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Preface

A little over five years have passed since the first edition of this book appeared
in print. Seems like an instant but also eternity, especially considering numerous
developments in the hardware and software that have made it from the laboratory
test beds into the real world of powder diffraction. This prompted a revision, which
had to be beyond cosmetic limits. The book was, and remains focused on standard
laboratory powder diffractometry. It is still meant to be used as a text for teaching
students about the capabilities and limitations of the powder diffraction method. We
also hope that it goes beyond a simple text, and therefore, is useful as a reference to
practitioners of the technique.

The original book had seven long chapters that may have made its use as a text in-
convenient. So the second edition is broken down into 25 shorter chapters. The first
fifteen are concerned with the fundamentals of powder diffraction, which makes it
much more logical, considering a typical 16-week long semester. The last ten chap-
ters are concerned with practical examples of structure solution and refinement,
which were preserved from the first edition and expanded by another example –
solving the crystal structure of Tylenol R©.

Major revisions include an expanded discussion of nonconventional crystallo-
graphic symmetry in Chap. 5, a short description of two new types of detectors that
are becoming common in laboratory powder diffractometry – real-time multiple
strip and multi wire detectors in Chap. 6, a brief introduction to the total scattering
analysis in Chap. 10, a short section in Chap. 11 describing nonambient powder
diffractometry, an expanded discussion of quantitative phase analysis, including the
basics of how to quantify amorphous component in Chap. 13, an update about the
recent advancements in the ab initio indexing, together with an example of a dif-
ficult pseudo-symmetric case represented by Li[B(C2O4)2], and a major update of
Chap. 15 dedicated to the fundamentals of Rietveld analysis, including a brief intro-
duction of the mechanism of restraints, constraints, and rigid bodies. The collection
of problems that may be used by instructors to assess students’ progress and as self-
exercises has also expanded. All problems related to the solution and refinement of
crystal structures from powder diffraction data are assembled at the end of Chap. 25.
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viii Preface

Considering all these additions, something had to go. A major deletion from the
earlier paper version is the section on X-ray safety, which has been moved to the
electronic part of the book. Readers familiar with the first edition know that the book
included a CD with electronic figures, experimental data, and solutions of all prob-
lems. Over the years, both the publisher and we have had numerous inquiries from
people who accidentally used the CD as a coaster, clay pigeon, or simply sat on it
before making a backup copy. While each and every request about sending a copy of
the CD was fulfilled, we thought that it makes more sense to have the electronic files
available online. The files are hosted by Springer (http://www.springer.com/978-0-
387-09578-3) and they are made available to everyone who has the book. The files
include color figures, powder diffraction data, examples, web links, and solutions to
all the problems found throughout the book. Files with the solutions of the problems
are only available to instructors, who must register with the publisher.

Finally, we would like to thank everyone who provided critique and feedback.
Most important, we thank the readers who opted to buy our book with their hard-
earned money thus providing enough votes for the publisher to consider this second,
revised edition. It is our hope that this edition is met with even better acceptance
by our readers of students, practitioners, and instructors of the truly basic materials
characterization technique, which is the powder diffraction method.

Ames, Iowa, October 2008 Vitalij K. Pecharsky
College Park, Maryland, October 2008 Peter Y. Zavalij



Preface to the First Edition

Without a doubt, crystals such as diamonds, emeralds and rubies, whose beauty has
been exposed by jewelry-makers for centuries, are enjoyed by everybody for their
perfect shapes and astonishing range of colors. Far fewer people take pleasure in
the internal harmony – atomic structure – which defines shapes and other proper-
ties of crystals but remains invisible to the naked eye. Ordered atomic structures are
present in a variety of common materials, for example, metals, sand, rocks or ice,
in addition to the easily recognizable precious stones. The former usually consist
of many tiny crystals and therefore, are called polycrystals, for example metals and
ice, or powders, such as sand and snow. Besides external shapes and internal struc-
tures, the beauty of crystals can be appreciated from an infinite number of distinct
diffraction patterns they form upon interaction with certain types of waves, for ex-
ample, X-rays. Similarly, the beauty of the sea is largely defined by a continuously
changing but distinctive patterns formed by waves on the water’s surface.

Diffraction patterns from powders are recorded as numerical functions of a sin-
gle independent variable, the Bragg angle, and they are striking in their fundamen-
tal simplicity. Yet, a well-executed experiment encompasses an extraordinarily rich
variety of structural information, which is encoded in a material- and instrument-
specific distribution of the intensity of coherently scattered monochromatic waves
whose wavelengths are commensurate with lattice spacing. The utility of the pow-
der diffraction method – one of the most essential tools in the structural character-
ization of materials – has been tested for over 90 years of successful use in both
academia and industry. A broad range of general-purpose and specialized powder
diffractometers are commonly available today, and just about every research project
that involves polycrystalline solids inevitably begins with collecting a powder dif-
fraction pattern. The pattern is then examined to establish or verify phase composi-
tion, purity, and the structure of the newly prepared material. In fact, at least a basic
identification by employing powder diffraction data as a fingerprint of a substance,
coupled with search-and-match among hundreds of thousands of known powder
diffraction patterns stored in various databases, is an unwritten mandate for every
serious work that involves crystalline matter.
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Throughout the long history of the technique, its emphasis underwent several
evolutionary and revolutionary transformations. Remarkably, the new developments
have neither taken away, nor diminished the value of earlier applications of the
powder diffraction method; on the contrary, they enhanced and made them more
precise and dependable. A noteworthy example is phase identification from powder-
diffraction data, which dates back to the late 1930s (Hanawalt, Rinn, and Frevel).
Over the years, this application evolved into the Powder Diffraction File

TM
contain-

ing reliable patterns of some 300,000 crystalline materials in a readily searchable
database format (Powder Diffraction File is maintained and distributed by the Inter-
national Centre for Diffraction Data, http://www.icdd.com).

As it often happens in science and engineering, certain innovations may go unno-
ticed for some time but when a critical mass is reached or exceeded, they stimulate
unprecedented growth and expansion, never thought possible in the past. Both the
significance and applications of the powder diffraction method have been drastically
affected by several directly related as well as seemingly unrelated developments that
have occurred in the recent past. First was the widespread transition from analogue
(X-ray film) to digital (point, line, and area detectors) recording of scattered inten-
sity, which resulted in the improved precision and resolution of the data. Second was
the groundbreaking work by Rietveld, Young and many others, who showed that full
profile powder diffraction data may be directly employed in structure refinement and
solution. Third was the availability of personal computers, which not only function
as instrument controllers, but also provide the much needed and readily available
computing power. Computers thus enable the processing of large arrays of data col-
lected in an average powder diffraction experiment. Fourth was the invention and
rapid evolution of the internet, which puts a variety of excellent, thoroughly tested
computer codes at everyone’s fingertips, thanks to the visionary efforts of many
bright and dedicated crystallographers.

Collectively, these major developments resulted in the revolutionary changes and
opened new horizons for the powder diffraction technique. Not so long ago, if you
wanted to establish the crystal structure of a material at the atomic resolution, vir-
tually the only reliable choice was to grow an appropriate quality single crystal.
Only then could one proceed with the collection of diffraction data from the crys-
tal followed by a suitable data processing to solve the structure and refine relevant
structural parameters. A common misconception among the majority of crystallo-
graphers was that powder diffraction has a well-defined niche, which is limited to
phase identification and precise determination of unit cell dimensions. Over the past
ten to twenty years the playing field has changed dramatically, and the ab initio
structure determination from powder diffraction data is now a reality. This raises the
bar and offers no excuse for those who sidestep the opportunity to establish details
of the distribution of atoms in the crystal lattice of every polycrystalline material,
whose properties are under examination. Indeed, accurate structural knowledge ob-
tained from polycrystals is now within reach. We believe that it will eventually lead
to a much better understanding of structure-property relationships, which are critical
for future advancements in materials science, chemistry, physics, natural sciences,
and engineering.
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Before a brief summary recounting the subject of this book, we are obliged to
mention that our work was not conducted in a vacuum. Excellent texts describing
the powder diffraction method have been written, published, and used by the gener-
ations of professors teaching the subject and by the generations of students learning
the trade in the past. Traditional applications of the technique have been excep-
tionally well-covered by Klug and Alexander (1954), Azaroff and Buerger (1958),
Lipson and Steeple (1970), Cullity (1956 and 1978), Jenkins and Snyder (1996),
and Cullity and Stock (2001). There has never been a lack of reports describing the
modern capabilities of powder diffraction, and they remain abundant in technical
literature (Journal of Applied Crystallography, Acta Crystallographica, Powder Dif-
fraction, Rigaku Journal, and others). A collective monograph, dedicated entirely to
the Rietveld method, was edited by Young and published in 1993. A second col-
lection of reviews, describing the state of the art in structure determination from
powder diffraction data, appeared in 2002, and it was edited by David, Shankland,
McCusker, and Baerlocher. These two outstanding and highly professional mono-
graphs are a part of the multiple-volume series sponsored by the International Union
of Crystallography, and are solid indicators that the powder diffraction method has
been indeed transformed into a powerful and precise, yet readily accessible, struc-
ture determination tool. We highly recommend all the books mentioned in this para-
graph as additional reading to everyone, although the older editions are out of print.

Our primary motivation for this work was the absence of a suitable text that
can be used by both the undergraduate and graduate students interested in pursu-
ing in-depth knowledge and gaining practical experience in the application of the
powder diffraction method to structure solution and refinement. Here, we place em-
phasis on powder diffraction data collected using conventional X-ray sources and
general-purpose powder diffractometers, which remain primary tools for thousands
of researchers and students in their daily experimental work. Brilliant synchrotron
and powerful neutron sources, which are currently operational or in the process of
becoming so around the world, are only briefly mentioned. Both may, and often
do provide unique experimental data, which are out-of-reach for conventional pow-
der diffraction especially when high pressure, high and low temperature, and other
extreme environments are of concern. The truth, however, is that the beam time is
precious, and both synchrotron and neutron sources are unlikely to become available
to everyone on a daily basis. Moreover, diffraction fundamentals remain the same,
regardless of the nature of the employed radiation and the brilliance of the source.

This book has spawned from our affection and lasting involvement with the tech-
nique, which began long ago in a different country, when both of us were working
our way through the undergraduate and then graduate programs in Inorganic Chem-
istry at L’viv State University, one of the oldest and finest institutions of higher edu-
cation in Ukraine. As we moved along, powder diffraction has always remained on
top of our research and teaching engagements. The major emphasis of our research
is to obtain a better understanding of the structure–property relationships of crys-
talline materials, and both of us teach graduate-level powder diffraction courses at
our respective departments – Materials Science and Engineering at Iowa State Uni-
versity and Chemistry at the State University of New York (SUNY) at Binghamton.



xii Preface to the First Edition

Even before we started talking about this book, we were unanimous in our goals:
the syllabi of two different courses were independently designed to be useful for any
background, including materials science, solid-state chemistry, physics, mineralogy,
and literally any other area of science and engineering, where structural information
at the atomic resolution is in demand. This philosophy, we hope, resulted in a text
that requires no prior knowledge of the subject. Readers are expected to have a gen-
eral scientific and mathematical background of the order of the first two years of a
typical liberal arts and sciences or engineering college.

The book is divided into seven chapters. The first chapter deals with essential
concepts of crystallographic symmetry, which are intended to facilitate both the un-
derstanding and appreciation of crystal structures. This chapter will also prepare the
reader for the realization of the capabilities and limitations of the powder diffrac-
tion method. It begins with the well-established notions of the three-dimensional
periodicity of crystal lattices and conventional crystallographic symmetry. It ends
with a brief introduction to the relatively young subject – the symmetry of aperiodic
crystals. Properties and interactions of symmetry elements, including examination
of both point and space groups, the concept of reciprocal space, which is employed
to represent diffraction from crystalline solids, and the formal algebraic treatment
of crystallographic symmetry are introduced and discussed to the extent needed in
the context of the book.

The second chapter is dedicated to properties and sources of radiation suitable
for powder diffraction analysis, and gives an overview of the kinematical theory
of diffraction along with its consequences in structure determination. Here, readers
learn that the diffraction pattern of a crystal is a transformation of an ordered atomic
structure into a reciprocal space rather than a direct image of the former. Diffraction
from crystalline matter, specifically from polycrystalline materials is described as
a function of crystal symmetry, atomic structure, and conditions of the experiment.
The chapter ends with a general introduction to numerical techniques enabling the
restoration of the three-dimensional distribution of atoms in a lattice by the trans-
formation of the diffraction pattern back into direct space.

The third chapter begins with a brief historical overview describing the powder
diffraction method and explains the principles, similarities, and differences among
the variety of powder diffractometers available today. Since ionizing radiation and
highly penetrating and energetic particles are employed in powder diffraction, safety
is always a primary concern. Basic safety issues are concisely spelled out using
policies and procedures established at the US DOE’s Ames Laboratory as a prac-
tical example. Sample preparation and proper selection of experimental conditions
are exceedingly important in the successful implementation of the technique. There-
fore, the remainder of this chapter is dedicated to a variety of issues associated with
specimen preparation, data collection, and analysis of most common systematic er-
rors that have an impact on every powder diffraction experiment.

Beginning from chapter four, key issues that arise during the interpretation of
powder diffraction data, eventually leading to structure determination, are con-
sidered in detail and illustrated by a variety of practical examples. This chapter
describes preliminary processing of experimental data, which is critical in both
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qualitative and quantitative phase analyses. In addition to a brief overview of phase
identification techniques and quantitative analysis, readers will learn how to deter-
mine both the integrated intensities and angles of the observed Bragg peaks with the
highest achievable precision.

Chapter five deals with the first major hurdle, which is encountered in powder
diffraction analysis: unavoidably, the determination of any crystal structure starts
from finding the shape, symmetry, and dimensions of the unit cell of the crystal lat-
tice. In powder diffraction, finding the true unit cell from first principles may present
considerable difficulty because experimental data are a one-dimensional projection
of the three-dimensional reciprocal lattice. This chapter, therefore, introduces the
reader to a variety of numerical techniques that result in the determination of precise
unit cell dimensions. The theoretical background is followed by multiple practical
examples with varying complexity.

Chapter six is dedicated to the solution of materials’ structures, that is, here we
learn how to find the distribution of atoms in the unit cell and create a complete
or partial model of the crystal structure. The problem is generally far from trivial,
and many structure solution cases in powder diffraction remain unique. Although
structure determination from powder data is not a wide-open and straight highway,
knowing where to enter, how to proceed, and where and when to exit is equally vital.
Hence, in this chapter both direct and reciprocal space approaches and some practical
applications of the theory of kinematical diffraction to solving crystal structures
from powder data are explained and broadly illustrated. Practical examples start from
simple, nearly transparent cases, and end with quite complex inorganic structures.

The solution of a crystal structure is considered complete only when multiple
profile variables and crystallographic parameters of a model have been fully refined
against the observed powder diffraction data. Thus, the last, the seventh chapter
of this book describes the refinement technique, most commonly employed today,
which is based on the idea suggested in the middle 1960s by Rietveld. Successful
practical use of the Rietveld method, though directly related to the quality of pow-
der diffraction data (the higher the quality, the more reliable the outcome), largely
depends on the experience and the ability of the user to properly select a sequence
in which various groups of parameters are refined. In this chapter, we introduce
the basic theory of Rietveld’s approach, followed by a series of hands-on exam-
ples that demonstrate the refinement of crystal structures with various degrees of
completeness and complexity, models of which were partially or completely built in
chapter six.

The book is supplemented by an electronic volume – compact disk – containing
powder diffraction data collected from a variety of materials that are used as exam-
ples and in the problems offered at the end of every chapter. In addition, electronic
versions of some 330 illustrations found throughout the book are also on the CD.
Electronic illustrations, which we hope is useful to both instructors and students be-
cause electronic figures are in color, are located in a separate folder /Figures on the
CD. Three additional folders named /Problems, /Examples and /Solutions contain
experimental data, which are required for solving problems, as self-exercises, and
our solutions to the problems, respectively. The disk is organized as a web page,
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which makes it easy to navigate. All web links found in the book, are included on
the CD and can be followed by simply clicking on them. Every link is current as
of January 2003. The compact disk is accessible using both Mac’s and PC’s, and
potential incompatibility problems have been avoided by using portable document,
HTML, and ASCII formats.

Many people have contributed in a variety of ways in the making of this book.
Our appreciation and respect goes to all authors of books, monographs, research
articles, websites, and computer programs cited and used as examples through-
out this text. We are indebted to our colleagues, Professor Karl Gschneidner, Jr.
from Iowa State University, Professor Scott R.J. Oliver from SUNY at Bingham-
ton, Professor Alexander Tishin from Moscow State University, Dr. Aaron Holm
from Iowa State University, and Dr. Alexandra (Sasha) Pecharsky from Iowa State
University, who read the entire manuscript and whose helpful advice and friendly
criticism made this book better. It also underwent a common-sense test, thanks to
Lubov Zavalij and Vitalij Pecharsky, Jr. Some of the experimental data and samples
used as the examples have been provided by Dr. Lev Akselrud from L’viv State
University, Dr. Oksana Zaharko from Paul Scherrer Institute, Dr. Iver Anderson,
Dr. Matthew Kramer, and Dr. John Snyder (all from Ames Laboratory, Iowa State
University), and we are grateful to all of them for their willingness to share the
results of their unpublished work. Special thanks are in order to Professor Karl
Gschneidner, Jr. (Iowa State University) and Professor M. Stanley Whittingham
(SUNY at Binghamton), whose perpetual attention and encouragement during our
work on this book have been invaluable. Finally yet significantly, we extend our
gratitude to our spouses, Alexandra (Sasha) Pecharsky and Lubov Zavalij, and to
our children, Vitalij Jr., Nadya, Christina, Solomia, and Martha, who handled our
virtual absence for countless evenings and weekends with exceptional patience and
understanding.

Ames, Iowa, January 2003 Vitalij K. Pecharsky
Binghamton, New York, January 2003 Peter Y. Zavalij
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Chapter 1
Fundamentals of Crystalline State
and Crystal Lattice

The concepts of crystalline state and symmetry are just about synonymous today,
although the general sense of symmetry is much older than the idea of symmetrical
arrangement of atoms in the structures of crystalline solids. Following dictionaries,
symmetry can be defined as the “beauty of form arising from balanced proportions,”
and to be symmetrical is to have the “correspondence in size, shape, and relative
position or parts on opposite sides of a dividing line or median plane or about a
center or axis.”1

Humans constantly deal with symmetry, often without even noticing its signif-
icance in daily life. For instance, our exposure to symmetry begins every morning
with a glimpse in a mirror, and it ends every night when we fall asleep in a bed
with balanced proportions. Although intuitive perception of symmetry is familiar
to everyone, it has multiple applications in science. A much more comprehensive
and formal description of symmetry, when compared to that found in dictionaries
is, therefore, necessary.

In the first five chapters of this book, we consider basic concepts of crystal-
lographic symmetry, which are essential to the understanding of how atoms and
molecules are arranged in space, and how they form crystalline solids. Further, the
detailed knowledge of crystallographic symmetry is important to appreciate both the
capabilities and limitations of powder diffraction techniques when they are applied
to the characterization of the crystal structure of solids.

We begin with the well-established notions of the three-dimensional periodic-
ity of crystal lattices and conventional crystallographic symmetry, and consider the
properties and interactions of both finite and infinite symmetry elements, including
an examination of both point and space groups.2 The formal, algebraic treatment of

1 Webster’s Seventh New Collegiate Dictionary, G. & C. Merriam Company Publ., Springfield,
MA, USA (1963).
2 Finite symmetry elements and point groups are employed to describe relationships among parts
of finite objects, such as geometrical figures or shapes of natural and synthetic crystals. Finite
and infinite symmetry elements combined and space groups establish symmetrical relationships
among components of infinite objects, e.g., two-dimensional wall patterns or three-dimensional
arrangements of atoms or molecules in crystals. Although the division of symmetry elements on

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 1
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 1,
c© Springer Science+Business Media LLC 2009



2 1 Fundamentals of Crystalline State and Crystal Lattice

crystallographic symmetry, which is usually omitted in most texts, is introduced and
briefly discussed, since both the modern crystallography and powder diffraction are
for the most part computerized. Furthermore, the algebraic description of crystal-
lographic symmetry makes the subject complete. Treatment of the topic ends with
an introduction to a nonconventional crystallographic symmetry, which has been
a poignant subject in crystallography since the discovery of perfectly ordered but
clearly aperiodic crystals.3

Without a doubt, it is impossible to include all details about crystallographic
symmetry in these five chapters that are a part of the book about powder diffrac-
tion. We hope, however, that after the main concepts introduced here are under-
stood, the reader is ready to take on a much more comprehensive description of
crystallographic symmetry, for example, that found in the International Tables for
Crystallography.4

1.1 Crystalline State

Matter usually exists in one of the three basic states: gaseous, liquid, or solid. At
fixed temperature and pressure, only one of the states is typically stable for any
given substance, except for some combinations of these thermodynamic variables,
where two or all three states may coexist in equilibrium. By decreasing temperature
and/or increasing pressure, a gas may be condensed into a liquid and then into a
solid, although in some cases gas–solid transitions occur without formation of a
liquid phase. The most fundamental differences between gases, liquids, and solids
are summarized in Table 1.1.

Gases are formed by weakly interacting, nearly isolated particles – atoms or
molecules. Interatomic or intermolecular distances continuously change, and as a
result, gases have no fixed shape or volume, and gaseous matter occupies all avail-
able space. As far as macroscopic properties of a gas are concerned, they remain
identical in any direction because its structure, more precisely, the absence of long-
or short-range order, is isotropic.

finite and infinite is not in common use, we employ this terminology both for convenience and to
emphasize the nature of the objects that they describe, i.e., finite and infinite objects, respectively.
Finite symmetry elements are also known as nontranslational and the infinite ones as translational.
3 D. Shechtman, I. Blech, D. Gratias and J.W. Cahn, Metallic phase with long-range orientational
order and no translational symmetry, Phys. Rev. Lett. 53, 1951 (1984). Authors’ note: the discovery
of aperiodicity dates back to 1982, but as Dan Shechtman recollects, it took nearly two years to
convince referees that the observation of a fivefold symmetry axis is not an experimental artifact.
4 International Tables for Crystallography, vol. A, Fifth revised edition, Theo Hahn, Ed. (2002);
vol. B, Third edition, U. Shmueli, Ed. (2008); vol. C, Third edition, E. Prince, Ed. (2004).
All volumes are published jointly with the International Union of Crystallography (IUCr) by
Springer. Complete set of the International Tables for Crystallography, Vol. A-G, H. Fuess,
T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, E. Prince, A. Authier, V. Kopský, D.B. Litvin,
M.G. Rossmann, E. Arnold, S. Hall, and B. McMahon, Eds., is available online as eReference at
http://www.springeronline.com.
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Table 1.1 Basic characteristics of the three states of matter

State of matter Fixed volume Fixed shape Order Properties

Gas No No None Isotropica

Liquid Yes No Short-rangeb Isotropic
Solid (amorphous) Yes Yes Short-rangeb Isotropic
Solid (crystalline) Yes Yes Long-rangeb Anisotropicc

a A system has same properties in all directions.
b Short-range order is over a few atoms. Long-range order extends over ∼103 to ∼1020 atoms.
c A system has different properties in different directions.

When attraction among atoms or molecules becomes strong enough to keep them
in the immediate vicinity of each other, a gas condenses into a liquid. Since chem-
ical bonding between particles in a liquid remains relatively weak, thermal energy
is sufficient to continuously move molecules around and away from their nearest
neighbors. When a molecule in a liquid is removed from the assembly of nearest
neighbors, another molecule immediately occupies its place, thus preserving only
short-range order. Hence, particles in a liquid are not linked together permanently,
and liquids have specific volume but no fixed shape. Structures of liquids and, there-
fore, their properties remain isotropic on a macroscopic scale.

When attractive forces become so strong that the particles cannot easily move
away from one another, matter becomes solid. Solids have both shape and volume.
Although particles in a solid can be distributed randomly in space, an ordered and
repetitive pattern is more likely, as it corresponds to a lower energy state when com-
pared with a random spatial distribution of strongly interacting atoms or molecules.
The appearance of long-range order brings about structural anisotropy, and macro-
scopic properties of crystalline solids become directionally dependent, that is to say,
anisotropic.5

It is important to recognize that not all solids are crystalline or ordered. For
example, glasses have both shape and volume, but they also have a high degree
of disorder, and therefore, are classified as amorphous solids. Lack of long-range
order generally makes macroscopic properties of amorphous solids isotropic. In ad-
dition to the glassy state, which is only characterized by short-range order, some
solids may have loose (or approximate) long-range order. Similar to crystalline state,
nearly ordered solids may be described by a lattice (see Sect. 1.2) that is distorted to
a greater or lesser degree. Hence, the boundary between amorphous and crystalline
states is generally diffused, and these intermediate cases are known as semicrys-
talline solids.

One of the most distinct properties of the crystalline state is, therefore, the pres-
ence of long-range order, or in other words, a regular and in the simplest case

5 This statement is true for single crystals and for some polycrystalline materials that exhibit pre-
ferred orientation (in other words, are strongly textured), where atomic-scale anisotropy is pre-
served on a macroscopic scale. Properties of polycrystalline materials, i.e., solids that consist of a
large number of randomly oriented single crystalline grains, generally remain isotropic.
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periodic repetition of atoms or molecules in space. In theory, periodic crystals are
infinite, but in practice, their periodicity extends over a distance from ∼103 to ∼1020

atomic or molecular dimensions, which occurs because any crystal necessarily has
a number of defects and may contain impurities without losing its crystallinity. Fur-
ther, a crystal is always finite, regardless of its size.

Since our surroundings are three-dimensional, we tend to assume that crystals
are formed by periodic arrangements of atoms or molecules in three dimensions.
However, many crystals are periodic only in two, or even in one dimension, and
some do not have three-dimensional periodic structure at all, as for example solids
with incommensurately modulated and composite structures, certain polymers, and
quasicrystals. Materials may assume states that are intermediate between those of
a crystalline solid and a liquid, and they are called liquid crystals. Hence, in real
crystals, periodicity and/or order extends over a shorter or longer range, which is a
function of the nature of the material and conditions under which it was crystallized.
Structures of real crystals, for example, imperfections, distortions, defects, disloca-
tions, and impurities are subjects of separate disciplines, and symmetry concepts
considered in Chaps. 1–4 assume an ideal crystal6 with perfect periodicity.7

1.2 Crystal Lattice and Unit Cell

Periodic structure of an ideal crystal is most easily described by a lattice. In a lattice,
all elementary parallelepipeds, that is, unit cells are equal in their shape and content.
Most importantly, if the distribution of atoms in one unit cell is known, the structure
of the whole crystal, regardless of its physical size, can be reconstructed by simply
propagating (translating or shifting) this unit cell along one, two, or three directions
independently. Without the lattice, location of every atom in the crystal must be
described.8

6 Diffraction by an ideal mosaic crystal is best described by a kinematical theory of diffraction,
whereas diffraction by an ideal crystal is dynamical and can be described by a much more complex
theory of dynamical diffraction. The latter is used in electron diffraction, where kinematical theory
does not apply. X-ray diffraction by an ideal mosaic crystal is kinematical, and therefore, this
relatively simple theory is used in this book. The word “mosaic” describes a crystal that consists
of many small, ideally ordered blocks, which are slightly misaligned with respect to one another.
“Ideal mosaic” means that all blocks have the same size and degree of misalignment with respect
to other mosaic blocks.
7 Most of this book deals with conventional crystallographic symmetry, where three-dimensional
periodicity is implicitly assumed.
8 Imagine a microscopic crystal of iron in the form of a cube with a side of 1 μm. It has a vol-
ume of 10−18 m3. One cubic meter of iron weighs 7.874 metric tons, containing ∼141,000 mol =
8.49× 1028 iron atoms. The tiny, micrometer size crystal, therefore, consists of nearly 85 billion
(84,900,000,000) of iron atoms. Three numerical values (coordinate triplets, see Sect. 2.1) are re-
quired to fully define the location of every atom in space. Hence, without the notion of a lattice,
one needs over 250,000,000,000 numbers to fully describe the structure of a crystal that is invisible
to the naked eye. How about a larger crystal with a volume of only 1mm3? The crystal is still very



1.2 Crystal Lattice and Unit Cell 5

Fig. 1.1 Illustration of a two-dimensional lattice with one unit cell hatched vertically.

An example of a simple two-dimensional lattice is shown in Fig. 1.1. Each unit
cell, one of which is hatched, is the parallelogram delineated by solid lines, and
every unit cell contains one hypothetical molecule that consists of three atoms,
shown as happy faces: one large, one medium, and one small. The structure of this
molecule, including bond lengths and bond angle, remains identical throughout the
whole lattice.

Generally, the origin of the lattice and the origin of the unit cell can be chosen
arbitrarily. In Fig. 1.2, an alternative lattice with the origin in the middle of the
medium size atom is shown using dash–dotted lines. It is worth noting that both the
shape and content of the new unit cell remain the same as in Fig. 1.1.

The lattice itself, including the shape of the unit cell, may be chosen in an infinite
number of ways. As an example, a second alternative lattice with a different unit cell
is shown in Fig. 1.3. Both the origin of the lattice and the shape of the unit cell have
been changed when compared to Fig. 1.1, but the content of the unit cell has not –
it encloses the same molecule.

small, but the number of required coordinate triplets increases by a factor of a billion! Clearly,
handling such a tremendous amount of numerical data is not only inconvenient, but is absolutely
impractical.
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Fig. 1.2 Illustration of an arbitrary origin of a lattice. The original and the alternative lattices
are shown using solid and dash–dotted lines, respectively. The unit cells (hatched vertically and
horizontally) have identical shapes.

Fig. 1.3 Illustration of an arbitrary unit cell of a lattice. The original and the alternative lattices
are shown using solid and dash–dotted lines, respectively. The unit cells (hatched vertically and
horizontally) have different shapes but their areas (or volumes in three dimensions) and contents
remain identical.
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1.3 Shape of the Unit Cell

To fully describe a three-dimensional lattice or its building block – the unit cell – a
total of three noncoplanar vectors are required. These vectors (a,b,c) coincide with
the three independent edges of the elementary parallelepiped, as shown schemati-
cally in Fig. 1.4.

Therefore, any point in a three-dimensional lattice can be described by a vector,
q, defined in (1.1), where u, v, and w are integer numbers

q = ua+ vb+wc (1.1)

The three basis vectors (a, b, c) and all derived vectors (q) represent translations
in the lattice. They translate the unit cell, including every atom and/or molecule
located inside the unit cell, in three dimensions, thus filling the entire space of a
crystal. The point with u = v = w = 0 is taken as the origin of coordinates; posi-
tive and negative u, v, and w define positive and negative directions, respectively.
Since the lattice is infinite, any point in the lattice can be chosen as the origin of
coordinates.

Instead of three noncoplanar vectors, the unit cell can be completely described by
specifying a total of six scalar quantities, which are called the unit cell dimensions
or lattice parameters. These are (see also Fig. 1.4):

a,b,c,α,β,γ

The first three parameters (a, b and c) represent the lengths of the unit cell edges,
and the last three (α,β and γ) represent the angles between them. By convention,
α is the angle between b and c, β is the angle between a and c, and γ is the angle
between a and b.

Unit cell parameters are usually quoted in angströms (Å, where 1 Å = 10−10 m =
10−8 cm), nanometers (nm,1 nm = 10−9 m), or picometers (pm,1pm = 10−12 m)
for the lengths of the unit cell edges, and in degrees (◦) for the angles between basis
vectors. To differentiate between basis vectors (a, b, c), which appear in bold, the
lengths of the unit cell edges (a,b,c) always appear in italic.

Fig. 1.4 Unit cell in three
dimensions.

a 
b 

c 

β 

γ 

α 
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1.4 Crystallographic Planes, Directions, and Indices

The crystallographic plane is a geometrical concept introduced to illustrate the phe-
nomenon of diffraction from ideal crystal lattices, since algebraic equations that
govern diffraction process are difficult to visualize. It is important to realize and
remember that no “real” crystallographic planes exist in real crystals. Moreover,
regardless of whether the crystallographic plane is referred to in singular or in plural,
the reference is always made to a series, which consists of an infinite number of
planes.

1.4.1 Crystallographic Planes

A family of crystallographic planes is defined as a set of planes that intersect all
lattice points. All planes in the same family are necessarily: (1) parallel to each
other, and (2) equally spaced. The distance between the neighboring planes is called
the interplanar distance or d-spacing. The family of crystallographic planes is fully
described using three integer indices h, k, and l, which are called crystallographic
or Miller indices.9 When referring to a plane, a triplet of Miller indices is always
enclosed in parentheses: (hkl). Miller indices indicate that the planes that belong to
the family (hkl) divide lattice vectors (unit cell edges) a, b, and c into h,k, and l
equal parts, respectively. When the planes are parallel to a crystallographic axis, the
corresponding Miller index is set to 0.

The meaning of the Miller indices can be better understood after considering
Figs. 1.5–1.7. In Fig. 1.5, both sets of planes are parallel to b and c. Hence, in both
cases k = l = 0. The set of planes shown on the left divides a into one part, while the

c

b

a

d(100)=a d(200)=a/2

c

b

a

Fig. 1.5 Families of (100) and (200) crystallographic planes.

9 Miller indices were introduced by the British mineralogist William Hallowes Miller (1801–1880).
When γ= 120◦, i.e., in the hexagonal and trigonal crystal systems (crystal systems are discussed in
Sect. 2.7), a total of four Miller indices may be used to designate a plane: (hkil), where i =−(h+k).
See Fig. 1.8 for details.
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Fig. 1.6 Families of (110) and (111) crystallographic planes.

a

c

b
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(213)

9141
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d

++=

Fig. 1.7 Family of (213) crystallographic planes.

planes shown on the right, divide a into two equal parts. This results in the following
Miller indices: (100) for the drawing on the left, and (200) for that on the right of
Fig. 1.5. It is obvious that the interplanar distance d(200) is 1/2 that of d(100), and the
(200) family of crystallographic planes may be considered as the second order of
the (100) family. Following the same rules, the planes shown in Fig. 1.6, left are
parallel to c and divide both a and b in one part, which results in the (110) Miller
indices for this family of crystallographic planes. Similarly, Fig. 1.6, right illustrates
the (111) and Fig. 1.7 illustrates the (213) crystallographic planes.
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Assuming that α = β = γ = 90◦, the inverse squares of the interplanar distances
for these examples of crystallographic planes are shown at the bottom of each figure.
In this case, a general formula shown in (1.2) illustrates dependence of the d-spacing
on the Miller indices of the family and the lengths of the three-unit cell edges.

1
dhkl

=

√
h2

a2 +
k2

b2 +
l2

c2 (1.2)

Equation (1.2) becomes more complicated when inter-axial angles (α,β, and/or
γ) are different from 90◦ and should be included in the calculations. The complete
description of the corresponding mathematical relationships is given later in the
book (8.2)–(8.7) in Sect. 8.4.1.

When γ= 120◦, the fourth index is usually introduced to address the possibility of
three similar choices in selecting the crystallographic basis as illustrated in Fig. 1.8.
In addition to the unit cell based on the vectors a, b, and c, two other unit cells,
based on the vectors a, −(a + b) and c, and −(a + b), b and c are possible due to
the threefold (see Sect. 2.4.3) or the sixfold (see Sect. 2.4.5) rotational symmetry
parallel to c. Thus, if only three indices are employed to designate related planes
(e.g., the darkest-, the lightest- and the medium-gray planes in Fig. 1.8), these are
(110), (12̄0), and (2̄10) planes, respectively, defined in the lattice based on the unit
vectors a, b, and c. No apparent relationships are seen between the three planes
designated using three indices. When the fourth index, i = −(h + k), is introduced,
the three planes (hkil) are only different by a cyclic permutation of the first three
indices (see Fig. 1.8), thus emphasizing symmetrical relationships existing between
these families of crystallographic planes.

a

b

c-(a+b)

(1120)

(1210)(2110)

Fig. 1.8 Three possibilities to select the crystallographic basis in hexagonal and trigonal crystal
systems and the family of (112̄0) crystallographic planes when γ = 120◦. The indices are shown
for the unit cell based on the vectors a, b, and c. Three additional symmetrically related families of
planes have indices (1̄1̄20), (1̄21̄0), and (21̄1̄0) in the same basis and we leave their identification
to the reader.



1.5 Reciprocal Lattice 11

0,0,0
[100]

[001]
[012]

[010]

[110]

[111]

[111]

a 

b 

c 

Fig. 1.9 Selected crystallographic directions in the lattice with α = β = γ = 90◦.

1.4.2 Crystallographic Directions

Directions in the crystal lattice are described using lines that pass through the origin
of the lattice and are parallel to the direction of interest. Since the lattice is infinite, a
line drawn in any direction from its origin will necessarily pass through the infinite
number of lattice points. For example, the line traversing the origin and parallel to
the body diagonal of the unit cell, passes through the points . . . , 3̄3̄3̄, 2̄2̄2̄, 1̄1̄1̄, 000,
111, 222, 333,. . . The crystallographic direction is therefore, indicated by referring
to the coordinates (u,v and w, see (1.1)) of the first point other than the origin, which
the line intersects on its way from the origin. To differentiate between indices of the
crystallographic planes, indices of the crystallographic directions are enclosed in
square brackets [uvw], as shown in Fig. 1.9.

1.5 Reciprocal Lattice

The concept of a reciprocal lattice10 was first introduced by Ewald,11 and it quickly
became an important tool in the illustrating and understanding of both the diffraction
geometry and relevant mathematical relationships. Let a, b, and c be the elementary
translations in a three-dimensional lattice (called here a direct lattice), as shown for
example in Fig. 1.4.

10 For additional information see IUCr teaching pamphlets: A. Authier, The reciprocal lattice,
http://www.iucr.org/iucr-top/comm/cteach/pamphlets/4/index.html and the International Tables for
Crystallography, vol. A and vol. B.
11 Peter Paul Ewald (1888–1985). German physicist, whose work [P.P. Ewald, Das reziproke Gitter
in der Strukturtheorie, Z. Kristallogr. 56, 129 (1921)] is considered a landmark in using reciprocal
lattice in X-ray diffraction. See Wikipedia (http://en.wikipedia.org/wiki/Paul Peter Ewald) for a
brief biography.
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A second lattice, reciprocal to the direct lattice, is defined by three elementary
translations a∗, b∗ and c∗,12 which simultaneously satisfy the following two condi-
tions:

a∗ ·b = a∗ · c = b∗ ·a = b∗ · c = c∗ ·a = c∗ ·b = 0 (1.3)
a∗ ·a = b∗ ·b = c∗ · c = 1 (1.4)

All products in (1.3) and (1.4) are scalar (or dot) products. As a reminder, the
dot product of the two vectors, v1 and v2, is a scalar quantity, which is equal to
the product of the absolute values of the two vectors and the cosine of the angle α
between them:

v1 ·v2 = v1v2 cosα (1.5)

Conversely, the vector (or cross) product of the same two vectors (v1 × v2) is a
vector, v3, in the direction perpendicular to the plane of v1 and v2, whose magnitude
is equal to the product of the absolute values of the two vectors and the sine of the
angle α between them, or

|v1 ×v2| = v3 = v1v2 sinα (1.6)

In other words, the length of the vector v3 is equal to the area of the parallelogram
formed by the vectors v1 and v2 (hatched in Fig. 1.10), and its direction is perpen-
dicular to the plane of the parallelogram.

Considering (1.3)–(1.6), it is possible to show that the elementary translations in
the reciprocal lattice are defined as

a∗ =
b× c

V
, b∗ =

c×a
V

, c∗ =
a×b

V
(1.7)

and that the inverse relationships are also true, in other words,

a =
b∗ × c∗

V ∗ , b =
c∗ ×a∗

V ∗ , c =
a∗ ×b∗

V ∗ (1.8)

Fig. 1.10 Vector (cross) prod-
uct of two vectors. The ori-
entation of v3 is determined
using the right-hand rule:
thumb of the right hand is
aligned with v1, index finger
with v2, then v3 is aligned
with the middle finger. Tails
of all vectors face the middle
of the palm.

α

v3=v1� v2

v2

v1

12 Symbol with an asterisk always refers to a parameter of reciprocal lattice.
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In (1.7) and (1.8), the two scalar quantities V and V ∗ are the volumes of the unit
cell in the direct and reciprocal lattices, respectively. Hence, a∗ is perpendicular to
both b and c; b∗ is perpendicular to both a and c; and c∗ is perpendicular to both a
and b. In terms of the interplanar distances, d∗ is perpendicular to the corresponding
crystallographic planes, and its length is inversely proportional to d, that is,

d∗
hkl =

1
dhkl

(1.9)

An important consequence of (1.9) is that a set, which consists of an infinite num-
ber of crystallographic planes in the direct lattice, is represented by a single vector
or by a point at the end of the vector in the reciprocal lattice.13 When interaxial an-
gles are orthogonal, i.e., when α = β = γ = 90◦, the relationships between the unit
cell dimensions of reciprocal and real lattices are simplified to

a∗ = 1/a, b∗ = 1/b, c∗ = 1/c (1.10)

The two-dimensional example illustrating the relationships between the direct
and reciprocal lattices, which are used to represent crystal structures (see Sect. 2.1)
and diffraction patterns (see Sects. 7.2.3 and 8.1), respectively, is shown in Fig. 1.11.
An important property of the reciprocal lattice is that its symmetry is the same as
the symmetry of the direct lattice. However, in the direct space, atoms can be lo-
cated anywhere in the unit cell, whereas diffraction peaks are represented only by

a

b

a*

b* 

Direct space and
crystal structure

Reciprocal space and
diffraction pattern
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01

02

03
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12 

13
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21

22

23

30

31

32

33

40

41

42

43

*d(12)

d(12)

Fig. 1.11 Example of converting crystallographic planes in the direct lattice into points in the
reciprocal lattice. The corresponding Miller indices are shown near the points in the reciprocal
lattice.

13 Hence, any vector in a three-dimensional reciprocal lattice is determined as d∗
hkl = ha∗ + kb∗ +

lc∗. Also see (8.8) and Fig. 8.10.
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the points of the reciprocal lattice, and the unit cells themselves are “empty” in the
reciprocal space. Further, the contents of every unit cell in the direct space is the
same, but the intensity of diffraction peaks, which are conveniently represented us-
ing points in the reciprocal space, varies. We note that reciprocal lattice and unit cell,
and reciprocal space itself, are nothing more than mathematical concepts introduced
to help with visualizing and describing periodic diffraction patterns. Similarly, direct
space lattice and unit cell, but not direct space itself, are used to describe periodic
structures of crystals.

1.6 Additional Reading

1. C. Giacovazzo, H.L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti, and
M. Catti, Fundamentals of crystallography. IUCr texts on crystallography 7, Second Edition,
Oxford University Press, Oxford and New York (2002).

2. D. Schwarzenbach, Crystallography, Wiley, New York (1996).
3. C. Hammond, The basics of crystallography and diffraction. IUCr texts on crystallography 3.

Oxford University Press, Oxford, New York (1997).
4. D.E. Sands, Introduction to crystallography, Dover Publications, Dover (1994).
5. International Tables for Crystallography, vol. A, Fifth Revised Edition, Theo Hahn, Ed., Pub-

lished for the International Union of Crystallography by Springer, Berlin (2002).
6. International Tables for Crystallography. Brief teaching edition of volume A, Fifth Revised

Edition. Theo Han, Ed., Published for the International Union of Crystallography by Springer,
Berlin (2002).

1.7 Problems

1. Consider a two-dimensional lattice shown in Fig. 1.12 (left), which was discussed
earlier in Sect. 1.2. One half of the molecules in this lattice have been modified in

Fig. 1.12 The original lattice containing indistinguishable molecules in which a proper unit cell is
hatched (left) and a new lattice derived by switching half of the atoms from happy to sad faces in a
regular fashion.
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a

b

Fig. 1.13 The two dimensional nonorthogonal lattice with the unit cell shown in bold.

a regular way so that their atoms now have sad faces, as shown in Fig. 1.12 (right).
This may be a schematic illustrating the formation of a magnetically ordered struc-
ture, where happy and sad faces represent opposite directions of magnetic moments.
Suggest the most probable unit cell in this new lattice assuming that the correct unit
cell in the original lattice is shown by a hatched parallelogram.

2. Consider a two dimensional nonorthogonal lattice shown in Fig. 1.13. Sketch the
following sets of crystallographic planes: (12), (1̄2), (32̄).

3. A monoclinic lattice has the following unit cell dimensions: a = 5.00 Å, b =
10.0 Å, c = 8.00 Å, and β = 110◦. Calculate the unit cell dimensions of the corre-
sponding reciprocal lattice.



Chapter 2
Finite Symmetry Elements
and Crystallographic Point Groups

In addition to simple translations, which are important for understanding the concept
of the lattice, other types of symmetry may be, and are present in the majority of
real crystal structures. Here we begin with considering a single unit cell, because
it is the unit cell that forms a fundamental building block of a three-dimensionally
periodic, infinite lattice, and therefore, the vast array of crystalline materials.

2.1 Content of the Unit Cell

To completely describe the crystal structure, it is not enough to characterize only
the geometry of the unit cell. One also needs to establish the distribution of atoms
in the unit cell, and consequently, in the entire lattice. The latter is done by simply
translating each point inside the unit cell using (1.1). Hence, the three noncoplanar
vectors a, b, and c form a basis of the coordinate system with three noncoplanar
axes X ,Y , and Z, which is called the crystallographic coordinate system or the crys-
tallographic basis. The coordinates of a point inside the unit cell, i.e., the coordinate
triplets x, y, z, are expressed in fractions of the unit cell edge lengths, and therefore,
they vary from 0 to 1 along the corresponding vectors (a, b, or c).1 Thus, the coor-
dinates of the origin of the unit cell are always 0, 0, 0 (x = 0, y = 0 and z = 0), and
for the ends of a-, b-, and c-vectors, they are 1, 0, 0; 0, 1, 0 and 0, 0, 1, respectively.
Again, using capital italic X , Y, and Z, we will always refer to crystallographic axes
coinciding with a, b, and c directions, respectively, while small italic x, y, and z are
used to specify the corresponding fractional coordinates along the X , Y, and Z axes.

An example of the unit cell in three dimensions and its content given in terms of
coordinates of all atoms is shown in Fig. 2.1. Here, the centers of gravity of three
atoms (“large,” “medium,” and “small” happy faces) have coordinates x1,y1,z1;
x2,y2,z2 and x3,y3,z3, respectively. Strictly speaking, the content of the unit cell

1 In order to emphasize that the coordinate triplets list fractional coordinates of atoms, in crystal-
lographic literature these are often denoted as x/a, y/b, and z/c.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 17
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 2,
c© Springer Science+Business Media LLC 2009



18 2 Finite Symmetry Elements and Crystallographic Point Groups

should be described by specifying other relevant atomic parameters in addition
to the position of each atom in the unit cell. These include types of atoms (i.e.,
their chemical symbols or sequential numbers in a periodic table instead of “large,”
“medium” and “small”), site occupancy, and individual displacement parameters.
All these quantities are defined and explained later in the book, see Chap. 9.

2.2 Asymmetric Part of the Unit Cell

It is important to realize that the case shown in Fig. 2.1 is rarely observed in reality.
Usually, unit cell contains more than one molecule or a group of atoms that are
converted into each other by simple geometrical transformations, which are called
symmetry operations. Overall, there may be as many as 192 transformations in some
highly symmetric unit cells. A simple example is shown in Fig. 2.2, where each unit
cell contains two molecules that are converted into one another by 180◦ rotation
around imaginary lines, which are perpendicular to the plane of the figure. The
location of one of these lines (rotation axes) is indicated using small filled ellipse.
The original molecule, chosen arbitrarily, is white, while the derived, symmetrically
related molecule is black.

The independent part of the unit cell (e.g., the upper right half of the unit cell
separated by a dash-dotted line and hatched in Fig. 2.2) is called the asymmetric
unit. It is the only part of the unit cell for which the specification of atomic positions
and other atomic parameters are required. The entire content of the unit cell can be
established from its asymmetric unit using the combination of symmetry operations
present in the unit cell. Here, this operation is a rotation by 180◦ around the line
perpendicular to the plane of the projection at the center of the unit cell. It is worth
noting that the rotation axis shown in the upper left corner of Fig. 2.2 is not the only
axis present in this crystal lattice – identical axes are found at the beginning and in
the middle of every unit cell edge as shown in one of the neighboring cells.2

a (X )

c (Z )

b (Y )x3x1x2

z2
z1

z3

y2

y1
y3

Fig. 2.1 Illustration of the content of the unit cell. The coordinates of the center of gravity of each
atom are given as triplets, i.e., x1,y1,z1; x2,y2,z2 and x3,y3,z3.

2 The appearance of additional rotation axes in each unit cell is the result of the simultaneous pres-
ence of both rotational and translational symmetry, which interact with one another (see Sects. 2.5
and 3.3, below).
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Fig. 2.2 Asymmetric unit (hatched vertically) contains an independent molecule, which is clear.
Black molecules are related to clear molecules in each unit cell via rotation by 180◦ around the
lines perpendicular to the plane of the projection at the center of each unit cell. The difference in
color is used only to highlight symmetrical relationships, since the clear and the black molecules
are indeed identical. All rotation axes intersecting every unit cell are shown in a neighboring cell.

Symmetry operations, therefore, can be visualized by means of certain symmetry
elements represented by various graphical objects. There are four so-called simple
symmetry elements: a point to visualize inversion, a line for rotation, a plane for
reflection, and the already mentioned translation is also a simple symmetry element,
which can be visualized as a vector. Simple symmetry elements may be combined
with one another, producing complex symmetry elements that include roto-inversion
axes, screw axes, and glide planes.

2.3 Symmetry Operations and Symmetry Elements

From the beginning, it is important to acknowledge that a symmetry operation is not
the same as a symmetry element. The difference between the two can be defined
as follows: a symmetry operation performs a certain symmetrical transformation
and yields only one additional object, for example, an atom or a molecule, which is
symmetrically equivalent to the original. On the other hand, a symmetry element is a
graphical or a geometrical representation of one or more symmetry operations, such
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as a mirror reflection in a plane, a rotation about an axis, or an inversion through
a point. A much more comprehensive description of the term “symmetry element”
exceeds the scope of this book.3

Without the presence of translations, a single crystallographic symmetry element
may yield a total from one to six objects symmetrically equivalent to one another.
For example, a rotation by 60◦ around an axis is a symmetry operation, whereas the
sixfold rotation axis is a symmetry element which contains six rotational symme-
try operations: by 60◦, 120◦, 180◦, 240◦, 300◦, and 360◦ about the same axis. The
latter is the same as rotation by 0◦ or any multiple of 360◦. As a result, the sixfold
rotation axis produces a total of six symmetrically equivalent objects counting the
original. Note that the 360◦ rotation yields an object identical to the original and
literally converts the object into itself. Hence, symmetry elements are used in vi-
sual description of symmetry operations, while symmetry operations are invaluable
in the algebraic or mathematical representation of crystallographic symmetry, for
example, in computing.

Four simple symmetry operations – rotation, inversion, reflection, and translation
– are illustrated in Fig. 2.3. Their association with the corresponding geometrical
objects and symmetry elements is summarized in Table 2.1. Complex symmetry
elements are shown in Table 2.2. There are three new complex symmetry elements,
which are listed in italics in this table:

Fig. 2.3 Simple symmetry operations. From left to right: rotation, inversion, reflection, and trans-
lation.

3 It may be found in: P.M. de Wolff, Y. Billiet, J.D.H. Donnay, W. Fischer, R.B. Galiulin, A.M.
Glazer, Marjorie Senechal, D.P. Schoemaker, H. Wondratchek, Th. Hahn, A.J.C. Wilson, and
S.C. Abrahams, Definition of symmetry elements in space groups and point groups. Report of
the International Union of Crystallography ad hoc committee on the nomenclature in symmetry,
Acta Cryst. A45, 494 (1989); P.M. de Wolff, Y. Billiet, J.D.H. Donnay, W. Fischer, R.B. Galiulin,
A.M. Glazer, Th. Hahn, M. Senechal, D.P. Schoemaker, H. Wondratchek, A.J.C. Wilson, and S.C.
Abrahams, Symbols for symmetry elements and symmetry operations. Final report of the Interna-
tional Union of Crystallography ad hoc committee on the nomenclature in symmetry, Acta Cryst.
A48, 727 (1992); H.D. Flack, H. Wondratchek, Th. Hahn, and S.C. Abrahams, Symmetry elements
in space groups and point groups. Addenda to two IUCr reports on the nomenclature in symmetry,
Acta Cryst. A56, 96 (2000).
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Table 2.1 Simple symmetry operations and conforming symmetry elements.

Symmetry operation Geometrical representation Symmetry element

Rotation Line (axis) Rotation axis
Inversion Point (center) Center of inversion
Reflection Plane Mirror plane
Translation Vector Translation vector

Table 2.2 Derivation of complex symmetry elements.

Symmetry operation Rotation Inversion Reflection Translation

Rotation – Roto-inversion axisa Nob Screw axis
Inversion – – Nob Nob

Reflection – – – Glide plane
Translation – – – –
a The prefix “roto” is nearly always omitted and these axes are called “inversion axes.”
b No new complex symmetry element is formed as a result of this combination.

– Roto-inversion axis (usually called inversion axis), which includes simultaneous
rotation and inversion.4

– Screw axis, which includes simultaneous rotation and translation.
– Glide plane, which combines reflection and translation.

Symmetry operations and elements are sometimes classified by the way they
transform an object as proper and improper. An improper symmetry operation in-
verts an object in a way that may be imaged by comparing the right and left hands:
the right hand is an inverted image of the left hand, and if you have ever tried to put
a right-handed leather glove on your left hand, you know that it is quite difficult,
unless the glove has been turned inside out, or in other words, inverted. The inverted
object is said to be enantiomorphous to the direct object and vice versa. Thus, sym-
metry operations and elements that involve inversion or reflection, including when
they are present in complex symmetry elements, are improper. They are: center of
inversion, inversion axes, mirror plane, and glide planes. On the contrary, proper
symmetry elements include only operations that do not invert an object, such as ro-
tation and translation. They are rotation axes, screw axes, and translation vectors.
As is seen in Fig. 2.3 both the rotation and translation, which are proper symmetry
operations, change the position of the object without inversion, whereas both the
inversion and reflection, that is, improper symmetry operations, invert the object in
addition to changing its location.

Another classification is based on the presence or absence of translation in a
symmetry element or operation. Symmetry elements containing a translational com-
ponent, such as a simple translation, screw axis, or glide plane, produce infinite
numbers of symmetrically equivalent objects, and therefore, these may be called

4 Alternatively, roto-reflection axes combining simultaneous rotation and reflection may be used,
however, each of them is identical in its action to one of the roto-inversion axes.
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infinite symmetry elements. For example, the lattice is infinite because of the pres-
ence of translations. All other symmetry elements that do not contain translations
always produce a finite number of objects, and they may be called finite symmetry
elements. Center of inversion, mirror plane, rotation, and roto-inversion axes are all
finite symmetry elements. Finite symmetry elements and operations are used to de-
scribe the symmetry of finite objects, for example, molecules, clusters, polyhedra,
crystal forms, unit cell shape, and any noncrystallographic finite objects, for exam-
ple, the human body. Both finite and infinite symmetry elements are necessary to de-
scribe the symmetry of infinite or continuous structures, such as a crystal structure,
two-dimensional wall patterns, and others. We begin the analysis of crystallographic
symmetry from simpler finite symmetry elements, followed by the consideration of
more complex infinite symmetry elements.

2.4 Finite Symmetry Elements

Symbols of finite crystallographic symmetry elements and their graphical represen-
tations are listed in Table 2.3. The full name of a symmetry element is formed by
adding “N-fold” to the words “rotation axis” or “inversion axis.” The numeral N
generally corresponds to the total number of objects generated by the element,5 and
it is also known as the order or the multiplicity of the symmetry element. Orders of
axes are found in columns 2 and 4 in Table 2.3, for example, a threefold rotation
axis or a fourfold inversion axis.

Note that the onefold inversion axis and the twofold inversion axis are identical
in their action to the center of inversion and the mirror plane, respectively. Both the
center of inversion and mirror plane are commonly used in crystallography, mostly

Table 2.3 Symbols of finite crystallographic symmetry elements.

Rotation
angle, ϕ

Rotation axes Roto-inversion axes

International
symbol

Graphical
symbola

International
symbol

Graphical
symbola

360◦ 1 none 1̄b

180◦ 2 2̄ = mc

120◦ 3 3̄ = 3+ 1̄
90◦ 4 4̄
60◦ 6 6̄ = 3+m⊥3
a When the symmetry element is perpendicular to the plane of the projection.
b Identical to the center of inversion.
c Identical to the mirror plane.

5 Except for the center of inversion, which results in two objects, and the threefold inversion axis,
which produces six symmetrically equivalent objects. See (4.27) and (4.28) in Sect. 4.2.4 for an
algebraic definition of the order of a symmetry element.
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because they are described by simple geometrical elements: point or plane, respec-
tively. The center of inversion is also often called the “center of symmetry.”

Further, as we see in Sects. 2.4.3 and 2.4.5, below, transformations performed
by the threefold inversion and the sixfold inversion axes can be represented by two
independent simple symmetry elements. In the case of the threefold inversion axis,
3̄, these are the threefold rotation axis and the center of inversion present indepen-
dently, and in the case of the sixfold inversion axis, 6̄, the two independent sym-
metry elements are the mirror plane and the threefold rotation axis perpendicular
to the plane, as denoted in Table 2.3. The remaining fourfold inversion axis, 4̄, is a
unique symmetry element (Sect. 2.4.4), which cannot be represented by any pair of
independently acting symmetry elements.

Numerals in the international symbols of the center of inversion and all inversion
axes are conventionally marked with the bar on top6 and not with the dash or the
minus sign in front of the numeral (see Table 2.3). The dash preceding the numeral
(or the letter “b” following the numeral – shorthand for “bar”), however, is more
convenient to use in computing for the input of symmetry data, for example, −1 (or
1b), −3 (3b), −4 (4b), and −6 (6b) rather than 1̄, 3̄, 4̄, and 6̄, respectively.

The columns labeled “Graphical symbol” in Table 2.3 correspond to graphical
representations of symmetry elements when they are perpendicular to the plane of
the projection. Other orientations of rotation and inversion axes are conventionally
indicated using the same symbols to designate the order of the axis with properly ori-
ented lines, as shown in Fig. 2.4. Horizontal and diagonal mirror planes are normally
labeled using bold lines, as shown in Fig. 2.4, or using double lines in stereographic
projections (see Table 2.3 and Sect. 2.8).

When we began our discussion of crystallographic symmetry, we used a happy
face and a cherry to illustrate simple concepts of symmetry. These objects are incon-
venient to use with complex symmetry elements. On the other hand, the commonly
used empty circles with or without a comma inside to indicate enantiomorphous
objects, for example, as in the International Tables for Crystallography,7 are not
intuitive. For example, both inversion and reflection look quite similar. Therefore,
we will use a trigonal pyramid, shown in Fig. 2.5. This figure illustrates two pyra-

Fig. 2.4 From left to right: horizontal twofold rotation axis (top) and its alternative symbol (bot-
tom), diagonal threefold inversion axis inclined to the plane of the projection, horizontal fourfold
rotation axis, horizontal, and diagonal mirror planes. Horizontal or vertical lines are commonly
used to indicate axes located in the plane of the projection, and diagonal lines are used to indicate
axes, which form an angle other than the right angle or zero with the plane of the projection.

6 As in the “Crystallography” true-type font for Windows developed by Len Barbour. The font file
is available from http://x-seed.net/freestuff.html. This font has been used by the authors to typeset
crystallographic symbols in the manuscript of this book.
7 International Tables for Crystallography, vol. A, Fifth revised edition, Theo Hahn, Ed., Published
jointly with the International Union of Crystallography (IUCr) by Springer, Berlin (2002).
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Fig. 2.5 Trigonal pyramid with its apex up (left) and down (right) relative to the plane of the paper.
Hatching is used to emphasize enantiomorphous objects.

mids, one with its apex facing upward, where lines connect the visible apex with the
base corners, and another with its apex facing downward, which has no visible lines.
In addition, the pyramid with its apex down is hatched to accentuate the enantiomor-
phism of the two pyramids.

To review symmetry elements in detail we must find out more about rotational
symmetry, since both the center of inversion and mirror plane can be represented as
rotation plus inversion (see Table 2.3). The important properties of rotational sym-
metry are the direction of the axis and the rotation angle. It is almost intuitive that
the rotation angle: (ϕ) can only be an integer fraction (1/N) of a full turn (360◦), oth-
erwise it can be substituted by a different rotation angle that is an integer fraction of
the full turn, or it will result in the noncrystallographic rotational symmetry. Hence,

ϕ =
360◦

N
(2.1)

By comparing (2.1) with Table 2.3, it is easy to see that N, which is the order
of the axis, is also the number of elementary rotations required to accomplish a
full turn around the axis. In principle, N can be any integer number, for example,
1, 2, 3, 4, 5, 6, 7, 8. . . However, in periodic crystals only a few specific values
are allowed for N due to the presence of translational symmetry. Only axes with
N = 1, 2, 3, 4, or 6 are compatible with the periodic crystal lattice, that is, with
translational symmetry in three dimensions. Other orders, such as 5, 7, 8, and higher
will inevitably result in the loss of the conventional periodicity of the lattice, which
is defined by (1.1). The not so distant discovery of fivefold and tenfold rotational
symmetry continue to intrigue scientists even today, since it is quite clear that it is
impossible to build a periodic crystalline lattice in two dimensions exclusively from
pentagons, as depicted in Fig. 2.6, heptagons, octagons, etc. The situation shown in
this figure may be rephrased as follows: “It is impossible to completely fill the area
in two dimensions with pentagons without creating gaps.”

It is worth noting that the structure in Fig. 2.6 not only looks ordered, but it is
indeed perfectly ordered. Moreover, in recent decades, many crystals with fivefold
symmetry have been found and their approximant structures have been determined
with various degrees of accuracy. These crystals, however, do not have translational
symmetry in three directions, which means that they do not have a finite unit cell
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Fig. 2.6 Filling the area with
shaded pentagons. White
parallelograms represent
voids in the two-dimensional
pattern of pentagons.

Fig. 2.7 Onefold rotation axis (left, unmarked since it can be located anywhere) and center of
inversion (right).

and, therefore, they are called quasicrystals: quasi – because there is no translational
symmetry, crystals – because they produce discrete, crystal-like diffraction patterns.

2.4.1 Onefold Rotation Axis and Center of Inversion

The onefold rotation axis, shown in Fig. 2.7 on the left, rotates an object by 360◦, or
in other words converts any object into itself, which is the same as if no symmetrical
transformation had been performed. This is the only symmetry element which does
not generate additional objects except the original.

The center of inversion (onefold inversion axis) inverts an object through a point
as shown in Fig. 2.7, right. Thus, the clear pyramid with its apex up, which is the
original object, is inverted through a point producing its symmetrical equivalent –
the hatched (enantiomorphous) pyramid with its apex down. The latter is converted
back into the original clear pyramid after the inversion through the same point. The
center of inversion, therefore, generates one additional object, giving a total of two
related objects.
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Fig. 2.8 Twofold rotation axis perpendicular to the plane of the projection (left), and mirror planes
(middle and right). In the middle – the mirror plane nearly coincides with the plane of the projection
(the equivalent twofold inversion axis is tilted by a few degrees away from the vertical) for clarity.
On the right – the mirror plane is perpendicular to the plane of the projection. Also shown in the
middle and on the right is how the twofold inversion axis, which is perpendicular to the mirror
plane, yields the same result as the mirror plane.

2.4.2 Twofold Rotation Axis and Mirror Plane

The twofold rotation axis (Fig. 2.8, left) simply rotates an object around the axis by
180◦, and this symmetry element results in two symmetrically equivalent objects:
original plus transformed. Note that the 180◦ rotation of the new pyramid around
the same axis converts it to the original pyramid. Hence, it is correct to state that the
twofold rotation axis rotates the object by 0 (360◦) and 180◦.

The mirror plane (twofold inversion axis) reflects a clear pyramid in a plane to
yield the hatched pyramid, as shown in Fig. 2.8, in the middle and on the right.
Similar to the inversion center and the twofold rotation axis, the same mirror plane
reflects the resulting (hatched) pyramid yielding the original (clear) pyramid. The
equivalent symmetry element, that is, the twofold inversion axis first rotates an ob-
ject (clear pyramid) by 180◦ around the axis, as shown by the dotted image of a
pyramid with its apex up in the middle or apex down on the right of Fig. 2.8. The
pyramid does not remain in this position because the twofold axis is combined
with the center of inversion, and the pyramid is immediately (or simultaneously)
inverted through the center of inversion located on the axis. The final locations are
shown by the hatched pyramids in Fig. 2.8. The mirror plane is used to describe
this combined operation rather than the twofold inversion axis because of its sim-
plicity and a better graphical representation of the reflection operation versus the
roto-inversion. Similar to the twofold rotation axis, the mirror plane results in two
symmetrically equivalent objects.

2.4.3 Threefold Rotation Axis and Threefold Inversion Axis

The threefold rotation axis (Fig. 2.9, left) results in three symmetrically equivalent
objects by rotating the original object around the axis by 0 (360◦), 120◦, and 240◦.
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Fig. 2.9 Threefold rotation (left) and threefold inversion (right) axes perpendicular to the plane of
the projection. The dashed arrows on the right schematically show the counterclockwise rotation
by 120◦ and a simultaneous inversion through the center of symmetry located on the axis.

The threefold inversion axis (Fig. 2.9, right) produces six symmetrically equiva-
lent objects. The original object, for example, any of the three clear pyramids with
apex up, is transformed as follows: it is rotated by 120◦ counterclockwise and then
immediately inverted from this intermediate position through the center of inversion
located on the axis, as shown by the dashed arrows in Fig. 2.9. These operations re-
sult in a hatched pyramid with its apex down positioned 60◦ clockwise from the
original pyramid. By applying the same transformation to this hatched pyramid,
the third symmetrically equivalent object would be a clear pyramid next to the first
hatched pyramid rotated by 60◦ clockwise. These transformations are carried out
until the next obtained object repeats the original pyramid.

It is easy to see that the six symmetrically equivalent objects are related to one
another by a threefold rotation axis (the three clear pyramids are connected by an
independent threefold axis, and so are the three hatched pyramids) and by a cen-
ter of inversion, which relates the pairs of opposite pyramids. Hence, the threefold
inversion axis is not only the result of two simultaneous operations (3 then1̄), but
the same symmetrical relationships can be established as a result of two symmetry
elements present independently. In other words, 3̄ is identical to 3 and 1̄.

2.4.4 Fourfold Rotation Axis and Fourfold Inversion Axis

The fourfold rotation axis (Fig. 2.10, left) results in four symmetrically equiva-
lent objects by rotating the original object around the axis by 0 (360◦), 90◦, 180◦,
and 270◦.
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Fig. 2.10 Fourfold rotation (left) and fourfold inversion (right) axes perpendicular to the plane of
the projection.

The fourfold inversion axis (Fig. 2.10, right) also produces four symmetrically
equivalent objects. The original object, for example, any of the two clear pyramids
with apex up, is rotated by 90◦ counterclockwise and then it is immediately inverted
from this intermediate position through the center of inversion located on the axis.
This transformation results in a hatched pyramid with its apex down in the position
next to the original pyramid, but in the clockwise direction. By applying the same
transformation to this hatched pyramid, the third symmetrically equivalent object
would be a clear pyramid next to the hatched pyramid in the clockwise direction.
The fourth object is obtained in the same fashion. Unlike in the case of the threefold
inversion axis (see Sect. 2.4.3), this combination of four objects cannot be produced
by applying the fourfold rotation axis and the center of inversion separately, and
therefore, this is a unique symmetry element. In fact, the combination of four pyra-
mids shown in Fig. 2.10 (right), does not have an independent fourfold symmetry
axis, nor does it have the center of inversion! As can be seen from Fig. 2.10, both
fourfold axes contain a twofold rotation axis (180◦ rotations) as a subelement.

2.4.5 Sixfold Rotation Axis and Sixfold Inversion Axis

The sixfold rotation axis (Fig. 2.11, left) results in six symmetrically equivalent
objects by rotating the original object around the axis by 0 (360◦), 60◦, 120◦, 180◦,
240◦, and 300◦.

The sixfold inversion axis (Fig. 2.11, right) also produces six symmetrically
equivalent objects. Similar to the threefold inversion axis, this symmetry element
can be represented by two independent simple symmetry elements: the first one
is the threefold rotation axis, which connects pyramids 1–3–5 and 2–4–6, and the
second one is the mirror plane perpendicular to the threefold rotation axis, which
connects pyramids 1–4, 2–5, and 3–6. As an exercise, try to obtain all six symmet-
rically equivalent pyramids starting from the pyramid 1 as the original object by
applying 60◦ rotations followed by immediate inversions. Keep in mind that objects
are not retained in the intermediate positions because the sixfold rotation and inver-
sion act simultaneously.
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Fig. 2.11 Sixfold rotation (left) and sixfold inversion (right) axes. The sixfold inversion axis is
tilted by a few degrees away from the vertical to visualize all six symmetrically equivalent pyra-
mids. The numbers next to the pyramids represent the original object (1), and the first generated
object (2), etc. The odd numbers are for the pyramids with their apexes up.

The sixfold rotation axis also contains one threefold and one twofold rotation
axes, while the sixfold inversion axis contains a threefold rotation and a twofold
inversion (mirror plane) axes as subelements. Thus, any N-fold symmetry axis with
N > 1 always includes either rotation or inversion axes of lower order(s), which is
(are) integer divisor(s) of N.

2.5 Interaction of Symmetry Elements

So far we have considered a total of ten different crystallographic symmetry ele-
ments, some of which were combinations of two simple symmetry elements, acting
either simultaneously or consecutively. The majority of crystalline objects, for ex-
ample, crystals and molecules, have more than one nonunity symmetry element.

Symmetry elements and operations interact with one another, producing new
symmetry elements and symmetry operations, respectively. When applied to sym-
metry, an interaction means consecutive (and not simultaneous, as in the case of
complex symmetry elements) application of symmetry elements. The appearance of
new symmetry operations can be understood from a simple deduction, using the fact
that a single symmetry operation produces only one new object:

– Assume that symmetry operation No. 1 converts object X into object X1.
– Assume that another symmetry operation, No. 2, converts object X1 into

object X2.
– Since object X1 is symmetrically equivalent to object X, and object X2 is sym-

metrically equivalent to object X1, then objects X and X2 should also be related
to one another.

The question is: what converts object X into object X2? The only logical answer is:
there should be an additional symmetry operation, No. 3, that converts object X into
object X2.
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A

m1

22

BA

DC

1

Fig. 2.12 Schematic illustrating the interaction of symmetry elements. A twofold rotation axis (2)
and a center of inversion (1) located on the axis (left) result in a mirror plane perpendicular to the
axis intersecting it at the center of inversion (right). The important difference from Fig. 2.8 (middle
and right), where neither the twofold axis nor the center of inversion are present independently, the
combination of four pyramids (A, B, C, and D) here includes either of these symmetry elements.

Consider the schematic shown in Fig. 2.12 (left), and assume that initially we
have only the twofold rotation axis, 2, and the center of inversion, 1̄. Also assume
that the center of inversion is located on the axis (if not, translational symmetry will
result, see Sects. 3.1 and 3.2).

Beginning with the Pyramid A as the original object, and after rotating it around
the axis by 180◦ we obtain Pyramid B, which is symmetrically equivalent to Pyra-
mid A. Since we also have the center of inversion, it converts Pyramid A into Pyra-
mid D, and Pyramid B into Pyramid C. It is easy to see from Fig. 2.12 (right) that
Pyramid C is nothing else but the reflected image of Pyramid A and vice versa,
and Pyramid D is the reflected copy of Pyramid B. Remembering that these mirror
reflection relationships between A and C, and B and D were not present from the
beginning, we conclude that a new symmetry element – a mirror plane, m – has
emerged as the result of the sequential application of two symmetry elements to the
original object (2 and 1̄).

The mirror plane is, therefore, a derivative of the twofold rotation axis and the
center of inversion located on the axis. The derivative mirror plane is perpendicular
to the axis, and intersects the axis in a way that the center of inversion also belongs to
the plane. If we start from the same Pyramid A and apply the center of inversion first
(this results in Pyramid D) and the twofold axis second (i.e., A→B and D→C), the
resulting combination of four symmetrically equivalent objects and the derivative
mirror plane remain the same.

This example not only explains how the two symmetry elements interact, but it
also serves as an illustration to a broader conclusion deduced at the beginning of
this section: any two symmetry operations applied in sequence to the same object
create a third symmetry operation, which applies to all symmetrically equivalent
objects. Note that if the second operation is the inverse of the first, then the resulting
third operation is unity (the onefold rotation axis, 1). For example, when a mirror
plane, a center of inversion, or a twofold rotation axis are applied twice, all result in
a onefold rotation axis.
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The example considered in Fig. 2.12 can be also written in a form of an equa-
tion using the international notations of the corresponding symmetry elements (see
Table 2.3):

2× 1̄(on2) = 1̄(on2)×2 = m(⊥2 through 1̄) (2.2)

where “×” designates the interaction between (successive application of) symmetry
elements. The same example (Fig. 2.12) can be considered starting from any two of
the three symmetry elements. As a result, the following equations are also valid:

2×m(⊥2) = m(⊥2)×2 = 1̄(at m⊥2) (2.3)

m× 1̄(on m) = 1̄(on m)×m = 2(⊥m through 1̄) (2.4)

2.5.1 Generalization of Interactions Between Finite
Symmetry Elements

In the earlier examples (Fig. 2.12 and Table 2.5), the twofold rotation axis and the
mirror plane are perpendicular to one another. However, symmetry elements may in
general intersect at various angles (φ). When crystallographic symmetry elements
are of concern, and since only one-, two-, three-, four- and sixfold rotation axes
are allowed, only a few specific angles φ are possible. In most cases they are: 0◦

(e.g., when an axis belongs to a plane), 30◦, 45◦, 60◦ and 90◦. The latter means
that symmetry elements are mutually perpendicular. Furthermore, all symmetry el-
ements should intersect along the same line or in one point, otherwise a translation
and, therefore, an infinite symmetry results.

An example showing that multiple symmetry elements appear when a twofold
rotation axis intersects with a mirror plane at a 45◦ angle is seen in Fig. 2.13. All
eight pyramids can be obtained starting from a single pyramid by applying the two
symmetry elements (i.e., the mirror plane and the twofold rotation axis), first to the

m2 m2

2

m ρ

Fig. 2.13 Mirror plane (m) and twofold rotation axis (2) intersecting at 45◦ (left) result in addi-
tional symmetry elements: two mirror planes, twofold rotation axis and fourfold inversion axis
(right).
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Table 2.4 Typical interactions between finite symmetry elements.

First
element

Second element Derived element
(major)

Comments,
examples

1̄ N-fold axis m for even N 2̄ = m
N-fold inversion axis
for odd N

3̄

2 2 at φ = 30◦, 45◦, 60◦,
or 90◦

N-fold rotation axis,
N = 180/φ

6, 4, 3, or 2
perpendicular to
first and second
axes

m m at φ = 30◦, 45◦, 60◦,
or 90◦

Same as above 6, 4, 3, or 2-fold
axis along the
common line

m 2 at 90◦ Center of inversion 1̄ where m and 2
intersect

m 2 at φ = 30◦, 45◦, 60◦ N-fold inversion
axis,
N = 180/(90−φ)

3̄, 4̄ or 6̄ in m and
perpendicular to 2

3 or 3̄ 2, 4, or 4̄ at 54.74◦; Four intersecting 3
or 3̄ plus

Symmetry of a
cube or

3 or 3̄ at 70.53◦ other symmetry
elements

tetrahedron

original pyramid and, second to the pyramids that appear as a result of symmetrical
transformations. As an exercise, try to obtain all eight pyramids beginning from a
selected pyramid using only the mirror plane and the twofold axis that are shown in
Fig. 2.13 (left). Hints: original pyramid (1), rotate it (2), reflect both (4), rotate all
(6), and reflect all (8). Numbers in parenthesis indicate the total number of different
pyramids that should be present in the figure after each symmetrical transformation.

So far, we have enough evidence that when two symmetry elements interact, they
result in additional symmetry element(s). Moreover, when three symmetry elements
interact, they will also produce derivative symmetry elements. For example, three
mutually perpendicular mirror planes yield a center of inversion in a point, which
is common for all three planes, plus three twofold rotation axes along the lines
where any two planes intersect. However, all cases when more than two elements
interact with one another can be reduced to the interactions of pairs. The most
typical interactions of the pairs of symmetry elements and their results are shown in
Table 2.4.

2.5.2 Symmetry Groups

As established earlier, the interaction between a pair of symmetry elements (or sym-
metry operations) results in another symmetry element (or operation). The former
may be new, or it may already be present in a given combination of symmetrically
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Table 2.5 Symmetry elements resulting from all possible combinations of 1, 1̄, 2, and m when 2
is perpendicular to m, and 1̄ is located at the intersection of 2 and m.

Symmetry operation 1 1̄ 2 m

1 1 1̄ 2 m
1̄ 1̄ 1 m 2
2 2 m 1 1̄
m m 2 1̄ 1

equivalent objects. If no new symmetry element(s) appear, and when interactions
between all pairs of the existing ones are examined, the generation of all symmetry
elements is completed. The complete set of symmetry elements is called a symmetry
group.

Table 2.5 illustrates the generation of a simple symmetry group using symmetry
elements from Fig. 2.12. The only difference is that in Table 2.5, a onefold rota-
tion axis has been added to the earlier considered twofold rotation axis, center of
inversion, and mirror plane for completeness. It is easy to see that no new symmetry
elements appear when interactions between all four symmetry elements have been
taken into account.

Considering only finite symmetry elements and all valid combinations among
them, a total of 32 crystallographic symmetry groups can be constructed. The 32
symmetry groups can be derived in a number of ways, one of which has been illus-
trated in Table 2.5, but this subject falls beyond the scope of this book. Nevertheless,
the family of finite crystallographic symmetry groups, which are also known as the
32 point groups, is briefly discussed in Sect. 2.9.

2.6 Fundamentals of Group Theory

Since the interaction of two crystallographic symmetry elements results in a third
crystallographic symmetry element, and the total number of them is finite, valid
combinations of symmetry elements can be assembled into finite groups. As a re-
sult, mathematical theory of groups is fully applicable to crystallographic symmetry
groups.

The definition of a group is quite simple: a group is a set of elements G1,
G2, . . .,GN, . . . , for which a binary combination law is defined, and which together
satisfy the four fundamental properties: closure, associability, identity, and the in-
verse property. Binary combination law (a few examples are shown at the end of
this section) describes how any two elements of a group interact (combine) with
one other. When a group contains a finite number of elements (N), it represents a
finite group, and when the number of elements in a group is infinite then the group
is infinite. All crystallographic groups composed from finite symmetry elements are
finite, that is, they contain a limited number of symmetry elements.
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The four properties of a group are: closure, associability, identity, and inversion.
They can be defined as follows:

– Closure requires that the combination of any two elements, which belong to a
group, is also an element of the same group:

Gi ×Gj = Gk

Note that here and below “×” designates a generic binary combination law, and
not multiplication. For example, applied to symmetry groups, the combination
law (×) is the interaction of symmetry elements; in other words, it is their se-
quential application, as has been described in Sect. 2.5. For groups containing
numerical elements, the combination law can be defined as, for example, addi-
tion or multiplication. Every group must always be closed, even a group which
contains an infinite number of elements.

– Associability requires that the associative law is valid, that is,

(Gi ×Gj)×Gk = Gi × (Gj ×Gk).

As established earlier, the associative law holds for symmetry groups. Returning
to the example in Fig. 2.12, which includes the mirror plane, the twofold rotation
axis, the center of inversion and onefold rotation axis (the latter symmetry ele-
ment is not shown in the figure, and we did not discuss its presence explicitly, but
it is always there), the resulting combination of symmetrically equivalent objects
is the same, regardless of the order in which these four symmetry elements are
applied. Another example to consider is a group formed by numerical elements
with addition as the combination law. For this group, the associative law always
holds because the result of adding three numbers is always identical, regardless
of the order in which the sum was calculated.

– Identity requires that there is one and only one element, E (unity), in a group,
such that

E×Gi = Gi ×E = Gi

for every element of the group. Crystallographic symmetry groups have the iden-
tity element, which is the onefold rotation axis – it always converts an object into
itself, and its interaction with any symmetry element produces the same sym-
metry element (e.g., see Table 2.5). Further, this is the only symmetry element
which can be considered as unity. In a group formed by numerical elements with
addition as the combination law, the unity element is 0, and if multiplication is
chosen as the combination law, the unity element is 1.

– Inversion requires that each element in a group has one, and only one inverse
element such that

G−1
i ×Gi = Gi ×G−1

i = E.

As far as symmetry groups are concerned, the inversion rule also holds since the
inverse of any symmetry element is the same symmetry element applied twice,
for example, as in the case of the center of inversion, mirror plane and twofold
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rotation axis, or the same rotation applied in the opposite direction, as in the
case of any rotation axis of the third order or higher. In a numerical group with
addition as the combination law, the inverse element would be the element which
has the sign opposite to the selected element, that is, M+(−M) = (−M)+M = 0
(unity), while when the combination law is multiplication, the inverse element is
the inverse of the selected element, or MM−1 = M−1M = 1 (unity).

It may be useful to illustrate how the rules defined here can be used to establish
whether a certain combination of elements forms a group or not. The first two ex-
amples are noncrystallographic, while the third represents a simple crystallographic
group.

1. Consider an integer number 1, and multiplication as the combination law. Since
there are no limitations on the number of elements in a group, then a group may
consist of a single element. Is this group closed? Yes, 1×1 = 1. Is the associative
rule applicable? Yes, since 1× 1 = 1 no matter in which order you multiply the
two ones. Is there one and only one unity element? Yes, it is 1, since 1×1 = 1.
Is there one and only one inverse element for each element of the group? Yes,
because 1×1 = 1. Hence, this is a group. It is a finite group.

2. Consider all integer numbers (. . .− 3,−2,−1,0,1,2,3. . .) with addition as the
combination law. Is this group closed? Yes, since a sum of any two integers is
also an integer. How about associability? Yes, since the result of adding three
integers is always identical, regardless of the order in which they were added to
one another. Is there a single unity element? Yes, this group has one, and only
one unity element, 0, since adding 0 to any integer results in the same integer.
Is there one and only one inverse element for any of the elements in the group?
Yes, for any positive M, the inverse is −M; for any negative M, the inverse is
+M, since M+(−M) = (−M)+M = 0 (unity). Hence, this is a group. Since the
number of elements in the group is infinite, this group is infinite.

3. Consider the combination of symmetry elements shown in Fig. 2.12. The com-
bination law here has been defined as interaction of symmetry elements (or their
consecutive application to the object). The group contains the following sym-
metry elements: 1, 1̄,2 and m. Associability, identity, and inversion have been
established earlier, when we were considering group rules. Is this group closed?
Yes, it is closed as shown in Table 2.5. Therefore, these four symmetry elements
form a group as well. This group is finite.

2.7 Crystal Systems

As described earlier, the number of finite crystallographic symmetry elements is
limited to a total of ten. These symmetry elements can intersect with one another
only at certain angles, and the number of these angles is also limited (e.g., see
Table 2.4). The limited number of symmetry elements and the ways in which they
may interact with each other leads to a limited number of the completed (i.e., closed)
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Table 2.6 Seven crystal systems and the corresponding characteristic symmetry elements.

Crystal system Characteristic symmetry element or combination of symmetry
elements

Triclinic No axes other than onefold rotation or onefold inversion
Monoclinic Unique twofold axis and/or single mirror plane
Orthorhombic Three mutually perpendicular twofold axes, either rotation or

inversion
Trigonal Unique threefold axis, either rotation or inversion
Tetragonal Unique fourfold axis, either rotation or inversion
Hexagonal Unique sixfold axis, either rotation or inversion
Cubic Four threefold axes, either rotation or inversion, along four body

diagonals of a cube

sets of symmetry elements – symmetry groups. When only finite crystallographic
symmetry elements are considered, the symmetry groups are called point groups.
The word “point” is used because symmetry elements in these groups have at least
one common point and, as a result, they leave at least one point of an object un-
moved.

The combination of crystallographic symmetry elements and their orientations
with respect to one another in a group defines the crystallographic axes, that is,
establishes the coordinate system used in crystallography. Although in general, a
crystallographic coordinate system can be chosen arbitrarily (e.g., see Fig. 1.3), to
keep things simple and standard, the axes are chosen with respect to the orientation
of specific symmetry elements present in a group. Usually, the crystallographic axes
are chosen to be parallel to rotation axes or perpendicular to mirror planes. This
choice simplifies both the mathematical and geometrical descriptions of symmetry
elements and, therefore, the symmetry of a crystal in general.

As a result, all possible three-dimensional crystallographic point groups have
been divided into a total of seven crystal systems, based on the presence of a specific
symmetry element, or a specific combination of symmetry elements present in the
point group. The seven crystal systems are listed in Table 2.6.

2.8 Stereographic Projection

All symmetry elements that belong to any of the three-dimensional point groups
can be easily depicted in two dimensions by using the so-called stereographic pro-
jections. The visualization is achieved similar to projections of northern or southern
hemispheres of the globe in geography. Stereographic projections are constructed as
follows:

– A sphere with a center that coincides with the point (if any) where all symmetry
elements intersect (Fig. 2.14, left) is created. If there is no such common point,
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then the selection of the center of the sphere is random, as long as it is located on
one of the characteristic symmetry elements (see Table 2.6).

– This sphere is split by the equatorial plane into the upper and lower hemispheres.
– The lines corresponding to the intersections of mirror planes and the points cor-

responding to the intersections of rotation axes with the upper (“northern”) hemi-
sphere are projected on the equatorial plane using the lower (“southern”) pole as
the point of view.

– The projected lines and points are labeled using appropriate symbols (see
Table 2.3 and Fig. 2.4).

– The presence of the center of inversion, if any, is shown by adding letter C to the
center of the projection.

Figure 2.14 (right) shows an arbitrary stereographic projection of the point group
symmetry formed by the following symmetry elements: twofold rotation axis, mir-
ror plane and center of inversion (compare it with Fig. 2.12, which shows the same
symmetry elements without the stereographic projection). The presence of onefold
rotation axis is never indicated on the stereographic projection.

Arbitrary orientations are inconvenient because the same point-group symmetry
results in an infinite number of possible stereographic projections. Thus, Fig. 2.15

Point of view

Equatorial
plane

C

Fig. 2.14 The schematic of how to construct a stereographic projection. The location of the center
of inversion is indicated using letter C in the middle of the stereographic projection.

C C

Fig. 2.15 The two conventional stereographic projections of the point group symmetry containing
a twofold axis, mirror plane and center of inversion. The onefold rotation is not shown.
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Fig. 2.16 Examples of the stereographic projections with tetragonal (left) and cubic (right)
symmetry.

shows two different stereographic projections of the same point-group symmetry
with the horizontal (left) and vertical (right) orientations of the plane, both of which
are standard.

Figure 2.16 (left) is an example of the stereographic projection of a tetrag-
onal point group symmetry containing symmetry elements discussed earlier (see
Fig. 2.13). Figure 2.16 (right) shows the most complex cubic point group symmetry
containing three mutually perpendicular fourfold rotation axes, four threefold rota-
tion axes located along the body diagonals of a cube, six twofold rotation axes, nine
mirror planes, and a center of inversion. More information about the stereographic
projection can be found in the International Union of Crystallography (IUCr) teach-
ing pamphlets8 and in the International Tables for Crystallography, Vol. A.

2.9 Crystallographic Point Groups

The total number of symmetry elements that form a crystallographic point group
varies from one to as many as 24. However, since symmetry elements interact with
one another, there is no need to use each and every symmetry element that belongs
to a group in order to uniquely define and completely describe any of the crystallo-
graphic groups. The symbol of the point-group symmetry is constructed using the
list of basic symmetry elements that is adequate to generate all derivative symmetry
elements by applying the first property of the group (closure).

The orientation of each symmetry element with respect to the three major crys-
tallographic axes is defined by its position in the sequence that forms the symbol
of the point-group symmetry. The complete list of all 32 point groups is found in
Table 2.7.

The columns labeled “first position,” “second position” and “third position”
describe both the symmetry elements found in the appropriate position of the
symbol and their orientation with respect to the crystallographic axes. When the
corresponding symmetry element is a rotation axis, it is parallel to the specified

8 E.J.W. Whittaker, The stereographic projection, http://www.iucr.org/iucr-top/comm/cteach/
pamphlets/11/index.html.
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Table 2.7 Symbols of crystallographic point groups.

Crystal First position Second position Third position Point group
system Element Direction Element Direction Element Direction

Triclinic 1 or 1̄ N/A None None 1, 1̄
Monoclinic 2, m or 2/m Y None None 2, m, 2/m
Orthorhombic 2 or m X 2 or m Y 2 or m X 222, mm2, mmm
Tetragonal 4, 4̄ or Z None or X None or Base 4, 4̄, 4/m, 422,

4/m 2 or m 2 or m diagonal 4mm, 4̄2m,
4/mmm

Trigonal 3 or 3̄ Z None or X None 3, 3̄, 32, 3m, 3̄m
2 or m

Hexagonal 6, 6̄ or 6/m Z None or X None or Base 6, 6̄, 6/m, 622,
2 or m 2 or m diagonal 6mm, 6̄2m,

6/mmm
Cubic 2, m, 4 X 3 or 3̄ Body None or Face 23, m3, 432, 4̄3m,

or 4̄ diagonal 2 or m diagonal m3̄m

Table 2.8 Crystallographic point groups arranged according to their merohedry.

Crystal system Na N̄a N⊥mb N⊥2b N||m N̄||m N⊥m||m

Triclinic 1 1̄
Monoclinic 2 m 2/m
Orthorhombic 222 mm2 mmm
Tetragonal 4 4̄ 4/m 422 4mm 4̄m2 4/mmm

Trigonal 3 3̄ 32 3m 3̄m
Hexagonal 6 6̄ 6/m 622 6mm 6̄m2 6/mmm
Cubic 23 m3̄ 432 4̄3m m3̄m
a N and N̄ are major N-fold rotation and inversion axes, respectively.
b m and two are mirror plane and twofold rotation axis, respectively, which are parallel (||) or
perpendicular (⊥) to the major axis.

crystallographic direction but mirror planes are always perpendicular to the corre-
sponding direction.9 When the crystal system has a unique axis, for example, 2 in
the monoclinic crystal system, 4 in the tetragonal crystal system, and so on, and
when there is a mirror plane that is perpendicular to the axis, this combination is
always present in the point-group symbol. The axis is listed first and the plane is
listed second with the two symbols separated by a slash (/). According to Table 2.7,
the crystallographic point group shown in Fig. 2.15 is 2/m, and those in Fig. 2.16
are 4̄m2 (left) and m3̄m (right), respectively.

The list of crystallographic point groups appears not very logical, even when
arranged according to the crystal systems, as has been done in Table 2.7. Therefore,
in Table 2.8 the 32-point groups are arranged according to their merohedry, or in

9 In fact, since a mirror plane can be represented by a two-fold inversion axis, this is the same as
the latter being parallel to the corresponding direction, see Fig. 2.8 (right).
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other words, according to the presence of symmetry elements other than the major
(or unique) axis.

Another classification of point groups is based on their action. Thus, centrosym-
metric point groups, or groups containing a center of inversion are shown in
Table 2.8 in bold, while the groups containing only rotational operation(s) and,
therefore, not changing the enantiomorphism (all hands remain either left of right),
are in italic. Point groups shown in rectangular boxes do not have the inversion cen-
ter; however, they change the enantiomorphism. An empty cell in the table means
that the generated point group is already present in a different place in Table 2.8,
sometimes in a different crystal system.

2.10 Laue10 Classes

Radiation and particles, that is, X-rays, neutrons, and electrons interact with a crystal
in a way that the resulting diffraction pattern is always centrosymmetric, regardless
of whether an inversion center is present in the crystal or not. This leads to another
classification of crystallographic point groups, called Laue classes. The Laue class
defines the symmetry of the diffraction pattern produced by a single crystal, and
can be easily inferred from a point group by adding the center of inversion (see
Table 2.9).

For example, all three monoclinic point groups, that is, 2, m, and 2/m will result
in 2/m symmetry after adding the center of inversion. In other words, the 2, m, and
2/m point groups belong to the Laue class 2/m, and any diffraction pattern obtained
from any monoclinic structure will always have 2/m symmetry. The importance of
this classification is easily appreciated from the fact that Laue classes, but not crys-

Table 2.9 The 11 Laue classes and six “powder” Laue classes.

Crystal system Laue class “Powder” Laue class Point groups

Triclinic 1̄ 1̄ 1, 1̄
Monoclinic 2/m 2/m 2, m, 2/m
Orthorhombic mmm mmm 222, mm2, mmm
Tetragonal 4/m 4/mmm 4, 4̄,4/m

4/mmm 4/mmm 422, 4mm, 4̄m2, 4/mmm
Trigonal 3̄ 6/mmm 3, 3̄

3̄m 6/mmm 32, 3m, 3̄m
Hexagonal 6/m 6/mmm 6, 6̄, 6/m

6/mmm 6/mmm 622, 6mm, 6̄m2, 6/mmm
Cubic m3̄ m3̄m 23, m3̄

m3̄m m3̄m 432, 4̄3m, m3̄m

10 Max von Laue (1879–1960). German physicist who was the first to observe and explain the
phenomenon of X-ray diffraction in 1912. Laue was awarded the Nobel Prize in Physics in 1914
“for his discovery of the diffraction of X-rays by crystals.” For more information about Max von
Laue see http://www.nobel.se/physics/laureates/1914/.
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Table 2.10 Lattice symmetry and unit cell shapes.

Crystal family Unit cell symmetry Unit cell shape/parameters

Triclinic 1̄ a �= b �= c; α �= β �= γ �= 90◦

Monoclinic 2/m a �= b �= c; α = γ = 90◦,β �= 90◦

Orthorhombic mmm a �= b �= c; α = β = γ = 90◦

Tetragonal 4/mmm a = b �= c; α = β = γ = 90◦

Hexagonal and Trigonal 6/mmm a = b �= c; α = β = 90◦,γ = 120◦

Cubic m3̄m a = b = c; α = β = γ = 90◦

tallographic point groups, are distinguishable from diffraction data, which is caused
by the presence of the center of inversion. All Laue classes (a total of 11) listed
in Table 2.9 can be recognized from three-dimensional diffraction data when ex-
amining single crystals. However, conventional powder diffraction is fundamentally
one-dimensional, because the diffracted intensity is measured as a function of one
variable (Bragg11 angle), which results in six identifiable “powder” Laue classes.

As seen in Table 2.9, there is one “powder” Laue class per crystal system, ex-
cept for the trigonal and hexagonal crystal systems, which share the same “powder”
Laue class, 6/mmm. In other words, not every Laue class can be distinguished from
a simple visual analysis of powder diffraction data. This occurs because certain dif-
fraction peaks with potentially different intensities (the property which enables us
to differentiate between Laue classes 4/m and 4/mmm; 3̄, 3̄m, 6/m, and 6/mmm;
m3̄ and m3̄m) completely overlap since they are observed at identical Bragg angles.
Hence, only Laue classes that differ from one another in the shape of the unit cell
(see Table 2.10), are ab initio discernible from powder diffraction data without a
complete structural determination.

2.11 Selection of a Unit Cell and Bravais12 Lattices

The symmetry group of a lattice always has the highest symmetry in the conform-
ing crystal system. Taking into account that trigonal and hexagonal crystal systems
are usually described in the same type of the lattice, seven crystal systems can be
grouped into six crystal families, which are identical to the six “powder” Laue
classes. Different types of lattices, or in general crystal systems, are identified by
the presence of specific symmetry elements and their relative orientation. Further-
more, lattice symmetry is always the same as the symmetry of the unit cell shape

11 Sir William Henry Bragg (1862–1942). British physicist and mathematician who together with
his son William Lawrence Bragg (1890–1971) founded X-ray diffraction science in 1913–1914.
Both were awarded the Nobel Prize in Physics in 1915 “for their services in the analysis of crystal
structure by means of X-rays.” See http://www.nobel.se/physics/laureates/1915/ for more details.
12 Auguste Bravais (1811–1863). French crystallographer, who was the first to derive the 14 dif-
ferent lattices in 1848. A brief biography is found on WikipediA at http://en.wikipedia.org/wiki/
Auguste Bravais.
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Fig. 2.17 Illustration of different ways to select a unit cell in the same two-dimensional lattice.

(except that the lattice has translational symmetry but the unit cell does not), which
establishes unique relationships between the unit cell dimensions (a, b, c, α, β and
γ) in each crystal family as shown in Table 2.10. Thus, the fundamental rule number
one for the proper selection of the unit cell can be formulated as follows: symmetry
of the unit cell should be identical to the symmetry of the lattice, excluding transla-
tions.

We have already briefly mentioned that in general, the choice of the unit cell
is not unique (e.g., see Fig. 1.3). The uncertainty in the selection of the unit cell
is further illustrated in Fig. 2.17, where the unit cell in the same two-dimensional
lattice has been chosen in four different ways.

The four unit cells shown in Fig. 2.17 have the same symmetry (a twofold rotation
axis, which is perpendicular to the plane of the projection and passes through the
center of each unit cell), but they have different shapes and areas (volumes in three
dimensions). Further, the two unit cells located at the top of Fig. 2.17 do not contain
lattice points inside the unit cell, while each of the remaining two has an additional
lattice point in the middle. We note that all unit cells depicted in Fig. 2.17 satisfy the
rule for the monoclinic crystal system established in Table 2.10. It is quite obvious,
that more unit cells can be selected in Fig. 2.17, and an infinite number of choices
are possible in the infinite lattice, all in agreement with Table 2.10.

Without adopting certain conventions, different unit cell dimensions might, and
most definitely would be assigned to the same material based on preferences of
different researchers. Therefore, long ago the following rules (Table 2.11) were es-
tablished to designate a standard choice of the unit cell, dependent on the crystal
system. This set of rules explains both the unit cell shape and relationships between
the unit cell parameters listed in Table 2.10 (i.e., rule number one), and can be con-
sidered as rule number two in the proper selection of the unit cell.

Applying the rules established in Table 2.11 to two of the four unit cells shown at
the top of Fig. 2.17, the cell based on vectors a1 and b1 is the standard choice. The
unit cell based on vectors a2 and b2 has the angle between the vectors much farther
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Table 2.11 Rules for selecting the unit cell in different crystal systems.

Crystal family Standard unit cell choice Alternative unit cell choice

Triclinic Angles between crystallographic axes should be
as close to 90◦ as possible but greater than or
equal to 90◦

Angle(s) less than or equal
to 90◦ are allowed

Monoclinic Y -axis is chosen parallel to the unique twofold
rotation axis (or perpendicular to the mirror
plane) and angle β should be greater than but as
close to 90◦ as possible

Same as the standard
choice, but Z-axis in place
of Y , and angle γ in place of
β are allowed

Orthorhombic Crystallographic axes are chosen parallel to the
three mutually perpendicular twofold rotation
axes (or perpendicular to mirror planes)

None

Tetragonal Z-axis is always parallel to the unique fourfold
rotation (inversion) axis. X- and Y -axes form a
90◦ angle with the Z-axis and with each other

None

Hexagonal
and
trigonal

Z-axis is always parallel to three- or sixfold
rotation (inversion) axis. X- and Y -axes form a
90◦ angle with the Z-axis and a 120◦ angle with
each other

In a trigonal symmetry,a

threefold axis is chosen
along the body diagonal of
the primitive unit cell, then
a = b = c and
α = β = γ �= 90◦

Cubic Crystallographic axes are always parallel to the
three mutually perpendicular two- or fourfold
rotation axes, while the four threefold rotation
(inversion) axes are parallel to three body
diagonals of a cube

None

aInstead of a rhombohedrally centered trigonal unit cell shown in Fig. 2.20, below.

from 90◦ than the first one. The remaining two cells contain additional lattice points
in the middle. This type of the unit cell is called centered, while the unit cell without
a point in the middle is primitive. In general, a primitive unit cell is preferred over a
centered one, otherwise it is possible to select a unit cell with any number of points
inside, and ultimately it can be made as large as the entire crystal. However, because
rule number one requires that the unit cell has the same symmetry as the entire lattice
except translational symmetry, it is not always possible to select a primitive unit cell,
and so centered unit cells are used.

The third rule used to select a standard unit cell is the requirement of the min-
imum volume (or the minimum number of lattice points inside the unit cell). All
things considered, the following unit cells are customarily used in crystallography.

– Primitive, that is, noncentered unit cell. A primitive unit cell is shown schemat-
ically in Fig. 2.18 (left). It always contains a single lattice point per unit cell
(lattice points are located in eight corners of the parallelepiped, but each corner
is shared by eight neighboring unit cells in three dimensions).

– Base-centered unit cell (Fig. 2.18, right) contains additional lattice points in the
middle of the two opposite faces (as indicated by the vector pointing toward the
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Fig. 2.18 Primitive unit cell (left) and base-centered unit cell (right).
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Fig. 2.19 Body-centered unit cell (left) and face-centered unit cell (right).

middle of the base and by the dotted diagonals on both faces). This unit cell
contains two lattice points, since each face is shared by two neighboring unit
cells in three dimensions.

– Body-centered unit cell (Fig. 2.19, left) contains one additional lattice point in
the middle of the body of the unit cell. Similar to a base-centered unit cell, the
body-centered unit cell contains a total of two lattice points.

– Face-centered unit cell (Fig. 2.19, right) contains three additional lattice points
located in the middle of each face, which results in a total of four lattice points
in a single face-centered unit cell.

– Rhombohedral unit cell (Fig. 2.20) is a special unit cell that is allowed only
in a trigonal crystal system. It contains two additional lattice points located at
1/3,2/3,2/3 and 2/3,1/3,1/3 as shown by the ends of the two vectors inside the unit
cell, which results in a total of three lattice points per unit cell.

Since every unit cell in the crystal lattice is identical to all others, it is said that
the lattice can be primitive or centered. We already mentioned (1.1) that a crys-
tallographic lattice is based on three noncoplanar translations (vectors), thus the
presence of lattice centering introduces additional translations that are different
from the three basis translations. Properties of various lattices are summarized in
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Fig. 2.20 Primitive (left) and hexagonal rhombohedral (right) unit cells.

Table 2.12 Possible lattice centering.

Centering of the Lattice points International Lattice translation(s)
lattice per unit cell symbol due to centering

Primitive 1 P None
Base-centered 2 A 1/2(b+ c)
Base-centered 2 B 1/2(a+ c)
Base-centered 2 C 1/2(a+b)
Body-centered 2 I 1/2(a+b+ c)
Face-centered 4 F 1/2(b+ c); 1/2(a+ c); 1/2(a+b)
Rhombohedral 3 R 1/3a+ 2/3b+ 2/3c; 2/3a+ 1/3b+ 1/3c

Table 2.12 along with the international symbols adopted to differentiate between
different lattice types. In a base-centered lattice, there are three different possibili-
ties to select a pair of opposite faces if the coordinate system is fixed, which is also
reflected in Table 2.12.

The introduction of lattice centering makes the treatment of crystallographic
symmetry much more elegant when compared to that where only primitive lattices
are allowed. Considering six crystal families (Table 2.11) and five types of lattices
(Table 2.12), where three base-centered lattices which are different only by the ori-
entation of the centered faces with respect to a fixed set of basis vectors being taken
as one, it is possible to show that only 14 different types of unit cells are required to
describe all lattices using conventional crystallographic symmetry. These are listed
in Table 2.13, and they are known as Bravais lattices.

Empty positions in Table 2.13 exist because the corresponding lattices can be
reduced to a lattice with different centering and a smaller unit cell (rule number
three), or they do not satisfy rules number one or two. For example:

– In the triclinic crystal system, any of the centered lattices can be reduced to a
primitive lattice with the smaller volume of the unit cell (rule number three).

– In the monoclinic crystal system, the body-centered lattice can be converted into
a base-centered lattice (C), which is standard. The face-centered lattice is reduced
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Table 2.13 The 14 Bravais lattices.

Crystal system P C I F R

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Hexagonal, Trigonal

Cubic

to a base-centered lattice with half the volume of the unit cell (rule number three).
Even though the base-centered lattice may be reduced to a primitive cell and fur-
ther minimize the volume of the unit cell, this reduction is incompatible with rule
number one since more complicated relationships between the unit cell parame-
ters would result instead of the standard α = γ = 90◦ and β �= 90◦.

– In the tetragonal crystal system the base-centered lattice (C) is reduced to a prim-
itive (P) one, whereas the face-centered lattice (F) is reduced to a body-centered
(I) cell; both reductions result in half the volume of the corresponding unit cell
(rule number three).

The latter example is illustrated in Fig. 2.21, where a tetragonal face-centered
lattice is reduced to a tetragonal body-centered lattice, which has the same sym-
metry, but half the volume of the unit cell. The reduction is carried out using the
transformations of basis vectors as shown in (2.5)–(2.7).

aI = 1/2(aF −bF) (2.5)

bI = 1/2(aF +bF) (2.6)

cI = cF (2.7)
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Fig. 2.21 The reduction of the tetragonal face-centered lattice (left) to the tetragonal body-centered
lattice with half the volume of the unit cell (right). Small circles indicate lattice points.

The relationships between the unit cell dimensions and unit cell volumes of the
original face-centered (VF) and the reduced body-centered (VI) lattices are:

aI = bI =
aF√

2
=

bF√
2

; cI = cF (2.8)

VI = VF/2 (2.9)
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2.13 Problems

1. Consider two mirror planes that intersect at φ = 90◦. Using geometrical repre-
sentation of two planes establish which symmetry element(s) appear as the result
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of this combination of mirror planes. What is(are) the location(s) of new symmetry
element(s)? Name point-group symmetry formed by this combination of symmetry
elements.

2. Consider two mirror planes that intersect at φ = 45◦. Using geometrical repre-
sentation of two planes establish which symmetry element(s) appear as the result
of this combination of mirror planes. What is(are) the location(s) of new symmetry
element(s)? Name point-group symmetry formed by this combination of symmetry
elements.

3. Consider the following sequence of numbers: 1,1/2,1/3,1/4, . . . ,1/N, . . . Is this a
group assuming that the combination law is multiplication, division, addition or
subtraction? If yes, identify the combination law in this group and establish whether
this group is finite or infinite.

4. Consider the group created by three noncoplanar translations (vectors) using the
combination law defined by (1.1). Which geometrical form can be chosen to illus-
trate this group? Is the group finite?

5. Determine both the crystal system and point group symmetry of a parallelepiped
(a brick), which is shown schematically in Fig. 2.22 and in which a �= b �= c and
α = β = γ = 90◦?

6. Determine both the crystal system and point group symmetry of benzene mole-
cule, C6H6, which is shown in Fig. 2.23. Treat atoms as spheres, not as dimension-
less points.

7. Determine both the crystal system and point-group symmetry of the ethylene
molecule, C2H4, shown schematically in Fig. 2.24. Using the projection on the left,

Fig. 2.22 Illustration of a
parallelepiped (a brick) in
which three independent
edges have different lengths. b

a
c

Fig. 2.23 The schematic of
benzene molecule. Carbon
atoms are white and hydrogen
atoms are black.

x

y
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Fig. 2.24 The schematic of
ethylene molecule. Carbon
atoms are white and hydrogen
atoms are black.
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z

show all symmetry elements that you were able to identify in this molecule, include
both the in-plane and out-of-plane symmetry elements. Treat atoms as spheres, not
as dimensionless points.

8. Determine the point-group symmetry of the octahedron. How many, and which
symmetry elements are present in this point-group symmetry?

9. The following relationships between lattice parameters: a �= b �= c, α �= β �= 90 or
120◦, and γ = 90◦ potentially define a “diclinic” crystal system (two angles �= 90◦).
Is this an eighth crystal system? Explain your answer.

10. The relationships a = b �= c, α = β = 90◦, and γ �= 90◦ point to a monoclinic
crystal system, except that a = b. What is the reduced (standard) Bravais lattice in
this case? Provide equations that reduce this lattice to one of the 14 standard Bravais
types.

11. Imagine that there is an “edge-centered” lattice (for example unit cell edges
along Z contain lattice points at 1/2c). If this were true, the following lattice transla-
tion is present: (0, 0, 1/2). Convert this lattice to one of the standard lattices.

12. Monoclinic crystal system has primitive and base-centered Bravais lattices (see
Table 2.13, above). Using two-dimensional projections depicted in Fig. 2.25, show
how a body-centered lattice and a face-centered monoclinic lattice (their unit cells
are indicated with the dashed lines) can be reduced to a base-centered lattice. Write
the corresponding vectorial relationships between the unit cell vectors of the original
body-centered and face-centered lattices and the transformed base-centered lattices.
What are the relationships between the unit cell volumes of the original body- and
face-centered lattices and the resulting base-centered lattices?
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Fig. 2.25 Body centered (left) and face centered (right) monoclinic lattices projected along the
Y -axis with the corresponding unit cells shown using the dashed lines.



Chapter 3
Infinite Symmetry Elements
and Crystallographic Space Groups

So far, our discussion of symmetry of the lattice was limited to lattice points and
symmetry of the unit cell. The next step is to think about symmetry of the lattice, in-
cluding the content of the unit cell. This immediately brings translational symmetry
into consideration to reflect the periodic nature of crystal lattices, which are infi-
nite objects. As a result, we need to introduce the so-called infinite or translational
symmetry elements in addition to the already familiar finite or nontranslational sym-
metry elements, which can be present in a lattice as well. Translation or shift is a
simple infinite symmetry element (see Fig. 2.3). When acting simultaneously, trans-
lation and rotation result in screw axes; translation and reflection in a mirror plane
produce glide planes (Table 2.2). Screw axes and glide planes are, therefore, com-
plex infinite symmetry elements.

3.1 Glide Planes

The combination of a mirror reflection plane with the corresponding translations
that are always parallel to the plane, results in a total of five possible crystallographic
glide planes.1 The allowed translations are one-half or one-fourth of the length of
the basis vector, parallel to which the shift (i.e., gliding) occurs. All possible glide
planes are listed in Table 3.1 together with their graphical symbols. Since each of the
glide planes produces an infinite number of symmetrically equivalent objects from
the original, the order of the plane indicates the number of symmetrically equivalent
objects within the boundaries of one unit cell, and is also listed in Table 3.1. Thus,
there are three types of glide planes:

1 A sixth glide plane, e, has been introduced by de Wolff et al. (see the footnote on p. 20) to resolve
ambiguities occurring in some space groups (see Sect. 3.4). For example, space group Cmca, where
the translation after the reflection in the a-plane occurs along a and b, is identical to Cmcb, but the
group becomes unique, i.e., Cmce, using the e plane.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 51
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 3,
c© Springer Science+Business Media LLC 2009
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Table 3.1 Crystallographic glide planes.

Plane symbol Order Graphical symbola Translation vector

a 2 1/2a

b 2 1/2b

c 2 1/2c

n 2 1/2db

d 4 1/8 3/8 1/4db

aShown in the following coordinate system: X

YZ

X

YZ

X

YZ

X

YZ
; num-

bers near the symbols indicate displacements of the planes from origin
along Z (0 is not shown).
bd is the diagonal vector, e.g., d = a + b, d = a −b, d = a + b + c,
etc., which depends on the orientation of the plane with respect to crys-
tallographic basis vectors.

– Glide planes a, b, and c, which, after reflecting in the plane translate an object
by half of the length of a, b and c basis vectors, respectively. Because of this, for
example, glide plane, a, can be perpendicular to either b or c, but it cannot be
perpendicular to a. Similarly, glide plane, b, cannot be perpendicular to b, and
glide plane, c, cannot be perpendicular to c. Since the translation is always by
half of the corresponding basis vector, these planes produce two symmetrically
equivalent objects within one full length of the corresponding basis vector (and
within one unit cell), that is, their order is 2.

– Glide plane n, which, after reflecting in the plane, translate an object by 1/2 of the
length of the diagonal between the two basis vectors located in the plane parallel
to n. For example, glide plane, n, perpendicular to c will translate an object by
1/2(a+b). Glide plane n results in two symmetrically equivalent objects within the
full length of the diagonal vector (and within one unit cell), and its order is 2.

– Glide planes d, which after reflecting in the plane, translate an object by one-
fourth of the length of the diagonal between the two basis vectors located in the
plane parallel to d. These planes, also known as “diamond” planes since they are
found in the diamond crystal structure, are always present in pairs parallel to one
another, and translate along different diagonals. The length of the translation is
one fourth, which results in a total of four symmetrically equivalent objects per
unit cell.

The illustration of how glide planes b, c and n generate an infinite number of
symmetrically equivalent objects is shown in Fig. 3.1.
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Fig. 3.1 (a) Vertical glide plane b, perpendicular to a with a horizontal translation by 1/2 along b
(left); vertical glide plane c, perpendicular to a with a vertical translation by 1/2 along c (right).
(b) Horizontal glide plane n, perpendicular to c with a diagonal translation by 1/2(a + b) parallel to
the ab plane. The gray dotted hatched pyramid in (a) indicates the intermediate position to which
the first pyramid is reflected before it is translated along b and along the plane.

3.2 Screw Axes

Screw axes perform a rotation simultaneously with a translation along the rotation
axis. In other words, the rotation occurs around the axis, while the translation occurs
parallel to the axis. Crystallographic screw axes include only two-, three-, four- and
sixfold rotations due to the three-dimensional periodicity of the crystal lattice, which
prohibits five-, seven- and higher-order rotations. Hence, the allowed rotation angles
are the same as for both rotation and inversion axes (see (2.1) on p. 24).

Translations, t, along the axis are also limited to a few fixed values, which depend
on the order of the axis, and are defined as t = k/N, where N is axis order, and k
is an integer number between one and N− 1. For instance, for the threefold screw
axis, k = 1 and 2, and the two possible translations are one-third and two-third of the
length of the basis vector parallel to this axis, whereas for the twofold axis, k = 1,
and only half translation is allowed.

The symbol of the screw axis is constructed as Nk to identify both the order of
the axis (N) and the length of the translation (k). Thus, the two threefold screw
axes have symbols 31 and 32, whereas the only possible twofold screw axis is 21.
The International symbols, both text and graphical, and the allowed translations for
all crystallographic screw axes are found in Table 3.2. Figure 3.2 illustrates how the
twofold screw axis generates an infinite number of symmetrically equivalent objects
via rotations by 180◦ around the axis with the simultaneous translations along the
axis by half of the length of the basis vector to which the axis is parallel.
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Table 3.2 Crystallographic screw axes.

Axis order Text symbola Graphical symbola Shift along the axisb

2 21 or ⇀ 1/2

3 31, 32 1/3, 2/3

4 41, 42, 43 1/4,2/4, 3/4

6 61, 62, 63, 64, 65 1/6, 2/6, 3/6, 4/6, 5/6
a Pairs of screw axes, in which the sums of the subscripts equal to the order of the
axis are called enantiomorphous pairs, since one is the mirror image of another.
The latter is reflected in the graphical symbols of the corresponding pairs of the
enantiomorphous axes. These are: 31 and 32; 41 and 43; 61 and 65; 62 and 64.
Two enantiomorphous axes differ only by the direction of rotation or, which is the
same, by the direction of translation.
b Given as a fraction of a full translation in a positive direction assuming counter-
clockwise rotation along the same axis.
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Fig. 3.2 Horizontal (left) and vertical (right) twofold screw axis, 21. The dotted pyramid indicates
the intermediate position to which the first pyramid is rotated before it is translated along the axis.

3.3 Interaction of Infinite Symmetry Elements

Infinite symmetry elements interact with one another and produce new symmetry
elements, just as finite symmetry elements do. Moreover, the presence of the sym-
metry element with a translational component (screw axis or glide plane) assumes
the presence of the full translation vector, as seen in Figs. 3.1 and 3.2. Unlike finite
symmetry, symmetry elements in a lattice do not have to cross at one point, although
they may have a common point or a line. For example, two planes can be parallel to
one another. In this case, the resulting third symmetry element is a translation vec-
tor perpendicular to the planes with translation (t) twice the length of the interplanar
distance (d), as illustrated in Fig. 3.3.

Another example (Fig. 3.4) illustrates the result of the interaction between glide
plane, b, and center of inversion. We begin from the symmetry elements shown
using thick lines and marked in Fig. 3.4 as b and 1̄, and Pyramid A. Note that the
two symmetry elements do not share a common point. Pyramid A is converted by
the glide plane into B; B into A′, and so on. The center of inversion converts A
into C, and so on. All objects depicted in Fig. 3.4 can be obtained using the two



3.3 Interaction of Infinite Symmetry Elements 55
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Fig. 3.3 Example illustrating how two parallel mirror planes with the interplanar distance d result
in the translation t = 2d perpendicular to both planes. Starting from planes m1 and m2 (thick
lines) and pyramid 1 we obtain pyramid 2 by reflecting 1 in m1. Pyramids 3 and 4 are obtained
by reflecting pyramids 2 and 1, respectively, in m2. Thus, plane m3 (thin line) appears between
pyramids 3 and 4. Pyramid 5 is obtained from pyramid 3 by reflecting it in m1 and then resulting
pyramid (not shown) in m2, which leads to plane m4 (thin line), and so on. It is easy to see that
pyramids 1, 3, 5, and so on, as well as pyramids 2, 4, and so on are symmetrically equivalent to
one another via the action of the translation t = 2d (thin arrow).

21
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Fig. 3.4 Example illustrating the result of interaction between the glide plane, b, and the center of
inversion, 1̄. The original symmetry elements are shown using thick lines and the derivatives using
thin lines. The resulting unit cell is shaded.

original symmetry elements (keep in mind that although only 12 pyramids are shown
in this figure, their number is in reality infinite). The derived symmetry element
that converts B into C is the 21 screw axis. Additional derived symmetry elements
are translation b that transforms A into A′, translation a, other glide planes, screw
axes, and centers of inversion, as marked in Fig. 3.4. Thus, the infinite structure is
produced, and its unit cell is shaded in the figure. It is easy to see that in this infinite
structure, there are an infinite number of symmetry elements, even though we started
with just two of them: the glide plane, b, and the center of inversion, 1̄.
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Fig. 3.5 Characteristic distribution of the two-, three-, four-, and sixfold rotation axes parallel to
the unique axis in the unit cell in tetragonal (left), trigonal (center), and hexagonal (right) crystal
systems as the result of their interaction with lattice translations.

Note that only those symmetry elements which intersect the asymmetric part of
the unit cell are independent; exactly in the same way as only those atoms that
are found in the asymmetric part of the unit cell are independent (see Fig. 2.2).2

Once the locations of independent atoms and symmetry elements in the unit cell are
known, the whole crystal can be easily reconstructed. Symmetry elements interact
with basis translations, which are symmetry elements themselves. Hence, the three
noncoplanar vectors that form a three-dimensional lattice interact with symmetry
elements and distribute them together with their “sub-elements” (e.g., a sixfold axis
contains both two- and threefold axes as its sub-elements) in the specific order in
the unit cell and in the entire lattice.

The distribution of the inversion centers, twofold axes and planes in the unit cell
can be seen in Fig. 3.4: these symmetry elements are repeated along the basis trans-
lation vectors every half of the full translation. This is true for triclinic, monoclinic,
and orthorhombic crystal systems, that is, crystal systems with low symmetry. Sim-
ilar arrangements of symmetry elements in tetragonal, trigonal, and hexagonal crys-
tal systems are shown for a primitive lattice in Fig. 3.5, where only rotation axes
perpendicular to the plane of the projection were taken into account. The distribu-
tion of other symmetry elements, including the infinite ones in primitive or centered
lattices follows the same path, but types of axes and their order may be different.

The orientation and placement of crystallographic axes in a cubic crystal sys-
tem is more complex, and it is difficult to illustrate the same in a simple drawing.
However, projections of rotation axes in cubic symmetry along the unit cell edges
resemble tetragonal symmetry, while projections along the body diagonals of the
cube resemble trigonal symmetry. The positions of symmetry elements (especially
finite) in the unit cell are important, since they are directly related to special site
positions, which are discussed later in Sects. 3.5 and 3.6.

3.4 Crystallographic Space Groups

Similar to finite symmetry elements, which can be combined into point groups
(see Sect. 2.9), various combinations of the same symmetry elements plus allowed
translations, while obeying the rules described in Sect. 2.11, result in the so-called

2 Strict definition can be given as follows: two objects (atoms, molecules, or symmetry elements)
are symmetrically independent if there is no symmetry operation that converts one into another.
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crystallographic space groups. As follows from the differences in their names, sym-
metry elements in a space group are spread over the space of an infinite object, con-
trary to point groups, where all symmetry elements have at least one common point.
Therefore, each point of a continuous object can be moved in a periodic fashion
through space by the action of symmetry elements that form a space-group sym-
metry, whereas at least one point of the object remains unmoved by the action of
symmetry elements that belong to a point-group symmetry.

Given the limitations on the allowed rotations and translations (see Sects. 2.4, 3.1,
and 3.2), there is a total of 230 three-dimensional crystallographic space groups,3

which were derived and systematized independently by Fedorov4 and Schönflies.5

A complete list of space groups is found in Table 3.3, where they are arranged
according to seven crystal systems (see Sect. 2.7) and 32 crystallographic point
groups (see Sect. 2.9).

3.4.1 Relationships Between Point Groups and Space Groups

The symbols of 230 crystallographic space groups, which are found in Table 3.3, are
known as short international or short Hermann–Mauguin6 symbols. They are based
on the symbols of the corresponding point groups. The orientation of symmetry
elements with respect to the three major crystallographic axes in a space group is
the same as in the parent point group (see Table 2.7), and it depends on the position
of the element in the symbol. The rules that govern space group symbolic are quite
simple:

– The international crystallographic space group symbols begin with a capital letter
designating Bravais lattice, that is, P, A, B, C, I, F, or R (see Tables 2.12 and 2.13).

3 When vector directions (e.g., magnetic moments) are included into consideration, the number of
space groups increases dramatically. Thus, a total of 1,651 dichromatic (or Shubnikov) symmetry
groups are used to treat symmetry of magnetically ordered structures. See A.V. Shubnikov and V.A.
Koptsik, Symmetry in science and art, Plenum Press (1974) for a brief description of color sym-
metry groups. A complete treatment of dichromatic groups is found in V.A. Koptsik, Shubnikov
groups, Moscow University Press (1966).
4 Evgraf Stepanovich Fedorov (1853–1919). Russian mineralogist and crystallographer who
by applying the theory of finite groups to crystallography derived 230 space groups in 1891.
Fedorov’s last name is spelled as Fyodorov or Fedoroff in some references. See WikipediA
http://en.wikipedia.org/wiki/Yevgraf Fyodorov for a brief biography.
5 Arthur Moritz Schönflies (1853–1928). German mathematician who derived 230 space groups
independently of E.S. Fedorov in 1891. See http://www-history.mcs.st-andrews.ac.uk/Biographies/
Schonflies.html for a brief biography.
6 Named after the German crystallographer Carl Hermann (1898–1961) and the French mineral-
ogist Charles-Victor Mauguin (1878–1958) who developed the system of symbols. C. Hermann’s
and C.-V. Mauguin’s biographies written by P.P. Ewald and F. Wyart, respectively, may be found in
a book “50 years of X-ray Diffraction,” edited by P.P. Ewald. The book is available online at IUCr:
http://www.iucr.org/publ/50yearsofxraydiffraction/.
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Table 3.3 The 230 crystallographic space groups arranged according to seven crystal systems and
32 crystallographic point groups as they are listed in the International Tables for Crystallography,
vol. A. The centrosymmetric groups are in bold, while the noncentrosymmetric groups that do not
invert an object are in italic. The remaining are noncentrosymmetric groups that invert an object
(contain inversion axis or mirror plane).

Crystal system
(total number
of space
groups)

Point
group

Space groups based on a given point group symmetry
(the superscript indicates the space group number as
adopted in the International Tables for Crystallography,
vol. A)

Triclinic (2) 1 P11

1̄ P1̄2

Monoclinic (13) 2 P23, P24
1, C25

m Pm6, Pc7, Cm8, Cc9

2/m P2/m10, P21/m11, C2/m12, P2/c13, P21/c14, C2/c15

Orthorhombic (59) 222 P22216, P22217
1 , P2121218, P2121219

1 , C22220
1 , C22221,

F22222, I22223, I2121224
1

mm2 Pmm225, Pmc226
1 , Pcc227, Pma228, Pca229

1 , Pnc230,
Pmn231

1 , Pba232, Pna233
1 , Pnn234, Cmm235, Cmc236

1 ,
Ccc237, Amm238, Abm239, Ama240, Aba241, Fmm242,
Fdd243, Imm244, Iba245, Ima246

mmm Pmmm47, Pnnn48, Pccm49, Pban50, Pmma51, Pnna52,
Pmna53, Pcca54, Pbam55, Pccn56, Pbcm57, Pnnm58,
Pmmn59, Pbcn60, Pbca61, Pnma62, Cmcm63, Cmca64,
Cmmm65, Cccm66, Cmma67, Ccca68, Fmmm69,
Fddd70, Immm71, Ibam72, Ibca73, Imma74

Tetragonal (68) 4 P475, P476
1 , P477

2 , P478
3 , I479, I480

1
4̄ P4̄81, I4̄82

4/m P4/m83, P42/m84, P4/n85, P42/n86, I4/m87, I41/a88

422 P42289, P421290, P412291, P4121292, P422293,
P4221294, P432295, P4321296, I42297, I412298

4mm P4mm99, P4bm100, P42cm101, P42nm102, P4cc103,
P4nc104, P42mc105, P42bc106, I4mm107, I4cm108,
I41md109, I41cd110

4̄m2 P4̄2m111, P4̄2c112, P4̄21m113, P4̄21c114, P4̄m2115,
P4̄c2116, P4̄b2117, P4̄n2118, I4̄m2119, I4̄c2120, I4̄2m121,
I4̄2d122

4/mmm P4/mmm123, P4/mcc124, P4/nbm125, P4/nnc126,
P4/mbm127, P4/mnc128, P4/nmm129, P4/ncc130,
P42/mmc131, P42/mcm132, P42/nbc133, P42/nnm134,
P42/mbc135, P42/mnm136, P42/nmc137, P42/ncm138,
I4/mmm139, I4/mcm140, I41/amd141, I41/acd142

Trigonal (25) 3 P3143, P3144
1 , P3145

2 , R3146

3̄ P3̄147, R3̄148

32 P312149, P321150, P3112151, P3121152, P3212153,
P3221154, R32155

3m P3m1156, P31m157, P3c1158, P31c159, R3m160, R3c161

3̄m P3̄1m162, P3̄1c163, P3̄m1164, P3̄c1165, R3̄m166, R3̄c167

(Continued)
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Table 3.3 (Continued)

Hexagonal (27) 6 P6168, P6169
1 , P6170

5 , P6171
2 , P6172

4 , P6173
3

6̄ P6̄174

6/m P6/m175, P63/m176

622 P622177, P6122178, P6522179, P6222180, P6422181,
P6322182

6mm P6mm183, P6cc184, P63cm185, P63mc186

6̄m2 P6̄m2187, P6̄c2188, P6̄2m189, P6̄2c190

6/mmm P6/mmm191, P6/mcc192, P63/mcm193, P63/mmc194

Cubic (36) 23 P23195, F23196, I23197, P213198, I213199

m3̄ Pm3̄200, Pn3̄201, Fm3̄202, Fd3̄203, Im3̄204, Pa3̄205,
Ia3̄206

432 P432207, P4232208, F432209, F4132210, I432211,
P4332212, P4132213, I4132214

4̄3m P4̄3m215, F4̄3m216, I4̄3m217, P4̄3n218, F4̄3c219, I4̄3d220

m3̄m Pm3̄m221, Pn3̄n222, Pm3̄n223, Pn3̄m224, Fm3̄m225,
Fm3̄c226, Fd3̄m227, Fd3̄c228, Im3̄m229, Ia3̄d230

– The point-group symbol, in which rotation axes and mirror planes can be sub-
stituted with allowed screw axes or glide planes, respectively, is added as the
second part of the international space-group symbol.

