium is defined by

vLS = 0 , vGS = 0 , grad Θ = 0 . (6.37)

Next we investigate the interaction forces p̂L and p̂G, which are obtained by a
Taylor series expansion:

p̂L − λ grad nL − ρS ∂ψ̂S

∂ρL
grad ρL − ρG ∂ψ̂G

∂ρL
grad ρL

= − βL grad Θ − SLvL − S̄GvG ,

p̂G − λ grad nG + ρG ∂ψ̂G

∂ρL
grad ρL

= − βG grad Θ − S̄LvL − SGvG ,

(6.38)
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where βL to SG are response function which depend on s0 = {ρL, ρGR, 0}.
In (6.38) we have neglected the influence of grad ρGR. The operation grad ρGR

as well as the derivatives of the free Helmholtz energy functions with respect to
ρGR are supposed to describe diffusion processes. However, this phenomenon
has not been discussed in this context yet.

Moreover, the heat flux vectors qα are determined by:

1
Θ

qS = − αSΘ grad Θ − ᾱLvL − ᾱGvG ,

1
Θ

qL = − αLΘ grad Θ − αLvL− =
αG vG ,

1
Θ

qG = − αGΘ grad Θ− =
αL vL − αGvG

(6.39)

with αSΘ through αG as response parameter.
It should be mentioned that, in order to gain the constitutive equations (6.38),

and (6.39), the principle of material objectivity has been used, which leads to
some restrictions for the response parameters introduced above (see de Boer,
2000 a).

The constitutive equations (6.25) and (6.26) as well as (6.27) and (6.28)
describe the mechanical behavior of the liquid and gas phases, where the gas
phase is the carrier for the droplets. In this model the interface “pressure” λ
can be identified according to (6.27) by the hydrostatic pressure pGR. If one is,
however, interested in a model in which the liquid phase is the carrier and the
gas is contained in the liquid phase as, e.g., bubbles, then one has to reformulate
a part of the entropy inequality and to replace the process variable ρL with nG.
This happens when a lot of droplets exist in the gas phase caused by water
supply from a reservoir and when the droplets unify. Then, gradually the liquid
becomes the carrier and the gas phase takes the form of bubbles. The onset of
the change of the carrier is still an open question. A first attempt to solve such
an “instable” behavior can be found in the book by Müller (1994).

That part A of the entropy inequality, which has to be reformulated, concerns
the following expressions in the third line of Inequality (6.21):

A = − (ρL)′L
ρL

[ρLρS ∂ψ̂S

∂ρL
+ (ρL)2

∂ψ̂L

∂ρL
+ ρLρG ∂ψ̂G

∂ρL
] . (6.40)

In the constitutive ansätze for the free Helmholtz energy functions ψS , ψL, and
ψG we replace ρL with nG, viz:

ψS = ψ̂S = ψ̄S , ψL = ψ̂L = ψ̄L , ψG = ψ̂G = ψ̄G , (6.41)

where
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ψα = ψ̄α(nS , ρSR , C̆S , nG , ρGR , vLS , vGS , Θ , grad Θ) . (6.42)

In order to reformulate A in (6.40) we have to find a relation between ρL and
nG. With (2.4) and the saturation condition (2.2) we have:

ρL = ρLRnL , nL = 1 − nS − nG . (6.43)

Bearing in mind that ρLR is constant due to the incompressiblity of the real
liquid we can easily express ρL by nG. From (6.43), after some manipulations
we obtain

nG = 1 − nS − ρL

ρLR
. (6.44)

With (6.44) and (6.43) we first calculate

(ρL)′L
ρL

=
(nL)′L

nL
=

1
nL

[− (nS)′S − (nG)′G +

+ gradnG · vGS − (gradnS + gradnG) · vLS ] .

(6.45)

Then, we manipulate the energy terms. We obtain with (6.44) the relation

∂ψα

∂ρL
=

∂ψ̄α

∂nG

∂nG

∂ρL
= − 1

ρLR

∂ψ̄α

∂nG
. (6.46)

Thus, with (6.45) and (6.46), we obtain for A in (6.40)

A = − 1
nL

[(nS)′S + (nG)′G − gradnG · vGS +

+(gradnG + gradnS) · vLS ]×

×
[
nLρS ∂ψ̄S

∂nG
+ nLρL ∂ψ̄L

∂nG
+ nLρG ∂ψ̄G

∂nG

]
(6.47)

or

A = −
(

nSρS ∂ψ̄S

∂nG
+ nSρL ∂ψ̄L

∂nG
+ nSρG ∂ψ̄G

∂nG

)
(nS)′S

nS
−

−
(

nGρS ∂ψ̄S

∂nG
+ nGρL ∂ψ̄L

∂nG
+ nGρG ∂ψ̄G

∂nG

)
(nG)′G

nG
+

+
(

ρS ∂ψ̄S

∂nG
+ ρL ∂ψ̄L

∂nG
+ ρG ∂ψ̄G

∂nG

)
gradnG · vGS +

+
(

ρS ∂ψ̄S

∂nG
+ ρL ∂ψ̄L

∂nG
+ ρG ∂ψ̄G

∂nG

)
(gradnG + gradnS) · vLS .

(6.48)
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From (6.21) in connection with (6.48) we obtain

−(nS)′S
nS

[pS + λ nS + nSρS ∂ψ̂S

∂nS
+ nSρL ∂ψ̂L

∂nS
+ nSρG ∂ψ̂G

∂nS
−

−nSρS ∂ψ̂S

∂nG
− nSρL ∂ψ̂L

∂nG
− nSρS ∂ψ̂G

∂nG
] −

−(ρSR)′S
ρSR

[pS + ρSRρS ∂ψ̂S

∂ρSR
+ ρSRρL ∂ψ̂L

∂ρSR
+ ρSRρG ∂ψ̂G

∂ρSR
] −

−(ρL)′L
ρL

[pL + λ nL] − (ρLR)′L
ρLR

[pL + κLR nL]+

+DD
S · [TSD − 2ρSJ

−2/3
S (FS

∂ψ̂S

∂C̆S

FT
S )D −

−2ρSJ
−2/3
S (FS

∂ψ̂L

∂C̆S

FT
S )D − 2ρSJ

−2/3
S (FS

∂ψ̂S

∂C̆S

FT
S )D] −

−(nG)′G
nG

[pG + λ nG − nG(ρS ∂ψ̄S

∂nG
+ ρL ∂ψ̄L

∂nG
+ ρG ∂ψ̄G

∂nG
)] −

−vLS · [p̂L − λ grad nL − ρS ∂ψ̂S

∂ρL
grad ρL − ρG ∂ψ̂G

∂ρL
grad ρL +

+(ρS ∂ψ̄S

∂nG
+ ρL ∂ψ̄L

∂nG
+ ρG ∂ψ̄G

∂nG
)(gradnG + gradnS)−

−(gradT vL)(ρS ∂ψ̂S

∂vLS
) + ρL ∂ψ̂L

∂ρGR
grad ρGR −

−(gradTvS)(ρL ∂ψ̂L

∂vLS
) − (gradTvS)(ρL ∂ψ̂L

∂vGS
) +

+(gradTvG) (ρL ∂ψ̂L

∂vGS
) − (gradTvL)(ρG ∂ψ̂G

∂vLS
)] −

−vGS · [p̂G − λ grad nG − ρG ∂ψ̂G

∂ρL
grad ρL −

−ρS ∂ψ̂S

∂ρGR
gradρGR − ρL ∂ψ̂L

∂ρGR
grad ρGR +

+(ρS ∂ψ̄S

∂nG
+ ρL ∂ψ̄L

∂nG
+ ρG ∂ψ̄G

∂nG
) gradnG −

−(gradT vG)(ρS ∂ψ̂S

∂vGS
) − (gradT vG)(ρL ∂ψ̂L

∂vGS
) −

−(gradTvS)(ρG ∂ψ̂G

∂vLS
) + (gradTvL)(ρG ∂ψ̂G

∂vLS
) −

(6.49)
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− (gradTvS)(ρG ∂ψ̂G

∂vGS
)] − Θ′

S [ρSηS + ρS ∂ψ̂S

∂Θ
] −

− Θ′
L[ρLηL + ρL ∂ψ̂L

∂Θ
] − Θ′

G[ρGηG + ρG ∂ψ̂G

∂Θ
] −

− gradΘ · 1
Θ

qS − gradΘ · 1
Θ

qL − gradΘ · 1
Θ

qG −

− [(vL)′L − (vS)′S ] · [ρS ∂ψ̂S

∂vLS
+ ρL ∂ψ̂L

∂vLS
+ ρG ∂ψ̂G

∂vLS
] −

− [(vG)′G − (vS)′S ] · [ρS ∂ψ̂S

∂vGS
+ ρL ∂ψ̂L

∂vGS
+ ρG ∂ψ̂G

∂vGS
] .

From Inequality (6.49) we get the new constitutive restrictions:

pG + λnG − ρS ∂ψ̄S

∂nG
− ρL ∂ψ̄L

∂nG
− ρG ∂ψ̄G

∂nG
= 0 ,

pL + κLRnL = 0 ,

pL + λnL = 0

(6.50)

or
pL + p nL = 0 , (6.51)

where we have identified the indeterminate quantity κLR, which is related to
the incompressibility of the real liquid, as the real liquid pressure p.

Moreover, we obtain a useful inequality G:

G = − [p̂L − λ gradnL − (ρS ∂ψ̂S

∂ρL
+ ρG ∂ψ̂G

∂ρL
) grad ρL +

+ ρL ∂ψ̂L

∂ρGR
grad ρGR − (ρS ∂ψ̄S

∂nG
+ ρL ∂ψ̄L

∂nG
−

− ρG ∂ψ̄G

∂nG
)(gradnG + gradnS ] · vLS − [p̂G − λ gradnG −

−ρG ∂ψ̂G

∂ρL
grad ρL − (ρS ∂ψ̂S

∂ρL
+ ρL ∂ψ̂L

∂ρGR
) grad ρGR +

+ (ρS ∂ψ̄S

∂nG
+ ρL ∂ψ̄L

∂nG
+ ρG ∂ψ̄G

∂nG
) gradnG] · vGS −

− grad Θ · 1
Θ

[qS + qL + qG] −

−ρ̂L(µL − µS) − ρ̂G(µG − µS) ≥ 0 .

(6.52)

In obtaining (6.52) we have introduced the same assumptions as in (6.36).
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6.5 Elastic Behavior of the Solid Skeleton
From the evaluation of the entropy inequality, it follows that, due to the

saturation constraint, constitutive equations must be developed for the effective
stresses, which are a part of the total stresses in the partial solid body. It was quite
natural that the first constitutive equations for the effective stresses in the porous
media theory were developed for the elastic behavior of the solid skeleton, since
the elasticity theory was the best developed theory for one-component continua,
in particular, within the geometrically linear theory.

a) Finite Theories

The forerunner of finite elasticity laws, Hooke’s law, which describes linear-
elastic behavior, is a creation of the 19th century. Later, within the framework
of the geometrically linear theory, the generalized Hooke’s law was extended
in such a way that non-linear deformations could also be included. A well-
known, non-linear elasticity law for small deformations has been introduced by
Kauderer (1958).

General non-linear elasticity laws to describe finite distortions have only been
developed in this century. The treatise of Murnaghan (1937) on finite elastic
deformations seems to be incomplete (see Truesdell and Noll, 1965). The efforts
of Mooney (1940) and Rivlin (1948), as well as Rivlin and Saunders (1951)
were, on the other hand, much more successful. A review of the development
of finite elasticity theory can be found in Truesdell and Noll (1965).

In extension of the Neo-Hooke model (Rivlin, 1948), Simo and Pister (1984)
developed a new elasticity law which contains two response parameters and
permits the description of large volumetric strains. All discussed elasticity
laws are related to the elastic behavior of non-porous solids. The conversion of
these laws to porous solids was performed by, among others, Morland (1972)
and Ehlers (1989 a). However, their contributions are based on simplified
models. This is also valid for the investigations of Bluhm and de Boer (1994).
Therefore, these papers will not be discussed.

In the meantime new contributions have clarified some issues in poroelas-
ticity with incompressible constituents. For example, Ehlers and Eipper (1997,
1999) developed within the framework of finite deformations the following hy-
perelastic equation of the Kirchhoff effective stress tensor, which is a weighted
stress tensor (τS

E = JSTS
E):

τS
E = µS(BS − I) +

+ λS(1 − nS
0S)2(

JS

1 − nS
0S

− JS

JS − nS
0S

)I ,
(6.53)

where µS and λS are the Lamé constants.
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It should be mentioned that if all pores are closed the compaction point is
reached due to the assumed incompressibility of the porous solid. Thus, with
(4.9), (2.4), (3.3), and nS

0S ≤ nS ≤ 1, the Jacobian is restricted by nS
0S < JS <

∞.
Ehlers and Eipper (1999) have shown that the Oldroyd stress rate is given by

(τS
E)∇ =:

4
C DS , (6.54)

where the fourth-order tensor
4
C for the model under study is represented by

4
C = 2α(I ⊗ I)

23
T + β(I ⊗ I) , (6.55)

with

α(JS) = [µS − λS(1 − nS
0S)JS

JS − 1
JS − nS

0S

] ,

β(JS) = λS [(1 − nS
0S)JS

J2
S − 2nS

0SJS + nS
0S

(JS − nS
0S)2

] .

(6.56)

Recall that in the case of incompressibility JS can be replaced by JSN , see
Eqs. (3.25) through (3.28), because JSR is equal to unity.

In the meantime Bluhm (1999, 2002) independently developed a non-linear
elasticity law for porous solids and extended this law to compressible solid
material behavior and thermal effects. For the solid stress due to temperature
changes, he chose a linear relation. In the incompressible case he arrived for
the Kirchhoff effective stress tensor at:

τS
E = 2µSJ

−2/3
S KD

S +

+ KSN
[
logJSN + 1 − 1

JSN − nS
0S

1 − nS
0S

(
nS

0S

JSN
− nS

0S)

]
I −

− 3αSKS(Θ − Θ0S)I ,

(6.57)

where KD
S is the deviator of the Karni-Reiner tensor KS =

1
2
(BS − I), µS

and KSN as well as KS are the shear modulus and compression moduli of the
skeleton and the mixture body, αS is the thermal expansion coefficient, and Θ
the absolute temperature.

b) Linear Theory

In order to show the relationship to Hooke’s law, Bluhm (1999, 2002) lin-
earized the constitutive equation (6.57),
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τS
E lin = −µS�B−1

S − 1
2

[
KSN 2(1 − nS

0S) + (nS
0S)2

1 − nS
0S

−

−2
3
µS
]
(�B−1

S · I)I − 3αSKS�ΘI ,

(6.58)

where

�B−1
S = B−1

S − B−1
S |P̂0

= B−1
S − I = − 2AS ,

�Θ = Θ − Θ|P̂0 = Θ−Θ0S
.

(6.59)

In (6.59) the symbol

(. . .)
∣∣∣P̂0

= (. . .)
∣∣∣
B−1

S = I, Θ = Θ0S

(6.60)

implies that the quantity (. . .) must be evaluated for B−1
S = I and Θ = Θ0S ,

whereby

τS
E |P̂0

= O . (6.61)

With (6.59) and (6.60), the linearized law of Hooke-type with respect to the
actual placement (6.58) can be reformulated as

τS
E lin = 2µSAS + [KSN 2(1 − nS

0S) + (nS
0S)2

1 − nS
0S

−

− 2
3

µS ](AS · I)I − 3αSKS(Θ − Θ0S)I .

(6.62)

In accordance with the linear theory of one component elastic material, the
response parameters µS ,

λS = KSN 2(1 − nS
0S) + (nS

0S)2

1 − nS
0S

− 2
3

µS (6.63)

and

KS = KSN 2(1 − nS
0S) + (nS

0S)2

1 − nS
0S

=
2
3

µS + λS (6.64)

will be interpreted as the macroscopic Lamé constants and macroscopic com-
pression modulus of the constituents ϕS . With this interpretation of the response
parameters µS , λS , and KS , the linearized constitutive relation (6.62) simplifies
to:
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τS
E lin = 2µSAS + λS(AS · I)I − 3αSKS(Θ − Θ0S)I

= 2µSAD
S + KS(AS · I)I − 3αSKS(Θ − Θ0S)I .

(6.65)

Furthermore, Bluhm (1999, 2002) developed a corresponding constitutive equa-
tion for the symmetric Piola-Kirchhoff stress tensor

SS
E lin = 2µSES + λS(ES · I)I − 3αSKS(Θ − Θ0S)I

= 2µSED
S + KS(ES · I)I − 3αSKS(Θ − Θ0S)I .

(6.66)

It should be mentioned that the linearization of τS
E in the form (6.65) only

makes sense for moderate deformations where the elastic tangent does not vary
too much; in other words, it is a useful approximation.

Finally, for two elastic porous solids with the porosities in the reference
placement nS

0S = 0.8 and nS
0S = 0.2, the free Helmholtz energy function ψS

and the effective hydrostatic stress state pS
E in dependence of JSN =

nS
0S

nS
for

C̆S = I and Θ = Θ0S are depicted (see Fig. 6.5.1).

Fig. 6.5.1: Representation of the free Helmholtz energy and
the effective hydrostatic stress
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c) Other Approaches

Cieszko and Kubik (1997) developed non-linear and linear constitutive re-
lations for fluid-saturated porous elastic solids undergoing purely mechanical
deformations. Based on thermodynamic considerations, they arrived at the
constitutive equation

∗
TS = − pI + 2ρSRF

∂êS

∂C
FT , (6.67)

where

∗
TS =

1
nS

TS , p = (ρLR)2
∂êL

∂ρLR
(6.68)

with ρSR and ρFR as the real densities, TS as Cauchy’s stress tensor as well
as êS and êF as the internal energies for the fluid and the porous skeleton (The

statement by Ciezko and Kubik, that
∗
TS in (6.68) is defined as the effective

stress tensor in the skeleton, which is due to Morland, cannot be held in light of
the modern porous media theory, see de Boer, 1996). Ciezko and Kubik (1997)
specialized (6.67) and (6.68)2 to linear constitutive relations for fluid-filled
elastic porous media with anisotropic and isotropic properties of the skeleton.
Finally, they compared their results with the Biot relations.

However, this procedure is questionable; as stated earlier, Biot’s poroelas-
ticity is an ad-hoc approach, which does not consider the main principles of
continuum mechanics.

Ehlers and Volk (1999) developed, in their treatise on localization phenom-
ena in liquid-saturated and empty porous solids, constitutive equations for the
effective stress TS

E and the couple stress tensor MS :

TS
E = [2µS 4

I sym +2µS
C

4
I skw +λS (I ⊗ I)]εsce , (6.69)

where

4
I sym =

1
2
[(I ⊗ I)

23
T + (I ⊗ I)

13
T ] ,

4
I skw =

1
2
[(I ⊗ I)

23
T − (I ⊗ I)

13
T ] .

(6.70)

In (6.69) and (6.70),
4
I sym and

4
I skw are fundamental tensors of the fourth-

order. The response parameters µS and λS are the Lamé constants of the solid
phase, and µS

C is an additional response parameter describing the influence of
the skew-symmetric part of the elastic Cosserat strain εsc on the effective stress
TS

E .
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For the couple stress tensor MS , Ehlers and Volk (1999) used the simplified
constitutive equation

MS = 2µS (lSC)2κ̄se (6.71)

after de Borst (1991). Therein, lSC can be interpreted as an internal length scale
parameter.

Giovine (1999) presented a linear theory of porous elastic solids. He de-
scribed the goal of his contribution as follows: “... we propose the suitable
constitutive properties for a porous elastic material which does not conduct
heat, including a rate effect in the microstructural response due to inelastic sur-
face effects associated with pore compaction and distention, and establish the
restrictions imposed on these equations by thermodynamical considerations.”
In these considerations, Giovine (1999) assumed the following set of process
variables s := {FS ,US , GradS US , Θ} (where US = US(Xα, t) is the
microstructural tensor field describing the changes in the porestructure) for the
set R of response functions: R(s, U̇S) := {ψS , ηS ,TS ,ZS ,ΣS} (where ZS

is the conjugate variable associated with US , and ΣS the microstress third-
order tensor associated with GradS US). From his evaluation of the entropy
inequality, Giovine (1999) obtained certain restrictions for the response func-
tions stated above. Then, he presented his constitutive relations in the linear
case: “The constitutive equation for the linear theory of a porous elastic ma-
terial with empty large voids which do not diffuse through the matrix are the
following:

TS = (λStr ES + ωS
5 trVS)I + 2µSES + ωS

6 VS .” (6.72)

Corresponding constitutive equations (extended versions with numerous re-
sponse parameters) were added by Giovine (1999) for the response functions
ΣSandZS . In (6.72), ES is the linearized Green strain tensor andVS := US−I
a symmetric tensor, describing microscopic deformation characteristics. The
response parameters are denoted by λS , µS (Lamé constants), and ωS

5 as well
as ωS

6 .
From the balance equations of mass, linear momentum, and micromomen-

tum, Giovine (1999) derived the equations of motion.
He concluded his paper with two sections on quasi-static homogeneous de-

formations and small-amplitude acoustic waves using the constitutive equations
developed by him.

The whole paper remains in many parts obscure. Giovine (1999) does not
explain the statement in the beginning of his paper cited above, namely that he
considered “rate effect in the microstructural response due to inelastic surface
effects associated with pore compaction and distension.” How can a porous
elastic solid possesses inelastic properties? Also, the introduction of the balance
equation for microscopic momentum seems to be artificial and the solution of
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this balance equation for well-defined initial and boundary value problems will
become difficult. Moreover, the introduction of many response parameters are
not well physically founded.

New contributions to the different elastic models, namely incompressible,
compressible, and hybrid models, are contained in the book of de Boer (2000
a). For a binary model, consisting of an elastic incompressible or compressible
skeleton and an incompressible or compressible fluid, the following results are
obtained in the case of a purely hydrostatic stress state pαR in the real material.

The main results will be summarized in the following paragraphs: For the
incompressible and compressible solid materials

pSR = − κSR , pSR = − (ρSR)2
∂ψS

∂ρSR
, (6.73)

and for the incompressible and compressible fluid materials

pLR = − κLR = − p ,

pLR = − (ρLR)2
∂ψL

∂ρLR

(6.74)

are obtained where κSR as well as κLR and p, respectively, are unknown La-
grange multipliers and where

pαR =
1
nα

pα . (6.75)

Moreover, the hydrostatic pressure pSR can also be expressed by the fluid
pressure pLR and the configuration pressure pcon.

pSR = pLR − pcon , pcon = ρS ∂ψS

∂nS
. (6.76)

With the constitutive Eqs. (6.73) through (6.76), the mechanical behavior of the
aforementioned different models for hydrostatic stress states can be described.

The corresponding constitutive equations for empty porous elastic solids can
be gained from the above stated constitutive relation by setting pLR equal to
zero.

A few remarks will be made concerning the configuration pressure pcon. For
a binary model, consisting of solid and fluid phases, the configuration pressure
is caused by the “intergranular” forces (see Baer and Nunziato, 1986). In a
binary model, consisting of a liquid and a gas (bubbles), the corresponding
“configuration pressure” can be interpreted as the surface tension of the bubble.
In a similar way, in the binary model with gas (air) and droplets (water), the
“configuration pressure” of the water can be seen as the surface tension of the
droplet and the surface tension of the bubbles.
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6.6 Elastic-Plastic Behavior of the Solid Skeleton
The consideration of plastic material behavior in the theory of porous media

happened relatively late, namely when already some elasticity theories had
been developed. The first investigations in the plastic region of porous solids go
back to de Boer and Kowalski (1983). However, these were based on simplified
kinematics and elements of Biot’s theory. Further investigations with this model
by de Boer and Kowalski (1985, 1986) as well as de Boer and Ehlers (1986
a) are referred to metallic porous solids. In 1986, de Boer and Ehlers (1986
b) abandoned the described model and made consequent use of the mixture
theory restricted by the concept of volume fractions. Ehlers (1989) developed
with this model and de Boer’s (1988) failure condition for brittle and metallic
porous solids a simplified plasticity theory. Finally, de Boer and Brauns (1990)
completed the first developments in the creation of a consistent plasticity for
porous solids.

Today, based on several articles by the Essen school of mechanics a complete
elasto-plasticity is available (see Bluhm et al., 1996).

a) General Theory

The development of an elastic-plasticity theory for porous materials with sat-
urated pores has made great progress in recent time as indicated in the preceding
paragraph. From thermodynamic considerations and the saturation constraint,
it follows (as in the elasticity theory) that the constitutive equations must be
formulated with effective stresses.

For convenience we follow the notations in de Boer (1988, 2000 a, b,) as
well as de Boer and Brauns (1990) and Jägering (1998) and replace Cauchy’s
stress tensor with the symmetric Piola-Kirchhoff stress tensor in the sections
on elasto-plasticity. This is only approximately valid within the frame-work of
the geometrically linear theory, see Eq. (6.66). Otherwise one has to consider
certain transformation rules.

It is quite natural that the first elastic-plastic theories were derived within
the geometrically linear framework. In this framework, the development of
constitutive equations for elastic-plastic behavior is based on the additive de-
composition of the linearized Green strain ES :

ES = ESe + ESp , (6.77)

in which, ESe and ESp are the elastic and plastic parts of ES . In plasticity
theories the plastic part ESp is determined by constitutive relations. Then, the
elastic part ESe can be obtained from (6.77). From thermodynamic investiga-
tions (see e.g. Ehlers 1989 a,b; de Boer and Lade, 1991) it follows that the
stress tensor SS can be additively split into

SS = − nSpI + SS
E , (6.78)
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where p is the hydrostatic pressure of the incompressible and inviscid fluid, and
SS

E the effective stress which can be derived from the following constitutive
equation:

SS
E = ρS

0S

∂ψS

∂ESe
, (6.79)

whereby ρS
0S is the partial density of the solid phase in the reference placement of

ρS . Moreover, the entropy inequality yields an important dissipation inequality
which restricts the constitutive relation for the rate of the plastic strain tensor:

(ESp)′S · (SS
E − ZS) ≥ 0 . (6.80)

In (6.80) the second-order tensor ZS denotes the so-called backstress tensor,
which strongly depends on the deformation history.

Whereas the description of the elastic behavior of porous media, within the
framework of the constitutive theory, is characterized by the consideration of
the deformation gradient (or due to invariant requirements, by other kinematic
quantities), the description of plastic response is governed by the total defor-
mation process. Thus, the total deformation process has to be known, since the
response of porous media to different loading processes is different.

It is well-known that the classical plasticity theory is based, first, upon a
yield condition that indicates the onset of plastic deformations and describes
the hardening range and the failure state; second, upon the consistency condi-
tion; third, upon loading criteria that are gained from the consistency condition
and the assumption of stable material behavior; and fourth, upon the flow rule
that connects strain increments with stresses and stress increments. The consti-
tutive relations must reflect test observations and thermodynamic restrictions.
The main feature of the test results and the thermodynamic restrictions is the
indication of kinematic hardening, which has to be described by a tensor con-
taining all the information on the deformation history of the skeleton. However,
test results also reveal that isotropic hardening is involved. Thus, the main aim
of the following investigations is to elaborate on this behavior.

The yield condition marks the onset of plastic deformations when a deter-
mined stress state is achieved. This condition is material-dependent of course.
Therefore, a constitutive relation is necessary and is understood to separate
the elastic and plastic ranges at a stage where no plastic deformations have oc-
curred (initial yield condition), as well as in the hardening and failure states. As
pointed out, thermodynamic investigations reveal that for the saturated porous
solid, the constitutive equations have to be formulated with the effective stresses,
and therefore also the yield condition.

The plastic behavior of porous bodies depends strongly on the structure of
the solid material. In contrast to metals, granular and brittle materials show a



Constitutive Theory 63

completely different behavior in extension and compression tests. Due to the
complex behavior of granular and brittle materials (empty porous solids) in the
plastic range, several different yield conditions have been developed (see, e.g.,
the review in de Boer, 2000 a).

Yield condition

The yield function has to be constructed in such a way that it reflects all relevant
test observations and invariant requirements. In the hardening range in partic-
ular, it has to depend on the deformation history, which will be denoted by the
symbol HS (see Fromm, 1933). At the onset of plastic deformations and in the
failure state the yield function does not depend on the deformation history, and,
therefore, HS becomes zero and a constant value. The yield function, generally
assumed to depend on the stress tensor SS

E , is a scalar function, and is described
by

Y = Y (SS
E ,HS) . (6.81)

If the deformation history HS is known, Y depends only on SS
E :

Y = Y(HS)(S
S
E) . (6.82)

HS is equal to zero, especially for the state at the onset of plastic deformation
which is free from the deformation history, and

Y = Y(0)(S
S
E) = F (SS

E) . (6.83)

The failure state also does not depend on the deformation history. In this
case, HS is to be considered as a constant C:

Y = Y(C)(S
S
E) = F (SS

E) . (6.84)

At the onset of plastic deformations, the yield function F (SS
E) (6.83) depends

on the invariants of SS
E , if the material under discussion is isotropic. This is not

always valid for the other forms of (6.81). However, it is possible to express
Y = Y (SS

E ,HS) with a scalar valued function H , which is invariant against
rotations, that is

Y = Y (SS
E ,HS) = H(SS

E − ZS) , (6.85)

where ZS is the so-called backstress or translation tensor depending on the
stress SS

E and the deformation history HS . It is possible to replace H with
F , and in this case SS

E is returned through ZS to its initial state. Thus, in the
following, yield functions of the kind

Y = Y (SS
E ,ZS) = F (SS

E − ZS) (6.86)
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are considered, especially those that are represented by the invariants of the
stress difference

S̄ = SS
E − ZS . (6.87)

Then

Y = F (IS–, IIS–, IIIS–) , (6.88)

or

Y = F (IS–, IIS–D, IIIS–D) , (6.89)

is assumed.
The above yield functions are limited if the plastic state is attained, i.e.,

Y = F (IS–, IIS–, IIIS–) = 0 (6.90)

or

Y = F (IS–, IIS–D, IIIS–D) = 0 . (6.91)

For the discussion of proposed yield functions the geometric representation
is very useful (see Fig. 6.6.1). The representation of these functions in the
hydrostatic and octahedral planes gives useful information for the parameters
involved, see de Boer (2000 a). Moreover, the geometric representation some-
times gives many hints for improving the yield function in so far as the yield
function can be better adjusted to test results.

It can be seen that, in a geometric representation, yield functions that are
located inside the Mohr-Coulomb lines and are adjusted to the plane deviatoric
stresses can describe the test results. In this case, the convexity of the yield
function is ensured. In geometric representation, the backstress tensor causes
a translation of the center of the yield condition, with all the other properties
remaining unchanged. Thus, all known yield conditions for granular and brittle
materials can be used for kinematic-hardening, if the stress tensorSS

E is replaced
by the difference tensor S̄, according to (6.87). In this sense, the yield function

F =
√

Φ(1 + γϑ)1/m + βIsS
E

+ εI2SE
S − κ = 0 ,

Φ = IISE
SD +

1
2
α2I2SE

S , ϑ =
IIISE

SD

√
Φm

√
IIm-3

SSD
E

,

(6.92)

developed by de Boer (1988), extended by de Boer and Dresenkamp (1989),
as well as by Bluhm (1994), can also be formulated in the above defined stress
subspace S̄ = SS

E − ZS :



Constitutive Theory 65

Fig. 6.6.1: Yield function with α = 0.0775, β = 0.274,

ε = 0.0003 mm2

N
, κ = 10.27 N

mm2 , γ = 1.299,

m = 3 (S1, S2 and S3 are principal stresses)

F =
√

Φ̄(1 + γϑ̄)1/m + βIS– + εI2
S
– − κ = 0 ,

Φ̄ = IIS–D +
1
2
α2I2

S
– , ϑ̄ =

IIIS–D√
Φ̄m

√
IIm-3

S–D .

(6.93)

The six quantities α, β, γ, ε, κ, and m, in (6.92) and (6.93), are response pa-
rameters which have to be adjusted to test observations. In the special case of
m = 3, the yield condition results in the approach of de Boer and Dresenkamp
(1989).

It is well-known, in the classical plasticity theory for metallic materials, that
the second invariant of the stress state IISD or IIS̄D is a circle in the graphic
representation in the deviatoric plane. The term (1 + γϑ)m, or (1 + γϑ̄)m,
governs the typical shape of the yield surface of frictional materials in the
deviatoric plane. In particular, the right choice of the parameter m allows
the correct approach to the Mohr-Coulomb failure condition. Moreover, the

incorporation of
1
2
α2I2S or

1
2
α2I2S̄ into Φ or Φ̄ guarantees the influence of the

first invariant of the stress tensor on the deviatoric shape of the yield surface.
This is an essential feature in the plasticity theory of frictional materials. It
is easily recognized that a hydrostatic pressure has to influence the deviatoric
shape of the yield surface. For example, loose sand under low hydrostatic
pressure will exhibit another shape in the deviatoric plane than sand under
high hydrostatic pressure. Furthermore, the parameters β and ε, as well as the
parameter α2, govern the form of the yield surface in the hydrostatic plane.
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The response parameters may depend on the plastic deformation history.
If this is the case, then the yield condition (6.93) represents a combination of
kinematic and isotropic hardening. The above-stated yield condition is therefore
very general. It is suitable for describing the onset of plastic deformations as
well as the plastic hardening range, or the failure state of kinematically and
isotropically hardening brittle and granular skeletons, including the effects of
compression and extension.

The great advantage of the yield condition (6.92) is that this condition rep-
resents a “single-surface” condition. Thus, no cap-model is needed to limit the
yield curve in the hydrostatic plane. Further discussions of the yield condition
introduced here are contained in the papers of de Boer (1988), de Boer and
Dresenkamp (1989), de Boer and Lade (1991), as well as Bluhm (1994) and
Bluhm et al. (1996). In these papers, the convexity of the yield condition (6.92),
in particular, is investigated.

Finally, it should be mentioned that the general yield condition (6.92) con-
tains some special cases of yield conditions. If the response parameters γ and
ε are equal to zero, we obtain a yield condition proposed earlier by de Boer
(1986). With α, γ, and ε being equal to zero, the condition (6.92) converts to
the failure condition of Drucker and Prager (1952). Moreover, if γ, β, and ε are
neglected, the general yield condition turns into the yield condition of Green
(1972). Finally, with α, γ, β, and ε equal to zero, the famous yield condition
of von Mises (1913) is realized.

Let us now turn again to the yield function (6.93). In order to include isotropic
hardening, we assume that the response parameters α, β, γ, ε, κ, and m are
functions of the plastic work W . We choose

α = α(W ) , β = β(W ) , γ = γ(W ) ,

ε = ε(W ) , κ = κ(W ) , and m = m(W ) ,

(6.94)

where the rate of the plastic work is given by

DW = SS
E · DESp . (6.95)

In classical plasticity theory, the constitutive equations are, in part, formulated
in the time rates. However, the constitutive relations do not explicitly depend on
time. Therefore, in (6.94) and in the sequel, we use only the rates, for example,
DW and DESp.

Kinematic hardening is described by the backstress tensor ZS . According
to Fromm (1933), we propose a general ansatz:

ZS = C1(SS
E ,HD

S )HD
S + C2(SS

E ,HS)IHS
I . (6.96)



Constitutive Theory 67

The tensor of deformation history HS is strongly influenced by the plastic
deformations due to experience. The following relation for the rate of HS may
be appropriate:

DHS = f(ϕ, DESp)DESp , (6.97)

where f(ϕ, DESp) has to be a positive scalar value function, depending on
the plastic strain rates and on the angle of internal friction ϕ. Relation (6.97)
is similar to Fromm’s (1933) general approach. However, Fromm’s relation
depends only on the deviatoric strain rates, while the function f depends on
the stresses and the strain rates. It has already been proven by de Boer and
Brauns (1990) that the angle of internal friction of the Mohr-Coulomb theory
can serve as a parameter for describing the hardening process. Although the
Mohr-Coulomb theory deals only with the failure state, the above-mentioned
procedure is promising.

In the general formulas (6.96) and (6.97), the approaches of Melan (1938),
Eisenberg and Phillips (1968), and de Boer and Brauns (1990) – representing
an extended version of the Eisenberg and Phillips formula – are contained as
special cases. It has been shown by de Boer and Brauns (1990) in a long paper,
that the extended version efficiently describes (for the backstress tensor) the
test results gained by Lade (1979), which are the basis for many theoretical
investigations.

Bluhm (1994) transferred the ansatz for the backstress tensor ZS (6.96) to
the geometrically non-linear case, where the backstress tensor is represented as
a function of the plastic part of the Karni-Reiner strain tensor. In an example, he
showed the path of the backstress tensor for a fictitious loading and unloading
process. The results fit very well to the test observations of many experiments
described in the literature. Thus, the proposed yield condition seems to be
suited to serve as a basis for a plasticity theory of frictional materials.

Consistency condition

As has already been mentioned, in order to describe the mechanical behavior
of a plastically deformed solid, the consistency condition has to be formulated.
If the consistency condition is fulfilled, the plastic flow continues.

The condition of consistency states that, if the yield condition is fulfilled, it
must also be satisfied after a step. Thus, the condition of consistency guarantees
plastic deformations:

∂F

∂S̄
· DS̄ +

∂F

∂W
DW = 0 , (6.98)

or, using (6.86),

∂F

∂S̄
· DSS

E =
∂F

∂S̄
· DZS − ∂F

∂W
· DW . (6.99)
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If the stress state satisfies (6.93), plastic deformations can occur. If, however,

F < 0 , (6.100)

there will be no plastic deformations.
We use (6.95), (6.96), and (6.97) to explicitly determine the consistency

condition (6.99). After elementary – albeit lengthy and laborious – calculations,
we arrive at

∂F

∂S̄
· DSE

E = (M − N) · DESp , (6.101)

where

N =
∂F

∂W
SS

E ,

M = f(ϕ, DESp)
( ∂ZS

∂HS

)T ∂F

∂S̄
,

(6.102)

∂F

∂S̄
=

1
2

(Φ̄)−1/2(1 + γϑ̄)1/m (S̄D + α2IS–I) +

+
1
m

(1 + γϑ̄)
1−m

m γ {[(Φ̄)−
m−1

2 (S̄DS̄D − 2
3

IIS–DI) −

− m

2
Φ̄−m+1

2 (S̄D + α2IS–) IIIS–D](IIS–D)
m−3

2 +

+
m − 3

2
Φ̄−m−1

2 IIIS–D(IIS–D)
m−5

2 S̄D} + (2εIS– + β)I ,

(6.103)

and
∂F

∂W
=

1
2
(Φ̄)−1/2 I2

S
– α(1 + γϑ̄)1/mα,W +

+
1
m

(1 + γϑ̄)
1−m

m [ϑ̄γ,W +

+ Φ̄−m+2
2

√
IIm-3

S–SD IIIS–D I2
S
– mα α,W ] +

+ IS– β,W +I2
S
– ε,W +κ,W

(6.104)

with (. . .),W marking the partial derivative with respect to W . The tensor N
results from the assumption of isotropic hardening, see (6.94) and (6.95), and
the tensor M is calculated from the ansätze for kinematic hardening, see (6.96)
and (6.97).

A modified yield function was introduced by de Boer, Ehlers and Bluhm
(1991) for finite deformations (see also de Boer and Lade, 1991, and Ehlers,
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1995). The modification consists of an additional term δ2I4SE
and the simplifi-

cation of the expression ϑ , namely ϑ =
IIID

II 3/2
D

, where the invariants IIID and IID

are formulated with the deviator of the effective Kirchhoff stress tensor. This
modification has some disadvantages. The modified version of (6.92) contains
seven response parameters instead of six. Moreover, in ϑ the first invariant of
the stress tensor is not contained. As previously mentioned the influence of the
hydrostatic pressure on the deviatoric shape of the yield surface for granular
media cannot be described. Thus, we will not further discuss the modification
of (6.92).

Bluhm (1994) transferred (6.92) to the case of finite deformations and for-
mulated the invariants of the stress state with the Kirchhoff stress tensor. He
showed that the number of response parameters in (6.92) can be reduced to five
assuming that m = 4,5. In this case, the shape of the yield curve in the deviatoric
plane for low hydrostatic stress states becomes more triangular, and one obtains
a better adaption to test observations, see also Bücker and Bluhm (1994).

Ehlers and Volk (1997 a,b, 1999) extended the modified version of the yield
condition (6.92) to micropolar cohesive frictional materials (see Ehlers and
Volk, 1999):

F c = φ1/2 + βITE
S + εI2TE

S − κ = 0 ,

φ = IITE sym
SD (1 + γϑ)m +

1
2
αI2TE

S + δ2I4TSD
E sym

+

+ k1MS · MS + k2IITE skw
S ,

ϑ =
IIITE sym

SD

(IITE sym
SD )3/2

.

(6.105)

“In this representation, {α, β, γ, δ, ε, m, κ, k1, k2} is a set of nine material pa-
rameters, ITE

S, IITE sym
SD and IIITE

SD are the first and deviatoric (negative) second

and third principal invariants of the symmetric part of the effective stress TS
E ,

whereas IITE skw
S defines the second principal invariant of the skew-symmetric

part of TS
E (We use the original notation of Ehlers and Volk, 1999; a confusion

with the notations chosen by the author seems to be improbable):

ITE
S = TS

E · I , IITE sym
SD =

1
2
TSD

E sym · TSD
E sym ,

IITE skw
S =

1
2
TS

E skw · TS
E skw ,

IIITE sym
SD =

1
3
TSD

E sym · TSD
E sym TSD

E sym .”

(6.106)
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It should be mentioned that the two terms in (6.105) connected with the
material parameters k1 and k2 (describing micropolar effects) are also contained
in Ehlers and Volk (1997 a,b). However, in this paper they are not related to φ
but to κ. The reason for this change is discussed by Ehlers and Volk (1998), who
justified it by saying that “the influence of micropolarity has been included into
the function φ in order to additionally govern the deviatoric shape of F .” Again,
the shape of the yield surface is not dependent on the hydrostatic pressure.

Loading criteria

Now, the loading criteria will be formulated:
F = 0 and

∂F

∂S̄
· DSS

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0 loading DESp �= O ,

= 0 neutral state DESp = O ,

< 0 unloading DESp = O .

(6.107)

In the case of ideal-plastic behavior (critical state), the loading criteria take the
forms:

F = 0 and

∂F

∂S̄
· DSS

E

⎧⎨⎩ = 0 neutral state DESp �= O ,

< 0 unloading DESp = O .

(6.108)

As has already been mentioned, the yield condition (6.93) is very general, with
six response parameters, including the description of kinematic and isotropic
hardening. It depends on the problem as to which response parameters have
to be considered in order to correctly describe the plastic behavior. Moreover,
for kinematic hardening, some simplifications can be introduced if the charac-
teristic stress-strain curve is nearly linear, and, for isotropic hardening, some
response parameters may be constant, or may depend on the problem under
study.

The set of constitutive relations will be completed with the development of
the flow rule.

Flow rule

In order to describe the complete motion of an initial and boundary value prob-
lem, a constitutive equation for the rates DESp of the plastic strains of the
partial solid constituent (flow rule) is needed. This constitutive equation must
also reflect the deformation history according to test observations. This will be
done in such a way that the flow rule will be formulated in the special stress
space created with the stress difference S̄, see (6.87). In continuum mechanics
of isotropic materials in general it is stated that the change of the strain deviator
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and the volume change are completely independent of each other. Here, the
same statement is introduced and a relatively simple flow rule is formulated:

DESp = Dλ[S̄D + µ(S̄ · I)I] , (6.109)

where Dλ is a spatial-dependent scalar and

µ = µ(IS–, IIS–D) (6.110)

is a function governing the volume change. There is no reason for the flow rule
to have another form. Neither the test results nor the theoretical investigations,
indicate this as necessary. The formulation of the flow rule with a plastic
potential widely used for geomechanical materials can only be understood from
the practical point of view. On the one hand, it is easy to construct such a
potential because, in the geometric representation the potential lines are always
perpendicular to the strain rate directions observed in tests results. On the other
hand, a lot of software based on the plastic potential concept already exists.

The quantities Dλ and µ must always be positive due to the restriction (6.80)
in connection with the relation (6.109). The scalar value function Dλ in (6.109)
can be determined from the condition of consistency (6.101), in connection with
(6.102), (6.103), and (6.104). For the function µ, a backstress-dependent equa-
tion is required, since µ has to reflect the deformation history. The following
relation seems to be reasonable:

µ = δ(ϕ)IS– + ξ(ϕ)
√

IIS–D , (6.111)

where the material-dependent parameters δ(ϕ) and ξ(ϕ) are assumed to depend
on the angle of internal friction ϕ. As has been proven by de Boer and Brauns
(1990), it seems reasonable to use the angle of internal friction which, although
introduced for the failure state as a constant, also exists in the hardening range as
a parameter. The following approaches for determining δ and ξ yield excellent
results (see de Boer and Brauns, 1990):

δ = − m1[sin(ϕB − ϕ)]k , (6.112)

ξ = − m2[sin(ϕB − ϕ)]k (k = 1, 2, 3, . . .) . (6.113)

Here, the factors m1 and m2 denote parameters which are a result of the ad-
justment of the flow rule to special test results, and ϕB represents the angle
of internal friction in the failure state; the exponent k influences the shape of
the curve of the volume change in the hardening range. For the special case of
exclusive contracted volume changes due to hydrostatic pressure, the parameter
ξ has to be dropped. In general however, the sum of the terms of the right-hand
side of (6.111) causes a sign change of the function µ with increasing hardening
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due to IS̄ < 0, so that through the appropriate choice of the parameters m1, m2,
and k, the size of the region of the contracted volume changes can be adjusted
to the test results (see the extensive discussions in de Boer and Brauns, 1990,
as well as in de Boer and Lade, 1991).

The flow rule (6.109) was transferred to finite deformations by Ehlers (1991)
and Bluhm (1994). Moreover, Ehlers and Volk (1999) extended the consid-
erations concerning the formulation of the flow rule to frictional micropolar
skeleton materials (see also Ehlers and Volk, 1997 a,b, 1998). They proceeded
from the assumption that the Cosserat strain εsc (3.56)1 can be additively split
into elastic and plastic parts. In this case, it follows from (3.60) that κ̄S can
also be additively decomposed:

εsc = εsce + εscp ,

κ̄s = κ̄se + κ̄sp .
(6.114)

For the plastic part of the Cosserat strain, Ehlers and Volk (1999) introduced
an evolution equation in the form

(εscp)′S = Λ
∂Gc

∂TS
E

, (6.115)

where Λ is the usual plastic multiplier and Gc an additional plastic potential
function:

Gc = Γ1/2 + βITE
S + εI2TSD

E sym
− g(ITE

S) = 0 ,

Γ = IITE sym
SD +

1
2
αITE

S + δ2I4TSD
E sym

+ k2IITE skw
S .

(6.116)

In view of the flow rule (6.115), Ehlers and Volk (1999) stated: “In good
accordance with experimental data, this relation predicts coaxial behaviour of
the deviatoric part of (εscp)′S . Concerning the volumetric part, the function
g(ITS

E
) is chosen in such a way that the direction of (εscp)′S , in the brittle range,

approximately lies in the middle between the associated and the deviatoric
direction. In the ductile range and at the top of the yield surface, g(ITS

E
)

predicts associated behaviour...”
From (3.60) and (6.115) the rate of the plastic part of the curvature tensor

κ̄s is gained:

(κ̄sp)′S =
1
2

3
E [GradS(εscp)′S +

+ Grad
13
T
S (εscp)′S − Grad

23
T
S (εscp)′S ]2 .

(6.117)

Thus, with (6.69), (6.70), and (6.71), as well as constitutive equations for
εscp and κ̄sp with (6.115), (6.116), and (6.117), the total Cosserat strain and
curvature tensor can be formulated considering (6.114).
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The flow rule (6.109) was reformulated and extended by Bluhm (1994) within
the framework of kinematic hardening in order to describe finite deformations.
He consequently proceeded from the intermediate placement and formulated
the flow rule with the symmetric part of the plastic velocity gradient, the Kirch-
hoff stress tensor, and the corresponding backstress tensor. To what extent the
extension of the flow rule (6.109) with the deviator of the tensor product of the
stress difference (6.87) is an improvement of (6.109) was not discussed.

b) Special Stress-Strain Relations

With the development of the constitutive relations for the elastic and plastic
strain rates DESe and DESp of the solid skeleton (see Chapter 6.5), we are able
to construct a corresponding relation for DES according to (6.66) for non-polar
materials. For the elastic and plastic states, we have the constitutive equations
(6.66) (without thermal effects) and (6.109)

DESe = (
4

KS)−1DSS
E ,

DESp = Dλ[S̄D + µ(S̄ · I)I] .

(6.118)

In (6.118), the fourth-order symmetric tensors
4

KS and (
4

KS)−1 are given by:

4

KS = 2µS(
4
I +

νS

1 − 2νS

4

Ī) ,

2µS =
ES

1 + νS
,

(
4

KS)−1 =
1

ES
[(1 + νS)

4
I −νS

4

Ī] ,

(6.119)

where, in (6.66), the Lamé constants have been replaced by Young’s modulus

ES and Poison’s ratio νS . Moreover,
4
I and

4

Ī denote fourth-order identity
tensors (see de Boer, 1982).

The multiplier Dλ is obtained from the consistency condition. After some
calculations, we have

Dλ =
∂F

∂S̄
· DSS

E{[S̄D + µ(S̄ · I)I] · (M − N)}−1 . (6.120)

Thus, considering (6.118) through (6.120), we arrive with (6.77) at

DES = {(
4

KS)−1 +

+
[S̄D + µ(S̄ · I)I] ⊗ ∂F

∂S̄
[S̄D + µ(S̄ · I)I] · (M − N)

}DSS
E .

(6.121)
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With the hardening parameter

h = [S̄D + µ(S̄ · I)I] · (M − N) (6.122)

and with

(
4

PS)−1 = (
4

KS)−1 +
1
h

[S̄D + µ(S̄ · I)I] ⊗ ∂F

∂S̄
, (6.123)

we obtain, instead of (6.121),

DES = (
4

PS)−1DSS
E . (6.124)

In the next step, we are concerned with the inversion of (6.124). We commence
with the constitutive relation for the rates of ES (6.121). With the hardening
parameter h (6.122), we can write

DES = {(
4

KS)−1 +
1
h

[S̄D + µ(S̄ · I)I] ⊗ ∂F

∂S̄
}DSS

E (6.125)

or

DES = (
4

KS)−1DSS
E +

+
1
h

[S̄D + µ(S̄ · I)I](∂F

∂S̄
· DSS

E) .

(6.126)

With (6.118)2 and (6.122), we can express the loading condition (6.107) by the
following relation:

1
h

∂F

∂S̄
· DSS

E = Dλ . (6.127)

Now, the stress-strain relation (6.126) will be multiplied by
4

KS ∂F

∂S̄
considering

(6.127):

DES ·
4

KS ∂F

∂S̄
= (

4

KS)−1DSS
E ·

4

KS ∂F

∂S̄
+

+ Dλ[S̄D + µ(S̄ · I)I]·
4

KS ∂F

∂S̄
.

(6.128)

The first term on the right-hand side of (6.128) reduces, due to the symmetry

of
4

KS , to:

(
4

KS)−1DSS
E ·

4

KS ∂F

∂S̄
= (

4

KS)T (
4

KS)−1DSS
E · ∂F

∂S̄

=
∂F

∂S̄
· DSS

E .

(6.129)
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Thus, from (6.128), considering (6.127) and (6.129), we obtain another version
of the multiplier Dλ:

Dλ =
DES ·

4

KS ∂F

∂S̄

h+
4

KS ·[S̄D + µ(S̄ · I)I] ⊗ ∂F

∂S̄

. (6.130)

Moreover, we again return to Eq. (6.126), considering (6.127):

DES = (
4

KS)−1DSS
E + Dλ[S̄D + µ(S̄ · I)I] , (6.131)

and applying the fourth-order elasticity tensor
4

KS , we get:

4

KS DES =
4

KS (
4

KS)−1DSS
E +

+
4

KS [S̄D + µ(S̄ · I)I]Dλ .

(6.132)

Equation (6.132) will be rearranged and, with (6.130), leads to

DSS
E =

4

PS DES (6.133)

with

4

PS =
4

KS −
4

KS [S̄D + µ(S̄ · I)I]⊗
4

KS ∂F

∂S̄

h+
4

KS ·{[S̄D + µ(S̄ · I)I] ⊗ ∂F

∂S̄
}

. (6.134)

The “elastic-plastic tangent” (6.134) is important for numerical calculations of
initial and boundary value problems.

Note in passing that for ideal-plastic behavior, e.g., in the critical state of
soils, the hardening parameter h disappears. Since, in this case, the loading
criterion is also equal to zero, see (6.108), an undetermined term arises in the
constitutive equation for DES (6.126). In the constitutive equations for DSS

E
(6.133), along with (6.134), however, this indefiniteness disappears.

Finally, it can be stated that the fourth-order tensor (
4

PS)−1 in (6.123) is

indeed the inverse tensor to
4

PS in (6.134) and that

4

PS (
4

PS)−1 =
4
I (6.135)

is valid.
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Finite elastic-plastic deformations have been addressed by many authors,
e.g. by Bluhm (1994) and Ehlers (1989 a, b, 1991). Basis of the finite elasto-
plasticity is Lee’s multiplicative decomposition of the deformation gradient
into an elastic and plastic part. This procedure and the complex elastic and
plastic constitutive equations for the strain measurements containing the elastic
properties and the plastic effects with hardening and the loading history lead
to a vast formalism which makes a closed theory very difficult. Therefore, the
usual way to calculate elastic-plastic behavior in the finite range of boundary
and initial value problems is to incorporate the constitutive equations and the
balance equations into numerical simulations.

6.7 Viscous Behavior of the Solid Skeleton

A great variety of organic and living solid matrices show time-dependent
properties, such as increasing or decreasing stresses and deformations. Living
tissues in particular, exhibit a distinct viscous behavior (see, e.g., Mow et al.,
1990). However, plastic or other artificially created porous media like concrete,
can also show viscous properties (see Lenk, 1971).

It seems that, in the porous media theory, the viscoelastic or viscoplastic
behavior of porous solids have only been treated in a few contributions. One
can state that the viscoelasticity and viscoplasticity theories have not reached
the high standard that the elasticity and plasticity theories within the theory
of porous media have, although in classical continuum mechanics, for one-
component materials, general schemes for such mechanical behavior exist (see
Truesdell and Noll, 1965, Noll, 1974, Haupt, 1977). However, the constitutive
theory within the porous media theory is rather complex (see the preceeding
sections), so it is understandable that a general constitutive theory for saturated
porous solids with time dependent properties does not yet exist.

The greatest progress in describing viscous behavior has been made within
the range of linear viscoelasticity in the field of biomechanics. Mow et al.
(1990) stated concerning the flow independent (intrinsic) viscoelastic behav-
ior of the solid matrix: “The previous discussions on hydrated soft tissues
have focused on how interstitial fluid flow influences the viscoelastic creep
and stress-relaxation behavior of cartilage, meniscus and intervertebral disc
materials. Interstitial fluid flow always occurs when these tissues are com-
pressed or stretched since a volume change always occurs, or when a pressure
gradient is applied. However, when these tissues are subjected to the action
of pure shear, no volume change occurs and no pressure gradients exist; thus
no interstitial fluid flow occurs. When tissue specimens are subjected to pure
shear, the response is that offered by the intrinsic viscoelasticity of the collagen-
proteoglycan solid matrix... For pure shear experiments on cartilage, we have
found that the quasi-linear viscoelastic (QLV) model proposed by Fung (1972,
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1981) provides an excellent theory to describe the response of the collagen-
proteoglycan solid matrix.”

We refer in this treatise to Fung (1993), who proceeded from the Boltz-
mann formulation of viscoelasticity. After discussing the one-dimensional
case, he developed a linear viscoelastic law (convolution integral) for the three-
dimension stress and strain state within the framework of the geometrically
linear theory “with infinitesimal displacements, strains, and velocities”:

TS
E(x, t) =

t∫
−∞

4

GS ∂ES

∂τ
dτ (6.136)

or its inverse

ES(x, t) =
t∫

−∞

4

JS ∂TS
E

∂τ
dτ , (6.137)

where the fourth-order tensor
4

GS (x, t − τ ) is called the relaxation function

and the tensor
4

JS (x, t − τ ) is called the creep function.
“Note that the lower limit of integration is taken as −∞, which into means

that the integration is to be taken before the very beginning of motion. If the
motion starts at time t = 0, and TS

E = O,ES = O for t < 0, then Eq. (6.136)
reduces to” (the notations of Fung (1993) have been changed by the author in
order to conform to modern standard):

TS
E(x.t) =

4

GS (x, t)ES(x, 0+) +

+
t∫

0

4

GS (x, t − τ )
∂ES

∂τ
(x, τ )dτ .

(6.138)

In this equation, ES(x, 0+) “is the limiting value of ES(x, t) when t → 0
from the positive side. The first term in Eq. (6.138) gives the effect of initial
disturbance: it arises from the jump of ES(x, t) at t = 0. If the strain history
contains other jumps at other instants of time, then each jump calls for an
additional term similar to the first term in Eq. (6.138).”

After stating the fundamental equations of viscoelasticity (in the Bolzmann
version), Fung discussed in greater detail the case where biological tissues are
subjected to periodic oscillations. This case is important in experimentally
determining the viscoelastic properties. Finally, he discussed the use of vis-
coelastic models.

In Setton et al. (1993) the extended viscoelasticity theory of Mak (1986)
(which is capable of describing both the flow-dependent and flow-independent
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mechanism of viscoelasticity in articular cartilage) was analyzed experimen-
tally. Readers who are interested in further details of the viscoelasticity theory
are referred to Houben (1996), in which several references are listed.

Recently Ehlers and Markert (2001) discussed viscoelastic deformations in
fluid-saturated solids.

The transfer of various kinds of viscoplasticity theories to saturated and
empty porous solids seems not to have taken place, in general. There are only
a few known papers which are concerned with the description of viscoplastic
behavior in the porous media theory, e.g., Diebels et al. (1996) discussed a spe-
cial case in viscoplasticity theories, namely the rate dependent plastic behavior
of geomaterials under dynamic loading, extending the classical approach for
metalic materials by Perzyna (1966).

Rubin et al. (2000) developed a model to describe the elastic-viscoplastic de-
formations of porous materials and constructed restrictions from thermodynam-
ics. Moreover, Ekh et al. (2000) included thermal effects in their investigations
of viscoplastic porous solids.

6.8 Thermomechanical Behavior of Porefluids
We will consider only simple fluids which are isotropic by definition. Within

the framework of simple fluids, there are many ansätze to describe the thermo-
mechanical behavior of the fluids. In this section, however, we will discuss
only a few of them.

The difficulty in formulating consistent constitutive equations for porefluids
arises from the fact that one has to possibly combine quantities on the micro-
scopic level namely the real hydrostatic pressure in the porefluid, with those
on the macroscopic level, namely, the symmetrical part of the partial velocity
gradient (for non-Newtonian and Newtonian fluids).

a) Inviscid Porefluids

Let us consider inviscid porefluids first. From thermodynamic restrictions
(see, e.g., de Boer, 2000 a), it turns out that the partial stress tensor of the fluid
TL can be represented by the simple formula

TL = − nLpI , (6.139)

where p is the porefluid pressure. From a historical point of view, it is interesting
to note that Fillunger (1936) had already correctly determined the partial stress
tensor of the fluid by applying the cut principle and the Dellessian law; this
law states that the surface porosity is equal to volume porosity if the pores are
statistically distributed.

For incompressible porefluids, the hydrostatic pressure cannot be determined
by a constitutive equation, but it can be obtained with the help of the balance
equation of momentum for the fluid phase and the incompressibility constraint.
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For compressible porefluids the hydrostatic porefluid pressure can be ex-
pressed by constitutive equations which relate the porefluid pressure to the
density and the temperature. For example, an ideal gas is characterized by the
constitutive relation for p (linear in ρGR and ΘG):

p = R̄ρGRΘG , R̄ =
R

M
, (6.140)

where M is the molecular weight of the gas, R is the so-called gas constant
(the same for all ideal gases), ρGR is the density of the ideal gas and ΘG is
the absolute temperature of the fluid. The general constitutive equation for the
porefluid pressure p results from thermodynamic considerations (see, e.g., de
Boer, 2000 a) with the free Helmholtz energy function ψG:

p = (ρGR)2
∂ψ̂G

∂ρGR
, ψG = ψ̂G(ρGR, ΘG) . (6.141)

With an appropriate ansatz for ψ̂G, considering test observations, the porefluid
pressure can be determined from (6.141)1.

b) Viscous Porefluids

We may begin our discussion with a constitutive assumption of a non-linear
viscous fluid in which the response functions for the free Helmholtz energy ψL

and the partial stress tensor TL (we will not mention other response functions;
for a complete thermodynamic treatment, see, e.g., de Boer, 2000 a) depend on
the variables

s = {ρLR, ΘL,DL} . (6.142)

Thus,

ψL = ψ̂L(ρLR, ΘL,DL) ,

TL = T̂L(ρLR, ΘL,DL) .
(6.143)

We must note here that the corresponding mechanical theory of a one-component
fluid characterized by T = T̂(ρ,D) is known as the Reiner-Rivlin fluid.

The general representation of the response function for TL is, according to
Truesdell and Noll (1965),

TL = − nLpI + κ0I + κ1DL + κ2(DL)2 , (6.144)

where p is a function of the real density ρLR and where the coefficients κ0, κ1,
and κ2 are functions of the temperature ΘL and of the partial density ρL =
nLρLR, as well as of the three principal invariants of DL. In the linear case,
Eq. (6.144) simplifies to
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TL = − nLpI + κ0I + κ1DL . (6.145)

For

κ0 = λLtrDL , κ1 = 2µL , (6.146)

where λL and µL are constants, Eq. (6.145) turns into the corresponding version
of the Navier-Stokes equation.

It is worth mentioning that, in the case of an incompressible porefluid, the
hydrostatic pressure p is not determined by a constitutive equation. Moreover,
trDL does not vanish (as in the Navier-Stokes equation for a one-component
fluid) due to the change in pores.

A special form of (6.145) is used by Fung (1993) for the description of the
flow of blood (as a one-component material):

T = − pI + 2
◦
µ (J2)D , (6.147)

where

J2 =
1
2
D · D =

1
2
I21 − II2 , (6.148)

with T, J2, and
◦
µ denoting the stress tensor, the difference of half of the square

of the first invariant I1 and the second invariant I2 of symmetrical part of the
velocity gradientD, and a response function of the real blood body, respectively.
This constitutive equation can be transferred to the partial fluid body by an
extended version of (6.147)

TL = − nLpI + λLtrDLI + 2
◦
µLDL , (6.149)

where λL and
◦
µL can depend on the first and second invariants of DL, possibly

in the version (6.148). However, in order to verify (6.149), experimental and
numerical investigations are necessary.



Chapter 7

FUNDAMENTAL EFFECTS IN GAS- AND LIQUID-
FILLED POROUS SOLIDS

7.1 Introduction

There is no field in continuum mechanics which shows such a variety of
typical effects as porous materials filled with liquid and/or gas. Due to the
enormous influence of the liquid and gas in the pores on the porous solid phase
and quite the contrary there arises such effects as uplift, friction, capillarity,
effective stresses and phase transitions.

The fundamental effects in saturated porous solids – uplift, friction, capillar-
ity, and effective stress – were the main subjects of investigation into saturated
porous media in the first half of this century (see the extensive discussion by
de Boer, 2000 a). However, the theoretical foundation of these effects was
established more or less intuitively and was in no way based on profound me-
chanical or thermodynamic principles. This was impossible at the time be-
cause the porous media theory and the constitutive theory within continuum
mechanics, with all the restrictions gained from the objectivity principle and
thermodynamic considerations, were all still awaiting further research. With
the development of the first porous media theories, on the basis of the mixture
theory and the volume fraction concept in the late 1970s and the beginning of the
1980s, a tool was provided to examine the aforementioned effects theoretically.
This was done by de Boer and Ehlers (1988, 1990a), who were able to confirm
some results on the uplift and friction problems as well as on the effective stress
concept which had been intuitively stated in the early stages of the development
of the porous media theory, and thereby were able to correct some statements
in older literature. However, the investigations of de Boer and Ehlers were
based on a binary model by Bowen (1980) with incompressible constituents.
Even though such a model can describe the basic effects quite accurately, it is
advisable to investigate the above stated physical phenomena on the basis of

81
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a more general model (developed in the last five years). This ternary model
contains not only incompressible, but also compressible constituents.

It is the goal of the following investigations to derive main features of the
fundamental effects uplift, friction, capillarity, effective stresses and phase tran-
sitions.

7.2 Basic Equations
For the following investigations the balance equations of momentum for the

individual constituents are necessary. They read as:

div Tα + ραbα + p̂α = ραaα + ρ̂αvα . (7.1)

In (7.1) Cauchy’s stress tensor is denoted by Tα for the constituent ϕα, where
α = S (solid), L (liquid), and G (gas), and the external acceleration is indicated
by bα. The quantitites aα and vα contain the acceleration and velocity of a
material point of the individual constituents ϕα. Moreover, ρα is the partial
density, which is related to the real density by

ρα = nαραR , (7.2)

with nα being volume fractions, which depend on the position vector x marking
the place x and the time t. The volume fractions have to satisfy the volume
fraction condition

nS + nL + nG = 1 . (7.3)

The interaction volume forces between the constituents are marked by p̂α. They
are restricted by

p̂S + p̂L + p̂G = 0 . (7.4)

The mass supply terms ρ̂α, which come from the mutual exchange of mass
between the constituents are constrained, namely

ρ̂S + ρ̂L + ρ̂G = 0 . (7.5)

Furthermore, constitutive equations are required for Cauchy’s stress tensor
of the individual constituents and for the interaction forces between the solid
and liquid phases and between the gas and liquid phases.

For the elastic porous solid phase Cauchy’s stress tensor is determined by

TS = − nSpI + TS
E , (7.6)

where p is the real hydrostatic pressure of the liquid and where the effective
stress TS

E is given by the motion of the capillary-porous solid:
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TS
E = 2ρSFS

∂ψS

∂CS
FT

S . (7.7)

In (7.7), FS denotes the deformation gradient, CS the right Cauchy-Green
deformation tensor, and ψS the free Helmholtz energy function of the solid
phase. The stress states of the inviscid liquid and the partial gas phases turn
out to be simple:

TL = − nLpI , TG = − nGpI + TG
E or TG = −nGpGRI (7.8)

with the effective stress

TG
E = pG

EI = ρG ∂ψG

∂nG
I , pGR = (ρGR)2

∂ψG

∂ρGR
. (7.9)

In (7.9), ψG is the free Helmholtz energy functions of the gas phase.
Finally, the interaction forces should be addressed.

p̂L = p gradnL + p̂L
E , p̂G = p grad nG + p̂G

E , (7.10)

where

p̂L
E = − t̂S − t̂G − βΘ grad Θ − βL

V vLS − βG
V vGS , (7.11)

and

p̂G
E = − t̂G − γΘ grad Θ − γL

V vLS − γG
V vGS , (7.12)

with

t̂S = ρS ∂ψS

∂ρL
grad ρL, t̂G = ρG ∂ψG

∂ρL
grad ρL . (7.13)

In (7.11) and (7.12) the response parameters βΘ, γΘ, βL
V , βG

V , and γG
V , γL

V ,
which have to reflect test observations, were introduced.

The new constitutive equations for the capillary forces t̂S and t̂G (see de Boer
and Didwania, 2000, 2002, 2004) contain the free Helmholtz energy functions
of the solid and gas phases, which depend on the liquid density, as well as the
gradient of the liquid density. They reflect the adhesion forces between the solid
or gas phases and the liquid constituent in small films between the constituents.

7.3 Uplift
The hydrostatic uplift is a weight reducing force in the direction opposite to

the weight which a body immerged in fluid, undergoes, if the fluid is subjected to
gravity. The weight reducing force is caused by the pressure of the surrounding
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medium which increases with the depth of the fluid. The uplift problem in a
fluid medium is an old one. It is first investigations go back to Archimedes who
developed a principle which carries his name. This principle states that a body
in a fluid suffers a lost in weight, which is equal to the amount of fluid displaced
by the body.

In the porous media theory it was Fillunger (1913) who pioneered the the-
oretical treatment of uplift. Although the structure of his uplift formula was
correct the result was wrong. This formula was corrected by von Terzaghi and
Rendulic (1934). However both authors did not go as far back as Archimedes.
Rather they discovered their formulas with the aid of obscure theoretical and
experimental verifications.

Today the uplift theory is well based on the fundamentals of the Theory
of Porous Media. However, investigations were restricted to a binary model.
In recent times a more sophisticated model, namely a ternary model with in-
compressible and compressible constituents is being used for the theoretical
foundations of the uplift problem.

Based on the above-mentioned new findings in the constitutive theory of
unsaturated and saturated porous media, the phenomenon uplift will be clarified
for a ternary model.

In order to be able to compare the new results with classical solutions we
will sum up Cauchy’s first equations of motion (7.1). Choosing the notation

T = TS + TL + TG (7.14)

and introducing the external acceleration of gravity

bα = g , (7.15)

as well as considering (7.4), we arrive at:

div T + (ρS + ρL + ρG)g = ρSaS + ρLaL + ρGaG

+ ρ̂SvS + ρ̂LvL + ρ̂GvG .
(7.16)

Using (7.3), (7.6), (7.8), (7.9), and (7.14), we obtain from (7.16) that

div TS
E − grad p + grad pG

E + (ρS + ρL + ρG)g

= ρSaS + ρLaL + ρGaG + ρ̂SvS + ρ̂LvL + ρ̂GvG .

(7.17)

The partial densities ρα can be replaced by the real densities ραR according to
(7.2). In addition, the real densities ραR are related to the specific weight γαR:

γαR = ραR |g | . (7.18)
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Using (7.18) and considering the saturation condition (7.3) as well as (7.2), the
equation of motion for the mixture body (7.17) can be rearranged:

div TS
E − grad p + grad pG

E + γLR g
| g | + nS(γSR − γLR)

g
|g | +

+ nG(γGR − γLR)
g

| g |
=

1
| g |γ

LRaL +
1

| g |n
S(γSRaS − γLRaL) +

+
1

| g |n
G(γGRaG − γLRaL) + ρ̂SvS + ρ̂LvL + ρ̂GvG .

(7.19)

We assume that the gravity field g can be derived from a potential U :

g = − grad U . (7.20)

It is advisable to introduce the pressure head h:

h =
p

γLR
+

U

| g | . (7.21)

It should be mentioned that (7.21) is valid in the flow zone with the pressure
p. However, Eq. (7.21) is also valid in the capillary zone with a hydrostatic
suction if p is replaced by − pt (suction).

From (7.19), considering (7.20) and (7.21), we obtain

div TS
E − γLR grad h + grad pG

E + nS(γSR − γLR)
g
|g | +

+ nG(γGR − γLR)
g

| g |
= ρLRaL + nS(ρSRaS − ρLRaL) +

+ nG(ρGRaG − ρLRaL) + ρ̂SvS + ρ̂LvL + ρ̂GvG .

(7.22)

In deriving (7.22) we have assumed that γLR is spatially constant.
It is recognized that the left-hand side of (7.22) contains two terms describing

the specific weights of the solid and gas phases reduced by uplift. Following
this, the uplift forces kUS and kUG in the solid and gas media are given by

kUS = − nSγLR g
| g | , kUG = − nGγLR g

| g | . (7.23)

Neglecting the gas phase, Eq.(7.23)1 can be reformulated considering the sat-
uration condition (7.3):
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kUS = (nL − 1)γLR g
| g | . (7.24)

If one assumes gradh = 0, that is, the simplest case in the pure static state,
one can conclude from (7.21), (7.20), and (7.24) that

kUS = (nL − 1) grad p , (7.25)

grad p = γLR g
| g | = const. (7.26)

It is recognized from (7.22) and (7.25) that the unreduced uplift force is effective
according to the principle of Archimedes.

7.4 Friction
The first investigations concerning the friction phenomenon, which occurs

during the flow of liquid through a saturated porous solid, was carried out by
Fillunger (1914). He stated a formula for the friction force which referred to
the volume-element and described the friction force as being dependent on the
poreliquid pressure.

Similar formulas were derived by Hoffman (1929) as well as by von Terzaghi
and Rendulic (1934).

The friction in the flow zone is determined in Eq. (7.22), whereby we
neglected the influence of the gas phase:

kL = − γLR grad h , (7.27)

or, respectively, by using (7.21) and (7.20),

kL = − grad p + γLR g
| g | . (7.28)

The relations (7.27) and (7.28) are however, only valid if the temperature
gradient and the inertia effects, see Eq. (7.29), are neglected.

It should be mentioned that the uplift force is always effective. The friction
force only occurs if grad h �= 0, i.e. in the case of flow processes in the flow
zone or in the case of vaporization processes at the downstream face of the
suction zone.

In order to also include the dynamic behavior of the liquid phase we have to
consider the equation of motion of the liquid phase. From (7.1) in combination
with the constitutive equations (7.8), (7.10)1, and (7.11) we obtain:

− grad p + γLR g
| g | − 1

nL
βΘ grad Θ −

− 1
nL

βL
v vLS − 1

nL
βG

v vGS = ρLRaL +
1

nL
ρ̂LvL .

(7.29)
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From (7.29), it is recognized for the lingering flow of the liquid (neglecting
the inertia effects and the mass supply) that in the flow zone the friction force

kL =
1

nL
βΘ grad Θ +

1
nL

βL
v vLS +

1
nL

βG
v vGS (7.30)

can be expressed by

kL = − grad p + γLR g
| g | . (7.31)

In this relation the influence of capillarity in small pores has also been neglected.
In reality, due to the inclination of the capillary force at the walls of the solid
skeleton there is a force perpendicular to the wall, which can cause a consid-
erable friction force according to Coulomb. As of now this effect has not been
investigated.

7.5 Capillarity
In physics capillarity is understood as the behavior of moving liquids in

narrow tubes and pores owing to external surface stresses. These surface stresses
are as a result of the so-called van der Waal’s forces or other surface forces acting
amongst the molecules. Molecules of the same kind produce inner forces of the
same size with the result that the van der Waal’s forces in the inner region of the
liquid are in equilibrium. These inner forces are responsible for the cohesion of
the phase and are denoted with cohesion forces. On the limit surface to another
phases the equilibrium is disordered and the phenomenon of surface stresses
arises (adhesion). In general, the amount of adhesion- and cohesion forces are
different.

Capillarity is a well-known phenomenon in physics and engineering. The
term denotes the transport of liquids against the force of gravity in narrow tubes,
cracks and pores caused by the intermolecular forces of cohesion and adhesion
of the constituents involved. If the forces of adhesion between the liquid and the
tube wall are greater than the forces of cohesion between the molecules of the
liquid, then the liquid will rise. According to an encyclopedia (Zedler, 1733), in
the early stages of the development of mechanics, the capillarity phenomenon
was discovered in either France or in Italy. However, the capillary phenomenon
was already described by Leonardo da Vinci around 1500 (see Lücke, 1940),
but was not physically founded owing to the lack of physical principles. In the
early stage of mechanics in the eighteenth century, it was already recognized that
in the gravity field, the capillary rise of water in a narrow tube was inversely
proportional to the diameter of the tube. Moreover, the cause of capillary
motion, namely adhesion, had been known as early as 1733. It was also found
that the capillary effect did not occur for non-moistening liquids like mercury.
Although all these phenomena and their explanations were known, it was the
sharp-witted Laplace (1806) who first calculated the capillary pressure on the
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microscopic level. A hypothesis was introduced that a jump condition at a
surface exists which separates homogenous fluids of different densities. In
1805, Young derived an expression for the static contact angle (Young, 1805).
The dynamic aspects of capillarity were first analyzed by West (1912) and later
by Washburn (1921) as well as Kozeny (1927).

Further approaches follow, in general, the fundamental work of Kozeny with-
out substantial new improvements (see, e.g., Cammerer, 1963).

In this section we will deal exclusively with the rise of liquids in porous bodies
due to the capillarity phenomenon. This occurs in many different branches of
engineering and biology ranging from soil mechanics and building physics to
biomechanics.

The transient and stationary rise of liquids from a reservoir in porous solids
with small pores is complex and has not been described by any satisfactory
phenomenological mathematical model until now. One has to pay attention
to the fact that capillarity is an effect on the microscopic level. In order to
develop a phenomenological mathematical model one has to bring this effect
to the macroscopic level. This is relatively simple in the static case, neglecting
the inertia effects and the velocities in the determination of the capillarity rise,
as has been shown by de Boer and Ehlers (1990 a). For transient problems,
however, a mechanical description of the motion is complicated and it seems
that this task has not yet been satisfactorily resolved. In the present work we will
use a recently developed continuum mechanical description of the capillarity
problem (de Boer and Didwania, 2000, 2002, 2004) and show that the classical
description is contained in the new approach.

a) Basic Relations

Recalling the basic feature of the capillary problem, namely, the occurence of
the rise of water in a narrow tube due to an interaction force between the solid
phase of the tube and the water. Such an interaction force must also exist in
a saturated porous solid with small interstitial pores. However, the Laplace-
Young model is not appropriate for the description of the capillary phenomenon
in porous solids, even if the porous solid is replaced by a model consisting
of a bundle of narrow tubes. In order to develop a consistent mathematical
model, the ensured basic relations of the macroscopic porous media theory
should be applied. The only interaction forces between the three constituents
ϕα are the interaction forces p̂S , p̂L and p̂G, which should describe the cause
of the capillary rise of water in porous solids. In an extended thermodynamic
investigation (see Chapter 6), constitutive equations for the stresses of the three
phases, for the heat flux vector and for the interaction forces in particular (see
also de Boer and Didwania, 2000, 2002, 2004) have been developed. Their
constitutive equations for the interaction forces p̂L and p̂G read as:
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p̂L = p grad nL − ρS ∂ψ̂S

∂ρL
grad ρL − ρG ∂ψ̂G

∂ρL
grad ρL − SLvL ,

p̂G = p grad nG − ρG ∂ψ̂G

∂ρL
grad ρL − SGvG ,

(7.32)

where ψ̂S and ψ̂G denote the free Helmholtz energy function of the solid and
gas phases. For convenience we have replaced βL

v and βG
v with SL and SG

In (7.32) it is assumed that the velocity of the rigid porous solid is equal to
zero, the temperature is constant, and the mutual influence of both constituents
concerning the frictional forces is neglected.

The new constitutive relations represent a remarkable improvement of al-
ready existing constitutive equations in the porous media theory. The first
terms on the right-hand side of (7.32) are due to the saturation condition (7.3),
which is well-known in literature, and the last terms are referred to Darcy’s law.
The other terms, connected with the density gradient of the liquid, show the
interaction between the solid and liquid phases as well as that between the gas
and liquid phases. These terms consider the variation of the density in space
and are therefore suitable for describing the capillary phenomenon which is
caused in narrow tubes by adhesion, which is described macroscopically by a
jump in the densities of the constituents involved.

The transient capillary motion of a liquid in a liquid- and gas-filled rigid
porous solid is described locally by the equation of motion (7.1):

divTL + ρLg + p̂L = ρLaL + ρ̂LvL . (7.33)

With the constitutive equations (7.8)1 and (7.11)1 in consideration of (7.13),
Eq. (7.33) can be reformulated:

− grad(nLp) + ρLg + p grad nL −

− (ρS ∂ψ̂S

∂ρL
+ ρG ∂ψ̂G

∂ρL
) grad ρL − SLvL = ρLaL + ρ̂LvL

(7.34)

or

− grad p + ρLRg − 1
nL

(t̂SL + t̂LG) grad ρL − 1
nL

SLvL

= ρLRaL +
1

nL
ρ̂LvL ,

(7.35)

where the influence of the temperature and the friction between the gas phase
and the porous solid has been neglected.
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Moreover, the abbreviations

t̂SL = ρS ∂ψ̂S

∂ρL
, t̂LG = ρG ∂ψ̂G

∂ρL
, (7.36)

see (7.13), have been introduced. The scalar quantities t̂SL and t̂LG can be
interpreted as hydrostatic stress states between the solid and liquid phases as
well as between the gas and liquid phases. As to how the free Helmholtz en-
ergy functions ψS and ψG depend on the density of the liquid, this point will
be clarified by experiments and numerical investigations. In order to make the
equation of motion (7.35) more transparent, we choose a rectangular coordinate
system x1, x2, and x3 as well as the basis vectors e1, e2, and e3. Applying dif-
ferential calculus to the equation of motion (7.35) the following vector equation
is obtained:

− p,i ei − ρLRge3 − 1
nL

(t̂SL + t̂LG)ρL
,i ei − 1

nL
SL(xi)′L ei

= ρLR(xi)′′L ei +
1

nL
ρ̂L(xi)′L ei ,

(7.37)

where (. . .),i denotes the partial derivative with respect to xi (i = 1, 2, and 3).
The summation rule is valid, i.e. if the index i appears twice, it must be summed
up from 1 to 3. It should be mentioned that the capillary flow is effective in
all three directions due to the capillary force. For comparison with Kozeny’s
(1927) results, we will examine the one-dimensional capillary motion in a tube
below .

b) One-Dimensional Capillary Motion

The one-dimensional capillary rise is governed in the e3-direction by

− p,3 − ρLRg − 1
nL

(t̂SL − t̂LG)ρL
,3 − 1

nL
SL(x3)′L

= ρLR(x3)′′L +
1

nL
ρ̂L(x3)′L .

(7.38)

In the third term on the left-hand side of (7.38) use is made of the fact that the
capillary forces in the e3- direction have opposite directions.

In what follows, we replace the material time derivative (. . .)′L with ˙(. . .)

and (. . .),3 with
∂(. . .)
∂x3

. Then, for the component in the e3-direction we have:

− ∂p

∂x3
− ρLRg +

1
nL

(t̂SL − t̂LG)
∂ρL

∂x3
− 1

nL
SLẋ3

= ρLRẍ3 +
1

nL
ρ̂Lẋ3 .

(7.39)
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Moreover, we exclude mutual mass supplies ρ̂β . Thus the equation of motion
reduces to

− ∂p

∂x3
− ρLRg − 1

nL
(t̂SL − t̂LG)

∂ρL

∂x3
− 1

nL
SLẋ3

= ρLRẍ3 .

(7.40)

We integrate the equation of motion (7.40) over a cross-section A of the tube
from x3 equal to zero through the temporary capillary rise s:

−
∫

(A)

s∫
0

∂p

∂x3
dx3 dA −

∫
(A)

s∫
0

ρLRgdx3 dA −

−
∫

(A)

s∫
0

1
nL

(t̂SL − t̂LG)
∂ρL

∂x3
dx3 dA −

∫
(A)

s∫
0

1
nL

SLẋ3dx3 dA

=
∫

(A)

s∫
0

ρLRẍ3dx3dA +
∫

(A)

s∫
0

ρLRẋ3ẋ3 dA .

(7.41)

The second term on the right-hand side of (7.41) results from a mass supply of
a reservoir.

The integration leads to

[p(s) − p(0)]A − ρLRg s A −
∫

(A)

s∫
0

(t̂SL − t̂LG)
∂ρL

∂x3
dx3 dA −

−(
s∫

0

SLẋ3dx3)A = ρLR(
s∫

0

ẍ3dx3)A + ρLR(
s∫

0

ẋ3ẋ3)A ,

(7.42)

where we have assumed that all quantities are constant over the cross-section
and over x3, with the exception of t̂SL and t̂LG in the third term on the left-hand
side of (7.42), and where we have considered that nL is equal to unity. In the
next step we elaborate on the third term of the left-hand side of the equation of
motion (7.42):

I =
∫

(A)

s∫
0

(t̂SL − t̂LG)
∂ρL

∂x3
dx3 dA . (7.43)

In the classical capillarity theory it is assumed that a small film which separates
homogeneous fluids of different densities, namely liquid and gas, exists at the
surface of the liquid in a narrow tube. This means that there is a jump in the
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Fig. 7.5.1: Force analysis at the meniscus in a narrow tube.

density distribution (see Fig. 7.5.1). In this case the gradient of the liquid
density ρL equals unity and the integral exists only in the small film between
s+ and s− (see Fig. 7.5.1).

With grad ρL equal to plus and minus unity, instead of (7.43), for the inner
integral we obtain

I1 = −
s+∫

s−

(t̂SL − t̂LG)dx3 . (7.44)

In the e3-direction at the wall the membrane forces are assumed to be constant.
This assumption is in accordance with the corresponding assumption in the
shell theory for membrane forces. It follows that

I1 = −{[t̂SL(r) − t̂LG(r)]x3}s+

s− ,

I1 = −[t̂SL(r) − t̂LG(r)](s+ − s−) .

(7.45)

We call the components of the external forces in the e3-direction

t̂SL(r)(s+ − s−) = tSL (7.46)

and

t̂LG(r)(s+ − s−) = tLG . (7.47)
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In general, the forces tSL = tSLe3 and tLG = tLGe3 are not measurable.
However, the norms of the forces can be replaced equivalently by (see Fig.
7.5.1):

tSL − tLG = tS cos ϑ . (7.48)

It should be mentioned that tSL, tLG, and tS are the norms of the forces per unit
length in e3-and a1-directions, which act only at the boundary of the meniscus,
and not over the whole cross-section. In order to determine the total external
force at the boundary of the meniscus we have to replace

∫
(A)

dA with 2πr in

(7.43), where r is the radius of the tube. Thus, we can express the integral
(7.43) by

I = (tSL − tLG)2πr (7.49)

or, considering (7.48), by

I = tS cos ϑ2πr . (7.50)

With A = πr2 and (7.50), Eqs. (7.44) and (7.42) can be reformulated:

−[p(s) − p(0)]πr2 − ρLRgsπr2 + tS cos ϑ2πr −

− SLṡsπr2 = ρLRs̈sπr2 + ρLRṡṡπr2 ,

(7.51)

or

−[p(s) − p(0)] − ρLRgs +
2tS

r
cos ϑ − SLṡs

= ρLRs̈s + ρLRṡṡ .

(7.52)

After some rearrangement we arrive at

d2s2

dt2
+ m

ds2

dt
+ 2gs + n = 0 (7.53)

with

m =
SL

ρLR
, n =

2
ρLR

[p(s) − p(0)] − 4tS

rρLR
cos ϑ . (7.54)

Eq. (7.53) corresponds to Kozeny’s (1927) differential equation, with the ex-
ception that p(s) and p(0) are missing in Kozeny’s approach. However, if p(s)
and p(0) are equal to the atmospheric pressure, the difference between p(s) and
p(0) vanishes.
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c) Two-Dimensional Capillary Motion (an Example)

The usefulness of the capillarity theory developed in the preceding sections will
be shown for a special example, namely the two-dimensional capillary water
flow in a brick, see Fig. 7.5.2. It is assumed that the brick is partly saturated
and is standing in a water reservoir. The left side of the brick is impermeable to
the liquid and gas phases, whereas the right side consists of open pores. This
example has been experimentally investigated by Künzel (1994), see Fig. 7.5.2,
where the volume fraction of the liquid was depicted after 72 days of capillary
rise.

The same example, with the same data has been simulated via the finite
element method. For the film between the solid and the water phase it is assumed
that the free Helmholtz energy function depends linearly on the density ρL and
the quantity t̂SL is a material dependent constant containing the surface tension
of the water and a characteristic diameter (for more information, see Ricken,
2002). Starting from the governing equations in Section 7.2, in particular (7.35),
where the temperature gradient and the friction forces have been neglected, one
derives results which fit the test observation quite well (see Fig. 7.5.2).

Beginning with von Terzaghi (1925 a, b) and his colleagues in Vienna, up
to this date the subject of capillarity in porous bodies continues to be an area
of active research. While there has been many empirical approaches, there has
been only a limited number of continuum mechanical treatments. The present

impermeable

δpLR free

δpGR free

open
δpLR = 0
δpGR = 0

suction
δpLR = 0
δpGR free

Fig. 7.5.2: Brick model and measurement of the volume fraction after 72 days,
by Künzel (1994)
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authors’ recent treatment of this subject in the framework of a homogenized
continuum (porous media theory) has led to very reasonable field equations on
proper constitutive equations in particular, for interaction volume forces which
cause the capillary flow, which could be demonstrated in examples with one-
and two-dimensional motions.

The next step in the investigation of the capillarity problem in porous media
will be the development of explicit constitutive equations for interaction forces
and their numerical transformation for calculating initial and boundary value
problems.

7.6 Effective Stresses
In a saturated porous media, the state of stress in a material point of the partial

solid consists of two parts, the weighted liquid pressure and the so-called “extra
stress” for which a constitutive equation must be formulated as a function of the
respective state of the solid deformation. Thus, only the extra stress, which is
well-known in soil mechanics under the notion “effective stress”, can describe
the strength of the partial solid. In the theory of porous media, the separation of
the total stress into effective stress and weighted liquid pressure is founded on the
basic assumption of saturation. The separation of stress due to such a constraint
as the saturation condition is comparable with the incompressibility condition, a
known and theoretical founded effect in classical continuum mechanics for one-
component continua (see Truesdell and Noll, 1965). In the theory of mixtures
and in the theory of porous media, the saturation condition was considered
relatively late. The effect of the effective stresses in binary porous media models
could only be clarified in recent times and founded (see de Boer and Ehlers,
1988, 1990 b), although this effect has been a subject of research since the early
beginnings of this century in connection with the uplift problem in concrete or
masonry dams, the consolidation problem of clay and the shearing resistance of
saturated soils. It seems that important contributions which clarify the influence
of the liquid pressure are completely ignored in literature and that the theoretical
foundations are not well understood.

The concept of effective stress for a binary model has been extensively dis-
cussed by de Boer (2000 a). Investigations for a ternary model have also been
performed by de Boer (1997 a). These investigations were, however, based on
simplified constitutive equations. Therefore, the concept of effective stress will
be discussed again.

The total stress T of the mixture body is given by:

T = TS + TL + TG . (7.55)

Considering (7.6), (7.8), and (7.3) as well as de Boer (2000 a) and Chapter 8,
Eq. (7.55) simplifies to
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T = − pI + nSBSpI + TS
E + TG

E . (7.56)

where

BS =
KSN

KSR + KSN
(7.57)

with KSN and KSR as the compression moduli of the skeleton and the real
material. Besides, Biot (see Biot and Wills, 1957) derived for the compressible
solid skeleton in a binary model a similar expression for the effective stresses

TS
E = TS + p(1 − KSN

KSR
)I (7.58)

For unsaturated porous media (unsaturated means that the pores are not com-
pletely filled with liquid) with incompressible solid and liquid phases. Bishop
(1960) suggested the following variation of von Terzaghi’s expression for the
effective stress of the solid phase (see also Skempton, 1962):

TS
E = [pGR − χ (pGR − p)]I + T , (7.59)

where TS
E and T refer to effective and total stress, respectively, and χ is a

parameter related to the degree of saturation; it is equal to unity for fully-
saturated porous media.

In order to be able to compare the results of our investigations stated above,
with those of Bishop and Biot, we rearrange (7.56) and replace TG

E through
(7.8)2 in consideration of (7.9) with

TG
E = nG(p − pGR)I . (7.60)

Introducing (7.60) into (7.56) we obtain

TS
E = [pGR − (nS + nL)(pGR − p)]I − nSBSpI + T , (7.61)

where we have used the saturation condition (7.3). It can be stated that (7.61)
corresponds to Bishop’s formula, if we neglect the compressibility of the real
solid material.