– In some cases, the second and the third symmetry elements of the point group
can be switched, for example, point-group symmetry 4̄m2 produces two different
space groups without introducing glide planes and/or screw axes in the space-
group symbol, that is, P4̄2m and P4̄m2.

These rules not only reflect how the symbol of the space-group symmetry is
constructed, but they also establish one of the possible ways to derive all 230 crys-
tallographic space groups:

– First, consider the Bravais lattices (see Table 2.13) and point groups (see
Table 2.7) which are allowed in a given crystal system.

– Second, consider all permissible substitutions of mirror planes and/or rotation
axes with glide planes and screw axes, respectively. In this step, it is essential to
examine whether the substitution results in a new group or not ,or whether the
resulting group can be reduced to the existing one by a permutation of the unit
cell edges.

For example, think about the monoclinic point group m in the standard setting,
where m is perpendicular to b (Table 2.7). According to Table 2.13, the following
Bravais lattices are allowed in the monoclinic crystal system: P and C. There is only
one finite symmetry element (mirror plane m) to be considered for replacement with
glide planes (a, b, c, n, and d):

– The first and obvious choice of the crystallographic space group is Pm.
– By replacing m with a, we obtain new space group, Pa.
– Replacing m with b is prohibited since the plane b cannot be perpendicular to b.
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– By replacing m with c, we obtain space group Pc. This space-group symmetry is
identical to Pa, which is achieved by switching a and c because glide plane, a,
translates a point by half of full translation along a, and glide plane, c, translates
a point by half of full translation along c. Pc is a standard choice (see Table 3.3).

– By replacing m with n, we obtain space group Pn. Similar to Pa, this space group
can be converted into Pc when the following transformation is applied to the unit
cell vectors: anew = −aold,bnew = bold,cnew = aold + cold.

– Glide plane, d, is incompatible with the primitive Bravais lattice.
– By repeating the same process in combination with the base-centered lattice, C,

two new space-groups symmetry, Cm and Cc can be obtained.

Therefore, the following four monoclinic crystallographic space groups (Pm, Pc,
Cm, and Cc) result from a single monoclinic point group (m) after considering all
possible translations in three dimensions.

3.4.2 Full International Symbols of Crystallographic Space Groups

The 230 crystallographic groups listed in Table 3.3 are given in the so-called stan-
dard orientation (or setting), which includes proper selection of both the coordinate
system and origin. However, there exist a number of publications in the scientific lit-
erature, where space-group symbols are different from those provided in Table 3.3.
Despite being different, these symbols refer to one of the same 230 crystallographic
space groups but using a nonstandard setting or even using a nonstandard choice of
the coordinate system. These ambiguities primarily occur because of the following:

– The crystal structure was solved using a nonstandard setting, since most of the
modern crystallographic software enables minor deviations from the standard,
and the results were published as they were obtained, without converting them
to a conventional orientation. It is worth noting that many, but not all technical
journals allow certain deviations from crystallographic standards.

– The crystal structure contains some specific molecules, blocks, layers, or chains
of atoms or molecules, which may be easily visualized or represented using
space-group symmetry in a nonstandard setting.

Deviations from the standard are most often observed in the monoclinic crystal
system, because there are many different ways that result in a nonstandard setting
in this crystal system. This uncertainty is even reflected in the International Tables
for Crystallography, where there are two different settings in the monoclinic crystal
system. When the unique twofold axis is parallel to b (i.e., to Y -axis), this setting
is considered a standard choice, but when it is parallel to c (or to Z-axis), this is an
allowed alternative setting. In addition, the unique twofold axis can be chosen to be
parallel to a (i.e., to X-axis), which is considered a nonstandard setting.

To reflect or to emphasize a nonstandard choice of space-group symmetry, the so-
called full international or full Hermann–Mauguin symbols can be used. In the full
symbol, both the rotation axes parallel to the specific direction (see Table 2.7) and
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planes perpendicular to them (if any) are specified for each of the three positions.
If the space group has no symmetry element parallel or perpendicular to a given
direction, the symbol of the onefold rotation axis is placed in the corresponding
position. For example, P121/a1 and P1121/a, both refer to the same space-group
symmetry where the orientation of the crystallographic axes, Y and Z, is switched.
Full international symbols may also be used to designate space-group symmetry in
a standard setting, such as when the short notation Pmmm is replaced by the full
Hermann–Mauguin notation P2/m2/m2/m. The full symbol in this case emphasizes
the presence of the three mutually perpendicular twofold axes and mirror planes that
are parallel and perpendicular, respectively, to the three major crystallographic axes.

Thus, one of the most commonly observed in both natural and synthetic crystals,
space-group symmetry P21/c (standard notation with the unique twofold screw axis
parallel to Y , and α = γ = 90◦ and β �= 90◦) can be listed as follows:

– P21/b11 and P21/c11, when the unique twofold screw axis is chosen to be par-
allel to X . Both symbols represent nonstandard settings of this group, in which
α �= 90◦.

– P121/c1 (or short P21/c, which is standard) and P121/a1 (or short P21/a, which
is also standard except for the choice of the glide plane), when the unique twofold
screw axis is chosen to be parallel to Y .

– P1121/a and P1121/b, when the unique twofold screw axis is chosen to be par-
allel to Z (both represent alternative setting, where the unique twofold screw axis
is parallel to Y , and therefore, γ �= 90◦).

– P21/n11, P121/n1 (or short P21/n) or P1121/n, when the unique twofold screw
axis is chosen to be parallel to X , Y or Z, respectively, but the selection of the
diagonal glide plane, n, represents a deviation from the standard. The alternative
P21/n setting is routinely used if it results in the monoclinic angle β closer to 90◦

than in the standard P21/c.

Since the selection of the crystallographic coordinate system is not unique, con-
ventionally, a right-handed set7 of basis vectors a, b, c is chosen in compliance with
Table 2.11, and in a way that the combination of symmetry elements in the space
group is best visualized. The selection of the conventional origin is usually more
complicated, but in general the origin of the coordinate system is selected at the
center of inversion, if it is present, or at the point with the highest site symmetry, if
there is no center of inversion in the group.

Additional information about each of the 230 three-dimensional crystallographic
space groups can be found in the International Tables for Crystallography, Vol. A.
It includes their symbols, diagrams of all symmetry elements present in the group
together with their orientation with respect to crystallographic axes, the origin of the
coordinate system, and more, for both the conventional and alternative (if any) set-
tings. The format of the International Tables for Crystallography and some relevant
issues are briefly discussed in Sect. 3.5.

7 In a right-handed set, the positive directions of basis vectors a, b, c are chosen from the middle
of the palm of the right hand toward the ends of thumb, index and middle fingers, respectively.
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3.4.3 Visualization of Space-Group Symmetry in Three Dimensions

An excellent way to achieve a better understanding of both the infinite symmetry el-
ements and how they are combined in crystallographic space groups is to use three-
dimensional illustrations coupled with computer animation capabilities, for example
using the VRML (Virtual Modeling Language) file format. Thus, the crystal struc-
ture of the vanadium oxide layer in tmaV8O20

8 (tma is shorthand for tetramethyl-
ammonium, [N(CH3)4]+) and its symmetry elements are shown in Fig. 3.6 as a still
snapshot taken from a three-dimensional image.9 The latter can be displayed in a
Web browser using a VRML plug-in or by utilizing a standalone VRML viewer.10

In addition to visualizing the crystal structure in three dimensions, using VRML
enables one to move and rotate it. It is also possible to virtually “step inside” the lat-
tice or the structure and to examine them from there. The pseudo three-dimensional
drawing of the tmaV8O20 crystal structure was created using the General Structure
Analysis System (GSAS),11 and the symmetry elements were added later by manu-
ally editing the VRML file to visualize them.

m a

21
2

1
Oxygen

Vanadium

Nitrogen

Fig. 3.6 The three-dimensional view of the crystal structure of tmaV8O20 (vanadium oxide layers
and nitrogen atoms from tma molecules) with added symmetry elements. The space-group sym-
metry of the material is C2/m.

8 T. Chirayil, P.Y. Zavalij, M.S. Whittingham, Synthesis and characterization of a new vanadium
oxide, tmaV8O20, J. Mater. Chem. 7, 2193 (1997).
9 The corresponding file in the VRML format can be found online as Ch03 Figure tmaV8O20.wrl.
10 A variety of plug-ins and links to free software enabling viewing VRML files can be downloaded
from the Web via http://cic.nist.gov/vrml/vbdetect.html.
11 A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los
Alamos National Laboratory Report, LAUR 86-748 (2004) available at http://www.ccp14.ac.uk/
solution/gsas/.
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The three-dimensional model of the tmaV8O20 crystal structure9 uses the follow-
ing color scheme:

– Twofold rotation axes and mirror planes are shown in blue.
– Glide planes, a, and 21 screw axes are shown in yellow.
– Inversion centers are represented as small red spheres.
– The inversion center in the origin of coordinates (0, 0, 0), which is occupied by

nitrogen atom is shown as a blue sphere.
– Vanadium and oxygen atoms are shown as pink and green spheres, respectively.

3.4.4 Space Groups in Nature

In conclusion of this section, it may be interesting to note that not all of the 230
crystallographic space groups have been found in real crystalline materials. For ex-
ample, space groups P4222 and I432 are not found in the Inorganic Crystal Structure
Database,12 which at the time of writing this book contains crystallographic data of
100,000+ inorganic compounds. The frequency of the occurrence of various space
groups is far from uniform, and it varies for different classes of materials.

Organic compounds mostly crystallize in the low symmetry crystal systems:
95% of the known organic crystal structures have orthorhombic or lower symme-
try. In particular, ∼80% of known organic crystal structures belong to only five
space-groups symmetry: P21/c (35.1%), P1̄ (22.8%), P212121 (8.0), C2/c (8.0%),
and P21 (5.5%). Moreover, only 12 space groups account for ∼90% of the organic
compounds.13 On the contrary, the majority of inorganic compounds crystallize in
space groups with orthorhombic or higher symmetry. In order of decreasing fre-
quency, they are as follows: Pnma, P21/c, Fm3̄m, Fd3̄m, I4/mmm, P1̄, C2/c, C2/m,
P63/mmc, Pm3̄m, R3̄m, and P4/mmm. These 12 crystallographic space groups ac-
count for slightly more than 50% of structures of inorganic compounds.

3.5 International Tables for Crystallography

An example of how each of the 230 three-dimensional crystallographic space groups
is listed in the International Tables for Crystallography14 is shown in Table 3.4.
There are 12 fields in Table 3.4; each of them contains the following information:

(1) Header. Provides the short international (Hermann–Mauguin) space-group
symmetry symbol (Cmm2) followed by the Schönflies symbol of the same

12 The Inorganic Crystal Structure Database (ICSD) for WWW. ICSD is c© Fachinformationszen-
trum Karlsruhe (FIZ Karlsruhe), Germany. Web address is http://www.fiz-karlsruhe.de/icsd.html.
13 CSD: Space group statistics as of January 1, 2008 (http://www.ccdc.cam.ac.uk/products/csd/
statistics/).
14 Format varies in earlier editions of the International Tables for Crystallography; here we follow
the format adopted in Vol. A since the 1983 edition.
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space group (C11
2v, these symbols are not discussed in this book15), the corre-

sponding point group symmetry symbol (mm2) and the name of the crystal
system (Orthorhombic).

(2) Second header. Includes the sequential number of the space-group symmetry
(35) followed by the full international (Hermann–Mauguin) symbol (Cmm2,
since in this case the full symbol is the same as the short one) and Patterson sym-
metry (Cmmm). Although the Patterson function is discussed in Sect. 10.2.1, it
is worth noting here that the Patterson symmetry is derived from the symmetry
of the space group by replacing all screw axes and glide planes with the corre-
sponding finite symmetry elements, and by adding a center of inversion, if it is
not present in the space group.

(3) Space-group symmetry diagrams are shown as one or several (up to 3) orthogo-
nal projections along different unit cell axes. The projection direction is perpen-
dicular to the plane of the figure. Projection directions, orientations of axes, and
selection of the origin of the coordinates are dependent on the crystal system,
and a full description can be found in the International Tables for Crystallog-
raphy, Vol. A. The schematic for the orthorhombic crystal system is shown in
Fig. 3.7. If the horizontal symmetry element is elevated above the plane of the
projection by a fraction of the translation along the projection direction other
than 0 or 1/2, its elevation is shown as the corresponding fraction, that is, 1/8,
1/4, and so on. An additional diagram shows symmetrically equivalent points
(both inside and in the immediate vicinity of one unit cell) that are related to
one another by the symmetry elements present in the orientation matching the
first diagram.

(4) Origin of the unit cell. It is given as the site symmetry and its location, if nec-
essary. In the example shown in Table 3.4, the origin of the unit cell is located
on mm2, that is, on the twofold axis, which coincides with the line where the
two perpendicular mirror planes intersect. In this example, the origin can be
chosen arbitrarily on the Z-axis, since there are no symmetry elements with a
fixed z-coordinate in the space group Cmm2.

(5) Asymmetric unit represents the fraction of the unit cell, which generally con-
tains symmetrically inequivalent points. It is delineated by the elementary par-
allelepiped specified in terms of fractions of the corresponding unit cell edges
(i.e., 0 ≤ x ≤ 1/4, 0 ≤ y ≤ 1/2 and 0 ≤ z ≤ 1) and (if necessary) by including
supplementary restrictions, for example, x ≤ (1 + y)/2;y ≤ x/2 as in the space
group P3̄m1.

(6) Symmetry operations. For each point with coordinates x, y, z in the general
position, the symmetry operation which transforms this point into symmetrical
equivalent is listed together with its sequential number. The term “general
position” applies to any point in the unit cell that is not located on any of the

15 In Schönflies notation, CNv, designates point group with an N-fold rotation axis and a mirror
plane parallel to this axis. Hence, C2v is point group mm2 written in Schönflies notation. The
superscript (11) added to the point group symbol is the sequential number in the series of space
groups based on this particular point group (see row #7 in Table 3.3, where Cmm2 is No. 11
in this row). Hence, international space group symbols Pmn2 and Cmc21 become C10

2v and C12
2v,

respectively, in Schönflies notation.
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Fig. 3.7 Schematic representation of orthorhombic space-group symmetry diagrams showing the
origin of coordinates (0), the labels of the axes (a, b and c) and the projection directions ([001],
[010], and [100]). The box marked “General” is a general position diagram (see the description
of fields “Symmetry operations” and “Positions,” below). The triplets (abc and so on) indicate
settings symbols that result in the corresponding space-group symbols. Each settings symbol is
obtained by a permutation of the unit cell axes, e.g., cab is the cyclic permutation of abc: a′ = c,
b′ = a, c′ = b. It should be noted that a space-group symbol is invariant to the changes of the sign
(direction) of the axes.

finite symmetry elements present in the group. Symmetry operations in the
nonprimitive space groups are divided into sets. The sets are arranged based
on the translation vector(s) corresponding to Bravais lattice centering, which
are added to the coordinates of each point in the unit cell. The first set is
always the (0,0,0)+ set, which represents the primitive basis that is enough
to describe the same but primitive space-group symmetry (in this case it is
Pmm2). The second set in Table 3.4 is (1/2,1/2,0)+ set, which accounts for the
presence of the base-centered lattice, C. Each symmetry operation in addition
to its sequential number (in parenthesis) lists the nature of the operation (t
stands for translations) and its location. For example, t(1/2,1/2,0) stands for the
translation of the point by 1/2 along both a (or X) and b (or Y ); the notation a (x,
1/4,z)specifies glide plane, a, perpendicular to Y and intersecting Y at y = 1/4.

(7) Generators selected specify the minimum set of symmetry operations, including
translations that are needed to generate the space-group symmetry. They begin
with translations (the first three represent full translations along the three major
crystallographic axes, and the fourth is the translation reflecting the presence
of the base-centered Bravais lattice, C) followed by the numbers of symmetry
operations from the first set in the previous field. Hence, the space group Cmm2
can be generated by using symmetry operations No. 2 (the twofold axis coin-
ciding with Z) and No. 3 (the mirror plane perpendicular to Y and intersecting
Y at y = 0) in addition to four translations.
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(8) Positions. This field contains standardized information about possible loca-
tions (or sites) that can accommodate points (or atoms) in the unit cell and cor-
responding reflection conditions. Reflection conditions show the limitations on
the possible combinations of Miller indices that are imposed by the symmetry
of the space group and these are discussed in Sects. 9.3 and 9.4. Each record
in this field corresponds to one site, and each site is listed starting with the
multiplicity of the site position (integer numbers, 8, 4, 4, . . . , 2) followed by
Wyckoff16 letter (f, e, d, . . . , a), site symmetry (1, m.., .m., . . . , mm2), and
coordinate triplets of the symmetrically equivalent atoms. The multiplicity of
the site position is the total number of symmetrically equivalent atoms that
will appear in one unit cell as the result of having an atom with the coordi-
nates corresponding to any of the listed triplets. For example, the multiplicity
of the second site is 4 (Wyckoff notation is 4e). The x-coordinate of any in-
dependent atom in this site is fixed at 0, while y- and z-coordinates may vary
between 0 and 1. Assume that y = 0.15 and z = 0.31. The complete list of four
symmetrically equivalent atoms in this position is obtained as follows. Atom1
(0, y, z) plus (0, 0, 0): x = 0, y = 0.15, z = 0.31; Atom2 (0, ȳ, z) plus (0, 0,
0): x = 0, y = 0.85,17 z = 0.31; Atom3 (0, y, z) plus (1/2,1/2, 0): x = 0.5, y =
0.65, z = 0.31; Atom4 (0, ȳ, z) plus (1/2,1/2, 0): x = 0.5, y = 0.35, z = 0.31.
Site positions in this field are arranged according to their multiplicities (from
the highest to the lowest) and according to site symmetry (from the lowest to
the highest). Wyckoff letters are assigned to site positions starting with “a” for
the site with the lowest multiplicity and the highest symmetry. The coordinate
triplets for the site with the highest multiplicity and the lowest symmetry (gen-
eral position) are listed with the numbers of symmetry operations that generate
this atom (as they appear in field “Symmetry operations”).

(9) Symmetry of special projections is usually given along X-, Y - and Z-axes, and
in crystal systems with higher symmetry also along diagonals together with
the axes and the origin of the projected unit cell. These projections correspond
to two-dimensional crystallographic groups.

(10)–(12) The last three fields entitled “Maximal non-isomorphic subgroups,”
“Maximal isomorphic subgroups of lowest index,” and “Minimal non-
isomorphic supergroups” list the closest subgroups and supergroups, their
axes, and other relevant information. The discussion of these fields goes be-
yond the scope of this book and the International Tables for Crystallography,
Vol. A should be consulted for further details.

16 Ralph W.G. Wyckoff (1987–1994) the American crystallographer who in 1922 published a
book “ The Analytical Expression of the Results of the Theory of Space Groups,” which contained
tables with the positional coordinates, both general and special, permitted by the combination of
symmetry elements in the group, thus forming the basis for the description of 230 space groups in
The International Tables for Crystallography. Also see the obituary published in Acta Cryst. A51,
649 (1995) (available online at http://www.iucr.org/iucr-top/people/wyckoff.htm).
17 Any negative coordinate (i.e., y =−0.15) may be converted into a positive coordinate by adding
a full translation along the same axis, i.e., y = −0.15+1 = 0.85.
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3.6 Equivalent Positions (Sites)

As briefly mentioned in the Sect. 3.5, equivalent positions (or sites) that are listed
in the field “Positions” in Table 3.4 for each crystallographic space group, represent
sets of symmetrically equivalent points found in one unit cell. All equivalent points
in one site are obtained from an initial point by applying all symmetry operations
that are present in the unit cell. The fractional coordinates (coordinate triplet) of the
initial (or independent) point are usually marked as x,y,z.

3.6.1 General and Special Equivalent Positions

The equivalent position is called general when the initial point is not located on any
of the finite symmetry elements (i.e., those that convert the point into itself), if they
are present in the group. The general equivalent position has the highest multiplic-
ity, and every one of the 230 space groups has only one general site. However, since
the only limitation on the possible values of x, y and z in the coordinate triplet is im-
posed by geometrical constraints that prevent neighboring atoms from overlapping
with one another, multiple sets of atoms occupying the general site with different
coordinate triplets of independent atoms are possible in many crystal structures. An
atom in the general equivalent position in any of the 230 three-dimensional space
groups has always three positional degrees of freedom, that is, each of the three
coordinates may be changed independently.

When a point (or an atom) is placed on a finite symmetry element that converts
the point into itself, the multiplicity of the site is reduced by an integer factor when
compared to the multiplicity of the general site. Since different finite symmetry ele-
ments may be present in the same space-group symmetry, the total number of differ-
ent “nongeneral” sites (they are called special sites or special equivalent positions)
may exceed one. Contrary to a general equivalent position, one, two, or all three
coordinates are constrained in every atom occupying a special equivalent position.

Both the multiplicity and Wyckoff letter combined together are often used as the
name of the equivalent position. Sometimes when crystallographic data are pub-
lished, the coordinates of all independent atoms are given in reference to equiva-
lent positions they occupy. For example, if in a hypothetical crystal structure nickel
atoms occupy the site 4(c) in the space group Cmm2, they can be listed as “Ni in
4(c), z = 0.1102,” which indicates that there are a total of four nickel atoms in the
unit cell, and one of them has the coordinates x = 1/4, y = 1/4, z = 0.1102. The coordi-
nates of the remaining three nickel atoms are easily determined from the coordinates
of all symmetrically equivalent points in the position 4(c), see Table 3.4.
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3.6.2 Special Sites with Points Located on Mirror Planes

The first example of a special position was considered earlier (see the description of
field “Positions” in Table 3.4), when we analyzed the coordinates of four symmet-
rically equivalent atoms located in the mirror plane in the space group Cmm2. Both
this site and the corresponding mirror plane are marked as 4e in the first diagram in
Table 3.4. A different special position on a different mirror plane in this space-group
symmetry is marked as 4d in the same figure. Two additional examples are found in
Fig. 3.8.

In the tetragonal crystal system (Fig. 3.8, left), diagonal mirror planes perpendic-
ular to the XY plane are possible. When an atom is placed in the special position on
this plane, its coordinates are restricted in a way that y = x and z may assume any
value. This relationship is usually emphasized by specifying the corresponding co-
ordinate triplet as x, x, z. Similarly, in the hexagonal crystal system (Fig. 3.8, right)
multiple diagonal mirror planes perpendicular to the XY plane are possible. When
an atom is placed in the special position on the mirror plane nearest to the Y -axis,
its coordinates are restricted such that y = 2x and z varies freely. The corresponding
coordinate triplet becomes x, 2x, z. Considering the two remaining mirror planes
and moving clockwise, the point that belongs to the next mirror plane will have
coordinate triplet x, x, z (i.e., the same as in the case of the diagonal mirror plane
in the tetragonal crystal system), and for the third mirror plane the triplet becomes
x, 1/2 x, z (or 2x, x, z).

Therefore, any atom in a special position where it belongs to a mirror plane has
two positional degrees of freedom. Only two of the three coordinates vary indepen-
dently, whereas the third is restricted to either a constant value [e.g., position 4(e)
in the space group Cmm2] or it is constrained to be proportional to one of the two
free coordinates (Fig. 3.8). Similar to a general position, any special position on
the mirror plane can accommodate many independent atoms, provided they do not
overlap.

X

Y

x

y=x

X

Y

x

y=2x

Fig. 3.8 Constraints imposed on the coordinates of atoms located on diagonal mirror planes (thick
solid lines) in tetragonal (left) and hexagonal (right) crystal systems.
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3.6.3 Special Sites with Points Located on Rotation
and Inversions Axes

Both the rotation and inversion axes can also be the source of special positions.
Consider, for example, the site 2a (Table 3.4) where atoms are accommodated by
the twofold rotation axis that follows the line at which two mutually perpendicular
mirror planes intersect. In this case two of the three coordinates in the triplet are
fixed (x = 0 and y = 0), while the third coordinate (z) may assume any value. A
similar special position is represented by the site 4c (Table 3.4), where the twofold
rotation axis is parallel to Z and coincides with the line at which two mutually per-
pendicular glide planes (a and b) intersect. In this position the two coordinates (x and
y) are fixed at x = y = 1/4 and z varies. Note that the multiplicities of these two sites
(2a and 4c) are different, as they are defined by the total number of symmetrically
equivalent points in the given space-group symmetry.

Twofold axes can also be parallel to face diagonal(s) in tetragonal, hexagonal
and cubic crystal systems, and one example for a cubic crystal system is shown in
Fig. 3.9, left. The coordinates of a point (open circle) located on the twofold axis that
coincides with the diagonal of a square face of the cube are constrained at x, x, 0. As
we already know, there are four threefold rotation or inversion axes coinciding with
the body diagonals of the cube in the cubic crystal systems. Also shown in Fig. 3.9
on the left is one of these threefold rotation axes, where the coordinates of a point
located in the special position defined by the orientation of this crystallographic axis
(filled circle) are constrained at x, x, x.

Therefore, the number of positional degrees of freedom is further reduced to only
one independent coordinate in special positions where atoms are located on rotation
or inversion crystallographic axes. Similar to both the general position and special

X

Z

y=x

z=x
Y

x

X

Z

Y

a
b

c
d

e
f

g
h

Fig. 3.9 Left – constraints imposed on the coordinates of atoms located on diagonal twofold and
threefold axes in cubic crystal system. Right – the distribution of the inversion centers in the tri-
clinic space-group symmetry P1̄. Eight independent centers are labeled from “a” through “h.”
Inversion centers that are equivalent to one another are marked using symbols of the same size and
shading. The “invisible” centers are drawn using dotted lines.
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sites on mirror planes, any special equivalent position on a rotation or inversion
axis can accommodate many independent atoms (geometrical constraints are always
applicable).

3.6.4 Special Sites with Points Located on Centers of Inversion

Atoms can also reside on centers of inversion. Since there is no inversion center in
the space group Cmm2, which was considered in Table 3.4, we turn our attention to
the distribution of the centers of inversion in the unit cell that belongs to the triclinic
space-group symmetry P1̄ (Fig. 3.9, right). Similar to the distribution of rotation
axes shown in Fig. 3.5, this is a characteristic distribution of the inversion centers in
a primitive centrosymmetric group.

Thus, there are no positional degrees of freedom available to an atom occupy-
ing any special position created by the presence of the center of inversion. Further,
unlike in the cases when atoms are located on the mirror planes and rotation or in-
version axes, only one atom can occupy any single special position on the center
of inversion. Note that all of the inversion centers in the P1̄ group are independent,
yielding a total of eight independent special positions, while in other space groups
of higher symmetry, some, or all of these centers may be symmetrically related, and
the number of such special positions may be reduced to as low as one.
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3.8 Problems

1. Consider space-group symmetry Fdd2. Without using the International Tables for
Crystallography, establish the following: (a) the crystal system; (b) the correspond-
ing point group symmetry; (c) the corresponding Laue class; (d) the relationships
between the unit cell dimensions; and (e) explain the space-group symbol.
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2. Consider orthorhombic space-group symmetry Pnma

2.1 On what point-group symmetry is this space group based upon?
2.2 When the X and Y directions are switched, one obtains a different setting of

the same space group – Pmnb. In as few sentences as possible, yet with details,
explain why not Pmna. If you think a sketch will help, supplement your expla-
nations with a figure.

2.3 Considering all possible permutations of X , Y and Z axes, find all valid nonstan-
dard settings of this space group.

3. Consider orthorhombic space-group symmetry P2mb, see Fig. 3.10. Similar to
as this is done in the International Tables for Crystallography, list multiplicities and
coordinates of all symmetrically equivalent points for each independent site position
(general and special, if any) in this space-group symmetry and briefly explain your
answers.

4. Consider independent atoms with the following coordinates in the space-group
symmetry C2/m: Atom1: x = 0.15, y = 0.0, z = 0.33; Atom2: x = 0.5, y = 0.11,
z = 0.5; and Atom3: x = 0.25, y = 0.25, z = 0.25. Using the International Tables for
Crystallography carry out the following tasks:

4.1 Apply the coordinates and centering vectors listed for the general equivalent
position to generate all symmetrically equivalent atoms from the three listed
independent atoms (the total in each case should be the same as the multiplicity
of the general position).

4.2 Find atoms with equal coordinate triplets (remember that the difference by a
full translation in one, two or three directions refers to the same atom) and cross
them out. The total number of atoms left is the multiplicity of the corresponding
special position.

4.3 Establish both the multiplicity and the Wyckoff notation of special position for
each of the three listed independent atoms.

4.4 To which symmetry element(s), if any, do the independent atoms belong?
4.5 Which of the three original independent atoms occupies the general equivalent

position?

Y

Z

x, 0,0

Fig. 3.10 Combination of symmetry elements in one unit cell (thin lines) for space-group symme-
try P2mb. The origin of coordinates is on the twofold axis marked by arrow.
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5. The crystal structure of a material is described in space-group symmetry
P63/mmc with the following atomic coordinates:

Atom x y z

Ba1 0 0 0.25
Ba2 0.3333 0.6667 0.9110
Ni 0 0 0
Sb 0.3333 0.6667 0.1510
O1 0.4816 −0.0368 0.25
O2 0.1685 0.3370 0.4169

Using the International Tables for Crystallography, describe every atom in terms
of the multiplicities and Wyckoff letters of their site positions and establish the
content of the unit cell, the simplest chemical formula, and the number of formula
units18 (Z) per unit cell.

6. Using a sheet of rectilinear graphing paper, draw a projection along the c-axis
of one unit cell of the crystal structure of an RX2 material that has the AlB2-type
crystal structure. The space-group symmetry is P6/mmm. Assume that a = c = 4 Å.
Atoms are located in the unit cell as follows: R in 1(a) and X in 2(d), and both
sites are fully occupied. Radius of atom R is larger than that of atom X by ∼30%.
Prepare the drawing by hand and make sure that it is to scale, including relative
sizes of atoms (radii of circles). Mark elevations of all atoms above the plane of the
projections as their fractional coordinates along c accurate to 1/100.

18 Usually, a formula unit corresponds to the simplest chemical formula or to the stoichiometry of
the molecule of a material.



Chapter 4
Formalization of Symmetry

So far, we used both geometrical and verbal tools to describe symmetry elements
(e.g., plane, axis, center, and translation) and operations (e.g., reflection, rotation,
inversion, and shift). This is quite convenient when the sole purpose of this descrip-
tion is to understand the concepts of symmetry. However, it becomes difficult and
time consuming when these tools are used to manipulate symmetry, for example,
to generate all possible symmetry operations, for example, to complete a group.
Therefore, two other methods are usually employed:

– The first one is symbolic, and it is used to simplify written descriptions of sym-
metry.

– The second method is algebraic, and it is very convenient in manipulating sym-
metry.

We begin with the symbolic description of symmetry operations, which is based
on the fact that the action of any symmetry operation or any combination of symme-
try operations can be described by the coordinates of the resulting point(s). In this
section we assume that the original, or unique object has coordinates x, y, z.

4.1 Symbolic Representation of Symmetry

4.1.1 Finite Symmetry Operations

Consider a mirror plane that is perpendicular to the Z-axis and intersects with
this axis at the origin (z = 0). This plane will reflect objects leaving their x and
ycoordinates unchanged, but the z coordinate of the initial object would be inverted
and becomes −z after the reflection operation is performed. Therefore, the symbolic
description of this mirror reflection operation is x, y, −z.

Another example to consider are four symmetry operations in the point group
symmetry 2/m, as depicted in Fig. 4.1. The coordinates of four symmetrically equiv-
alent points in Fig. 4.1 fully characterize all performed symmetry operations. Be-
ginning from Point A:

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 77
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 4,
c© Springer Science+Business Media LLC 2009
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X

Y

Z

m

2

1
- AB

CD

x,y,z

x,−y,z−x,−y,−z

−x,y,−z

α

Fig. 4.1 Symmetry elements and symbolic description of symmetry operations in the point group
symmetry 2/m. Here, the origin of the coordinate system coincides with the center of inversion.

– The onefold rotation converts the object into itself (A → A), which results in
x,y,z.

– The center of symmetry inverts all three coordinates of the object in the point
with coordinates 0, 0, 0 (A → D), which results in −x,−y,−z.

– The mirror plane perpendicular to the Y -axis inverts y leaving x and z unchanged
(A → C), which results in x,−y,z.

– The twofold rotation axis parallel to Y inverts both x and z leaving y unchanged
(A → B), which results in −x,y,−z.

Therefore, zero, one, two, or all three coordinates change their signs, but this only
holds for symmetry elements of the first- and second-order when they are aligned
with one of the three major crystallographic axes. Symmetry operations describing
both diagonal symmetry elements and symmetry elements with the higher order
(i.e., three-, four- and sixfold rotations) may cause permutations and more complex
relationships between the coordinates. For example:

– Reflection in the diagonal mirror plane may be symbolically described as y, x, z.
– Rotations around the sixfold rotation axis parallel to Z result in x, y, z; x−y, x, z;

y, −x+ y, z; −x, −y, z; −x+ y, −x, z; and −y, x− y, z.1

– Rotations around the threefold rotation axis along the body diagonal of a cube in
the [111] direction are described by x, y, z; z, x, y and y, z, x.

4.1.2 Infinite Symmetry Operations

All examples considered so far illustrate symmetry elements that traverse the origin
of coordinates, and do not have translations. When symmetry elements do not inter-
sect the origin (0,0,0) or have translations (e.g., glide planes and screw axes), their
symbolic description includes fractions of full translations along the corresponding
crystallographic axes. For example:

1 In a hexagonal crystallographic basis where X- and Y -axes form a 120◦ angle between them and
Z-axis is perpendicular to both X and Y .
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– Reflection in the mirror plane perpendicular to Z that intersects the Z-axis at
z = 0.25 is described as x, y, 1/2− z (or x, y, −z+ 1/2).

– Rotation around and corresponding translation along the twofold screw axis,
which coincides with Y results in −x, 1/2 + y, −z.

– Reflection in the glide plane, n, perpendicular to X and intersecting X at x = 0.25
is described symbolically as 1/2− x, 1/2 + y, 1/2 + z.

– The nonprimitive translation in the base-centered unit cell C yields x + 1/2, y +
1/2,z.

This description formalizes symmetry operations by using the coordinates of the
resulting points and, therefore, it is broadly used to represent both symmetry oper-
ations and equivalent positions in the International Tables for Crystallography (see
Table 3.4). The symbolic description of symmetry operations, however, is not for-
mal enough to enable easy manipulations involving crystallographic symmetry op-
erations.

4.2 Algebraic Treatment of Symmetry Operations

Earlier (see Fig. 2.3) we established that there are four simple symmetry operations,
namely: rotation, reflection, inversion, and translation. Among the four, reflection in
a mirror plane may be represented as a complex symmetry element – twofold inver-
sion axis – which includes simultaneous twofold rotation and inversion. Therefore,
in order to minimize the number of simple symmetry operations, we begin with ro-
tation, inversion, and translation, noting that complex operations can be described
as simultaneous applications of these three simple transformations.

Algebraic description of symmetry operations is based on the following simple
notion. Consider a point in a three-dimensional coordinate system with any (not
necessarily orthogonal) basis, which has coordinates x, y, z. This point can be con-
veniently represented by the coordinates of the end of the vector, which begins in the
origin of the coordinates 0, 0, 0, and ends at x, y, z. Thus, one only needs to specify
the coordinates of the end of this vector in order to fully characterize the location of
the point. Any symmetrical transformation of the point, therefore, can be described
by the change in either or both the orientation and the origin of this vector.

4.2.1 Transformation of Coordinates of a Point

Consider Point A with coordinates x, y, z in a Cartesian2 basis XYZ. Also, consider
point A′ with coordinates x′, y′, z′ in the same basis, which is obtained from Point
A by rotating it around Z by angle ϕ. It is worth noting that since orientations of

2 Cartesian coordinate system (or basis) is the orthogonal system with a = b = c = 1 and
α = β = γ = 90◦.
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Fig. 4.2 Cartesian bases XYZ and X ′Y ′Z′ (both Z and Z′ are perpendicular to the plane of the
projection) in which the coordinates of the point are invariant to the rotation around Z by angle ϕ.

rotation axes in crystallography are restricted, for example, see Table 2.7, we may
limit our analysis to rotations about one of the basis axes.

As shown in Fig. 4.2, it is possible to select a different Cartesian basis, X ′Y ′Z′,
which is related to the original basis, XYZ, by the identical rotation around Z and
in which the coordinates of the point A′ are x, y, z, that is, they are invariant to this
transformation of coordinates. From the schematic shown in Fig. 4.2, it is easy to
establish that the rotational relationships between the coordinate triplets x, y, z and
x′, y′, z′ in the original basis XYZ are given as:

x′ = xcosϕ− ysinϕ
y′ = xsinϕ+ ycosϕ
z′ = z

(4.1)

Equations (4.1) are known as linear transformation of coordinates on the plane
and they can be written in matrix notation as shown below:

⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ (4.2)

When two points in the same Cartesian basis are related to one another via
inversion through the origin of coordinates, then the coordinates of the inverted
point are invariant with respect to a second Cartesian basis where the directions of
all axes are reversed, as shown in Fig. 4.3.

Hence, the inversion through the origin of coordinates may be represented alge-
braically as:
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Fig. 4.3 Cartesian bases XYZ and X ′Y ′Z′ in which the coordinates of the point are invariant to the
inversion through the origin of coordinates.

x′ = −x
y′ = −y
z′ = −z

or

⎛
⎝x′

y′

x′

⎞
⎠ =

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ (4.3)

When the two points are related to one another by roto-inversion, the resulting
linear transformation is a combination of (4.1) and (4.2) with (4.3):

x′ = −xcosϕ+ ysinϕ
y′ = −xsinϕ− ycosϕ
z′ = −z

(4.4)

and ⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝−cosϕ sinϕ 0
−sinϕ −cosϕ 0

0 0 −1

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ (4.5)

Matrices in (4.2) and (4.5) are related to one another simply by changing the
sign of each element of the corresponding matrix. Considering Fig. 4.2 and (4.2),
it is easy to see that when a point is rotated around the Y -axis, the corresponding
transformation of coordinates is given by:

x′ = xcosϕ− zsinϕ
y′ = y

z′ = xsinϕ+ zcosϕ
or

⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝cosϕ 0 −sinϕ

0 1 0
sinϕ 0 cosϕ

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ (4.6)

and for the rotation around X it becomes:
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x′ = x

y′ = ycosϕ− zsinϕ
z′ = ysinϕ+ zcosϕ

or

⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝1 0 0

0 cosϕ −sinϕ
0 sinϕ cosϕ

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ (4.7)

A noteworthy property of matrices found in (4.2), (4.3), and (4.5)–(4.7) is their
unimodularity – the determinant of every matrix is equal to 1 or −1 for the rotation
and inversion (or roto-inversion) operations, respectively, which is shown for the
rotation around Z in (4.8).

det

⎛
⎝cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

⎞
⎠ = cos2ϕ+ sin2ϕ = 1 (4.8)

Because of the restrictions imposed on the values of the rotation angles (see
Table 2.3), sinϕ and cosϕ in a Cartesian basis are 0, 1 or −1 for one, two, and four-
fold rotations, and they are ±1/2 or ±

√
3/2 for three and sixfold rotations. However,

when the same rotational transformations are considered in the appropriate crystal-
lographic coordinate system,3 all matrix elements become equal to 0, −1, or 1. This
simplicity (and undeniably, beauty) of the matrix representation of symmetry oper-
ations is the result of restrictions imposed by the three-dimensional periodicity of
crystal lattice. The presence of rotational symmetry of any other order (e.g., fivefold
rotation) will result in the noninteger values of the elements of the corresponding
matrices in three dimensions.

When two points in the same Cartesian basis are related to one another by a
translation, then the coordinates of the second point are invariant with respect to a
different Cartesian basis, in which the orientations of the axes remain the same as
in the first basis, but its origin is shifted along the three noncoplanar vectors, tx, ty,

and tz, as shown in Fig. 4.4.
Thus, considering Fig. 4.4, the coordinates, x′, y′, z′, of the Point A′ in the original

basis XYZ are given as:
x′ = x+ tx
y′ = y+ ty
z′ = z+ tz

(4.9)

or in matrix notation ⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝x

y
z

⎞
⎠+

⎛
⎝tx

ty
tz

⎞
⎠ (4.10)

where tx, ty and tz are the lengths of vectors tx, ty and tz, respectively.
To generalize the results obtained in this section, we now consider two points,

A and A′, with coordinates x, y, z and x′, y′, z′, respectively, in the same Cartesian
basis XYZ. An unrestricted transformation of A into A′ can be carried out first, by
applying the corresponding rotation (and/or inversion) and second, by applying the

3 The angles between X-, Y -, and Z-axes are identical to α,β, and γ in the corresponding crystal
system (see Table 2.10).
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Fig. 4.4 Cartesian bases XYZ and X ′Y ′Z′ in which the coordinates of the point are invariant to
translations along three noncoplanar vectors tx, ty and tz.

corresponding translational transformation of the coordinates. For example, assum-
ing that rotation occurs around the Z-axis, and considering (4.1), (4.2), (4.9), and
(4.10), the relationships between x, y, z, and x′, y′, z′ are given as follows:

x′ = xcosϕ− ysinϕ+ tx
y′ = xsinϕ+ ycosϕ+ ty
z′ = z+ tz

(4.11)

or in matrix notation⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

⎞
⎠

⎛
⎝x

y
z

⎞
⎠+

⎛
⎝ty

tx
tz

⎞
⎠ (4.12)

4.2.2 Rotational Transformations of Vectors

Any change in the orientation of a vector representing a point without changing the
length and the position of the origin of the vector (see Fig. 4.5) can be described as a
new vector, which is a product of a specific square matrix and the original vector. As
we established in Sect. 4.2.1 (see (4.2), (4.3), and (4.5)–(4.7)), in three dimensions
the matrix has three rows and three columns, the vector has three rows, and the
resulting product is shown in general form in (4.13).
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X
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z

(x,y,z)(x�,y�,z�)
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Fig. 4.5 The point with the coordinates x, y, z represented by the vector (x, y, z) and the second
(symmetrically equivalent) point with the coordinates x′, y′, z′ represented by the vector (x′, y′, z′),
which has the same length as the original vector (x, y, z).

⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝r11 r12 r13

r21 r22 r23
r31 r32 r33

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝r11x r12y r13z

r21x r22y r23z
r31x r32y r33z

⎞
⎠ (4.13)

Using the following notations

X =

⎛
⎝x

y
z

⎞
⎠ , R =

⎛
⎝r11 r12 r13

r21 r22 r23
r31 r32 r33

⎞
⎠ and X′ =

⎛
⎝x′

y′

z′

⎞
⎠ (4.14)

Equation (4.13) becomes
X′ = RX (4.15)

The matrix R is called rotation matrix, since the changing of the orientation of the
vector without altering its length and without moving its origin away from the origin
of the coordinate system is achieved by various transformations of the vector, for
example, inversion through a point, rotation around an axis, or reflection in a plane.

4.2.3 Translational Transformations of Vectors

When only the change of the length of the vector is involved, it is usually much more
convenient to move the origin of the coordinate system in a way that the length and
the orientation of the new vector remain the same in the new basis as those of the
original vector in the original basis (see Fig. 4.4). This is achieved by translating the
old origin of the coordinate system by (t1, t2, and t3) along X , Y, and Z, respectively,
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which is equivalent to adding two vectors, as shown in (4.16).
⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝x

y
z

⎞
⎠+

⎛
⎝t1

t2
t3

⎞
⎠ =

⎛
⎝x+ t1

y+ t2
z+ t3

⎞
⎠ (4.16)

Introducing the following notation in addition to (4.14):

T =

⎛
⎝t1

t2
t3

⎞
⎠ (4.17)

the short form of (4.16) becomes:

X′ = X+T (4.18)

4.2.4 Combined Symmetrical Transformations of Vectors

Unrestricted transformations of a vector can, therefore, be represented using a se-
quence of matrix-vector transformations by first, evaluating the product of the ro-
tation matrix and the original vector as shown in (4.13) and second, evaluating the
sum of the obtained vector and the corresponding translation vector, as shown in
(4.16). The combined unrestricted transformation is, therefore, represented in the
expanded form using (4.19), or using the compact form as shown in (4.20).

⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝r11 r12 r13

r21 r22 r23
r31 r32 r33

⎞
⎠

⎛
⎝x

y
z

⎞
⎠+

⎛
⎝t1

t2
t3

⎞
⎠ =

⎛
⎝r11x+ r12y+ r13z+ t1

r21x+ r22y+ r23z+ t2
r31x+ r23y+ r33z+ t3

⎞
⎠ (4.19)

X′ = RX+T (4.20)

It is practically obvious that simultaneously or separately acting rotations (either
proper or improper) and translations, which portray all finite and infinite symme-
try elements, that is, rotation, roto-inversion and screw axes, glide planes or simple
translations can be described using the combined transformations of vectors as de-
fined by (4.19) and (4.20). When finite symmetry elements intersect with the origin
of coordinates the respective translational part in (4.19) and (4.20) is 0, 0, 0; and
when the symmetry operation is a simple translation, the corresponding rotational
part becomes unity, E, where

E =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ (4.21)
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At this point, the validity of (4.19) and (4.20) has been established when rota-
tions were performed around an axis intersecting the origin of coordinates. We now
establish their validity in the general case by considering vector X and a symmetry
operation that includes both the rotational part, R, and translational part, t. Assume
that the symmetry operation is applied in a crystallographic basis where the rotation
axis is shifted from the origin of coordinates by a vector Δt.

First, we select a new basis in which the rotation axis intersects with the origin
of coordinates. This is equivalent to changing the coordinates of the original vector
from X to x, where

x = X+Δt (4.22)

According to (4.20), the symmetry transformation in the new basis results in
vector x′, where

x′ = Rx+ t = R(X+Δt)+ t = RX+(RΔt+ t) (4.23)

After switching back to the original basis by applying negative translation -Δt to
the right hand part of (4.23) we obtain the coordinates of the symmetrically equiva-
lent vector X′ in the original basis as:

X′ = RX+(RΔt+ t)−Δt = RX+[(R−E)Δt+ t] (4.24)

where E is unity matrix. Noting that (R – E)Δt + t = T, that is, it is the translational
part that reflects the shift of the rotation axis from the origin of coordinates in ad-
dition to the conventional translational part, t, (4.24) becomes identical to (4.20).
Thus, (4.19) and (4.20) are valid for any crystallographic transformation in three
dimensions.

It may be useful to briefly summarize the main properties of rotation transforma-
tion matrices, R, some of which were already mentioned earlier:

– In conventional crystallography matrix elements may accept only the following
values:

Rij = 0,1or –1 (4.25)

– R is unimodular:
det(R) = 1or –1 (4.26)

– The inverse rotation matrix is the same as the direct matrix, that is, R−1 = R when
the rotation order is 1 or 2; otherwise R−1 represents rotation in the opposite
direction.

– An order of an axis represented by the operation R can be determined in two
steps:

• In the case of an inversion axis, when det(R′) = −1, the matrix should be
converted to a simple rotation by multiplying its elements by –1:

R = R′det(R′) (4.27)
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• The order of the axis (N) is determined from the number of multiplications of
the matrix R by itself that are required to obtain the unity matrix, E:

N

∏
i=1

R = E (4.28)

4.2.5 Augmentation of Matrices

For convenience, the 3×3 rotation matrix and the corresponding 3×1 translation
vector may be combined into a single augmented matrix which has four rows and
four columns. This matrix is shown in Fig. 4.6 together with the augmented vector
to which the transformation is applied. The augmentation of the vector is required
to ensure the compatibility with the matrix during their multiplication.

It is easy to verify that the product of the augmented matrix A and the augmented
vector V results in the vector V′, which is the same as the vector X′ ((4.19) and
(4.20)) plus additional 1 as the fourth element of the vector as shown in (4.29).
Therefore, instead of specifying rotational and translational parts separately, they
can be combined into a single matrix:

V′ =

⎛
⎜⎜⎝

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
y
z
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r11x+ r12y+ r13z+ t1
r21x+ r22y+ r23z+ t2
r31x+ r32y+ r33z+ t3

0+0+0+1

⎞
⎟⎟⎠ (4.29)
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Fig. 4.6 The augmented 4×4 matrix, which combines both the rotational and translational parts
as indicated by thick boxes and the added row highlighted by the box drawn using dashed lines
(left) and the corresponding modification of the original vector to ensure their compatibility in the
matrix-vector multiplication (right).
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4.2.6 Algebraic Representation of Crystallographic Symmetry

Considering conventional crystallographic symmetry, the elements representing ro-
tations, that is, ri j, are restricted to 1, 0, or −1, and the elements representing trans-
lations, that is, ti in (4.29), are restricted to ±1/2, ±1/3 , ±1/4, ±1/6, ±1/8 including
their integer multiples, and 0. In this way, all possible transformations of atoms by
symmetry operations are represented by the multiplication of matrices and vectors.

Therefore, symmetrical transformations in the crystal are formalized as algebraic
(matrix-vector) operations – an extremely important feature used in all crystallo-
graphic calculations in computer software. The partial list of symmetry elements
along with the corresponding augmented matrices that are used to represent sym-
metry operations included in each symmetry element is provided in Tables 4.1 and
4.2. For a complete list, consult the International Tables for Crystallography, Vol. A.

Even though the column (Table 4.1) and the row (Table 4.2) labeled “First sym-
metry operation” seem redundant, their presence highlights the fact that each sym-
metry element contains onefold rotation or unity operation. Further, as easily seen
from these tables, fourfold rotation axes also contain the twofold symmetry opera-
tion (e.g., the third symmetry operation for 4‖Z is the same as the second symmetry
operation for 2‖Z) and sixfold rotation axes contain both three- and twofold rota-
tions (e.g., second and third symmetry operations for 6‖Z are identical to the second
and third for 3‖Z, while the fourth symmetry operation for 6‖Z is identical to the
second for 2‖Z).

4.2.7 Interaction of Symmetry Operations

We now consider how the two interacting symmetry operations produce a third sym-
metry operation, similar to how it was described in Sect. 4.2.5, but now in terms
of their algebraic representation. Assume that two symmetry operations, which are
given by the two augmented matrices A1 and A2, are applied in sequence to a point,
coordinates of which are represented by the augmented vector V. Taking into ac-
count (4.29), but written in a short form, the first symmetry operation will result in
the vector V1 given as

V1 = A1V (4.30)

The second symmetry operation applied to the vector V1 will result in the third
vector, V2 as follows:

V2 = A2V1 = A2(A1V) (4.31)

Recalling that the associative law holds for symmetry operations and for symme-
try groups (see Sects. 4.2.5 and 4.2.6), (4.31) can be rewritten as:

V2 = (A2A1)V (4.32)
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Table 4.1 Selected symmetry elements, their orientation, and corresponding symmetry operations
in the algebraic form as augmented matrices (see Fig. 4.6).

Symmetry
element and
orientation

Transformed
coordinates

First
symmetry
operation

Second
symmetry
operation

Third
symmetry
operation

Fourth
symmetry
operation

1 (any) x, y, z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None None None

1̄ at 0,0,0 x, y, z;
−x, −y, −z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ None None

1̄ at
1/4, 1/4,1/4

x, y, z; 1/2− x,
1/2− y, 1/2− z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 1/2
0 −1 0 1/2
0 0 −1 1/2
0 0 0 1

⎞
⎟⎟⎠ None None

m⊥X at
X = 0

x, y, z;
−x, y, z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None None

m⊥Y at
Y = 0

x, y, z;
x, −y, z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None None

m⊥Z at
Z = 0

x, y, z;
x, y, −z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ None None

m⊥X at
X = 1/4

x, y, z;
1/2− x, y, z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 1/2
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None None

m⊥X at
X = 1/2

x, y, z;
1− x, y, z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None None

b⊥X at
X = 0

x, y, z;
−x, 1/2 + y, z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 1/2
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None None

b⊥X at
X = 1/4

x, y, z;
1/2− x,
1/2 + y, z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 1/2
0 1 0 1/2
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None None

c⊥X at
X = 0

x, y, z;
−x, y, 1/2 + z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 1/2
0 0 0 1

⎞
⎟⎟⎠ None None

(Continued)
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Table 4.1 (Continued)

Symmetry
element and
orientation

Transformed
coordinates

First
symmetry
operation

Second
symmetry
operation

Third
symmetry
operation

Fourth
symmetry
operation

n⊥X at
X = 0

x, y, z;
−x, 1/2 + y,
1/2 + z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 1/2
0 0 1 1/2
0 0 0 1

⎞
⎟⎟⎠ None None

2‖X
through
0,0,0

x, y, z;

x, −y, −z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ None None

2‖Y
through
0,0,0

x, y, z;
−x, y, −z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ None None

2‖Z
through
0,0,0

x, y, z;
−x, −y, z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None None

21‖X
through
0,0,0

x, y, z;
1/2 + x, −y, −z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 1/2
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ None None

3‖Z
through
0,0,0

x, y, z;
−y, x− y, z;
−x+ y, −x, z;

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ None

31‖Z
through
0,0,0

x, y, z;
−y, x− y,
1/3 + z;
−x+ y, −x,
2/3 + z

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −1 0 0
1 −1 0 0
0 0 1 1/3
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 1 0 0
−1 0 0 0
0 0 1 2/3
0 0 0 1

⎞
⎟⎟⎠

None

4‖Z
through
0,0,0

x, y, z;
−y, x, z;
−x, −y, z;
y, −x, z

⎛
⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

41‖Z
through
0,0,0

x, y, z;
−y, x, 1/4 + z;
−x, −y, 1/2 + z;
y, −x, 3/4 + z;

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 1 1/4
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 1 1/2
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 1 3/4
0 0 0 1

⎞
⎟⎟⎠
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It follows from (4.32) and from our earlier consideration of interactions between
symmetry elements, finding which symmetry operation appears as the result of con-
secutive application of any two symmetry operations is reduced to calculating the
product of the corresponding augmented matrices. To illustrate how it is done in
practice, consider Fig. 2.12 and assume that the twofold axis is parallel to Y . The
corresponding symmetry operations, A1 and A2, are (Table 4.1):

A1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ and A2 =

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ (4.33)

The presence of the center of inversion introduces one additional symmetry op-
eration, A3

A3 =

⎛
⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ (4.34)

It is easy to see that the product of A2 and A3 is the fourth symmetry operation,
A4, which is nothing else but the mirror reflection in the plane, which is perpendic-
ular to Y and passes through the origin of coordinates:

A4 = A2A3 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (4.35)

All other products between the four matrices do not result in new symmetry
operations, that is,

A1A1 = A1; A1A2 = A2; A1A3 = A3; A1A4 = A4

A2A2 = A1; A2A3 = A4; A2A4 = A3

A3A3 = A1; A3A4 = A2

A4A4 = A1

By now we know quite well that this combination of symmetry operations corre-
sponds to point group symmetry 2/m (also see Fig. 4.1).

4.3 Additional Reading

1. C. Giacovazzo, H.L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti, and
M. Catti, Fundamentals of crystallography. IUCr texts on crystallography 7, Second Edition,
Oxford University Press, Oxford and New York (2002).
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2. D. Schwarzenbach, Crystallography, Wiley, New York (1996).
3. C. Hammond, The basics of crystallography and diffraction. IUCr texts on crystallography 3.

Oxford University Press, Oxford (1997).
4. D.E. Sands, Introduction to crystallography, Dover Publications, Dover (1994).
5. D. Farmer, Groups and symmetry, Amer. Math. Soc., Providence, RI (1995).
6. International Tables for Crystallography, vol. A, Fifth Revised Edition, Theo Hahn, Ed., Pub-

lished for the International Union of Crystallography by Springer, Berlin, (2002).
7. International Tables for Crystallography. Brief teaching edition of volume A, Fifth Revised

Edition. Theo Han, Ed., Published for the International Union of Crystallography by Springer,
Berlin, (2002).

8. M.B. Boisen and G.V. Gibbs. Mathematical crystallography – an introduction to the mathe-
matical foundations of crystallography. Reviews in mineralogy, Vol. 15 (revised). The Miner-
alogical Society of America, Washington, DC (1992).

9. E. Prince, Mathematical techniques in crystallography and materials science. Second Edition,
Springer, Berlin (1992).

10. M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato and H. Wondratschek. Bilbao Crystal-
lographic Server II: Representations of crystallographic point groups and space groups. Acta
Cryst. A62, 115 (2006).

11. Bilbao Crystallographic Server: http://www.cryst.ehu.es/index.html.

4.4 Problems

1. Two primitive orthorhombic space-groups symmetry are based on the following
symmetry operations:

(a)

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 1/2
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

(b)

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 1/2
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

1.1 Identify these symmetry operations and write the international symbols of the
two space groups.

1.2 How can you describe the difference (if any) and/or similarity (if any) between
these two space groups?

2. Two primitive orthorhombic space-groups symmetry are based on the following
symmetry operations:

(a)

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 1/2
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠
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(b)

⎛
⎜⎜⎝

1 0 0 1/2
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

2.1 Identify these symmetry operations and write the international symbols of the
two space groups.

2.2 How can you describe the difference (if any) and/or similarity (if any) between
these two space groups?

3. Solve problem No. 2 in Sect. 2.13. Find or derive symmetry operations (rotation
matrices) for both planes assuming that X-axis is left to right across the paper, Y -axis
is bottom to top along the paper, Z-axis is perpendicular to the paper, and the origin
of coordinates is located on the line along which the two planes intersect. Confirm
the solution of problem No. 2 in Sect. 2.13 algebraically by finding all derivative
symmetry operations. Relate symmetry operations to the corresponding symmetry
elements.



Chapter 5
Nonconventional Symmetry

Conventional crystallography was developed using the explicit assumption that
crystalline objects maintain ideal periodicity in three dimensions. As a result, any
ideal three-dimensional crystal structure can be described using a periodic lattice
and one of the 230 crystallographic space groups (see Sect. 3.4). The overwhelm-
ing majority of both naturally occurring and synthetic crystalline solids are indeed
nearly ideally periodic. Their diffraction patterns are perfectly periodic since Bragg
peaks are only observed at the corresponding points of the reciprocal lattice, which
reflects both the symmetry and three-dimensional periodicity of the crystal lattice.
Long ago, the first aperiodic crystal was reported,1 and the apparent absence of the
three-dimensional periodicity of diffraction patterns was later found in a number of
materials. One of the most prominent examples is the 1984 discovery of the fivefold
symmetry in the diffraction pattern of rapidly cooled Al0.86Mn0.14 alloy.2 Supported
by many experimental observations, several approaches to describe the symmetry
of aperiodic structures have been developed and successfully used to establish the
crystal structure of these unusual materials.

Probably the most fruitful method has been suggested by P.M. de Wolff3 in which
more than three physical dimensions are used to represent the crystal lattice and
thus to restore its periodicity in the so-called superspace. Then the resulting ape-
riodic diffraction pattern is simply a projection of the crystal lattice, which is pe-
riodic in the superspace, upon the physical space, which is three-dimensional. The
diffraction pattern of an aperiodic crystal usually contains a subset of strong (i.e.,
highly intense) diffraction peaks, which are called main peaks, and their indices
are described using three integers corresponding to a standard three-dimensionally

1 U. Dehlinger, Über die Verbreiterung der Debyelinien bei kaltbearbeiteten Metallen,
Z. Kristallogr. 65, 615 (1927).
2 D. Shechtman, I. Blech, D. Gratias and J.W. Cahn, Metallic phase with long-range orientational
order and no translational symmetry, Phys. Rev. Lett. 53, 1951 (1984).
3 P.M. de Wolff, The pseudo-symmetry of modulated crystal structures, Acta Cryst. A30, 777
(1974).

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 97
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 5,
c© Springer Science+Business Media LLC 2009
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periodic crystal lattice. The subsets of the so-called satellite peaks are weaker, and
their indices include more than three integers to reflect the increased dimensionality
of the superspace (see the footnote on page 409).

5.1 Commensurate Modulation

Consider the simplest case, when the periodicity of the crystal lattice is perturbed in
one dimension by periodic deviations of atoms from their ideal positions. As shown
in Fig. 5.1, the basis structure (the upper row of atoms, which is ideally periodic
with the translation vector a) is perturbed (i.e., modulated) by a periodic function,
with the period λ = 1/q, where q is the magnitude of the modulation vector, q, and
q = αa∗. The amplitude of the modulation function is A. The resulting modulated
structure (the lower row of atoms in Fig. 5.1) is obtained by shifting atoms from their
ideal positions.4 The period of the modulation function defines the directions, and
its amplitude defines the extent of the shifts, as indicated by the horizontal arrows.

When the value of α is rational, this results in a commensurate modulation. Upon
further examination of Fig. 5.1, it is easy to see that here λ= 8/3a, and q = 3/8a∗, and
the modulation is commensurate (α = 3/8). In principle, in the case of commensu-
rate modulation, the “conventional” periodicity can be restored by selecting a much
larger unit cell, which is often called a supercell. Considering the example shown in
Fig. 5.1, the periodicity can be restored without introducing the perturbing function
by choosing the unit cell with abottom = 8atop, where “bottom” and “top” refer to
the locations of the one-dimensional structures in the figure. However, atoms which
are symmetrically related due to the presence of the modulation function4 are no
longer equivalent to one another in the enlarged unit cell, and therefore, the correct
description using commensurate modulation is usually preferred.

a

λ=1/q

A

Fig. 5.1 The ideally periodic one-dimensional structure, the corresponding modulation function
with the period λ= 1/q, which is commensurate with a, and the amplitude A (top), and the resulting
commensurately modulated structure (bottom).

4 In the cases shown in Fig. 5.1 and Fig. 5.2, the x-coordinate of each atom becomes xm = x +
Asin2nπqa, where xm and x correspond to the modulated and conventional periodic structures,
respectively, and n = . . .,−2,−1,0,1,2, . . .
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5.2 Incommensurate Modulation

When α is irrational, the so-called incommensurate modulation occurs, and this is
shown schematically in Fig. 5.2. The exact description of incommensurately mod-
ulated structure is impossible using only conventional crystallographic symmetry
in the unit cell of any size smaller than the crystal. The periodicity of the structure
can only be restored by using two different periodic functions. The first function is
the conventional crystallographic translation, and the second one is a modulation
function with a certain period, which is incommensurate with the corresponding
translation, and certain amplitude.

Modulation functions are most often modeled by Fourier series

u(xi) =
m

∑
n=1

An sin(2πnxi)+Bn cos(2πnxi) (5.1)

but in more complex cases, the so-called Crenel functions (block wave) or saw-tooth
functions may be employed.

In addition to one-dimensional modulations, both two- and three-dimensional
modulations are possible. Atomic parameters affected by modulations may be one
or several of the following: positional (as shown in Figs. 5.1 and 5.2), occupancy,
thermal displacement, and orientation of magnetic moments. The latter, that is, com-
mensurately or incommensurately modulated orientations of magnetic moments are
quite common in various magnetically ordered structures (e.g., pure lanthanide met-
als such as Er and Ho), and both the value of the modulation vector and the ampli-
tude of the modulation function often vary with temperature.

Symmetry of modulated structures is represented algebraically by using rotation
matrices and translational vectors in an N-dimensional superspace, where N > 3.
Additional dimensions are needed to describe the symmetry of the modulation

a

λ=1/q

A

Fig. 5.2 The ideally periodic one-dimensional structure, the corresponding modulation function
with the period λ = 1/q, which is incommensurate with a, and the amplitude A (top), and the
resulting incommensurately modulated structure (bottom).
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functions. Thus, one-dimensional modulation is described in a four-dimensional
superspace using 4× 4 rotation matrices and 4× 1 vectors (three dimensions for
a normal space, plus one for the modulation function), while two- and three-
dimensional modulations require 5× 5 and 6× 6 rotation matrices and 5× 1 and
6×1 vectors, respectively.

The general form of a superspace symmetry operation may be given as follows:

(
RE 0
RM RI

)(
tE
tI

)
(5.2)

where R and t are, respectively, rotational and translational components; subscript
E refers to the external (real space) dimensions, I refers to the internal (additional)
dimension, and M is their common part.

Hence, modulated structures are described using the main lattice that reflects an
average structure in a three-dimensional physical space with addition of one or more
modulation waves. These modulation waves modify the main lattice and require
addition of an appropriate number of dimensions to adequately describe both the
symmetry and structure of a modulated crystal. Reciprocal lattice of a modulated
structure, therefore, consists of main points and so-called satellites, which corre-
spond to the main three-dimensional structure and displacements due to modulation
waves, respectively.

5.3 Composite Crystals

Composite structures have two or more substructures penetrating one another. For
example, tunnels existing in a framework may be filled with atoms exhibiting
different periodicity than that of the tunnel. When periodicity of the tunnel is in-
commensurate with periodicity of the filling atoms, this may result in additional
one-dimensional modulation. Another example is alternating packing of two or
more distinctly different layers. One-dimensional modulation may result if there
is a mismatch in one dimension of the layers, or periodicity of the whole structure
may be complicated by a two-dimensional modulation if both independent dimen-
sions of the neighboring layers do not match. Reciprocal lattices corresponding to
composite structures, therefore, are superpositions of the reciprocal lattices of the
substructures with satellites reflecting modulations induced by the mismatch.

Modulated structures maintain at least approximate translational symmetry in
three-dimensional physical space and, if the modulations are weak, the average
structure may still be represented by the main reciprocal lattice. The same is true
for composite crystals in which the substructures can be represented independently
by their own reciprocal lattices.
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5.4 Symmetry of Modulated Structures

When one, two, or three independent modulation waves that correspond to one-,
two-, or three-dimensional modulations are present, then four-, five-, or six-
dimensional superspace is required for a complete description of their symmetry.
Since the theory of modulated structure is relatively new, the symbols describing
symmetry of superspace groups have been developed only recently5. Two different
notations are commonly used at present. These are:

the two-line symbol, for example, BPmna
s11̄ , (5.3)

or the one-line symbol, for example, Pmna(0 1/2γ)s00 (5.4)

The two-line symbol begins with a capital letter denoting the Bravais-like symbol
of the lattice in a basic space group.6 It is followed by a superscript defining the basic
three-dimensional space-group symmetry of the average structure, and a subscript
describing intrinsic translations7 in the superspace for each symmetry element in the
basic space-group symmetry. A separate axis is used for every symmetry operation
listed in the basic space-group symbol. Sometimes, the two-line symbol is written in
a single line. For instance, the two-line symbol shown in (5.3) becomes B:Pmna:s11̄
when written in a single line. The Bravais-like symbols for modulated lattices are
different from those used in three-dimensional periodic lattices (see Table 2.13).
Thus, the following rational lattice translation vectors of modulated structures are
represented by the following letters:

(1/2, 0, 0), (0, 1/2, 0) and (0, 0, 1/2) by A, B and C, respectively,
(1, 0, 0), (0, 1, 0) and (0, 0, 1) by L, M and N, respectively,
(0, 1/2, 1/2), (1/2, 0, 1/2) and (1/2, 1/2, 0) by U, V and W, respectively, and
(1/3, 1/3, 0) by R.

The intrinsic translations are coded as follows s =1/ 2, t =1/ 3,q =1/ 4, and h = 1/6; if
intrinsic translation is zero, it is denoted as 1 or 1̄.

Hence, the symbol given in (5.3) can be understood as follows:

– Bravais type B describes rational lattice translation vector (0, 1/2, 0), which, in
this particular case, means that lattice vector b is doubled in the superspace com-
pared to the basic structure;

– Pmna is space-group symmetry of the average (basic) structure;

5 T. Janssen, A. Jannar, A. Looijenga-Vos, P.M. de Wolf, Incommensurate and modulated struc-
tures, in: International Tables for Crystallography, vol. C, Third edition, Kluwer Academic Publish-
ers (2004); A. Yamamoto, Crystallography of quasiperiodic crystals. Acta Cryst. A52, 509 (1996);
a comprehensive list of superspace groups including symbols, symmetry operations, and reflection
conditions can be found online at http://quasi.nims.go.jp/yamamoto/spgr.html.
6 P.M. de Wolff, The Superspace groups for incommensurate crystal structures with a one-
dimensional modulation. Acta Cryst. A37, 625 (1981).
7 Intrinsic translation is a part of a translational component of symmetry operation that is indepen-
dent of the choice of the origin of coordinates.
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– s11̄ denotes intrinsic translations along three dimensions for the symmetry op-
erations corresponding to the symmetry elements listed in the basic space-group
symbol, that is, m, n, and a. We note that 1̄ reflects a negative diagonal element
of the superspace symmetry operation, in other words R44 = −1.

The one-line symbol begins with a conventional notation of three-dimensional
space-group symmetry of the average structure, followed by a modulation vector
in parentheses, and intrinsic translations or symmetry elements for additional di-
mension(s). The latter are set to 0 if the intrinsic translations are zero, which is
contrary to 1 or 1̄ found in the two-line symbol. Equation (5.4) describes the same
superspace-group symmetry as (5.3). The main differences between the two nota-
tions are the presence or absence of Bravais-like notation, and explicit listing of
the modulation vector. Because of these differences, the two-line notation has been
developed to directly identify symmetry operations, while the one-line symbol is
easily deduced from diffraction data, since the modulation vector may be observed
and measured directly from a three-dimensional diffraction pattern. It is important
to realize that finding modulation vector using only powder diffraction data is a
much more complicated task when compared to finding the unit cell dimensions
of a periodic lattice, simply because of the one-dimensional nature of the powder
pattern.

Since composite structures may consist of two or more modulated substructures,
two or more modulated group symbols in either of the mentioned notations are
required to describe their full superspace symmetry.8 For example:

RP31c
111 : PR3m

1s , or P31c(1/31/3γ1) : R3m(00γ2)0s (5.5)

It worth mentioning that in some cases, the basic space groups are presented in
nonstandard setting (e.g., triclinic body centered lattice, I1̄) in order for the sub-
structures to match each other. Therefore, the following additional symbols are also
used to designate Bravais-like type:

D, E, F, G, H, I, for (1/2, 1, 0), (1/2, 0, 1), (0, 1/2, 1), (1, 1/2, 0), (1, 0, 1/2),
(0, 1, 1/2), and X, Y and Z for (0, 1, 1), (1, 0, 1) and (1, 1, 0).

The full list of superspace-group symbols for four-dimensional (3+1) modulated
structures can be found in the International Tables for Crystallography.9 The num-
ber of Bravais classes and symmetry groups increases rapidly with added dimen-
sions, especially when all possible groups are included, not only those intrinsic to
modulated structure. For example, there are 4,783 nonisomorphic (excluding enan-
tiomorphous pairs) four-dimensional groups, but only 370 of them are required for

8 A. Yamamoto, Unified setting and symbols of superspace groups for composite crystals. Acta
Cryst. A48, 476 (1992).
9 International Tables for Crystallography, vol. C, Third edition, Kluwer Academic Publisher
(2004). Also see footnote 5 on p. 101.
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the description of aperiodic structures.10 Because of increased dimensionality, the
symbols of superspace-groups became more and more complex, and their listings
take more and more space. The list of aperiodic groups in up to six dimensions is
available on A. Yamamoto’s web page.11

5.5 Quasicrystals

The symmetry of quasicrystals can be represented by introducing a different pertur-
bation function, which is based on the Fibonacci12 numbers. An infinite Fibonacci
sequence is derived from two numbers, 0 and 1, and is formed according to the
following rule:

Fn+2 = Fn+1 +Fn (5.6)

This results in the series of numbers

0,1,1,2,3,5,8,13,21, . . . (5.7)

Assume that we have a sequence of words containing letters L (for long distance
or fragment) and S (for short distance or fragment), which are constructed by replac-
ing each letter in the previous word using the following substitution rule: letter S is
replaced by letter L, while letter L is replaced by the word LS. Starting from L as
the first word, the infinite sequence of words is obtained, and the first six members
of this sequence are shown in Fig. 5.3.

The frequency of occurrence of letters L and S in this sequence is represented
in Table 5.1, and it is easy to recognize that they are identical to the consecutive
members (Fn+1 and Fn) of the Fibonacci series. The corresponding limit when the
number of words, n, approaches infinity is the golden mean, τ

τ = lim
n→∞

(
Fn+1

Fn

)
=

√
5+1
2

= 1.618 . . . (5.8)

The golden mean can also be represented as a continuous fraction, which contains
only one number, 1, and therefore, it is sometimes referred to as the “most irrational”
number.

10 T. Janssen, J.L. Birman, F. DeÂnoyer, V.A. Koptsik, J.L. Verger-Gaugry, D. Weigel,
A. Yamamoto, S.C. Abrahamsh, V. Kopsky, Report of a Subcommittee on the Nomenclature of
n-Dimensional Crystallography. II. Symbols for arithmetic crystal classes, Bravais classes and
space groups. Acta Cryst. A58, 605 (2002).
11 http://quasi.nims.go.jp/yamamoto/spgr.html.
12 Leonardo Pisano Fibonacci, a.k.a. Leonardo of Pizza (1170–1250). Medieval Italian mathemati-
cian who in 1202 wrote Liber abaci – “The book of the abacus,” a.k.a. “The book of calculation”
– in which he formulated the problem leading to the sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, . . . (without the first term, i.e., without 0): “How many pairs of rabbits can be produced
in a year from one pair of rabbits assuming that every month each pair produces one new pair of
rabbits, which becomes productive one month after birth?”
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Fig. 5.3 The sequence of
words containing quasiperi-
odic sequences of letters L
and S based on the following
substitution rule: S → L, and
L → LS.

LSLLSLSLLSLLS

LSLLSLSL

LSLLS

LSL

LS

L

Table 5.1 The frequency of occurrence of letters L (fL) and S (fS) in the infinite series of words
based on the substitution rule S → L, and L → LS.

n Word fL fS

0 L 1 0
1 LS 1 1
2 LSL 2 1
3 LSLLS 3 2
4 LSLLSLSL 5 3
5 LSLLSLSLLSLLS 8 5
6 LSLLSLSLLSLLSLSLLSLSL 13 8
7 LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS 21 13
. . . . . . . . . . . .

Fn+1 Fn

τ =
1

1+ 1
1+ 1

1+...

(5.9)

The perturbation (modulation) function used in the description of aperiodic struc-
tures is obtained by associating interatomic distances (or larger fragments in the
crystal structure) with length ratio τ to 1 to letters L and S and the resulting modula-
tion function is no longer a sinusoidal wave, but is saw-tooth-like. It is worth noting
that the periodicity in this simple one-dimensional case (Fig. 5.3 and Table 5.1) is
absent, but the order is perfect: as soon as the law has been established, the “struc-
ture” of the series, that is, the location of S and L can be predicted at any point
starting from the origin, or any other known location.

Unlike modulated structures, quasicrystals do not have even approximate trans-
lational symmetry in two- or three-dimensions of physical space, and they can be
described only in five- or six-dimensional superspace using 5×5 and 6×6 rotation
matrices.
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The more detailed description of the nonconventional symmetry goes beyond the
scope of this book13 as the application of powder diffraction for structural study
of aperiodic crystals is quite complex. Interpretation of a powder diffraction pat-
tern, which is a projection of reciprocal space on one dimension, present challenges
even for some conventional three-dimensionally periodic crystal structures. How-
ever, powder method may still be used successfully to study aperiodic structures
when combined with other techniques, for example, electron diffraction.14 Never-
theless, this chapter has been included here for completeness, and to give the reader
a flavor of the recent developments in the very old subject of crystallography.15

5.6 Additional Reading

1. C. Janot, Quasicrystals. A primer, Clarendon Press, Oxford (1992).
2. International Tables for Crystallography, vol. A, Fifth Revised Edition, Theo Hahn, Ed., Pub-

lished for the International Union of Crystallography by Springer, Berlin (2002).
3. T. Janssen, G. Chapuis, M. de Boissieu, Aperiodic crystals: from modulated phases to qua-

sicrystals. Oxford University Press, Oxford (2007).
4. A. Yamamoto, Crystallography of quasiperiodic crystals, Acta Cryst. A52, 509 (1996).
5. M. Dušek, V. Petřı́ček, M. Wunschel, R.E. Dinnebier, S. van Smaalen, Refinement of modulated

structures against X-ray powder diffraction data with JANA2000. J. Appl. Cryst. 34, 398 (2001).
6. A.V. Mironov, A.M. Abakumov, E.V. Antipov, Powder diffraction of modulated and composite

structures. Rigaku J. 19–20, 23 (2003).

5.7 Problems

1. When working with a modulated structure, a researcher finds that the value of
the modulation vector q is (0, 0.172(1), 0). Is this one- two- or three-dimensional
modulation? Is the modulation commensurate or incommensurate?

13 A more complete description of de Wolff’s approach to treatment of various types of aperi-
odic crystals can be found in the International Tables for Crystallography, Vol. B, Second edition,
U. Shmueli, Ed., Published for the International Union of Crystallography by Springer, Berlin
(2001).
14 A.V. Mironov, A.M. Abakumov, E.V. Antipov, Powder diffraction of modulated and composite
structures. Rigaku J. 19–20, 23 (2003); H.A. Graetsch, Monoclinic AlPO4 tridymite at 473 and 463
K from X-ray powder data, Acta Cryst. C58, 18 (2002); M. Dušek, V. Petřı́ček, M. Wunschel, R.E.
Dinnebier, S. van Smaalen, Refinement of modulated structures against X-ray powder diffraction
data with JANA2000. J. Appl. Cryst. 34, 398 (2001).
15 The discovery of five-fold symmetry prompted the ad-interim Commission on Aperiodic Crys-
tals of the International Union of Crystallography to change the definition of a crystal as a periodic
three-dimensional arrangement of identical unit cells to the following: “. . . by ‘crystal’ we mean
any solid having an essentially discrete diffraction diagram, and by ‘aperiodic crystal’ we mean
any crystal in which three-dimensional lattice periodicity can be considered to be absent”. Inter-
national Union of Crystallography. Report of the Executive Committee for 1991, Acta Cryst. A48,
922–946 (1992).
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2. In another experiment, the modulation vector q is found to be (0.333(1), 0,
0.501(2)). How many dimensions does a researcher need to fully describe symmetry
of this structure? She wonders whether it is possible to treat this crystal structure in
three dimensions. Please, help her in making the decision.

3. A quasicrystal has been described using a one-dimensional modulation function
based on the Fibonacci series. Starting from the origin, how many long and short
structural fragments will fit within the “period” No. 8.



Chapter 6
Properties, Sources, and Detection of Radiation

In the preceding five chapters, we introduced basic concepts of symmetry, and dis-
cussed the structure of crystals in terms of three-dimensional periodic arrays of
atoms and/or molecules, sometimes perturbed by various modulation functions. In
doing so, we implicitly assumed that this is indeed the reality. Now it is time to think
about the problem from a different point of view: how atoms or molecules can be
observed – either directly or indirectly – and thus, how is it possible to determine the
crystal structure of a material and verify the concepts of crystallographic symmetry.

To begin answering this question, consider the following mental experiment:
imagine yourself in a dark room next to this book. Since human eyes are sensi-
tive to visible light, you will not be able to see the book, nor will you be able to
read these words in total darkness (Fig. 6.1, left). Only when you turn on the light,
does the book become visible, and the information stored here becomes accessible
(Fig. 6.1, right). The fundamental outcome of our experiment is that the book and
its content can be observed by means of a visible light after it has been scattered by
the object (the book), detected by the eyes.

In general, a source of rays and a suitable detector (such as the light bulb and
the eye, respectively) are required to observe common objects. Atoms, however, are
too small to be discerned using any visible light source, because atomic radii1 range
from a few tenths of an angström to a few angströms, and they are smaller than
1/1,000 of the wavelengths present in visible light (from ∼4,000 to ∼7,000 Å).
A suitable wavelength to observe individual atoms is that of X-rays. The latter are
short-wave electromagnetic radiation discovered by W.C. Roentgen,2 and they have

1 Atomic radius may be calculated self-consistently or it may be determined from experimental
structural data. Effective size of an atom varies as a function of its environment and nature of
chemical bonding. Several different scales – covalent, ionic, metallic, and Van der Waals radii –
are commonly used in crystallography.
2 Wilhelm Conrad Roentgen (1845–1923). German physicist who on November 8, 1895 discov-
ered X-rays and was awarded the first ever Nobel Prize in Physics in 1901 “in recognition of
the extraordinary services he has rendered by the discovery of the remarkable rays subsequently
named after him.” For more information about W.C. Roentgen see http://www.nobel.se/physics/
laureates/1901/index.html on the Web.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 107
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 6,
c© Springer Science+Business Media LLC 2009
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Fig. 6.1 The illustration of an observer placed in the absolutely dark room with a book (left) and
the same room with the light source producing visible rays of light (right).

the wavelengths that are commensurate with both the atomic sizes and shortest in-
teratomic distances.

Unfortunately, the index of refraction of X-rays is near unity for all materials
and they cannot be focused by a lens in order to observe such small objects as
atoms, as it is done by glass lenses in a visible light microscope or by magnetic
lenses in an electron microscope. Thus, in general, X-rays cannot be used to image
individual atoms directly.3 However, as was first shown by Max von Laue in 1912
using a single crystal of hydrated copper sulfate (CuSO4 ·5H2O), the periodicity of
the crystal lattice allows atoms in a crystal to be observed with exceptionally high
resolution and precision by means of X-ray diffraction. As we will see later, the
diffraction pattern of a crystal is a transformation of an ordered atomic structure into
reciprocal space, rather than a direct image of the former, and the three-dimensional
distribution of atoms in a lattice can be restored only after the diffraction pattern has
been transformed back into direct space.

Particles in motion, such as neutrons and electrons, may be used as an alternative
to X-rays. They produce images of crystal structures in reciprocal space because of
their dual nature: as follows from quantum mechanics, waves behave as particles
(e.g., photons), and particles (e.g., neutrons and electrons) behave as waves with
wavelength λ determined by the de Broglie4 equation:

λ =
h

mv
(6.1)

where h is Planck’s constant (h = 6.626× 10−34 Js), m is the particle’s rest mass,
and v is the particle’s velocity (mv = p, particle momentum).

3 Direct imaging of atoms is feasible using X-ray holography, in which the wave after passing
through a sample is mixed with a reference wave to recover phase information and produce three-
dimensional interference patterns. See R. Fitzgerald, X-ray and γ-ray holography improve views
of atoms in solids, Phys. Today 54, 21 (2001).
4 Louis de Broglie (1892–1987) the French physicist who postulated the dual nature of the electron.
In 1929 was awarded the Nobel Prise in physics “for his discovery of the wave nature of electrons.”
See http://nobelprize.org/nobel prizes/physics/laureates/1929/broglie-bio.html for details.
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For example, a neutron (rest mass, m = 1.6749×10−27 kg) moving at a constant
velocity v = 3,000m/s will also behave as a wave with λ = 1.319 Å. Moreover,
charged particles, for example, electrons, can be focused using magnetic lenses.
Thus, modern high-resolution electron microscopes allow direct imaging of atomic
structures (for the most part in two dimensions on a surface) with the resolution suf-
ficient to distinguish individual atoms. Direct imaging methods, however, require
sophisticated equipment and the accuracy in determining atomic positions is sub-
stantially lower than that possible by means of diffraction techniques.5 Hence, direct
visualization of a structure with atomic resolution is invaluable in certain applica-
tions, but the three-dimensional crystal structures are determined exclusively from
diffraction data. For example, electron microscopy may be used to determine unit
cells or modulation vectors, both of which are valuable data that may be further
employed in solving a crystal structure using diffraction methods, and specifically,
powder diffraction.

Nearly immediately after their discovery, X-rays were put to use to study the in-
ternal structure of objects that are opaque to visible light but transparent to X-rays,
for example, parts of a human body using radiography, which takes advantage of
varying absorption: bones absorb X-rays stronger than surrounding tissues. It is in-
teresting to note that the lack of understanding of their nature, which did not occur
until 1912, did not prevent the introduction of X-rays into medicine and engineer-
ing. Today, the nature and the properties of X-rays and other types of radiation are
well-understood, and they are briefly considered in this chapter.

6.1 Nature of X-Rays

Electromagnetic radiation is generated every time when electric charge accelerates
or decelerates. It consists of transverse waves where electric (E) and magnetic (H)
vectors are perpendicular to one another and to the propagation vector of the wave
(k), see Fig. 6.2, top. The X-rays have wavelengths from ∼0.1 to ∼100 Å, which are
located between γ-radiation and ultraviolet rays as also shown in Fig. 6.2, bottom.
The wavelengths, most commonly used in crystallography, range between ∼0.5 and
∼2.5 Å since they are of the same order of magnitude as the shortest interatomic dis-
tances observed in both organic and inorganic materials. Furthermore, these wave-
lengths can be easily produced in almost every research laboratory.

5 Despite recent progress in the three-dimensional X-ray holography [e.g., see M. Tegze, G. Faigel,
S. Marchesini, M. Belakhovsky, and A. I. Chumakov, Three-dimensional imaging of atoms with
isotropic 0.5 Å resolution, Phys. Rev. Lett. 82, 4847 (1999)], which in principle enables visu-
alization of the atomic structure in three dimensions, its accuracy in determining coordinates of
atoms and interatomic distances is much lower than possible by employing conventional diffraction
methods.
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Fig. 6.2 Top – the schematic of the transverse electromagnetic wave in which electric (E) and
magnetic (H) vectors are mutually perpendicular, and both are perpendicular to the direction of
the propagation vector of the wave, k. The wavelength, λ, is the distance between the two neigh-
boring wave crests. Bottom – the spectrum of the electromagnetic waves. The range of typical
X-ray wavelengths is shaded. The boundaries between different types of electromagnetic waves
are diffuse.

6.2 Production of X-Rays

The X-rays are usually generated using two different methods or sources. The first is
a device, which is called an X-ray tube, where electromagnetic waves are generated
from impacts of high-energy electrons with a metal target. These are the simplest
and the most commonly used sources of X-rays that are available in a laboratory of
any size, and thus, an X-ray tube is known as a laboratory or a conventional X-ray
source. Conventional X-ray sources usually have a low efficiency, and their bright-
ness6 is fundamentally limited by the thermal properties of the target material. The
latter must be continuously cooled because nearly all kinetic energy of the acceler-
ated electrons is converted into heat when they decelerate rapidly (and sometimes
instantly) during the impacts with a metal target.

The second is a much more advanced source of X-ray radiation – the synchrotron,
where high energy electrons are confined in a storage ring. When they move in a
circular orbit, electrons accelerate toward the center of the ring, thus emitting elec-
tromagnetic radiation. The synchrotron sources are extremely bright (or brilliant7)

6 Brightness is measured as photon flux – a number of photons per second per unit area – where
the area is expressed in terms of the corresponding solid angle in the divergent beam. Brightness
is different from intensity of the beam, which is the total number of photons leaving the target,
because intensity can be easily increased by increasing the area of the target irradiated by electrons
without increasing brightness.
7 The quality of synchrotron beams is usually characterized by brilliance, which is defined as
brightness divided by the product of the source area (in mm2) and a fraction of a useful photon
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since thermal losses are minimized, and there is no target to cool. Their brightness
is only limited by the flux of electrons in the high energy beam. Today, the so-called
third generation of synchrotrons is in operation, and their brilliance exceeds that of
the conventional X-ray tube by nearly ten orders of magnitude.

Obviously, given the cost of both the construction and maintenance of a syn-
chrotron source, owning one would be prohibitively expensive and inefficient for
an average crystallographic laboratory. All synchrotron sources are multiple-user
facilities, which are constructed and maintained using governmental support (e.g.,
they are supported by the United States Department of Energy and National Science
Foundation in the United States, and by similar agencies in Europe, Japan, and other
countries).

In general, there is no principal difference in the diffraction phenomena using
the synchrotron and conventional X-ray sources, except for the presence of several
highly intense peaks with fixed wavelengths in the conventionally obtained X-ray
spectrum and their absence, that is, the continuous distribution of photon energies
when using synchrotron sources. Here and throughout the book, the X-rays from
conventional sources are of concern, unless noted otherwise.

6.2.1 Conventional Sealed X-Ray Sources

As noted earlier, the X-ray tube is a conventional laboratory source of X-rays. The
two types of X-ray tubes in common use today are the sealed tube and the rotating
anode tube. The sealed tube consists of a stationary anode coupled with a cathode,
and both are placed inside a metal/glass or a metal/ceramic container sealed under
high vacuum, as shown in Fig. 6.3.

The X-ray tube assembly is a simple and maintenance-free device. However,
the overall efficiency of an X-ray tube is very low – approximately 1% or less.
Most of the energy supplied to the tube is converted into heat, and therefore, the
anode must be continuously cooled with chilled water to avoid target meltdown.
The input power to the sealed X-ray tube (∼0.5 to 3kW) is, therefore, limited by
the tube’s ability to dissipate heat, but the resultant energy of the usable X-ray beam
is much lower than 1% of the input power because only a small fraction of the
generated photons exits through each window. Additional losses occur during the
monochromatization and collimation of the beam (see Sect. 11.2).

In the X-ray tube, electrons are emitted by the cathode, usually electrically heated
tungsten filament, and they are accelerated toward the anode by a high electrostatic
potential (30 to 60 kV) maintained between the cathode and the anode. The typical
current in a sealed tube is between 10 and 50 mA. The X-rays are generated by the
impacts of high-energy electrons with the metal target of a water-cooled anode, and
they exit the tube through beryllium (Be) windows, as shown in Figs. 6.3 and 6.4.

energy, i.e., bandwidth (see, for example, J. Als-Nielsen and D. McMorrow, Elements of modern
X-ray physics, Wiley, New York (2001)).
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Fig. 6.3 The schematic (left) and the photograph (right) of the sealed X-ray tube. The bottom part
of the tube is metallic and it contains the anode (high purity copper, which may be coated with a
layer of a different metal, e.g., Cr, Fe, Mo, etc., to produce a target other than copper), the windows
(beryllium foil), and the cooling system. The top part of the tube contains the cathode (tungsten
filament) and it is manufactured from glass or ceramics, welded shut to the metal canister in order
to maintain high vacuum inside the tube. The view of two windows (a total of four) and the “water
out” outlet is obscured by the body of the tube (right). High voltage is supplied by a cable through
a coupling located in the glass (or ceramic) part of the tube. Both the metallic can and the anode
are grounded.
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Fig. 6.4 The schematic explaining the appearance of two different geometries of the X-ray focus
in a conventional sealed X-ray tube (left) and the disassembled tube (right). The photo on the right
shows the metallic can with four beryllium windows, two of which correspond to line- and two
to point-foci. The surface of the anode with the cathode projection is seen inside the can (bottom,
right). What appears as a scratch on the surface of the anode is the damage from the high intensity
electron beam and a thin layer deposit of the cathode material (W), which occurred during the
lifetime of the tube. The cathode assembly is shown on top, right.
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A standard sealed tube has four Be windows located 90◦ apart around the cir-
cumference of the cylindrical body. One pair of the opposite windows corresponds
to a point-focused beam, which is mostly used in single crystal diffraction, while
the second pair of windows results in a line-focused beam, which is normally used
in powder diffraction applications, see Fig. 6.4.

Given the geometry of the X-ray tube, the intensities of both the point- and line-
focused beams are nearly identical, but their brightness is different: the point focus
is brighter than the linear one. The use of the linear focus in powder diffraction is
justified by the need to maintain as many particles in the irradiated volume of the
specimen as possible. The line of focus (i.e., the projection of the cathode visible
through beryllium windows) is typically 0.1 to 0.2 mm wide8 and 8 to 12 mm long.
Similarly, point focus is employed in single crystal diffraction because a typical size
of the specimen is small (0.1 to 1 mm). Thus, high brightness of a point-focused
beam enables one to achieve high scattered intensity in a single crystal diffraction
experiment.

Recently, some manufactures of X-ray equipment began to utilize the so-called
micro-focus sealed X-ray tubes. Due to a very small size of the focal spot, ranging
from tens to a hundred of microns, power requirements of these tubes are two orders
of magnitude lower when compared to conventional sealed tubes. Because of this,
the micro-focus tubes are air-cooled and have long lifetimes, yet they produce bril-
liant X-ray beams comparable to those of rotating anode systems, see Sect. 6.2.3.
These tubes find applications in diffraction of single crystals, including proteins, but
their use in powder diffraction remains limited because of a small cross section of
the beam.

6.2.2 Continuous and Characteristic X-Ray Spectra

The X-ray spectrum, generated in a typical X-ray tube, is shown schematically in
Fig. 6.5. It consists of several intense peaks, the so-called characteristic spectral
lines, superimposed over a continuous background, known as the “white” radiation.
The continuous part of the spectrum is generated by electrons decelerating rapidly
and unpredictably – some instantaneously, other gradually – and the distribution
of the wavelengths depends on the accelerating voltage, but not on the nature of
the anode material. White radiation, also known as bremsstrahlung (German for
“braking radiation”), is generally highly undesirable in X-ray diffraction analysis
applications.9

While it is difficult to establish the exact distribution of the wavelengths in the
white spectrum analytically, it is possible to establish the shortest wavelength that
will appear in the continuous spectrum as a function of the accelerating voltage.
Photons with the highest energy (i.e., rays with the shortest wavelength) are emitted

8 The projection of the cathode on the anode surface is wider, 1–2 mm, see Fig. 11.7.
9 One exception is the so-called Laue technique, in which white radiation is employed to produce
diffraction patterns from stationary single crystals, see Figs. 7.11 and 7.12.
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Fig. 6.5 The schematic of a typical X-ray emission spectrum, for clarity indicating only the pres-
ence of continuous background and three characteristic wavelengths: Kα1, Kα2, and Kβ, which
have high intensities. The relative intensities of the three characteristic spectral lines are approx-
imately to scale, however, the intensity of the continuous spectrum and the separation of the
Kα1/Kα2 doublet are exaggerated. Fine structure of the Kβ spectral line is not shown for clarity.
The vertical arrow indicates the shortest possible wavelength of white radiation, λSW , as deter-
mined by (6.4).

by the electrons, which are stopped instantaneously by the target. In this case, the
electron may transfer all of its kinetic energy

mν2

2
= eV (6.2)

to a photon with the energy

hν =
hc
λ

(6.3)

where m is the rest mass, v is the velocity, and e is the charge of the electron (1.602×
10−19 C), V is the accelerating voltage, c is the speed of light in vacuum (2.998×
108 m/s), h is Planck’s constant (6.626× 10−34 Js),ν is the frequency and λ is the
wavelength of the wave associated with the energy of the photon.

After combining the right-hand parts of (6.2) and (6.3), and solving with respect
to λ, it is easy to obtain the equation relating the shortest possible wavelength (λSW
in Å) and the accelerating voltage (in V).

λSW =
1.240×104

V
Å (6.4)

The three characteristic lines are quite intense and they result from the transitions
of upper level electrons in the atom core to vacant lower energy levels, from which
an electron was ejected by the impact with an electron accelerated in the X-ray
tube. The energy differences between various energy levels in an atom are element-
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Table 6.1 Characteristic wavelengths of five common anode materials and the K absorption edges
of suitable β-filter materials.10

Anode Wavelength (Å) β filter K absorption
material edge (Å)

Kαa Kα1 Kα2 Kβ

Cr 2.29105 2.28975(3) 2.293652(2) 2.08491(3) V 2.26921(2)
Fe 1.93739 1.93608(1) 1.94002(1) 1.75664(3) Mn 1.896459(6)
Co 1.79030 1.78900(1) 1.79289(1) 1.62082(3) Fe 1.743617(5)
Cu 1.54187 1.5405929(5) 1.54441(2) 1.39225(1) Ni 1.488140(4)

Nb 0.653134(1)
Mo 0.71075 0.7093171(4) 0.71361(1) 0.63230(1) Zr 0.688959(3)
a The weighted average value, calculated as λaverage = (2λKα1 +λKα2)/3.

specific and therefore, each chemical element emits X-rays with a constant, that
is, characteristic, distribution of wavelengths that appear due to excitations of core
electrons by high energy electrons bombarding the target, see Table 6.1. Obviously,
before core electrons can be excited from their lower energy levels, the bombard-
ing electrons must have energy, which is equal to, or exceeds that of the energy
difference between the two nearest lying levels of the target material.

The transitions from L and M shells to the K shell, that is, L → K and M →
K are designated as Kα and Kβ radiation,11 respectively. Here K corresponds to
the shell with principal quantum number n = 1, L to n = 2, and M to n = 3. The
Kα component consists of two characteristic wavelengths designated as Kα1 and
Kα2, which correspond to 2p1/2 → 1s1/2 and 2p3/2 → 1s1/2 transitions, respectively,
where s and p refer to the corresponding orbitals. The subscripts 1/2 and 3/2 are
equal to the total angular momentum quantum number, j.12 The Kβ component also
consists of several discrete spectral lines, the strongest being Kβ1 and Kβ3, which
are so close to one another that they are practically indistinguishable in the X-ray
spectra of many anode materials. There are more characteristic lines in the emission
spectrum (e.g., Lα− γ and Mα−ξ ); however, their intensities are much lower, and
their wavelengths are greater that those of Kα and Kβ. Therefore, they are not used
in X-ray diffraction analysis and are not considered here.13

10 The wavelengths are taken from the International Tables for Crystallography, vol. C, Second edi-
tion, A.J.C. Wilson and E. Prince, Eds., Kluwer Academic Publishers, Boston/Dordrecht/London
(1999). For details on absorption and filtering, see Sects. 8.6.5 and 11.2.2.
11 According to IUPAC [R. Jenkins, R. Manne, J. Robin, C. Cenemaud, Nomenclature, symbols,
units and their usage in spectrochemical analysis. VIII Nomenclature system for X-ray energy and
polarization, Pure Appl. Chem. 63, 735 (1991)] the old notations, e.g., Cu Kα1 and Cu Kβ should
be substituted by the initial and final levels separated by a hyphen, e.g., Cu K−L3 and Cu K−M3,
respectively. However, since the old notations remain in common use, they are retained throughout
this book.
12 j = �s when � > 0 and j = 1/2 when � = 0, where � is the orbital, and s is the spin quantum
numbers. Since � adopts values 0, 1, 2, . . . , n-1, which correspond to s, p, d, . . . orbitals and
s = ±1/2, j is equal to 1/2 for s orbitals, 1/2 or 3/2 for p orbitals, and so on.
13 Except for one experimental artifact shown later in Fig. 6.10, where two components present in
the Lα characteristic spectrum of W (filament material contaminating Cu anode of a relatively old



116 6 Properties, Sources, and Detection of Radiation

In addition to their wavelengths, the strongest characteristic spectral lines have
different intensities: the intensity of Kα1 exceeds that of Kα2 by a factor of about
two, and the intensity of Kα1,2 is approximately five times that of the intensity of
the strongest Kβ line, although the latter ratio varies considerably with the atomic
number. Spectral purity, that is, the availability of a single intense wavelength, is
critical in most diffraction applications and therefore, various monochromatization
methods (see Sect. 11.2.2) are used to eliminate multiple wavelengths. Although
the continuous X-ray emission spectrum does not result in distinct diffraction peaks
from polycrystals, its presence increases the background noise, and therefore, white
radiation must be minimized.

Typical anode materials that are used in X-ray tubes (Table 6.1) produce char-
acteristic wavelengths between ∼0.5 and ∼2.3 Å. However, only two of them are
used most commonly. These are Cu in powder and Mo in single-crystal diffractom-
etry. Other anode materials can be used in special applications, for example, Ag
anode (λKα1 = 0.5594218 Å) can be used to increase the resolution of the atomic
structure since using shorter wavelength broadens the range of sinθ/λ over which
diffracted intensity can be measured. Bragg peaks, however, are observed closer to
each other, and the resolution of the diffraction pattern may deteriorate. On the other
hand, Cr, Fe, or Co anodes may be used instead of a Cu anode in powder diffraction
(or Cu anode instead of Mo anode in single crystal diffractometry) to increase the
resolution of the diffraction pattern (Bragg peaks are observed further apart), but the
resolution of the atomic structure decreases.

6.2.3 Rotating Anode X-Ray Sources

The low thermal efficiency of the sealed X-ray tube can be substantially improved
by using a rotating anode X-ray source,14 which is shown in Fig. 6.6. In this design,
a massive disk-shaped anode is continuously rotated at a high speed while being
cooled by a stream of chilled water. Both factors, that is, the anode mass (and there-
fore, the total area bombarded by high energy electrons) and anode rotation, which
constantly brings chilled metal into the impact zone, enable a routine increase of the
X-ray tube input power to ∼15−18kW and in some reported instances to 50–60 kW,
that is, up to 20 times greater when compared to a standard sealed X-ray tube.

The resultant brightness of the X-ray beam increases proportionally to the in-
put power; however, the lifetime of seals and bearings that operate in high vacuum
is limited.15 The considerable improvement in the incident beam brightness yields

X-ray tube) are clearly recognizable in the diffraction pattern collected from the oriented single
crystalline silicon wafer.
14 For more details on rotating anode X-ray sources see W.C. Phillips, X-ray sources, Methods
Enzymol. 114, 300 (1985) and references therein.
15 In the laboratory of one of the authors (VKP) the direct drive rotating anode source manufactured
by Rigaku/MSC has been in continuous operation (the anode is spinning and the X-rays are on
24 h/day, 7 days/week) for 8 years at the time of writing this book. The anode requires periodic
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Fig. 6.6 The schematic (left) and the photograph (right) of the direct drive rotating anode assembly
employed in a Rigaku TTRAX powder diffractometer. PF is point focus and LF is line focus. The
trace seen on the anode surface on the right is surface damage caused by high-energy electrons
bombarding the target and a thin layer deposit of the filament material (W), which occurred during
anode operation.

much better diffraction patterns, especially when diffraction data are collected in
conditions other than the ambient air (e.g., high or low temperature, high pressure,
and others), which require additional shielding and windows for the X-rays to pass
through, thus resulting in added intensity losses.

6.2.4 Synchrotron Radiation Sources

Synchrotron radiation sources were developed and successfully brought on line,
beginning in the 1960s. They are the most powerful X-ray radiation sources today.
Both the brilliance of the beam and the coherence of the generated electromagnetic
waves are exceptionally high. The synchrotron output power exceeds that of the
conventional X-ray tube by many orders of magnitude. Tremendous energies are
stored in synchrotron rings (Fig. 6.7, left), where beams of accelerated electrons or
positrons are moving in a circular orbit, controlled by a magnetic field, at relativistic
velocities.

refurbishing, which includes replacement of bearings and seals, and rebalancing approximately
every six months.
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Fig. 6.7 Schematic diagram of a synchrotron illustrating X-ray radiation output from bending
magnets. Electrons must be periodically injected into the ring to replenish losses that occur dur-
ing normal operation. Unlike in conventional X-ray sources, where both the long- and short-term
stability of the incident photon beam are controlled by the stability of the power supply, the X-ray
photon flux in a synchrotron changes with time: it decreases gradually due to electron losses, and
then periodically and sharply increases when electrons are injected into the ring.

Electromagnetic radiation ranging from radiofrequency to short-wavelength X-
ray region (Fig. 6.7, right) is produced due to the acceleration of charged particles
toward the center of the ring. The X-ray beam is emitted in the direction, tangential
to the electron/positron orbit.

Since there is no target to cool, the brilliance of the X-ray beam that can be
achieved in synchrotrons is four (first generation synchrotrons) to twelve (third
generation synchrotrons) orders of magnitude higher than that from a conventional
X-ray source. Moreover, given the size of the storage ring (hundreds of meters in
diameter), the average synchrotron beam consists of weakly divergent beams that
may be considered nearly parallel at distances typically used in powder diffraction
(generally less than 1 m). This feature presents an additional advantage in powder
diffraction applications since the instrumental resolution is also increased.

Another important advantage of the synchrotron radiation sources, in addition to
the extremely high brilliance of the X-ray beam, is in the distribution of the beam
intensity as a function of wavelength (Fig. 6.7, right). The high intensity, observed
in a broad range of photon energies, allows for easy selection of nearly any desired
wavelength. Further, the wavelength may be changed when needed, and energy dis-
persive experiments, in which the diffraction angle remains constant but the wave-
length varies, can be conducted.

Thus, synchrotron radiation finds more and more use today, although its avail-
ability is restricted to the existing synchrotron sites.16 However, some synchrotron
sites are equipped with high-throughput automated powder diffractometers that are

16 Room-size synchrotron is under development by Lyncean Technologies, Inc. using laser beam
instead of bending magnets to move electrons in a circular orbit. This reduces the diameter of
the ring by a factor of about 200, e.g., from 1,000 ft to only 3–6 ft. More information about The
Compact Light Source project can be found at http://www.lynceantech.com.
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made available to a broad scientific community. For example, beamline 11-BM,
designed by Brian Toby at the APS, is equipped with a 12-channel analyzer system
and 100+ samples robotic changer, and is available for rapid access using mail-in
service.17 Some of the well-known sites are the ALS – Advanced Light Source at
Berkeley Lab, APS – Advanced Photon Source at Argonne National Laboratory,
NSLS – National Synchrotron Light Source at Brookhaven National Laboratory,
SRS – Synchrotron Radiation Source at Daresbury Laboratory, ESRF – European
Synchrotron Radiation Facility in Grenoble, and others.18

6.3 Other Types of Radiation

Other types of radiation that are commonly used in diffraction analysis are neutrons
and electrons. The properties of both are compared with those of X-rays in Table 6.2.

Neutrons are usually produced in nuclear reactors; they have variable energy and
therefore, a white spectrum. Maximum flux of neutrons is usually obtained in an
angstrom range of wavelengths. The main differences when compared to X-rays are
as follows: (i) neutrons are scattered by nuclei, which are much smaller than electron
clouds, and the scattering occurs on points; (ii) scattering factors of elements remain
constant over the whole range of Bragg angles; (iii) scattering functions are not
proportional to the atomic number, and they are different for different isotopes of
the same chemical element. Furthermore, since neutrons have spins, they interact
with the unpaired electron spins (magnetic moments) and thus neutron diffraction
data are commonly used to determine ordered magnetic structures. Other differences
between neutrons and X-rays are nonessential in the general diffraction theory.

One of the biggest disadvantages of the conventional (reactor-generated) neutron
sources is relatively low neutron flux at useful energies and weak interactions of
neutrons with matter. Hence, a typical neutron experiment calls for 1 to 5 cm3 of
a material.19 This problem is addressed in the new generation of highly intense
pulsed (spallation) neutron sources.20 In a spallation neutron source, bunches of
protons are accelerated to high energies, and then released, bombarding a heavy
metal target in short but extremely potent pulses. The collision of each proton with
a heavy metal nucleus results in many expelled (spalled or knocked out) neutrons at
various energies. The resultant highly intense (∼102 times higher flux than in any

17 See http://11bm.xor.aps.anl.gov/.
18 Web links to worldwide synchrotron and neutron facilities can be found at http://www.iucr.org/
cww-top/rad.index.html.
19 This volume is a few orders of magnitude greater than needed for an X-ray diffraction ex-
periment. Some of the third generation, high-flux neutron sources allow measurements of much
smaller amounts, e.g., as little as 1mm3, but acceptable levels of the scattered intensity are gener-
ally achieved by sacrificing resolution.
20 The most powerful operational pulsed neutron source is SNS – the Spallation Neutron Source –
at the Oak Ridge National Laboratory (http://www.sns.gov/). The next is ISIS, which is located at
the Rutherford Appleton Laboratory in the UK (http://www.isis.rl.ac.uk/).
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Table 6.2 Comparison of three types of radiation used in powder diffraction.

X-rays (conv./synch.) Neutrons Electrons

Nature Wave Particle Particle
Medium Atmosphere Atmosphere High vacuum
Scattering by Electron density Nuclei and

magnetic spins of
electrons

Electrostatic
potential

Scattering function f (s) ∝ Za f is constant at all s f (s) ∝ Z1/3,b

Wavelength range, λ 0.5–2.5/0.1–10 Å ∼1Å 0.02–0.05 Å
Wavelength selection Fixed,c Kα,β/variable Variablec︸ ︷︷ ︸ Variablec

Focusing None Magnetic lenses
Lattice image Reciprocal Direct, reciprocal
Direct structure image No Yes
Applicable theory of
diffraction

Kinematical Dynamical

Use to determine atomic
structure

Relatively simple Very complex

a s− sinθ/λ, Z – atomic number, f – atomic scattering function.
b If unknown, electron scattering factor fe(s) may be derived from X-ray scattering factor fx(s) as
fe(s) = k[Z − fx(s)]/s2, where k is constant.21

cAccording to Moseley’s22 law, X-ray characteristic frequency is ν = c/λ = C(Z −σ)2, while for
neutrons and electrons λ = h/mv = h(2mE)−1/2, where C and σ are constants, m is mass, v is
velocity, and E is kinetic energy of a particle.

conventional reactor) neutron beams have a nearly continuous energy spectrum, and
they can be used in a variety of diffraction studies, mostly in the so-called time-
of-flight (TOF) experiments. In the latter, the energy (and the wavelength) of the
neutron that reaches the detector is calculated from the time it takes for a neutron to
fly from the source, to and from the specimen to the detector.

In addition to the direct imaging of crystal lattices (e.g., in a high-resolution
transmission electron microscope), electrons may be used in diffraction analysis.
Despite the ease of the production of electrons by heating a filament in vacuum,
electron diffraction is not as broadly used as X-ray diffraction. First, the experiments
should be conducted in a high vacuum, which is inconvenient and may result in
decomposition of some materials. Second, electrons strongly interact with materials.
In addition to extremely thin samples, this requires the use of the dynamical theory
of diffraction, thus making structure determination and refinement quite complex.
Finally, the complexity and the cost of a high-resolution electron microscope usually
considerably exceed those of a high-resolution powder diffractometer.

Neutron diffraction examples are discussed when deemed necessary, even though
in this book we have no intention of covering the diffraction of neutrons (and elec-

21 Electron diffraction techniques, Vol. 1, J. M. Cowley, Ed., Oxford University Press, NY (1992).
22 Henry Gwyn Jeffreys Moseley (1887–1915). British physicist, who studied X-ray spectra of
elements and discovered a systematic relationship between the atomic number of the element
and the wavelength of characteristic radiation. A brief biography is available on WikipediA at
http://en.wikipedia.org/wiki/Henry Moseley.
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trons) at any significant depth. Interested readers can find more information on
electron and neutron diffraction in some of the references provided at the end of
this chapter.

6.4 Detection of X-Rays

The detector is an integral part of any diffraction analysis system, and its major role
is to measure the intensity and, sometimes, the direction of the scattered beam. The
detection is based on the ability of X-rays to interact with matter and to produce cer-
tain effects or signals, for example, to generate particles, waves, electrical current,
etc., which can be easily registered. In other words, each photon entering the detec-
tor generates a specific event, better yet, a series of events that can be recognized,
and from which the total photon count (intensity) can be determined. Obviously, the
detector must be sensitive to X-rays (or in general to the radiation being detected),
and should have an extended dynamic range and low background noise.23

6.4.1 Detector Efficiency, Linearity, Proportionality and Resolution

An important characteristic of any detector is how efficiently it collects X-ray pho-
tons and then converts them into a measurable signal. Detector efficiency is deter-
mined by first, a fraction of X-ray photons that pass through the detector window
(the higher, the better) and second, a fraction of photons that are absorbed by the
detector and thus result in a series of detectable events (again, the higher, the bet-
ter). The product of the two fractions, which is known as the absorption or quantum
efficiency, should usually be between 0.5 and 1.

The efficiency of modern detectors is quite high, in contrast to the X-ray film,
which requires multiple photons to activate a single grain of photon-sensitive silver
halide. It is important to keep in mind that the efficiency depends on the type of the
detector and it normally varies with the wavelength for the same type of the detector.
The need for high efficiency is difficult to overestimate since every missed (i.e., not
absorbed by the detector) photon is simply a lost photon. It is nearly impossible to
account for the lost photons by any amplification method, no matter how far the
amplification algorithm has been advanced.

The linearity of the detector is critical in obtaining correct intensity measure-
ments (photon count). The detector is considered linear when there is a linear depen-
dence between the photon flux (the number of photons entering through the detector
window in one second) and the rate of signals generated by the detector (usually the

23 For the purpose of this consideration, the dynamic range is the ability of the detector to count
photons at both the low and high fluxes with the same effectiveness, and by the background noise
we mean the events similar to those generated by the absorbed photons, but occurring randomly
and spontaneously in the detector without photons entering the detector.
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number of voltage pulses) per second. In any detector, it takes some time to absorb
a photon, convert it into a voltage pulse, register the pulse, and reset the detector
to the initial state, that is, make it ready for the next operation. This time is usually
known as the dead time of the detector – the time during which the detector remains
inactive after it has just registered a photon.

The presence of the dead time always decreases the registered intensity. This
effect, however, becomes substantial only at high photon fluxes. When the detector
is incapable of counting every photon due to the dead time, some of them could be
absorbed by the detector but remain unaccounted, that is, become lost photons. It is
said that the detector becomes nonlinear under these conditions. Thus the linearity
of the detector can be expressed as: (i) the maximum flux in photons per second that
can be reliably counted (the higher the better); (ii) the dead time (the shorter, the
better), or (iii) the percentage of the loss of linearity at certain high photon flux (the
lower percentage, the better). The latter is compared for several different types of
detectors in Table 6.3 along with other characteristics.

The proportionality of the detector determines how the size of the generated volt-
age pulse is related to the energy of the X-ray photon. Since X-ray photons produce
a certain amount of events (ion pairs, photons of visible light, etc.), and each event
requires certain energy, the number of events is generally proportional to the energy
of the X-ray photon and therefore, to the inverse of its wavelength. The amplitude
of the generated signal is normally proportional to the number of these events and
thus, it is proportional to the X-ray photon energy, which could be used in pulse-
height discrimination. Usually, the high proportionality of the detector enables one
to achieve additional monochromatization of the X-ray beam in a straightforward
fashion: during the registration, the signals that are too high or too low and thus cor-
respond to photons with exceedingly high or exceedingly low energies, respectively,
are simply not counted.

Finally, the resolution of the detector characterizes its ability to resolve X-ray
photons of different energy and wavelength. The resolution (R) is defined as follows:

R(%) =

√
δV
V

100% (6.5)

Table 6.3 Selected characteristics of the most common detectors using Cu Kα radiation.

Property/
Detector

Linearity loss at
40,000 cpsa

Proportionality Resolution
for Cu Kα

Energy per
event (eV)

No. of
eventsb

Scintillation <1% Very good 45% 350 23
Proportional <5% Good, but fails at high

photon flux
14% 26 310

Solid state Up to 50% Pileup in mid-range 2% 3.7 2,200
acps – counts per second.
bApproximate number of ion pairs or visible light photons resulting from a single X-ray photon
assuming Cu Kα radiation with photon energy of about 8 keV.
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where V is the average height of the voltage pulse and δV is the spread of voltage
pulses. The latter is also defined as the full width at half-maximum of the pulse
height distribution in Volts. The resolution for Cu Kα radiation for the main types
of detectors is listed in Table 6.3. Thus, the resolution is a function of both the num-
ber of the events generated by a single photon and the energy required to generate
the event, and it is critically dependent on how small is the spread in the number
of events generated by different photons with identical energy. In other words, high
resolution is only viable when every photon is absorbed completely, which is dif-
ficult to achieve when the absorbing medium is gaseous, but is nearly ideal in the
solid state simply due to the difference in their densities (see Sect. 8.6.5).

6.4.2 Classification of Detectors

Historically, the photographic film is the first and the oldest detector of X-rays,
which was in use for many decades. Just as the visible light, the X-ray photons
excite fine particles of silver halide when the film is exposed to X-rays. During the
development, the exposed halide particles are converted into black metallic silver
grains. Only the activated silver halide particles, that is, those that absorbed several
X-ray photons (usually at least 3–5 photons), turn into metallic silver.

This type of detector is simple but is no longer in common use due to its low
proportionality range, and limited spatial and energy resolution. Moreover, the film-
development process introduces certain inconveniences and is time consuming.
Finally, the information stored on the developed photographic film is difficult to
digitize.

In modern detectors the signal, which is usually an electric current, is easily dig-
itized and transferred to a computer for further processing and analysis. In general,
detectors could be broadly divided into two categories: ratemeters and true counters.
In a ratemeter, the readout is performed after hardware integration, which results,
for example, in the electrical current or a voltage signal that is proportional to the
flux of photons entering the detector. True counters, on the other hand, count in-
dividual photons entering through the detector window and being absorbed by the
detector.

Hence, the photographic film vaguely resembles a ratemeter, because the inten-
sity is extracted from the degree of darkening of the spots found on the film – the
darker the spot, the higher the corresponding intensity as a larger number of pho-
tons have been absorbed by the spot on the film surface. The three most commonly
utilized types of X-ray detectors today are gas proportional, scintillation, and solid-
state detectors, all of which are true counters.

Yet another classification of detectors is based on whether the detector is capable
of resolving the location where the photon has been absorbed and thus, whether they
can detect the direction of the beam in addition to counting the number of photons.
Conventional gas proportional, scintillation, and solid-state detectors do not support
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f(2θ)

f(2
θ)

Fig. 6.8 The schematic explaining the difference between point (the set of discrete dots), line (solid
rectangle), and area (the entire picture) detectors, which are used in modern powder diffractometry.
The light trace extended from the center of the image to the upper-left corner is the shade from the
primary beam trap. The Bragg angle is zero at the center of the image and it increases along any
line that extends from the center of the image as shown by the two arrows (also see Fig. 8.4).

spatial resolution and therefore, they are also known as point detectors. A point
detector registers only the intensity of the diffracted beam, one point at a time. In
other words, the readout of the detector corresponds to a specific value of the Bragg
angle as determined by the position of the detector relatively to both the sample
and the incident beam. This is illustrated as the series of dots in Fig. 6.8, each dot
corresponding to a single position of the detector and a single-point measurement
of the intensity. Thus, to examine the distribution of the diffracted intensity as a
function of Bragg angle using a point detector, it is necessary to perform multiple-
point measurements at varying Bragg angles.

Detectors that support spatial resolution in one direction are usually termed as
line detectors, while those that facilitate resolution in two dimensions are known
as area detectors. Again, photographic film is a typical example of an area detector
because each point on the film can be characterized by two independent coordinates
and the entire film area is exposed simultaneously. The following three types of
line and area detectors are in common use in powder diffractometry today: position
sensitive (PSD), charge coupled devices (CCD), and image plates (IPD). The former
is a line detector (its action is represented by the rectangle in Fig. 6.8) and the latter
two are area detectors (the entire area of Fig. 6.8 represents an image of how the
intensity is measured simultaneously). Both line and area detectors can measure
diffracted intensity at multiple points at once and thus, a single measurement results
in the diffraction pattern resolved in one or two dimensions, respectively.
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6.4.3 Point Detectors

A typical gas-proportional counter detector usually consists of a cylindrical body
filled with a mixture of gases (Xe mixed with some quench gas, usually CO2, CH4,

or a halogen, to limit the discharge) and a central wire anode as shown schematically
in Fig. 6.9 (left). High voltage is maintained between the cathode (the body of the
counter) and the anode. When the X-ray photon enters through the window and is
absorbed by the gas, it ionizes Xe atoms producing positively charged ions and elec-
trons, that is, ion pairs (see Table 6.3). The resulting electrical current is measured
and the number of current pulses is proportional to the number of photons absorbed
by the mixture of gases. The second window is usually added to enable the exit of
the nonabsorbed photons, thus limiting the X-ray fluorescence, which may occur
at the walls of the counter. In some cases, the cylinder can be filled by a mixture
of gases under pressure exceeding the ambient to improve photon absorption and,
therefore, photon detection by the detector.

Gas-proportional counters have relatively good resolution, so the heights of cur-
rent pulses can be analyzed and discriminated to eliminate pulses that appear due
to Kβ photons and due to low and high energy white radiation photons. The pulse
height discrimination is often used in combination with a β-filter to improve the
elimination of the Kβ and white background photons.

The lifetime of a proportional detector is limited to about two years because a
fraction of the gas, filling the detector, escapes through the windows, which are
usually made from a thin and low-absorbing organic film to improve quantum ef-
ficiency. Another disadvantage of this type of the detector is its low effectiveness
at high photon fluxes and with short wave (high energy) X-rays, such as Mo (the
mass absorption coefficients of Xe are 299 and 38.2cm2/g for Cu Kα and Mo Kα
radiation, respectively).

A typical scintillation detector employs a different principle for the detection of
X-rays. It is constructed from a crystal scintillator coupled with a photomultiplier
tube as shown in Fig. 6.9 (right). The X-ray photons, which are absorbed by the
crystal, generate photons of blue light. After exiting the crystal, blue light photons

X-rays

Crystal
scintillator

Photomultiplier

Window

X-rays

Window

Anode
Xe+ CO2 or CH4

Fig. 6.9 The schematics of the gas-proportional counter (left) and the scintillation (right) detectors
of X-rays.
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are converted into electrons in a photomultiplier and amplified, and the resultant
voltage pulses are registered as photon counts.

The crystal scintillator is usually made from cleaved, optically clear sodium io-
dide (NaI) activated with ∼1% of Tl. The crystals are hydroscopic and thus, they
are usually sealed in a vacuum tight enclosure with a thin Be window in the front
(X-rays entry window) and high quality optical glass in the back (blue light photons
exit window). The crystal is usually mounted on the photomultiplier tube using a
viscous fluid that minimizes the refraction of blue light on the interface between the
crystal and the photomultiplier.

Unfortunately, due to the relatively high energy of blue light photons, the X-ray
wavelength resolution of the scintillation detector is quite low. Although, the ex-
tremely short wavelengths (e.g., cosmic rays) can be discriminated and eliminated,
the Kβ photons cannot be recognized and filtered out by the detector. Despite their
low energy resolution, scintillation detectors are highly stable and effective; espe-
cially at high photon fluxes (see Table 6.3). They have very short dead time and
therefore, extended linear range. Because of this, scintillation detectors are by far
the most commonly used detectors in the modern laboratory X-ray powder diffrac-
tometry.

Yet another physical phenomenon is used in solid-state detectors, which are man-
ufactured from high quality silicon or germanium single crystals doped with lithium
and commonly known as Si(Li) or Ge(Li) solid-state detectors. The interaction of
the X-ray photon with the crystal (detector) produces electron–hole pairs in quanti-
ties proportional to the energy of the photon divided by the energy needed to gen-
erate a single pair. The latter is quite low and amounts to approximately 3.7 eV for
a Si-based detector. The electric potential difference applied across the crystal re-
sults in the photon-induced electric current, which is amplified and measured. The
current is indeed proportional to the number of the generated electron–hole pairs.

In order to minimize noise and Li migration, the solid-state detector should be
cooled, usually to ∼80K. This can be done using liquid nitrogen, but it is quite
inconvenient to have a cryogenic container mounted on the detector arm, especially
since the container needs to be refilled every few days. Thus, solid-state detectors
coupled with thermoelectric coolers have been developed and commercialized, and
successfully used in powder diffraction.

The substantial advantage of this type of detector is its high resolution at low
temperature, even when compared with proportional counters (Table 6.3). Cooled
solid-state detectors facilitate excellent filtration of both the undesirable Kβ and
white radiation, thus resulting in a very low background without a significant loss
of the intensity of the Kα1/Kα2 doublets. It is worth noting that even the highest
quality, perfectly aligned monochromator decreases the characteristic Kα intensity
by a factor of two or more. Thus, with the cooled solid-state detector the monochro-
mator is no longer needed unless the extreme spectral purity is an issue. Moreover,
modern solid-state detectors may be tuned to suppress the Kα doublet and register
only Kβ energies. The latter is only about 20% as strong as the Kα component of
the characteristics spectrum, but it has a single intense wavelength, which may be
quite useful when working with complex powder diffraction patterns.



6.4 Detection of X-Rays 127

Si-(100)

Bragg angle, 2θ (deg.)

55 60 65 70 75 80

In
te

ns
ity

, Y
 (

10
3  

co
un

ts
 p

er
 s

ec
on

d)

In
te

ns
ity

, Y
 (

10
3  

co
un

ts
 p

er
 s

ec
on

d)

50

0

2

4

6

8

10

12

14

16

18

20

(400)
Cu Kβ

(400)
Cu Kα

(400)
W Lα1

(400)
W Lα2

λ CuKα=1.54187

λ CuKβ=1.39224

λ WLα1=1.47641

λ WLα2=1.48745

Bragg angle, 2θ (deg.)
68.4 68.8 69.2 69.6 70.0
0

20

40

60

80

100

120

Fig. 6.10 The X-ray diffraction pattern collected from a single crystalline Si-wafer in the reflect-
ing position with the [100] direction perpendicular to its surface using a powder diffractometer
equipped with the thermoelectric cooled Si(Li) solid-state detector. The inset shows multiple ran-
dom spikes for the (400) Cu Kα peak when photon flux exceeds ∼20,000cps due to the nonlinear-
ity of the detector. The additional Bragg peaks are marked with the corresponding characteristic
wavelengths (experimental data courtesy of Dr. J.E. Snyder).

The major drawback of this type of detector, not counting the need for continuous
cooling, is its relatively low linear range – only up to about 8 × 104 counts per
second. This may result in experimental artifacts when measuring extremely strong
Bragg peaks, similar to those shown in Fig. 6.10.

The inset of this figure shows sharp and random spikes peaking at ∼1.2× 105

counts instead of a smooth Bragg peak, due to the highly nonlinear response of the
detector when photon flux exceeds 2−5×104 counts per second. Further, the pho-
ton energy resolution-based electronic monochromatization also fails. In addition
to the (400) Bragg peak centered at 2θ ∼= 69.2◦, which is expected for this orienta-
tion of the single crystalline silicon wafer, three additional Bragg peaks are clearly
recognizable in the measured diffraction pattern at 2θ∼= 61.6◦,65.9◦ and 66.3◦.

A simple analysis, based on the Braggs’ equation, leads to the conclusion that
these three peaks are all due to the reflections from the (400) crystallographic planes
of Si, each representing a different wavelength in a characteristic spectrum of this
particular X-ray tube. The first satellite Bragg peak (2θ ∼= 61.6◦) corresponds to
the incompletely suppressed Kβ component in the characteristic spectrum of the
Cu anode. Obviously, this occurs due to the extremely high intensity of the (400)
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peak from the nearly perfect single crystalline specimen. The two remaining Bragg
peaks (2θ ∼= 65.9◦ and 66.3◦) are due to the presence of a W impurity deposited
on the surface of the anode (see Fig. 6.4) during the long-time operation of the
X-ray tube,24 and they correspond to the reflections caused by W Lα1 and Lα2
characteristic lines. Another unusual feature of this diffraction pattern is the fact that
the intensity corresponding to the very weak W Lα1 peak is higher than that of the
much stronger Cu Kβ peak. Indeed, this happens because the energy of the former
is closer to the energy of Cu Kα photons. Since the detector is tuned to register Cu
Kα photons, discriminating other photons with nearly the same energy is difficult
to achieve. It is worth noting that if the same data would be collected using a brand
new Cu-anode X-ray tube (which has no deposit from the W filament on the surface
of the anode), only two characteristic Cu Bragg peaks would be visible.

6.4.4 Line and Area Detectors

A position sensitive detector (PSD) employs the principle of a gas proportional
counter, with an added capability to detect the location of a photon absorption event.
Hence, unlike the conventional gas proportional counter, the PSD is a line detector
that can measure the intensity of the diffracted beam in multiple (usually thousands)
points simultaneously. As a result, a powder diffraction experiment becomes much
faster, while its quality generally remains nearly identical to that obtained using a
standard gas proportional counter.25

The basic principle of sensing the position of the photon absorption event by
the PSD is based on the following property of the proportional counter. The elec-
trons (born by the X-ray photon absorption and creation of Xe ion – electron pairs)
accelerate along a minimum resistance (i.e., linear) path toward the wire anode,
where they are discharged, thus producing the electrical current pulse in the anode
circuit. In the point detector, the amplitude of this pulse is measured on one end
of the wire. Given the high speed of modern electronics, it is possible to measure
the same signal on both ends of the wire anode. Thus, the time difference between
the two measurements of the same discharge pulse is used to determine the place
where the discharge occurred, provided the length of the wire anode is known, as
illustrated schematically in Fig. 6.11.