If we considered only a binary model with compressible solid and incom-
pressible liquid phases, we arrived at

TS
E = p(1 − nSBS)I + T , (7.62)

a formula, which was already approximately proposed by Suklje(1969).
The sum χ = nS + nL, see (7.59) and (7.61) is related to the degree of

saturation. If the pores are fully saturated with liquid, the volume fraction nG
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is equal to zero and, according to (7.3), the sum nS + nL equals unity. In all
other cases the sum nS + nL is less than unity.

For fully-saturated porous solids we obtain the classical result

TS
E = pI + T , (7.63)

founded by Fillunger and von Terzaghi (see de Boer, 2000 a).

7.7 Phase Transitions
A further important characteristic phenomenon in TPM is phase transition in

a liquid- and gas-filled porous solid. Well-known examples for this phenomenon
are drying as well as freezing and thawing processes. In these processes liquid
is transformed to gas as well as liquid to ice and ice to liquid. These effects are
partly well documented and the development of consistent theories for these
transitions have a long tradition as we will see in the next section.

However, there are other transition effects which have been treated in recent
times. These concern mainly growth effects in biomechanics such as growth
of tumors and growth owing to different loadings. Moreover, in waste man-
agement the problem arises that waste organic parts are contained in the solid
skeleton, which biologically degenerate in time and space. These problems are
currently under intensive study in Essen. However, there is no experience on
the promising results yet. Thus, we will not go deeper into these problems but
we would like to concentrate on the theoretical foundation of phase transitions
and two applications: drying and freezing processes.

a) Theoretical Foundation

The starting point of our investigations is the inequality (6.34) for the ternary
model consisting of a porous solid, an incompressible liquid and a compressible
gas, from which we derive the inequality, see de Boer (2000 a):

−ρ̂L(µL − µS) − ρ̂G(µG − µS) ≥ 0 , (7.64)

where

µα = ψα − pα

ρα
− 1

2
vα · vα

(7.65)

are the chemical potentials.
The inequality (7.64) restricts the constitutive equations for the mass supplies

ρ̂L and ρ̂G. We can always satisfy inequality (7.64) if we choose the constitutive
equation

ρ̂L = −G(µL − µS), ρ̂G = −Q(µG − µS) , (7.66)
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where the material dependent constants G and Q are assumed to be positive.
One can recognize from (7.66) that mass exchange processes can only occur if
the chemical potentials are different.

In the case of drying processes in a rigid porous solid the constitutive equa-
tions (7.66) can be simplified. With the assumption that there is no mass ex-
change with the solid phase, the supply term ρ̂S is equal to zero. It follows with
Eq. (4.8) that

ρ̂G = −ρ̂L (7.67)

and from (7.64) the inequality

−ρ̂L(µL − µG) ≥ 0 . (7.68)

This inequality can be satisfied if we choose

ρ̂L = −V (µL − µG) , (7.69)

where V also a material dependent constant.
For freezing and thawing processes we introduce a ternary model consisting

of a porous body (S) with poreice (I) and an incompressible liquid (L), where the
ice phase moves with the same velocity as the porous body. With the assumption
that mass exchange occurs only between the ice and liquid phases, from (7.64)
follows

−ρ̂L(µL − µI) ≥ 0 (7.70)

from which we derive with the preceding arguments

−ρ̂I = ρ̂L = −U(µL − µI) (7.71)

with U as a material dependent constant.
We will elaborate on the constitutive relations (7.69) and (7.71) in the next

sections.

b) Drying Processes

With the term drying the extraction of a liquid from a porous solid or from
granular materials is described. Thereby a distinction is made between the
mechanical drying processes, where the motion of liquid is caused by forces,
and the thermic drying processes, where the draining is produced by heat. We
have to differentiate between three phenomena concerning the thermic drying
processes: first, the transport mechanism of heat into the porous medium, sec-
ond, the phase transition of the liquid into steam, and third, the transport of
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the steam. The phase transition, exclusively caused by heat transfer, is denoted
with evaporation and can occur in two different forms: At relatively small
temperatures the transport of steam is performed via the surface of the liquid
phase as diffusion into the gas phase. During the drying process the surfaces
of the liquid moves into the inner part of the porous body. This process can
be observed in capillary-porous solids if no reservoir is available. Obviously,
no phase transition (liquid into gas) exists in the inner part of the porous body
(Kneule, 1975).

At higher temperatures at the limit to the boiling point in particular, one can
observe a completely different drying behavior in the porous medium. Phase
transition occurs on the surface of the porous medium as well as in its inner
part. The part of gas produced by phase transition in the form of bubbles, is
statistically distributed over the liquid phase. The gas goes up in the form of
bubbles contrary to the gravity force caused by uplift forces, and leaves the
control volume in this way.

Instead of a description of the first phenomenon (evaporation on the surface
of the liquid phase), compare, e.g. Kowalski (2000), in this section we focus
exclusively on the second problem of drying, described above, namely on the
phenomenon of phase transitions of the liquid phase into the gas phase inside
the whole control volume at temperatures in the region of the boiling point.
This kind of drying process can be clearly described on the basis of a ternary
model consisting of a capillary-porous solid, an incompressible liquid, and a
compressible gas. In a capillary-porous medium the drying and mass exchange
processes, connected with drying, are influenced by heat propagation and the
capillarity rise. Heat propagation will be produced in the inner part of the body
by attaching an external heat source at the surface of the porous solid. The
exchange of mass between liquid and gas phases occurs at a certain temperature
and hydrostatic pressure. Steam leaves the control volume, whereby the motion
of the liquid is influenced by capillary forces.

The goal of this section is the development of differential equations, which
describe phase transitions. For this purpose we will consider a ternary model
consisting of a rigid capillary-porous solid, an incompressible liquid, and a
compressible gas.

Mass exchange processes between liquid and gas phases can only occur,
if their chemical potentials have reached a determined value. Thereby the
phenomenon of condensation (steam condenses at a determined temperature
limit leading to a growth in mass in the liquid phase) or of evaporation (liquid
vaporizes at a fixed temperature limit, which leads to an exchange in mass in
the gas phase).

According to (7.69) and (7.67) the constitutive equation for the change of
mass of the gas phase ρ̂G is given by
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ρ̂G = V (µL − µG) , (7.72)

where V is a material dependent constant and µL and µG the chemical potentials
defined as, see (7.65):

µL = ψL − pL

ρL
− 1

2
vL · vL, µG = ψG − pG

ρG
− 1

2
vG · vG . (7.73)

In the following paragraphs we investigate the constitutive equation (7.72) in
connection with (7.73), where we neglect the terms with the velocities. At first
we simplify the second term in (7.73 )1

pL

ρL
=

nLp

nLρLR
=

p

ρLR
, (7.74)

where we have considered Eq. (7.2). In a similar way we can rearrange the
second term in (7.73)2.

pG

ρG
=

nGpGR

nGρGR
=

pGR

ρGR
. (7.75)

In consideration of the constitutive law for ideal gases we have:

pGR = R̄ρGRΘ, R̄ =
R

Mr
, Mr =

µ

µ0
. (7.76)

R is the ideal gas constant, Mr the relative molecular mass, µ the absolute mass
and µ0 the reference mass (see Müller, 1994). The above equation (7.75) can
be reformulated and we obtain

pG

ρG
= R̄Θ . (7.77)

From thermodynamic investigations (see de Boer and Didwania, 2004) it fol-
lows that

ψL = ψ̂L(Θ), ψG = ψ̂G(ρGR, nG, Θ) . (7.78)

For the free Helmholtz energy function we choose the ansatz

ψ̂L(Θ) = cL
ν Θ ln

( Θ
Θ0

)
, (7.79)
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where cL
ν is the specific heat of the liquid and Θ0 the reference temperature.

For the free Helmholtz energy function ψG of the gas phase considering
(7.78)2, (7.9)2, and (7.76) we introduce

ψ̂G = R̄Θ ln
(ρGR

ρGR
0

)
+ C(Θ, nG) , (7.80)

where C(Θ, nG) is an integration function and ρGR
0 the density of the gas

phase in the reference placement. The ansatz (7.80) can be reformulated in
consideration of (7.76) to

ψ̂G = R̄Θ ln
(Θ0p

GR

ΘpGR
0

)
+ C(Θ, nG) , (7.81)

with the initial temperature Θ0 and the initial pressure pGR
0 of the gas phase

in reference placement. With (7.73) and (7.81) as well as (7.77) we get the
chemical potential of the gas phase in the form

µG = R̄Θ ln
(Θ0p

GR

ΘpGR
0

)
+ C(Θ, nG) + R̄Θ , (7.82)

which corresponds to the results of de Groot and Mazur (1969). In (7.82) we
have neglected the term with the velocities. Finally, proceeding from (7.72) in
connection with the equation (7.73) to (7.76) and (7.82) we obtain for the mass
supply ρ̂G

ρ̂G = V [−R̄Θ ln
(Θ0p

GR

ΘpGR
0

)
− C(Θ, nG) − p

ρLR
− R̄Θ + f(Θ)] , (7.83)

where

f(Θ) = ψ̂L(Θ) . (7.84)

In consideration of (7.84) Eq. (7.83) reads as:

ρ̂G = V [−R̄Θ ln
(Θ0p

GR

ΘpGR
0

)
− C(Θ, nG) − p

ρLR
+ ψ̂L(Θ) + R̄Θ] . (7.85)

For the function C(nG) as a first approach we choose

C(nG) = a ln
( nG

nG
0G

)
(7.86)
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with the letter a being a material dependent quantity and nG
0G the volume fraction

in the reference placement. Eq. (7.85) can be transformed with (7.79) and (7.86)
into

ρ̂G = V [−R̄Θ ln
(Θ0p

GR

ΘpGR
0

)
− a ln

( nG

nG
0G

)
− p

ρLR
+

+cL
ν Θ ln

( Θ
Θ0

)
+ R̄Θ] .

(7.87)

With (7.87) initial and boundary value problems can be solved within the frame-
work of FEM-formulation. The mass transfer to the gas phase ends when the
liquid is completely evaporated. At this point ρ̂G is equal to zero.

The numerical evaluation of the concept for the simulation of the thermal
induced phase transition with temperatures at the boiling point is currently under
study at the Institute of Mechanics in Essen.

The removal of liquid from the porous body causes shrinking and is the main
reason for the stress induced by drying (see Kowalski, 2000). One can say that
the saturated porous solid is a swelling, however, a stress free continuum. The
interactions amongst the particles of granular materials are small in a complete
saturated state. Their values increase, however, in the course of the drying
process because the cohesion amongst the solid particles become larger. The
moist porous solid contract during drying and the inhomogeneous shrinking
causes stress in the body. This critical state occurs, when the boundary layer
drys very fast and the inner part remains in a moist state. In such a case large
tension stresses arise in the boundary layer and the surface wharpens and cracks.
For the assessment of the danger of cracks a failure condition is necessary. This
can be derived from a condition developed by de Boer (1988) and extended by
de Boer and co-workers in several papers (see de Boer, 2000b). This condition
contains the yield conditions proposed by von Mises (1913) and Green (1972) as
special cases. It can also be applied to purely hydrostatic stress states appearing
partly during drying processes in porous bodies. So far, the first investigations
have been very promising.

c) Freezing Processes

A ternary model consisting of a porous solid, a further solid (ice) and a
poreliquid will be treated. All constituents are assumed to be materially in-
compressible and the ice-phase ϕI possesses the same motion function as the
porous solid phase.

Mass exchange occurs only between the constituent liquid and ice, i.e.

ρ̂L = −ρ̂I = −U(µL − µI) ,

ρ̂S = 0 ,
(7.88)



Fundamental effects in gas- and liquid-filled porous solids 103

where U is a material dependent number, which depends on temperature.
Numerical treatment has shown that the influence of velocities and also of

the poreliquid pressure (poresize: 1mm to 100 nm) in chemical potentials phase
transition is negligible small. Therefore, for the mass supply of the liquid one
can choose the following simplified ansatz:

ρ̂L = −ρ̂I = −U(ψL − ψI) . (7.89)

With the assumption that the free Helmholtz energy functions concerning the
phase transition depends only on temperature, Eq. (7.89) can be written as (see
de Boer et al., 2003)

ρ̂L = −ρ̂I = −U(cL − cI)
(
Θ ln

Θ
Θ0

− Θ + Θ0

)
+ C . (7.90)

with cL and cI as the heat storage capacities.
The constant C is founded in the fact that the process of ice formation occurs
spontaneously. The cause for this spontaneous process lies in the change of
entropy in the surroundings of the liquid. It is known that a transition from
a disordered state (liquid) into a state of higher order (ice) can never occur
spontaneously, see Atkins (1993). The solidification of liquid is an exothermal
process, whereby heat propagates from the system into the surroundings and,
thus, increases the disorder. When the disorder in the surroundings is larger
than a decrease in the disorder of a system, the total disorder increases and
the process is spontaneous. This spontaneity is described by the constant C in
this work, which contains a material dependent value by the occurrence of the
phase transition, otherwise becomes zero. When ice production takes place the
energy of the liquid is reduced abruptly. In order to get an idea of the course of
mass supply of the liquid constituent, we will focus on the factor U and on the
mass supply ρ̂L.

It is easily understandable that the production of ice or a phase transition
occurs only when the zero-grade-Celsius-limit is reached, i. e. the factor U
may not be zero at a temperature of 273.15 K. We choose the following ansatz
for U:

U =
1
g
(273.2 − Θ)d . (7.91)

At temperatures above the freezing point no phase transition can be observed
between the constituents water and ice; the factor U becomes zero in this region.
In (7.91) g describes a material dependent constant, which governs the amount
of mass supply and the exponent d describes the course of the function. Finally,
with (7.91) the Eq. (7.90) delivers the growth of mass in dependence of the
temperature. In order to be able to describe the exact extension of the ice
constituent, a constitutive equation for volume strain is necessary. We choose
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V (Θ) = V0[1 + 3αI
0(Θ − Θ0)] (7.92)

and for αI
0:

αI
0(Θ) = −7 · 10−3 − 3 · 10−7(Θ − 291.15)

[ 1
K

]
. (7.93)

For further information see de Boer et al. (2003).
For the solution of initial and boundary value problems the above derived

constitutive equations in connection with special constitutive equations for spe-
cial models and the material-independent balance equations are required. An-
alytical solutions are seldom, therefore, in most cases, numerical solutions are
preferred with the aid of the finite element method. The necessary equations are
derived with the standard Galerkin-method. In this way the course of ice-zones
is calculated for different times compared with experimental data in de Boer et
al. (2003), see Figures 7.7.1 through 7.7.4.

The numerical results, represented in Figures 7.7.2 through 7.7.4 show that
thermodynamical processes in porous media can be well simulated with the
introduced assumptions concerning the phase transition. With the computation
of the ice formation between two freezing pipes it could be shown that con-
crete initial and boundary value problems can be described and solved with the
proposed model. This opens further perspectives for the computation, e.g., of
front propagations, if different soil layers exist.

Due to new findings in the constitutive theory of saturated and unsaturated
capillary-porous and non-capillary-porous solids, namely the identification of
the capillary volume forces, the treatment of the compressibility of the con-
stituents as well as the development of ternary models, the fundamental effects
in porous media, namely uplift, friction, capillarity, effective stress, and phase
transitions have been revisited.

Some classical result of the uplift and friction problems could be confirmed,
others have to be extended such as the effective stress concept, and finally
the results of the investigations of the capillary phenomenon and the phase
transitions have led to new findings. It seems that the fundamental effects in
porous media are completely cleared up now.



Fundamental effects in gas- and liquid-filled porous solids 105

Fig. 7.7.1: Course of the frost zones at different times (experimental datas)
(phase 1: 0-20 h, phase 2: 20-40 h, phase 3 > 40 h).

Fig. 7.7.2: Course of the frost zones after ten hours (numerical simulation).
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Fig. 7.7.3: Course of the frost zones after twenty hours (numerical simulation).

Fig. 7.7.4: Course of the frost zones after 2.5 days (numerical simulation).



Chapter 8

POROELASTICITY

8.1 Introduction

In general, poroelasticity is understood as the pendant to linear elasticity of
a one-component elastic solid. That means that poroelasticty is devoted exclu-
sively to saturated and/or unsaturated elastic porous solids within the frame-
work of the geometrically and physically linear theory with all its consequences.
Poroelasticity was obviously generated by Biot in several articles (see Biot and
Willis, 1957). He combined stress strain relations of the classical linear elas-
ticity theory for the empty porous solid with some constitutive equations of the
contents in the pores and interaction effects. However, Biot’s poroelasticity is
an ad-hoc theory, which is not mainly based on profound mechanical axioms
and principles. Clear definitions and terms are missing in certain parts. In
addition, terms are omitted in the balance equations, and unnecessary approxi-
mations are used which greatly restrict the theory. Moreover, some derivations
are obscure. Therefore we proceed from the ensured fundamental equations of
the theory of porous media (TPM), derived in the preceding sections.

As already stated above poroelasticity is based on the geometrically linear
theory. This means that in the strain tensor only linear terms of the displacement
gradients are contained and in the balance equations the dependence of all
introduced terms on the actual placement can be approximately replaced with
the reference placement. Thus, Cauchy’s stress tensor, e.g., is approximately
equal to the first and second (symmetric) Piola-Kirchhoff stress tensors. Bearing
these approximations in mind we disclaim extra notations of the mechanical
terms and retain the notations used in the proceedings sections, although all
definitions in poroelasticity depend on the reference placement. This statement
is also valid for the mathematical operations such as gradient, divergence, curl,
and Laplace operation.

107
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We will develop the fundamental equations for a ternary model consisting
of a capillary compressible elastic porous solid as well as compressible and
incompressible gas and liquid phases.

However, for the investigations of basic solutions and dynamic problems, we
restrict our investigations to incompressible elastic porous solids because the
new constitutive equations for compressible constituents and capillary porous
solids have been used only for special problems and the corresponding funda-
mental solutions for the field equations have not been developed yet.

Therefore, only this model will be addressed with some investigations of
basic solutions and dynamic problems (wave propagations), which had been
analytically solved at the University of Essen since the 1990s.

The main result of the constitutive theory are the following constitutive re-
lations for the stress of the compressible elastic solid phase TS (partial stress)
and pSR (real hydrostatic stress of solid material), the liquid and gas phases and
the interaction forces p̂S , p̂L, p̂G, for further information see de Boer (2000
a), de Boer and Didwania (2000, 2002, 2004):

TS = −nSp I + TS
E , (8.1)

where p is the liquid or gas pressure, and the effective stresses TS
E are restricted

by the constitutive equation

TS
E = −ρS ∂ψS

∂ES
, (8.2)

where ψS is the free Helmholtz energy function. The additive decomposion
of the total stress TS in a part of the liquid or gas pressure p and the effective
stress, which depends on the motion of the partial solid, is a consequence of the
saturation constraint (see de Boer, 2000 a).

With an appropriate ansatz for the free Helmholtz energy function and the
additive decomposition of the strain tensor ES in a deviatoric part ED

S and a
volumetric part (ES · I)I, we obtain

TS
E = 2µSED

S + KS(ES · I)I , (8.3)

where the partial compression modulus KS is connected with the Lamé con-
stants µS , λS through

KS =
2
3
µS + λS . (8.4)

It is desirable to express the partial material constant KS through quantities
of the real solid material and of the empty porous solid. On the one hand these
material parameters can in many cases be determined experimentally in a simple
way, on the other hand this procedure points the immediate consideration of the
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incompressibility of the real material. This is however not possible for the Lamé
constant µS because this would require the consideration of the shearing of the
real material. Because there is no balance principle or constitutive relation for
the real shearing a split of ED

S is not meaningful.
However, the situation concerning the compression modulus is completely

different because there exists a constitutive equation for the volumetric strain
of the real solid material. This important feature of the constitutive theory will
be revealed in the following paragraphs.

The constitutive equation (8.3) is a result of the exploitation of the entropy
inequality if the free Helmholtz energy function is assumed to be dependent
on the strain tensor ES . The volumetric strain eS = ES · I can be additively
decomposed according to (3.25) into eSR and eSN within the frame of the geo-
metrically linear theory. These volumetric strains, namely of the real material
and of the change of the pores in size, are completely independent and it is
advisable to require that the free Helmholtz energy function depends on eSR

and eSN instead of eS , because it can be expected that one gets more informa-
tion in the new constitutive equations gained from the evaluation of the entropy
inequality. From the entropy inequality we obtain with the new parameters eSR

and eSN the following two relations for the hydrostatic stress and strain states
(see de Boer, 2000 a):

pS =
1
3
(TS · I) = −nSp + nSpSN

E , (8.5)

where pSN
E depends on eSN and

pS = nSpSR
E , (8.6)

where pSR
E is dependent on eSR.

Within the geometrical linear theory the following constitutive equations are
proposed

pSN
E = KSNeSN (8.7)

and
pSR

E = KSReSR . (8.8)

The compression moduli KSN and KSR, representing the compression mod-
ulus of the empty porous solid and the compression modulus of the real solid
material which can be experimentally determined easily (see Biot and Willis
1957). With (8.7) and (8.8) the constitutive equations (8.5) and (8.6) can be
rewritten:

pS = −nSp + nSKSNeSN , (8.9)

pS = nSKSReSR . (8.10)
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If the liquid and gas phases are compressible, then the hydrostatic stress
states of the real materials can be expressed by constitutive equations (see de
Boer, 2000 a).

In order to bring the constitutive equations (8.9) and (8.10) into the form (8.3),
where the stress and the strain tensors are partial quantities, some manipulations
must be performed.

At first the real volumetric strain eSR will be replaced with eS and eSN owing
to the additive decomposition of eS .

eSR = eS − eSN . (8.11)

Then, from (8.9) and (8.10) combined with (8.11) we have

nSKSReS − nSKSReSN = −nSp + nSKSNeSN (8.12)

or

eSN =
1

KSR + KSN
(p + KSReS) . (8.13)

With (8.13) we can determine the partial hydrostatic pressure pS (8.9)

pS = −nSp

(
1 − KSN

KSR + KSN

)
+ nS KSNKSR

KSR + KSN
eS (8.14)

or

pS = −nS 1

1 +
KSN

KSR

p + nS KSN

1 +
KSN

KSR

eS . (8.15)

In the special case, if the solid material is incompressible – that means
KSR → ∞ – the relations (8.14) or (8.15) turn to

pS = −nSp + nSKSNeS . (8.16)

Finally, we obtain from (8.1), (8.3), (8.5) and (8.14) with

TS = TSD +
1
3
(TS · I) = TSD + pSI , (8.17)

TS = − nSp

(
1 − KSN

KSR + KSN

)
I + 2µSED

S +

+ nS KSNKSR

KSR + KSN
eS .

(8.18)

or

TS = −nSp (1 − BS)I + 2µSED
S + K̂SeS , (8.19)
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where we have introduced the abbreviations

BS =
KSN

KSR + KSN
, (8.20)

K̂S = nSKSRBS . (8.21)

For further considerations, namely for the development of the fundamental
field equations in elastodynamics a slight reformulation of (8.19) is necessary
in order to be able to compare the constitutive equation for the elastic behavior
of the solid skeleton and the field equations with those of the classical linear
elasticity theory. For this reason we replace ED

S with ES in (8.19). This
procedure leads to

TS = −nSp (1 − BS)I + 2µSES + λ̂SeSI , (8.22)

with

λ̂S = K̂S − 2
3
µS . (8.23)

It should be mentioned that the quantity BS (8.20) in the first term on the
right-hand of (8.19) and (8.22) is similar to the Biot factor (see Biot and Willes,
1957) with the difference being that the denominator in the Biot factor contains
only the compression modulus of the real material KSR whereas in (8.20)
the denominator consist of the sum of the compression modulus of the real
materials KSR and the compression modulus of the solid skeleton KSN . Only
in the case where KSN is very small in comparison with KSR are both results
approximately equal.

Moreover, for the inviscid liquid and gas phases thermodynamic investiga-
tions reveal the following constitutive equations, if the liquid phase is considered
as the carrier of the gas bubbles:

TL = −nLp I (8.24)

and

TG = −nGp I + TG
E , (8.25)

where

TG
E = pG

E I (8.26)

with

pG
E = ρG ∂ψG

∂nG
(8.27)

is the effective stress for the gas phase.
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With appropriate constitutive ansätze for (8.27), pG
E can be expressed by

the displacement vector uG. As of now, there is little experience with these
constitutive equations. Thus, we maintain pG

E in the fundamental equations.
In order to be able to formulate the fundamental field equations in poroelas-

ticity in the next section the constitutive equations for the interaction force p̂S

must also be addressed. This has been done by de Boer and Didwania (2000,
2002, 2004) for a capillary-porous solid field with liquid and gas

p̂S = p grad nS − t̂SL grad ρL +
+SL(vL − vS) − SG(vG − vS) ,

(8.28)

p̂L = p grad nL + (t̂SL + t̂LG) grad ρL −
−SL(vL − vS) ,

(8.29)

p̂G = p grad nG − t̂LG grad ρL +
+ SG(vG − vS) .

(8.30)

In (8.28) to (8.30) the second term on the right-hand side are the capillary
volume forces depending on the gradient of the liquid density ρL and the in-
teraction effects between solid and liquid as well as between liquid and gas
manifested by t̂SL and t̂GL. The last term on the right-hand side describes
the friction volume force between liquid and solid as well as between gas and
solid, where SL, SG are scalar response parameters. The corresponding friction
forces between liquid and gas can be neglected as a result of their small effects.

8.2 The Fundamental Field Equations of Poroelasticity
In this section we summarize briefly the fundamental field equations of

poroelasticity, whereby we do not differentiate in the mathematical operations
between the actual and reference placements, because within the framework of
the geomerically linear theory both placements are approximately equal (see,
e.g., de Boer, 1982). These field equations describing the motion of a saturated
elastic porous body consist of the

strain-displacement relation according to (3.52)1

ES =
1
2

(∇uS + ∇TuS),

eS = ES · I = divuS ,

(8.31)

were ∇ stands for grad,

the density-displacement relations

grad ρL = −ρL
0L(∇∇uL)

13
T I , (8.32)
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which follows from (3.16), (4.9) and (8.31),

the equation of motion for the partial phases (4.15)

div Tα + ραb + p̂α = ρα(uα)′′α , (8.33)

thereby we have assumed a common external accelerationb, and have expressed
acceleration aα by the material time derivative of the displacement vectors uα,
see de Boer (2000 a),

the constitutive relations (8.22) and (8.24) to (8.30)

TS = −nSp (1 − BS)I + 2µSES + λ̂SeSI , (8.34)

TL = −nLp , (8.35)

TG = −nGp I + pG
E I , (8.36)

p̂S = p grad nS − t̂SL grad ρL − SL[(uL)′L − (uS)′S ]

+ SG[(uG)′G − (uS)′S ] ,

(8.37)

p̂L = p grad nL + (t̂SL + t̂LG) grad ρL +

+ SL[(uL)′L − (uS)′S ] ,

(8.38)

p̂G = p grad nG − t̂LG grad ρL −

− SG[(uG)′G − (uS)′S ] ,

(8.39)

whereby the different velocities and accelerations have been replaced with the
time derivatives of the displacement vectors uα.

We assume that the porous solid is homogenous and isotropic; therefore the
material response parameters are not dependent on the position x. With the
calculation rules

div(µS∇uS) = µS�uS , (8.40)

div(µS∇TuS) = µS∇ div uS , (8.41)

div [λ̂S∇(div uS) I] = λ̂S�div uS , (8.42)
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div [nSp(1 − BS)I] = nS(1 − BS)∇p , (8.43)

wherein �(...) denotes the Laplace and ∇ the gradient operator, the fundamen-
tal field equations take the following forms inserting the constitutiv equations
(8.34) through (8.39) into the equations of motion (8.33):
for the porous solid

(λ̂S + µS) grad divuS + µS� uS − nS(1 − BS)∇p +

+ BSp∇nS − t̂SLρL
0L(∇∇uL)

13
T I − SL[(uS)′S − (uL)′L] −

− SG[(uS)′S − (uG)′G] + ρSb = ρS(uS)′′S ,

(8.44)

for the liquid

− nL∇p + (t̂SL + t̂LG)ρL
0L(∇∇uL)

13
T I −

− SL[(uL)′L − (uS)′S ] + ρLb = ρL(uL)′′L ,

(8.45)

for the gas

− nG∇p + ∇pG
E − t̂LGρL

0L(∇∇uL)
13
T I −

− SG[(uG)′G − (uS)′S ] + ρGb = ρG(uG)′′G .

(8.46)

In addition, the saturation condition (2.2) has the differential form

(nS)′S + (nL)′L + (nG)′G − ∇nL · [(uL)′L − (uS)′S ] −

− ∇nG · [(uG)′G − (uS)′S ] = 0 .

(8.47)

The set of fundamental equations (8.44) to (8.47) constitute the governing
equations of the boundary and initial value problems for liquid and gas filled
linear elastic porous solids if appropriate boundary conditions and initial con-
ditions are presented. The system of the fundamental equations represents a
counterpart to the linear elasticity theory of one-component elastic bodies. The
equations serve particularly as the basic equations for numerical investigations.
From the above set of equations the weak formulations of dynamics within the
framework of the finite element method can easily be derived and can be intro-
duced into existing computer programs. Eqs. (8.44),(8.45), (8.46), and (8.47)
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turn over to the corresponding fundamental equations, of a binary incompress-
ible elastic, non-capillary porous medium, already widely used (see, e.g, Liu
and de Boer, 1999)

(λS + µS) grad divuS + µS�uS − nS∇p −

− SL[(uS)′S − (uL)′L] + ρSb = ρS(uS)′′S ,

(8.48)

−nL∇p − SL[(uL)′L − (uS)′S ] + ρLb = ρL(uL)′′L , (8.49)

div

(
nS ∂uS

∂t
+ nL ∂uL

∂t

)
= 0 , (8.50)

where λS and µS are the Lamé constants setting KSR → ∞ in (8.20) through
(8.23) and where the convective terms in (8.50) have been neglected.

In the next section the main equations of the binary incompressible elastic
model are summarized and developed.

8.3 Main Equations for an Incompressible Binary Model
We will investigate a saturated non-capillary incompressible elastic porous

solid filled with an incompressible liquid. First we will summarize all basic
equations needed for the present investigations, excluding any mass exchange
and considering only isothermal deformations.

1. Concept of volume fraction

nS + nL = 1. (8.51)

2. Balance of mass

(ρα)′α + ραdiv x′
α = 0. (8.52)

3. Balance of momentum

div Tα + ρα(bα − x′′
α) + p̂α = 0 . (8.53)

with

p̂S + p̂L = 0 . (8.54)

4. Balance of moment of momentum

Tα = (Tα)T . (8.55)
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With the incompressibility condition

ραR = const. (8.56)

the combination of (2.4), (8.52) and (8.56) yields

(nα)′α + nαdiv x′
α = 0 , (8.57)

i.e., the equations of balance of mass reduced to equations of balance of volume
fractions.

Then, by use of (8.51) and (3.9) the relation

(nL)′S = (nL)′L − grad nL · (x′
L − x′

S) (8.58)

holds. Alternatively, one obtains in consideration of (8.57)

div(nSx′
S + nFx′

F ) = 0 . (8.59)

In the case of a common external acceleration b = bS = bL the balance
equations of momentum (8.53) can be rewritten in the forms

div TS + ρS(b − x′′
S) − p̂L = 0 , (8.60)

div TL + ρL(b − x′′
L) + p̂L = 0 , (8.61)

where, Eqs. (8.54) has been used in addition.
As a consequence of the incompressibility constraint (8.56), the stress tensor

and the interaction force are additively decomposed into two terms

TS = − nSp I + TS
E , (8.62)

TL = − nLp I + TL
E , (8.63)

p̂L = p grad nL + p̂L
E , (8.64)

where p denotes the poreliquid pressure of the incompressible poreliquid. In
(8.62) to (8.64) the index (...)E expresses the effective quantities for which
constitutive equations must be formulated. The insertion of Eqs. (8.62) to
(8.64) into (8.60) and (8.61) leads to

div TS
E − nS grad p + ρS(b − x′′

S) − p̂L
E = 0 , (8.65)

div TL
E − nL grad p + ρL(b − x′′

L) + p̂L
E = 0 . (8.66)

For further considerations, it is convenient to replace the velocity x′
α and

acceleration x′′
α with the corresponding derivatives of the displacement vector
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x′
α = (uα)′α , x′′

α = (uα)′′α . (8.67)

The following investigations are restricted to an isotropic, linear elastic
porous solid filled with an incompressible liquid with negligible viscous prop-
erties. The constitutive equations for the effective stresses and the effective
interaction force are:

TS
E = 2µSES + λS(ES · I)I , (8.68)

TL
E � O , (8.69)

p̂L
E = −SL(u′

L − u′
S) , (8.70)

where µS and λS are the macroscopic Lamé constants of the porous solid;
SL describes the coupled interaction between the solid and fluid phases and is
(Heinrich, 1938):

SL =
(nL)2γLR

kL
. (8.71)

The quantity kL is the Darcy permeability coefficient of the porous medium
and γLR the real density of the liquid.

The volume fraction nS can be expressed by the Lagrangian strain tensor
ES by the integration of (8.57):

nS = nS
0S(detFS)−1 = nS

0S(1 + ES · I)−1 (8.72)

in the scope of infinitesimal deformations, all terms of higher order are ne-
glected. Moreover, since ES · I � 1, nS may be approximated as nS

0S which
is the solid volume fraction in the initial placement.

Now, inserting Eqs. (8.67) to (8.70) into (8.65) and (8.66) in consideration
of (8.31) we may write the field of main equations as follows:

(µS + λS) grad divuS + µS div grad uS − nS grad p +

+ρS [b − (uS)′′S ] + SL[(uL)′L − (uS)′S ] = 0 ,

−nL grad p + ρL[b − (uL)′′L] − SL[(uL)′L − (uS)′S ] = 0 ,

div[nS(uS)′S − nL(uS)′S ] = 0 .

(8.73)

Within the framework of the infinitesimal theory, the superposition princi-
ple holds, i.e., loading through body forces and external forces can be treated
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separately. Thus, it may sometimes be convenient to write the main equations
(8.73) without the body forces:

(µS + λS) grad divuS + µS div grad uS − nS grad p −
−ρS(uS)′′S + SL[(uL)′L − (uS)′S ] = 0 ,

−nL grad p − ρL(uL)′′L − SL[(uL)′L − (uS)′S ] = 0 ,

div[nS(uS)′S − nL(uS)′S ] = 0 .

(8.74)

The set of equations (8.73), or without body forces, the versions (8.74) are
the fundamental statement of boundary and initial value problems for saturated
elastic porous media if appropriate boundary and initial conditions are given.

8.4 Basic Solutions for an Incompressible Binary Model
For investigating boundary value problems of the theory of elasticity and ther-

moelasticity with the boundary integral equation method (potential method) it
is necessary to construct fundamental solutions of systems of partial differential
equations and establish their basic properties.

Several methods to construct fundamental solutions of systems of differ-
ential equations of the classical theory of elasticity and thermoelasticity are
known (see, Kupradze at al., 1979 and Nowacki, 1962). Useful information
on fundamental solutions of differential equations is contained in the book by
Hörmander (1983).

The fundamental solutions in the linear theory of porous-elasticity (Biot the-
ory) are established by Cleary (1977), Cheng and Liggett (1984) (see, also
Rudnicki, 1981). The fundamental solution in the linear theory of elastic mate-
rials with voids is constructed by Pompei and Scalia (1994). The fundamental
solutions of equations of the linear theory of binary mixtures for elastic and
thermoelastic solids are constructed by Svanadze (1988, 1990, 1996).

The following investigations are based on two papers by de Boer and Svanadze
(2004) and Svanadze and de Boer (2005).

a) Fundamental Solution of the System of Equations of Steady Oscilla-
tions in the Theory of Fluidsaturated Porous Media

In this section the linear theory of the incompressible liquidsaturated porous
medium is considered, and a brief introduction to the incompressible porous
media model by Bowen (1980) and de Boer (1992) is presented. Then, the
fundamental solution of equations of the steady oscillations of the theory of
incompressible fluidsaturated poroelastic solids is constructed by means of el-
ementary functions, and basic properties are established.
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Field equations

Within the framework of the general porous media theory, see Bowen (1980)
and de Boer (1992), the liquidsaturated porous medium is viewed as a mixture
of superimposed, but immiscible, incompressible constituents with particles of
solid and liquid phases.

In the following the porous medium is restricted to the range of small defor-
mations with all consequences concerning the stress tensors and the equation of
motion and the investigations are limited to an isotropic, linear-elastic porous
solid filled with an ideal liquid; in other words, the investigations on the porous
solid are performed within the framework of the geometrically and physically
linear theory.

Let x = (x1, x2, x3) be the points of the Euclidean three-dimensional space

E3, |x| = (x2
1 + x2

2 + x2
3)

1/2, Dx = (
∂

∂x1
,

∂

∂x2
,

∂

∂x3
), and let t denote the

time variable.
The balance equations of mass and momentum of the theory of incompress-

ible fluidsaturated poroelastic solids can be written as (de Boer, 1992, 2000 a,
de Boer and Liu, 1994, 1995)

µS�uS + (λS + µS) grad div uS − nS grad p +

+ρS [bS − (uS)′′S ] + SL[(uL)′L − (uS)′S ] = 0 ,

−nL grad p + ρL[bL − (uL)′′L] − SL[(uL)′L − (uS)′S ] = 0 ,

div[nS(uS)′S + nL(uL)′L] = 0 .

(8.75)

If the external accelerations bS and bL are assumed to be absent and the
convective terms in the material time derivatives are neglected as well as the
displacements uS , uL and the pressure p are postulated to have a harmonic
time variation, i.e.

uS(x, t) = u(x)e−iω t ,

uL(x, t) = w(x)e−iω t ,

p(x, t) = p̃(x)e−iω t ,

(8.76)

then from the system of equations of motion (8.75) we obtain the following
system of equations of steady oscillations
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µS ∆u + (λS + µS) grad div u + ω2ρS u +

+ i ωSL(u − w) − nS grad p̃ = 0 ,

ω2ρL w − i ωSL(u − w) − nL grad p̃ = 0 ,

nS div u + nL div w = 0 ,

(8.77)

where ω is the oscillation frequency (ω > 0) and where in (8.77)3 the rates of
volume fractions have been neglected.

We introduce the matrix differential operator

A(Dx) = ‖Alj(Dx)‖7×7 , (8.78)

where

Alk(Dx) = (µS∆ + βS)δlk + (λS + µS)
∂2

∂xl∂xk
,

Al,k+3(Dx) = Al+3,k(Dx) = −β3δlk ,

Al+3,k+3(Dx) = βLδlk,

A7l(Dx) = −Al7(Dx) = nS ∂

∂xl
,

A7,l+3(Dx) = −Al+3,7(Dx) = nL ∂

∂xl
,

A77(Dx) = 0, l, k = 1, 2, 3,

(8.79)

and δlp is the Kronecker delta, βj = ω2ρj + β3 (j = S, L), β3 = iωSL.
The system (8.77) can be written as

A(Dx)U(x) = 0 , (8.80)

where U = (u,w, p̃).
Definition. The fundamental matrix of operator A(Dx) (the fundamental

solution of system (8.77)) is matrix Γ(x) = ‖Γlj(x)‖7×7 satisfying the condi-
tion (Hörmander, 1983)

A(Dx)Γ(x) = δ(x)J, x ∈ E3 , (8.81)

where δ(x) is the Dirac delta and J = ‖δlj‖7×7 stands for unit matrix.
In this article the matrix Γ(x) is constructed in terms of elementary functions,

and some basic properties are established.
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Fundamental solution of the system of equations of steady oscillations

We introduce the notations

a = λS + 2µS , β0 = βSβL − β2
3 ,

d1 =
1

a(nS)2
, d2 =

1
µSβL

,

m1 = nSβL + nLβ3, m2 = nSβ3 + nLβS ,

k2
1 = d1[βL (nS)2 + 2β3 nSnL + βS (nL)2] , k2

2 = d2 β0 ,

d = a m1n
L = anL(nSω2ρL − i ωSL) �= 0 .

(8.82)

Then we have

k2
1 = (m1n

S + m2n
L)d1 =

m2 + d1n
S

anL
d . (8.83)

We consider the system of equations

µS∆u + (λS + µS) grad div u + βSu − β3w + nS grad p̃ = F′ ,

−β3u + βLw + nL grad p̃ = F′′ ,

−nS div u − nL div w = f ,

(8.84)

where F′ and F′′ are three-component vector functions of E3 and f is a scalar
function in E3.

As one can easily verify, the system (8.84) may be written in the form

A�(Dx)U(x) = F̃(x) , (8.85)

where A� is transposed from the matrix A, F̃ = (F′,F′′, f) and x ∈ E3.
Applying the operator div to Eqs. (8.84)1, (8.84)2 from Eq. (8.84) we have

(a ∆ + βS) div u − β3 div w + nS ∆ p̃ = div F′ ,

−β3 div u + βL div w + nL ∆ p̃ = div F′′ ,

−nS div u − nL div w = f .

(8.86)

By virtue of the identities (8.82) from (8.86) we obtain

(∆ + k2
1) div u = ϕ1 ,

(∆ + k2
1) div w = ϕ2 ,

∆ (∆ + k2
1) p = ϕ3 ,

(8.87)
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where
ϕ1 = d1[(nL)2 div F′ − nSnL div F′′ − m1f ] ,

ϕ2 = d1[−nSnL div F′ + (nS)2 div F′′ − (anL∆ + m2)f ] ,

ϕ3 = d1{m1 div F′ + (anL∆ + m2) divF′′ +

+[(a∆ + βS)βL − β2
3 ]f} .

(8.88)

Applying the operator ∆(∆ + k2
1) to Eqs. (8.84)1, (8.84)2 and taking into

account Eq. (8.87), we obtain

∆(∆ + k2
1)[(µ

S∆ + βS) u − β3 w] = f1 ,

∆(∆ + k2
1)(−β3 u + βL w) = f2 ,

(8.89)

where
f1 = ∆(∆ + k2

1)F
′ − (λS + µS) ∆ grad ϕ1 − nS grad ϕ3 ,

f2 = ∆(∆ + k2
1)F

′′ − nL grad ϕ3 .

(8.90)

From system (8.89) we have
∆(∆ + k2

1)(∆ + k2
2) u = Φ1 , (8.91)

∆(∆ + k2
1)(∆ + k2

2) w = Φ2 , (8.92)

where
Φ1 = d2(βL f1 + β3 f2) ,

Φ2 = d2[β3 f1 + (µS∆ + βS) f2] .
(8.93)

On the basis of Eqs. (8.87)3 and (8.91), and (8.92) we get

Λ1(∆)U(x) = Φ̃(x), (8.94)

where Φ̃ = (Φ1,Φ2, ϕ3) and
Λ(∆) = ‖Λlj(∆)‖7×7 ,

Λqq(∆) = ∆(∆ + k2
1)(∆ + k2

2) ,

Λ77(∆) = ∆(∆ + k2
1) ,

Λlj(∆) = 0, q = 1, 2, · · · 6 ,

l, j = 1, 2, · · · , 7, l �= j .

(8.95)

1This Λ has nothing to do with the same notation in (6.115). A confusion, however, seems to be improbable.
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In what follows we use the notations

L = ‖Llj‖7×7 =

∥∥∥∥∥∥
L(1) L(2) L(5)

L(3) L(4) L(6)

L(7) L(8) L(9)

∥∥∥∥∥∥
7×7

,

L(m) = ‖L(m)
lj ‖3×3, L(k) = ‖L(k)

lj ‖3×1,

L(q) = ‖L(q)
lj ‖1×3, L(9) = L77,

(8.96)

L(1)(Dx) = d1(nL)2(∆ + k2
2) grad div−d2βL(∆ + k2

1) curl curl ,

L(2)(Dx) = L(3)(Dx) = −d1n
SnL(∆ + k2

2) grad div −

−d2β3(∆ + k2
1) curl curl ,

L(4)(Dx) = d1(nS)2(∆ + k2
2) grad div −

−d2(µS∆ + βS)(∆ + k2
1) curl curl ,

L
(5)
l1 (Dx) = d1m1

∂

∂xl
,

L
(6)
l1 (Dx) = d1(anL∆ + m2)

∂

∂xl
,

L
(7)
1l (Dx) = −d1m1(∆ + k2

2)
∂

∂xl
,

L
(8)
1l (Dx) = −d1(anL∆ + m2)(∆ + k2

2)
∂

∂xl
,

L(9)(Dx) = d1[(a∆ + βS)βL − β2
3 ] ,

l = 1, 2, 3, m = 1, 2, 3, 4, k = 5, 6, q = 7, 8 .

In view of Eqs. (8.88)1,2, (8.90) and (8.96) from Eqs. (8.93), (8.88)3 we
have

Φ1 = L(1)(Dx)F′ + L(3)(Dx)F′′ + L(7)(Dx)f ,

Φ2 = L(2)(Dx)F′ + L(4)(Dx)F′′ + L(8)(Dx)f ,

ϕ3 = L(5)(Dx)F′ + L(6)(Dx)F′′ + L(9)(Dx)f .

(8.97)

Thus, from Eq. (8.97) we have

Φ̃(x) = L�(Dx)F̃(x) . (8.98)
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By virtue of Eqs. (8.85), (8.97) from Eq. (8.94) it follows that ΛU = L�A�U.
It is obvious that L�A� = Λ and hence

A(Dx)L(Dx) = Λ(∆) . (8.99)

We assume that k1k2(k2
1 − k2

2) �= 0.
Let

Υ(x) = ‖Υmj(x)‖7×7, Υll(x) =
3∑

q=1

η1qγq(x) ,

Υ77(x) = η21γ1(x) + η23γ3(x), Υmj(x) = 0 ,

l = 1, 2, . . . 6, m, j = 1, 2, · · · , 7, m �= j ,

(8.100)

where

γl(x) = −eikl|x|

4π|x| , γ3(x) = − 1
4π|x| ,

η11 =
1

k2
1(k

2
1 − k2

2)
, η12 =

1
k2

2(k
2
2 − k2

1)
, η13 =

1
k2

1k
2
2

,

η21 = −η23 = − 1
k2

1

, l = 1, 2 .