The spatial resolution of the PSDs is not as high as that attainable with the precise
positioning of point detectors. Nevertheless, it remains satisfactory (approaching
about 0.01◦) to conduct good-quality experiments. Yet, a minor loss of the resolu-
tion is a small price to pay for the ability to collect powder diffraction data in a wide
range of Bragg angles, simultaneously, which obviously and substantially decreases

24 This particular X-ray tube was in service for more than a year and the total number of hours of
operation was approaching 2000. The tube was regularly operated at ∼75% of rated power.
25 A significant deterioration of the quality of X-ray powder diffraction data may occur when the
studied specimen is highly fluorescent because it is impractical to monochromatize the diffracted
beam when using line or area detectors. Also see Sect. 11.3.2.
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Fig. 6.11 The schematic comparing the conventional gas proportional detector, where the signal is
collected on one side of the wire anode (left) and the position sensitive detector, where the signals
are measured on both sides of the wire anode (right). The position of the electron discharge (dark
dot) is determined by the counting electronics from the difference between times t1 and t2 it takes
for the two signals to be recorded.

the duration of the experiment. A typical improvement is from many hours when
using a point detector to several minutes or less when using a position-sensitive
detector.

Different models of the PSD’s may have different geometry, resolution and Bragg
angle range: short linear PSD’s cover a few degrees range (from ∼5 to 10◦), while
long curved PSD’s may cover as much as ∼120◦–140◦2θ. The biggest advantage of
the long range PSD’s is the considerable experimental time reduction when com-
pared to short or medium range position sensitive detectors. Their disadvantage
arises from often substantial differences in the photon counting properties observed
at different places along the detector, for example in the middle vs. the ends of its
length. The large angular spread of long detectors also puts some restrictions on the
quality of focusing of X-rays and usually results in the deterioration of the shape
of Bragg peaks. Relevant discussion about the geometry of powder diffractometers
equipped with PSDs is found in Sect. 11.3.2.

Comparable to PSDs, which fundamentally are gas proportional counters with an
added functionality of detecting the location of photon absorption events, the real
time multiple strip detector (RTMS) , employs the principle used in a standard solid
state detector (see Sect. 6.4.3). Strip detectors are typically manufactured by using a
photolithographic process, during which narrow p-doped strips are deposited on an
n-type Si wafer. The simplified schematic of a strip detector is shown in Fig. 6.12.
The electric potential difference applied to each strip across the wafer results in the
photon-induced electric current, which is amplified and measured. Since both the
holes and electrons created as a result of each photon absorption event travel along
the path of least resistance, the current measured individually for each strip pro-
vides information about the position at which the X-ray photon was absorbed by the
detector. The current remains proportional to the number of the generated electron–
hole pairs, thus providing information about photon flux at a specific location of the
detector.

Area detectors record diffraction pattern in two dimensions simultaneously. Not
counting the photographic film, two types of electronic area detectors have been
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Fig. 6.12 The schematic of a strip detector.

advanced to a commercial status, and are being frequently used in modern X-ray
powder diffraction analysis.

In a charge-coupled device detector, X-ray photons are converted by a phos-
phor26 into visible light, which is captured using a charge-coupled device (CCD).
The latter is a chip similar to (or even the same as) those used in modern digital cam-
eras. In order to reliably measure a large area, in some detector designs the phosphor
may be made several times larger than the chip, and then the generated visible light
is demagnified to the size of the chip by using fiber optics, while in other designs
several chips (e.g., a 2×2 or 3×3 chip arrays) are glued together. Similar to solid-
state detectors, CCD chips are cooled with thermoelectric cooling device to reduce
random (thermal) noise.

In an image plate detector (IPD) X-ray photons are also captured by a phos-
phor.27 The excited phosphor pixels, however, are not converted into the signals
immediately. Instead, the information is stored in the phosphor grains as a latent
image, in a way, similar to the activation of silver halide particles in the photo-
graphic film during exposure. When the data collection is completed, the image is
scanned (or “developed”) by a laser, which deactivates pixels that emit the stored
energy as a blue light. Visible light photons are then registered by a photomultiplier
in a conventional manner, and the plate is reactivated by another laser. Image plates
are integrating detectors with high counting rates and dynamic range but they have
relatively long readout times.

26 A typical CCD phosphor is Tb3+ doped Gd2O2S, which converts X-ray photons into visible
light photons.
27 A typical image plate phosphor is Eu2+ doped BaFBr. When exposed to X-rays, Eu2+ oxidizes
to Eu3+. Thus produced electrons may either recombine with Eu3+ or they become trapped by
F-vacancies in the crystal lattice of BaFBr. The trapped electrons may exist in this metastable
state for a long time. They are released when exposed to a visible light and emit blue photons
during recombination with Eu3+ ions, e.g., see K. Takahashi, K. Khoda, J. Miyahara, Y. Kanemitsu,
K. Amitani, and S. Shionoya, Mechanism of photostimulated luminescence in BaFX:Eu2+ (X =
Cl, Br) phosphors, J. Luminesc. 31–32, 266 (1984).
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Table 6.4 Qualitative comparison of the most common area detectors.

Parameter CCD IPD MWD

Active area size Small Large Small
Readout time Medium Long Short
Counting rate High High Low
Dynamic range Medium High Medium
Spatial resolution High Low Low

Another type of area detector that finds more use in powder diffraction than other
area detectors is a multi-wire detector (MWD) which uses the same principle as
gas proportional counters. The multi-wire detector has two anodes made of multi-
wire grids which allow detection of the X and Y positions at which the photons
are absorbed in addition to the total number of the absorbed photons. Table 6.4
compares three types of area detectors discussed here.

6.5 Additional Reading

1. International Tables for Crystallography, vol. A, Fifth revised edition, Theo Hahn, Ed. (2002);
vol. B, Third edition, U. Shmueli, Ed. (2008); vol. C, Third Edition, E. Prince, Ed. (2004).
All volumes are published jointly with the International Union of Crystallography (IUCr) by
Springer. Complete set of the International Tables for Crystallography, Vol. A-G, H. Fuess,
T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, E. Prince, A. Authier, V. Kopský, D.B.
Litvin, M.G. Rossmann, E. Arnold, S. Hall, and B. McMahon, Eds., is available online as
eReference at http://www.springeronline.com.

2. R.B. Neder and Th. Proffen, Teaching diffraction with the aid of computer simulations, J.
Appl. Cryst. 29, 727 (1996); also see Th. Proffen and R.B. Neder. Interactive tutorial about
diffraction on the Web at http://www.lks.physik.uni-erlangen.de/diffraction/.

3. P.A. Heiney, High resolution X-ray diffraction. Physics department and laboratory for
research on the structure of matter. University of Pennsylvania. http://dept.physics.
upenn.edu/∼heiney/talks/hires/hires.html.

4. Electron diffraction techniques. Vol. 1, 2. J. Cowley, Ed., Oxford University Press. Oxford
(1992).

5. R. Jenkins and R.L. Snyder, Introduction to X-ray powder diffractometry. Wiley, New York
(1996).

6. J. Als-Nielsen and D. McMorrow, Elements of modern X-ray physics, Wiley, New York
(2001).

6.6 Problems

1. A typical energy of electrons in a modern transition electron microscope is
300 keV. Calculate the corresponding wavelength of the electron beam assuming
that the vacuum inside the microscope is ideal.

2. Calculate the energy (in keV) of the characteristic Cr Kα1 and Mo Kα1 radiation.
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3. You are in charge of buying a new powder diffractometer for your company.
The company is in business of manufacturing alumina (Al2O3) based ceramics.
The powder diffractometer is to become a workhorse instrument in the quality con-
trol department. Routine experiments will include collecting powder diffraction data
from ceramic samples to analyze their structure and phase composition. High data
collection speeds are critical because a typical daily number of samples to be ana-
lyzed using the new equipment is 100+. The following options are available from
different vendors:

Sealed Cu X-ray tube, scintillation detector; the lowest cost.
Sealed Cu X-ray tube, solid state detector; $10,000 more than the first option.
Sealed Cu X-ray tube, curved position sensitive detector; $25,000 more than the

first option.
What recommendation will you make to you boss without a fear of being fired

during the first month after the delivery of the instrument?



Chapter 7
Fundamentals of Diffraction

When X-rays propagate through a substance, the occurrence of the following
processes should be considered in the phenomenon of diffraction:

– Coherent scattering (Sect 7.1), which produces beams with the same wavelength
as the incident (primary) beam. In other words, the energy of the photons in
a coherently scattered beam remains unchanged when compared to that in the
primary beam.

– Incoherent (or Compton1) scattering, in which the wavelength of the scattered
beam increases due to partial loss of photon energy in collisions with core elec-
trons (the Compton effect).

– Absorption of the X-rays, see Sect 8.6.5, in which some photons are dissipated
in random directions due to scattering, and some photons lose their energy by
ejecting electron(s) from an atom (i.e., ionization) and/or due to the photoelectric
effect (i.e., X-ray fluorescence).

Incoherent scattering is not essential when the interaction of X-rays with crys-
tal lattices is of concern, and it is generally neglected. When absorption becomes
significant, it is usually taken into account as a separate effect. Thus, in the first ap-
proximation only coherent scattering results in the diffraction from periodic lattices
and is considered in this chapter.

Generally, the interaction of X-rays (or any other type of radiation with the
proper wavelength) with a crystal is multifaceted and complex, and there are two
different levels of approximation – kinematical and dynamical theories of diffrac-
tion. In the kinematical diffraction, a beam scattered once is not allowed to be scat-
tered again before it leaves the crystal. Thus, the kinematical theory of diffraction is
based on the assumption that the interaction of the diffracted beam with the crystal

1 Arthur Holly Compton (1897–1962). The American physicist, best known for his discovery of
the increase of wavelength of X-rays due to scattering of the incident radiation by free electrons –
inelastic scattering of X-ray photons – known today as the Compton effect. With Charles Thomson
Rees Wilson, Compton shared the Nobel Prize in physics in 1927 “for his discovery of the effect
named after him.” See http://nobelprize.org/nobel prizes/physics/laureates/1927/compton-bio.html
for more information.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 133
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 7,
c© Springer Science+Business Media LLC 2009
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is negligibly small. This requires the following postulations: (1) a crystal consists of
individual mosaic blocks – crystallites2 – which are slightly misaligned with respect
to one another; (2) the size of the crystallites is small, and (3) the misalignment of
the crystallites is large enough, so that the interaction of X-rays with matter at the
length scale exceeding the size of mosaic blocks is negligible.

On the contrary, the theory of the dynamical diffraction accounts for scattering of
the diffracted beam and other interactions of waves inside the crystal, and thus the
mathematical apparatus of the theory is quite complex. Dynamical effects become
significant and the use of the theory of dynamical diffraction is justified only when
the crystals are nearly perfect, or when there is an exceptionally strong interaction
of the radiation with the material. In the majority of crystalline materials, however,
dynamical effects are weak and they are usually noticeable only when precise sin-
gle crystal experiments are conducted. Even then, numerous dynamical effects (e.g.,
primary and/or secondary extinction, simultaneous diffraction, thermal diffuse scat-
tering, and others) are usually applied as corrections to the kinematical diffraction
model.

The kinematical approach is simple, and adequately and accurately describes the
diffraction of X-rays from mosaic crystals. This is especially true for polycrystalline
materials where the size of crystallites is relatively small. Hence, the kinematical
theory of diffraction is used in this chapter and throughout this book.

7.1 Scattering by Electrons, Atoms and Lattices

It is well-known that when a wave interacts with and is scattered by a point object,
the outcome of this interaction is a new wave, which spreads in all directions. If
no energy loss occurs, the resultant wave has the same frequency as the incident
(primary) wave and this process is known as elastic scattering. In three dimensions,
the elastically scattered wave is spherical, with its origin in the point coinciding with
the object as shown schematically in Fig. 7.1.

When two or more points are involved, they all produce spherical waves with the
same λ, which interfere with each other simply by adding their amplitudes. If the
two scattered waves with parallel-propagation vectors are completely in-phase, the
resulting wave has its amplitude doubled (Fig. 7.2 top), while the waves, which are
completely out-of-phase, extinguish one another as shown in Fig. 7.2 (bottom).

The first case seen in Fig. 7.2 is called constructive interference and the second
case is termed as destructive interference. Constructive interference, which occurs
on periodic arrays of points, increases the resultant wave amplitude by many or-
ders of magnitude and this phenomenon is one of the cornerstones in the theory of
diffraction.

2 Crystallite usually means a tiny single crystal (microcrystal). Each particle in a polycrystalline
material usually consists of multiple crystallites that join together in different orientations. A small
powder particle can be a single crystallite as well.
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Scattered spherical
wave

Incident wave

Fig. 7.1 The illustration of a spherical wave produced as a result of elastic scattering of the incident
wave by the point object (filled dot in the center of the dotted circle).

+

+

k

Fig. 7.2 The two limiting cases of the interaction between two waves with parallel propagation
vectors (k): the constructive interference of two in-phase waves resulting in a new wave with
double the amplitude (top), and the destructive interference of two completely out-of-phase waves
in which the resultant wave has zero amplitude, i.e., the two waves extinguish one another (bottom).

Diffraction can be observed only when the wavelength is of the same order of
magnitude as the repetitive distance between the scattering objects. Thus, for crys-
tals, the wavelength should be in the same range as the shortest interatomic dis-
tances, that is, somewhere between ∼0.5 and ∼2.5 Å. This condition is fulfilled
when using electromagnetic radiation, which within the mentioned range of wave-
lengths, are X-rays. It is important to note that X-rays scatter from electrons, so that
the active scattering centers are not the nuclei, but the electrons, or more precisely
the electron density, periodically distributed in the crystal lattice.

The other two types of radiation that can diffract from crystals are neutron and
electron beams. Unlike X-rays, neutrons are scattered on the nuclei, while electrons,
which have electric charge, interact with the electrostatic potential. Nuclei, their
electronic shells (i.e., core electron density), and electrostatic potentials, are all dis-
tributed similarly in the same crystal and their distribution is established by the crys-
tal structure of the material. Thus, assuming a constant wavelength, the differences
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in the diffraction patterns when using various kinds of radiation are mainly in the
intensities of the diffracted beams. The latter occurs because various types of ra-
diation interact in their own way with different scattering centers. The X-rays are
the simplest, most accessible, and by far the most commonly used waves in powder
diffraction.

7.1.1 Scattering by Electrons

The origin of the electromagnetic wave elastically scattered by the electron can be
better understood by recalling the fact that electrons are charged particles. Thus, an
oscillating electric field (see Fig. 6.2) from the incident wave exerts a force on the
electric-charge (electron) forcing the electron to oscillate with the same frequency
as the electric-field component of the electromagnetic wave. The oscillating electron
accelerates and decelerates in concert with the varying amplitude of the electric field
vector, and emits electromagnetic radiation, which spreads in all directions. In this
respect, the elastically scattered X-ray beam is simply radiated by the oscillating
electron; it has the same frequency and wavelength as the incident wave, and this
type of scattering is also known as coherent scattering.3

For the sake of simplicity, we now consider electrons as stationary points and
disregard the dependence of the scattered intensity4 on the scattering angle.5 Each
electron then interacts with the incident X-ray wave producing a spherical elastically
scattered wave, as shown in Fig. 7.1. Thus, the scattering of X-rays by a single
electron yields an identical scattered intensity in every direction.

3 It is worth noting that coherency of the electromagnetic wave elastically scattered by the electron
establishes specific phase relationships between the incident and the scattered wave: their phases
are different by π (i.e., scatterred wave is shifted with respect to the incident wave exactly by λ/2).
4 The scattered (diffracted) X-ray intensity recorded by the detector is proportional to the amplitude
squared.
5 The absolute intensity of the X-ray wave coherently scattered by a single electron, I, is determined
from the Thomson equation:

I = I0
K
r2

(
1+ cos2 2θ

2

)

where I0 is the absolute intensity of the incident beam, K is constant (K = 7.94× 10−30 m2), r
is the distance from the electron to the detector in m, and θ is the angle between the propagation
vector of the incident wave and the direction of the scattered wave. It is worth noting that in a
powder diffraction experiment all prefactors in the right hand side of the Thomson’s equation are
constant and can be omitted. The only variable part is, therefore, a function of the Bragg angle,
θ. It emerges because the incident beam is generally unpolarized but the scattered beam is always
partially polarized. This function, therefore, is called the polarization factor.

Thomson equation is named after sir Joseph John (J.J.) Thomson (1856–1940) – the British
physicist who has been credited with the discovery of an electron. In 1906 he received the
Nobel Prize in Physics “in recognition of the great merits of his theoretical and experimental
investigations on the conduction of electricity by gases.” See http://nobelprize.org/nobel prizes/
physics/laureates/1906/thomson-bio.html for more information.
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Fig. 7.3 Top – five equally spaced points producing five spherical waves as a result of elastic
scattering of the single incident wave. Bottom – the resultant scattered amplitude as a function
of the phase angle, ϕ. In this geometry, the phase angle is a function of the spacing between the
points, a, the wavelength of the incident beam, λ, and the scattering angle, 2θ. The relationship
between the phase (ϕ) and scattering (θ) angles for the arrangement shown on top is easily derived
by considering path difference (a−x) between any pair of neighboring waves, which have parallel
propagation vectors.

When more than one point is affected by the same incident wave, the overall
scattered amplitude is a result of interference among multiple spherical waves. As
established earlier (Fig. 7.2), the amplitude will vary depending on the difference in
the phases of multiple waves with parallel propagation vectors but originating from
different points.

The phase difference between these waves is also called the phase angle, ϕ. For
example, diffraction from a row of five equally spaced points produces a pattern
shown schematically in Fig. 7.3, which depicts the intensity of the diffracted beam,
I, as a function of the phase angle, ϕ. The major peaks (or diffraction maxima) in
the pattern are caused by the constructive interference, while the multiple smaller
peaks are due to the superimposed waves, which have different phases, but are not
completely out of phase.

For a one-dimensional periodic structure, the intensity diffracted by the row of N
equally spaced points is proportional to the so-called interference function, which is
shown in (7.1).

I(ϕ) ∝
sin2 Nϕ
sin2ϕ

(7.1)
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Fig. 7.4 The illustration of the changes in the diffraction pattern from a one-dimensional peri-
odic arrangement of scattering points when the number of points (N) increases from 5 to 20. The
horizontal scales are identical, but the vertical scales are normalized for the three plots.

or
I(ϕ) ∝ N2, whenϕ = hπ, and h = . . . ,−2,−1,0,1,2 . . .

The example considered here illustrates scattering from only five points. When
the number of equally spaced points increases, the major constructive peaks become
sharper and more pronounced, while the minor peaks turn out to be less and less
visible. The gradual change is illustrated in Fig. 7.4, where the resultant intensity
from the rows of five, ten and twenty points is modeled as a function of the phase
angle using (7.1).

When N approaches infinity, the scattered intensity pattern becomes a periodic
delta function, that is, the scattered amplitude is nearly infinite at specific phase an-
gles (ϕ = hπ,h = . . .,−2,−1,0,1,2, . . .), and is reduced to zero everywhere else.
Since crystals contain practically an infinite number of scattering points, which are
systematically arranged in three dimensions, they also should produce discrete dif-
fraction patterns with sharp diffraction peaks observed only in specific directions.
Just as in the one-dimensional case (Fig. 7.2), the directions of diffraction peaks
(i.e., diffraction angles, 2θ) are directly related to the spacing between the diffract-
ing points (i.e., lattice points, as established by the periodicity of the crystal) and the
wavelength of the used radiation.

7.1.2 Scattering by Atoms and Atomic Scattering Factor

We now consider an atom instead of a stationary electron. The majority of atoms and
ions consist of multiple electrons distributed around a nucleus as shown schemati-
cally in Fig. 7.5. It is easy to see that no path difference is introduced between the
waves for the forward scattered X-rays. Thus, intensity scattered in the direction of
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Fig. 7.5 The schematic of the elastic scattering of X-rays by s electrons illustrating the introduction
of a path difference, δ, into the wavefront with a propagation vector k′′ when it is different from
the propagation vector, k, of the incident beam. The distribution of electrons in two s-orbitals is
determined from the corresponding wave functions.

the propagation vector of the incident wavefront is proportional to the total number
of core electrons, Z, in the atom. For any other angle, 2θ> 0, that is, when the prop-
agation vector of the scattered waves, k′′ is different from the propagation vector of
the incident waves, k, the presence of core electrons results in the introduction of a
certain path difference, δ, between the individual waves in the resultant wavefront.

The amplitude of the scattered beam is therefore, a gradually decaying function
of the scattered angle and it varies with ϕ and with θ. The intrinsic angular depen-
dence of the X-ray amplitude scattered by an atom is called the atomic scattering
function (or factor), f , and its behavior is shown in Fig. 7.6 (left) as a function of
the phase angle.

Thus, when stationary, periodically arranged electrons are substituted by atoms,
their diffraction pattern is the result of a superposition of the two functions, as shown
in Fig. 7.6, right. In other words, the amplitude squared of the diffraction pattern
from a row of N atoms is a product of the interference function (7.1) and the corre-
sponding atomic scattering function squared, f 2(ϕ):

I(ϕ) ∝ f 2(ϕ)
sin2 Nϕ
sin2ϕ

(7.2)

It is worth noting that it is the radial distribution of core electrons in an atom,
which is responsible for the reduction of the intensity when the diffraction angle
increases. Thus, it is a specific feature observed in X-ray diffraction from ordered
arrangements of atoms. If, for example, the diffraction of neutrons is of concern,
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Fig. 7.6 The schematic showing the dependence of the intensity scattered by an atom, i.e., the
atomic scattering factor, f 2 ∝ A2, as a function of the phase angle (left), and the resultant decrease
of the intensity of the diffraction pattern from the row of five regularly spaced atoms, also as a
function of the phase angle (right).

they are scattered by nuclei, which may be considered as points. Hence, neutron-
scattering functions (factors) are independent of the diffraction angle and they re-
main constant for a given type of nuclei (also see Table 6.2).

7.1.3 Scattering by Lattices

The interference function in (7.2) describes a discontinuous distribution of the scat-
tered intensity in the diffraction space.6 Assuming an infinite number of points in
a one-dimensional periodic structure (N → ∞), the distribution of the scattered in-
tensity is a periodic delta-function (as mentioned earlier), and therefore, diffraction
peaks occur only in specific points, which establish a one-dimensional lattice in the
diffraction space. Hence, diffracted intensity is only significant at certain points,
which are determined (also see (7.1), Figs. 7.4 and 7.6) from:

I(ϕ) ∝ f 2(ϕ)
sin2 Nϕ
sin2ϕ

= f 2(ϕ)
sin2 Nhπ
sin2 hπ

(7.3)

In three dimensions, a total of three integers (h, k and l)7 are required to define
the positions of intensity maxima in the diffraction space:

6 Diffraction space, in which diffraction peaks are arranged into a lattice, is identical to reciprocal
space.
7 The integers h, k and l are identical to Miller indices.
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I(ϕ) ∝ f 2(ϕ)
sin2 N1hπ
sin2 hπϕ

sin2 N2kπ
sin2 kπ

sin2 N3lπ
sin2 lπ

(7.4)

where N1, N2 and N3 are the total numbers of the identical atoms in the correspond-
ing directions.

On the other hand, when the unit cell contains more than one atom, the individual
atomic scattering function f (ϕ) should be replaced with scattering by the whole
unit cell, since the latter is now the object that forms a periodic array. The scattering
function of one unit cell, F , is called the structure factor or the structure amplitude.
It accounts for scattering factors of all atoms in the unit cell, together with other
relevant atomic parameters. As a result, a diffraction pattern produced by a crystal
lattice may be defined as

I(ϕ) ∝ F2(ϕ)
sin2 U1hπ

sin2 hπ
sin2 U2kπ

sin2 kπ
sin2 U3lπ

sin2 lπ
(7.5)

where U1, U2 and U3 are the numbers of the unit cells in the corresponding direc-
tions.

The phase angle is a function of lattice spacing (Fig. 7.3), which is a function of
h, k and l. As seen later (Sect. 9.1), the structure factor is also a function of the triplet
of Miller indices (hkl). Hence, in general the intensities of discrete points (hkl) in
the reciprocal space are given as:

I(hkl) ∝ F2(hkl)
sin2 U1hπ

sin2 hπ
sin2 U2kπ

sin2 kπ
sin2 U3lπ

sin2 lπ
(7.6)

The scattered intensity is nearly always measured in relative and not in absolute
units, which necessarily introduces a proportionality coefficient, C. As we estab-
lished earlier, when the phase angle is nπ (n is an integer), the corresponding in-
terference functions in (7.6) are reduced to U2

1 , U2
2 and U2

3 and they become zero
everywhere else. Hence, assuming that the volume of a crystalline material pro-
ducing a diffraction pattern remains constant (this is always ensured in a properly
arranged experiment), the proportionality coefficient C can be substituted by a scale
factor K = CU2

1 U2
2 U2

3 .
In addition to the scale factor, intensity scattered by a lattice is also subject to

different geometrical effects,8 G, which are various functions of the diffraction an-
gle, θ. All things considered, the intensity scattered by a lattice may be given by the
following equation:

I(hkl) = K ×G(θ)×F2(hkl) (7.7)

This is a very general equation for intensity of the individual diffraction (Bragg)
peaks observed in a diffraction pattern of a crystalline substance, and it is discussed
in details in Sect. 8.6, while the geometry of powder diffraction, that is, the direc-
tions in which discrete peaks can be observed, is discussed in the following two
sections.

8 One of these geometrical effects is the polarization factor introduced earlier in the Thomson’s
equation; see Sect. 7.1 and the corresponding footnote (No. 5 on page 136).
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7.2 Geometry of Diffraction by Lattices

Both direct and reciprocal spaces may be used to understand the geometry of dif-
fraction by a lattice. Direct space concepts are intuitive, and therefore, we begin our
consideration using physical space. Conversely, reciprocal space is extremely useful
in the visualization of diffraction patterns in general and from powders in particu-
lar. In this section, therefore, we also show the relationships between geometrical
concepts of diffraction in physical and reciprocal spaces.

7.2.1 Laue Equations

The geometry of diffraction from a lattice, or in other words the relationships be-
tween the directions of the incident and diffracted beams, was first given by Max
von Laue in a form of three simultaneous equations, which are commonly known as
Laue equations:

a(cosψ− cosϕ1) = hλ
b(cosψ− cosϕ2) = kλ
c(cosψ− cosϕ3) = lλ

(7.8)

Here a, b and c are the dimensions of the unit cell; ψ1−3 and ϕ1−3 are the angles
that the incident and diffracted beams, respectively, form with the parallel rows of
atoms in three independent directions; the three integer indices h, k, and l have the
same meaning as in (7.6) and (7.7), that is, they are unique for each diffraction peak
and define the position of the peak in the reciprocal space (also see Sect. 1.5), and λ
is the wavelength of the used radiation. The cosines, cosψi and cosϕi, are known as
the direction cosines of the incident and diffracted beams, respectively. According
to the formulation given by Laue, sharp diffraction peaks can only be observed when
all three equations in (7.8) are satisfied simultaneously as illustrated in Fig. 7.7.

Laue equations once again indicate that a periodic lattice produces diffraction
maxima at specific angles, which are defined by both the lattice repeat distances
(a,b,c)and the wavelength (λ). Laue equations give the most general representation
of a three-dimensional diffraction pattern and they may be used in the form of (7.8)
to describe the geometry of diffraction from a single crystal.

7.2.2 Braggs’ Law

More useful in powder diffraction is the law formulated by W.H. Bragg and W.L.
Bragg (see Footnote 11 on page 41). It establishes certain relationships among the
diffraction angle (Bragg angle), wavelength, and interplanar spacing.

According to the Braggs, diffraction from a crystalline sample can be explained
and visualized by using a simple notion of mirror reflection of the incident X-ray
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b(cos ψ2 − cos ϕ2) = kλ
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Fig. 7.7 Graphical illustration of Laue equations. A cone of diffracted beams, all forming the same
angle φ1 with a row of atoms, satisfying one Laue equation is shown on top left. Each of the three
cones shown on bottom right also satisfies one of the three equations, while the intersecting cones
satisfy either two, or all three equations simultaneously as shown by arrows. A sharp diffraction
peak is only observed in the direction of a point where three Laue equations are simultaneously
satisfied.

θ, 2θ – Bragg angles
2Δ = 2dhkl sinθ – path difference
2Δ = nλ – constructive interference 

Braggs’ law: nλ=2dhkl sinθhkl
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Fig. 7.8 Geometrical illustration of the Braggs’ law.

beam from a series of crystallographic planes. As established earlier (Sect. 1.4.1),
all planes with identical triplets of Miller indices are parallel to one another and
they are equally spaced. Thus, each plane in a set (hkl) may be considered as a
separate scattering object. The set is periodic in the direction perpendicular to the
planes and the repeat distance in this direction is equal to the interplanar distance
dhkl . Diffraction from a set of equally spaced objects is only possible at specific
angle(s) as we already saw in Sect. 7.1. The possible angles, θ, are established from
the Braggs’ law, which is derived geometrically in Fig. 7.8.

Consider an incident front of waves with parallel propagation vectors, which
form an angle θ with the planes (hkl). In a mirror reflection, the reflected wavefront
will also consist of parallel waves, which form the same angle θ with all planes. The
path differences introduced between a pair of waves, both before and after they are
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reflected by the neighboring planes, Δ, are determined by the interplanar distance
as Δ = dhkl sinθ. The total path difference is 2Δ, and the constructive interference is
observed when 2Δ = nλ, where n is integer and λ is the wavelength of the incident
wavefront. This simple geometrical analysis results in the Braggs’ law:

2dhkl sinθhkl = nλ (7.9)

The integer n is known as the order of reflection. Its value is taken as 1 in all
calculations, since orders higher than 1(n > 1) can always be represented by first-
order reflections (n = 1) from a set of different crystallographic planes with indices
that are multiples of n because:

dhkl = ndnh,nk,nl (7.10)

and for any n > 1, (7.9) is simply transformed as follows:

2dhkl sinθhkl = nλ ⇒ 2dnh,nk,nl sinθnh,nk,nl = λ (7.11)

7.2.3 Reciprocal Lattice and Ewald’s Sphere

The best visual representation of the phenomenon of diffraction has been introduced
by P.P. Ewald (see Footnote 11 on page 11). Consider an incident wave with a certain
propagation vector, k0, and a wavelength, λ. If the length of k0 is selected as the
inverse of the wavelength

|k0| = 1/λ (7.12)

then the entire wave is fully characterized, and it is said that k0 is its wavevector.
When the primary wave is scattered elastically, the wavelength remains constant.
Thus, the scattered wave is characterized by a different wavevector, k1, which has
the same length as k0:

|k1| = |k0| = 1/λ (7.13)

The angle between k0 and k1 is 2θ (Fig. 7.9, left). We now overlap these two
wavevectors with a reciprocal lattice (Fig. 7.9, right) such that the end of k0 coin-
cides with the origin of the lattice. As shown by Ewald, diffraction in the direction
of k1 occurs only when its end coincides with a point in the reciprocal lattice. Con-
sidering that k0 and k1 have identical lengths regardless of the direction of k1 (the
direction of k0 is fixed by the origin of the reciprocal lattice), their ends are equidis-
tant from a common point, and therefore, all possible orientations of k1 delineate a
sphere in three dimensions. This sphere is called the Ewald’s sphere, and it is shown
schematically in Fig. 7.10. Obviously, the radius of the Ewald’s sphere is the same
as the length of k0, in other words, it is equal to 1/λ.

The simple geometrical arrangement of the reciprocal lattice, Ewald’s sphere,
and three vectors (k0,k1, and d∗

hkl) in a straightforward and elegant fashion yields
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Fig. 7.9 The incident (k0) and diffracted (k1) wavevectors originating from a common point (left)
and the same two vectors overlapped with the two-dimensional reciprocal lattice, which is based
on the unit vectors a∗ and b∗ (right). The origin of the reciprocal lattice is chosen at the end of k0.
When diffraction occurs from a point in the reciprocal lattice, e.g., the point (1̄3), the corresponding
reciprocal lattice vector d∗

hkl [e.g., d∗(1̄3)] extends between the ends of k0 and k1.
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Fig. 7.10 The visualization of diffraction using the Ewald’s sphere with radius 1/λ and the two-
dimensional reciprocal lattice with unit vectors a∗ and b∗. The origin of the reciprocal lattice
is located on the surface of the sphere at the end of k0. Diffraction can only be observed when a
reciprocal lattice point, other than the origin, intersects with the surface of the Ewald’s sphere [e.g.,
the point (1̄3)]. The incident and the diffracted beam wavevectors, k0 and k1, respectively, have
common origin in the center of the Ewald’s sphere. The two wavevectors are identical in length,
which is the radius of the sphere. The unit cell of the reciprocal lattice is shown using double lines.



146 7 Fundamentals of Diffraction

Braggs’ equation. From both Figs. 7.9 and 7.10, it is clear that vector k1 is a sum
of two vectors, k0 and d∗

hkl:
k1 = k0 +d∗

hkl (7.14)

Its length is known (1/λ)9 and its orientation with respect to the incident
wavevector, that is, angle θ, is found from simple geometry after recalling that
|d∗| = 1/d:

|k1|sinθ = |k0|sinθ =
1
2
|d∗| ⇒ 2d sinθ = λ (7.15)

The Ewald’s sphere and the reciprocal lattice are essential tools in the visual-
ization of the three-dimensional diffraction patterns from single crystals, as illus-
trated in the next few paragraphs. They are also invaluable in the understanding
of the geometry of diffraction from polycrystalline (powder) specimens, which is
explained in Chap. 8.

Consider a stationary single crystal, in which the orientation of basis vectors of
the reciprocal lattice is established by the orientation of the corresponding crystal-
lographic directions with respect to the external shape of the crystal, as shown in
Fig. 7.11. Thus, when a randomly oriented single crystal is irradiated by monochro-
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Incident
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To area
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crystal

Reciprocal
lattice

Ewald’s
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Fig. 7.11 The illustration of a single crystal showing the orientations of the basis vectors corre-
sponding to both the direct (a, b and c) and reciprocal (a∗,b∗ and c∗) lattices and the Ewald’s
sphere. The reciprocal lattice is infinite in all directions but only one octant (where h > 0,k > 0
and l > 0) is shown for clarity.

9 The lengths of the propagation vectors k0 and k1 may also be defined in terms of their wavenum-
bers: |k0| = |k1| = 2π/λ. Equation (7.15) may then be rewritten as |d∗| = |Q| = 4πsinθ/λ, thus
defining the so-called Q-vector, which is often used to represent diffraction data in synchrotron
radiation experiments. It is also worth noting that since d∗ is a vector in reciprocal lattice, the value
of sinθ/λ is independent of the wavelength.
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c* c*
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Fig. 7.12 The two-dimensional diffraction patterns from stationary (left)10 and rotating (right)11

single crystals recorded using a CCD detector. The incident wavevector is perpendicular to both
the detector and the plane of the figure. The dash-dotted line on the right shows the rotation axis,
which is collinear with c∗.

matic X-rays, only a few, if any (also see Fig. 7.10), points of the reciprocal lattice
will coincide with the surface of the Ewald’s sphere.12 This occurs because first, the
sphere has a constant radius determined by the wavelength, and second, the distrib-
ution of the reciprocal lattice points in three dimensions is fixed by both the lattice
parameters and the orientation of the crystal. The resultant diffraction pattern may
reveal just a few Bragg peaks, as shown in Fig. 7.12 (left).

Many more reciprocal lattice points are placed on the surface of the Ewald’s
sphere when the crystal is set in motion, for example, when it is rotated around
an axis. The rotation of the crystal changes the orientation of the reciprocal lattice
but the origin of the latter remains aligned with the end of the incident wavevector.
Hence, all reciprocal lattice points with |d∗| ≤ 2/λ will coincide with the surface of
the Ewald’s sphere at different angular positions of the crystal. When the rotation
axis is collinear with one of the crystallographic axes and is perpendicular to the in-
cident beam, the reciprocal lattice points form planar intersections with the Ewald’s

10 The single crystal is triclinic Pb3F5(NO3): space group P1̄, a = 7.3796(6), b = 12.1470(9),
c = 16.855(1) Å, α = 100.460(2), β = 90.076(1), γ = 95.517(1)◦. [D.T. Tran, P.Y. Zavalij and
S.R.J. Oliver, A cationic layered material for anion-exchange, J. Am. Chem. Soc. 124, 3966 (2002)]
11 The single crystal is orthorhombic, FePO4·2H2O: space group Pbca, a = 9.867(1), b =
10.097(1), c = 8.705(1) Å. [Y. Song, P.Y. Zavalij, M. Suzuki, and M.S. Whittingham, New iron(III)
phosphate phases: Crystal structure, electrochemical and magnetic properties, Inorg. Chem. 41,
5778 (2002)].
12 When a stationary single crystal is irradiated by white, polychromatic X-rays, a single Ewald’s
sphere shown in Fig. 7.11 becomes a continuum of spheres. Different points of reciprocal lattice
will then rest on surfaces of different Ewald’s spheres, thus producing a much richer diffraction
pattern. Thus technique is known as Laue technique, and it is most often employed for examination
of symmetry and orientation of single crystals.
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sphere (Fig. 7.11, dash-dotted lines). The planes are mutually parallel and equidis-
tant, and the resultant diffraction pattern13 is similar to that illustrated in Fig. 7.12
(right).

7.3 Additional Reading

1. International Tables for Crystallography, vol. A, Fifth Revised Edition, Theo Hahn, Ed. (2002);
vol. B, Third edition, U. Shmueli, Ed. (2008); vol. C, Third edition, E. Prince, Ed. (2004).
All volumes are published jointly with the International Union of Crystallography (IUCr) by
Springer. Complete set of the International Tables for Crystallography, Vol. A-G, H. Fuess,
T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, E. Prince, A. Authier, V. Kopský, D.B.
Litvin, M.G. Rossmann, E. Arnold, S. Hall, and B. McMahon, Eds., is available online as
eReference at http://www.springeronline.com.

2. R.B. Neder and Th. Proffen, Teaching diffraction with the aid of computer simulations, J. Appl.
Cryst. 29, 727 (1996); also see Th. Proffen and R.B. Neder. Interactive tutorial about diffraction
on the Web at http://www.lks.physik.uni-erlangen.de/diffraction/.

3. P. A. Heiney, High resolution X-ray diffraction. Physics department and laboratory for re-
search on the structure of matter. University of Pennsylvania. http://dept.physics.upenn.edu/∼
heiney/talks/hires/hires.html

4. Electron diffraction techniques. Vol. 1, 2. J. Cowley, Ed., Oxford University Press. Oxford
(1992).

5. R. Jenkins and R.L. Snyder, Introduction to X-ray powder diffractometry. Wiley, New York
(1996).

6. Modern powder diffraction. D.L Bish and J.E. Post, Eds. Reviews in Mineralogy, Vol. 20. Min-
eralogical Society of America, Washington, DC (1989).

7.4 Problems

1. A student prepares a sample and collects a powder diffraction pattern on an in-
strument that is available in the laboratory overseen by his major professor. The
student then takes the same sample to a different laboratory on campus and col-
lects a second set of powder diffraction data. When he comes back to his office, he
plots both patterns. The result is shown in Fig. 7.13. Analyze possible sources of the
observed differences.

2. The following is the list of five longest interplanar distances possible in a crystal
lattice of some material: 4.967, 3.215, 2.483, 2.212, and 1.607 Å. Calculate Bragg
angles (2θ) at which Bragg reflections may be observed when using Cr Kα1 or
Cu Kα1 radiation.

13 This type of the diffraction pattern enables one to determine the lattice parameter of the crystal
in the direction along the axis of rotation. It is based on the following geometrical consideration:
the distance between the planar cross-sections of the Ewald’s sphere in Fig. 7.11 equals c∗; the
corresponding diffraction peaks are grouped into lines (see Fig. 7.12, right), and the distance be-
tween the neighboring lines is a function of c∗; the distance from the crystal to the detector, l, and
the wavelength, λ.
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Fig. 7.13 Two powder diffraction patterns collected by a student using the same sample but two
different powder diffractometers.

3. Researcher finished collecting a powder diffraction pattern of an unknown crys-
talline substance. She used Cu Kα radiation, λ = 1.54178 Å. The first Bragg peak
is observed at 2θ = 9.76◦. Based on this information she makes certain conclusions
regarding the length of at least one of the three unit cell edges. What are these con-
clusions?



Chapter 8
The Powder Diffraction Pattern

The powder diffraction experiment is the cornerstone of a truly basic materials char-
acterization technique – diffraction analysis – and it has been used for many decades
with exceptional success to provide accurate information about the structure of ma-
terials. Although powder data usually lack the three-dimensionality of a diffraction
image, the fundamental nature of the method is easily appreciated from the fact that
each powder diffraction pattern represents a one-dimensional snapshot of the three-
dimensional reciprocal lattice of a crystal.1 The quality of the powder diffraction
pattern is usually limited by the nature and the energy of the available radiation,
by the resolution of the instrument, and by the physical and chemical conditions of
the specimen. Since many materials can only be prepared in a polycrystalline form,
the powder diffraction experiment becomes the only realistic option for a reliable
determination of the crystal structure of such materials.

Powder diffraction data are customarily recorded in literally the simplest possible
fashion, where the scattered intensity is measured as a function of a single indepen-
dent variable – the Bragg angle. What makes the powder diffraction experiment so
powerful is that different structural features of a material have different effects on
various parameters of its powder diffraction pattern. For example, the presence of
a crystalline phase is manifested as a set of discrete intensity maxima – the Bragg
reflections – each with a specific intensity and location. When atomic parameters,
for example, coordinates of atoms in the unit cell or populations of different sites
in the lattice of the crystalline phase are altered, this change affects relative inten-
sities and/or positions of the Bragg peaks that correspond to this phase. When the
changes are microscopic, such as when the grain size is reduced below a certain
limit, or when the material has been strained or deformed, then the shapes of Bragg
peaks become affected in addition to their intensities and positions. Hence, much of
the structural information about the material is embedded into its powder diffraction

1 Imaging of the reciprocal lattice in three dimensions is easily done in a single crystal diffraction
experiment.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 151
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 8,
c© Springer Science+Business Media LLC 2009
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pattern, and when experimental data are properly collected and processed, a great
deal of detail about a material’s structure at different length scales, its phase and
chemical compositions can be established.

8.1 Origin of the Powder Diffraction Pattern

As has been established in Sect. 7.2.3, the primary monochromatic beam is scattered
in a particular direction, which is easily predicted using Ewlad’s representation (see
Figs. 7.10–7.12). A similar, yet fundamentally different situation is observed in the
case of diffraction from powders or from polycrystalline specimens, that is, when
multiple single crystals (crystallites or grains) are irradiated simultaneously by a
monochromatic incident beam. When the number of grains in the irradiated volume
is large and their orientations are completely random, the same is true for the recip-
rocal lattices associated with each crystallite. Thus, the ends of the identical recip-
rocal lattice vectors, d∗

hkl, become arranged on the surface of the Ewald’s sphere in
a circle perpendicular to the incident wavevector, k0. The corresponding scattered
wavevectors, k1, are aligned along the surface of the cone, as shown in Fig. 8.1. The
apex of the cone coincides with the center of the Ewald’s sphere, the cone axis is
parallel to k0, and the solid cone angle is 4θ.

Assuming that the number of crystallites approaches infinity (the randomness
of their orientations has been postulated in the previous paragraph), the density of
the scattered wavevectors, k1, becomes constant on the surface of the cone. The
diffracted intensity will therefore, be constant around the circumference of the cone
base or, when measured by a planar area detector as shown in Fig. 8.1, around the
ring, which the cone base forms with the plane of the detector. Similar rings but
with different intensities and diameters are formed by other independent reciprocal
lattice vectors, and these are commonly known as the Debye2 rings.

The appearance of eight diffraction cones when polycrystalline copper powder is
irradiated by the monochromatic Cu Kα1 radiation is shown in Fig. 8.2. All Bragg
peaks, possible in the range 0◦ < 2θ < 180◦, are also listed with the corresponding
Miller indices and relative intensities in Table 8.1.

Assuming that the diffracted intensity is distributed evenly around the base of
each cone (see the postulations made earlier), there is usually no need to measure
the intensity of the entire Debye ring. Hence, in a conventional powder diffraction
experiment, the measurements are performed only along a narrow rectangle centered
at the circumference of the equatorial plane of the Ewald’s sphere, as shown in

2 Petrus (Peter) Josephus Wilhelmus Debye (1884–1966). Dutch physical chemist credited with
numerous discoveries in physics and chemistry. Relevant to the subject of this book is his cal-
culation of the effect of temperature on the scattered X-ray intensity (the Debye-Waller fac-
tor) and his work together with Paul Scherrer on the development of the powder diffraction
method. In 1936 Peter Debye was awarded the Nobel Prize in Chemistry for “his contributions
to our knowledge of molecular structure through his investigations on dipole moments and on
the diffraction of X-rays and electrons in gases.” For more information see http://nobelprize.org/
nobel prizes/chemistry/laureates/1936/debye-bio.html.
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Fig. 8.1 The origin of the powder diffraction cone as the result of the infinite number of the com-
pletely randomly oriented identical reciprocal lattice vectors, d∗

hkl, forming a circle with their ends
placed on the surface of the Ewald’s sphere, thus producing the powder diffraction cone and the
corresponding Debye ring on the flat screen (film or area detector).3 The detector is perpendicular
to both the direction of the incident beam and cone axis, and the radius of the Debye ring in this
geometry is proportional to tan2θ.

Fig. 8.2 and indicated by the arc with an arrow marked as 2θ. Because of this, only
one variable axis (2θ) is fundamentally required in powder diffractometry, yet the
majority of instruments have two independently or jointly controlled axes. The latter
is done due to a variety of reasons, such as the limits imposed by the geometry, more
favorable focusing, particular application, etc. More details about the geometry of
modern powder diffractometers is given in Chap. 11.

In powder diffraction, the scattered intensity is customarily represented as a func-
tion of a single independent variable – Bragg angle – 2θ, as modeled in Fig. 8.3 for
a polycrystalline copper. This type of the plot is standard and it is called the pow-
der diffraction pattern or the histogram. In some instances, the diffracted intensity
may be plotted versus the interplanar distance, d, the q–value (q = 1/d2 = d∗2),
or sinθ/λ (or the Q-value, which is different from sinθ/λ by a factor of 4π, see
Footnote 9 on page 146).

3 In this geometry (flat detector perpendicular to the incident beam placed behind the sample) it is
fundamentally impossible to measure intensity scattered at 2θ ≥ 90◦. One alternative is to place
the detector between the focal point of the X-ray tube and the sample; this enables to measure in-
tensity scattered at 2θ > 90◦. In either case, when diffraction occurs at 2θ= 90◦, the measurement
is impossible (tan 90◦ = ∞). Furthermore, when 2θ ∼= 90◦, the size of a flat detector becomes pro-
hibitively large. For practical measurements, a flat detector may be tilted at any angle with respect
to the propagation vector of the incident beam. Instead of a flat detector, a flexible image plate
detector may be arranged as a cylinder with its axis perpendicular to the incident wavevector and
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Fig. 8.2 The schematic of the powder diffraction cones produced by a polycrystalline copper sam-
ple using Cu Kα1 radiation. The differences in the relative intensities of various Bragg peaks
(diffraction cones) are not discriminated, and they may be found in Table 8.1. Each cone is marked
with the corresponding triplet of Miller indices.

Table 8.1 Bragg peaks observed from a polycrystalline copper using Cu Kα1 radiation.4

hkl I/I0 2θ(◦) hkl I/I0 2θ(◦)

1 1 1 100 43.298 2 2 2 5 95.143
0 0 2 446 50.434 0 0 4 3 116.923
0 2 2 20 74.133 1 3 3 9 136.514
1 1 3 17 89.934 0 2 4 8 144.723

The scattered intensity is usually represented as the total number of the accumu-
lated counts, counting rate (counts per second – cps) or in arbitrary units. Regardless
of which units are chosen to plot the intensity, the patterns are visually identical be-
cause the intensity scale remains linear, and because the intensity measurements are
normally relative, not absolute. In rare instances, the intensity is plotted as a com-
mon or a natural logarithm, or a square root of the total number of the accumulated
counts, in order to better visualize both the strong and weak Bragg peaks on the same

traversing the location of the specimen, which facilitates simultaneous measurement of the entire
powder diffraction pattern.
4 The data are taken from the ICDD powder diffraction file, record No. 4-836: H.E. Swanson,
E. Tatge, National Bureau of Standards (US), Circular 359, 1 (1953).
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Fig. 8.3 The simulated powder diffraction pattern of copper (space group Fm3̄m, a = 3.615 Å,
Cu Kα1/Kα2 radiation, Cu atom in 4(a) position with x = 0, y = 0, z = 0).

plot. The use of these two nonlinear intensity scales, however, always increases the
visibility of the noise (i.e., highlights the presence of statistical counting errors). A
few examples of the nonconventional representation of powder diffraction patterns
are found in Sect. 8.2.

In the Chap. 7, we assumed that the diffracted intensity is observed as infinitely
narrow diffraction maxima (delta functions). In reality, the Ewald’s sphere has finite
thickness due to wavelength aberrations, and reciprocal lattice points are far from
infinitesimal shapeless points – they may be reasonably imagined as small diffuse
spheres (do not forget that the reciprocal lattice itself is not real and it is nothing else
than a useful mathematical concept). Therefore, Bragg peaks always have nonzero
widths as functions of 2θ, which is illustrated quite well in Figs. 8.4 and 8.5 by
the powder diffraction pattern of LaB6.5 The data were collected using Mo Kα
radiation on a Bruker SmartApex diffractometer equipped with a flat CCD detector
placed perpendicular to the primary beam. This figure also serves as an excellent
experimental confirmation of our conclusions made at the beginning of this section
(e.g., see Figs. 8.1 and 8.2).

As shown in Fig. 8.4, when diffraction cones, produced by the LaB6 powder,
intersect with the flat detector placed perpendicularly to the incident wavevector,
they create a set of concentric Debye rings. As in a typical powder diffractometer,
only a narrow band has been scanned, and the result of the integration is also shown
in Fig. 8.4 as the scattered intensity versus tan2θ (note that the radial coordinate
of the detector is tan2θ, and not 2θ). The resultant diffraction pattern is shown in
the standard format as relative intensity versus 2θ in Fig. 8.5, where each Bragg
peak is labeled with the corresponding Miller indices. It is worth noting that the
diffractometer used in this experiment is a single crystal diffractometer, which was

5 NIST standard reference material, SRM 660 (see http://ts.nist.gov/measurementservices/
referencematerials/index.cfm).
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Fig. 8.4 Left – the X-ray diffraction pattern of a polycrystalline LaB6 obtained using Mo Kα
radiation and recorded using a flat CCD area detector placed perpendicular to the incident beam
wavevector (compare with Figs. 8.1 and 8.2). Measured intensity is proportional to the degree of
darkening. The diffuse white line extending from the center of the image to the top left corner is the
projection of the wire holding the beam stop needed to protect the detector from being damaged by
the high intensity incident beam. The white box delineates the area in which the scattered intensity
was integrated from the center of the image toward its edge. Right – the resultant intensity as a
function of tan2θ shown together with the area over which the integration has been carried out.
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Fig. 8.5 The powder diffraction pattern of the polycrystalline LaB6 as intensity versus 2θ obtained
by the integration of the rectangular area from the two-dimensional diffraction pattern shown in
Fig. 8.4.
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not designed to take full advantage of focusing of the scattered beam. As a result, the
Bragg peaks shown in Fig. 8.5 are quite broad and the Kα1/α2 doublet is unresolved
even when 2θ approaches 30◦. As we will see in Chap. 12 (e.g., see Fig. 12.21) a
much better resolution is possible in high resolution powder diffractometers, where
the doublet becomes resolved at much lower Bragg angles.

8.2 Representation of Powder Diffraction Patterns

In a typical experiment the intensity, diffracted by a polycrystalline sample, is mea-
sured as a function of Bragg angle, 2θ. Hence, powder diffraction patterns are usu-
ally plotted in the form of the measured intensity, Y , as the dependent variable versus
the Bragg angle as the independent variable; see Figs. 8.6 (top) and 8.7a,c. In rare
instances, for example, when there are just a few very intense Bragg peaks and all
others are quite weak, or when it is necessary to directly compare diffraction pat-
terns collected from the same material using different wavelengths, the scales of one
or both axes may be modified for better viewing and easier comparison.
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Fig. 8.6 The powder diffraction pattern6 of hexamethylenetetramine collected using Cu Kα radia-
tion and plotted as the measured intensity in counts (top), common logarithm (middle), and square
root (bottom) of the total number of registered photon counts versus 2θ.

6 Powder diffraction data were collected on a Scintag XDS2000 powder diffractometer using
Cu Kα radiation and cooled Ge(Li) solid state detector. The counting time was 10 s in every point;
the data were collected with a 0.025◦ step of 2θ.
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Fig. 8.7 Two powder diffraction patterns of LaB6 collected using different wavelengths with the
scattered intensity plotted versus different independent variables.7 Each plot contains the same
number of Bragg peaks, which can be observed below 2θ ∼= 140◦ when using Cu Kα radiation.

When the former is true (i.e., there are few extremely strong Bragg peaks while
all others are weak), the vertical axis can be calibrated as a logarithm of intensity
(Fig. 8.6, middle) or its square root (Fig. 8.6, bottom). This changes the scale and
enables better visualization of the low-intensity features. In the example shown in
Fig. 8.6, the middle (logarithmic) plot reveals all weak Bragg peaks in addition to the
nonlinearity of the background, and the details of the intensity distribution around
the bases of the strongest peaks. The Y 1/2 scale is equivalent to the plot of statistical
errors of the measured intensities (Sect. 12.3.1), in addition to better visualization
of weak Bragg peaks.

7 Powder diffraction data were collected on a Scintag XDS2000 powder diffractometer using
Cu Kα radiation and cooled Ge(Li) solid-state detector and on a Rigaku TTRAX rotating anode
powder diffractometer using Mo Kα radiation with diffracted beam monochromator and scintilla-
tion detector. The data were collected with a 0.02◦ step of 2θ using Cu Kα and with a 0.01◦ step
using Mo Kα radiations.
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Various horizontal scales alternative to the Bragg angle, see Fig. 8.7, are usually
wavelength-independent and their use is mostly dictated by special circumstances.
For example, d-spacing (Fig. 8.7e) is most commonly used in the time-of-flight
(TOF) experiments: according to (6.1), the wavelength is the inverse of the veloc-
ity of the particle (neutron). The time-of-flight from the specimen to the detector is
therefore, directly proportional to d. This scale, however, reduces the visual resolu-
tion in the low d range (equivalent to high Bragg angle range, see (7.9)) when used
in combination with X-ray diffraction data. In TOF experiments, the actual resolu-
tion of the diffraction pattern is reduced at low d, that is, at high neutron velocities.

The second scale is 1/d = 2sinθ/λ (see Fig. 8.7d,f). It results in only slightly
reduced resolution at high Bragg angles when compared to the 2θ scale. Recalling
that 1/d = d∗, this type of the plot is a one-dimensional projection of the recip-
rocal lattice and it is best suited for direct comparison of powder diffraction data
collected using different wavelengths. The similarity of these two diffraction pat-
terns is especially impressive after comparing them when both are plotted versus 2θ
(Fig. 8.7a,c).

The third is the q-values scale, where q = 1/d2 = 4sin2 θ/λ2, which provides
the best resolution at high Bragg angles when compared to other wavelength-
independent scales, see Fig. 8.7b. This scale results in the equally spaced Bragg
peaks when the crystal system is cubic (see Sect. 14.6). In cases of lower symme-
try crystal systems, only certain types of Bragg peaks are equally spaced along the
q-axis and in some instances, the q-scaled powder diffraction pattern may be used
to assign indices and/or examine the relationships between the lattice parameters of
the material with the unknown crystal structure.

8.3 Understanding of Powder Diffraction Patterns

The best way to appreciate and understand how structural information is encoded in
a powder diffraction pattern is to consider the latter as a set of discrete diffraction
peaks (Bragg reflections) superimposed over a continuous background. Although
the background may be used to extract information about the crystallinity of the
specimen and few other parameters about the material, we are concerned with the
Bragg peaks and not with the background. In the majority of powder diffraction
applications, the background is an inconvenience which has to be dealt with, and
generally every attempt is made to achieve its minimization during the experiment.

Disregarding the background, the structure of a typical powder diffraction pattern
may be described by the following components: positions, intensities, and shapes of
multiple Bragg reflections, for example, compare Figs. 8.6a and 8.7a. Each of the
three components italicized here contains information about the crystal structure of
the material, the properties of the specimen (sample), and the instrumental parame-
ters, as shown in Table 8.2. Some of these parameters have a key role in defining a
particular component of the powder diffraction pattern, while others result in vari-
ous distortion(s), as also indicted in Table 8.2. It is worth noting that this table is not
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Table 8.2 Powder diffraction pattern as a function of various crystal structure, specimen and in-
strumental parameters.a

Pattern Crystal structure Specimen Instrumental
component property parameter

Peak Unit cell parameters: Absorption Radiation (wavelength)
position (a,b,c,α,β,γ) Porosity Instrument/sample alignment

Axial divergence of the beam
Preferred orientation

Peak Atomic parameters Absorption Geometry and configuration
intensity (x,y,z,B, etc.) Porosity Radiation (Lorentz, polarization)

Crystallinity Grain size Radiation (spectral purity)
Peak shape Disorder Strain Geometry

Defects Stress Beam conditioning
a Key parameters are shown in bold. Parameters that may have a significant influence are shown
in italic.

comprehensive and additional parameters may affect the positions, intensities, and
shapes of Bragg peaks.

In addition to the influence brought about by the instrumental parameters, there
are two kinds of crystallographic (structural) parameters, which essentially define
the makeup of every powder diffraction pattern. These are the unit cell dimensions
and the atomic structure (both the unit cell content and spatial distributions of atoms
in the unit cell). Thus, a powder diffraction pattern can be constructed (or simulated)
as follows:

– Positions of Bragg peaks are established from the Braggs’ law as a function of
the wavelength and the interplanar distances, that is, d-spacing. The latter can be
easily calculated from the known unit cell dimensions (Sect. 8.4). For instance, in
the case of the orthorhombic crystal system permissible Bragg angles are found
from

2θhkl = 2arcsin
(

λ
2dhkl

)
, where dhkl =

(
h2

a2 +
k2

b2 +
l2

c2

)−1/2

(8.1)

Since h, k, and l are integers, both the resultant d-values and Bragg angles form
arrays of discrete values for a given set of unit cell dimensions. Bragg angles are
also dependent on the employed wavelength. The example of the discontinuous
distribution of Bragg angles is shown using short vertical bars of equal length in
Fig. 8.8a.

– As noted in Sect. 7.1, the intensity of diffraction maxima is a function of the
periodicity of the scattering centers (unit cells) and therefore, the intensities can
be calculated for individual Bragg peaks from the structural model. The latter
requires the knowledge of the coordinates of atoms in the unit cell together with
other relevant atomic and geometrical parameters. The influence of the varying
intensity on the formation of the powder diffraction pattern is illustrated using
the varying lengths of the bars in Fig. 8.8b – the longer the bar, the higher the
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Fig. 8.8 The appearance of the powder diffraction pattern: (a) only Bragg peak positions (e.g.,
see (8.1)) are represented by the vertical bars of equal length; (b) in addition to peak positions,
their intensities are indicated by using the bars with variable lengths (the higher the intensity,
the longer the bar); (c) peak shapes have been introduced by convoluting individual intensities
with appropriate peak-shape functions, and a constant background has been indicated by the dash-
double dotted line; (d) the resultant powder diffraction pattern is the sum of all components shown
separately in (c), i.e., discrete but partially overlapped peaks and continuous background.

intensity. Although not shown in Fig. 8.8, certain combinations of Miller indices
may have zero or negligibly small intensity and, therefore, the corresponding
Bragg reflections disappear or become unrecognizable in the diffraction pattern.

– The shape of Bragg peaks is usually represented by a bell-like function – the so-
called peak-shape function. The latter is weakly dependent on the crystal struc-
ture and is the convolution of various individual functions, established by the
instrumental parameters and to some extent by the properties of the specimen,
see Table 8.2. The shape of each peak can be modeled using instrumental and
specimen characteristics, although in reality ab initio modeling is difficult and
most often it is performed using various empirically selected peak-shape func-
tions and parameters. If the radiation is not strictly monochromatic, that is, when
both Kα1 and Kα2 components are present in the diffracted beam, the resultant
peak should include contributions from both components as shown in Fig. 8.9.
Thus, vertical bars with different lengths are replaced by the corresponding peak
shapes, as shown in Fig. 8.8c. It should be noted that although the relative inten-
sities of different Bragg reflections may be adequately represented by the lengths
of the bars, this is no longer correct for peak heights: the bars are one-dimensional
and have zero area, but peak area is a function of the full width at half maximum,
which varies with Bragg angle. Individual peaks should have their areas propor-
tional to intensities of individual Bragg reflections (see Sect. 8.6.1).
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Fig. 8.9 The two individual peak-shape functions corresponding to monochromatic Kα1 and Kα2
wavelengths (left) and the resulting combined peak-shape function for a Kα1/Kα2 doublet as the
sum of two peaks (right). Since both Kα1 and Kα2 peaks correspond to the same d∗

hkl, their posi-
tions, θ1 and θ2, are related as sinθ1/λKα1 = sinθ2/λKα2 (see (7.9), while their areas (intensities)
are related as approximately 2 to 1 (see Fig. 6.5).

– Finally, the resultant powder diffraction pattern is a sum of the individual peak-
shape functions and a background function as illustrated in Fig. 8.8d, where the
background function was assumed constant for clarity.

It is generally quite easy to simulate the powder diffraction pattern when the
crystal structure of the material is known (the peak-shape parameters are empirical
and the background, typical for a given instrument, may be measured). The inverse
process, that is, the determination of the crystal structure from powder diffraction
data is much more complex. First, individual Bragg peaks should be located on the
pattern, and both their positions and intensities determined by fitting to a certain
peak-shape function, including the background. Second, peak positions are used to
establish the unit cell symmetry, parameters and content. Third, peak intensities are
used to determine space-group symmetry and coordinates of atoms. Fourth, the en-
tire diffraction pattern is used to refine all crystallographic and peak-shape function
parameters, including the background. All these issues are discussed and illustrated
beginning from Chap. 13.

8.4 Positions of Powder Diffraction Peaks

As discussed earlier in general terms, diffraction peaks appear at specific angles
due to scattering by periodic lattices. Further, as shown by the Braggs and Ewald
(Sect. 7.2), these angles are a discontinuous function of Miller indices, the inter-
planar distances (lengths of independent reciprocal lattice vectors) and the wave-
length (radius of the Ewald’s sphere). Therefore, both the unit cell dimensions and
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the wavelength are the two major factors that determine Bragg angles for the same
combination of h, k, and l. As we will also see later, the observed peak positions can
be distorted by instrumental and specimen parameters.

8.4.1 Peak Positions as a Function of Unit Cell Dimensions

The interplanar distance is a function of the unit cell parameters and Miller in-
dices, h, k, and l, which fully describe every set of crystallographic planes. The
corresponding formulae for the inverse square of the interplanar distance, 1/d2, are
usually given separately for each crystal system,8 as shown in (8.2)–(8.7).

Cubic:
1
d2 =

h2 + k2 + l2

a2 (8.2)

Tetragonal:
1
d2 =

h2 + k2

a2 +
l2

c2 (8.3)

Hexagonal:
1
d2 =

4
3

h2 +hk + k2

a2 +
l2

c2 (8.4)

Orthorhombic:
1
d2 =

h2

a2 +
k2

b2 +
l2

c2 (8.5)

Monoclinic:
1
d2 =

h2

a2 sin2β
+

k2

b2 +
l2

c2 sin2β
+

2hl cosβ
acsin2β

(8.6)

Triclinic:
1
d2 =

[
h2

a2 sin2α
+

2kl
bc

(cosβcosγ− cosα)+

k2

b2 sin2β
+

2hl
ac

(cosαcosγ− cosβ)+

l2

c2 sin2 γ
+

2hk
ab

(cosαcosβ− cosγ)
]
/

(1−cos2α− cos2β− cos2 γ+2cosαcosβcosγ)

(8.7)

8 Primitive rhombohedral lattices, i.e., when a = b = c and α = β = γ �= 90◦ are nearly always
treated in the hexagonal basis with rhombohedral (R) lattice centering. In a primitive rhombohedral
lattice:

1
d2 =

(h2 + k2 + l2)sin2 α+2(hk + kl +hl)(cos2 α− cosα)
a2(1−3cos2 α+2cos3 α)

.
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Fig. 8.10 The illustration of a reciprocal lattice vector, d∗
hkl , as a vectorial sum of three basis unit

vectors, a∗,b∗ and c∗ multiplied by h, k and l, respectively.

The most complex formula is the one for the triclinic crystal system, in which a
total of six independent parameters are required to describe the unit cell dimensions.
On the other hand, (8.7) is the most general, since (8.2)–(8.6) are easily derived
from it. For example, after introducing the corresponding relationships between the
unit cell dimensions for the tetragonal crystal system (i.e., a = b �= c, α = β = γ =
90◦) into (8.7), the latter is straightforwardly simplified to (8.3). Thus, the simplified
formulae (8.2)–(8.6) are only useful in manual calculations, but when the list of
possible d’s (or θ’s) is generated using a computer program, it makes better sense
to employ only the most general equation, since obviously the resultant 1/d2 values
are correct upon the substitution of the appropriate numerical values for a, b, c, α,
β, and γ into (8.7).

The usefulness of the reciprocal lattice concept may be once again demonstrated
here by illustrating how easily (8.2)–(8.7) can be derived in the reciprocal space
employing reciprocal lattice vectors. When the derivation is performed in the direct
space, the geometrical considerations become quite complex.

Consider a reciprocal lattice as shown in Fig. 8.10. Any reciprocal lattice vector,
d∗

hkl , is a sum of three non-coplanar vectors (a∗,b∗ and c∗ are the unit vectors of the
reciprocal lattice and h, k, and l are integers):

d∗
hkl = ha∗ + kb∗ + lc∗ (8.8)

For example, in the orthorhombic crystal system α∗ = β∗ = γ∗ = 90◦. Hence, (8.8)
is transformed into:

(d∗
hkl)

2 = (ha∗)2 +(kb∗)2 +(lc∗)2 (8.9)

and (8.5) is obtained immediately because d∗ = 1/d, a∗ = 1/a, b∗ = 1/b and
c∗ = 1/c.
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In the triclinic crystal system, the equivalent of (8.9) is more complex

d∗2 = h2a∗2 + k2b∗2 + l2c∗2+
2hka∗b∗ cosγ∗ +2hla∗c∗ cosβ∗ +2klb∗c∗ cosα∗ (8.10)

but it becomes considerably more intuitive and easier to understand in terms of
reciprocal lattice parameters than (8.7), which is given in terms of direct space unit
cell dimensions.

According to the Braggs’ law (7.9), the diffraction angle, θhkl , of a reflection
from a series of lattice planes (hkl) is determined from the interplanar distance, dhkl ,
and the wavelength, λ as:

sinθhkl =
λ

2dhkl
(8.11)

8.4.2 Other Factors Affecting Peak Positions

Equations (8.7) and (8.10) are exact, assuming that both the powder diffractome-
ter and the sample are ideal. In reality, various instrumental and specimen features
may affect the observed positions of Bragg peaks. These factors are often known
as systematic aberrations (distortions), and they are usually assembled into a single
correction parameter, Δ2θ. The latter is applied to the idealized Bragg angle, 2θcalc,
calculated from the unit cell dimensions and wavelengths using (8.7) or (8.10) and
(8.11), so that the experimentally observed Bragg angle, 2θobs, is given as:

2θobs = 2θcalc +Δ2θ (8.12)

For the most commonly used Bragg–Brentano focusing geometry (see
Sect. 11.3), the overall correction is generally a sum of six factors:

Δ2θ =
p1

tan2θ
+

p2

sin2θ
+

p3

tanθ
+ p4 sin2θ+ p5 cosθ+ p6 (8.13)

The first two parameters, p1 and p2, account for the axial divergence of the inci-
dent beam (see Sect. 11.2) and they can be expressed as:

p1 = −h2K1

3R2 ; p2 = −h2K2

3R2 (8.14)

where h is the length of the specimen parallel to the goniometer axis, R is the go-
niometer radius, K1 and K2 are constants established by the collimator. Soller slits
(see Sect. 11.2.1) usually minimize the axial divergence and therefore, these two
corrections are often neglected for practical purposes.

In addition to axial divergence, the first parameter (p1) includes a shift that is
due to peak asymmetry caused by other factors. One of these is the finite length of
the receiving slit of the detector, which results in the measurement of a fixed length
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of an arc (see Fig. 8.4), rather than an infinitesimal point of the Debye ring. The
curvature of the Debye ring increases9 with the decreasing Bragg angle, and the
resultant increasing peak asymmetry cannot be corrected for by using Soller slits.
This effect can be minimized by reducing the detector slit length, which however,
considerably lowers the measured intensity.

The third parameter, p3, is given as:

p3 = −α2

K3
(8.15)

where α is the in-plane divergence of the X-ray beam (see Sect. 11.2) and K3 is
a constant. This factor accounts for the zero curvature of flat samples, typically
used in Bragg–Brentano goniometers. This geometry of the sample distorts the ideal
focusing in which the curvature of the sample surface should vary with Bragg angle.
The aberrations are generally insignificant and they are usually neglected in routine
powder diffraction experiments.

The fourth parameter is

p4 =
1

2μeff R
(8.16)

where μeff is the effective linear absorption coefficient (see Sect. 8.6.5 and (8.51)).
This correction is known as the transparency-shift error, and it may play a role
when examining thick (more than 50–100μm) samples. The transparency-shift er-
ror is caused by the penetration of the beam into the sample, and the penetration
depth is a function of Bragg angle. Usually p4 is the refined parameter since μeff
is rarely known (both the porosity and the density of the powder sample are usu-
ally unknown). The transparency-shift error could be substantial for low absorbing
samples, for example, organic compounds, and it is usually negligible for highly
absorbing specimens, that is, compounds containing heavy chemical elements. For
low absorbing materials this shift can be reduced by using thin samples, however,
doing so significantly decreases intensity at high Bragg angles. The latter is already
small when a compound consists of light chemical elements due to their low X-ray
scattering ability.

The fifth parameter characterizes specimen displacement, s, from the goniometer
axis and it is expressed as

p5 = −2s
R

(8.17)

9 Strictly speaking, the curvature of the Debye ring increases both below and above 2θ = 90◦, e.g.,
see Fig. 8.2. Both the curvature and associated asymmetry become especially significant when
2θ ≤ ∼20◦ and 2θ ≥ ∼160◦. At low Bragg angles, this contribution to asymmetry results in the
enhancement of the low angle slopes of Bragg peaks, while at high Bragg angles the asymmetry
effect is opposite. Asymmetry at high Bragg angles is often neglected because the intensity of
Bragg peaks is usually low due to a variety of geometrical and structural factors, which is discussed
in Sects. 8.6 and 9.1. It is also worth mentioning that at 2θ∼= 90◦ the contribution from p1 becomes
negligible because tan2θ→ ∞.
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where R is the radius of the goniometer. This correction may be substantial, es-
pecially when there is no good and easy way to control the exact position of the
specimen surface.

The last parameter, p6, is constant over the whole range of Bragg angles and the
corresponding aberration usually arises due to improper setting(s) of zero angles for
one or more diffractometer axes: detector and/or X-ray source. Hence, this distor-
tion is called the zero-shift error. The zero-shift error can be easily minimized by
proper alignment of the goniometer. However, in some cases, for example, in neu-
tron powder diffraction, zero shift is practically unavoidable and, therefore, should
be always accounted for.

Equations (8.13)–(8.17) define the most important factors affecting peak posi-
tions observed in a powder diffraction pattern, some of which combine several ef-
fects that have the same 2θ dependence. The latter however is not really impor-
tant when parameters pi are refined rather than modeled. A comprehensive analysis
of errors in peak positions for a general case of focusing geometry (not only the
Bragg–Brentano focusing geometry) may be found in the International Tables for
Crystallography in Tables 5.2.4.1, 5.2.7.1, and 5.2.8.1 on pp. 494–498.10

In order to account for several different factors simultaneously, high accuracy of
the experimental powder diffraction data is required, in addition to the availability
of data in a broad range of Bragg angles. Even then, it may be difficult since p4 and
p5 are strongly correlated, and so is the zero-shift parameter, p6. Generally, they
cannot be distinguished from one another when only a small part of the diffraction
pattern has been measured (e.g., below 60–70◦2θ). Thus, refinement of any single
parameter (p4, p5 or p6) gives similar results, that is, the satisfactory fit between the
observed and calculated 2θ values. The problem is: how precise are the obtained unit
cell parameters? If the wrong correction was taken into account, the resultant unit
cell dimensions may be somewhat different from their true values. The best way to
deal with the ambiguity of which correction to apply, is to use an internal standard,
which unfortunately contaminates the powder diffraction pattern with Bragg peaks
of the standard material.

An example of how important the sample displacement correction may become
is shown in Fig. 8.11, where the differences between the observed and calculated
Bragg angles are in the −0.03 to +0.04◦ range before correction (open circles).
They fall within the −0.01 to +0.01◦ range (filled triangles) when the sample
displacement parameter was refined, together with the unit cell dimensions. Even
though the difference in the unit cell dimensions obtained with and without the
sample displacement correction (Fig. 8.11) is not exceptionally large, it is still ten
to twenty times the least squares standard deviations, that is, the differences in lattice
parameters are statistically significant.

10 International Tables for Crystallography, vol. C, Third edition, E. Prince, Ed. (2004) published
jointly with the International Union of Crystallography (IUCr) by Springer.
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Fig. 8.11 The differences between the observed and calculated 2θ values plotted as a function
of 2θ without (open circles) and with (filled triangles) specimen displacement correction. The
corresponding values of the unit cell parameters and the specimen displacement parameter are
indicated on the plot. The material belongs to the tetragonal crystal system.

8.5 Shapes of Powder Diffraction Peaks

All but the simplest powder diffraction patterns are composed from more or less
overlapped Bragg peaks due to the intrinsic one-dimensionality of the powder dif-
fraction technique coupled with the usually large number of “visible” reciprocal
lattice points, that is, those that have d∗

hkl ≤ 2/λ and the limited resolution of the in-
strument (e.g., see the model in Figs. 8.8d and 8.2). Thus, processing of the data by
fitting peak shapes to a suitable function is required in order to obtain both the posi-
tions and intensities of individual Bragg peaks. The same is also needed in structure
refinement using the full profile fitting approach – the Rietveld method.

The observed peak shapes are best described by the so-called peak-shape func-
tion (PSF), which is a convolution11 of three different functions: instrumental broad-

11 A convolution (⊗) of two functions, f and g, is defined as an integral

f (t)⊗g(t) =
∞∫

−∞

f (τ)g(t − τ)dτ =
∞∫

−∞

g(τ) f (t − τ)dτ

which expresses the amount of overlap of one function g as it is shifted over another function
f . It, therefore, “blends” one function with another. The convolution is also known as “folding”
(e.g., see E.W. Weisstein, Convolution, Eric Weisstein’s world of mathematics, http://mathworld.
wolfram.com/Convolution.html).
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ening, Ω, wavelength dispersion, Λ, and specimen function, Ψ. Thus, PSF can be
represented as follows:

PSF(θ) = Ω(θ)⊗Λ(θ)⊗Ψ(θ)+b(θ) (8.18)

where b is the background function.
The instrumental function, Ω, depends on multiple geometrical parameters:

the locations and geometry of the source, monochromator(s), slits, and specimen.
The wavelength (spectral) dispersion function, Λ, accounts for the distribution of the
wavelengths in the source and it varies depending on the nature of the source, and
the monochromatization technique. Finally, the specimen function, Ψ, originates
from several effects. First is the dynamic scattering, or deviations from the kinemat-
ical model. They yield a small but finite width (the so-called Darwin12 width) of
the Bragg peaks. The second effect is determined by the physical properties of the
specimen: crystallite (grain) size and microstrains. For example, when the crystal-
lites are small (usually smaller than ∼1μm) and/or they are strained, the resultant
Bragg peak widths may increase substantially.

It is worth noting that unlike the instrumental and wavelength dispersion func-
tions, the broadening effects introduced by the physical state of the specimen may be
of interest in materials characterization. Thus, effects of the average crystallite size
(τ) and microstrain (ε) on Bragg peak broadening (β, in radians) can be described
in the first approximation as follows:

β =
λ

τ · cosθ
(8.19)

and

β = k · ε · tanθ (8.20)

where k is a constant, that depends on the definition of a microstrain. It is important
to note that β in (8.19) and (8.20) is not the total width of a Bragg peak but it is
an excess width, which is an addition to all instrumental contributions. The latter is
usually established by measuring a standard material without microstrain and grain-
size effects at the same experimental conditions.

In general, three different approaches to the description of peak shapes can be
used. The first employs empirical peak-shape functions, which fit the profile with-
out attempting to associate their parameters with physical quantities. The second
is a semi-empirical approach that describes instrumental and wavelength dispersion
functions using empirical functions, while specimen properties are modeled using

12 Sir Charles Galton Darwin (1887–1962) the British physicist, who begun working with Ernest
Rutherford and Niels Bohr, later using his mathematical skills to help Henry Moseley with his
work on X-ray diffraction. A brief biography is available on WikipediA at http://en.wikipedia.org/
wiki/Charles Galton Darwin.
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realistic physical parameters. In the third, the so-called fundamental parameters ap-
proach,13 all three components of the peak-shape function (8.18) are modeled using
rational physical quantities.

8.5.1 Peak-Shape Functions

Considering Figs. 8.8 and 8.9, and (8.18), the intensity, Y (i), of the ith point (1≤ i≤
n, where n is the total number of measured points) of the powder diffraction pattern,
in the most general form is the sum of the contributions, yk, from the m overlapped
individual Bragg peaks (1 ≤ k ≤ m) and the background, b(i).14 Therefore, it can be
described using the following expression:

Y (i) = b(i)+
m

∑
k=1

Ik [yk(xk)+0.5yk(xk +Δxk)] (8.21)

where: Ik is the intensity of the kth Bragg reflection, xk = 2θi – 2θk and Δxk is the
difference between the Bragg angles of the Kα2 and Kα1 components in the doublet
(if present). The presence of Bragg intensity as a multiplier in (8.21) enables one to
introduce and analyze the behavior of different normalized functions independently
of peak intensity, that is, assuming that the definite integral of a peak-shape function,
calculated from negative to positive infinity, is unity in each case.

The four most commonly used empirical peak-shape functions (y) are as follows:
Gauss15:

y(x) = G(x) =
C1/2

G√
πH

exp
(
−CGx2) (8.22)

Lorentz16:

y(x) = L(x) =
C1/2

L
πH ′

(
1+CLx2)−1

(8.23)

13 J. Bergmann, Contributions to evaluation and experimental design in the fields of X-ray pow-
der diffractometry, Ph.D. thesis (in German), Dresden University for Technology (1984). See
http://www.bgmn.de/methods.html for more information and other references.
14 Several functions commonly used in approximating the background are discussed later, see
(13.1)–(13.6).
15 Johann Carl Friedrich Gauss (1777–1885) was the German mathematician. A brief biography is
available on WikipediA, http://en.wikipedia.org/wiki/Carl Friedrich Gauss.
16 Hendrik Antoon Lorentz (1853–1928) was a Dutch physicist best known for his contributions to
the theory of electromagnetic radiation. In 1902 he shared the Nobel Prize in physics with Pieter
Zeeman “in recognition of the extraordinary service they rendered by their researches into the in-
fluence of magnetism upon radiation phenomena.” See http://nobelprize.org/nobel prizes/physics/
laureates/1902/lorentz-bio.html for details.
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Pseudo-Voigt17:

y(x) = PV (x) = η
C1/2

G√
πH

exp
(
−CGx2)+(1−η)

C1/2
L
πH

(1+CLx2)−1 (8.24)

Pearson-VII18:

y(x) = PVII(x) =
Γ(β)

Γ(β− 1/2)
C

1/2
P√
πH

(1+CPx2)−β (8.25)

where

– H and H ′, are the full widths at half maximum (often abbreviated as FWHM).
– x = (2θi −2θk) / Hk, is essentially the Bragg angle of the ith point in the powder

diffraction pattern with its origin in the position of the kth peak divided by the
peak’s FWHM.

– 2θi, is the Bragg angle of the ith point of the powder diffraction pattern;
– 2θk, is the calculated (or ideal) Bragg angle of the kth Bragg reflection.

– CG = 4ln2, and C
1/2
G /

√
πH is the normalization factor for the Gauss function

such that
∞∫

−∞
G(x)dx = 1.

– CL = 4, and C1/2
L / πH ′ is the normalization factor for the Lorentz function such

that
∞∫

−∞
L(x)dx = 1.

– Cp = 4(21/β − 1), and [Γ(β)/Γ(β− 1/2)]C
1/2
P

/√
πH is the normalization factor

for the Pearson-VII function such that
∞∫

−∞
PVII(x)dx = 1.

– H = (U tan2 θ+V tanθ+W )1/2, which is known as Caglioti formula, is the full
width at half maximum as a function of θ for Gauss, pseudo-Voigt and Pearson-
VII functions, and U , V and W are free variables.19

– H ′ = X/cosθ+Y tanθ, is the full width at half maximum as a function of θ for
the Lorentz function, and X and Y are free variables.

– η = η0 + η12θ+η22θ2, where 0 ≤ η ≤ 1, is the pseudo-Voigt function mix-
ing parameter, i.e., the fractional contribution of the Gauss function into the lin-
ear combination of Gauss and Lorentz functions, and η0, η1 and η2 are free
variables.

17 Named after Woldemar Voigt (1850–1919), the German physicist best known for his work
in crystal physics. A brief biography is available on WikipediA, http://en.wikipedia.org/wiki/
Woldemar Voigt.
18 Named after Karl Pearson (1857–1936) the British mathematician who derived several prob-
ability distribution functions known today as Pearson I to Pearson XII. A brief biography
and a description of Pearson distributions are available at WikipediA: http://en.wikipedia.org/
wiki/Karl Pearson, and http://en.wikipedia.org/wiki/Pearson distribution, respectively.
19 G. Caglioti, A. Paoletti, and F.P. Ricci, Choice of collimators for a crystal spectrometer for
neutron diffraction, Nucl. Instrum. Methods 3, 223 (1958).
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Fig. 8.12 The illustration of Gauss (dash-dotted line) and Lorentz (solid line) peak-shape func-
tions. Both functions have been normalized to result in identical definite integrals (

∫ ∞
−∞ G(x)dx =∫ ∞

−∞ L(x)dx) and full widths at half maximum (FWHM). The corresponding FWHM’s are shown
as thick horizontal arrows.

– Γ, is the gamma function.20

– β = β0 +β1 / 2θ+β2 / (2θ)2, is the exponent as a function of Bragg angle in the
Pearson-VII function, and β0, β1 and β2 are free variables.

The two simplest peak-shape functions ((8.22) and (8.23)) represent Gaussian
and Lorentzian distributions, respectively, of the intensity in the Bragg peak. They
are compared in Fig. 8.12, from which it is easy to see that the Lorentz function is
sharp near its maximum, but has long tails on each side near its base. On the other
hand, the Gauss function has no tails at the base, but has a rounded maximum. Both
functions are centrosymmetric, that is, G(x) = G(−x) and L(x) = L(−x).

The shapes of real Bragg peaks, which are the results of convoluting multiple
instrumental and specimen functions (8.18), are rarely described well by simple
Gaussian or Lorentzian distributions, especially in X-ray diffraction. Usually, real
peak shapes are located somewhere between the Gauss and Lorentz distributions

20 Gamma function is defined as Γ(z) =
∞∫
0

tz−1et dt, or recursively for a real argument as

Γ(z) = (z − 1)Γ(z − 1). It is nonexistent when z = 0,−1,−2, . . ., and becomes (z − 1)! when
z = 1,2,3, . . . Gamma function is an extension of the factorial to complex and real argu-
ments, (e.g., see E.W. Weisstein, Gamma function, Eric Weisstein’s world of mathematics,
http://mathworld.wolfram.com/GammaFunction.html for more information).
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and they can be better represented as the mixture of the two functions.21 An ideal
way would be to convolute the Gauss and Lorentz functions in different proportions.
This convolution, however, is a complex procedure, which requires numerical inte-
gration every time one or several peak-shape function parameters change. Therefore,
a much simpler linear combination of Gauss and Lorentz functions is used instead
of a convolution, and it is usually known as the pseudo-Voigt function (8.24). The
Gaussian and Lorentzian are mixed in η to 1–η ratio, so that the value of the mixing
parameter, η, varies from 0 (pure Lorentz) to 1 (pure Gauss). Obviously, η has no
physical meaning outside this range. When during refinement η becomes negative,
this is usually called super-Lorentzian, and such an outcome points to an incorrect
choice of the peak-shape function. Usually, Pearson VII function should be used
instead of pseudo-Voigt, see next paragraph.

The fourth commonly used peak-shape function is Pearson-VII (8.25). It is sim-
ilar to Lorentz distribution, except that the exponent (β) varies in the Pearson-VII,
while it remains constant (β = 1) in the Lorentz function. Pearson-VII provides an
intensity distribution close to the pseudo-Voigt function: when the exponent, β = 1,
it is identical to the Lorentz distribution, and when β ∼= 10, Pearson-VII becomes
nearly pure Gaussian. Thus, when the exponent is in the range 0.5 < β< 1 or β> 10,
the peak shape extends beyond Lorentz or Gauss functions, respectively, but these
values of β are rarely observed in practice. An example of the X-ray powder dif-
fraction profile fitting using Pearson-VII function is shown in Fig. 8.13. Both the
pseudo-Voigt and Pearson-VII functions are also centrosymmetric.

The argument, x, in each of the four empirical functions establishes the loca-
tion of peak maximum, which is obviously observed when x = 0 and 2θi = 2θk. A
second parameter, determining the value of the argument, is the full width at half
maximum, H. The latter varies with 2θ and its dependence on the Bragg angle is
most commonly represented by an empirical peak-broadening function, which has
three free parameters U , V , and W (except for the pure Lorentzian, which usually
has only two free parameters). Peak-broadening parameters are refined during the
profile fitting. Hence, in the most general case the peak full width at half maximum
at a specific 2θ angle is represented as

H =
√

U tan2 θ+V tanθ+W (8.26)

As an example, the experimentally observed behavior of FWHM for a standard
reference material SRM-660 (LaB6) is shown in Fig. 8.14, together with the corre-
sponding interpolation using (8.26), both as functions of the Bragg angle, 2θ, rather
than tanθ.

It is worth noting that the Lorentzian broadening function (H ′) parameters, X and
Y , have the same dependence on Bragg angle as crystallite size- and microstrain-
related broadening (compare (8.19) and (8.20) with (8.23) and following explana-
tion of notations). Therefore, when Bragg peaks are well-represented by Lorentz

21 The most notable exception is the shape of peaks in neutron powder diffraction (apart from the
time-of-flight data), which is typically close to the pure Gaussian distribution. Peak shapes in TOF
experiments are usually described by a convolution of exponential and pseudo-Voigt functions.
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Fig. 8.13 The example of using Pearson-VII function to fit experimental data (open circles) repre-
senting a single Bragg peak containing Kα1 and Kα2 components.

LaB6, Cu Kα, Ge(Li) detector 
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Fig. 8.14 Experimentally observed full width at half maximum of LaB6 (open circles) as a function
of 2θ. The solid line represents a least squares fit using (8.26) with U = 0.004462, V =−0.001264,
and W = 0.003410.
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distribution, these physical characteristics of the specimen can be calculated from
FWHM parameters after the instrumental and wavelength dispersion parts are sub-
tracted.

The mixing coefficient, η for pseudo-Voigt function and the exponent, β for
Pearson-VII function, generally vary for a particular powder diffraction pattern.
Their behavior is typically modeled with a different empirical parabolic function
of tanθ and 2θ, respectively, as follows from (8.24) and (8.25). Peak shapes in
the majority of routinely collected X-ray diffraction patterns are reasonably well-
represented using pseudo-Voigt and/or Pearson-VII functions. On the other hand,
noticeable improvements in the experimental powder diffraction techniques, which
occurred in the last decade, resulted in the availability of exceptionally precise
and high resolution data, especially when employing synchrotron radiation sources,
where the use of these relatively simple functions is no longer justified. Furthermore,
the ever-increasing computational power facilitates the development and utilization
of advanced peak-shape functions, including those that extensively use numerical
integration.

Most often, various modifications of the pseudo-Voigt function are employed
to achieve improved precision, enhance the asymmetry approximation, account for
the anisotropy of Bragg peak broadening, etc. For example, a total of four differ-
ent functions (not counting those for the time-of-flight experiments) are employed
in GSAS.22 The first function is the pure Gaussian (8.22), which is suitable for
neutron powder diffraction data.23 The second is a modified pseudo-Voigt (the so-
called Thompson modified pseudo-Voigt),24 where the function itself remains iden-
tical to (8.24), but it employs a multi-term Simpson’s integration introduced by
C.J. Howard.25 Its FWHM (H) and mixing (η) parameters are modeled as follows:

H =

(
5

∑
i=0

aiH5−i
G Hi

L

)1/5

(8.27)

η =
3

∑
i=1

bi

(
HL

H

)i

(8.28)

22 C.A. Larson and R.B. Von Dreele, GSAS: General structure analysis system. LAUR 86-
748 (2004). The cited user manual and software are freely available http://www.ccp14.ac.uk/
solution/gsas/.
23 We note that GSAS is continuously under development and new functions are often added.
Hence, the numbering of peak shape functions in this book may not correspond to the numbering
scheme in GSAS.
24 P. Thompson, D.E. Cox, and J.B. Hastings, Rietveld refinement of Debye–Scherrer synchrotron
X-ray data from A12O3, J. Appl. Cryst. 20, 79 (1987).
25 C.J. Howard, The approximation of asymmetric neutron powder diffraction peaks by sums of
Gaussians, J. Appl. Cryst. 15, 615 (1982).
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where ai and bi are tabulated coefficients. Further,

HG = 2σ
√

2ln2 (8.29)

σ =
√

U tan2 θ+V tanθ+W +P/sin2 θ (8.30)

HL = (X +Xa cosφ)/cosθ+(Y +Ya cosφ) tanθ (8.31)

and HG is the Gaussian full width at half maximum, modified by an additional
broadening parameter, P; HL is Lorentzian full width at half maximum, which ac-
counts for the anisotropic FWHM behavior by introducing two anisotropic broad-
ening parameters, Xa (crystallite size) and Ya (strain), and φ is the angle between a
common anisotropy axis and the corresponding reciprocal lattice vector.

The major benefit achieved when using the modified pseudo-Voigt function is
in the separation of FWHM’s due to Gaussian and Lorentzian contributions to the
peak-shape function. They represent two different effects contributing to the com-
bined peak width, which are due to the instrumental (Gauss) and specimen (Lorentz)
broadening. The specimen-broadening parameters X and Y , being coefficients of
1/cosθ and tanθ, could be directly associated with the crystallite size and micros-
train, respectively. Anisotropic broadening can be refined using two additional pa-
rameters, Xa and Ya. The crystallite size (p) in Å can be obtained from these para-
meters as follows:

piso = p⊥ =
180Kλ
πX

and p‖ =
180Kλ

π(X +Xa)
(8.32)

and microstrain (s) in percent as:

siso = s⊥ =
π

180
(Y −Yinstr) ·100% and s‖ =

π
180

(Y +Ya −Yinstr) ·100% (8.33)

where the subscript iso indicates isotropic parameters, ⊥ and || denote parame-
ters that are perpendicular and parallel, respectively, to the anisotropy axis, K is
the Scherrer constant,26 and Yinstr is the instrumental part in the case of strain
broadening.

The third function used in GSAS, is similar to the second function as described in
(8.27)–(8.31). However, it fits real Bragg peak shapes better, due to improved han-
dling of asymmetry, which is treated in terms of axial divergence.27 This function
is formed by a convolution of pseudo-Voigt with the intersection of the diffraction
cone and a finite receiving slit length using two geometrical parameters, S/L and
D/L, where S and D are the sample and the detector slit dimensions in the direction

26 K is known as the shape factor or Scherrer constant which varies in the range 0.89 < K < 1, and
usually K = 0.9 [H.P. Klug and L.E. Alexander, X-ray diffraction procedures for polycrystalline
and amorphous materials, Second edition, John Wiley, NY (1974) p. 656].
27 L.W. Finger, D.E. Cox, A.P. Jephcoat, A correction for powder diffraction peak asymmetry due
to axial divergence, J. Appl. Cryst. 27, 892 (1994).
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parallel to the goniometer axis, and L is the goniometer radius. These two para-
meters can be measured experimentally, or refined (after being suitably constrained
because D and S are identical in a typical powder diffraction experiment) when low
Bragg angle peaks are present. This peak-shape function also supports an empirical
extension of microstrain anisotropy described by six parameters. The result is added
to Y in the second part of (8.31) as γLd2, where:

γL = γ11h2 + γ22k2 + γ33l2 + γ12hk + γ13hl + γ23kl (8.34)

Thus, the total number of parameters for this peak-shape function is 19.
The fourth function is also a modified pseudo-Voigt, and it accounts for

anisotropic microstrain broadening as suggested by P. Stephens:28

HS =

(
∑

HKL
SHKLhHkKlL

)1/2

(8.35)

where SHKL are coefficients and H, K, and L (these are not the same as Miller
indices hkl), represent permutations of positive integers restricted to H +K +L = 4.
These coefficients are further restricted by Laue symmetry, so that a total of 2 in the
cubic crystal system to 15 coefficients in the triclinic crystal system may be used
to describe strain broadening. The latter contributes to Gaussian and Lorentzian
broadening by adding σ2

Sd4 and γSd2 to U and Y in (8.26) and (8.31), respectively.
Here, σS = (1−η)HS, and γS = ηHS, where η is the pseudo-Voigt function mixing
parameter, as in (8.24).

Both the third and fourth functions describe asymmetric peaks much better than
the first two and the simple pseudo-Voigt (8.24), especially at low Bragg angles. The
fourth function is also an excellent approximation of Bragg peaks when significant
anisotropic broadening caused by microstrains is present. When the anisotropy is
low, this function is similar to the third one but with a noticeably reduced number of
free variables. Thus, the number of fitting parameters for the fourth function depends
on the Laue class, and it varies from 14 to 27. The number of free variables may be
reduced further since the coefficients SHKL have physical meaning, and some of
them may be set to known predetermined values (for further details and examples
see the original paper28). The attractiveness of this model is that the anisotropy of
microstrains can be visualized as the three-dimensional surface in reciprocal space
with radial distances defined as:

DS(hkl) =
d2

C

(
∑

HKL
SHKLhHkKlL

)1/2

(8.36)

In the modified pseudo-Voigt functions described earlier ((8.27)–(8.31)), both
the Gaussian to Lorentzian mixing parameter (η, (8.27)) and their individual contri-

28 P.W. Stephens, Phenomenological model of anisotropic peak broadening in powder diffraction,
J. Appl. Cryst. 32, 281 (1999).
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butions to the total peak width (H, (8.32)) are tabulated. This feature may be used
to lower the number of free parameters and to obtain more realistic peak-shape pa-
rameters that are due to the physical state of the specimen. Either or both may be
achieved by using one of the following approaches:

– Employing a high-quality standard sample (e.g., LaB6, see the footnote on
page 155) that has no measurable contributions from small crystallite size and
microstrains, the peak-shape function parameters (V , W and P), responsible for
the instrumental and wavelength dispersion broadening, can be determined ex-
perimentally. These should remain constant during following experiments when
using different materials and, thus should be kept fixed in future refinements.
Obviously, the goniometer configuration must be identical in the experiments
conducted using both the standard and real samples. This method requires mea-
suring a standard every time when any change in the experimental settings oc-
curs, including replacement of the X-ray tube, selection of different divergence
or receiving slits, monochromator geometry, filter, and other optical components.

– Taking advantage of the fundamental parameters approach, which is based on
a comprehensive description of the experimental conditions and hardware con-
figuration. It is developed quite well and as a result, the corresponding peak-
shape parameters may be computed, and not necessarily refined. This technique
requires realistic data about the experimental configuration, such as slit open-
ings and heights, in-plane and axial divergences, monochromator characteristics,
source and sample geometry and dimensions, and other data. Indeed, consider-
able effort is involved in order to obtain all required physical characteristics of the
powder diffractometer, the source, and the specimen. The resultant peak shape is
then obtained as a convolution (8.18) of the modeled instrumental function, Ω,
wavelength distribution in the incident spectrum, Λ, and sample function, Ψ,
with the pseudo-Voigt function.29 For example, the instrumental function can be
obtained by convolution of primitive (fundamental) functions describing effects
of the corresponding instrumental characteristics on the peak shape, as shown in
Fig. 8.15. The fundamental parameters approach is implemented in several soft-
ware products, including Koalariet/XFIT30 and BGMN31, TOPAS32 and others.
More detailed information about both the technique and its implementation may
be found in the corresponding references.33

29 From this point of view, some applications of the modified pseudo-Voigt function (e.g., third
and fourth peak-shape functions employed in GSAS) are in a way similar to the fundamental
parameters approach as they use instrumental parameters to describe certain aspects of peak shape.
30 See http://www.ccp14.ac.uk/tutorial/xfit-95/xfit.htm.
31 See http://www.bgmn.de/.
32 Bruker AXS: TOPAS V3: General profile and structure analysis software for powder diffraction
data. User’s Manual, Bruker AXS, Karlsruhe, Germany (2005).
33 R.W. Cheary, A.A. Coelho, J.P. Cline, Fundamental parameters line profile fitting in labo-
ratory diffractometers. J. Res. Natl. Inst. Stand. Technol. 109, 1 (2004) [http://nvl.nist.gov/pub/
nistpubs/jres/109/1/j91che.pdf]; R.W. Cheary and A. Coelho, A fundamental parameters approach
to X-ray line-profile fitting, J. Appl. Cryst. 25, 109 (1992); R.W. Cheary and A.A. Coelho, Ax-
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Fig. 8.15 Graphical representation of typical fundamental functions defining convoluted instru-
mental profile.

8.5.2 Peak Asymmetry

All peak-shape functions considered so far were centrosymmetric with respect to
their arguments (x), which implies that both the low and high angle slopes of Bragg
peaks have mirror symmetry with respect to a vertical line intersecting the peak
maximum (e.g., see Fig. 8.12). In reality, Bragg peaks are asymmetric due to vari-
ous instrumental factors such as axial divergence and nonideal specimen geometry,
and due to the nonzero curvature of the Debye rings (e.g., see Fig. 8.4), especially
at low Bragg angles. The combined asymmetry effects usually result in the low an-
gle sides of Bragg peaks being considerably broader than their high angle sides,
as illustrated schematically in Fig. 8.16. Peak asymmetry is usually strongly de-
pendent on the Bragg angle, and it is most prominently visible at low Bragg angles
(2θ below ∼20◦–30◦). At high Bragg angles peak asymmetry may be barely visible,
but it is still present.

A proper configuration of the instrument and its alignment can substantially re-
duce peak asymmetry, but unfortunately, they cannot eliminate it completely. The
major asymmetry contribution, which is caused by the axial divergence of the beam,
can be successfully controlled by Soller slits, especially when they are used on both
the incident and diffracted beam’s sides. The length of the Soller slits is critical in
handling both the axial divergence and asymmetry; however, the reduction of the
axial divergence is usually accomplished at a sizeable loss of intensity.

Since asymmetry cannot be completely eliminated, it should be addressed in the
profile-fitting procedure. Generally, there are three ways of treating the asymmetry
of Bragg peaks, all achieved by various modifications of the selected peak-shape
function:

ial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in
a fundamental-parameter profile fitting procedure, J. Appl. Cryst. 31, 862 (1998); J. Bergmann,
R. Kleeberg, A. Haase, and B. Breidenstein, Advanced fundamental parameters model for im-
proved profile analysis, Mater. Sci. Forum 347, 303 (2002) and references therein.
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Fig. 8.16 The schematic illustrating the asymmetric Bragg peak (solid line) when compared with
the symmetric peak composed of the dash-dotted line (left slope) and the solid line (right slope).
Both peaks are modeled by the pure Gauss function (8.22) using two different FWHM’s on differ-
ent sides of the peak maximum in the asymmetric case.

– In the first method, the symmetry of a function is broken by introducing a multi-
plier, which increases the intensity on one side from the peak maximum (usually
the low Bragg angle side), and decreases it on the opposite side. The same mod-
ification of intensities can also be achieved by introducing different peak widths
on the opposite sides of the peak-maximum, as has been done in Fig. 8.16. The
following equation expresses the intensity correction, A, as a function of Bragg
angle:

A(xi) = 1−α
zi ×|zi|

tanθ
(8.37)

In (8.37) α is a free variable, or the asymmetry parameter, which is refined during
profile fitting and zi is the distance from the maximum of the symmetric peak to the
corresponding point of the peak profile, or zi = 2θk–2θi. This modification is applied
separately to every individual Bragg peak, including Kα1 and Kα2 components.
Since (8.37) is a simple intensity multiplier, it may be easily incorporated into any of
the peak-shape functions considered earlier. In addition, in the case of the Pearson-
VII function, asymmetry may be treated differently. It works nearly identical to
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(8.37) and all variables have the same meaning as in this equation, but the expression
itself is different:

A(xi) = 1+α
z3

i(
2H2/C1/2

P + z2
i

)3/2 (8.38)

where CP = 4(21/β−1), see (8.25).

– Equations (8.37) and (8.38) are quite simple, but they are also far from the best in
treating peak asymmetry, especially when high-quality powder diffraction data
are available. Better results can be achieved by introducing the so-called split
pseudo-Voigt or split Pearson-VII functions. Split functions employ two sets of
peak-shape parameters (all or only some of them) separately to represent the op-
posite sides of each peak. For example, in a split Pearson-VII function, a different
exponent β and its dependence on the Bragg angle may be used to model the low
(left) and high (right) angle sides of the peak, while keeping the same FWHM
parameters U , V , and W . This results in a total of nine peak-shape function pa-
rameters: U , V , W , βL

0 , βL
1 , βL

2 , βR
0 , βR

1 and βR
2 , where superscripts L and R refer

to parameters of the left and right sides, respectively, of the peak (see (8.25) and
the following explanation of notations). It is also possible to split the peak width
(FWHM parameters), but then a total of twelve parameters should be refined,
which is usually an overwhelming number of free variables for an average, or
even good-quality powder diffraction experiment.

– In some advanced implementations of the modified pseudo-Voigt function, an
asymmetric peak can be constructed as a convolution of a symmetric peak shape
and a certain asymmetric function, which can be either empirical, or based on the
real instrumental parameters. For example, as described in Sect. 8.5.1, and using
the Simpson’s multi-term integration rule, this convolution can be approximated
using a sum of several (usually 3 or 5) symmetric Bragg peak profiles:

y(x)asym =
n

∑
i=1

giy(x)sym (8.39)

where: n is the number of terms, n = 3 or 5; ysym and yasym are modeled sym-
metric and the resulting asymmetric peak-shape functions, respectively, and gi
are the coefficients describing Bragg angle dependence of the chosen asymmetry
parameter. This approach is relatively complex, but in the case of high accuracy
data (e.g., precision X-ray or synchrotron powder diffraction), it adequately de-
scribes the observed asymmetry of Bragg peaks. An even more accurate method
employs the modeling of asymmetry by using geometrical parameters responsi-
ble for axial divergence (see Sect. 8.5.1; Finger, Cox, and Jephcoat reference on
page 176). Nevertheless, lower quality routine powder diffraction patterns to a
large extent can be treated using the simpler (8.37).
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8.6 Intensity of Powder Diffraction Peaks

Any powder diffraction pattern is composed of multiple Bragg peaks, which have
different intensities in addition to varying positions and shapes. Numerous factors
have either central or secondary roles in determining peak intensities. As briefly
mentioned in Sect. 8.1 (Table 8.2), these factors can be grouped as: (i) structural
factors, which are determined by the crystal structure; (ii) specimen factors owing to
its shape and size, preferred orientation, grain size and distribution, microstructure
and other parameters of the sample, and (iii) instrumental factors, such as proper-
ties of radiation, type of focusing geometry, properties of the detector, slit and/or
monochromator geometry.

The two latter groups of factors may be viewed as secondary, so to say, they are
less critical than the principal part defining the intensities of the individual diffrac-
tion peaks, which is the structural part.34 Structural factors depend on the internal
(or atomic) structure of the crystal, which is described by relative positions of atoms
in the unit cell, their types and other characteristics, such as thermal motion and
population parameters. In this Chapter, we consider secondary factors in addition to
introducing the concept of the integrated intensity, while Chap. 9 is devoted to the
major component of Bragg peak intensity – the structure factor.

8.6.1 Integrated Intensity

Consider the Bragg peak, which is shown in Fig. 8.17, and let us try to answer the
question: which quantity most adequately describes its intensity, that is, what is the
combined result of scattering from a series of crystallographic planes (hkl) or, which
is the same, from the corresponding point in the reciprocal lattice? Is it the height of
the peak (i.e., the Y coordinate of the highest point)? Is it the area under the peak?
Is it something else?

The value of the peak maximum (Ymax) is intuitively, and often termed as its
intensity. It can be easily measured, and is indeed used in many applications where
relative intensities are compared on a qualitative basis, for example, when searching
for a similar pattern in a powder diffraction database. This approach to measuring
intensity is, however, unacceptable when quantitative values are needed, because
both the instrumental and specimen factors may cause peak broadening, which may
be different for identical Bragg peaks produced by the same crystalline material.
On the other hand, the area under the peak remains unchanged in most cases, even
when substantial broadening, especially anisotropic, is present (see (8.21) indicating
that Bragg peak intensity is a multiplier applied to the corresponding peak-shape

34 Some of the external factors, e.g., preferred orientation (see Sect. 8.6.6), may have a tremendous
effect on the diffracted intensity. However, all secondary factors have similar or identical effects
on the diffracted intensity, regardless of the crystal (atomic) structure of the material.
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Fig. 8.17 The relationship between the measured shape (the open circles connected with the solid
lines) and the integrated intensity (shaded area) of the Bragg peak. The background is shown
using the dash-dotted line. The maximum measured intensity is indicated as Ymax. The measured
intensities and the corresponding values of the background are indicated for one of the points as Yi
and bi, respectively.

function, which has unit area). Thus, the shaded area in Fig. 8.17 is known as the
integrated intensity, and it represents the true intensity of Bragg peaks in powder
diffraction.

The intensity, Ihkl , scattered by a reciprocal lattice point (hkl) corresponds to the
integrated intensity of the matching Bragg peak. For simplicity, it is often called
“intensity.” What is actually measured in a powder diffraction experiment is the
intensity in different points of the powder pattern, and it is commonly known as
profile intensity. Profile intensity is usually labeled Yi, where i is the sequential point
number, normally beginning from the first measured data point (i = 1).

Assuming that powder diffraction data were collected with a constant step in 2θ,
the area of an individual peak may be calculated simply by adding the intensities
(Y -coordinates) of all points measured within the range of the peak after the con-
tribution from the background has been subtracted in every point. The background
is shown as a nearly horizontal dash-dotted line in Fig. 8.17. The observed inte-
grated intensity (Ihkl) of a Bragg peak (hkl) is, therefore, determined from numerical
integration as:

Ihkl =
j

∑
i=1

(
Y obs

i −bi

)
(8.40)

where j is the total number of data points measured within the range of the peak.35

35 Strictly speaking, each Bragg peak begins and ends when its contribution becomes indistin-
guishable from that of the background. The determination of peak range at its base presents a
challenging numerical problem since (i) diffracted intensity is always measured with a finite error;
(ii) it is nearly impossible to achieve zero background, and (iii) Bragg peaks often overlap with
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The integrated intensity is a function of the atomic structure, and it also depends
on multiple factors, such as certain specimen and instrumental parameters. Consid-
ering (7.7) and after including necessary details, earlier grouped as “geometrical”
effects, the calculated integrated intensity in powder diffraction is expressed as the
following product:

Ihkl = K × phkl ×Lθ×Pθ×Aθ×Thkl ×Ehkl ×|Fhkl |2 (8.41)

where

– K is the scale factor, that is, it is a multiplier required to normalize experimen-
tally observed integrated intensities with absolute calculated intensities. Absolute
calculated intensity is the total intensity scattered by the content of one unit cell
in the direction (θ), defined by the length of the corresponding reciprocal lattice
vector. Therefore, the scale factor is a constant for a given phase and it is de-
termined by the number, spatial distribution, and states of the scattering centers
(atoms) in the unit cell.

– phkl is the multiplicity factor, that is, it is a multiplier which accounts for the
presence of multiple symmetrically equivalent points in the reciprocal lattice, or
in other words, the number of symmetrically equivalent reflections.

– Lθ is Lorentz multiplier, which is defined by the geometry of diffraction.
– Pθ is the polarization factor, that is, it is a multiplier, which accounts for a partial

polarization of the scattered electromagnetic wave (see the footnote and Thom-
son’s equation in Sect. 7.1.1, p. 136).

– Aθ is the absorption multiplier, which accounts for absorption of both the incident
and diffracted beams and nonzero porosity of the powdered specimen.

– Thkl is the preferred orientation factor, that is, it is a multiplier, which accounts
for possible deviations from a complete randomness in the distribution of grain
orientations.

– Ehkl is the extinction multiplier, which accounts for deviations from the kinemat-
ical diffraction model. In powders, these are quite small and the extinction factor
is nearly always neglected.

– Fhkl is the structure factor (or the structure amplitude), which is defined by the
details of the crystal structure of the material: coordinates and types of atoms,
their distribution among different lattice sites, and thermal motion.

The subscript hkl indicates that the multiplier depends on both the length and di-
rection of the corresponding reciprocal lattice vector d∗

hkl . Conversely, the subscript

one another. Thus, for all practical purposes, the beginning and the end of any Bragg peak (i.e.,
its width at the base) is usually assumed in terms of a certain number of full widths at half maxi-
mum to the left and to the right from peak maximum. For Bragg peaks, which are well-represented
by pure Gaussian distribution, the number of FWHM’s can be limited to 2–3 on each side, while
in the case of nearly Lorentzian distribution this number should be increased substantially (see
Fig. 8.12). In some instances, the number of FWHM’s can reach 10–20. It is also possible to de-
fine peak limits in terms of maximum intensity, for example, a peak extends only as far as profile
intensity (Yi) remains greater or equal than a certain small predetermined fraction of the maximum
intensity (Ymax).
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θ indicates that the corresponding parameter is only a function of Bragg angle
and, thus it only depends upon the length of the corresponding reciprocal lattice
vector, d∗

hkl .

8.6.2 Scale Factor

As described earlier, the amplitude of the wave (and thus, the intensity, see
(7.1)–(7.7) and relevant discussion in Sect. 7.1) scattered in a specific direction
by a crystal lattice is usually calculated for its symmetrically independent minimum
– one unit cell. In order to compare the experimentally observed and the calculated
intensities directly, it is necessary to measure the absolute value of the scattered
intensity. This necessarily involves

– Measuring the absolute intensity of the incident beam exiting through the slits
and reaching the sample.

– Precise account of inelastic and incoherent scattering, and absorption by the sam-
ple, sample holder, air, and other components of the system, such as windows of
a sample attachment, if any.

– Measuring the portion of the diffracted intensity that passes through receiving
slits, monochromator and detector windows.

– Correction for efficiency of the detector, number of events generated by a single
photon, detector proportionality, etc., all of which must be precise and repro-
ducible.

– Knowledge of many other factors, such as the volume of the specimen which par-
ticipates in scattering of the incident beam, the fraction of the irradiated volume
which is responsible for scattering precisely in the direction of the receiving slit,
and so on.

Obviously, doing all this is impractical, and in reality the comparison of the ob-
served and calculated intensities is nearly always done after the former are normal-
ized with respect to the latter using the so-called scale factor. As long as all observed
intensities are measured under nearly identical conditions (which is relatively easy
to achieve), the scale factor is a constant for each phase, and is applicable to the
entire diffraction pattern.

Thus, scattered intensity is conventionally measured using an arbitrary relative
scale, and the normalization is usually performed by analyzing all experimental and
calculated intensities using a least squares technique.36 The scale factor is one of
the variables in structure refinement and its correctness is critical in achieving the

36 In certain applications, e.g., when the normalized structure factors should be calculated (see
Sect. 10.2.2), the knowledge of the approximate scale factor is required before the model of the
crystal structure is known. This can be done using various statistical approaches taking into ac-
count that the structure factor for the 000 reflection is equal to the number of electrons in the unit
cell [e.g., see A.J.C Wilson, Determination of absolute from relative X-ray intensity data, Nature
(London) 150, 151 (1942)], consideration of which is beyond the scope of this book.
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best agreement between the calculated and observed intensities.37 Its value is also
essential in quantitative analysis of multiple phase mixtures.

8.6.3 Multiplicity Factor

As we established earlier, a powder diffraction pattern is one-dimensional, but
the associated reciprocal lattice is three-dimensional. This translates into scatter-
ing from multiple reciprocal lattice vectors at identical Bragg angles. Consider two
points in a reciprocal lattice, 00l and 00l̄. By examining (8.2)–(8.7), it is easy to
see that in any crystal system 1/d2(00l) = 1/d2(00l̄). Thus, Bragg reflections from
these two reciprocal lattice points are observed at exactly the same Bragg angle.

Now consider the orthorhombic crystal system. Simple analysis of (8.5) indicates
that the following groups of reciprocal lattice points will have identical reciprocal
lattice vector lengths and thus, are equivalent in terms of the corresponding Bragg
angle:

h00 and h̄00 – 2 equivalent points
0k0 and 0k̄0 – 2 equivalent points
00l and 00l̄ – 2 equivalent points
hk0, h̄k0, hk̄0 and h̄k̄0 – 4 equivalent points
h0l, h̄0l, h0l̄ and h̄0l̄ – 4 equivalent points
0kl, 0k̄l, 0kl̄ and 0k̄l̄ – 4 equivalent points
hkl, h̄kl, hk̄l, hkl̄, h̄kl̄, h̄k̄l, h̄k̄l̄ and hkl – 8 equivalent points

Assuming that the symmetry of the structure is mmm, these equivalent recipro-
cal lattice points have the same intensity, in addition to the identical Bragg angles.
Consequently, in general there is no need to calculate intensity separately for each
reflection in a group of equivalents. It is enough to calculate it for one of the corre-
sponding Bragg peaks, and then multiply the calculated intensity by the number of
the equivalents in the group, that is, by the multiplicity factor. The multiplicity fac-
tor is, therefore, a function of lattice symmetry and combination of Miller indices.
In the example considered here (orthorhombic crystal system with point group sym-
metry mmm), the following multiplicity factors could be assigned to the following
types of reciprocal lattice points:

phkl = 2 for h00, 0k0 and 00l
phkl = 4 for hk0, 0kl and h0l, and
phkl = 8 for hkl

Reciprocal lattices and therefore, diffraction patterns are generally centrosym-
metric, regardless of whether the corresponding direct lattices are centrosymmetric

37 The correctness of the scale factor is dependent on many parameters. The most critical are:
the photon flux in the incident beam remains identical during measurements at any Bragg angle;
the volume of the material producing scattered intensity is constant; the number of crystallites
approaches infinity and their orientations are completely random; the background is accounted
precisely; the absorption of X-rays (when relevant) is accounted.
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or not. Thus, pairs of reflections with the opposite signs of indices, (hkl) and (h̄k̄l̄)
– the so-called Friedel pairs – usually have equal intensity. Yet, they may be dif-
ferent in the presence of atoms that scatter anomalously (see Sect. 9.1.3) and this
phenomenon should be taken into account when multiplicity factors are evaluated
comprehensively. Relevant details associated with the effects of anomalous scatter-
ing on the multiplicity factor are considered in Sect. 9.2.2.

8.6.4 Lorentz-Polarization Factor

The Lorentz factor takes into account two different geometrical effects and it has
two components. The first is owing to finite size of reciprocal lattice points and
finite thickness of the Ewald’s sphere, and the second is due to variable radii of the
Debye rings. Both components are functions of θ.

Usually, the first component is derived by considering a reciprocal lattice rotating
at a constant angular velocity around its origin. Under these conditions, various
reciprocal lattice points are in contact with the surface of the Ewald’s sphere for
different periods of time. Shorter reciprocal lattice vectors are in contact with the
sphere for longer periods when compared with longer vectors. In powder diffraction,
this contribution arises from the varying density of the equivalent reciprocal lattice
points resting on the surface of the Ewald’s sphere, which is a function of d∗. It can
be shown that the first component of the Lorentz factor is proportional to 1/sinθ.

The second component accounts for a constant length of the receiving slit. As a
result, a fixed length of the Debye ring is always intercepted by the slit regardless
of Bragg angle. The radius of the ring (rD) is, however, proportional to sin2θ.38

Because the scattered intensity is distributed evenly along the circumference of the
ring, the intensity that reaches the detectors becomes inversely proportional to rD
and, therefore, directly proportional to 1/sin2θ.

The two factors combined result in the following proportionality:

L ∝
1

sinθsin2θ
(8.42)

which after recalling that sin2θ = 2sinθcosθ and ignoring all constants (which are
absorbed by the scale factor), becomes

L =
1

cosθsin2 θ
(8.43)

The polarization factor arises from partial polarization of the electromagnetic
wave after scattering. Considering the orientation of the electric vector, the partially
polarized beam can be represented by two components: one has its amplitude paral-
lel (A||) to the goniometer axis and another has the amplitude perpendicular (A⊥) to

38 This proportionality holds as long as the distance between the specimen and the receiving slit of
the detector remains constant at any Bragg angle.
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the same axis. The diffracted intensity is proportional to the square of the amplitude
and the two projections of the partially polarized beam on the diffracted wavevector
are proportional to 1 for (A||)2 and cos2 2θ for (A⊥)2. Thus, partial polarization af-
ter scattering yields the following overall factor (also see Thomson equation in the
footnote on page 136):

P ∝
1+ cos2 2θ

2
(8.44)

When a monochromator is employed, it introduces additional polarization, which
is accounted as:

P ∝
1−K +K · cos2 2θ · cos2 2θM

2
(8.45)

where 2θM is the Bragg angle of the reflection from a monochromator (it is a con-
stant for a fixed wavelength), and K is the fractional polarization of the beam. For
neutrons K = 0; for unpolarized and unmonochromatized characteristic X-ray radi-
ation, K = 0.5 and cos2θM = 1, while for a monochromatic or synchrotron radiation
K should be established experimentally (i.e., measured) or refined.

The Lorentz and polarization contributions to the scattered intensity are nearly
always combined together in a single Lorentz-polarization factor, which in the case
when no monochromator is employed is given as:

LP =
1+ cos2 2θ
cosθsin2 θ

(8.46)

or assuming K = 0.5 with a crystal monochromator

LP =
1+ cos2 2θcos2 2θM

cosθsin2 θ
(8.47)

Once again, all constant multipliers have been ignored in (8.46) and (8.47). The
Lorentz-polarization factor is strongly dependent on the Bragg angle as shown in
Fig. 8.18. It is near its minimum between ∼80◦ and ∼120◦ 2θ, and increases sub-
stantially both at low and high angles. The latter (above approximately 150◦ 2θ) are
usually out of range in most routine powder diffraction experiments. As is easy to
see from Fig. 8.18, additional polarization caused by the presence of a monochro-
mator results in a small change in the behavior of the Lorentz-polarization factor,
but it must be properly accounted for, especially when precision of diffraction data
is high.

8.6.5 Absorption Factor

Absorption effects in powder diffraction are dependent on both the geometry and
properties of the sample and the focusing method. For example, when a flat sample
is studied using the Bragg–Brentano technique, the scattered intensity is not affected
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Fig. 8.18 Lorentz-polarization factor as a function of Bragg angle: the solid line represents calcu-
lation using (8.46) (no monochromator), and the dash-dotted line is calculated assuming graphite
monochromator and Cu Kα radiation with K = 0.5 (8.47).

by absorption as long as the specimen is highly impermeable, homogeneous and
thick enough so that the incident beam never penetrates all the way through the
sample at any Bragg angle. On the contrary, absorption by a thick flat sample in the
transmission geometry has considerable influence on the scattered intensity, much
stronger than if a thin sample of the same kind is under examination.

When X-rays penetrate into the matter, they are partially transmitted, and par-
tially absorbed. Thus, when an X-ray beam travels the infinitesimal distance, dx,
its intensity is reduced by the infinitesimal fraction dI/I (Fig. 8.19a), which can be
defined using the following differential equation:

dI
I

= −μdx (8.48)

where μ is the proportionality coefficient expressed in the units of the inverse dis-
tance, usually in cm−1. This coefficient is also known as the linear absorption coef-
ficient of a material.

The linear absorption coefficient of any chemical element is a function of the
wavelength (photon energy), and both μ(λ) and μ(E) dependencies of Fe and Gd
are shown in Fig. 8.20. In the range of wavelengths, which are of interest to powder
diffraction, the μ(λ) functions consist of several continuous branches separated by
abrupt changes in the absorption properties at certain, element specific wavelengths.
The points, at which the discontinuities of the absorption coefficient occur, are called
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Fig. 8.19 Schematic explaining the phenomenon of absorption of X-rays by the matter (a) and
the illustration of the derivation of (8.51) (b). The incident beam penetrates into the sample by the
distance xI before being scattered by the infinitesimal volume dV. The scattered beam traverses the
distance xS before exiting the sample. In the Bragg–Brentano geometry xI = xS.
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Fig. 8.20 The behavior of the linear absorption coefficients of the elemental iron (a) and gadolin-
ium (b) as functions of the wavelength of the X-rays (bottom scale) and photon energy (top scale).
The numerical data used to prepare both plots have been taken from the National Institute of Stan-
dards and Technology Physical Reference Data web page.39

absorption edges. A single absorption edge – the K edge – is observed at the shortest
wavelength, the next set of edges is called L, followed by the M edges, and so on.
The number of absorption edges increases as the electronic structure of the element
becomes more complex. For example, when 0 < λ ≤ 13 Å, iron has a single K
absorption edge, but Gd in addition to the K edge has three L edges, followed by five
M absorption edges. The linear absorption coefficient changes its value by a factor
of 6–8 at the K edge; the relative changes become much smaller at the majority of
L and M edges.

The continuous change of the liner absorption along each of the two branches is
approximately defined as μ = kZ3λ3, where Z is the atomic number of the chemi-
cal element and k is a constant, specific for each of the two continuous parts of the

39 http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html.
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absorption function. The continuous branches correspond to the absorption occur-
ring due to random scattering of photons by electrons, which is observed in all direc-
tions, thus reducing the number of photons in the transmitted beam in the direction
of the propagation vector.

The appearance of the discontinuities is known as the true absorption, and it can
be understood by considering (6.3). As the wavelength increases, the energy of the
X-ray photons decreases and at a certain λ it matches the energies required to excite
K electrons from their ground states for the K edge, L electrons for the L edges,
M electrons for the M edges, and so on. This not only causes a rapid increase in
the number of the absorbed photons, but also results in the transitions of upper-level
electrons to vacant K (L, M, . . . ) levels in the atoms of the absorber – a photoelectric
effect, during which a fluorescent X-ray photon can be emitted in any direction. Both
scattered and true absorption result in the reduction of the transmitted intensity, as
defined by (8.48).

Absorption coefficients for all chemical elements are usually tabulated (see
Table 8.3) in the form of mass absorption coefficients40 μ/ρ (the units are cm2/g),
instead of the linear absorption coefficients, μ.

The linear absorption coefficient of any material (solid, liquid, or gas) is then
calculated as:

μ = ρm

n

∑
i=1

wi

(
μ
ρ

)
i

(8.49)

where wi is the mass fraction of the chemical element in the material, (μ/ρ)i is
elemental mass absorption coefficient, and ρm is the density of the material. For
example, the liner absorption coefficient of the stoichiometric mixture of gaseous
hydrogen and oxygen (2 mol of H2 per 1 mol of O2) is only ∼ 1/1,200 of the linear
absorption coefficient of water because the density of water is just over 1,200 times
greater than the density of the mixture of the two gases at atmospheric pressure and
room temperature.

After integrating (8.48), the transmitted intensity (It) is easily calculated in terms
of a fraction of the initial intensity of the beam (I0):

It = I0 exp(−μx) (8.50)

Hence, the intensity of the X-ray beam or other type of radiation is reduced due
to absorption after passing through a layer of a material with a finite thickness. Now,
consider Fig. 8.19b, where the incident beam is scattered by the infinitesimal volume
dV of the flat sample in the reflection geometry. The total path of both the incident
and diffracted beams through the sample is l = xI + xS. Thus, to calculate the ef-
fect of absorption in this and in any other geometry, it is necessary to perform the
integration over the entire volume of the specimen which contributes to scattering.

40 This is reasonable because absorption of X-rays is proportional to the probability of a photon
to encounter an atom when passing through matter. This probability is directly proportional to the
number of atoms in the unit volume, i.e., to the density of the material.
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Table 8.3 Mass absorption coefficients (in cm2/g) of selected chemical elements for the com-
monly used anode materials.41 The mass absorption coefficients of the best β-filter elements (see
Sect. 11.2.2) for the corresponding anode materials are underlined.

Element\ Cr Fe Cu Mo
Anode Kα Kβ Kα Kβ Kα Kβ Kα Kβ

H 0.412 0.405 0.400 0.396 0.391 0.388 0.373 0.370
He 0.498 0.425 0.381 0.335 0.292 0.268 0.202 0.197
. . .
C 15.0 11.2 8.99 6.68 4.51 3.33 0.576 0.458
N 24.7 18.6 14.9 11.0 7.44 5.48 0.845 0.645
O 37.8 28.4 22.8 17.0 11.5 8.42 1.22 0.908
. . .
Sc 516 403 332 256 180 137 20.8 14.9
Ti 590 444 358 277 200 152 23.4 16.8
V 96.5 479 399 309 219 166 26 18.7
Cr 86.8 67.0 492 385 247 185 29.9 21.5
Mn 97.5 75.3 61.6 375 270 207 33.1 23.8
Fe 113 86.9 71.0 54.3 302 232 37.6 27.1
Co 124 96.0 78.5 60.0 321 248 41.0 29.6
Ni 144 112 91.3 69.8 48.8 279 46.9 34.0
Cu 153 118 96.8 74.0 51.8 39.2 49.1 35.7
. . .
Sr 328 256 210 161 113 85.9 90.6 67.2
Y 358 279 229 176 124 94.0 97.0 72.1
Zr 386 300 247 191 139 101 16.3 76.1
Nb 416 325 267 205 145 110 17.7 81.0
Mo 442 345 284 219 154 117 18.8 13.8

Taking into account (8.50), the following integral equation expresses the reduc-
tion of the diffracted intensity, A, as the result of absorption:42

A =
1
V

∫
V

exp(−μeffl)dV (8.51)

It is important to recognize that an effective linear absorption coefficient, μeff,
has been introduced into (8.51) to account for a lower density of dusted or packed
powder when compared with the linear absorption coefficient, μ, of the bulk. The
latter is usually used in diffraction from single crystals.

41 Taken from the International Tables for Crystallography, vol. C, Third edition, E. Prince, Ed.,
published jointly with the International Union of Crystallography (IUCr) by Springer (2004).
42 In single crystal diffraction, absorption correction is usually applied to the observed intensities
and therefore, A is sometimes called the transmission factor, while the corresponding absorption
correction is A∗ = 1/A.
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Equation (8.51) can be solved analytically for all geometries usually employed
in powder diffraction.43 For the most commonly used Bragg–Brentano focusing
geometry, the two limiting cases are as follows:

– The material has very high linear absorption coefficient, or it is thick enough so
that there is a negligible transmission of the incident beam through the sample at
any Bragg angle. The resultant absorption factor in this case is a constant, and it
is usually neglected in (8.41) because it becomes a part of the scale factor:

A =
μeff
2

(8.52)

– The material has low linear absorption, or the sample is thin so that the incident
beam is capable of penetrating all the way through the sample. The absorption
correction in this case is a function of Bragg angle as shown in (8.53). Once
again, the constant coefficient 1/2μeff is omitted since it becomes a part of the
scale factor:

A =
1− exp(−2μefft/sinθ)

2μeff
∝ 1− exp(2μefft/sinθ) (8.53)

In (8.53), t is sample thickness. Ignoring the absorption correction, especially
when μ and/or t are small, which means a weakly absorbing or thin sample, results in
the underestimated calculated intensity at high Bragg angles. As a result, unphysical
(negative) values of thermal displacement parameters are usually obtained.

The major difficulty in applying an absorption correction (8.53) arises from usu-
ally unknown μeff. Obviously, the linear absorption coefficient, μ, can be easily cal-
culated when the dimensions of the unit cell and its content are known (see (8.49)),
but it is applicable only for a fully dense sample. When a pulverized sample is used
(and typically it is), μeff cannot be determined easily without measuring sample den-
sity. Often the combined parameter (μefft) can be refined or estimated and accounted
in intensity calculations during Rietveld refinement (Sect. 15.7).

Another problem with pulverized samples is that their packing density varies as
a function of the depth. This is known as the porosity effect, and for the Bragg–
Brentano geometry, it may be expressed using two different approaches:

The first has been suggested by Pitschke et al.44

A =
1−a1(1/sinθ−a2/sin2 θ)

1−a1(1−a2)
(8.54)

43 Analytical integration necessarily assumes that μeff remains constant, even though the irradiated
area of the specimen surface changes as a function of Bragg angle, as discussed in Chap. 12,
Sects. 12.1.3 and 12.2.3. When diffraction from a single crystal is of concern, analytical solution of
this equation is rarely possible and it is usually integrated numerically using the known dimensions
of a single crystal and the orientations of both the incident and diffracted beams with respect to
crystallographic axes for each individual reflection hkl.
44 W. Pitschke, N. Mattern, and H. Hermann, Incorporation of microabsorption corrections into
Rietveld analysis, Powder Diffraction 8, 223 (1993).
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and the second by Suortti45

A =
a1 +(1−a1)exp(−a2/sinθ)

a1 +(1−a1)exp(−a2)
(8.55)

where a1 and a2 are two variables that can be refined. Both approximations also
account for surface roughness as well as for absorption effects. They give practically
identical results and the only difference is that the Suortti formula works better at
low Bragg angles, according to Larson and Von Dreele.46

Approximations given in (8.53)–(8.55) also account for some other effects that
distort intensity, for example improper size of the incident beam, causing the beam
to be broader than the sample at low Bragg angles. The refinement of the corre-
sponding parameters may become unstable because of correlations with some struc-
tural parameters (e.g., with the scale factor and/or thermal displacement parameters
of atoms). Therefore, any of these corrections should be introduced and/or refined
with care.

8.6.6 Preferred Orientation

Conventional theory of powder diffraction assumes completely random distribution
of the orientations among the infinite amount of crystallites in a specimen used to
produce a powder diffraction pattern. In other words, precisely the same fraction of
the specimen volume should be in the reflecting position for each and every Bragg
reflection. Strictly speaking, this is possible only when the specimen contains an in-
finite number of crystallites. In practice, it can be only achieved when the number of
crystallites is very large (usually in excess of 106–107 particles). Nonetheless, even
when the number of crystallites approaches infinity, this does not necessarily mean
that their orientations are completely random. The external shape of the crystallites
plays an important role in achieving randomness of their orientations in addition to
their number.

When the shapes of crystallites are isotropic, random distribution of their ori-
entations is not a problem, and deviations from an ideal sample are usually neg-
ligible. However, quite often the shapes are anisotropic, for example, platelet-like
or needle-like and this results in the introduction of distinctly nonrandom crystal-
lite orientations due to natural preferences in packing of the anisotropic particles.
The nonrandom particle orientation is called preferred orientation, and it may cause
considerable distortions of the scattered intensity.

Preferred orientation effects are addressed by introducing the preferred orien-
tation factor in (8.41) and/or by proper care in the preparation of the powdered

45 P. Suortti, Effects of porosity and surface roughness on the X-ray intensity reflected from a
powder specimen, J. Appl. Cryst. 5, 325 (1972).
46 C.A. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos
National Laboratory Report, LAUR 86-748 (2000).
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specimen. The former may be quite difficult and even impossible when preferred
orientation effects are severe. Therefore, every attempt should be made to physically
increase randomness of particle distributions in the sample to be examined during
a powder diffraction experiment. The sample preparation is discussed in Sect. 12.1,
and in this section we discuss the modeling of the preferred orientation by various
functions approximating the radial distribution of the crystallite orientations.

Consider two limiting anisotropic particle shapes: platelet-like and needle-like.
The platelets, when packed in a flat sample holder, tend to align parallel to one an-
other and to the sample surface.47 Then, the amount of plates that are parallel or
nearly parallel to the surface is much greater than the amount of platelets that are
perpendicular or nearly perpendicular to the surface. In this case, a specific direc-
tion that is perpendicular to the flat sides of the crystallites is called the preferred
orientation axis. It coincides with a reciprocal lattice vector d∗T

hkl that is normal to the
flat side of each crystallite. Therefore, intensity of reflections from reciprocal lattice
points with vectors parallel to d∗T

hkl is larger than intensity of reflections produced by
any other point of the reciprocal lattice (minimum for those with reciprocal lattice
vectors perpendicular to d∗T

hkl) simply because the distribution of their orientations
is highly anisotropic. The preferred orientation in cases like that is said to be uni-
axial, and the preferred orientation axis is perpendicular to the surface of the flat
specimen.

The needle-like crystallites, when packed into a flat sample, will also tend to
align parallel to the surface.47 However, the preferred orientation axis, which in this
case coincides with the elongated axes of the needles, is parallel to the sample sur-
face. In addition to the nearly unrestricted distribution of needles’ axes in the plane
parallel to the sample surface (which becomes nearly ideally random when the sam-
ple spins around an axis perpendicular to its surface), each needle may be freely
rotated around its longest direction. Hence, if the axis of the needle coincides, for
example, with the vector d∗T

hkl , then reflections from reciprocal lattice points with
vectors parallel to d∗T

hkl are suppressed to a greater extent and reflections from recip-
rocal lattice points with vectors perpendicular to d∗T

hkl are strongly increased. This
example describes the so-called in-plane preferred orientation.

In both cases, the most affected is the intensity of Bragg peaks that correspond
to reciprocal lattice points that have their corresponding reciprocal lattice vectors
parallel or perpendicular to d∗T

hkl , while the effect on intensity of other Bragg peaks is
intermediate. Hence the preferred orientation effect on the intensity of any reflection
hkl can be described as a radial function of angle φhkl between the corresponding
vector d∗

hkl and a specific d∗T
hkl , which is the preferred orientation direction. The angle

φhkl can be calculated from:

cosφhkl =
d∗T

hkl ·d∗
hkl

d∗T
hkld

∗
hkl

(8.56)

where d∗
hkl is the reciprocal lattice vector corresponding to a Bragg peak hkl and

d∗T
hkl is the reciprocal lattice vector parallel to the preferred orientation axis. The

47 Also see the schematic shown in Fig. 12.3.
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Fig. 8.21 Preferred orientation functions for needles represented by the ellipsoidal (a) and March–
Dollase (b) functions with the magnitude T⊥/T|| = 2.5, and the two functions overlapped when
T⊥/T|| = 1.5 (c). The two notations, T|| and T⊥, refer to preferred orientation corrections in the
directions parallel and perpendicular to the preferred orientation (PO) axis, respectively.

numerator is a scalar product of the two vectors and the denominator is a product of
the lengths of two vectors.

The simplest radial function that describes the anisotropic distribution of the pre-
ferred orientation factor as a function of angle φhkl is an ellipse (Fig. 8.21a), and the
corresponding values of Thkl , which are used in (8.41), can be calculated using the
following expression:48

Thkl =
1
N

N

∑
i=1

[
1+(τ2 −1)cos2 φi

hkl
]−1/2

(8.57)

In (8.57) the multiplier Thkl is calculated as a sum over all N symmetrically equiv-
alent reciprocal lattice points, and τ is the preferred orientation parameter refined
against experimental data. The magnitude of the preferred orientation parameter is
defined as T⊥/T||, where T⊥ is the factor for Bragg peaks with reciprocal lattice
vectors perpendicular, and T|| is the same for those which are parallel to the pre-
ferred orientation axis, respectively. In the case of the ellipsoidal preferred orien-
tation function, T⊥/T|| is equal to τ for the needles (in-plane preferred orientation)
and 1/τ for platelets (axial preferred orientation).

48 V.K. Pecharsky, L.G. Akselrud, and P.Y. Zavalij, Method for taking into account the influence
of preferred orientation (texture) in a powdered sample by investigating the atomic structure of a
substance, Kristallografiya 32, 874 (1987). Engl. transl.: Sov. Phys. Crystallogr. 32, 514 (1987).
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A different approach has been suggested by Dollase,49 where the preferred ori-
entation factor is represented by a more complex March–Dollase function:

Thkl =
1
N

N

∑
i=1

(
τ2 cos2 φi

hkl +
1
τ

sin2 φi
hkl

)−3/2

(8.58)

Here, the preferred orientation magnitude T⊥/T|| is τ41/2 for needles and its in-

verse (τ−41/2) is for plates. An example of the March–Dollase preferred orientation
function for needles with magnitude T⊥/T|| = 2.5 is shown in Fig. 8.21b.

In both cases ((8.57) and (8.58)) the preferred orientation factor Thkl is propor-
tional to the probability of the point of the reciprocal lattice, hkl, to be in the re-
flecting position (i.e., the probability of being located on the surface of the Ewald’s
sphere). In other words, this multiplier is proportional to the amount of crystallites
with hkl planes parallel to the surface of the flat sample.

Both approaches work in a similar way. In the case of platelet-like particles, the
function is stretched along T||(T|| > T⊥), while in case of needles, it is stretched
along T⊥(T|| < T⊥). Therefore, in both cases τ < 1 describes preferred orientation
of the platelets and τ > 1 describes preferred orientation of the needles. Obviously
τ = 1 corresponds to a completely random distribution of reciprocal lattice vectors
and the corresponding radial distribution functions become a circle with unit radius
(both (8.57) and (8.58) result in Thkl = 1 for any φhkl).

Both functions give practically the same result at low and moderate degrees of
nonrandomness (i.e., at low preferred orientation contribution). The example with
T⊥/T|| = 1.5 is shown in Fig. 8.21c, where the two functions ((8.57) and (8.58))
are nearly indistinguishable. Unfortunately, strong preferred orientation cannot be
adequately approximated by either of these functions, and the best way around it is
to reduce the preferred orientation by properly preparing the sample.

The platelets and needles discussed here are the two limiting but still the simplest
possible cases. Particles may (and often do) have shapes of ribbons. These particles
will pack the same way needles do – parallel to the sample surface but the ribbons
will not be randomly oriented around their longest axes – they will tend to align
their flat sides parallel to the sample surface. This case should be treated using two
different preferred orientation functions simultaneously: one along the needle and
one perpendicular to its flat surface. Thus, both types of functions ((8.57) and (8.58))
can be modified as follows:

Ttotal = k0 +
Na

∑
i=1

kiTi (8.59)

where Ttotal is the overall preferred orientation correction, Na is the number of dif-
ferent preferred orientation axes, Ti is the preferred orientation correction for the ith
axis, and ki is the corresponding scale factor, which reflects the contribution of each

49 W.A. Dollase, Correction of intensities for preferred orientation in powder diffractometry: Ap-
plication of the March model, J. Appl. Cryst. 19, 267 (1986).
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axis. Here, k0 is the portion of the sample not affected by preferred orientation at
all. Equation (8.59) is sometimes used even when only one kind of the preferred
orientation is present, thus giving the following very simple expression:

Ttotal = k +(1− k)Thkl (8.60)

Yet another approach, which is based on the algorithm described by Bunge,50

uses spherical harmonics expansion to deal with preferred orientation in three di-
mensions as a complex radial distribution:

T (h,y) = 1+
L

∑
l=2

4π
2l +1

l

∑
m=−l

l

∑
n=−l

Cmn
l km

l (h)kn
l (y) (8.61)

where

– h represents reflection, and y sample orientations;
– L is the maximum order of a harmonic;
– Cmn

l are harmonic coefficients;
– k(h) and k(y) are harmonic factors as functions of reflection and sample orienta-

tions, respectively.

The expression for harmonic factors is complex and is defined azimuthally by
means of a Lagrange function. Sample orientation in routine powder diffraction ex-
periment is fixed, and so is the corresponding harmonic factor k(y), which simplifies
(8.61) to:

T (h) = 1+
L

∑
l=2

4π
2l +1

l

∑
m=−l

Cm
l km

l (h) (8.62)

The magnitude of the preferred orientation can be evaluated using the following
function:

J = 1+
L

∑
l=2

1
2l +1

l

∑
m=−l

|Cm
l |2 (8.63)

which is unity in the case of random orientation, otherwise J > 1. When all grains
are perfectly aligned (single crystal) the function (8.63) becomes infinity.

Only even orders are taken into account in (8.62) and (8.63), due to the presence
of the inversion center in the diffraction pattern. The number of harmonic coef-
ficients C and terms k(h) varies, depending on lattice symmetry and desired har-
monic orderL. The low symmetry results in multiple terms (triclinic has five terms
for L = 2) and therefore, low orders 2 or 4 are usually sufficient. High symmetry
requires fewer terms (e.g., cubic has only 1 term for L = 4), so higher orders may
be required to adequately describe preferred orientation. The spherical harmonics
approach is realized in GSAS.51

50 H.-J. Bunge, Texture analysis in materials science, Butterworth, London (1982).
51 R. B. Von Dreele, Quantitative texture analysis by Rietveld refinement, J. Appl. Cryst. 30, 517
(1997).
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Fig. 8.22 The illustration
of the complex distribution
of reciprocal lattice vectors
modeled using a spherical
harmonic preferred orienta-
tion function for the (100)
reflection.

Z

X

Y

An example of the preferred orientation modeled using second- and fourth-
order spherical harmonics in the orthorhombic crystal system [space group Cmc21,
C0

2 = 0.17(1), C2
2 = 1.65(1), C0

4 = 0.17(2), C2
4 = 0.04(1), C4

4 = 0.56(2)] is shown
in Fig. 8.22.

Here the surface represents the probability of finding the reciprocal lattice point
(100) in the diffractometer coordinate system assuming Bragg–Brentano focusing
geometry. The Z-axis is perpendicular to the sample, and X- and Y -axes are located
in the plane of the sample.

At present, the spherical harmonics approach is the most comprehensive method
developed to account for the preferred orientation effects, but in routine experiments
it should be used with great care. The order of expansion should be increased gradu-
ally, and only as long as improvements are obvious, and the results make sense. An
unnecessarily large number of harmonic coefficients may give excellent agreement
between the observed and calculated diffraction patterns, but incorrect structural,
especially thermal displacement, parameters may result. In its full form, (8.61) may
be used in complex texture analysis, where powder diffraction data have been col-
lected, not only as a function of Bragg angle 2θ, but also at different orientations
along Debye rings and with tilting the sample.

8.6.7 Extinction Factor

Extinction effects, which are dynamical in nature, may be noticeable in diffrac-
tion from nearly perfect and/or large mosaic crystals. Two types of extinction are
generally recognized: primary, which occurs within the same crystallite, and sec-
ondary, which originates from multiple crystallites. Primary extinction is caused by
back-reflection of the scattered wave into the crystal and it decreases the measured
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Fig. 8.23 The illustration of primary (left) and secondary (right) extinction effects, which reduce
intensity of strong reflections from perfect crystals and ideally mosaic crystals, respectively. The
solid lines indicate actual reflections paths. The dashed lines indicate the expected paths, which are
partially suppressed by dynamical effects. The shaded rectangles on the right indicate two different
blocks of mosaic with identical orientations.

scattered intensity (Fig. 8.23, left). Further, the re-reflected wave is usually out of
phase with the incident wave and thus, the intensity of the latter is lowered due to
destructive interference. Therefore, primary extinction lowers the observed intensity
of very strong reflections from perfect crystals. Especially in powder diffraction, pri-
mary extinction effects are often smaller than experimental errors; however, when
necessary, they may be included in (8.41) as:52

Ehkl = EB sin2 θ+EL cos2 θ (8.64)

where EB and EL are Bragg (2θ= π) and Laue (2θ= 0) components, both defined as
various functions of the extinction parameter, x, which is normally a refined variable:

x = (KNcλFhklD)2 (8.65)

In (8.65), K is the shape factor (it is unity for a cube of edge D, K = 3/4 for a sphere
of diameter D, and K = 8/3π for a cylinder of diameter D), λ is the wavelength, Fhkl
is the calculated structure amplitude and Nc is the number of unit cells per unit
volume.

Secondary extinction (Fig. 8.23, right) occurs in a mosaic crystal when the beam,
reflected from a crystallite, is re-reflected by a different block of the mosaic, which
happens to be in the diffracting position with respect to the scattered beam. This
dynamical effect is observed in relatively large, nearly perfect mosaic crystals; it
reduces measured intensities of strong Bragg reflections, similar to the primary ex-
tinction. It is not detected in diffraction from polycrystalline materials and therefore,
is always neglected.

52 T.M. Sabine, R.B. Von Dreele, and J.E. Jorgensen, Extinction in time-of-flight neutron powder
diffractometry, Acta Cryst. A44, 374 (1988); T.M. Sabine, A reconciliation of extinction theories,
Acta Cryst. A44, 368 (1988).
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8.7 Additional Reading

1. International Tables for Crystallography, vol. A, Fifth Revised Edition, Theo Hahn, Ed. (2002);
vol. B, Third edition, U. Shmueli, Ed. (2008); vol. C, Third edition, E. Prince, Ed. (2004).
All volumes are published jointly with the International Union of Crystallography (IUCr) by
Springer. Complete set of the International Tables for Crystallography, Vol. A-G, H. Fuess,
T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, E. Prince, A. Authier, V. Kopský, D.B.
Litvin, M.G. Rossmann, E. Arnold, S. Hall, and B. McMahon, Eds., is available online as
eReference at http://www.springeronline.com.

2. R.B. Neder and Th. Proffen, Teaching diffraction with the aid of computer simulations, J. Appl.
Cryst. 29, 727 (1996); also see Th. Proffen and R.B. Neder. Interactive tutorial about diffraction
on the Web at http://www.lks.physik.uni-erlangen.de/diffraction/.

3. Modern powder diffraction. D.L Bish and J.E. Post, Eds. Reviews in Mineralogy, Vol. 20. Min-
eralogical Society of America, Washington, DC (1989).

4. R. Jenkins and R.L. Snyder, Introduction to X-ray powder diffractometry. Wiley, New York
(1996).

5. T.M. Sabine, The flow of radiation in a polycrystalline material, in: The Rietveld method. IUCr
monographs on crystallography 5, R.A. Young, Ed., Oxford University Press, Oxford (1993).

6. P. Suortti, Bragg reflection profile shape in X-ray powder diffraction patterns, in: The Rietveld
method. IUCr monographs on crystallography 5, R.A. Young, Ed., Oxford University Press,
Oxford (1993).

7. R. Delhez, T.H. de Keijser, J.I. Langford, D. Louër, E.J. Mittemeijer, and E.J. Sonneveld, Crys-
tal imperfection broadening and peak shape in the Rietveld method, in: The Rietveld method.
IUCr monographs on crystallography 5, R.A. Young, Ed., Oxford University Press, Oxford
(1993).

8.8 Problems

1. Vanadium oxide, V2O3, crystallizes in the space-group symmetry R3̄c with lattice
parameters a = 4.954 Å and c = 14.00 Å. Calculate the interplanar spacing, d, and
Bragg peak positions, 2θ, for the 104 (the strongest Bragg peak) and for the 012 (the
lowest Bragg angle peak) reflections assuming Cu Kα1 radiation with λ = 1.5406 Å.

2. A powder diffractometer (R = 240mm) that you used recently is well-maintained.
However, the powder diffraction pattern you collected shows some systematic de-
viations between the calculated and observed positions of Bragg peaks. You plotted
the corresponding deviations (Δ2θ= 2θobs−2θcalc) versus different functions of the
Bragg angle, two which are shown in Fig. 8.24. Which factor is primarily respon-
sible for the observed deviations? Estimate the value of the corresponding physical
parameter that systematically affects peak positions.

3. What is the multiplicity factor for reflections hkl in the monoclinic crystal system
in a standard setting? How about reflections h0l and 0kl? Do the multiplicity factors
change for the same groups of Bragg reflections in the second allowed setting in the
monoclinic crystal system (i.e., when the non 90◦ angle changes from β to γ)?

4. A powder diffractometer in your laboratory is equipped with a sealed X-ray tube,
which has Cr anode. You need to design a β-filter to ensure that the intensity of the
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Fig. 8.24 Deviations between 2θobs − 2θcalc plotted as functions of sin2θ (left) and cosθ (right).
The estimated values of two data points on the straight line are (0.75, −0.0645) and (0.95, −0.082).
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with H2 at 0.5 atm

Be windows

Fig. 8.25 The schematic of a modified powder diffractometer in which both the primary and scat-
tered beams pass through the waveguides filled with hydrogen at PH2 = 0.5atm.

Kβ spectral line is less than 0.5% of the intensity of the Kα1 part in the characteristic
spectrum. Calculate the needed thickness of a foil made from the most appropriate
element (which one?) and by how much the intensities of Kα1 and Kβ lines are
reduced after filtering.

5. Increasing the distance between the X-ray source and the sample and between
the sample and the detector improves the resolution of a powder diffraction pat-
tern. However, absorption of X-rays by air is nonnegligible, and increasing these
distances usually results in the reduction of registered intensity. In order to mini-
mize absorption by air, researcher considers installing two waveguides – tubes filled
with hydrogen gas at 0.5 atm – one along the path of the incident beam, and an-
other along the path of the scattered beam. Each waveguide is capped with a pair of
0.1 mm thick Be windows. Schematic of the modifications is shown in Fig. 8.25.
Assume that X-ray data are collected using Cu Kα radiation at room temperature
(20◦C) and normal atmospheric pressure (1 atm) and that the length of each tube is
250 mm. Assume that air is 20 mass% oxygen and 80 mass% nitrogen.

(a) Compute intensity gain, if any, after the installation of the tubes.
(b) What is the required minimum length of each tube to gain intensity?

Find all missing physical quantities using the textbook, relevant handbooks,
and/or the web.



Chapter 9
Structure Factor

So far, we discussed all prefactors in (8.41), which were dependent on multiple
parameters, except for the crystal structure of the material. The only remaining term
is the structure factor, |Fhkl |2, which is the square of the absolute value of the so-
called structure amplitude, Fhkl . It is this factor that includes multiple contributions,
which are determined by the distribution of atoms in the unit cell and other structural
features.

9.1 Structure Amplitude

When the unit cell contains only one atom, the resulting diffracted intensity is only
a function of the scattering ability of this atom (see Sect. 7.1.2). However, when
the unit cell contains many atoms and they have different scattering ability, the am-
plitude of the scattered wave is given by a complex function, which is called the
structure amplitude:

F(h) =
n

∑
j=1

gjt j(s) f j(s)exp(2πih ·xj) (9.1)

where:

– F(h) is the structure amplitude of a Bragg reflection with indices hkl, which are
represented as vector h in three dimensions. The structure amplitude itself is
often shown in a vector form since it is a complex number;

– n is the total number of atoms in the unit cell and n includes all symmetrically
equivalent atoms;

– s is sinθhkl/λ;
– gj is the population (or occupation) factor of the jth atom (gj = 1 for a fully

occupied site);
– t j is the temperature factor, which describes thermal motions of the jth atom;

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 203
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 9,
c© Springer Science+Business Media LLC 2009
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– f j(s) is the atomic scattering factor describing interaction of the incident wave
with a specific type of an atom as a function of sinθ/λ for X-rays or electrons,
and it is simply f j (i.e., is independent of sinθ/λ) for neutrons;

– i =
√
−1;

– h · xj is a scalar product of two vectors: h = (h,k, l) and vectors xj = (xj,yj,zj).
The latter represents fractional coordinates of the jth atom in the unit cell:

h ·xj = (h k l)×

⎛
⎝xj

yj

zj

⎞
⎠ = hxj + kyj + lzj (9.2)

Taking into account (9.2), (9.1) can be expanded as:

Fhkl =
n

∑
j=1

gjt j(s) f j(s)exp[2πi(hxj + kyj + lzj)] (9.3)

9.1.1 Population Factor

Considering a randomly chosen unit cell, each available position with a specific co-
ordinate triplet (xj, yj, zj) may be only occupied by one atom (fractional population
parameter gj = 1), or it may be left unoccupied (gj = 0). On the other hand, even
very small crystals contain a nearly infinite number of unit cells (e.g., a crystal in the
form of a cube with 1 μm side will contain 109 cubic unit cells with a = 10 Å) and
diffraction is observed from all of the unit cells simultaneously. Hence, the resulting
structure amplitude is normalized to a certain mean unit cell, which represents the
distribution of atoms averaged over the entire volume of the studied sample. In the
majority of compounds, each crystallite is fully ordered and the content of every
unit cell may be assumed to be identical throughout the whole crystal, so the popu-
lation factor remains unity for every symmetrically independent atom. Occasionally,
population factor(s) may be lower than one but greater than zero, and some of the
common reasons of why this occurs are briefly discussed next.

It is possible that in some of the unit cells, atoms are missing. Thus, instead of
a complete occupancy, the corresponding site in an average unit cell will contain
only a fraction (0 < gj < 1) of the jth atom. In such cases, it is said that the lattice
has defects and gj smaller than 1 reflects a fraction of the unit cells where a specific
position is occupied. Obviously, a fraction of the unit cells where the same position
is empty complements gj to unity and it is equal to 1−gj.

A different situation arises when in an average unit cell atom j is located close
to a finite symmetry element, for example, a mirror plane. A mirror plane produces
atom j′, symmetrically equivalent to j, so that the distance between j′ and j becomes
unreasonably small and core electrons of the two atoms overlap, but in reality they
cannot be located at such close distance (Fig. 9.1, left). This usually means that in
some of the unit cells atom j is located on one side of the mirror plane, while in the
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Fig. 9.1 The illustration of forbidden overlaps as a result of an atom being too close to a finite
symmetry element: mirror plane (left), threefold rotation axis (middle), and fourfold rotation axis
(right). Assuming that there are no defects in a crystal lattice, these distributions require gj ≤ 1/2,
1/3, and 1/4, respectively.

others it is positioned on the opposite side of the same plane. If this is the case, then
in the absence of “conventional” defects, the population factors gj and gj′ are related
as gj = 1−gj′, and gj = gj′ because of mirror symmetry.

In general, gj = 1/n, where n is the multiplicity of the symmetry element which
causes the overlap of the corresponding atoms. When the culprits are a mirror plane,
a twofold rotation axis or a center of inversion, n = 2 and gj = 0.5. For a threefold
rotation axis n = 3 and gj = 1/3, and so on (Fig. 9.1, middle and right). When defects
are present, in addition to the overlap, gj is no longer equal to gj′ and two or more
population factors may become independent.

The condition illustrated in Fig. 9.1 usually happens when the real symmetry of
the unit cell (and the lattice) is lower than the symmetry of the average unit cell
as detected from diffraction data. Hence, the following should be taken into the
consideration:

– Distribution of atoms j and j′ in the lattice is random, so the crystal is partially
disordered. In this case, the average cell may still be used to describe the average
crystal structure, even when it has a higher symmetry than the real unit cell.

– Atoms j and j′ are distributed in the lattice in an ordered fashion. This usually
means that the incorrect space-group symmetry was used to describe the crystal
structure. The symmetry therefore, should be lowered by modifying or removing
those elements that cause atoms to overlap.1

Yet another possibility is the so-called statistical mixing of various atoms in the
same site. This may be observed when different unit cells contain two or more types

1 For example, overlaps due to a mirror plane may be avoided after doubling the unit cell dimension
along the mirror plane and substituting it with a glide plane. When certain symmetry operation(s)
are excluded from the space group symmetry, this may sometimes result in a substantial change,
including switching to a lower symmetry crystal system.
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of atoms in the same position.2 In the most general case, the occupational disorder
can be expressed as:

g0 +
m

∑
j=1

gj = 1 (9.4)

where g0 represents the unoccupied fraction of the unit cells (i.e., defects) and m is
the number of different types of atoms that occupy given site position in different
unit cells.

In all cases considered in this section, population factor(s) could be refined, even
though some of them may be constrained by symmetry or other relationships. For
example when g0 = 0 and m = 3 in (9.4), the following constraint should be in effect:
g3 = 1 – g1 – g2. Given the sensitivity of the population parameters to the potentially
overestimated symmetry, it is important to analyze their values, especially if they
converge into simple factions, for example, 1/2,1/3 (see Fig. 9.1).

9.1.2 Temperature Factor (Atomic Displacement Factor)

At any temperature higher than absolute zero, certain frequencies in a phonon spec-
trum of the crystal lattice are excited and as a result, atoms are in a continuous
oscillating motion about their equilibrium positions, which are determined by co-
ordinate triplets (x,y,z). To account for these vibrations, the so-called temperature
factor is introduced into the general equation (9.1) of the structure amplitude.

It is worth noting that according to a recommendation issued by the International
Union of Crystallography (IUCr), the corresponding parameters representing the
temperature factor should be referred as “atomic displacement parameters” instead
of the commonly used “temperature parameters” or “thermal parameters.” This sug-
gestion is based on the fact that these parameters, when determined from X-ray
diffraction experiment, represent the combined total of several effects in addition
to displacements caused by thermal motion. They include deformation of the elec-
tron density around the atom due to chemical bonding, improperly or not accounted
absorption, preferred orientation, porosity, and so on, even if they influence the
structure factor to a much lesser degree than thermal motion.

Oscillatory motions of atoms may be quite complex and, as a result, several dif-
ferent levels of approximations in the expression of the temperature factor can be
used. In the simplest form, the temperature factor of the jth atom is represented as:

t j = exp
(
−Bj sin2 θ

λ2

)
(9.5)

2 Strictly speaking, it should be referred to as “practically the same position,” since different atoms
would interact differently with their surroundings, thus causing locally different environments un-
less their volumes and electronic properties are quite similar (e.g., Si and Ge; Fe3+ and Co3+,
and other). Consequently, in the majority of cases, their positions (coordinates) are at least slightly
different. On the other hand, the differences in the positions of these atoms can rarely be detected
from diffraction experiment and are therefore, neglected.
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where Bj is the displacement parameter of the jth atom, θ is the Bragg angle at which
a specific reflection hkl is observed, and λ is the wavelength. This is the so-called
isotropic approximation, which assumes equal probability of an atom to deviate in
any direction regardless of its environment, that is, atoms are considered as diffuse
spheres. In (9.5)

Bj = 8π2(ū2)j (9.6)

and (ū2)j is the root mean square deviation in Å2 of the jth atom from its equilibrium
position (x, y, z). In crystallographic literature, it is also common to list isotropic
atomic displacement parameters of atoms as U = B/8π2 instead of B.

Considering (9.6), the isotropic displacement parameters are only physical when
they are positive (also see Sect. 9.1.3). Depending on the nature of the material,
they usually vary within relatively narrow ranges at room temperature. For inor-
ganic ionic crystals and intermetallic compounds, the typical range of B’s is ∼0.5
to ∼1 Å2; for other inorganic and many coordination compounds, B varies from ∼1
to ∼3 Å2, while for organic and organometallic compounds and for solvent or other
intercalated nonbonded molecules or atoms, this range extends from ∼3 to ∼10 Å2

or higher. As can be seen in Fig. 9.2, the high value of the atomic displacement pa-
rameter results in a rapid decrease of the structure amplitude when the Bragg angle
increases (also see (9.1)).

As mentioned at the beginning of this section, the temperature factor absorbs
other unaccounted, or incorrectly accounted effects. The most critical are absorp-
tion, porosity, and other instrumental or sample effects (see Chap. 11), which in a
systematic way modify the diffracted intensity as a function of the Bragg angle. As
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Fig. 9.2 Temperature factor as a function of sinθ/λ for several different atomic displacement para-
meters: B = 0.5, 1.0 and 4.0 Å2. The two vertical dash-dotted lines correspond to two commonly
employed upper limits of the Bragg angle in diffraction experiments using CuKα and MoKα
radiation.
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a result, the B parameters of all atoms may become negative. If this is the case,
then the absorption correction should be reevaluated and re-refined or the experi-
ment should be repeated to minimize the deleterious instrumental influence on the
distribution of intensities of Bragg peaks.

The next level of approximation accounts for the anisotropy of thermal motions
in a harmonic approximation, and describes atoms as ellipsoids in one of the three
following forms, which are, in fact, equivalent to one another:

t j = exp[−(βj
11h2 +βj

22k2 +βj
33l2 +2βj

12hk +2βj
13hl +2βj

23kl)] (9.7)

t j = exp[− 1
4
(Bj

11h2a∗2 +Bj
22k2b∗2 +Bj

33l2c∗2

+2Bj
12hka∗b∗ +2Bj

13hla∗c∗ +2Bj
23klb∗c∗)]

(9.8)

t j = exp[−2π2(U j
11h2a∗2 +U j

22k2b∗2 +U j
33l2c∗2

+2U j
12hka∗b∗ +2U j

13hla∗c∗ +2U j
23klb∗c∗)]

(9.9)

where βj
11 · · ·β

j
23,B

j
11 · · ·B

j
23 and U j

11 · · ·U
j
23 are the anisotropic atomic displacement

parameters (six parameters3 per atom).
As follows from (9.8) and (9.9), the relationships between Bi j and Ui j are identi-

cal to that given in (9.6), and both are measured in Å2. The βi j parameters in (9.7)
are dimensionless but may be easily converted into Bi j or Ui j. Very high-quality
powder diffraction data are needed to obtain dependable anisotropic displacement
parameters and even then, they may be reliable only for those atoms that have large
scattering factors (see Sect. 9.1.3).4 On the other hand, the refinement of anisotropic
displacement parameters is essential when strongly scattering atoms are distinctly
anisotropic.

The anisotropic displacement parameters can also be represented in a format of a
tensor, Tij, that is, a square matrix symmetrical with respect to its principal diagonal.
For Bi j it is given as:

Bij =

⎛
⎝B11 B12 B13

B12 B22 B23
B13 B23 B33

⎞
⎠ (9.10)

and for other types of anisotropic displacement parameters ((9.7) and (9.9)) the
matrices are identical, except that the corresponding elements are βi j and Ui j, re-

3 This is true for atoms located in the general site position (point symmetry 1), where all six
parameters are independent from one another. In special positions, some or all of the anisotropic
displacement parameters is constrained by symmetry. For example, B13(β13, U13) and B23(β23,
U23) for an atom located on a mirror plane perpendicular to Z-axis are constrained to 0.
4 More often than not, the anisotropic atomic displacement parameters determined from powder
diffraction data affected by preferred orientation are incorrect (unphysical).
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spectively. The diagonal elements of the tensor, Tii (i = 1,2,3), describe atomic
displacements along three mutually perpendicular axes of the ellipsoid. Thus, sim-
ilar to the isotropic displacement parameter, they may not be negative, and should
have reasonable values at room temperature, as established by the nature of the ma-
terial. Generally, the ratios between Bii, should not exceed 3–5, unless the large
anisotropy can be explained.

All nine elements of the tensor Tij establish the orientation of the ellipsoid in
the coordinate basis of the crystal lattice. Hence, any or all nondiagonal elements
may be positive or negative but certain relationships between them and the diagonal
parameters should be observed, as shown in (9.11) for Bi j. If any of these three
relationships between the anisotropic displacement parameters is violated, then the
set of parameters has no physical meaning.

Bii > 0

BiiBi j > B2
i j

B11B22B33 +B2
12B2

13B2
23 > B11B2

23 +B22B2
13 +B33B2

12

(9.11)

The anisotropic displacement parameters can be visualized as ellipsoids
(Fig. 9.3) that delineate the volume where atoms are located most of the time,
typically at the 50% probability level. The magnitude of the anisotropy and the ori-
entations of the ellipsoids may be used to validate the model of the crystal structure
and the quality of refinement by comparing “thermal” motions of atoms with their
bonding states. Because of this, when new structural data are published, the ellipsoid
plot is usually required when the results are based on single crystal diffraction data.

Yet another level of complexity of vibrational motion is taken into account by
using the so-called anharmonic approximation of atomic displacement parameters.
One of the commonly used approaches is the cumulant expansion formalism sug-
gested by Johnson,5 in which the structure factor is given by the following general
expression:

F(h) =
n

∑
j=1

gj f j(s)exp
(

2πih ·xj −βj
klhkhl − iγ j

klmhkhkhlhm +δ j
klmnhkhlhmhn − . . .

)

(9.12)
where

– β j
kl are the anisotropic displacement parameters (see (9.7));6

– γ j
klm are the third-order anharmonic displacement parameters;

– δj
klmn are the fourth-order displacement parameters. The expansion in (9.12) may

be continued to include fifth, sixth, and so on order terms. The sign of the cor-

5 C.K. Johnson, in: Thermal neutron diffraction: proceedings of the International Summer School
at Harwell, 1–5 July 1968 on the accurate determination of neutron intensities and structure factors,
pp. 132–160, B.T.M. Willis, Ed., London, Oxford University Press (1970).
6 In this treatment, the conventional harmonic anisotropic displacement model is a “second order”
approximation.
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HCN

Fig. 9.3 The atomic displacement ellipsoids of carbon and nitrogen atoms shown at the 50% prob-
ability level for the hexamethylenetetramine molecule as determined from powder diffraction data
(see Problem 5 on page 724). Hydrogen atoms were refined in the isotropic approximation (9.5)
and are shown as small spheres of an arbitrary radius.

responding term is determined from the sign of ip where p is the order of the
anharmonic term;

– k, l, m, n (p, q, etc., in the higher-order expansions) vary between 1 and 3;
– hk, hl, hm and hn (hp, hq, etc.) are the corresponding Miller indices (h1 = h,

h2 = k, and h3 = l, respectively);
– other notations are identical to (9.1).

Displacement parameters are included in (9.12) with all possible permutations
of indices. Thus, for a conventional anisotropic approximation after considering the
diagonal symmetry of the corresponding tensor (9.10)

β11hh+β22kk +β33ll +β12hk +β21kh+β13hl +β31lh+β23kl +β32lk

= β11h2 +β22k2 +β33l2 +2β12hk +2β13hl +2β23kl
(9.13)

the already known expression for the exponential factor in (9.7) is easily obtained.
Following the same procedure, it is possible to show that in the case of the third-
order anharmonic expansion the number of the independent atomic displacement
parameters is increased by 10 (γ111, γ222, γ333, γ112, γ113, γ122, γ133, γ221, γ223, γ233,
and γ123).7 Similarly, the maximum number of parameters per atom in the fourth-
order expansion is increased by 15 (δ1111, δ2222, δ3333, δ1112, δ1113, δ1122, δ1133,
δ1123, δ1222, δ1223, δ1233, δ1333, δ2223, δ2233, and γ2333), fifth order by 21, and so on.

7 Just as in the case of the conventional anisotropic approximation, the maximum number of
displacement parameters is only realized for atoms located in the general site position (site
symmetry 1). In special positions some, or all of the displacement parameters are constrained
by symmetry. For example, γ333, γ113, γ223, and γ123 for an atom located in the mirror plane per-
pendicular to Z-axis are constrained to 0. Further, if an atom is located in the center of inversion,
all parameters of the odd order anharmonic tensors (3, 5, etc.) are reduced to 0.



9.1 Structure Amplitude 211

A brief description of the anharmonic approximation is included here for com-
pleteness since rarely, if ever, it is possible to obtain reasonable atomic displacement
parameters of this complexity from powder diffraction data: the total number of
atomic displacement parameters of an atom in the fourth order anharmonic approx-
imation may reach 31 (6 anisotropic + 10 third order + 15 fourth order). The major
culprits preventing their determination in powder diffraction are uncertainty of the
description of Bragg peak shapes, nonideal models to account for the presence of
preferred orientation, and the inadequacy of accounting for porosity.

9.1.3 Atomic Scattering Factor

As briefly mentioned earlier (see Sect. 7.1.2), the ability to scatter radiation varies,
depending on the type of an atom and therefore, the general expression of the structure
amplitude contains this factor as a multiplier (9.1). For X-rays, the scattering power
of various atoms and ions is proportional to the number of core electrons. Therefore,
it is measured using a relative scale normalized to the scattering ability of an isolated
electron. The X-ray scattering factors depend on the radial distribution of the electron
density around the nucleus, and they are also functions of the Bragg angle.

When neutrons are of concern, their coherent scattering by nuclei is independent
of the Bragg angle, and the corresponding factors remain constant for any Bragg re-
flection. Scattering factors of different isotopes are represented in terms of coherent
scattering lengths of a neutron, and are expressed in femtometers (1 fm = 10−15 m).

The best-known scattering factors for X-rays and scattering lengths for neutrons
of all chemical elements are listed for common isotopes, and their naturally occur-
ring mixtures (neutrons) and for neutral atoms and common ions (X-rays) in the
International Tables for Crystallography.8

For practical computational purposes, the normal atomic scattering factors for
X-rays as functions of Bragg angle are represented by the following exponential
function:

f j
0(sinθ/λ) = c j

0 +
4

∑
i=1

a j
iexp

(
−b j

i sinθ/λ
)

(9.14)

Thus, scattering factors of various chemical elements and ions can be represented as
functions of nine coefficients c0, a1 − a4, b1 − b4 and sinθ/λ, which are also found
in the International Tables for Crystallography, Vol. C.

The X-ray atomic scattering factors f j
0 for several atoms and ions are shown in

Fig. 9.4 as functions of sinθ/λ. As established earlier (see Sect. 7.1.2), the forward-
scattered X-ray amplitude is always the result of a constructive interference and
therefore, at sinθ/λ = 0 the value of the scattering factor and the sum of five coef-
ficients in (9.14) (c0 +a1 +a2 +a3 +a4) are both equal to the number of electrons.

8 International Tables for Crystallography, vol. C, Second edition, A.J.C. Wilson and E. Prince,
Eds., (1999). The International Tables for Crystallography are published jointly with the Interna-
tional Union of Crystallography (IUCr) by Springer.
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Fig. 9.4 Atomic scattering factors of H, O, V+5, V+3, V, Y and I as functions of sinθλ plotted in
order from the bottom to the top. Scattering factors of vanadium ions become nearly identical to
that of the neutral atom at sinθλ∼ 0.25, which corresponds to 2θ∼ 45◦(CuKα).

It is worth noting that the difference between scattering factors of neutral atoms and
ions (compare the plots for V, V3+ and V5+) is substantial only at low Bragg angles
(more precisely, at low sinθ/λ). On the other hand, atoms in solids are rarely fully
ionized, even in their highest oxidation states. Therefore, atomic scattering factors
for neutral atoms usually give adequate approximation, and they are commonly used
in all calculations.

Considering Figs. 9.2 and 9.4, both the temperature and scattering factors de-
crease exponentially with sinθ/λ. Hence, when the displacement parameter of an
individual atom becomes unphysical during a least squares refinement, this usually
means that the improper type of an atom has been placed in the suspicious site. If
the chemical element placed in a certain position has fewer electrons than it should,
then during the refinement, its displacement parameter(s) becomes negative or much
lower than those of the correctly placed atoms. This reduction in the displacement
parameters(s) ((9.5)–(9.9)) offsets the inadequately low scattering factor (9.14) by
increasing the temperature factor. Similarly, when the site has too many electrons
than it really does, displacement parameter(s) of the corresponding atom become
unusually high during the refinement. Similar effects are observed in neutron dif-
fraction.

Anomalies of displacement parameter(s) are also observed when an atom is
placed in a position that is empty or only partially occupied (i.e., the site has size-
able defects). In this case, displacement parameter(s) become extremely large, effec-
tively reducing the contribution from this atom to the structure factor (see Fig. 9.2).
All sites, which have unusually low or unusually high displacement parameter(s),
should be tested by refining population parameter(s), while setting the displacement
parameters at some reasonable values to avoid possible, and sometimes severe cor-
relations. This refinement may reveal the nature of the chemical element located
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in a specific position by analyzing the number of electrons (or scattering length in
neutron diffraction).

For example, assume that a Ni atom has been placed in a certain position and a
least squares refinement results in a large and positive isotropic displacement para-
meter for this site, but displacement parameters of other atoms are in the “normal”
range. After the population parameter of Ni has been refined while keeping its dis-
placement parameter fixed at the average value of other “normal” atoms, the result
is gNi = 0.5. Considering Fig. 9.4, the approximate number of electrons in this po-
sition is equal to ZNigNi = 28×0.5 = 14. Hence, the refinement result points to one
of the following: (i) the site is occupied by Ni atoms at 50% population (50% of the
unit cells have Ni in this position and in the remaining 50%, the same position is va-
cant), or (ii) the site is occupied by the element that has approximately 14 electrons,
that is, Si. Depending on many other factors (e.g., precision of the experiment) the
same position may be also occupied by Al (13 electrons), P (15 electrons) or by
other neighboring atoms.

The final decision about the population of this “Ni” site can be made only when
all available data about the material are carefully considered: (i) which chemical el-
ements may be present in this sample or were used during its preparation, if known?
(ii) what are the results of the chemical analysis? (iii) what is the gravimetric den-
sity of the material? and (iv) what is the environment of this particular position? For
example, an octahedral coordination usually points to Al, but not Si or P.

It should be emphasized that the calculation of the number of electrons described
here is not exact since X-ray scattering factors are only directly proportional to the
number of electrons at 2θ = 0◦ and the proportionality becomes approximate at
sinθ/λ > 0. The population parameter(s) refinement results are usually more reli-
able in neutron diffraction because neutron scattering lengths are independent of the
Bragg angle.

Normal X-ray scattering factor, f0 (9.14) describes the scattering ability of dif-
ferent atoms as a function of sinθ/λ (or interplanar distance, d, since sinθ/λ = 1/2d)
and, therefore, is wavelength independent. This is only true for light chemical el-
ements and relatively short wavelengths. Most atoms scatter X-rays anomalously
and their scattering factors become functions of the wavelength.9 Anomalous scat-
tering is taken into account by including two additional parameters into the overall
scattering factor of each chemical element in the following form:

f j(s) = f j
o(s)+Δ f j′ + iΔ f j′′ (9.15)

where:

– s is sinθ/λ.
– f j

0 is the normal atomic scattering factor that depends only on the type of the
scattering atom (number of electrons) and is a function of sinθ/λ.

– Δ f j′ and Δ f j′′ are the real and imaginary components, respectively, of the anom-
alous scattering factor and they depend on both the atom type and the wavelength.

9 Some isotopes also scatter neutrons anomalously.
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The anomalous scattering factors are also listed in the International Tables for
Crystallography for all chemical elements and commonly used wavelengths of lab-
oratory X-rays. They can be measured or calculated for any wavelength, which is
important when using synchrotron radiation.10 The anomalous scattering is usually
at least an order of magnitude lower than normal scattering. Generally, the mag-
nitude of the anomalous scattering factors is proportional to the wavelength, and
inversely proportional to the number of electrons in an atom. Anomalous scattering
becomes strong, and is at its maximum when the wavelength is near the correspond-
ing absorption edge of an atom, as shown in Fig. 9.5. This effect may be used to
discriminate atoms that have similar conventional scattering factors (e.g., Cu and
Zn), which is most easily done using synchrotron radiation where the wavelength
can be tuned at will.
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Fig. 9.5 Anomalous scattering factors, Δ f ′ and Δ f ′′, of Fe and Gd as functions of wavelength
(bottom scale) and photon energy (upper scale). Compare this figure with Fig. 8.20. Numerical
data used to produce the plots have been generated using a web-based interface at the Lawrence
Livermore National Laboratory.11

10 The most precise values are obtained from experimental measurements. When one of the two
anomalous scattering coefficients is measured, the second can be relatively precisely calculated
using Kramers–Kronig equation. More details about the anomalous scattering can be found in a
special literature, e.g., see J. Als-Nielsen and D. McMorrow, Elements of modern X-ray physics,
John Wiley & Sons, Ltd., New York (2001).
11 http://physci.llnl.gov/Research/scattering/elastic.html. The interface has been created by
Lynn Kissel.
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9.1.4 Phase Angle

The structure amplitude, expressed earlier as a sum of exponents, can be also repre-
sented in a different format. Thus, by applying Euler’s12 formula:

eix = cosx+ isinx (9.16)

Equation (9.3) becomes

Fhkl =
n

∑
j=1

gjt j(s) f j(s)cos[2π(hxj + kyj + lzj)]

+ i
n

∑
j=1

gjt j(s) f j(s)sin[2π(hxj + kyj + lzj)]
(9.17)

The sums of cosines and sines in (9.17) signify the real (A) and imaginary (B)
components of a complex number, respectively, which the structure amplitude indeed
is. Hence, considering the notations introduced in (9.1), (9.17) can be rewritten as:

F(h) = A(h)+ iB(h) (9.18)

Complex numbers can be represented as vectors in two dimensions with two mu-
tually perpendicular axes: real and imaginary. Accordingly, the complex structure
amplitude (9.18) may be imagined as a vector F and its real and imaginary com-
ponents are the projections of this vector on the real and imaginary axes, respec-
tively, as shown in Fig. 9.6, left. From simple geometry, the following relationships
are true:
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α(h)=0

Fig. 9.6 The structure amplitude, F(h), shown as a vector representing a complex number with
its real, A(h), and imaginary, B(h), components as projections on the real and imaginary axes, re-
spectively, in the noncentrosymmetric (left) and centrosymmetric (right) structures. The imaginary
component on the left is shifted from the origin of coordinates for clarity.

12 Leonhard Euler (1707–1783) the Swiss mathematician and physicist who made significant con-
tributions to calculus, number theory, mechanics, optics, and astronomy. A brief biography is avail-
able on WikipediA http://en.wikipedia.org/wiki/Leonhard Euler.
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|F(h)|2 = |A(h)|2 + |B(h)|2 = [|A(h)|+ i |B(h)|] [|A(h)|− i |B(h)|]
and

α(h) = arctan
(
|B(h)|
|A(h)|

) (9.19)

where |F(h)|, |A(h)| and |B(h)| are the lengths of the corresponding vectors (or their
absolute values), and α(h) is the angle that vector F(h) makes with the positive di-
rection of the real axis, also known as the phase angle (or the phase) of the structure
amplitude. It is worth noting that since A(h) and B(h) are mutually perpendicular,
the phase shift between the imaginary and real components of the structure ampli-
tude is always ±π/2.

As a result, the structure amplitude can be represented by its magnitude, |F(h)|,
and phase angle, α(h), which varies between 0 and 2π. When the crystal structure
is centrosymmetric (i.e., when it contains the center of inversion), each atom with
coordinates (x, y, z) has a symmetrically equivalent atom with coordinates (−x, −y,
−z). Thus, considering that cos(−γ) = cos(γ) and sin(−γ) =−sin(γ) and assuming
that all atoms scatter normally, (9.17) can be simplified to:

Fhkl =
n

∑
j=1

gjt j(s) f j
0(s)cos[2π(hxj + kyj + lzj)] (9.20)

where all sine terms are nullified. The structure amplitude, therefore, becomes a
real number, and it can be represented as a vector parallel to the real axis. When
the phase angle is 0, F(h) has a positive direction (see Fig. 9.6, right); when the
phase angle is π, F(h) has the opposite (negative) direction. In other words, in the
presence of the center of inversion and in the absence of the anomalously scattering
atoms, the structure amplitude becomes a real quantity with a positive sign when
α(h) = 0 and with a negative sign when α(h) = π because its imaginary component
is always zero.

When the anomalous scattering is present, the structure amplitude even for a cen-
trosymmetric crystal becomes a complex number. This is shown in (9.21) and (9.22).
The first (general expression) is easily derived by combining (9.15) and (9.17) and
rearranging it to group both the real and imaginary components.

Fhkl =

⎛
⎜⎜⎜⎜⎝

n

∑
j=1

gjt j(s){ f j
0(s)+Δ f j′}cos[2π(hxj + kyj + lzj)]

−
n

∑
j=1

gjt j(s)Δ f j′′ sin[2π(hxj + kyj + lzj)]

⎞
⎟⎟⎟⎟⎠

+ i

⎛
⎜⎜⎜⎜⎝

n

∑
j=1

gjt j(s){ f j
0(s)+Δ f j′}sin[2π(hxj + kyj + lzj)]

+
n

∑
j=1

gjt j(s)Δ f j′′ cos[2π(hxj + kyj + lzj)]

⎞
⎟⎟⎟⎟⎠

(9.21)
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The introduction of the center of inversion results in the cancellation of all sine
terms in (9.21) and

Fhkl =
n

∑
j=1

gjt j(s){ f j
0(s)+Δ f j′}cos[2π(hxj + kyj + lzj)]

+ i
n

∑
j=1

gjt j(s)Δ f j′′ cos[2π(hxj + kyj + lzj)]
(9.22)

Recalling that usually Δ f j′′ << f j
0 + Δ f j′, the absolute value of the imaginary

component in (9.21) is smaller than that of the real part, and phase angles remain
close to 0 or π in any centrosymmetric structure. In the noncentrosymmetric cases
(9.21) the phase angles may adopt any value between 0 and 2π.

Concluding this section, it is worth noting that the measured integrated intensity
(8.41) is proportional to the square of the structure amplitude. Thus, the relative ab-
solute value of the structure amplitude is an easily measurable quantity – it can be
obtained as a square root of intensity after dividing the latter by all known geomet-
rical factors. The phase angle (or the sign in case of normally scattering centrosym-
metric structures), however, remains unknown. In other words, phases are lost and
cannot be determined directly from either a powder or a single crystal diffraction
experiment. This creates the so called “phase problem” in diffraction analysis, and
its significance is discussed in Sect. 10.2.

9.2 Effects of Symmetry on the Structure Amplitude

Considering the most general expression of the structure amplitude, (9.21), its value
is defined by population and displacement parameters of all atoms present in the
unit cell, their scattering ability, and coordinates. We know that coordinates and
other parameters of atoms in the unit cell are related by symmetry. As was shown in
Chap. 4 ((4.20) and (4.29)), the coordinates of two symmetrically equivalent atoms
(x and x′) are related as

x′= A ·x (9.23)

where x = (x,y,z,1), x′ = (x′,y′,z′,1), and A is an augmented matrix representing
a symmetry operation. By expanding (9.23), substituting the result to express the
identical arguments of sine and cosine parts in (9.21) and regrouping it as shown
in (9.24):

2πh ·x′ = 2π
[

x(hr11 + kr21 + lr31)+ y(hr12 + kr22 + lr32)
+z(hr13 + kr23 + lr33)+(ht1 + kt2 + lt3)

]
(9.24)

it is easy to see that the symmetry of the direct space (crystal structure) is carried
over into the reciprocal space by modifying structure amplitudes. Thus, the con-
tribution of two symmetrically equivalent atoms x and x′ into the corresponding
reciprocal lattice points, h and h′, may be expressed as:

h′ = AT·h (9.25)
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where h and h′ are augmented reciprocal lattice vectors, and AT is obtained from A
by transposing the rotational part of the augmented matrix:

A =

⎛
⎜⎜⎝

r11 r12 r13 tt
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

⎞
⎟⎟⎠andAT =

⎛
⎜⎜⎝

r11 r21 r31 t1
r12 r22 r32 t2
r13 r23 r33 t3
0 0 0 1

⎞
⎟⎟⎠ (9.26)

As a result of symmetry transformation ((9.25) and (9.26)), the magnitude of
structure amplitude does not change,13 and therefore, intensities scattered by sym-
metrically equivalent reciprocal lattice points preserve point-group symmetry of the
crystal.14 However, phase angles conserve point-group symmetry only in groups
with no other than Bravais lattice translations (the so-called symmorphic groups).
For nonsymmorphic groups, phase angles of symmetrically related structure factors
are dependent on a translational part of the symmetry operation, as shown in (9.27).

α(ATh) = α(h) − 2πh · t (9.27)

We note that in noncentrosymmetric structures, transformations by the center of
inversion (which is absent in the structure but is always present in the diffraction
pattern) may affect both the amplitude and phase angle (see Sect. 9.2.1).

9.2.1 Friedel Pairs and Friedel’s Law

We begin with considering the relationships between the structure amplitudes of
two centrosymmetric reciprocal lattice points: (hkl) and (h̄k̄l̄), the so-called Friedel
or Bijvoet) pair15. The analysis is relatively simple and is based on the known rela-
tionships between the three trigonometric functions:

cos(−x) = cos(x), but
sin(−x) = −sin(x)and tan(−x) = − tan(x)

(9.28)

13 J. Waser, Symmetry relations between structure factors. Acta Cryst. 8, 595 (1955);
14 Chapter 1.4 Symmetry in reciprocal space, by U. Shmueli in: International Tables for Crystal-
lography, Volume B, Reciprocal Space, Second edition, U. Shmueli, Ed., Published for the Inter-
national Union of Crystallography by Kluwer Academic Publishers, (2001).
15 Georges Friedel (1865–1933), the French mineralogist and crystallographer who in 1913 for-
mulated what is known today as Friedel’s law, see (9.29. G. Friedel, Sur les symétries cristallines
que peut révéler la diffraction des rayons X, C.R. Acad. Sci. Paris 157, 1533 (1913); also see
IUCr online dictionary of crystallography: http://reference.iucr.org/dictionary/Friedel%27s law
and WikipediA: http://en.wikipedia.org/wiki/Georges Friedel. Johannes Martin Bijvoet (1892–
1980) the Dutch chemist who developed a technique of establishing the absolute config-
uration of optically active molecules. J.M. Bijvoet, A.F. Peerdeman, and A.J. van Bom-
mel, Determination of the absolute configuration of optically active compounds by means of
X-rays, Nature (London) 168, 271 (1951). A brief biography is available on WikipediA at
http://en.wikipedia.org/wiki/Johannes Martin Bijvoet.
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Regardless of whether the crystal structure is centrosymmetric or not, in the
absence of the anomalous scattering, it directly follows from (9.17)–(9.19) and
(9.28) that

A(h) = A ¯(h)

B(h) = −B ¯(h)

α(h) = −α ¯(h)

|F(h)| =
√
|A(h)|2 + |B(h)|2 =

√
|A(h)|2 + |B ¯(h)|2 = |F ¯(h)|

I(h) ∝ |F(h)|2 ⇒ I(h) = I ¯(h) (9.29)

Equation (9.29) represents the algebraic formulation of the Friedel’s law, which
states that the absolute values of structure amplitudes and intensities are identical,
but the phase angles have opposite signs for Bragg reflections related to one an-
other by the center of inversion. In another formulation, it states that the reciprocal
space is always centrosymmetric in the absence of the anomalous scattering because
|F(h)| = |F(h̄)|. Friedel’s law is illustrated in Fig. 9.7 (left).

On the contrary, when the anomalous scattering is substantial, then considering
(9.21) instead of (9.17), both the real and imaginary components of the structure
amplitude are modified as follows:

A(h) = A(h)−δA′′(h)

A ¯(h) = A(h)+δA′′(h)

B(h) = B(h)+δB′′(h)

B ¯(h) = −B(h)+δB′′(h)

(9.30)
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Fig. 9.7 The relationships between different components of the structure amplitude in a Friedel
pair when all atoms scatter normally (left) and when there are anomalously scattering atoms in the
crystal structure (right).
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In (9.30), the factors A and B represent, respectively, the real and imaginary
parts of the structure amplitude which are independent of the anomalous scattering,
and δA′′ and δB′′ appear due to the effect introduced by the presence of the com-
plex component of the anomalous scattering, Δ f ′′, and are equal to Δ f ′′ sin(2πhx)
and Δ f ′′ cos(2πhx), respectively. The combined effect of δA′′ and δB′′ results in
the modification of the corresponding structure amplitude vectors by δF(h)′′ and
δF(h̄)′′. This breaks all equalities in (9.29), and is illustrated in Fig. 9.7 (right).
Thus, Friedel’s law is violated in noncentrosymmetric crystal structures containing
anomalously scattering species.

When the crystal structure is centrosymmetric (9.22), Friedel’s law (9.29) be-
comes fully valid even in the presence of the anomalously scattering atoms. This
statement is easy to verify and we leave this exercise to the reader.

9.2.2 Friedel’s Law and Multiplicity Factor

Earlier, we considered the effect of lattice symmetry on the multiplicity factors in
powder diffraction only in terms of the number of completely overlapping equiva-
lent Bragg peaks (Sect. 8.6.3). Because Friedel’s law is violated in noncentrosym-
metric structures in the presence of anomalously scattering chemical elements, the
evaluation of multiplicity factors should also include (9.29) and (9.30). Thus, the
multiplicity factor, phkl , may be comprehensively defined as the number of equiv-
alent reflections (hkl), which satisfy (9.29) in addition to having identical lengths
of the reciprocal lattice vectors calculated using (8.10) (or its equivalent for higher
symmetry crystal systems).

Considering an orthorhombic crystal system, the equivalency relationships estab-
lished earlier (Sect. 8.6.3) also satisfy (9.29) that is, |F(hkl)|= |F(h̄kl)|= |F(hk̄l)|=
|F(hkl̄)| = |F(h̄kl̄)| = |F(h̄kl̄)| = |F(h̄k̄l̄)| = |F(hk̄l̄)| when space-group symmetry
contains a center of inversion or when there are no anomalously scattering atoms
in the unit cell. The multiplicity factor in this case is p = 8 for all (hkl) reflections
where none of the indices are 0. When the center of inversion is absent and when
the anomalous scattering is considerable, the situation is different. For example, in
the space group P222, the following two sets of structure amplitudes remain identi-
cal: |F(hkl)| = |F(hk̄l̄)| = |F(h̄kl̄)| = |F(h̄k̄l)| and |F(h̄k̄l̄)| = |F(hkl̄)| = |F(hk̄l)| =
|F(h̄kl)| but each set of four is different, and the multiplicity factor is reduced to
p = 4 for each of the two groups of points in the reciprocal lattice.

9.3 Systematic Absences

As noted in the beginning of this section, crystallographic symmetry has an effect on
the structure amplitude, and therefore, it affects the intensities of Bragg peaks. The
presence of translational symmetry causes certain combinations of Miller indices to
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become extinct because symmetrical contributions into (9.24) result in the cancella-
tion of relevant trigonometric factors in (9.21). It is also said that some combinations
of indices are forbidden due to the occurrence of translational symmetry.

9.3.1 Lattice Centering

Consider a body-centered lattice, in which every atom has a symmetrically equiv-
alent atom shifted by (1/2,1/2,1/2). The two matrices A (9.23) for every pair of the
symmetrically identical atoms are:

A1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠and A2 =

⎛
⎜⎜⎝

1 0 0 1/2
0 1 0 1/2
0 0 1 1/2
0 0 0 1

⎞
⎟⎟⎠ (9.31)

The corresponding arguments defined in (9.24) become as follows:

2π(h ·x)1 = 2π(hx+ ky+ lz)
2π(h ·x)2 = 2π(hx+ ky+ lz)+π(h+ k + l)

(9.32)

When these arguments are substituted into the most general equation (9.21) and
the summation is carried over every pair of the symmetrically equivalent atoms, the
resulting sums of the corresponding trigonometric factors are:

cos[2π(hx+ ky+ lz)]+ cos[2π(hx+ ky+ lz)+π(h+ k + l)] = 0
sin[2π(hx+ ky+ lz)]+ sin[2π(hx+ ky+ lz)+π(h+ k + l)] = 0

(9.33)

when h+ k + l = ±1,±3,±5, . . . = 2n+1; and

cos[2π(hx+ ky+ lz)]+ cos[2π(hx+ ky+ lz)+π(h+ k + l)] = 2cos[2π(hx+ ky+ lz)]

sin[2π(hx+ ky+ lz)]+ sin[2π(hx+ ky+ lx)+π(h+ k + l)] = 2sin[2π(hx+ ky+ lz)]
(9.34)

when h+ k + l = 0,±2,±4, . . . = 2n, where n is an integer.
All prefactors in (9.21) (i.e., g, t, f0, Δ f ′, and Δ f ′′) are identical for the pairs of

the symmetrically equivalent atoms. Hence, Bragg reflections in which the sums of
all Miller indices are odd should have zero-structure amplitude, and zero intensity in
any body-centered crystal structure. In other words, they become extinct or absent,
and therefore, could not be observed, or are forbidden by symmetry.

This property, which is introduced by the presence of a translational symmetry,
is called the systematic absence (or the systematic extinction). Therefore, in a body-
centered lattice, only Bragg reflections in which the sums of all Miller indices are
even (i.e., h+ k + l = 2n and n = ±1,±2,±3, . . .) may have nonzero intensity and
be observed. It is worth noting that some (but not all) of the Bragg reflections with
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Table 9.1 Systematic absences caused by different Bravais lattices.

Bravais lattice Allowed reflections Extinct (forbidden) reflections

P All None
I h+ k + l = 2n h+ k + l = 2n+1
F h+ k = 2n and k + l = 2n

and h+ l = 2na
h+ k = 2n+1 or k + l = 2n+1
or h+ l = 2n+1

A k + l = 2n k + l = 2n+1
B h+ l = 2n h+ l = 2n+1
C h+ k = 2n h+ k = 2n+1
Rb −h+ k + l = 3n (hexagonal basis) −h+ k + l = 3n+1 and 3n+2
Rc h− k + l = 3n (hexagonal basis) h− k + l = 3n+1 and 3n+2
aAlternative definition: all indices even (h = 2n and k = 2n and l = 2n) or all odd (h = 2n+1 and
k = 2n+1 and l = 2n+1).
bStandard setting.
cReverse setting.

h+k+ l = 2n may become extinct because their intensities are too low to be detected
due to other reasons, e.g., a specific distribution of atoms in the unit cell, which is
not predetermined by symmetry.

Similar analyses may be easily performed for other types of Bravais lattices, and
the resulting relationships between Miller indices are assembled in Table 9.1. As
a self-exercise, try to derive the relationships between Miller indices of forbidden
Bragg peaks for three different types of the base-centered lattices: A, B, and C.

9.3.2 Glide Planes

We now consider a glide plane, n, perpendicular to the Y -axis. In the simplest case
(i.e., when the plane also intersects the origin of coordinates), the equivalents of
(9.31)–(9.34) become:

A1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠and A2 =

⎛
⎜⎜⎝

1 0 0 1/2
0 −1 0 0
0 0 1 1/2
0 0 0 1

⎞
⎟⎟⎠ (9.35)

2π(h ·x)1 = 2π(hx+ ky+ lz)
2π(h ·x)2 = 2π(hx− ky+ lz)+π(h+ l)

(9.36)

cos[2π(hx+0y+ lz)]+ cos[2π(hx−0y+ lz)+π(h+ l)] = 0
sin[2π(hx+0y+ lz)]+ sin[2π(hx−0y+ lz)+π(h+ l)] = 0

(9.37)

when h+ l = ±1, ±3, ±5, . . . = 2n + 1 and k = 0, while
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Table 9.2 Combinations of indices which are allowed by various glide planes.

Glide plane Orientationa Reflection type Allowed reflectionsb

a (010) h0l h = 2n
(001) hk0 h = 2n
(110) hhl h = 2n

b (100) 0kl k = 2n
(001) hk0 k = 2n

c (100) 0kl l = 2n
(010) h0l l = 2n
(110) hhl l = 2n
(110) hh̄l l = 2n

d (100) 0kl k + l = 4n (k, l = 2n)
(010) h0l h+ l = 4n (h, l = 2n)
(001) hk0 h+ k = 4n (h,k = 2n)
(110) hhl 2h+ l = 4n (l = 2n)

n (100) 0kl k + l = 2n
(010) h0l h+ l = 2n
(001) hk0 h+ k = 2n
(110) hhl l = 2n

a The orientations are given as the crystallographic indices of the corresponding plane.
b All other reflections are forbidden.

cos[2π(hx+0y+ lz)]+ cos[2π(hx−0y+ lz)+π(h+ l)] = 2cos[2π(hx+ lz)]
sin[2π(hx+0y+ lz)]+ sin[2π(hx−0y+ lz)+π(h+ l)] = 2sin[2π(hx+ lz)]

(9.38)
when h+ l = 0, ±2, ±4, . . . = 2n and k = 0. Note that (9.37) and (9.38) cannot be
simplified when k �= 0.

Hence, Bragg peaks (h0l) in which the sum of h and l is odd should have zero-
structure amplitude and zero intensity due to the presence of the glide plane n in this
orientation. Only Bragg peaks in which the sum of these Miller indices is even (i.e.,
h+ l = 2n) may have nonzero intensity and be observed. We note that the presence
of this glide plane only affects Bragg peaks with k = 0 because of the change of the
sign of ky in (9.36). Again, some (but not all) reflections h0l with h+ l = 2n may be
absent due to peculiarities of a crystal structure, not associated with the presence of
the glide plane n, but no peaks with h+ l = 2n+1 can be observed.

Similar analyses may be performed for other types of glide planes in different ori-
entations, and not necessarily traversing the origin of coordinates (as an exercise try
to derive the relationships between Miller indices of the systematically absent Bragg
peaks for a glide plane, a, perpendicular to Y and Z directions). The relationships
between allowed-Miller indices for various glide planes in different orientations are
shown in Table 9.2.

9.3.3 Screw Axes

Consider a screw axis, 21, parallel to the Y -axis. The equivalents of (9.31)–(9.34)
when the axis passes through the origin of coordinates are as follows:
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A1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ and A2 =

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 1/2
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ (9.39)

2π(h ·x)1 = 2π(hx+ ky+ lz)
2π(h ·x)2 = 2π(−hx+ ky− lz)+πk

(9.40)

cos[2π(0x+ ky+0z)]+ cos[2π(−0x+ ky−0z)+πk] = 0
sin[2π(0x+ ky+0z)]+ sin[2π(−0x+ ky−0z)+πk] = 0

(9.41)

when k = ±1, ±3, ±5, . . . = 2n + 1, h = 0 and l = 0; while

cos[2π(0x+ ky+0z)]+ cos[2π(−0x+ ky−0z)+πk] = 2cos[2πky]
sin[2π(0x+ ky+0z)]+ sin[2π(−0x+ ky−0z)+πk] = 2sin[2πky]

(9.42)

when k = 0, ±2, ±4, . . . = 2n, h = 0 and l = 0. Similar to (9.37) and (9.38), (9.41)
and (9.42) cannot be simplified as shown, when either h �= 0 or/and l �= 0.

Hence, Bragg peaks (0k0), in which k is odd, should have zero-structure ampli-
tude and zero intensity due to the presence of the 21 axis in this orientation. Only
Bragg peaks in which k is even may have nonzero intensity and be observed. Similar
to glide planes, the presence of screw axes only affects Bragg peaks with two Miller
indices equal to 0 because of the change of the sign of two terms in (9.40) (hx and
lz in this example).

Corresponding analysis may be performed for other types of screw axes in dif-
ferent orientations. As an exercise, try to derive the relationships between Miller
indices of the systematically absent Bragg peaks for a 41 screw axis parallel to the
Z direction. Again, the result remains identical, whether the axis intersects the ori-
gin of coordinates or not. The relationships between Miller indices of Bragg peaks
allowed by various screw axes in different orientations are shown in Table 9.3.

Table 9.3 Combinations of indices, which are allowed by various screw axes.

Screw axis Orientationa Reflection type Allowed reflectionsb

21, 42 [100] h00 h = 2n
[010] 0k0 k = 2n

21, 42, 63 [001] 00l l = 2n
21 [110] hh0 h = 2n
41, 43 [100] h00 h = 4n

[010] 0k0 k = 4n
[001] 00l l = 4n

31, 32, 62, 64 [001] 00l l = 3n
31, 32 [111] hhh h = 3n
61, 65 [001] 00l l = 6n

a The orientations are given as the crystallographic directions.
b All other reflections are forbidden.
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9.4 Space Groups and Systematic Absences

As shown in Sect. 9.3, the presence of translational symmetry causes extinctions of
certain types of reflections. This property of infinite symmetry elements finds use
in the determination of possible space-group(s) symmetry from diffraction data by
analyzing Miller indices of the observed Bragg peaks. It is worth noting that only in-
finite symmetry elements cause systematic absences, and therefore, may be detected
from this analysis. Finite symmetry elements, such as simple rotation and inversion
axes, mirror plane, and center of inversion, produce no systematic absences and
therefore, are not distinguishable using this approach.

As is often the case in diffraction analysis, when the space-group symmetry is
known, it is quite easy to predict which types of reflections can, and which cannot be
observed directly from the space-group symbol. For example, when the space-group
symmetry is Pnma, only the following types of Bragg peaks may have nonzero
intensity (as established by analyzing Tables 9.1, 9.2 and 9.3):

hkl: any (primitive Bravais lattice)
hk0: h = 2n (glide plane a ⊥Z)
h0l: any (mirror plane m ⊥Y )
0kl: k + l = 2n (glide plane n ⊥X)
h00: h = 2n (derived from hk0: h = 2n because k = 0)
0k0: k = 2n (derived from 0kl : k + l = 2n because l = 0)
00l: l = 2n (derived from 0kl : k + l = 2n because k = 0)

When the space-group symmetry is unknown, that is, when reflection conditions
are analyzed from diffraction data, the answer may not be unique. For example,
the combination of systematic absences listed here also corresponds to a different
space-group symmetry, Pn21a (as an exercise, please verify that this space-group
symmetry produces exactly the same combination of the allowed Miller indices of
Bragg reflections) and therefore, the two space groups are unrecognizable from a
simple analysis of the present Bragg peaks.

All space groups that produce identical combinations of systematic absences are
combined into the so-called diffraction groups. For example, space groups P31c and
P3̄1c, result in the same allowed reflection conditions: l = 2n for both 0kl and 00l
type reflections. They belong to the trigonal diffraction group P--c. The three hexag-
onal space-groups symmetry – P6̄2c, P63mc and P63/mmc – also belong to the P--c
diffraction group, but the crystal system is hexagonal. When powder diffraction data
are used to analyze systematic absences, these two diffraction groups cannot be dis-
tinguished from one another, which occurs due to the same symmetry of shapes of
both the trigonal and hexagonal unit cells. The two are discernible using diffraction
data from a single crystal, where the threefold rotation axis is different from the six-
fold rotation axis. In powder diffraction, however, Bragg reflections with different
intensity in the trigonal crystal system, such as hkl and khl, are exactly overlapped
and, therefore, cannot be distinguished from each other.

Nonetheless, analysis of the systematic absences (the complete list is found in
Tables 9.5–9.10) usually allows one to narrow the choice of space-group symmetry
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Table 9.4 Analysis of the observed combinations of indices in the monoclinic base-centered unit
cell (E – even, O – odd). The observed Bragg reflections h0l, in which l = 2n are highlighted in
bold (zero is considered an even number).

h k l 2θcalc 2θobs Iobs h+ k l h k
for all hkl for h0l, 00l for h0l, h00 for 0k0

0 0 1 9.227 Unobserved E O E
1 1 0 13.415 13.425 1,000 E
1 1 −1 14.672 14.675 259 E
1 1 1 17.838 17.838 93 E
0 2 0 18.168 18.172 112 E E
0 0 2 18.574 18.573 30 E E E
2 0 −1 19.466 Unobserved E O E
2 0 0 19.876 19.869 104 E E E
0 2 1 20.433 20.428 352 E
1 1 −2 20.619 20.622 86 E
2 0 −2 23.203 23.197 86 E E E
2 0 1 24.233 Unobserved E O E
1 1 2 25.179 25.186 4 E
0 2 2 26.121 26.111 15 E
2 2 −1 26.774 26.771 36 E
2 2 0 27.079 27.074 112 E
0 0 3 28.049 Unobserved E O E
1 1 −3 28.560 28.559 65 E
1 3 0 29.234 29.237 37 E
2 0 −3 29.632 Unobserved E O E
2 2 −2 29.652 Unobserved E E E
1 3 −1 29.854 29.853 35 E
3 1 −1 30.306 30.321 38 E
2 2 1 30.480 30.507 6 E
2 0 2 31.001 30.997 77 E E E
3 1 0 31.441 31.422 24 E
1 3 1 31.591 31.576 27 E

to just a few possibilities, and the actual symmetry of the material is usually
established in the process of the complete determination of its crystal structure.
Especially when powder diffraction data are used, it only makes sense to analyze
low-angle Bragg peaks to minimize potential influence of the nearly completely
overlapped reflections with indices not related by symmetry. An example of the
space-group determination is shown in Table 9.4.

This powder diffraction pattern was indexed in the monoclinic crystal system
with a = 9.264 Å, b = 9.728 Å, c = 9.905 Å, β= 106.08◦. All observed Bragg peaks
have even sums h + k, which clearly points to a base-centered lattice C. The first
four columns in Table 9.4 contain Miller indices and Bragg angles 2θ, calculated
assuming base-centered lattice C without applying any other conditions, that is, as
in the space group C2/m. The next two columns list Bragg angles and integrated
intensities of the observed peaks that correspond to the calculated Bragg angles.
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As follows from Table 9.4, there are only two possible diffraction groups for the
monoclinic C-centered lattice. The second diffraction group, C1c1, differs from the
first one, C1–1, by the presence of h0l reflections only with even l. As is easy to see
from Table 9.4, none of the Bragg peaks h0l with l = 2n+1 is observed, or in other
words, the allowed reflections condition is l = 2n for h0l (these are shown in bold).
Other conditions are derived from the C-centering of the lattice. Thus, the following
two space-groups symmetry are possible for the material: C1c1 and C12/c1. The
latter group was confirmed during structure determination.

In general, the determination of the space-group symmetry or the list of possible
space groups using Tables 9.5–9.10 should be performed as follows:

– Based on the symmetry of the unit cell shape, the proper table (crystal system)
must be selected. Only in one case, that is, when the unit cell is primitive with
a = b �= c, α= β= 90◦ and γ= 120◦, both trigonal and hexagonal crystal systems
should be analyzed.

– All reflections should be first checked for general systematic absences (condi-
tions) caused by lattice centering, which are shown in the first column in each
table. This should narrow the list of possible space groups.

– Subsequently, move to the next column in the corresponding table. Identify re-
flections that belong to a specified combination of Miller indices listed in the col-
umn header, and analyze whether the extinction conditions are met. This should
further narrow the list of possible space groups.

– The last step should be repeated for all columns under the general header “Reflec-
tion conditions.” When finished, the list should be narrowed to a single line, that
is, the corresponding diffraction group should be found for the known symmetry
of the unit cell shape.

Table 9.5 Reflection conditions for the monoclinic crystal system (Laue class 2/m, unique axis b).

Reflection conditions Diffraction Point group, space groups

hkl, h0l, symbol

0kl, h00,
0k0 2 m 2/ m

hk0 00l

P1-1 P1213 P1m16 P12/m110

k P1211 P12114 P121 / m111

h P1a1 P1a17 P12/a113

h k P121/a1 P121 / a114

l P1c1 P1c17 P12/c113

l k P121/c1 P121/c114

h+ l P1n1 P1n17 P12/n113

h+ l k P121/n1 P121/n114

C h k C1-1 C1215 C1m18 C12/m112

C h,l k C1c1 C1c19 C12/c115

A l k A1-1 A1215 A1m18 A12/m112

A h,l k A1n1 A1n19 A12/n115

I h+ l k I1-1 I1215 I1m18 I12/m112

I h,l k I1a1 I1a19 I12/a115
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Table 9.6 Reflection conditions for the orthorhombic crystal system (Laue class mmm).

Reflection conditions Diffraction Point group, space groups

hkl 0kl h0l hk0 h00 0k0 00l symbol 222 mm2 mmm
m2m
2mm

P--- P22216 Pmm225 Pmmm47

Pm2m25

P2mm25

l P--21 P22217
1

k P-21- P221217

k l P-2121 P221218
1

h P21-- P212217

h l P21-21 P212218
1

h k P2121- P2121218

P2121219
1

h k l P212121
h h P--a Pm2a28

P21ma26 Pmma51

k k P--b Pm21b26

P2mb28 Pmmb51

h+k h k P--n Pm21n31

P21mn31 Pmmn59

h h P-a- Pma228 Pmam51

P21am26

h h h P-aa P2aa27 Pmaa49

h k h k P-ab P21ab29 Pmab57

h h+k h k P-an P2an30 Pman53

l l P-c- Pmc226
1

P2cm28 Pmcm51

l h h l P-ca P21ca29 Pmca57

l k k l P-cb P2cb32 Pmcb55

l h+k h k l P-cn P21cn33 Pmcn62

h+ l h l P-n- Pmn231
1

P21nm31 Pmnm59

h+ l h h l P-na P2na30 Pmna53

h+ l k h k l P-nb P21nb33 Pmnb62

h+ l h+k h k l P-nn P2nn34 Pmnn58

k k Pb-- Pbm228

Pb21m26 Pbmm51

k h h k Pb-a Pb21a29 Pnma57

k k k Pb-b Pb2b27 Pbmb49

k h+k h k Pb-n Pb2n30 Pbmn53

k h h k Pba- Pba232 Pbam55

k h h h k Pbaa Pbaa54

k h k h k Pbab Pbab54

k h h+k h k Pban Pban50

k l k l Pbc- Pbc229
1 Pbcm57

k l h h k l Pbca Pbca61

k l k k l Pbcb Pbcb54

k l h+k h k l Pbcn Pbcn60

(Continued)
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Table 9.6 (Continued)

Reflection conditions Diffraction Point group, space groups

hkl 0kl h0l hk0 h00 0k0 00l symbol 222 mm2 mmm
m2m
2mm

k h+ l h k l Pbn- Pbn233
1 Pbnm62

k h+ l h h k l Pbna Pbna60

k h+ l k h k l Pbnb Pbnb56

k h+ l h+k h k l Pbnn Pbnn52

l l Pc-- Pcm226
1

Pc2m28 Pcmm51

l h h l Pc-a Pc2a32 Pcma55

l k k l Pc-b Pc21b29 Pcmb57

l h+k h k l Pc-n Pc21n33 Pcmn62

l h h l Pca- Pca229
1 Pcam57

l h h h l Pcaa Pcaa54

l h k h k l Pcab Pcab61

l h h+k h k l Pcan Pcan60

l l l Pcc- Pcc227 Pccm49

l l h h l Pcca Pcca54

l l k k l Pccb Pccb54

l l h+k h k l Pccn Pccn56

l h+ l h l Pcn- Pcn230 Pcnm53

l h+ l h h l Pcna Pcna50

l h+ l k h k l Pcnb Pcnb60

l h+ l h+k h k l Pcnn Pcnn52

k + l k l Pn-- Pnm231
1 Pnmm59

Pn21m31

k + l h h k l Pn-a Pn21a33 Pnma62

k + l k k l Pn-b Pn2b30 Pnmb53

k + l h+k h k l Pn-n Pn2n34 Pnmn58

k + l h h k l Pna- Pna233
1 Pnam62

k + l h h h k l Pnaa Pnaa56

k + l h k h k l Pnab Pnab60

k + l h h+k h k l Pnan Pnan52

k + l l k l Pnc- Pnc230 Pncm53

k + l l h h k l Pnca Pnca60

k + l l k k l Pncb Pncb50

k + l l h+k h k l Pncn Pncn52

k + l h+ l h k l Pnn- Pnn234 Pnnm58

k + l h+ l h h k l Pnna Pnna52

k + l h+ l k h k l Pnnb Pnnb52

k + l h+ l h+k h k l Pnnn Pnnn48

C k h h+k h k C--- C22221 Cmm235 Cmmm65

Cm2m38

C2mm38

C k h h+k h k l C--21 C22220
1

C k h h,k h k C--(ab) Cm2a39 Cmma67

C2mb39 Cmmb67

(Continued)
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Table 9.6 (Continued)

Reflection conditions Diffraction Point group, space groups

hkl 0kl h0l hk0 h00 0k0 00l symbol 222 mm2 mmm
m2m
2mm

C k h,l h+k h k l C-c- Cmc236
1 Cmcm63

C2cm40

C k h,l h,k h k l C-c(ab) C2cb41 Cmca64

C k,l h h+k h k l Cc-- Ccm236
1 Ccmm63

Cc2m40

C k,l h h,k h k l Cc-(ab) Cc2a41 Ccmb64

C k,l h,l h+k h k l Ccc- Ccc237 Cccm66

C k,l h,l h,k h k l Ccc(ab) Ccca68

Cccb68

B l h+ l h h l B--- B22221 Bmm238 Bmmm65

Bm2m35

B2mm38

B l h+ l h h k l B-21- B221220

B l h+ l h,k h k l B--b Bm21b36 Bmmb63

B2mb40

B l h,l h h l B-(ac)- Bma239 Bmcm67

B2cm39 Bmam67

B l h,l h,k h k l B-(ac)b B2cb41 Bmab64

B k,l h+ l h h k l Bb-- Bbm240 Bbmm63

Bb21m36

B k,l h+ l h,k h k l Bb-b Bb2b37 Bbmb66

B k,l h,l h h k l Bb(ac)- Bba241 Bbcm64

B k,l h,l h,k h k l Bb(ac)b Bbab68

Bbcb68

A k + l l k k l A--- A22221 Amm238 Ammm65

Am2m38

A2mm35

A k + l l k h k l A21-- A212220

A k + l l h,k h k l A--a Am2a40 Amma63

A21ma36

A k + l h,l k h k l A-a- Ama240 Amam63

A21am36

A k + l h,l h,k h k l A-aa A2aa37 Amaa66

A k,l l k k l A(bc)-- Abm239 Abmm67

Ac2m39 Acmm67

A k,l l h,k h k l A(bc)-a Ac2a41 Abma64

A k,l h,l k h k l A(bc)a- Aba241 Acam64

A k,l h,l h,k h k l A(bc)aa Abaa68

Acaa68

I k + l h+ l h+k h k l I--- I22223 Imm244 Immm71

Im2m44

I2121224
1 I2mm44

I k + l h+ l h,k h k l I--(ab) Im2a46 Imma74

I2mb46 Immb74

(Continued)
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Table 9.6 (Continued)

Reflection conditions Diffraction Point group, space groups

hkl 0kl h0l hk0 h00 0k0 00l symbol 222 mm2 mmm
m2m
2mm

I k + l h,l h+k h k l I-(ac)- Ima246 Imam74

I2mb46 Immb74

I k + l h,l h,k h k l I-cb I2cb45 Imcb72

I k,l h+ l h+k h k l I(bc)-- Ibm246 Ibmm74

I2mb46 Immb74

I k,l h+ l h,k h k l Ic-a Ic2a45 Icma72

I k,l h,l h+k h k l Iba- Iba245 Ibam72

I k,l h,l h,k h k l Ibca Ibca73

F k + l h+ l h+k h k l F--- F22222 Fmm242 Fmmm69

Fm2m42

F2mm42

F k,l b c hd
4 kd

4 ld
4 F-dd F2dd43

F a h,l c hd
4 kd

4 ld
4 Fd-d Fd2d43

F a b h,k hd
4 kd

4 ld
4 Fdd- Fdd243

F a b c hd
4 kd

4 ld
4 Fddd Fddd70

a k + l = 4n and k = 2n, l = 2n.
b h+ l = 4n and h = 2n, l = 2n.
c h+ k = 4n and h = 2n, k = 2n
d h4 : h = 4n; k4 : k = 4n; l4 : l = 4n.

Table 9.7 Reflection conditions for the trigonal crystal system. There are no space groups with a
unique set of reflection conditions.

Reflection
conditions

Diffraction
symbol

Laue class

hkl h0l hhl 00l 3̄ 3̄m1 3̄1m

Point group, space groups

3, 3̄ 321 3m1 3̄m1 312 31m 3̄1m

P---a P3143 P321150 P3m1156 P3̄m1164 P312149 P31m157 P3̄1m162

P3̄147

lc
3 P31--a P3144

1 P3121152 P3112151

P3145
2 P3221154 P3212153

l l P--ca P31c159 P3̄1c163

l l P-c-a P3c1158 P3̄c1165

R b lc
3 lc

3 R-- R3146 R32155 R3m160 R3̄m166

R3148

R b, l lc
3 lc

6 R-c R3c161 R3̄c167

a These diffraction groups have the same reflection conditions as the following hexagonal groups:
P---, P62--, P--c, and P-c-. Therefore, they are indistinguishable from systematic absences using
powder data.
b When R is –h+ k + l = 3n, then h+ l = 3n; when R is h− k + l = 3n, then –h+ l = 3n.
c l3: l = 3n; l6: l = 6n.
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Table 9.8 Reflection conditions for the hexagonal crystal system. There are no space groups with
a unique set of reflection conditions.

Reflection
conditions

Diffraction
symbol Laue class

6/m 6/mmm

Point group, space groups

hkl h0l hhl 00l 6, 6̄ 6/m 622, 6mm 6̄2m, 6̄m2 6/mmm

P---a P6168 P6/m175 P622177 P6̄2m189 P6/mmm191

P6̄174 P6mm183 P6̄m2187

l P63-- P6173
3 P63/m176 P6322182

lb
3 P62--a P6171

2 P6222180

P6172
4 P6422181

lb
6 P61-- P6169

1 P6122178

P6170
5 P6522179

l l P--ca P63mc186 P6̄2c190 P63/mmc194

l l P-c-a P63cm185 P6̄c2188 P63/mcm193

l l l P-cc P6cc184 P6/mcc192

a These diffraction groups have the same reflection conditions as the following trigonal groups:
P---, P31--, P--c, and P-c-. Therefore, they are indistinguishable from systematic absences using
powder data.
b l3: l = 3n; l6: l = 6n.

– In the case of monoclinic and orthorhombic crystal systems, it may be necessary
to transform the unit cell in order to achieve a standard setting of the space-group
symmetry. The space groups in standard settings are shown in the corresponding
tables in bold. Usually only a permutation of the coordinate axes is needed, but in
some cases in the monoclinic crystal system, such as I-centering or the presence
of the glide plane n, a more complex transformation of the unit cell vectors may
be required. If necessary, the International Tables for Crystallography (Vol. A)
should be used as a reference on how to perform a transformation of unit cell
vectors.

In Tables 9.5–9.10, reflection conditions as determined by the presence of trans-
lational symmetry are listed for all crystal systems, except triclinic. The latter has
no translational symmetry and therefore, the two possible space-groups symmetry,
P1̄ and P1̄, belong to the same diffraction class, P1̄. If a cell showing reflection con-
ditions is empty, there are no restrictions imposed on Miller indices, and any com-
bination of them is allowed. Unless noted otherwise, the corresponding symbol(s)
or expression(s) present in the cell indicate that the index or the combination is
even. Monoclinic and orthorhombic space groups in standard settings are shown in
bold; trigonal, hexagonal, tetragonal and cubic space groups are only shown in stan-
dard setting. Space groups with unique reflection conditions (i.e., those, which are
uniquely determined from the systematic absences) are shown in rectangles for a
standard setting. Superscripts indicate space-group number as listed in the Interna-
tional Tables for Crystallography, Vol. A. The following abbreviations are employed
to specify allowed combinations of indices due to lattice centering:
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Table 9.10 Reflection conditions for the cubic crystal system.

Reflection conditions Diffraction
symbol Laue class

hkl 0kl hhl 00l m3̄ m3̄m

Point group

23 m3̄ 432 43̄m m3̄m

P--- P23195 Pm3̄200 P432207 P43̄m215 Pm3̄m221

l P21
P42

P213198 P4232208

la
4 P41 P4132213

P4332212l l P--n P43̄n218 Pm3̄n223

b l Pa-- Pa3̄205

k + l l Pn-- Pn3̄201 Pn3̄m224

k + l l l Pn-n Pn3̄n222

I k + l l l I--- I23197

I213199
Im3̄204 I432211 I43̄m217 Im3̄m229

I k + l l la
4 I41-- I4132214

I k + l c, l la
4 I--d I43̄d220

I k,l l l Ia-- Ia3̄206

I k,l c, l la
4 Ia-d Ia3̄d230

F k,l h+ l l F--- F23196 Fm3̄202 F432209 F43̄m216 Fm3̄m225

F k,l h+ l la
4 F41-- F4132210

F k,l h,l l F--c F43̄c219 Fm3̄c226

F d,k,l h+ l la
4 Fd-- Fd3̄203 Fd3̄m227

F d, k,l h,l la
4 Fd-c Fd3̄c228

a l4: l = 4n.
b Conditions are for 0kl: k = 2n; for h0l: l = 2n; for hk0: h = 2n.
c 2h+ l = 4n.
d 2k + l = 4n.

A: k + l = 2n; B: h+ l = 2n; C: h+ k = 2n

I: h+ k + l = 2n

F: h+ k = 2nandh+ l = 2nandk + l = 2n

R: −h+ k + l = 3norh− k + l = 3n

9.5 Additional Reading

1. International Tables for Crystallography, vol. A, Fifth Revised Edition, Theo Hahn, Ed. (2002);
vol. B, Third Edition, U. Shmueli, Ed. (2008); vol. C, Third edition, E. Prince, Ed. (2004).
All volumes are published jointly with the International Union of Crystallography (IUCr) by
Springer. Complete set of the International Tables for Crystallography, Vol. A-G, H. Fuess,
T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, E. Prince, A. Authier, V. Kopský, D.B.
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Litvin, M.G. Rossmann, E. Arnold, S. Hall, and B. McMahon, Eds., is available online as
eReference at http://www.springeronline.com.

2. Modern powder diffraction. D.L Bish and J.E. Post, Eds. Reviews in Mineralogy, Vol. 20. Min-
eralogical Society of America, Washington, DC (1989).

3. R. Jenkins and R.L. Snyder, Introduction to X-ray powder diffractometry. Wiley, New York
(1996).

4. J. Als-Nielsen and D. McMorrow, Elements of modern X-ray physics, Wiley, New York, (2001).
5. W. Clegg, Synchrotron chemical crystallography. J. Chem. Soc., Dalton Trans. 19, 3223 (2000).

9.6 Problems

1. A student collected a powder diffraction pattern from an organometallic com-
pound on a standard powder diffractometer equipped with a sealed Cu Kα X-ray
tube. She noticed that scattered intensity decays rapidly and she could not see any
Bragg peaks beyond 2θ= 60◦. Her goal is to have reliable intensities at 90◦ or higher
of 2θ. She thinks for a minute and then calls the crystallography lab at her university
to schedule time on one of their units. The lab has three powder diffractometers, all
equipped with Cu Kα X-ray tubes: a rotating anode unit operating at ambient en-
vironment, and two sealed tube units, one with a cryogenic attachment (the lowest
temperature is 77 K), and another with a furnace (the highest temperature 1,100 K).
The student asked for time on which unit and why?

2. Consider Fig. 10.1 in Chap. 10, which shows powder diffraction patterns col-
lected from the same material (CeRhGe3) at room temperature (T ∼= 295K) using
X-rays and at T = 200 K using neutrons. Setting aside differences between intensi-
ties of individual Bragg peaks, the most obvious overall difference between the two
sets of diffraction data is that diffracted intensity is only slightly suppressed toward
high Bragg angles (sinθ/λ) in neutron diffraction, while it is considerably lower in
the case of X-ray data. Can you explain why?

3. Establish which combinations of indices are allowed and which are forbidden in
the space-group symmetry Cmc21. List symmetry elements that cause each group
of reflections to become extinct?

4. Powder diffraction pattern of a compound with unknown crystal structure was in-
dexed with the following unit cell parameters (shown approximately): a = 10.34 Å,
b = 6.02 Å, c = 4.70 Å, α = 90◦, β = 90◦ and γ = 90◦. The list of all Bragg peaks
observed from 15◦– 60◦ 2θ is shown in Table 9.11. Analyze systematic absences (if
any) present in this powder diffraction pattern, and suggest possible space-groups
symmetry for the material.

5. Powder diffraction pattern of a compound with an unknown crystal structure was
indexed with the following unit cell parameters: a = b = 4.07 Å, c = 16.3 Å, α= β=
90◦, γ = 120◦. The list of all Bragg peaks observed from 2◦ to 120◦ 2θ is shown in
Table 9.12. Analyze systematic absences (if any) present in this powder diffraction
pattern, and suggest possible space-groups symmetry for the material.
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Table 9.11 List of Bragg peaks with their intensities and indices observed in a powder diffraction
pattern of a material indexed in the following unit cell: a = 10.34 Å, b = 6.02 Å, c = 4.70 Å and
α = 90◦, β = 90◦ and γ = 90◦.

h k l I/I0 2θ◦ h k l I/I0 2θ◦

2 0 0 255 17.105 2 0 2 207 42.154
1 0 1 583 20.712 3 2 1 59 44.296
2 1 0 207 22.629 2 1 2 47 44.899
0 1 1 77 23.966 4 2 0 19 46.246
1 1 1 741 25.495 5 0 1 17 47.978
2 0 1 120 25.572 0 2 2 133 49.120
2 1 1 665 29.598 0 3 1 15 49.339
0 2 0 106 29.650 1 2 2 28 49.961
3 0 1 327 32.152 1 3 1 123 50.166
2 2 0 23 34.448 5 1 1 68 50.470
3 1 1 1,000 35.518 2 2 2 332 52.407
1 2 1 317 36.451 4 0 2 332 52.407
4 1 0 204 37.813 2 3 1 132 52.595
1 0 2 116 39.242 4 1 2 160 54.879
2 2 1 139 39.550 6 1 0 195 55.369
4 0 1 169 39.723 3 3 1 241 56.506
1 1 2 207 42.154 4 3 0 143 58.128

Table 9.12 List of Bragg peaks with their intensities and indices observed in a powder diffraction
pattern of a material indexed in the following unit cell: a = b = 4.07 Å, c = 16.3 Å, α = β = 90◦,
γ = 120◦.

h k l I/I0 2θ◦ h k l I/I0 2θ◦

0 0 3 10,000 18.541 0 1 −10 159 75.324
0 1 −1 8,851 34.192 0 2 4 256 76.249
0 1 2 280 35.927 0 2 −5 62 79.293
0 0 6 156 37.629 0 0 12 122 80.452
0 1 −4 4,599 42.243 0 1 11 159 82.405
0 1 5 817 46.517 0 2 7 572 87.346
0 1 −7 3,157 56.682 1 1 9 1,097 88.383
0 0 9 1,389 57.905 0 2 −8 1,045 92.316
1 1 0 3,322 60.143 1 2 −1 534 100.328
0 1 8 5,186 62.442 1 2 2 59 101.427
1 1 3 456 63.511 1 2 −4 164 105.431
0 2 1 832 71.064 0 0 15 200 107.679
0 2 −2 136 72.107 1 1 12 189 109.601
1 1 6 206 73.182 1 2 −7 439 117.229

6. At room temperature, the lanthanide material cerium (Ce) has a face-centered
cubic crystal structure, which is known as γ-Ce. The space group is Fm3̄m and
the lattice parameter a = 5.161 Å. When cooled below 77 K it transforms to α-Ce,
which also has a face-centered cubic crystal structure (space group Fm3̄m) with the
lattice parameter a = 4.85 Å.
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(a) Calculate Bragg angles (2θ) for all Bragg peaks that may be observed between
0 and 100◦ 2θ using Cu Kα radiation λ = 1.54178 Å for both α- and γ-Ce.

(b) Sketch diagrams of both diffraction patterns indicating only the positions of pos-
sible diffraction peaks.

(c) Discuss the differences between the two diffraction patterns (if any) you expect
to see when the actual diffraction patterns are collected.



Chapter 10
Solving the Crystal Structure

As we established in Chaps. 7–9, the diffraction pattern of either a single crystal
or a polycrystalline material is a transformation of an ordered atomic structure into
reciprocal space, rather than a direct image of the former, and the three-dimensional
distribution of atoms in a lattice can be restored only after the diffraction pattern
has been transformed back into direct space. In powder diffraction, the situation is
complicated by the fact that the diffraction pattern is a one-dimensional projection
of a three-dimensional reciprocal space. We have no intention of covering the com-
prehensive derivation of relevant mathematical tools since it is mainly of interest to
experts, and can be found in many excellent books and reviews.1 Therefore, in this
chapter we only briefly describe a general approach to the problem of solving the
crystal structure.

10.1 Fourier Transformation

In crystallography, direct and reciprocal spaces are related to one another as forward
and reverse Fourier2 transformations. In three dimensions, these relationships can be
represented by the following Fourier integrals:

Φ(h) =
∫
V

ρ(x)exp[2πi(h ·x)]d3x (10.1)

1 For example, see the International Tables for Crystallography, vol. B, Third edition, U.Shmueli,
Ed. (2008); vol. C, Third edition, E. Prince, Ed. (2004), and references therein. The International
Tables for Crystallography are published jointly with the International Union of Crystallography
(IUCr) by Springer.
2 Jean Baptiste Joseph Fourier (1768–1830) the French mathematician who is best known
for introducing analysis of periodic functions in which a complex function is represented by
a sum of simple sine and cosine functions. A brief biography is available on WikipediA
http://en.wikipedia.org/wiki/Joseph Fourier. See Eric Weisstein, MathWorld, for more information
about Fourier transformation: http://mathworld.wolfram.com/FourierTransform.html.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 239
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 10,
c© Springer Science+Business Media LLC 2009
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ρ(x) =
∫

V ∗

Φ(h)exp[−2πi(h ·x)]d3h (10.2)

where (10.2) is forward (−i) and (10.1) is reverse (+i) Fourier transforms. Here,
Φ(h) is the function defined in the reciprocal space, that is, the scattered amplitude;
ρ(x) is the corresponding function defined in the direct space, for example, ρ(x) is
the electron density when scattering of X-rays is of concern, or it is the nuclear den-
sity when scattering of neutrons on nuclei is considered; h and x are the coordinate
vectors in the reciprocal and direct spaces, respectively; V ∗ and V are, respectively,
reciprocal and direct space volumes, and i =

√
−1.

Both integrals do not require assumption of periodicity, and they can be used to
calculate the scattered amplitude or the corresponding density function of any direct
or reciprocal object, respectively. For example, (10.1) results in the atomic scattering
factor, f (sinθ/λ) ∝ |Φ(h)|, when the integration is performed for an isolated atom.
In this case, ρ(x) is the electron density distribution in the atom, which is usually
obtained from quantum mechanics.

Considering a crystal, in which the electron density function is periodic, the in-
tegral in (10.1) can be substituted by a sum:

F(h) = V∑
x
ρ(x)exp[2πi(h ·x)] (10.3)

where F(h) is the structure amplitude at a reciprocal lattice point h, V is the volume
of the unit cell of the direct lattice and the summation is carried over all possible
coordinate vectors, x, in the unit cell for a specific h.

When (10.3) is compared with (9.1), it is easy to see that the distribution of the
electron density in the unit cell is modeled by n products, gjt j(sinθ/λ) f j(sinθ/λ),
where gj, t j and f j are the population, temperature and scattering factors of the jth
atom, respectively, and the summation ranges over all atoms (from 1 to n) that are
present in the unit cell.

Similar substitution of the forward Fourier integral (10.2) results in the following
sum, which enables one to calculate the distribution of the electron (or nuclear)
density in the unit cell from the known structure amplitudes:

ρ(x) =
1
V ∑

h
F(h)exp[−2πi(h ·x)] (10.4)

Here, the summation is carried over all reciprocal lattice points, h, for a given
coordinate vector, x. The last equation has exceptional practical importance as it
allows one to convert the array of numbers – the observed structure amplitudes
obtained from the experimentally measured intensities – into the image of the atomic
structure represented as the distribution of the electron (or nuclear) density in the
unit cell.

Thus, in the expanded form, the value of the electron density at any point in the
unit cell with coordinates x, y, and z (0 ≤ x ≤ 1,0 ≤ y ≤ 1 and 0 ≤ z ≤ 1) can be cal-
culated using structure amplitudes obtained from X-ray diffraction experiment as:
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ρxyz =
1
V

h=+∞

∑
h=−∞

k=+∞

∑
k=−∞

l=+∞

∑
l=−∞

Fhkl exp[−2πi(hx+ ky+ lz)] (10.5)

where Fhkl are the structure amplitudes represented as complex numbers.
Equation (10.5) may be converted into a more practical form, since only the ab-

solute values of the structure amplitude
∣∣Fobs

hkl

∣∣ are directly observable in a diffraction
experiment. Thus,

ρxyz =
1
V

h=+∞

∑
h=−∞

k=+∞

∑
k=−∞

l=+∞

∑
l=−∞

∣∣∣Fobs
hkl

∣∣∣cos[2π(hx+ ky+ lz)−αhkl ] (10.6)

where αhkl is the phase angle of the reflection (hkl), see (9.19).
When the crystal structure is centrosymmetric and contains no anomalously scat-

tering atoms, phase angles are fixed at αhkl = 0 or π and (10.6) is simplified to:

ρxyz =
1
V

h=+∞

∑
h=−∞

k=+∞

∑
k=−∞

l=+∞

∑
l=−∞

shkl

∣∣∣Fobs
hkl

∣∣∣cos[2π(hx+ ky+ lz)] (10.7)

where shkl = 1 or −1 for αhkl = 0 or π, respectively.
Taking into account Friedel’s law, the summation in (10.5)–(10.7) can be simpli-

fied by excluding the negative values of one of the indices and by changing the pref-
actor from 1/V to 2/V in order to keep the correct absolute values of ρxyz. Since no
real experiment produces an infinite number of data points (structure amplitudes),
the practical use of (10.5)–(10.7) is accomplished by including all available data,
that is, the summation is truncated and carried over from hmin to hmax, kmin to kmax
and lmin to lmax.

Equation (10.6) is most commonly used to calculate the distributions of the elec-
tron (nuclear) density in the unit cell, which are also known as Fourier maps, from
X-ray (neutron) diffraction data, respectively. The locations of peaks on the Fourier
map calculated using X-ray diffraction data represent coordinates of atoms, while
the electron density integrated over the range of the peak corresponds to the num-
ber of electrons in the atom. The major problem in using (10.6) is that only the
absolute values of the structure amplitudes, |Fobs

hkl |, are known directly from the
experiment, because they are obtained as square roots of the integrated intensities
of the corresponding Bragg peaks (8.41) after eliminating all prefactors. As already
mentioned earlier, the information about phase angles αhkl (or signs, shkl , see (10.7))
is missing, and is not measurable directly.

When the distribution of atoms in the unit cell is known at least approximately,
for example, when the model of the crystal structure exists, then the phases can
be easily computed from (9.17)–(9.19),3 and all parameters in (10.5)–(10.7) are
defined. Examples of electron and nuclear density distributions in the unit cell of
the intermetallic compound CeRhGe3 calculated from (10.6) by using X-ray and
neutron powder diffraction data (Fig. 10.1) are shown in Fig. 10.2. In both cases,

3 Phase angles can be also determined using the so-called direct phase recovery techniques, see
Sect. 10.2.2.
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Fig. 10.1 Two powder diffraction patterns of the intermetallic CeRhGe3. The bottom plot repre-
sents X-ray data collected using Mo Kα radiation at room temperature, and the top plot shows
neutron diffraction data collected at T = 200 K using thermal neutrons with λ = 1.494 Å (neutron
diffraction data courtesy of Dr. O. Zaharko).

phase angles were computed by employing (9.17)–(9.19) and the known model of
the crystal structure of the material. The individually observed absolute structure
amplitudes were calculated from the observed integrated intensities using (8.41)
after the overlapped Bragg peaks were deconvoluted.

Hence, in order to calculate a Fourier map and thus, to visualize the crystal struc-
ture from diffraction data, phase angles of every Bragg reflection must somehow
be established. There are various techniques, which enable the recovery of phases
or, in other words, enable the solution of the atomic structure. These methods are
discussed in the following section.

When the crystal structure is unknown, nearly every available ab initio phase
determination technique usually results in approximate phase angles and, therefore,
instead of a complete atomic structure, only a partial model may be found from
a subsequently calculated Fourier map. Thus, in the remainder of this section we
briefly discuss the ways of how the initial model of the crystal structure can be
improved and completed using Fourier transformations.

As soon as phase angles, αhkl , are established at least approximately, they can be
used in combination with available |Fobs

hkl | to compute a Fourier map and establish
the distribution of electron or nuclear density in the unit cell. Even though the phases
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Fig. 10.2 The electron (left) and nuclear (right) density distributions in the x0z plane of the unit cell
of CeRhGe3 calculated from X-ray and neutron powder diffraction data, respectively (Fig. 10.1).
The contour of the unit cell is shown schematically as the rectangle under each Fourier map. The
peaks correspond to various atoms located in this plane and are so marked on the figure. The
volumes of the peaks are proportional to the scattering ability of atoms: for X-rays the scattering
power decreases in the series Ce(58e)→Rh(45e)→Ge(32e); for neutrons, the coherent scattering
lengths decrease in the reverse order: Ge(8.19 fm) → Rh(5.88fm) → Ce(4.84fm).

may be approximate (i.e., inexact), the values of |Fobs
hkl | are much more precise

and therefore, the Fourier map is usually more accurate than the model employed
to calculate phase angles. Thus, a computed Fourier map can be used to improve
and refine the model of the crystal structure by finding coordinates of atoms with
a higher precision (when compared to the initial model) and by locating missing
atoms.

If a crude initial model was used to determine approximate phases, some atoms
might not appear on the map, and these must be deleted because they were not
confirmed as a result of Fourier transformation. The new or improved model is then
used as a next level approximation to calculate the new set of phase angles, and a
subsequent Fourier map must be calculated using the new set of phases combined
with experimental |Fobs

hkl |.
This process may be repeated as many times as needed, until all atoms in the

unit cell are located and the following Fourier map(s) do not improve the model.
Equations (10.5)–(10.7) may be combined with a least squares refinement using
the observed data, which results in a more accurate model of the crystal structure,
including positional and displacement parameters of the individual atoms already
included in the model. The success in the solution of the crystal structure is critically
dependent on both the accuracy of the initial model (initial set of phase angles) and
the accuracy of the experimental structure amplitudes. Needless to say, when the
precision of the latter is low, then the initial model should be more detailed and
precise.
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The effectiveness of Fourier transformation in locating missing atoms may be
improved by using the so-called difference Fourier map, which is defined as:

Δρxyz =
1
V

h=+∞

∑
h=−∞

k=+∞

∑
k=−∞

l=+∞

∑
l=−∞

(Fobs
hkl −Fcalc

hkl )exp[−2πi(hx+ ky+ lz)] (10.8)

which is equivalent to (10.5), except that the observed complex structure amplitudes
are reduced by the those that are calculated from the existing model. The resulting
Fourier map, therefore, will not contain “known” atoms, and only the missing ones
should become “visible.” This approach works especially well when locating weakly
scattering atoms in the presence of strong scatterers (e.g., when locating hydrogen
atoms in organic compounds) because the difference Fourier map reveals fine de-
tails, which may be otherwise hidden in the background of the normal (10.5) map.

The difference electron density distribution also finds an interesting application
when the fully refined model of the crystal structure is used to compute a Fourier
transformation. Although it may seem that such a Fourier map should result in zero-
electron density throughout the unit cell (since the differences in (10.8) are expected
to approach zero), this is true only if electron shells of atoms in the crystal structure
were not deformed. In reality, atoms do interact and form chemical bonds with their
neighbors. This causes a redistribution of the electron density when compared to
isolated atoms, for which atomic scattering functions are known.

Thus, the difference Fourier map calculated using (10.8) for a complete and ac-
curate model using highly precise X-ray diffraction data reveals the so-called defor-
mation electron density distribution. The latter is essentially a difference between
the electron density in a real crystal composed from chemically bound atoms, and
individual, isolated atoms or ions, which sometimes enables the visualization of
excess electron density due to the formation of chemical bonds.4 This technique
has many restrictions and requirements, the major of which are: extremely high ac-
curacy of the experimental diffraction data (including the accuracy of the observed
structure amplitudes) and availability of data at high sinθ/λ (often low temperatures
are required to achieve this). Unfortunately, powder diffraction fails in the first re-
quirement, except very simple structures, due to the intrinsic and often unavoidable
overlapping of Bragg reflections.

Other types of Fourier transformations may also be calculated when the coeffi-
cients in (10.5) are modified or substituted. For example, when squared observed
structure amplitudes |Fobs

hkl |2 (in this case phase angles are not required!) or nor-
malized structure amplitudes Eobs

hkl are used instead of Fobs
hkl , the resultant maps

usually provide means to solve the crystal structure (see Sect. 10.2). Different modi-
fications of Fobs

hkl may reveal the distribution of the electrostatic potential and other
properties of crystals.

4 See V.G. Tsirelson and R.P. Ozerov, Electron density and bonding in crystals: principles, theory
and X-ray diffraction experiments in solid state physics and chemistry, Institute of Physics, Bristol,
UK (1996); P. Coppens, X-ray charge densities and chemical bonding. IUCr Texts on Crystallog-
raphy 4, Oxford University Press, Oxford, New York (1997).
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10.2 Phase Problem

Despite the apparent simplicity with which a crystal structure can be restored by
applying Fourier transformation to diffraction data ((10.5)–(10.8)), the fact that the
structure amplitude is a complex quantity creates the so-called phase problem. In the
simplest case (10.6), both the absolute values of the structure amplitudes and their
phases (9.19) are needed to locate atoms in the unit cell. The former are relatively
easily determined from powder (8.41) or single crystal diffraction data, but the latter
are lost during the experiment.

Determination of the crystal structure of an unknown material is generally far
from a straightforward procedure, especially when only powder diffraction data are
available. It is truly a problem-solving process and not a simple refinement. The
latter is a technique, which improves structural parameters of the approximately or
partially known model, usually by using a least squares minimization against avail-
able diffraction data, and often may be fully automated. It is worth noting that the
least squares method is inapplicable to the ab initio structure solution because the
phases of the structure amplitudes are unknown. Thus, during the crystal structure
solving process, phase angles, which have been lost, must be recovered using suit-
able numerical technique.

A large variety of methods, developed with a specific goal to solve the crystal
structure from diffraction data, can be divided into two major groups. The first group
entails techniques that are applicable in direct space by constructing a model of
the crystal structure from considerations other than the available array of structure
amplitudes. These include:

– Purely geometrical modeling in the case of simple inorganic structures.
– Examining various ways of packing and differences in conformations of mole-

cules with known geometry when dealing with molecular structures.
– Finding analogies with closely related compounds, such as isostructural series of

intermetallics and partially isostructural host frameworks in various intercalates.
– Using a range of minimization methods, including quantum-chemical, energy,

entropy and geometry optimizations, and other recently developed advanced
techniques.

When one or more models are constructed, they are tested against the experi-
mental diffraction data. Often some of these approaches are combined together, but
they always stem from the requirement that the generated model must make physi-
cal, chemical, and crystallographic sense. Thus, their successful utilization requires
a certain level of experience and knowledge of how different classes of crystals
are built, e.g., what to expect in terms of coordination and bond lengths for a par-
ticular material based solely on its chemical composition. Direct space-modeling
approaches are discussed, to some extent, in Sect. 15.1 and Chap. 24.

The second group of methods uses an experimental array of diffraction data, that
is, the absolute values of structure amplitudes, to provide initial clues about the crys-
tal structure of a material. Hence, they are applicable in the reciprocal space. The
first of the two reciprocal space methods, reviewed in this section, is the Patterson
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technique, which is best known for its applications as the so-called heavy atom
method. Furthermore, as we see later, even though the phase angles of Bragg reflec-
tions are not directly observed or measured, they are usually in certain relationships
with one another and with the absolute values of structure amplitudes. This property
supports a second reciprocal space approach, the so-called direct phase determina-
tion techniques, or the direct methods. The latter are always referred in a plural form
because they are based on several basic principles and usually contain several differ-
ent algorithms combined together. Needless to say, the crystal structure determined
using any of the reciprocal space methods should also be reasonable from physical,
chemical, and crystallographic points of view.

10.2.1 Patterson Technique

As suggested by Patterson5 in 1934, the complex coefficients in the forward Fourier
transformation ((10.2) and (10.5)) may be substituted by the squares of structure
amplitudes, which are real, and therefore, no information about phase angles is re-
quired to calculate the distribution of the following density function in the unit cell:

Puvw =
2
V

h=+∞

∑
h=0

k=+∞

∑
k=−∞

l=+∞

∑
l=−∞

∣∣∣Fobs
hkl

∣∣∣2 cos[2π(hu+ kv+ lw)] (10.9)

Here, the multiplier two appears because only one-half of a reciprocal space is used
in the summation, thus the validity of Friedel’s law is implicitly assumed.

The resultant function, unfortunately, does not reveal the distribution of atoms in
the unit cell directly but it represents the distribution of interatomic vectors, all of
which begin in a common point – the origin of the unit cell. Thus, Puvw is often called
the function of interatomic vectors, and it is also known as the Patterson function of
the F2-Fourier series. The corresponding vector density distribution in the unit cell
is known as the Patterson map.

The interpretation of the Patterson function is based on a specific property of
Fourier transformation (denoted as ℑ[. . .]) when it is applied to convolutions (⊗) of
functions:

ℑ[ f (x)⊗g(x)] = ℑ[ f (x)]ℑ[g(x)]
ℑ[ f (x)g(x)] = ℑ[ f (x)]⊗ℑ[g(x)]

(10.10)

5 A.L. Patterson, A Fourier series representation of the average distribution of the scattering power
in crystals, Phys. Rev. 45, 763 (1934), A.L. Patterson, A Fourier series method for the determina-
tion of the components of the interatomic distances in crystals, Phys. Rev. 46, 372 (1934). Arthur
Lindo Patterson (1902–1966), the British-born physicist is best known for the introduction the
function named after him. These two papers have been written during Patterson’s tenure at the
Massachusetts Institute of Technology. In 1980, the American Crystallographic Association has es-
tablished the A.L. Patterson award “To recognize and encourage outstanding research in the struc-
ture of matter by diffraction methods.” See http://aca.hwi.buffalo.edu/awardpglist/Patterson.html
for details.
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As follows from (10.10), the multiplication of functions in the reciprocal space
(e.g., structure amplitudes) results in a convolution of functions (e.g., electron or
nuclear density) in the direct space, and vice versa. Since (10.9) contains the struc-
ture amplitude multiplied by itself, the resultant Patterson function, Puvw, represents
a self-convolution of the electron (nuclear) density. Hence, it may be described as
follows:

Puvw =
∫
V

ρx,y,zρx−u,y−v,z−wdV (10.11)

where Puvw in every point (u,v,w) inside the unit cell is calculated as the sum (inte-
gral) of products of the electron (nuclear) density at two points separated by a vector
(u,v,w).

For simplicity, assume that the distribution of electron or nuclear density in the
unit cell is discrete rather than continuous, and is zero everywhere except for the
locations of atoms, viewed as dimensionless points (see Fig. 10.2, which illustrates
that both electron and nuclear density decreases rapidly away from the centers of
atoms). Then, the result of (10.11) is a set of peaks originating in (0, 0, 0) and
ending at (u,v,w) with heights (more precisely with peak volumes since atoms are
not dimensionless points), Hi j, given as:

Hi j ∝ ZiZ j (10.12)

where Zi and Z j are the number of electrons (or scattering lengths) of the ith and jth
atoms that are connected by a vector (u,v,w) defined as u = ±[xi −x j].

According to this interpretation of (10.11), the value of the Patterson function
is zero at any other point in the unit cell. An example of an idealized Patterson
function corresponding to a simple two-dimensional structure containing a total of
four atoms in the unit cell is shown in Fig. 10.3.

Thus, since a Patterson map contains peaks which are related to the real distribu-
tion of atoms in the unit cell, it is possible to establish both the coordinates of atoms
and their scattering power by analyzing coordinates and heights of Patterson peaks.
Unfortunately, the analysis of the distribution of interatomic vector density func-
tion is sometimes easier said than done, due to the presence of several complicating
factors.

The first difficulty is that Patterson peaks are usually broader than electron (nu-
clear) density peaks, which is the result of convolution (10.11). The second compli-
cation is that the total number of Patterson peaks in the unit cell equals to n(n−1),
where n is the total number of atoms in the unit cell (see Fig. 10.3 where four atoms
shown on the left produce 12 Patterson peaks shown on the right, four pairs of which
are completely overlapped). The third difficulty is derivative of the first two and it
arises from overlapping (often quite substantial) of different interatomic vectors.

An example of the distribution of the interatomic vectors density function in the
u0w plane of CeRhGe3 is illustrated in Fig. 10.4. When compared with the electron
and nuclear density distributions (Fig. 10.2), there are many more peaks in the two
Patterson maps. Similar to the results shown in Fig. 10.2, both Patterson functions
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Fig. 10.3 The relationships between the distribution of atoms (left), and the Patterson function
(right) in a two-dimensional unit cell. All possible interatomic vectors are drawn on the left. On
the right, they are brought to a common origin (upper left corner) of the unit cell. Vectors that are
outside the unit cell are shown using dotted lines. The content of one unit cell in the Patterson space
(right) is shown using solid lines. Black open circles indicate a twofold increase in the height of
the corresponding peaks of the Patterson function when compared with those marked using gray
filled circles, which occurs due to a complete overlap of vectors coinciding with the parallel sides
of the parallelogram of atoms on the left.

Fig. 10.4 Patterson functions calculated in the u0w plane using (10.9) and employing experimental
X-ray (left) and neutron (right) powder diffraction data shown in Fig. 10.1. The strongest peak in
any Patterson function is always observed at (0, 0, 0) because the origins of all vectors coincide
with the origin of coordinates. Since in this particular example the real crystal structure contains
an atom in (0, 0, 0, see Fig. 10.2), some of the peaks on the Patterson map correspond to the actual
locations of atoms (i.e., uj = xj ± 0). The contour of the unit cell is shown schematically as the
rectangle under each Patterson map.
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are nearly identical except for the distribution of peak intensities, which is expected
due to the differences in the scattering ability of Ce, Rh and Ge using X-rays and
neutrons.

The complicating factors mentioned here reduce the resolution of the Patterson
map, which may make it extremely difficult or impossible to recover the atomic
structure, especially in cases of complex crystal structures containing many atoms
with nearly equal atomic numbers, for example, organic compounds. On the other
hand, when only a few atoms in the unit cell have much stronger scattering ability
than the rest, the identification of Patterson peaks corresponding to these strong
scatterers is relatively easy: according to (10.12), these peaks are stronger than all
others, except for the peak at the origin. The latter is used to scale the Patterson map
since by definition (10.11) its magnitude is the sum of squared scattering factors of
all atoms in the unit cell; in X-ray diffraction, it becomes the sum of squared atomic
numbers.

The application of the Patterson technique to locate strongly scattering atoms is
often called the heavy-atom method (which comes from the fact that heavy atoms
scatter X-rays better and the Patterson technique is most often applied to ana-
lyze X-ray diffraction data). This allows constructing of a partial structure model
(“heavy” atoms only), which for the most part define phase angles of all reflections
(see (9.21)). The “heavy-atoms only” model can be relatively easily completed using
sequential Fourier syntheses (either or both standard, (10.6), and difference, (10.8)),
usually enhanced by a least squares refinement of all found atoms.

The analysis of the Patterson function requires extensive use of symmetry. Con-
sider all possible interatomic vectors (calculated as ui j = ±[xi − x j]) originating
from an atom in the general site position of the space group P21/m, which are listed
in Table 10.1. Only three of the vectors (underlined in the first row of the table) are
unique, and the relationships between them are established by the combination of
symmetry elements in the unit cell.

Thus, a vector 2x, 1/2, 2z is the result of a 21 screw axis parallel to the b-axis, and
when the former is correctly identified on the Patterson map, the two coordinates, x
and z, of the corresponding atom are found. A second vector − 0,−1/2 + 2y, 0 – is
due to a mirror plane and it yields the missing coordinate y, while a vector 2x, 2y, 2z
is due to a center of inversion, which in this case could be used to confirm all three
coordinates.

Table 10.1 Interatomic vectors (shown in bold) produced by an atom located in the general site
position in the monoclinic crystal system, space group P21/m.

Symmetry
element

Symmetry operation x,y,z −x,1/2 + y,−z −x,−y,−z x,1/2− y,z

1 x,y,z 0, 0, 0 2x,1/2, 2z 2x, 2y, 2z 0, −1/2+2y, 0

21 −x, 1/2 + y, −z −2x, 1/2, −2z 0,0,0 0, 1/2+2y,0 −2x,2y,−2z
1̄ −x, −y, −z −2x,−2y,−2z 0,−1/2−2y,0 0,0,0 −2x,−1/2,−2z
m x,1/2− y,z 0,1/2−2y,0 2x,−2y,2z 2x,1/2,2z 0,0,0
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When a structure contains only a single independent heavy atom, the solution is
nearly always trivial. It may be possible to solve a structure with two to four inde-
pendent heavy atoms manually, even though the task becomes much more challeng-
ing. Solving a structure from a Patterson map in the case of more complex crystal
structures is usually performed using computer programs.

A more detailed analysis of Table 10.1 indicates that symmetry of the Patterson
function is different from that of the original crystal structure. A comprehensive ex-
amination of Patterson symmetry exceeds the scope of this book. It can be shown,
however, that symmetry elements with a translational component, present in the
space of the crystal structure, are transformed into conforming finite symmetry el-
ements in the Patterson function space except for the lattice translations, which are
preserved. Thus, screw axes become rotation axes and glide planes are transformed
into mirror planes. Moreover, a center of inversion is always added to the symmetry
of Patterson function. For example, space group P21/m discussed here results in
Patterson symmetry corresponding to space group P2/m, I4̄2m is transformed into
I4/mmm, Fdd2 turns into Fmmm, and so on. A complete list of Patterson function
symmetry for all space groups can be found in the International Tables for Crystal-
lography, Vol. A.

10.2.2 Direct Methods

In this approach, the phase angles of reflections are derived directly from the ob-
served structure amplitudes through mathematical relationships between intensities
and indices of the reflections. The relationships are based on the following postula-
tions:

– The electron density is nonnegative anywhere in the unit cell, that is, ρxyz ≥ 0 for
all x, y, z.

– The atomic structure is composed from nearly spherical atoms spread nearly
evenly throughout the unit cell volume.

These two general properties of the electron density result in special relation-
ships between phase angles of triplets of reflections, which have arithmetically (but
not symmetrically) related indices. The triplets of related reflections are defined as
follows:

First reflection, h : h,k, l

Second reflection, h′ : h′,k′, l′

Third reflection, h−h′ : h−h′,k− k′, l − l′
(10.13)

The phase relationships within a triplet are not strict, and their probability de-
pends on the magnitude of the associated structure amplitudes. The latter are scaled
and normalized in order to reduce their dependence on the atomic scattering factors
and vibrational motions, since both reduce the structure amplitude exponentially at
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high sinθ/λ, see (9.5), Figs. 9.2 and 9.4. The normalized structure factor is com-
monly denoted as Ehkl , and it is calculated from the conventional structure factor as
follows:

Ehkl =
|Fhkl |

〈F2
exp〉1/2 (10.14)

where the expected average value of the structure factor, 〈F2
exp〉1/2, is estimated as:

〈F2
exp〉 =

n

∑
j=1

f 2
j (s) (10.15)

and f j(s) is the atomic scattering factor of the jth atom; s is sinθ/λ of the reflection
(hkl).

In the centrosymmetric structures, the relationships between the signs of the re-
flections forming a triplet (10.13) are described by the Sayre equation6

sh ≈ sh′sh−h′ (10.16)

where s = +1 when αhkl = 0 (positive Fhkl), s = −1 when αhkl = π (negative Fhkl),
and the symbol ≈ has a meaning of “probably equal,” for example, s123 ≈ s102s021.