(8.101)

Obviously (see, Kupradze et al., 1979)

(∆ + k2
l )γl(x) = δ(x), ∆γ3(x) = δ(x), l = 1, 2 . (8.102)

Lemma 1. The matrix Υ is the fundamental matrix of operator Λ(∆), that is,

Λ(�)Υ(x) = δ(x)J . (8.103)

Proof. It is sufficient to show

∆(∆ + k2
1)(∆ + k2

2)Υ11(x) = δ(x) ,

∆(∆ + k2
1)Υ77(x) = δ(x) .

(8.104)

Taking into account the equalities

η11 + η12 + η13 = 0 , η11k
2
1 + η12k

2
2 = 0 , (8.105)

we have
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∆(∆ + k2
1)(∆ + k2

2)Υ11

= (∆ + k2
1)(∆ + k2

2)[η11(δ − k2
1γ1) + η12(δ − k2

2γ2) + η13δ]

= − (∆ + k2
1)(∆ + k2

2)[η11k
2
1γ1 + η12k

2
2γ2]

= − (∆ + k2
1){η11k

2
1[δ + (k2

2 − k2
1)]γ1 + η12k

2
2δ}

= − η11k
2
1(k

2
2 − k2

1)(∆ + k2
1)γ1 = δ .

(8.106)

Eq. (8.104)2 is proved in a quiet similar manner.
We introduce the matrix

Γ(x) = L(Dx)Υ(x) . (8.107)

Using the identities (8.107), (8.99), (8.103) we get

A(Dx)Γ(x) = A(Dx)L(Dx)Υ(x) = Λ(∆)Υ(x) = δ(x)J . (8.108)

Hence Γ(x) is a solution to Eq. (8.81).
We have thereby proven the following theorem:

Theorem 1. The matrix Γ(x) defined by Eq. (8.107) is the fundamental
solution of system (8.77).

Theorem 1 leads to the following results:
Corollary 1. Each column of the matrix Γ(x) is solution to the system (2) at
every point x ∈ E3 except the origin.
Corollary 2. If x ∈ E3\{0}, then each element Γkl(x) of the matrix Γ(x) has
the form

Γmj(x) =
3∑

q=1

Γmjq(x) ,

Γm7(x) = Γm71(x) + Γm73(x) ,

(8.109)

where

(∆ + k2
l ) Γmkl(x) = 0, ∆Γmk3(x) = 0 ,

m, k = 1, 2, · · · , 7, j = 1, 2, · · · , 6, l = 1, 2 .
(8.110)

The fundamental solution Γ(x) of the system (8.77) makes it possible to
investigate three-dimensional boundary value problems of the theory of fluid-
saturated porous media with the boundary integral method (potential method).
The main results obtained in the classical theory of elasticity and thermoelas-
ticity with the potential method are given in the book of Kupradze et al. (1979).
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The method, presented above for constructing the fundamental solution of
the system (8.77) is more simple, than the methods used in the classical theory
of elasticity and thermoelasticity for isotropic elastic materials (see, Kupradze
et al., 1979 and Nowacki, 1962).

From the method, developed in this Section, it is possible to construct the
fundamental solutions of the systems of equations in the linear theories of
isotropic elastic materials with microstructure.

b) On the Representations of Solutions in the Theory of Fluidsaturated
Porous Media

Contemporary treatment of the various boundary value problems of the elas-
ticity theory usually begins with the representation of a general solution of field
equations in terms of elementary (harmonic, biharmonic, metaharmonic and
etc.) functions. In the classical theory of elasticity the Boussinesq-Somigliana-
Galerkin, Boussinesq-Papkovitch-Neuber (BPN), Green-Lamé (GL) and
Cauchy-Kovalevski-Somigliana (CKS) solutions are well-known (see Gurtin,
1972; Nowacki, 1962, 1975; Kupradze et al., 1979). An excellent review of
the history of these solutions is given in Gurtin (1972).

The Galerkin type solution (see Galerkin, 1930) of equations of classical
elastokinetics was obtained by Iacovache (1949). The classical theory of ther-
modynamics and the theory of micropolar elasticity representations of solutions
are presented in Nowacki (1964, 1969) and Sandru (1966). The representation
theorem of Galerkin type in the theory of thermoelastic materials with voids
was proven by Ciarlleta (1991). In the case of the isothermal theory of ma-
terials with voids, the BPN, GL and CKS type solutions were obtained by
Chandrasekharaiah (1987, 1989).

The representations of Galerkin type solutions in the theory of micropolar
thermoelasticity without energy dissipation and in the dynamical theory of bi-
nary mixture consisting of a gas and an elastic solid were established by Ciarlleta
(1999, 1995). The theory of binary mixtures of elastic solids, the representa-
tions of general solutions, are presented by Basheleishvili (1999) and Svanadze
(1993).

In the next section the representation of the Galerkin type solution of equa-
tions of motion is obtained. Then, the representation theorem of the Galerkin
type of system of the inhomogeneous equations of the steady oscillations is
proved. Finally, the general solution of system of the homogeneous equations
of steady oscillations in terms of a harmonic function and four metaharmonic
functions is established.

Field equations

The system of equations of motion in the linear theory of incompressible
fluidsaturated poroelastic solids can be written as, see Eq. (8.75)
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µS∆uS + (λS + µS) grad divuS + SL(u̇L − u̇S) −
−nS grad p = ρS (ü − bS) ,

−SL(u̇L − u̇S) − nL grad p = ρL (ü − bL) ,

nS div u̇S + nL div u̇L = 0 ,

(8.111)

where uS(x, t), uL(x, t),bS(x, t) and bL(x, t) are three-component vector
functions, p(x, t) is interpreted as the true poreliquid pressure of the incom-
pressible liquid, (x, t) ∈ Ω × I, I = (0, +∞); nj > 0, ρj > 0 (j = S, L); a

superposed dot denotes differentiation with respect to t : u̇ =
∂ u
∂ t

, ü =
∂ 2u
∂ t 2

,

where we have neglected the convective terms and the rates of the volume frac-
tions. We consider a body which occupies the region Ω of E3.

If we assume that

uS(x, t) = Re [u(x) e−i ω t] ,

uL(x, t) = Re [w(x) e−i ω t] ,

p(x, t) = Re [ p̃(x) e−i ω t] ,

bj(x, t) = Re [ b̃j(x) e−i ω t] ,

j = S, L,

(8.112)

then from (8.111) the system of equations of the steady oscillations of incom-
pressible fluidsaturated poroelastic solids follows as

µS∆u + (λS + µS) grad div u + βS u −
−β3 w − nS grad p̃ = −ρSb̃ ,

−β3 u + βLw − nL grad p̃ = −ρLb̃L ,

nS div u + nL div w = 0 ,

(8.113)

where βj = ω2ρj + β3 (j = S, L), β3 = iω SL, i =
√−1, and ω is the

oscillation frequency (ω > 0).
If the external body forces b̃S and b̃L are assumed to be absent, the

system (8.113) is

µS∆u + (λS + µS) grad div u + βS u − β3 w − nS grad p̃ = 0 ,

−β3 u + βLw − nL grad p̃ = 0 ,

nS div u + nL div w = 0 .

(8.114)
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Throughout this section, it is assumed that all functions are continuous and
differentiable up to the required order of Ω × I or Ω.

In this section the Galerkin type solutions of systems (8.111) and (8.113)
are presented. The general solution of system (8.114) in terms of a harmonic
function and four metaharmonic functions are established.

Galerkin type solution of equations of motion

We introduce the matrix differential operator

B(Dx, T ) = ‖Blj(Dx, T )‖7×7,

Blk(Dx, T ) = (µS∆ − SLT − ρST 2)δlk + (λS + µS)
∂2

∂xl∂xk
,

Bl,k+3(Dx, T ) = Bl+3,k(Dx, T ) = SLTδlk,

Bl+3,k+3(Dx, T ) = −(SL + ρLT )Tδlk,

Bl7(Dx, T ) = −nS ∂

∂xl
, Bl+3,7(Dx, T ) = −nL ∂

∂xl
,

B7l(Dx, T ) = nST
∂

∂xl
, B7,l+3(Dx, T ) = nLT

∂

∂xl
,

B77(Dx, T ) = 0, l, k = 1, 2, 3,

(8.115)

where, T =
∂

∂ t
, T 2 =

∂2

∂ t2
.

The system (8.111) can be written as

B(Dx, T )V(x, t) = F(x, t), (8.116)

where V = (u,w, p), F = (F1,F2, 0), Fj = −ρjbj (j = S, L), (x, t) ∈
Ω × I.

We consider the system of equations

[µS∆ + (λS + µS) grad div−(SL + ρST ) T ]uS +

+SLTuL + nST grad p = Φ′,

SLTuS − (SL + ρLT ) T uL + nLT grad p = Φ′′,

−nS div uS − nL divuL = ϕ,

(8.117)



Poroelasticity 129

where Φ′ and Φ′′ are three-component vector functions of Ω × I and ϕ is a
scalar function of Ω × I .

As one can easily verify, the system (8.117) may be written in the form

B�(Dx, T )V(x, t) = Φ(x, t), (8.118)

where B� is the transpose of matrix B , and Φ = (Φ′,Φ′′, ϕ).
Applying the operator div to Eqs. (8.117)1,2 we have

C1 div uS + SLT divuL + nST ∆ p = divΦ′,

SLT div uS + C2 divuL + nLT ∆ p = divΦ′′.
(8.119)

where

C1 = a∆ − (SL + ρST )T, C2 = −(SL + ρLT )T. (8.120)

From (8.117)3 we get

div uL = m div uS − 1
nL

ϕ, (8.121)

where m = −nS

nL
.

By virtue of Eq. (8.121) from (8.119) follows that

(C1 + mSLT ) div uS + nST ∆ p = ψ1,

(mC2 + SLT ) div uS + nLT ∆ p = ψ2,
(8.122)

where
ψ1 = div Φ′ +

1
nL

SLTϕ, ψ2 = div Φ′′ +
1

nL
C2ϕ. (8.123)

From system (8.122) and Eq. (8.121) we have

Λ1 div uS = ϕ1, Λ1 div uL = ϕ2, ∆Λ1 T p = ϕ3, (8.124)

where
ϕ1 = nLψ1 − nSψ2,

ϕ2 = m(nLψ1 − nSψ2) − 1
nL

Λ1ϕ,

ϕ3 = −(mC2 + SLT )ψ1 + (C1 + SLmT )ψ2,

(8.125)

and
Λ1 = nLC1 − mnSC2 − 2nSSLT. (8.126)

Applying the operator ∆Λ1 to Eqs. (8.117)1,2 and taking into account Eq.
(8.121), we obtain

∆Λ1(B1 uS +SLT uL) = f1, ∆Λ1(SLTuS −B2T uL) = f2, (8.127)
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where

B1 = µS∆ − (SL + ρST )T, B2 = SL + ρLT, (8.128)

and

f1 = ∆Λ1Φ′ − (λS + µS) ∆ grad ϕ1 − nS gradϕ3,

f2 = ∆Λ1Φ′′ − nL gradϕ3.
(8.129)

From system (8.127) we have
∆Λ1Λ2 uS = Φ1, ∆Λ1Λ2T uL = Φ2, (8.130)

where

Λ2 = B1B2+S2
LT = µS(SL+ρLT )∆−[(ρS+ρL)SL+ρSρLT ]T 2, (8.131)

and
Φ1 = B2f1 + SLf2, Φ2 = SLT f1 + B1f2. (8.132)

On the basis of Eqs. (8.124)3 and (8.130) we get
Λ̃(∆, T )V(x, t) = Φ̃(x, t), (8.133)

where Φ̃ = (Φ1,Φ2, ϕ3) and

Λ̃(∆, T ) = ‖Λ̃lj(∆, T )‖7×7, Λ̃kk = ∆Λ1Λ2,

Λ̃k+3,k+3 = ∆Λ1Λ2T, Λ̃77 = ∆Λ1T, Λlj = 0,

k = 1, 2, 3, l, j = 1, 2, · · · , 7, l �= j.

(8.134)

In the following we use the notations

M = ‖Mlj‖7×7 =

∥∥∥∥∥∥
M(1) M(2) M(5)

M(3) M(4) M(6)

M(7) M(8) M (9)

∥∥∥∥∥∥
7×7

,

M(m) = ‖M (m)
lj ‖3×3, M(k) = ‖M (k)

lj ‖3×1 ,

M(q) = ‖M (q)
lj ‖1×3, M (9) = M77 ,

M(1)(Dx, T ) = nLΛ2 grad div−B2Λ1 curl curl ,

M(2)(Dx, T ) = −nSΛ2T grad div−SLTΛ1 curl curl ,

M(3)(Dx, T ) = −nSΛ2 grad div−SLΛ1 curl curl ,

(8.135)
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M(4)(Dx, T ) = −mnSΛ2T grad div +B1Λ1 curl curl ,

M
(5)
l1 (Dx, T ) = −(mC2 + SLT )

∂

∂xl
,

M
(6)
l1 (Dx, T ) = (C1 + mSLT )

∂

∂xl
,

M
(7)
1l (Dx, T ) = (mC2 + SLT )Λ2

∂

∂xl
,

M
(8)
1l (Dx, T ) = −(C1 + mSLT )TΛ2

∂

∂xl
,

M (9)(Dx, T ) =
1

nL
(C1C2 − S2

LT 2) ,

l = 1, 2, 3, m = 1, 2, 3, 4, k = 5, 6, q = 7, 8 .

In view of Eqs. (8.123), (8.125)1,2 and (8.129) from Eq. (8.132) and (8.125)3
we have

Φ1 = M(1)Φ′ + M(3)Φ′′ + M(7)ϕ ,

Φ2 = M(2)Φ′ + M(4)Φ′′ + M(8)ϕ ,

ϕ3 = M(5)Φ′ + M(6)Φ′′ + M (9)ϕ .

(8.136)

Thus, from Eq. (8.136) we obtain

Φ̃(x, t) = M�(Dx, T )Φ(x, t) . (8.137)

By virtue of Eqs. (8.121), (8.125) from Eq. (8.133) it follows that

Λ̃V = M�Φ = M�B�V . (8.138)

It is obvious that M�A� = Λ̃ and hence

B(Dx, T )M(Dx, T ) = Λ̃(∆, T ) . (8.139)

We have thereby proven the following Lemma:

Lemma 2. The matrix differential operators B, M and Λ̃ satisfy Eq. (8.139),
where B, M and Λ̃ are defined by Eqs. (8.115), (8.135) and (8.134), respec-
tively.

Let G′
j(x, t), G′′

j (x, t)(j = 1, 2, 3) and g(x, t) be functions on Ω × I ,
G′ = (G′

1, G
′
2, G

′
3), G′′ = (G′′

1, G
′′
2, G

′′
3), G = (G′, G′′, g).

The next theorem provides a Galerkin type solution to system (8.111).



132 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

Theorem 2.
Let

uS = M(1) G′ + M(2) G′′ + M(5) g ,

uL = M(3) G′ + M(4) G′′ + M(6) g ,

p = M(7) G′ + M(8) G′′ + M(9) g ,

(8.140)

where the fields G′
j of class C7 , G′′

j of class C8 , and g of class C5 satisfy

∆Λ1 Λ2 G′ = −ρS bS ,

∆Λ1 Λ2 T G′′ = −ρL bL ,

∆Λ1 T g = 0, on Ω × I ,

(8.141)

then (uS , uL, p) is the solution of system (8.111).

Proof. From (8.140) we have

V = MG . (8.142)

On the other hand, from (8.141) we get

Λ̃G = F . (8.143)

By virtue of Eqs. (8.139), (8.142), (8.143) we obtain

BV = BMG = Λ̃G = F . (8.144)

Remark 1.
If uS , uL, and p are given by Eq. (8.140), then the vector (uS , uL, p) is a
Galerkin type solution of the system of equations of motion in the linear theory
of the incompressible fluidsaturated poroelastic solid. In view of Theorem 2
the system of coupled equations (8.111) in the system of uncoupled equations
(8.141) is deduced.

Galerkin type solution of equations of steady oscillations

Let Q′
j , Q′′

j (j = 1, 2, 3) and q be functions on Ω , Q′ = (Q′
1, Q

′
2, Q

′
3),Q

′′ =
(Q′′

1, Q
′′
2, Q

′′
3), Q = (Q′, Q′′, q).

The next theorem provides a Galerkin type solution to system (8.113).
Theorem 2 leads to the following.

Theorem 3.
Let
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u = L(1) Q′ + L(2) Q′′ + L(5) q ,

w = L(3) Q′ + L(4) Q′′ + L(6) q ,

p̃ = L(7) Q′ + L(8) Q′′ + M (9) q ,

(8.145)

where L(m)(Dx)(m = 1, 2, ..., 9) is definied by (8.96); the fields Q′
j and Q′′

j

of class C6 , and q of class C4 on Ω satisfy

∆(∆ + k2
1) (∆ + k2

2)Q
′ = −ρS b̃S ,

∆(∆ + k2
1) (∆ + k2

2)Q
′′ = −ρL b̃L ,

∆(∆ + k2
1) q = 0, on Ω ,

(8.146)

then (u, w, p̃) is the solution of system (8.113).

Remark 2. If u, w and p̃ are given by Eq. (8.145), then the vector (u, w, p̃)
is a Galerkin type solution of the system of equations of the steady oscillations
in the linear theory of an incompressible fluidsaturated poroelastic solid. In
view of Theorem 3 the system of coupled equations (8.113) on the system of
uncoupled equations (8.141) is deduced.

General solution of equations of steady oscillations

In the sequel we will use the following lemmas.
Lemma 3.

If

η1 = − 1
β0

aβL, η2 = − 1
β0

aβ3 ,

d = a m1n
L = nSnL ω2a ρL − i ωSLa nL ,

(8.147)

then

m2 + nSd1d = anLk2
1, m1 − nLd1d = 0 ,

η1n
Lk2

1 +
1
β0

m1d1d = −nL, η2n
Lk2

1 +
1
β0

m2d1d = nS .
(8.148)

Proof. By virtue of Eqs. (8.82)2, (8.82)7, and (8.147)3 we have

m2 + nSd1d = d1[m2a(nL)2 + nS(am1n
L)]

= d1anL(m1n
S + m2n

L) = anLk2
1 ,

(8.149)
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and

m1 − nLd1d = d1[m1a(nL)2 − nLam1 nL] = 0 . (8.150)

In view of Eqs. (8.82)5, (8.147)1 and (8.148)1,2 we get

η1n
Lk2

1 +
1
β0

m1d1d =
1
β0

[m1d1d − anLβLk2
1]

=
1
β0

[(nSβL + nLβ3)d1d − anLβLk2
1]

=
1
β0

[βL(nSd1d − anLβL)k2
1)] =

1
β0

(m1β3 − m2βL) .

(8.151)

Taking into account the equality

m1β3 − m2βL = −nLβ0 , (8.152)

from (8.151) we obtain Eq. (8.148)3.
Equation (8.148)4 is proven in quite a similar manner.

Lemma 4.
If (u, w p̃) is a solution of system (8.114), then

(∆ + k2
1) divu = 0, (∆ + k2

2) curl u = 0 , (8.153)

and

(∆ + k2
1) ∆p̃ = 0 , (8.154)

Proof. Applying the operator div to Eqs. (8.114)1,2 we have

(a ∆ + βS) div u − β3 div w − nS ∆ p̃ = 0 ,

−β3 div u + βL divw − nL ∆ p̃ = 0 .

(8.155)

By virtue of Eq. (8.114)3 from (8.155) it follows that

(anL ∆ + m2) div u − nSnL ∆ p̃ = 0 ,

m1 divu + (nL)2 ∆ p̃ = 0 .

(8.156)

From system (8.156) we get

[a(nL)2 ∆ + (m1n
S + m2n

L)] div u = 0 , (8.157)

and
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[a(nL)2∆ + (m1n
S + m2n

L)]∆ p̃ = 0 . (8.158)

Obviously, from (8.157) and (8.158) we have Eq. (8.153)1 and (8.154),
respectively.

Now applying the operator curl to Eqs. (8.114)1,2 we obtain

(µS∆ + βS) curl u − β3 curl w = 0 ,

−β3 curl u + βL curl w = 0 .

(8.159)

The system (8.159) implies that

(µSβL ∆ + β0) curlu = 0 . (8.160)

Hence, from (8.160) we have Eq. (8.153)2.

Theorem 4.

If (u, w, p̃) is a solution of system (8.114), then

u = grad (m1 ϕ − nL ψ) + βLΨ ,

w = grad (m2 ϕ + nS ψ) + β3Ψ ,

p̃ = β0 ϕ + d1dψ, on Ω ,

(8.161)

where ϕ, ψ and Ψ satisfy following equations

∆ ϕ(x) = 0, (∆ + k2
1) ψ(x) = 0 ,

(∆ + k2
2)Ψ(x) = 0, div Ψ(x) = 0, x ∈ Ω .

(8.162)

Proof. Let (u, w, p̃) be a solution of system (8.114). From Eq. (8.114)3 we
get

div w = m div u . (8.163)

Taking into account Eq. (8.163) and

∆u = grad div u − curl curl u , (8.164)

from (8.114)1,2 we have

βSu − β3w = grad (−a div u + nS p̃) + µS curl curl u ,

−β3u + βLw = gradnL p̃ .

(8.165)
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Obviously, Eq. (8.165) implies

u = grad (η1 divu +
m1

β0
p̃) +

µSβL

β0
curl curl u ,

w = grad (η2 div u +
m2

β0
p̃) +

µSβ3

β0
curl curl u .

(8.166)

We introduce the notations

ψ(x) =
1

nLk2
1

div u(x), Ψ(x) =
µS

β0
curl curl u(x) ,

Ψ = (Ψ1, Ψ2, Ψ3), x ∈ Ω .

(8.167)

On the basis of Eqs. (8.153)1,2 and

div curlu(x) = 0, x ∈ Ω (8.168)

we obtain Eqs. (8.162)2 − (8.162)4.
In view of (8.162)2 and (8.167)1 from (8.156)1 we get

∆ p̃ =
1

nSnL
(anL ∆ + m2) div u =

k2
1

nS
(m2 − anLk2

1) ψ . (8.169)

By virtue of (8.148)1 from (8.169) it follows that

∆ p̃(x) = −k2
1d1d ψ(x), x ∈ Ω . (8.170)

Hence, p̃ satisfies Eq. (8.161)3 , where ϕ is a solution of (8.162)1 in Ω.
Using Eqs. (8.161)3, (8.167)1,2 from (8.166) we have

u = grad [m1 ϕ + (η1n
Lk2

1 +
1
β0

m1d1d) ψ] + βL Ψ ,

w = grad [m2 ϕ + (η2n
Lk2

1 +
1
β0

m2d1d) ψ] + β3 Ψ .

(8.171)

In view of the identities (8.148)3,4 from (8.171) we obtain Eqs. (8.161)1,2.

Theorem 5. If u, w, and p̃ given by Eq. (8.161), where ϕ, ψ and Ψ
satisfies Eq. (8.162), then (u, w, p̃) is the solution of system (8.114) on Ω.

Proof. From (8.161) we get

∆u = nLk2
1 grad ψ − βL k2

2 Ψ, grad divu = nLk2
1 grad ψ . (8.172)

We replace u, w, and p̃ given by Eqs. (8.161)1,2,3 on the left-hand side of
Eq. (8.114)1. On the basis of relations (8.82), (8.148)1, (8.162), (8.172) and
βSm1 − β3m2 = nSβ0 we obtain
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µS∆u + (λS + µS) grad divu + βS u − β3 w − nS grad p

= (m1βS − m2β3 − nSβ0) grad ϕ +

+(anLk2
1 − nSd1d − m2) gradψ + (β0 − µSβLk2

2)Ψ = 0 .

(8.173)

Similarly, in view of Eqs. (8.148)2, (8.152), (8.162)
and of

grad div w = −nSk2
1 grad ψ , (8.174)

we obtain

−β3 u + βLw − nL grad p̃

= (m2βL − m1β3 − nLβ0) gradϕ + (m1 − nLd1d) gradψ = 0

(8.175)

Obviously, from (8.161) we get

divu = nLk2
1 ψ, divw = −nSk2

1 ψ . (8.176)

Hence, we have Eq. (8.114)3. The proof is complete.
Thus, the general solution of system of homogeneous equations (8.114) in

terms of one harmonic function ϕ and four metaharmonic functions ψ, Ψ1, Ψ2,
Ψ3 is obtained. In view of Theorem 4 the system of coupled equations (8.114)
on the system of uncoupled equations (8.162) is deduced.

Let

Ω1 = {x : |x| < r}, Ω2 = {x : |x| > r}, Ω3 = {x : r1 < |x| < r2} ,

where

|x| = (x2
1 + x2

2 + x2
3)

1/2, r > 0, rj > 0 (j = 1, 2) .

(8.177)

If x ∈ Ωj (j = 1, 2, 3), then from Eqs. (8.162)3,4, we have (for details see
Natroshvili and Svanadze (1981))

Ψ(x) = [x × Dx]Ψ̃1(x) + curl [x × Dx]Ψ̃2(x) , (8.178)

where [x × Dx] is the vector product of vectors x and Dx, and

(∆ + k2
2) Ψ̃l(x) = 0, l = 1, 2 . (8.179)

Theorem 4 and Eq. (8.178) leads to the following Theorem.
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Theorem 6.
If (u, w, p̃) is a solution of system (8.114) on Ωj , then

u(x) = grad [m1 ϕ(x) − nL ψ(x)] + βL[x × Dx]Ψ̃1(x) +

+βL curl [x × Dx]Ψ̃2(x) ,
(8.180)

w(x) = grad [m2 ϕ(x) + nS ψ(x)] + β3[x × Dx]Ψ̃1(x) +

+β3 curl [x × Dx]Ψ̃2(x) ,
(8.181)

p̃(x) = β0 ϕ(x) + d1dψ(x) , (8.182)

where ϕ, ψ, Ψ̃l satisfy Eqs. (8.162)1, (8.162)2, (8.179), respectively, and
x ∈ Ωj , j = 1, 2, 3, l = 1, 2.

Hence, in the region Ωj (j = 1, 2, 3) the general solution of system (8.114)
in terms of one harmonic function ϕ and three metaharmonic functions ψ, Ψ̃1, Ψ̃2

is established.
As in the classical theory of elasticity, by virtue of Theorems 1 to 6 it is

possible to construct the solutions of boundary value problems in the linear
theory of incompressible fluidsaturated poroelastic solids.

8.5 Wave Propagation
Due to the complexity of the dynamic behavior of saturated porous solids,

exact analytical solutions of initial and boundary value problems are not often
found. Fortunately, some problems can be solved exactly. This has been done
by de Boer and Liu on the basis of the Theory of Porous Media in several
papers which concerns the one-dimensional wave propagation, plane waves
propagation as well as growth and decay of acceleration waves, dispersion and
attenuation of surface waves, inhomogeneous plane waves, mechanical energy
flux, and energy dissipation and, finally, propagation and evolution of wave
fronts.

With these contributions excellent tools have been provided for comparing
numerical results for complicated practical problems gained by the finite or
boundary element methods. This has already been done by several scientists,
especially when comparing their results with the exact solution of the one-
dimensional wave propagation, Breuer, 1997 a, b, c.

The one-dimensional wave propagation with its exact solution is well docu-
mented in the book by de Boer (2000 a) and will not be addressed again. Rather
some other contributions to the dynamics of saturated porous solids with exact
solutions will be considered in the next sections.
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a) Plane Waves in a Semi-Infinite Liquidsaturated Porous Medium

The problem of the reflection and refraction of plane waves on a plane bound-
ary has been studied extensively by several authors (see, e.g., Deresiewicz, 1962
a, b; Hajra and Mukhopadhyay, 1982), who adopted the field formulations given
by Biot (1956), which describe the propagation of small amplitude disturbances
in an isotropic, elastic, liquid-filled porous medium.

In this investigation, the approach used to describe fluidsaturated porous
solids is applied to deal with elastic body waves in a liquidsaturated porous
medium and the problem of their reflections on a plane, traction-free boundary,
and the forthcoming reflections back into the medium. Also in this section the
geometrically and physically linear theory is used for an incompressible binary
model. As shown in the preceding section porous media are governed by a set
of linear coupled partial differential equations. In this case, it has been revealed
that a coupled longitudinal and transverse wave in the binary model consists.
Their wave numbers or propagation waves receive clear physical meanings
and are comparable with the classical solution of linear-elastically deformed
one-component continua. Moreover, it is not necessary to approximate the
dispersion relationship for high and low frequencies. Generally, the presence
of a plane traction-free boundary results in two types of reflected wave for each
incident wave. In addition, poreliquid pressure is also accompanied with the
reflection of waves, to which it is worthwhile to pay special attention.

We repeat the fundamental main equation (8.75):

µS�uS + (λS + µS) grad divuS − nS grad p +

+ρS [bS − (uS)′′S ] + SL[(uL)′L − (uS)′S ] = 0 ,

(8.183)

−nL grad p + ρL[bL − (uL)′′L] − SL[(uL)′L − (uS)′S ] = 0 , (8.184)

div[nS(uS)′S + nL(uL)′L] = 0 . (8.185)

We neglect the external accelerationsbS andbL; then the equations of motion
(8.183) and (8.184) read as

(λS + µS) grad divuS + µS div grad uS − nS grad p −

−ρS(uS)′′S + SL[(uL)′L − (uS)′S ] = 0 ,

(8.186)

−nL grad p + ρL(uL)′′ − SL[(uL)′L − (uS)′S ] = 0 . (8.187)

Helmholtz’s resolutions for each of the two displacement vectors uS and uL

are considered in the forms :
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uS = grad Φ + curl h , (8.188)

uL = grad Ψ + curl g , (8.189)

where Φ, Ψ, h and g are functions of x and t. Inserting (8.188) and (8.189)
into (8.186), (8.187) and (8.185) leads with the Laplace operator

�(...) = div grad (...) (8.190)

to

grad [(λS + 2µS)�Φ − nSp − ρS ∂2Φ
∂t2

+ SL(
∂Ψ
∂t

− ∂Φ
∂t

)] +

+curl [µS�h − ρS ∂2h
∂t2

+ SL(
∂g
∂t

− ∂h
∂t

)] = 0 ,

(8.191)

grad [−nLp − ρL ∂2Ψ
∂t2

− SL(
∂Ψ
∂t

− ∂Φ
∂t

)] +

+curl [−ρL ∂2g
∂t2

− SL(
∂g
∂t

− ∂h
∂t

)] = 0 ,

(8.192)

�(nS ∂Φ
∂t

+ nL ∂Ψ
∂t

) = 0 , (8.193)

if the convective terms in the material time derivatives, are neglected.
The above mentioned equations (8.191) to (8.193) may be identically satis-

fied by setting

(λS + 2µS)�Φ − nSp = ρS ∂2Φ
∂t2

− SL(
∂Ψ
∂t

− ∂Φ
∂t

) , (8.194)

−nLp = ρL ∂2Ψ
∂t2

+ SL(
∂Ψ
∂t

− ∂Φ
∂t

) , (8.195)

�(nS ∂Φ
∂t

+ nL ∂Ψ
∂t

) = 0 (8.196)

and

µS�h = ρS ∂2h
∂t2

− SL(
∂g
∂t

− ∂h
∂t

) , (8.197)

ρL ∂2g
∂t2

+ SL(
∂g
∂t

− ∂h
∂t

) = 0 . (8.198)

By eliminating the unknown poreliquid pressure from (8.194) and (8.195), the
following field equation is obtained:
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(λS + 2µS)�Φ = ρS ∂2Φ
∂t2

− nS

nL
ρL ∂2Ψ

∂t2
− SL

nL
(
∂Ψ
∂t

− ∂Φ
∂t

) . (8.199)

Scalar potentials are postulated to have a harmonic time variation, i.e.

Φ(x, t) = Φ̄(x)e−iωt , (8.200)

Ψ(x, t) = Ψ̄(x)e−iωt , (8.201)

where ω is the frequency. Thus, by inserting (8.200) and (8.201) into (8.199)
and (8.194), the following relations are obtained:

(λS + 2µS)�Φ̄ = −ρSω2Φ̄ +
nS

nL
ρLω2Ψ̄+

+
SLiω

nL
Ψ̄ − SLiω

nL
Φ̄ ,

(8.202)

nS�Φ̄ + nL�Ψ̄ = 0 . (8.203)

Also, from (8.202) and (8.203) we have

�(� + k2
1)Φ̄ = 0 , (8.204)

where k1 is the wave number (here complex). Thus, the so-called dispersion
relationship is

k2
1 = A1(ω) + B1(ω)i , (8.205)

where

A1 =
ρS(nL)2 + ρL(nS)2

(nL)2λS + 2(nL)2µS
ω2 , (8.206)

B1 =
SL ω

(nL)2λS + 2(nL)2µS
. (8.207)

One physically reasonable solution of(8.204) is

�Φ̄ + k2
1Φ̄ = 0 , (8.208)

or

(� + k2
1)Φ̄ = 0 . (8.209)

Otherwise we can write

k1 = a1(ω) + b1(ω)i , (8.210)
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where

a2
1 =

√
[(nS)2ρLω2 + (nL)2ρSω2]2 + (SL ω)2

2[(nL)2λS + 2(nL)2µS ]
+

+
(nS)2ρLω2 + (nL)2ρSω2

2[(nL)2λS + 2(nL)2µS ]
.

(8.211)

Then, the phase velocity of the longitudinal wave is definied as:

c2
1 = c2

1(ω) =
ω2

a2
1

=
2[(nL)2(λS + 2µS)]√

[(nS)2ρL + (nL)2ρS ]2 +
S2

L

ω2
+ (nS)2ρL + (nL)2ρS

.
(8.212)

For high frequency waves, i.e. ω → ∞, or in the case of non-dissipation
(SL = 0), the velocity c2

1 is reduced to

c̄2
1 =

(nL)2(λS + 2µS)
(nS)2ρL + (nL)2ρS

. (8.213)

Note in passing that the above result is the same as that given by de Boer et al.
(1993).

The attenuation coefficient is defined by

b2
1 =

√
[(nS)2ρLω2 + (nL)2ρSω2]2 + (SLω)2

2(nL)2(λS + 2µS)
+

+
− (nS)2ρLω2 + (nL)2ρSω2

2(nL)2(λS + 2µS)
.

(8.214)

The scalar field Ψ̄ is gained from (8.203) by an integration process

Ψ̄ = −nS

nL
Φ̄ . (8.215)

The vector fields h (8.197) and g (8.198) can be treated with arguments
similar to those stated above, i.e.

h(x, t) = h̄(x)e−iωt , (8.216)

g(x, t) = ḡ(x)e−iωt . (8.217)

Then,
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(� + k2
2)h̄ = 0 , (8.218)

ḡ(x) =
ρLSLωi + S2

L

(ρL)2ω2 + S2
L

h̄(x) (8.219)

are derived. In (8.218) the abbreviation

k2
2 = A2(ω) + B2(ω)i (8.220)

with

A2 =
ρS(ρL)2ω4 + ρSS2

Lω2 + ρLS2
Lω2

µS [(ρL)2ω2 + S2
L]

, (8.221)

B2 =
(ρL)2SLω3

µS [(ρL)2ω2 + S2
L]

(8.222)

has been introduced.
Let k2 be denoted by

k2 = a2(ω) + b2(ω)i , (8.223)

then from (8.223) we find the phase velocity of the transverse waves

c2
2 =

ω2

a2
2

=
2µS [(ρL)2ω2 + S2

L]√(
q

ω2

)2

+ [(ρL)2SLω]2 +
q

ω2

,
(8.224)

where

q = ρS(ρL)2ω4 + ρSSLω2 + ρLS2
Lω2 . (8.225)

If the frequency tends to infinity or the porous material is assumed to be non-
dissipative, the transverse wave velocity (8.224) becomes

c2
2 =

µS

ρS
. (8.226)

The attenuation coefficient for rotational waves is expressed by

b2
2 =

√
q2 + [(ρL)2SLω3]2 − q

2µS [(ρL)2ω2 + S2
L]

. (8.227)
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Fig. 8.5.1: Phase velocity of longitudinal waves vs. frequency.

It is indicated in (8.208), (8.215), (8.218) and (8.219) that there is one coupled
longitudinal wave and one coupled transverse wave traveling in the solid and
liquid of a saturated porous medium. The disturbances occurring in the solid
and liquid with respect to longitudinal waves are described by the same motion
equation (8.209) with (8.210) and propagate with the same velocity (8.212), but
the phases and the amplitudes amongst the disturbances traveling in the solid
and liquid are different. Obviously, they represent a coupled longitudinal wave.
This is also true for the coupled transverse wave in the solid and liquid.

Finally, the reflection of plane waves is investigated. A half space occu-
pied by a liquidsaturated porous medium and bounded by a horizontal plane
is considered. A rectangular Cartesian base system (x, y, z) is introduced and
the origin is placed at the boundary, such that z = 0 stands for the equation
of the boundary with the z-axis being directed into the interior of the medium.
The wave front is taken to be parallel to the y-axis and only plane strain waves
in the xz-plane are dealt with. It is regarded that the boundary is of adequate
permeability. Thus, for the two-dimensional wave propagation, the boundary
conditions, corresponding to the fraction-free surface z = 0 are such that any
force vector t on the boundary with the surface orthonormal vector n

t = (−pI + TS
E)n = 0 (8.228)

and

p = 0 . (8.229)
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These boundary conditions indicate that

(TS
E)zx = 0 , (TS

E)zy = 0, (TS
E)zz = 0 . (8.230)

First, an incident longitudinal wave is considered. A plane harmonic wave
is taken to be incident on a plane, traction-free boundary with an angle α1

measured from the wave normal to the boundary. It follows from the solution
of (8.208) combined with (8.200) that the incident longitudinal wave reads as

Φ1 = a1exp i[k1(xsinα1 − zcosα1) − ω1t] . (8.231)

Corresponding to this incident wave, it is anticipated that two reflected waves
will be generated. Their potentials are given by

Φ′
1 = A′

1exp i[k′
1(xξ′1 + zη′1) − ω′

1t] ,

h′
2 = A′

2exp i[k′
2(xξ′2 + zη′2) − ω′

2t] ,
(8.232)

where

ξ
′2
1 + η

′2
1 = 1 , (8.233)

ξ
′2
2 + η

′2
2 = 1 . (8.234)

In (3.232) h′
2 is the unique non-zero component of the vector h′.

According to the superposition principle, with the aid of (8.188) and (8.189),
the displacement components of the solid skeleton are:

(uS)x =
∂Φ1

∂x
+

∂Φ′
1

∂x
− ∂h′

2

∂z
, (8.235)

(uS)y = 0 , (8.236)

(uS)z =
∂Φ1

∂z
+

∂Φ′
1

∂z
+

∂h′
2

∂x
. (8.237)

The displacement components are inserted into the boundary conditions (8.230)
and, in connection with (8.3) and with (8.4) and (8.31), we obtain:

k2
1sin2α1Φ1 − 2k

′2
1 ξ

′
1η

′
1Φ

′
1 + k

′2
2 (η

′2
2 − ξ

′2
2 )h′

2

∣∣∣∣
z=0

= 0 , (8.238)

k2
1(λ

S + 2µScos2α1)Φ1 + k
′2
1 (λS + 2µSη

′2
1 )Φ′

1 +

+ 2k
′2
2 µSξ

′
2η

′
2h

′
2

∣∣∣∣
z=0

= 0 .

(8.239)
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Note that the condition (8.230)2 is identically satisfied with the consideration
of a plane strain.

In order to meet the demands (8.238) and (8.239), the adequate condition
should be

ω1 = ω′
1 = ω′

2 = ω , (8.240)

k1sinα1 = k′
1ξ

′
1 , (8.241)

k1sinα1 = k′
2ξ

′
2 . (8.242)

From (8.240) with (8.209), (8.210) and (8.218) we can write

k′
1 = k1 , (8.243)

k′
2 = k2 . (8.244)

Let α′
1 denote the reflection angle of reflected longitudinal waves. Thus, due to

(8.243) and (8.241) we have

ξ′1 = sinα′
1

= sinα1 .
(8.245)

Moreover, it follows from (8.233) that

η′1 = cosα′
1

= cosα1

(8.246)

and
α′

1 = α1 (8.247)

holds. This implies that the angles of incidence and reflection are equal.
From (8.240) and (8.242) with (8.210) and (8.218) we can write

ξ′2 = l′2 + l′′2i . (8.248)

Thus, it follows from (8.242) that

l′2 =
a1a2 + b1b2

a2
2 + b2

2

sinα1 , (8.249)

l′′2 =
a2b1 − a1b2

a2
2 + b2

2

sinα1 . (8.250)

The other component of the unit vector is
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Fig. 8.5.2: Attenuation coefficient of longitudinal waves vs. frequency.

Fig. 8.5.3: Phase velocity of transverse waves vs. frequency.

η′2 = m′
2 + m′′

2i , (8.251)

which in connection with (8.234) yields
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m
′2
2 =

√
(1 − l

′2
2 + l

′′2
2 )2 + 4l

′2
2 l

′′2
2 + 1 − l

′2
2 + l

′′2
2

2
, (8.252)

m
′′2
2 =

√
(1 − l

′2
2 + l

′′2
2 )2 + 4l

′2
2 l

′′2
2 − 1 + l

′2
2 − l

′′2
2

2
. (8.253)

Therefore, from (8.232), (8.252) and considering the above results the explicit
expression for reflected waves may be written as follows:

Φ′
1 = A′

1 exp i[k1(x sin α1 + z cos α1) − ωt] , (8.254)

h′
2 = A′

2 exp[−(a2l
′′
2 + b2l

′
2)x − (a2m

′′
2 + b2m

′
2)z]×

× exp i[(a2l
′
2 − b2l

′′
2)x + (a2m

′
2 − b2m

′′
2)z − ωt] .

(8.255)

The latter reflected waves represent inhomogeneous plane waves, because the
planes of constant amplitude

(a2l
′′
2 + b2l

′
2)x + (a2m

′′
2 + b2m

′
2)z = const. (8.256)

are not parallel to the planes of constant phase

(a2l
′
2 − b2l

′′
2)x + (a2m

′
2 − b2m

′′
2)z − ωt = const. (8.257)

By virtue of (3.255)2, the special attenuation coefficient for the reflected waves
are given by

(a) along the x-axis:

a1l
′′
2 + b2l

′
2 , (8.258)

(b) along the z-axis:

a2m
′′
2 + b2m

′
2 . (8.259)

In addition, the reflection angle for the shear waves are given by

tan α′
2 =

a2l
′
2 − b2l

′′
2

a2m′
2 − b2m′′

2

(8.260)

and the propagation velocity of the planes of constant phase for the reflected
Sr waves can be obtained as follows:

c′2 =
ω sin α′

2

a2l2 − b2l′′2
. (8.261)

It follows from (8.238) and (8.239) together with (8.240) to (8.251) that the
boundary conditions become
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Fig. 8.5.4: Attenuation coefficient of transverse waves vs. frequency.

k2
1 sin 2α1e1 + k2

2(ξ
′2 − η′2)e2 = k2

1 sin 2α1 , (8.262)

k2
1(λ

S + 2µS cos2 α1)e1 + 2k2
2µ

Sξ
′
2η

′
2e2

= −k2
1(λ

S + 2µS cos2 α1) ,
(8.263)

where the amplitude ratios are defined

e1 =
A′

1

A1
, e2 =

A′
2

A1
. (8.264)

These amplitude ratios are complex and thus described in the form:

e1 = R1 exp(iΘ1), e2 = R2 exp(iΘ2) , (8.265)

where

R1 =
√

E2
1 + E2

2 , Θ1 = arctan
E2

E1
, (8.266)

R2 =
√

F 2
1 + F 2

2 , Θ2 = arctan
F2

F1
. (8.267)

In the above formulas, the following expressions are specified:

E1 =
E11E13 + E12E14

E2
13 + E2

14

, E2 =
E12E13 − E11E14

E2
13 + E2

14

, (8.268)
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Fig. 8.5.5: Modulus of amplitude ratio of scalar potential for reflected longitudinal
waves vs. angle of incidence of longitudinal waves.

F1 =
F11F13 + F12F14

F 2
13 + F 2

14

, F2 =
F12F13 − F11F14

F 2
13 + F 2

14

, (8.269)

where

E11 = 2µS sin 2α1(l′2m′
2 − l′′2m′′

2) +

+(λS + µS cos2 α1)(2l
′2
2 − 2l

′′2
2 − 1) ,

E12 = 2µS sin 2α1(l′2m′′
2 − l′′2m′

2) +

+4(λS + 2µS cos2 α1)l
′
2l

′′
2 ,

E13 = 2µS sin 2α1(l′2m′
2 − l′′2m′′

2) −

−(λS + µS cos2 α1)(2l
′2
2 − 2l

′′2
2 − 1) ,

E14 = 2µS sin 2α1(l′2m′′
2 − l′′2m′

2) −

−4(λS + 2µS cos2 α1)l
′
2l

′′
2 ,

(8.270)



Poroelasticity 151

F11 = −2A1 sin 2α1(λS + 2µS cos2 α1) ,

F12 = −2B1 sin 2α1(λS + 2µS cos2 α1) ,

F13 = A2[2µS sin 2α1(l′2m′
2 − l′′2m′′

2) −

−(λS + µS cos2 α1)(2l
′2
2 − 2l

′′2
2 − 1) +

+B2[4(λS + 2µS cos2 α1)l
′
2l

′′
2 −

−2µS sin 2α1(l′2m′′
2 + l′′2m′

2)] ,

F14 = A2[2µS sin 2α1(l′2m′′
2 + l′′2m′

2) −

−4(λS + 2µS cos2 α1)l
′
2l

′′
2 ] +

+B2[2µS sin 2α1(l′2m′
2 − l′′2m′′

2) −

−(λS + 2µS cos2 α1)(2l
′2
2 − 2l

′′2
2 − 1)] .