The probability of this sign relationship in the triplet is defined as:

P+ = 1/2 + 1/2tanh
[
N−1/2 |Eh|Eh′Eh−h′

]
(10.17)

where P+ is the probability of the positive sign for a reflection h, and:

N−1/2 = σ3/σ
3/2
2 and σm =

n

∑
i=1

Zm
i (10.18)

Here Z is the atomic number and n is the number of atoms in the unit cell.
In the noncentrosymmetric structures, reflection phases in the triplet are in the

following relationship, also given by Sayre:6

αh ≈ αh′ +αh−h′ (10.19)

where the symbol ≈ also means “probably equal” and the probability of this rela-
tionship for the phase αh is defined by Cochran as:7

Pαh =
1

2πI0(kh,h′)
exp[kh,h′ cos(αh′ +αh−h′)]. (10.20)

where I0 is Bessel function, and Kh,h′ = 2N−1/2|EhEh′Eh−h′ |.
In order to generate phase angles using any of the two Sayre equations ((10.16)

or (10.19)), some reflections with known phases are needed, since both equations

6 D. Sayre, The squaring method: a new method for phase determination, Acta Cryst. 5, 60 (1952).
7 W. Cochran, Relations between the phases of structure factors, Acta Cryst. 8, 473 (1955).
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define one phase from two others that are known. There are several sources of reflec-
tion phases at this stage. First, certain phase angles may be set at arbitrary values to
fix the origin and in the case of noncentrosymmetric structures, one additional phase
with an arbitrary value is needed to fix the enantiomorph. Second, phase angles of
several strong reflections are selected for permutations. For example, in the cen-
trosymmetric case, a total of four reflections would have 24 possible combinations
of signs, resulting in 16 different sets of possible phase angles.

For each permutation, the phases of all other reflections are generated using Sayre
equations. Thus, direct methods always result in more than one array of phases,
and the problem is reduced to selecting the correct solution, if one exists. Several
different figures of merit and/or their combinations have been developed and are
used to evaluate the probability and the relationships between phases. Thus, the
solutions are sorted according to their probability – from the highest to the lowest.
Then each solution is analyzed and evaluated starting from the one that is most
probable.

Usually, each reflection forms more than one triplet and each of the triplets may
be used for phase determination (estimation). In order to employ all triplets and thus,
obtain the best agreement between phase angles that result from different triplets,
Karle and Hauptman8 introduced a general expression for phase determination from
triplets. This relationship is known today as the tangent formula:

tanαh =
∑
h

∣∣Eh′ ‖Eh−h′
∣∣sin(αh′ +αh−h′)

∑
h

∣∣Eh′ ‖Eh−h′
∣∣cos(αh′ +αh−h′)

(10.21)

where the sums include all triplets, in which the reflection in question, h, is involved.
Finally, the generated phase angles are used in a forward Fourier transformation

combined with the normalized structure amplitudes Ehkl

ρxyz =
1
V

h=+∞

∑
h=−∞

k=+∞

∑
k=−∞

l=+∞

∑
l=−∞

Ekhl cos[2π(hx+ ky+ lz−αdirect
hkl )] (10.22)

and the resulting density distribution is called the E-map. It is quite similar to a con-
ventional Fourier map representing electron density, but E-maps are usually sharper
because the normalized structure amplitudes, Ehkl , are corrected for the effects of
atomic scattering and thermal displacements.

A generic algorithm of employing direct methods to structure solution may be
summarized in the following steps:

8 J. Karle and H. Hauptman, A theory of phase determination for the four types of non-
centrosymmetric space groups, Acta Cryst. 9, 635 (1956). Jerome Karle, US crystallographer, and
Herbert A. Hauptman, US mathematician, laid a foundation toward the development of modern
direct phase determination techniques. They won the 1985 Nobel Prize in Chemistry “for their
outstanding achievements in the development of direct methods for the determination of crystal
structures” – http://www.nobel.se/chemistry/laureates/1985/.
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1. Observed structure amplitudes are scaled and normalized structure amplitudes
are calculated using (10.14). Reflections with large normalized structure ampli-
tudes (a standard cut-off is Ehkl ≥ Emin = 1.2) are selected for phase determina-
tion and refinement.

2. Reflections to fix the origin and the enantiomorph (if needed) are selected. There
are special requirements on the combinations of indices of these reflections,
which are established by space-group symmetry.

3. Several of the strongest reflections (those that have the largest Ehkl) are cho-
sen for phase permutations. In addition to being the strongest, these reflections
should have combinations of indices that result in as many triplets as possible
with all reflections selected in Step 1.

4. Phases are assigned to all, or as many as possible, reflections selected in Step 1
using Sayre equations ((10.16) or (10.19)), and the probability relationships
((10.17) or (10.20)).

5. The best possible agreement between phases is obtained by using a least squares
refinement in combination with the tangent formula (10.21).

6. Figures of merit are calculated, and the resultant sets of phase angles are sorted
from the most probable to the least probable solution.

7. E-map (10.22) is computed for the most probable solution. The peaks are located
on the map and a partial or complete model of the crystal structure is created.

8. The obtained model of the crystal structure is analyzed with respect to common
chemical and crystallographic sense – are all bond distances, angles, coordina-
tion polyhedra, etc. reasonable? If yes, move to Step 9. If no, go to Step 7 using
the next best solution.

9. The model of the crystal structure is verified and completed by computing
phases for all available (conventional) structure amplitudes using the current
structural model (9.19) and successive calculation of Fourier (10.6) and/or dif-
ference Fourier maps (10.8). Once all atoms are located, the complete structure
is refined using least squares technique against all available diffraction data.

10. If no solution is found, Step 2 should be repeated with different parameters and
lists(s) of reflections in the starting sets. It may be necessary to expand or reduce
the list of reflections under consideration by changing the cut-off value of Emin
from a standard value of 1.2.

10.2.3 Structure Solution from Powder Diffraction Data

Solving the crystal structure using either heavy atom or direct techniques does not
always work in a straightforward fashion even when the well-resolved and highly
accurate diffraction data from a single crystal are available. The complicating factor
in powder diffraction is borne by the intrinsic overlap of multiple Bragg peaks. The
latter may become especially severe when the unit cell volume and complexity of
the structure increase.

Thus, there is a fundamental difference between the accuracy of structure am-
plitudes obtained from single crystal and powder diffraction data. The former are
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always resolved, that is, there is only one combination of indices, hkl, per Bragg
peak, whereas in the latter some reflections may be fully or partially overlapped.9

The intensities of individual reflections hkl may still be recovered from powder dif-
fraction data but their accuracy is critically dependent on both the degree of the
overlap and the quality of the pattern. Obviously, the absolute overlapping of some
reflections makes it impossible to obtain the individual intensities, regardless of the
quality of data, and only the combined total intensity is known (e.g., reflections 43l
and 05l in both the cubic and tetragonal crystal systems).

As established earlier, individual intensities (or structure amplitudes) of Bragg
reflections are needed in order to solve the crystal structure using direct or Patterson
methods. In the first case, accurate normalized structure amplitudes are required
to generate phase angles, and to evaluate their probabilities. In the second case,
accurate structure amplitudes result in the higher accuracy and resolution on the
Patterson map.

Thus, when reflections overlap to a degree when the individual intensities can
no longer be considered reliable, they may be dealt with using two different ap-
proaches:

– In the first approach, reflections with low accuracy in individual intensities (those
that are completely or nearly completely overlapped) are simply discarded. This
works best when direct methods are used for the structure solution, because sub-
stantial errors even in some of the normalized structure amplitudes may affect
phase angles of many other reflections.

– In the second approach, the total intensity of the diffraction peak is equally di-
vided among the individual reflections, so that Itotal =ΣIi. Yet another approach in
a “blind” division is to account for the multiplicity factors of different Bragg re-
flections, so that Itotal = ΣmiIi, where mi is the multiplicity factor of the ith reflec-
tion, which depends on symmetry and combination of indices (see Sects. 8.6.3
and 9.2.2). No obvious preference can be given to any method of intensity di-
vision, as each of them is quite arbitrary. This way of handling the overlapped
intensities, instead of simply discarding them is most beneficial in the Patterson
method.

Even when the crystal structure is partially solved, the individual intensities are
still needed to complete the structure by means of calculating Fourier or difference
Fourier maps. Obviously, the result of Fourier transformations is affected by the ac-
curacy in the absolute values of the structure amplitudes in addition to the precision
of their phase angles ((10.6) and (10.8)).10 Considering fully overlapped Bragg re-
flections, the situation with prorating individual intensities becomes different when

9 Similar overlap may occur even in single crystal data when merohedral twinning results in partial
or full overlap of some Bragg reflections, while non-merohedral twinning results in a complete
overlap of all reflections. Yet, even in cases of this severity, single crystal data contain more unbi-
ased information due to the fact that the measured diffraction pattern is three dimensional, and also
because every powder pattern is, in a way, always “merohedrally twinned” for all noncentrosym-
metric structures, regardless of whether the crystallites are twinned or not.
10 It turns out that precisely known phase angles are more critical in determining coordinates of
atoms in the unit cell than the corresponding absolute values of individual structure factors.
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compared to the state when the crystal structure is completely unknown: at this
point, the calculated intensities of all individual reflections are known with the ac-
curacy of the current structural model. These calculated intensities may be (and
usually are) used to divide the total intensity of the peak between all overlapped
reflections proportionally to their calculated intensities (see (15.7) in Sect. 15.4).

The division of intensities of the overlapped Bragg reflections is critical only
when they are needed to calculate Patterson-, Fourier- or E-map(s). There is no
need in their separation during a least squares refinement of structural parameters
because each point of the diffraction profile is simply taken as a sum of contributions
from multiple Bragg reflections.11

We conclude this section where we began this chapter by repeating the following
statement: “The diffraction pattern of a crystal is a transformation of an ordered
atomic structure into reciprocal space rather than a direct image of the former, and
the three-dimensional distribution of atoms in a lattice can be restored only after the
diffraction pattern has been transformed back into direct space.” We now are able to
support this statement by Fig. 10.5, which illustrates how this can be performed in
practice.

The very existence of the powder diffraction pattern, which is an experimentally
measurable function of the crystal structure and other parameters of the specimen
convoluted with various instrumental functions, has been made possible by the com-
mensurability of properties of X-rays and neutrons with properties and structure of
solids. As in any experiment, the quality of structural information, which may be
obtained via different pathways (two possibilities are illustrated in Fig. 10.5 as two
series of required steps), is directly proportional to the quality of experimental data.
The latter is usually achieved in a thoroughly planned and well-executed experi-
ment, as detailed in Chap. 12. Similarly, each of the data processing steps, which
were described in this chapter and are summarized in Fig. 10.5, requires knowledge,
experience and careful execution, and we describe them in Chaps. 13–15, followed
by numerous examples starting from Chap. 16.

10.3 Total Scattering Analysis Using Pair Distribution Function

So far, we were only concerned with diffraction from ideally periodic structures
with a well-defined long-range order. However, diffraction or, more precisely, in-
terference of scattered waves occurs when either or both long- or short-range order
is missing or is approximate. In other words, diffraction can also be observed from
low crystallinity and amorphous solids, as well as from nanocrystalline materials.
These materials normally produce diffraction patterns that have broad peaks, some-
times very broad halos over the instrumental background, instead of sharp diffrac-
tion maxima.

There are two kinds of low crystallinity or amorphous solids. Consider a nor-
mal crystalline material, whose crystallinity is reduced to some extent by decreasing

11 The least squares refinement of structural parameters employing full profile powder diffraction
data is discussed beginning from Chap. 15.
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particle or grain size and/or by introducing local strains. This will reduce long-range
order by reducing the length scale over which translational periodicity is present,
and will lead to broadening of Bragg peaks. Regardless of how broad the peaks are,
the diffraction pattern will still resemble that of the original crystalline material.
Even when the broadening is severe, that is, when only a few humps are visually ev-
ident in the pattern, these humps will still coincide with the locations of the strongest
Bragg peaks from a crystalline phase. Hence, in this case it is correct to say that lat-
tice and order are still there, but a significant disorder is also present. Another kind
of amorphous solids, or solids in the so-called glassy state, have no lattice and no
long-range order. Therefore, broad peaks from a glassy phase do not match the lo-
cations of crystalline Bragg peaks.

An important difference between these two kinds of amorphous solids is directly
related to the scope of this book. The crystal structure of the first kind of materials,
which have a distorted long-range order and can be described by a distorted lattice,
can still be confirmed by the same methods that are standard for crystalline materi-
als, that is, the Rietveld method (see Chap. 15). Obviously, relevant peak-broadening
corrections must be applied when doing so. When significant, these corrections may
be quite inaccurate and a structural model can only be estimated at the qualitative
or atomic connectivity level. It is also clear that this approach cannot be used when
dealing with glassy materials such as polymers and low crystallinity macromolec-
ular solids, and a variety of nanomaterials, such as nanoparticles, nanotubes, and
others.

In contrast to discreet diffraction patterns of crystalline solids that consist of
well-defined Bragg peaks which correspond to points of reciprocal lattice intersect-
ing the Ewald’s sphere (see Sect. 8.1), diffraction patterns from low crystallinity or
amorphous solids are treated as continuous. The former requires that the crystal lat-
tice must be established first, before any structure determination can be performed,
which may be challenging enough even when dealing with a well-ordered material
(see Chap. 14). Ab initio determination of the lattice becomes a nearly impossible
task when periodicity is present on a short-length scale, simply because precision in
the determination of Bragg angles becomes very low. On the contrary, treatment of
a continuous diffraction pattern, which is also known as the total scattering analysis
in modern literature, does not require any knowledge about the lattice.

Recently, total scattering analysis techniques, which are based on a pair distri-
bution function (PDF), have been under intense development for structural studies
of low crystallinity and amorphous solids. The name – total scattering – reflects the
fact that all points of the powder diffraction pattern are analyzed, even those that
in conventional powder diffraction are considered useless, that is, the background.
Another name – pair distribution – places emphasis on pairs of atoms, or on the
distribution of interatomic vectors,12 which is directly calculable from a continuous
pattern, and is used for the comparison with the pattern calculated from a structural

12 Here, interatomic vectors are identical to those considered above during the discussion of the
Patterson function, see Sect. 10.2.1. The difference is that in the total scattering analysis, the ex-
perimentally observed distribution of the interatomic vectors is a one-dimensional direct space
projection of the three-dimensional function of interatomic vectors.
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model and/or for improving the model. This approach is often referred to as “be-
yond Bragg...”13, “beyond crystallography. . .”14 or “underneath the Bragg peaks.”
The latter was adopted by Egami and Billinge as the title of a book,15 which we rec-
ommend to the reader interested in a comprehensive coverage of the total scattering
analysis techniques and their applications. Here, only a brief description of the main
principles of the method is given.

The use of the continuous diffraction pattern instead of the discreet Bragg peaks
requires a replacement of the diffraction vectors h in (10.1) and (10.2) with the
vector Q (see (7.15) and the corresponding footnote on page 146). In the absence
of a lattice, or when only a heavily distorted long-range order is present, the atomic
coordinate vectors x are replaced with the interatomic vectors r. Thus, the X-ray
intensity (in electrons) scattered by an array of atoms present in either a crystalline
or amorphous solid as a function of interatomic distance can be represented as was
given by Debye16 back in 1915:

I(Q) =
N

∑
i=1

N

∑
j=1

fi f j
sin(Qri j)

Qri j
(10.23)

where Q = |Q| = 4πsin(θ)/λ is the magnitude of the scattering vector, rij = |rij|
is the interatomic distance between atoms i and j, and fi and f j are the atomic
scattering factors of atoms i and j.

This equation can be easily used to simulate a continuous powder diffraction
pattern as a function of either Q or 2θ. For every point of the pattern, the sum over
all interatomic distances has to be calculated. However, since in the structure there
are usually many similar distances, it is better to group all distances first, and then
use one from each group with a proper multiplier.

Instead of I(Q) in (10.23), a different function, G(r), is employed in the total
scattering analysis. This is the so-called pair-distribution function (or a reduced pair-
distribution function) which can be calculated by a Fourier transformation of the
experimental data as shown in (10.24) and (10.25), and therefore, is direct space
function:

G(r) =
2
π

∞∫
0

Q× [S(Q)−1]× sin(Qr)dQ (10.24)

Here, S(Q) is the total scattering structure function and F(Q) = Q× [S(Q)− 1] is
the reduced structural function, which is calculated directly from the experimental
powder pattern as follows:

13 V. Petkov, P.Y. Zavalji, S. Lutta, M.S. Whittingham, V. Parvanov, S. Shastri, Structure beyond
Bragg: Study of V2O5 nanotubes. Phys. Rev. B 69, 085410 (2004).
14 S.L.J. Billinge, M.G. Kanatzidis, Beyond crystallography: the study of disorder, nanocrys-
tallinity, and crystallographically challenged materials with pair distribution functions. Chem.
Comm. 749 (2004).
15 T. Egami and S.J.L. Billinge, Underneath the Bragg peaks. Structural analysis of complex ma-
terials. Pergamon Materials Series (Pergamon, Amsterdam, 2003).
16 P. Debye, Dispersion of Röntgen rays. Ann. Phys. 46, 809 (1915).
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F(Q) = Q× Icoh(Q)−∑ci | fi(Q)|2

∑ci | fi(Q)|2
(10.25)

where Icoh(Q) is experimental intensity corrected for background, and other effects,
such as scattering by a sample holder, and normalized by the photon or neutron flux
and the number of atoms in the sample, ci and fi are the concentration of atoms and
the atomic scattering factor, respectively.

The reduced pair-distribution function G(r) can be represented as follows:

G(r) = 4πr[ρ(r)−ρ0] = 4πrρo[g(r)−1] (10.26)17

where ρ0 is the average atomic number density of the material, and ρ(r) is atomic
pair density. The latter can be expressed as:

ρ(r) =
1

4πr2N

n

∑
i

N

∑
j �=i

fi f j

〈 f 〉2 δ(r− ri j) (10.27)

Here, δ(x) is the delta function, which is unity when x = 0 and zero everywhere
else. Combining (10.3) and (10.27) yields the following equation for the calculated
G(r) function:

Gcalc(r) =
1

rN

n

∑
i

N

∑
j �=i

[
fi f j

〈 f 〉2 δ(r− ri j)
]
−4πrρ0 (10.28)

Thus, the calculated (10.28) and experimental (10.24) G(r) functions can be used
to compare the simulated and observed diffraction data, and also to improve the
structural model.18

Let us consider the meaning of G(r) and ρ(r) functions. The latter is simpler as
its physical meaning directly follows from (10.27). It can be described as the mean
weighted19 density of atoms20 at a radial distance r from an atom at the origin.
The atomic density function, ρ(r), is nothing but the one-dimensional projection of
the modified interatomic vector or Patterson function (see Sect. 10.2.1, (10.9)). The
ρ(r) assumes only positive values, while the G(r) function, being derived from ρ(r)
(10.3), oscillates around the horizontal axis as depicted in Fig. 10.6, yet it features
the same distribution of peaks. The physical meaning of the G(r) is less intuitive
than ρ(r), nonetheless it is used in the total scattering analysis due to the following
reasons:

17 Note that when the second (the rightmost) form of (10.3 is used, g(r) is the pair distribution
function, while G(r) then becomes a reduced pair distribution function, as for example in the
Egami’s and Billinge’s book.
18 C.L. Farrow, P. Juhas, J.W. Liu, D. Bryndin, E.S. Bozin, J. Bloch, Th. Proffen, S.J.L. Billinge,
PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals, J. Phys.: Condens.
Matter. 19, 335219 (2007). Software application DIFFpy (PDFfit and PDFgui) for PDF-based re-
finement along with a manual and a tutorial is available at http://www.diffpy.org.
19 Weighted by the atomic scattering factors.
20 The density of atoms is the number of atoms per unit area of a sphere with radius r(A = 4πr2).
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Fig. 10.6 Experimental pair distribution function of CdSe21 from bulk material (left) and 30 Å
nanoparticles (right). Numerical data used to produce these plots were taken from the DIFFpy
tutorial.

– G(r) can be directly obtained from raw experimental data ((10.24) and (10.25)).
It can also be easily calculated from a structural model (10.28);

– The difference plot Gobs(r)−Gcalc(r) has the same significance at all r values,
which makes visual analysis of the model very easy. For example, large differ-
ences at high r but small differences at low r mean that the model describes real
structure bessat at short distances;

– Oscillations of G(r) provide direct evidence of the degree of ordering. For exam-
ple, the same amplitude, or the same order of magnitude oscillations seen over a
large range of r indicate the presence of a long range order (Fig. 10.6, left), while
a rapidly diminishing amplitude above a certain value of rindicated the length
scale of the order (such as the average size of nanoparticles) as seen in Fig. 10.6
(right);

– Finally, G(r) is less affected by a finite observable range of Q of any experimental
pattern.

Improvement of the model (structure refinement) in the total scattering analy-
sis is carried out in a similar fashion to Rietveld refinement, which is described in
Chap. 15, except that the pair-distribution function G(r) is used instead of a raw
profile during the minimization. The minimized function (compare with (15.29) in
Sect. 15.7.1) is:

Φ =
N

∑
i=1

wi(Gcalc(ri)−Gobs(ri))2 (10.29)

The relative simplicity of the refinement using the PDF approach, which may
be considered even simpler than the Rietveld refinement, is based on the fact that
no preliminary knowledge of the unit cell is required. Yet, the technique still re-
quires a structural model, creating what is often a major challenge, especially when

21 For more information on the CdSe refinement see: S. K. Pradhan, Z. T. Deng, F. Tang, C. Wang,
Y. Ren, P. Moeck and V. Petkov, “3D structure of CdX (X=Se, Te) nanocrystals by total X-ray
diffraction”, J. Appl. Phys. 102, 044304 (2007).



10.4 Additional Reading 261

the lattice and long-range order are missing. Models are commonly generated from
a parent periodic structure and then optimized using, for example, reverse Monte
Carlo simulations.22

Both the quality and range (maximum available values of Q) of experimental
data for the total scattering analysis must be much higher when compared to typical
sets of data used in the Rietveld refinement. The quality (accuracy of the measured
intensities) is important because every point of the pattern counts, and both random
and systematic errors add up in every point of the pair-distribution function. The
availability of data at high Q is critical because truncation results in the termina-
tion ripples after Fourier transformation. Therefore it is extremely important to have
experimental patterns of the highest quality (high counting statistics) over the max-
imum possible Q range. This is easily achievable when using synchrotron radiation.
Several synchrotron sources have specialized total scattering beam lines that allow
measuring high-quality powder diffraction patterns with very short wavelengths.23

It is also possible to use laboratory diffractometers equipped with X-ray tubes pro-
ducing low characteristic wavelengths, for example, tubes with Mo and Ag anodes.

Recently, the total scattering analysis was proven to be quite successful, not only
in studying amorphous and low crystallinity materials such as glasses, polymers,
liquid crystals, and solids with a substantial degree of structural disorder and qua-
sicrystals,24 but also in the emerging field of nanomaterials.25 The latter actually
has provided a great momentum to major developments of this old (see (10.23)), yet
nontraditional method. It is worthwhile to note that in addition to modeling struc-
tures of solids, the PDF-related methods also facilitate examination of other prop-
erties – all those that influence diffraction pattern – such as grain size and shape,
microstrain, stacking faults, and other properties.

10.4 Additional Reading

1. International Tables for Crystallography, vol. A, Fifth Revised Edition, Theo Hahn, Ed.
(2002); vol. B, Third Edition, U. Shmueli, Ed. (2008); vol. C, Third Edition, E. Prince, Ed.
(2004). All volumes are published jointly with the International Union of Crystallography
(IUCr) by Springer. Complete set of the International Tables for Crystallography, Vol. A-G,
H. Fuess, T. Hahn, H. Wondratschek, U. Müller, U. Shmueli, E. Prince, A. Authier, V. Kopský,

22 T. Proffen, R.B. Neder, DISCUS, a program for diffuse scattering and defect structure simu-
lations. J. Appl. Cryst. 30, 171 (1997); T. Proffen, R.B. Neder DISCUS, a program for diffuse
scattering and defect structure simulations – Update. J. Appl. Cryst. 32, 838 (1999).
23 For example 11-ID-B beamline at APS (https://beam.aps.anl.gov/pls/apsweb/beamline display
pkg.beamline dir) is specialized in high energy X-ray diffraction and pair distribution function
(PDF) and allows X-ray wavelengths as low as 0.1 Å.
24 S. Brühne, E. Uhrig, K.D. Luther, W. Assmus, M. Brunelli, A.S. Masadeh, S.L. Billinge, PDF
from X-ray powder diffraction for nanometer-scale atomic structure analysis of quasicrystalline
alloys. Z. Kristallogr. 220, 962 (2005).
25 S.K. Pradhan, Y. Mao, S.S. Wong, P. Chupas, V. Petkov, Atomic-scale structure of nanosized
titania and titanate: particles, wires, and tubes. Chem. Mater. 19, 6180 (2007).
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D.B. Litvin, M.G. Rossmann, E. Arnold, S. Hall, and B. McMahon, Eds., is available online
as eReference at http://www.springeronline.com.

2. P. Coppens, X-ray charge densities and chemical bonding. IUCr Texts on Crystallography 4,
Oxford University Press, Oxford (1997).

3. V.G. Tsirelson and R.P. Ozerov, Electron density and bonding in crystals: principles, theory
and X-ray diffraction experiments in solid state physics and chemistry, Institute of Physics,
Bristol, UK (1996).

4. C. Giacovazzo, Direct phasing in crystallography: fundamentals and applications. IUCr mono-
graphs on crystallography 8, Oxford University Press, Oxford (1998).

5. T. Egami and S.J.L. Billinge, Underneath the Bragg peaks. Structural analysis of complex
materials. Pergamon Materials Series. Pergamon, Amsterdam (2003).

6. R.B. Neder and T. Proffen, Fitting of nano particle structures to powder diffraction pattern
using DISCUS, p. 49 in: CPD Newsletter “2D Powder Diffraction,” Issue 32 (2005), available
at http://www.iucr-cpd.org/pdfs/CPD32.pdf.

10.5 Problems

1. A material crystallizes in space-group symmetry Cmmm. After deconvoluting
a powder diffraction pattern collected from this material, a student computes the
Patterson function. He finds out that two strongest peaks in the Patterson function
have different coordinates (0,0,0 and 1/2,1/2,0) but identical heights. Is this result
expected, or was there some kind of an error made in his computations?

2. A total of 16 reflections have been chosen as a basis set for a direct phase determi-
nation attempt. Knowing that the crystal structure is centrosymmetric with none of
the atoms scattering anomalously, calculate how many different unrestricted combi-
nations of phases in the basis set are tested when computations are completed.



Chapter 11
Powder Diffractometry

The powder diffraction experiment is the cornerstone of a truly basic materials char-
acterization technique – diffraction analysis – and it has been used for many decades
with exceptional success to provide accurate information about the structure of ma-
terials. Although powder data usually lack the three-dimensionality of a diffraction
image, the fundamental nature of the method is easily appreciated from the fact
that each powder diffraction pattern represents a one-dimensional projection of the
three-dimensional reciprocal lattice of a crystal.1 The quality of the powder diffrac-
tion pattern is usually limited by the nature and the energy of the available radiation,
by the resolution of the instrument, and by the physical and chemical conditions of
the specimen. Since many materials can only be prepared in a polycrystalline form,
the powder diffraction experiment becomes the only realistic option for a reliable
determination of the crystal structure of such materials.

Powder diffraction data are customarily recorded in virtually the simplest possi-
ble fashion, where the scattered intensity is measured as a function of a single inde-
pendent variable – the Bragg angle. What makes the powder diffraction experiment
so powerful is that different structural features of a material have different effects
on various parameters of its powder diffraction pattern. For example, the presence
of a crystalline phase is manifested as a set of discrete intensity maxima – the Bragg
reflections – each with a specific intensity and location. When atomic parameters,
for example, coordinates of atoms in the unit cell or populations of different sites in
the lattice of the crystalline phase are altered, this change affects relative intensities
and/or positions of the Bragg peaks that correspond to this phase. When the changes
are microscopic, for example, when the grain size is reduced to below a certain limit
or when the material has been strained or deformed, then the shapes of Bragg peaks
become affected in addition to their intensities and positions. Hence, much of the
structural information about the material is embedded into its powder diffraction

1 We remind once again that imaging of the reciprocal lattice in three dimensions is easily doable
in a single crystal diffraction experiment.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 263
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 11,
c© Springer Science+Business Media LLC 2009
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pattern, and when experimental data are properly collected and processed, a great
deal of detail about a material’s structure at different length scales, its phase and
chemical compositions can be established.

11.1 Brief History of the Powder Diffraction Method

The X-ray powder diffraction method dates back to Debye and Scherrer2 who were
the first to observe diffraction from LiF powder and succeeded in solving its crys-
tal structure. Later, Hull3 suggested and Hanawalt, Rinn and Frevel4 formalized the
approach enabling one to identify crystalline substances based on their powder dif-
fraction patterns. Since that time the powder diffraction method has enjoyed enor-
mous respect in both academia and industry as a technique that allows one to readily
identify the substance both in a pure form and in a mixture in addition to its ability
to provide information about the crystal structure (or the absence of crystallinity) of
an unknown powder.

In the early days of the method, powder diffraction data were recorded on X-ray
film in a variety of cameras. Using film, the resulting diffraction pattern is usu-
ally observed as a series of elliptically distorted narrow concentric ring segments
(Fig. 11.1), where each ring corresponds to one or more Bragg peaks. Multiple
Bragg peaks may be convoluted into a poorly resolved or completely unresolved
single ring due to the limitations imposed by the one-dimensionality of the tech-
nique and by the resolution of both the film and the instrument, for example, the
Debye–Scherrer camera (Fig. 11.2).

From the locations of Debye rings on the film, plus their varying intensity (de-
gree of darkening), it is possible to identify the material and to establish its crystal
structure. Given the analogue nature of the film, it is nearly as easy to grasp the over-
all “structure” of the diffraction pattern, as it is difficult to convert it into a digital
format, and considerable effort is usually required to measure both the Bragg angles
and diffracted intensities with high precision.

2 P. Debye, and P. Scherrer, Interferenzen an regellos orientierten Teilchen in Röntgenlight, Phys. Z.
17, 277 (1916). Paul Scherrer (1890–1969) was a Swiss physicist, best known for developing
the powder diffraction method together with Peter Debye. Paul Scherrer Institute (PSI) located in
Villigen, Switzerland has been named after him in 1988. See the footnote on p. 152 about Peter
Debye.
3 A.W. Hull, A new method of chemical analysis, J. Am. Chem. Soc. 41, 1168 (1919). Albert W.
Hull (1880–1966), the American physicist credited with the invention of magnetron. He became
interested in X-ray diffraction after a colloquium given by Sir W.H. Bragg. A.W. Hull then pro-
ceeded with experiments and solved the crystal structure of elemental iron. Hull’s autobiography
may be found in the book “50 years of X-ray Diffraction,” P.P. Ewald, Ed. (IUCr, 1962, 1999).
The electronic version of Hull’s autobiography is available at http://www.iucr.org/ data/assets/
pdf file/0015/771/hull.pdf.
4 J.D. Hanawalt, H.W. Rinn, and L.K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng.
Chem. Anal. 10, 457 (1938).
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Bragg angle, θ (from 0 to 90°)

Fig. 11.1 Film with the X-ray diffraction pattern of the polycrystalline LuAu needle recorded in
a Debye–Scherrer camera using Cu Kα radiation. Bragg peaks are observed as concentric ring
segments with varying darkness and curvature. Spottiness of some rings, clearly visible at low
Bragg angles in the expanded view, indicates insufficient number of grains in the irradiated volume
of the sample, which was achieved by annealing the needle at 900◦C to promote grain growth (film
courtesy of Dr. Karl A. Gschneidner, Jr.).

Trap Collimator

Sample

Film

Fig. 11.2 Debye–Scherrer camera without a cover showing a cylindrical sample, collimator, inci-
dent beam trap, and the location of the X-ray film.

Cameras for X-ray powder diffraction are relatively simple but precise optical
instruments, and require a dark room for loading and developing the X-ray film.
Debye–Scherrer cameras (Fig. 11.2) were most commonly used in crystallographic
laboratories in the past, and many are still on display today. Debye–Scherrer cam-
eras are exceptionally reliable and nearly maintenance-free devices. When the cam-
era has been loaded with both the sample and the film, the entire diffraction pattern
was recorded simultaneously, in a single exposure (Fig. 11.3). The typical time to
register one powder diffraction pattern on film is from 1 to 3 h, depending on the
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Fig. 11.3 Two Debye–Scherrer cameras with covers, which have been loaded with X-ray film and
installed on the X-ray generator, ready for collecting powder diffraction data.

brightness of the source, radius of the camera, the crystallinity of the specimen, and
the sensitivity of the film.5

Powder diffraction data today are almost exclusively collected using much more
sophisticated analytical instruments – powder diffractometers (Fig. 11.4). A powder
diffractometer furnishes fully digitized experimental data in the form of diffracted
intensity as a numerical function of Bragg angle (see Fig. 11.5). By their nature,
powder diffractometer data are exceptionally well-suited for computerized process-
ing. They usually provide accurate information about the structure of materials, es-
pecially when coupled with Rietveld analysis,6 in which subtle anomalies of Bragg
peak shapes are used in addition to the integrated intensities of Bragg reflections to
extract important information about structural details.

Considering Fig. 11.5, the resolution of powder diffraction data collected us-
ing a powder diffractometer is usually much better than that achievable with X-ray
film data. This is illustrated in an expanded view, where two closely located Bragg
peaks (at 2θ ∼= 81.38◦ and 81.60◦) are easily recognizable. However, if one com-
pares Fig. 11.5 with Fig. 11.1, it is easy to see that X-ray film data are pseudo two-
dimensional, since they enable one to examine the distribution of intensity along
Debye rings in addition to the distribution of intensity as a function of Bragg an-
gle. The fundamental one-dimensionality of conventional powder diffractometer

5 It may take as much as 12 to 24 h, especially when using low energy X-rays (e.g., Cr Kα radia-
tion) in combination with a highly absorbing powder and a large camera radius.
6 The Rietveld method is considered in Sect. 15.7.
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Fig. 11.4 The overall view of a powder diffractometer. On the right, the radiation enclosure is
opened to expose the goniometer, which rests on top of the high voltage power supply. The com-
puter on the left is used to manage and control data collection and to carry out preliminary process-
ing of the data, e.g., conversion from a software-specific binary to ASCII format.

data implies that the experimentalist should be fully aware of potential pitfalls of
the technique, which are often associated with improper preparation of the sample
and/or with improper selection of data collection parameters and conditions.

Despite the undeniable historical significance, X-ray film data are seldom em-
ployed today in a practical powder diffraction analysis, and in this book we are only
concerned with powder diffractometry. An interested reader is referred to several
excellent texts which are dedicated to the analysis of film data, for example, those
written by Azaroff and Buerger,7 Lipson and Steeple,8 Klug and Alexander,9 and
Cullity.10

The last few decades of the twentieth century transformed the powder diffraction
experiment from a technique familiar to a few into one of the most broadly practi-
cable analytical diffraction experiments, particularly because of the availability of a

7 L.V. Azaroff, and M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill,
New York (1958).
8 H. Lipson, and H. Steeple, Interpretation of X-ray powder diffraction patterns, Macmillan,
London/St Martin’s Press, New York (1970).
9 H.P. Klug, and L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous
materials, Second edition, Wiley, New York (1974).
10 B.D. Cullity, Elements of X-ray diffraction, Second edition, Addison-Wesley, Reading,
MA (1978).
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Fig. 11.5 The X-ray powder diffraction pattern of polycrystalline LaNi4.85Sn0.15 recorded on a
Rigaku TTRAX rotating anode powder diffractometer using Cu Kα radiation. The expanded view
shows three Bragg peaks between 80◦ and 84.5◦ 2θ. Each of the Bragg peaks consists of nearly
resolved Kα1/Kα2 doublets. The Kα2 component of the strongest Bragg peak (113) at 2θ∼= 81.6◦

is completely overlapped with the Kα1 component of the second Bragg peak (032) at 2θ∼= 81.6◦.
The Kα1 component of 113 peak at 2θ∼= 81.38◦, the sum of the 113 Kα2 and 032 Kα1 components
at 2θ ∼= 81.6◦ and the 032 Kα2 component at 2θ ∼= 81.82◦ are well-resolved. Every point in the
inset represents a single experimental measurement, Y (2θi). The lines connecting the data points
are guides for the eye.

much greater variety of sources of radiation – sealed and rotating anode X-ray tubes
were supplemented by intense neutron and brilliant synchrotron radiation sources.
Without doubt, the accessibility of both neutron and synchrotron radiation sources
started a revolution in powder diffraction, especially with respect to previously
unimaginable kinds of information that can be extracted from a one-dimensional
projection of the three-dimensional reciprocal lattice of a crystal. Yet, powder dif-
fraction fundamentals remain the same, no matter what the brilliance of the source
of particles or X-ray photons employed to produce diffraction peaks, and how basic
or how advanced is the method used to record the powder diffraction data.

The conventional analytical powder diffractometer has been, and hitherto con-
tinues to be a workhorse for thousands of researchers, both mature, and those who
are just at the beginning of their careers in science and industry. Appropriately, this
chapter is illustrated by many examples obtained using standard analytical instru-
ments. Needless to say that when a more advanced radiation source is used to study
the phenomenon of powder diffraction from the same quality specimen, this will
only result in a better (i.e., more accurate) set of experimental data.
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11.2 Beam Conditioning in Powder Diffractometry

As mentioned in Sect. 11.1, beginning approximately in the 1970s, powder cameras
and X-ray film were steadily replaced by automated analytical instruments – powder
diffractometers. Despite a large variety of both commercial and one-of-a-kind appa-
rati found in analytical laboratories around the world, nearly all of them have many
common characteristics dictated by the properties of X-rays.11 Since standard X-ray
tubes produce divergent beams, most of the high resolution powder diffractometers
use self-focusing geometries, which improve both the diffracted intensity and the
resolution of the instrument. This is usually achieved by highly precise X-ray optics,
which is incorporated into the critical part of powder diffractometer hardware – the
goniometer (or goniostat) – and by a thorough alignment of the latter.

The most common features of focusing optics in powder diffractometry are sum-
marized in Fig. 11.6. Focusing powder diffractometers usually operate in the so-
called θ – 2θ or θ – θ scanning regimes (or scanning modes), where the incident and
diffracted beams both form the same angle θ with the surface of a flat sample, while
the diffracted beam forms a 2θ angle with the incident beam (also see Fig. 11.15).
The directions of beams are shown by arrows in Fig. 11.6 and in other schematics
in this chapter.

F F
SoS SoS

DS DS

Sample Sample

RS RS

ScS ScS
SoS SoS

M
D

D

Fi

Fig. 11.6 Typical focusing optics employed in modern powder diffractometry: without (left) and
with (right) the diffracted beam monochromator. F – focus of the X-ray source; SoS – Soller
slits; DS – divergence slit; Fi – β-filter; ScS – scatter slit (optional); RS – receiving slit; M –
monochromator; D – detector. In each case, both the focal point of the source and the receiving slit
are equidistant from the common goniometer axis, which coincides with the center of the sample,
and are located on the surface of a cylinder – goniometer circle. The latter is shown using a dashed
line. The Soller slit, seen in the expanded view, is constructed from multiple thin parallel plates
to limit the divergence of the beam in the direction perpendicular to the plate surfaces (and to the
plane of the figure) usually to within 1–5◦. Both schematics are not to scale. Also, see Figs. 11.16,
11.17, and 11.22–11.24.

11 In this book we are predominantly concerned with the so-called Bragg-Brentano focusing geom-
etry. Other types of geometries, e.g., those using Seemann-Bohlin and Guinier geometries, will not
be considered here because their use in the determination and refinement of crystal structure from
powder diffraction data is limited, when compared to the Bragg-Brentano technique.
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The incident beam passes through at least two slits before reaching the sample.
The so-called Soller slit limits the divergence of the incident beam in the direc-
tion perpendicular to the plane in which the diffracted intensity is measured, also
known as out of plane or axial divergence. Axial divergence of the incident beam
is not shown in Fig. 11.6. The divergence slit establishes the in-plane aperture of
the incident beam and the in-plane divergence. Since the sample is irradiated by the
divergent incident beam, the diffracted beam converges (self-focuses) at the receiv-
ing slit, which is located at the same distance from the center of the sample as the
focal point of the source. These two distances remain constant at any Bragg angle,
and both the focal point of the X-ray source and the receiving slit of the detector
are located on the circumference of an imaginary circle (cylinder), which is known
as the goniometer circle. The radius of the goniometer circle is identical to the go-
niometer radius.

The diffracted beam passes through the second Soller slit before reaching the
detector when no monochromator is employed (Fig. 11.6, left), or it is reflected in
a crystal-monochromator on its path to the detector (Fig. 11.6, right). An additional
scatter slit, located before the receiving slit, can be employed to reduce the back-
ground. The Soller slit on the diffracted beam side can be placed between the scatter
and receiving slits.

The diffracted beam is monochromatized using a β-filter (Fig. 11.6, left) or
a crystal monochromator (Fig. 11.6, right). Sometimes the monochromatization
geometries shown in Fig. 11.6 are reversed, that is, the incident beam rather than
the diffracted beam is monochromatized using either a β-filter or a crystal mono-
chromator. The monochromatization of the diffracted beam is advantageous in that
fluorescent X-rays (which may be quite intense in some combinations of samples
and photon energies, e.g., see Sect. 8.6.5, and/or Fig. 11.25) can be suppressed, thus
reducing the background.

The common optical features described here may be realized in several different
ways in the actual hardware designs of powder diffractometer goniostats and thus,
goniometers differ from one another by:

– The orientation of both the goniometer axis and specimen surface (or specimen
axis) with respect to the horizon, that is, they may be located in a vertical or
horizontal plane.

– Diffraction geometry – reflection or transmission – when scattered intensity is
registered after the reflection from or after the transmission through the sample,
respectively.

– Motions of the goniometer arms, that is, according to which arms of the goniome-
ter are movable and which are stationary.

Both the polychromatic nature and the angular divergence of the primary X-ray
beam generated using either a sealed or rotating anode X-ray tube (see Sect. 6.2
and Figs. 6.3–6.6) result in complex diffraction patterns when X-rays are employed
in the “as produced” condition. This occurs since (1) white radiation causes a high
background; (2) the presence of the three intense characteristic lines (Kα1, Kα2 and
Kβ) in the spectrum results in three Bragg peaks from each set of crystallographic
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planes (i.e., from each point in the reciprocal space), and (3) the angular divergence
in all directions yields broad and asymmetric Bragg peaks. Thus, the incident X-
ray beam needs to be modified (conditioned) in order to improve the quality of the
powder diffraction pattern.

Angular divergence (dispersion) can be reduced by collimation – the process of
selecting electromagnetic waves with parallel or nearly parallel propagation vectors.
The undesirable satellite wavelengths can be removed by various monochromatiza-
tion approaches – the processes that convert polychromatic radiation into a single
wavelength (Kα1 or Kβ in conventional X-ray sources, or narrow bandwidth using a
synchrotron source) or at least into a double wavelength (Kα1 plus Kα2) beam. The
Kα1 plus Kα2 doublet wavelength is, by and large, the only acceptable combination
of polychromatic X-rays that is in common use today.

The main problem in both collimation and monochromatization is not in how
to reduce both the angular and wavelength (energy) dispersions, but how to do so
with the minimal loss of intensity (photon flux) of both the incident and diffracted
beams. Needless to say, different diffraction methods require a different degree of
collimation and monochromatization. Thus, high resolution or low-angle scattering
applications usually require parallel and narrow beams containing a single wave-
length, while routinely used powder diffractometers have less strict requirements.
For example, the commonly used Bragg–Brentano focusing technique was specifi-
cally developed to work well with slightly divergent incident beams, and this focus-
ing method will not produce the best results when coupled with a perfectly parallel
incident beam.

11.2.1 Collimation

The simplest collimation can be achieved by placing a slit between the X-ray source
and the sample, as shown in Fig. 11.7, top left. The angular divergence of thus
collimated beam is established by the dimensions of the source, the size, and the
placement of the slit. This slit is called the divergence slit (DS in Fig. 11.6), and in
the majority of powder diffractometers, the placement of the divergence slit is fixed
at a certain distance from the X-ray tube focus.

Considering the geometry shown in Fig. 11.7 and assuming that the distance
between the slit and the tube focus is much larger than the slit opening, the angular
divergence of the collimated beam, that is, the angle α is given as:

α(◦) ∼= 180
π

D+S
L

(11.1)

where D is the divergence slit opening in mm, S is the width of the focus of the
X-ray tube (in mm) visible at a take-off angle ψ, and L is the distance between
the tube focus and the slit in mm. Since S and L are usually fixed, the variable
beam divergence is customarily achieved by varying the slit opening, D. A second
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Fig. 11.7 The schematic showing collimation of the incident X-ray beam by using a single di-
vergence slit (top, left) or coupled divergence slits (top, right). The schematic on the bottom left
illustrates the size of the source (S) when the projection of the cathode (C) is viewed at a take-off
angle, ψ.12 Equation (11.1) is derived on the bottom, right.

divergence slit can be placed further on the way of the beam to provide additional
collimation, as shown in Fig. 11.7 (top right).

Both collimation methods shown in Fig. 11.7 are commonly used in powder dif-
fractometers that are employed for routine powder diffraction experiments.13 High
resolution and low-angle scattering diffractometers require better and therefore,
more complex collimation, which to some extent overlaps with the monochroma-
tization described in Sect. 11.2.2, but otherwise is not considered in this book.14

Divergence slits reduce angular dispersion of the incident X-ray beam in the
plane perpendicular to the goniometer axis; in other words, they are used to control
the in-plane divergence. Angular divergence in the direction parallel to the goniome-
ter axis, that is, the axial divergence is controlled by using the Soller slits. Soller slits
are usually manufactured from a set of parallel, equally spaced thin metal plates, as
shown in Fig. 11.8 (top).

12 For a line focus, a typical width of the cathode projection C = 1 mm; a typical take-off angle
ψ = 6◦. Hence, a typical size of the source in powder diffraction is S ∼= 0.1mm.
13 Note that the two-slit configuration, in which the top and the bottom edges of the focal spot
lie on the same lines as top and bottom edges of both slits, respectively, provides a more even
distribution of intensities in the incident beam when compared to the one-slit configuration.
14 Advanced collimation and monochromatization techniques are described in: D.K. Bowen
and B.K. Tanner, High resolution X-ray diffractometry and topography, Taylor & Francis,
London/Bristol, PA (1998).



11.2 Beam Conditioning in Powder Diffractometry 273

l

d

α

Divergence
Slit

Soller
Slits

Propagation
vector

In
-p

la
ne

di
ve

rg
en

ce

Propagation 
vector 

A
xi

al
 

di
ve

rg
en

ce
 

Fig. 11.8 The schematic showing how the X-ray beam is collimated by using both the divergence
and Soller slits (top). The beam, collimated in-plane by the divergence slit, is further collimated
axially by the Soller slits. The coordinates in the middle of the drawing indicate the corresponding
directions. The bottom part of the figure illustrates the analogy of (11.2) with (11.1).

Each pair of the neighboring plates works like a regular divergence slit. The
major differences in the design of Soller slits, when compared to divergence slits, is
in the requirement to minimally affect the in-plane size of the beam, regardless of the
distance between the plates. This is done to maximize the intensity of the incident
beam and thus, to maintain the high quality of powder diffraction patterns. Soller
slits, installed on both the primary and diffracted beam paths, substantially reduce
axial divergence of the X-ray beam and asymmetry (see Sect. 8.5.2) of Bragg peaks.
The axial divergence of the beam collimated by Soller slits can be estimated in the
same way as for a single divergence slit:

α(◦) ∼= 180
π

2d
l

(11.2)

where d is the distance between the parallel plates in mm and l is the plate length
(also in mm) as shown at the bottom of Fig. 11.8. Thus, the axial divergence can be
reduced or increased by varying either or both the length of the plates (l) and the
distance between them (d).
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11.2.2 Monochromatization

In addition to collimation, the X-ray beam should be monochromatized by reducing
the intensity of white radiation, and by eliminating the undesirable characteristic
wavelengths from the X-ray spectrum, leaving only a single usable wavelength. As
noted earlier, when conventional X-ray sources are employed, the two-wavelengths
beams (Kα1 plus Kα2) are acceptable because the complete removal of the Kα2
component substantially reduces the intensity of the incident beam and therefore,
increases the time of the experiment needed to obtain high-quality X-ray diffraction
data. When synchrotron sources are used, the monochromatization process selects a
single wavelength from a continuous X-ray spectrum. The most common methods
utilized in the instrumental monochromatization of X-ray beams are as follows:

– Using a β-filter (conventional X-ray sources only).
– Using diffraction from a crystal monochromator (any source, including neu-

trons).
– Pulse height selection using a proportional counter (X-rays).
– Energy resolution using a solid-state detector (X-rays).

The monochromatization using a β-filter employs the presence of the K absorp-
tion edge (see Fig. 8.20) to selectively absorb Kβ radiation and transmit the Kα1
and Kα2 parts of the X-ray spectrum, as shown in Fig. 11.9. Thus, a properly se-
lected β-filter material has its K absorption edge below the wavelength of the Kα1
characteristic line, and just above the wavelength of the Kβ line.15
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Fig. 11.9 Left – the schematic of the X-ray emission spectrum shown as the solid line overlapped
with the schematic of the μ(λ) function of the properly selected β-filter material (dotted line). Right
– the resultant distribution of intensity after filtering as a function of the wavelength.

15 Better monochromatization can be achieved when using the so-called balanced filters. The first
filter material is chosen to suppress Kβ and other short wavelengths. The second filter material is
selected such that its K absorption edge is located above the wavelength of the Kα2 component
and the thickness of each material is selected to equally suppress the Kβ intensity. As a result,
the balanced filter reduces the intensity of both short and long wavelengths. Balanced filters are



11.2 Beam Conditioning in Powder Diffractometry 275

The general rule for choosing the β-filter is to use a material, which is rich in a
chemical element, one atomic number less than the anode material in the periodic
table. This assures proper location of the K absorption edge, that is, between the
Kα1 and Kβ lines. For heavy anode materials (e.g., Mo), this rule can be extended
to two atomic numbers below the element of the anode. A list of β-filter elements,
suitable for the most commonly used anode materials, is found in Table 8.3. Thus,
for a Cu anode, a foil made from Ni will work best as the β-filter, while for Mo
radiation both Nb and Zr are good β-filters. The former material (Zr) is more often
used in practice because its K absorption edge is closer to the wavelength of the
Kα1 line.

The major disadvantages of β-filters are: (1) they are incapable of complete elim-
ination of the Kβ intensity, and (2) they leave a considerable amount of white radia-
tion after filtering. Further, any β-filter also reduces all intensities in the spectrum at
wavelengths higher than the corresponding absorption edge (see Fig. 11.9). This re-
sults in the reduction of the intensity of the Kα1,2 components, although obviously
the latter are reduced by a much smaller factor than the intensity of the Kβ line.
Fundamentally, the use of a β-filter improves IKα/IKβ and IKα/Iwhite ratios and this
improvement is proportional to the thickness of the filter. For example, assume that
the ratio of the intensities of the Kα1 and Kβ spectral lines in the unfiltered spectrum
is approximately 5:1. After passing through a properly designed β-filter, it becomes
∼100–500 to 1.

Considering (8.50) and the as-produced ratio of intensities between Kα1 and Kβ
lines (5:1), the filtered IKα1/IKβ intensity ratio can be expressed as follows:

IKα1

IKβ
= 5

exp(−μαt)
exp(−μβt)

(11.3)

where μα and μβ are the linear absorption coefficients of the filter material for λKα
and λKβ, respectively, and t is the thickness of the β-filter. This equation can also
be used to calculate the filter thickness, t, which is necessary to obtain the desired
IKα/IKβ ratio. Thus, depending on the particular need and the application, a com-
promise is made between the purity of the spectrum and the intensity of the Kα
radiation.

A different and more complex, but much improved monochromatization ap-
proach takes advantage of diffraction from a high-quality single crystal, properly
positioned with respect to the propagation vector of X-rays. The examples of com-
monly used crystal monochromator materials include pyrolitic graphite, Si, Ge,
and LiCl.

A nearly perfect single crystal is placed at a specific angle (θM) with respect to
the primary or the diffracted X-ray beams and, according to the Braggs’ law (7.9),
only discrete wavelengths can be transmitted at this angle. Assuming that n = 1,
the single transmitted wavelength, λt , is a function of the corresponding interplanar
distance of the crystal, dM

hkl , and θM . In reality, even the best crystal monochromators

seldom used today because the resulting intensity loss is usually higher when compared with a
well-aligned crystal-monochromator.
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Fig. 11.10 The schematic explaining the principle of monochromatization using a single crystal
monochromator. Generally θM ∼= (θ2 +θ1)/2. The directions of the propagation vectors are indi-
cated by arrows.

always allow some wavelength dispersion in the transmitted beam because of the
unavoidable imperfections.

2dM
hkl sinθM = nλt (11.4)

The general principle of operation of a single crystal monochromator is illustrated
in Fig. 11.10. The X-rays in the divergent beam that reach the monochromator form
slightly different angles (ranging from θ1 to θ2) with the crystal. They are reflected
from the set of crystallographic planes, hkl, which are parallel to the crystal surface.

According to Braggs’ law (7.9), both the incident and diffracted beams with iden-
tical wavelengths should form the same angle with the surface of the crystal. Hence,
each wavelength, λi, is diffracted at a particular angle θ1 ≤ θi ≤ θ2 which yields an
uneven spatial distribution of wavelengths in the beam reflected by the crystal. In
effect, the shorter wavelengths are grouped at the low Bragg angles (they are darker
in Fig. 11.10) and the longer wavelengths are observed at the high Bragg angles
(they are lighter in Fig. 11.10). For example, the Kβ line falls into the low Bragg
angle range and the Kα1/Kα2 doublet falls into the high angle range. The former
or the latter can be easily selected by a narrow slit properly installed in the path of
X-rays reflected by a crystal monochromator.

Even though the diffracted beam is not perfectly monochromatic at any specific
angle due to various imperfections (defects, distortions, stresses, etc.) present in the
crystal monochromator, the separation of Kα and Kβ wavelengths is large enough to
allow easy elimination of the Kβ and nearly all white X-rays during the monochrom-
atization. However, the separation of Kα1 and Kα2 wavelengths requires more than
just a simple arrangement shown in Fig. 11.10. The wavelength (photon energy)
resolution can be improved by using diffraction from two or more monochromators
placed in sequence. We note that the diffraction from the sample, in the first ap-
proximation, works as a preliminary monochromator. Thus, the distribution of the
wavelengths may be assumed as uniform in the whole range of incident angles (from
θ1 to θ2 in Fig. 11.10) but this is no longer the case in the beam reflected by the first
monochromator or by the sample.

The following two configurations (parallel and angular), which are shown in
Fig. 11.11, are in common use to improve the monochromatization of the beam.
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Fig. 11.11 Parallel (left) and angular (right) arrangements of two crystal monochromators or the
sample and the crystal monochromator commonly used to improve the monochromatization of the
resultant X-ray beam.

Both diffracting plates can be crystal monochromators, or one can be the sample
while another is the monochromator. The latter arrangement is especially common
in powder diffractometry.

Two parallel plates (Fig. 11.11, left) remove the Kβ line completely. The Kα1
and Kα2 doublet can be separated at specific conditions when the first plate is used
as a monochromator, but at a cost of the reduced beam intensity. When the second
plate is used as monochromator, the resultant intensity is higher but the Kα1/Kα2
doublet is nearly impossible to separate. This layout also improves the collimation
of the beam. The second arrangement (Fig. 11.11, right) is more efficient. Angu-
lar orientation of the two crystals separates Kα1 and Kα2 lines quite well due to
the larger spatial difference between the two wavelengths after diffraction from the
second plate. Yet again, this is usually done at a considerable intensity loss penalty.

The three most common geometries of a crystal monochromator and a sample,
used in powder diffraction, are illustrated in Fig. 11.12, and their characteristics are
compared in Table 11.1. Diffracted beam monochromators (Fig. 11.12a, b) have a
relatively high intensity output (or in other words, have low intensity losses) but do
not separate the Kα1 and Kα2 doublet. The removal of both the Kβ component and
white radiation is excellent. The latter is especially important when the sample is
strongly fluorescent. The diffracted beam monochromators, by far, are more com-
monly used than the primary beam monochromators. The advantage of the angular
configuration (Fig. 11.12b) is in the lower torque exerted on the detector arm when
compared with the linear configuration, but the crystal surface should be curved to
match the radius of the monochromator focusing circle for best results.

The most important advantage of the primary beam monochromator (Figs. 11.12c
and 11.13) is the possibility to separate the Kα1/Kα2 doublet,16 which is especially
important when working with complex diffraction patterns where the maximum
resolution of Bragg peaks is critical. A primary beam monochromator is the only
type of geometry that can be used with area detectors (see Sect. 6.4.4). The main
disadvantages are relatively high intensity losses, the need for precise alignment,
and potential for high fluorescent background in some combinations of materials
and photon energies.

16 This is usually achieved by using curved Johansson-type crystal monochromators, first described
by T. Johansson, Über ein neuartiges, genau fokussierendes Röntgenspektrometer. Z. Physik 82,
507 (1933).
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Fig. 11.12 The three different monochromator/sample geometries used in powder diffraction: (a)
flat diffracted beam monochromator, parallel arrangement; (b) curved diffracted beam monochro-
mator, angular arrangement, and (c) flat primary beam monochromator, parallel arrangement. F –
focus of the X-ray source, S – sample, M – crystal monochromator, D – detector, RM – radius of
the monochromator focusing circle, RG – radius of the goniometer focusing circle.

Table 11.1 Comparison of the three common monochromator/sample configurations used in pow-
der diffractometry.

Property aa b c

Position in the beam Diffracted Diffracted Primary
Orientation relatively the sample Parallel Angular Parallel
Shape of the crystal Flat/curved Curved Flat/curved
Intensity loss Low Low Low/high
Kα1 and Kα2 separation No No No/complete
Alignment Simple Simple Simple/complex
Additional torque on the detector arm High Low None
Use with area detectors Impossible Impossible Possible
a Labeling of the columns corresponds to Fig. 11.12.

Monochromatization by pulse height selection using a proportional detector is
based on the fact that the signal generated in the detector is generally proportional
to the energy of the absorbed X-ray photon and therefore, inversely proportional to
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Fig. 11.13 Powder diffraction patterns collected from the same Gd5(Si1.5Ge1.5) specimen using
Cu Kα radiation. The patterns shown at the bottom of both the main panel and the inset were
recorded using a strip detector and a diffracted beam monochromator (the Kβ component of the
characteristic spectrum was eliminated but the Kα2 component was not). The patterns on top have
been recorded using the primary beam Johansson monochromator, which results in purely mono-
chromatic Cu Kα1 radiation. The increased background in the top patterns is due to high fluores-
cence of Gd. Data are courtesy of Dr. Y. Mudryk.

its wavelength (see Sect. 6.4.3). Monochromatization by pulse height selection is far
from ideal, and it does not even result in the complete elimination of the Kβ inten-
sity. Nevertheless, its use substantially improves the quality of powder diffraction
data by reducing the background noise, especially when combined with a β-filter.

Cooled solid-state detectors find more and more use as both detectors and mono-
chromators because of their extremely high sensitivity to the energy of absorbed
photons, which enables precise energy discrimination. Thus, the detector can be
tuned to register wavelengths only within certain limits, for example, Kα1 and Kα2
energies, or in some of the most recent applications, only Kβ component. The latter
is one of the ways to obtain single wavelength X-rays without using crystal mono-
chromators and, therefore, without a substantial loss of intensity except for the fact
that the intensity of the Kβ line is only ∼1/5 of the intensity of the Kα1 line. An-
other advantage of this approach is a clean, registered, diffraction pattern because
the majority of white radiation is also eliminated. The disadvantages of this mono-
chromatization technique arise from the limitations intrinsic to solid-state detection
(see Table 6.3 and Fig. 6.10).
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11.3 Principles of Goniometer Design in Powder Diffractometry

As shown in Fig. 11.14 (left), when the examined specimen is parallel to the horizon,
(horizontal goniometer design), it has an obvious advantage in that no special care
is required to hold the powder in the sample holder – the powder is simply held by
gravity. Further, the sample surface is easily aligned in a horizontal plane using, for
example, a level. The disadvantage of this design is that motions of the detector arm
(and in some cases motions of the source of X-rays) occur in a vertical plane, thus
requiring powerful stepping motors and precise counterbalancing to control heavy
goniometer arms with the required precision, usually on the order of 1/1,000 of a
degree.

On the other hand, the simplicity of the goniometer arms motion in a horizontal
plane, when the sample is located in a vertical plane (Fig. 11.14, right), is offset by
the need of more complicated sample preparation to ensure that it stays in place and
does not fall of. This is usually achieved by side packing the sample holder or by
mixing a powder with a binder (e.g., X-ray amorphous and chemically inert petro-
leum jelly, oil, grease or varnish), which typically increase preferred orientation or
background, respectively (see Sect. 12.1 for more details on sample preparation).

The orientation of the sample usually establishes the orientation of the goniome-
ter axis, that is, the axis around which both the detector and sample (or both the
detector and X-ray source) rotate in a synchronized fashion during θ− 2θ or θ−θ
data collection. A horizontal sample orientation implies that the goniometer axis
is located in the horizontal plane, and a vertical sample orientation makes the go-
niometer axis vertical, as depicted in Fig. 11.14.

The reflection geometry takes full advantage of the focusing of the diffracted
beam as shown in Fig. 11.15. This geometry is commonly known as the Bragg–
Brentano focusing method and it results in both high resolution and high diffracted
intensity. Moreover, the Bragg–Brentano experimental setup translates into a rel-

Source Detector

Source Detector

Fig. 11.14 Horizontal (left) and vertical (right) orientations of a flat sample. The location of the
goniometer axis is shown using a dash-double dotted line with small filled circles at the ends. The
dashed line indicates the location of the optical axis, which is the line connecting the focus of
the X-ray tube, the receiving slit and the sample surface in the reflection geometry, or the sample
center in the transmission geometry at θ = 2θ = 0◦.
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Fig. 11.15 The schematic of the ideal focusing geometry (left) and its common modification
known as the Bragg–Brentano geometry using a flat sample (right) when the self-focused dif-
fracted beam is registered by the detector after reflection from the sample. F – focus of the X-ray
source, DS – divergence slit, RS – receiving slit, D – detector, θ – Bragg angle. To achieve the ideal
focusing of the reflected divergent beam, the curvature of the sample must coincide with the cir-
cumference of the focusing circle as indicated by two dotted circles of different radius on the left.
This is impractical because the curvature of the specimen becomes a function of the Bragg angle,
and therefore, flat specimens are employed instead.
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Fig. 11.16 Transmission geometry in the case of flat (left) and cylindrical (right) samples. F –
focus of the X-ray source, DS – divergence slit, RS – receiving slit, θ – Bragg angle.

atively straightforward sample preparation, and when this diffraction geometry is
coupled with the horizontal goniometer axis, the sample can be in a liquid state.

A disadvantage of the Bragg–Brentano geometry, in addition to being suscep-
tible to preferred orientation, is in that it may be difficult to prepare a sample of
an adequate thickness to ensure that it is completely opaque to X-rays. This is es-
pecially true when examining weakly absorbing materials, for example, molecular
compounds containing only light elements (C, N, O, and H).17

The two commonly employed transmission geometries are shown in Fig. 11.16.
Powder diffraction in the transmission mode can be observed from both flat and
cylindrical samples. Flat samples usually require small amounts of material, how-
ever, the preparation of high quality and uniformly dense specimen may be difficult.

Cylindrical samples, which were common in the Debye–Scherrer cameras
(Fig. 11.2), are also used in powder diffractometry. Similar to flat transmission
samples, small amounts of powder are required in the cylindrical specimen geom-
etry. This form of the sample is least susceptible to the nonrandom distribution of

17 Low absorption may affect positions of Bragg peaks due to transparency shift (Chap. 8,
Sect. 8.4.2) and/or systematically distort scattered intensity (Chap. 8, Sect. 8.6.5).
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particle orientations, that is, to preferred orientation effects, as long as the cylinder
is spinning during data collection.

Both flat and cylindrical transmission samples are commonly used in combina-
tion with position sensitive or image plate detectors. The major disadvantage of the
transmission geometry arises from the fact that self-focusing of the diffracted beam
is not as precise as in the Bragg–Brentano geometry. Hence, laboratory instruments
employing transmission geometry usually have lower resolution when compared to
those operating in the reflection geometry. It is worth noting that imprecise self-
focusing is generally not an issue when using synchrotron X-ray sources, which
produce nearly parallel X-ray beams.

Powder diffractometer goniostats can be constructed in a way that both the de-
tector and the sample revolve around a common goniometer axis in a synchronized
fashion, or the sample is stationary, but both the detector and the X-ray source arms
rotations are synchronized, as shown in Fig. 11.17. When cylindrical samples are
employed, generally there is no need in the synchronization of the goniometer arms,
and only the detector arm (if any, e.g., see Fig. 11.23, below) should be rotated.

The schematic of a goniostat, which realizes horizontal Bragg–Brentano focus-
ing geometry with both the detector and source arms in the synchronized rotation
about a common horizontal goniometer axis, is shown in Fig. 11.18. Both arms of
the goniometer revolve in the vertical plane, and this geometry of a powder diffrac-
tometer is in the most common use today.

Some powder diffractometers, particularly those which are used for routine
analysis of multiple samples of the same kind, can be equipped with multiple sam-
ple changers (usually from 4 to 12 specimens can be accommodated by a single
sample changer). This ensures straightforward software control over the data collec-
tion process within a series of samples and enables better automation, as data sets
from multiple samples may be collected without operator intervention, for example,
overnight or during a weekend. Multiple sample changers are common in powder
X-ray diffractometers used in analytical laboratories for quality-control purposes.
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Fig. 11.17 Synchronization of the goniometer arms: the X-ray source is stationary while the sam-
ple and the detector rotations are synchronized to fulfill the θ− 2θ requirement (left); the sample
is stationary while the source and the detector arms are synchronized to realize the θ−θ condition
(middle) – this geometry is in common use at present; only the detector arm revolves around the
goniometer axis in the case of a cylindrical sample (right). F – focus of the X-ray tube indicating
the position of the X-ray source arm, D – detector arm, θ – Bragg angle. The common goniometer
axis (which is perpendicular to the plane of the projection) around which the rotations are synchro-
nized is shown as the open circle in each of the three drawings. The location of the optical axis is
shown as the dash-dotted line.
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Fig. 11.18 The schematic of a goniostat of a powder diffractometer with the horizontal axis and
synchronized rotations of both the source and detector arms. R – is the radius of the goniometer.

For example, when multiple samples have to be analyzed to ensure adequate prop-
erties of a product when they are critically dependent on the structure and/or the
phase composition of a material that has been manufactured in different batches, or
from the same batch but at various stages of the production process.

11.3.1 Goniostats with Strip and Point Detectors

Photographs of several different powder diffractometer goniostats equipped with
strip and point detectors are shown in Figs. 11.19, 11.21, and 11.22, respectively.
The first example (Fig. 11.19) is a Bragg–Brentano goniometer, where the X-ray
source housing is rigidly mounted on the goniometer frame, and it remains sta-
tionary during data collection. The θ− 2θ mode is achieved by synchronizing the
rotations of the sample holder and the detector around the common horizontal go-
niometer axis, as shown schematically in Fig. 11.17 (left).

The variable slit box located between the X-ray source and the sample
(Fig. 11.19, left) contains divergence slit, which controls the aperture and the diver-
gence of the incident beam in the vertical plane. Soller slit, which limits the diver-
gence of the incident beam in the horizontal plane, is located just before the incident
beam variable slit box. The sample holder here is a sample spinner attachment.

The second variable slit box is located on the detector arm between the sample
and the detector. In this setup, the slit plays the role of a scatter slit, rather than a
receiving slit. It is followed by another Soller slit positioned just before the detector.
The detector here is a real-time multiple strip detector (trade name X’Celerator),
which speeds up data collection by measuring about 2◦ of 2θ simultaneously, as
shown in Fig. 11.20. Hence, as the Bragg angle changes, the strip detector regis-
ters intensity scattered over a small range of Bragg angles rather than at a single
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Fig. 11.19 The overall view of the goniostat of the PANalytical X’Pert powder diffractometer.
This diffractometer has the horizontal goniometer axis, stationary X-ray source and synchronized
rotations of both the detector arm and sample holder. The goniometer is equipped with a Johansson-
type primary beam monochromator, which eliminates Cu Kα2 or Co Kα2 wavelengths in addition
to Kβ components of the characteristic spectrum, and a solid state real time multiple strip detector,
which accelerates data collection.
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Fig. 11.20 The schematic of focusing in the Bragg–Brentano geometry when the real time multiple
strip detector (see Fig. 6.12) is utilized. F – focus of the X-ray source, DS – divergence slit, ScS –
scatter slit, RTMS – strip detector.

angular position. A narrow range of the registered Bragg angles allows for mono-
chromatization of the scattered beam using a crystal monochromator, even though
the intensity loss is greater when compared with a well-aligned monochromator and
a point detector.

Another example of a goniostat with the Bragg–Brentano geometry, horizontal
axis, and two movable arms is shown in Fig. 11.21. This is a θ− θ goniometer
and the rotations of both arms are synchronized, while the sample surface remains
horizontal. This particular diffractometer is equipped with two detectors: solid state
(trade name SolX) detector (Fig. 11.21, left) and real-time multiple strip (trade name
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Fig. 11.21 The overall view of the goniostat of the Bruker D8 Advance powder diffractometer.
It has the horizontal goniometer axis and synchronized rotations of both the X-ray source and
the detector arms. This particular diffractometer is equipped with two interchangeable detectors:
SolX solid state point detector that efficiently discriminates either Kα or Kβ energies with a low
background noise (left) for high resolution data, and a LynxEye multiple strip detector (right) for
fast data collection.

LynxEye) detector (Fig. 11.21, right). Both detectors are suitable for Cu K or Mo K
radiation. Optical features on the detector side are slightly different: the strip detec-
tor has a combination of a scatter slit (also see Fig. 11.20), an optional β-filter, and
a Soller slit located between the sample and the detector with no detector receiving
slit, while the solid state detector uses both scatter and receiving slits plus a Soller
slit. This goniometer is equipped with a 9-sample changer that allows spinning a
sample in a horizontal plane.

The strip detector is usually employed for fast data collection since it simultane-
ously records approximately 3◦ of 2θ range in a standard setup with a 2171/2 mm
goniometer radius. A typical experiment lasts less than an hour, yet it provides
good-quality patterns. A 5–10 min long experiment is usually sufficient for phase
identification, and an hour-long experiment is adequate for precise unit cell deter-
mination and quantitative analysis, and in many cases, is good enough for solving
crystal structure and Rietveld refinement. Although the speed of this detector is
comparable to area detectors, the resolution is close to that of point detectors.

The solid-state detector (Fig. 11.21, left) is slower since it measures one point at a
time, but it provides higher quality patterns due to excellent energy discrimination.
It has many advantages: low background (which may be significant at low Bragg
angles), removal of white spectrum, fluorescent scattering and Kβ radiation, option
to filter out the Kα doublet and use monochromatic Kβ energy, and easy-to-fit peak
shapes. The main disadvantage is lengthy data acquisitions: it may take anywhere
from a few hours to a few days to collect really high-quality data.

A different goniostat with the horizontal orientation of the specimen and Bragg–
Brentano geometry is shown in Fig. 11.22. The X-ray tube housing is mounted
on the movable arm, and both the X-ray source and the detector can be rotated
in a synchronized fashion about the common horizontal goniometer axis (also see
Fig. 11.17, middle).
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Fig. 11.22 The overall view of the goniostat of the Rigaku TTRAX rotating anode powder diffrac-
tometer with the horizontal goniometer axis, and synchronized rotations of both the X-ray source
and detector arms. This goniometer is equipped with variable divergence, scatter and receiving
slits, curved crystal monochromator, and scintillation detector.

The X-ray source in this example is a rotating anode X-ray tube. Another distinct
feature of this goniometer is the presence of variable divergence (Fig. 11.22, left),
scatter and receiving (Fig. 11.22, right) slits. This combination of slits enables one
to maintain the irradiated area of the studied specimen constant at any Bragg angle,
which may be useful in some applications. Both variable slit boxes also contain a
set of Soller slits each to control the divergence of both the incident and diffracted
beams in the horizontal plane.

The curved crystal-monochromator is positioned between the receiving slit box
and the detector (also see Fig. 11.6, right). This goniometer is shown with the spec-
imen spinning sample holder attachment, which enables continuous spinning of
the sample during data collection to achieve better particle orientations averaging,
thus reducing preferred orientation effects. The goniometer shown in Fig. 11.22 is
equipped with a scintillation detector, which has high linearity (within 1% in ex-
cess of ∼105 counts per second), which is important with the high brightness of the
incident beam produced by a rotating anode X-ray tube. Only a small part of the
scintillation detector is visible in Fig. 11.22. The massive counterweight to balance
the heavy X-ray tube housing is seen in the background of the photograph as the
dark segment (top right).

Overall, powder diffractometers with point detectors offer the best resolution
of the resulting powder diffraction data. While the instrumental resolution in-
creases with the increasing goniometer radius, the intensity of the diffracted beam
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unfortunately decreases because the incident beam produced by an analytical X-ray
tube is always divergent.18 Therefore, typical goniometer radii vary between ∼150
and 300 mm.

11.3.2 Goniostats with Area Detectors

The schematic of a powder diffractometer goniostat utilizing transmission geometry
with a cylindrical specimen and a curved position sensitive detector (PSD) is shown
in Fig. 11.23. When using a curved position-sensitive detector covering a long (from
∼0◦ to ∼90◦–140◦) 2θ range, generally there is no need to rotate the detector arm,
and only sample spinning is required to improve particle orientations averaging and
minimize preferred orientation.

The greatest advantage of this geometry is in the speed of data collection: the
entire diffraction pattern can be recorded in as little as a few seconds, because the
diffracted intensity in the whole range of Bragg angles covered by the circumference
of the curved position sensitive detector is registered simultaneously. The downside
is that it is impossible to monochromatize the diffracted beam effectively, which
results in the increased background, particularly when the sample is strongly fluo-
rescent. Another difficulty may occur in the interpretation of powder diffraction data
collected using the geometry shown in Fig. 11.23 because of the lower resolution
of curved PSDs and increased widths of Bragg peaks when compared with point or
strip detectors.

In principle, curved position sensitive detector can be replaced by a linear posi-
tion sensitive detector covering segments 5–10◦ (2θ) wide. This approach is similar

PSD

F

M

DS Sample T

Fig. 11.23 The schematic of a powder diffractometer with the vertical goniometer axis, cylindrical
sample in the transmission mode and a curved position sensitive detector (PSD). Solid arrows
indicate the incident beam and broken arrows indicate the diffracted beams pathways. F – focal
point of the X-ray source, M – monochromator, DS – divergence slit, T – incident beam trap.

18 When the goniometer radius increases, the size of a flat specimen, needed to maintain high
intensity in the Bragg-Brentano geometry, becomes unreasonably large, see Sect. 12.1.3.
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F

M
C 

IPD

DR

Fig. 11.24 The schematic of a powder diffractometer with the vertical goniometer axis, cylindrical
sample in the transmission mode and image plate detector (IPD). Solid arrows show the incident
beam path. Rings indicate intercepts of Debye cones with the IPD. F – focal point of the X-ray
source, M – monochromator, C – collimator, DR – Debye rings.

to what is achieved when using a strip detector. It considerably increases resolution
and decreases Bragg peak widths, but the problem of the enhanced background re-
mains.

Recently, image plate detectors (IPD) are becoming popular in powder diffrac-
tometry (Fig. 11.24). The monochromatized and collimated beam passes through
a cylindrical or flat sample and the diffracted beams are registered by the image
plate detector in all directions simultaneously. Because of the size of the detector,
which can be made as large as necessary, the entire circumference of the Debye ring
is normally registered, instead of a small sector as it is done in any other powder
diffraction geometry considered earlier.

The use of image plate detectors restores the pseudo two-dimensionality of the X-
ray powder diffraction pattern, which was standard in a film-based registration. Ex-
perimental diffraction data can be collected at high speeds, nearly identical to those
achievable with curved position sensitive detectors. Further, the incident beam can
be collimated into a small area and it is fundamentally possible to examine powder
diffraction from just a few crystalline grains or even from a single grain, provided
all possible grain orientations with respect to the incident beam have been arranged
by properly, varying the orientation of the specimen. The problems encountered in
today’s image plate detector-equipped powder diffractometers are similar to those
noted here for curved position-sensitive detectors: high background and relatively
low resolution, see Fig. 11.25.

When the two powder diffraction patterns (Fig. 11.25), obtained from the same
material are compared, the data collected using the Bragg–Brentano geometry and
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Fig. 11.25 Comparison of the X-ray diffraction data collected from the same powder using a point
detector and a diffracted beam monochromator in the Bragg–Brentano geometry (lower pattern,
left hand intensity scale) and an image plate detector and an incident beam monochromator (upper
pattern, right hand intensity scale) in the transmission geometry from a cylindrical sample. An
extremely high and nonlinear background in the case of the image plate detector is due to strong
X-ray fluorescence of Gd atoms interacting with Cu Kα radiation. The widths of the Bragg peaks
in the case of the image plate detector are enhanced, which translates into the low resolution of the
data. Despite the nearly two orders of magnitude larger photon count, the best peak-to-background
ratio for the image plate detector data is 3:1, while it is nearly 70:1 for the point detector data.

point detector with the diffracted beam crystal monochromator are definitely more
useful in structural analysis than the set of data collected using an image plate de-
tector and an incident beam crystal monochromator. The data set collected using
an image plate detector has insufficient quality due to the unfavorable coincidence
of conditions. First, the crystal structure of the material is complex (a total of ∼300
Bragg peaks are possible in the range shown in Fig. 11.25: 20◦ ≤ 2θ≤ 80◦). Second,
the powder contains more than 70 wt.% of Gd – a chemical element, which scatters
anomalously (see Fig. 9.5), and therefore, produces a strong fluorescent background
when using Cu Kα radiation.

Another kind of an area detector is a multi-wire detector (see Sect. 6.4.4). An ex-
ample of a powder diffractometer with this detector is shown in Fig. 11.26. This sys-
tem is a θ−θ diffractometer with two arms that can move independently. However,
this is not a Bragg–Brentano system. The X-ray tube (the left arm) is equipped with
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Fig. 11.26 The overall view of the goniostat of the Bruker D8 Discover goniometer configured for
powder diffractometry with GADDS (General Area Detector Diffraction System). The goniometer
axis is horizontal with synchronized (or, if needed, independent) rotations of both the X-ray source
and detector arms. This goniometer is equipped with Göbel mirror producing parallel beam, XYZ
sample stage, video camera with laser alignment system and HiStar multi-wire gas proportional
area detector.

the so-called Göbel mirror attachment,19 which transforms the divergent incident
X-ray beam from a line focus of the X-ray tube into a bright parallel beam. At the
same time, the primary beam is monochromatized by eliminating the Kβ compo-
nent and the white part of the spectrum. The mirror has a collimator that produces
point beam typically from several tenths of a millimeter to 1 mm in diameter. The
line focus can be also used when the collimator is replaced with a Soller slit and a
standard divergence slit (neither is shown in Fig. 11.26). In this particular configu-
ration, the multi-wire detector (trade name HiStar) is positioned on the right arm at
a maximum possible distance of 300 mm away from the goniometer axis, in order
to increase the resolution.

The two dimensional diffraction image is usually recorded with 1,024× 1,024
pixels resolution, but other resolutions (512× 512 or 2,048× 2,048) can be used
when necessary. The specimen is placed on the XYZ sample stage, and its position
is aligned using a video camera coupled with a laser located above the sample stage
(see Fig. 11.26). The camera and the laser are aligned in such a way that their axes
intersect exactly at the goniometer axis, and this is used to precisely position the
height (Z-coordinate) of a specimen to minimize sample displacement errors and
to select the desired spot for measurement. One of the biggest advantages of this

19 See http://www.azom.com/details.asp?ArticleID=741 for more information about Göbel mirror.
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Fig. 11.27 Examples of two-dimensional diffraction images (top) from a corundum plate (SRM
1976) collected on D8 Discover-GADDS powder diffractometer using Cu Kα radiation, Göbel
mirror, and HiStar detector positioned at 30 cm from the goniometer axis with the resolution of
1,024× 1,024 pixels. The plot at the bottom shows the corresponding one-dimensional pattern
after the integration of the diffracted intensities along the Debye rings.

configuration is that many samples of any shapes and sizes, or a large bulk material
(e.g., a rock) may be accommodated on the goniometer, and then as many loca-
tions as needed can be examined by recording an X-ray powder diffraction pattern
focusing on a specific spot.

As-recorded two-dimensional images (one example is shown on top of
Fig. 11.27) are analyzed, and if needed, integrated and merged to produce a one-
dimensional powder diffraction pattern as shown in Fig. 11.27 (bottom). Dependent
on the detector-to-sample distance, it takes 3–6 images to cover a maximum pos-
sible range of Bragg angles. It is worth noting that data collection with the area
detector is usually performed at certain angles of the X-ray source arm (θ1) and
the detector arm (θ2). The obtained two- dimensional images are then converted
(integrated) into one-dimensional patterns, which in turn are merged together to
yield a single diffraction pattern. The merging conditions are such that the images
partially overlap, as can be seen in Fig. 11.27. The integration along the rings both
increases the intensity and minimizes the effects related to nonideal particle orien-
tation averaging. The latter can be further improved by oscillating the specimen in
the plane of diffraction.

Thus, both the linear position-sensitive and area (the image plate, multi-wire and
other) detectors find use in special applications of powder diffraction, such as in
situ studies of phase transformations, microdiffraction, and local nondestructive
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analysis, but their use in high precision determination of the crystal structure of
materials is limited.

Concluding this section, we feel that it is important to mention that despite its
long history, powder diffractometry is a rapidly developing field of science, es-
pecially at the instrumentation level. Both position-sensitive and area detectors,
brought to routine use by exceptional technological advancements in high-speed
electronics and tremendous computing power, made the powder diffraction experi-
ment faster than ever. Moreover, X-ray mirrors and capillaries have made successful
entrance into the market of commercial powder diffractometry, enabling nearly par-
allel X-ray beams in analytical laboratory instruments, and not only when using
synchrotron radiation sources. It is difficult to predict how advanced the capabilities
of powder diffraction instruments become in ten or twenty years from now, but the
essence of the quality powder diffraction experiment will remain the same: the best
powder diffraction data will always need to be highly precise and collected with the
best possible resolution over a minimum background.

11.4 Nonambient Powder Diffractometry

Many materials undergo polymorphic transformations (change their crystal struc-
ture) as temperature, pressure, and/or other thermodynamic parameters vary. The
relative simplicity of the powder diffraction experiment makes this technique well-
suited for in situ examination of the crystal structure of materials at nonambient
conditions. The two thermodynamic parameters most commonly varied in powder
diffraction studies are temperature and pressure. Here, we briefly describe the basic
principles used in the design of powder diffraction experiments at variable temper-
ature and pressure, and also mention a less common approach in which in addition
to temperature, it is possible to examine the effect of the magnetic field on the crys-
tallography of magnetic materials.

11.4.1 Variable Temperature Powder Diffractometry

As shown in Fig. 11.28 (left) in order to manipulate the temperature of the speci-
men (or any other thermodynamic variable), the sample must be enclosed in a con-
trolled environment. For temperatures exceeding ambient, this usually is a furnace
(see Fig. 11.28, right), and for temperatures below ambient – a cryostat. The keys
to a successful controlled-temperature experiment are protecting the sample from
the environment, in other words avoiding oxidation at elevated temperature or ice
formation at cryogenic conditions, ensuring temperature stability and avoiding tem-
perature gradient(s) across the specimen, and protecting the goniometer from non-
ambient temperatures. All this must be done while minimizing absorption of both
the incident and scattered beams and avoiding increased background scattering.
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Fig. 11.28 The schematic of the optics of a powder diffractometer with diffracted beam mono-
chromator and a sample in a controlled environment (left), and the photograph of the goniometer
of the Rigaku TTRAX goniometer with a furnace attachment (right).

Protection of the sample nearly always means surrounding it by a vacuum-tight
enclosure and keeping it in vacuum or in a controlled atmosphere.20 Hence, the en-
closure should normally be outfitted with low-absorbing windows that will transmit
the incident beam to the sample and the scattered beam to the detector. For X-ray
experiments, the windows can be made from beryllium, but considering the toxic-
ity of the latter, windows in modern controlled-temperature powder diffractometer
attachments are usually made from Mylar.21 In neutron scattering, the windows can
be made from vanadium, which is nearly transparent at thermal neutron energies.
Despite the excellent heat resistance of Mylar R©, when experiments are performed
at high temperatures, keeping the sample in vacuum remains just about the only op-
tion to avoid windows burn through due to high rates of convective heat exchange.
The majority of furnaces are water-cooled in order to protect both the body of the
attachment and the goniometer from damage by excessive heat.

Normally, temperature is controlled by fully automated temperature controllers,
which are relatively inexpensive and quite accurate instruments. Temperature uni-
formity is achieved by making a heater much larger than the sample, and by sur-
rounding the sample by the heating element as much as possible, thus combining
both the direct and radiative heat exchange, see Fig. 11.29. Obviously, the heating
element must be designed so it does not obstruct the optical pathways. In cryo-
genic applications, the powder may be cooled either by a close cycle refrigerator –
cryocooler – or by using a continuous flow cryostat. In the former case, the sample
holder is usually attached to a cold finger by a flexible heat link to avoid vibrations.
Sample holders must be good heat conductors and inert. For high temperature ap-
plications, sample holders are usually made from platinum, and for low temperature
experiments, they are made from copper.

20 In some cryogenic applications it is possible to control sample temperature by flowing a dry
cold nitrogen gas over the sample, thus preventing moisture from condensing and freezing on the
surface. This option is most commonly used in single crystal rather than in powder diffraction
experiments because the size of the specimen in the latter is much larger than that in the former.
21 Mylar R© is a strong heat resistance polyester film invented by DuPont in 1952.
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Fig. 11.29 Sample heater (left) and the overall view of the high temperature furnace attachment
with the cover removed to expose the inside (right).

In addition to studying phase transformations, which are accompanied by re-
arrangements of both the locations and intensities of Bragg peaks, and are there-
fore, easily detectable, temperature-dependent powder diffractometry is also useful
for examining subtle structural effects, for example thermal expansion. Thermal ex-
pansion is conventionally studied by dilatometry – the measurement of changes of
the external dimensions of a solid. In polycrystalline solid, changes of shape reflect
the underlying changes of lattice dimensions, and therefore, are directly observable
in a powder diffraction experiment. Moreover, unlike dilatometry which requires
single crystals and often multiple experiments in order to determine anisotropy of
thermal expansion, powder diffraction data provide all the needed information in a
single experiment using polycrystalline material, as can be seen in Fig. 11.30.

11.4.2 Principles of Variable Pressure Powder Diffractometry

Structural changes under pressure are commonly examined using a diamond anvil
cell, shown schematically in Fig. 11.31. The incident beam must pass through a dia-
mond before reaching the sample, and the diffracted beam must also pass through a
layer of the opposing diamond anvil. Considering the limited range of Bragg angles
available for examination, diamond anvil cells find most common use in powder dif-
fraction experiments using short wavelengths, specifically, high-energy synchrotron
sources. Another reason for using short wavelengths is their lower absorption by the
diamond anvils. Typical pressures achievable in diamond anvil cells range from a
few kbar to over 1 Mbar. Normally, the sample is mixed with some kind of pressure
standard. Diamond anvil cells can be coupled with temperature-controlled environ-
ment, most commonly in the cryogenic regime. For more details, we refer the in-
terested reader to a recent review about high pressure diffractometry (mostly single
crystal method).22

22 A. Katrusiak, High-pressure crystallography, Acta Cryst. A64, 135 (2008).
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Fig. 11.30 A series of powder diffraction patterns of Gd5Ge4 collected between 5 and 300 K (top)
and anisotropic linear thermal expansion along the three independent crystallographic directions of
the orthorhombic lattice of the compound computed from the powder diffraction data (bottom).23

The data were collected between 7◦ and 42◦ 2θ using equipment seen in Fig. 11.32, but for clarity,
only small fragments are shown on the top. Error bars in the bottom panel are smaller than the size
of the data points.

23 Ya. Mudryk, A.P. Holm, K.A. Gschneidner, Jr., and V.K. Pecharsky, Crystal structure – magnetic
property relationships of Gd5Ge4 examined by in situ X-ray powder diffraction, Phys. Rev. B 72,
064442 (2005).
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Fig. 11.31 The schematic of a diamond anvil cell, commonly known as Bridgman24 anvils. The
sample is contained inside an opening in a metal gasket. Typical diameter of the opening is 250μm.
The diamonds are hollow in the middle to reduce absorption of X-rays. The anvils are pressur-
ized by a screw or by a hydraulic press. Pressure transmitting medium is usually alcohol, such as
methanol, or fluorinert.25

11.4.3 Powder Diffractometry in High Magnetic Fields

Magnetic ordering of solids nearly always results in shape change, commonly
known as spontaneous magnetostriction.26 Furthermore, when ferromagnetically or-
dered solids are magnetized, the so-called forced magnetostriction leads to further
shape changes. Obviously, these shape changes reflect intrinsic structural effects.
Moreover, some materials may exhibit crystallographic variations that are far be-
yond a simple lattice expansion in a specific direction as a result of changes in their
magnetic structure. Considerable structural rearrangements, for example polymor-
phic transformations, may be triggered by magnetic field, and therefore, knowing
the underlying atomistic mechanism is of considerable importance.

The idea of varying magnetic field around a specimen in a powder diffraction
experiment is actually quite simple, as shown in Fig. 11.32 (left). All one has to
do is to surround the specimen with two coils and energize them as needed. In
practice, the instrumentation is quite complex, because in order to reach substantial
field values, one must employ superconducting coils, which must be cooled to the
temperature of liquid helium. This results in heavy and bulky equipment, as shown
in Fig. 11.32 (right). Considering that magnetic ordering most commonly occurs at
temperatures below ambient, high-magnetic field attachments are normally outfitted
by some kind of cryogenic control of sample temperature.

24 Percy Williams Bridgman (1882–1961) was an American physicist best known for his work with
high pressures. He also is credited with developing a technique for growing large single crystals
(the Bridgman method). He won the 1946 Nobel Prize in Physics “for the invention of an appara-
tus to produce extremely high pressures, and for the discoveries he made therewith in the field of
high pressure physics.” See http://nobelprize.org/nobel prizes/physics/laureates/1946/bridgman-
bio.html.
25 Fluorinert, a family of perfluorinated liquids trademarked by 3M. The liquids are chemically
inert, electrically insulating, and good heat conductors.
26 A. Lindbaum and M. Rotter, Spontaneous magnetoelastic effects in gadolinium compounds, in,
K.H.J. Buschow, Ed., Handbook of Magnetic Materials (Elsevier Science, Amsterdam, 2002), vol.
14, p. 307.
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Fig. 11.32 A simplified schematic of the sample holder surrounded by a split coil magnet and the
X-ray beam path from the source through the split coil to the detector (left), and the view of the
bottom part of a cryostat containing a split coil superconducting magnet mounted on a Rigaku
TTRAX powder diffractometer (right). The radiation safety enclosure is opened to expose the
details of the instrument.

Magnetic field effects are most commonly studied using neutron scattering, but
recently, the technique has been successfully demonstrated in laboratory powder dif-
fraction experiments.27 Having a high magnetic field and accompanying field gradi-
ents in close vicinity to moving electrons (e.g., in the X-ray tube or in the detector)
and to components of goniometer that are ferromagnetic at room temperature, re-
quires a careful control of the experiment and additional shielding. We refer the in-
terested reader to the original paper,27 which describes many of the potential pitfalls,
as well as the benefits of powder diffraction experiments in high magnetic fields.

One example of useful structural information that may be obtained using in situ
powder diffractometry in high magnetic fields is illustrated in Fig. 11.33. As follows
from the temperature dependent powder diffraction data shown in Fig. 11.30, the
Gd5Ge4 compound has no polymorphic transformations over the temperature range
from 5 to 300 K in a zero magnetic field. However, when the sample is magnetized
at low temperature (the temperature of the experiment illustrated in Fig. 11.33 was
29 K), magnetic field exceeding 15 kOe induces a martnesitic-like phase transfor-
mation in this material. The field-induced transformation proceeds via shear dis-
placements of the neighboring slabs of atoms during which the slabs shift by nearly
a quarter of an angström in opposite directions, as shown by arrows placed near the
slabs in Fig. 11.33, but the symmetry of the crystal lattice remains unchanged (space
group is Pnma for both the high magnetic field and low magnetic field polymorphs).
Unit cell dimensions change by as much as 1.9% (19,000 ppm). Large shear dis-
placements of the slabs result in substantial changes of the interslab distances as
shown for a few of them in Fig. 11.33, but the average change of the intraslab dis-

27 A.P. Holm, V.K. Pecharsky, K.A. Gschneidner, Jr., R. Rink, and M.N. Jirmanus, “A high resolu-
tion X-ray powder diffractometer for in situ structural studies in magnetic fields from 0 to 35 kOe
between 2.2 and 315 K,” Rev. Sci. Instr. 75, 1081 (2004).
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tances is only a few percent. When Gd5Ge4 is demagnetized, the low field crystal
structure is recovered exhibiting a narrow hysteresis.

11.5 Additional Reading

1. International Tables for Crystallography, vol. A, Fifth Revised Edition, Theo Hahn, Ed. (2002);
vol. B, Third Edition, U. Shmueli, Ed. (2008); vol. C, Third Edition, E. Prince, Ed. (2004).
All volumes are published jointly with the International Union of Crystallography (IUCr) by
Springer. Complete set of the International Tables for Crystallography, Vol. A-G, H. Fuess, T.
Hahn, H. Wondratschek, U. Müller, U. Shmueli, E. Prince, A. Authier, V. Kopský, D.B. Litvin,
M.G. Rossmann, E. Arnold, S. Hall, and B. McMahon, Eds., is available online as eReference
at http://www.springeronline.com.

2. R. Jenkins and R.L. Snyder, Introduction to X-ray powder diffractometry. Wiley, New York
(1996).

3. A. Katrusiak, High-pressure crystallography, Acta Cryst. A64, 135 (2008).
4. J. Als-Nielsen and D. McMorrow, Elements of modern X-ray physics, Wiley, New York (2001).
5. H. Ehrenberg, 2D Powder Diffraction: In situ powder diffraction – Electric Fields, p. 7 in:

CPD Newsletter “2D Powder Diffraction”, Issue 32 (2005), available at http://www.iucr-
cpd.org/pdfs/CPD32.pdf.

11.6 Problems

1. There are 25 plates in a Soller slit. Axial size of the incident beam when it exits
the slit is 12 mm. Calculate the length of the plates along the X-ray beam (l) if the
slit results in the axial divergence of the beam, α = 2.5◦. Neglect the thickness of
the plates.

2. A crystal monochromator is made form high quality pyrolitic graphite (space
group P63/mmc, a = 2.464, c = 6.711 Å). Assume that this crystal is used to sup-
press the Kα2 spectral line of Cu Kα radiation by using the reflection from (002)
planes and that the crystal is cleaved parallel to the (001) plane. Estimate the linear
separation (δ, in mm) between the centers of two Bragg peaks (Kα1 and Kα2) at
200 mm distance after the reflection from the crystal. Assuming that the crystal is
nearly ideal, calculate angle θ which the incident beam should form with the surface
of the crystal for best result.

3. Two powder diffraction patterns (Fig. 11.34) were collected from the same mate-
rial. The first experiment was carried out at elevated temperature and the second at
room temperature. The high temperature crystal structure is cubic with the indices
of Bragg reflections as marked. Note that a small amount of an impurity phase is
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Fig. 11.34 Powder diffraction patterns of a material collected at high temperature (HT) and room
temperature (RT) using Mo Kα radiation.

also present, as can be concluded from three weak unindexed Bragg peaks observed
approximately at 18◦, 26◦, and 32◦ of 2θ. What happens when the sample is cooled
to room temperature? What can you tell about the crystal structure of the majority
phase at room temperature?



Chapter 12
Collecting Quality Powder Diffraction Data

Many factors affect quality of powder diffraction data (e.g., see Figs.11.1, 11.5, and
11.25), and the state of the specimen used in a powder diffraction experiment is
one of them. Further, a number of data acquisition parameters may, and should be
properly chosen. Here we consider issues related to both the preparation of the spec-
imen and selection of instrument-related parameters in order to achieve the highest
possible quality of the resulting powder diffraction pattern.

12.1 Sample Preparation

It is difficult to overemphasize the importance of proper sample preparation, espe-
cially because it is always under the complete control of the operator carrying out the
experiment. Poorly prepared samples will inevitably result in unusable experimental
data, which will require additional effort to repeat everything from the beginning,
thus both time and resources are wasted. On the other hand, a high quality sample
for powder diffraction may take longer to prepare, but this is time well-spent!

12.1.1 Powder Requirements and Powder Preparation

The true powder diffraction pattern can only be obtained from a specimen contain-
ing an infinite number of individual particles realizing an infinite number of orienta-
tions in the irradiated volume (e.g., see Fig. 8.1). In other words, the particles in the
specimen should have a completely random distribution of crystallographic orienta-
tions of grains or crystallites with respect to one another. Clearly, this ideal situation
is impossible to achieve. However, if one considers a 10 mm diameter and 0.1 mm
deep cylindrical sample holder filled with 50μm diameter spherical particles, it is
easy to estimate that it will hold nearly 9×104 of such particles at 74.05% packing
density, that is, assuming close packing of the spheres (Fig. 12.1). When the particle

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 301
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 12,
c© Springer Science+Business Media LLC 2009
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Fig. 12.1 The total number of spherical particles in a cylindrical specimen 10 mm in diameter and
0.1 mm deep as a function of particle size assuming close packing of the spheres. D – specimen
diameter, h – specimen depth and d – particle diameter.

size is reduced to 30μm, the same volume will contain ∼4×105 particles, and when
the particles are 10μm in diameter, it will take a total of ∼1×107 different particles
to fill the same volume. These are large numbers, which may be considered suffi-
cient to approximate the infinite quantity of particles required for collecting powder
diffraction data.

It is, therefore, obvious that a nearly infinite number of particles in a specimen is
easily achieved by reducing average particle size. Another very effective approach
to increase both the number of particles in the irradiated volume and the randomness
of their orientations is to spin the specimen continuously during data collection.1

The majority of materials which are routinely examined by powder diffraction,
are initially in a state unsuitable for the straightforward preparation of the specimen.
Unless the material is already in the form of a fine powder with the average particle
size between 10 and 50μm, its particle size should be reduced.

The most commonly used approach to reduce particle size is to grind the sub-
stance using a mortar and pestle, but mechanical mills also do a fine job (Fig. 12.2).
Both the former and the latter are available in a variety of sizes and materials. Mor-
tars and pestles are usually made from agate or ceramics. Agate is typically used to
grind hard materials (e.g., minerals or metallic alloys), while ceramic equipment is
suitable to grind soft inorganic and molecular compounds. Mechanical mills require

1 Sample spinning is the simplest way to better randomize particle orientations. Whenever possible
it should be employed during data collection.
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Fig. 12.2 The tools most commonly used in sample preparation for powder diffraction experi-
ments: agate mortar and pestle (left), and ball-mill vials made from hardened steel (middle) and
agate (right).

vials and balls, which are usually made from hardened steel, tungsten carbide,
or agate.

Dependent on the nature of the material, it may take from several seconds to sev-
eral minutes of either manual or mechanical grinding. Prolonged grinding should
not be relied upon, as it usually results in the creation of an excessive surface
(its structure is different from the bulk) and in the agglomeration of small parti-
cles. When aggregation effects are severe, adding a chemically inert liquid, which
does not dissolve the material under examination, may help to prevent excessive
conglomeration. In some cases, prolonged mechanical grinding may cause serious
degradation in the crystallinity of the material. If the crystallinity is reduced due to
induced stresses and micro-deformations, it can be restored by a brief (10–30 min)
heat treatment at temperatures near 1/3 of the melting temperature of the material on
the absolute thermodynamic temperature scale.

A mortar and pestle are normally the only grinding option when the quantity of
the material is limited, while mechanical mills usually require much larger amount
of material to begin with. It is important to keep the milling equipment clean to
prevent cross-contamination of samples. One of the best ways to clean a mortar and
pestle before grinding a new sample is to use a 50:50 (by volume) mixture of nitric
acid (HNO3) and water. When using a hardened steel or a tungsten carbide ball-
mill, the vial should be cleaned using a blaster with fine (<5μm) Al2O3 powder,
and the previously used balls should normally be discarded. Agate vials and balls
can be cleaned using a 50:50 mixture of water and nitric acid. At the very least,
flashing with a low-boiling point organic solvent (e.g., acetone or alcohol), wiping
and drying the grinding equipment should always be performed.

One of the biggest concerns when using mechanical grinding in a ball mill is
the possibility of contamination of the sample with the vial (balls) material. This
is particularly true when hard materials are subject to mechanical processing. To
ensure that no contamination has occurred, it is advisable to perform a chemical
analysis of the material before and after ball milling. When a mortar and pestle are
used to grind hard materials, excessive tapping on large pieces of a sample to break



304 12 Collecting Quality Powder Diffraction Data

them should be avoided as much as possible, since small chips of agate or ceramic
may cross-contaminate the resulting powder.

Some materials, for example, metallic alloys and polymers may be quite ductile.
Grinding them using a mortar and pestle or a ball-mill is nearly always unsuccessful,
and the powders may be produced by filing. Needless to say, the file should be clean
(preferably a brand new tool) to prevent cross contamination. It is often the case
that filings of ductile metallic alloys are contaminated by small particles broken
off the file. The latter can be easily removed from the produced powder by using
a strong permanent magnet (e.g., Nd2Fe14B or SmCo5), provided the powder of
interest is paramagnetic or diamagnetic at room temperature. Powders produced
by filing usually must be heat-treated before preparing a specimen for a powder
diffraction experiment to relieve the processing-induced stresses.2

Regardless of the method employed to produce fine particles, the resultant pow-
der should be screened using appropriate size sieve(s). The most commonly used
sieves have openings from 25 to 75μm. It is also important to ensure that the sieve is
clean before sifting the powder under examination to eliminate cross-contamination.
Sieves may be cleaned using a pressurized gas (e.g., nitrogen or helium from a high
pressure cylinder), and/or they can be washed in a low boiling point solvent (e.g.,
acetone or alcohol) before drying by a high pressure gas. It may be problematic to
sift powders of low-density materials, but every effort should be made to do so. Sift-
ing not only eliminates large particles from the powder, but it also helps to break
down agglomerates that may have formed during grinding.

12.1.2 Powder Mounting

As mentioned at the beginning of this section, another important requirement im-
posed on a high-quality powder sample is the realization of the infinite number of
possible orientations of the particles with respect to one another, that is, complete
randomness in their orientations. The reduction of particle size is the necessary but
not sufficient condition to achieve this. In reality, nearly ideal randomness in particle
orientations is only feasible with a large number of particles, which have spherical
or nearly spherical (isotropic) shapes. In many cases, grinding or milling produces
particles with far from isotropic shapes and, therefore, special precautions should be
taken when mounting powders on sample holders. The most severe cases of nonran-
dom particle orientation distributions are expected when platelet-like or needle-like
particles are produced by grinding, see Fig. 12.3.

When powder particles have thin platelet-like shapes, they will tend to agglom-
erate, aligning their flat surfaces nearly parallel to one another (Fig. 12.3, left). As
a result, the orientations of platelets are randomized via rotations about a common

2 Since one-third of the absolute melting temperature is usually sufficient for an effective stress-
relief, some materials may self-anneal during the filing. One of the examples is lead (Pb), which is
a ductile metal and has melting temperature 601 K. Lead powder self-anneals at room temperature
(∼298K), thus producing sharp Bragg peaks in the as-filed state.
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Fig. 12.3 The two limiting cases of nonrandom particle orientation distributions due to distinctly
anisotropic particle shapes: platelet-like (left) and needle-like (right) particles. The arrows indicate
the directions around which the particles may rotate freely.

axis normal to their largest faces, and such samples are expected to have a uniaxial
preferred orientation (or texture).

When particles are in the form of thin needles (Fig. 12.3, right), the orientations
of the axes of the needles are naturally confined to the plane of the sample. Further,
each needle has an additional rotational degree of freedom, that is, rotation about
its longest axis, and such samples are expected to have an in-plane preferred orien-
tation. Even more complex preferred orientation effects may occur when elongated
particles are flat, in other words, when they are ribbon-like. Then ribbons may align
in the plane of the sample, and because they are flat, their surfaces may arrange
parallel to the sample surface as well. This is the case of two combined preferred
orientation axes: one is along the axis of the ribbon, and the second is perpendicular
to the flat face.

Regardless of which type of preferred orientation is present in the sample, it will,
in its own and systematic way affect diffracted intensities.3 In severe cases, nothing
more than lattice parameters (if any) can be determined from highly textured powder
diffraction data since, it is impossible to precisely account for the changes in the
diffracted intensity caused by the exceedingly nonrandom distribution of particle
orientations.

Depending on the diffraction geometry, proper sample preparation techniques are
different. We begin with flat samples used in combination with the Bragg–Brentano
focusing geometry and horizontal goniometer axis, since it is the most common
geometry employed today. A few of these sample holders are shown in Fig. 12.4.
The two types of sample holders most frequently used in the Bragg–Brentano

3 See Sect. 8.6.6 for a description of mathematical models, which may be used to account for the
effects of preferred orientation on the scattered intensity.
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D

A

B

C

Fig. 12.4 Examples of sample holders used with Bragg–Brentano geometry. A is platinum sample
holder used in high temperature powder diffraction experiments (see Fig. 11.29). The fins seen
in A are designed to improve heat conductivity and uniformity of powder temperature. B is glass
slide with a round area of about 1 in. in diameter sand blasted to improve randomization of particle
orientations. C is stainless steel sample holder with a ∼0.5mm deep cavity. D is copper sample
holder with a rectangular cavity to accommodate powder for low temperature high magnetic field
experiments (see Fig. 11.32). The four screws shown in D are used to attach the sample holder to
a cold finger.

Fig. 12.5 Examples of flat sample holders used in powder diffractometers with reflection geome-
try. The holder on the left has a cavity, which is filled with the powder. The holder on the right has
a rough area, which accommodates a thin layer of the powder.

method are also shown in Fig. 12.5. They can be made of metal, plastic, or glass.
The difference between the two is that the holder on the left has a shallow cylindrical
or rectangular cavity (usually 1/4 to 1 mm deep) to accommodate the powder (also
see Fig. 12.4c). The container on the right has a rough spot on its surface (also see
Fig. 12.4b). Rough surface is best created using a sand blaster with hard particles
10–50μm in diameter. When the roughness of the sample surface is of the same
order as particle size, this helps to diminish the preferred orientation effects.

It is worth mentioning that when background is of concern, for example, when
only a small amount of a low-absorbing sample is available, low-background sam-
ple holders may be used. These holders (or only the inserts) are made from single
crystals cut in such a way that no Bragg reflections may occur in a whole range
of Bragg angles. For example, silicon single crystal plate cut parallel to the (510)
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Razor blade or glass slide

Excess powder

Excess powder

Fig. 12.6 Excess powder is removed from the top of the sample holder with a single sweep by an
edge of a razor blade or a glass slide. The direction of the sweep depends on the physical properties
of the powder and is usually established by trial-and-error.

planes, or quartz single crystal cut at 6◦ with respect to (001) planes will contribute
no Bragg peaks when used in a standard Bragg–Brentano diffractometer.4

When a relatively large quantity of powder is available, the sample for X-ray dif-
fraction can be prepared by filling the volume of the cavity (Fig. 12.5, left) with the
dry powder. The excess powder should be removed from the surface of the sample
holder by a single sweep with a razor blade (Fig. 12.6), or by an edge of a glass
slide. Under normal circumstances, the powder should never be compacted inside
the hole using a smooth flat surface, for example, the flat side of a glass slide. If
the powder is packed by pressing against a smooth flat surface, this will inevitably
rearrange particle orientations in the specimen, causing strong preferred orientation
(see Fig. 12.3). Compacting is only forgivable if particles in the powder are nearly
spherical, which is quite rare. The powder inside the hole may be compressed, if nec-
essary (e.g., when the material is lightweight), by gently pressing against a rough
surface, which has the roughness commensurate with the average particle size.5

Though filling the specimen holder with powder produces the best-quality flat
samples for powder diffraction experiments, the procedure requires some experi-
ence, and a uniform distribution of particle orientations may be difficult to achieve,
especially when working with light, fluffy powders. It may be helpful, therefore, to
prepare a viscous suspension of powder using chemically inert, low-boiling temper-
ature liquid, which does not dissolve the material, and then pour the suspension into
the hole. Excess mixture is then removed by a single cut with a razor blade, and
the remaining solvent should be slowly evaporated before installing the sample on
a diffractometer.

Another method of reducing the preferred orientation while mounting the pow-
der into the sample holder is the so-called side or back filling (Fig. 12.7). It requires
a special or modified sample holder with an opening on the side or on the back.
The front of the holder is covered during packing, and the surface facing the pow-
der should have nearly the same roughness as the average particle size. Using this

4 See http://thegemdugout.com/products.html for examples of sample holders.
5 Flat surfaces with varying roughness may be created by sandblasting a set of glass slides using
particles of different diameter. A quick solution may be achieved by gluing a piece of sand paper
with appropriate roughness on a glass slide.
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Sample volume

Back cover

Sample mounting tools

Front of sample
holder

Fig. 12.7 Tools used for back filling a sample holder with powder (sold by PANalytical). On the
left, the front side of the sample holder is clamped on a support. After the sample volume is filled
from the back and packed, the front side of the holder couples to the back cover, and the sample
holder is released from the clamping tool, as seen on the right.

technique, the powder can be packed better and with lower preferred orientation on
the front surface of the sample that is irradiated, which is the most critical part of
the specimen in X-ray powder diffraction due to the limited penetration depth of
X-rays.

An effective way of avoiding preferred orientation is spraying the fine powder
suspended in a quick drying polymer solution.6 Small droplets spheroidize before
the solution dries in-flight, and the tiny solid spheres that form usually contain only
a few particles embedded in each droplet.7 This method removes preferred orienta-
tion nearly completely because the resulting particles are spherical and thus main-
tain random orientations during mounting. It is however complex, and introduces a
substantial amount of a polymer, which increases background noise, thus reducing
the overall quality of the resultant powder diffraction pattern.

Good-quality specimens with minimal preferred orientation effects can be pre-
pared by dusting the ground powders through a sieve directly on a sample holder,
thus covering the rough spot. This is the only feasible option when using sample
holders without the hole to accommodate the powder (e.g., see Fig. 12.4b). It is best
to cover the sample holder with a specially made mask, which is removed when the
dusting is completed (Fig. 12.8).

6 S. Hillier. Spray drying for X-ray powder diffraction specimen preparation, p. 7 in: CPD Newslet-
ter “Powder Diffraction in mining and minerals,” Issue 27 (2002) available at http://www.iucr-
cpd.org/PDFs/cpd27.pdf.
7 Excellent powdered samples (see Fig. 12.16), can be prepared by using the high-pressure gas at-
omization (HPGA) technique. HPGA involves melting a material of interest and then spraying the
melt through a nozzle employing a high-pressure non-reactive gas (e.g., nitrogen, argon or helium).
Liquid droplets (usually between ∼10 and ∼100μm in diameter) spheroidize and then rapidly so-
lidify in-flight maintaining nearly spherical form. The resulting powders may require brief homog-
enization and/or recrystallization heat treatment before they may be employed to collect powder
diffraction data. HPGA-prepared powders are not embedded into polymer shells, however, this
technique requires large amount of a starting material and is cost-ineffective in routine diffraction
studies.
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Mask

Sample holder

Dusted powder

Fig. 12.8 Sample for powder diffraction prepared by dusting ground powder on the sample holder
covered with a mask.

Usually it takes several passes of dusting the powder on top of the sample holder
surface to ensure complete and uniform coverage of the area, which is irradiated
during the X-ray diffraction experiment. It is also possible to apply a thin layer of
oil, grease, or slow-drying glue to the appropriate spot on a sample-holder surface,
and then dust the powder on top. When the dusting is complete, the excess powder
is easily removed by flipping the sample holder and/or by gently blowing air over
the sample surface. The downside of using fluid to hold the powder on the surface
is that the powder will remain contaminated with the fluid after the experiment is
finished. Another fact to keep in mind when preparing samples by dusting is that it
is nearly impossible to create a smooth surface of the specimen: pressing a sample
holder against a flat surface is not an option as it usually induces strong preferred
orientation effects.

The most common approach to prepare flat samples for transmission geometry
is by dusting the powder on an X-ray transparent film covered with a thin layer of
slow-drying varnish or glue, and letting it dry before installing the sample on the
goniometer. Obviously, both the film and dry varnish/glue should not be crystalline.

Cylindrical specimens are usually prepared by sinking a thin glass capillary into
a liquid binder (e.g., purified petroleum jelly or liquid varnish) and then by dipping
the capillary into a pile of loose powder. Alternatively, the powder can be mixed
with oil to a consistency of thick slurry and then the capillary is simply dipped into
the mixture. In both the cases, the capillary may need to be exposed to the powder
several times to ensure complete and uniform coverage of its surface.

In some instances, especially when the studied powder is air- or moisture-
sensitive, it can be placed inside a low absorbing glass capillary (e.g., a borosilicate
glass, or a polymer capillary such as Kapton8), after which the capillary is sealed.
Filling capillaries with powders is usually a tedious process and it requires larger
diameter capillaries than those usually used for surface coverage. Further, it may be
difficult to avoid preferred orientation in packed capillaries, even though cylindrical
samples are the least susceptible to preferred orientation.

8 Kapton R© is a polyimide polymer developed by DuPont. It remains stable between ∼4 and 700 K.
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12.1.3 Sample Size

Several additional items must be considered when preparing samples for X-ray pow-
der diffraction experiment. One is the length of a flat sample, L, along the optical
axis of the goniometer in the Bragg–Brentano geometry. It should be large enough
so that at any Bragg angle during data collection, the projection of the X-ray beam
on the sample surface does not exceed the length of the specimen. Referring to
Fig. 12.9 and assuming that the angular divergence of the beam is ϕ, it is easy to
derive the relationship for the varying irradiated length, L, as a function of ϕ, go-
niometer radius, R, and Bragg angle, θ:

L = l1 + l2 =
R sin(ϕ2 )

sin(θ+ ϕ
2 )

+
R sin(ϕ2 )

sin(θ− ϕ
2 )

∼= φR
sinθ

(12.1)

In (12.1), ϕ is the angular divergence of the incident beam in degrees and R is
the goniometer radius in mm. When the angular divergence of the incident beam is
small (ϕ≤∼1◦) and θ≥∼5◦, the approximation, also shown in (12.1), may be used,
where φ is the angular divergence of the incident beam in radians, and R is in mm.

Based on (12.1), the distance l2, becomes critical at low Bragg angles, wide di-
vergence slit apertures, and large goniometer radii (Fig. 12.10). Practical sample
sizes in powder diffraction are usually kept below 25 mm in length, and when low
Bragg angle data are desired, the appropriate aperture of the incident beam should

ϕ

θ

R

l1
l2

L

θ-ϕ/2

F

)
2

sin()
2

180sin()
2

sin(
ϕ+

=
ϕ−−

=
ϕ θθ

RRl1

)
2

sin()
2

sin(
ϕ−

=
ϕ θ

Rl2

Optical
axis

DS

Fig. 12.9 The length of the projection of the incident beam, L, on the surface of the flat sample
in Bragg–Brentano geometry. F – focal point of the X-ray source, DS – divergence slit, R – go-
niometer radius, ϕ – angular divergence of the incident beam, θ – Bragg angle. The location of the
goniometer axis is indicated by the open circle.
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Fig. 12.10 Irradiated lengths, l1 and l2, of the flat specimen in the Bragg–Brentano geometry as
functions of Bragg angle calculated using (12.1) for different angular divergences of the incident
beam assuming goniometer radius, R = 285 mm.

be selected to avoid the situation when the size of the X-ray spot exceeds the size
of the sample. If it does, the measured intensities are underestimated at low Bragg
angles because the sample is illuminated by only a fraction of the incident beam
when compared to that at high Bragg angles. Analytical accounting of this effect is
difficult due to inhomogeneous distribution of intensity (photon flux) in the cross
section of the incident beam.

12.1.4 Sample Thickness and Uniformity

The second important factor is the absorption of X-rays by the sample. In the Bragg–
Brentano geometry, the sample should be completely opaque to X-rays. Assuming
that the absorption of 99.9% of the incident beam intensity represents complete
opacity, then the beam intensity should be reduced by a factor of 1,000 and the
following equation can be written (also see (8.50)):

It
I0

= exp(−2μeffl) = 10−3 (12.2)
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where

– I0 and It are intensities of the incident and transmitted beams, respectively.
– μe f f is effective linear absorption coefficient (in mm−1), which is specific for

each sample and it should also account for the porosity of the powder.
– l is beam path (in mm) through the sample and it is related to the sample thick-

ness, t, as l = t/sinθ.

After solving (12.2) with respect to t, the minimum sample thickness (in mm) can
be estimated from:

t∼= 3.45
μeff

sinθmax (12.3)

In (12.3), θmax represents the maximum Bragg angle to be measured during the
experiment. Hence, it is usually easy to prepare a satisfactory Bragg–Brentano spec-
imen from dense metallic alloys containing elements heavier than Al, since they
have large linear absorption coefficients, but it may be difficult to prepare a speci-
men of sufficient thickness from materials with low density and/or containing light
atoms (C, N, O, and H), for example, organic compounds.

Conversely, transmission geometry requires that the sample is minimally absorb-
ing. This is usually not a problem if the studied specimen is a molecular substance.
However, when the material is a dense alloy or intermetallic compound containing
heavy elements, the preparation of a high-quality specimen for transmission powder
diffraction may be problematic. With flat transmission samples, the best approach
is to arrange no more than a single layer of particles mounted on the film. When
cylindrical specimens are employed, the radius of the capillary should be reduced to
a practical minimum. Unfortunately, these measures usually reduce the number of
particles in the irradiated volume, and the quality of the resulting diffraction pattern
deteriorates.

The third important issue, which is generic to any type of specimen for powder
diffraction except cylindrical, is the uniformity of the sample. A portion of the spec-
imen that scatters the incident beam changes as a function of Bragg angle (e.g., see
Fig. 12.10, (12.1) and (12.6)). Thus, when the packing density of the powder is not
uniform, this will result in random changes of the number of particles in the irra-
diated volume, and in the measured diffracted intensity that are nearly impossible
to account for. It is difficult to achieve a uniform packing density because compact-
ing the powder to improve uniformity will generally result in increased preferred
orientation with different, but also deleterious effects on the resulting relative in-
tensities. Effects of sample nonuniformity are best reduced by rapidly spinning the
sample during data collection. As mentioned earlier, every effort should be made to
collect powder diffraction data from a spinning sample, since it also considerably
improves both, the number of particles and randomness of their orientations in the
irradiated volume.
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12.1.5 Sample Positioning

No matter how much time has been spent on the sample preparation and how good
the resulting specimen is, it always needs to be properly positioned on the goniome-
ter. Consider, for example, Fig. 12.11, which shows the effect of sample displace-
ment in the Bragg–Brentano and transmission geometries.

When the sample is properly aligned (i.e., when its surface coincides with the go-
niometer axis as shown by the dashed image of the flat sample), the correct Bragg
angle θ is measured, provided the sample is completely opaque (see Sect. 8.4.2 and
(8.16)). However, when the sample is displaced by the distance s from the goniome-
ter axis, this displacement results in a different measured Bragg angle, θs, even
though both the incident and diffracted beams form the same angle θ with the sam-
ple surface. Further, if sample displacement is severe, the focusing of the diffracted
beam is no longer precise, and this will result in the loss of the resolution. The latter
issue becomes particularly important when using goniometers with small radii.

Similar errors in the measured Bragg angle may occur in the transmission geom-
etry (see Fig. 12.11, right). Moreover, when a cylindrical sample continuously de-
viates from the goniometer axis in a circular fashion during spinning, considerable
Bragg peak broadening, δθ, may be observed, as also indicated in Fig. 12.11, right.

Errors in the registered Bragg angles associated with the nonideal positioning of
the sample are usually not as severe when compared to those observed in intensity
measurements due to improper sample preparation. They can be nearly completely
eliminated by maintaining the goniometer properly aligned. Furthermore, sample
positioning errors in Bragg angles are systematic, and they can be accounted for,

θ

s

θθ θ
θs

θs

δθ

s
θ

Fig. 12.11 The effect of sample displacement by distance s from the goniometer axis on the mea-
sured Bragg angle, θs, in the Bragg–Brentano geometry (left) and in the transmission geometry
(right). The goniometer axis is indicated by the small open circle in the center of the drawings.
The optical axis is shown as the dash-dotted line. The ideal location of the sample is shown as the
light-shaded dashed rectangle on the left and as the light-shaded dashed circle in the center of the
drawing on the right.
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Fig. 12.12 The effect of sample displacement, s, on the observed Bragg angles calculated from
(12.4) assuming Bragg–Brentano geometry and goniometer radius R = 285 mm. θs is the observed
Bragg angle, θ is the Bragg angle in the absence of sample displacement.

analytically based on the known geometry of a powder diffractometer. For example,
sample displacement error in the Bragg–Brentano geometry (Fig. 12.11, left) is:

θs −θ =
scosθ

R
(12.4)

In (12.4), s is sample displacement, R is goniometer radius and the resulting dif-
ference in Bragg angles, θs–θ, is in radians (compare (12.4) with (8.13) and (8.17)).
This error is commonly observed due to the varying sample thickness (especially
when the sample was prepared by dusting) and the varying sample transparency.
It is worth noting that the displacement, s, can be refined together with lattice para-
meters, provided low Bragg angle peaks are included in the refinement, since they
are the most sensitive to s, as shown in Fig. 12.12.

12.1.6 Effects of Sample Preparation on Powder Diffraction Data

To summarize this section, a high-quality specimen for powder diffraction may be
difficult to prepare, and it is not as simple as it seems. The task requires both expe-
rience and creativity. The adverse effects of an improperly prepared sample can be
illustrated by the following three figures, shown in Rietveld format, where the ex-
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Fig. 12.13 Coarsely ground powder and properly selected incident beam aperture. Experimental
data are shown using small circles; the calculated diffraction pattern is shown using solid lines.
The difference Yobs−Ycalc is shown at the bottom of the plot and the calculated positions of Bragg
peaks are marked using vertical bars. The data were collected without spinning the sample.

perimental powder diffraction data were collected in the Bragg–Brentano geometry
from two different specimens prepared from the same material, which was inten-
tionally left in the form of coarse powder.

In the first example (Fig. 12.13), the sample holder, which had a cylindrical hole,
25 mm in diameter and 1 mm deep to hold the powder, was filled completely with
the coarsely ground, unscreened powder using the technique shown in Fig. 12.6. The
aperture of the incident beam was selected in a way so that the length (L = l1 + l2,
see Figs. 12.9 and 12.10) of the irradiated area was ∼20mm at 2θ = 20◦. Assuming
that the calculated diffraction pattern in Fig. 12.13 represents a correct distribution
of relative intensities, it is easy to see that some of the observed diffraction peaks at
random Bragg angles are much stronger than expected. These anomalies are asso-
ciated with the nonideal specimen, which contained coarse grains. As a result, the
total number of particles in the irradiated volume was far from infinite, and/or their
orientations were not random.

To illustrate the origin of these random intensity spikes, it is worthwhile recalling
the spottiness of the Debye rings seen in the film in Fig. 11.1 and modeled for the
first four strongest peaks from this film in Fig. 12.14. Assume that a coarse-grained
LuAu specimen is under examination using a powder diffractometer. Contrary to the
film data, a much smaller fraction of the Debye ring passes through the receiving
slit, and therefore, is registered by the detector in a conventional powder diffrac-
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Fig. 12.14 The model showing the spottiness of the first four distinct Debye rings in the X-ray film
with the powder diffraction pattern of LuAu from Fig. 11.1. The relative intensities of Bragg peaks
vary considerably in the two directions shown as elongated rectangles (each direction represents
the possible trace of the receiving slit traversing the Debye rings during data collection). The Debye
rings on the X-ray film are elliptic because the Debye–Scherrer camera is cylindrical rather than
spherical. The character notations in the figure characterize the expected measured intensity of
Bragg peaks as follows: VVS – very very strong, VS – very strong, S – strong, W – weak and
VW – very weak. RS is the receiving slit.

tometer. Two possible traces of the receiving slit traversing Debye rings during data
collection are indicated by the two bars in Fig. 12.14. The sequence of high and
low intensity spots varies from one Debye ring to another along these two different
directions. This will result in random, considerable, and unpredictable variations in
the registered intensity, as established by a specific distribution of particles in the
sample.

We note that the actual path of the detector slit is always the same, for example,
that shown by the solid elongated rectangle in Fig. 12.14. When the particles in
the specimen are rearranged, the distribution of spots along each Debye ring will
change, thus effectively changing the path of the receiving slit of the detector, for
example, to that shown by the dashed elongated rectangle. In a conventional powder
diffractometry, it is all but impossible to recognize these random and severe intensity
spikes or dips from the visual analysis of the collected data, but the same can be done
easily from a simple visual analysis of the film or area detector data.

In the second example (Fig. 12.15), the same coarse powder was placed in a
0.2 mm deep sample holder and the powder covered a smaller area (10×5mm2).
The aperture of the diffractometer was left identical to the first experiment. After
comparison of Fig. 12.15 with Fig. 12.13, it is easy to see that the relative intensities
of peaks at low Bragg angles are clearly reduced. This happened because the projec-
tion of the incident X-ray beam at low Bragg angles (∼20mm) exceeded the sample
length (10 mm), and since only a fraction of the incident beam energy was scattered
by the sample, the diffracted intensity at low Bragg angles was correspondingly re-
duced. In addition, the reduction of the number of particles in the irradiated sample
volume (smaller area and smaller depth) further exacerbated intensity spikes at ran-
dom Bragg angles. Clearly, the presence of fewer particles worsens the randomness
in the distribution of their orientations.

On the other hand, when the specimen is nearly ideal (i.e., when the particles are
small and nearly spherical) and when the aperture of the diffracted beam is compat-
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Fig. 12.15 Coarsely ground powder and an improper incident beam aperture. The data were col-
lected without spinning the sample. Notations are identical to Fig. 12.13.

ible with the sample size, highly accurate powder diffraction data can be obtained,
as shown in Fig. 12.16. Assuming that the calculated diffraction pattern here also
represents the proper diffracted intensity, the difference between the observed and
calculated diffracted intensity is minimal over the whole range of Bragg angles, and
there are no spikes or dips at random Bragg angles as was seen in both Figs. 12.13
and 12.15.

The particles in the specimen that was used to collect the data illustrated in
Fig. 12.16 consisted of multiple cellular grains with an average diameter of 1μm
– the result of rapid solidification. The powder was subjected to a brief homoge-
nization heat treatment at 950◦C (5 min), which was sufficient to even out the dis-
tribution of Ni and Sn in the crystal lattice of the major phase. The powder was
screened through a 10μm sieve after the heat treatment, and only particles smaller
than ∼10μm in diameter were used to prepare a flat specimen for data collec-
tion employing the Bragg–Brentano focusing geometry. The data were collected
using a scintillation detector with monochromatization of the diffracted beam by
a curved graphite single crystal monochromator. The peak-to-background ratio for
the strongest Bragg reflection at 2θ∼=42◦ was ∼180 : 1.
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Fig. 12.16 High quality, nearly spherical powder prepared by high-pressure gas atomization from
the melt and proper sample length, L. The X-ray powder diffraction data were collected from a
continuously spinning sample (20 mm diameter and 1 mm deep) prepared as shown in Fig. 12.6.
Notations are the same as in Fig. 12.13. The powder contains a small fraction of a second phase,
which is identified by the series of vertical bars shifted downward. The inset shows the scanning
electron microscopy image of the powder morphology (powder courtesy of Dr. I.E. Anderson).

12.2 Data Acquisition

When the sample for a powder diffraction experiment has been properly prepared,
the next step, that is, acquiring experimental diffraction data, is also exceedingly
important in obtaining reliable diffraction data. Needless to say, many of the data
acquisition variables can be adjusted to produce a better or worse quality data set.
These include instrumental parameters, i.e., the wavelength (energy) of the X-rays,
their monochromatization, apertures of goniometer optics, power settings, and data
collection parameters, that is, scanning mode, scan range, step-in data collection,
and counting time.

12.2.1 Wavelength

Usually, the wavelength of the X-rays can be freely selected only when using syn-
chrotron radiation. In conventional laboratory conditions when the wavelength of
the X-rays needs to be changed, this normally means that the X-ray tube has to be re-
placed, which should be followed by tube ageing and realignment of the goniometer.
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These operations should be carried out by trained personnel, and they are rarely per-
formed to collect data from a single sample. Therefore, the selection of the X-ray
tube (and the anode) type is usually done based on practical considerations, or based
on the type of materials customarily studied, and the purpose of the powder diffrac-
tion examination of the majority of samples.

The most typical wavelength selection in powder diffractometry is with a copper
(Cu) anode, although other anode materials may be used. These include chromium
(Cr), iron (Fe), cobalt (Co) and molybdenum (Mo) anodes. The corresponding
characteristic wavelengths for these anode materials are listed in Table 6.1. Long
wavelengths (Cr, Fe, Co) are preferred when the accuracy of lattice parameters is
of greatest concern, since it is possible to measure intensity scattered at high Bragg
angles.9 Short wavelength (Mo) can be used to examine a large volume of the recip-
rocal lattice. However, since powder diffraction data are one-dimensional, the res-
olution may be too low for complex crystal structures and/or materials with low
crystallinity when excessive Bragg peak overlap makes the diffraction pattern ex-
tremely difficult to analyze and process.10

Another important consideration in selecting X-ray wavelengths for a powder
diffraction experiment is whether or not the studied material contains chemical ele-
ments with one of their absorption edges located just above the used characteristic
wavelength. For example, the K-absorption edge of Co is ∼1.61 Å. The strongest
Kα1/Kα2 spectral lines of copper have wavelengths ∼1.54 Å. Hence, nearly all
Kα1/Kα2 characteristic Cu radiation is absorbed by Co, and this type of X-ray
tube is hardly suitable for X-ray powder diffraction analysis of Co-based materi-
als. The same is true for Fe-based materials because the K-absorption edge of Fe is
∼1.74 Å. On the other hand, Co and Fe anodes are well-suited for collecting powder
diffraction data from Co- and Fe-containing substances using Co Kα1/Kα2 and Fe
Kα1/Kα2 doublets.

Certain combinations of characteristic wavelengths and chemical elements may
cause considerable X-ray fluorescence (e.g., see Fig. 11.25). This phenomenon is
similar to the fluorescence in the visible spectrum and it originates from the fact that
electrons in an atom can be excited and removed from their ground states by en-
ergy transfer from photons of sufficient energy. Electrons from higher energy levels
produce fluorescent X-rays when they lower their energy by occupying the formed
vacancies. Fluorescent radiation is dissipated in all directions, and it usually results
in an increase of the background. Chemical elements with strong true absorption
generally produce strong X-ray fluorescent background.

9 See Sect. 14.12 for details about various factors affecting precision of the unit cell dimensions.
10 Short wavelength radiation may adversely affect resolution of the data collected using goniome-
ters with small radii (usually under ∼200mm). When a large radius goniometer (usually 250 mm
or greater) is employed, the reduction of the wavelength from Cu- to Mo-anode has little effect on
pattern resolution because the widths of Bragg peaks decrease with the decreasing wavelength. Re-
gardless of the goniometer radius, the use of short wavelengths requires a more precise alignment
when compared to long wavelengths.
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12.2.2 Monochromatization

Either the diffracted or the incident beam should be monochromatized during data
collection. When conventional X-ray sources are employed, additional peaks due
to the presence of weaker spectral lines with various energies in the characteristic
spectrum “contaminate” the diffraction picture and increases peak overlap. The most
critical unwanted wavelength for any anode material is Kβ1 (see Table 6.1). When
a continuous (synchrotron or neutron) spectrum is available, it would be impossible
to see discrete Bragg reflections as a function of Bragg angle without monochrom-
atization, as directly follows from Bragg’s equation.

The simplest monochromatization tool that can be used in powder diffractometry
is a β-filter (also see Sect. 11.2.2). Filter materials have their K-absorption edges
just above the wavelength of the strongest Kβ spectral line of the anode of the X-ray
tube, and their performance is based on how completely they absorb the charac-
teristic impurity wavelengths, and how well they transmit the desired parts of the
characteristic X-ray spectrum. For example, to eliminate (absorb) nearly all the β-
component of a copper anode (λ∼=1.39 Å) but to transmit most of the α-component
(λ ∼= 1.54 Å), the filter should be made from Ni (the K absorption edge of Ni is
∼1.49 Å). This results in nearly an eightfold difference in the linear absorption co-
efficients of Ni for Kβ and Kα parts of the characteristic copper spectrum.

Various β-filters are most often used to monochromatize the diffracted beam
(e.g., see Fig. 11.6, left), but sometimes they are used to eliminate Kβ radiation from
the incident beam in conventional X-ray sources. The advantages of β-filters are
in their simplicity and low cost. The disadvantages include: (1) incomplete mono-
chromatization because a small fraction of Kβ spectral line intensity always remains
in the X-ray beam; (2) the intensity of the Kα spectral line is reduced by a factor of
two or more, and (3) the effectiveness of a β-filter is low for white X-rays above Kα
and it rapidly decreases below Kβ. Therefore, β-filters are nearly helpless in elimi-
nating the background, especially when the latter is enhanced by X-ray fluorescence
(the filter itself fluoresces due to the true Kβ absorption).

The most common monochromatization option used in modern powder dif-
fractometry is by means of crystal monochromators (see Fig. 11.2.2, right and
Sect. 11.2.2). Monochromators transmit only specific, narrowly selected wave-
lengths. As follows from the Bragg equation (nλ = 2dm sinθm), for a constant inter-
planar distance, dm, only one wavelength, λ, is transmitted at a given monochroma-
tor angle, θm, assuming that n = 1. A great variety of crystal monochromators are
used in practice, but the best results are usually obtained using curved crystal mono-
chromators, as shown in Fig. 12.17, since they achieve the most precise focusing of
the X-ray beam and therefore, lower the intensity losses.

A well-aligned monochromator usually leaves only Kα1 and Kα2 characteristic
wavelengths and considerably reduces background when it is used to monochro-
matize the diffracted beam. In fact, a diffracted beam monochromator is very ef-
fective in nearly complete elimination of even severe fluorescence (see Fig. 11.25).
In some instances, high-quality curved monochromators can be used to eliminate
the Kα2 component in combination with the relatively large focusing distance and
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Fig. 12.17 The schematic of monochromatization of the diffracted beam using a curved crystal
monochromator. RS – receiving slit, M – curved monochromator, MS – monochromator scatter
slit, D – detector.

narrow monochromator slit (see Fig. 11.19). Spectral purity of X-rays is a definite
advantage of this monochromatization approach. Further, if necessary, the mono-
chromator angle, θm, can be selected to eliminate the Kα1/α2 doublet and to leave
only the Kβ part, which is truly monochromatic in light anode materials, including
the most commonly used Cu anode.

On a downside, high-quality crystal monochromators are relatively expensive,
and they also reduce the intensity of characteristic X-rays by a factor of two to
three. It is worth noting that when the monochromator is made from a low-quality
single crystal or when it is improperly aligned, the resulting reduction of the trans-
mitted intensity may be severe. Crystal monochromators are susceptible to radiation
damage, which is especially true for primary beam monochromators. As a result, the
quality of a single crystal deteriorates with time, and primary beam monochromator
crystals should be replaced after a prolonged use.

A third monochromatization option, that is, energy dispersive solid-state de-
tectors, became available quite recently. By adjusting the energy window, it is
possible to make such a detector sensitive to only the specific energy of X-ray pho-
tons, and therefore, the monochromatization is achieved electronically (Sects.6.4.3
and 11.2.2. The most important advantage of this approach is in the virtual absence
of the loss of intensity. On the downside, continuous cooling of the detector is usu-
ally required. Further, if the powder diffractometer is used in special applications,
for example to examine diffraction patterns from large single crystals, very strong
diffracted intensity with different wavelengths could be accidentally registered.11

All monochromatization options discussed here have been used successfully in
powder diffractometry. With point detectors, that is, with those detectors, which
register diffracted intensity at a specific angle, one point at a time (or a small range
of Bragg angles when using a short strip detector), either or both the incident and

11 An example or registering Cu Kβ and W Lα wavelengths is found in Fig. 6.10.
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diffracted beam can be monochromatized. When position-sensitive or image plate
detectors are used, the only feasible option is to use a β-filter or a crystal monochro-
mator to achieve monochromatization of the incident beam. As shown in Fig. 11.25,
for some materials the background becomes too high, which makes diffraction data
nearly useless in the determination of the atomic parameters of the material.

12.2.3 Incident Beam Aperture

The aperture of the incident beam should be selected to match the diffraction geome-
try and sample size. For the commonly used Bragg–Brentano focusing geometry, the
most important requirement is that at any Bragg angle the length of the projection of
the incident beam does not exceed the length of the sample (see Figs. 12.9, 12.10 and
(12.1)). This is achieved by a proper selection of the divergence slit (see Fig. 11.6).
When the slits are calibrated in degrees, the use of (12.1) to determine the proper
size of the divergence slit is straightforward. In the majority of commercial diffrac-
tometers, however, slits are calibrated in mm, and their angular divergence can be
estimated (also see (11.1)) using the following simple relationship, which assumes
the infinitesimal size of the X-ray tube focus. 12

ϕ∼= 57.3δ
r

(12.5)

In (12.5), ϕ is the angular divergence of the slit in degrees, δ is the slit opening
in mm, and r is the distance from the X-ray tube focus to the divergence slit in mm.
It may be useful to check that the correct aperture of the incident beam has been
selected by mounting a fluorescent screen on the sample holder at the lowest Bragg
angle that is examined during the experiment. Alternatively, it is always possible
to select a slit narrower than the acceptable maximum to ensure that the projection
of the incident beam fits within the sample length along the optical axis of the go-
niometer at the minimum Bragg angle. Unnecessary reduction of the aperture of
the incident beam, however, results in the proportional reduction in the diffracted
intensity, see Fig. 12.19.

In the transmission geometry the requirements are different. When a flat trans-
mission sample is used, the aperture of the incident beam is defined by the largest
Bragg angle of interest, since at θ = 0 the sample is perpendicular to the incident
beam (and not parallel, as in the Bragg Brentano geometry). Equation (12.1) then
becomes as follows (where the notation are the same as in (12.1)):

L ∼= φR
sin(90−θ)

(12.6)

12 As established in Chap. 11 (see Fig. 11.7), this is a valid approximation because the typical
projection of the 1 mm wide line focus of the X-ray tube, visible at a small take-off angle (usually
5–6◦), results in the source size on the order of 0.1 mm.
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The opposite constraint on the relationships between the incident beam size and
sample size should be followed when a cylindrical transmission sample is under
examination: the projection of the beam should be large enough to irradiate the
whole sample at any position it may occupy during spinning. This includes a small
precession around the goniometer axis. If this requirement is not followed, the inho-
mogeneities in the powder packing density may cause sporadic changes in measured
intensities.13

The effects of the incident beam aperture on both the intensity of the diffracted
beam and the resolution of the goniometer in the Bragg–Brentano geometry are
shown in Figs. 12.18 and 12.19. Bragg peak intensities increase rapidly and nearly
linearly as a function of the incident beam aperture, as long as the opening of the
divergence slit keeps the incident beam in check and the total length of its projection
(L, (12.1)) remains shorter than the diameter of the specimen (20 mm), as shown in
Fig. 12.20.

Bragg peak intensity continues to increase as long as the aperture of the incident
beam is small enough and the projection of the incident beam is fully contained
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Fig. 12.18 The set of X-ray powder diffraction patterns collected from the nearly spherical
LaNi4.85Sn0.15 powder (see Fig. 12.16, inset) on a Rigaku TTRAX rotating anode powder dif-
fractometer using Mo Kα radiation. Goniometer radius R = 285 mm; receiving slit RS = 0.03◦;
flat specimen diameter d = 20 mm. Incident beam apertures were 0.05◦, 0.17◦, 0.25◦, 0.38◦, 0.5◦,
0.75◦, 1◦, 1.5◦, 2◦ and completely opened (∼5◦), respectively. An automatic variable scatter slit
was used to reduce the background. The data were collected with a fixed step Δ2θ= 0.01◦, and the
sample was continuously spun during the data collection.

13 The homogeneity of an incident beam may become an issue when a cylindrical specimen expe-
riences large amplitude oscillations around the goniometer axis during spinning.
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Fig. 12.19 The normalized integrated intensity of the strongest peak (left) and the average full
width at half maximum, FWHM, (right) of the three Bragg peaks shown in Fig. 12.18, both as
functions of the divergence slit aperture. The intensity of the strongest Bragg peak was normalized
with respect to its value when the divergence slit was completely opened (DS ∼=5◦). The corre-
sponding values at the completely opened divergence slit are not shown to clarify the behavior at
low apertures.
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Fig. 12.20 The projections of the incident beam (white rectangles) on the sample surface (filled
circles) at 2θ∼= 35◦ modeled using (12.1) (ϕ= DS), goniometer radius R = 285 mm, and a constant
width, W = 12 mm. Specimen diameter is d = 20 mm.
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within the sample boundaries. The background level approximately follows the be-
havior of Bragg peak intensities, which is also evident from Fig. 12.18. When the
aperture of the divergence slit reaches and exceeds 1.5◦, no further increase in the
diffracted intensity is observed. This is consistent with (12.1), Figs. 12.19 and 12.20,
which indicate that for this goniometer, the projection of the incident beam exceeds
the sample (d = 20 mm) at 2θ∼=35◦ when DS aperture (ϕ) is between 1.0◦ and
1.5◦.14 Predictably, the linear behavior of the scattered intensity when DS ≤ 0.5◦

extrapolates to I→0 with DS → 0.15

The varying incident beam aperture has minimal effect on the resolution of the
instrument due to excellent focusing. As shown in Fig. 12.19 (right), the average
full width at half maximum (FWHM) increases from ∼0.073◦ to ∼0.077◦ (i.e.,
only by ∼5%) when the divergence slit aperture increases from 0.05◦ to completely
opened (i.e., by as much as ∼10,000%). The dependence of the FWHM on the slit
opening saturates at wide apertures, which is consistent with the full illumination of
the specimen when ϕDS >1◦.

In addition to controlling the aperture of the incident beam in the plane perpen-
dicular to the goniometer axis, its divergence in the plane parallel to the goniometer
axis should be controlled by Soller slits (see Fig. 11.6). This is done to reduce the
asymmetric broadening of Bragg peaks, which may be very strong at low Bragg
angles and small goniometer radii.

The effect of varying the axial divergence of the incident beam is shown in
Fig. 12.21, where one low- and one middle-Bragg angle peaks were measured with
different Soller slits. Obviously, large axial divergence results in the appearance of
a broad tail extending toward low Bragg angles and in somewhat reduced resolution
of the instrument due to the related change in the peak shape caused by broadening
of both the base and FWHM. As the Bragg angle increases, the peak asymmetry
becomes less obvious but is still present.

12.2.4 Diffracted Beam Aperture

The aperture of the receiving slit (Fig. 12.22) is as important as that on the incident
beam side. The receiving slit should be selected as small as reasonably possible to
improve the resolution of the instrument. While the size of the receiving slit does not

14 The behavior of L as a function of DS (ϕ) is nearly linear for a constant θ when ϕ is small, which
is apparent from the second part of (12.1). The deviation from linearity observed in Fig. 12.19, left,
when DS is between 0.5◦ and 1◦, i.e., when the projection of the incident beam remains within
the sample boundaries as seen in Fig. 12.20 is associated with the inhomogeneity of the incident
beam. Its intensity as a function of L becomes nonlinear at large divergence slit openings with the
maximum in the center of the projection, gradually and non-linearly decreasing toward its ends.
The distribution of intensity in the incident beam as a function of L is source-dependent and, if
necessary, it may be measured experimentally.
15 This is expected assuming the ideal homogeneity of both the incident beam and the sample
packing density. The former is true for small divergence slit openings, and the latter is true for the
used sample, which was prepared from the nearly spherical particles.



326 12 Collecting Quality Powder Diffraction Data

Bragg angle, 2θ (deg.)

13.4 13.6 13.8 14.0 14.2

0

10

20

30

40

50
In

te
ns

ity
,Y

 (
10

3  
co

un
ts

) 

In
te

ns
ity

, Y
 (

10
3  

co
un

ts
) 

LaNi4.85Sn0.15, Mo Kα LaNi4.85Sn0.15, Mo Kα

αS = 2.5° αS = 2.5°

αS = 5° αS = 5°

Bragg angle, 2θ (deg.)

29.7 29.9 30.1 30.3 30.5
0

5

10

15

20

Fig. 12.21 Two individual Bragg peaks observed in the diffraction pattern of the LaNi4.85Sn0.15
powder (see Fig. 12.16, inset). The data were collected on a Rigaku TTRAX rotating anode powder
diffractometer using Mo Kα radiation and two different sets of Soller slits controlling the axial di-
vergence of the incident beam: αS = 2.5◦ (solid lines) and αS = 5◦ (dash-dotted lines). The Soller
slit controlling the axial divergence of the diffracted beam was constant, αD = 2.5◦. The goniome-
ter radius R = 285 mm; receiving slit RS = 0.03◦; flat specimen diameter d = 20 mm; incident
beam aperture DS = 0.17◦. An automatic variable scatter slit was employed to reduce the back-
ground. The data were collected with a fixed step Δ2θ = 0.01◦, and the sample was continuously
spun during the data collection.

affect the measurements at specific Bragg angles (as does an improperly selected
divergence slit), inevitably any reduction in the receiving slit opening results in a
proportional reduction of the intensity registered by the detector at all Bragg angles.
The balance between the needed intensity and resolution may be difficult to find
ab initio, and it is best to perform several quick scans of a narrow Bragg angle
range with varying receiving slit and make a selection where both the resolution
and registered intensity are satisfactory. It is advisable to perform quick scans in the
range of Bragg angles that includes the strongest Bragg peaks.

The influence of the diffracted beam aperture on both the diffracted intensity
and the resolution of the goniometer in the Bragg–Brentano geometry are shown
in Figs. 12.22 and 12.23, respectively. Bragg peak intensities increase rapidly and
nearly linearly as a function of the receiving slit opening when the receiving slit is
narrow, then the increase becomes slow and nonlinear with an obvious tendency to
saturation. The background, however, increases steadily as a function of the receiv-
ing slit aperture.
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Fig. 12.22 The set of X-ray powder diffraction patterns collected from the LaNi4.85Sn0.15 powder
(see the inset in Fig. 12.16) on a Rigaku TTRAX powder diffractometer using Mo Kα radiation.
Goniometer radius R = 285 mm; Divergence slit DS = 0.5◦; flat specimen diameter d = 20 mm.
Diffracted beam apertures were 0.01◦, 0.02◦, 0.03◦, 0.04◦, 0.05◦, 0.06◦, 0.07◦, 0.08◦, 0.1◦, 0.12◦

and completely opened (∼1◦), respectively. An automatic variable scatter slit was used to reduce
the background. The data were collected with a fixed step Δ2θ = 0.01◦, and the sample was con-
tinuously spun during the data collection.

Unlike the incident beam aperture (Fig. 12.19), the varying receiving slit opening
has strong influence on the resolution of the instrument. When the receiving slit
aperture increases, the Kα1 components of the two Bragg peaks, 113 and 032, which
are relatively well-resolved when RS ≤0.04◦, are observed as a main peak and a
shoulder when RS ≥ 0.07◦. As shown in Fig. 12.23, this is due to the considerable
change in the FWHM, which increases from ∼0.073◦ for RS = 0.01◦ to ∼0.104◦

when the receiving slit is in a completely opened position, that is, peak broadening
exceeds 40%.

As noted earlier, a scatter slit can be used to reduce the background noise before
it reaches the detector. The aperture of the scatter slit should be selected to enable
unobstructed passage of the monochromatic diffracted beam at any Bragg angle, see
Fig. 12.24. In this example, the scatter slit ScS is wide enough to transmit the beam
without affecting its intensity. On the contrary, the scatter slit ScS′ is too narrow,
and only a fraction of the diffracted intensity will reach the detector.

The best practical way to select the aperture of the scatter slit manually is to find
a well-resolved and strong Bragg peak at low angles, and after setting the detector
at the peak maximum find the minimum opening of the scatter slit that does not
reduce the intensity of the peak without moving the detector arm. Some goniometer
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Fig. 12.23 The intensity of the strongest peak (left) and the average full width at half maximum
(right) of the three Bragg peaks shown in Fig. 12.22, as functions of the receiving slit aperture. Both
the integrated and peak intensities were normalized with respect to their values at the completely
opened receiving slit (RS ∼=1◦). The corresponding values at the completely opened receiving slit
are not shown to clarify the behavior at low apertures.

ScS�

ScS

RS

RS
DS

DS

Sample

Fig. 12.24 Examples of proper (ScS) and improper (ScS′) selection of scatter slit aperture. DS –
divergence slits, RS – receiving slits.

designs enable continuous variation of the scatter slit aperture, and if this is the
case, it is advisable to expand the scatter slit gap by a few percent after finding the
minimum noninterfering opening. Another option is to move (if possible) the slit
by a few mm toward the receiving slit. It is worth noting that it is always better to
have a slightly wider scatter slit aperture than a slightly narrower one, because an
improperly selected scatter slit may result in the reduction of the measured intensity.
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12.2.5 Variable Aperture

Some of the modern powder diffractometers may be equipped with the variable di-
vergence, scatter and receiving slits (e.g., see Figs. 11.19 and 11.22). This enables
slit selection at the software level for any aperture, and in addition, it is possible
to vary the aperture of the incident beam continuously during data collection. Thus,
the variable slit option facilitates experiments where the length of the irradiated area
of the flat sample can be kept constant, as shown in Fig. 12.25. This may be partic-
ularly useful when it is impossible to spin the sample during data collection (e.g.,
when using high or low temperature, or high pressure attachments) to improve par-
ticle orientations averaging. Another benefit of using variable slits is an increased
intensity at high Bragg angles, which are naturally suppressed due to various speci-
men and instrumental factors, such as X-ray atomic scattering (Sect. 9.1.3), atomic
displacements (9.1.2) and Lorentz-polarization (8.6.4).

The resultant diffraction pattern is then numerically processed to convert the
measured profile intensities to a constant incident beam divergence, which is a stan-
dard in the majority of crystallographic software. An added benefit when using vari-
able slits is the availability of the software control over the aperture of the scatter
slit. Its opening may be varied automatically and continuously thus providing the
most effective background reduction at all Bragg angles.

It is worth noting, however, that correcting the measured intensity for the vari-
able aperture of the incident beam introduces additional errors into the experimental
data, and if precise intensities are of greatest concern, using the variable divergence
slit option should be avoided. The errors associated with the variable divergence slit
may become especially severe if the diffractometer is misaligned, the slit is located
too close to the focus of the X-ray tube, or when the incident beam is strongly in-
homogeneous. On the other hand, maintaining a constant irradiated area eliminates
errors due to the inhomogeneity of sample packing, for example, when there is a
difference in packing density in the middle and on the sides of the flat specimen.

RS

RS
DS

DS

Sample

ScS

ScS

Fig. 12.25 The schematic of goniometer optics during data collection employing variable diver-
gence and scatter slits apertures, which enables one to maintain the irradiated area of the sample
constant at any Bragg angle. DS – divergence slit, ScS – scatter slit, RS – receiving slit.
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An alternative to the continuously variable aperture methods is measuring low
and high Bragg angle regions separately, with different but fixed divergence slits.
Thus, the low Bragg angle region is measured using narrow, and the high Bragg
angle region is measured using wide divergence slits, respectively, to improve the
intensity at high angles. This makes it difficult to treat the whole powder diffrac-
tion pattern simultaneously in many common applications, such as peak search and
phase identification. However, the majority of software programs designed for crys-
tal structure refinement enable processing of multiple diffraction patterns and the
multiple divergence slits approach is acceptable.16

12.2.6 Power Settings

Before making the selection of power settings, it is important to know the power
ratings of both the high voltage generator and X-ray tube. The two adjustable in-
strumental parameters are accelerating voltage and tube current. Their product (ac-
celerating voltage in kV and tube current in mA) establishes the output power of the
generator and the input power of the X-ray source in Watts. It is usually the case
that the maximum power is limited by the X-ray tube power rating.

The accelerating voltage should normally be selected at, or slightly above the
threshold of the most efficient generation of the characteristic emission spectrum of
the anode material. For example, the optimal voltage for the excitation of charac-
teristic radiation is ∼45 kV for a Cu anode and ∼80 kV for a Mo anode. However,
most commercial high-voltage generators do not operate above 60 kV, and the dis-
tribution of intensities between white and characteristic radiation for a Mo anode is
not at its optimum.

The second parameter, that is, the tube current, should be selected as high as pos-
sible without exceeding the allowable power rating of either the tube or generator,
since the intensity of the characteristic radiation in the incident beam is proportional
to the tube current. Finally, the standard lifetime of most X-ray tubes (several thou-
sand hours) can be extended considerably if the tube is operated at 75% or less of
its rated power.17

16 When relative diffracted intensities are of greatest concern, the multiple divergence slits
technique is preferred over the continuously varying divergence slit method. The two largest con-
tributions to intensity correction errors when slit opening varies arise from both the imprecise
mechanical control of the slit opening and from the inhomogeneity of the incident beam. The latter
becomes especially severe at large apertures (see Figs. 12.18– 12.20 and relevant text). Neither of
the errors can be easily accounted for. In the former (multiple divergence slits) these issues become
irrelevant because multiple diffraction patterns are employed in calculations with their own scale
factors (see Sect. 16.5 and (16.3) on page 573).
17 For a properly aged X-ray tube; ageing procedure is described by the manufacturer.
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12.2.7 Classification of Powder Diffraction Experiments

Provided all instrumental parameters discussed here have been properly selected,
the next step in the acquisition of high quality experimental data is to select the
scanning mode, scan range, step of data collection, and counting time. The scan-
ning mode is applicable to both point detectors and short linear or curved position
sensitive detectors. When using long curved position sensitive detectors and/or im-
age plates, the scanning mode generally loses its meaning, since there is no need to
move the detector and the entire diffraction pattern (or a large part of it) is recorded
at once, similar to using X-ray film for recording the powder diffraction data. Most
settings in data acquisition are dependent on both the type of the powder diffraction
experiment, and what information is to be gathered from the acquired data. Based
on the counting time, powder diffraction experiments using point detectors can be
broadly classified as fast, overnight, and weekend experiments.

Fast experiments are usually conducted in the time frame from several minutes
to several hours depending on the brightness of the incident beam (i.e., whether
the X-ray source is a rotating anode or a sealed X-ray tube) and the crystallinity of
the material. Fast powder diffraction experiments give the experimentalist a general
idea about the complexity of a diffraction pattern, and data collected in a fast ex-
periment are hardly ever useful beyond the verification of the selected instrumental
parameters for longer experiment(s) and/or for simple phase identification purposes.
However, an hour-long experiment collected from a nearly perfect sample may be
suitable for indexing and accurate refinement of the unit cell parameters.

Overnight experiments normally take from several hours to a whole day or
night. It makes sense to run these experiments overnight, since modern powder
diffractometers are completely automated. Overnight powder diffraction experi-
ments usually provide good quality diffraction patterns, which are satisfactory for
further numerical processing that requires precise peak positions and their intensi-
ties.

Weekend experiments normally take more than a day. They are conducted when
precise peak shapes are desired, for example, when microstructural properties are
analyzed based on the anomalies of Bragg peak shapes, or when the crystal struc-
ture of the material is determined and refined by using the Rietveld method (see
Sect. 15.7).

12.2.8 Step Scan

The scanning mode defines how the detector and the X-ray source, or the detector
and the sample arms move during data collection (this depends on the goniometer
design, see Figs. 11.22 and 11.19, respectively): are they in an intermittent (step-
ping) or in a continuous motion. When the goniometer arms are in an intermittent
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motion, the diffracted intensity is measured when both the X-ray source (sample)
and the detector are at rest,18 and this is usually referred as the step-scan mode.

A generic algorithm of data collection in the step scanning mode is shown in the
form of a flowchart in Fig. 12.26. It includes the following sequence of events:

– Movable goniometer arms advance to their initial (or next) positions.
– Diffracted intensity is measured for a certain time (counting time) in this config-

uration.
– Current Bragg angle and intensity count are saved when the counting time ex-

pires.
– Computer analyzes whether the last Bragg angle value has been reached

• If the answer is no, the loop is repeated by advancing goniometer arms to the
next position, which is calculated by adding a fixed step to the current value
of 2θ;

• If the answer is yes, the data collection is finished.

The resulting powder diffraction pattern usually consists of intensity data as a nu-
merical function of Bragg angle, as shown in Fig. 12.27.

Start
Advance goniometer arms

to the initial or next position
Measure intensity for

a specified time

Last 2θ
reached?Stop

No

Yes Save 2θ and current
photon count

2θnext=2θcurrent+Δ2θ

Fig. 12.26 The flow chart visualizing a generic step scan data acquisition algorithm. The main
loop is highlighted by using thick arrows.

Instrument specific header
Bragg angle 1, Number of accumulated counts 1[, Error 1]
Bragg angle 2, Number of accumulated counts 2[, Error 2]
Bragg angle 3, Number of accumulated counts 3[, Error 3]
..., ...[, ...]
Bragg angle N, Number of accumulated counts N[, Error N]

Fig. 12.27 Example of powder diffraction data file format. Optional experimental errors in the
measured intensity are shown in square brackets.

18 In this context, “sample at rest” means that the angle between the sample surface and the incident
beam is constant. The specimen, however, normally continues to spin about an axis, which is
normal to its surface for better particle averaging and minimization of other errors associated with
preferred orientation and sample inhomogeneity.
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The two most important parameters of the step scan experiment, defined by the
user, are the size of the step in terms of Bragg angle, Δ2θ, and counting time, t. The
step size is constant throughout the entire experiment, and it is usually selected be-
tween 0.01◦ and 0.05◦ of 2θ. Using Cu Kα radiation, the value Δ2θ= 0.02◦ is quite
standard. When using Mo Kα radiation, step size should be generally reduced to
Δ2θ= 0.01◦. High energy synchrotron radiation may require steps as low as 0.001◦.
Neutron powder diffraction data are usually collected with 0.05–0.1◦ 2θ steps.

When Bragg peaks are extremely broad, and when conducting fast experi-
ments, larger step sizes for analytical X-ray diffractometers are acceptable. On the
contrary, when the crystallinity of the examined material is high and Bragg peaks
are narrow, smaller step sizes should be employed. A rule of thumb for the selection
of the step size is that at least 8–12 data points should be measured for well-resolved
peaks within one full width at half maximum. Even lower Δ2θ values are used when
precise Bragg peak-shape data are needed for structure refinement and microstruc-
ture determination. When selecting Δ2θ, it is important to remember that small step
sizes improve resolution, which obviously cannot exceed the limits imposed by the
goniometer optics, while large step sizes reduce the duration of the experiment.

The effect of the varying step size on the resulting powder diffraction data is
shown in Fig. 12.28. The resolution of the two closely located Bragg peaks, 113
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Fig. 12.28 A set of X-ray powder diffraction patterns collected from the LaNi4.85Sn0.15 powder
(see the inset in Fig. 12.16) on a Rigaku TTRAX rotating anode powder using Mo Kα radiation.
Goniometer radius R = 285 mm; Divergence slit DS = 0.5◦; Receiving slit RS = 0.03◦; flat speci-
men diameter d = 20 mm. Step scan mode with steps 0.005◦, 0.01◦, 0.02◦, 0.03◦, 0.04◦, and 0.05◦.
An automatic variable scatter slit was used to reduce the background.
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and 032, is nearly completely lost when Δ2θ was 0.04◦ and 0.05◦. The loss of the
resolution in this case is neither associated with the intrinsic changes of the peak
shape, nor with the increase of the full width at half maximum, as is the case when
the aperture of the receiving slit varies (see Figs. 12.22 and 12.23). It is simply
the result of missing the details of the distribution of the diffracted intensity as a
function of Bragg angle, because the size of the step exceeded the opening of the
receiving slit.

Counting time establishes the length of time that the goniometer arms are held in
fixed positions during which the diffracted intensity is measured. Unlike step size,
which is constant in the overwhelming majority of powder diffraction experiments,
counting time may be a constant or variable for each collected data point. The con-
stant counting time is selected in most experiments, as it provides correct relative
intensity measurements without additional data processing. Variable counting time
can be employed when especially precise information about weak diffraction peaks
is required.

A typical way of selecting the variable counting time is to specify the number of
photon counts to be accumulated at every goniometer arm position. Correct relative
intensities are then obtained by scaling each intensity data point to a fixed counting
time, for example, 1 s. The variable counting time approach is rarely used in prac-
tical powder diffractometry because data collection process takes an exceedingly
long time when the background is low.

12.2.9 Continuous Scan

The continuous scanning mode involves uninterrupted movement of the goniome-
ter arms at a constant speed with intensity readings periodically saved at specific
intervals (Δ2θ) of Bragg angle. According to a generic algorithm of this scanning
mode (Fig. 12.29), the detector begins to register photons as soon as the goniometer
arms are set in motion at a constant angular velocity (scan rate), beginning from
selected initial positions. Accumulation of counts continues until the predetermined
sampling interval, Δ2θ, has been scanned. As soon as this condition is detected, the
accumulated intensity count is saved together with the median angle of the scanned
range. The photon count is then reset to zero, and the new cycle of counts accumu-
lation begins. The process is repeated until the last Δ2θ interval has been scanned.

Hence, a continuous scan produces data nearly identical to those collected by
means of a step scan, that is, powder diffraction data are saved in the format shown
in Fig. 12.27. The only difference is that the intensity is not given for a fixed de-
tector position, but for a median Bragg angle in the scanned interval. To minimize
the introduction of a small, but systematic error, an intensity measurement during
continuous scanning always begins from 2θ = 2θmedian – Δ2θ/2, where 2θmedian is
the median Bragg angle saved in the data file. For example, the diffracted inten-
sity at the Bragg angle 2θ = 10◦ with a sampling interval Δ2θ = 0.02◦ is the result
of accumulating an X-ray photon count during continuous scanning from 9.99◦ to
10.01◦ of 2θ.
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Start

Advance goniometer
arms to initial position

Begin movement of the
arms at constant rate

Last 2θ
reached?

Stop

No

Yes

Begin/continue to register
X-ray photons

Preset Δ2θ
scanned?

Reset photon count
to 0

Save 2θ, I
No

Yes

Fig. 12.29 The flow chart visualizing a generic algorithm of continuous scan data acquisition.
Main loops are highlighted by using thick arrows.

The two most important parameters in a continuous scan, which are defined by
the user, are the sampling interval (step), s, and the angular velocity (scan rate), r.
The sampling step is equivalent to the step size in the step-scan mode. Everything
said about the size of the step in Sect. 12.2.8, therefore, applies to the sampling step
during the continuous scan. The two parameters, that are, counting time, t, in the
step scan and the scan rate, r, in the continuous scan are related to one another as
follows:

t =
60s
r

(12.7)

In (12.7), t is in seconds, s is in degrees, and r is in degrees/min. Thus, a con-
tinuous scan with the rate r = 0.1 deg/min and with the sampling step s = 0.02o is
equivalent to a step scan with the same step and counting time 12 s/step. When the
sampling step is reduced at a constant scan rate, this is equivalent to the proportional
reduction of counting time and vice versa.

In modern diffractometers, both scanning modes result in nearly identical qual-
ity of experimental data. A step scan is usually considered as the one with less
significant positioning errors, which could be important in experiments where the
maximum lattice parameter precision is essential. Continuous scans are used most
often for fast experiments, whereas step scans are usually employed in overnight or
weekend experiments.

Predictably, when counting times are short (t � 1 s), step scans take longer to
complete (the required time may be easily doubled when compared with the identi-
cal quality continuous scans). This occurs because no intensity is measured when the
goniometer arms move to the next position (compare the flow chart from Fig. 12.26
with that from Fig. 12.29). The difference in the time of the experiment becomes
negligible during overnight or weekend experiments.
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12.2.10 Scan Range

Regardless of the selection of the scanning mode and all other conditions of the
experiment, the range of Bragg angles within which the diffracted intensity is mea-
sured is also essential. The range of Bragg angles is usually specified by the user
as the start and end Bragg angles, 2θs and 2θe, respectively. The start angle should
be a few degrees before the first observable Bragg peak to ensure the measurement
of a sufficient number of background data points. If an unknown powder is exam-
ined, the beginning of the scan range should be selected at the lowest possible Bragg
angle, which is allowed by the geometry of a sample holder, because some sample
holders shield all or a fraction of the incident beam when 0 ≤ 2θ≤∼2◦–5◦. It is
important to keep in mind that at very low Bragg angles, the background caused by
a fraction of the divergent incident beam reaching the detector may be very high but
most powder diffractometers will provide reliable data at Bragg angles as low as
2◦–4◦ 2θ. Even lower Bragg angles may be examined provided both the divergence
and receiving slits are extremely narrow to eliminate strong contribution from the
incident beam.

No powder diffraction experiment should be started at 2θs = 0◦, since the ex-
tremely high intensity of the incident beam at full tube power may damage the de-
tector even when the narrowest slits have been used. The most dependable way to
determine 2θs for an overnight or a weekend experiment is to perform a quick scan
at 5–10 deg/min, beginning at the minimum allowable Bragg angle and ending at
2θe∼=30–40◦. Based on this result, the correct 2θs may be properly selected.19

The selection of the end angle is usually based on the following factors. First,
each goniometer has certain physical limits on the maximum allowed Bragg angle,
which are dependent on hardware design. These are established by the manufacturer
to ensure that the detector arm does not collide with the X-ray tube housing during
data collection. The majority of modern powder diffractometers operating in θ–2θ
(or θ–θ) modes can reach 2θe as high as 140◦–160◦.

Other considerations are: what is the purpose of powder diffraction data, which
wavelength is used and what is the nature of the examined material? Thus, when
employing Cu Kα radiation:

– The end Bragg angle of 50◦–70◦ is usually sufficient for evaluation of crys-
tallinity or for phase identification purposes.

– The end angle should be selected as high as possible when experimental data
are used for precise unit cell or crystal structure refinement. This usually can be
established by a quick scan (5–10 deg/min) with 2θs∼=50◦–80◦ and 2θe near the
physical limit of the goniometer, and the proper 2θe is selected a few degrees
higher than the last distinguishable Bragg peak.

19 Reminder: once the 2θs has been found, the divergence slit for the complete experiment should
be selected based on the actual size of the prepared specimen as was discussed in Sects. 12.1.3
and 12.2.3.
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– Materials containing only light elements (e.g., organic compounds) scatter
X-rays well at room temperature only at low Bragg angles (usually less than
50◦–90◦ 2θ when Cu Kα radiation is employed) and, therefore, it makes no
sense to measure diffraction data at higher Bragg angles.

When using short wavelengths, the diffraction pattern is compressed to lower
Bragg angles when compared to that collected using long wavelengths, which di-
rectly follows from the Braggs’ law. For example, when X-ray diffraction data were
obtained using Cu Kα radiation at 2θe∼=120◦, this is identical to 2θe∼=47◦ when us-
ing Mo Kα radiation. An example of two equivalent sets of diffraction data collected
from the same powdered specimen using Cu Kα and Mo Kα radiation is shown in
Fig. 12.30.

It may appear that when short wavelengths are used to collect powder diffraction
data, this should result in the reduced resolution thus creating potential problems
during data processing. As shown in the inset of Fig. 12.30, this is not the case
because the Bragg peaks observed using shorter wavelength radiation are sharper
than those observed using longer wavelengths, provided the instrumental resolution
remains constant, and the data collection step size has been appropriately reduced.
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Fig. 12.30 Two X-ray powder diffraction patterns collected from the same flat specimen, 20 mm
in diameter and 1 mm deep cavity, filled with nearly spherical LaNi4.85Sn0.15 powder (see the inset
in Fig. 12.16) on a Rigaku TTRAX rotating anode powder diffractometer using Mo Kα and Cu Kα
radiations. Goniometer radius R = 285 mm. For the experiment using Mo Kα radiation: divergence
slit DS = 0.5◦; receiving slit RS = 0.03◦; step scan mode, Δ2θ = 0.01◦. For the experiment using
Cu Kα radiation: divergence slit DS = 0.875◦; receiving slit RS = 0.03◦; step-scan mode, Δ2θ =
0.02◦. An automatic variable scatter slit was used to reduce the background in both experiments.
The inset shows the expanded view of the three Bragg peaks observed between ∼34.6◦ and 36.0◦

2θ using Mo Kα radiation and the same peaks observed between ∼80.3◦ and 84.2◦ 2θ using Cu
Kα radiation. The resolution is preserved because the corresponding FWHM’s are ∼0.075◦ and
0.172◦ for Mo and Cu Kα radiations, respectively.
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For example, the full widths at half maximum of the three Bragg peaks shown in
the inset in Fig. 12.30 decreases from ∼0.172◦ to ∼0.075◦ 2θ for Cu and Mo Kα
radiations, respectively. Further, the resolution of Kα1/Kα2 doublet is considerably
improved for Mo Kα1,2 radiation because the separation of the doublet here is nearly
3×FWHM, and it is only ∼1.6× FWHM for Cu Kα1,2 radiation.

The use of short wavelengths somewhat improves the scattered intensity because
reflections shift to low Bragg angles where the Lorentz-polarization factor is high.20

On the other hand, the total flux of low energy photons is usually higher than that
of high- energy photons at the same X-ray tube power settings. Another advantage
of using high- energy X-rays is because peak broadening at low angles is less sus-
ceptible to a variety of factors, such as crystallite size, strain, and some instrumental
influences. The largest drawback is the inevitable increase in peak asymmetry and
associated loss of resolution.

12.3 Quality of Experimental Data

The quality of powder diffraction data may be easily recognized visually from a
plot of diffracted intensity as a function of Bragg angle, as depicted in Fig. 12.31.
The two sets of data shown in this figure, were collected from the same specimen
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Fig. 12.31 The example of different quality X-ray powder diffraction data. Only thin lines connect-
ing observed data points are shown to emphasize the difference in data quality. Both experiments
were carried out using the same powdered specimen and the same powder diffractometer with
rotating anode X-ray source (Fig. 11.22) but with different scan rates.

20 Intensity gain due to Lorentz-polarization factor (see Sect. 8.6.4) is partially offset by the re-
quirement of reduced divergence slit opening (see Sects. 12.1.3 and 12.2.3), provided all other
things remain constant, including the brightness of the incident beam.
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prepared from the nearly ideal LaNi4.85Sn0.15 powder (see the electron micrograph
in the inset of Fig. 12.16) using the same diffractometer in a continuous scan mode
with sampling interval s = 0.01◦ employing Mo Kα radiation. One of the data sets,
which is smooth and appears to be of high quality, was collected with a scan rate
r = 0.15 deg/min. This scan rate is equivalent to a counting time s = 4 s in each point
(see (12.7)). The second, noisy, powder diffraction pattern was collected with a scan
rate r = 12 deg/min, which is equivalent to a counting time s = 0.05 s per point, and
it gives the impression of lower quality data. In Fig. 12.31, it is easily noticeable
that strong noise makes the existing weak Bragg peaks nearly unrecognizable (e.g.,
compare the range of Bragg angles between 33◦ and 35◦ 2θ). In addition, it gives
rise to false anomalies, which look similar to nonexisting weak Bragg peaks (e.g.,
see the range between 36.6◦ and 37◦ 2θ).

Strict numerical characterization of the quality of powder diffraction data is pos-
sible in addition to visual analysis. It is briefly considered in this section along with
the several most important issues associated with the proper selection of data ac-
quisition parameters to ensure consistent reliability of the powder diffraction ex-
periment, e.g., similar to that shown in Fig. 12.16. In our consideration we will
implicitly assume that the errors associated with positioning of the goniometer arms
are negligible, that is, that the measured Bragg angles are precise. This is usually
true for new goniometers, but may not be the case for goniostats that have been
in service for many years (20+ years), and in which the gear mechanism has been
worn out.

If positioning errors are not negligible, the goniometer should be repaired or
replaced, as it is intrinsically impossible to obtain high-quality powder diffraction
data using a goniometer, which produces either systematic or random (and there-
fore, uncontrollable) errors in Bragg angles. Periodic testing of positioning errors
of the goniometer should be done by measuring one or several standard materials
available from the National Institute of Standards and Technology (NIST).21 The
most commonly used standards are silicon (SRM 640b), corundum (SRM 676), and
LaB6 (SRM 660/660a).

12.3.1 Quality of Intensity Measurements

Regardless of the selection of the scan mode (see Sects. 12.2.8 and 12.2.9), the
intensity recorded at each Bragg angle is measured during a certain period of time
– counting time – which is one of the multiple user-specified parameters in the data
acquisition process. As clearly seen in Fig. 12.31, the importance of the counting
time parameter is difficult to overestimate since it directly influences the accuracy
of the measured diffracted intensity, and the overall quality of diffraction data.

In powder diffraction, X-ray photons or neutrons (in X-ray and neutron diffrac-
tion experiments, respectively) are registered by the detector as random events. The

21 For a complete list of X-ray standards available from NIST see http://ts.nist.gov/
measurementservices/referencematerials/index.cfm.
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measured intensity is directly proportional to the number of counts and therefore,
the accuracy of intensity measurements is governed by statistics. Even though here
we refer to X-ray diffraction and photons, all conclusions remain identical when
neutron diffraction and neutron count is considered.

Assume that a total of N photon counts were registered by the detector. The
spread, σ , in this case is defined by the Poisson’s22 probability distribution

σ =
√

N (12.8)

The corresponding error, ε , in an individual measurement (i.e., in the number of
counts registered at each Bragg angle) depends on the confidence level and is
given as:

ε =
Qσ
N

=
Q√
N
×100% (12.9)

where Q = 0.67, 1.64, 2.59, and 3.09 for the 50, 90, 99 and 99.9% confidence lev-
els, respectively. Thus, to achieve a 3% error in the intensity measurement at 50%
confidence, it is necessary to register a total of ∼500 photons, while to reach 3%
error at 99% confidence, as many as ∼7,400 counts need to be accumulated. For
a 1% error at the same confidence levels ∼4,500 and ∼67,000 photons must be
registered by the detector. Equation (12.9) reflects only statistical counting errors,
which are present even in the best quality data. Other systematic and random errors,
for example those that appear due to the nonideal sample, may affect the resulting
experimental data, and these errors were described in Sect. 12.1.

Consider the example shown in Table 12.1, which shows the effect of count-
ing time on the statistical error of a single X-ray intensity measurement. When the
counting time is limited to 1 s, a total of 100 photons are registered with the result-
ing ∼16% error at the 90% confidence level. When counting time is increased to
25 s, the statistical error in the 2,500 registered photons is reduced to 3.3%. It is
worth noting that as follows from (12.9) and Table 12.1, when a twofold increase
in the accuracy of the intensity measurement is desired, the counting time must be
increased fourfold.

Table 12.1 Effect of counting time on the statistical error during a single measurement.

Photon flux
(counts per
second)

Counting
time (s)

Number (N) of
registered counts

Spread =
√

N
(counts)

Error at 90%
confidence (%)

100 1 100 10 16.4
100 25 2,500 50 3.3

22 Siméon-Denis Poisson (1781–1840) was a French mathematician credited with numerous dis-
coveries in mathematics, geometry and physics. He is probably best known for Poisson’s ratio,
which is the relative contraction strain divided by the relative extension strain under uniaxial
compression, and Poisson’s noise, which is defined in (12.8). See http://en.wikipedia.org/wiki/
Simeon Poisson for a brief biography.
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Obviously, the quality of intensity measurements in powder diffraction is in-
versely proportional to the statistical measurement errors and, therefore, it is directly
proportional to the square root of the total number of registered photon counts. As-
suming constant brightness of the X-ray source, the most certain way to improve
the quality of the diffraction data is to use a lower scanning rate, or longer counting
time in continuous and step-scan experiments, respectively.

Increased photon counts in principle can be achieved by using larger divergence
and receiving slits, increasing the input power to the X-ray tube, using a position-
sensitive or image-plate detector and some other modifications of various data ac-
quisition and instrumental parameters. The side effects arising from improvements
in counting statistics should be considered as well. For example,

– Increasing the counting time translates into long (overnight or weekend) experi-
ments that take more time to collect.

– Increasing the divergence slit may be incompatible with the sample size (see
Sects. 12.1.3 and 12.2.3).

– Increasing the receiving slit decreases the resolution (see Sect. 12.2.4).
– Raising the input power is limited by the ability of an X-ray tube to dissipate heat

and results in a reduced life of the tube.
– Using position sensitive or image plate detectors results in a lower resolution and

higher background (see Fig. 11.25).

In extreme cases, the only feasible option may be to seek availability of the near-
est synchrotron beam time.

The optimal counting time depends on the requirements imposed by the desired
quality of diffraction data. For example, the International Centre for Diffraction Data
(ICDD),23 which maintains and distributes the most extensive database of powder
diffraction data, has established the following requirements for the submission of
new experimental powder diffraction patterns to be added to the Powder Diffraction

File
TM

:

– At least 50,000 counts total should be accumulated for peaks with relative inten-
sity 50% or higher of the strongest observed Bragg peak.

– At least 5,000 counts total should be accumulated for peaks with intensity 5% or
higher of the strongest Bragg peak.

The ICDD requirements are quite strict, and they are established to control the
quality of the database. In a typical powder diffraction experiment according to the
classification introduced in Sect. 12.2.7 and assuming that an average diffraction
pattern will consist of ∼4,000 data points, the counting time will vary from 0.5 to 2 s
for a fast experiment, from 6 to 10 s in an overnight experiment, and counting time
will exceed 20 s during a weekend experiment. Hence, fast, overnight, and week-
end step-scan experiments using a sealed X-ray tube source will usually provide

23 International Centre for Diffraction Data, (ICDD R©) is a nonprofit scientific organization dedi-
cated to collecting, editing, publishing, and distributing powder diffraction data for the identifica-
tion of crystalline materials. ICDD on the Web: http://www.icdd.com/.
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adequate quality of the powder diffraction pattern for phase identification, unit cell
parameters refinement, and crystal structure solution and refinement, respectively.

In addition to the statistical error in each individual data point, it is often desirable
to have the means of describing the quality of the whole powder diffraction pattern
using a single figure of merit. This can be done by using the observed residual,
Robs,24 which is given by (12.10).

Robs =
n

∑
i=1

σi

/
n

∑
i=1

Ni ×100% (12.10)

The numerator in (12.10) represents photon counting errors (see (12.8)) and the
denominator corresponds to the total number of counts, both summed over the total
number of the measured data points, n. For example, the two diffraction patterns
shown in Fig. 12.31 are characterized by Robs = 3.59 and 30.9% for the higher and
the lower quality data, respectively. The range shown in this figure includes a total
of 1,201 data points, and the total number of accumulated counts varies by nearly
two orders of magnitude: ∼6.4×105 and ∼8×103, for the high and poor quality
data, respectively. The Robs figure of merit reflects the overall quality of the powder
diffraction pattern and is comparable with other residuals (R-factors) commonly
calculated to represent the quality of fitting in the Pawley, Le Bail and Rietveld
methods (see (15.19)–(15.23) in Sect. 15.6.2): a low Robs characterizes high quality
data, while a high Robs corresponds to low quality diffraction patterns.

12.3.2 Factors Affecting Resolution

The intrinsic one-dimensionality of the powder diffraction experiment implies that
every attempt should be made to collect diffraction data with the highest possible
resolution. As we established in Sect. 12.2, many factors affect the resolution of
the experimental data, the most important being the radius of the goniometer, the
wavelength of the used radiation, the receiving slit aperture and the step size or
sampling step.

The goniometer radius is generally fixed. However, since the angular resolu-
tion remains constant for a given condition of the specimen, linear resolution of
the goniometer is inversely proportional to its radius. Therefore, when especially
high resolution is an issue, X-ray diffraction data should be collected using the in-
strument with the largest available radius. It is important to remember that a large
goniometer radius usually translates into a decreased diffracted intensity, and the

24 This figure of merit is different from the so-called expected residual used to quantify the quality
of experimental data in a Rietveld refinement. The latter is given as Rexp =

(
(n− p)/∑wiY 2

i
)1/2,

see (15.22) on page 521, where n is the total number of collected data points, p is the total number
of least squares parameters, wi and Yi are the weight and the intensity, respectively, of the ith data
point (1 ≤ i ≤ n), also see Chaps. 16 onward.
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powder diffraction experiment will take a longer time to achieve an identical Robs,
when compared to that using the goniometer with a smaller radius.

Similarly, using lower energy X-rays (i.e., X-rays with higher wavelengths) will
normally result in the improved resolution of the powder diffraction pattern, but not
Kα1/Kα2 doublets (see Fig. 12.30). The caveat in using long wavelengths is the re-
duction of the volume of the “visible” reciprocal lattice when compared to that using
short wavelengths because only those reciprocal lattice points which have d∗

hkl ≤2/λ
(e.g., see Fig. 7.10) can be positioned on the surface of the Ewald’s sphere.25 Fur-
ther, as discussed earlier (see Sect. 12.2), the easy selection of the wavelength is
only feasible when using a synchrotron X-ray source.
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12.5 Problems

1. Assume that you are to collect powder diffraction data from a powder with the
purpose to establish and refine its crystal structure. Earlier, you have used the fol-
lowing powder diffractometer:

(a) Sealed X-ray tube source, curved position sensitive detector, the radius of its go-
niometer is 150 mm and diffraction data are collected in the transmission mode
using cylindrical specimens. You employed this equipment to characterize the
phase purity of your materials. In addition to this device, other departments at
your university have the following powder diffractometer systems:

(b) Sealed X-ray tube source, Bragg–Brentano goniometer, radius 185 mm, scintil-
lation detector.

(c) Rotating anode source, Bragg–Brentano goniometer, radius 285 mm, scintilla-
tion detector.

(d) Sealed X-ray tube source, Bragg–Brentano goniometer, radius 250 mm, cooled
solid-state detector.

Establish the order in which you would call people in charge of the diffractometers
to arrange for data collection, and explain why.

2. Now assume that you have 20 different samples to characterize with respect to
their phase composition. Further, each department charges $50.00 per hour for the
use of their equipment (the money goes to a special account, which pays for a ser-
vice contract and routine maintenance). Assuming the availability of the same dif-
fractometers as in Problem 1, what would be the order on your calling list and why?
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3. When you called the person in charge of the diffractometer D (see Problem 1)
she told you that the goniometer axis is horizontal and that the X-ray source arm is
stationary. Do you need to worry about mixing your powder with a binder?

4. As part of the preparation for your experiment described in Problem 1, you used
a mortar and pestle to grind the sample. You were completely satisfied with the
result since the powder appeared fine and homogeneous to your eyes, but when you
discussed the process with your thesis advisor, he asked you to screen the powder
through a 25μm sieve. This discussion happened just before you were about to take
off across campus since your allotted time on the powder diffractometer starts in
10 min. Describe your course of action and explain why?

5. You made a flat sample in the preparation for a highly precise powder diffraction
experiment using diffractometer D (see Problem 1). The sample completely fills a
cylindrical opening 25 mm in diameter. The lowest Bragg angle during the exper-
iment is 2θ = 0◦. The set of divergence slits available on this instrument includes
the following apertures: 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, and 5 mm. Knowing that the
distance between the focus of the X-ray tube and the divergence slit is 60 mm, select
the most appropriate divergence slit to be used in your experiment and explain why?

6. You are having difficulties with making a flat sample for a high precision powder
diffraction experiment – the powder just will not spread evenly in a cylindrical hole
∼20 mm diameter and 1 mm deep. You are considering the following options:

(a) Compact the powder by pressing a glass slide against the surface of the sample
(b) Make a suspension in petroleum ether and pour it into the hole
(c) Backfill the holder while the front of the sample is pressed against a glass slide

with a strip of rough sand paper glued to one of its surfaces
(d) Use a different sample holder and dust the powder on top Arrange these op-

tions in the order which should result in the best quality specimen for powder
diffraction and explain why.

7. You were able to arrange time on the powder diffractometer C (see Problem 1).
Several sample holders are available:

(a) Powder fills a cylindrical hole 25 mm diameter and 1 mm deep
(b) Powder fills a cylindrical hole 20 mm diameter and 1 mm deep
(c) Powder fills a square hole 30×30×1 mm3

(d) Powder is dusted on top of a round rough spot 25 mm in diameter Arrange these
sample holders in the order from the most to the least suitable for a high pre-
cision powder diffraction experiment, and explain why. Assume that you are
working with a molecular compound.

8. Answer Problem 7 if you are working with an intermetallic compound containing
a lanthanide element.
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Fig. 12.32 The result of a quick scan experiment using a narrow receiving slit to determine correct
data collection parameters for a future overnight experiment.

9. You are using Fe Kα radiation to collect powder diffraction data employing pow-
der diffractometer C (see Problem 1). After several quick scans, you established that
the receiving slit with the aperture of 0.03◦ results in both acceptable resolution and
intensity. Bragg peaks appear to have a full width at half maximum between 0.4◦

and 0.5◦ 2θ. What is the largest allowable step during data collection and why?

10. You are about to perform a quick scan from 5◦ to 70◦ 2θ to verify the crys-
tallinity of your material and to check whether the receiving slit is of adequate
width or not. You are planning for the experiment which will take overall 10–15 min.
Which scanning mode (step scan or continuous scan) is the best to accomplish the
task and why?

11. In preparation for an overnight experiment, you performed a quick scan, which
resulted in the powder diffraction pattern shown in Fig. 12.32. The receiving slit
was narrow, RS = 0.01◦. You are planning to double the receiving slit aperture and
your goal is to measure the highest intensity data point with 1% or better error at the
99.9% confidence level during a step scan. Estimate the counting time parameter for
the upcoming overnight experiment.

12. Assume that the overnight experiment described in Problem 11 is to be per-
formed using the continuous scanning mode from 8◦ to 60◦ 2θ with a sampling step
Δ2θ = 0.005◦. Estimate both the scanning rate and the time it will take to finish the
experiment.



Chapter 13
Preliminary Data Processing and Phase Analysis

So far, we considered the fundamentals of crystallographic symmetry, the phenom-
enon of diffraction from a crystal lattice, and the basics of a powder diffraction
experiment. Familiarity with these broad subjects is essential in understanding how
waves are scattered by crystalline matter, how structural information is encoded into
a three-dimensional distribution of discrete intensity maxima, and how it is con-
voluted with numerous instrumental and specimen-dependent functions when pro-
jected along one direction and measured as the scattered intensity Y versus the Bragg
angle 2θ. We already learned that this knowledge can be applied to the structural
characterization of materials as it gives us the ability to decode a one-dimensional
snapshot of a reciprocal lattice and therefore, to reconstruct a three-dimensional
distribution of atoms in an infinite crystal lattice by means of a forward Fourier
transformation.

Our experience with applications of the powder method in diffraction analysis
was for the most part, conceptual, and in the remainder of this book, we discuss key
issues that arise during the processing and interpretation of powder diffraction data.
Despite the apparent simplicity of one-dimensional diffraction patterns, which are
observed as series of constructive interference peaks (both resolved and partially or
completely overlapped) created by elastically scattered waves and placed on top of
a nonlinear background noise, the complexity of their interpretation originates from
the complexity of events involved in converting the underlying structure into the
experimentally observed data. Thus, nearly every component of data processing in
powder diffraction is computationally intense.

The presence of symmetry (Chaps. 1–5) coupled with well-defined analytical
relationships determining both the directions and intensities of scattered beams
(Chaps. 7–9), in addition to known properties of both the specimen and instrument
employed to obtain a powder diffraction pattern (Chaps. 11 and 12), makes it possi-
ble to develop both the general methodology and algorithm(s) suitable for automa-
tion. Given the amount of numerical data collected in a typical powder diffraction

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 347
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experiment,1 their interpretation and processing usually involves a broad use of
computers.

We have no intention of comprehensively covering and/or evaluating any specific
product among a large variety of available applications (both freeware and commer-
cial). Instead, we illustrate multifaceted aspects of data processing using only a few
computer codes, while paying attention to both the capabilities and limitations of
the powder diffraction method, in addition to showing some examples of how the
analysis of the powder diffraction pattern may be accomplished in practice.

13.1 Interpretation of Powder Diffraction Data

Given the nature of the powder diffraction method, the resultant experimental data
can be employed to obtain and/or confirm the following information:

– Phase composition of a material, including both qualitative and quantitative
analyses coupled with searches of various databases.

– Indices of Bragg reflections, observed integrated intensities, and precise lattice
parameters.

– Distribution of atoms in the unit cell, that is, the crystal structure, either to verify
that the material has one of the already known types of crystal structures, or to
solve it from first principles.2

– Precise structural details including equilibrium positions of atoms in the unit
cell, individual atomic displacement, and population parameters by employing
the Rietveld method (see Sect. 15.7).

– Various microscopic structural characteristics of the specimen.

The first four items in this list represent the most common goals that are usu-
ally achieved during characterization of polycrystalline materials using powder
diffraction data. The results are frequently employed to establish and/or clarify re-
lationships between crystal structures and properties of materials; knowing these
is truly critical in modern science and engineering. The most typical sequences of
data processing steps (or phases) are therefore, visualized in a general schematic
depicted in Fig. 13.1. Correspondingly, these four major steps are the subjects of
the remainder of this book. As shown in Fig. 13.1, the three different quality levels

1 For example, the range 10◦ ≤ 2θ≤ 90◦ scanned with a step Δ2θ= 0.02◦ results in 4,001 measured
data points.
2 In the context of this book, structure solution from first principles (also referred to as the ab
initio structure determination) means that all crystallographic data, including lattice parameters
and symmetry, and the distribution of atoms in the unit cell, are inferred from the analysis of the
scattered intensity as a function of Bragg angle, collected during a powder diffraction experiment.
Additional information, such as the gravimetric density of a material, its chemical composition,
basic physical and chemical properties, may be used as well, when available.
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Fig. 13.1 The flowchart illustrating common steps employed in a structural characterization of
materials by using the powder diffraction method. It always begins with the sample preparation
as a starting point, followed by a properly executed experiment; both are considered in Chaps. 11
and 12. Preliminary data processing and profile fitting are discussed in this chapter, in addition to
common issues related to phase identification and analysis. Unit cell determination, crystal struc-
ture solution and refinement are the subjects of Chaps. 14 and 15 onward, respectively. The flow-
chart shows the most typical applications for the three types of experiments, although any or all
of the data processing steps may be applied to fast, overnight, and weekend experiments when
justified by their quality and characterization goals.

of powder diffraction data are usually associated with the expected outcomes of the
experiment.3

Thus, a fast experiment is routinely suitable for evaluation of the specimen and
phase identification, that is, qualitative analysis. When needed, it should be followed
by a weekend experiment for a complete structural determination. An overnight ex-
periment is required for indexing and accurate refinement of lattice parameters, and
a weekend-long experiment is needed for determination and refinement of crys-
tal structure. In some instances, for example, when a specimen has exceptional
quality and its crystal structure is known or very simple, all relevant parameters
can be determined using data collected in an overnight experiment. Similarly, fast

3 The classification “fast,” “overnight” and “weekend” experiments is usually applied to laboratory
powder diffractometers equipped with conventional sealed X-ray tube sources and point detectors.
Obviously, when the brilliance of the available source increases dramatically, the time of the actual
experiment will decrease. It is worth noting that since specialized beam time (e.g., a synchrotron
source) is limited, this normally implies that the majority of samples should undergo a thorough
preliminary examination using conventional X-ray sources.
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experiment(s) may be suitable for unit cell determination in addition to phase identi-
fication. In any case, one should use his/her own judgment and experience to assess
both the suitability of the experimental data, and the reliability of the result.

When the sole goal of the experiment is to identify phases present in the poly-
crystalline material, it may be achieved in a fast experiment, which may be collected
in as little as 10–15 min depending on the quality of the specimen, brightness of the
beam and geometry of the instrument. Another important application of the rapidly
collected data is visual examination of Y (2θ) to evaluate both the crystallinity of
the specimen and the complexity of the pattern, as illustrated by several distinct
examples in Fig. 13.2.

Considering the three examples illustrated in Fig. 13.2, Specimen A is suitable
for any kind of conventional structural characterization using powder diffraction.
Further, judging from the relatively large separation between Bragg reflections at
low angles it is easy to conclude that the crystal structure of this material is quite
simple.4 Specimen B in the current state may or may not be suitable for the deter-
mination of its crystal structure. If possible, the material should be re-crystallized or
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Fig. 13.2 Fragments of powder diffraction patterns collected from three different materials on a
Rigaku TTRAX rotating anode powder diffractometer using Mo Kα radiation. Pattern A represents
a material with excellent crystallinity: narrow and sharp Bragg reflections with Kα1/Kα2 doublets
becoming partially resolved at 2θ ∼= 14◦, low and nearly linear background. Pattern B is also a
crystalline material; however, its crystallinity is poor (and/or grain sizes are extremely small, and/or
the material has been strained), which is evident from broad, but still distinct Bragg reflections;
certain amount of an amorphous component may be present in this sample, judging from a minor
nonlinearity of the background between ∼6◦ and 20◦2θ. Pattern C is collected from a material,
which is clearly noncrystalline in a conventional sense: long-range order and periodicity are absent
because no Bragg reflections have been observed. Provided Powder C is amorphous, broad halo(s)
usually contain information about nearest neighbors in the coordination spheres of atoms. Each
pattern has been scaled individually.

4 Pattern A was collected from a LaNi4.85Sn0.15 powder prepared by high-pressure gas atomization
and then heat treated at 950◦C for 5 min. The compound has a hexagonal crystal structure with unit
cell dimensions a ∼= 5.04,c ∼= 4.01 Å.
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heat-treated (depending on its nature) to increase grain sizes and/or relieve strain. If
successful, widths of Bragg peaks are reduced and pattern resolution is improved.
Judging from the number of Bragg peaks observed at low angles and from the fact
that the first Bragg reflection in Specimen B occurs at a lower angle when compared
with Specimen A, the crystal structure of the former is more complex that that of the
latter.5 Finally, Specimen C is unsuitable for the analysis of the long range crystal
structure, and the powder should be appropriately modified, if possible, to restore
the crystallinity of the material.6

Provided the specimen produces a satisfactory diffraction pattern and in order to
proceed with phase identification, both the positions and intensities of Bragg peaks
should be determined. This is usually achieved by an automated peak-search pro-
cedure using the pattern, which has been processed to eliminate either or both the
background and the Kα2 components of the peaks. When the pattern is complex,
automated peak-search procedures may result in numerous missed peaks, and then
manual peak hunting or even semimanual profile fitting algorithms should be em-
ployed in order to obtain the list of Bragg reflections suitable for phase identifica-
tion. The latter is accomplished by comparing the resulting list of Bragg reflections
with one or more databases (e.g., the Powder Diffraction File

TM
maintained and

distributed by the ICDD7) using different search-match algorithms.
If phase identification was the only purpose of the experiment, and the obtained

list of Bragg angles and intensities has no known match, the collected data can be
used as a fingerprint of a new crystalline substance. The identity of the material
should be confirmed using various experimental techniques (e.g., differential ther-
mal analysis, spectroscopic and/or microscopic methods, and so on) to ensure that
it is not a mixture of compounds. If phase identification was only the first step in
a powder diffraction experiment, the next move is to proceed with the precise de-
termination of lattice parameters. This is easier done when unit cell dimensions are
known at least approximately, but they may also be established from first principles.

Since the highest possible accuracy of peak positions is essential, both the in-
dexing of the pattern and lattice parameters refinement impose high demands on the
quality of data, and overnight or weekend experiments should be performed. Profile
fitting of powder data is typically conducted first and then it is followed by as-
signment of indices to individual Bragg reflections. The latter can be accomplished
using approximately known unit cell dimensions or in a process of the so-called ab
initio indexing. Subsequent least squares refinement usually yields precise unit cell

5 Pattern B was collected from an anhydrous FePO4 powder obtained by decomposition (holding
at 80◦C in vacuum for 12 h) of the hydrothermally prepared dihydrate FePO4 · 2H2O. The com-
pound has a monoclinic crystal structure with unit cell dimensions a ∼= 5.48,b ∼= 7.48,c ∼= 8.05 Å,
β ∼= 95.7◦.
6 Pattern C was collected from a molecular compound (Ph3PCH2COPh−Br) ball-milled for one
hour, which resulted in the complete loss of crystallinity. The appropriate processing in this case
would be to slowly re-crystallize the compound using a suitable solvent and then gently grind the
powder, if necessary, to prepare a specimen for a powder diffraction experiment.
7 ICDD R© – International Centre for Diffraction Data: http://www.icdd.com.
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dimensions. In some cases, when the suspected unit cell is quite accurate, lattice
parameters can be obtained in a process known as the full pattern decomposition.

When the unit cell is established and refined, it may be the end of data process-
ing, but it may also be a part of a sequence leading to a solution of the crystal
structure from first principles. It is a fact worth remembering that the ab initio struc-
ture determination may be performed in two quite different ways. The first works
in reciprocal space, where the intensities of Bragg reflections are employed to re-
cover their phases by applying either heavy atom (Patterson) or direct methods.
Both phase angles recovery methods require highly accurate individual integrated
intensities that may be obtained from exceptional quality data (usually a weekend
experiment) via full pattern decomposition. The second group of techniques con-
sists of simulating the crystal structure in real space: from database searches and
simple geometrical modeling to energy minimization and random structure gener-
ation. It may be necessary to employ several different approaches and/or obtain a
more accurate and better-resolved powder diffraction pattern, and/or examine dif-
ferent indexing solutions from the previous processing step, before the model of the
crystal structure is judged acceptable. When the crystal structure is solved, one final
step, that is, Rietveld refinement, is usually needed in order to confirm and complete
the structure.

The Rietveld method (see Sect. 15.7) is employed both to finalize the model
of the crystal structure (for example, when it is necessary to locate a few missing
atoms in the unit cell by coupling it with Fourier series calculations) and to confirm
the crystal structure determination by refining positional and other relevant parame-
ters of individual atoms together with profile variables. The fully refined structural
model must make both physical and chemical sense. If there are doubts, additional
investigations should be carried out; they may include a better experiment and test-
ing other feasible structural models in addition to employing various experimen-
tal techniques, such as chemical, thermogravimetric, spectroscopic, electron micro-
scopic, neutron scattering, and other. When structure determination is completed, it
should be followed by the calculation of bond lengths and bond angles, structure
drawing, and preparation of the crystallographic data for publication in a suitable
journal and/or in a database.

Referring once again to Fig. 13.1, the flowchart presented there is quite generic. It
does not account for many other important applications of powder diffraction such
as microstructure analysis and determination of grain sizes and microstrain, low
angle scattering and structure of thin films, texture analysis, and diffraction from
polymers, fibers, liquids and amorphous materials. Further, Rietveld refinement can
be, and is indeed, broadly used for quantitative phase and chemical analyses. The
picture drawn in Fig. 13.1 should not be taken as a rigid set of processing steps.
Many more links between the boxes can be drawn, largely dependent on the type of
the material and the complexity of its crystal structure, quality of the experiment,
“noncrystallographic” knowledge about the material, and the expectation or a major
goal of a particular diffraction study.
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13.2 Preliminary Data Processing

As we know (e.g., see Fig. 12.28), a typical powder diffraction pattern is collected
in a form of scattered intensity as a numerical function of Bragg angle (also see
Figs. 13.2 and 8.2–8.7). What is required in many applications of the method (e.g.,
phase analysis, unit cell dimensions, and structure solution), is a list of integrated
intensities or equivalent absolute values of structure factors associated with the cor-
responding Miller indices of the reciprocal lattice points and the observed Bragg
angles (e.g., see Table 8.1). Obviously, the availability of such a list eliminates the
effects of multiple instrumental and specimen-related parameters from raw data, but
its creation requires a certain numerical processing of the pattern. Thus, raw powder
diffraction data converted into the list of observed Bragg angles and intensities are
known as the reduced or digitized powder diffraction patterns. It is worth noting that
reduced patterns may be employed in crystal structure refinement but only in simple
cases, when no substantial overlapping of Bragg reflections occurs.

In order to obtain a reduced pattern, scattered intensity maxima should be lo-
cated and their relative intensities (either as peak height values or, most commonly,
as peak areas) should be established together with the corresponding values of Bragg
angles. Depending on the required accuracy and the availability of crystallographic
information, for example, unit cell dimensions and symmetry, there are three com-
mon approaches to extracting intensities and positions of Bragg peaks from raw
powder diffraction data:

– Peak search, which is unbiased by any kind of structural information. This ap-
proach is based on automatic recognition of Bragg peaks. The accuracy of peak
positions, their intensities, and the completeness of the search are the lowest, es-
pecially when weak Bragg reflections are of concern, and it varies, depending on
both the employed algorithm and quality of raw data. A typical automatic peak
search produces reduced patterns suitable for successful identification of phases
when coupled with a proper database search-match algorithm. This occurs be-
cause all search-match utilities employ just a few of the strongest Bragg peaks;
the latter are conclusively detected by the majority of automatic peak search algo-
rithms. When the specimen is well-crystallized, the results may become suitable
for a quantitative phase analysis, indexing and even for lattice parameters refine-
ment. However, the quality of a typical fast experiment is usually insufficient,
and it may be necessary to conduct an overnight experiment. In the majority of
applications, the unbiased peak search requires additional preliminary processing
of the data, which includes background subtraction, Kα2 stripping, smoothing,
and, sometimes, other corrections, such as Lorentz-polarization and conversion
of variable slit data to a fixed slit experiment. All of these additional processing
steps may be required to improve the reliability of peak detection.

– Profile fitting, which is usually biased by the user’s decision about whether a
peak is present at a certain angle or not, or by the results of an automatic peak
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search. Found or manually marked Bragg peaks are fitted to experimental data
using one of the many available peak-shape functions (Sect. 8.5.1). The fit can
be performed using the entire pattern at once or by splitting the pattern into sev-
eral regions, which are processed separately. Free parameters in these fits usually
include peak positions, their integrated intensity, and other relevant variables re-
quired to describe peak-shape functions. The latter may be peak-specific, or they
may vary as certain analytical functions of Bragg angle, and therefore, become
common for the entire pattern, or only a selected range of Bragg angles. This
approach works best when no information about the unit cell is available. It pro-
duces highly accurate observed peak positions (2θobs) and integrated intensities
(Iobs), provided the quality of experimental data is adequate. The obtained re-
duced patterns may be used in a quantitative phase analysis, indexing from first
principles and lattice parameters refinement, all with higher-than-average prob-
ability of success. Profile-fitting results may be suitable for a crystal structure
determination, which however, may be problematic when diffraction patterns are
exceedingly complex and contain numerous clusters of heavily overlapped Bragg
reflections.

– Full pattern decomposition, which is fundamentally biased by the chosen unit cell
dimensions. It relies on fitting the whole powder pattern at once. In this method,
positions of Bragg peaks are established from lattice parameters and symmetry.
Only unit cell dimensions are refined and the resulting peak positions are not “ob-
served” but rather they are calculated from the refined lattice parameters. Peak
shapes are dependent on a few free variables in relevant analytical functions of
Bragg angle, as was described in Sect. 8.5.1. The integrated intensities, however,
are determined individually for each Bragg reflection. This method extracts quite
reliable individual intensities and, hence, is a typical data-processing step that
precedes the structure solution from first principles, as discussed in Sect. 15.4
and illustrated in Chaps. 16–20. It is worth noting that the full pattern decompo-
sition approach is used increasingly often to obtain accurate lattice parameters
when a powder pattern has been indexed, but the crystal structure remains un-
known, or is not of interest for a specific application.

Preliminary treatment of powder diffraction data and their conversion into re-
duced powder patterns for phase identification, and a database search are nearly
always included in data processing software suites, which are available with the
purchase of a powder diffractometer. Perhaps this is the main reason explaining
the lack of comparable freeware. We note that software developers use a range of
data-processing algorithms and therefore, we will only be concerned with generic
issues without getting into software-specific details, which may be found in the cor-
responding manuals. Unless noted otherwise, examples found in this chapter have
been obtained using the DMSNT8 applications.

8 DMSNT: Data Management Software for Windows NT/2000 from Scintag Inc. Now WinXRD:
Data Collection and Analysis Package from Thermo Scientific (http://www.thermo.com/com/cda/
product/detail/1,1055,11443,00.html).
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13.2.1 Background

Background (e.g., see Figs. 13.2 and 13.3) is unavoidable in powder diffraction, and
each powder pattern has a different level of background noise. The latter originates
from inelastic scattering, scattering from air, sample holder and particle surfaces, X-
ray fluorescence, incomplete monochromatization, detector noise, etc. As a result,
the background must be accounted for, which is usually done by either subtracting
it during preliminary processing of the data, or by adding its contribution (e.g., see
(8.21)) to the calculated intensity, Y (θ)calc, during profile fitting.

Subtracting the background is considered mandatory during preliminary data
processing before eliminating (stripping) Kα2 contributions for a subsequent peak
search. The background should be removed because Kα2 stripping is based on the
fixed Kα1 to Kα2 intensity ratio, which is 2:1 (see Sect. 6.2.2), in addition to Bragg
angle splitting due to the difference in the wavelengths of these two components of
the characteristic X-ray spectrum. The 2:1 intensity ratio includes elastic scattering
on reciprocal lattice points, but not the background noise.

The background should never be subtracted prior to full pattern decomposition
and full profile-based Rietveld refinement.9 In these cases it is approximated using
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Fig. 13.3 Powder diffraction pattern of the orthorhombic NiMnO2(OH) collected on a Scintag
XDS2000 powder diffractometer using Cu Kα radiation. In this example, the background noise
contributes a few percent to the highest measured scattered intensity.

9 The only exception is the subtraction of a constant component of the background, i.e., the lowest
observed intensity, to improve the visibility and enhance contributions from Bragg peaks, if re-
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various analytical functions with coefficients, which are refined along with other
parameters. Thus computed background is then added to the intensity calculated as
a function of Bragg angle.

In the majority of preliminary data processing algorithms, the background is han-
dled in two different ways:

– Automatic, when the background points are chosen based on certain criteria and
then these points are employed to approximate the background by means of cer-
tain smooth analytical function.

– Manual, when the user selects points that belong to the background (i.e., they do
not belong to any of the visible Bragg peaks), which are then used in the same
way as in automatic background removal.

Both approaches have their advantages and disadvantages. Manual subtraction
is slow, but generally yields a more accurate background approximation, while an
automatic algorithm is faster and easier but sometimes lacks the required accuracy.
A typical background is enhanced at low Bragg angles. It has a broad minimum
in the mid-angles range and then gradually increases toward high Bragg angles.
Actual behavior, however, depends on many factors, such as the material of the
sample holder, incident beam and monochromator geometry, sample chemistry and
microstructure, and other parameters. In the powder diffraction pattern shown in
Fig. 13.3, the background looks nearly linear but in reality, this is not the case as
can be seen in Fig. 13.4, where the ordinate has been rescaled to reveal low-intensity
details.

As seen in Fig. 13.4a, the background is determined automatically using the de-
fault box width of 1.5◦ (see caption of Fig. 13.4) is far from the best choice in
this case, because greater-than-needed curvature results in accepting broad bases of
the strongest peaks as the background. This distorts the intensities of Bragg peaks
and therefore, Kα2 stripping and other following treatments cannot be performed
satisfactorily. In the next example (Fig. 13.4b), the background was also treated au-
tomatically, but this time with the box width increased to 4.0◦. The result is a much
better approximation, but a careful examination of the bases of the strong peaks in-
dicates that the background remains overestimated in these critical regions. Manual
selection of points for a background approximation is shown in Fig. 13.4c, which
appears to be the best choice for this particular powder diffraction pattern. Both ex-
amples b and c are suitable for a subsequent Kα2 stripping. It is worth noting that
neither the automatic nor the manual background subtraction works well when there
is a substantial overlapping and clustering of Bragg reflections.

quired. Constant background subtraction can be described by the following analytical expression:
Y ′

i = Yi −min(Yi)+ 1, where Yi is the measured intensity, Y ′
i is the intensity with constant back-

ground subtracted, unity is added to avoid zero intensity and a potential for a division by 0, and i
varies from 1 to n, where n is the total number of collected data points. While doing so, one must
remember that this subtraction will affect weights that are assigned to every data point during least
squares minimization (see (14.60)–(14.62) in Sect. 14.12.1 and Sect. 15.5).
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Fig. 13.4 The powder diffraction pattern from Fig. 13.3 shown with a different intensity scale.
The background (thin lines at the bottom of each plot) has been approximated by means of (a) an
automatic algorithm with the default box width10 of 1.5◦; (b) an automatic algorithm with a 4.0◦

box width; (c) background points selected manually as indicated by small circles.

Once again, the background should be eliminated only when the next step in-
volves the removal of the Kα2 components or other unwanted peaks from the pattern
to perform a peak search using algorithms that do not account for its presence (e.g.,
as in the DMSNT). Other methods that also yield both peak positions and their inten-
sities with a better precision (e.g., profile fitting), do not require Kα2 stripping and,
therefore, background subtraction in these cases should be avoided. The background

10 Width (in degrees 2θ) of the box (window) used in the Box Car Curve Fit method for back-
ground removal. The window determines how close the background curve follows the data. An
underestimated box width results in humps under the peaks, as seen in (a). An overestimated box
width translates in the background that does not follow the data. A proper box width (usually es-
tablished experimentally) results in the background that follows the data closely without following
the peaks, as seen in (b).
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is interpolated using various analytical functions, and their coefficients are refined
simultaneously with other profile parameters, including structural parameters dur-
ing Rietveld refinement. Hence, the background is accounted in a more flexible way,
and experimental data are not subjected to an irreversible modification.11

The following functions are commonly used in background (bi) interpolation,12

where i varies from 1 to n, and n is the total number of data points measured in a
whole powder diffraction pattern or in the region included in the processing:

– Polynomial function, which approximates the background as

bi =
N

∑
m=0or−1

Bm(2θi)m (13.1)

Here and below, Bm, are background parameters that can be refined and N is the
order of the polynomial. The summation in (13.1) is usually carried out begin-
ning from m = 0. However, to account for the often-increased background at low
angles, an additional (hyperbolic) factor with m = −1 may also be included.

– Chebyshev polynomial (type I or type II, either shifted or not). It is represented
as a function of an argument xi, which is defined as:

xi =
2(2θi −2θmin)
2θmax −2θmin

−1 (13.2)

where 2θmin and 2θmax are the minimum and maximum Bragg angles in the
powder diffraction pattern. The background is calculated as:

bi =
N

∑
m=0

Bmtm(xi) (13.3)

and the Chebyshev function, tm, is defined such that

tn+1(x)+2x · tn(x)+ tn−1(x) = 0 (13.4)

where t0 = 1 and t1 = x. Values of the function t are calculated using tabulated
coefficients.

– Fourier polynomial, in which the background is represented as the following sum
of cosines:

bi = B1 +
N

∑
m=2

Bm cos(2θm −1) (13.5)

– Diffuse background function to account for a peculiar scattering from amorphous
phases (e.g., see Fig. 13.2, specimen C) or from a non-crystalline sample holder:

11 Indeed, it is possible and always recommended to save a backup copy of the unmodified ex-
perimental data file. If for any reason the background should be reevaluated, it is easy to do so,
provided a copy of the original data file exists.
12 Many other functions can be used to approximate the background. All of them should be con-
tinuous functions of Bragg angle in the processed range.
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bi = B1 +B2Qi +
N−2

∑
m=1

B2m+1 sin(QiB2m+2)
QiB2m+2

(13.6)

where Qi = 2π/di and the “d-spacing” is calculated for each point, 2θi, of the
powder diffraction pattern.

In (13.1)–(13.6), N typically varies from 6 to 12 when the entire powder diffrac-
tion pattern is of concern. In some instances, when profile fitting is applied to short
fragments of the powder diffraction pattern, the most suitable background function
is that given by (13.1) with N = 1 or 2, that is, a linear or parabolic background.

13.2.2 Smoothing

Smoothing is a numerical conditioning procedure employed to suppress statistical
noise, which is present in any powder diffraction pattern as a result of random in-
tensity measurement errors (12.8). It improves the visual appearance of the powder
diffraction pattern. For example, smoothing can make quickly collected data (say
in a 15 min experiment) look similar to a pattern collected in a longer (e.g., in an
overnight) experiment, and may help with certain automatic procedures, such as
background subtraction, Kα2 stripping and unbiased peak search.

Numerical conditioning, however, does not improve data quality. Moreover, it
causes broadening of Bragg peaks and loss of resolution (e.g., see Figs. 12.22
and 12.23, which illustrate broadening caused by the varying receiving slit), and
may result in the disappearance of weak peaks when overdone. On the contrary, in-
creasing experiment time improves the pattern since it reduces statistical spreads.13

An example of the original and smoothed patterns is shown in Fig. 13.5.
The most typical smoothing approach is often called box-car smoothing. It in-

volves averaging intensities of current and neighboring data points using different
weights. The weight is the largest for the point being smoothed, and it decreases
rapidly for points located farther away. For example, when five points are employed,
the weights (wi) can be set at 1 for the point in the middle (Y0), 0.5 for the nearest
neighbors (Y±1), and 0.25 for the next nearest neighbors (Y±2).

Thus, the smoothed intensity of each point is the weighted sum of the intensities
of five sequential data points divided by the sum of weights:14

Y smoothed
0 =

w2Y−2 +w1Y−1 +w0Y0 +w1Y1 +w2Y2

2w2 +2w1 +w0
(13.7)

where w0, w1 and w2 are 1, 0.5 and 0.25, respectively. In this example, the weights
change linearly (weight of the next data point is reduced by 2, although different

13 As described in Sect. 12.3.1, a two-fold reduction of relative statistical errors requires a fourfold
increase of data collection time.
14 Except for the first (the last) few points in the pattern, where smoothing is either truncated to
include only the points after (or before) Y0, or the point remains “unconditioned.”
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Fig. 13.5 The powder diffraction pattern from Fig. 13.3 with subtracted background prior to (top)
and after (bottom) smoothing by using an analogue of (13.7) with seven sequential data points.

linear dependencies may be used as well). Further, nonlinear weighting schemes
may be employed, for example, a Gaussian distribution of weights. The number
of points and smoothing coefficients (weights) varies for different smoothing at-
tempts. Generally, the smoother pattern is obtained when more points are employed,
or when the weights change less drastically from one point to the next.

Another commonly used smoothing approach is based on the fast Fourier trans-
formation (FFT) algorithm. The number of Fourier coefficients in the original pat-
tern is equal to the total number of the observed data points. In this case, the reverse
Fourier transformation results in the original pattern. Each Fourier coefficient corre-
sponds to a signal of specific frequency observed in the original pattern: the higher-
order coefficients represent the higher-frequency signals. Thus, when high order
coefficients are set to zero or lowered, the reverse FFT produces a pattern similar to
the original but with removed or reduced high-frequency noise, or in other words,
a smoother pattern. Setting more high-order coefficients at zero produces stronger
smoothing. As a result, the removal of high-frequency noise visually improves the
pattern, but at the same time, more and more fine details (weak or narrowly split
peaks) are lost. The loss of weak features in a pattern is a common problem in any
smoothing algorithm.
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Similar to background removal, smoothing should never be applied to a powder
diffraction pattern that may later be used for profile fitting or Rietveld refinement.15

When performed, smoothing may improve certain figures of merit (e.g., Rp, Rwp and
χ2, see (15.19), (15.20) and (15.23) in Sect. 15.6.2), but it will likely and consid-
erably distort lattice parameters and most certainly all intensity-sensitive structural
parameters, including coordinates, displacement, and population parameters of the
individual atoms. The only reliable and justifiable way to improve the true quality
of the full profile fit is to perform a more accurate (i.e., careful sample preparation
and/or longer counting time) powder diffraction experiment.

13.2.3 Kα2 Stripping

The presence of dual wavelengths in conventional X-ray sources, or in other words
the presence of the Kα2 component in both the incident and diffracted beams, com-
plicates powder diffraction patterns by adding a second set of reflections from every
reciprocal lattice point. They are located at slightly different Bragg angles when
compared with those of the main (Kα1) component. This decreases resolution and
increases overlapping of Bragg peaks, both of which have an adverse effect on an
unbiased peak search.

Since every Kα1/Kα2 double peak is caused by scattering from a single recipro-
cal lattice point, the d-spacing remains constant and the scattered intensity is propor-
tional to the intensities of the two components in the characteristic spectrum. Using
Braggs’ law, the following equation reflects the relationship between the positions
of the diffraction peaks in the doublet:

sinθ1
/
λKα1 = sinθ2

/
λKα2 (13.8)

Further, the integrated intensities of the two peaks are related as:

IKα1 : IKα2 = 2 : 1 (13.9)

Assuming that the peaks in the doublet have identical shapes, which is reason-
able because the separation between the two is usually small, (13.8) and (13.9) may
be applied to every point of the observed peak shape, but not to the background.
The Kα2 stripping usually starts from the lowest Bragg angle point of the first ob-
served peak, which should not be in the range of any other diffraction maximum, and
moves toward the last point in the pattern. An example of Kα2 stripping is shown in
Fig. 13.6.

It is easy to see that this simple approach is far from ideal, and the removal
of the Kα2 contributions is far from perfect. The inaccuracies occur because it
is difficult to eliminate the background precisely. A higher-quality pattern usually

15 Unlike background removal, where the subtraction of a constant background may be permissible
(see the footnote on page 355), this statement has no exceptions.



362 13 Preliminary Data Processing and Phase Analysis

In
te

ns
ity

, Y
 (

ar
b.

 u
ni

ts
)

NiMnO2(OH), Cu Kα
a

b

c

10 20 30 40 50 60

20 24 28 32 36 40

70

0

30

0

30

0

Bragg angle, 2θ (deg.)

Fig. 13.6 An illustration of Kα2 stripping (a). The expanded view of the range between ∼20◦

and 40◦ 2θ highlighting inaccuracies on the high Bragg angle sides of the strongest peaks (b).
The expanded view of the same region when the background subtraction and Kα2 stripping was
preceded by a seven point-smoothing (c). Although inaccuracies on high Bragg angle sides are
less visible after smoothing, the “improvement” is accompanied by the loss of resolution, which is
easily seen from comparison of the two peaks at ∼36◦ in (b) and (c).

results in a better Kα2 stripping, as illustrated in Fig. 13.6c where the same pattern
was smoothed before removing the background and Kα2 components. Visible peak
broadening due to the smoothing treatment is noteworthy.

One of the unfortunate results of Kα2 elimination is the distortion of the high
angle slopes of all Bragg reflections. Therefore, Kα2 stripping is a valid step in the
preparation of the powder pattern for the following automatic peak search, but it
should never be performed as a part of data conditioning of the powder diffraction
pattern for fitting and/or Rietveld refinement.
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13.2.4 Peak Search

Fast and reliable peak search or peak localization is needed in order to conduct either
or both, qualitative and quantitative phase analysis or database search for matching
pattern(s). One of the most reliable (in terms of peak recognition), but far from the
fastest techniques, is locating peaks manually, that is, visually. This can be done in
two ways: using the position of the peak maximum, or the mid-point of the peak’s
full width at half maximum. Both cases require removing the Kα2 contribution.
If the latter is not done, positions of both low angle peaks (where Kα1 and Kα2
contributions essentially coincide) and high angle peaks (where these components
are nearly completely resolved) are determined for the Kα1 components. However,
locations of peaks in the mid-angle range are determined somewhere between those
of the Kα1 and Kα2 components. Ideally, they should correspond to the weighted
average Kα wavelength (see Table 6.1), but in reality this is difficult to achieve,
especially when peak tops are used as their positions. When Kα2 components are
stripped before locating peaks, this problem is avoided and the positions of all peaks
correspond to the Kα1 part of the characteristic spectrum.

An automatic peak search is actually the simplest (one-dimensional) case in the
more general two- or three-dimensional image-recognition problem. Image recog-
nition is easily done by a human eye and a brain, but is hard to formalize when
random errors are present and, therefore, difficult to automate. Many different ap-
proaches and methods have been developed; two of them are most often used in
peak recognition and are discussed here. These are: the second derivative method,
and the profile scaling technique.

The second derivative method is actually a combination of background subtrac-
tion, Kα2 stripping and, if needed, smoothing, which are followed by the calculation
of the derivatives. This method is extremely sensitive to noise. As a result, when
fast-measured patterns with substantial random errors are employed, smoothing be-
comes practically mandatory. The second derivative method consists of calculating
first, and then the second derivatives of Y (2θ) with respect to 2θ, and utilizing them
in the determination of peak positions. The derivatives can be easily computed nu-
merically as:

∂Yi

∂2θi
=

Yi+1 −Yi

s
and

∂ 2Yi

(∂2θi)2 =
Yi+2 −2Yi+1 +Yi

s2 (13.10)

where Yi, Yi+1 and Yi+2 are the intensities of three consecutive data points and s is
the data collection step. Instead of smoothing, it is possible to use a polynomial fit
in the vicinity of every data point with the point in question located in the middle of
a sequence. Once the coefficients of the polynomial are determined, both the first-
and second-order derivatives are easily calculated analytically. For example, for a
third-order polynomial

y = ax3 +bx2 + cx+d (13.11)
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the first and second derivatives, respectively, are

y′ = 3ax2 +2bx+ c (13.12)

and
y′′ = 6ax+2b (13.13)

where x is the Bragg angle. When the argument of the polynomial is selected such
that a point Yi (for which the derivatives are calculated) is chosen in the origin of
coordinates along the 2θ axis, i.e., when x = 2θ−2θi, then the corresponding deriv-
atives are simply c (13.12) and 2b (13.13).

Some peak-search algorithms use the first derivative, which is reliable only for
simple, well-resolved patterns. The second derivative method works better with
complex data. An example in Fig. 13.7 (top) shows the profile representing two
partially resolved Bragg peaks together with the first (middle) and second (bottom)
derivatives. The first derivative is zero at the peak maximum, and it changes sign
from positive to negative when the Bragg angle increases. The second derivative
reveals each peak in a much more reliable fashion, that is, as a sequence of negative
values of the function, which are hatched in Fig. 13.7 for clarity.

To improve the detection, negative sequences in the second derivative are usually
fitted to a parabolic function, thus resulting in a better precision of Bragg peak po-
sitions. The width of a Bragg peak can be estimated as the range of the associated
negative region, since the second derivative changes its sign at each inflection point.

Fig. 13.7 Intensity distribu-
tion in two partially resolved
Bragg peaks (top) and the cor-
responding first (middle) and
second (bottom) derivatives.
The second derivative forms
series of sequential negative
regions (hatched), which rep-
resent both the maximum of
each Bragg peak (coincid-
ing with the minimum of the
corresponding negative re-
gion) and the estimate of peak
width near its half maximum
(the width of the associated
negative sequence).

Y
∂Y

/∂
2θ

∂2 Y
/(

∂2
θ)

2
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The example from Fig. 13.7 is simulated and therefore, unaffected by noise.
Thus, the ranges where the second derivative becomes negative can be detected
with confidence. When processing real data, false peaks are often found, especially
in the background regions. To avoid finding an excessive number of false peaks, an
automatic peak search is usually coupled with several limiting parameters, which
should be established empirically for a given quality and complexity of the data.
For example, the minimum observed intensity above which the search is conducted
excludes incompletely removed background; the minimum intensity above which a
detected maximum would be considered as a peak excludes weak peaks; the min-
imum number of sequential negative values of the second derivative, which would
be considered as the manifestation of a peak, excludes noise. The results of an au-
tomatic peak search can be further improved by adding real and/or removing false
peaks manually. An example of such a peak search is shown in Fig. 13.8.

The profile scaling peak search algorithm employs a realistic analytical peak
shape, for example, Pearson VII or pseudo-Voigt functions (see Sect. 8.5.1). This

2θ

NiMnO2(OH), Cu Kα

Y
I

Y
I

10 20 30 40 50 60

10 20 30 40 50 60

Fig. 13.8 Automatic peak search conducted using a second derivative method (top) and manually
corrected reduced pattern (bottom). The upward arrow placed on the digitized pattern shows a false
peak (which was eliminated manually) and the downward arrows show the missed peaks (which
were added manually).



366 13 Preliminary Data Processing and Phase Analysis

approach does not require Kα2 stripping or smoothing. Background subtraction may
still be necessary if the fitting algorithm does not account for its presence. The sim-
plest method uses the chosen peak-shape function with preset parameters, which
may be adjusted manually. An improved approach is to use a well-resolved and
strong Bragg peak to determine the peak-shape parameters, which are better suited
to the actual data. The resulting normalized analytical shape is then moved along the
diffraction pattern and its intensity (which is simply a multiplier, i.e., scale factor)
is calculated by means of a linear least squares technique (see Sect. 14.12.1) to pro-
duce the best fit. Regions, which meet certain criteria, are stored as observed peaks.

If necessary, an automatic peak search may be repeated using the difference be-
tween the observed data and the sum of profiles of all detected peaks. As a result,
weak and/or poorly resolved Bragg reflections, missed in the earlier search may
be found. This simple profile scaling method yields relatively accurate peak posi-
tions and integrated intensities and, if anticipated by the algorithm and realized in
a computer code, their FWHMs. Its use is growing proportionally to the increasing
computer speed. Since the search remains automatic, it may still require the adjust-
ment of several empirical parameters to exclude the excessive appearance of false
peaks or to improve the detection of weak Bragg reflections.

13.2.5 Profile Fitting

Profile fitting is the most accurate, although the slowest and the most painstaking
procedure resulting in observed peak positions, full widths at half maximum, and in-
tegrated intensities of individual Bragg reflections. It is based on minimization of the
difference between observed and calculated profiles using a nonlinear least squares
technique (see Sect. 15.5). The calculated profile is represented as a sum of scaled
profiles of all individual Bragg reflections detected in the whole pattern or in any part
of the pattern, plus an appropriate background function (see Sect. 13.2.1). Individual
peak profiles are described by one of the common peak-shape functions, typically
pseudo-Voigt or Pearson-VII (see Sect. 8.5.1). For conventional neutron diffraction
data, a pure Gaussian function may be employed.16 Generally, three types of para-
meters can be adjusted during the least squares fit:

– Peak positions (2θ), are normally refined for the Kα1 components. If present, the
locations of the Kα2 constituents are established by (13.8).

– Peak-shape parameters, which include full width at half maximum (H), asym-
metry (α), and exponent (β) for Pearson-VII or mixing parameter (η) for
pseudo-Voigt functions. All peak-shape parameters are typically refined for Kα1
reflections. The corresponding Kα2 components are assumed to have H,α,β (or
η) identical to Kα1. In some applications, peak-shape parameters may be fixed
at certain commonly observed values, or they may only be adjusted manually.

16 It is worth noting, that when software on hand does not employ a Gauss peak shape function, it
can be easily modeled by the pseudo-Voigt function using the fixed mixing parameter, η = 1.
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– Integrated intensity (I), which is simultaneously a scaling factor for each individ-
ual peak shape, see (8.21). Typically, the integrated intensity of the Kα1 reflection
is a free parameter and the intensity of the Kα2 part (if present) is restricted, as
given in (13.9).

Overall, up to five parameters per diffraction peak can be refined: 2θ, I,H,α,
and β (or η). In order to proceed with profile fitting using nonlinear least squares
refinement, all parameters should be assigned reasonable initial values. This is usu-
ally achieved in the following way:

– Approximate peak positions can be obtained using visual localization, or from
the automatic peak search, or they may be calculated from unit cell dimensions,
if the latter are known.

– Approximate peak-shape parameters can be preset to some practical or default
values. They may be visually estimated from the pattern (the easiest is the full
width at half maximum) and/or determined from a single, well-resolved strong
Bragg peak.

– Approximate integrated intensity is easily established automatically: when only
“scale factors” of individual peak shapes are of concern, a linear least squares
technique can be employed to find them relatively precisely (see Sect. 14.12.1
for a description of the method and (8.21), which indicates that the governing
equations are indeed linear with respect to I).

All initial parameters can be approximate but they should be sufficiently pre-
cise to ensure that the nonlinear least squares minimization converges. Approximate
peak positions are among the most important, and they should fall within the range
of each peak, or better yet, in the range of their full widths at half maximum. Usually
this relatively vague localization of Bragg reflections is not a problem, even when
peak tops are chosen to represent initial peak positions. However, when processing
clusters of Bragg reflections with considerable overlapping, the approximate peak
locations should be as precise as possible to ensure the stability of the least squares
minimization.

Depending on the quality of the pattern, profile fitting can be conducted in sev-
eral different ways. They differ in how peak positions and peak-shape parameters
are handled, assuming that integrated intensities are always refined independently
for each peak, and a single set of parameters describes a background within the
processed range:

– All possible variables (positions and shapes) are refined independently for each
peak or with some constraints. For example, an asymmetry parameter is usu-
ally a variable, common for all peaks; full width at half maximum, or even all
peak-shape function parameters may be common for all peaks, especially if a
relatively narrow range of Bragg angles is processed. When justified by the qual-
ity of data, an independent fit of all or most parameters produces best results.
A major problem in this approach (i.e., all parameters are free and unconstrained)
occurs when clusters of reflections include both strong and weak Bragg peaks.
Then, peak-shape parameters corresponding to weak Bragg peaks may become
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unreasonable. Further, when several strong reflections heavily overlap (typically,
when the difference in peak positions is only a small fraction of the full width at
half maximum), their positions and especially integrated intensities strongly cor-
relate. As a result, a nonlinear least squares minimization may become unstable.

– Positions of Bragg peaks are refined independently, but the peak-shape function
parameters except asymmetry, which is usually identical for all peaks, are treated
as corresponding functions of Bragg angle (see Sect. 8.5.1, (8.22)–(8.25) and the
following explanations). A major benefit of this approach is a more stable refine-
ment of both the positions and intensities of weak Bragg peaks when they are
randomly intermixed with strong reflections. A major drawback is its inability to
correctly determine peak-shape parameters when only weak peaks are present in
the region included in the processing, or when a few strong peaks are grouped to-
gether, thus preventing a stable determination of relevant nonlinear dependencies
over a broad range of Bragg angles.

– Peak locations are defined by lattice parameters, which are refined, while peak
positions are calculated using (8.2)–(8.7) (see Sect. 8.4.1). Peak-shape parame-
ters are handled as described in item 2 in this list, and rarely as in item 1. This
approach is possible only when unit cell dimensions are known at least approxi-
mately. Therefore, this is no longer an unbiased preliminary data processing, but
it rather becomes a full pattern decomposition using Pawley or Le Bail methods,
which are discussed later (Sect. 15.4). This refinement is often used to obtain
accurate lattice parameters without employing other structural details. A major
benefit here is relatively precise integrated intensities, which are usable for solv-
ing the crystal structure from first principles (see Sect. 10.2). A major drawback
is that any full pattern decomposition approach requires knowledge of the lattice
parameters and symmetry, and therefore, is unsuitable for an unbiased determi-
nation of both the positions and integrated intensities of Bragg reflections.

Examples of profile fitting shown here were obtained using the DMSNT applica-
tion. It employs two peak-shape functions: the Pearson-VII for symmetric peaks and
the split Pearson-VII to treat the asymmetric peaks. All peak-shape parameters can
be refined independently; all or any of them can be fixed. There is no mechanism to
constrain peak-shape parameters, for example, to make some, or all of them com-
mon for several peaks, or to treat them as corresponding functions of 2θ. Therefore,
in many cases when substantial peak overlapping is observed, and/or when data are
of relatively low quality and resolution, profile fitting becomes unstable and does
not converge. Moreover, background must be subtracted prior to profile fitting, as
its refinement is not implemented.

The following examples were obtained using powder diffraction data collected
from a polycrystalline sample of the orthorhombic polymorph of NiMnO2(OH).
Data collection was carried out by using Cu Kα radiation on a Scintag XDS2000
powder diffractometer with a step Δ2θ = 0.02◦. The background was subtracted by
manually specifying background points (see Fig. 13.4c), and Bragg reflections were
located using an automatic peak search. No Kα2 stripping/smoothing of the data
had been performed.
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Fig. 13.9 Observed (thick line) and calculated (thin line) intensity profiles in a fragment of the
powder diffraction pattern of NiMnO2(OH). The position of the missing peak is indicated by a
downward facing arrow. Symmetrical Pearson-VII function with default peak-shape parameters
was used in this example.

Figure 13.9 illustrates initial observed and calculated profiles between ∼29◦ and
∼43◦ 2θ obtained without refinement of peak-shape parameters; integrated inten-
sities were determined from linear least squares. A symmetrical Pearson-VII peak-
shape function, accounting for both Kα1 and Kα2 components, was employed. This
and the following figures describing profile fitting consist of three parts: the box
on top illustrates the observed and calculated patterns; the histogram in the middle
shows positions and heights of the accounted Bragg peaks; and the bottom chart il-
lustrates the difference between the observed and calculated intensities. The bottom
box is of fixed height and the graph is scaled to this height to clarify the details.
The difference plot may also be drawn using a scale identical to the observed and
calculated patterns, which makes them easy to compare.

As indicated in Fig. 13.9, one strong peak in the middle (around 36.3◦) had
been overlooked during the automatic search. Its absence is easily detected from
the analysis of the difference plot. The peak was included into the next step, and the
result is shown in Fig. 13.10.

Profile fitting was performed using both unit weights, and weights based on
statistical spreads of intensity data.17 The resulting plots are shown in Figs. 13.11

17 Weighting in both linear and nonlinear least squares is described in Sects. 14.12.1 and 15.5,
respectively. When unit weights are employed, each data point contributes to the least squares
solution equally. When weights are based on statistical spreads, this usually means that each data
point is included into the least squares minimization with the weight inversely proportional to the
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Fig. 13.10 Observed and calculated intensity in a fragment of the powder diffraction pattern of
NiMnO2(OH) after adding the missing peak (compare with Fig. 13.9).
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Fig. 13.11 Observed and calculated intensity in a fragment of the powder diffraction pattern of
NiMnO2(OH) after least squares refinement using unit weights (compare with Fig. 13.9).

and 13.12, respectively. Unit weights result in a good fit only at peak tops. When
the contributions of both low- and high-intensity data points have been equalized

square of the corresponding statistical error. Thus, wi = 1/Yi (also see (12.8)). Another weighting
scheme commonly used in profile fitting is wi = 1/(Yi +

√
Yi).
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Fig. 13.12 Observed and calculated intensity in a fragment of the powder diffraction pattern of
NiMnO2(OH) after least squares refinement using weights inversely proportional to Y obs

i .

by introducing an appropriate weighting scheme, both peak tops and bases are
represented equally well. It is easy to see by comparing Figs. 13.11 and 13.12
that weights based on intensity errors make the least squares fit more reliable (re-
member, that the scales in these two difference plots are different, and they have
been scaled to fit the entire chart for better visibility). This weighting scheme was
retained through the end of the profile fitting.

The difference plots in Figs. 13.11 and 13.12 point to the presence of two broad
peaks near 35◦ and 41◦ 2θ. The overall improvement after these peaks were included
in the fit is shown in Fig. 13.13. We note that absolute differences between the
observed and calculated profiles in the vicinities of strong reflections are usually
greater when compared to those in the background and weak peaks regions. How-
ever, relative variances (ΔYi/Yi) do not differ substantially.

The Y obs
i –Y calc

i under peaks change sign several times, and they are distributed
nearly evenly both above and below the zero-difference line. This behavior indicates
that the discrepancies between Y obs

i and Y calc
i are due to random intensity errors. If

this is the case, profile fitting is likely correct, and the discrepancies can be reduced
(i.e., the quality of fit can be improved), if desired, by employing better quality data,
for example, collected in a longer experiment. Distinct nonrandomness in the distri-
bution in Y obs

i –Y calc
i under the peaks points to one or several problems with profile

fitting, which may be due to the wrong peak-shape function, excessive asymmetry
when axial divergence was too high, a small amount of second phase if the sample
was inhomogeneous or, perhaps, peak splitting that manifests pseudo symmetry.
Then, the measured Bragg reflections’ profiles should be visually examined and
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Fig. 13.13 Observed and calculated intensity in a fragment of the powder diffraction pattern of
NiMnO2(OH) after adding two broad peaks at 2θ∼= 35.4◦ and ∼40.8◦.

analyzed to identify the reasons and properly account for the observed systematic
discrepancies.

Examples of fitting a whole profile simultaneously are shown in Figs. 13.14
and 13.15. The former depicts the observed and calculated intensities after initial
fitting has been performed using a Pearson VII function, proper weights (wi = 1/Yi),
and peak positions found during an automatic peak search. The difference plot
clearly reveals six weak peaks that were overlooked. The latter figure illustrates
the result after all distinguishable peaks have been included in the fit.

To illustrate small differences, which may occur in profile fitting, consider the ex-
ample shown in Fig. 13.16. Here, the fit was performed using the same experimental
data but employing a different algorithm, that is, which is realized in the WinCSD18

software. This algorithm uses a different peak-shape function (pseudo-Voigt) and
it also allows refinement of a whole pattern or any fraction of the pattern. The full
width at half maximum can be constrained to a single parameter common for all
peaks within the range, or it may be refined for each peak individually. The asym-
metry (α) and mixing parameter (η) are always common for all peaks within the
range included into the fit. The background is refined using a polynomial function.
In this particular example, full widths at half maximum were refined separately for
each individual peak, while α and η were common for all peaks.

18 L.G. Akselrud, P.Yu. Zavalii., Yu.N. Grin, V.K. Pecharsky, B. Baumgartner, E. Wolfel, “Use
of the CSD program package for structure determination from powder data,” Mater. Sci. Forum
133–136, 335 (1993).
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Fig. 13.14 Observed and calculated intensity in the powder diffraction pattern of NiMnO2(OH)
after fitting using a Pearson-VII function. Downward facing dash-dotted arrows indicate the posi-
tions of six weak Bragg peaks not included in the fit.
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Fig. 13.15 Observed and calculated intensity in the powder diffraction pattern of NiMnO2(OH)
after the completion of profile fitting using the DMSNT algorithm. A symmetrical Pearson-VII
function was employed and all present Bragg peaks were included in the fit. The box at the bottom
shows the difference between the observed and calculated intensities using the same scale as on
the plot of both Y obs and Y calc.
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Fig. 13.16 Observed and calculated intensity in the powder diffraction pattern of NiMnO2(OH)
after the completion of profile fitting employing the WinCSD algorithm. Pseudo-Voigt function
was employed and all present Bragg peaks were included in the fit. The box at the bottom shows
the difference between the observed and calculated intensities using the scale identical to that on
the plot of both Y obs and Y calc.

The values of the observed Bragg angles, full widths at half maximum, and in-
tegrated intensities obtained using both the DMSNT and WinCSD programs are
assembled in Table 13.1. The differences in Bragg angles and intensities of sharp
peaks are statistically insignificant. The average FWHM varies from ∼0.08◦ at the
beginning to ∼0.14◦ at the end of the pattern. Thus, the broad peak at 2θ ∼= 35.4◦

likely belongs to an impurity phase.19 Full widths at half maximum of several weak
Bragg reflections are noticeably inflated, which often happens when weak peaks are
fitted using individual FWHMs. As seen in Fig. 13.17, the general trend in the two
distributions of FWHM as functions of Bragg angle is normal. However, the devia-
tions from dependencies discussed in Sect. 8.5.1 are substantial, especially for weak
peaks. The spread in FWHM’s can be reduced by increasing the quality of the data
(for example, by improving counting statistics) and/or by improving the stability of
nonlinear least squares using a choice of FWHM constraints.

The most significant differences in the algorithms employed in both DMSNT and
WinCSD are listed in Table 13.2. Overall, DMSNT results in slightly narrower peaks
than WinCSD, while the difference in peak positions is only in thousandths of a
degree. The largest observed difference is 0.009◦ for the first peak (disregarding the

19 Weak Bragg reflection at 2θ∼= 18.1◦ also belongs to an impurity, present in this powder sample.
Its full width at half maximum determined using DMSNT is nearly identical to those of neighbor-
ing peaks, while WinCSD indicates a much broader peak shape.
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Table 13.1 Results of profile fitting of the powder diffraction pattern of NiMnO2(OH) using DM-
SNT and WinCSD software as shown in Figs. 13.15 and 13.16, respectively.

DMNST WINCSD

2θ (◦) Y (max)a FWHM (◦) Areab 2θ (◦) FWHM (◦) Areab

11.998 235 0.084 226 12.007 0.087 236
18.098c 10 0.089 15 18.095c 0.221 16
20.678 641 0.066 544 20.683 0.082 534
24.219 1,000 0.080 1,000 24.222 0.097 1,000
29.624 678 0.074 656 29.625 0.095 646
31.789 53 0.083 46 31.792 0.075 45
33.937 106 0.072 103 33.939 0.089 96
35.395c 11 0.708 118 35.533c 1.070 120
36.144 672 0.079 687 36.144 0.088 626
36.312 397 0.086 359 36.312 0.091 419
36.726 160 0.126 246 36.728 0.138 237
40.257 156 0.087 159 40.259 0.092 157
40.637 8 0.142 15 40.641 0.111 9
42.159 192 0.088 210 42.159 0.098 203
44.148 18 0.137 36 44.157 0.134 25
47.212 270 0.083 277 47.214 0.092 268
47.570 52 0.100 72 47.566 0.122 64
50.567 28 0.095 31 50.568 0.097 29
50.893 62 0.119 87 50.893 0.128 86
52.834 20 0.174 36 52.840 0.192 43
53.557 34 0.092 46 53.555 0.117 40
54.213 176 0.155 292 54.213 0.162 312
56.864 367 0.113 513 56.864 0.127 503
. . . . . . . . . . . . . . . . . . . . .

a Peak heights normalized to 1,000.
b Area represents integrated intensity; normalized to 1,000.
c Impurity peaks are shown in bold.

impurity peaks at 2θ ∼= 18.1◦ and ∼35.4◦), most likely due to a different treatment
of asymmetry.20 The stability of the refinement is better in WinCSD because fewer
parameters per peak vary independently.

Examples found here are meant to illustrate a general approach to profile fitting
and analysis of both the digital and graphical results. Analysis of graphical data after
profile fitting is practically identical to that commonly used during Rietveld refine-
ment and full pattern decomposition, and this subject is discussed in a greater de-
tail beginning from Chap. 15. Here, we have chosen DMSNT and WinCSD simply
because of our familiarity with both software suites and the availability of numerous
examples at the time. We encourage the readers to check other profile fitting tools

20 Profile fitting using DMSNT has been performed employing a symmetrical Pearson VII func-
tion. Thus, asymmetry, which has the greatest effect on low Bragg angle peaks, was not accounted
for. On the contrary, WinCSD employs a simple but effective model (as long as asymmetry is not
severe), in which full widths are different on both sides of the peak maximum, see Sect. 8.5.2.
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Fig. 13.17 The distribution of full widths at half maximum as a function of Bragg angle obtained
using DMSNT (open circles, solid line) and WinCSD (filled triangles, dash-dotted line) algo-
rithms. The lines represent parabolic fits of the two sets of data to illustrate the trend.

Table 13.2 Major differences in profile fitting algorithms realized in DMSNT and WinCSD.

Property DMSNT WinCSD

Peak shape function Pearson VII or split Pearson VII Pseudo-Voigt
Parameters per peak 4 (Pearson VII) or 6 (split Pearson VII) 3
Common parameters 0 5
Background Must be subtracted Refined as a second order

polynomial
FWHM Individual Individual or common for

all peaks
Exponent (β) Individual N/A
Mixing parameter (η) N/A Common for all peaks
Asymmetry Individual using split Pearson VII Common for all peaks

and select their favorite.21 Further, most manufacturers of powder diffraction equip-
ment offer either their own or third-party software, which is usually integrated with
data collection. A few examples include High Score (from PANalytical22), EVA

21 The depository of crystallographic software can be found at the website of the Collaborative
Computational Project Number 14 for Single Crystal and Powder Diffraction: http://ccp14.sims.
nrc.ca/mirror/mirror.htm.
22 http://panalytical.com.
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(from Bruker AXS23), Jade (from MDI24), and others, which are not necessarily
linked to a particular hardware. Regardless of the actual implementation, the main
principles and details discussed in this chapter are common in many, if not the ma-
jority of available software products designed for preliminary processing of powder
diffraction patterns.

13.3 Phase Identification and Quantitative Analysis

Each powder diffraction pattern is characterized by a unique distribution of both
positions and intensities of Bragg peaks, where peak positions are defined by the unit
cell dimensions and reflection intensities are established by the distribution of atoms
in the unit cell of every crystalline phase present in the sample (see Table 8.2). Thus,
every individual crystalline compound has its own “fingerprint,” which enables the
utilization of powder diffraction data in phase identification.25

A digitized representation of powder data is quite compact and is especially con-
venient for comparison with other patterns, provided a suitable database is avail-
able. In addition to a digitized pattern, each entry in such a database may (and
usually does) contain symmetry, unit cell dimensions, and other useful informa-
tion: phase name, chemical composition, references, basic physical and chemical
properties, and sometimes, crystal structure. Powder diffraction databases find sub-
stantial use in both simple identification of compounds (qualitative analysis) and in
quantitative determination of the amounts of crystalline phases present in a mixture
(quantitative analysis).

13.3.1 Crystallographic Databases

Phase identification using powder diffraction data requires a comparison of several
key features26 present in its digitized pattern with known compounds/phases. This
is usually achieved by searching powder diffraction database(s) for records, which

23 http://www.bruker-axs.com.
24 http://www.materialsdata.com.
25 The diffraction pattern from a single crystal is also unique but due to complexity of a three-
dimensional distribution of intensities, phase recognition based on the pattern is much more diffi-
cult to formalize, and instead, the unit cell dimensions and symmetry are commonly used as search
parameters. Powder data are one-dimensional, and they can be converted into digitized patterns,
which are in a way, unique barcodes enabling automated pattern recognition.
26 It is unfeasible to include the entire digitized powder pattern in the search and comparison
because of inevitable random errors in both peak positions and intensities. Therefore, most often
search-and-match is accomplished by using positions of several of the strongest Bragg reflections,
which are least affected by variations in data collection and processing parameters. A method in
which the initial match is based on three strongest Bragg peaks present in a powder diffraction
pattern, known as the “Hanawalt search” [J.D. Hanawalt, H.W. Rinn, and L.K. Frevel, Chemical
analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457 (1938)], remains in use today.
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match experimentally measured and digitized pattern. Thus, a powder diffraction
database or at least its subset should be available in addition to a suitable search-
and-match algorithm.

The most complete and most often-used powder diffraction database is the Pow-
der Diffraction File

TM
(PDF), which is maintained and periodically updated by the

International Centre for Diffraction Data (ICDD R©). PDF is a commercial database,
and information about both the ICDD and Powder Diffraction File is available on
the Web.27 This database is quite unique: it contains either or both the experimen-
tally measured and calculated digitized powder patterns for hundreds of thousands
of compounds, including minerals, metals and alloys, inorganic materials, organic
compounds and pharmaceuticals. The PDF is available as a whole or in subsets.
Each record in the database is historically called the card.28 Recently, the term
“entry” is in common use.

An example of a PDF record is shown in Fig. 13.18. There are eight fields on the
card; they contain the following information (the numbers listed below are identical
to the numbering of the fields in Fig. 13.18):

1. Card number (48–115229) on the left and data quality (Indexed) on the right.
Quality assignments are made by the ICDD editors using stringent criteria

2. General information about the compound

– Chemical, moiety, or structural formula
– Compound name and moiety, mineral, or other names, if any

3. Experimental conditions

– Radiation, wavelength and experimental details
– Reference for the source of diffraction data

4. Crystallographic data

– Crystal system and space group

For more details see R. Jenkins and R.L. Snyder, Introduction to X-ray powder diffractometry,
Wiley, NY (1996).
27 at http://www.icdd.com.
28 Early versions of the Powder Diffraction File (also known as the JCPDS file) were distributed
on index cards. The first edition of the file dates back to the 1941 release containing 4000 cards
describing powder diffraction patterns of ∼1,300 compounds. It was compiled by the Joint Com-
mittee on Chemical Analysis by X-ray Powder Diffraction Methods and published by the American
Society for Testing and Materials (ASTM). In 1969, the Joint Committee on Powder Diffraction
Standards (JCPDS) was registered as a Pennsylvania nonprofit corporation and the current name
(International Centre for Diffraction Data) was adopted in 1978. See W. Wong-Ng, H.F. McMurdie,
C.R. Hubbard, and A.D. Mighell, JCPDS-ICDD research associateship (cooperative program with
NBS/NIST), J. Res. Natl. Inst. Stand. Technol. 106, 1013 (2001).
29 Card (record, or entry) number consists of two parts: set number (48 in this example) and se-
quential number of the entry in the set (1,152 for this particular card). Recently, when several
databases were integrated with the ICDD’s files, an additional two digit prefix has been added.
Thus, 00 stands for a native ICDD record, 01 refers to ICSD data, 02 to CSD, 03 to NIST, and 04
to Pauling File. A new, full reference of this card, therefore, becomes 01-48-1152.



13.3 Phase Identification and Quantitative Analysis 379

1

2

3

4

5

6

7

8

Fig. 13.18 Example of a record extracted from the ICDD powder diffraction file.30

– Unit cell dimensions, number of formula units in the unit cell (Z), melting
point, if known

– Reference 2 – source of crystallographic data if different from the source of
diffraction data

– Calculated and measured gravimetric density, FN(N ≤ 30) figure of merit (see
Sect. 14.4.1) and unit cell volume in Å3

5. Properties and corresponding reference, if any
6. Color
7. Comments, which include

– Source and preparation of the compound
– Temperature, pressure, and other preparation conditions

8. Digitized pattern. Each observed Bragg reflection is listed with

– d − spacing or 2θ angle
– Intensity normalized to 100
– Miller indices hkl, if the pattern has been indexed

The ICDD’s PDF is well-suited for identifying digitized powder patterns, and
many manufacturers of powder diffractometers offer optional software for searching

30 The output shown here was obtained using LookPDF routine, which is available with the
DMSNT applications (Scintag Inc. and Radicon). Other programs may display PDF cards in dif-
ferent format. This card and the records shown in Figs. 13.21 and 13.22 are courtesy of the ICDD.
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this database. Nonetheless, the PDF is not a complete database, which is nearly im-
possible to achieve anyway. The information included in the PDF is mostly collected
from published powder data and from records produced upon ICDD request.31 At
the time of writing this book, the ICDD database exists in two formats: PDF-2 pre-
serves a classic text-based format that allows one to search-match using positions
and intensities of several strong Bragg peaks in addition to searching a limited num-
ber of other fields; PDF-4 is build on relational database technology that is dis-
tributed in several subsets (see Table 13.3) and provides searchable access to all
data fields.

In addition to a vast number of included entries and a comprehensive quality
control, the usefulness of the Powder Diffraction File is established by the ability
to perform searches based strictly on the digitized patterns, that is, without prior
knowledge of the unit cell dimensions and/or other crystallographic and chemical
information. Similar searches may also be carried out using several different exist-
ing databases: for example, Pauling File and Mineralogy Database and, perhaps, a
few others (see Table 13.3), which are, however, not as comprehensive as the PDF.
For example, the Pauling File is underdeveloped with respect to multinary com-
pounds, while the Mineralogy Database is dedicated to naturally occurring and syn-
thetic minerals. More detailed and recent (as of 2002) information about a variety
of crystallographic databases can be found in a special joint issue of Acta Crystal-
lographica, Sections B and D (also see references 6–13 in Sect. 13.4).32

When experimental data remain unidentified using a digitized pattern-based
search-match, different databases should be checked before drawing a conclusion
that a material is new. Continuing searches, however, usually require unit cell di-
mensions and therefore, a powder pattern should be indexed prior to the search.
There are a variety of databases dedicated to different classes of compounds and
containing different information, as shown in Table 13.3.33

For example, two comprehensive databases, ICSD and CSD, contain crystallo-
graphic data and structural information about inorganic, and organic and metal–
organic compounds, respectively, while NIST database encompasses all types of
compounds, but provides only crystal data with references. Other databases are
dedicated to specific classes of materials, such as metals and alloys, proteins and
macromolecules, minerals or zeolites. Search-match utilities are usually provided
with databases, or they may be obtained separately.

31 ICDD makes limited funds available to researchers interested in processing and submitting new
experimental patterns for incorporation into the Powder Diffraction File. More information about
the ICCD’s Grant-in-Aid program can be found at http://www.icdd.com.
32 Acta Crystallographica is an international journal published by the International Union of Crys-
tallography in five sections: Section A (Foundations of Crystallography); Section B (Structural
Science); Section C (Crystal Structure Communications); Section D (Biological Crystallography),
and Section E (Structure Reports Online). Special joint issue: Acta Cryst. B58, 317–422 (2002)
and Acta Cryst. D58, 879-920 (2002). Table of contents is available at http://journals.iucr.org/
index.html.
33 Full list of databases related to crystallography can be found at http://www.iucr.org/resources/
data.
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Table 13.3 Selected computer searchable crystallographic databases.

Database Content/Compounds No. of entries

ICDDa – Powder
diffraction file

PDF-2, original text based. Both
experimental and calculated patterns.

199,574 total
172,360 inorganic
30,728 organic

PDF-4+ (Full) 272,232 total
100,511 experimental
107,507 with atomic coordinates

PDF-4/Minerals 25,861
4,316 with atomic coordinates

PDF-4/Organics. Both experimental
and calculated patterns.

312,355
28,677 (Experimental)
283,678 (Computed)

LPF – Pauling fileb Inorganic ordered solids. Contains
structural, diffraction, constitutional
(phase diagrams), and physical
property data.

80,000 structure entries
34,000 patterns
52,000 property data
6,000 diagrams

ICSDc – Inorganic
crystal structure data

Inorganic crystal structures, with
atomic coordinates, 1913 to date.

100,000+

CSDd – Cambridge
structural database

Crystal structures of organic and
metal organic compounds (carbon
containing molecules with up to
1,000 atoms)

436,436

CRYSMETe – Metals
and alloys database

Critically evaluated crystallographic
data for inorganic and intermetallic
materials.

119,600

PDB – Protein data
bank;f

Nucleic acids databaseg

Structures of proteins. Structures of
oligonucleotides and nucleic acids.

49,620
3,768

IZAh – Zeolite database All zeolite structure types:
crystallographic data, drawings,
framework, and simulated patterns

179 types

Mineralogy databasei Mineral species descriptions with
links to structure and properties.
X-ray diffraction list (three strongest
peaks).