(8.271)

In the case of normal incidence of a longitudinal wave, α1 = 0, it is concluded
from (8.265) to (8.271) that

e1 = −1, e2 = 0 . (8.272)

This result demonstrates that the reflected waves are only incident longitudinal
waves without transverse waves.

There is a possibility of complete mode conversion if the ratio e1 disappears,
thus, only the shear waves reflected and the amplitude ratio is

e2 =
k2

1 sin 2α1

k2
2(ξ′2 − η′22 )

. (8.273)

The variation of the poreliquid pressure p can be attained from the motion
equations (8.186) and (8.187). Note in passing that the variation of p is related
only to the scalar potentials. It follows from (8.187), (8.188), and (8.215) that

∂p

∂z
=

nSρL

(nL)2
∂2(uS)z

∂t2
+

SL

(nL)2
∂(uS)z

∂t
, (8.274)

where
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Fig. 8.5.6: Phase angle of amplitude ratio of scalar potential for reflected
longitudinal waves vs. angle of incidence of longitudinal waves.

Fig. 8.5.7: Angle of reflection of transverse waves vs. angle
of incidence of longitudinal waves.

(uS)z =
∂Φ1

∂z
+

∂Φ′
1

∂z
. (8.275)

With the aid of (8.231), (8.264), and the boundary condition (8.230) we have
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p =
nSρ2ω2 + SLiω

(nL)2
A1[1 + e1 − exp(−ik1 cos α1z) −

−e1 exp(ik1 cos α1z)] exp[i(k1 sin α1x − ωt)] .

(8.276)

Let transverse waves be incident on the plane and traction-free boundary at
an angle β2, then the corresponding potential is

h2 = M2 exp i[k2(x sin β2 − z cos β2) − ω2t] . (8.277)

Then, according to the above-mentioned argument, it is anticipated that the
longitudinal waves at an angle β′

1 and transverse waves at an angle β′
2 may

reflect and we obtain

ω2 = ω′
2 = ω′

1 = ω , (8.278)

β2 = β′
2 , k2sinβ2 = k′

1m , (8.279)

where m is one component of the wave normal along the x-axis for the re-
flected longitudinal waves. It is evident from (8.278) and (8.279) that each of
the reflected waves travels at the same frequency as the incident waves. The
transverse waves reflect at the angle of incidence and with the same velocity.
Thus, the potential of reflected transverse waves are

h′
2 = M ′

2 exp i[k2(x sin β2 + z cos β2) − ωt] , (8.280)

and the reflected longitudinal waves become inhomogeneous planes waves. Its
potential writes

Φ′
1 = M ′

1 exp[−(a1m2 + b1m1)x − (a1n2 + b1n1)z]×

× exp i[(a1m1 − b1m2)x − (a1n1 − b1n2)z − ωt] ,

(8.281)

where the following expressions

m = m1 + m2i , (8.282)

m1 =
a1a2 + b1b2

a2
1 + b2

1

sin β2 , (8.283)

m2 =
a1b2 − a2b1

a2
1 + b2

1

sin β2 , (8.284)
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Fig. 8.5.8: Phase velocity of transverse waves vs. angle
of incidence of longitudinal waves.

Fig. 8.5.9: Modulus of amplitude ratio of vector potential for reflected transverse
waves vs. angle of incidence of longitudinal waves.

(n1)2 =

√
(1 − m2

1 + m2
2)2 + 4m2

1m
2
2 + 1 − m2

1 + m2
2

2
, (8.285)
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(n2)2 =

√
(1 − m2

1 + m2
2)2 + 4m2

1m
2
2 − 1 + m2

1 + m2
2

2
, (8.286)

are introduced. Similarly, the reflected longitudinal waves are inhomogeneous
plane waves. The planes of constant amplitudes are

(a1m2 + b1m1)x + (a1n2 + b1n1)z = const. , (8.287)

which do not coincide with the planes of constant phases

(a1m1 − b1m2)x + (a1n1 − b1n2)z − ωt = const. (8.288)

The reflected longitudinal waves propagate at the velocity

c′1 =
ω sin β

a1m1 − b1m2
, (8.289)

where the reflection angle β1 is determined by

tan β1 =
a1m1 − b1m2

a1n1 − b1n2
. (8.290)

The attenuation coefficient parallel to the boundary is

a1m2 + b1m1 , (8.291)

and the attenuation coefficient perpendicular to the boundary is given by

Fig. 8.5.10: Phase angle of amplitude ratio of vector potential for reflected transverse
waves vs. angle of incidence of longitudinal waves.
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a1n2 + b1n1 . (8.292)

The amplitude ratios of the potentials in (8.277), (8.280) and (8.281) are defined
by

r1 =
M ′

1

M2
, r2 =

M ′
2

M2
. (8.293)

Since the amplitude ratios are complex, we obtain

r1 = Q1 exp(iδ1), r2 = Q2 exp(iδ2) , (8.294)

where the moduli and phase angles of the amplitude ratios are determined as
follows:

Q1 =
√

C2
1 + C2

2 , δ1 = arctan
C2

C1
, (8.295)

C1 =
C11C13 + C12C14

C2
13 + C2

14

, C2 =
C12C13 − C11C14

C2
13 + C2

14

, (8.296)

Q2 =
√

D2
1 + D2

2, δ2 = arctan
D2

D1
, (8.297)

D1 =
D11D13 + D12D14

D2
13 + D2

14

, D2 =
D12D13 − D11D14

D2
13 + D2

14

(8.298)

and
C11 = A2µ

S sin 4β2 , (8.299)

C12 = B2µ
S sin 4β2 , (8.300)

C13 = 2µS sin 2β2[A1(m1n1 − m2n2) − B1(m1n2 + m2n1)] +

+A1[λS + 2µS(n2
1 − n2

2)] cos 2β2 − 4B1µ
Sn1n2 cos 2β2 ,

(8.301)

C14 = 2µS [A1(m1n2 + m2n1) + B2(m1n1 − m2n2)] +

+4A1µ
Sn1n2 cos 2β2 + B1[λS + 2µS(n2

1 − n2
2)] cos 2β2 ,

(8.302)

D11 = 2µS(m1n1 − m2n2) sin 2β2 −

−[λS + 2µS(n2
1 − n2

2)] cos 2β2 ,

(8.303)



Poroelasticity 157

Fig. 8.5.11: Modulus of amplitude ratio of scalar potential for reflected longitudinal
waves vs. angle of incidence of transverse waves.

D12 = 2µS [(m1n2 + m2n1) sin 2β2 − 2n1n2 cos 2β2] , (8.304)

D13 = 2µS(m1n1 − m2n2) sin 2β2 +

+[λS + 2µS(n2
1 − n2

2)] cos 2β2 ,

(8.305)

D14 = 2µS [(m1n2 + m2n1) sin 2β2 + 2n1n2 cos 2β2] . (8.306)

Once more, poreliquid pressure produced by the reflection of the longitudinal
waves reads

p =
nSρLω2 + SLiω

(nL)2
r1M2[1 − exp(ik1nz)] exp i(k1mx − ωt) , (8.307)

where

n = n1 + n2i . (8.308)

Finally, the numerical results will be discussed. The material properties for
a saturated soil are given in Table I (see de Boer et al., 1993). The phase
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Fig. 8.5.12: Phase angle of amplitude ratio of scalar potential for reflected
longitudinal waves vs. angle of incidence of transverse waves.

Fig. 8.5.13: Modulus of amplitude ratio of vector potential for reflected transverse waves
vs. angle of incidence of transverse waves.

velocity and attenuation coefficient with frequency at different permeability for
longitudinal and transverse waves are shown in Fig. 8.5.1 through 8.5.4.
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Fig. 8.5.14: Phase angle of amplitude ratio of vector potential for reflected transverse waves

vs. angle of incidence of transverse waves.

Fig. 8.5.15: Interface pressure (factor p) vs. angle of longitudinal
waves at x = 0 m, z = 5 m and when t = 0.1 s.

From Figure 8.5.1 and 8.5.3 it is evident that these two coupled body waves
propagating in the liquid saturated porous medium are endowed with viscous
features, although the porous solid is assumed to be linear elastic. Thus, these
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nS = 0.67 nL = 0.33

ρS = 1.34 Mg/m3 ρL = 0.33 Mg/m3

E = 30 MN/m2 ν = 0.20

λS = 5.5833 MN/m2 µS = 8.3750 MN/m2

qkL = 0.01 m/s γLR = 10.00 kN/m3

Table I. Material properties

Fig. 8.5.16: Interface pressure (factor p) vs. angle of transverse
waves at x = 0 m and z = 1 m, when t = 1 s.

two coupled waves are dissipative, as depicted in Figure 8.5.2 and 8.5.4, because
of the interaction between the solid skeleton and liquid.

Figures 8.5.5 and 8.5.6 illustrate the attenuation coefficient for reflected trans-
verse waves with respect to the angle of incidence of longitudinal waves. As
mentioned above, the reflected transverse waves become inhomogeneous plane
waves in the case of incidence of longitudinal waves; the phase velocity and
attenuation coefficient of the reflected transverse waves vary with it.

For the reflected longitudinal and transverse waves, the moduli and the phase
angles of the amplitude ratios with an angle of incidence of longitudinal waves
are depicted in Figures 8.5.7 to 8.5.10. It is evident that the amplitude ratios
of two reflected waves are dependent on the angle of incidence. A comparison
between Figures 8.5.7 and 8.5.9 shows that the reflected waves are just the
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incident longitudinal waves themselves at zero angle of incidence in which the
modulus of amplitude ratio for reflected longitudinal waves is 1.00 but that for
reflected transverse waves is 0.00.

In the case of incidence of transverse waves, the moduli and the phase angle
of the amplitude ratios of reflected longitudinal waves and reflected transverse
waves against the angle of incidence are presented in Figures 8.5.11 to 8.5.14.
It is clear that only transverse waves reflect themselves without reflected lon-
gitudinal waves at the angles of 0◦ and 45◦, which is similar to results in Fig.
8.5.7 and 8.5.9.

Particularly, the results of the interface pressures with angles of incidence
of longitudinal and transverse waves at different depths are depicted in Figures
8.5.15 and 8.5.16. It is shown that the interface pressure reaches maximum at
a large angle of incidence.

b) Propagation of Acceleration Waves in Saturated Porous Solids

The present investigation is on the propagation of acceleration waves in
porous media consisting of the incompressible solid and the incompressible liq-
uid. Discussions on this problem can be found in the literature, e.g., Dziecielak
(1986) investigated the behavior of acceleration waves in a liquid-filled porous
medium. However, most of them were based on the motion equations pro-
posed by Biot, which were not developed from the fundamental axioms and
principles of mechanics and thermodynamics. Thus, the subsequent conclu-
sions are unsatisfactory. In this section the propagation of acceleration waves
in incompressible saturated porous solid will be studied. The theory of propa-
gating singular surface, developed by Thomas (1957) as well as Truesdell and
Toupin (1960) is utilized to examine the propagation of acceleration waves in
the media.

The subject of our interest is a poroelastic solid filled with an ideal liquid,
such that two constituents are assumed incompressible and the whole medium is
statistically homogenous and isotropic. Possible thermal and chemical effects
are excluded. After these preliminaries some general properties of acceleration
waves will be discussed. Consider a singular curved surface σ(t) with the
curvilinear coordinates Θβ(β = 1, 2) moving during the time t through the
body B. By definition, the propagation of a singular surface is said to be
acceleration waves if the motions, deformation gradients and velocities are
continuous across σ(t), but the accelerations, the second-order deformation
gradient and their higher order derivatives suffer finite jumps across σ(t). The
geometrical and the kinematical conditions of compatibility for the first and
the second derivatives of a function are presented in the reference, see Thomas
(1957), Truesdell and Toupin (1960). However, the field variables across the
surface σ(t) are still restricted by the dynamic conditions of compatibility that
are a part of the field equations when the discontinuity surface occurs.



162 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

For the present problem concerned, the dynamic conditions of compatibility
are derived from the local mass, momentum and energy balances. It follows
from Eringen (1975) that the jump field equations are:

Balance of mass[
|ρ℘(x′

℘ · n − un)|
]

= 0 or
[
|ρ℘U℘|

]
= 0 (8.309)

(℘ = S, solid phase; ℘ = L, liquid phase)2.

Balance of momentum

[
|ρ℘x′

℘(x′
℘ · n − un) − T℘n|

]
= 0 . (8.310)

Balance of energy

[
|ρ℘(ε℘ +

1
2
x′

℘ · x′
℘)(x′

℘ · n − un) − T℘x′
℘ · n|

]
= 0 (8.311)

or [
|ρ℘(ε℘ +

1
2
x′

℘ · x′
℘)U℘|

]
+
[
|T℘x′

℘|
]
· n = 0 . (8.312)

In (8.309) and (8.312) the local speed of propagation for the constituent ϕ℘ is
introduced by

U℘ = un − x′
℘ · n . (8.313)

In the above expressions the unit normal vector n to the surfaces and the normal
velocity un of the singular surface have been utilized. Note that temperature
effects are neglected.

Now, let us examine the properties of acceleration waves propagating in a
liquidsaturated porous medium. Since the velocity of each material particle of
both constituents stays continuously across σ(t), the local speeds of propagation
in (8.313) are also continuous across the surface. Hence, from (8.309) we see
that both densities are continous, i.e.[

|ρ℘|
]

= 0 . (8.314)

2We replace the index α for the constituents used in the first part of this book with ℘ in order not to come
into conflict with Greek letters in differential geometry.
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Due to the constraint of incompressibility the volume fractions are continuous
across the singular surface σ(t):

[
|n℘|

]
= 0 . (8.315)

In turn, with the aid of (8.314) the jump condition (8.310) simplifies to

[
|T℘|

]
n = 0 , (8.316)

which means that the stress tensor in both constituents are continuous across
σ(t). After the application of (8.316) to (8.311) or (8.312), it is found that the
internal energy density of the mixture has no jump across the singular surface

[
|ε℘|

]
= 0 . (8.317)

Therefore, the dynamic conditions of compatibility are ensured automatically
for acceleration waves in saturated porous solids.

With the use of well-known geometric and kinematic conditions of compat-
ibility, the expressions of the jumps for the displacements u℘ of the skeleton
and the liquid may be written as

[
| grad graduS|

]
= aS ⊗ n ⊗ n,

[
| grad graduL|

]
= aL ⊗ n ⊗ n ,(8.318)

[
|∂

2uS

∂t2
|
]

= u2
naS ,

[
|∂

2uL

∂t2
|
]

= u2
naL , (8.319)

[
| grad

∂uS

∂t
|
]

= −unaS ⊗ n,
[
| grad

∂uL

∂t
|
]

= −unaL ⊗ n , (8.320)

where the vectors

aS =
[
| grad graduS|

]
n ⊗ n, aL =

[
| grad graduL|

]
n ⊗ n (8.321)

are measures of the discontinuity strength along the direction of the acceleration
jump of the solid and the liquid, respectively. If they are in the direction of n
of the surface, we have longitudinal waves; otherwise, when they are normal
to n we have transverse waves. Keeping in mind the assumption of small
deformations we can replace the velocity x′

℘ with the time derivative of the

displacement
∂u℘

∂t
for each constituent. With the aid of (8.320) it follows that
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[
| div x′

S|
]

=
[
| div

∂uS

∂t
|
]

= −unaS · n , (8.322)

[
| div x′

L|
]

=
[
| div

∂uL

∂t
|
]

= −unaL · n . (8.323)

The balance equations of mass for the solid and liquid read:

(ρS)′S = −ρS div x′
S , (ρL)′L = −ρL div x′

L , (8.324)

or considering the incompressibility conditions

(nS)′S = −nS div x′
S , (nL)′L = −nL divx′

L . (8.325)

Thus, by use of (8.322) and (8.323) we obtain

[
|(nS)′S|

]
= nSunaS · n,

[
|(nL)′L|

]
= nLunaL · n , (8.326)

[
|(ρS)′S|

]
= ρSunaS · n ,

[
|(ρL)′L|

]
= ρLunaL · n . (8.327)

Accordingly, from Eqs. (8.326) and (8.327) the time rate of the densities and the
volume fractions of the constituents are continuous across the singular surface
for the transverse waves. However, for the longitudinal waves, we have

[
|(nS)′S|

]
= nSunan

S ,
[
|(nL)′L|

]
= nLunan

L , (8.328)

[
|(ρS)′S|

]
= ρSunan

S ,
[
|(ρL)′L|

]
= ρLunan

L , (8.329)

which expresses the amplitudes of the solid skeleton and the liquid in the normal
direction of the surface

an
S = aS · n, an

L = aL · n . (8.330)

Therefore, by means of (8.322), (8.323) and (8.330) Eq. (8.185) becomes

nSan
S + nLan

L = 0 , (8.331)

which indicates that the amplitudes in the solid skeleton and liquid are coupled.
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Moreover, it is concluded from the constitutive equations for the stress in the
solid that the pressure p is continuous across the surface σ(t), i.e.[

|p|
]

= 0 . (8.332)

Henceforth, in the remainder of this investigation, we will assume that the
material region ahead of the singular surface is initially at rest in a homogenous
configuration, which is taken to be the reference configuration. It is clear that
in this situation

un = U℘ . (8.333)

Finally, the propagation conditions of acceleration waves will be addressed.
These can be obtained from the governing field equations (8.183) through
(8.185). For this purpose we derive from (8.318)

[
| grad divuS|

]
= (aS · n)n , (8.334)

[
| div graduS|

]
= aS , (8.335)

[
| grad divuL|

]
= (aL · n)n . (8.336)

With the help of the geometric condition of compatibility, see Trusdell and
Toupin (1960), we obtain

[
| grad p|

]
= b n , (8.337)

where

b =
[
| grad p|

]
· n =

[
|p,n|

]
(8.338)

is a measure of the pressure gradient discontinuity across the surface.
Since the field equations (8.183) and (8.184) hold in each of the regions

divided by the singular surface σ(t), bearing in mind that the velocities and the
body forces of the solid and the liquid have no jump at the surface, we obtain
with the aid of (8.319) and (8.334) to (8.337) across the surface

(λS + µS)(aS · n)n + µSaS − nSbn = ρSu2
naS , (8.339)

− nLbn = ρLu2
naL . (8.340)
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Given the directionn and the possible velocity un the direction of the amplitudes
of the solid and the liquid can be determined.

In order to get the possible propagation speeds, let us determine the projection
of Eq. (8.339) and (8.340) in the direction on n and normal to n. Upon
elimination of the pressure gradient term, which is determined by (8.340), the
projection of (8.339) and (8.340) in the direction of n and normal to n yields:

{(nL)2(λS + 2µS) − [(nS)2ρL + (nL)2ρS ]u2
n}aS · n = 0 ,

(µS − ρSu2
n)aS × n = 0 ,

aL × n = 0 .

(8.341)

These equations express that there are only two possible propagation speeds,
which may be derived from the existence conditions of the nontrivial amplitudes.
The results can be written as

u2
n1 =

(nL)2(λS + 2µS)
(nL)2ρS + (nS)2ρL

, (8.342)

u2
n2 =

µS

ρS
. (8.343)

Now, we replace un in (8.341)1 with un2. As a result we obtain

aS · n = 0 , (8.344)

and analogously, the replacement of un in (8.341)2 with un1 yields

aS × n = 0 . (8.345)

The above two relations demonstrate that the direction of the amplitudes in the
waves with the speed un1 and un2 coincide with the directions of n and normal
to n. The waves with the speed un1 are longitudinal waves in the two phases
and the waves with un2 are transverse waves only in the liquid. The amplitude
of the longitudinal waves in the solid and liquid satisfy the relations (8.3.150).
The interaction effect does not influence the propagation velocities but yields
the attenuation acceleration waves.

Since the propagation speeds are constant and depend on the physical and
mechanical properties of the medium, waves in the process of propagation will
keep their initial shapes due to

δn
δt

= un,β aβ = 0 , β = 1, 2, (8.346)
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where
δn
δt

denotes the displacement derivative of the unit normal n with respect

to surface σ(t), and where aβ is the contravariant base vector on the surface
σ(t). Thus, the acceleration waves form a family of parallel surfaces.

It should be noted that for empty porous solids

ρL → 0 (8.347)

is valid. Then, it follows from (8.3.162) that the propagation speed of the
longitudinal waves reduce to

u2
n1 =

λS + 2µS

ρS
(8.348)

which is a counterpart of the classical elasticity.
Only a longitudinal and a transverse acceleration wave can propagate in

incompressible porous media and the two propagation speeds and their direc-
tions of the amplitudes are provided by examining the existence of acceleration
waves. The interaction between the phases does not influence the speeds of
acceleration waves. Acceleration waves keep their initial shapes in the process
of propagation.

c) Growth and Decay of Acceleration Waves

The propagation properties and the propagation conditions of acceleration
waves in incompressible saturated porous solids have been discussed exten-
sively in the preceding section. The existence of a longitudinal wave and a
transverse wave in the incompressible two-phase porous medium has been re-
vealed. The longitudinal disturbance in the liquid are carried by the wave motion
in the solid skeleton. Their amplitudes have been indicated to obey a certain
relation. In order to obtain a more complete information on the properties of
acceleration waves, the growth and decay of acceleration waves in such media
are investigated in the present study (see de Boer and Liu, 1995). The theory
of propagating singular surfaces developed by Thomas (1957) is utilized to ex-
amine the growth and decay of acceleration waves in incompressible porous
media.

Consider a moving surface of discontinuity σ(t) in three-dimensional Euclid-
ian space. The parametric equation of this surface is described by (see de Boer,
1982)

x = x(Θα, t), α = 1, 2 . (8.349)

Here Θα are the curvilinear coordinates of the surface σ(t), t denotes the
time, and x is the position vector for a reference point to the surface. For the
oriented surfaces σ(t) the tangent vectors read:



168 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

aα = x,α =
∂x

∂Θα
, (8.350)

where aα is the covariant base vector on the surface; the corresponding con-
travariant base vector is indicated by aα. The surface metric tensor of the
surface σ(t) is given by

aαβ = aα · aβ . (8.351)

The components of the second fundamental form of the surface satisfy

bαβ = n · aα,β = −n,α · aβ , (8.352)

where n is the unit normal vector of the surface σ(t). The mean curvature Ω
and the total or Gauss curvature K of the surfaces σ(t) are the first and the
second invariants of the second fundamental form bα

.β ; these write:

Ω =
1
2
aαβbαβ =

1
2
bα
. α, K =

1
2
(bα

. α)2 − 1
2
bα
. β bβ

. α . (8.353)

The normal velocity of the surface σ(t) is specified by

un = n · ẋ, ẋ =
∂x(Θα, t)

∂t
, (8.354)

and the local speeds of propagation are defined by

U℘ = un − x′
℘ · n, ℘ = S, L , (8.355)

which indicates a measure of the normal velocity of the surface σ(t) with respect
to the material particles. In our case, x′

℘ denotes the velocities of the particles
of the two components in the two-phase porous media.

For an arbitrary time-dependent tensor valued field Φ(x, t) (Φ may be com-
ponents of a tensorial quantity) confined to the surfaces, the displacement deriv-
ative is introduced in the form

δΦ
δt

=
∂Φ
∂t

+ unn · grad Φ , (8.356)

which is defined as the time derivative of Φ along the normal trajectory. A
useful relation here should be mentioned as follows:

δn
δt

= −un,αaα = −un,αaαβaβ , (8.357)

which relates the displacement of the unit normal vector n with the propagation
speed un of the surface.

Being an arbitrary function, Φ(x, t) has a jump across the surface σ(t) given
by
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[
|Φ|
]

= Φ+ − Φ− �= 0 , (8.358)

where Φ+ and Φ− are the definite limits of the function Φ before and behind
the surface σ(t), respectively. In the following paragraph we introduce the
denotations:

A =
[
|Φ|
]
, B =

[
| grad Φ|

]
· n, C =

[
| grad grad Φ|

]
· n ⊗ n ,

A =
[
| grad Φ|

]
, B =

[
| grad grad Φ|

]
n ,

A′ =
[
|∂Φ
∂t

|
]
, B′ =

[
| grad

∂Φ
∂t

|
]
· n .

(8.359)

With the aid of the above denotations (8.359) the geometrical conditions of
compatibility have the followings forms (see Eringen and Suhubin, 1974):[

| grad Φ|
]

= Bn + aαβA |α aβ ,[
| grad grad Φ|

]
= Cn ⊗ n +

+aαβ(B |α +aγδbαγA |δ)(n ⊗ aβ + aβ ⊗ n) +

+aαβaγδ(A |αγ −Bbαγ)aβ ⊗ aδ

(8.360)

and the kinematical conditions of compatibility are as follows[
|∂Φ
∂t

|
]

= −unB +
δA

δt
, (8.361)

[
|∂

2Φ
∂t2

|
]

= (unC − δB

δt
− aαβA |α un,β)un +

δA′

∂t
, (8.362)

[
| grad

∂Φ
∂t

|
]

= (−unC +
δB

δt
+ aαβA |α un,β)n + aαβA′ |α aβ , (8.363)

where (...)| indicates “covariant derivatives”.
Henceforth, in the remainder of our investigation, we assume that the mate-

rial region ahead of the singular surfaces is initially at rest in a homogeneous
configuration, which is taken to be as the reference configuration. It is clear
from (8.354) and (8.355) that in this case

un = U℘ . (8.364)

For the propagation of acceleration waves the following conditions are auto-
matically satisfied
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[
|u℘|

]
= 0,

[
|∂u℘

∂t
|
]

= 0,
[
|n℘|

]
= 0,

[
|ρ℘|

]
= 0,

[
|p|
]

= 0 . (8.365)

It follows from the discussion on the propagation conditions for the longitudinal
and the transverse acceleration waves in incompressible saturated poroelastic
solids that (see the preceding section)

{(nL)2(λS + 2µS) − [(nS)2ρL + (nL)2ρS ]u2
n} aS · n = 0 , (8.366)

nSaS · n + nLaL · n = 0 , (8.367)

(µS − ρSu2
n)aS × n = 0 , (8.368)

aL × n = 0 , (8.369)

where the vectors

aS =
[
| grad graduS|

]
n ⊗ n, aL =

[
| grad graduL|

]
n ⊗ n (8.370)

are measures of the discontinuity strength along the direction of the acceleration
jump of the solid and liquid, respectively. If they are in the direction of n to the
surface, we have longitudinal waves; otherwise, when they are normal to n we
have transverse waves.

It is indicated from (8.366) to (8.369) that two types of acceleration waves
with two propagation speeds are realizable in incompressible porous media. The
longitudinal waves can propagate either in solids or in liquids. Their amplitudes
confirm to the relation (8.367). In other words, the waves in liquid are carried
by the waves in the solid. These results originate from the incompressibility of
the two constituents. The transverse waves propagate only in the solid skeleton.
The two propagation velocities are derived from the conditions of the existence
of non-trivial amplitudes; the results read:

u2
n1 =

(nL)2(λS + 2µS)
(nL)2ρS + (nS)2ρL

, u2
n2 =

µS

ρS
. (8.371)

Because the propagation velocities are constant we have with the aid of (8.357)

un,α = 0,
∂un

∂t
= 0,

∂n
∂t

= 0 . (8.372)

Since the propagation speeds are constant for acceleration waves, each wave
front σ(t) forms a family of parallel surfaces.

The measure of the pressure gradient discontinuity b, across the surfaces is
obtained from the motion equation (8.75)2, which takes the form
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b =
[
| grad p|

]
· n = −ρLu2

n1a
L · n ; (8.373)

then, the pressure gradient discontinuity is determined by the amplitudes of the
longitudinal waves.

In order to derive the differential equations governing the amplitudes of ac-
celeration waves in the solid and liquid we may take the differentiation of the
equations (8.751) to (8.75)3 with respect to time. Consequently, we need higher
order derivatives of the second order discontinuities. The iterated substitution

of Φ with
∂u℘

∂t
into geometric conditions and kinematic conditions of compat-

ibility of the second order (8.360) to (8.363) lead to the following jumps of the
corresponding derivatives:

[
|∂

2u℘

∂t2
|
]

= u2
na

℘,
[
|∂

3u℘

∂t3
|
]

= u2
nc℘ + 2u2

n

δa℘

δt
, (8.374)

[
| grad grad

∂u℘

∂t
|
]

= c℘ ⊗ n ⊗ n − un(a℘ |α ⊗n ⊗ aα +

+ a℘ |α ⊗aα ⊗ n) + una℘ ⊗ aα ⊗ aβbαβ ,
(8.375)

[
| grad

∂2u℘

∂t2
|
]

= −un(c℘ +
δa℘

δt
) ⊗ n + u2

na
℘ |α ⊗aα , (8.376)

[
| grad

∂u℘

∂t
|
]

= (−unc℘ +
δb℘

δt
)n − unaαβb,βaα , (8.377)

Fig. 8.5.17: Amplitude decay of longuitidinal waves in a solid skeleton
(aS

n versus r, aS
n(0) = 1.0).
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where

c℘ =
[
| grad grad

∂u℘

∂t
|
]
n ⊗ n, cp =

[
| grad grad p|

]
· n ⊗ n (8.378)

are introduced as unknown quantities.
For simplicity we only examine the case of the so-called homogenous weak

discontinuity. Namely, it is assumed that all amplitudes do not exchange their
tangent to the wave fronts, viz.

aS
n,α = 0 , aS

⊥,α = 0 , (8.379)

where we denote

aS
n = aS · n , aS

⊥ = aS · γ (8.380)

as the absolute amplitudes of the longitudinal and the transverse waves, γ is
chosen as a unit vector perpendicular to the unit waves normal so that

γ · n = 0 . (8.381)

Now, we take the differentiation of the equation (8.75) with respect to time, for
which we further take the limit on both sides of the surfaces σ(t). With the aid
of (8.367) and with the insertion of the expression (8.376) we can obtain the
following relation for the unknown quantities cS and cL

cL · n = −nS

nL
cS · n . (8.382)

Next, we examine the amplitudes of the longitudinal waves in a well-known
way. However, the treatment is lengthy and the details are neglected. With
(8.374) to (8.377), (8.379), (8.382), and upon elimination of terms associated
with b℘ and c℘, it follows from the equation (8.75)1,2 that

2[(nL)2ρS + (nS)2ρL]u2
n1

δaS
n

δt
− (λS + 2µS)(nL)2 + SLu2

n1a
S
n−

−{(λS + 2µS)(nL)2 − [(nL)2ρS + (nS)2ρL]u2
n1}cS · n = 0 ,

(8.383)

where the relation

n · x,α = 0 (8.384)

and the relation (8.352) have been used. Utilizing the expression (8.371)1, we
can eliminate the unknown product cS · n and obtain the differention equation
governing the amplitude aS

n :
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Fig. 8.5.18: Amplitude decay of transverse waves in a solid skeleton

(aS
T versus r, aS

⊥(0) = 1.0).

Fig. 8.5.19: Amplitude decay results based on linear elasticity theory.

δaS
n

δt
− 1

2

[
bα

.αun1 − SL

(nL)2ρS + (nS)2ρL

]
aS

n = 0 . (8.385)

Analogously, we can derive the differential equations governing the ampli-
tude aS

⊥:
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2ρSu2
n2

δaS
⊥

δt
− (µSbα

.αun2 − SLu2
n2)a

S
⊥ −

−(µS − ρSu2
n2)c

S · γ = 0 ,

(8.386)

where the identity

n · γ,α = − γ · n,α = b.γ
α x,γ · γ (8.387)

has been utilized. With the aid of the expression (8.371)2, the amplitude for
transverse waves is determined by

δaS
⊥

δt
−
(

1
2
bα

.αun2 − SL

2ρS

)
aS
⊥ = 0 . (8.388)

With the aid of (8.356) the following notation is introduced:

δ

δt
= un

(
n · grad +

1
un

∂

∂t

)
= un

d

dr
, (8.389)

where the total derivative in the directions of the normal to the singular surfaces
σ(t) is represented by d/dr with r as the distance of the wave fronts from their
initial position. Then, the substitution by means of d/dr shows that the ordinary
differential equations (8.385) and (8.388) take the forms

daS
n

dr
= (Ω − M)aS

n ,
daS

⊥
dr

= (Ω − N)aS
⊥ , (8.390)

where the definition (8.353)1 has been used. The coefficients M and N are
defined by

M =
SL

2[(nL)2ρS + (nS)2ρL]un1
, N =

SL

2ρSun2

(8.391)

and Ω can be rewritten in term of a certain position, namely,

Ω(r) =
Ω0 − K0r

1 − 2Ω0r + K0r2
. (8.392)

Hence, the integration of (8.390)1,2 together with (8.392) results in:

aS
n(r) = aS

n(0)(1 − 2Ω0r + K0r
2)−1/2 exp(−Mr) , (8.393)

aS
⊥(r) = aS

⊥(0)(1 − 2Ω0r + K0r
2)−1/2 exp(−Nr) , (8.394)
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where aS
n(0) and aS

⊥(0) are the initial values of the absolute amplitudes of
acceleration waves.

It is evident from (8.391)1,2 as well as (8.393) and (8.394) that the growth
and decay of acceleration waves depend on the initial shapes of the wave fronts
and the diffusion effect amongst the phases. The diffusion effect produces only
the attenuation of the amplitudes of acceleration waves but doesn’t influence
the propagation speeds.

In particular, the evolution of the amplitudes of acceleration waves may
be reduced to the classical results in the case of non-dissipation where the
amplitudes rely completely on the initial geometrical property of the waves
fronts.

If the initial mean curvature Ω0 is positive and the initial total curvature K0 is
negative, for instance in the case of the initial pseudosphere for the wave fronts,
it follows from (8.393) and (8.394) that the amplitudes will reach an infinite
value within a finite propagation distance. In other words, the acceleration
waves in the porous medium may constitute a higher weak discontinuity. In the
case of the negative initial mean curvature and the positive initial total curvature,
the amplitudes of acceleration waves will decay till they vanish.

It is of interest to consider the plane (Ω0 = 0, K0 = 0), the cylindrical (Ω0 =
−0.5
r0

, K0 = 0) and the spherical (Ω0 = − 1
r0

, K0 =
1
r2
0

, ) acceleration waves

for which the amplitudes are reduced into the following forms, respectively:

Fig. 8.5.20: Amplitude decay in finite time in isotropic elastic materials
(after Chen, 1968).
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for plane waves:

aS
n(r) = aS

n(0) exp(−Mr) , (8.395)

aS
⊥(r) = aS

⊥(0) exp(−Nr) , (8.396)

for cylindrical waves:

aS
n(r) = aS

n(0)
(

1 +
r

r0

)−1/2
exp(−Mr) , (8.397)

aS
⊥(r) = aS

⊥(0)
(

1 +
r

r0

)−1/2
exp(−Nr) , (8.398)

for spherical waves:

aS
n(r) = aS

n(0)
(

1 +
2
r0

r +
1
r0

r2
)−1/2

exp(−Mr) , (8.399)

aS
⊥(r) = aS

⊥(0)
(

1 +
2
r0

r +
1
r0

r2
)−1/2

exp(−Nr) , (8.400)

where r0 is the initial semi-diameter of the wave fronts.
As a numerical illustration, it is assumed that aS

n(0) = aS
⊥(0) = 1.0, and

r0 = 0.70. The material constants are taken from Table I in the preceding
Section 8.5 a). Fig. 8.5.17 and Fig. 8.5.18 show that the amplitudes in solids
decay till they vanish in the finite propagation distance for the plane, the cylin-
drical, and the spherical acceleration waves. The corresponding results for the
three cases of the waves in classical elasticity are depicted in Fig. 8.5.19 and
Fig. 8.5.20, the latter is presented by Chen (1968). It is demonstrated that the
evolution of the amplitudes of acceleration waves in porous media is similar to
the characteristics in linear and isotropic elasticity.

d) Dispersion and Attenuation of Surface Waves in a Saturated Porous
Medium

This section is aimed at a study of two types of surface waves (see Liu and
de Boer, 1997): Rayleigh- and Love-type waves. The former is assumed to be
bounded close to the surface of a semi-infinite saturated porous medium and the
latter within a saturated porous medium layer. The discovery of these waves
in single-phase (solid) half-space (Rayleigh, 1885; Love, 1911) was closely
related to the seismic spectrum analysis. Unlike the other two types of body
waves as P-type (longitudinal) and S-type (transverse) waves which stimulate
relative minor disturbances close to the surface of the earth in an earthquake, for
their energy is dispersed in a vast body of the earth’s interior, the surface waves
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may bring about a significant damage-causing tremor to structures because these
waves dissipate their energy less rapidly than P-type and S-type waves and they
are essentially confined to the surface.

The concern of the surface waves in saturated porous media is of more
practical significance in the field of seismic engineering because most of the
geological materials can be grouped into a certain family of porous media. In
particular, the portion of these media as structure foundation is mostly composed
of saturated porous media such as watersaturated soil deposit. A study on
Rayleigh waves in a porous medium half-space and Love waves in a porous
medium layer has been presented by Deresiewicz (1961/62 a) who utilized
Biot’s (1956) theory to describe the porous media. However, despite remarkable
success in the application of Biot’s model to wave propagation and various
dynamic responses, due to limited space we will mention here only a book by
Bourbié at al. (1987), the model has been proven to remain in some respects
unsatisfactory for the treatment of a saturated porous medium.

The basis of this section is the Theory of Porous Media (TPM). In order to
make a comparison with the classical counterpart and the work by Deresiewicz
(1961, 1962 b) possible, the assumption is made in this treatment that the porous
medium consists of homogenous elastic solid skeleton filled with a liquid. The
propagation of plane waves in a infinite body of a porous medium is briefly
presented based on the contents of Section 8.5 a). Then, Rayleigh-type waves
in a semi-infinite saturated porous medium and Love-type waves in a saturated
porous layer are examined. Their frequency equations are derived relating the
dependence if wave numbers, being complex, on frequency, which shows that
both surface waves are dispersive and inhomogeneous. Their amplitudes damp
off along the propagation surface of the porous medium whereas they decay
exponentially with depth. It is also revealed that the classical results are the
particular cases of the surface waves in the porous medium.

Rayleigh-type waves

The starting point for the treatment of Rayleigh and Love waves in the set
of main equations of poroelasticity (8.75)1,2,3. Rayleigh waves can propagate
unperturbed along the surface of a semi-infinite isotropic solid in many respects
like waves in the sea. Such a disturbance is especially significant in seismic
wave propagation because, unlike bulk acoustic waves, they diffract on the
surface but not into the volume of the earth. The most characteristic feature of
Rayleigh waves is that the path of a particle in the medium is an ellipse with its
major axis normal to the surface and that the shape of the ellipse changes as a
function of depth.

Based on the study on plane waves in Section 8.5 a) we embark to examine
Rayleigh-type waves on the free surface of a porous medium. The waves are
assumed to be generated by a force source (e.g. the forces inside the earth that
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cause earthquake) at minus infinity so that the frequency is real and positive.
A rectangular coordinate system is introduced such that the xy-plane coincides
with the boundary of the half-space and the z-axis is directed into the medium.
If a wave propagate along the coordinate plane (x, z) corresponding vector po-
tential possesses only one nonzero component. Associated with this coordinate
system, the monochromatic progressing waves in the xz-plane are considered
in the usual manner by denoting

Φ = f(z) exp(iγrx), hy = g(z) exp(iγrx), hx = hz = 0 , (8.401)

where γr is the complex wave number of Rayleigh-type surface waves.
With the aid of (8.204) and (8.218) combined with (8.401) we have

f(z) = A1 exp(−k̄1z), g(z) = A2 exp(−k̄2z) , (8.402)

where A1 and A2 represent the amplitude constants and

k̄2
1 = γ2

r − k2
1, k̄2

2 = γ2
r − k2

2 . (8.403)

The scalar and vector potentials following from (8.200), (8.215) through (8.217),
and (8.401) as well as from (8.402) and (8.403) are:

Φ = A1 exp(−k̄1z) exp(i(γrx − ωt)) ,

hy = A2 exp(−k̄2z) exp(i(γrx − ωt)) ,

hx = hz = 0 .

(8.404)

Rayleigh-type waves are known to be a superposition of equivoluminal waves
and irrotationally waves, as described in (8.404). However, much more attention
should be paid to the case under study if a separation of variables representation
of the potentials Φ and hy in (8.404) is made into the products of an exponential
decay function in the coordinate plane (x,z) and a function whose argument is
phase; this gives (hx and hy are omitted)

Φ = A1 exp(−[Re(k̄1)z + Im(γr)x])×

× exp(i[Re(γr)x − Im(k̄1)z − ωt]) ,

hy = A2 exp(−[Re(k̄2)z + Im(γr)x])×

× exp(i[Re(γr)x − Im(k̄2)z − ωt]) ,

(8.405)

where Re(k̄1), Re(k̄2), and Im(γr) (Re and Im denote the real and imaginary
parts, respectively) are required to be at least positive to ensure decay. If
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this adjustment holds, Rayleigh-type surface waves exist but those waves lose
their conceptual generality, because the waves attenuate along the propagation
direction (x-axis) also. Therefore, in a liquidsaturated porous medium these
waves would not be called real surface waves. In the light of (8.405), both
two phase planes are not perpendicular to the plane surface of the medium.
Besides, these waves are inhomogeneous since the planes of constant phases
are not parallel to the planes of constant amplitudes.

It follows from (8.188) and (8.189) as well as from (8.404) that the displace-
ment components have the form

usx =
∂Φ
∂x

− ∂hy

∂z
, usy = 0, usz =

∂Φ
∂z

+
∂hy

∂x
. (8.406)

The surface of the porous medium is assumed to be free of traction and of
adequate permeability; thus, the boundary conditions are given by

(TS
E)zx

∣∣∣∣
z=0

= µS
(

∂usx

∂z
+

∂usz

∂x

)∣∣∣∣
z=0

= 0 , (8.407)

(TS
E)zy

∣∣∣∣
z=0

= µS
(

∂usy

∂z
+

∂usz

∂y

)∣∣∣∣
z=0

= 0 , (8.408)

(TS
E)zz

∣∣∣∣
z=0

=
[
2µS ∂usz

∂z
+ λS

(
∂usx

∂x
+

∂usz

∂z

)]
z=0

= 0 , (8.409)

p

∣∣∣∣
z=0

= 0 . (8.410)

Condition (8.408) is identically satisfied due to the consideration of plane strain
waves. Condition (8.410) is utilized to specify the undetermined poreliquid
pressure. The residual two conditions give rise to the following two algebraic
equations in terms of the amplitudes

2iγrk̄1A1 + (γ2
r + k̄2

2)A2 = 0 , (8.411)

(2µS k̄2
1 − λSk2

1)A1 − 2iµSγrk̄2A2 = 0 . (8.412)

The requirement of nonzero solutions for the set of Equations (8.411) and
(8.412) leads to vanishing of its determinant; in turn we obtain

4µSγ2
r k̄1k̄2 − [2µSγ2

r − (2µS + λS)k2
1)](2γ2

r − k2
2) = 0 . (8.413)

This is the dispersion relationship using which the complex number γr should
be calculated with respect to frequency. Once γr is known, the phase velocity
cr being dependent on frequency in general, will be attained by

cr = Re
(

ω

γr

)
, (8.414)
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while the attenuation coefficient along the surface propagation direction just
takes the imaginary portion Im(γr) which is devoted to the internal interface
dissipation in the porous medium.

When the interstitial liquid passed through the pores, an energy loss (dissi-
pation) of a travelling wave will occur at the internal interface of the two phases
due to the friction drag which is roughly expressed by the volume force p̂L.
This is why the saturated porous medium behaves like a viscoelastic mater-
ial. The inherent internal irregularity in a porous medium makes a rigorous
description hardly possible for this dissipation. For a surface wave over a long
distance, the influence of the energy dissipation on the amplitude attenuation is
apparent. We write out the time rate of the energy dissipation, which is raised
by the friction force p̂L, proportional to the velocity difference, by the formula

D =
∫

v
d̂(x, t)dv =

∫
v
p̂L · (x′

L − x′
S)dv , (8.415)

where d̂(x, t) is the time rate of the energy dissipation in a volume element.
The aspects related with the energy flux and the energy loss in wave motions
will be discussed in the next section.

In the classical Rayleigh equation, the wave velocity cr is independent of
frequency, i.e., the classical Rayleigh waves are dispersionless, and the wave
velocity relies only on Poisson’s ratio. However, the Rayleigh-type waves in a
saturated porous medium are predicated to be dispersive and dissipative. Prac-
tical seismograph often exhibits waves similar in structure to classical Rayleigh
waves. Simultaneously, seismographic records of distant earthquakes indicate
dispersion and attenuation. These practical aspects would be an evidence for
interpretation of this result.

To examine the dispersion relationship of Rayleigh-type wave numerically,
the dependence of the phase velocity and the attenuation coefficient on the fre-
quency ω in a saturated soil is plotted in Figures 8.5.21 and 8.5.22. The physical
properties of the saturated soil are taken from Table I in Section 8.5 a). As shown
in Figures 8.5.21 and 8.5.22, the phase velocity cr of the Rayleigh-type wave
depends on the frequency. For the higher permeability coefficient kL the phase
velocity cr is also higher. But the attenuation coefficient is lower for the higher
permeability coefficient because the attenuation coefficient characterizes the
dissipative effect between the solid and the liquid phases.

Especially, the classical Rayleigh waves are a particular case of the Rayleigh-
type waves in a porous medium, which can be seen to the next. If the saturated
porous is suggested to be frictionless (SL = 0), from (8.206), (8.207), (8.221),
and (8.222) we immediately have
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Fig. 8.5.21: Phase velocity of Rayleigh wave versus frequency at
different permeability parameters.

a′1 =
ρS(nL)2 + ρL(nS)2

(nL)2λS + 2(nL)2µS
ω2 ,

a′2 =
ρSω2

µS
, b′1 = b′2 = 0 .