4,442

NISTj – Crystal data Unit cell, symmetry and references 237,671
a Release 2007. The International Centre for Diffraction Data (http://www.icdd.com).
b The multinary edition of database developed in cooperation between JST (Japan Science and
Technology Corporation, Tokyo, Japan) and MPDS (Material Phases Data System, Vitznau,
Switzerland); http://crystdb.nims.go.jp/.
c Release 2007-2. The ICSD is produced by FIZ (Fachsinformationzentrum) Karlsruhe, Germany
(http://www.fiz-karlsruhe.de/icsd.html).
d As of January 1, 2008. Produced by Cambridge Crystallographic Data Centre (CCDC) (http://
www.ccdc.cam.ac.uk/prods/csd/csd.html).
e Release November 2007. CRYSTMET R© is maintained by Toth Information Systems, 2045
Quincy Avenue, Gloucester, Ontario K1J 6B2, Canada (http://tothcanada.com/databases.htm).
f Release March 2008. PDB is maintained by the Research Collaboratory for Structural Bioinfor-
matics (http://www.rcsb.org/pdb/home/home.do).
g Release March 2008. Rutgers University, NJ, USA (http://ndb-mirror-2.rutgers.edu/).
h IZA (International Zeolite Association) zeolite database is maintained by IZA structure commis-
sion. Available on-line at http://www.iza-structure.org/databases/.
i Update January, 2008. Mineralogy Database is available on-line at http://webmineral.com/.
j Release January, 2008. National Institute of Standards and Technology (http://www.nist.gov/srd/
nist3.htm). Distributed by ICDD.
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Given a large variety and differences in the contents of existing databases, a
material can be identified from its powder diffraction pattern by first, searching
an appropriate powder diffraction database/file using a digitized powder diffraction
pattern. If a search was successful, the identification may be considered complete
after matching the entire digitized pattern, not just the few key features included
in the search. If a search was unsuccessful, the pattern should be indexed and unit
cell dimensions should be determined (see Chap. 14). When both symmetry and
unit cell are known, all relevant databases should be searched.34 In the case of a
suspected match, the powder diffraction pattern should be modeled from the known
crystal structure of a material found in a database. Both the observed and computed
patterns should be compared as a whole, in order to ensure proper identification.

Recently the ICDD Powder Diffraction File underwent substantial and useful
upgrades (see Table 13.3):

– Calculated patterns based on single crystal data from the ICSD file have been
included into the PDF-2/PDF-4+ full file

– Calculated and experimental data together with atomic coordinates from the
Pauling file have been included in PDF-4+ and PDF-4/Minerals files

– Calculated patterns of structures stored in the CSD file, have been included into
the PDF-4/Organics file

These additions make it possible to conduct searches and find matches with com-
puted digitized powder patterns, in addition to experimentally measured powder dif-
fraction data, thus improving automation, simplifying phase identification process,
and considerably expanding the applicability of the powder method for a qualitative
phase analysis.

13.3.2 Phase Identification

Qualitative and quantitative phase analyses are, basically, the two sides of a coin
because they answer two questions: “What?” and “How much?,” respectively, ap-
plicable to crystalline phases present in a powder. No matter how straightforward
phase identification, that is, qualitative analysis, may appear (it simply implies com-
parison of positions and intensities of observed Bragg reflections with those stored
in a database), the problem is far from trivial. The complexity in finding the right
pattern arises from unavoidable experimental errors that are present in all patterns,
that is, the analyzed and those located in a database, and from ambiguities that are
intrinsic to comparing images. Thus, phase identification may be performed visu-
ally and/or using automatic searches. In reality, qualitative analysis is nearly always
a combination of both.

The manual approach is simple and possible when a small subset of database
entries is singled out as potential matches with the observed powder pattern. Prac-

34 It makes little sense to search organic and metal organic structures database if the material from
which powder diffraction data were collected is inorganic, and vice versa.
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tically always, it is employed as a final step to finalize the automatic search and to
select the best among several feasible matching patterns. A manual search may be
done visually, by comparing raw or digitized experimental patterns with patterns
found in a database, or it may be performed digitally, by comparing lists of a few
strong, usually low Bragg angle reflections. Purely manual searches are justified
when there are a few unidentified reflections in a pattern, a case when an automatic
search is ineffective and usually fails.

Manual phase identification can be performed using searchable or alphabetical
PDF indexes, available from the ICDD. These indexes include detailed instructions
about what information is required and how to accomplish the search. A searchable
index is split into groups (classes) according to the d-spacing of the second strongest
line, and phases inside the same group are sorted according to the d-spacing of the
strongest line. An alphabetical index is usually employed when exact or at least
approximate elemental composition of the phase is known.35

An automatic search-and-match can be done much faster, and most important,
using multiple Bragg reflections by seeking through enormous arrays of data, which
a typical database contains. The algorithms employed to conduct automatic searches
vary extensively, depending on the software used; however, parameters that are crit-
ical in any search typically include the following:

– The number of Bragg reflections that should match in their positions (d −
spacings, Q−values, or Bragg angles), and sometimes in their relative intensities.

– The number of strongest reflections from a database record included in the
comparison.

– Window (or tolerance) – a difference in positions between the observed and data-
base peaks: as long as the deviation remains below the tolerance (i.e., within
the window), peaks are considered matching. The window may be specified
as a range or 2θ, d − spacing, or other means commonly used to express peak
positions.

Automatic searches may generate, and often do, a massive number of matches
from which the right solution, if any, should be selected manually (more exactly
– visually) by the user. To help in visual selection, matching patterns are usually
sorted in order of a certain numerical figure of merit that includes an average dif-
ference in peak positions, number of matching reflections and, optionally, matching
relative intensities. For example, the DMSNT search-match utility generates a list
of up to 200 potentially similar patterns, and the user may easily display histograms
extracted from the Powder Diffraction File together with the observed powder pat-
tern, as shown in Fig. 13.19.

Depending on both the complexity and quality of the powder pattern, the number
of found “matches” may become overwhelming. For example, if several hundred
similar patterns are found when using the DMSNT search utility, they cannot be
stored for visual analysis and search parameters should be adjusted to narrow the

35 In the prepersonal computer era, search and match was performed manually using the Hanawalt
method (see footnote 26 on page 377). The original handwritten search index is on display at the
ICDD headquarters in Newtown Square, PA.
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Fig. 13.19 Illustration of an incorrect match: Bragg peaks observed in the experimental diffraction
pattern of NiMnO2(OH), shown on top and in the middle (solid lines), do not match those present
in the nickel manganese oxide, ICDD PDF card No. 12-0269 shown at the bottom and overlapped
with the plot on top (dashed lines).

range within which the patterns are accepted as similar. The number of hits can be
reduced by using a narrower window, or by requesting more reflection positions to
coincide, or use only the strongest reflections. An adjustment of parameters, how-
ever, should not be done from the very beginning because the correct solution may
be easily overlooked. A common practice is to start from default search-match pa-
rameters and if the search was unsuccessful, increase the window or decrease the
request for the number of matching reflections.

A powerful way to narrow the searching field is to include restrictions on the
elemental composition. For example, in DMSNT, the list of chemical elements can
be specified and used in combination with the following search options:

– “Inclusive OR” limits the search to phases containing at least one of the listed
elements and any other elements, not included in the list.

– “Inclusive AND” considers only phases containing all listed elements plus any
chemical element not included in the list.

– “Exclusive OR” checks phases containing any combination of the listed elements
but no other chemical elements are allowed.

– “Exclusive AND” seeks only patterns from phases containing all listed elements
and nothing else.

The last option is the most restrictive, while the first alternative is the most re-
laxed. For example, when V and O are included in the list, then “Exclusive AND”
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limits the search only to oxides of vanadium, while compounds containing other
elements (e.g., vanadium hydroxides, vanadates, etc.) will not be considered and
analyzed. On the other hand, “Inclusive AND” searches among all compounds con-
taining both V and O in combination with any other chemical elements. The latter
option may be useful, for example, when intercalates of vanadium oxides are sus-
pected or studied.

Another example is found in EVA36 search and match algorithm, which allows
a user to specify the following parameters: quality marks or quality of a pattern in
the database; sub-files or a class of the compound, for example, inorganic, mineral,
etc.; 2θ window or tolerance; chemical composition, and others. The composition
is set by selecting chemical elements and marking them as “must be present,” “may
or may not be present,” and “cannot be present.” The search can be conducted using
positions of peaks or even the whole pattern.

When visually comparing potentially identical patterns, the following important
issues should always be considered:

– When there are a few strong reflections in the database record, all should be
present in the analyzed experimental pattern. When even one of the strong peaks
is missing in the analyzed pattern, or it is present but has very low intensity,
this match is likely incorrect, unless an extremely strong preferred orientation is
possible in either pattern (but not in both), and there is a legitimate reason for the
two to be different.

– Relative intensities should be analyzed carefully because significant discrepan-
cies between experimental data and database entries may occur due to different
wavelengths, diffractometer geometry, sample shape, or the presence and extent
of preferred orientation. Preferred orientation is an important factor, and in many
cases, it is unavoidable. Further, texture may be substantially different in differ-
ent experiments, for example, yours, and that present in the database. Thus, the
following rule should be applied when comparing intensities: a strong reflection
in the database record should correspond to a strong peak in the analyzed pattern,
and a weak reflection in the database record should correspond to a less intense
peak in the analyzed pattern.

Even though all automatically found patterns are ranked according to certain
matching criteria, visual analysis of at least several solutions (better yet, all that
appear reasonable) is always recommended.

Once again, we consider experimental data used as an example throughout this
chapter (Fig. 13.3). They were converted into a digitized pattern by background
subtraction, Kα2 stripping and smoothing, followed by automatic peak detection.
The PDF search-match was restricted to phases containing Ni, Mn and O with the
“Inclusive AND” option. Since relatively rigid restrictions were imposed on the
chemical composition, search parameters were quite relaxed: the window was 0.06◦

of 2θ and only 2 Bragg reflections were required to coincide within the tolerance
established by the window. Totally, about 20 matching patterns were found. One of

36 Bruker AXS. EVA - DIFFRACplus Evaluation Package (2006).
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Fig. 13.20 Experimental powder diffraction pattern of NiMnO2(OH) (top) compared with the dig-
itized PDF records 49-1170 (middle, solid lines) and 43-0318 (bottom, dashed lines). Downward
arrows indicate peaks present in the latter record but absent in the measured pattern. Upward ar-
rows shown on the experimental pattern indicate observed Bragg peaks that are missing in the
nickel manganese oxide hydroxide, ICDD record No. 43-0318.

the suspected matches [NiMnO3, card No. 12-0269] is shown in Fig. 13.19. This
record is far from the best match according to a calculated figure of merit, and we
use it as an example to illustrate the difference between good (Fig. 13.20) and poor
(Fig. 13.19) matches.

It is easy to see from Fig. 13.19 that most Bragg reflections coincide only approx-
imately (within a few tenths of a degree). Several strong peaks present in the data-
base record have no match in the measured pattern, e.g., the reflection at 2θ∼= 55◦.
The strongest peak at ∼33.7◦ matches only approximately, but its intensity is much
greater than that observed experimentally. Thus, this “match” may be easily dis-
missed, especially considering that better matches with much higher figures of merit
were found.

Two PDF records coincide with the experimental pattern much better among all
others, including peak positions and their intensities. They are shown in Fig. 13.20:
NiMnO2(OH) (card No. 43-0318, Fig. 13.21) and NiMnO3 (card No. 49-1170,
Fig. 13.22). Actually, the latter two are isostructural compounds and, therefore,
their patterns should be practically identical. The first record 43-0318 is, however,
unindexed and consequently, the digitized pattern has doubtful quality (see the up-
per right corner in Fig. 13.21).

Careful analysis of Fig. 13.20 indicates that six peaks in 43-0318 are clearly miss-
ing, and three weak to medium intensity peaks have no match in the experimental
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Fig. 13.21 Example of the unindexed PDF card (also see Fig. 13.20, bottom). In this case, all
observed reflections are identified by their Bragg angles and relative intensities but without the
Miller indices. As a result, the “Doubtful quality” mark has been assigned to this record by one of
the ICDD editors. This usually points to the need for an independent verification before the listed
digitized pattern can be relied upon in a positive identification of a polycrystalline material. Note
that the original experimental data were collected using Fe Kα radiation (see field No. 3). Bragg
angles, however, are listed for Cu Kα radiation, and these were recalculated by the search and
match utility using the Braggs equation.

pattern. The second record 49-1170, is almost a perfect match, but a hydrogen atom
is missing in its chemical formula, as was determined later from neutron diffraction
data.37

Achieving success in qualitative analysis by employing any search-match util-
ity becomes more and more challenging as the complexity of the powder diffrac-
tion pattern increases, especially when a material is a mixture of several phases.
Positive phase identification can be performed by removing peaks corresponding
to all already known phases from the list and continuing searches of the database.
Nevertheless, matching all possible records with the whole diffraction pattern may
also work well. The first approach increases the chances to detect and identify mi-

37 R. Chen, P.Y. Zavalij, M.S. Whittingham, J.E. Greedan, N.P. Raju, and M. Bieringer, The
hydrothermal synthesis of the new manganese and vanadium oxides, NiMnO3H, MAV3O7 and
MA0.75V4O10·0.67H2O(MA = CH3NH3), J. Mater. Chem. 9, 93 (1999).
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Fig. 13.22 Indexed PDF card (also see Fig. 13.20, middle). Every observed Bragg reflection has
been indexed and the corresponding F30 figure of merit (see Sect. 14.4.1) is excellent. Based on
these and other established criteria, the quality mark assigned by the ICDD editor is “Quality Data,”
which usually is a good indicator that the included digitized pattern may be trusted in positive phase
identification.

nor phases, whereas the second method avoids overlooking suitable records due to
nearly complete peak overlaps.

Regardless of the chosen approach, specifying elemental composition of the ma-
terial is always helpful, as it imposes much-needed constraints, and limits the num-
ber of feasible solutions for a visual analysis.

An example of successful phase identification in a multiple phase sample is
shown in Fig. 13.23. The search was conducted using the following restrictions: 2θ
window of 0.06◦, two matching lines minimum, and chemical composition was re-
stricted to all inorganic compounds containing silicon and oxygen. No single match
was adequate to interpret all strong observed Bragg peaks. However, two records
simultaneously, that is, lithium silicate Li2SiO3 and quartz SiO2, cover the majority
of strong reflections. Most of the remaining Bragg peaks correspond to a tridymite

38 Space group symmetry is listed as A21am, which has been transformed into Cmc21 in a standard
setting to produce the list of Miller indices.
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Fig. 13.23 The results of a qualitative analysis of a multiple phase sample. Three crystalline phases
are clearly identifiable: lithium silicate – Li2SiO3, silicon oxide – SiO2 (quartz), and a different
polymorph of silicon oxide – tridymite. A low-quality diffraction pattern collected during a fast
experiment was employed in this example. The data shown on top were smoothed, the background
was subtracted, and the Kα2 components were stripped before the digitized pattern (shown below
the smoothed profile) was obtained using an automatic peak search. Note that many weak Bragg
reflections were missed in the peak search.

(SiO2), which is present in a lower concentration than both Li2SiO3 and quartz. A
few weak reflections in this pattern remain unidentified, likely due to the low quality
of data (the experimental pattern shown in Fig. 13.23 has been smoothed) or a small
amount of an impurity phase, which does not contain silicon and oxygen.

Overall, the phase identification in a multiple-phase material, which consist of
more than two phases is difficult and often has no reasonable solution in a “blind”
search, especially when none of the phases have been positively identified prior to
the search using a different experimental technique. Further, chances for success
decrease proportionally to the increased complexity of the measured powder dif-
fraction pattern, unless the number of possible components with different crystal
structures in the mixture is limited to just a few.
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13.3.3 Quantitative Analysis

Quantitative phase analysis is used to determine the concentration of various phases
that are present in a mixture after the identity of every phase has been estab-
lished. Overall, the task may be quite complicated, since several critical require-
ments and conditions should be met in order to achieve satisfactory accuracy of the
analysis.

Proper alignment and especially calibration of the diffractometer are very impor-
tant. Calibration should be performed by examining one or several different mix-
tures arranged from carefully prepared and well-characterized materials. Generally,
any of the many available standard reference materials (SRM) may be used,39 in-
cluding a specially developed standard for quantitative analysis. The latter is the
SRM-674b,40 a standard for powder diffraction intensity, which is a mixture of four
stable oxides with different absorption coefficients: ZnO (wurtzite structure), TiO2
(rutile structure), Cr2O3 (corundum structure) and CeO2 (fluorite structure). A broad
range of absorption coefficients is needed to match as close as possible absorption
of the sample in order to minimize microabsorption effects that are discussed latter
in this section on page 398. The main characteristics of this and other standards are
listed in Table 13.4.

In addition to instrumental factors, specimen preparation and properties intro-
duce several key features that may have a detrimental influence on the accuracy of
quantitative phase analysis. Sample-related factors cannot be avoided completely,
but their effects should be minimized as much as possible and/or accounted for in

Table 13.4 Characteristics of selected standard reference materials (SRM)that can be used in quan-
titative analysis based on powder diffraction data.

SRM Formula Purity
(wt%)

Linear
absorption

μ (cm−1) for
Cu Kα

Mass
absorption

μ/ρ (cm2/g)

Size (μm) Corundum
number, I/Ic

660a LaB6 1,163.0 247.0 15μm sieve
640c Si 139.3 59.8 4.9μm
676a Al2O3 99.0(11) 121.1 30.4 sub-μm
674b ZnO 95.3(6) 267.9 47.2 0.201(3) 4.95(1)

TiO2 89.5(6) 540.2 127.2 0.282(10) 3.44(1)
Cr2O3 95.9(6) 468.1 179.1 0.380(14) 1.97(2)
CeO2 91.4(6) 2,240.0 310.6 0.381(5) 12.36(9)

39 E.g., see: Standard reference materials catalog 1992-93. NIST, Special publication 260, NIST,
Gaithersburg, MD, U.S.A. (1992), p.122. Up-to-date information about availability and pric-
ing of X-ray diffraction standards for powder diffraction may be found at http://ts.nist.gov/
measurementservices/referencematerials/index.cfm.
40 Full list of available standards and their characteristics is available at https://srmors.nist.gov/
tables/view table.cfm?table=209-1.htm.
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all calculations. The main problems in quantitative analysis, borne by the nature and
form of the employed sample are as follows:

– Preferred orientation, which may have a substantial effect on relative intensities
of various groups of Bragg reflections (see Sect. 8.6.6). It should be minimized
during sample preparation of both the investigated sample and the standard, if
the latter is employed.

– Absorption (see Sect. 8.6.5), which is generally different for phases with different
chemical composition and gravimetric density. It should always be accounted for.

Several different methods of the quantitative analysis have been developed and
extensively tested. They may be grouped into several broad categories, and the most
commonly used approaches are described here.

1. The absorption-diffraction method employs a standard intensity (I0
hkl) from a

pure phase and the intensity of the same Bragg peak (Ihkl) observed in the mix-
ture. The phase concentration in a mixture can be calculated by using Klug’s
equation:

Xa =

(
Ia,hkl

/
I0
a,hkl

)(
μ
/
ρ
)

b(
μ
/
ρ
)

a −
(

Ia,hkl

/
I0
a,hkl

)[(
μ
/
ρ
)

a −
(
μ
/
ρ
)

b

] (13.14)

where Xa is the mass fraction of phase a in the mixture, Ia,hkl and I0
a,hkl are in-

tensities of the selected Bragg reflection, hkl, for phase a in the mixture and in
the pure state, respectively, and (μ/ρ)a,b are the mass absorption coefficients for
phases a and b, respectively.
Equation (13.14) makes use of the fact that the scattered intensity is proportional
to the amount of a particular phase, for example, see (7.5)–(7.7), with a cor-
rection to account for different absorption of X-rays by two components in the
mixture. Since the ratio of intensities from a pure phase and a mixture is em-
ployed, diffraction patterns from both the pure material and from the analyzed
mixture must be measured at identical instrumental settings, in addition to iden-
tical sample characteristics such as preparation, shape, amount, packing density,
surface roughness, etc. Klug’s equation becomes a simple intensity ratio when
two phases have identical absorption coefficients, that is, when μ/ρa = μ/ρb. We
note that the composition of the second phase (or a mixture of all other phases)
should be known in order to determine its mass absorption coefficient. Otherwise,
mass absorption should be determined experimentally. When absorption effects
are ignored, the accuracy of quantitative analysis may be lowered drastically.

2. Method of standard additions or spiking method consists of adding known
amounts of pure component a to a mixture containing Xa and Xb of a and b
phases. It requires the preparation of several samples and measurement of sev-
eral diffraction patterns containing different, yet known additions (Ya) of phase a.
Other phases in the mixture are not analyzed, but at least one of them (b) should
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Fig. 13.24 Illustration of
standard addition method of
quantitative analysis. The plot
of the Ia,hkl/Ib,hkl′ intensity
ratio as a function of the
known amount (Ya) of added
phase a. The point marked
Y (0)

a corresponds to the orig-
inal two-phase mixture. The
unknown amount of phase a
in the original sample is Xa.

Ya
(0)

Ia, hkl / Ib, hkl
,

Ya
(1)

Ya
(2)

Ya

Xa

have a reference Bragg peak (hkl)′, which does not overlap any reflection from
phase a. The intensity ratio for this method is given as:

Ia,(hkl)

Ib,(hkl)′
= K′ Xa +Ya

Xb
(13.15)

Assuming constant mass of phase b(K = K′/Xb), (13.15) is converted into:

Ia,(hkl)

Ib,(hkl)′
= K(Xa +Ya) (13.16)

where K is the slope of the plot of Ia,hkl versus Ib,hkl′ established during measure-
ments of mixtures with known additions of phase a, Ia,hkl is the intensity of the
selected peak for phase a, and Ib,hkl′ is the intensity of the selected peak for phase
b. Thus, the unknown amount of phase a, Xa, is determined from the intercept of
the calibration line with the Ya axis, as shown in Fig. 13.24. The major advantage
of this technique is that it enables quantitative analysis in the presence of un-
known phase(s) without the need to know (or measure) absorption coefficients.

3. Internal standard method is likely the most commonly used approach in a quan-
titative phase analysis. It is based on the following relationship:

Ia,(hkl)

Ib,(hkl)′
= K

Xa

Yb
(13.17)

where K is the slope of the plot of Ia,hkl/Ib,hkl′ versus Xa/Yb. In (13.17), Xa is the
unknown amount of the analyzed phase a, and Yb is the known amount of the
added standard phase b that is different from that present in the sample. In the
same way as in the standard addition method, several measurements are needed
to determine the slope K individually for each analyzed phase. The calibration
line of (13.17) is then used to determine the content of phase a by measuring the
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Ia,hkl/Ib,hkl′ intensity ratio for a mixture of the analyzed sample with the known
amount of the added internal standard Yb.

4. The reference intensity ratio method is based on the experimentally established
intensity ratio between the strongest Bragg peaks in the examined phase and in
a standard reference material. The most typical reference material is corundum,
and the corresponding peak is (113). The reference intensity ratio (k) is quoted
for a 50:50 (wt.%) mixture of the material with corundum, and it is known as
the “corundum number.” The latter is commonly accepted and listed for many
compounds in the ICDD’s Powder Diffraction File. Even though this method is
simple and relatively quick, careful account and/or experimental minimization of
preferred orientation effects are necessary to obtain reliable quantitative results.

5. Full pattern decomposition using Le Bail’s or Pawley’s techniques (see
Sect. 15.4) produces intensities of individual Bragg peaks. Thus, multiple reflec-
tions from each phase can be used to compute intensity ratios required in methods
described in items 1–4 listed here, which increases the accuracy of the analysis.
The use of multiple Bragg peaks in evaluating an average intensity ratio, to some
extent diminishes the detrimental influence of preferred orientation, as long as
it remains small to moderate. This method, however, requires lattice parameters
and therefore, is applicable to indexed patterns only. The phase composition is
determined using any of the first four methods listed here by using intensities
of several strong or all Bragg peaks instead of a single reflection. An interesting
approach was proposed by Toraya.41 In the first step of a two-step procedure,
the individual patterns of single component phases are decomposed separately
with scale factors fixed at unity. In the second step, the experimental pattern of a
mixture is fitted using individual intensities obtained for pure phases. During this
step, the intensities obtained in the first step are kept fixed but the scale factors
are refined. These scale factors (si) are proportional to the fraction of the ith
phase in the mixture,42 and are used to calculate the weight fraction (wi) of the
ith phase as shown in (13.18), which also includes absorption correction.43

wi = si

N

∏
j �=i

μ j

/
N

∑
j=1

(
s j

N

∏
k �= j

μk

)
(13.18)

where μ j, or k represent the linear absorption coefficients of the corresponding
phase in the mixture of N phases.

Both the accuracy and limits of detection in a quantitative analysis are depen-
dent on the method used, the quality of the experimental data, and other fac-

41 H. Toraya, Applications of whole-powder-pattern fitting technique in materials characterization.
Adv. X-Ray Anal. 37, 37 (1994).
42 We note that the definition of the scale factor in the full pattern decomposition is different from
that in the Rietveld refinement, where it is proportional to the number of the unit cells per volume
as discussed in the following section.
43 H. Toraya, S. Tsusaka, Quantitative phase analysis using the whole-powder-pattern decomposi-
tion method. I. Solution from knowledge of chemical compositions. J. Appl. Cryst. 28, 392 (1995).
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tors. A lower limit of detection is usually accepted as the concentration equiva-
lent of two standard deviations of the observed background level. For example,
if the average background is 100 counts and the maximum observed Bragg peak
has a peak intensity of 1,100 counts, then two standard deviations of the back-
ground are: 2×√

100 = 20. Thus, the detection limit for this phase is estimated
at 20/(1,100−100)×100% = 2%. The accuracy of the quantitative phase analysis
is difficult to estimate rigorously. It varies considerably and is often claimed to be
between 1 and 5%. The full pattern decomposition (if lattice dimensions are known),
combined with any of the methods described in this section that are based on the in-
tensity of an individual peak, is probably the most accurate approach in quantifying
phase composition. However, when crystal structures of all phases are known, the
Rietveld method can be employed. It uses standard scale factors (8.41) instead of
observed intensities, and therefore, provides a more realistic estimate of the accu-
racy, because uncertainties in calculated concentrations can be easily estimated from
standard uncertainties in the corresponding scale factors.

13.3.4 Phase Contents from Rietveld Refinement

The methods of quantitative analysis described in the previous section are based
on the integrated intensities of individual Bragg peaks (one or several), and gener-
ally do not require prior knowledge of either the lattice parameters or the crystal
structure of phases in question. Employing the full pattern decomposition requires
lattice parameters and symmetry, but it results in higher accuracy, since intensities
of many or all of the Bragg peaks can be used. On the other hand, any of these meth-
ods require an internal or external standardization as this is the most accurate way
to uniformly scale the integrated intensities used in the analysis. The latter can be
avoided by applying the Rietveld technique, which is discussed in Sect. 15.7 with
numerous examples found beginning from Chap. 16. A practical example illustrat-
ing quantitative phase analysis using Rietveld refinement is found in Sect. 16.5.

The Rietveld method is one of the fastest and, perhaps, the most reliable tool in
quantifying phase contents, especially since this technique may account for a weak
to moderate preferred orientation. This method employs intensities normalized to
the scattering by a single unit cell (see Sects. 7.1.3, 8.6, and 9.1). Because of that,
either the internal or external standards are no longer necessary. This convenience,
however, comes at the cost of the required knowledge of the atomic structure of each
of the phases present in the mixture.

The main principle of this method is that the intensities calculated from the crys-
tallographic data, which are normalized to the content of a single unit cell of each
phase, are scaled to match the corresponding observed intensities in the same dif-
fraction pattern via a common scale factor K, see (8.41) given earlier, and (15.30)
and (15.31). Therefore, the scale factors of the individual phases are representative
of the total number of the unit cells of each phase present in the irradiated volume of
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the sample.44 The latter directly follows from (7.6) and (7.7) after recalling that the
proportionality coefficient, C, is a constant for any given powder diffraction experi-
ment. Thus, the scale factors can be easily converted into weight, volume, or molar
fractions of the respective phase. The weight fraction, w′, of a particular phase can
be calculated from the scale factor (K) as

w′ ≈ K ·ZMV (13.19)

where Z is the number of formula units in the unit cell, M is the molecular mass of
the formula unit, and V is the unit cell volume of the phase in question.

Clearly, individual weight fractions determined from (13.19) must be normalized
so that the total is unity,45 which may be done as follows:

wi = w′
i

/
∑

j
w′

j = (KZMV )i

/
∑

j
(KZMV ) j (13.20)

The volume (v) fraction can be expressed as:

vi = (KV 2)i

/
∑

j
(KV 2) j (13.21)

Similar equation can be derived to determine the molar fraction of a phase from
its scale factor s in the multiple phase mixture, but we leave this as an exercise for
the reader.

13.3.5 Determination of Amorphous Content or Degree
of Crystallinity

More often than not, polycrystalline samples contain amorphous or low crystallinity
component(s), or phase(s) in both crystalline and amorphous form(s). This may
make the Rietveld-based quantitative analysis inapplicable, or at best, may reduce
its precision. While the Rietveld method may still result in reliable weight ratios
among the crystalline components in the sample, in many applications it is impor-
tant to know the absolute weight fractions that include the content of the amorphous
part of the specimen. For example, knowing the ratio of amorphous and crystalline
forms in pharmaceutical compounds, polymers, and cements is critical in assessing

44 R.J. Hill, C.J. Howard, Quantitative phase analysis from neutron powder diffraction data using
the Rietveld method. J. Appl. Cryst. 20, 467 (1987).
45 When some of the minor phases remain unidentified, or their structures are unknown, or a
substantial amount of an amorphous phase is present, the Rietveld method can still be used but
(13.20) is no longer valid. If this is the case, then the weight fractions should be normalized using
an internal or an external standard as detailed in Sect. 13.3.5.
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their usefulness.46 This ratio is often referred to as the amorphous content or the
degree of crystallinity. Regardless of whether they are crystalline or amorphous, the
fractional contents of all components of the analyzed powder sample must add up
to unity.

If a sample contains only a single phase in both amorphous and crystalline forms,
there is a relatively straightforward method of their quantification, which is differ-
ent from those discussed earlier. It consists of measuring the total intensity of all
sharp Bragg (crystalline) peaks and all broad amorphous halos. The resultant total
intensity ratio represents the ratio between the crystalline and amorphous phases.
This method is not as precise as the Rietveld method, mainly due to inaccuracies
in the amorphous part of the scattered intensity, since the presence of broad halos
(humps) makes background determination and subtraction extremely difficult. Fur-
thermore, determining the background is often biased. Yet, in some cases no other
method can be employed, as for example, in analysis of many polymers when the
crystalline phase can neither be prepared in the pure form to use as a standard, nor
its structure can be refined due to the absence of the three dimensionally periodic
atomic structure.

When the atomic structure of all crystalline phases is known, the amorphous
content, or the content of a minor phase with unknown structure, can be determined
using the Rietveld refinement results. This, however, implies that a standard should
be used as the sum of weight fractions of all crystalline phases is no longer unity.
Either or both internal or external standard can be used as described next.47

External standard for determining absolute phase composition using Rietveld
method, is not equivalent to an external standard used in the absorption-diffraction
method (see page 391) and may be (and usually is) different from the phases present
in the sample so that difficulties in preparation of a specific phase in a pure form are
avoided. Moreover, it avoids mixing a standard with the specimen. The diffraction
patterns of both the standard and the specimen are measured separately, but under
the same conditions. The scale factors (K) obtained from the Rietveld refinement of
both the standard and the analyzed specimen are used to calculate already normal-
ized weight fractions (w) of the crystalline phases as follows:

wi =
Ki(ZMV )i

Ks(ZMV )s
wc

s
(μ/ρ)m

(μ/ρ)s
(13.22)

where subscripts i and s refer to the phase i in the specimen and the standard, Z, M,
and V have the same meaning as in (13.19), μ/ρm and μ/ρS are mass absorption
coefficients for the measured sample and the standard, and wc

S is weight percent of
the crystalline phase in the standard; wc

S = 1 if no amorphous component is present
in the standard.
46 P. Bergese, I.Colombo, D. Gervasoni, L.E. Depero, Assessment of the X-ray diffraction-
absorption method for quantitative analysis of largely amorphous pharmaceutical composites. J.
Appl. Cryst. 36, 74 (2003); P.S. Whitfield, L.D. Mitchell, Quantitative Rietveld analysis of the
amorphous content in cements and clinkers. J. Mater. Sci. 38, 4415 (2003).
47 P.M. Suherman, A. van Riessen, B. O’Connor, D. Li, D. Bolton, H. Fairhurst, Determination of
amorphous phase levels in Portland cement clinker. Powder Diffraction, 17, 178 (2002).
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The weight fraction of the amorphous component (wA) is determined from the
difference:

wA = 1−
N

∑
i=1

wi (13.23)

The accuracy of this method depends critically on the accuracy of the absorption
coefficients. The latter can be calculated quite easily (see (8.49)) but their actual
values may be far from reality due to possible differences in packing densities of
the specimen and the standard. Thus, care must be taken to avoid different pack-
ing, which is rarely easy. Another reliable method is to determine the ratio of the
absorption coefficients by experimentally measuring Compton scattering48, which
however, requires conducting an additional X-ray emission experiment for both the
specimen and the standard.

Similarly, internal standard for absolute phase composition49 using Rietveld
method can be (and usually is) different from phases present in the sample. Once
again, this is different from how the internal standard is used in the method of
standard additions or spiking (see page 391). Here, a known amount of the standard
material is mixed with the specimen. The resulting sample containing wS fraction
of the standard is analyzed in the same way as was described earlier for an external
standard. The experimental diffraction pattern is measured only once using a sam-
ple mixed with the standard. The weight fractions (wr

i ) obtained from the Rietveld
refinement are normalized to match the known content of the crystalline standard
phase w′

S,50 and then recalculated to the weight fractions in the original sample
(wi). The combined expression is as follows:

wi = wr
i
w′

s

wr
s

(13.24)

Next, the content (weight fraction) of the amorphous portion in the original sam-
ple is complementary to the total content of the crystalline phases as in (13.23).
However, when the content(s) of the crystalline phase(s) is not of concern, the amor-
phous content (wA) is expressed using only the weight fraction of the standard:

wA =
1−w′

s/wr
s

1−ws
(13.25)

Thus, quantitative analysis using the Rietveld refinement is straightforward,
when the crystal structure of all major phases is known. In practice, this is quite
easy since the weight fractions are automatically calculated by the majority of the
Rietveld refinement programs. Analysis is also quite accurate when a sample being

48 S. Pratapa, B.H. O’Connor, and I.-M. Low, Use of Compton scattering measurements for atten-
uation corrections in Rietveld phase analysis with an external standard. Powder Diffraction 13, 166
(1998).
49 D.L. Bish, S.A. Howard, Quantitative phase analysis using the Rietveld method. J. Appl. Cryst.
21, 86 (1988).
50 w′

S = wS ·wc
S if the standard material contains only wc

s fraction of crystalline phase.
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examined meets all the criteria of an ideal powder specimen, see Sect. 12.1. How-
ever, the ideal specimen for quantitative analysis has additional requirements with
respect to the packing density and the size of the particles. The former is important
and should be uniform, when the external standard is used, to account for different
absorption by the sample and the standard, while the latter is most important when
the internal standard is employed. The particle size must be small enough for each
of them to be transparent for the X-ray wavelength used. This is the consequence
of the so called microabsorption effect first outlined by Brindley51 and later applied
to Rietveld analysis by Taylor and others52. Brindley showed that microabsorption
correction factor τ for phase i can be expressed as:

τi =
1
Vi

Vi∫
0

exp[−(μi −μs)l]dv (13.26)

where, Vi is the volume of particle i, v is fraction of volume in correct orientation for
diffraction, l is the length of the beam path in the particle, μI and μS are the linear
absorption coefficients for the ith phase and the sample, respectively.

This complex integral equation (13.26) was solved numerically and tabulated as
a function of (μi − μS)D, where D is the particle size. The corrected weight frac-
tions, wc, may then be calculated by renormalizing the fractions obtained from the
Rietveld refinement as follows:

wc
i =

wi

τi

/
N

∑
j=1

w j

τ j
(13.27)

The main problem in this approach is in obtaining the average particle (not grain)
size l for each phase, which should be measured experimentally, for example, us-
ing scanning electron microscope or laser scattering. If the accurate particle size
is known, the resulting weight fractions are quite precise. However, wrong particle
size can yield results that are less accurate compared to those obtained without using
any size correction. It is noteworthy that many methods based on the integrated in-
tensity discussed in the Sect. 13.3.3 are also affected by the microabsorption effects.
The Rietveld refinement from the fully crystalline samples can also be affected by
microabsorption when phases with different particle size and absorption coefficients
are present. This, however, may not be obvious from the output files. On the other
hand, accuracy in the determination of amorphous content when microabsorption
effects are strong and/or improperly accounted for may be clearly seen as a mean-

51 G.W. Brindley, The effect of grain or particle size on X-ray reflection from mixed powders and
alloys, considered in relation to the quantitative determination of crystalline substances by X-ray
methods. Phil. Mag. 36, 347 (1945).
52 J.C. Taylor, Computer programs for standardless quantitative analysis of minerals using the full
powder diffraction profile. Powd. Diff. 6, 2 (1991); R.S. Winburn, S.L. Lerach, B.R. Jarabek, M.A.
Wisdom, D.G. Grier, G.J. McCarthy, Quantitative XRD analysis of coal combustion by-products
by the Rietveld method. Testing with standard mixtures. Adv. X-ray Anal. 42, 389 (2000).
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ingless negative amorphous content. Unfortunately, there is no clear indication of
an error when the content of amorphous phase is overestimated.

The significance of effects related to absorption and microabsorption in influ-
encing the accuracy of the quantitative analysis and difficulties in choosing proper
corrections (packing density and particle size) makes prevention or reduction of
these effects an important issue. In general, the following rules should be followed
as closely as possible:53

– Both the sample and the standard (if any) should be prepared very carefully in
accordance with general rules for powder sample preparation (Sect. 12.1).

– When external standard is used, the uniform packing density should be assured,
or actual absorption should be measured.

– The particle size54 for all components in the mixture should be minimized or op-
timized. Calculated μD (where D is particle size) should correspond to “fine” and
“medium” as defined by Brindley. We note that when grinding some materials,
particles can aggregate, increasing the microabsorption effect.

– The standard, especially internal, should be selected so that its absorption54

matches absorption by the sample as close as possible.
– Selection of shorter wavelengths (e.g., Mo versus Cu radiation) is greatly bene-

ficial since generally it reduces the absorption significantly. Ideally, neutron dif-
fraction can be used as absorption in this case is much smaller.
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13.5 Problems

1. Consider three powder diffraction patterns, which are shown in Figs. 13.25–
13.27. For each pattern select all applicable processing steps and explain your rea-
soning, assuming that the goal is to produce digitized (reduced) powder patterns for
phase identification.

(a) Smooth the data (Yes/No/Probably)
(b) Eliminate background (Yes/No/Probably)
(c) Strip Kα2 contributions (Yes/No/Probably).

2. A powder diffraction pattern collected from a metallic alloy was processed
into two digitized patterns. The background was eliminated first, as illustrated in
Fig. 13.28 and second, as shown in Fig. 13.29. Assume that in both cases prelim-
inary processing was continued as follows: Kα2 components were stripped and
Bragg peak positions and intensities were determined using an automatic peak
search. Compare the reliability of thus obtained digitized patterns and explain your
reasoning.

3. Consider the powder diffraction pattern shown in Fig. 13.30 and answering
Yes/No/Maybe: Is this pattern suitable for phase identification? Is the material suit-
able for crystal structure determination using powder diffraction? Explain your rea-
soning. What other conclusions (if any) can be made from a visual analysis of this
pattern?
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Fig. 13.25 Powder diffraction pattern collected using a conventional X-ray source.
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Fig. 13.26 Powder diffraction pattern collected using a synchrotron X-ray source (data courtesy
of Dr. M.J. Kramer).
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Zr-based deuteride, neutrons
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Fig. 13.27 Powder diffraction pattern collected using a reactor-based neutron source (data courtesy
of Dr. W.B. Yelon).
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Fig. 13.28 Example of the automatically determined background (thick line at the bottom of the
plot shown using the scale identical to the experimental data).
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Fig. 13.29 Example of the background represented by a polynomial (thick line at the bottom of
the plot shown using the scale identical to the experimental data).

Organo metallic compound, Mo Kα
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Fig. 13.30 Powder diffraction pattern collected from an organo metallic compound on a Rigaku
TTRAX powder diffractometer using Mo Kα radiation. The data were collected in a continuous
scanning mode: scan rate was 5 deg/min, sampling step 0.01◦.
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Table 13.5 Digitized pattern representing data collected from a white ceramic plate.

I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å)

57 25.556 3.4827 99 57.465 1.6023 9 77.202 1.2346
88 35.125 2.5528 8 61.268 1.5117 7 80.648 1.1903
39 37.747 2.3812 38 66.481 1.4052 8 88.949 1.0995

100 43.324 2.0867 57 68.165 1.3745 10 91.139 1.0787
49 52.514 1.7412 17 76.834 1.2396 20 95.203 1.0431

Table 13.6 Digitized pattern representing data collected from a light-blue colored powder.

I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å)

100 12.778 6.9223 4 41.846 2.1570 6 53.388 1.7147
36 25.724 3.4603 10 43.508 2.0784 3 57.955 1.5900
10 33.514 2.6717 3 49.088 1.8543 2 58.613 1.5737
11 36.438 2.4637 3 51.238 1.7815 2 62.381 1.4873

6 39.753 2.2656 3 52.856 1.7307 3 62.764 1.4792

Table 13.7 Digitized pattern representing data collected from a powder containing fluorine. The
powder is stable between room temperature and ∼500◦C.

I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å)

41 25.850 3.4438 68 33.080 2.7057 37 49.555 1.8380
14 28.123 3.1704 26 34.120 2.6256 18 50.743 1.7977
17 29.081 3.0680 26 40.017 2.2512 17 51.554 1.7713

100 31.905 2.8026 29 46.858 1.9372 13 52.288 1.7482
43 32.235 2.7747 14 48.259 1.8842 19 53.154 1.7217

4. Diffraction data55 (Table 13.5) were collected from a white ceramic plate. Using
the Mineral Database56 and three strongest of the 15 observed peaks identify the
material.

5. Diffraction data (Table 13.6) were collected from a light-blue colored powder.
Using the Mineral Database and three strongest of the 15 observed peaks identify
the material.

6. Diffraction data (Table 13.7) were collected from a powder containing fluorine.
Using the Mineral Database and three strongest of the 15 observed peaks identify the
material. Additional information about the powder: no weight loss has been detected
during a thermogravimetric experiment carried out between ∼25 and ∼500◦C.

55 In problems 4–8, the data were collected on a powder diffractometer with Bragg-Brentano geom-
etry using Cu Kα radiation. Errors in d-spacing should not exceed 0.02 Å for d > 3 Å, otherwise
they should be less than 0.01 Å.
56 This is a freely accessible database available at http://webmineral.com/X-Ray.shtml.
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Table 13.8 Digitized pattern representing data collected from a manganese-containing powder.

I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å)

100 28.630 3.1153 66 56.560 1.6258 18 72.249 1.3066
52 37.296 2.4090 16 59.275 1.5577 7 86.457 1.1246
13 40.947 2.2022 7 64.736 1.4388 9 93.578 1.0569
15 42.744 2.1137 13 67.136 1.3931 20 100.604 1.0011

5 46.026 1.9703 15 72.125 1.3085 5 102.886 0.9850

Table 13.9 Digitized X-ray diffraction pattern representing data collected from a two-phase pow-
der containing Al, Mn and O.

I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å) I/I0 2θ (deg) d (Å)

33 25.460 3.4956 13 40.947 2.2022 66 56.560 1.6258
100 28.630 3.1153 15 42.744 2.1137 58 57.379 1.6045
52 35.031 2.5594 59 43.233 2.0909 16 59.275 1.5577
52 37.296 2.4090 5 46.026 1.9703
23 37.654 2.3869 29 52.426 1.7439

7. Diffraction data (Table 13.8) were collected from a powder containing man-
ganese. Using the Mineral Database and three strongest of the 15 observed peaks
identify the material.

8. Diffraction data (Table 13.9) were collected from a two-phase powder containing
Mn, Al and O. Results of mass spectroscopic analysis with respect to all known
chemical elements show that there are no other elements present in concentration
exceeding 100 parts per million by weight. Using the Mineral Database and six
strongest of the 13 observed peaks identify both compounds that are present in the
mixture.



Chapter 14
Determination and Refinement of the Unit Cell

As we established in Chap. 1, crystal lattices, used to represent periodic three-
dimensional crystal structures of materials, are constructed by translating an iden-
tical elementary parallelepiped – the unit cell of a lattice – in three dimensions.
Even when a crystal structure is aperiodic, it may still be represented by a three-
dimensional unit cell in a lattice that occupies a superspace with more than three
dimensions. In the latter case, conventional translations are perturbed by one or
more modulation functions with different periodicity, as was discussed in Chap. 5.

Given the fact that the unit cell remains unchanged throughout the infinite lattice,
the crystal structure of a material may be considered solved when both the shape and
the content of the unit cell of its lattice, including the spatial distribution of atoms in
the unit cell, have been established. Unavoidably, the determination of any crystal
structure starts from finding the shape and the symmetry of the unit cell together
with its dimensions, i.e., the lengths of the three unit cell edges (a, b and c) and the
values of the three angles (α, β and γ) between the pairs of the corresponding unit
cell vectors, for example, see Fig. 1.4.

14.1 The Indexing Problem

In powder diffraction, the very first step in solving the crystal structure, that is, find-
ing the true unit cell, may present considerable difficulties because the experimental
data are a one-dimensional projection of the three-dimensional reciprocal lattice
recorded as a function of a single independent variable – the Bragg angle. Thus, the
directions are lost and only the lengths of the reciprocal lattice vectors are measur-
able in a powdered diffraction experiment. This is quite different from scattering
by a single crystal where both the length and direction of each vector in reciprocal
space are preserved, provided the intensity of a corresponding Bragg peak exceeds
the background and is measurable.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 407
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 14,
c© Springer Science+Business Media LLC 2009
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a*

b*

1/d=2sinθ/nλ

d* (32
)

1/d(32)

(00)

0

Fig. 14.1 The illustration of a two-dimensional reciprocal lattice (top) and its one-dimensional
projection on the 1/d axis (bottom). The scales in the two parts of the drawing are identical because
1/d = d∗. The 1/d axis in the figure is shifted downward from the origin of the reciprocal lattice
for clarity. The reciprocal lattice point (32) is shown as a filled black circle both in the lattice and
in its projection together with the corresponding reciprocal vector d∗

(32).

The loss of directions is illustrated in Fig. 14.1 for a two-dimensional case. It is
easy to see that when different vectors from the two-dimensional reciprocal lattice
are projected on the 1/d axis (which may be chosen arbitrarily as long as it inter-
sects the origin of the reciprocal lattice), they all have the same direction and are
distinguishable only by their lengths. It is worth reminding one’s self that the distri-
bution of points along the 1/d axis in Fig. 14.1 determines the Bragg angles at which
scattered intensity maxima can be observed in a powder diffraction experiment, as
directly follows from the Braggs’ law: d∗ = 1/d = 2sinθ/nλ.

Regardless of the nature of the diffraction experiment, finding the unit cell in
a conforming lattice is a matter of selecting the smallest parallelepiped in recip-
rocal space, which completely describes the array of the experimentally registered
Bragg peaks. Obviously, the selection of both the lattice and the unit cell should be
consistent with crystallographic conventions (see Sect. 2.11), which impose certain
constraints on the relationships between unit cell symmetry and dimensions.

Since each point in reciprocal space represents a series of crystallographic planes,
the description of diffraction data by means of any lattice may therefore, be reduced
to assigning triplets of Miller indices to every observed Bragg peak based on the
selected unit cell. Recalling the definitions of both the direct and reciprocal lattices
((1.1) and (1.7), respectively) and considering Fig. 14.1 (or Fig. 8.10, which illus-
trates a three-dimensional case), the assignment of indices in a periodic lattice is
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based on (14.1).1 The latter establishes relationships between the unit vectors a∗, b∗

and c∗ and the corresponding reciprocal vectors d∗
(hkl) in terms of triplets of integers

h, k and l.
d∗

hkl = ha∗ + kb∗ + lc∗ (14.1)

This process is commonly known as indexing of diffraction patterns, and in three
dimensions it usually has a unique and easy solution when both the lengths and di-
rections of reciprocal vectors, d∗

hkl , are available. On the contrary, when only the
lengths, d∗

hkl , of the vectors in the reciprocal space are known, the task may be-
come extremely complicated, especially if there is no additional information about
the crystal structure other than the array of numbers representing the observed
1/dhkl [≡ d∗

hkl ] values.
The difficulty and reliability of indexing are closely related to the absolute accu-

racy of the array of d∗
hkl values, that is, to the absolute accuracy with which posi-

tions of Bragg reflections have been determined. For example, when the accuracy is
nearly ideal, such as when the calculated rather than the experimental Bragg angles
are used to determine d∗

hkl , indexing is usually straightforward and consistent even
for large, low symmetry unit cells. However, the presence of both random and sys-
tematic errors combined with multiple and sometimes severe overlaps of Bragg re-
flections (the latter are often observed in complex crystal structures characterized by
low symmetry, high unit cell volume lattices) reduces the accuracy of peak positions
and therefore, decreases the chances of successful indexing from first principles.2

As established earlier (see Sect. 8.4), the interplanar distances, d, are related to
both the unit cell dimensions and Miller indices of the families of crystallographic
planes by means of a well-defined function, which in general form can be written as
follows:

dhkl = f (h,k, l,a,b,c,α,β,γ) (14.2)

Peak positions, θhkl , are measurable from a powder diffraction experiment, for
example using any of the approaches discussed in Chap. 13. Thus, the observed
d-spacing for any given combination (hkl) is established using the Braggs’ equation,

1 Conventional lattices may be perturbed by functions with different periodicity, e.g., by sinusoidal
or saw-tooth-like modulations, see Chap. 5. In the simplest case (one-dimensional modulation),
(14.1) becomes d∗

hkl = ha∗ + kb∗ + lc∗ + mq assuming that the perturbation function is periodic
and has the modulation vector q. In a case of three-dimensional modulation, a total of six indices
(h, k, l, m, n, and p) are required to identify every point observed in reciprocal space: d∗

hkl = ha∗ +
kb∗ + lc∗+mq1 +nq2 + pq3, where q1, q2 and q3 are the modulation vectors of the corresponding
perturbation functions. If this is the case, vectors q1, q2 and q3 should be established in addition
to a∗, b∗ and c∗ before assignment of indices can be performed. Since even the three-dimensional
diffraction pattern of a modulated structure is a projection of four- to six-dimensional superspace,
indexing of single crystal diffraction data is quite complex. It is rarely, if ever, successful from first
principles when only powder diffraction data are available.
2 Similar to structure solution from first principles, the ab initio indexing implies that no prior
knowledge about symmetry and approximate unit cell dimensions of the crystal lattice exists. In-
dexing from first principles, therefore, usually means that Miller indices are assigned based strictly
on the relationships between the observed Bragg angles.
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in which λ is the wavelength used to collect the data and n = 1, that is, only the first-
order reflections are included into the consideration:

dobs
hkl =

λ
2sinθobs

hkl
(14.3)

By combining (14.2) and (14.3), the observed positions of Bragg peaks may be
used to calculate the corresponding unit cell dimensions, but first, the triplets of
integer indices, h, k and l, should be assigned to all observed diffraction maxima,
or in other words, all observed Bragg peaks should be indexed in agreement with
(14.1)–(14.3). The algorithm of the indexing process in powder diffraction is usually
dependent on whether or not the shape and dimensions of the unit cell are known at
least approximately.

14.2 Known Versus Unknown Unit Cell Dimensions

Indexing of powder diffraction data when unit cell dimensions are known with cer-
tain accuracy includes:

1. Generating a list of all possible combinations of symmetrically independent hkl
triplets, which can be observed within the studied range of Bragg angles.

2. Calculating interplanar distances using the generated list of hkl, the best estimate
of the unit cell dimensions (a,b,c,α,β, and γ), and the appropriately simplified
form of (14.2) that are given in (8.2)–(8.7).

3. Assigning hkl triplets to the observed Bragg peaks by matching dobs and dcalc
hkl

(or θobs and θcalc
hkl) based on the minimum difference between the pairs of

values.
4. Refining the unit cell dimensions using θobs or dobs coupled with the assigned hkl

triplets, i.e., using θobs
hkl or dobs

hkl , respectively.

Although the indexing process may take several iterations, each resulting in a more
accurate assignment of indices and in a better approximation of the unit cell, finding
the best solution is usually trivial.

When both the symmetry of the lattice and unit cell dimensions are unknown, the
ab initio indexing of powder diffraction data often becomes a trial-and-error process
and finding the correct unit cell may be a challenge. This occurs because the assign-
ment of hkl triplets to each observed Bragg peak is done without prior knowledge of
the unit cell parameters (a total of six in the most general case). Clearly, this task is
equivalent to restoring the directions of all observed reciprocal vectors based only
on their lengths, so to say one needs to restore a three-dimensional image from a
single one-dimensional projection. Referring to Fig. 14.1, it is nearly as easy to ob-
tain the lower part of the figure from its upper part, as it is difficult to reconstruct
the latter if only the former is known.

The difficulty of the ab initio indexing may be further illustrated using a noncrys-
tallographic geometrical example by considering a cone, a cylinder and a sphere,
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Fig. 14.2 The illustration of three indistinguishable one- and two-dimensional projections obtained
from three different three-dimensional objects. The projection directions are shown by dash-dotted
arrows.

all of which have identical radii. Under certain conditions, it is possible that their
projections are reduced to identical circles in two dimensions and then to indistin-
guishable lines in one dimension,3 as shown in Fig. 14.2. Assuming that there is
no additional information about these objects and their projections, it is impossi-
ble to restore the correct shape of the object in three dimensions based on a single
one-dimensional projection.

The problem of indexing powder diffraction data is intricate but not as hopeless
as it may appear from Fig. 14.2 due to the presence of governing laws, that is,
(14.1)–(14.3). They define a set of rules for the reconstruction of the reciprocal
lattice, in which a vector of a given length may only realize a limited number of
orientations. The ab initio indexing is, therefore, possible because vector directions
should be such that their ends form a three-dimensional lattice. A two-dimensional
example is found in Fig. 14.3, where the reciprocal lattice is identical to that shown
in Fig. 14.1 and is depicted with both the positive and negative directions of the two
basis lattice vectors a∗ and b∗.

In the absence of numerous overlapping Bragg peaks, which is the same as the
absence of numerous independent reciprocal lattice vectors with identical lengths,
the solution of the ab initio indexing problem is relatively straightforward. This is,
however, the case only in the highest symmetry crystal system, that is, cubic. As the
symmetry of the lattice lowers, and especially when the unit cell volume of the direct
lattice increases, multiple vectors with equal lengths but different directions will
appear in the reciprocal lattice, e.g., d∗

(32) and d∗
(42̄) where d∗

(32) = d∗
(42̄) in Fig. 14.3.

3 Strictly speaking, the shape of each object could be recognized from two-dimensional shad-
ows (projections) if the objects are semitransparent. Recognition becomes impractical from one-
dimensional projections.



412 14 Determination and Refinement of the Unit Cell

a*

b*

(32)

(41)

(42)

(23)(13)

(03)

Fig. 14.3 The illustration of a reciprocal lattice showing both the length and orientation of the
reciprocal vector d∗

(32). A second vector in this lattice with identical length but different orientation
is d∗

(42̄) and the identity of their lengths is coincidental, i.e., not mandated by lattice symmetry. In
addition, there are several vectors [d∗

(03), d∗
(41), d∗

(23̄) and d∗
(13̄)] with their lengths nearly identical

to those of d∗
(32) and d∗

(42̄). Note, that since this two-dimensional reciprocal lattice has a twofold
symmetry axis perpendicular to the plane of the projection and intersecting the origin of coordi-
nates, each vector has its symmetrical equivalent in the opposite direction (the indices of any pair
of the two symmetrically equivalent vectors have the same values but opposite signs).

Further, numerous vectors will have nearly identical lengths but different directions,
for example, d∗

(03), d∗
(41), d∗

(23̄) and d∗
(13̄) in addition to d∗

(32) and d∗
(42̄). Since both

the resolution of the instrument and the accuracy of Bragg angle measurements are
finite, the proper indexing of complex powder diffraction pattern(s) may be difficult
or nearly impossible from first principles.

We conclude this section with a simple notion: it is impossible to solve the crys-
tal structure of a material using an incorrect unit cell. Thus, proper indexing of
the experimental powder diffraction pattern is of utmost importance, and below we
shall consider various strategies leading to the solution of the indexing problem and
finding of the most precise unit cell dimensions.

14.3 Indexing: Known Unit Cell

As mentioned earlier, indexing (or assignment of hkl triplets) using known unit cell
dimensions is usually a trivial task. It may be completely formalized and therefore,
handled by a computer program automatically or nearly automatically with minimal
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Fig. 14.4 The flowchart illustrating a generic algorithm designed to generate all allowed combi-
nations of Miller indices and compute Bragg angles from known unit cell dimensions. Only the
values with 2θcalc

hkl not exceeding the maximum observed 2θ are retained for further use. Both
minimum and maximum h, k and l values are calculated from the maximum observed 2θ.

intervention by the user. However, it is often true that the unit cell dimensions are
known only approximately or they are simply guessed. If this is the case, indexing
is usually performed in several iterations as described by the following algorithm:

1. Expected Bragg peak positions, 2θcalc
hkl , shall be computed for all possible com-

binations of Miller indices using the best available estimate of the unit cell
dimensions coupled with the appropriate form of (14.2), suitably simplified to
reflect the symmetry of the reciprocal lattice. Only those combinations of h, k,
and l that are allowed by symmetry of the crystal lattice should be included in
the calculations. The proper computational process is illustrated by a flowchart in
Fig. 14.4. When available, Bragg peak positions coupled with known hkl triplets
taken from a literature reference or from a database (e.g., the ICDD’s Powder
Diffraction File4) can be used instead of a computed list of 2θcalc

hkl .
2. Assignment of indices should always start from a peak observed at the lowest

Bragg angle and proceed toward the higher Bragg angles. The low Bragg angle
peaks are usually well-resolved and are located far apart from one another (e.g.,
see Fig. 14.1), their calculated positions are least affected by inaccuracies in an
initial approximation of the unit cell, and therefore, it is relatively easy to decide
which triplet of indices corresponds to which observed peak. The indexing should
only continue as long as there is no ambiguity in the assignment of indices.

3. Using all Bragg peaks which have been indexed and the associated observed
Bragg angles, more accurate unit cell dimensions and, if applicable, systematic
experimental errors, for example, sample displacement, sample transparency, or

4 See Sect. 13.3 and http://www.icdd.com/ for more information about the Powder Diffraction File.
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zero shift, which are described in Sect. 8.4.2, should be refined by means of a
least squares technique (see Sect. 14.12).

4. Using the improved unit cell dimensions obtained in Step 3, the process is
repeated from Step 1 until all observed Bragg peaks have been indexed.5 The
indexing is considered complete when index assignments and the refined lat-
tice parameters remain unchanged after the last iteration in comparison with the
same from the previous cycle.

14.3.1 High Symmetry Indexing Example

We illustrate the indexing approach described above by using the experimental
diffraction data collected from a LaNi4.85Sn0.15 sample shown in Fig. 14.5.6 The

LaNi4.85Sn0.15,Cu Kα
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Fig. 14.5 A fragment of the diffraction pattern collected from a LaNi4.85Sn0.15 powder on a Rigaku
TTRAX rotating anode powder diffractometer using CuKα1,2 radiation. The data were collected in
a step scan mode with a step 0.02◦ of 2θ and counting time 4 s As explained later (see Tables 14.2
and 14.3, respectively), the two sets of vertical bars indicate locations of Bragg peaks calculated
using the first (the upper set of bars) and the second (the lower set of bars) approximations of the
unit cell dimensions.

5 When a powder diffraction pattern contains a few weak impurity reflections, indexing of all
Bragg peaks may be impossible. Generally, all unindexed peaks should be explained by identifying
impurity phase(s) or by shape anomalies when compared to the main phase.
6 Same data are found online in the ASCII data file Ch14Ex01 CuKa.xy.
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Table 14.1 Relative integrated intensities (I/I0), Bragg angles, and full widths at half maximum
(FWHM) of Bragg peaks observed in the LaNi4.85Sn0.15 powder diffraction pattern collected using
CuKα radiation in the range 18◦ ≤ 2θ≤ 83◦ (see Fig. 14.5).

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

20 20.288 0.070 136 58.742 0.117
43 22.105 0.077 149 60.584 0.112

513 30.198 0.076 210 62.824 0.123
305 35.548 0.078 54 63.866 0.115
394 41.285 0.082 213 68.485 0.124

1,000 42.272 0.085 35 74.050 0.140
18 44.211 0.099 7 74.353 0.140

274 45.130 0.106 153 75.298 0.140
89 47.332 0.091 4 78.958 0.175

4 49.965 0.109 9 79.629 0.175
10 51.517 0.140 123 81.357 0.175

6 55.621 0.094 55 81.632 0.175

aBragg angles are listed for the location of the Kα1 component in the doublet,
λ = 1.540593 Å.

observed positions of Bragg peaks were determined using a profile fitting procedure
and these are listed in Table 14.1 together with their relative integrated intensities
(I/I0) and full widths at half maximum (FWHM). The least squares standard devi-
ations in the observed Bragg angles did not exceed 0.003◦.7

The crystal structure of the powder is hexagonal: space group is P6/mmm and
the lattice parameters are a = 5.04228(6), c = 4.01170(5) Å, as determined from
Rietveld refinement using diffraction data with 2θmax = 120◦. To better illustrate the
indexing process we will employ a spreadsheet in the calculation of Bragg angles
using both the approximate and refined unit cell dimensions rather than any kind of
specialized software. Assume that we only know lattice parameters of this material
to within ∼0.10 Å, and that the best available approximation to begin with is a =
4.95 and c = 4.10 Å.

The simplified form of (14.2) in the hexagonal crystal system is:

1
d2 =

4
3
× h2 +hk + k2

a2 +
l2

c2 (14.4)

After combining (14.4) and (14.3) we get the following equation relating Bragg
angles, lattice parameters and Miller indices:

2θhkl = 2arcsin

(
λ
√

1
3
× h2 +hk + k2

a2 +
1
4
× l2

c2

)
(14.5)

To ensure that no possible combination of indices have been missed (see
Fig. 14.4) it is best to create a spreadsheet, in which the columns are labeled

7 The content of Table 14.1 can be found online in the file Ch14Ex01 CuKa.pks.
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Table 14.2 Bragg anglesa calculated using the first approximation of the unit cell dimensions for
LaNi4.85Sn0.15: a = 4.95, c = 4.10 Å. Cells with the dashes correspond to the combinations of
indices, which cannot be observed in the range 0◦ < 2θ≤ 83◦.

hk/l 0 1 2 3 4

00 – 21.658 44.142 68.615 –
01 20.703 30.137 49.229 72.539 –
02 42.124 47.848 62.657 – –
03 65.240 69.622 82.159 – –

11 36.267 42.636 58.407 80.159 –
12 56.772 61.486 74.598 – –

22 76.992 81.113 – – –
13 80.764 – – – –

aBragg angles are listed for the location of the Kα1 com-
ponent in the doublet, λ = 1.540593 Å.

with values of l varying from lmin = −lmax to lmax. The value of lmax is determined
from (14.5) by substituting 2θmax for 2θ and letting h = k = 0. The rows are labeled
with the values of h and k. In general, both h and k should vary between their
respective minimum and maximum values determined in the same way as lmin and
lmax.8 In the hexagonal crystal system, however, there is no need to include negative
values of indices due to limitations imposed by symmetry of the reciprocal lattice,
and the smallest values of all three indices are set at 0. Further, reciprocal lattice
points that are different from one another by a permutation of h and k are sym-
metrically equivalent in this hexagonal lattice. As a result, we have an additional
restriction, i.e., h ≤ k (or h ≥ k) that limits the possible combinations of indices. No
other limitations are imposed on the allowed combinations of indices in the case
of LaNi4.85Sn0.15 because the space-group symmetry of the material is P6/mmm,
which according to Table 9.8, has no forbidden reflections.

The spreadsheet used to calculate values found in Table 14.2 may be found
online.9 The calculated Bragg peak positions from Table 14.2 are plotted as the
upper set of vertical bars in Fig. 14.5. It is easy to recognize that only four low-
est Bragg angle peaks can be decidedly indexed using the first approximation of
the unit cell dimensions. The corresponding assignment of the triplets of indices is
shown in Table 14.3, which is the result of combining the experimental data listed
in Table 14.1, with the calculated Bragg peak positions listed in Table 14.2.

Based on the results of the first round of indexing, the least squares refinement of
the lattice parameters yields the following values: a = 5.047(1), c = 4.017(2) Å. The
recalculated Bragg angles are shown in Table 14.4, and they are plotted in Fig. 14.5
as the lower set of vertical bars. It is clear that nearly all observed Bragg peaks

8 A more precise definition of |hmax|, |kmax| and |lmax| can be given in terms of the maximum
reciprocal lattice vector length, which is |d∗

hkl |max ≤ 2/λ.
9 The file name is Ch14Ex01 BraggAngles.xls.
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Table 14.3 Index assignments in the powder diffraction pattern of for LaNi4.85Sn0.15 after the first
iteration assuming a = 4.95,c = 4.10 Å.

I/I0 hkl 2θcalc 2θobs 2θobs −2θcalc FWHMobs

20 010 20.703 20.288 −0.415 0.070
43 001 21.658 22.105 0.447 0.077
513 011 30.137 30.198 0.061 0.076
305 110 36.267 35.548 −0.719 0.078

Table 14.4 Bragg anglesa calculated using the second approximation of the unit cell dimensions
for LaNi4.85Sn0.15 obtained after a least squares refinement of lattice parameters employing the data
from Table 14.3: a = 5.047, c = 4.017 Å. Cells with the dashes correspond to the combinations of
indices, which cannot be observed in the range 0 < 2θ≤ 83◦.

hk/l 0 1 2 3 4

00 – 21.658 44.142 68.615 –
01 20.703 30.137 49.229 72.539 –
02 42.124 47.848 62.657 – –
03 65.240 69.622 82.159 – –

11 36.267 42.636 58.407 80.159 –
12 56.772 61.486 74.598 – –

22 76.992 81.113 – – –

13 80.764 – – – –

aBragg angles are listed for the location of the Kα1 com-
ponent in the doublet, λ = 1.540593 Å.

may now be unambiguously indexed as shown in Table 14.5, where all differences
between the observed and calculated 2θ are smaller than a fraction of the peaks’ full
width at half maximum.

A least squares refinement of the unit cell dimensions of LaNi4.85Sn0.15 based
on the observed Bragg angles and indices listed in Table 14.5 yields the following
unit cell: a = 5.0421(1), c = 4.0118(1) Å. The lattice parameters have been refined
together with a zero-shift correction, which was determined to be 0.032◦. The fi-
nal indexing of this diffraction pattern is shown in Table 14.6, where the observed
Bragg angles have been corrected for the zero-shift error by adding 0.032◦ to each
observed 2θ.

There are two weak Bragg peaks in this diffraction pattern which could not be
indexed, since they do not belong to the hexagonal crystal lattice with the established
unit cell. As we see later (Chap. 16), these two peaks manifest the presence of a
small amount of an impurity phase – a solid solution of Sn in Ni, which has a
face-centered cubic crystal structure with the space-group symmetry Fm3̄m and a =
3.543 Å. Only one theoretically possible Bragg peak of the major hexagonal phase
(003) is unobserved in this powder diffraction pattern because its intensity is below
the limits of detection.
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Table 14.5 Assignment of indices after the unit cell dimensions of LaNi4.85Sn0.15 have been
refined using four lowest Bragg angle peaks: a = 5.047, c = 4.017 Å.

I/I0 hkl 2θcalc 2θobs 2θobs −2θcalc FWHMobs

20 010 20.301 20.288 −0.013 0.070
43 001 22.111 22.105 −0.006 0.077

513 011 30.193 30.198 0.005 0.076
305 110 35.546 35.548 0.002 0.078
394 020 41.277 41.285 0.008 0.082

1,000 111 42.260 42.272 0.012 0.085
18a – – 44.211 – 0.099
274 002 45.104 45.130 0.026 0.106
89 021 47.314 47.332 0.018 0.091
4 012 49.931 49.965 0.034 0.109

10b – – 51.517 – 0.140
6 120 55.586 55.621 0.035 0.094

136 112 58.703 58.742 0.039 0.117
149 121 60.552 60.584 0.032 0.112
210 022 62.783 62.824 0.041 0.123
54 030 63.836 63.866 0.030 0.115

213 031 68.445 68.485 0.040 0.124
– 003 70.238 – – –

35 013 73.979 74.050 0.071 0.140
7 122 74.276 74.353 0.077 0.140

153 220 75.251 75.298 0.047 0.140
4 130 78.903 78.958 0.055 0.175
9 221 79.570 79.629 0.059 0.175

123 113 81.271 81.357 0.086 0.175
55 032 81.561 81.632 0.071 0.175

a,b The 111a and 002b Bragg reflections of an impurity phase (a solid
solution of Sn in Ni).

The column containing full widths at half maximum of the observed Bragg peaks
is a useful tool in deciding whether the final differences between the observed and
calculated Bragg angles are satisfactory or not – their absolute values should be
lower than a small fraction of the corresponding FWHM. Furthermore, the observed
FWHMs can be used in a computerized indexing procedure. Usually, since the res-
olution of a well-aligned laboratory powder diffractometer is high enough to dis-
tinguish a pair of overlapped Bragg peaks with comparable intensities when their
positions are different only by ∼1/2 to ∼1/4 of their FWHMs, a fraction of the exper-
imentally determined FWHM may be used instead of a random tolerance parameter
during the indexing. When the difference |2θobs −2θcalc| is less than the tolerance,
the index triplet is assigned to the peak, otherwise the assignment is not performed.

We note that in the example considered in this section, the initial approximation
of the unit cell dimensions was quite inaccurate. Nonetheless, the indexing was easy
because of a small unit cell and high symmetry. Consequently, only a small number
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Table 14.6 Final assignment of indices for the powder diffraction pattern of LaNi4.85Sn0.15. The
refined unit cell dimensions are: a = 5.0421(1), c = 4.0118(1) Å; zero shift is 0.032◦.

I/I0 hkl 2θcalc 2θobsaa
2θobs −2θcalc FWHMobs

20 010 20.321 20.320 −0.001 0.070
43 001 22.140 22.137 −0.003 0.077

513 011 30.228 30.230 0.002 0.076
305 110 35.582 35.580 −0.002 0.078
394 020 41.319 41.317 −0.002 0.082

1,000 111 42.307 42.304 −0.003 0.085
18b – – 44.243 – 0.099
274 002 45.165 45.162 −0.003 0.106

89 021 47.366 47.364 −0.002 0.091
4 012 49.997 49.997 0.000 0.109

10c – – 51.549 – 0.140
6 120 55.644 55.653 0.009 0.094

136 112 58.779 58.774 −0.005 0.117
149 121 60.620 60.616 −0.004 0.112
210 022 62.864 62.856 −0.008 0.123

54 030 63.906 63.898 −0.008 0.115
213 031 68.524 68.517 −0.007 0.124

– 003 70.343 – – –
35 013 74.088 74.082 −0.006 0.140
7 122 74.372 74.385 0.013 0.140

153 220 75.337 75.330 −0.007 0.140
4 130 78.995 78.990 −0.005 0.175
9 221 79.665 79.661 −0.004 0.175

123 113 81.392 81.389 −0.003 0.175
55 032 81.668 81.664 −0.004 0.175

a The observed Bragg angles are listed as 2θmeas. + 0.032◦, where
2θmeas. is the as-measured Bragg angle, to account for the determined
zero-shift error.
b,c The 111b and 002c Bragg reflections of an impurity phase (a solid
solution of Sn in Ni).

of reflections were possible in the range of measured Bragg angles and, for the most
part, neighboring Bragg peaks were clearly resolved in the diffraction pattern.

Rather inaccurate lattice parameters can result from a comparison with known
structures, serving as a basis for the initial guess. Considerable differences between
the real and guessed unit cell dimensions can make indexing challenging, especially
when large unit cells and/or low symmetry crystal structures are of concern. In many
real cases, the best possible accuracy in the initial unit cell dimensions is critical in
order to complete the indexing task in a reasonable time, that is, in a reasonable
number of iterations. The whole pattern can rarely be indexed using the initial and
imprecise approximation of lattice parameters due to inaccuracies in both the unit
cell dimensions and in the measured peak positions, especially when systematic
errors in the measured Bragg angles (e.g., zero shift, sample displacement and/or
transparency effects) are present.
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14.3.2 Other Crystal Systems

Indexing of powder diffraction data in crystal systems other than hexagonal when
unit cell dimensions are known approximately, follows the path described in
Sect. 14.3.1 except that the proper form of (14.2) should be used in (14.4) and
(14.5). In low symmetry crystal systems, that is, monoclinic and triclinic, one or
two indices, respectively, must include negative values: they should vary from –imax
to +imax, where i = h, k, or l, for a complete generation of the list of possible hkl.
Referring to the example of the two-dimensional reciprocal lattice in Fig. 14.3, it
is easy to see that d∗

32 �= d∗
3̄2, and therefore, the list of possible Bragg angles must

include a set of reciprocal points with index h varying from –hmax to hmax and k
varying from 0 to kmax for completeness. This covers the upper half of the circle
drawn in the reciprocal lattice. We note that all symmetrically independent combi-
nations will also be generated when h varies from 0 to hmax but k varies from –kmax
to kmax, which corresponds to a semicircle on the right of Fig. 14.3.

The minimum and maximum values of Miller indices in three dimensions are
fully determined by the symmetrically independent fraction of the reciprocal lattice
as shown in Fig. 14.6 for the six distinguishable “powder” Laue classes. The same
conditions are also listed in Table 14.7.10

⎯1
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b*

c*
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b*

c*

mmm

4/mmm
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c*

m3m
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c*

6/mmm

a*

b*

Fig. 14.6 Schematic representations of the fractions of the volume of the sphere (r = 1/λ) in the
reciprocal space in which the list of hkl triplets should be generated in each of the six “powder”
Laue classes to ensure that all symmetrically independent points in the reciprocal lattice have been
included in the calculation of Bragg angles using a proper form of (14.2). The monoclinic crystal
system is shown in the alternative setting, that is, with the unique twofold axis parallel to c∗ instead
of the standard setting, where the twofold axis is parallel to b∗.

10 Both Table 14.7 and Fig. 14.6 account for the differences among “powder” Laue classes, which
are distinguishable at this stage, and are suitable for indexing of powder diffraction patterns. For
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Table 14.7 Symmetrically independent combinations of indices in six “powder” Laue classes.

“Powder” Laue class Range of indices and limiting conditionsa Independent
fraction of sphere
volumeb

Triclinic, 1̄ −h. . .+h; −k. . .k; 0. . .+ l 1/ 2
Monoclinic, 2/m −h. . .+h; 0. . .k; 0. . .+ l 1/ 4
Orthorhombic, mmm 0. . .+h; 0. . .+ k; 0. . .+ l 1/ 8
Tetragonal, 4/mmm 0. . .+h; 0. . .+ k; 0. . .+ l; h ≤ k 1/ 16
Hexagonal (=Trigonal), 6/mmm 0. . .+h; 0. . .+ k; 0. . .+ l; h ≤ k 1/ 24
Cubic, m3m 0. . .+h; 0. . .+ k;0. . .+ l; h ≤ k; k ≤ l 1/ 48

a Range and limiting conditions match the illustrations depicted in Fig. 14.6.
b In general, any fraction of the sphere volume, symmetrically equivalent to that shaded in
Fig. 14.6, is acceptable.

Instead of using a spreadsheet for generating the list of possible hkl and calcu-
lating Bragg angles from known or approximately known unit cell dimensions, it
is possible to use one of several computer programs that can be downloaded from
the International Union of Crystallography11 or from the Collaborative Computa-
tional Project No. 1412 Web sites. Nearly all of them are simple to use, and they
require minimum data input. The latter typically includes symmetry in the form of
space-group symbol or crystal system name, unit cell dimensions, wavelength, and
maximum Bragg angle to limit the amount of output data. Further, nearly every
commercially available crystallographic software product includes a procedure for
generating a complete list of possible hkl along with the corresponding interplanar
distances and Bragg angles calculated from the known unit cell dimensions.

14.4 Reliability of Indexing

Regardless of which tools were used in the indexing of the powder diffraction pat-
tern, the most reliable solution should result in the minimum discrepancies in the
series of simultaneous equations ((14.5) or its equivalent for a different crystal sys-
tem) constructed with the observed 2θ substituted into the left-hand side and the
assigned index triplets and refined unit cell dimensions substituted into the right-
hand side of each equation. While the combined discrepancy is easily established
algebraically, for example, as the sum of the squared differences

example, in Laue classes 6/m and 4/m (“powder” Laue classes 6/mmm and 4/mmm, respectively),
the intensities of hkl and khl reflections are different, although the corresponding Bragg angles
remain identical. Consult the International Tables for Crystallography, Vol. A for proper intensity
relationships in other Laue classes.
11 http://www.iucr.org.
12 http://www.ccp14.ac.uk.
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ε =
N

∑
i=1

(
2θobs

hikili −2θcalc
hikili

)2
(14.6)

usually it is not enough to achieve the minimum ε and assume that the correct unit
cell has been found. In (14.6), N represents the number of the observed Bragg peaks.
Obviously, when the unit cell dimensions are increased (e.g., see (14.5)) or symme-
try is lowered (see Table 14.7), this results in an increased number of possible com-
binations of indices in the same range of Bragg angles. Ultimately, infinitesimal ε
can be reached when the total number of possible combinations of hkl triplets, and
therefore, unique d values approaches infinity but N remains constant.

Because of this ambiguity, several other criteria shall be considered before an
indexing result is accepted, that is, a final unit cell selection is made, especially
during the ab initio indexing. The somewhat related-to-one-another norms are as
follows (all other things are assumed equal):

– The preference generally is given to the unit cell with the highest symmetry be-
cause high symmetry translates into a small number of symmetrically indepen-
dent reciprocal lattice points (see Fig. 14.6) and, therefore, the lowest number
of possible Bragg reflections. For example, when the following three unit cells
(Table 14.8) result in the successful indexing, the best of the three is represented
by a tetragonal symmetry.

– The unit cell with the smallest volume usually represents the best solution, be-
cause it leaves the smallest number of possible index triplets unassigned to at
least one of the observed Bragg peaks. In the example shown in Table 14.9, the
third row is likely the best solution.

– The preference shall be given to a solution which results in the smallest number
of possible hkl triplets in the examined range of Bragg angles. In other words,
if among several solutions, which are otherwise equivalent, one has a centered
lattice and all the others are primitive, the centered lattice is typically the best
(see Table 14.10).

Table 14.8 Example of three unit cells with nearly identical volumes but different symmetry.

Crystal system a (Å) b (Å) c (Å) β (◦) Bravais lattice

Monoclinic 7.128 9.253 7.127 89.98 P
Orthorhombic 9.253 7.127 7.129 90 P
Tetragonal (best) 7.127 7.127 9.255 90 P

Table 14.9 Example of three unit cells with identical symmetry but different volumes.

Crystal system a (Å) b (Å) c (Å) V (Å3) Bravais lattice

Orthorhombic 7.128 9.253 5.613 370.21 P
Orthorhombic 9.253 7.128 11.226 740.42 P
Orthorhombic (best) 4.627 5.613 7.128 185.12 P
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Table 14.10 Example of two unit cells with identical symmetry and volumes but different Bravais
lattices.

Crystal system a (Å) b (Å) c (Å) V (Å3) Bravais lattice

Tetragonal (best) 7.127 7.127 9.255 470.28 I
Tetragonal 7.127 7.127 9.255 470.28 P

LaNi4.85Sn0.15, Cu Kα

Bragg angle, 2θ (deg.)
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Fig. 14.7 The illustration of an incorrect indexing of the powder diffraction pattern of
LaNi4.85Sn0.15. The upper set of vertical bars corresponds to the locations of Bragg peaks cal-
culated using the correct hexagonal lattice with a = 5.0421,c = 4.0118 Å. The lower set of bars
represents dubious indexing using a large primitive cubic unit cell with a = 24.74 Å. The latter
unit cell results in an overwhelming number of possible reflections, only a few percent of which
may be assigned to the observed Bragg reflections.

– Finally, the resulting ε (14.6) or a similar algebraic measure should be at its
minimum for the most preferred indexing solution.

We note that the benchmarks listed here must be applied all together. For exam-
ple, it is nearly always possible to choose the highest symmetry crystal system (i.e.,
cubic) and a large unit cell to dubiously assign index triplets to all observed Bragg
peaks, leaving many possible unassigned, and obtain acceptable ε. This happens be-
cause the density of points in the reciprocal lattice is proportional to the volume of
the unit cell in the direct space. As shown in Fig. 14.7, all Bragg peaks observed
in the powder diffraction pattern of LaNi4.85Sn0.15 can be indexed in a primitive
cubic unit cell with a ∼= 24.74 Å. Generally, random and large unit cells result in a



424 14 Determination and Refinement of the Unit Cell

massive number of unobserved Bragg peaks and more often than not, such indexing
is fictitious and the unit cell is incorrect.13

It is worth noting, however, that when the true crystal structure is derived from a
minor distortion of a small unit cell, for example, when the so-called superstructure
has been formed, or when the real structure is perturbed by a long period, small
amplitude modulation function, many Bragg peaks, and often the majority of them,
may have extremely low intensity and become undetectable. These cases require
special attention during the indexing, and detailed consideration of related subjects
exceeds the scope of this book.

The quality and the reliability of indexing, therefore, is routinely characterized by
means of various numerical figures of merit (FOMs), and their importance becomes
especially high when indexing is performed using a computer program. Numerous
FOMs have been introduced and used with variable success in the powder diffrac-
tion data indexing process. We consider two of the most frequently used figures of
merit. Both have been adopted by the International Centre for Diffraction Data to
characterize the quality of indexing of patterns included into the Powder Diffrac-
tion File.

14.4.1 The FN Figure of Merit

The so-called FN figure of merit has been introduced by Smith and Snyder.14 It is
defined as:

FN =
N

Nposs
× 1

|Δ2θ|
=

N2

Nposs
N
∑

i=1
|2θobs

i −2θcalc
i |

(14.7)

Where,

– N is the number of the observed Bragg peaks
– Nposs is the number of independent Bragg reflections possible up to the Nth ob-

served diffraction peak

13 In real structures, unit cell volumes vary by several orders of magnitude. For example, among
metallic materials, the volume of the unit cell may be as small as ∼20 Å3 for a pure metal (Fe)
containing two atoms in a body-centered cubic unit cell. It may also be as large as ∼20,000 Å3

for some complex intermetallic compounds, such as β-Mg2Al3 [S. Samson, The crystal struc-
ture of the phase beta Mg2Al3, Acta Cryst. 19, 401 (1965)] and Tb117Fe52Ge112 [V.K. Pecharsky,
O.I. Bodak, V.K. Bel’sky, P.K. Starodub, I.R. Mokra, and E.I. Gladyshevsky, Crystal structure of
Tb117Fe52Ge112, Kristallografiya 32, 3348 (1987); Engl. Transl.: Sov. Phys. Crystallogr. 32, 194
(1987)], both containing over 1,000 atoms in the face-centered cubic unit cells. The majority of
crystalline materials, however, have volumes of their unit cells from several hundred to several
thousand cubic angströms except proteins, where unit cell volumes from ∼105 to ∼107 Å3 are
common.
14 G.S. Smith and R.L. Snyder, FN: a criterion for rating powder diffraction patterns and evaluating
the reliability of powder pattern indexing, J. Appl. Cryst. 12, 60 (1979).
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– |Δ2θ| =
1
N

N
∑

i=1
|Δ2θi| =

1
N

N
∑

i=1
|2θobs

i − 2θcalc
i | is the average absolute difference

between the observed and calculated 2θi

In other words, Nposs is the number of symmetrically independent points in the
reciprocal lattice limited by a sphere with the diameter d∗

N(= 1/dN) as established
by (14.3) after substituting the Bragg angle, θN , of the Nth observed Bragg peak for
θhkl . Additional restrictions are imposed on Nposs in high symmetry crystal systems:
when reciprocal lattice points are not related by symmetry but when they have iden-
tical reciprocal vector lengths due to specific unit cell shape (e.g., h05 and h34 in
the cubic, or 05l and 34l in the tetragonal crystal systems, see (8.2) and (8.3)), then
only one is included into calculating Nposs. On the contrary, when the identity of
the reciprocal lattice vectors lengths is coincidental (e.g., as shown for d(32) = d(42̄)
in Fig. 14.3), both are included into the calculated Nposs. The FN figure of merit is
usually reported in the form:

FN = Value
(
|Δ2θ|,Nposs

)
(14.8)

For example, in the indexed powder diffraction pattern of LaNi4.85Sn0.15 shown
in Table 14.6 after the unit cell dimensions have been refined, the resulting FN ,
excluding the two impurity peaks, is F22 = 208.4(0.005,23). The same figure of
merit, calculated using the indexing results and unrefined unit cell dimensions
(Table 14.5), is F22 = 26.1(0.037,23). The best FOM, F22 = 208.4(0.005,23), is
interpreted as follows: the figure of merit for the 22 observed Bragg peaks is 208.4,
the average absolute 2θ difference is 0.005◦, and the total number of possible sym-
metrically inequivalent Bragg peaks in this range of Bragg angles is 23. The best
indexing result usually has the highest FN . Although it is difficult to establish strict
guidelines on the values of FN corresponding to a reasonable indexing, the FN usu-
ally should be greater than 10; the lowest average 2θ difference should be lower
than 0.02◦, and the number of possible Bragg peaks, Nposs, should be the same or
only slightly larger than the number of the observed peaks, N.

14.4.2 The M20(MN) Figure of Merit

Another frequently used figure of merit, M20, has been introduced by de Wolff,15

and it is defined as:

M20 =
1

Nposs
× Q20

2|ΔQ|
=

10Q20

Nposs
20
∑

i=1
|Qobs

i −Qcalc
i |

(14.9)

15 P.M. de Wolff, A simplified criterion for the reliability of a powder pattern indexing, J. Appl.
Cryst. 1, 108 (1968).
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Where,

– Nposs has the same meaning as in the FN , except it is computed for θmax = θ20,
that is, it is the number of symmetrically independent points in the reciprocal
lattice up to the 20th observed Bragg peak

– Q = d∗2 = 1/ d2 represents the square of the length of the reciprocal vector
– Q20 is the corresponding Q-value for the 20th observed Bragg peak

– |ΔQ| =
1
20

20
∑

i=1
|ΔQi| =

1
20

20
∑

i=1
|Qobs

i −Qcalc
i | is the average absolute difference be-

tween the observed and calculated Qhkl for the first 20 Bragg peaks

The M20 FOM is always calculated for the first 20 observed reflections, unless the
total number of the observed Bragg peaks is less than 20. When Nobs > 20, the value
of MN can be reported in addition to M20. In these cases (14.9) is converted into

MN =
1

Nposs
× QN

2|ΔQ|
=

NQN

2Nposs
N
∑

i=1
|Qobs

i −Qcalc
i |

(14.10)

Once again referring to the two examples of indexing (Tables 14.5 and 14.6) the
respective M20 values are 39.1 and 278.1. Similar to FN , the more reliable indexing
yields the higher M20. However, it is even harder to specify an “acceptable” range of
the M20 values: when compared to FN , the M20 FOM is strongly dependent on both
the complexity of the pattern and unit cell volume. Therefore, one should look for a
solution (or solutions) with the M20 figure of merit, which is (are) distinctly larger
than the others. If all results have about the same and low M20 FOMs, for example,
all are between 5 and 6, it is highly likely that none of them is a correct solution of
the indexing problem. We note that either, or both the FN or M20 figures of merit are
useful when comparing different indexing solutions for the same pattern, but not for
different patterns.

14.5 Introduction to Ab Initio Indexing

The complexity of indexing powder diffraction data without prior knowledge of
either or both the symmetry and dimensions of the unit cell (i.e., assignment of in-
dices from first principles, based strictly on the relationships between the measured
lengths of the reciprocal lattice vectors) is inversely proportional to the symmetry
of the lattice – the higher the symmetry, the simpler the indexing process. Although
today the actual indexing is hardly ever performed without employing one or several
freely available or commercial computer programs,16 we believe that it is important
to consider essential mathematical background, which for many years was employed
successfully to find solutions of indexing problems “manually.”

16 The most comprehensive collections of various crystallographic software products are found
at the International Union of Crystallography Web site (http://www.iucr.org) and at the Col-
laborative Computational Project No. 14 for Single Crystal and Powder Diffraction Web site
(http://www.ccp14.ac.uk).
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We begin with the cubic crystal system, where the assignment of indices is nearly
transparent, and then consider the theory behind the ab initio indexing in crystal
systems with tetragonal and hexagonal symmetry.17 Indeed, as with any kind of
experimental work, experience is paramount, and we hope that the contents of this
section may help the reader to achieve accurate solutions of real life indexing tasks
successfully.

Accurate indexing from first principles rests on the four cornerstones:

1. The availability of Bragg peaks observed at the lowest possible Bragg angles.
These peaks are critically important because they have the simplest indices (usu-
ally −2 ≤ h ≤ 2, −2 ≤ k ≤ 2 and −2 ≤ l ≤ 2), which considerably limits the
possibilities of locating the corresponding vectors in the reciprocal lattice and
therefore, simplifies the whole process of restoring reciprocal lattice vector di-
rections from their lengths.

2. A small number of extinct18 Bragg peaks, especially at low Bragg angles. For ex-
ample, if due to a variety of reasons, all observed Bragg peaks taken into account
during the indexing have one of the indices divisible by two, then the resulting
unit cell dimension is half of the true value.

3. The high absolute accuracy including the absence of systematic errors affecting
the measured Bragg angles. This requirement is obvious as only the lengths, but
not the directions of the reciprocal vectors are measurable in powder diffraction.
The presence of even a small systematic error (e.g., sample displacement and/or
zero-shift errors) may considerably affect the outcome of the indexing because
it usually has the strongest influence on the lowest Bragg angle peaks, which are
critical for successful indexing (see item 1 in this list, and (14.30) and Fig. 14.19
later in the book). In any case, systematic experimental errors should be mini-
mized by proper alignment of the instrument. If necessary, additional experiment
may be performed with a well-characterized internal standard added to the stud-
ied powder, thus enabling one to eliminate systematic errors from the data before
attempting ab initio assignment of indices.

4. The absence of impurity Bragg peaks in the array of experimental data. If this re-
quirement is not met, and one or more impurity peaks are included in the index-
ing attempt, it is nearly always true that the reciprocal vectors from the impurity
phase do not fit the reciprocal lattice of the major phase. The resulting unit cell,
if a solution is ever found, more often than not will be incorrect, as it describes
both the vectors from the major phase and the impurity phase(s) in the same arbi-
trary reciprocal lattice. Certain ab initio indexing procedures, for example, those
that are incorporated into TREOR and ITO (see Sects. 14.10.1 and 14.10.3), au-
tomatically skip some Bragg peaks that do not fit in a trial lattice. This feature
may help in indexing patterns containing some impurities but on the other hand,
it may also result in the incorrect, usually overly simplified solution when Bragg
peaks from a major phase are accidentally excluded.

17 An excellent description of the ab initio indexing in all crystal systems can be found in
H. Lipson and H. Steeple, Interpretation of X-ray powder diffraction patterns, Macmillan, London;
St. Martin’s Press, New York (1970).
18 Unless extinctions are systematic, see Sects. 9.3 and 9.4.
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14.6 Cubic Crystal System

Cubic symmetry of a material is always a good guess when a powder diffraction
pattern contains just a few peaks, or when there are sequences of observed Bragg
peaks that appear nearly equally spaced (see Fig. 8.7), especially at low Bragg an-
gles. Clearly, some experience in working with powder diffraction data is needed to
make this judgment from a visual analysis of Y (2θ). However, the ab initio index-
ing algorithm is so simple in the case of cubic symmetry, that nearly always it is
justifiable to attempt cubic indexing, and either confirm or dismiss this option.

When the crystal system is cubic, the general form of (14.2) is simplified to

1
d2

hkl
=

h2 + k2 + l2

a2 (14.11)

or in reciprocal space

1
d2

hkl
= d∗ 2

hkl = (h2 + k2 + l2)a∗2 (14.12)

Since h, k, and l are integers, the sums of their squares, (h2 + k2 + l2), are also
integer numbers. Thus, (14.12) can be written as follows

Qhkl = Ahkla∗2 (14.13)

where Qhkl = d∗2
hkl = 1/d2

hkl and Ahkl = (h2 + k2 + l2). The former is established
from the experiment for each Bragg peak using (14.3) and the latter is a positive
integer, which depends on the values of h, k and l in the index triplet. Certain whole
numbers, for example, 7, 15 and others, given by:

A = i2(8 j−1) (14.14)

where i = 1,2,3, . . . and j = 1,2,3, . . ., cannot be represented as a sum of squares of
any three integers and therefore, are forbidden in (14.13).

Assume that we have a set of experimental data where the observed Bragg angles
have been converted into an array of Q-values. Then, if the crystal lattice is cubic,
the following system of simultaneous equations can be written to associate each
Bragg peak with a certain combination of hkl triplets:

Qh1k1l1 = Ah1k1l1a∗2 Qh1k1l1 / a∗2 = Ah1k1l1

Qh2k2l2 = Ah2k2l2a∗2 ⇒ Qh2k2l2 / a∗2 = Ah2k2l2

. . . . . .

QhN kN lN = AhN kN lN a∗2 QhN kN lN / a∗2 = AhN kN lN

(14.15)

As follows from the second form of (14.15), the observed array of Q-values should
have a common divisor (a∗2), which results in the array of integers or nearly integers,
considering the finite accuracy of the measured Bragg angles.
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Fig. 14.8 The flowchart illustrating the algorithm of the ab initio indexing when cubic symmetry is
suspected. It is assumed that the array of Q-values is sorted in the ascending order from Q1 to QN .

The algorithm of indexing to test for cubic symmetry is shown in the form of
a flowchart in Fig. 14.8. After the array of Bragg angles have been converted to
Q-values, the next step is to normalize it and find the integers A1, A2, . . ., AN . The
simplest way to do so is to divide all Q-values by the smallest number present in the
array, that is, Qh1k1l1 = Q1. If the resulting array of A1, A2, . . ., AN contains nearly
whole numbers, the lattice parameter is calculated and the corresponding values of
the hikili triplets are determined based on the values of Ai after verification that no
forbidden integers (e.g., 7, 15, etc., see (14.14)) are present in the array A.

When the first normalization step results in clearly noninteger values in the array
A, indexing still may be completed when the obtained A1, A2, . . ., AN are multiplied
by 2, 3, 4, etc. If the crystal system is truly cubic, a simple visual analysis of the array
A after the first normalization usually enables one to determine the needed integer
multiplier easily. For example, when decimal fractions of all A-values are close to
0 and 0.5, multiplying every number in the array A by 2 will result in all integers.
Similarly, when the fractions are ∼0, ∼0.33 and ∼0.66, the multiplier is 3, and so
on. When the algorithm shown in Fig. 14.8 is realized as a computer program, then
visual analysis of data in A is usually impractical and the value of n is determined
automatically, based on somewhat arbitrary tolerances that establish which value is
taken as a whole number and which is not.

In some cases, the resulting array A may contain forbidden integer(s). Consider-
ing (14.14) and Table 14.11, two of the first 20 positive integers, that is, 7 and 15,
cannot be represented as sums of squares of any three integers. Their presence sig-
nals that the crystal lattice is body-centered. In a body-centered lattice, the simplest
sequence of integers, which can be obtained using the indexing algorithm based on
finding a common divisor, is shown in the corresponding column in Table 14.11
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Table 14.11 The first 20 positive integers and the corresponding hkl triplets in the primitive (P),
body-centered (I) and face-centered (F) cubic lattices.

Centering/ P I F
Integer hkl A hkl Aa hkl A

1 001 1
2 011 2 011 2 (1)
3 111 3 111 3
4 002 4 002 4 (2) 002 4
5 012 5
6 112 6 112 6 (3)
7 – – –
8 022 8 022 8 (4) 022 8
9 003, 122 9
10 013 10 013 10 (5)
11 113 11 113 11
12 222 12 222 12 (6) 222 12
13 023 13
14 123 14 123 14 (7)
15 – – –
16 004 16 004 16 (8) 004 16
17 014, 223 17
18 114, 033 18 114, 033 18 (9)
19 133 19 133 19
20 024 20 024 20 (10) 024 20

a The numbers in parenthesis indicate the simplest sequence of integers, which describes the re-
lationships between the sums of h2, k2, and l2 in the body-centered cubic lattice. The presence of
forbidden integers (e.g., 7, which is highlighted in bold) enables one to differentiate between the
primitive and body-centered cubic lattices during the ab initio indexing.

in parenthesis (1,2, . . .,7,8,9, . . .). The correct A-values are then found by doubling
every integer, which results in the combination of indices where h+ k + l is always
even.

14.6.1 Primitive Cubic Unit Cell: LaB6

We now consider the application of the indexing algorithm described here using
experimental powder diffraction data collected from two different cubic materials.
The first one is the standard reference material LaB6, which was available from the
National Institute of Standards and Technology (NIST) under the catalogue number
SRM-660.19 The experimental powder diffraction pattern is shown in Fig. 14.9, and
the certified lattice parameter of the material is a = 4.15695(6) Å. The observed
Bragg peak positions were determined using a profile fitting procedure and the least
squares standard deviations in the observed Bragg angles did not exceed 0.001◦ of
2θ (Table 14.12).

19 SRM-660 has been replaced by SRM-660a. Consult http://ts.nist.gov/measurementservices/
referencematerials/index.cfm.
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Fig. 14.9 The X-ray powder diffraction pattern collected from SRM-660 LaB6 powder on
a Scintag XDS2000 powder diffractometer using Cu Kα radiation. The data were collected
in a step-scan mode with a step 0.02◦ of 2θ.20 Weak peaks visible at low Bragg angles
(∼20.5◦, 27◦, 29◦, 34.5◦, . . .,60.2◦) belong to an unidentified impurity.

Table 14.12 shows how the indexing has been performed. First, Qobs are calcu-
lated for each 2θobs:

Qobs =
1
d2 =

4sin2 θobs

λ2 (14.16)

Second, the values from this column are normalized by dividing them by the small-
est observed Q, that is, by 0.05740. This yields the column of data marked as
Qobs/Qmin.

Analysis of this column indicates that it contains nearly integer numbers from
1 to 22, and that the deviations from the whole increase systematically with the in-
creasing Bragg angle. The latter is generally observed due to the low accuracy of
the first Q-value (the divisor) but it also may be due to the presence of a systematic
error in the observed Bragg angles. Proceeding according to the algorithm depicted
in Fig. 14.8, we find the corresponding integers in column Ahkl by rounding the val-
ues in the previous column and establish the respective hkl triplets for each observed
Bragg peak.

20 The ASCII data file with diffraction data is available online, file name Ch14Ex02 CuKa.xy.
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Table 14.12 Example of the ab initio indexing in the cubic crystal system using all observed Bragg
peaks present in the pattern shown in Fig. 14.9.21

I/I0 2θobs FWHMobs Qobs Qobs/Qmin Ahkl hkl a (Å)

632 21.270a 0.065 0.05740 1.000 1 001 4.1739
1000 30.304 0.063 0.11514 2.006 2 011 4.1677

429 37.357 0.062 0.17286 3.011 3 111 4.1660
250 43.423 0.062 0.23064 4.018 4 002 4.1645
485 48.874 0.064 0.28843 5.025 5 012 4.1636
276 53.905 0.066 0.34623 6.032 6 112 4.1629
84 63.134 0.070 0.46186 8.046 8 022 4.1619

269 67.461 0.071 0.51966 9.053 9 003, 122 4.1616
204 71.661 0.070 0.57753 10.061 10 013 4.1611
141 75.758 0.074 0.63535 11.069 11 113 4.1609
26 79.788 0.081 0.69327 12.078 12 222 4.1605
80 83.761 0.079 0.75109 13.085 13 023 4.1603

173 87.703 0.084 0.80889 14.092 14 123 4.1602
31 95.576 0.079 0.92454 16.107 16 004 4.1600

146 99.547 0.092 0.98242 17.115 17 014, 223 4.1598
122 103.560 0.095 1.04024 18.122 18 114, 033 4.1598
53 107.649 0.109 1.09815 19.131 19 133 4.1596
71 111.836 0.106 1.15609 20.141 20 024 4.1593

172 116.145 0.111 1.21398 21.149 21 124 4.1591
87 120.625 0.127 1.27193 22.159 22 233 4.1589

aAverage = 4.1621
Standard deviation = 0.0037

a Bragg angles are listed for the location of the Kα1 component in the doublet, λ = 1.540593 Å.

The last column in Table 14.12 contains the values of the lattice parameter cal-
culated from individual Bragg peaks by means of

a =
√

Ai / Qi (14.17)

When one uses the indexing results shown in Table 14.12 to perform a least
squares refinement of both the lattice parameter and sample displacement or zero
shift, the resulting values are as follows: a = 4.1574(1) Å and the zero shift is
0.078◦. The corresponding FN figure of merit is F20 = 384.6(0.003,20). The differ-
ence between the obtained lattice parameter and that which is considered a standard
value (a = 4.15695 Å, see p. 430), is acceptable considering the absence of special
procedures adopted by NIST in certifying the lattice parameter of the standard.

14.6.2 Body-Centered Cubic Unit Cell: U3Ni6Si2

The second example is shown in Fig. 14.10 and Table 14.13. The observed Bragg
peak positions were determined using a profile fitting procedure and the least

21 Excel spreadsheet file Ch14Ex02 PrimitiveCubic.xls is available online.
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U3Ni6Si2, Cu Kα
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Fig. 14.10 The X-ray powder diffraction pattern of U3Ni6Si2 collected on an HZG-4a powder
diffractometer using filtered Cu Kα radiation. The data were collected in a step-scan mode with
a step 0.02◦ of 2θ and counting time 25◦ s.22 When compared, for example, with Figs. 14.5 and
14.9, the increased background is noteworthy, which occurs as a result of its incomplete elimination
when using a β-filter. Data are courtesy of Dr. L.G. Akselrud.

squares standard deviations in the observed Bragg angles did not exceed 0.003◦

of 2θ. Considering the results shown in Table 14.13, the column labeled Qobs/Qmin

contains nearly whole numbers, but unlike the identical column in Table 14.12, here
one finds forbidden integer values: ∼7, ∼15 and ∼23 (all three are highlighted in
bold in Table 14.13).

Thus, the column labeled Ahkl is obtained by rounding the values from the pre-
vious column and multiplying them by 2. The corresponding hkl triplets confirm a
body-centered lattice (h+k+ l = 2n), and the last column contains the values of the
lattice parameter calculated from the individual Bragg peaks using (14.17).

Even though the numbers in the column Qobs/Qmin still show a systematic in-
crease in the deviations from whole numbers (the reason is the low absolute accu-
racy of the divisor, Qmin = 0.02682), the lattice parameters listed in the last column
do not reveal the presence of any kind of a systematic error in the observed Bragg
angles. Using the average lattice parameter, a = 8.6443 Å, the indexing result listed
in Table 14.13 yields F20 = 194.7(0.005,22): two of the first 22 Bragg peaks are
not observed in this diffraction pattern (233 and 062) and one whole number (28) is
forbidden. A least squares refinement yields the unit cell dimension nearly identical

22 The ASCII data file with the diffraction data is available online, file name Ch14Ex03 CuKa.xy.
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Table 14.13 Example of the ab initio indexing in the cubic crystal system using first 20 Bragg
peaks present in the pattern shown in Fig. 14.10.23

I/I0 2θobs FWHMobs Qobs Qobs/Qmin Ahkl hkl a (Å)

58 14.493a 0.165 0.02682 1.000 2 011 8.6363
115 20.530 0.138 0.05352 1.996 4 002 8.6452
338 25.216 0.120 0.08030 2.995 6 112 8.6441
178 29.196 0.122 0.10706 3.992 8 022 8.6445
427 32.733 0.138 0.13382 4.990 10 013 8.6446
696 35.961 0.117 0.16060 5.989 12 222 8.6441
462 38.953 0.121 0.18736 6.987 14 123 8.6443
328 41.761 0.145 0.21410 7.984 16 004 8.6448

1000 44.425 0.134 0.24086 8.982 18 033, 114 8.6448
29 46.954 0.133 0.26747 9.975 20 024 8.6472
29 51.754 0.133 0.32102 11.972 24 224 8.6465

124 54.044 0.133 0.34788 12.973 26 134, 015 8.6451
348 58.425 0.147 0.40143 14.970 30 125 8.6448
271 60.544 0.143 0.42828 15.972 32 044 8.6439
232 62.613 0.141 0.45504 16.970 34 334, 035 8.6440
125 64.638 0.161 0.48172 17.965 36 244, 006 8.6448
321 66.641 0.155 0.50855 18.965 38 235, 116 8.6442
15 70.542 0.173 0.56196 20.957 42 145 8.6451

442 72.464 0.173 0.58876 21.957 44 226 8.6448
26 74.375 0.173 0.61570 22.961 46 136 8.6436

aAverage = 8.6443
Standard deviation = 0.0021

a Bragg angles are listed for the location of the Kα1 component in the doublet, λ = 1.540593 Å.

to the average value shown here and results in a negligible zero-shift correction. We
leave the least squares refinement as an exercise to the reader.

14.7 Tetragonal and Hexagonal Crystal Systems

The quadratic form of (14.2) in the hexagonal crystal system is found in (14.4) and
its analogue in the tetragonal crystal system is:

1
d2 =

h2 + k2

a2 +
l2

c2 (14.18)

Following the approach illustrated using (14.11)–(14.13) and maintaining similar
notations, (14.4) and (14.18) can be written as:

Qhkl = At,h
hk a∗2 +C1c∗2 (14.19)

23 Excel spreadsheet file Ch14Ex03 BodyCenteredCubic.xls is available online.
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where Qhkl = d∗2

hkl = 1/d2
hkl , At

hk = (h2 + k2), Ah
hk = (h2 + hk + k2) and Cl = l2,

and noting that in the hexagonal crystal system a∗ = 2/a
√

3. Hence, positions of
Bragg peaks found in the diffraction patterns of materials that belong to either the
tetragonal or hexagonal crystal systems can be represented by the following series
of simultaneous equations, where At

hk and Ah
hk are substituted by Ahk:

Qh1k1l1 = Ah1k1 a∗2+Cl1c∗2

Qh2k2l2 = Ah2k2 a∗2+Cl2c∗2

. . .

QhN kN lN = AhN kN a∗2+ClN c∗2

(14.20)

The solution of (14.20) could be found after calculating all possible differences
between the observed pairs of Qhkl . This leads to the following series of equations:

Qh2k2l2 −Qh1k1l1 = (Ah2k2 −Ah1k1)a
∗2 +(Cl2 −Cl2)c

∗2

. . .

QhN kN lN −Qh1k1l1 = (AhN kN −Ah1k1)a
∗2 +(ClN −Cl2)c

∗2

Qh3k3l3 −Qh2k2l2 = (Ah3k3 −Ah2k2)a
∗2 +(Cl3 −Cl2)c

∗2

. . .

QhN kN lN −QhN−1kN−1lN−1 = (AhN kN −AhN−1kN−1)a
∗2 +(ClN −ClN−1)c

∗2

(14.21)

As follows from (14.21), when two Bragg peaks have the same value of l, for
example, hiki0 and h jk j0, or hiki1 and h jk j1, or hiki2 and h jk j2 and so on, the
resulting difference is only a function of Ahk and a∗:

Qh jk jl j −Qh jk jl j = (Ah jk j −Ah jk j)a
∗2 (14.22)

Similarly, when h and k are identical but l is different, for example, 01li and 01l j,
or 11li and 11l j, or 12li and 12l j, and so on, some of the equations in (14.21) are
transformed into:

Qh jk jl j −Qh jk jl j = (Cli −Cl j)c
∗2 (14.23)

Solving the indexing problem becomes a matter of identifying the differences
that result in whole numbers when divided by a common divisor (a∗2 and c∗2, re-
spectively). The expected whole numbers are shown in Tables 14.14–14.16 for sev-
eral small h, k, and l. It only makes sense to consider these small values because
successful indexing is critically dependent on the availability of low Bragg angle
peaks, which usually have small values of indices.

The resulting whole numbers, expected as multipliers for the differences in
Q-values given by (14.23) (Table 14.14), are dissimilar from those expected for
(14.22) (Tables 14.15 and 14.16), and this property may be employed to distinguish
between c∗

2
and a∗

2
.

Given the background considered here, the indexing of experimental powder dif-
fraction data assuming tetragonal or hexagonal symmetry may be carried out using
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Table 14.14 Possible values of integer multipliers for the differences defined in (14.23) for both
tetragonal and hexagonal crystal systems.

l2
j / l2

i 0 1 4 9 16

0 – 1 4 9 16
1 – 3 8 15
4 – 5 12
9 – 7
16 –

Table 14.15 Possible values of integer multipliers for the differences defined in (14.22) for the
tetragonal crystal system.

(hiki) / (h jk j) (00); Ahk = 0 (01); Ahk = 1 (11); Ahk = 2 (02); Ahk = 4 (12); Ahk = 5

(00); Ahk = 0 – 1 2 3 4
(01); Ahk = 1 – 1 3 4
(11); Ahk = 2 – 2 3
(02); Ahk = 4 – 1
(12); Ahk = 5 –

Table 14.16 Possible values of integer multipliers for the differences defined in (14.22) for the
hexagonal crystal system.

(hiki) / (h jk j) (00); Ahk = 0 (01); Ahk = 1 (11); Ahk = 3 (02); Ahk = 4 (12); Ahk = 7

(00); Ahk = 0 – 1 3 4 7
(01); Ahk = 1 – 2 3 6
(11); Ahk = 3 – 1 4
(02); Ahk = 4 – 3
(12); Ahk = 7 –

the algorithm illustrated in Fig. 14.11. First, all possible differences between the
observed Q-values are computed for several low Bragg angle peaks. Second, the
array of the obtained differences is analyzed to find the most frequently occurring
small values. Third, the found values are tested with respect to whether or not the
indexing of all observed Bragg peaks is possible assuming that one of the quantities
is a∗

2
and another is c∗

2
.

If the indexing is successful, both the crystal system and lattice parameters are
determined. If not, the small values found can be tested after they have been divided
by a whole number, usually between 2 and 4. Again, if indexing is possible, the
problem is solved but if the indexing is impossible, one or both of the small val-
ues that have been identified as suspected a∗

2
and c∗

2
should be discarded, and the

search for a suitable pair of a∗
2

and c∗
2

continues. When all potential candidates
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Fig. 14.11 The flowchart illustrating the algorithm of the ab initio indexing assuming tetragonal
or hexagonal symmetry of the reciprocal lattice.

have been tested and no solution has been found, then likely the assumption of
tetragonal or hexagonal symmetry is wrong, or the powder diffraction data contain
impurity Bragg peaks at low angles, which makes reasonable indexing impossible.

14.7.1 Indexing Example: LaNi4.85 Sn0.15

We illustrate the use of the technique described here by indexing the powder diffrac-
tion pattern of LaNi4.85Sn0.15 (Fig. 14.5 and Table 14.1). Note that in the process
we make no assumptions about the exact symmetry of the material, except that we
suspect that it may be either tetragonal or hexagonal. In our indexing attempt we
limit all calculations to the first seven observed Bragg peaks excluding the weak
impurity peak observed at 2θ = 44.211◦, as shown in Table 14.17. The observed
Bragg angles as determined directly from a profile fitting procedure are employed
without correcting for any kind of a systematic error.24

The values of Bragg angles listed in Table 14.17 have been converted into the
Q-values using (14.3). Possible differences (14.21) have been calculated and listed
in Table 14.18. They are sorted and analyzed as shown in Table 14.19. The first

24 Although the presence of a systematic error may, in general, hinder an indexing attempt, ne-
glecting a small zero-shift error in this case (see Table 14.6) is forgivable because only a small
region of Bragg angles (from 20 to 45◦ 2θ) is employed. When larger arrays of data are included in
an ab initio indexing, they should be corrected for all known systematic errors, if any, for example
by employing an internal standard.
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Table 14.17 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of first eight Bragg peaks observed in the LaNi4.85Sn0.15 powder diffraction pattern, see
Fig. 14.5. The impurity Bragg peak shown using a strike-through font has been excluded from the
indexing attempt.

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

20 20.288 0.070 394 41.285 0.082
43 22.105 0.077 1,000 42.272 0.085

513 30.198 0.076 18 44.211 0.099
305 35.548 0.078 274 45.130 0.106

aBragg angles are listed for the location of the Kα1 component in the doublet, λ = 1.540593 Å.

Table 14.18 Differences in Q-values for the first seven observed Bragg peaks in the powder dif-
fraction pattern of LaNi4.85Sn0.15.

Qi/Q j 0.0523 0.0619 0.1144 0.1570 0.2095 0.2191 0.2482

0.0523 – 0.0097 0.0621 0.1048 0.1572 0.1668 0.1959
0.0619 – 0.0524 0.0951 0.1475 0.1572 0.1862
0.1144 – 0.0427 0.0951 0.1048 0.1338
0.1570 – 0.0524 0.0621 0.0911
0.2095 – 0.0097 0.0387
0.2191 – 0.0290
0.2482 –

column in this table includes the Q-values of the seven observed Bragg peaks (in
bold) in addition to all calculated differences.

Considering (14.22) and (14.23), Tables 14.14–14.16, and Fig. 14.11 it is quite
clear that all computed differences should be analyzed for the occurrence of nearly
identical small values, which potentially may correspond to the differences resulting
in a∗

2
and c∗

2
or their whole multiples. Once the repetitive numbers are found, the

next step is to find out whether the array of differences and observed Q-values con-
tains whole multiples or whole fractions of the found quantities. The tested whole
numbers should be correlated with Tables 14.14–14.16.

The initial candidate in the first column of Table 14.19 is 0.0097, which occurs
twice. The average and the results of its multiplication by 2, 3, and 4 – the simplest
whole numbers that are present in Tables 14.14–14.16 – are shown in columns 2–5.
If the computed average corresponds to either a∗

2
or c∗

2
then these products should

also be often observed in the array combining both the differences and observed
Q-values. As seen from Table 14.19, this is not the case since only one occurrence
of triple and quadruple multiples of the suspected value are found, and 0.0097 as a
candidate for a∗

2
or c∗

2
is dismissed as unsuitable. Moreover, this value appears too

small because it results in d ∼= 10 Å, which is too large considering the simplicity of
the powder diffraction pattern (Fig. 14.5).
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Table 14.19 Illustration of the indexing of the first seven Bragg peaks observed in the powder
diffraction pattern of LaNi4.85Sn0.15 using (14.20)–(14.23).

Qobs,
Diff.

Meana ×2a ×3a ×4a a∗
2
,

c∗
2

Equation (14.19) Qcalc hkl

0.0097
0.0097 0.0097 0.0193 0.0290 0.0387 ?
0.0290
0.0387
0.0427
0.0523
0.0524 0.0524 0.1047 0.1571 0.2095 a∗

2 1a∗
2 0.0524 010

0.0524
0.0619
0.0621 0.0620 0.1241

�����
0.1861 0.2481........... c∗

2 1c∗
2 0.0620 001

0.0621
0.0911
0.0951
0.0951
0.1048
0.1048
0.1144 1a∗

2
+ 1c∗

2 0.1144 011
0.1338
0.1475
0.1570 3a∗

2 0.1571 110
0.1572
0.1572
0.1668

�����
0.1862
0.1959
0.2095 4a∗

2 0.2095 020
0.2191 3a∗

2
+ 1c∗

2 0.2191 111
0.2482........... 4c∗

2 0.2481 002

a All values in the table are listed with four digits after the decimal point but the actual computations
were performed with a better accuracy.

The next possibility is 0.0524, which occurs three times for the differences be-
tween pairs of first seven observed Bragg peaks. Not only is this value itself more
frequently occurring than any other smaller quantity found in the table, but when
multiplied by two it yields 0.1047, which occurs in the array twice – these nearly
identical numbers are shown in italic. Testing 0.0524 multiplied by three (0.1571)
has three additional occurrences (all are shown underlined). There is also one occur-
rence of 4×0.0524 = 0.2095, both are double underlined. Hence, this value seems
to be an excellent candidate for one of the reciprocal lattice parameters. After con-
sulting Tables 14.14–14.16, it is clear that 2× c∗

2
is not expected to be seen, but

2× a∗2 should be observed quite frequently in both the tetragonal and hexagonal
crystal systems.
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Proceeding in a similar fashion with the triple occurrence of the next small
value (the average is 0.0620), we find that the array of differences and observed
Q-values has no occurrences of 2×0.0620 = 0.1241 but both 3×0.0620 = 0.1861

������

and 4×0.0620 = 0.2481........... have one occurrence in the table. Hence, as follows from
Table 14.14 the value of 0.0620 is an outstanding candidate for c∗

2
.

The next step is to verify whether or not the found candidates for a∗
2

and c∗
2

(both are shown in rectangles in Table 14.19) result in the complete indexing of
the existing seven Bragg peaks. By using (14.19), all observed Q-values are nearly
equal to the sums of Aa∗

2
and Cc∗

2
, where A and C are whole numbers, which are

listed in the corresponding column in Table 14.19 in bold. Strictly speaking, the
whole diffraction pattern should be indexed following the same approach, but we
leave this to the reader as an exercise.

At this point (or after the whole pattern has been indexed), the analysis of the
observed values of A enables one to establish whether we deal with the tetragonal or
hexagonal crystal systems. As seen in Table 14.19, the whole multipliers of a∗

2
are

1 and 3, and 3 is only possible in the hexagonal crystal system for h = 1, k = 1. After
a simple calculation using the average values of a∗

2
and c∗

2
listed in Table 14.19,

we find approximate values of a and c as 5.046 and 4.015 Å, respectively. A least
squares refinement of the lattice parameters using the entire array of indexed Bragg
peaks obviously yields the same lattice parameters as were established before (see
Table 14.6).

It is worth noting that the considered example is relatively easy because first,
the lattice is primitive and second, there were no extinct Bragg reflections among the
first seven observed diffraction maxima. If some Bragg peaks are missing, then the
list of the generated differences (column 1 in Table 14.19) becomes incomplete, and
the task of identifying the quantities corresponding to a∗

2
and c∗

2
becomes consid-

erably more complex. This is especially true when the material has a Bravais lattice
other than primitive since additional lattice translations cause multiple systematic
absences in the list of possible hkl. In any case, the final indexing should always
be checked by calculating one or more figures of merit after refinement of lattice
parameters, which for this pattern has been done earlier (see Sect. 14.4).

14.8 Automatic Ab Initio Indexing Algorithms

The complexity of finding a solution of the indexing problem increases rapidly as
the symmetry of the lattice decreases. For instance, in the orthorhombic crystal sys-
tem the reciprocal unit cell dimensions, which affect the governing reciprocal lattice
equation (14.1), depend on three unknown parameters (a∗, b∗ and c∗), while in the
monoclinic and triclinic crystal systems, the number of unknown parameters be-
comes four (a∗, b∗, c∗, and β∗) and six (a∗, b∗, c∗, α∗, β∗, and γ∗), respectively. As a
result, manual indexing of low-symmetry powder patterns becomes extremely dif-
ficult and time consuming. Therefore, automatic indexing using various algorithms
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and software becomes irreplaceable. The use of computers also speeds up high sym-
metry cases, and at the end, allows one to perform a comprehensive search for in-
dexing solution in all crystal systems.

The solution of the indexing problem can be found using several different com-
putational algorithms, which have been realized in a variety of automatic indexing
programs.25 All of them use one of the two fundamentally different approaches to
the ab initio indexing by manipulating either direct space parameters (i.e., unit cell
dimensions) or reciprocal space parameters (i.e., reflection indices) as free variables
in order to describe all or almost all observed diffraction peaks using a reasonable
crystal lattice. In addition to this principal difference, different types of data are used
when searching for a unit cell and/or evaluating indexing solutions. Thus, recipro-
cal space techniques employ Bragg angles, while direct space methods usually use
either as measured or somehow modified profiles. The latter is computationally con-
siderably more intense than the former, and it was made possible by recent manifold
increases in the speed of computers. One of the major benefits of the direct space ap-
proaches is in the avoidance of peak searches and profile fitting, which may become
biased when the complexity of a powder pattern increases.

A brief description of rapidly evolving direct space methods is given in the
Sect. 14.8.1, including a list of currently available software. Reciprocal space meth-
ods, which form the basis of three commonly used indexing programs (TREOR,
ITO, and DICVOL), are discussed in Sect. 14.8.2. These three applications –
TREOR, ITO, and DICVOL – have been cited an order of magnitude more often
than any other indexing software,26 and therefore, they are considered in more de-
tail in Sect. 14.10 and used in practical indexing examples in Sect. 14.11.

14.8.1 Indexing in Direct Space

Direct space indexing employs either the so called grid search method, when unit
cell dimensions vary with a certain increment within certain limits, or an alternative
random Monte Carlo search for unit cell parameters. Both have a single goal: to
achieve the best description of the measured powder diffraction pattern.

In the grid search method, an attempt to index the entire diffraction pattern is
made after every incremental step in lattice parameters. The increments depend on
both the accuracy and complexity of the diffraction pattern but ∼0.01 Å for the unit
cell edges (a, b and c) and ∼ 0.1◦ for the angles (α, β and γ) should be sufficient in

25 (a) J. Bergmann, A. Le Bail, R. Shirley, V. Zlokazov, Renewed interest in powder diffrac-
tion data indexing. Z. Kristallogr. 219, 783 (2004); (b) P.-E.Werner, Autoindexing. in: Structure
determination from powder diffraction data. IUCr monographs on crystallography 13. W. I. F.
David, K. Shankland, L.B. McCusker, and Ch. Baerlocher, Eds., Oxford University Press, Oxford,
New York (2002); (c) R. Shirley, Progress in automatic powder indexing. 7th European Pow-
der Diffraction Conference (EPDIC-7), Barcelona, Spain, 2000; http://www.ccp14.ac.uk/poster-
talks/shirley powdind epdic2000/html/index.htm.
26 According to reference 25(a).
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most cases. The maximum length of the unit cell edges can be estimated from the
d-spacing of the first Bragg peak (dmax) observed in the diffraction pattern. In the
majority of low symmetry cases (triclinic through orthorhombic crystal systems),
the maximum size of the unit cell edge should not exceed 2dmax, while in the high
symmetry cases it should be set at 4 (tetragonal/cubic) to 6 (hexagonal/trigonal)
dmax. When indexing superlattices, in which many possible reflections may be miss-
ing, higher limits on the maximum unit cell dimensions may be required.

The grid search is the simplest, but also the slowest indexing method. Obvi-
ously, each crystal system should be tested separately, as the number of free vari-
ables has a critical influence on the computation time. For example, a total of
4× 106 different unit cells must be checked, assuming a tetragonal or hexagonal
crystal system with unit cell dimensions in the range between 2.01 and 22 Å using
0.01 Å increment (2,000× 2,000 = 4,000,000). In a triclinic crystal system, with
unit cell edges between 2.01 and 12 Å and angles between 90.1◦ and 120◦, a to-
tal of 4.2× 1014 combinations should be tested even when using larger increments
(0.02 Å and 0.2◦, respectively). Assuming that 1,000,000 unit cells can be tested
in 1 s,27 an unrestricted and exhaustive search in the tetragonal or hexagonal case
will take ∼4s, but one will have to wait nearly 13 years and 41/2 months to test all
possible combinations and see the answer in a triclinic crystal system.

Restrictions dictated by crystallography may, and are indeed used to reduce the
computation time significantly. For example, the maximum expected unit cell vol-
ume can be evaluated from the density of diffraction peaks observed in a certain
range of Bragg angles. Further, the following additional restrictions can be imposed:
in the monoclinic crystal system a ≤ c and in the orthorhombic and triclinic crystal
systems a≤ b≤ c, because in these cases the solution is invariant to a permutation of
unit cell edges. Modern high-speed computers can handle the problem only in high
symmetry cases, because even with all applicable restrictions, the grid search index-
ing in a triclinic crystal system may take from a few days to over a year, dependent
on the size of the unit cell.

Recently, direct-space indexing has been expanded by introducing Monte Carlo
search of the unit cell, which is much faster than the grid-search technique. In the
Monte Carlo approach, the unit cell search is conducted randomly, and then com-
pared with the experimental pattern. Random search may also be time consuming,
even more so than a simple grid search; however, it becomes much faster when op-
timized so that the next tested cell is not completely random but represents only a
random deviation from the best-known cell at the time. This is usually achieved by
using genetic, simulated annealing, or other global optimization algorithms. Essen-
tially the same techniques are also applicable to solving crystal structures in direct
space as discussed in Sect. 15.1.3.

Due to a renewed interest in powder diffraction (see Footnote 25(a) on page 441
and references therein), many advanced methods and approaches for direct space
indexing have been developed in recent years and realized in applications known as

27 This assumption is unrealistic using even the most powerful quad processor PC available in
early 2008. A more rational estimate is between ∼103 and ∼104 unit cells per second for a well
optimized computer code.
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AUTOX,28 EFLECH,29 Hmap,30 McMaille (see Footnote 36 on page 444), SVD-
Index,31 X-Cell,32 LSI (Least Square Indexing) and LP-Search,33 differential evo-
lution algorithm (FOX34), GAIN,35 and others. As an example, a brief description
of two techniques is given here.

In the genetic algorithm, a trial set of lattice parameters is populated at ran-
dom, and then this population undergoes a series of processes that mimic those
found in the natural evolution, such as mating, mutation, and natural selection. The
quality of generated solutions, or in other words, the fitness of individual mem-
bers of the population, is evaluated from weighted profile residual, Rwp (see (15.20)
in Sect. 15.6.2 for definition), followed by a full profile fitting. As the population
grows, the Rwp(a,b,c,α,β,γ) hyper-surface is explored for the presence of a global
minimum, which corresponds to a correct indexing solution.35 This approach is im-
plemented in the indexing application GAIN. On the positive side, there is no need
for initial determination of peak positions. Impurity phases in reasonably small con-
centrations present little to no problems in arriving to a satisfactory solution. On
the other hand, the use of full profile fitting even in a simplified format makes the
indexing relatively slow.