(8.416)

In this case no dissipation is involved along the propagation surface and imi-
ganary portions in (8.205) and (8.320) vanish. Morover, Eq. (8.403) takes the
form

k̄′2
1 = γ2

r − k′2
1 = γ2

r (1 − c2

c2
1

), k′2
1 =

ω2

c2
1

,

k̄′2
2 = γ2

r − k′2
2 = γ2

r (1 − c2

c2
2

), k′2
2 =

ω2

c2
2

,

(8.417)

where

c2
1 =

(nL)2λS + 2(nL)2µS

ρS(nL)2 + ρL(nS)2
,

c2
2 =

µS

ρS
,

(8.418)

which are the propagation velocities of the two body waves in a two-phase
saturated porous medium, respectively. In (8.418), c1 > cr and c2 > cr are
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Fig. 8.5.22: Attenuation coeficient of Rayleigh wave versus
frequency at different permeability parameters.

required that the propagation velocity of Rayleigh waves is less than the prop-
agation velocities of the two body waves. Therefore, the frequency equation
(8.413) takes the form

4k̄′
1k̄

′
2γ

2
r − (2γ2

r − λS + 2µS

µS
k′2

1 )(2γ2
r − k′2

2 ) = 0 . (8.419)

If we further consider an empty porous solid skeleton without liquid (ρL → 0),
then the propagation velocity c1 is reduced to

c′21 =
λS + 2µS

ρS
(8.420)

with which the frequency equation (8.419) may further give

4k̄′
1k̄

′
2γ

2
r − (2γ2

r − k′2
2 )2 = 0 , (8.421)

or

16(1 − c2
r

c′21
)(1 − c2

r

c2
2

) − (2 − c2
r

c2
2

)4 = 0 . (8.422)

The above Eqs. (8.421) and (8.422) are indeed the case in the classical Rayleigh
waves; the propagation velocity cr is independent of frequency and the wave
shape is maintained.
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Love-type waves

The original impetus to study Love-type waves may retrace its steps to the
explanation of the presence of sizable transverse components of displacement in
the main tremor of an earthquake. An intense horizontal component of motion
is not a feature of Rayleigh waves because Rayleigh waves propagate only in the
vertical plane. Meanwhile, such a disturbance is also impossible to be produced
by a surface shear wave. This phenomenon was successfully described by Love
(1911) who realized that the actual conditions in the earth must be different in
some essential respects from those of a homogenous, isotropic half-space. He
in turn conjectured that such a disturbance was a consequence of a layered
construction of the earth. Love suggested an elastic thin layer which is added
on elastic semi-infinite media with different material properties to the thin layer.
This kind of horizontally polarized surface waves discovered by Love, later to
bear his name, is constructed by shear waves localized in this superficial layer
and retain its energy close to the surface. It is of particular interest to bear in
mind that the phase velocity of shear waves in the elastic half-space exceeds
that in the thin layer.

We now consider the propagation of Love-type waves within a thin saturated
porous layer which is superimposed upon a homogenous, isotropic half-space.
The Cartesian coordinate system is so adopted that the xy-plane coincides with
the horizontal interface between the porous layer and the elastic substrate, and
z-axis points vertically upward into the layer. Referring to these axes and
recalling the shearing property of Love-type waves, we write the components
of displacements of the two phases in x, y, z directions and the poreliquid
pressure in the form

uSx = 0, uSy = uSy(x, z, t), uSz = 0 ,

uLx = 0, uLy = uLy(x, z, t), uLz = 0 ,

(8.423)

p = p(x, z, t) . (8.424)

It is evident that, unlike Rayleigh-type waves, Love-type waves are pure equivo-
luminal waves. Considering the fact that the shear disturbance does not produce
variation of volume, the mass balance equation (8.185) is eliminated from the
set of the governing equations of the porous medium.

Furthermore, effect of the external body force is neglected. Accordingly,
with the help of (8.423) and (8.424) the equations of motion (8.75) are easily
reduced to

µS�uSy = ρS ∂2uSy

∂t2
− SL(

∂uLy

∂t
− ∂uSy

∂t
) , (8.425)

0 = ρL ∂2uLy

∂t2
+ SL(

∂uLy

∂t
− ∂uSy

∂t
) , (8.426)
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where the Laplace operator is � =
∂2

∂x2
+

∂2

∂z2
. A time harmonic variation for

each of the displacements of the solid skeleton and the liquid is assumed, i.e.

uSy = uSy(x, z) exp(iωt), uLy = uLy(x, z) exp(iωt) . (8.427)

Then, the substitution of (8.427) into (8.425) and (8.426) yields

(� + k2
3)ūSy = 0 , (8.428)

ūLy =
SLi

SLi − ρLω
ūSy , (8.429)

where
k2

3 = a3 − b3i , (8.430)

a3 =
ρSS2

Lω2 + ρLS2
Lω2 + ρS(ρL)2ω4

µS [S2
L + (ρL)2ω2]

, (8.431)

b3 =
ρLS2

Lω3

µS [S2
L + (ρL)2ω2]

. (8.432)

Thus, the portion of spatially dependent skeleton displacement ūSy is expressed
by Eq. (8.428) with the complex number k3, indicating the waves in the layer
is dissipative on the one hand. On the other hand, Eq. (8.429) tells us that the
wave in the liquid is coupled with that in the skeleton.

Suppose the resolution of (8.428) is

uSy = h(z) exp(−iγlx) , (8.433)

where γl is the wave number being a complex of Love-type waves. Then, the
insertion of the resolution into (8.428) yields

h(z) = A3 cos k̄3z + A4 sin k̄3z , (8.434)

where

k̄2
3 = k2

2 − γ2
l . (8.435)

The displacement of the solid skeleton in the porous layer is, by virtue of (8.427),
(8.433) and (8.434), given by

uSy = (A3 cos k̄3z + A4 sin k̄3z) exp[(ωt − γlx)i] . (8.436)

With respect to the half space of elastic materials, as in the case of the porous
layer, denoting uSb to be the horizontal displacement component portion, being
harmonic time dependent, the spatially dependent portion is governed by a
Helmholtz equation, viz.
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(� + k2
b )ūSb = 0 , (8.437)

where

k2
b =

ω2

c2
b

, c2
b =

µ

ρ
(8.438)

with µ as the shear modulus of the elastic base and ρ its density. Similarly, the
solution of the displacement uSb is

uSb = Ab exp(k̄bz) exp[(ωt − γlx)i] , (8.439)

where

k̄2
b = γ2

l − k2
b , Re(k̄b) > 0 . (8.440)

At z = h, the layer should be free of traction and the transverse stress and
displacement should be continuous across the interface at z = 0, thus

µS ∂uSy

∂z

∣∣∣∣
z=h

= 0 , (8.441)

µS ∂uSy

∂z

∣∣∣∣
z=0

= µ
∂uSb

∂z

∣∣∣∣
z=0

= 0 , (8.442)

uSy

∣∣∣∣
z=0

= uSb

∣∣∣∣
z=0

. (8.443)

The above expressions show that the solid skeleton constitutes a framework of
porous bodies subjected to external traction at the free surface without consid-
ering the liquid in the pores. With the help of (8.436) and (8.439), the above
described boundary conditions produce a set of algebraic equations in terms of
amplitudes

sin(k̄3h)A3 − cos(k̄3h)A4 = 0 , (8.444)

µS k̄3A4 − µS k̄bAb = 0 , (8.445)

A3 − Ab = 0. (8.446)

The unique condition of nonzero solutions for this set of algebraic equations
requires that the determinant of coefficients of the amplitudes is zero, which
leads to the frequency equation

tan(k̄3h) =
µk̄b

µS k̄3
. (8.447)

Since the wave number of Love-type wave γl is complex, the amplitude will suf-
fer a frequency-dependent spatial attenuation characteristic. Thus, Love-type
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Fig. 8.5.23: Phase velocity of Love wave versus frequency at different permeability
parameters. The dotted line indicates the propagation velocity of the
shear wave in the substrate.

waves are also not called real surface waves. Furthermore, Love-type waves
are also inhomogeneous waves. The expression (8.447) regulates the depen-
dence of phase velocity cl and attenuation coefficient of frequency ω, being a

Fig. 8.5.24: Attenuation coeficient of Love wave versus frequency
at different permeability parameters.
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transcendental equation; a mathematical evaluation for (8.447) is furthermore
required. The multiple branches of the tangent function in (8.447) imply that
multiple roots will exist for any given frequency ω. Therefore, the dispersion
curves and frequency spectrum should have multiple branches which corre-
spond to various propagation modes. Despite the fact that (8.447) is identical
in appearance with the result given by Deresiewicz (1961), it is fundamentally
different if we detail the implication of the terms.

In order to study the dispersion property of Love-type wave numerically, we
discuss the saturated soil superimposed on a soil base in which the bulk shear
propagates at a velocity 84.76m/s. The physical property of the saturated soil
is described by de Boer et al.(1993). In the calculation we choose the first
root related with the multiple roots in (8.447). The propagation velocity and
the attenuation coefficient of the first mode versus the frequency for Love-type
wave in the soil are shown in Figures 8.5.23 and 8.5.24, respectively.

We note that under the condition of a frictionless saturated porous medium,
SL = 0, we have

a′3 =
ρSω2

µS
, b′3 = 0 . (8.448)

Furthermore, it follows from (8.435) and (8.440) that

k̄
′2
3 = γ2

l

(
c2
l

c2
2

− 1
)

, k̄′2
b = γ2

l

(
1 − c2

l

c2
b

)
, (8.449)

where c2 < cl < cb is required. With use of (8.447) we have

µ

√
1 − c2

l

c2
b

− µS

√
c2
l

c2
2

− 1 tan
(

γlh

√
c2
l

c2
2

− 1
)

= 0 . (8.450)

This is the same counterpart of elasticity given by Love (1911).

e) Inhomogeneous Plane Waves, Mechanical Energy Flux, and Energy
Dissipation in a Two-Phase Porous Medium

We will deal with inhomogeneous plane waves, energy flux, and energy
dissipation in a two-phase porous medium, consisting of an incompressible
porous solid and an incompressible liquid (see Liu et al., 1998).

Two types of coupled plane harmonic waves, namely P-type and S-type, are
shown to travel in the two-phase porous medium. Each type of plane harmonic
waves is described in terms of two complex-valued vectors: a complex-valued
wave vector and a complex-valued amplitude vector. Each complex-valued
wave vector is further decomposed into a real-valued propagation vector and a
real-valued attenuation vector. The propagation vector is in general not parallel
to the attenuation vector, but between them there exists an inhomogeneity angle
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for each type of waves, which implies that planes of constant phase do not
coincide with planes of constant amplitude and thus both types of waves are
inhomogeneous. As discussed intensively by Hayes (1980), associated with
each complex-valued amplitude vector is an ellipse of the particle motions
for each type of waves, and the major axis of the ellipse is neither parallel
nor perpendicular to the propagation vector. These two types of waves are
essentially not new, but they deserve more attention since they represent a
fundamental characteristic of these waves in the two-phase porous medium.

Proceeding from the motion equations of the saturated porous medium an
energy conservative equation for the whole medium is derived. It is shown that
the whole energy rate plus the energy dissipation rate is equal to the energy
transfer through the surface of the controlled volume, in another way, equal
to a divergence of the energy flux vector. The remainder of this section is
concerned with applications of the energy flux and the energy dissipation rate
at the inhomogeneous plane waves. The mean energy flux vectors and the
mean energy dissipation rates over a complete period are attained for each
inhomogeneous plane wave.

The fundamental relations of the poroelasticity are laid down in Section 8.3;
they are used in the next paragraphs.

Inhomogeneous plane waves

We consider a time-harmonic dependence in the form exp(−iωt) in which t
is the time, ω the angular frequency, and i the imaginary unit. As pointed out by
de Boer and Liu (1994), a coupled P-type wave and a coupled S-type wave may
travel in the incompressible porous medium. Put in another way, a disturbance
occurring in the skeleton is always accompanied by a disturbance in the liquid
for each type of waves. Thus, the general solution of the field equations (8.183)
to (8.185) in terms of the skeleton displacement uS and the liquid displacement
uL can be written using Helmholtz’s representation:

uS = grad Φ + curlh, uL = τ1 grad Φ + τ2 curlh , (8.451)

where τ1 and τ2 are real and complex valued coupling factors, respectively,

τ1 = −nS

nL
, τ2 =

ρLSLωi + S2
L

(ρL)2ω2 + S2
L

. (8.452)

The scalar potential Φ with respect to P-type wave and vector potential h with
respect to S-type wave are functions of x and t by satisfying the wave equations

(� + kP · kP )Φ = 0 , (� + kT · kT )h = 0 , (8.453)

where � is the Laplace operator as well as kP and kT being complex-valued
vectors, denote wave vectors. The subscripts P and T stand for a P-type (longitu-
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dinal) wave and an S-type (transverse) wave, respectively. The complex-valued
wave vectors are identified by the relations

kP · kP = a1(ω) + b1(ω)i , kT · kT = a2(ω) + b2(ω)i , (8.454)

where

a1 =
ρS(nL)2 + ρL(nS)2

(nL)2λS + 2(nL)2µS
ω2 ,

b1 =
SLω

(nL)2λS + 2(nL)2µS
,

a2 =
ρS(ρL)2ω4 + ρSS2

Lω2 + ρLS2
Lω2

µS(ρL)2ω2 + µSS2
L

,

b2 =
(ρL)2SLω3

µS(ρL)2ω2 + µSS2
L

.

(8.455)

The general plane wave solutions of Eq. (8.453) are

Φ = Φ0 exp[i(kP · x − ωt)] , h = h0 exp[i(kT · x − ωt)] , (8.456)

where Φ0 is a complex-valued scalar and h0 a complex-valued vector. With the
aid of (8.451) and (8.456) the general solutions in the terms of displacement
field uS for the P-type and S-type waves, respectively are given by

uP
S = ikP Φ0 exp[i(kP · x − ωt)] for P − type wave ,

uT
S = ikT ∧ h0 exp[i(kP · x − ωt)] for S − type wave ,

(8.457)

where the symbol∧ stands for the cross product of two complex-valued vectors.
In (8.457) ikP Φ0 and ikT ∧ h0 are the amplitude vectors for the two types of
waves travelling in the skeleton, from which the amplitude vectors in the liquid
can be obtained by multiplication with the coupling factors τ1 and τ2. We re-
member that the actual displacement vector is the real part of the corresponding
complex-valued vector.

The variation of the poreliquid pressure p can be attained from the motion
equations (8.65) or (8.66). It is to be noted that the variation of the poreliquid
pressure p is related only to the scalar potential Φ and it follows that

p = τ3Φ , τ3 = −nSρLω3 + iωSL

(nL)2
, (8.458)

where τ3 is a frequency-dependent factor.
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Now, we consider the essential features of the inhomogeneous plane waves in
the porous medium. To this end, we express the complex-valued wave vectors
in terms of the corresponding real and imaginary parts

kP = kP+ + ikP− , kT = kT+ + ikT− , (8.459)

where kP+ and kT+ are the propagation vectors and kP− and kT− the atten-
uation vectors for the P-type and S-type waves, respectively. The propagation
vectors are perpendicular to planes of constant phase and the attenuation vectors
are perpendicular to planes of constant amplitude for the two waves. Insertion
of (8.459) into (8.456) leads to the representation

Φ = Φ0 exp(−kP− · x) exp([i(kP+ · x − ωt)] ,

h = h0 exp(−kT− · x) exp([i(kT+ · x − ωt)] .

(8.460)

In view of (8.456) and (8.457), kP ·x = const. and kT ·x = const. describe the
planes of constant phase of the two types of waves while kP− ·x = const. and
kT− · x = const. turn out the planes of constant amplitude. The phase speeds

are determined by cP =
ω

|kP+| for the P-type wave and cT =
ω

|kT+| for the S-

type wave. As a matter of fact, kP− and kT− characterize an exponential decay
of the amplitudes in the porous medium. The maximum decay rate does not take
place in the direction of propagation but of kP− and kT−. It is apparent that
the planes of constant phase is in general not parallel to the planes of constant
amplitude, see Fig. 8.5.25. Insertion of (8.459) into (8.454) yields

|kP+|2 − |kP−|2 = a1, |kP+||kP−| cosΘ1 =
1
2
b1 ,

|kT+|2 − |kT−|2 = a2, |kT+||kT−| cosΘ2 =
1
2
b2 ,

(8.461)

where Θ1 and Θ2 are the inhomogeneity angles smaller than π/2 for the two
types of waves, respectively, which are measured between the propagation vec-
tors and the attenuation vectors. The equation system (8.461) is underdeter-
mined unless further information is given as in the case of reflection-refraction
problems.

In view of (8.456) and (8.457) each displacement field is described in terms
of two complex-valued vectors: the amplitude vector and the wave vector.
As a basic property, associated with each complex-valued amplitude vector is
a directional ellipse of the particle motion for each type of waves. We now
take the P-type wave in the skeleton as an example to gain an insight into the
propagation of elliptically polarized inhomogeneous plane waves in the porous
medium.
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Fig. 8.5.25: The planes of constant phase (thick lines) are not parallel to the planes of
constant amplitude (thin lines) (a) for P-type waves, (b) for S-type waves.

The complex-valued amplitude vector ikP Φ0, whereby it is assumed that
the cross product of its real and imaginary parts is a non-zero vector, for the
P-type wave may be written in the form

fP + igP = exp(−iβP )(ikP Φ0), fP · gP = 0 , (8.462)

where βP is real determined by the orthogonality of fP and gP . Moreover, fP

and gP are real-valued coplanar with kP determined by ikP Φ0. Consequently
we rewrite the displacement field uP

S for the P-type wave

uP
S = exp(−kP− · x)(fP + igP ) exp[i(kP+ · x − ωt + βP )] . (8.463)

Recalling that a physical interpretation is ascribed to the real part and letting
ξ = kP+ · x − ωt + βP , immediately it follows from (8.463) that the actual
displacement

uP
S = exp(−kP− · x)(fP cos ξ − gP sin ξ) . (8.464)

Owing to (8.462)2 the orthogonality of fP and gP allow us to obtain

(uP
S · fP )2

[|fP | exp(−kP− · x)]2
+

(uP
S · gP )2

[|gP | exp(−kP− · x)]2
= 1 , (8.465)

where |fP |, |gP | are the moduli of fP , gP anduP
S ·fP , uP

S ·gP are the projections
along fP , gP . This demonstrates that the solid displacement vector uP

S for a
P-type wave describes an ellipse in the plane of kP+ and kP− with a pair of
semidiameters of |fP | exp(−kP− ·x) and |gP | exp(−kP− ·x) being the major
and minor axes of the ellipse, respectively. The direction of rotation is from
kP+ to kP−. Due to the relation (8.462) the major axis or the minor axis of the
polarized ellipse is neither in the direction of kP+ nor in the direction of kP−.
Fig. 8.5.26 illustrates graphically the particle motion traces of the solid for the



192 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

Fig. 8.5.26: The elliptical particle motion (a) for P-type wave in the skeleton, where planes
of constant phase propagate in the direction of the vector kL+, (b) for S-type
wave in the fluid, where planes of constant phase propagate in the direction of
the vector kT+ (modification after Borcherdt, 1973.)

P-type wave. Accordingly, the P-type wave in the solid skeleton is elliptically
polarized and the plane of polarization is determined by the complex-valued
amplitude vector ikP Φ0.

The S-type wave in the solid skeleton must also be elliptically polarized be-
cause of its complex-valued amplitude vector ikT ∧H0 from which, however,
it can be anticipated that the polarization plane is neither orthogonal nor par-
allel, in general, to the complex-valued vector kT , since the polarization plane
depends on ikT ∧ H0. The polarized ellipse is described by

(uT
S · fT )2

[|fT | exp(−kT− · x)]2
+

(uT
S · gT )2

[|gT | exp(−kT− · x)]2
= 1 , (8.466)

where fT + igT = exp(−iβT )(ikT ∧ H0), fT · gT = 0.
The particle motion in the solid phase for the S-type waves is given graph-

ically in Fig. 8.5.26. Note that the plane of polarization is not in the plane
determined by kT .

Energy flux and energy dissipation rate

Now, we focus on the energy of a wave in the uniform porous medium. In
the absence of body forces, we take the inner product of the motion equation
(8.60), (8.61) with vS and vL, respectively, and obtain

ρS(vS)′S · vS = divTS · vS − p̂L · vS , (8.467)

ρL(vL)′L · vL = grad pL · vL + p̂L · vL , (8.468)

where we have set pL = −nLp. Recalling the symmetry of the stress tensor
TS and the following identities
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divTS · vS = div(TSvS) − TS · DS , (8.469)

grad pL · vL = div(pLvL) − pL(DL · I) . (8.470)

Eqs. (8.467) and (8.468) become

ρS(vS)′S · vS = div(TSvS) − TS · DS − p̂L · vS , (8.471)

ρL(vL)′L · vL = div(pLvL) − pL(DL · I) + p̂L · vL . (8.472)

The sum of both Eqs. (8.471) and (8.472) makes up the rate of mechanical
work of the whole medium as

div(TSvS) + div(pLvL) − TS · DS − pL(DL · I) −
−ρS(vS)′S · vS − ρL(vL)′L · vL + p̂L(vL − vS) = 0 .

(8.473)

Integration over the control space B leads to∫
B

div(TSvS + (pLvL)dv =
∫
B

[TS · DS + pL(DL · I) +

+ρS(vS)′S · vS + ρL(vL)′L · vL −

−p̂L(vL − vS)]dv .

(8.474)

With the aid of Gauss’ theorem the following relation∫
∂B

(TSvS + (pLvL) · nda =
∫
B

[TS · DS + pL(DL · I) +

+ρS(vS)′S · vS + ρL(vL)′L · vL −

−p̂L(vL − vS)]dv

(8.475)

is gained, where n is the unit normal vector at the integration surface ∂B.
The volume change rate of the liquid DL · I is restrained by the saturation

condition nS + nL = 1. Combining the saturation condition and the mass
balance equation (8.52) in consideration of the incompressibility condition we
may derive

nL(DL · I) = −nS(DS · I) − gradnL · (vL − vS) . (8.476)

We use the above relation and the constitutive relations (8.62), (8.64) and rewrite
Eq. (8.475) as
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∫
∂B

(TSvS + pLvL) · nda =
∫
B

[TS
E · DS − p̂L

E · (vL − vS) +

+ ρS(vS)′S · vS + ρL(vL)′L · vL]dv .

(8.477)

Furthermore, because our study is confined to the scope of infinitesimal defor-
mation we have linear geometrical and physical equations as in (8.68). Thus,
we introduce the potential energy of the solid phase

WS =
1
2

∫
B

TS
E ·ESdv (8.478)

and the kinetic energies of the solid and liquid phases, respectively,

KS =
1
2

∫
B

ρSvS · vSdv, KL =
1
2

∫
B

ρLvL · vLdv . (8.479)

It follows from (8.477) to (8.479) that a balance of mechanical power of the
whole porous medium yields∫

∂B

(TSvS + pLvL) · nda = (WS)′S + (KS)′S + (KL)′L −

−
∫
B

p̂L
E · (vL − vS)dv .

(8.480)

It can be seen from (8.477) and (8.478) that the total potential energy of the
entire medium is given by the effective stress acting upon the deformable solid
skeleton while the poreliquid pressure makes no contribution to the potential
energy for the whole medium. In other words the potential energy of the whole
porous medium is stored in the solid skeleton even though the mechanical work
of the external tractions includes the part by the poreliquid pressure as shown
in the left-hand side of Eq. (8.477). The energy dissipation rate is reasonably
defined by

d̂(x, t) = −p̂L
E · (vL − vS) . (8.481)

Analogous to the case of a one-component medium (Hayes, 1980), the energy
flux vector J is defined by

J = −TSvS − pLvL . (8.482)

In conclusion, the balance equation of mechanical power of the whole porous
medium takes the form
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(WS + KS)′S + (KL)′L +
∫
B

d̂(x, t)dv =
∫

∂B

J · nda . (8.483)

The above equation implies that the time rate of the total energy plus the energy
dissipation rate is equal to the divergence of the energy flux vector. In addition,
we recognize the energy flux intensity I as the energy transfer per unit area in
the direction of every propagation

I = J · n , (8.484)

where n coincides with the direction of the propagation vector.

Energy flux and energy dissipation rate at inhomogeneous plane waves.

This section is concerned with the energy flux and the energy dissipation
rate associated with the inhomogeneous plane waves. Owing to the oscillatory
behavior, we are now interested in obtaining a mean energy flux vector 〈J〉 over
one complete period τ , which is defined as

〈J〉 =
1
τ

τ∫
0

Jdt . (8.485)

We first take into account the representation of energy flux vectors JP and JT

at the P-type and the S-type inhomogenous plane waves. For the P-type wave
in the energy flux vector is attained from (8.482) and (8.1):

JP = −(TS
E)PvP

S , (8.486)

since the following relation holds for the P-type wave with the aid of (8.451)
and (8.452):

nSvP
S + nLvP

L = nSvP
S + nLτ1vP

S = 0 , (8.487)

where vP
S and vP

L are the particle velocities of the solid and the liquid for the
longitudinal wave, respectively. Meanwhile, the poreliquid pressure is inde-
pendent of the S-type inhomogeneous wave, we immediately write out from
(8.482) and (8.1) the energy flux for the S-type wave

JT = −(TS
E)TvT

S , (8.488)

where vT
S is the particle velocity of the solid for the transverse waves.

We have in mind that at the end of the calculations only the real part should be
used. Before we calculate these energy flux vectors let us take into account two
arbitrary quantities with time-harmonic variation as π1 = F exp[i(k ·x−ωt)]
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and π2 = G exp[i(k · x − ωt)]. Since the real part is indeed the physical part
of the corresponding quantities, we multiply them as

Re(π1) Re(π2) =
1
2
(π1 + π∗

1)
1
2
(π2 + π∗

2)

=
1
2

Re(π1π
∗
2) +

1
4
(π1π2 + π∗

1π
∗
2) ,

(8.489)

where the index ∗ denotes the complex conjugate. Remembering that the time
average of harmonic functions of frequency 2ω vanishes and that π∗

1π
∗
2 is not a

function of time, we obtain an expression

〈Re(π1) Re(π2)〉 =
1
2

Re(π∗
1π

∗
2) . (8.490)

At first, we calculate the energy flux vector at the P-type inhomogeneous
wave and thus from (8.490) we write the mean energy flux vector

〈JP 〉 = −1
2

Re[(TS
E)P (vP

S )∗] . (8.491)

Since (vP
S )∗ = iω(uP

S )∗, (8.491) can be rewritten as

〈JP 〉 = −1
2
ω Im[(TS

E)P (uP
S )∗] . (8.492)

It follows from (8.68) and (8.457) that the stress tensor due to the P-type wave
leads to

(TS
E)P = −Φ0[ 2µSkP ⊗ kP +

+λS(kP · kP )I] exp[i(kP · x − ωt)] .
(8.493)

In order to apply (8.493) to the mean energy flux 〈JP 〉 in (8.492) we have to
evaluate TS

E(uL
S)∗. Substitution and some rearrangements yield

(TS
E)P (uP

S )∗ = iΦ0Φ∗
0 exp(−2kP− · x)[2µS(kP · kP∗)kP +

+λS(kP · kP )kP∗] .

(8.494)

Inserting (8.494) into (8.492) we immediately have

〈JP 〉 =
1
2
ω exp(−2kP− · x)|Φ0|2 Re[(λS + 2µS)(kP · kP∗)kP +

+2µSkP ∧ (kP ∧ kP∗)] ,

(8.495)
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where the relation

(kP · kP∗)kP = (kP · kP )kP∗ + kP ∧ (kP ∧ kP∗) (8.496)

has been used.
Analogously, the energy flux at the S-type wave is written as

〈JT 〉 =
1
2
ω Im[(TS

E)T (uT
S )∗] , (8.497)

where the stress tensor due to the S-type wave propagation is given by

(TS
E)T = −µS [(kT ∧ h0) ⊗ kT +

+kT ⊗ (kT ∧ h0)] exp[i(kT · x − ωt)] .

(8.498)

Moreover, a simple calculation turns out

(TS
E)T (uT

S )∗ = µS exp(−2kT− · x)[(kT ∧ h0)kT · kT∗ ∧ h∗
0 +

+kT (kT ∧ h0) · (kT∗ ∧ h∗
0)] .

(8.499)

Insertion of (8.499) and (8.497) yields

〈J〉T =
1
2
ωµS exp(−2kT− · x) Re[(kT ∧ h0)kT · kT∗ ∧ h∗

0 +

+ kT (kT ∧ h0) · (kT∗ ∧ h∗
0)] .

(8.500)

In the sequel we investigate the energy dissipation rate at each type of waves.
With the aid of (8.70) and (8.481) as well as (8.490) the time-averaged energy
dissipation rate becomes:

〈d̂(x, t)〉 = −1
2
SL Re[(vL − vS) · (vL − vS)∗] . (8.501)

For the P-type wave we write the mean energy dissipation rate as

〈d̂P (x, t)〉 = −1
2
SL Re[(vP

L − vP
S ) · (vP

L − vP
S )∗] (8.502)

and with the aid of (8.457) and (8.487) we write further
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〈d̂P (x, t)〉 = − SLω2

2(nL)2
Re[uP

S · (uP
S )∗] . (8.503)

Insertion of (8.461) in (8.502) gives

〈d̂P (x, t)〉 = − SLω2

2(nL)2
Re[exp(−2kP− · x)Φ0Φ∗

0k
P · kP∗]

= − SLω2

2(nL)2
exp(−2kP− · x)|Φ0|2|kP |2 .

(8.504)

The time-averaged energy dissipation rate at the S-type wave can be written as

〈d̂T (x, t)〉 = −1
2
SL Re[(vT

L − vT
S ) · (vT

L − vT
S )∗] . (8.505)

With the aid of (8.451) the above expression becomes

〈d̂T (x, t)〉 = −1
2
SLω2 Re[(τ2 − 1)(τ2 − 1)∗uT

S · (uT
S )∗] . (8.506)

We insert (8.457) into (8.506) and arrive at

〈d̂T (x, t)〉 = −1
2
SLω2[(τ2 − 1)2 exp(−2kT− · x)×

×Re[(kT ∧ h0) · (kT∗ ∧ h∗
0)] ,

(8.507)

where we further evaluate

Re[(kT ∧ h0) · (kT∗ ∧ h∗
0)] = Re[(kT · kT∗)(h0 · h∗

0)] −

−(kT · h∗
0)(k

T∗ · h0)]

= |kT |2|h0|2 − Re[(kT · h∗
0)(k

T · h∗
0)

∗]

= |kT |2|h0|2 − (kT · h∗
0)

2 .

(8.508)

Consequently, the mean energy dissipation rate for the S-type wave is evaluated
as
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〈d̂T (x, t)〉 = −1
2
SLω2|(τ2 − 1)2| exp(−2kT− · x)×

×[|kT |2|h0|2 − |kT · h∗
0|2] .

(8.509)

The incompressible porous media model is utilized to describe the two-
phase porous medium. A coupled P-type wave and a coupled S-type wave
may propagate in the porous media. The displacement field for each type of
waves is characterized in terms of a complex-valued amplitude vector and a
complex-valued wave vector which includes a real-valued propagation vector
and real-valued attenuation vector. It is verified that each coupled wave is
inhomogeneous since the planes of constant phase is in general not parallel to
the planes of constant amplitude due to the dissipative property of the porous
medium. The trace of the particle motion of each type of wave is of elliptical
polarization associated with the complex-valued amplitude vector.

The explicit expression of the mean energy flux vector and the mean energy
dissipation rate are given over a complete period for each type of inhomogeneous
waves.

f) Propagation and Evolution of Wave Fronts in Saturated Porous Solids

We investigate the evolution equations governing the amplitudes of discon-
tinuity waves in porous media. Because our study is confined to infinitesimal
deformations and to a linear poroelastic solid filled with an ideal liquid, it fol-
lows, if we neglect convective terms, from (8.73) that the balance equations of
momentum may be rewritten in the form

(λS + µS) grad divuS + µS div graduS − nS grad p +

+ρS(bS − ∂2uS

∂t2
) + SL(

∂uL

∂t
− ∂uS

∂t
) = 0 ,

(8.510)

−nL grad p + ρL(bL − ∂2uL

∂t2
) − SL(

∂uL

∂t
− ∂uS

∂t
) = 0 . (8.511)

In order to derive the differential equations of the amplitudes, we need to evalu-
ate the field equations (8.510) and (8.511) on the wave fronts. To this end, from
the iterated substitution of Φ in (8.360)2 and (8.362) by u℘ into the geometrical
and kinematical conditions of compatibility of the second order we have the
following jumps:[

| grad divu℘|
]

= (c℘ · n)n + aαβ
[
|(a℘

,α · n)x,β +

+(a℘
,α · x,β)n|

]
− bαβ(a℘ · x,α)x,β ,

(8.512)
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[
| div graduS|

]
= cS − bα

.αaS , (8.513)

[
|∂

2u℘

∂t2
|
]

= u2
nc

℘ − 2un
δa℘

δt
, (8.514)

where

a℘ =
[
| gradu℘|

]
n (8.515)

is defined as the amplitude vectors in the solid skeleton and in the liquid. More-
over, the following relation

n · x,α = 0 (8.516)

has been used, and bα
.α is the trace of the surface tensor bα

.β and

c℘ =
[
| grad gradu℘|

]
n ⊗ n (8.517)

are introduced as unknown vectors.
Next, we first examine the amplitude evaluation of the longitudinal waves

in a well-known way. However, the procedure is lengthy and the details are
therefore purposely neglected. After the field equation (8.510) and (8.5.11) are
written on the wave fronts and the relations (8.512) to (8.516) are substituted
into them. Upon elimination of the porewater pressure gradient [grad p], we
have

nL(λS + µS)[(cS · n) + aαβ(aS
,α · x,β)] +

+ nLµS(cS · n − bα
.αaS · n) −

− nLρS
(
u2

nc
S · n − 2un

δaS

δt
· n
)

+

+ nSρL
(
u2

nc
L · n − 2un

δaL

δt
· n
)

+

+ SLun(aS · n − aL · n) = 0 .

(8.518)

For simplicity we examine only the case of the so-called homogenous weak
discontinuity in our following analysis. Namely, all amplitudes tangent to the
wave fronts are assumed as unchangeable quantities, i.e,

aS
n,α = 0, aS

e,α = 0 , (8.519)

where we denote
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aS
n = aS · n, aS

e = aS · e (8.520)

as the amplitudes of the longitudinal and the transverse waves; e is chosen as a
unit vector perpendicular to the unit wave normal n such that

e · n = 0 . (8.521)

Moreover, in the scope of infinitesimal deformations, the equation for the
volume fractions (8.111)3 are simplified into

div
(
nS ∂uS

∂t
+ nL ∂uL

∂t

)
= 0 . (8.522)

In view of (8.363) it is easy to have[
| div

∂u℘

∂t
|
]

= −unc℘ · n +
∂a℘

∂t
· n − aαβuna℘

,α · x,β . (8.523)

Thus, recalling (8.341)3 and the saturation condition in the reference placement
and upon substitution of the above expression (8.523) into (8.522) we obtain
the restriction for the unknown vector c℘ such that

nScS · n + nLcL · n = 0 , (8.524)

where (8.519) and (8.520) have been utilized. It should be mentioned here that
the constraint (8.524) is valid only for the P-type coupled waves.

With the aid of (8.524) a rearrangement of (8.518) immediately gives rise to

2[(nL)2ρS + (nS)2ρL]un1
δaS

n

δt
+ SLun1a

S
n −

−(nL)2(λS + 2µS)bα
.αaS

n + {(nL)2(λS + 2µS) −

−[(nL)2ρS + (nS)2ρL]un1}cS · n = 0 .

(8.525)

Utilizing the expression (8.342) we can eliminate the unknown dot product
cS · n and obtain the differential equation governing the amplitude aS

n

δaS
n

δt
− 1

2

[
|bα

.αun1 − SL

(nL)2ρS + (nS)2ρL
|
]
aS

n = 0 . (8.526)

Analogously, we take the projection of the field equations (8.510) and (8.511)
across the wave fronts in the direction of e and bear in mind that only the
transverse waves are realizable in the solid skeleton in this case, the result is
arranged in the form
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(λS + µS)[aαβ(aS
,α · n)(x,β · e) − bαβ(aS · x,α)(x,β · e) +

+ µS(cS · e − bα
.αaS · e) − ρS

(
u2

nc
S · e − 2un

δaS

δt
· e
)

+

+ SLunaS · e = 0 .

(8.527)

In the case of the homogenous weak discontinuity, Eq. (8.518) becomes

2ρSun2
δaS

δt
· e − (µSbβ

.α − SLun2)aS · e +

+ (µS − ρSu2
n2)c

S · e = 0 ,

(8.528)

where the identity

e,α · n = − e · n,α = b.γ
α x,γ · e (8.529)

has been utilized. With the aid of the expression (8.343), the amplitude for the
transverse waves is determined by

δaS
e

δt
−
(

1
2
bα
.αun2 − SL

2ρS

)
aS

e = 0 . (8.530)

With (8.356), the following notation may be introduced as

δ

δt
= un

(
n · grad +

1
un

δ

δt

)
= un

d

dr
, (8.531)

where the total derivative in the direction of the normal n to the singular surfaces

σ(t) is represented by
d

dr
. Then, the substitution by means of

d

dr
shows that

the ordinary differential equations (8.526) and (8.530) take the forms

daS
n

dr
= (Ω − M)aS

n , (8.532)

daS
e

dr
= (Ω − N)aS

e , (8.533)

where definition (8.353)1 has been used, and the coefficients M and N are
defined by

M =
SL

2[(nL)2ρS + (nS)2ρL]un1
, (8.534)
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N =
SL

2ρSun2
. (8.535)

Furthermore, Ω can be rewritten in terms of a certain position; namely

Ω(r) =
Ω0 − K0r

1 − 2Ω0r + K0r2
, (8.536)

where r is the distance of the wave fronts from their initial position. Hence the
integration of (8.532) and (8.533) together with (8.536) results in:

aS
n(r) = aS

n(0)(1 − 2Ω0r + K0r
2)−1/2 exp(−Mr) , (8.537)

aS
e (r) = aS

e (0)(1 − 2Ω0r + K0r
2)−1/2 exp(−Nr) , (8.538)

where aS
n(0) and aS

e (0) are the initial values of the absolute amplitudes of waves.
It is evident from (8.524) through (8.538) that growth and decay of the waves

depend on the initial geometrical shapes of the waves fronts and the diffusion
effects between the phases. The diffusion effects only produces the attenuation
of the amplitudes of the waves but does not influence the propagation speeds.

In particular, the evolution of the amplitudes of wave fronts may reduce to
the classical result in the case of non-dissipation where the amplitudes rely
completely on the initial geometrical property of the wave fronts.

If the initial mean curvature Ω0 is positive and the initial total curvature K0 is
negative, for instance in the case of the initial pseudosphere for the wave fronts,
it follows from (8.537) and (8.538) that the amplitudes will reach an infinite
value within a finite propagation distance. In other words, the discontinuity
waves in the porous media may constitute a higher weak discontinuity. In the
case of the negative initial mean curvature and the positive initial total curvature,
the amplitudes of wave fronts will decay to vanish. It is of interest to consider

the plane (Ω0 = 0, K0 = 0), the cylindrical
(
Ω0 = −0.5

r0
, K0 = 0

)
and

the spherical
(
Ω0 = − 1

r0
, K0 = − 1

r2
0

)
waves for which the amplitudes are

reduced into the following forms, respectively:

for plane waves:

aS
n(r) = aS

n(0) exp(−Mr) , (8.539)

aS
e (r) = aS

e (0) exp(−Nr) ; (8.540)
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for cylindrical waves:

aS
n(r) = aS

n(0)
(
1 +

1
r0

r
)−1/2

exp(−Mr) , (8.541)

aS
e (r) = aS

e (0)
(
1 +

1
r0

r
)−1/2

exp(−Nr) ; (8.542)

for spherical waves:

aS
n(r) = aS

n(0)
(
1 +

2
r0

r +
1
r2
0

r2
)−1/2

exp(−Mr) , (8.543)

aS
e (r) = aS

e (0)
(
1 +

2
r0

r +
1
r2
0

r2
)−1/2

exp(−Nr) , (8.544)

where r2
0 is the initial semi-diameter of the wave fronts.

In conclusion, it is revealed that a coupled longitudinal wave and a pure
transverse wave are realizable in two-phase incompressible porous media. The
longitudinal waves propagate either in the solid skeleton or in the liquid with
the same propagation speed. In this coupled wave mode a certain restriction
between the amplitudes is required by the saturation condition together with
the incompressibility of porous media. The jump of the poreliquid pressure
may be determined by the amplitude of the coupled waves. The transverse
waves propagate only in the solid phase. The two propagation velocities are
determined by the material constants and the volume fractions but do not depend
on the diffusion coefficient SL. In the case of homogenous weak discontinuities,
the differential equation governing the amplitudes of the waves of two types
are then derived and the explicit solutions for the two cases are obtained. These
results indicate that the amplitudes of wave fronts may either decay to vanish
or grow to infinity in finite time, which depends on the geometric property of
the initial shapes of the wave fronts and the diffusion effect between the two
phases.



Chapter 9

POROPLASTICITY FOR
METALLIC POROUS SOLIDS

A general poroplasticity was already developed in Section 6.6 including
porous solids consisting of frictional or metallic material. Of special interest are
metallic porous solids because their plastic material behavior can be relatively
easily described by a von-Mises-like yield condition and an associated flow
rule (Green, 1972). The corresponding theory represents an extension of the
plasticity theory by von Mises (1913), in the sense that in the extended theory
not only the deviatoric stress but also the hydrostatic stress state is bounded.
Moreover, the associated flow rule allows the descriptions of volume changes, a
special feature of porous solids owing to the considerable influence of the pores
on the stress and deformations states. The influence of the volume change of the
real material in the elastic-plastic region can be completely neglected, because
the plastic volume changes of the real material is zero and the elastic volume
strains are very small within the frameworks of the geometrically linear theory
in comparison with the volume changes of the pores. Therefore, we will treat an
incompressible porous solid, filled with an incompressible liquid. This model
covers a wide range of applications in the plasticity theory of metallic porous
solids.

Fortunately, the yield condition and the associated flow rule are contained
in the general theory (Section 6.6). We only have to neglect several material
dependent parameters in the yield condition (6.93) and have to change the
meaning of the parameter in the flow rule.

With these simplified basic constitutive equations we will developed a plas-
ticity theory for ideal-plastic behavior and for hardening material with work and
kinematic hardening, at first. We will manipulate the basic constitutive equa-
tions and will show that the “elastic-plastic-tangent” is symmetric, invertible
and positive-definite.

205
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These properties are very useful for the construction of general theorems in
Section 9.2. There are many general theorems possible as it is known from the
von Mises theory. Due to space limitation we will consider explicitly only two
of them, namely the unique theorem and the minimum-maximum principle for
ideal-plastic behavior.

9.1 Stress-Strain Relations
It has already been mentioned that the basic constitutive equations for the

description of plastic and elastic plastic behavior namely yield condition and
flow rule, are contained in the corresponding relations (6.93) and (6.109). In
order be able to derive the yield condition and flow rule for metallic materials
we have to set

β = 0, γ = 0, ε = 0 , (9.1)

and

µ = α2 . (9.2)

Then, the yield condition (6.93) reads as:

F =
1√
2

√
S̄D · S̄D + α2(S̄ · I)2 − κ = 0 (9.3)

and the flow rule as

DESP = Dλ
∂F

∂S̄
. (9.4)

We will treat the rigid ideal-plastic behavior of the solid material, at first.

a) Rigid Ideal-Plastic Behavior

The beginning of plastic deformations of a liquid-saturated porous body
is bound to the yield condition. Bearing in mind that for rigid-ideal-plastic
behavior κ and α2 are constants and S̄S

E = SS
E the flow rule (9.4) yields with

(9.3)

DESP = Dλ
1
2κ

[SSD
E + α2(SS

E · I)I] . (9.5)

The criterion for the persistence of plastic deformations reads as

F = 0 and
∂F

∂SS
E

· DSS
E = 0 , (9.6)

whereas, based on F = 0,
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∂F

∂SS
E

· DSS
E < 0 , (9.7)

yields the condition for unloading. The scalar factor Dλ in (9.5) can be ex-
pressed by the plastic strains. For this purpose we proceed from (9.5) and
form

DED
SP · DED

SP = (Dλ)2
1

4κ2
SSD

E · SSD
E (9.8)

and (
1
3α

DESP · I
)2

= (Dλ)2
1

4κ2
α2(SS

E · I)2 (9.9)

The summation of (9.8) and (9.9) leads to

DED
SP · DED

SP +
(

1
3α

DESP · I
)2

= (Dλ)2
1

4κ2
[SD

E · SD
E + α2(SS

E · I)2]
(9.10)

Considering (9.5) Eq. (9.10) can be simplified to

DED
SP · DED

SP +
(

1
3α

DESP · I
)2

=
1
2
(Dλ)2 , (9.11)

which yields

Dλ =
√

2

√
DED

SP · DED
SP +

(
1
3α

DESP · I
)2

(9.12)

or if we bring the time t into consideration

λ̇ =
√

2

√
ĖD

SP · ĖD
SP +

(
1
3α

ĖSP · I
)2

, (9.13)

where the superscript dot notes the material time derivative, whereby we have
neglected the convective terms. This form (9.13) is important for the develop-
ment of minimum-maximum principles in Section 9.2.

b) Elastic-Plastic Behavior with Hardening

Now, we will treat an elastic-plastic model with work and kinematic hard-
ening. The governing constitutive equations for this model are contained in
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(6.93),(6.94), (9.5) and (9.12). In consideration of the restrictions introduced
at the beginning of this section we have after (6.123) and (6.124)

DES = (
4

PS)−1DSS
E

(9.14)

with

(
4

PS)−1 = (
4

KS)−1 +
1
h

(
∂F

∂S̄
⊗ ∂F

∂S̄

)
(9.15)

as well as after (6.133) and (6.134)

DSS
E =

4

PS DES
(9.16)

with

4

PS=
4

KS −
4

KS ∂F

∂S̄
⊗

4

KS ∂F

∂S̄

h+
4

KS ·
(

∂F

∂S̄
⊗ ∂F

∂S̄

) . (9.17)

It can be easily proven that the fourth-order tensor (
4

PS)−1 in (9.15) is the

inverse tensor to
4

PS . The tensor product of
4

PS and (
4

PS)−1 yields with (9.15)
and (9.17):

4

PS (
4

PS)−1 =
4

KS (KS)−1 +
1
h

4

KS
(

∂F

∂S̄
⊗ ∂F

∂S̄

)
−

−
4

KS ∂F

∂S̄
⊗

4

KS ∂F

∂S̄

h+
4

KS ·
(

∂F

∂S̄
⊗ ∂F

∂S̄

)(
4

KS)−1 −

− 1
h

4

KS ∂F

∂S̄
⊗

4

KS ∂F

∂S̄

h+
4

KS ·
(

∂F

∂S̄
⊗ ∂F

∂S̄

)(∂F

∂S̄
⊗ ∂F

∂S̄

)
.

(9.18)

Considering the symmetry of the elastic material tensor KS and the tensor
with the derivatives of the yield condition the above relation (9.18) can be
reformulated:
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4

PS (
4

PS)−1 =
4

KS (
4

KS)−1 +
1
h

(
∂F

∂S̄
⊗

4

KS ∂F

∂S̄

)
−

− 1

h +
∂F

∂S̄
·
( 4

KS ∂F

∂S̄

)(∂F

∂S̄
⊗

4

KS ∂F

∂S̄

)
−

− 1
h

4

KS ∂F

∂S̄
⊗

4

KS ∂F

∂S̄
∂F

∂S̄
·
( 4

KS ∂F

∂S̄

)
+ h

(
∂F

∂S̄
⊗

4

KS ∂F

∂S̄

)
.

(9.19)

The last three terms in (9.19) can be summed up. The result is that
4

PS (
4

PS)−1 =
4

KS (
4

KS)−1 =
4
I (9.20)

and that (
4

PS)−1 is indeed the fourth-order reverse tensor of
4

PS .

Another import feature of
4

PS , which is useful for the development of general

theorems, will now be proved, namely the positive definiteness of
4

PS . The

proof of the definiteness of
4

PS is based on the requirement

ω =
4

PS ·(A ⊗ A) > 0, (9.21)

whereby A denotes an arbitrary tensor of second order. With the abriviation

L =
∂F

∂S̄
·
( 4

KS ∂F

∂S̄

)
+ h (9.22)

we can write

ω =
4

KS · (A ⊗ A) − 1
L

( 4

KS ∂F

∂S̄
⊗

4

KS ∂F

∂S̄

)
· (A ⊗ A) . (9.23)

The quantity L is always positive, if

∂F

∂S̄
�= 0 (9.24)

and if Poisson’s ratio νS of the solid fulfils the condition

νS ≤ 1
2

. (9.25)
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From (9.23) we obtain

Lω = L
4

KS · (A ⊗ A) −
( 4

KS ∂F

∂S̄
⊗

4

KS ∂F

∂S̄

)
· (A ⊗ A) (9.26)

and with (9.22)

Lω = h
4

KS · (A ⊗ A) −
( 4

KS ∂F

∂S̄
⊗

4

KS ∂F

∂S̄

)
· (A ⊗ A) +

+
[
∂F

∂S̄
·
( 4

KS ∂F

∂S̄

)]
[

4

KS ·(A ⊗ A)] .

(9.27)

We reformulate (9.27)

Lω = h A·
4

KS A −
[( 4

KS ∂F

∂S̄

)
· A

][( 4

KS ∂F

∂S̄

)
· A

]
+

+
[
∂F

∂S̄
·
( 4

KS ∂F

∂S̄

)]
[(

4

KS A) · A)] .

(9.28)

Because of the special properties of the parameters h and the elastic material
tensor, the first term in (9.28) is always positive. The second and third terms
of (9.28) can be reformulated, if one represents the elastic material tensor with
the Lamé constant

λS =
2GSνS

1 − 2νS
(9.29)

in dependence of GS and νS

ξ = 4GS2

{[(
4
I +

νS

1 − 2νS

4

Ī
)

∂F

∂S̄
· ∂F

∂S̄

](
4
I +

νS

1 − 2νS

4

Ī
)
A · A

}
−

−
[(

4
I +

νS

1 − 2νS

4

Ī
)(

∂F

∂S̄
· A

)][(
4
I +

νS

1 − 2νS

4

Ī
)(

∂F

∂S̄
· A

)] (9.30)

or

ξ = 4GS2
ζ , (9.31)

where

ζ =

{[(
4
I +

νS

1 − 2νS

4

Ī
)

∂F

∂S̄
· ∂F

∂S̄

](
4
I +

νS

1 − 2νS

4

Ī
)
A · A

}
−

−
[(

4
I +

νS

1 − 2νS

4

Ī
)(

∂F

∂S̄
· A

)][(
4
I +

νS

1 − 2νS

4

Ī
)(

∂F

∂S̄
· A

)]
.

(9.32)
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If we apply calculation rules for the four-order identity tensors
4
I and

4

Ī = (I⊗I)
by de Boer (1982) we obtain:

ζ =
(

∂F

∂S̄
· ∂F

∂S̄

)
(A · A) +

+
νS

1 − 2νS

[(
∂F

∂S̄
· ∂F

∂S̄

)
(A · I)(A · I) +

+
(

∂F

∂S̄
· I
)(

∂F

∂S̄
· I
)

(A) · A)
]

+

+
(

νS

1 − 2νS

)2(∂F

∂S̄
· I
)(

∂F

∂S̄
· I
)

(A · I) −

−
{(

∂F

∂S̄
· A

)(
∂F

∂S̄
· A

)
+

+
(

νS

1 − 2νS

)[(
∂F

∂S̄
· A

)(
∂F

∂S̄
· I
)

(A · I) +

+
(

∂F

∂S̄
· I
)

(A · I)
(

∂F

∂S̄
· A

)]
+

+
(

νS

1 − 2νS

)2(∂F

∂S̄
· I
)

(A · I)
(

∂F

∂S̄
· I
)

(A · I)
}

.

(9.33)

This relation (9.33) can be simplified:

ζ =
(

∂F

∂S̄
· ∂F

∂S̄

)
(A · A) +

νS

1 − 2νS

[
(A · I)∂F

∂S̄
−
(

∂F

∂S̄
· I
)
A
]
×

×
[
(A · I)∂F

∂S̄
−
(

∂F

∂S̄
· I
)
A
]
−
(

∂F

∂S̄
· A

)(
∂F

∂S̄
· A

)
.

(9.34)

Since the second term in (9.34) is a quadratic expression, it is always larger
or equal to zero, if Ineq. (9.21) is assumed. In consideration of Schwartz’s
inequality for tensors of second order

(
∂F

∂S̄
· A

)(
∂F

∂S̄
· A

)
≤
(

∂F

∂S̄
· ∂F

∂S̄

)
(A · A) , (9.35)

it follows that the scalar quantity ζ as well as Lω is larger or equal to zero, i.
e.:

νS ≤ 1
2
, A �= O :

4

PS ·(A ⊗ A) > 0 . (9.36)
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In consideration of the stated assumptions in Eq. (9.21) the elasto-plastic ma-

terial tensor is positive definit and thus, also the inverse tensor (
4

PS)−1.

9.2 General Theorems for Saturated Porous Solids in the
Rigid Ideal-Plastic Range

It is well-known that the constitutive equations in the classical linear elas-
ticity fulfils important principles, e. g. the uniqueness theorem of solutions
and minimum-maximum principles. In classical plasticity of one-component
material on the basis of von Mises fundamental works one treated general prin-
ciples relatively late. However, today there also exists a well-rounded theory
with all of the principles and theorems known from elasticity and even extended
principles characteristic for plastic behavior, e. g. limit design theorems.

In the Theory of Porous Media there are only a few contributions which are
concerned with the fulfillment of general principles by the constitutive equations
of the porous solid. The main reason for this deficit is without doubt the complex
structure of the constitutive theory in the plastic range. One has to differentiate
at least between two distinct different behaviors of the material, used for porous
solid, namely frictional (granular and brittle) and metallic materials. Owing to
the complicated constitutive equations for frictional materials in the plastic
range (see Section 6.6) there have not been any substantial contribution to the
fulfillment of general theorems. Fortunately it could be shown that the plastic
behavior of metallic porous bodies can sufficiently be describe by an extended
form of von Mises basic constitutive equations (see this Chapter), which are
relatively simple and which allow the proof of general theorems. This will be
worked out for a special material behavior in this and next section, namely for
saturated porous solids in the rigid ideal-plastic state.

a) Preliminaries

The uniqueness theorem and minimum-maximum principles for solutions of
boundary value problems considered in this section concerns a rigid ideal-plastic
material with its non-capillary intercommunicating void spaces filled with an
incompressible liquid. It is assumed that the porous material is isotropic and the
pores statistically distributed over the whole space occupied by the medium in
question with an isotropic distribution function. We assume the compressibility
of the peculiar constituents to be much smaller then the compressibility of the
medium as a whole.

The final result is the proof of the uniqueness theorem and minimum-maximum
principles.

For the clearness of our investigations we summarize the basic equations
needed for the proof.
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In the following paragraphs the investigations are restricted to a binary non-
capillary model, namely an incompressible porous solid filled with an incom-
pressible liquid, within the geometrically linear theory. From the equations
of motion (4.15) and the constraint (4.17)4, neglecting the inertia forces the
dynamical equations for the solid and fluid phases are obtained as:

divSS + ρSb − p̂L = 0 ,

grad pL + ρLb + p̂L = 0 ,
(9.37)

where
pL = − nLp (9.38)

denotes the partial hydrostatic stress state in the liquid, see de Boer (1996) and
where for convenience Cauchy’s stress tensor is replaced with the symmetric
Piola-Kirchhoff tensor..

With the dynamical equations (9.37) we are now able to develop the principle
of virtual velocities and of virtual stresses. These principles are useful for the
development of minimum and maximum principles (see e.g., de Boer, 1974,
de Boer and Ehlers, 1980, de Boer and Kowalski, 1985) and for the proof
of general theorems, as, e.g., the uniqueness theorem (see, e.g. de Boer and
Kowalski 1986).

In order to derive the principle of virtual velocities it is necessary to introduce
the virtual velocities v̄S (for the partial solid constituent) and v̄L (for the partial
fluid constituent). These virtual velocities must be kinematically admissible
which is defined as follows:

A virtual velocity state is kinematically admissible if it is smooth and satisfies
internal and external kinematic constraints.

Note in passing that by internal kinematic constraints such constraints as rigid-
ity, incompressibility or saturation are denoted and by external kinematic con-
straints the geometric boundary conditions on ∂Bv, where the velocities are
prescribed.

Multiplying the dynamic equations (9.37) with the virtual velocities v̄S and
v̄L and integrating over the whole control space B, which is shaped by the
skeleton, we obtain for the mixture body∫

B
[ (divSS + ρSb − p̂L) · v̄S +

+ (grad pL + ρLb + p̂L) · v̄L]dv = 0 .

(9.39)

Considering the calculating rules

divSS · v̄S = div(SSv̄S) − SS · ¯̇ESP ,

grad pL · v̄L = div(pLv̄L) − pL(D̄L · I) ,
(9.40)



214 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

where the superscript dot ¯̇ESP is the material time derivative with respect to
the partial solid body. Bearing in mind that the virtual velocities fulfill the
geometrical boundary conditions, we obtain with the help of Gauss’ theorem∫

∂Bt

( sS · v̄S + tL · v̄L)da +
∫
B

(ρLv̄L + ρSv̄S) · b dv

=
∫
B

[SS · ¯̇ESP + pL(D̄L · I) − p̂L · v̄LS ]dv ,

(9.41)

with

v̄LS = v̄L − v̄S . (9.42)

The surface integral in (9.41) covers the area ∂Bt with the normal unit vector
n, where the surface forces

sS = SSn , tL = pLn (9.43)

are prescribed. The tensors D̄L and ¯̇ESP stand for the symmetrical parts of the
velocity gradients of the virtual velocities v̄L and v̄S .

According to the derivation of the principle of virtual velocities (9.41) the
principle of virtual stresses (forces) can be derived. Hereby we are relying on a

virtual state of stresses and forces ŜS , p̂L, b̂ and ˆ̂p
L

, which must be dynamically
admissible:

A virtual stress state is dynamically admissible if it is smooth and satisfies the
internal and external dynamic constraints (dynamic equations, yield functions)
and the dynamic boundary conditions on ∂Bt.

We commence from the dynamical equations of motion (9.37) which must
be fulfilled by the virtual stress states

div ŜS + ρSb̂ − ˆ̂p
L

= 0 ,

grad p̂L + ρLb̂ + ˆ̂p
L

= 0 .

(9.44)

We multiply the equations of motion for the virtual stresses (9.44) with the real
partial velocities vS and vL and integrate over the whole control space. Ap-
plying the calculating rules (9.40) and manipulating the virtual work similarly
to the aforementioned method we arrive at∫

∂Bv

(ŝS · vS + t̂L · vL)da +
∫
B

(ρLvL + ρSvS) · b̂ dv

=
∫
B

[ŜS · ĖSP + p̂L(DL · I) − ˆ̂p
L · vLS ]dv ,

(9.45)
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whereby ∂Bv is the part of the boundary, where the velocities are prescribed
and where DL and ĖSP are the symmetric parts of the velocity gradients of vα.
The velocity difference vLS is determined by (9.42) with the real velocities vα.

Next, we reformulate the principles of virtual work (9.41) and (9.45) with the
help of Fig. 9.2.1. From a stress-free placement proceed by, applying external
forces to the actual placement. By superposition with a virtual velocity state
we arrive at the actual plus virtual state which is marked by an asterix. Now, we
substitute the virtual velocities v̄S and v̄L by the differences of the velocities
∗
vS −vS and v∗

L −vL, which is immediately recognized from Fig. 9.2.1. With
this substitution we obtain a convenient form of the principle of virtual work
(9.41) suitable for the derivation of minimum and maximum principles.∫

∂Bt

[sS · ( ∗vS −vS) + tL · ( ∗vL −vL]da +

+
∫
B

[ρL(
∗
vL −vL) + ρS(

∗
vS −vS)] · b dv

=
∫
B

[SS · (Ė∗
SP − ĖSP ) + pL(

∗
DL −DL) · I −

−p̂L · ( ∗vLS −vLS)]dv .

(9.46)

In a similar way, Eq. (9.45) will be reformulated. We substitute the virtual
boundary forces and the stresses by the differences of the real and virtual plus
actual states. This can be seen in Fig. 9.2.1. By application of a virtual state
of forces we obtain the virtual state.

Next, by applying the real force and velocity states, we arrive at the virtual
plus actual state which we will mark by a superscript zero. The splitting of the
virtual state in a virtual state plus actual state minus actual state in Eq. (9.45)
yields a slightly changed form of the principle of virtual forces (see Fig. 9.2.1):∫

∂Bv

[(
◦
sS − sS) · vS + (

◦
tL − tL) · vL]da

=
∫
B

[(
◦
SS − SS) · ĖSP + (

◦
pL − pL)(DL · I) −

− (
◦
p̂L − p̂L) · vLS ]dv .

(9.47)

In obtaining (9.47) it is assumed that the body force densities are not changed
in the two stress states.

Both versions of the principle of virtual work (9.46) and (9.47) will serve to
develop minimum and maximum principles and to prove the uniqueness of the
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reference placement virtual placement
[virtual state =̂ (-)]

actual placement + virtual state =̂ (∗)
[virtual state + actual placement =̂ ◦]

v

v∗
v̄

Fig. 9.2.1: The deformation states

solutions of boundary and initial value problems for a certain class of material
behavior.

The structure of the constitutive equations is as follows: The constitutive
relations for the liquid or gas constituents are governed by weighted (by the
volume fraction) porefluid pressures whereas the constitutive equation for the
stress tensor of the porous solid constituent consists of two parts, namely of
the weighted (by the volume fraction of the solid phase) porefluid pressure
and of “effective stresses” determined by the motion of the partial solid phase.
The porefluid pressure is indeterminable by constitutive relations if the fluid
is incompressible. In the case of a compressible fluid the porefluid pressure is
related to the real density if the fluid behaves elastically (see de Boer, 1996).
In the sequel the main results of the constitutive theory will be reviewed.

SS = −nSpI + SS
E ,

TL = −nLpI ,

p̂L = p gradnL + p̂L
E , p̂L

E = −SLvLS .

(9.48)

The interaction force p̂L consists also of two parts, the weighted porefluid
pressure and an “effective”interaction force which is, close to the mixture equi-
librium state, proportional to the relative velocity of both phases, see (9.48)4,
where SL is a positive response constant.

With the constitutive relations (9.48) the principles of virtual work will be
revisited. We reformulate the principle of virtual work (virtual velocities) (9.41)
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with the saturation condition (2.2). After differentiating this condition and
applying some manipulations (see de Boer, 2000 a) we attain a virtual velocity
state at

D̄L · I = − nS

nL
˙̄ESP · I − 1

nL
gradnL · v̄LS

(9.49)

or by splitting the virtual velocities

(
∗
DL −DL) · I = − nS

nL
(Ė∗

SP − ĖSP ) · I −

− 1
nL

gradnL · ( ∗vLS −vLS) .

(9.50)

Eq. (9.49) clearly shows that DL · I or in this case D̄L · I depends on some
other kinematic quantities.

Now we substitute in (9.41) the virtual volume change of the partial liquid.
This procedure considering (9.48)2 leads to∫

B
{(SS + nSpI) · (Ė∗

SP − ĖSP ) +

+ p gradnL · ( ∗vLS −vLS) − p̂L · ( ∗vLS −vLS)}dv

=
∫

∂Bt

[sS · ( ∗vS −vS) + tL · ( ∗vL −vL)]da +

+
∫
B

[ρS(
∗
vS −vS) + ρL(

∗
vL −vL)] · b dv .

(9.51)

Considering the constitutive equations (9.48) the principle of virtual work (9.51)
yields ∫

B
[SS

E · (Ė∗
SP − ĖSP ) − p̂L

E · ( ∗vLS −vLS)]dv

=
∫

∂Bt

[sS · ( ∗vS −vS) + tL · ( ∗vL −vL)da +

+
∫
B
[ρS(

∗
vS −vS) + ρL(

∗
vL −vL)] · b dv .

(9.52)

Relations (9.51) and (9.52) clearly show that the structure of the stress tensor
of the solid skeleton contains the effective stress principle of Fillunger and von
Terzaghi. It should be emphasized that in order to prove general theorems
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with the principle of virtual work only such a structure is possible. This is
completely in accordance with the results of thermodynamic investigations (see
de Boer, 2000 a) and with experimental observations (see Lade and de Boer,
1997). Moreover, the porefluid pressure is related to the change of the real
density of the fluid which is proportional to the volume change of the real fluid
material. Thus, these investigations confirm the results, recently derived in
several contributions (see de Boer, 2000 a).

b) The Uniqueness Theorem for Solutions of Boundary Value Problems

In the sequel the uniqueness of solutions of boundary-value problems will be
investigated. We state that the constitutive equations presented at the beginning
of Section 9.1 are unique except possibly in the common non-deformed regions
of the body. The proof is performed, being based on the virtual work equation
and Schwarz’ inequality.

We assume that a boundary value problem has two possible stress and velocity
states under the same load, namely

1
SS
E ,

1
p̂L

E ,
1
vS ,

1
vL and

2
SS
E ,

2
p̂L

E ,
2
vS ,

2
vL . (9.53)

From the virtual work equation being expressed for the two possible stress
and velocity states and after subtracting one from the other, we obtain, see the
derivation of Eq. (9.52):∫

B
[(

1
SS
E − 2

SS
E ) · (

1

ĖSP −
2

ĖSP ) −

− (
1
p̂L

E −
2
p̂L

E) · ( 1
vLS − 2

vLS)]dv = 0 .

(9.54)

If the solutions of the boundary-value problem are not unique, the integrand
in (9.54) must vanish. Otherwise, if this is not the case, the uniqueness of the
solutions of boundary value problems in the rigid ideal plastic state is proved.

With the constitutive equation for p̂L
E (9.48)4 it is immediately recognized

that

−(
1
p̂L

E −
2
p̂L

E) · ( 1
vLS − 2

vLS) ≥ 0 . (9.55)

The equality sign is only valid if
1
vLS=

2
vLS , i.e. if the velocity states are unique.

We now show that the first expression in (9.54) is also non-negative, i.e.

I = (
1
SS
E − 2

SS
E ) · (

1

ĖSP −
2

ĖSP ) ≥ 0 . (9.56)
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In order to prove (9.56), it is convenient to use the inverse form of the constitutive
equation (9.5). After some manipulations

SS
E =

2κ

λ̇
[ĖD

SP + (ĖSP · I/9α2)I] (9.57)

is obtained. With the constitutive relation (9.57) the expression I in (9.56) takes

the form whereby we have put the factor 2κ into λ̇ and
1

λ̇ and
2

λ̇ respectively:

I =
{ 1

1

λ̇

[ 1

ĖD
SP +(

1

ĖSP ·I/9α2)I
]
−

− 1
2

λ̇

[ 2

ĖD
SP +

( 2

ĖSP ·I/9α2
)
I
]}

· (
1

ĖSP −
2

ĖSP )
(9.58)

or

I =
1
1

λ̇

[ 1

ĖD
SP ·

1

ĖD
SP +(

1

ĖSP ·I/3α)2] +

+
1
2

λ̇

[
2

ĖD
SP ·

2

ĖD
SP +(

2

ĖSP ·I/3α)2
]
−

−
[ 1

ĖD
SP ·

2

ĖD
SP +(

1

ĖSP ·I/9α2)(
2

ĖSP ·I)
]( 1

1

λ̇

+
1
2

λ̇

)
.

(9.59)

The last term in (9.59) can be written as

A =
[ 1

ĖD
SP ·

2

ĖD
SP +(

1

ĖSP ·I/9α2)(
2

ĖSP ·I)
]( 1

1

λ̇

+
1
2

λ̇

)
=

=
[ 1

ĖD
SP +

1√
3
(

1

ĖSP ·I/3α)I
]
·
[ 2

ĖD
SP +

1√
3
(

2

ĖSP ·I/3α)I
]
×

×
(

1
1

λ̇

+
1
2

λ̇

)
.

(9.60)

Using Schwarz’ inequality and considering (9.13) we can state that

A <
1
2
(
1

λ̇ +
2

λ̇) . (9.61)

Moreover, the expression I (9.59) turns out in consideration of (9.60) and (9.13)
to be
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I =
1
2
(
1

λ̇ +
2

λ̇) − A (9.62)

and with the result (9.61)

I ≥ 0 . (9.63)

Thus the statement (9.56) is proven, i.e. the integral (9.54) vanishes only if the
uniqueness of the boundary-value problem is fulfilled.

We now assume that the stress state
2
SS
E does not plastify the solid matrix,

however, the stress state
1
SS
E does. Then we have

1

ĖSP �= O ,
2

ĖSP = O , (9.64)

and

1
SSD

E · 1
SSD

E + α2(
1
SS
E ·I)2 = 2κ2 ,

2
SSD

E · 2
SSD

E + α2(
2
SS
E ·I)2 ≤ 2κ2 .

(9.65)

In the sequel it will be shown that such two states of stress and velocity for
given boundary conditions are impossible. For this purpose we prove that the
integrand in (9.54) is different from zero, namely always positive

(
1
SS
E − 2

SS
E)·

1

ĖSP ≥ 0 , (9.66)

if
1
SS
E �= 2

SS
E .

With the flow rule for ĖSP , namely (9.5) we have

1
2κ

(
1
SS
E − 2

SS
E)·

1

λ̇ [
1
SS
E +α2(

1
SS
E · I)I]

=

1

λ̇

2κ
{2κ2 − [

1
SSD

E · 2
SSD

E +α2(
1
SS
E · I)( 2

SS
E · I)]} ,

(9.67)

where the yield condition (9.3) has been considered in (9.67) neglecting all
hardening effects.

Again, using Schwarz’ inequality and considering the conditions (9.65)1,2

it can be shown that the last term in (9.67) is always less than 2κ2:

1
SS
E · 2

SSD

E + α2(
1
SSD

E ·I)( 2
SS
E ·I) < 2κ2 . (9.68)
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The equality sign in (9.66) is only given if

1
SS
E =

2
SS
E . (9.69)

For two different stress states
1
SS
E and

2
SS
E such as

1
SS
E · 1

SS
E + α2(

1
SS
E ·I)2 < 2κ2 ,

2
SSD

E · 2
SSD

E + α2(
2
SS
E ·I)2 < 2κ2

(9.70)

we have
1

ĖSP = O and
2

ĖSP = O. The Eq. (9.54) is satisfied by
1
vLS=

2
vLS

even if
1
SS
E �= 2

SS
E . Thus, in rigid regions the uniqueness of the solutions of

boundary-value problems can be violated.
The uniqueness theorem for solutions of boundary-value problems for a rigid

ideal-plastic porous solid filled with a fluid can thus be stated as follows:
If two or more complete solutions of a boundary-value problem can be deter-
mined, then the stress fields of the solutions are identical except possibly in the
common non-deformed regions.

c) Minimum and Maximum Principles for Rigid Ideal-Plastic Behavior

Exact solutions of boundary and initial value problems are very difficult
to obtain in the porous media theory. It is therefore desirable to succeed in
developing minimum and maximum principles, which permit the boundary
or initial value problems to be solved approximately. In the sequel this will
be performed for rigid ideal-plastic behavior of the solid phase and elastic
compressible and incompressible behavior of the fluid phase in a binary porous
media model.

The minimum principle for velocities

To begin with, we develop the minimum principle for velocities. As usual
in the plasticity theory we define a kinematically admissible smooth velocity
field:
A smooth velocity field is denoted as kinematically admissible, if it fulfills the
internal and external constraints.

We consider the term:

∗
H=

∫
B

∗
SS

E · Ė∗
SP dv − 1

2

∫
B

∗
p̂L

E ·
∗
vLS dv −

−
∫

∂Bt

(sS · ∗
vS +tL · ∗

vL)da −
∫
B

(ρS ∗
vS +ρL ∗

vL) · b dv ,

(9.71)
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where
∗
SS

E fulfils (9.3) in connection with (9.5) and
∗
p̂L

E (9.48)4 and state that

Out of all kinematically admissible velocity fields the really existent field makes
the term (9.71) a minimum.

In order to prove the above theorem we consider the term
∗
H −H , whereby H

represents (9.71) which includes the real velocities. If the theorem is correct,
∗
H −H must always be positive, i.e.

∗
H −H =

∫
B

(
∗
SS

E · Ė∗
SP −SS

E · ĖSP )dv −

− 1
2

∫
B

(
∗
p̂L

E ·
∗
vLS −p̂L

E · vLS) dv −

−
∫

∂Bt

[sS · ( ∗vS −vS) + tL · ( ∗vL −vL)da −

−
∫
B

[ρS(
∗
vS −vS) + ρL(

∗
vL −vL) · b dv ≥ 0 .

(9.72)

We replace in (9.72) the integrals over the surface and body forces by the
principle of virtual velocities (9.52) and obtain

∗
H −H =

∫
B
{ ∗
SS

E · Ė∗
SP −SS

E · ĖSP − SS
E · (Ė∗

SP −ĖSP ) −

− [
1
2

∗
p̂L

E ·
∗
vLS −1

2
p̂L

E · vLS − p̂L
E · ( ∗vLS −vLS)]}dv ≥ 0 .

(9.73)

In order to prove the validity of inequality (9.73) it is necessary to calculate
the following stress powers first, considering the constitutive equations (9.3) –
(9.5) as well as (9.48)4. It is

SS
E · ĖSP =

√
2κ
√

ĖD
SP · ĖD

SP + (ĖSP · I/3α)2 ,

∗
SS

E · Ė∗
SP =

√
2κ

√
ĖD∗

SP · ĖD∗
SP +

(
Ė∗

SP ·I/3α
)2

,

(9.74)

p̂L
E · vLS = − SLvLS · vLS ,

∗
p̂L

E ·
∗
vLS = − SL

∗
vLS · ∗

vLS .

(9.75)

Moreover, it can easily be shown with Schwartz’ inequality (see de Boer and
Kowalski, 1985) that
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SS
E · (Ė∗

SP −ĖSP ) ≤ √
2κ

[√
ĖD∗

SP · ĖD∗
SP + (Ė∗

SP ·I/3α)2 −

−
√

ĖD
SP · ĖD

SP + (ĖSP · I/3α)2
] (9.76)

and

p̂L
E · ( ∗vLS −vLS) >

1
2
SL

∗
vLS · ∗

vLS −1
2
SLvLS · vLS . (9.77)

Thus, with (9.76) and (9.77) it has been proven that
∗
H −H in (9.73) is always

positive, provided that ĖSP is different from zero.

If in a part of the continuum ĖSP is equal to zero the relation for
∗
H −H in

(9.73) reduces to

∗
H −H =

∫
B
{ ∗
SS

E · Ė∗
SP −SS

E · Ė∗
SP −[

1
2

∗
p̂L

E ·
∗
vLS −

− 1
2
p̂L

E · vLS − p̂L
E · ( ∗vLS −vLS)]}dv .

(9.78)

Now, the second term in (9.78) will be investigated. Applying (9.5) to Ė∗
SP we

obtain

SS
E · Ė∗

SP =
∗
λ̇

1
2κ

[SSD
E +

1
3
(SS

E · I)I] · [ ∗S SD
E + α2(

∗
SS

E · I)I] (9.79)

or with Schwarz’ inequality and (9.3) as well as (9.13)

SS
E · Ė∗

SP ≤
√

2κ
√

ĖD∗
SP · ĖD∗

SP + (Ė∗
SP ·I/3α)2 . (9.80)

Considering (9.77) and (9.80) it is easily recognized that always

∗
H −H ≥ 0 . (9.81)

Thus, we have proved the statement that the real velocity field makes the term
∗
H in (9.71) a minimum.

The expression for H can be slightly reformulated if we consider the rate of
mechanical work of the real state∫

B
(SS

E · ĖSP − p̂L
E · vLS)dv −

∫
∂Bt

(sS · vS + tL · vL)da−

−
∫

∂Bv

(sS · vS + tL · vL)da −
∫
B

(ρSvS + ρLvL) · b dv = 0 .

(9.82)
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If we insert Eq. (9.82) into H (9.71) we can express H in the following way:

H =
1
2

∫
B

p̂L
E · vLS dv +

∫
∂Bv

(sS · vS + tL · vL)da . (9.83)

With (9.83) we can construct a modified minimum problem∫
B

(
∗
SS

E · Ė∗
SP dv − 1

2

∫
B

∗
p̂L

E ·
∗
vLS dv −

−
∫

∂Bt

(sS · ∗
vS +tL· ∗

vL)da −
∫
B

(ρSvS + ρLvL) · b dv ≥

≥ 1
2

∫
B

p̂L
E · vLSdv +

∫
∂Bv

(sS · vS + tL · vL)da .

(9.84)

This form of the minimum problem will be used to derive a restriction theorem
in connection with the maximum problem which will be developed in the next
section.

The maximum principle for stresses

At first we define a dynamically admissible stress field:

A smooth stress field is denoted as dynamically admissible (marked by a super-
script o) if it fulfils the boundary and dynamic conditions and does not violate
the yield condition (9.3).

We commence from the expression:

◦
L=

∫
∂Bv

(
◦
sS

E · vS +
◦
tL · vL)da +

1
2

∫
B

◦
p̂L

E ·
◦
vLS dv , (9.85)

whereby
◦
vLS obeys the constitutive equation (9.48)4, and prove the theorem:

Out of all possible dynamically admissible stress fields the really existent one
makes the expression (9.85) a maximum.

In this case, the difference L− ◦
L (where L represents (9.85) with the real stress

field) must always be positive, i.e.

L− ◦
L=

∫
∂Bv

[(sS − ◦
sS) · vS + (

◦
tL − tL) · vL]da +

+
1
2

∫
B

(p̂L
E · vLS −

◦
p̂L

E ·
◦
vLS)dv ≥ 0 .

(9.86)
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The difference L− ◦
L in (9.86) can be easily reformulated with the aid of the

principle of virtual stresses (forces) (9.47):

L− ◦
L=

∫
B

[(SS
E − ◦

SS
E ) · ĖSP +

1
2
(p̂L

E · vLS −
◦
p̂L

E ·
◦
vLS) −

− (p̂L
E −

◦
p̂L

E) · vLS ]dv

(9.87)

or considering the constitutive equation for p̂L
E and

◦
p̂L

E , respectively, in (9.87)

L− ◦
L=

∫
B

[(SS
E − ◦

SS
E ) · ĖSP − 1

2
(p̂L

E −
◦
p̂L

E) · (vLS− ◦
vLS)]dv (9.88)

is obtained. The second term on the right-hand side of (9.88) is always positive
as it can easily be proven considering (9.48)4. In order to show that also the
first term on the right-hand side of (9.88) is always positive we reformulate this
term using the constitutive equation (9.5)

(SS
E − ◦

SS
E ) · ĖSP = λ̇

1
2κ

{SS
E · [SSD

E + α2(SS
E · I)I] −

− ◦
SS

E ·[SSD

E + α2(SS
E · I)I]}

(9.89)

or considering the yield condition (9.3) and after some manipulations we get:

(SS
E − ◦

SS
E ) · ĖSP = λ̇{2κ2 − [

◦
SSD

E +

+ α
1√
3
(
◦
SS

E ·I)I] · [SSD

E + α
1√
3
(SS

E · I)I]} .
(9.90)

As both stress states in (9.90) do not exceed the yield limit one recognizes using
Schwarz’ inequality that always

[
◦
SSD

E +α
1√
3
(
◦
SS

E ·I)I] · [SSD

E + α
1√
3
(SS

E · I)I] ≤ 2κ2 . (9.91)

Therefore, the integrand in (9.88) is positive because λ̇ is assumed to be positive.

Thus, the theorem (9.86) has been proved. Hence, because
◦
L≤ L, the inequality∫

∂Bv

(
◦
sS · vS +

◦
tL · vL)da +

1
2

∫
B

◦
p̂L

E ·
◦
vLS dv ≤

≤
∫

∂Bv

(sS · vS + tL · vL)da +
1
2

∫
B

p̂L
E · vLS dv

(9.92)



226 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

is valid.

Restriction statement

With the result gained in the last two sections the real stress and velocity
states can be restricted. Considering (9.81), (9.92) and (9.84) we have

∗
H≥ H = L >

◦
L , i.e. (9.93)∫

B

∗
SS

E ·Ė∗
SP dv − 1

2

∫
B

∗
p̂L

E ·
∗
vLS dv −

∫
∂Bt

(sS · ∗
vS + tL· ∗

vL)da −

−
∫
B

(ρS ∗
vS +ρL ∗

vL) · b dv

≥
∫
B

SS
E · ĖSP dv − 1

2

∫
B

p̂L
E · vLS dv −

−
∫

∂Bt

(sS · vS + tL · vL)da −
∫
B

(ρSvS + ρLvL) · b dv

=
1
2

∫
B

p̂L
E · vLS dv +

∫
∂Bv

(sS · vS + tL · vL)da

≥ 1
2

∫
B

◦
p̂L

E ·
◦
vLS dv +

∫
∂Bv

(
◦
sS · vS +

◦
tL · vL)da .

(9.94)

If the interacting forces p̂L
E vanish and if incompressibility is assumed, the well-

known theorems of classical plasticity theory are recognized (see Prager and
Hodge, 1954). Again, it should be emphasized that (9.94) can serve to restrict
the real stress and velocity states in the case of rigid-ideal plastic behavior.
However, there is less experience in this field.

For elastic-plastic hardening behavior corresponding principles can be proved.
In the elastic hardening range we can describe the material behavior with the
constitutive equations (9.14) and (9.16) in consideration of (9.15) and (9.17).
Since these constitutive equations are formulated in the rates it is advisable to
develop the principles of virtual work in the rates. Then, it is possible to treat
general principles, such as minimum-maximum problems and uniqueness the-
orems as has, e. g., been done in classical elasto-plasticity (see, e. g., de Boer
and Ehlers, 1980).

We have shown that the fourth order material dependent tensor and its reverse,
respectively, is positive definite. Thus, all general principles can be proved to be
valid according to the method of de Boer and Ehlers (1980). However, owing to
space limitations we will renounce the representation of these principles, valid
for elastic-plastic deformations with hardening.



Chapter 10

APPLICATIONS IN ENGINEERING AND
BIOMECHANICS

With the development of kinematics, balance equations, and the constitutive
theory for saturated and empty porous solids in the last years, an ensured base
has been provided for the investigation of special problems in different fields
of engineering and biomechanics. Great progress has been achieved in such
differing domains as soil mechanics, chemical engineering, material science,
and environmental engineering, as well as in biomechanics. In this section
some problems in the various fields will be discussed and the current state of
the treatment of these problems will be addressed.

10.1 Soil Mechanics
The vast domain of soil mechanics is a preferred field for applying porous

media theory. Saturated and empty sandy bodies or clay fulfill, to a high extent,
the basic assumption of the porous media theory regarding statistically distrib-
uted pores. Therefore, it is not surprising that the porous media theory has its
roots in soil mechanics (see the extensive review by de Boer, 2000 a). Based
on experimental observations – in particular, in soil mechanics – fundamental
findings, e.g., the effective stress concept, have been recognized. In the mean-
time, modern porous media theory has been successfully applied to static and
dynamic problems in soil mechanics.

a) Consolidation Problem and Localization Phenomena

Whereas, in the past the consolidation problem (the time-dependent settle-
ment of soils under load) was investigated with elasticity laws of the Hookean
and non-Hookean types (see, e.g., Lancellotta and Preziosi, 1997, and the review
by de Boer, 2000 a, as well as Arnod et al., 1998, 1999), in recent times elastic-
plastic relations for the solid skeleton have been used in order to investigate
the settlement and other properties of loaded saturated porous solids. Skolnik
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Fig. 10.1.1: Loaded slope.

(1998) proceeded consequently from the yield function (6.92) along with the
flow rule (6.109) and the constitutive equation for the elastic-plastic behavior
of the solid skeleton (6.133) and (6.134) to formulate the numerical solution
strategy. This strategy was applied by Skolnik (1999) to different problems in
soil mechanics (see, e.g., Figs. 10.1.1 and 10.1.2). In several papers, Ehlers and
Volk (1997 a, b, 1998, 1999) took polar and non-polar granular elastic-plastic
solid matrices, made of frictional material, into consideration. In the case of
a saturated porous solid, they assumed that the pore spaces are filled with an
incompressible viscous poreliquid. For the investigation of the mechanical be-
havior of the solid skeleton, they used kinematics, balance equations, and the
constitutive theory described in Sections 3, 4, and 6, as a base. One of the goals
of their papers is the calculation of localization phenomena for selected prob-
lems in soil mechanics, as for example, the classical base failure (Figs. 10.1.3
and 10.1.4) and slope failure problems. In order to improve their numerical
results (which were obtained with the finite element method) they considered

Fig. 10.1.2: Equivalent stresses for an increasing load (q = 47.75kN/m2).
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Fig. 10.1.3: The classical base failure problem (φ is the angle of internal friction).

the fluid-viscosity and the micropolar grain rotations as a regularization instru-
ment. Ehlers and Volk (1998) wrote: “In the present article, it is shown that the
inclusion of fluid-viscosity in the saturated case and the inclusion of micropo-
lar grain rotations both in the saturated and in the non-saturated case leads to
a regularization of the shear band problem.” The results are encouraging and
correspond to the classical solutions in soil mechanics. The procedure – which
Ehlers and Volk described above – is, however, in some respect questionable.
Does it mean that only the consideration of the fluid-viscosity and micropolar
approach gives such excellent results?

In a recent paper Ehlers (2000) discussed, proceeding from an elasto-viscoplastic
solid skeleton, dilatant and compressive shear bands in saturated geomaterials.

Fig. 10.1.4: Accumulated plastic strain of a liquid-saturated skeleton material (micropolar
formulation ) 20 days after having applied the external load.
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b) Phase Transitions

Two important phase transitions occur in soil mechanics (also in some other
fields of engineering), namely in the drying process and in the freezing process.
Although the processes show similar characteristics, they are very different,
see Chapter 7.7. It seems that, in engineering, drying processes have attracted
much more interest than freezing and defrosting processes (possibly due to their
importance in chemical engineering).

Kowalski (1987) was the first scientist to develop a theory for drying processes
which was based on the fundamentals of continuum mechanics considering the
coupling of the heat and moisture transport with the deformations of the solid
skeleton. Kowalski (1990) later turned again to the drying process problem and
extended his earlier treatise by considering the propagation of the evaporation
surface (Stefan problem). The main differences between the papers of 1990 and
1987 consist of treating a ternary model instead of a binary model. Kowalski’s
investigations (also his subsequent papers) will be reviewed in Section 8.2 b).

Freezing and defrosting behavior in saturated brittle and granular media are
treated less than drying processes in the literature. This is valid, in particu-
lar, for saturated granular materials within the porous media theory, although
freezing processes, e.g., to improve the strength of soils, are important. As
the frost-resistance of concrete is of great importance in the practice, earlier
contributions in this field had the goal of investigating the freezing processes
of porous materials from the engineering point of view. Schäfer (1964), as
well as Manns and Hartmann (1977), performed a large amount of experi-
mental investigations. These yielded the result that the frost resistance of
concrete is influenced to a great extent by the amount and the kind of its
pores. The analysis of damaged concrete had shown that this is caused by
the frozen water in the capillary pores where the frozen water expands up to
9 % and builds up a considerable hydrostatic pressure. In this context, we refer
to the papers of Zech (1981) and Setzer et al. (1994). The investigations were,
however, performed with complete detachment from fundamental mechanical
theories.

In recent times, Fasano et al. (1993) have discussed the problem of defrosting
for a simplified mechanical model, though mainly from the mathematical point
of view concerning the existence and uniqueness of the solution. Selvadurai
and Shinde (1993) modelled the influence of frozen soils on pipes laid in soil,
using a very simple theory and the finite element method. Moreover, they gave
a comprehensive overview of the existing literature related to this topic.

The study of the literature has led to the conclusion that freezing and de-
frosting processes have not been treated within the framework of the theory
of porous media at all, whereas the continuum-mechanical treatment of drying
(vapourization) processes in porous media has attracted much more interest.
This is a challenge for scientists working in the field of porous media to in-
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vestigate the thermomechanic response of the freezing processes of saturated
solid skeletons and to implement the findings gained from the phase change of
liquid to ice in the modelling of freezing and defrosting processes in porous
materials, with the help of continuum mechanics, in a mathematically as well
as physically consistent manner.

A ternary model has also been proposed by de Boer (1993, 1994). The
components of this model are a compressible porous solid and two immiscible
compressible fluids, each with its own temperature fields. The goal of these
papers, and subsequent contributions, has been to develop a general thermody-
namic frame for phase transitions. The thermodynamic investigations concern
the fact that the chemical potentials, as well as the temperatures of all com-
ponents, must be different if mass exchanges between the constituents should
occur. Musielak et al. (1994) formulated the boundary and initial value prob-
lem of a drying problem in the one-dimensional case for a ternary model, and
performed, with the help of the finite element method, the numerical simulation
of the commencement of the drying process.

The thermodynamic foundation of phase transitions in porous media was
further developed by de Boer (1995 a) for a ternary model consisting of com-
pressible constituents. However, de Boer’s (1995 a) investigations are only
valid for a simplified model, because, in the ternary model, the influence of
the configuration pressure on the hydrostatic pressure of the solid material was
neglected.

In de Boer and Kowalski (1995), thermodynamic restrictions for phase changes
were developed for a ternary model with incompressible solid and liquid con-
stituents and a compressible gas. In the appendix of this paper, the explicit
evaluation of the entropy inequality is represented in detail.

The contributions of de Boer were improved due to new findings in the
kinematics of the porous media theory and were brought to a primary close, as
far as the thermodynamic frame is concerned, by de Boer and Bluhm (1999)
and by de Boer et al. (2003).

c) Dynamics

Although dynamic problems play a role in many branches of engineering, it
is in soil mechanics where these problems have the greatest influence (see, e.g.,
earthquakes and densification of sand). Therefore, we will review the domain
of dynamics in this section.

In a series of papers, dynamic problems have been analytically treated with
incompressible models at the University of Essen in Germany, see Section 8.5.
The commonly accepted opinion, that there are two dilatational waves and
one rotational wave, concluded on the basis of Biot’s (1956) theory and from
Plona’s (1982) experimental work, could not be confirmed. It was able to predict
the existence of only one dilatational wave as it should be for incompressible
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saturated porous solids. The result of Biot (1956) is not surprising, since his
model is based on two compressible constituents.

An extended review on shock wave propagation in porous media was given by
Sorek et al. (1999). They reviewed about 53 papers concerned with theoretical
developments and experimental observations.

Dynamic problems have also been investigated by Gubaidullin and Kuchugu-
rina (1999), though, in part, however, for simplified porous media models.

Parallel to the analytical investigations of the dynamic behavior of saturated
porous solids, the numerical solution of initial- and boundary-value problems
in the dynamic range has made great progress (see Breuer, 1997 a – c, 1999
a,b). However, in this field, there are still many problems left to investigate.

Readers interested in some aspects of modern approaches to dynamic prob-
lems of saturated porous media are referred to the special issues of the Journal
Transport in Porous Media (Kowalski and Kubik (eds.), 1992, de Boer (ed.),
1999 b).

10.2 Chemical Engineering
In chemical engineering, many applications of porous media theory are

known. In the following paragraphs we will discuss, however, only two prob-
lems.

a) Powder Compaction

For aerospace and other high-tech applications, many powder-metallurgy al-
loys have been developed in order to achieve better combinations of strength,
toughness, fatigue resistance, and resistance to stress-corrosion cracking than
those found in alloys produced by ingot metallurgy (see Doraivelu et al., 1984).
The success of powder-metallurgy processing depends heavily upon the ability
to produce a near-net-shape economically. The forming of this shape is de-
pendent on the success of the die compaction process in delivering defect-free,
uniform-density green parts (Lewis et al., 1993). The compaction process for
compressing the powder is, without any doubt, the main process in manufactur-
ing engineered products in powder metallurgy. Therefore, this process should
be clearly understood from the mechanical and thermodynamic point of view,
more so as there are many difficulties which exist in the compaction process for
powders. This concerns, for example, the non-homogeneous density distribu-
tion and considerably large residual stresses in the green end product. Hence,
a need exists to develop a mathematical model which can predict mechanical
phenomena for the compaction process.

This mathematical model must be based on an appropriate plasticity theory,
because the compression of the metallic powder during the compaction process
is caused by the plastic deformation of the powder. Due to the metallic properties
of the powder or the green, a von-Mises-type of plasticity theory seems to be
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Fig. 10.2.1: Test results for the
relative density

Fig. 10.2.2: Numerical results for the
relative density

appropriate. However, the yield function of von Mises (1913) has to be extended
in order to include the considerably large volume changes of the powder during
the compaction process due to porosity. This effect is unknown in the classical
plasticity of metals, where the incompressibility of the material in the plastic
range is assumed (see von Mises, 1913).

Such a theory which meets the above statements has been developed in
Section 6.6 and Chapter 9. The incorporation of the elastic deformation of
the powder is justified by the numerical results represented at the end of this
section.

In the following, we will study the compaction of copper powder in a T-
shaped die (see Jägering, 1998). The die is filled with a copper powder, which
is compacted up to a relative density of 0.332 and thickness of 20 mm before
the real experiment starts. The relative density is defined as the quotient of
the momentary (partial) density and the theoretically-possible maximum (real)
density. The quotient corresponds to the volume fraction nS :

ρrel =
ρS

ρSR
= nS . (10.1)

The compaction of the copper powder in the T-shaped die will be simulated
on the basis of the theory of elastic-plastically deformed gas-filled porous solids.
However, we will neglect the physical properties of the gas in the pores. For
this reason, the partial density ρG of the gas is introduced with 10−5 kg/m3.
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The calculation shows that the poregas pressure is, in this case, equal to zero.
Thus, the simulation can also be interpreted as the description of the mechan-
ical behavior of an empty porous solid. The Lamé response parameters in the
elastic range are given by µS = 5555.55 kN/m2 and λS = 1058.20 kN/m2.
The friction coefficient between powder and stamp has the value of 0.2 (see
Morimoto et al., 1982). For the description of the friction phenomena, we use
Coulomb’s friction law, where the friction force is equal to the product of the
force normal to the wall of the die and the friction coefficient. The finite el-
ement calculation has been performed with 120 elements. In order to control
the convergence, a second calculation with 480 elements has been simulated.
Moreover, the plastic response parameters α and κ are assumed to be 0.2 and
0.6, respectively. For more information, see Jägering (1998). In Figure 10.2.1,
the course of the relative density of the experiment is represented. Figure 10.2.2
shows the corresponding values obtained by the finite element method. From
the comparison of the numerically gained results and the test results, it becomes
apparent that porous media theory can sufficiently predict the test results cor-
rectly. Thus, the porous media theory seems to be excellently suited to describe
the mechanical behavior of the compaction of metallic powders in a die.

b) Drying Processes

Drying processes (phase transitions which are accompanied by a liquid trans-
port) occur in many fields of engineering, e.g., in soil mechanics, agriculture
and, in particular, in chemical engineering. Thus, the problem of liquid trans-
port in porous solids, and its removal from them, has an important practical
feature. As indicated, the drying process consists of a change of fluid into
moisture and the transport of the liquid in capillary-porous solids.

The drying process is very complex and not all problems have been solved
so far. The thermodynamics of phase transition of water into gas (steam) has
only recently come to a primary close (see de Boer and Bluhm, 1999) and the
capillary rise of fluids in capillary-porous bodies is still under study concerning
the continuum mechanical description of this phenomenon.

It seems that Kowalski (1987) was the first scientist who tried a continuum
mechanical approach to the complex drying process. Kowalski (1987) pointed
out: “This paper corresponds to the review article by Luikov (1975), and stands
for the generalization of the concept presented there by taking into consideration
the deformability of the capillary-porous body.

The basic aim of this paper is to perform a system of differential equations
describing the distribution of strains (and, indirectly, stresses), temperature
and concentration in a fluid-saturated capillary-porous body in the simultane-
ous presence of mechanical, thermal and concentration fields. Such a system
of equations can be used to describe the thermomechanical changes in fluid-
saturated porous bodies during the constant drying rate period.
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In this period the evaporation surface covers the boundary surface of the
medium. The thermodynamics of the nonconstant drying rate period and, in
particular, the problem of receding of the evaporation surface will be published
in a separate paper.”

This was done by Kowalski (1990) in an extended article Thermodynamics
of dried mechanics. In this paper, the author generalized and continued his
earlier contribution from 1987. “The generalization consists in considering the
phase transitions not only on the evaporation surface but also inside the whole
body, what actually takes place in real processes. The continuation means here
an extension of the previous theory to the so-called second period of drying.”

Kowalski’s (1990) treatise is based on the balance equations of porous media
theory and restrictions implied on the constitutive relations by the second law of
thermodynamics (entropy inequality). The consideration of the fundamentals
of porous media theory leads to a clear concept of heat and mass transfer.

The mathematical model consists of the following four constituents:

“(i) an elastic porous matrix (skeleton of the medium),

(ii) a liquid bounded physically and chemically with the skeleton (cellular liq-
uid); the kinematics of the constituent is the same as that of the skeleton,

(iii) a liquid bounded physically and mechanically with the skeleton (capillary
liquid) having its own kinematics,

(iv) humid air contained in the medium in the form of bubbles having also its
own kinematics.”

Kowalski (1990) divided the whole drying process into two periods: the con-
stant drying rate period (period I) and the decreasing drying rate period (period
II). Then he developed the balance equations for the two periods and derived
thermodynamic restrictions for the constitutive equations. Moreover, Kowalski
(1990) summarized his investigations and laid down the final set of equations
for moist colloidal (elastic gels) and capillary-porous bodies. Finally, he wrote
down a linearized set of differential equations describing the heat and mass
transfer and the deformations of dried material coupled with the transfer. In
addition, he addressed some considerations regarding the moving evaporation
surface which separates the wet and dry regions (Stefan problem). Whereas
the transfer of heat and mass as well as elastic behavior was extensively treated
by Kowalski (1990), the phase transition of fluid into gas was obviously not
discussed further.

Kowalski (1994) later returned to this point and stated that the mass supply
ρ̂G of the gas phase due to phase transition from the liquid phase ϕL was
proportional to the difference between the chemical potentials of liquid µL and
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gas µG related to the respective temperature ΘL and ΘG (see also de Boer,
1993, 2000 a).

The goals of Kowalski’s further contributions (see Kowalski, 1996 a,b, Kowal-
ski and Rybicki, 1996, Kowalski et al., 1997) to the drying problem were the
modelling of shrinkage (linear-elastic and isotropic material), the estimation
of the influence of the moisture concentration and the temperature on the for-
mation of drying-induced stresses, and the study of the response of the dried
materials to a variation in drying conditions.

Kowalski (2000) arrived at a temporary conclusion in his paper Toward
a Thermodynamics and Mechanics of Drying Processes, where he provided
“a wider presentation of mechanics of intensively dried moistened capillary-
porous materials.” The extension of his previous works consisted of the devel-
opment of a non-linear theory for the heat and mass transfer and the mechanical
phenomena in moist materials manifested in a coupled system of differential
equations. Finally, he presented a simple numerical example.

Concerning additional references, in particular older papers, the reader is
referred to Kowalski (2003).

Although one cannot agree with all simplifying assumptions and, in parts, to
some mathematical representations, one can state that the work involved in the
contribution of Kowalski was considerable. For the first time, a uniform theory
of the complex drying process of moist, capillary-porous materials based on
the fundamentals of porous media theory had been developed.

10.3 Building Physics
In building physics, the phenomena of coupled matter (moisture) and heat

transport in capillary-porous media are of special interest. For example, a lot
of damages to buildings results from the influence of moisture in concrete and
brick walls. Moreover, the control of heat conduction is absolutely necessary
in order to save energy.

Due to the eminent importance of these phenomena there have been many
attempts to create mathematical models in order to describe thermomechanical
effects.

The first approaches obviously go back to the 1940s when Krischer (1940,
1942) developed the balance equations for the moisture and heat transport. In
this context, Luikov (1966, 1975) must be named. His balance equations are
nearly identical with those of Krischer (1940, 1942). However, the ansätze for
the transport of liquid and steam differ in some points. In three papers de Vries
contributed to the theory of moisture transport (Philip and de Vries, 1957, de
Vries, 1958, 1962). In his works de Vries referred, for the first time, to results
of soil physics.

In his dissertation, Kießl (1983) further developed the description of the
coupled moisture and heat transport, based on the results of Krischer, Luikov
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and de Vries. Neiß (1982) introduced a new element into the discussion of
the coupled moisture and heat transport, namely the description of transport
processes under frost conditions. Further contributions are due to Garrecht
(1992), Künzel (1994), Häupl and Stopp (1987, 1988). These treatises contain,
apart from the modelling, some numerical algorithms to solve the coupled
system of differential equations.

Most of the descriptive equations in the papers mentioned above are ob-
tained purely intuitively (in parts, connected with inadequate mathematics), not
founded with the fundamentals of porous media theory. A first approach to
develop a theory for diffusive and convective matter, as well as energy transport
in capillary-porous building materials, on the base of a multi-component model
is due to Grunewald (1997). Unfortunately, his dissertation remains in some
parts a purely formalistic treatment of the aforementioned problem.

Thus, one can state that little has been done to derive the description of some
physical phenomena from the fundamentals of the porous media theory. Most
of the describing equations for, e.g., moisture transport and heat conduction in
saturated porous solids, have been obtained purely intuitively. In the follow-
ing two sections, it will be shown how usefully porous media theory can be
applied to describe the moisture transport and the heat conduction in saturated
rigid porous solids. However, the treatment of the above-mentioned physical
phenomena in the next two sections should be considered only as a first ap-
proach, because there is no experience with the governing equations developed
for moisture transport and heat conduction from the fundamental relations of
porous media theory, see de Boer, 1999 a, de Boer and Didwania, 2000, 2002,
2004.

a) Transport of Moisture

In building physics, the phenomena of coupled matter (moisture) and heat
transport in capillary-porous media are of special interest. For example, a lot
of damages to buildings results from the influence of moisture in concrete and
brick walls. Moreover, the control of heat conduction is absolutely necessary
in order to save energy.

In the following section, we will show how the porous media theory can also
be applied to transport phenomena in building physics, namely the transport of
moisture in a capillary-porous solid.

The ternary model consists of a rigid capillary-porous solid ϕS at repose,
of a free incompressible liquid ϕL, and compressible gas (humid air) ϕG. In
building physics the moisture c is defined by the quotient of the mass of free
liquid dmL per volume element dv (see Hohmann and Setzer, 1997)

c =
dmL

dv
. (10.2)
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It would not be difficult to also include the liquid content in the humid air in
the definition (10.2). However, this is not usual in building physics. Eq. (10.2)
can be further evaluated. With

dmL = ρLdv (10.3)

we have

c = ρL . (10.4)

Other definitions of the moisture c are possible; the interested reader is referred
to the literature on building physics, see, e.g., Lutz et al. (1985). However, the
basic equation for describing the transport of moisture is not changed. Thus,
for simplicity we will use the definition (10.2) and the consequence (10.4).

From Section 4.1, we obtain the balance equations of mass for the free liquid
and gas phases, whereby we assume that the mass exchange with the solid
constituent can be neglected:

∂ρL

∂t
+ div(ρLvL) = ρ̂L , (10.5)

∂ρG

∂t
+ div(ρGvG) = ρ̂G (10.6)

with

ρ̂L + ρ̂G = 0 . (10.7)

The equations of motion can be formulated as follows:

div TS + ρSg + p̂S = 0 , (10.8)

div TL + ρLg + p̂L = ρ̂LvL , (10.9)

div TG + ρGg + p̂G = ρ̂GvG , (10.10)

where g is the acceleration due to gravity. As the transportation process occurs
slowly, we have neglected the inertia forces in (10.8) through (10.10). The
interaction forces p̂α (where α stands for S = solid, L = free liquid, G = gas)
are restricted by

p̂S + p̂L + p̂G = 0 . (10.11)

From the constitutive theory in de Boer (2000 a), we can read the following
constitutive equations:
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TL = nLptI , TG = nGpt I + pG
EI ,

pG
E = nGρG ∂ψG

∂nG
,

TG = pGI = nGpGRI ,

(10.12)

where pt defines the effective liquid suction in the capillary zone,

p̂L = − pt grad nL − (ρS ∂ψS

∂ρL
+ ρG ∂ψG

∂ρL
) grad ρL −

− (βS + βL + βG) grad Θ − βL
vvL − βG

v vG ,

p̂G = − pt grad nG − ρG ∂ψG

∂ρL
grad ρL −

− (γS + γL + γG) grad Θ − γL
vvL − γG

v vG ,

(10.13)

where vS = 0 has been used and where βS , βL, βG and βL
v , βG

v as well as
γS , γL, γG and γL

v , γG
v are response parameters depending on the temperature

Θ.
The constitutive relations (10.12) are gained from the dissipation inequality

by an evaluation process, see the recent papers by de Boer and Didwania (2000,
2002, 2004).

These constitutive equations for the interaction volume forces p̂L and p̂G

depend on the temperature gradient, on the velocities vL and vG and on the
free Helmholtz energy functions of the solid and gas phases connected with
the gradient of the density of the liquid. It has been shown in de Boer and
Didwania (2000, 2002, 2004) that capillary effects can be described with the
constitutive equations for interaction forces (10.13). Moreover, the classical
results in capillarity theory by Young and Laplace, which are well-known in
Physics and Chemical Engineering, are contained in the approach by de Boer
and Didwania (2000, 2002, 2004).

With the mass and momentum balance equations (10.5) through (10.7) and
(10.8) through (10.10), as well as the constitutive relations (10.12) and (10.13),
the basis for the development of the describing differential equation for the
transport moisture c is known. From the mass balance equation for the free
liquid (10.5), in combination with the definition (10.2), we obtain

∂c

∂t
+ div(cvL) = ρ̂L . (10.14)
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The equations of motion (10.8) and (10.9), together with the constitutive equa-
tions (10.12) and (10.13), yield:

nL grad pt + ρLg − (ρS ∂ψS

∂ρL
+ ρG ∂ψG

∂ρL
) grad ρL −

− βΘ grad Θ = βL
vvL + βG

v vG + ρ̂LvL ,

(10.15)

nG grad pGR + ρGg − (pt − pGR) grad nG −

− ρG ∂ψG

∂ρF
grad ρF − γΘ grad Θ

= γL
vvL + γG

v vG + ρ̂GvG ,

(10.16)

where the abbreviations

βΘ = βS + βL + βG ,

γΘ = γS + γL + γG

(10.17)

have been introduced.
The equations of motion (10.15) and (10.16) are coupled in the velocities vL

and vG. From (10.16), we obtain

vG =
1

ρ̂G + γG
v

[nG grad pGR + ρGg −

− (pt − pGR) grad nG − ρG ∂ψG

∂ρL
grad ρL −

− γΘ grad Θ] − γL
v

ρ̂G + γG
v

vL .

(10.18)

The insertion of vG into (10.15) leads to

vL =
1
A
{nL grad pt + ρLg −

− (ρS ∂ψS

∂ρL
+ ρG ∂ψG

∂ρL
) grad ρF − βΘ grad Θ +

+ B[nG grad pGR + ρGg − (pt − pGR) grad nG−

− ρG ∂ψG

∂ρL
grad ρL − γΘ grad Θ]}

(10.19)
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with

A =
(ρ̂L + βL

v )(ρ̂G + γG
v ) − βG

v γL
v

ρ̂G + γG
v

,

B = − βG
v

ρ̂G + γG
v

.

(10.20)

Introducing the pressure heads

hL = − pt

γLR
+

U

| g | , hG = − pGR

γGR
+

U

| g | (10.21)

and considering (10.19), from (10.14) the differential equation for the moisture
transport is obtained, where U is the gravity potential and ρL = c (see 10.4):

∂c

∂t
= −div{ c

A
[− nLγLR grad hL −

− BnGγGR grad hG − B(pt − pGR) grad nG −

− [ρS ∂ψS

∂ρL
+ ρG ∂ψG

∂ρL
(1 − B)] grad c −

− (βΘ + BγΘ) grad Θ]} + ρ̂L .

(10.22)

The difference pt − pGR in (10.22) is known in the theory of capillary-porous
materials as the capillary pressure.

A similar differential equation is known in building physics, see, e.g., Gar-
recht (1992). However, the differential equation in Garrecht (1992), and also
other approaches in building physics have been developed purely intuitively.
They are not based on the principles of mechanics and thermodynamics of
porous media theory. Therefore, the identification of various terms in the cor-
responding relation to (10.22) in Garrecht (1992) is cumbersome.

It should be mentioned that there has been no experience with the evaluation
of (10.22) until now. The identification of the parameters A and B in (10.20)
is still awaiting research. It seems, however, that A and B are reasonable coef-
ficients, because they contain the mass supply terms which influence, without
any doubt, the permeability of the mixture body. Moreover, the constitutive
equations for the momentum supplies in (10.13) are, in no way, evaluated. This
will be done in further publications.

b) Heat Conduction in a Fluid-Saturated Capillary-Porous Solid

This section is based on a report by de Boer and Ehlers (1986 b) and the con-
siderations of de Boer (2000 a), de Boer and Didwania (2000, 2002, 2004). For
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the investigation of the heat conduction in a rigid solid skeleton saturated with
an incompressible fluid and a compressible gas, we shall use the constitutive
relations derived in de Boer and Didwania (2000, 2002, 2004). We investigate
only thermodynamic processes with small temperature gradients and small ve-
locities:

ψS = ψS(Θ, ρL) , ψL = ψL(Θ) , ψG = ψG(nG, Θ, ρL) ,

ηα = − ∂ψα

∂Θ
,

p̂L = − pt grad nL − (ρS ∂ψS

∂ρL
+ ρG ∂ψG

∂ρL
) grad ρL −

− βΘ(Θ) grad Θ − βL
v (Θ)vL − βG

v (Θ)vG ,

p̂G = − pt grad nG − ρG ∂ψG

∂ρL
grad ρL −

− γΘ(Θ) grad Θ − γL
v (Θ)vL − γG

v (Θ)vG ,

qS + qL + qG = − αΘ(Θ) grad Θ + ΘβΘ(Θ)vL+

+ ΘγΘ(Θ)vG ,

TL = nLptI , TG = nGptI + pG
EI ,

pG
E = nGρG ∂ψG

∂nG
,

(10.23)

where αΘ, βΘ, γΘ, βL
v , βG

v , and γL
v , γG

v are response parameters (see de Boer,
2000 a) and where the dependence of ψS and ψG on the density ρL is limited
to a thin film between the solid and liquid and the gas and liquid constituents,
respectively.

Considering (10.23), the saturation constraint, and replacing the internal
energy ε with the free Helmholtz energy function (5.5), from (4.34) the balance
of energy for the ternary model under study is gained:

− ρS(ψS)′S − ρL(ψL)′L − ρG(ψG)′G −

− ρSηSΘ′
S − ρLηLΘ′

L − ρGηGΘ′
G −

− ρSΘ(ηS)′S − ρLΘ(ηL)′L − ρGΘ(ηG)′G+

(10.24)
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+ (TL − nLptI) · DL + (TG − nGptI) · DG +

+ ρSrS + ρLrL + ρGrG − div(qS + qL + qG) −

− [p̂L + pt grad nL + (ρS ∂ψS

∂ρL
+ ρG ∂ψG

∂ρL
) grad ρL] · vL −

− (p̂G + pt grad nG + ρG ∂ψG

∂ρF
grad ρL) · vG = 0 .

The mass supply ρ̂L is neglected in the balance equation (10.24). With (10.23)
and (10.24), we have

− ρS ∂ψS

∂Θ
Θ′

S − ρL ∂ψL

∂Θ
Θ′

L − ρG ∂ψG

∂Θ
Θ′

G +

+ ρS ∂ψS

∂Θ
Θ′

S + ρL ∂ψL

∂Θ
Θ′

L + ρG ∂ψG

∂Θ
Θ′

G +

+ ρSΘ
∂2ψS

∂Θ2
Θ′

S + ρF Θ
∂2ψF

∂Θ2
Θ′

L + ρG ∂2ψG

∂Θ2
Θ′

G +

+ pG
E(DG · I) + ρSrS + ρLrL + ρGrG +

+ div(αΘ grad Θ − ΘβΘvL − ΘγΘvG) +

+ βΘ grad Θ · vL + βL
vvL · vL +

+ γΘ grad Θ · vG + γG
v vG · vG = 0 .

(10.25)

where use has been made of the fact that βG
v + γL

v = 0 due to thermodynamic
restrictions.

With the assumption that the distribution of the volume fraction in the
reference placement is homogeneous (nS

0S = const., nL
0L = const., and

nG
0G = const.), and that the response parameters βΘ and γΘ are spatially

independent, relation (10.25) reduces to:

ρSΘ
∂2ψS

∂Θ2
Θ′

S + ρLΘ
∂2ψL

∂Θ2
Θ′

L + ρGΘ
∂2ψG

∂Θ2
Θ′

G +

+ ρSrS + ρLrL + ρGrG + div(αΘ grad Θ) +

+ pG
E(DG · I) + φD = 0 .

(10.26)
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The quantity

φD = − ΘβΘ(DL · I) − ΘγΘ(DG · I) +

+ βL
vvL · vL + γG

v vG · vG ≥ 0
(10.27)

denotes the dissipation function caused by the flow of the incompressible fluid
and the compressible gas. The condition φD ≥ 0 results from the positive
response parameters − ΘβΘ,− ΘγΘ, βL

v , and γG
v .

In analogy to classical continuum mechanics of one-component continua,
the notion specific heat for constant volume cα

ν can be introduced:

cα
ν = Θ

∂ηα

∂Θ
. (10.28)

With (10.23)4 and (10.28), relation (10.26) simplifies to

− ρScS
νΘ′

S − ρLcL
νΘ′

L − ρGcG
νΘ′

G +

+ ρSrS + ρLrL + ρGrG +

+ div(αΘ grad Θ) + pG
E(DG · I) + φD = 0 .

(10.29)

Equation (10.29) can be further reduced, since the velocity of the rigid solid
phase vS is equal to zero. Therefore,

− ρScS
ν

∂Θ
∂t

− ρLcL
νΘ′

L − ρGcG
νΘ′

G +

+ ρSrS + ρLrL + ρGrG + div(αΘ grad Θ) +

+ pG
E(DG · I) + φD = 0 ,

(10.30)

where φD is expressed by (10.27).
Furthermore, it may happen that the sum of the external heat supplies ρSrS +

ρLrL+ρGrG, as well as the sum of the external heat flux qS +qL+qG, vanish.
However, the condition qS + qL + qG = 0 is only possible with gradΘ = 0
(homogeneous distribution of the temperature), compare (10.23)5. With these
assumptions, (10.30) takes a very convenient form:

− (ρScS
ν + ρLcL

ν + ρGcG
ν )

∂Θ
∂t

+ pG
E(DG · I) + φD = 0 . (10.31)

This relation shows that an increase in temperature is possible even if the ex-
ternal heat supply and flux are absent. It is recognized that the increase in
temperature is caused by the change of the volumetric strain of the gas.
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Finally, we will compare the equation of heat conduction (10.29) with that
of one-component continua – rigid solid and incompressible inviscid fluid – in
classical continuum mechanics neglecting the properties of the gas phase.

In the case of a rigid solid (nS = 1), we have

ρLcL
ν = 0, ρGcG

ν = 0, ρLrL + ρGrG = 0, αΘ = αS
Θ . (10.32)

Moreover,

φD = 0 (10.33)

and the interaction force p̂L is identical to zero. With (10.32) and (10.33), we
obtain the equation of heat conduction in a rigid solid with αΘ = αS

Θ:

− ρScS
νΘ′

S + div(αS
Θ grad Θ) + ρSrS = 0 , (10.34)

see, e.g., Parkus (1976).
In the case of an incompressible fluid,

ρScS
ν = 0 , ρGcG

ν = 0 ,

ρSrS + ρGrG = 0 , and αΘ = αL
Θ

(10.35)

are valid and the interaction force p̂L is identical to zero. The dissipation
function simplifies to

φD = 0 . (10.36)

With (10.36) and (10.31), we obtain the equation of heat conduction for an
incompressible, inviscid fluid:

− ρLcL
νΘ′

L + div(αL
Θ grad Θ) + ρLrL = 0 . (10.37)

This result can be proven by comparison with the corresponding considerations
of either Serrin (1959) or Truckenbrodt (1968).

10.4 Biomechanics
Porous media theory is an essential part of biomechanics. Since Mow’s et

al. (1980) introduction of a binary model (similar to Bowen’s, 1980, approach)
with incompressible constituents to investigate creep and stress relaxation of
articular cartilage, a vast amount of contributions in biomechanics, based on
the fundamentals of porous media theory, has been published. Within the
framework of this review, it is impossible to mention and discuss all of these
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valuable papers. We will restrict our review, therefore, to some selected papers
and will discuss only the mechanical aspect. During the 1980s, much effort had
been made to investigate single problems in biomechanics on the basis of the
so-called linear Kuei, Lai, and Mow (KLM) biphasic theory for cartilage (see
Armstrong et al., 1984). In this paper, analytical solutions for the deformations,
flux of the fluid, creep, and stress relaxations of fluid-filled elastic porous solids
(e.g., cartilage) were developed. In the contribution of Holmes et al. (1985),
viscoelastic behavior of the solid phase was taken into account.

An excellent review article Cartilage and diarthrodial joints as paradigms
for hierarchical materials and structures was written by Mow and Ratcliffe
(1992). This article gives a clear overview on the most essential mechanical
properties of cartilage and diarthrodial joints. In particular, Mow and Ratcliff
(1992) explained many notions of biomechanics and classical mechanics. Thus,
this review article is excellently suited to give an introduction to that part of
biomechanics concerned with the description of the behavior of loaded cartilage.

A decisive step towards a consistent theory for describing the mechanical
behavior of articular cartilage was made by Lai et al. (1991). They developed
a ternary model for the swelling and deformation behaviors of articular carti-
lage. In the introduction, they stated: “Many specialized theories have ... been
developed, in particular, the theory for a mixture of one incompressible solid
phase and N −1 incompressible fluid phases was developed in 1980 by Bowen
... This provides the basic framework for our development of our triphasic the-
ory. In this theory, the Helmholtz energy functions for the phases depend on the
deformation of the solid phase, temperature, and the densities of the N −1 fluid
phases. In the present study, this theoretical framework is specialized to our
study of articular cartilage which contains an elastic solid matrix, a fluid phase
(water) and a third phase for the ionic species of the salt. However, to include
the fixed charge groups of the solid matrix of cartilage, we specifically intro-
duce into the Helmholtz energy functions a dependence on cL (cL is the fixed
charge density, Eq/unit tissue water volume, the author). In addition, for the
ion phase and the fluid phase, we incorporate the traditional chemical potentials
for electrolyte and polyelectrolyte solutions into the theory, thus providing a
theoretical bridge between the continuum mixture theory applied to soft tissues
... and the physico-chemical theory.”

Lai et al. (1991) adopted Bowen’s (1980) kinematics, balance equations, and
the constitutive theory, however, with further extension of the set of process vari-
ables. They also adopted Bowen’s (1980) introduction of the chemical potential
tensor (which is not contained in classical thermodynamics). Moreover, they
repeated the interpretation of Bowen (1980) concerning the incompressibility
constraint, which does not conform to modern standards in porous media theory
(see Bluhm et al., 1995, de Boer, 2000 a).
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Through evaluation of the entropy inequality, Lai et al. (1991) gained re-
strictions for Cauchy’s stress tensor of the various constituents and for the
momentum supplies. The remaining part of their considerable and valuable
paper is concerned with some special problems and the discussion of boundary
conditions.

The subsequent papers of the school of biomechanics at the Columbia Uni-
versity, New York, have been concerned, e.g., with the incorporation of the
viscoelastic behavior of the solid phase in their models (see Section 6.7) and
the application of triphasic mechano-electrochemical theory (Lai et al., 1991)
to the transport of water and ions through a finite-thickness layer of charged,
hydrated soft tissue (Gu et al., 1993, 1997), to the one-dimensional confined
swelling problem, and the modelling of an isolated cell as a spherical mixture.
Furthermore, Gu et al. (1999) turned back to the transport problem in tissues
in their paper: Transport of Multi-Electrolytes in Charged Hydrated Biological
Soft Tissues. This paper is based on the triphasic theory extended by Gu et al.
(1994, 1998). The goal of Gu et al. (1999) was to “briefly review our multipha-
sic (component) mixture theory, and present applications for it to investigate
the role of the fixed charges in mechano-electrokinetic transduction effects.”

Contributions to the mechanical behavior of the fluid flow in bones have
been published by Cowin et al. (1995), Weinbaum et al. (1994) and Zeng et
al. (1994).

Some important papers have been published by biomechanicians from The
Netherlands. Mixture models for soft tissues and skin were used by Snijders
(1986), and Oomens and van Campen (1987). However, their constitutive
theory was not adequately developed. This is also valid for the contribution
of Huyghe et al. (1989). Snijders et al. (1992) discussed a mathematical
model for the intervertebral disk. Oomens et al. (1996) remarked: “Snijders et
al. (1992) developed a triphasic mixture model for these tissues, a numerical
solution procedure based on the finite-element method, and implemented it in
the commercial software code DIANA... This theory strongly resembles the
triphasic mixture theory developed by Lai et al. (1991). One of the major
differences is that Snijders does not use the concept of a chemical expansion
stress.”

Snijders et al. (1995) developed a triphasic finite element model for swelling
porous media on the base of Lai’s et al. (1991) approach. van Kemenade et al.
(1997) adopted Snijders et al. (1995) simplified version of Lai’s et al. (1991)
theory to model intervertebral disc tissues.

An informative introduction to swelling and compression of intervertebral
disc tissue is contained in the dissertation thesis by Houben (1996).

Huyghe and Janssen (1997) “have developed a finite deformation quadripha-
sic theory which includes both electric current and electric potential, and which
has turned out to fit experimental data of confined swelling and compression
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reasonably well, using material parameters consistent with other experimental
data”. The mathematical model consists of a charged porous solid, a free fluid,
cations, and anions.

The contribution of Frijns et al. (1997) is concerned with the experimental
validation of the quadriphasic model of Huyghe and Janssen (1997).

Recently in her doctoral thesis van Kemenade (1998) investigated the water
and ion transport through intact and damaged skin, in particular, the loss of
water from the body to a dry environment. Her investigations are based on the
triphasic model of Snijders et al. (1995).

In their contribution Thermo-Chemo-Electro-Mechanical Formulation of Sat-
urated Charged Porous Solids, Huyghe and Janssen (1999) presented a theory
of swelling incompressible charged porous media. The base of their work is
Bowen’s (1980) theory which they have adjusted to their special problem. In
the evaluation of the entropy inequality, they correctly introduced the satura-
tion condition as a constraint provided with a Lagrange multiplier which they
identified as a pressure.

10.5 Some Other Fields of Application
Due to space limitations, not all fields of application can be reviewed in

length as has been done in Sections 10.1 through 10.4. Therefore, only several
additional applications will be described briefly.

A field of growing interest is environmental mechanics. Typical problems
in this domain are transport of contaminants in clayey soils, debris flow, and
flow of an ice-till mixture. We will restrict the short review to these examples.

In a recent paper, Kaczmarek and Hueckel (1997) reported on Transport of
contaminants of clayey soils and hydraulic barrier. In the introduction, they
stated: “The most significant parameters which determine the contaminant
transport across a barrier are: hydraulic conductivity, diffusivity, and sorptive
capability of clayey materials as well as the dependence of these parameters on
porefluid contents. Due to the densely packed microstructure, and significant
amount of immobile water adsorbed on minerals the size of pores of the clayey
materials available for transport is of the order of micrometers. As a result the
coefficient of water hydraulic conductivity is usually less then 10−6cm/s . . .
Since the transport of contaminants in such materials is driven by moderate
hydraulic gradients diffusion plays at least comparable role in transport as ad-
vection. At variance with the transport in groundwater mechanical dispersion is
the secondary factor. As a result the time scale of the processes of migration of
chemicals in the materials is long and range few hundred years.” The theoretical
treatment of the transport of contaminants and the consolidation problem is a
little short.

Another important problem is the debris flow. Hutter et al. (1996) devoted
an extended review article to this subject. They explained: “Broadly speaking,
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a debris flow represents the gravity driven flow of a mixture of various sizes
of sediment (from clay to boulders), water and air, down a steep slope, often
initiated by heavy rainfall and/or landslides.” Hutter et al. (1996) first gave a
survey of the existing literature and then discussed some aspects of the phenom-
enology of debris flow. In particular, they addressed dilatancy, internal friction
and cohesion, fluidization, and particle segregation. The main section of the
valuable paper is concerned with the mathematical modelling of debris flow
on the basis of porous media theory. Finally, the numerical implementation of
their model was discussed.

Gravity-driven shear flow of an ice-till mixture has been treated by Wu and
Hutter (1999). Their model is again based on the fundamentals of the porous
media theory. In this paper hints to other references, describing the respective
problem, can be found.

Another field of applications is soil physics (agriculture), see, e.g., Raats et
al. (1996).

In this survey the soil structure and transport processes (implications for
water, gases, nutrients, pesticides, and contaminants in soil) are investigated.
In the first treatise of this contribution, Raats et al. stated “Transport processes
in soil are of great importance to the environment of plant roots and all other
types of soil-life. Transport processes in soils also determine the exchange of
water, heat, gases, nutrients and contaminants between the soil and the other
compartments of the environment (plants, atmosphere, groundwater and surface
water). Knowledge of transport processes offers insight into the evolution of the
effects of soil pollution and provides clues for prevention and rehabilitation.”

Moreover, concerning the formulation of models, Raats remarked: “Several
models describing transport processes are already available. In many of these
models, it is assumed that soils can be considered to be rigid, unstructured,
homogeneous, isotropic ... and isothermal.

In the protection of soils, the need often exists for models which also take
into consideration the swelling and shrinkage, heterogeneity and anisotropy ...
of the solid phase on various spatial scales, and temperature gradients. Descrip-
tions of the exchange, between the soil and the compartments plant, atmosphere,
groundwater, and surface water, are also important points for special attention.
In the formulation of new models, initial inspiration is usually derived from
various basic disciplines (continuum mechanics, especially of mixtures, phys-
ical chemistry and statistical physics), but also from experience accumulated
with transport processes in soil, plant and atmosphere.” In addition, the volume
(Raats et al., 1996) contains the discription of 11 projects of basic research
concerning transport processes with many valuable references.

Well-known transport phenomena occur also in the field of the petroleum
industry. Oil and natural gas, driven by, in parts, high pressure are gained
from porous reservoirs. Recently, attention has been focused on foamy oil flow
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consisting of two phases: oil and gas. There is a special issue of the journal
“Transport in Porous Media” (Maini and Hayes (eds.), 1999) devoted exclu-
sively to these problems. In the introduction the editors stated: “The petroleum
industry is keenly interested in learning more about this phenomena, as it may
hold the key to the profitable exploitation of many otherwise unattractive heavy
oil reservoirs.” An introductory critical review by Sheng et al. (1999) gives an
excellent survey of the problem under study with about 80 references.

Moreover, the field of material science should be mentioned. The powder
compaction described in Section 10.2 a) can be considered as a part of material
science. Other materials, which can be treated with the methods of porous media
theory, are metallic foams (see, e.g., Ehlers and Eipper, 1999) and ceramic
composites (see, e.g., Besmann et al., 1991). All mentioned materials are used
for high-tech applications and it is exactly in this field that it can be expected
that other porous materials with special properties will be developed.

The porous media theory is also used in the field of local water supplies.
Zimmer (1997) applied the Richards equations, see Richards (1931) (a combi-
nation of the partial balance equations of mass and momentum), to the retention
and filtration problem of rainwater.

Finally, the mechanical behavior of plants, in particular, the analysis of
plant growth in the continuum mechanical context, should be mentioned. First
approaches have already been developed, see, e.g., Karalis (ed.) (1992) with a
chapter devoted to plant growth. In this chapter Silk (1992) remarked, however:
“Much work remains to understand the dynamic of growth.” Indeed, in this field
and also in other fields of engineering and biomechanics many problems remain
unsolved and require further investigations.



Chapter 11

CONCLUSIONS AND OUTLOOK

In this book the current state of the macroscopic porous media theory and
trends have been set forth and developed and numerous contributions have been
cited and reviewed. The investigations concerning the fundamentals of the
theory of porous media have revealed that in the last decade a consistent theory
has been derived, consistent with the basic principles of continuum mechanics,
in particular, the objectivity and the dissipation principles. In the elastic and the
elastic-plastic ranges of the porous solids, e.g., mathematical models have been
developed which are comparable to those developed in the field of the classical
theory of one-component materials within the framework of the geometrically
linear theory.

Moreover, based on the fundamentals of porous media theory, several appli-
cations in various fields have been successfully treated, as shown in Chapter
10, in soil mechanics, chemical engineering, biomechanics, building physics
and several other fields.

Whereas the material independent relations seem to have reached their final
state, the constitutive theory is still under study. For example, the viscoelastic
and the viscoplastic behavior of the porous solid should, due to their importance,
be investigated extensively. Moreover, the constitutive theory of the pore-
fluids also needs, in some parts, improvements. This statement is also valid for
phase transitions in saturated porous solids and some transport mechanisms,
e.g., the capillary phenomenon. For capillary-porous media there is a lot of
research work needed. First, appropriate ansätze of the free Helmholtz energy
functions of the solid and gas phases must be chosen; second, with these ansätze
initial and boundary value problems must be calculated in order to prove the
correctness of the recently developed constitutive restrictions for the volume
forces in comparison with test observations.
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Moreover, in the course of completing the theory, new problems have arisen.
From this point onwards only two of these will be discussed. The first problem
concerns the stability of a water/steam mixture during heating and evaporation.
At this point water transforms into steam. In the first step water is the carrier of
steam bubbles. In the further process the number of bubbles increase until at a
certain point the mixture changes considerable, namely to a mixture, where the
steam is the carrier of droplets. In continuum mechanics of phase transitions in
porous media it is not known, when the transformation occurs. The development
of stability criteria for the onset of the transformations is a challenging task for
scientists working in the field of the Theory of Porous Media.

The second problem arises when the pore size (hydraulic radius) approaches
the nano ranges. It has been discussed in Section 7.5 that the capillary rise in
porous bodies in continuum mechanics of porous solids has been successfully
described. This new capillarity theory is valid in a wide range of the pore sizes,
namely for the hydraulic radius from 1mm to approximately 30nm (1nm =
10−6mm). When the hydraulic radius is smaller then 30nm, the intermolecular
forces are so large that the mechanical properties of the pore content are changed
considerably, for e.g., water is transformed to prestructured condensate and
structured water. These types of water do not freeze under normal conditions.

As to whether the Theory of Porous Media can be applied to porous solids
in the small nano range, is currently under study at the University of Essen.

There are many other issues in the Theory of Porous Media. However, with
the remarks on the above two topics I will close the outlook.
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de Boer R (1994), Phasenübergänge in porösen Medien, Z Angew Math
Mech 74, 186-188.

de Boer R (1995a), Thermodynamics of phase transitions in porous media,
Appl Mech Rev 48, 613-622.

de Boer R (1995b), Some issues in the macroscopic porous media theory,
Festschrift für Professor Siekmann, Universität-GH Essen.

de Boer R (1996), Highlights in the historical development of the porous
media theory – toward a consistent macroscopic theory, Appl Mech Rev 49,
201-262.

de Boer R (1997 a), Once more: uplift, friction and capillarity in liquid and
gas-saturated porous solids, Transport Porous Media 27, 357 – 368.

de Boer R (1997 b), Compressible porous media: toward a general theory,
NA Fleck, ACF Cocks (eds), Proceedings of the IUTAM Symposium on Me-
chanics of Granular and Porous Materials, Cambridge, Kluwer Academic
Publishers Dordrecht • Boston • London, 47-56.

de Boer R (1999 a), Thermomechanical aspects of some phenomena in
building physics in the light of porous media theory, Report Mech 99/2, FB
10 Mechanik, Universität-GH Essen.

de Boer R (ed) (1999 b), Porous media: theory and experiments, Transport
Porous Media 34 (special issue).

de Boer R (2000 a), Theory of Porous Media: Highlights in the historical
development and current state, Springer-Verlag, Berlin •Heidelberg •New
York.

de Boer R (2000 b), Contemporary progress in porous media theory. Appl
Mech Rev 53, 323-370.

de Boer R and Bluhm J (1999), Phase transitions in gas- and liquid-saturated
porous solids, Transport Porous Media 34, 249-267.

de Boer R, Bluhm J, Wähling M and Ricken T (2003), Phasenübergänge
in Porösen Medien, Forschungsbericht aus dem Fachbereich Bauwesen 98,
Universität Duisburg-Essen.

de Boer R and Brauns W (1990), Kinematic hardening of granular materials,
Ing-Arch 60, 463-480.



256 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

de Boer R and Didwania AK (1997), The effect of uplift in liquid-saturated
porous solids – Karl Terzaghi’s contributions and recent findings,
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Handbuch der Physik, vol. VI/3, Springer-Verlag, Berlin.

Truesdell C and Noll W (1965), The Non-Linear Field Theories of Me-
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Modellrechnungen zur Beschreibung und Bewertung von Anlagen zur Re-
tention und Versickerung von Regenwasser, Dissertation, Universität Essen.



Author Index

Archimedes 84, 86
Armstrong C.G. 246
Arnod S 227
Atkins P.W. 103

Baer M.R. 4, 60
Baierlein R. 30
Balian R. 29-30
Basheleishvili M.O. 126
Besmann T.M. 250
Biot M.A. 3, 58, 61, 96, 107, 109, 111, 118,

139, 161, 177, 231-232
Bishop A.W. 96
Bluhm J. 4, 7, 10-13, 15-17, 36, 54-55, 57,

61, 64, 66-69, 71-72, 76, 213, 234, 246
de Boer R. 1-4, 12-13, 15-18, 28-30, 34, 37,

49-50, 54, 58, 60-61, 63-68, 71, 73, 78-79,
81, 83, 88, 95, 97, 100, 102-104, 108-110,
112-113, 115, 118-119, 138, 142, 157,
167, 176, 187-188, 211, 213, 216-218,
222, 226-227, 231-242, 246

Borcherdt R.D. 192
de Borst R. 59
de Bourbié T. 177
Boussinesq J. 126
Bowen, R.M. 3-4, 16, 81, 118-119, 245-246,

248
Brauns W. 61, 67, 71
Breuer S 138, 232
Bücker G. 69

Campen D.H. 247
Cauchy A.L. 10, 23-27, 38, 40-41, 58, 62
Chandrasekharaiah D.S. 126
Chen P.J. 175-176

Cheng A. H-D. 118
Ciarlleta M. 126
Cieszko M. 58
Clausius R. 29
Cleary M.P. 118
Coleman B.D. 29
Coulomb C.A. 64-65, 67, 87, 234
Cowin S.C. 2, 247

Darcy H. 89, 117
Deresiewicz H. 139, 177, 187
Desoyer K. 2
Didwania A.K. 1, 29, 83, 88, 100, 108, 112,

237, 239, 241-242
Diebels S. 17, 24, 78
Doraivelu S.M. 232
Dresenkamp H.T. 64-66
Drucker D.C. 66
Drumheller D.S. 3
Dziecielak R. 161

Ehlers W. 3-4, 17-19, 24, 26, 30, 34, 54-55,
58-59, 61, 68-69, 71-72, 76, 78, 81, 88, 95,
213, 226, 228-229, 241, 250

Eipper G. 54-55, 250
Eisenberg M.A. 67
Ekh M. 78
Eringen A.C. 162, 169

Fasano A. 230
Fillunger, P. 2, 78, 84, 86, 97, 217
Fromm, H. 63, 66-67
Fung Y.C. 76-77, 80

Galerkin B. 104, 126, 128, 131-133
Garrecht H. 237, 241

273



274 TRENDS IN CONTINUUM MECHANICS OF POROUS MEDIA

Gaus C.F. 168, 193, 214
Giovine P. 59
Goodman M.A. 2
Green R.J. 10, 40-41, 59, 61, 66, 83, 102,

126, 205
Groot S.R. 101
Grunewald J. 237
Gu W.Y. 247
Gubaidullin A.A. 232
Gurtin M.E. 126

Haupt P. 76
Hajra S. 139
Hartman E. 230
Hayes M. 188, 194, 250
Heinrich G. 2, 117
Helmholtz H. 27, 31, 38, 41, 49-50, 57, 79,

83, 89, 90, 94, 100-101, 103, 108-109,
139, 184, 188, 239, 242, 246, 251

Hodge P.G. 226
Hoffman O. 86
Hohmann R. 237
Holmes M.H. 246
Hooke R. 54-56, 227
Hörmander R. 118, 120
Houben G.B. 78, 247
Hueckel T. 248
Hutter K.L. 248-249
Huyghe J.M. 247-248

Iacovache M. 126
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