28 AUTOX – a Monte Carlo based algorithm that can be used for time-of-flight data and can be ex-
tended to multiple phase cases. V.B. Zlokazov, MRIAAU – a program for autoindexing multiphase
polycrystals. J. Appl. Cryst. 25, 69 (1992).
29 EFLECH/INDEX – an automatic peak-hunting (EFLECH) and random cell parameters search
(INDEX) based on covariance matrix from EFLECH. J. Bergmann, R. Kleeberg, EFLECH/INDEX
– a program for peak search/fit and indexing, IUCr CPD Newsletter, 5 (1999).
30 Hmap – a complex algorithm that is tolerant to impurity peaks and can be used to index
multiple phases, including 50:50, mixtures. R. Shirley, The Crysfire 2002 system for automatic
powder indexing. User’s manual. Lattice Press: Guildford, UK (2002); R. Shirley, Overview
of powder-indexing program algorithms (history and strengths and weaknesses). IUCr Comput-
ing Commission Newsletter 2, 48 (2003), http://www.iucr.org/ data/assets/pdf file/0004/6394/
iucrcompcomm jun2003.pdf.
31 SVD-Index – solving linear equations with Monte Carlo search. A.A. Coelho, Indexing of pow-
der diffraction patterns by iterative use of singular value decomposition, J. Appl. Cryst. 36, 86
(2003).
32 X-Cell – a new implementation of successive dichotomy approach in Materials Studio.
M.A. Neumann, X-Cell: a novel indexing algorithm for routine tasks and difficult cases, J. Appl.
Crystallogr, 36, 356 (2003).
33 Bruker AXS: TOPAS V3: General profile and structure analysis software for powder diffraction
data. User’s Manual, Bruker AXS, Karlsruhe, Germany (2005); A.A. Coelho, A. Kern, Advances in
indexing of powder diffraction patterns: Iterative use of least squares and Monte-Carlo based whole
powder pattern decomposition. The Third Pharmaceutical Powder X-ray Symposium (PXRD-3).
(2004).
34 R. Černý, V. Favre-Nicolin, J. Rohlı́ček, M. Hušák, Z. Matěj, R. Kužel, Expanding FOX:
Auto-indexing, grid computing, profile fitting. p. 16 in: CPD Newsletter “Real-Space and Hybrid
Methods for Structure Solution from Powders,” Issue 35, (2007); available at http://www.iucr-
cpd.org/PDFs/CPD 35 total.pdf
35 B.M. Kariuki, S.A. Belmonte, M.I. McMahon, R.L. Johnston , K.D.M. Harris, R.J. Nelmes,
A new approach for indexing powder diffraction data based on whole-profile fitting and global
optimization using a genetic algorithm, J. Synchrotron Rad. 6, 87 (1999).
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In the Monte Carlo approach, incorporated in McMaille application,36 the full
profile is also used, but in a simplified way. Here, positions of Bragg peaks, usually
found automatically, are used to generate a surrogate pattern, which is then em-
ployed for comparison with patterns calculated from the generated unit cells. Pro-
file residual, Rp (see (15.19) in Sect. 15.6.2), is employed as a test criterion. When a
match is below some preselected Rp level and the required fraction of Bragg peaks
is indexed, the unit cell dimensions are further adjusted in small steps, once again
employing the Monte Carlo algorithm because least square refinement is less effi-
cient. These unit cell adjustments usually substantially decrease the Rp. The process
resembles the simulated annealing approach, which also is quite effective in other
applications. In order to overcome a potential from converging to a false minimum,
all solutions with Rp lower than some preset value (Rmax) are saved, and only when
a solution with Rp falling below the acceptance level (Rmin) is found such unit cell
is considered correct. This approach is much faster than the previous one partly be-
cause of simple peak-shape functions (Gauss or a box function) and the use of much
broader peaks in the surrogate pattern compared to those present in the experimental
pattern. In addition to making the indexing practically insensitive to small system-
atic errors (e.g., due to specimen displacement, zero shift or transparency effects, see
Sect. 8.4.2), this method senses correct or potentially correct solutions, even when
a trial random unit cell is relatively far from the optimum. All of this translates into
a short computation time.

A few of special features incorporated in the McMaille application are worth not-
ing. One is the ability to simultaneously attempt indexing of two phases in a mixture.
Another is a fully automated (black box) regime that may be greatly appreciated by
either the beginners or occasional users. McMaille also incorporates the grid-search
indexing technique, which can be performed with much larger increments due to a
possibility of further optimizing promising unit cells as described here.

Considering direct space indexing, the grid search is known as the “cannot-miss-
the-cell” technique (if only one can wait long enough), while the random search
finds a solution much faster, but at the same time the chances to miss a correct unit
cell are small. This is true, assuming that proper indexing parameters have been cho-
sen (comes with experience), and not counting some special cases such as a super
structure or an accidental relationship between two or more of the unit cell para-
meters, causing a severe overlap of unrelated reflections. The latter is a recipe for
failure regardless of the indexing methods employed, if they are employed without
a critical analysis of the results, and every such case requires special handling.

14.8.2 Indexing in Reciprocal Space

The reciprocal space approach is more effective than the grid search, especially in
low symmetry cases. This approach uses only several low Bragg angle peaks that

36 A. Le Bail, Monte Carlo indexing with McMaille, Powder Diffraction, 19, 249 (2004). Also see
http://sdpd.univ-lemans.fr/mcmaille/.
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are chosen as a basis set, and then an exhaustive permutation-based assignment of
various combinations of hkl triplets to each peak from the basis set is carried out.
Index permutation algorithms are more complex in realization than the grid search
algorithm but the former are many orders of magnitude faster than the latter.37 This
occurs because the indices of low Bragg angle peaks, which are varied, are three
relatively small integers. Today, index permutation is the most common technique
used in various indexing computer programs.

The reciprocal space indexing can be implemented in several different ways.
Two of them are trial-and-error and zone-search methods. The first one is more
efficient in high symmetry crystal systems (from cubic to orthorhombic), but be-
comes slow for low symmetry crystal systems (especially triclinic), while the sec-
ond method works quite effectively, and is fast with low symmetries (from triclinic
to orthorhombic).38

The trial-and-error method is based on assigning indices to a minimum required
number of low Bragg angle peaks – the so-called basis set. The minimum number
of peaks in the basis set is equal to the number of the individual unit cell parameters,
which varies from 1 to 6, depending on the crystal system. The values of indices in
the triplets vary between certain preselected minimum and maximum values of h, k,
and l. Each permutation is followed by the determination of a trial unit cell, and by
an attempt to index ∼10–30 consecutive reflections at progressively higher Bragg
angles in the resulting unit cell. Successful solutions, that is, those producing the
fully or almost fully indexed diffraction pattern, are stored along with the computed
figure(s) of merit for further analysis and automatic or manual selection of the best
indexing solution.

The success of this approach is critically dependent on the selection of the ba-
sis set, which generally should contain more Bragg peaks than the number of the
unknown unit cell dimensions. Potential caveats include but are not limited to the
following: the selected basis set contains reciprocal vectors which are collinear or
coplanar (see Fig. 14.12); there is one or more impurity peak(s) in the basis set or in

37 Consider a triclinic crystal system, where a minimum of six independent Bragg reflections are
required to determine the unit cell. Assuming that the maximum value of each of the three indices
is 1 and recalling that two of them should vary from −1 to 1 (see Table 14.7), a total number of pos-
sible combinations for one Bragg reflection is 3×3×2−1 = 17 [the set (000) cannot be observed
and is excluded from the consideration]. In an exhaustive search without imposing any limitations,
a total of ∼176 ∼= 2.4×107 combinations among all six reflections result. This represents about 7
orders (!) of magnitude reduction in the computation time when compared to the aforementioned
unrestricted exhaustive grid search in direct space. The same example also highlights the critical
role of the lowest Bragg angle reflections in finding a solution of the indexing problem: when the
maximum index to be considered is increased to 2, the total number of combinations to be tested
in an unrestricted exhaustive grid search rises to ∼1.6× 1011, and it becomes ∼2.1× 1014 when
the maximum value of index increases to 3.
38 We note that the power of modern computers makes both methods equally fast. Hence, the only
important matter that remains is the ability to arrive to a solution with notably better figures of
merit than false solutions. From this point of view, two approaches are somewhat different when
working with high or low symmetry data.
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Fig. 14.12 The illustration of the two-dimensional lattice with one long (b∗) and one short (a∗)
reciprocal lattice vectors. If the three lowest Bragg angle peaks (filled circles) are selected as a
basis set for indexing, all of them are collinear and only depend on a∗. The remaining two lattice
parameters (b∗ and γ∗) cannot be determined from this basis set.

the list of Bragg peaks included into the consideration during the indexing attempt,
and inadequate selection of the minimum and maximum h, k, and l values for index
permutations.

The exhaustive permutation technique may be improved by eliminating collinear
reciprocal lattice vectors from the basis set, which can be done by analysis of the
relationships between the observed Q-values. As follows from (14.1), when two
different 1/d =

√
Q are related to one another by a whole multiplier, the two are

likely collinear, and only the smallest is usually retained in the basis set.
Needless to say, different crystal systems should be tested from the highest to

the lowest symmetry, until a satisfactory solution is found. More often than not,
automatic trial-and-error indexing yields multiple solutions, generally with different
figures of merit, and the final decision is still up to the researcher.

Zone-search method begins with searching for one-dimensional and two-
dimensional zones, and then builds three-dimensional zones using common rows
in two-dimensional lattices. When a three-dimensional zone (lattice) is found, it is
used in an attempt to index all observed Bragg reflections. This automatic indexing
technique is more sophisticated when compared to a trial-and-error approach, but
it is still based on (14.1). First, the analysis of numerical relationships between
the observed Q-values is made to identify zones that are invariant with respect to
two indices, for example h00, h10, 0k0, and so on. Second, these are combined
to identify zones which are invariant with respect to one index and, finally zones
where all three indices in the triplets vary independently are found and analyzed.
To a certain extent, zone searching resembles the algorithm described earlier for
the manual indexing in the tetragonal and hexagonal crystal systems; for example,
zones that are invariant to both k and l should satisfy (14.24).

d∗
(hkl) = ha∗ + const (14.24)
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The zone-search indexing method does not require an assumption about the crys-
tal system and therefore, it results in a primitive lattice in most cases. When the
lattice is confirmed by the subsequent indexing of all observed Bragg peaks, it shall
be converted to one of the 14 standard Bravais lattices. The latter is achieved in a
process known as the reduction of the unit cell.

14.9 Unit Cell Reduction Algorithms

Low-symmetry unit cells can be selected in a variety of ways, regardless of which
method was used to find the unit cell suitable to index the entire diffraction pattern.
For example, in the case of an orthorhombic crystal system, all three vectors a, b,
and c can be permuted; in a monoclinic crystal system, a, c, and d = ±(a + c) can
be switched in a setting with β �= 90◦, while in a triclinic case, lattice vectors may be
selected in a number of different ways. In order to compare and analyze different in-
dexing solutions, the lattice must be reduced to a certain unique, preferably standard
form. It is usually achieved by applying the following rules (which sometimes are
already incorporated in the indexing process itself by imposing specific restrictions
on the assigned indices):

– In the orthorhombic crystal system the unit cell dimensions should be such that
a ≤ b ≤ c.

– In the monoclinic crystal system, a ≤ c, assuming a standard setting with b as the
unique axis.

– In the triclinic crystal system, the reduction becomes more complicated due to
possible multiple choices of the basis vectors in the lattice.

The first two reduction rules are normally employed only during the indexing.
They usually do not produce a standard choice of the unit cell, since at this stage
the space-group symmetry, and often even the lattice type, are not involved. For
example, in the orthorhombic space-group symmetry Pnma (a standard setting) the
condition a ≤ b ≤ c is not necessarily obeyed.

There are two broadly accepted methods of transforming the unit cell. One of
them was introduced by Delaunay39 and then applied to a transformation of a ran-
domly selected unit cell by Ito.40 This technique is known as the Delaunay–Ito
method. In order to achieve complete standardization, a different method should be
employed. This approach, originally introduced by Niggli,41 results in the so-called
Niggli-reduced unit cell.

39 B. Delaunay, Neue Darstellung der geometrischen Kristallographie. Z. Kristallogr. 84, 109
(1933). Boris Nikolaevich Delaunay, or Delone in a straightforward Russian transliteration, (1890–
1980) was a Russian mathematician who worked in the fields of algebra, number theory, and
mathematical crystallography. He is the inventor of Delaunay triangulation. See WikipediA,
http://en.wikipedia.org/wiki/Boris Delaunay.
40 T. Ito, A general powder X-ray photography, Nature 164, 755 (1949).
41 P. Niggli, Krystallographische und strukturtheoretische Grundbegriffe. Band 7, 1. Teil, Hand-
buch der Experimentalphysik, Akademische Verlagsgesellschaft, 108 (1928). Paul Niggli (1888–
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14.9.1 Delaunay–Ito Transformation

The Delaunay–Ito transformation is performed on three lattice vectors v1, v2, and
v3, and a fourth vector, v4 = −v1 − v2 − v3 (an inverted body diagonal of a par-
allelepiped) as shown in Fig. 14.13 (left). In this figure, four vectors vi are asso-
ciated with the corners of a tetrahedron, while six scalar products, sij = vi · vj =
|vi||vj|cosαij (for i �= j), are associated with the edges of the same tetrahedron. The
unit cell is considered reduced when angles αij between each pair of vectors vi are
greater than or equal to 90◦ and therefore, all scalar products sij are negative or zero.

The transformation is carried out by changing the sign of any scalar product that
is greater than zero, simultaneously with modifying other relevant parameters of the
tetrahedron, as shown in Fig. 14.13 (right). This procedure is equivalent to adding
vectors and is repeated until all scalar products, sij, become negative or zero.

From the four possible triplets of resulting vectors (v1, v2, v3 to v2, v3, v4), the
one that has shortest vectors is selected because the angles among these vectors are
closest to 90◦. The Delaunay–Ito transformed primitive cells can be classified into
24 types according to the relationships between unit cell vectors and their scalar
products. They are easily converted into one of the 14 Bravais lattices. For example,
if v1 = v2 and s13 = s23 = 0(α13 =α23 = 90◦), the standard unit cell is orthorhombic
C-centered, with lattice vectors, vortho

i , calculated as follows:

vortho
1 = v1 +v2

vortho
2 = −v1 +v2

vortho
3 = v3

(14.25)
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Fig. 14.13 The schematic of Delaunay–Ito transformation. Left – the four unit cell vectors
(v1,v2,v3 and v4 =−v1 −v2 −v3) are associated with the corners of the tetrahedron, while the six
scalar products between the corresponding pairs of the vectors (s12 through s34) are linked to the
edges of the tetrahedron. Assuming that s12 > 0, the transformation is carried out as shown on the
right: the sign of s12 is changed; its value is subtracted from that on the opposite edge and added
to those on all adjacent edges; the direction of v1 (or v2) is reversed and the new vectors v′3 and v′4
are determined as v3 +v1 and v4 +v1 (or v3 +v2 and v4 +v2, respectively).

1953) was the Swiss crystallographer known for his systematic approach to studying symmetry of
minerals. See http://www.minsocam.org/msa/collectors corner/arc/roebling7.htm for a brief biog-
raphy.
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The unit cell transformation using Delaunay–Ito method can be easily automated
as is done in the ITO indexing computer code, which is discussed in Sect. 14.10.3.
The Delaunay–Ito transformed unit cell, however, may not be the one with the
shortest possible vectors, although the latter is conventionally defined as a standard
unit cell.

14.9.2 Niggli Reduction

The Niggli approach defines the reduced unit cell in terms of the shortest possible
vectors.42 In other words:

v1 + v2 + v3 = minimum (14.26)

Unfortunately, this simple condition cannot be evaluated directly, and in order
to find a properly reduced unit cell, it is replaced by a total of five simultaneous
inequalities:43

1) v1 ≤ v2 ≤ v3

2) |s12| ≤ v1 / 2
3) |s23| ≤ v2 / 2
4) |s13| ≤ v1 / 2
5) |s23 ± s13| ≤ (v1 + v2 ±2s12)

(14.27)

All angles between lattice vectors are then obtuse or are acute. The unit cell
defined by (14.27) is unique, but the reduction algorithm is not as simple as in
the Delaunay–Ito method.44 It is worth mentioning than if all angles are obtuse, the
Niggli unit cell coincides with the Delaunay–Ito unit cell. When all angles are acute,
the Delaunay–Ito unit cell contains only two of the shortest vectors, and the third
vector is one of the diagonals in the Niggli unit cell. In a similar way as Delaunay–
Ito unit cells, the Niggli cells form 44 classes (called characters), and each class is
related to one of the 14 Bravais lattices.

Regardless of which indexing method was employed, the resulting unit cell (es-
pecially when it is triclinic) shall be reduced using either Delaunay–Ito or Niggli
method in order to enable the comparison of different solutions and to facilitate data-
base and literature searches. Further, the relationships between reduced unit cell pa-
rameters must be used to properly determine the Bravais lattice. The Niggli-reduced
cell is considered standard and therefore, is preferable.

42 P.M. de Wolff, B. Gruber, Niggli lattice characters: Definition and graphical representation, Acta
Cryst. A47, 29 (1991).
43 L. Zuo, J. Muller, M.-J. Phillippe, and G. Esling, A refined algorithm for the reduced-cell deter-
mination, Acta Cryst. A51, 943 (1995).
44 I. Křivý, B. Gruber, A unified algorithm for determining the reduced (Niggli) cell, Acta
Cryst. A32, 297 (1976).
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It is worth noting that not all automatic indexing computer codes perform unit
cell reduction and even when they do, the reduced unit cell may not be standard.
Therefore, it is advisable to always check/reduce the obtained unit cell using spe-
cialized software, for example the WLepage program, which is available on-line.45

This application performs subcell and supercell search in addition to reducing the
unit cell, which allows one to detect larger unit cells, for example, those with su-
perlattice extinctions. This program is included into the ChekCell software,46 which
also compares all possible unit cells against the list of the observed Bragg peaks and
evaluates the results in an easy-to-use graphical format.

14.10 Automatic Ab Initio Indexing: Computer Codes

A variety of first principles indexing methods has been implemented in many differ-
ent computer programs with various modifications.47 For example, a total of eight
different indexing routines are combined into a single suite called CrysFire48 that
can be downloaded from the International Union of Crystallography or Collabo-
rative Computational Project No. 14 Web sites along with many other indexing
programs.49 According to its developer, CrysFire is designed for a nonspecialist
but may be also useful for experts. Another software suite is LMGP.50 It is avail-
able with a tutorial and handles peak search, profile fitting, unit cell refinement, and
space-group determination/evaluation in addition to indexing. CrysFire, which lacks
a graphical user interface, may be used concurrently with LMGP and ChekCell, as-
suming that there are some trial unit cells from CrysFire in the output file.

Here, we consider several of the most commonly used automatic indexing pro-
grams: TREOR, DICVOL, and ITO, in an attempt to make a novice familiar with
the ab initio indexing capabilities and limitations in addition to illustrating practi-
cal indexing examples. The following four sections are not intended and should not
be taken as substitutes for manuals to any of these indexing utilities – each has a
detailed manual describing format of input data. Complete descriptions of indexing
algorithms can be found in the original references provided in the corresponding
sections.

45 A.L. Spek, LEPAGE – an MS-DOS program for the determination of the metrical symme-
try of a translation lattice, J. Appl. Cryst. 21, 578 (1988). Available at http://www.ccp14.ac.uk/
tutorial/lmgp/chekcell lepage.html.
46 Available at http://www.ccp14.ac.uk/tutorial/lmgp/index.html#chekcell.
47 R. Shirley, Overview of powder-indexing program algorithms (history and strengths and weak-
nesses). IUCr Computing Commission Newsletter, 2, 48 (2003), http://www.iucr.org/ data/assets/
pdf file/0004/6394/iucrcompcomm jun2003.pdf.
48 R. Shirley, The CRYSFIRE System for automatic powder indexing: user’s manual, The Lattice
Press, 41 Guildford Park Avenue, Guildford, Surrey GU2 7NL, England (2000). Available at
http://www.ccp14.ac.uk/tutorial/crys/.
49 Available at http://www.ccp14.ac.uk/solution/indexing/.
50 LMGP suite of programs for the interpretation of X-ray experiments, by Jean Laugier and
Bernard Bochu, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin
d’Hères, France. Available at http://www.ccp14.ac.uk/tutorial/lmgp/.
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All three computer codes (TREOR, DICVOL, and ITO) have been extensively
tested by hundreds of researchers. They have undergone multiple revisions by both
the original developers and experienced crystallographers, and therefore are quite
reliable, provided adequate quality powder diffraction data are employed. As al-
ready noted earlier, the following are the keys to successful indexing from first prin-
ciples: precision, precision, and precision of experimental Bragg angles.

14.10.1 TREOR51

TREOR9052 is a semiexhaustive trial-and-error indexing program, which is based
on the permutation of indices in a selected basis set of lowest Bragg angles
peaks.53,54 TREOR90 includes an analysis of the dominant axial zones (i.e., h00,
0k0, and 00l). In the case of a monoclinic crystal system, the so-called short-axis
test and (020)-finding algorithm are employed to increase chances of indexing
when unit cell edges have unusually different lengths. This program works with
any crystal system, but it is most effective in high and medium symmetries: cubic,
hexagonal, tetragonal, and orthorhombic. Triclinic indexing employs lower index
limits and is exceedingly time consuming. The basis set consists of up to six re-
flections, and the peaks suspected to represent collinear reciprocal lattice vectors
are automatically excluded. The default combinations of peaks in the basis sets,
maximum values of indices and sums of indices are listed in Table 14.20.

The limiting values of indices may be freely modified by the user as described in
TREOR’s manual, while the sequence of peaks in the basis set may only be changed
to a certain extent, as described in the footnotes to Table 14.20. In majority of cases,
program defaults work quite well, and any changes in them should be attempted
only when no acceptable solution has been found.

Although no strict limits have been set, usually no more than 25 lowest Bragg an-
gle peaks total should be used in the indexing attempt. TREOR90 may successfully
index powder diffraction patterns containing a few impurity peaks by automatically
skipping up to three Bragg reflections, which do not fit into a found unit cell. If
some peaks were skipped, one should always remember the very important state-
ment (capitalized in the manual): do not accept unindexed peaks, unless you are
able to explain them.

51 P.-E. Werner, L. Eriksson and M. Westdahl, A semi-exhaustive trial-and-error powder index-
ing program for all symmetries, J. Appl. Cryst. 18, 367 (1985); A. Altomare, C. Giacovazzo,
A. Guagliardi, A.G.G. Moliterni, R. Rizzi, P.-E. Werner, New techniques for indexing: N-TREOR
in EXPO. J. Appl. Cryst. 33, 1180 (2000).
52 Available at http://www.ccp14.ac.uk/ccp/ccp14/ccp14-by-program/treor/.
53 The algorithm is called semi-exhaustive because certain limitations on the possible permutations
of indices are incorporated into the program in order to increase its speed.
54 The numeral included after the name of the program (in this case 90) usually indicates version
number of year when the program was released as a public domain (in this case, the program was
released in 1990).
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Table 14.20 Order of peaks in basis sets and limitations imposed on the values of indices for the
basis-set peaks used in TREOR.

Crystal system Basis set (in terms of peak number) maxh,k, la maxh+ k + la

Cubic (1), (2) 4,4,4 6
Tetragonal, Hexagonal (1,2), (1,3), (2,3) 4,4,4 4

4,4,4 4
Orthorhombic (1,2,3), (1,2,4), (1,2,5), 2,2,2 3

(1,3,4), (2,3,4), (1,2,6) 2,2,2 4
or (N,1,2), (N,1,3), (N,2,3)b 2,2,2 4

Monoclinic (1,2,3,4), (1,2,3,5), (1,2,4,5) 2,2,2 2
or (N,1,2,3) (N,1,2,4), (N,1,3,4)b 2,2,2 3
and additionally 2,2,2 3
(1,3,4,5), (1,2,3,6), (2,3,4,5), (1,2,3,7)c 2,2,2 4

Triclinic (1,2,3,4,5,6), (1,2,3,4,5,7), 1,1,1 1
(1,2,3,4,5,8), (1,2,3,4,6,7), 1,1,1 2
(1,2,3,4,6,8), (1,2,3,5,6,8), 1,1,1 2
(1,2,3,5,6,7), (1,2,3,5,7,8), 1,1,1 2
(1,2,3,4,5,9)d 1,1,1 3

1,1,1 3

a Absolute value of h, k, and l is assumed. Max h + k + l values are for each basis set reflection,
respectively.
b N is defined as a nonzero value in the keyword SELECT, e.g., in the orthorhombic crystal system
SELECT=5 results in the following basis sets (1,2,5), (1,3,5), and (2,3,5).
c Additional sets that are added to the basis set when MONOSET keyword value is greater than 3,
4, 5 or 6, respectively.
d The first observed peak is always (100) and the second observed peak always has positive indices.

The key to a successful indexing is not a complete absence of impurity peaks
(a few may be present), but it is the accuracy with which peak positions have been
determined and the absence of significant systematic errors. Yet another important
piece of advice, given in the manual, should always be followed: do not waste com-
puter time on bad data. Since the cost of computer time continuously lowers, but
the cost of labor continuously rises, this statement could be rephrased: do not waste
your time on bad data. The latter is indeed applicable to any type of data analysis.

Several other items should be considered while using TREOR. Indexing starts
from the cubic crystal system and may proceed through all crystal systems down
to triclinic. By default, however, the indexing stops at the orthorhombic symmetry.
Therefore, in order to check monoclinic solutions, the value of a keyword MONO
should be set to the maximum desired monoclinic angle, for example, MONO = 130
will result in searching for solutions with angles β varying from 90◦ to 130◦. Index-
ing in a triclinic unit cell can be attempted by including the instruction TRIC = 1.
Another way of testing all crystal systems is to specify a negative value of the
maximum unit cell volume using the keyword VOL, for example, VOL = −2,000.
TREOR reduces the triclinic unit cell only for the best solution and therefore, nu-
merous nonreduced variations of the same unit cell may be produced.

When an acceptable solution is found, the program terminates and therefore, in-
dexing in lower symmetry unit cells will not be performed. A solution is considered
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acceptable if the minimum figure of merit, MN , where N is the smallest of 20 and
the number or present peaks, is reached or exceeded. It is advisable to check lower
symmetry indexing in order to avoid situations when accidental relationships be-
tween the real unit cell parameters result in successful high symmetry indexing. In
majority of the cases, the incorrect high symmetry unit cell has a large volume that
cannot be explained by the increased symmetry of the lattice. This can be done by
disabling any of the high symmetry crystal systems: for example, cubic indexing can
be suppressed by using the keyword KS = 0, and tetragonal and hexagonal indexing
are not attempted when THS = 0 (consult the manual).

An alternative way of continuing the indexing in low-symmetry lattices is to
increase the minimum figure of merit, MN , by adding or changing the keyword
MERIT. If this keyword is missing (default), the minimum MN is set to 6, which is
quite low, given the accuracy of both the modern diffractometers and data processing
algorithms (e.g., see the corresponding figures of merit described in Sect. 14.4.2).
Any solution with MN greater than 10 is considered to be a true unit cell, and the
program execution terminates. In order to continue the search for other possible so-
lutions, the value of MERIT should be increased, e.g., by setting MERIT = 50 or
higher.

By default, TREOR adjusts the data for possible systematic errors in the first
seven peaks by using higher-order peaks. Sometimes this procedure may be not
quite right, and when no solution has been found, it is recommended to suppress
this correction by adding the instruction IDIV = 0.

The successful indexing result (if any) – the one with MN greater than a set min-
imum – is stored in a condensed output file. All intermediate solutions with MN
less than the specified minimum but greater than 6 and no more than 3 unindexed
lines (unless different limits are specified) are stored in a general output file. There-
fore, using unrealistically high MERIT = 1,000 and VOL = −2,000 would result
in checking all crystal systems and unit cells with volumes smaller than 2,000 Å3.

14.10.2 DICVOL55

DICVOL9156 is an exhaustive trial-and-error indexing program with variation of
parameters by successive dichotomy and partitioning of the unit cell volume. This
program works with all crystal systems; however, low symmetry monoclinic and
especially triclinic indexing may take some time. The indexing strategy is based on
searching for a solution from high to low symmetry using partitioning of the unit
cell volume in 400 Å3 increments, except for a triclinic case, when the maximum
volume is estimated from the density of diffraction peaks in the pattern.

55 A. Boutlif and D. Louër, Indexing of powder diffraction patterns for low symmetry lattices by
the successive dichotomy method, J. Appl. Cryst. 24, 987 (1991).
56 A new 2006 version (DICVOL06) available at http://www.ccp14.ac.uk/ccp/ccp14/ccp14-by-
program/dicvol/. A. Boultif and D. Louër, Powder pattern indexing with the successive dichotomy
method. J. Appl. Cryst. 37, 724 (2004).
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Similar to TREOR, any crystal system can be included or excluded from the
indexing process, and increasing a minimum figure of merit, MN (the default is 5)
can be used to generate low symmetry results. Input data may also be used to set
maximum lengths of the unit cell edges, monoclinic angle and unit cell volume.
Errors in peak positions can be supplied with each Bragg reflection separately, or
the errors may be assumed identical for energy observed peak. The default is 0.03◦

of 2θ, which is somewhat excessive for good quality diffractometer data, and the
value of 0.01◦ or 0.02◦, depending on the resolution, is recommended. For more
details, consult the manual available along with the program. As a rule, indexing
should be performed in three steps by selecting the following crystal systems: cubic
through orthorhombic; monoclinic; and finally triclinic, if needed.

Originally, DICVOL (up to the 1991 version, DICVOL91) was not designed to
account for possible impurity peaks or to correct for systematic errors. Newer re-
leases, such as DICVOL04 and DICVOL06, have an option of specifying a maxi-
mum number of unindexed Bragg peaks to ignore, and can estimate and correct for
the presence of zero-shift error.

No formal limits on the amount of input Bragg peaks has been established in this
program, but it is recommended that 20 or more lowest Bragg angle peaks are used
for a reliable indexing. It is worth noting that if the true unit cell belongs to one
of the high symmetry crystal systems (e.g., tetragonal), an attempt to index the dif-
fraction pattern in lower symmetry crystal systems (e.g., orthorhombic, monoclinic
and triclinic) will usually result in the solution with a ∼= b (orthorhombic), a ∼= b
and β∼= 90◦ (monoclinic) and/or a ∼= b and α∼= β∼= γ∼= 90◦ (triclinic). Independent
unit cell reduction (see Sect. 14.9) should be employed to test any resulting low
symmetry unit cell in order to compare it with the literature or database records.

14.10.3 ITO57

This algorithm realizes a zone search indexing method combined with the
Delaunay–Ito technique (see Sect. 14.9.1) for the transformation of the most proba-
ble unit cell. The most commonly used versions of computer codes are ITO13 and
ITO15. The program arrives at a solution by using the following algorithm:

– Finds and reduces potential zones always using 20 lowest Bragg angle peaks,
tests them, and refines by using a least-square method.

– Builds lattices by finding zones with a common row and calculating angles be-
tween them.

– Reduces the resultant unit cell by using the Delaunay–Ito method and then trans-
forms it into one of the 14 Bravais lattices if the lattice is not primitive.

– Finally, attempts to index all available peaks and if the indexing is successful,
calculates the figure(s) of merit.

57 J.W. Visser, A fully automatic program for finding the unit cell from powder data, J. Appl. Cryst.
2, 89 (1969). Available at http://www.ccp14.ac.uk/ccp/ccp14/ccp14-by-program/ito/.
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The program works quite effectively with low symmetry crystal systems: tri-
clinic, monoclinic, and orthorhombic. The resulting centered lattice in the mono-
clinic and orthorhombic symmetry (if centering has been found) is an important
argument in accepting such a solution, since it is less likely to be a random unit
cell when compared with any primitive lattice. Lattice centering analysis is not per-
formed in higher symmetry cases; nevertheless, they are suggested at the end of the
output list and should be carefully analyzed, even though the list often contains large
high symmetry unit cells.

The program requires at least 20 lowest Bragg angle peaks for finding a rea-
sonable solution and it will not work with fewer Bragg peaks. A total of 30–35
consecutive Bragg reflections are recommended. The maximum number of peaks is
40. Peaks in excess of 20 are indexed using only the best found solution. Similar
to TREOR, ITO may successfully index powder diffraction patterns, which contain
several impurity peaks. The maximum number of skipped unindexed peaks is one
of the user-specified parameters. ITO can check for potential zero-shift errors (by
default no checking is performed), and allows a zero-shift correction that is applied
to all peaks before indexing. In addition, in the final least squares refinement of
the unit cell dimensions, the zero-shift error in Bragg angles can be determined (by
default).

The program works in a straightforward fashion, and only a few parameters can
be varied in the case of failure. These are: several tolerances, the number of peaks for
zone search, and the zero-shift correction. As a last resort, low intensity (potential
impurity peaks) and/or high-angle peaks (if they were included in the unsuccessful
run) may be removed from the list one-by-one. The default values for tolerances
for two- and three-dimensional zone search are set to 3.0 and 4.5, respectively, in
the units of Q, which are defined in this program as 104/d2. However, it is recom-
mended to set them as low as 2.0 and 2.5 when the accuracy in peak positions is at,
or better than 0.01◦ of 2θ. The final advice, given by the author (J.W. Visser) should
always be remembered: “Finding the unit cell depends for 95% on the quality of the
input data. A random error of 0.03◦ 2θ can usually be tolerated, but a systematic
zero-point error of 0.02◦ is probably disastrous.”

14.10.4 Selecting a Solution

TREOR and ITO programs have an option to input intensity for each observed dif-
fraction peak, but they are included only for informative purposes and are never
analyzed by the code. Nevertheless, it is often helpful to see the intensity next to
indices when analyzing the results, especially for those Bragg peaks, which do not
fit into the selected lattice.

All three programs TREOR, DICVOL, and ITO allow optional input of the in-
formation about the measured gravimetric density and formula weight in order to
estimate the number of formula units expected in the found unit cell (see Sect. 15.2).
The latter should be an integer number compatible with the unit cell symmetry, for
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example, in a primitive monoclinic lattice it normally should be a multiple of 2 or 4.
The agreement between the number of formula units in the unit cell and lattice sym-
metry may be used as an additional stipulation when selecting the most probable
solution.

Automatic indexing programs usually produce more than one solution and the
following criteria should be considered when deciding which one is the best, or in
other words, which solution we believe represents the true unit cell:

1. The correct solution must result in a high figure of merit (although not necessarily
the highest) and most, if not all diffraction peaks should be indexed. Unindexed
Bragg reflections must be explained, for example, by low intensity, by notice-
ably different peak widths, or they should be identified as corresponding to an
impurity phase.

2. As is stated in the DICVOL manual: “. . . a solution from the first 20 (or N)
lines . . . must index the complete powder diffraction pattern . . . ”. The best way
to evaluate the quality of the indexing is to perform lattice parameters refinement
and to calculate a figure of merit using all measured and indexed Bragg peaks.

3. Every, or almost every observed peak must correspond to a calculated reflection
after accounting for systematic absences, and vise versa, at least in a low Bragg
angle region of the pattern where all peaks are well-resolved.

4. The presence of distinct systematic absences and an unambiguous determination
of the diffraction group make a particular indexing solution especially proba-
ble. Exceptionally encouraging are centered lattices and, for example, such space
groups as P21/c, Pbca, I41/amd, R3̄c, and many others, which contain multiple
glide planes and/or screw axes, distinguishable from the list of unobserved (ex-
tinct or forbidden) Bragg reflections.

5. When the unit cell is found, it can be used to search multiple databases in addition
to the ICDD Powder Diffraction File. A positive search result usually confirms
indexing, while a negative outcome does not necessarily mean that the indexing
is wrong – a particular crystal structure may be novel and/or not yet included in
a database.

6. Finally, in the case of a new material, the correctness of the ab initio indexing
is generally ensured by solving and refining the crystal structure,58 which makes
both chemical and physical sense, that is, has correct bond distances and angles,
reasonable coordination polyhedra, oxidation states, etc. The correctness of in-
dexing may also be proven by other means, for example, by selected area electron
diffraction from an individual grain or micro-crystal, high resolution electron mi-
croscopy, and similarity with known structures.

All three of the briefly described computer programs may only work consistently
when the quality of input data is very high. This implies that the accuracy of peak
positions is outstanding, normally at least 0.02◦ or better, which is usually achieved

58 In some cases, an experienced researcher can be confident in the indexing without solving the
crystal structure, if the pattern is relatively simple, the peaks are sharp and well-resolved, and all
previous criteria are satisfied.
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by maintaining a well-aligned goniometer and by using a proper profile fitting pro-
cedure. It is important to ensure that all possible systematic errors are eliminated
beforehand, since they can lead to unpredictable results and/or failure to find a solu-
tion. When experimental data are affected by a small systematic error, reducing the
number of Bragg peaks in the initial indexing attempt may be helpful.

Each program is distributed with ready-to-use files containing test/demo exam-
ple(s). We encourage the reader to familiarize him/herself with them after reading
the manuals before trying to perform an ab initio indexing of a new diffraction
pattern.

In order to minimize hand input when creating source data files, the readers
can use the pks2ind utility, which converts any ASCII table containing at least
one column with Bragg angles of observed peaks (2θ) into formats acceptable by
TREOR90, DICVOL91, and ITO programs.59 The utility also enables correction of
experimental data for a sample displacement error, if the latter is known. A short
manual describing this conversion utility is found online.

Slightly modified versions of TREOR90, DICVOL91 and ITO15 are available
online too.60 The modifications enable acceptance of the input data by specifying
source file name as a parameter of an MS DOS command line or by dragging-
and-dropping files over an appropriate program icon placed on the desktop, thus
simplifying the dialog.

14.11 Ab Initio Indexing Examples

In the following sections, we describe four practical indexing examples. The first
one follows indexing of a relatively simple, high-symmetry hexagonal pattern in
great detail with all input data files available as the electronic supplement from
Springer. The remaining examples are illustrated without providing all input data
files, since we expect that the reader should be able to use existing data and re-
produce indexing results independently. The second and third examples are about
indexing of low-symmetry patterns: a complex monoclinic and a simpler triclinic
structure, respectively. The fourth example illustrates difficulties that may be en-
countered when there are accidental relationships between unit cell dimensions.

14.11.1 Hexagonal Indexing: LaNi4.85Sn0.15

Experimental data from the LaNi4.85Sn0.15 sample are especially useful for this
illustration because as established earlier, this diffraction pattern has been suc-
cessfully indexed manually. We also know that the data are affected by a small

59 pks2ind.exe and pks2ind.pdf may be downloaded from www.springer.com/978-0-387-09578-3.
60 www.springer.com/978-0-387-09578-3; follow the “Software” link.



458 14 Determination and Refinement of the Unit Cell

systematic error, which can be eliminated by introducing a zero-shift correction of
0.032◦, and that there are two low-intensity Bragg peaks, which belong to an impu-
rity phase (see Sects. 14.3 and 14.7).

Indexing Using TREOR90

The input data file61 for the TREOR90 program contains the following information,
where the comments after the exclamation symbols are not included in the data file:

Sample: LaNi4.85Sn0.15 ! Title line
20.288 ! Bragg angle of the first observed peak
22.105 ! Bragg angle of the second observed peak
... ! Bragg angles in ascending order
81.632 ! Bragg angle of the last observed peak

! Blank line terminating experimental data
CHOICE=3, ! Instruction specifying input as 2θ angles
WAVE=1.540593, ! Instruction specifying the wavelength
END* ! End of instructions
0.000 ! The value of the zero shift, if known

In our first indexing attempt, we use all observed Bragg peaks, including the
two peaks from an impurity phase at 2θ = 44.211◦ and 51.517◦ (see Fig. 14.5),
without correcting experimental data for the known zero-shift error. Automatic in-
dexing results in the following solution: a = 18.537, c = 4.3681 Å in the hexagonal
crystal system with F24 = 16(0.008,205) and M20 = 21. One weak Bragg peak at
2θ = 78.958◦ (relative intensity is 0.4%) remains unindexed. This solution is likely
incorrect, which is easily concluded from the FN figure of merit indicating that only
∼12% of the possible Bragg peaks have been observed.

After removing the two impurity Bragg peaks,62 the indexing result is a =
6.179, c = 10.097 Å in the tetragonal crystal system with F22 = 12(0.019,98) and
M20 = 16. Both figures of merit are lower than in the first solution, and this is also
an incorrect indexing result.

Even though it appears that this program cannot find an indexing solution in
this relatively simple case, we should note that so far, the program was used only
with default settings, including the minimum acceptable figure of merit. The default
value is set at M20 = 10, and once the solution with M20 exceeding 10 is found, no
further attempt to test lattices with lower (i.e., next in the line: cubic, tetragonal,
hexagonal, orthorhombic, monoclinic, and triclinic) symmetry is made. This is the
reason of the incorrect solution when all but the two impurity peaks were included
in the clean data file.

A simple modification of the default figure of merit by including the instruction
MERIT = 40, which is nearly double the best M20 observed so far63 yields a correct

61 Data file Ch14Ex04 Treor90-All.dat is available online.
62 Data file Ch14Ex04 Treor90-Clean.dat is available online.
63 Data file Ch14Ex04 Treor90-HighMerit.dat is available online.
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solution: hexagonal lattice with a = 5.0443, c = 4.0135 Å and the corresponding
figures of merit are as follows: F22 = 126(0.008,23) and M20 = 189. The lattice
parameters and figures of merit are slightly different from what has been established
earlier (see Table 14.6 and associated text), which is the result of the incomplete
refinement of the lattice parameters carried out by the program after the solution
has been found.

It is interesting to point out that the same modification (adding the instruction
MERIT = 40 to the original data file) results in a different solution in the hexag-
onal crystal system: a = 8.7371, c = 4.0135 Å with the corresponding figures of
merit: F24 = 59(0.008,53) and M20 = 77. One of the two impurity peaks was left
unindexed, but the second impurity peak accidentally fits into this enlarged unit cell.
A simple analysis of Miller indices of all indexed Bragg peaks, which can be found
in the output file produced by the program, indicates that in all cases except one, the
sums h2 + hk + k2 are divisible by three. Considering (14.4), the reduction of the a
lattice parameter by a factor of

√
3 produces the correct unit cell with a = 5.0444 Å.

The only peak with the sum h2 +hk+k2 �= 3n (where n is an integer) is the impurity
peak observed at 2θ = 51.517◦.

Indexing Using ITO13

The input data file64 for the ITO13 program contains the following information (the
comments after the exclamation symbols are not included in the data file):

Sample: LaNi4.85Sn0.15 ! Title line
! Parameter line (may be completely blank)
! Second parameter line (may be blank)

20.288 ! Bragg angle of the first observed peak
22.105 ! Bragg angle of the second observed peak
... ! Bragg angles in ascending order
81.632 ! Bragg angle of the last observed peak
0 ! Zero or blank line terminating this set of data
END ! End of data file

The complete description of how to modify various default values by using dif-
ferent fields in the two parameter lines in the file is found in the documentation to
the program. Even if all parameters are left at their defaults, the two blank lines
must precede the first Bragg peak. The program can process multiple sets of data
placed in the same file, and these sets are separated by a single blank line or by a
line containing 0 in the first position. The line containing the word END indicates
the end of the input data file. The ITO13 program finds the correct unit cell: hexago-
nal crystal system, a = 5.0423, c = 4.0119 Å. They are equal to those found before
(Table 14.6) within one standard deviation. The program used the default value of
the wavelength (λ= 1.5406 Å), which can be modified by inserting the correspond-
ing value in positions 21–30 of the first parameter line.

64 Data file Ch14Ex04 ITO13-All.dat is available online.
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Indexing Using DICVOL91

The input data file65 for the DICVOL91 program contains the following information
(the comments after the exclamation symbols are not included in the data file) using
DICVOL:

Sample: LaNi4.85Sn0.15 ! Title line
24 2 1 1 1 1 0 0 ! Parameter line 1
0 0 0 0 0 0 0 ! Parameter line 2
1.540593 0 0 0 ! Parameter line 3
0 0 0 ! Parameter line 4
20.288 ! Bragg angle of the first observed peak
22.105 ! Bragg angle of the second observed peak
. . . ! Bragg angles in ascending order
81.632 ! Bragg angle of the last observed peak

! Blank line terminating input data

The first parameter line contains the following information: number of consec-
utive Bragg peaks to use counting from the first (24), type of input data (2 = 2θ
in degrees), then six single digit flags specifying which crystal systems should be
examined in the following order: cubic, tetragonal, hexagonal, orthorhombic, mon-
oclinic, and triclinic. When the switch is set to 1, the crystal system is tested, and
when it is set to 0, no solution in this crystal system is attempted. The first parame-
ter line in the example data file is set to search for a solution in all crystal systems
except monoclinic and triclinic.

The second parameter line is used to specify the maximum possible values of a,
b, and c (first three quantities in the line with the defaults set at 20 Å), then minimum
and maximum unit cell volume (next two values with the defaults 0 and 1,500 Å3)
and finally, minimum and maximum β if the monoclinic crystal system is to be
tested (the last two values, defaults are set at 90◦ and 125◦, respectively). The second
parameter line in our example selects all corresponding parameters as their default
values.

The third parameter line contains the following information: the first number is
the wavelength of the used radiation in angströms, the second, third, and fourth
quantities represent the molecular weight of the formula unit in atomic mass units
(a.m.u.), the measured density in g/cm3 and the error in the measured density, re-
spectively. The defaults are set at zero meaning that none of these characteristics of
the material is known.

The last (fourth) parameter line should contain three numbers (with zeros rep-
resenting the selection of default values) and their meaning is as follows. The first
value indicates how the errors in the experimental data are handled. By default, the
measurement errors are assumed constant at 0.03◦ or 2θ. The second value specifies
the minimum acceptable MN figure of merit, where N is the number of used Bragg
peaks, that is, it is identical to the first number in the first parameter line, and its

65 Data file Ch14Ex04 Dicvol91-All.dat is available online.
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default is 5. The last number in this line is the value of the zero shift to be added to
the observed experimental data.

The attempt to find an indexing solution using all available data results in the best
figures of merit, F24 = 10(0.010,248) and M24 = 13 for a large orthorhombic unit
cell with a = 17.475, b = 7.569 and c = 4.013 Å. The failure of indexing using the
array of Bragg peaks containing two impurity data points was expected, because this
program cannot leave any of the data points unindexed. It is worth noting, however,
that there is one correct unit cell dimension in this incorrect solution, that is, the
value of the c lattice parameter has been found accurately. Further, this solution
results in nearly all Bragg peaks having index h divisible by 4 and index k divisible
by 3. This outcome is a very good indication that input data do contain one or more
impurity peaks and that the solution is false.

To obtain a proper solution, it is necessary to eliminate the impurity Bragg peaks
from the indexing process. Although it is easy to do in this case since we know
which peaks do not belong to the major component, in real-life situations it may not
be as simple unless the structure of the impurity phase(s) is(are) known. Provided
the impurity phase is a minority phase in the specimen, the best way to eliminate
impurity peaks is to proceed with the gradual elimination of the weakest Bragg
peaks from the indexing attempt.

We begin by first eliminating all peaks with intensity less than 1% of the strongest
Bragg peak. This produces the truncated array of data,66 and a still incorrect but
different solution in the orthorhombic crystal system (note that the first impurity
peak has intensity ∼1.8% of the strongest). A second iteration is to eliminate all
Bragg peaks with intensity lower than 2% of the strongest.67 This leaves only 16
Bragg peaks and leads to two solutions with very high figures of merit. These are as
follows:

1. Hexagonal crystal system with a = 5.0448, c = 4.0137 Å, F16 = 74(0.009,23)
and M16 = 159, and

2. Orthorhombic crystal system with a = 4.3687, b = 4.0137, c = 2.5230 Å,
F16 =77(0.008,28) and M16 = 167.

Given the rules described earlier (see Sect. 14.4) and the insignificant differ-
ence in the figures of merit, the preference should be given to the highest symmetry
crystal system, that is, to the solution No. 1, even if we did not know the correct
unit cell of this material. Furthermore, the value of the lattice parameter c in the
orthorhombic solution is too small, considering the size of one of the components
in the LaNi4.85Sn0.15 compound: rLa = 1.87 Å, which restricts the shortest unit cell
dimension to 2× rLa = 3.74 Å or higher.

The indexing process in this case should be finalized by using the found lattice
parameters to assign indices to the weak Bragg reflections that have been eliminated
from the indexing, and by refinement of the lattice parameters employing all avail-
able experimental data. This can be easily done following the procedure described
earlier in Sect. 14.3.
66 Data file Ch14Ex04 Dicvol91-99%.dat is available online.
67 Data file Ch14Ex04 Dicvol91-98%.dat is available online.



462 14 Determination and Refinement of the Unit Cell

aH

bH

aO = √3aH

bO = bH

1/2a
O +

1/2b
O

c’O = 1/2bH

a’O = √3aH /2

Fig. 14.14 The relationship between the lattice parameters of the hexagonal unit cell (solid and
dotted lines) and the related orthorhombic unit cell (dashed lines). The unit cell parameter perpen-
dicular to the plane of the projection is identical in both crystal systems. The smaller orthorhombic
unit cell found using the DICVOL91 indexing program is indicated by the thick solid vectors (a′O
and c′O). Open circles show lattice points and the dash-dotted vector illustrates the C-translation in
the conforming orthorhombic lattice.

The two solutions (hexagonal and orthorhombic) are actually similar, since any
hexagonal lattice can also be described in the lower symmetry orthorhombic base-
centered lattice, as shown in Fig. 14.14. Obviously, the orthorhombic solution, found
by DICVOL91, represents the primitive orthorhombic unit cell with one-fourth the
volume of the conforming base-centered orthorhombic unit cell with the following
unit cell dimensions: aO = 1/2aH

√
3; bO = cH, and cO = 1/2bH.

14.11.2 Monoclinic Indexing: (CH3NH3)2Mo7O22

In this example, we consider the ab initio indexing of the diffraction pattern col-
lected from (CH3NH3)2Mo7O22 powder. Profile fitting of the powder diffraction
data (Fig. 14.15) resulted in 30 peaks observed below 30◦ of 2θ (see Table 14.2168).
The indexing has been conducted using TREOR, DICVOL, and ITO. Attempts to
use TREOR produce no reasonable solution in high symmetry crystal systems,
including orthorhombic. Because of the complexity of the pattern, the maximum
unit cell volume was increased from a default (1,500) to 2,500 Å3 by adding the
instruction VOL = 2,500.

Keeping the maximum unit cell volume at 2,500 Å3, indexing attempts using
TREOR were extended to include the monoclinic crystal system by adding the in-
struction MONO = 130.69 The program finds several solutions, and the one listed

68 Same data are available online in the file Ch14Ex05 CuKa.pks.
69 See data file Ch14Ex05 Treor90.dat online.
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(CH3NH3)2Mo7O22, Cu Kα
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Fig. 14.15 Powder diffraction pattern of (CH3NH3)2Mo7O22 collected on a Scintag XDS2000
diffractometer using Cu Kα radiation in a step scan mode with Δ2θ = 0.02◦ and counting time
30 s. The square root of intensity is plotted as a function of Bragg angle for clarity. The two sets
of vertical bars illustrate the following: top – positions of the observed Bragg peaks, bottom – the
same calculated in the space group C2/c for the solution No. 1 from Table 14.22. The two weak
Bragg peaks preceding the strongest peak at 2θ∼= 9◦ have been excluded from the indexing because
their presence yields unreasonably large unit cells.70

in the first row in Table 14.22 appears reasonable. Despite the relatively low fig-
ure of merit (M20 = 9) it is promising because all Bragg peaks are indexed in the
base-centered lattice.

To confirm the feasibility of this monoclinic unit cell, indexing was attempted
using both DICVOL and ITO. The latter gives no acceptable solution, while the
former results in three unit cells. The best of the three is listed in the second row in
Table 14.22. All Bragg peaks can be indexed, but this time in a body-centered lattice.
The two remaining solutions correspond to base-centered unit cells with all peaks
indexed. They have slightly lower figures of merit but the same unit cell volume
and parameter b. As an exercise, use experimental data from Table 14.21 and run
DICVOL to see all unit cells.

The unit cell edges, a and c, and angle β in all three solutions are related to
one another, as shown in Fig. 14.16. Here, a, c, and angle β correspond to those in
the first row in Table 14.22. The inverse of the body diagonal of the parallelogram

70 These peaks probably belong to an impurity phase. It is quite possible because the
(CH3NH3)2Mo7O22 powder was prepared hydrothermally (see Chap. 22), which sometimes re-
sults in the presence of several metastable phases in the material.
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Table 14.21 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of Bragg peaks observed in the range 7◦ ≤ 2θ≤ 30◦ in the (CH3NH3)2Mo7O22 powder
diffraction pattern collected using CuKα radiation (see Fig. 14.15).

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

1,000 9.077 0.089 10 24.033 0.077
10 9.574 0.089 109 24.343 0.077
34 10.716 0.085 110 25.162 0.080
17 15.328 0.084 257 25.321 0.080

8 16.653 0.084 68 25.394 0.080
6 17.496 0.084 98 25.896 0.080

10 18.264 0.084 16 26.758 0.081
18 18.449 0.084 8 27.016 0.081

4 19.240 0.084 38 27.581 0.081
17 20.030 0.084 1 27.771 0.081

4 21.130 0.081 11 28.093 0.081
15 21.466 0.081 1 28.600 0.081
89 21.614 0.081 45 29.069 0.081

1 23.466 0.081 29 29.368 0.081
1 23.641 0.081 21 29.725 0.081

a Bragg angles are listed for the location of the Kα1 component in the doublet,
λ = 1.540593 Å.

Table 14.22 Indexing solutions describing powder diffraction data of (CH3NH3)2Mo7O22.

Solution
number

a, b, c β, V MN Lattice
centering

a′, b′, c′ a′, b′, c′ β′ Source

1 20.624 109.93 920 C TREOR
5.525

19.592 2,098.7
2 23.105 127.11 9.930 I −a 23.105 122.95 DICVOL

5.524 b 5.524
20.626 2,099.3 a+b 19.601

3 20.589 109.94 4020a C a+2c 23.060 122.93 TREORb

5.514 b 5.514
9.7790 1,044.9 −2c 19.561

4 23.060 127.12 20.530 I −a 23.060 122.93 DICVOLb

5.514 b 5.514
20.590 2,087.7 a+c 19.561

5c 20.564 109.92 10.620 C a+c 23.043 122.97 ITOb

5.512 b 5.512
19.546 2,082.9 −c 19.546

a Four peaks unindexed; found volume is half that from other solutions.
b 2θ corrected for a sample shift error, δ, as 2θcorr = 2θobs − 180/π · 2δ · cosθ/R (δ = −0.1mm;
goniometer radius R = 250 mm).
c Second best solution according to the figure of merit. The best FOM is 39.4 with half the unit cell
volume and only 17 of 20 reflections indexed; also see solution No. 3.
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Fig. 14.16 Alternative axes selection in the monoclinic crystal system. Open and hatched points
represent lattice points. The open points are located in the plane, while the hatched points are raised
by 1/2 of the full translation in the direction perpendicular to the plane of the projection. Unit cells
based on the vectors a and c or a and d correspond to a base-centered (C) lattice, while the unit
cell based on the vectors c and d corresponds to a body-centered lattice.

ac, d = –a – c, can be used as the third choice of the unit cell edge, giving a total
of three possible selections of the unit cell: a and c, a and d, and d and c. Since
the first pair produces a base-centered lattice, then the second combination remains
base-centered, but the third unit cell should be body-centered, which is not standard
in the monoclinic crystal system. The transformation to a standard setting (a′, b′

and c′) is shown in Table 14.22 in column 6 with the resulting unit cell dimensions
shown in columns 7 and 8.

As can be seen from Fig. 14.15, the calculated positions of Bragg peaks match the
observed diffraction pattern quite well. The lack of reflections h0l with l = 2n+1 in
addition to base-centered systematic absences clearly points to space groups C2/c
or Cc. Because of relatively low figures of merit, indexing with different sample
shift corrections was conducted and sample shift of -0.1 mm results in the improved
figures of merit as shown in Table 14.22 in Rows 3–5 for TREOR, DICVOL, and
ITO, respectively. Interestingly, TREOR finds a unit cell with good figure of merit
and half the volume but leaves some reflections unindexed, which is a disadvantage
of the algorithm that allows skipping Bragg peaks. DICVOL and ITO find the unit
cell identical to that established previously, but with a better fit. In the case of ITO
however, this solution was not the best according to figure of merit: the best solu-
tion had merit M20 = 39.4, body-centered lattice and was similar to that found by
TREOR, with half the volume but with only 17 out of 20 lowest angle Bragg peaks
indexed.

Other attempts, including eliminating some weak and suspicious Bragg peaks,
did not result in a better indexing solution. Thus, this unit cell was considered as
true after it was additionally confirmed by refinement of lattice parameters using all
Bragg peaks observed up to 2θ = 60◦. The final confirmation of the indexing solu-
tion was obtained after the crystal structure was determined and refined as discussed
in Chap. 22.



466 14 Determination and Refinement of the Unit Cell

14.11.3 Triclinic Indexing: Fe7(PO4)6

Indexing in a triclinic crystal system generally should be attempted if no solution
or only highly questionable solutions exist in higher symmetry crystal systems.
In this example, we use diffraction data collected from an iron phosphate pow-
der (Fig. 14.17). A total of 34 individual Bragg peaks observed below 2θ = 32◦

(Table 14.23)71 were identified as a result of profile fitting and included into the
indexing process.

Indexing this powder diffraction pattern using TREOR and DICVOL, assuming
any symmetry higher than triclinic produces no solution. The ITO algorithm also
fails using the data listed in Table 14.23 and, therefore, the observed Bragg angles
were corrected by different sample displacement errors followed by repetitive index-
ing attempts. When the observed Bragg angles were modified by sample displace-
ment δ=−0.15mm using the goniometer radius 250 mm, a good indexing solution
has been obtained. It is shown in the first row of Table 14.24.72 The presence of
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Fig. 14.17 Powder diffraction pattern of Fe7(PO4)6 collected on a Scintag XDS2000 diffractome-
ter using Cu Kα radiation in a step scan mode with Δ2θ = 0.02◦ and counting time 30 s. The three
sets of vertical bars illustrate the following: top – positions of the observed Bragg peaks, middle –
positions of Bragg peaks calculated using ITO solution No. 1 (correct), and bottom – the same
calculated using ITO solution No. 2 (incorrect); both solutions are listed in Table 14.24. Filled cir-
cles indicate unobserved reflections and filled triangle indicates the only observed reflection below
2θ = 20◦, which was left unindexed in the solution No. 2.

71 Same data are available online in the data file Ch14Ex06 CuKa.pks.
72 And is also found online in the data file Ch14Ex06 ITO-Indexed.out.



14.11 Ab Initio Indexing Examples 467

Table 14.23 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of Bragg peaks observed in the range 10◦ ≤ 2θ≤ 32◦ in the Fe7(PO4)6 powder diffrac-
tion pattern collected using Cu Kα radiation (see Fig. 14.17).

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

133 11.977 0.082 44 25.545 0.075
168 12.946 0.087 52 26.119 0.075
14 14.619 0.125 52 27.435 0.078

151 15.132 0.137 47 27.798 0.078
25 16.149 0.082 177 28.084 0.078

212 18.277 0.088 467 28.156 0.078
35 19.652 0.088 59 28.686 0.078

343 20.306 0.088 284 29.174 0.078
26 20.402 0.088 128 29.408 0.078
10 20.569 0.088 269 29.546 0.078
37 21.071 0.088 1,000 29.636 0.078
31 21.622 0.088 87 29.874 0.078
46 22.129 0.088 757 29.938 0.078
27 22.547 0.088 12 30.543 0.078
55 22.781 0.088 136 30.673 0.078
77 24.166 0.075 138 30.796 0.078

8 25.168 0.075 142 31.182 0.078

a Bragg angles are listed for the location of the Kα1 component in the doublet,
λ = 1.540593 Å.

Table 14.24 Indexing solutions describing Fe7(PO4)6 powder data obtained using ITO15,
DICVOL91 and TREOR90 followed by a reduction of the unit cell using WLepage program (see
Footnote 45 on p. 450).

No. a,b, c α,β, γ V MN a′,b′,c′ a′, b′, c′ α′, β′, γ′ Source

1 7.9791 111.045 424.77 56.820 –c 6.475 104.68 ITO
9.5752 101.620 –a 7.977 108.78
6.4736 67.321 b+c 9.434 101.59

2 8.1990 99.955 462.61 40.120 c 7.169 111.60 ITOa

8.9216 100.503 a 8.199 99.96
7.1698 111.595 b 8.922 100.50

3 9.8147 111.056 424.51 30.834 –c 6.474 104.66 DICVOL
9.5710 79.219 –a 7.979 108.76
6.4750 131.423 b+c 9.438 101.2

4 6.4662 123.000 424.51 3620 a 6.466 104.65 TREORb

9.4427 79.305 –a+b+c 7.979 108.72 (defaults)
9.8219 71.281 –b 9.443 101.66

5 6.4780 67.307 424.54 5620 –a 6.478 104.67 TREOR
7.9764 68.916 b 7.976 108.77 (MERIT=50)
9.5697 78.386 a–c 9.431 101.61

6 6.4902 104.330 425.65 – a 6.4902 104.33 single crystal
7.9634 109.028 b 7.9634 109.03 data
9.4521 101.642 c 9.4521 101.64

a An example of the incorrect indexing (second best solution according to MN ): only 14 out of 20
lowest Bragg angle peaks are indexed.
b Despite an acceptable FOM, seven peaks remain unindexed and the unit cell is correct.
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a considerable systematic error, which may occur due to an improperly positioned
specimen and/or due to intrinsic reasons (e.g., a weakly absorbing sample), explains
why the first indexing attempt failed, even though the algorithm incorporated into
the ITO program foresees this kind of an error. It is worth mentioning that sample
displacement or zero-shift error can be estimated by comparing positions of several
lowest Bragg peaks with the corresponding second-order peaks.73

The complete list of solutions74 obtained in this indexing attempt contains five
different unit cells with the following M20 FOM’s: 57, 40, 12, 5 and 4. The first
two are markedly higher than the others (also see the first two rows in Table 14.24).
The first solution indexes all 34 Bragg peaks, has the highest figure of merit, the
smallest unit cell, and there are only 23 possible reflections in the range of Bragg
angles corresponding to the first 20 observed peaks (see Table 14.25).

The second solution appears much worse: despite the high figure of merit and
only slightly higher volume, it leaves 6 out of the first 20 reflections unindexed even
though there are a total of 28 calculated Bragg peaks in this range of angles. Other
solutions have much lower figures of merit, higher volumes and leave too many
unindexed peaks.

Some of the unreliable solutions can be eliminated by decreasing the tolerances
in 2θ for zone searches. However, when choosing a tolerance that is too low, the true
solution may be easily missed. To avoid this, the tolerance should be reduced gradu-
ally, and only when excessive amounts of different and unreliable solutions emerge.
In our example, the tolerance that was set by default between 3 and 4 appears to be
a good choice.

Table 14.24 also contains the results of triclinic indexing using the DICVOL and
TREOR algorithms. With all crystal systems tested, DICVOL results in a single
solution, shown in the third row. All reflections were indexed and the figures of
merit are quite high: M34 = 30.8 and F34 = 104.5(0.0081,40). Employing TREOR
with all parameters set to their default value (except instruction TRIC = 1) three
solutions where found. Two of them with unit cell volume of ∼800 Å3 have very
low figures of merit and leave many peaks unindexed. The third one has the same
cell volume (∼424 Å3) as the earlier solutions, and is listed in Row 4. This solution
has 6 out of 34 Bragg reflections unindexed, which is due to the low accuracy of the
determined unit cell. To check other possible solutions, the keyword MERIT = 50
was inserted in the input data file. This modification results in more than 20 different
solutions with a unit cell volume of ∼424 Å3. The best solution has all 34 reflections
indexed, high figures of merit, and it is listed in Row 5.

As is obvious from Columns 2 and 3 in Table 14.24, different indexing algorithms
result in different choices of the unit cell for the same lattice and, therefore, unit cell
reduction is especially important to compare the results in triclinic symmetry. The

73 The d-spacing of the first and second order Bragg peaks should be related as 2:1 in the absence
of sample displacement and/or zero shift errors. If this ratio is different, the related systematic error
can be computed from the Braggs’ law (see (8.12)–(8.17) on pp. 165–166).
74 See the data file Ch14Ex06 ITO-Indexed.out online.
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Table 14.25 The best solution from indexing the powder diffraction pattern of Fe7(PO4)6 using Ito
method: a = 7.9791 Å, b = 9.5752 Å, c = 6.4736 Å, α= 111.045◦, β= 101.620◦, and γ= 67.321◦.

2θobs
√

Intensitya 2θb
corr 2θcalc 2θcorr− 2θcalc h k l

– 10.539 0 1 0
11.977 36 12.035 12.050 −0.015 1 0 0
12.946 40 13.005 13.009 −0.004 1 1 0
14.619 11 14.677 14.686 −0.009 0 0 1
15.132 38 15.191 15.182 0.009 0 1 1̄
16.149 15 16.207 16.219 −0.012 1 1 1̄
18.277 45 18.335 18.339 −0.004 1 0 1̄
– 18.577 1̄ 1 0
19.652 18 19.710 19.708 0.002 1 0 1
20.306 58 20.364 20.365 −0.001 1 2 1̄
20.402 16 20.460 20.445 0.015 1 2 0
20.569 10 20.627 20.632 −0.005 0 1 1
21.071 19 21.128 21.159 −0.031 0 2 0
21.622 17 21.679 21.693 −0.014 0 2 1̄
22.129 21 22.186 22.183 0.003 1̄ 1 1̄
22.547 16 22.604 22.605 −0.001 1 1 1
22.781 23 22.839 22.851 −0.012 2 1 0
24.166 27 24.223 24.226 −0.003 2 0 0
– 24.317 2 1 1̄
25.168 9 25.225 25.240 −0.0151 1̄ 1 1
25.545 20 25.602 25.604 −0.002 2 2 1̄
26.119 22 26.176 26.179 −0.003 2 2 0
27.435 22 27.491 27.492 −0.001 2 0 1̄
27.798 21 27.854 27.854 0.000 1̄ 2 0
28.084 41 28.141 28.140 0.001 0 1 2̄
28.156 67 28.213 28.224 −0.011 1 3 1̄
– 28.262 1 1 2̄
28.686 24 28.743 28.736 0.007 1̄ 2 1̄
29.174 52 29.230 29.225 0.005 1 2 2̄
– 29.366 2 0 1
– 29.397 1 2 1
29.408 35 29.465 29.459 0.006 0 2 1
29.546 51 29.603 29.611 −0.008 0 0 2
29.636 100 29.692 29.697 −0.005 2̄ 1 0
29.874 29 29.930 29.948 −0.018 2 1 1
29.938 86 29.994 30.003 −0.009 1 3 0
30.543 10 30.600 30.628 −0.028 0 2 2̄
30.673 36 30.729 30.731 −0.002 0 3 1̄

a Normalized to 100.
b Corrected for a sample shift δ=−0.15mm: 2θcorr = 2θobs−180/π ·2δ ·cosθ/R and R = 250 mm.

unit cell dimensions, reduced using the WLepage program, are listed in Table 14.24
in Columns 6–8. Obviously, all of them are represented by the same unit cell, except
the incorrect solution shown in Row 2. The triclinic unit cell was confirmed by a
single crystal diffraction experiment, as shown in Row 6.
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14.11.4 Pseudo-Hexagonal Indexing: Li[B(C2O4)2]

This example illustrates indexing of lithium bis(oxalato)borate, Li[B(C2O4)2],75

which has an accidental hexagonal-like relationship between two of the unit cell
edges of the orthorhombic unit cell. The challenge in this and similar cases is not
the indexing itself, but is the selection of the correct indexing solution, since usu-
ally both the true and pseudo-symmetric unit cells are found in the list of suggested
solutions. The difficulties arise from the fact that accidental relationships between
some or all of the unit cell parameters result in practically identical Bragg angles for
numerous symmetrically unrelated reflections. As the result of this, they completely
overlap and cannot be deconvoluted or resolved. For example, an orthorhombic lat-
tice with two identical or nearly identical unit cell edges a and b will result in in-
distinguishable d-spacings and Bragg angles for any pair of hkl and khl reflections.
This accidental relationship between the unit cell dimensions is the same as that dic-
tated by symmetry in the tetragonal crystal system, and therefore, (8.5) degenerates
into (8.3). Obviously such pseudo-tetragonal pattern can be indexed in the tetrago-
nal crystal system with higher (and often substantially) figures of merits ((14.7) and
(14.9)), simply because in the orthorhombic crystal system the number of possible
reflections, Nposs, is almost twice as large as the number of the observed peaks be-
cause of heavy overlap of unrelated peaks with identical Bragg angles. Thus, full
crystal-structure determination usually becomes necessary in order to prove the cor-
rectness of the chosen indexing solution.76

The powder diffraction pattern shown in Fig. 14.18 was collected from very fine,
highly hydroscopic white powder of Li[B(C2O4)2]. The pattern has two distinct fea-
tures. First, a noticeable peak broadening with full widths at half maximum ranging
from 0.15◦ at low angles to 0.30◦2θ at high angles, which is due to a small grain size
since this compound is formed by decomposition of solvates. The second feature is
a rapid reduction of the peak intensity with increasing Bragg angle, so that there
are only a few broad peaks at 2θ > 45◦ (not shown). This is expected because this
compound is made of only light chemical elements, with oxygen being the heaviest.
Both these features make the unit cell indexing and the crystal structure determina-
tion even more challenging.

Thus, profile fitting was performed only in the region 10◦ ≤ 2θ ≤ 45◦, which
is shown in Fig. 14.18. This resulted in a total of 24 peaks that are listed in
Table 14.26.77 Two of them at 2θ = 27.255◦ and 27.965◦ (shown in bold in
Table 14.26 and marked with the filled circles in Fig. 14.18) were excluded from
indexing because their intensities are relatively low, and they both rest near the
bases of much stronger peaks. Ab initio indexing of 22 well-resolved peaks using
TREOR90, ITO15, and DICVOL91 resulted in a variety of solutions, two of which

75 P.Y. Zavalij, S. Yang, M.S. Whittingham, Structures of potassium, sodium and lithium
bis(oxalato)borate salts from powder diffraction data. Acta Cryst. B59, 753 (2003).
76 As noted above, correct unit cell may be also confirmed using other methods, such as selected
area electron diffraction or high resolution electron microscopy.
77 Only peaks below 40◦ are listed in the table. All data are available online in the data file
Ch14Ex07 CuKa.pks.



14.11 Ab Initio Indexing Examples 471

Bragg angle, 2θ (deg.)
10 15 20 25 30 35 40 45

In
te

ns
ity

, Y
 (

10
3  

co
un

ts
) 

0

1

2

3

4

5 Li[B(C2O4)2] , Cu Kα radiation

Obs.
Hex.
Orth.

Fig. 14.18 Powder diffraction pattern of Li[B(C2O4)2] collected on a Scintag XDS2000 diffrac-
tometer using CuKα radiation in a step scan mode with Δ2θ = 0.02◦ and counting time 2 s.78 The
three sets of vertical bars illustrate positions of the observed Bragg peaks (top), positions of the
Bragg peaks calculated for an incorrect hexagonal unit cell (middle), and the same, calculated for
a correct orthorhombic unit cell (bottom) with all systematic absences for space group Pnma ex-
cluded. All relevant numerical values are listed in Table 14.26. The filled triangles indicate Bragg
reflections that are extinct (impossible) in space group P63/mmc, and the filled circles mark two
Bragg peaks excluded from the indexing due to heavy overlap and low accuracy.

deserve special attention since both assign indices to every of the 22 peaks and have
distinctly higher figure of merits than the others. These are the hexagonal and or-
thorhombic unit cells listed in Table 14.27. Their volume ratio is 2:1 ratio. The edges
of both unit cells are related as follows:

aorth = chex; borth ∼=
1
2

ahex; corth ∼=
√

3borth ∼=
√

3
2

ahex (14.28)

Considering all the information that we have at this point, we conclude that
both reciprocal lattices are topologically similar or, in other words, that their one-
dimensional projections are identical, which formulates the problem of choice. As
follows from Table 14.27, TREOR indexing yields higher FOM’s for the hexagonal
unit cell, while the M20 FOM from ITO is better for the orthorhombic solution, even
though the ITO application suggests converting the found orthorhombic unit cell to
the hexagonal cell. As a matter of fact, when all 24 peaks are used in the indexing,
ITO also results in a noticeably better FOM for a hexagonal solution, which shows
how important is accuracy in the peak positions.

78 The ASCII data file with diffraction data is available online, file name Ch14Ex07 CuKa.xy.



472 14 Determination and Refinement of the Unit Cell

Table 14.26 Relative integrated intensities (I/I0), Bragg angles (2θ listed for the location of
Cu Kα1 component in the doublet) and full widths at half maximum (FWHM) of Bragg peaks
observed in the range 10◦ ≤ 2θ ≤ 40◦ in the Li[B(C2O4)2] powder diffraction pattern shown in
Fig. 14.18.

I/I0 2θobs,
◦ FWHM,◦ Hexagonal indexinga in P63/mmc Orthorhombic indexinga in Pnma

hkl 2θcalc,
◦ Δ2θ,◦ hkl 2θcalc,

◦ Δ2θ,◦

– 010 6.662
– 110 11.589

350 13.399 0.141 020 13.397 0.002 011, 002 13.397 0.002
90 15.417 0.141 011 15.408 0.008 101 15.408 0.008

– 120 17.770
1,000 19.352 0.150 021 19.343 0.009 111, 102 19.343 0.009

– 030 20.180
171 22.629 0.200 121 22.626 0.002 112 22.626 0.002
580 23.360 0.200 220 23.351 0.009 020, 013 23.351 0.009

– 130 24.320
212 24.578 0.200 031 24.584 −0.006 103 24.584 −0.006
386 27.035 0.200 040 27.035 0.000 022, 004 27.036 −0.001
65 27.255 0.200 Unindexed* 113 27.274 −0.019
20 27.965 0.200 002 27.978 −0.013 200 27.978 −0.013

184 28.129 0.200 131 28.117 0.012 121 28.117 0.012
7 28.808 0.200 012 28.803 0.005 201 28.803 0.005
– 230 29.518

27 30.404 0.219 112 30.391 0.013 210 30.391 0.013
– 041 30.520 122, 104 30.520
– 140 31.073

105 31.162 0.219 022 31.157 0.005 211, 202 31.158 0.004
206 32.750 0.219 231 32.763 −0.013 114 32.764 −0.014
209 33.366 0.219 122 33.362 0.004 212 33.362 0.004

– 050 33.991
111 34.179 0.219 141 34.185 −0.007 123 34.186 −0.008
23 34.763 0.219 032 34.763 0.000 203 34.763 0.000

– 330 35.370
256 36.064 0.219 240 36.042 0.022 031, 024, 015 36.042 0.022
262 36.828 0.219 222 36.776 0.052 220, 213 36.776 0.052

– 051 36.885 −0.057 105 36.886 −0.058
– 132 37.426 221 37.427
– 150 37.997

336 38.814 0.219 241 38.804 0.010 131, 124, 115 38.804 0.010
52 39.321 0.219 042 39.323 −0.002 222, 204 39.323 −0.002

a For both hexagonal and orthorhombic unit cells Bragg angles were calculated using parameters
from TREOR indexing solutions listed in Table 14.27.

Naturally, the hexagonal unit cell was chosen as the best solution, mainly be-
cause it has a higher symmetry and it results in about one possible reflection for
every observed Bragg peak, while the orthorhombic unit cell leads to two or three
possible reflections for every observed peak. We also note here that the first two
selection criteria discussed in Sect. 14.10.4 do not weigh heavily toward any of the
two obtained solutions: first, the difference in the figures of merit is inconclusive
because they depend on the application, and second, both solutions yield reasonable
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Table 14.27 The solution from indexing the powder diffraction pattern of Li[B(C2O4)2] using 22
Bragg peaks listed in Table 14.26.

Unit Cell a (Å) b (Å) c (Å) V (Å3) M20 FN Application

Hexagonala 15.194 6.363 1,272.2 36 64(0.0087, 45) TREOR
15.217 26.320 6.364 2,548.7 22 ITO

Orthorhombicb 6.362 7.598 13.168 636.5 33 51(0.0072, 59) TREOR
6.360 7.593 13.167 635.8 35 ITO
6.361 7.595 13.177 636.6 39 60(0.0063, 59) DICVOL

a This is an orthorhombic C-centered lattice with a = b
√

3 which corresponds to the hexagonal
lattice.
b ITO automatically recommends to convert this solution into a hexagonal unit cell with a = 15.20
Å and c = 6.36 Å.

systematic absences that correspond to commonly occurring space groups. These
are P63/mmc (or P63mc, P3̄1c, and so on) in the hexagonal case, and Pnma or
Pna21 in the orthorhombic case (see Tables 9.6–9.8).

Nevertheless, selecting hexagonal unit cell was only an educated guess that later
was proven to be wrong. All attempts to solve the crystal structure using various
structure solution methods and software in all possible space groups, including the
lowest symmetry P3, failed. In addition, several attempts to obtain single crystals
large enough for unit cell determination were made. However, recrystallization from
a variety of solvents always led to solvated crystals, which turn into the same fine
white powder after the loss of a solvent.79 During attempts to determine the crystal
structure, all models led to a high intensity of the first Bragg peak that is possible in
the hexagonal crystal system (010, see Table 14.26), which in reality is too low to
be observed, thus raising doubts in the correctness of the hexagonal unit cell.

On the other hand, solving crystal structure in the orthorhombic crystal system,
and therefore, confirming the accuracy of the orthorhombic indexing solution, was
only a matter of choosing the right space-group symmetry. It is worth noting that
only real space methods were successful in solving the structure because of a sig-
nificant overlap of Bragg reflections and rapidly decreasing intensities at high Bragg
angles. For more details on selection of space-group symmetry and structure deter-
mination we refer the reader to the original paper, see Footnote 75 on page 470.

14.12 Precise Lattice Parameters and Linear Least Squares

After the powder diffraction pattern has been successfully indexed, the next step is to
establish the unit cell dimensions with the highest possible precision. By combining
(14.2) and (14.3) one can see that the errors in the lattice parameters only depend

79 Unrelated to the subject of this book but an interesting fact is that in this manner crystal struc-
tures of five different solvates was determined. See P.Y. Zavalij, S. Yang, and M.S. Whittingham,
Structural chemistry of new lithium bis(oxalato)borate solvates. Acta Cryst. B60, 716 (2004).
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on the errors in the measured Bragg angles assuming that Miller indices and λ are
known exactly:

f (h,k, l,a,b,c,α,β,γ) = λ/2sinθ(hkl) (14.29)

By differentiating the right hand side of (14.29), we find that the absolute error
in the interplanar distance, σd, is a function of both the error in Bragg angle, σθ,
and the Bragg angle itself:

σd =
λcosθ
2sin2θ

σθ (14.30)

The dependencies of σd on Bragg angle for several constant σθ are shown in
Fig. 14.19, which illustrates that to achieve absolute precision in the lattice parame-
ters, powder diffraction data must be collected at the highest possible Bragg angles.

Ideally, the Bragg angles close to θ = 90◦ (2θ = 180◦) should be available to
claim the precision of the unit cell dimensions equivalent to that of the precision of
the used wavelength. Unfortunately, measurements at 2θ= 180◦ are impossible and
in most commercial powder diffractometers, the highest reachable Bragg angle is
limited by 2θ = 140◦–160◦. Thus, in nearly every instance, all available data are
used to determine lattice parameters using least squares refinement. The use of the
least squares technique is fully justifiable, as it also allows one to refine the most
critical corrections to the observed Bragg angles that arise from the presence of
systematic errors in the experimental data due to sample displacement or zero shift.
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Fig. 14.19 The dependence of the absolute error in the interplanar distance, σd, on Bragg angle
for several different constant errors in the measured Bragg angle when using Cu Kα1 radiation,
λ = 1.540593 Å.
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14.12.1 Linear Least Squares

Assume that we need to find a solution of the system of n simultaneous linear equa-
tions with m unknown parameters. In general form, this system of equations can be
represented as:

a11x1 +a12x2 + . . .+a1mxm = y1

a21x1 +a22x2 + . . .+a2mxm = y2

. . .

an1x1 +an2x2 + . . .+anmxm = yn

(14.31)

In a matrix and vector notation, (14.31) becomes

Ax = y (14.32)

Where,

A =

⎛
⎜⎜⎝

a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . . . . . . . .
an1 an2 . . . anm

⎞
⎟⎟⎠ ; x =

⎛
⎜⎜⎝

x1
x2
. . .
xm

⎞
⎟⎟⎠ ; y =

⎛
⎜⎜⎝

y1
y2
. . .
yn

⎞
⎟⎟⎠ (14.33)

When n < m, (14.31) has an infinite number of solutions with respect to a set of n
unknowns, and each particular solution depends on certain assumptions which were
made about the values of the remaining m−n parameters. When n = m, (14.31) has
one exact solution, which exists only when det(A) �= 0. On the other hand, when
n > m, the solution of (14.31) can be obtained in two fundamentally different ways.

First, it is possible to randomly select m equations and find m parameters, if any,
that exactly satisfy each of the m selected equations. This solution, however, will
likely be far from the best for the remaining n−m equations (e.g., see the varying
lattice parameter determined in this way in Table 14.12).

Second, it is possible to find vector x, which would be the best solution for all
n existing equations using the least squares technique. The least squares solution of
(14.31) is obtained by rearranging it into the following form:

a11x1 +a12x2 + . . .+a1mxm − y1 = ε1

a21x1 +a22x2 + . . .+a2mxm − y2 = ε2

. . .

an1x1 +an2x2 + . . .+anmxm − yn = εn

(14.34)

and then finding the minimum of the following function

Φ(x1,x2, . . .xm) =
n

∑
i=1

ε2
i (14.35)
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The best solution of (14.34) (and (14.31)) is found by calculating partial deriv-
atives of the function defined in (14.35) with respect to x1,x2, . . .,xm and equating
each to zero, which are the conditions of the minimum of Φ(x1,x2, . . .,xm):

∂Φ(x1,x2, . . . ,xm)
∂x1

= 0

∂Φ(x1,x2, . . . ,xm)
∂x2

= 0

. . .

∂Φ(x1,x2, . . . ,xm)
∂xm

= 0

(14.36)

Equation (14.36) has a single solution, if any, since we replaced the system con-
taining n equations and m unknowns ((14.31) and (14.34)) with the system in which
n = m. After calculating partial derivatives, regrouping the coefficients, and rear-
ranging each of the equations, we get the following equivalent of (14.36):

x1

n

∑
i=1

a2
i1 + x2

n

∑
i=1

ai1ai2 + . . .+ xm

n

∑
i=1

ai1aim =
n

∑
i=1

ai1yi

x1

n

∑
i=1

ai2ai1 + x2

n

∑
i=1

a2
i2 + . . .+ xm

n

∑
i=1

ai2aim =
n

∑
i=1

ai2yi

. . .

x1

n

∑
i=1

aimai1 + x2

n

∑
i=1

aimai2 + . . .+ xm

n

∑
i=1

a2
im =

n

∑
i=1

aimyi

(14.37)

The coefficients in the left-hand side of (14.37) are product of the transpose of
matrix A (14.32) and the matrix A itself, and the coefficients in the right-hand side
of (14.37) are the product of the transpose of matrix A and vector y ((14.33)). Thus,
letting AT be the transpose of matrix A

AT =

⎛
⎜⎜⎝

a11 a21 . . . an1
a12 a22 . . . an2
. . . . . . . . . . . .
a1m a2m . . . anm

⎞
⎟⎟⎠ (14.38)

Equation (14.37) can be written in a matrix and vector notation as:

(ATA)x = (ATy) (14.39)

Its solution (i.e., the least squares solution of (14.31)) is found from (14.40),
where (ATA)−1 is the inverse of a square matrix, which is the product of AT and A.

x = (ATA)−1(ATy) (14.40)
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Equations (14.36), (14.37) and (14.39) are identical, and they represent different
notations of the so-called normal equations in the least squares method. Two note-
worthy properties of the elements of the normal equation matrix (ATA) or, which is
the same, the coefficients near the unknowns in normal equations (14.37) are:

– The elements located on the main diagonal of the matrix are always positive, and
– The matrix is symmetrical with respect to the main diagonal.

14.12.2 Precise Lattice Parameters from Linear Least Squares

We now consider the most general form of (14.29), i.e., that relating the unit cell
dimensions, Miller indices, wavelength and Bragg angles in the triclinic crystal
system:

1
V 2 [h2b2c2 sin2 γ+ k2a2c2 sin2β+ l2a2b2 sin2α+2hkabc2(cosαcosβ− cosγ)

+2hlab2c(cosαcosγ− cosβ)+2kla2bc(cosβcosγ− cosα)] = 4sin2 θ/λ 2

(14.41)

Here, V is the volume of the unit cell, which is given as:

V = abc
√

1− cos2α− cos2β− cos2 γ+2cosαcosβcosγ (14.42)

By comparing (14.41) with (14.31), it is easy to see that the linear least squares
technique is not directly applicable in this case, since (14.41) is nonlinear with re-
spect to the unknowns (a, b, c, α, β and γ). When (14.41) is rewritten in reciprocal
space

(h2a∗2 + k2b∗2 + l2c∗2 +2hka∗b∗ cosγ∗ +2hla∗c∗ cosβ∗ +2klb∗c∗ cosα∗)

= 4sin2 θ/λ2

(14.43)
it becomes linear with respect to a different set of the unknowns:

(S11h2 +S22k2 +S33l2 +2S12hk +2S13hl +2S23kl) = 4sin2 θ/λ2 (14.44)

Or,

hTSh = (h k l)

⎛
⎝S11 S12 S13

S12 S22 S23
S13 S23 S33

⎞
⎠

⎛
⎝h

k
l

⎞
⎠ = 4sin2 θ/λ2

where the new parameters, Sij, are defined as follows:
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S11 = a∗2 =
b2c2 sin2 γ

V 2 ; S22 = b∗2 =
a2c2 sin2β

V 2 ; S33 = c∗2 =
a2b2 sin2α

V 2

S12 = a∗b∗ cosγ∗ =
abc2(cosαcosβ− cosγ)

V 2

S13 = a∗c∗ cosβ∗ =
ab2c(cosαcosγ− cosβ)

V 2

S23 = b∗c∗ cosα∗ =
a2bc(cosβcosγ− cosα)

V 2
(14.45)

By comparing (14.44) with (14.31)–(14.33), it is easy to see that matrix A and
vector y are constructed as follows:

A =

⎛
⎜⎜⎜⎝

h2
1 k2

1 l2
1 2h1k1 2h1l1 2k1l1

h2
2 k2

2 l2
2 2h2k2 2h2l2 2k2l2

. . . . . . . . . . . . . . . . . .

h2
n k2

n l2
n 2hnkn 2hnln 2knln

⎞
⎟⎟⎟⎠ (14.46)

y =

⎛
⎜⎜⎜⎝

4sin2 θ1/λ2

4sin2 θ2/λ2

. . .

4sin2 θn/λ2

⎞
⎟⎟⎟⎠ (14.47)

and that the least squares solution according to (14.40) results in a vector

x =

⎛
⎜⎜⎜⎜⎜⎜⎝

S11
S22
S33
S12
S13
S23

⎞
⎟⎟⎟⎟⎟⎟⎠

(14.48)

from which the unit cell dimensions of the direct lattice are calculated using (14.45).
So far, we considered the application of a liner least squares technique in the

case when no systematic error has been present in the observed powder diffraction
data. However, as we already know, in many cases the measured Bragg angles are
affected by a systematic sample displacement or zero-shift error. The first systematic
error affects each data point differently and considering (12.4) (Sect. 12.15), when
a sample displacement error, s, is present in the data, (14.44) becomes

(S11h2 +S22k2 +S33l2 +2S12hk +2S13hl +2S23kl) =
4sin2(θ+

s
R

cosθ)

λ2 (14.49)

In (14.49), R is the radius of the goniometer. The second systematic error – zero
shift – adds a small constant value, δθ0, to each observed Bragg angle, which results
in the following equivalent of (14.44):
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(S11h2 +S22k2 +S33l2 +2S12hk +2S13hl +2S23kl) =
4sin2(θ+δθ0)

λ2 (14.50)

Both (14.49) and (14.50) introduce one additional parameter in the least squares
refinement, that is, sample displacement divided by the goniometer radius, s/R, or
zero shift, δθ0, respectively. Regardless of the fact that the contribution from both
parameters is nonlinear, the linear least squares technique can still be applied after
the following simplifications.

From trigonometry, we know that:

sin(α+β) = sinαcosβ+ cosαsinβ
sin2α = 2sinαcosα (14.51)

Hence,

sin2(θ+ x) = sin2 θcos2 x+ cos2 θsin2 x+
1
2

sin2θsin2x (14.52)

Recall that x, which represents an error in the Bragg angle, is usually quite small,
then cos2 x ∼= 1, sin2 x ∼= 0 and sin2x ∼= 2x. Whence, (14.52) is simplified to:

sin2(θ+ x) ∼= sin2 θ+ xsin2θ (14.53)

By substituting the result obtained in (14.53) into (14.49) and (14.50) they are
transformed into:

(S11h2 +S22k2 +S33l2 +2S12hk +2S13hl +2S23kl)− s
R

4
λ2 cosθsin2θ =

4sin2 θ
λ2

(14.54)
and,

(S11h2 +S22k2 +S33l2 +2S12hk +2S13hl +2S23kl)−δθ0
4
λ2 sin2θ =

4sin2 θ
λ2

(14.55)
Matrix A is then modified to

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2
1 k2

1 l2
1 2h1k1 2h1l1 2k1l1

4cosθ1 sin2θ1

λ2

h2
2 k2

2 l2
2 2h2k2 2h2l2 2k2l2

4cosθ2 sin2θ2

λ2

. . . . . . . . . . . . . . . . . . . . .

h2
n k2

n l2
n 2hnkn 2hnln 2knln

4cosθn sin2θn

λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14.56)

or,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2
1 k2

1 l2
1 2h1k1 2h1l1 2k1l1

4sin2θ1

λ2

h2
2 k2

2 l2
2 2h2k2 2h2l2 2k2l2

4sin2θ2

λ2

. . . . . . . . . . . . . . . . . . . . .

h2
n k2

n l2
n 2hnkn 2hnln 2knln

4sin2θn

λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14.57)
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to account for the sample displacement and zero-shift errors, respectively, and the
least-squares solution produces the following vectors

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11
S22
S33
S12
S13
S23
s/R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14.58)

or

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11
S22
S33
S12
S13
S23
δθ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14.59)

When the symmetry of the material is higher than triclinic, (14.54) and (14.55)
contain fewer unknowns, and the least squares procedure is simplified.

The least squares technique described here assumes that each data point (i.e.,
Bragg peak) is measured with the same experimental error and therefore, equally
contributes to the resulting solution that represents the refined unit cell dimensions
and/or correction for a systematic error, if any. When a realistic estimate of indi-
vidual errors in Bragg angles is available, it is possible to adjust the contributions
from the individual Bragg peaks to reflect higher or lower precision of Bragg angles.
This is realized by introducing individual weights into the calculation of the normal
equations.

Thus, each row of matrix A, each element of vector y (see (14.33)), and each col-
umn of the transpose matrix AT (see (14.38)) is changed by the multiplier that is in-
versely proportional to the square root of the experimental error in the corresponding
experimental data point. Alternatively, the weighted least squares solution may be
expressed as follows:

x = (ATWA)−1(ATWy) (14.60)

where W is the square matrix representing individual weights:

w =

⎛
⎜⎜⎝

w2
1 0 . . . 0

0 w2
2 . . . 0

. . . . . . . . . . . .
0 0 . . . w2

n

⎞
⎟⎟⎠ (14.61)

The standard uncertainties (or standard deviations) for each parameter deter-
mined according to the least squares method are calculated from
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σ(x j) =

√√√√√ (ATWA)−1
j j

n
∑

k=1
wk(Qobs

k −Qcalc
k )2

n−m
, j = 1, . . . ,m (14.62)

Where,

– n is the number of equations (Bragg peaks)
– m is the number of unknown parameters (from 2 to 7, assuming that sample

displacement or zero-shift error is always refined)
– (ATWA)−1

j j is the corresponding diagonal element of the inverse normal equation
matrix

– wk is the corresponding weight, if any, or unity
– (Qobs

k −Qcalc
k ) is the difference between the observed and calculated 1/d2

There are many different standalone software programs available through the
International Union of Crystallography80 or Collaborative Computational Project
No. 1481 web sites in addition to various commercially available least squares util-
ities. We illustrate the least squares refinement of the lattice parameter of the LaB6
compound, which was fully indexed earlier, see Table 14.12.

Least squares refinement of lattice parameter (14.40) assuming unit weights and
using all 20 available Bragg peaks results in a = 4.1599(3) Å. The obtained differ-
ences between the observed and calculated 2θ are shown in Fig. 14.20, and it is quite
obvious that there is a systematic dependence of Δ2θ on the Bragg angle. A similar
behavior is always indicative of a systematic error, namely the presence of zero shift
or sample displacement errors, or a combination of both.

The fact that the differences between the observed and calculated Bragg angles
change sign (Fig. 14.20) is intrinsic to a least squares technique, which simply min-
imizes the function defined in (14.35). As a result, the refined lattice parameter of
LaB6, a = 4.1599(3) Å, is far from its standard value of a = 4.15695(6) Å. When
the sample displacement error has been refined together with the lattice parameter,
this yields a = 4.1583(1) Å and s/R = 0.00632. On the other hand, when zero-shift
error is refined instead of sample displacement, the resultant unit cell dimension
becomes a = 4.1574(1) Å and zero shift δθ0 = 0.078◦. The corresponding correc-
tions of the observed Bragg angles are shown in Fig. 14.20, and the respective sets
of differences between the observed and calculated Bragg angles are depicted in
Fig. 14.21.

It is easy to recognize that the effect of a systematic error has been removed from
the experimental data in each case, since in Fig. 14.21 the differences are distributed
nearly randomly around zero, and they are much smaller when compared to those
in Fig. 14.20. The F20 figures of merit shown in Fig. 14.21 are only different by a
few percent.

However, if one compares the values of the lattice parameter obtained when a dif-
ferent kind of a systematic error was assumed and accounted for in the data, the dif-
ference between the two is statistically significant (4.1583 vs. 4.1574 Å for sample

80 http://www.iucr.org.
81 http://www.ccp14.ac.uk.
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LaB6
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Fig. 14.20 The differences between the observed and calculated Bragg angles after least squares
refinement of the lattice parameter of LaB6 without accounting for the presence of any kind of
systematic error (open circles) using a = 4.1599(3) Å. The dash-dotted line drawn through the
data points is a guide for the eye. The solid line represents corrections of the observed Bragg angles
using the refined in the next step sample displacement error (s/R = 0.00632) and the dashed line
represents a similar correction by using the determined zero shift error (δθ0 = 0.078◦).
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Fig. 14.21 The differences between the observed and calculated Bragg angles after the least
squares refinement of the lattice parameter of LaB6 simultaneously with the zero-shift error (open
circles) or simultaneously with the sample displacement error (filled triangles).
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Fig. 14.22 The behavior of cosθsin2θ (sample displacement, (14.56)) and sin2θ (zero shift,
(14.57)) as functions of Bragg angle. The two functions show similar behavior, especially at low
Bragg angles and therefore, the two parameters strongly correlate with one another when both are
simultaneously included in the least squares refinement.

displacement and zero shift effects, respectively). This is expected, given the differ-
ent contribution from different errors, as seen in Fig. 14.20. Usually, both effects are
present in experimental data. The refinement of two contributions simultaneously is,
however, not feasible due to strong correlations between sample displacement and
zero-shift parameters, as shown in Fig. 14.22.

Considering the resultant unit cell dimensions, it appears that the zero-shift er-
ror has the largest influence on the discussed experimental data, since the refined
lattice parameter (a = 4.1574 Å) is the closest match with the standard value of
a = 4.15695 Å.

Lattice parameters, determined by any of the three indexing programs consid-
ered in this chapter are usually refined using the least squares method. On one hand,
their accuracy is quite satisfactory if the unit cell dimensions are employed in data-
base searches or in full pattern decomposition by using either Le Bail or Pawley
technique (Sect. 15.4), or in Rietveld refinement (Sect. 15.7). Both full profile ap-
proaches result in the highest precision of lattice parameters, which can be achieved
for a specific dataset. On the other hand, lattice parameters refined during the in-
dexing are imprecise because of missed or improperly handled systematic errors.
Further, only a limited subset of Bragg reflections, usually at low angles, and there-
fore, most affected by various systematic errors, is employed during ab initio index-
ing. When precise unit cell dimensions are required, their accuracy after automatic
indexing can be improved by including additional Bragg reflections into the least
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squares procedure without involving full profile methods. The entire pattern should
be indexed as described in Sect. 14.3, and all resolved Bragg peaks should be in-
cluded in the least squares minimization.

Considering the pattern of (CH3NH3)2Mo7O22, which is shown in Fig. 14.15, its
complexity is due to the relatively large unit cell and monoclinic symmetry coupled
with a typical resolution of a conventional laboratory diffractometer. As a result, a
substantial Bragg peak overlap is observed, especially at high angles. The first 30
resolved peaks below 2θ = 30◦ were indexed as shown in Sect. 14.11.2. The re-
maining 57 resolvable Bragg peaks between 30◦ and 51◦2θ were indexed manually,
using a solution with the highest figure of merit from Table 14.22. A least squares
refinement employing all 87 Bragg peaks resulted in the following lattice parame-
ters:

a = 23.0875(9), b = 5.5191(5), c = 19.5789(9) Å, β = 122.924(3)◦

The differences between the observed and calculated Bragg angles are shown in
Fig. 14.23 as open squares. They clearly indicate the presence of a systematic error.
Moreover, several differences are far away from the gradually varying 2θobs–2θcalc
behavior. These peaks are marked with large circles in the figure, and all of them
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Fig. 14.23 Differences between the observed and calculated Bragg angles after the least squares
refinement of lattice parameters of the monoclinic (CH3NH3)2Mo7O22. The open squares and
filled triangles correspond to refinements without and with the sample displacement correction, re-
spectively. The data points enclosed inside large circles were excluded from the second refinement
due to the low intensity, strong overlap and, therefore, low accuracy of the corresponding observed
Bragg angles.
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are weak and/or are heavily overlapped with strong neighboring Bragg reflections.
A second least squares refinement of the lattice parameters together with sample
displacement optimization after excluding the five marked reflections produces

a = 23.0641(8), b = 5.5131(2), c = 19.5601(6)Å, β = 122.930(1)◦

and sample displacement parameter, s/R =−0.00042(1). Much lower discrepancies
between the observed and calculated 2θ are noteworthy.

Standard uncertainties of lattice parameters are also reduced when the sample
displacement was accounted for. Adding more Bragg reflections, that is, those that
are located above 2θ = 51◦, produces even lower standard deviations, but the re-
sultant unit cell dimensions become biased by subjective assignments of Miller in-
dices due to severe overlapping, which causes low accuracy in the observed peak
positions. Ambiguities occur despite narrow peaks, which have full widths at half
maximum under ∼0.1◦ of 2θ.82

14.13 Concluding Remarks

The reliability and precision of the established unit cell dimensions are not only
functions of the quality of the collected experimental data, but they also depend on
the presence of measurable diffraction peaks in certain ranges of Bragg angles. As
illustrated in Fig. 14.24, the availability of low Bragg angle reflections is critical
for the successful assignment of indices. High Bragg angle peaks are required to
determine lattice parameters with the greatest possible precision. In reality, the en-
tire range of Bragg angles is used in routine least squares refinements of the unit cell
dimensions, especially when the data are affected by small systematic instrumental
and specimen-related errors.

Hence, when only lattice parameters are of concern and given the choice of
available X-ray energies, medium to long wavelengths, that is, Cu, Fe, Co, or Cr
anodes, should be employed when using conventional X-ray sources. The range of
wavelengths from ∼1.5 to ∼2.3 Å ensures that both low and high Bragg angle re-
flections are measured with adequate accuracy, thus resulting in the most precise
unit cell dimensions.

14.14 Additional Reading

1. P.-E. Werner, Autoindexing, in: Structure determination from powder diffraction data. IUCr
monographs on crystallography 13. W.I.F. David, K. Shankland, L.B. McCusker, and Ch. Baer-
locher, Eds., Oxford University Press, Oxford (2002).

2. H. Lipson and H. Steeple, Interpretation of X-ray powder diffraction patterns, MacMillan, Lon-
don (1970).

82 The list of 87 resolved Bragg peaks is found in the ASCII data file Ch14Ex08 CuKa.pks online.
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U3Ni6Si2, Cu Kα
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Fig. 14.24 The X-ray powder diffraction pattern of U3Ni6Si2 (also see Fig. 14.10), schematically
illustrating regions, which are critical for successful indexing and precise unit cell dimensions. The
boundaries of both the low and high Bragg angle regions are diffuse and they vary from one pattern
to another.

3. P.-E. Werner, L. Eriksson, and M. Westdahl, A semi-exhaustive trial-and-error powder indexing
program for all symmetries, J. Appl. Cryst. 18, 367 (1985).

4. A. Boutlif and D. Louër, Indexing of powder diffraction patterns for low symmetry lattices by
the successive dichotomy method, J. Appl. Cryst. 24, 987 (1991).

5. J.W. Visser, A fully automatic program for finding the unit cell from powder data, J. Appl.
Cryst. 2, 89 (1969).

6. E. Prince and P.T. Boggs, Least squares, in: International Tables for Crystallography, Vol. C,
Second Edition, Kluwer Academic Publishers, Boston, p.672 (1999) and references therein.

7. J. Bergmann, A. Le Bail, R. Shirley, V. Zlokazov. Renewed interest in powder diffraction data
indexing. Z. Kristallogr. 219, 783 (2004).

8. R. Shirley, Overview of powder-indexing program algorithms (history and strengths and weak-
nesses). IUCr Comput. Comm. Newsl. 2, 48 (2003).

14.15 Problems

1. Consider the X-ray powder diffraction pattern of LaNi11.6Ge1.4 shown in
Fig. 14.25 and found in the file Ch14Pr01 CuKa.xy online. A total of 27 indi-
vidual Bragg peaks are measurable up to 2θ = 91◦. They are listed in Table 14.28,
and also found in the file Ch14Pr01 CuKa.pks online. Peak positions, intensi-
ties, and full widths at half maximum have been determined using a profile-fitting



14.15 Problems 487

LaNi11.6Ge1.4, Cu Kα
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Fig. 14.25 The X-ray powder diffraction pattern of LaNi11.6Ge1.4 collected on an HZG-4a powder
diffractometer using Cu Kα radiation. Numerical data are available in the file Ch14Pr01 CuKa.xy
online. (Data courtesy of Dr. L.G. Akselrud).

Table 14.28 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of Bragg peaks observed in the LaNi11.6Ge1.4 powder diffraction pattern collected using
Cu Kα radiation in the range 11 ≤ 2θ ≤ 91◦ (see Fig. 14.25). Numerical data are found in the file
Ch14Pr01 CuKa.pks.

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

33 15.561 0.165 47 70.133 0.119
31 22.099 0.128 25 71.796 0.130
87 27.131 0.122 11 72.343 0.118
80 31.423 0.116 23 74.542 0.119

487 35.255 0.104 127 76.172 0.132
847 38.745 0.100 4 76.691 0.132

1,000 47.232 0.114 3 78.887 0.132
191 47.945 0.114 97 80.467 0.128
228 50.716 0.105 147 83.114 0.141

86 55.950 0.116 32 85.233 0.138
172 58.455 0.117 158 87.336 0.151
194 60.890 0.118 65 88.909 0.157

90 65.596 0.113 45 89.434 0.137
172 67.882 0.118

a Bragg angles are listed for the location of the Kα1 component in the
doublet, λ = 1.540593 Å.
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procedure. The observed Bragg angles are listed for the Kα1 component in the
doublet, λ = 1.540593 Å.

(a) Using a spreadsheet, perform indexing of the powder diffraction pattern assum-
ing cubic crystal system.

(b) Analyze the combinations of Miller indices of the observed reflections, and de-
termine possible space groups of the material.

(c) Using the average value of the lattice parameter, calculate both FN and M20
figures of merit for your indexing result. Is the determined unit cell realistic?

(d) Perform least squares refinement of the unit cell parameter using (14.40) and
a spreadsheet (do not use any freely or commercially available software). Note
that the normal equation matrix for the case of a single parameter is a single
number.

2. Consider the X-ray powder diffraction pattern of CeRhGe3 shown in Fig. 14.26
and found in the file Ch14Pr02 MoKa.xy online. A total of 55 individual Bragg
peaks are measurable up to 2θ = 46.5◦ and these are listed in Table 14.29 and also
found in the file Ch14Pr02 MoKa.pks online. Peak positions, intensities, and full
widths at half maximum have been determined using a profile fitting procedure.
The observed Bragg angles are listed for the Kα1 component in the doublet, λ =
0.709317 Å.

CeRhGe3, Mo Kα
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Fig. 14.26 The X-ray powder diffraction pattern of CeRhGe3 collected on a Rigaku TTRAX ro-
tating anode powder diffractometer using Mo Kα radiation. Numerical data are available in the file
Ch14Pr02 MoKa.xy online.
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Table 14.29 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of Bragg peaks observed in the CeRhGe3 powder diffraction pattern collected using Mo
Kα radiation in the range 7.5 ≤ 2θ ≤ 46.5◦ (see Fig. 14.26). Numerical data are found in the file
Ch14Pr02 MoKa.pks.

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

5 8.100 0.091 9 35.507 0.071
110 10.091 0.073 49 35.654 0.071
270 13.086 0.068 112 36.055 0.070
789 15.303 0.070 10 36.288 0.078

1,000 15.413 0.064 92 37.633 0.067
115 16.245 0.065 81 37.997 0.073
774 18.555 0.069 63 38.316 0.070

4 20.283 0.065 129 38.737 0.074
269 20.928 0.065 4 39.060 0.061
32 21.172 0.065 64 39.776 0.070

227 22.399 0.064 10 40.005 0.061
418 24.143 0.065 14 40.483 0.071
13 24.483 0.085 81 40.848 0.078

157 24.766 0.073 41 40.888 0.071
303 26.362 0.066 23 41.236 0.072
206 27.866 0.071 1 41.379 0.074

5 28.296 0.058 113 42.270 0.074
200 29.249 0.067 47 42.599 0.082
60 29.547 0.075 77 42.893 0.075
54 30.167 0.075 20 43.446 0.076
87 30.625 0.069 22 43.606 0.081

301 30.682 0.074 43 44.232 0.074
18 30.905 0.070 6 44.758 0.072
76 31.129 0.068 20 44.883 0.073
24 32.844 0.070 5 45.413 0.080

120 33.905 0.068 31 45.573 0.078
9 34.057 0.090 4 45.721 0.087

66 34.872 0.072

a Bragg angles are listed for the location of the Kα1 component in the doublet,
λ = 0.709317 Å.

(a) Using TREOR, ITO, and DICVOL perform indexing of the powder diffraction
pattern. Make sure that you obtain a solution in each of the three programs.

(b) Analyze the combinations of Miller indices of the observed Bragg reflections
and determine possible space groups describing symmetry of the material.

(c) Perform least squares refinement of the unit cell dimensions using all available
data without refining any kind of a systematic error.83 Analyze the differences
between the observed and calculated 2θ and decide whether the refinement of
a zero shift or sample displacement error is warranted. If it is, refine lattice
parameters together with a zero-shift or sample-displacement error.

83 If you do not have a preferred least squares refinement software you may download multiple
programs through IUCr or CCP14 Web sites at http://www.iucr.org or http://www.ccp14.ac.uk,
respectively. One of the simplest to use program, which also enables one to refine a zero shift
parameter, is the UNITCELL.
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SrSi2, Mo Kα
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Fig. 14.27 The X-ray powder diffraction pattern of SrSi2 collected on a Rigaku TTRAX rotat-
ing anode powder diffractometer using Mo Kα radiation. Numerical data are available in the file
Ch14Pr03 MoKa.xy online.

Table 14.30 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of Bragg peaks observed in the powder diffraction pattern of SrSi2 collected using Mo
Kα radiation in the range 8◦ ≤ 2θ ≤ 33◦ (see Fig. 14.27). Numerical data are found in the file
Ch14Pr03 MoKa.pks.

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

80 8.872 0.091 396 23.484 0.079
38 10.851 0.080 101 25.128 0.084

1,000 13.999 0.080 57 25.912 0.080
626 15.337 0.081 72 26.672 0.080
20 17.713 0.081 114 27.418 0.076
64 18.794 0.080 200 28.848 0.081
29 19.815 0.079 34 29.540 0.079

203 20.791 0.081 12 31.533 0.081
54 21.724 0.076 104 32.170 0.077

a Bragg angles are listed for the location of the Kα1 component in the doublet,
λ = 0.709317 Å.

3. Consider the X-ray powder diffraction pattern of SrSi2 shown in Fig. 14.27 and
found in the file Ch14Pr03 MoKa.xy online. A total of 20 individual Bragg peaks
are measurable up to 2θ = 33◦. They are listed in Table 14.30 and also found in
the file Ch14Pr03 MoKa.pks online. Peak positions, intensities, and full widths at
half maximum have been determined using a profile fitting procedure. The observed
Bragg angles are listed for the Kα1 component in the doublet, λ = 0.709317 Å.
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Li2Sn(OH)6, Cu Kα
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Fig. 14.28 The X-ray powder diffraction pattern of Li2Sn(OH)6 collected on a Scintag
XDS2000 powder diffractometer using Cu Kα radiation. Numerical data are available in the file
Ch14Pr04 CuKa.xy online.

(a) Conduct ab initio indexing of the powder diffraction pattern manually, i.e., using
a spreadsheet rather than any kind of crystallographic software. Compute the FN
and M20 figures of merit and discuss both the probability of the determined unit
cell and the accuracy of the observed Bragg angles.

(b) Now, perform the indexing of the same pattern using TREOR, ITO, and
DICVOL. Make sure that you obtain a solution in each of the three programs.

(c) Analyze the combinations of Miller indices of the observed reflections and de-
termine possible space groups, which characterize the symmetry of the material.

4. Consider the X-ray powder diffraction pattern of Li2Sn(OH)6 shown in Fig. 14.28
and found in the file Ch14Pr04 CuKa.xy online. A total of 38 individual Bragg
peaks are measurable up to 2θ = 51◦ and these are listed in Table 14.31. The
values in Table 14.31 have been corrected for the sample displacement error.
All 88 (uncorrected) peaks observed below 2θ = 71◦ can be found in the file
Ch14Pr04 CuKa.pks online. Peak positions (listed for the Kα1 component in the
doublet, λ = 1.540593 Å), intensities, and full widths at half maximum have been
determined using a profile fitting procedure.

(a) Using data from Table 14.31 and TREOR, ITO, and DICVOL, perform indexing
of the powder diffraction pattern. Try to obtain solution in each of the three
programs.

(b) Analyze the observed Miller indices and determine possible space groups of the
material.
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Table 14.31 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of Bragg peaks observed in the powder diffraction pattern of Li2Sn(OH)6 collected using
Cu Kα radiation in the range 18 ≤ 2θ≤ 51◦ (see Fig. 14.28). Numerical data are found in the file
Ch14Pr04 CuKa.pks.

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

197 18.802 0.096 18 38.990 0.069
1,000 19.041 0.108 47 39.070 0.069

288 19.213 0.107 193 39.428 0.069
150 20.740 0.090 29 39.503 0.069
337 23.916 0.083 96 41.137 0.075

1 25.361 0.083 1 41.721 0.075
344 29.541 0.054 19 42.211 0.075
334 32.114 0.074 3 42.565 0.075

18 33.143 0.074 1 43.545 0.075
103 33.478 0.074 7 42.508 0.075

12 34.576 0.074 158 44.405 0.063
1 34.980 0.074 79 46.520 0.076

28 35.689 0.074 33 46.825 0.076
55 36.275 0.074 36 48.045 0.076
16 37.620 0.069 106 48.948 0.076

105 38.141 0.069 3 49.132 0.076
63 38.375 0.069 64 49.489 0.076
83 38.589 0.069 23 49.981 0.076
9 38.845 0.069 26 50.517 0.076

a Bragg angles are listed for the location of the Cu Kα1 component in the
doublet, λ = 1.540593 Å. Peak positions are already corrected for the sample
shift −0.15mm assuming goniometer radius of 250 mm.

(c) Perform the least squares refinement of the unit cell dimensions using all avail-
able data (file Ch14Pr04 CuKa.pks online) without refining any kind of a sys-
tematic error, and then refine lattice parameters together with a zero-shift or a
sample-displacement error.

5. Consider the X-ray powder diffraction pattern of tea2Mo6O19 (tea is tetraethy-
lammonium, [N(C2H5)4]+), which is shown in Fig. 14.29 and found in the file
Ch14Pr05 CuKa.xy online. A total of 44 individual Bragg peaks are measurable
up to 2θ = 49.5◦ and these are listed in Table 14.32 and also found in the file
Ch14Pr05 CuKa.pks online. Peak positions, intensities, and full widths at half
maximum have been determined using a profile fitting procedure. The observed
Bragg angles are listed for the Cu Kα1 component in the doublet, λ = 1.540593 Å.

(a) Using TREOR, ITO, and DICVOL perform ab initio indexing of the powder
diffraction pattern. Try to obtain solution in each of the three programs. Figure
out a systematic error using different orders of the same reflections. Indexing
hint: the unit cell is relatively large, therefore, increase maximum volume if no
acceptable solution is found, and use only 20 lowest Bragg angle peaks.

(b) Analyze the combinations of Miller indices of the observed Bragg reflections
and determine possible space groups describing symmetry of the material.
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Fig. 14.29 The X-ray powder diffraction pattern of tea2Mo6O19 collected on a Scintag XDS-
2000 powder diffractometer using Cu Kα radiation. Numerical data are available in the file
Ch14Pr05 CuKa.xy online.

Table 14.32 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of Bragg peaks observed in the tea2Mo6O19 powder diffraction pattern collected using
Cu Kα radiation in the range 10◦ ≤ 2θ ≤ 49.5◦ (see Fig. 14.29). Numerical data are found in the
file Ch14Pr05 CuKa.pks.

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

1,000 10.241 0.085 52 35.282 0.075
182 11.573 0.070 6 35.425 0.075

65 12.376 0.073 24 35.567 0.075
30 16.408 0.076 24 36.419 0.075
30 16.986 0.076 24 37.259 0.075
4 19.393 0.050 4 37.531 0.075

163 20.615 0.074 41 37.798 0.075
14 22.217 0.074 16 39.282 0.071
20 23.297 0.074 19 39.667 0.071
17 24.933 0.074 8 40.316 0.071
73 25.523 0.074 5 41.842 0.082

155 26.286 0.074 9 41.972 0.082
6 26.479 0.074 55 42.355 0.082

22 26.851 0.074 4 42.747 0.082
3 28.138 0.074 3 43.698 0.082

78 28.991 0.074 9 43.824 0.082
13 29.842 0.074 24 45.242 0.081
28 30.004 0.074 6 45.725 0.081
20 30.508 0.074 15 47.671 0.081
45 31.153 0.074 3 48.911 0.081
32 32.427 0.074 7 49.244 0.081
2 34.830 0.075 5 49.357 0.081

a Bragg angles are listed for the location of the Cu Kα1 component in the
doublet, λ = 1.540593 Å.



494 14 Determination and Refinement of the Unit Cell

Bragg angle, 2θ (deg.)

10 20 30 40 50 60 70

In
te

ns
ity

, Y
 (

10
3  

co
un

ts
) 

0

1

2

3

4

5

6

7
MnV2O5, Cu Kα

Fig. 14.30 The X-ray powder diffraction pattern of MnV2O5 collected on a Scintag XDS2000
powder diffractometer using Cu Kα radiation. Numerical data are available in the file
Ch14Pr06 CuKa.xy online.

(c) Perform the least squares refinement of the unit cell dimensions using all avail-
able data without refining any kind of a systematic error. Analyze the differences
between the observed and calculated 2θ and decide whether the refinement of
zero-shift- or sample-displacement error is warranted. If it is, refine lattice para-
meters together with a zero-shift- or a sample-displacement error.

6. Consider the X-ray powder diffraction pattern of MnV2O5 shown in Fig. 14.30
and found in the file Ch14Pr06 CuKa.xy online. A total of 53 individual Bragg
peaks are measurable up to 2θ = 62◦ and these are listed in Table 14.33 and
also found in the file Ch14Pr06 CuKa.pks online. Peak positions, intensities, and
full widths at half maximum have been determined using a profile-fitting proce-
dure. The observed Bragg angles are listed for the Kα1 component in the doublet,
λ = 1.540593 Å.

(a) Using TREOR, ITO, and DICVOL perform ab initio indexing of the powder
diffraction pattern. Try to obtain solution in each of the three programs.

(b) Analyze the combinations of Miller indices of all observed Bragg reflections
and determine possible space groups describing symmetry of the material.

(c) Perform least squares refinement of the unit cell dimensions using all available
data without refining any kind of a systematic error. Analyze the differences
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Table 14.33 Relative integrated intensities (I/I0), Bragg angles and full widths at half maximum
(FWHM) of Bragg peaks observed in the MnV2O5 powder diffraction pattern collected using
Cu Kα radiation in the range 12◦ ≤ 2θ ≤ 62◦ (see Fig. 14.30). Numerical data are found in the
file Ch14Pr06 CuKa.pks.

I/I0 2θ (deg)a FWHM (deg) I/I0 2θ (deg)a FWHM (deg)

36 12.595 0.062 82 47.584 0.123
261 15.710 0.124 363 47.828 0.123
681 18.152 0.113 107 48.546 0.123
281 19.801 0.109 125 49.100 0.123
519 24.091 0.113 464 49.335 0.123
307 25.367 0.113 106 49.720 0.123
31 26.049 0.113 484 50.890 0.123

592 27.630 0.113 10 51.336 0.123
1,000 28.520 0.113 28 52.091 0.123

988 29.972 0.113 88 52.774 0.123
829 30.912 0.113 13 53.593 0.123
443 31.715 0.113 51 54.474 0.123
578 31.935 0.113 23 55.132 0.123
172 34.542 0.111 29 55.407 0.123
786 34.856 0.111 320 55.983 0.123
78 35.778 0.111 63 57.063 0.131
51 36.788 0.111 182 57.339 0.131

229 37.673 0.111 35 57.698 0.131
34 38.157 0.111 41 57.965 0.131
27 39.268 0.152 325 58.526 0.131

136 40.215 0.152 116 59.021 0.131
456 41.035 0.152 296 59.156 0.131
314 42.378 0.152 124 59.367 0.131
40 44.182 0.126 148 60.186 0.131
63 44.630 0.126 78 61.212 0.131

123 44.877 0.126 15 61.610 0.131
123 45.631 0.126

a Bragg angles are listed for the location of the Cu Kα1 component in the doublet,
λ = 1.540593 Å.

between the observed and calculated 2θ and decide whether the data are affected
by a zero-shift or a sample-displacement error. If a systematic error is substan-
tial, refine lattice parameters together with a zero shift or a sample displacement
error.



Chapter 15
Solving Crystal Structure from Powder
Diffraction Data

Assuming that both the crystal system, that is, the “powder” Laue class, and lattice
parameters of a material have been established, the next step to be undertaken is the
solution of its crystal structure to find the distribution of atoms in the unit cell. The
problem is generally far from trivial, and many structure solutions in powder dif-
fraction remain unique, yet all of them have much in common because they connect
reciprocal and direct spaces, i.e., a powder pattern and a distribution of the electron
or nuclear density in a crystal lattice. Although traveling a structure determination
path in a powder diffraction vehicle is nothing like cruising down an interstate in a
latest model Cadillac, knowing where to enter, how to proceed, and where and when
to exit is equally vital. Familiarity with crystallographic features of related materials
along with basic chemical and physical properties of the material in question, such
as probable oxidation and coordination states, together with the expected connec-
tivity of atoms and the shortest interatomic distances is highly desirable and is often
required to complete the journey.

In this chapter we examine some practical applications of the theory of kine-
matical diffraction to solving crystal structures from powder diffraction data. When
considering several rational examples in reciprocal space, we implicitly assume that
the crystal structure of each sample is unknown, and that it must be solved based
solely on the information that can be obtained directly from a powder diffraction ex-
periment and from a few other, quite basic properties of a polycrystalline material.
The solution of a number of crystal structures in direct space is based on the earlier-
known structural data and supported by the results of powder diffraction analysis,
such as unit cell dimensions and symmetry.

15.1 Ab Initio Methods of Structure Solution

The crystal structure solving process (Fig. 15.1) usually begins with analyzing sys-
tematic absences to find the space-group symmetry of a material or at least to iden-
tify all probable space groups, if the corresponding diffraction class combines more
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Preliminary processing:
2θj, Ij

Indexing:
hj, kj, ij, a, b, c, a, b, g 

Systematic absences:
diffraction class

Gravimetric density:
unit cell content

Full pattern decomposition:
hj, kj, lj, Ijobs, |Fj

obs|

Direct space approaches 

Reciprocal space approaches 

Model Phase
angles

Other Fourier

Choose
Space group symmetry

Suitable
model

Rietveld

No

Yes

Fig. 15.1 The flowchart illustrating crystal structure determination from powder diffraction data.
Preliminary processing and indexing are described in Chaps. 13 and 14, respectively, and have
been assumed accomplished at an earlier stage.

than one group (see Sects. 9.3 and 9.4). The next step requires determining the con-
tent of the unit cell, that is, one must establish or estimate how many atoms of each
kind, molecules or groups of atoms are present in one unit cell. In some cases, it is
possible to narrow the space group selection based on this simple information, espe-
cially when the multiplicities of the site positions are high (e.g., in high symmetry
groups) and a site with the lowest multiplicity still places more atoms of a given
type than necessary inside the unit cell.

Once the content of the unit cell has been established, a model of the crystal
structure should be created using either direct or reciprocal space techniques, or a
combination of both, known as dual-space methods. Direct space approaches do
not mandate immediate use of the observed integrated intensities, while reciprocal
space methods are based on them.

15.1.1 Conventional Reciprocal Space Methods

In any of the reciprocal space methods, which are based exclusively on the use of the
observed structure factors, the powder diffraction pattern must be deconvoluted and
the integrated intensities of all, or as many as possible, individual Bragg reflections
determined with a maximum precision. Only then Patterson or direct phase angle
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determination techniques may be employed to create a partial or complete struc-
tural model. Theoretical background supporting these two methods was reviewed in
Sect. 10.2.

The Patterson technique is often called the heavy-atom method because it works
best when a few atoms in the unit cell are markedly heavier than the others and,
therefore, have much stronger scattering ability in X-ray diffraction. Squared struc-
ture amplitudes are employed as coefficients in the Fourier transformation, and the
resulting Patterson map yields a distribution of the interatomic vectors in the unit
cell. A structure model is then obtained in direct space by analyzing the Patterson
function. Direct-phase- determination methods are based on generating probable
phases that were lost during the diffraction experiment. Observed structure ampli-
tudes which have been normalized are employed together with computed phases in
the Fourier transformation, yielding the so-called E-maps, which contain direct im-
ages of the electron density distribution, where maxima correspond to positions of
atoms in the unit cell.

Currently, Patterson and direct methods are the most frequently employed “clas-
sical” structure-solution approaches. The direct-phase-determination methods are
especially successful in solving structures from single crystal data, but their use in
powder diffraction increases progressively as the quality of powder data improves,
better deconvolution techniques are developed and more precise individual structure
factors become available.

15.1.2 Conventional Direct Space Modeling

As an example of a direct-space approach, consider a material, which is an inter-
metallic compound. Many intermetallics form series of closely related structures,
the so-called isostructural compounds, where the coordinates of atoms in the unit
cell remain nearly identical and only the distribution of different kinds of atoms
varies among available crystallographic sites. If this is the case, then the crystal
structure may be solved via a comparison with known structure types, by search-
ing for matching symmetry, lattice centering, unit cell contents including chemical
similarity of the components, and analogous relationships among the unit cell di-
mensions. Another example is an organic compound with the well-known configu-
ration of its molecule. In some cases, it may be relatively easy to model the packing
of the identical molecules in the unit cell, and perhaps, optimize their positions,
orientations and, if required, conformations by using energy minimization or other
principles.

There are many ways to build a model of the crystal structure without first using
the intensities of individual Bragg reflections, which are often hidden in powder dif-
fraction due to partial or complete overlapping. Most of the direct-space approaches
are, in effect, trial-and-error methods and they include some or all of the following
components:

– Obtaining a structural model from the analysis of potentially isostructural
compounds with partially or completely different chemical composition but
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identical or similar stoichiometry. The search for isostructural compounds may
be conducted using a digitized powder pattern, unit cell dimensions, stoichiom-
etry, and/or other suitable parameters.1,2

– Obtaining a partial structural model from known similar or closely related
compounds, for example, those with an identical framework or layers. Similar
structures are usually found from close relationships among all or some unit cell
dimensions. For example, layered intercalates with the same type of the host
layer should have two similar unit cell dimensions.3

– When structures are simple or building blocks are known, geometrical model-
ing of a trial structure or of several possible structures can be performed (e.g.,
modeling of zeolites from polyhedra or building blocks that are more complex).
The resulting model may be further optimized or directly tested by using powder
diffraction data.4

– Direct-space modeling may be an especially powerful tool for intermetallic and
related structures, many of which are derived from close packing of incompress-
ible spheres. Thus, when positions of large atoms in the unit cell are known, the
smaller atoms will likely occupy voids of sufficient size.

Obviously, trial-and-error techniques require some, and often extensive, chemi-
cal, crystallographic, and physical knowledge about a specific class of materials in
addition to the availability of a structural database and some experience in structural
analysis.

15.1.3 Unconventional Direct, Reciprocal, and Dual
Space Methods

No matter how advanced, every numerical data processing technique has intrinsic
limitations, especially when the complexity of the data increases, or when the re-
quired information is partially missing, as for example, in single crystal diffraction
from macromolecules and proteins or in powder diffraction from conventional ma-
terials when the unit cell volume is large and/or when the symmetry is low. Poor
crystallinity and an excess of weakly scattering elements in macromolecular com-
pounds on one side and heavy Bragg reflections overlaps on the other, affect both the
quality and quantity of the available diffraction data and therefore cause problems in

1 Five examples of using the ICSD database in solving crystal structure by structural analogy are
discussed in: J.A. Kaduk, Use of the Inorganic Crystal Structure Database as a problem solving
tool, Acta Cryst. B58, 370 (2002).
2 An example of deriving the crystal structure of Mn7(OH)3(VO4)4 from the isostructural
Zn7(OH)3(SO4)(VO4)3 found by comparing unit cell dimensions while looking for identical sym-
metry is given in Chap. 23.
3 Chapter 22 describes details of solving the crystal structure of a layered intercalated compound
– methylammonium heptamolybdate – by analogy with a thallium compound.
4 An example of solving the crystal structure of the monoclinic Gd5Si2Ge2 based on the known
crystal structure of the orthorhombic Gd5Ge4 is found in Chap. 19.
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both cases that are similar in many ways. As a result, the conventional phase-angle-
determination methods may become, and often turn out to be ineffective.

Therefore, novel techniques potentially applicable to solving crystal structures
are under continuous testing and development. A recent collective monograph on
the structure determination from powder diffraction data provides an excellent dis-
cussion of the problem and introduces different approaches that may be used in the
structure solution.5 Topical updates regarding these fast-developing methods can be
found in latest reviews by David and Shankland,6 and Černý and Favre-Nicolin.7 In
this chapter, unconventional structure solution methods are only briefly reviewed.
These are: the genetic algorithm, maximum entropy, maximum likelihood, and sim-
ulated annealing (or parallel tempering) methods.

The direct-space methods based on global optimization8 generate the initial
model randomly using Monte Carlo approach (see Fig. 15.2), or sampling based on
the Boltzmann distribution, which is also known as the reverse Monte Carlo method.
Optimization that follows is conducted to satisfy the so-called cost function (one or
several), which in this case, is a powder diffraction pattern, either a whole profile or

a b c d e f g h
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Random shots Algorithms Outcome???

Fig. 15.2 The Monte Carlo method can be illustrated as a game of battleship. Assume that the
unknown location of a four-dot battleship on the left represents a structure to be found. First a
player makes some random shots (white circles) unit the ship is hit once, shown as a black circle.
Next the player applies algorithms (i.e., a battleship is in the vertical or horizontal direction).
Finally, based on the outcome of the random sampling and the algorithm, the player determines
the location of the other player’s ship, thus solving the structure.9

5 Structure determination from powder diffraction data. IUCr monographs on crystallography 13.
W. I. F. David, K. Shankland, L.B. McCusker, and Ch. Baerlocher, Eds., Oxford University Press,
Oxford, New York (2002).
6 W. I. F. David and K. Shankland. Structure determination from powder diffraction data. Acta
Cryst. A64, 52 (2008).
7 R. Černý and V. Favre-Nicolin, Direct space methods of structure determination from powder
diffraction: principles, guidelines and perspectives. Z. Kristallogr. 222, 105 (2007).
8 More details about the global optimization method and its various algorithms can be found
at A. Neumaier’s web page http://www.mat.univie.ac.at/∼neum/glopt.html, and in a free e-book
T. Weise. Global optimization algorithms – theory and application. Second edition (2008), at
http://www.it-weise.de/projects/book.pdf.
9 The figure and the caption are adopted with modifications from http://en.wikipedia.org/
wiki/Monte Carlo method.
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extracted integrated intensities, or simply the difference between the observed and
calculated patterns expressed as Rp or RB (see (15.19) and (15.21), respectively, in
Sect. 15.6.2 for the definition of both parameters). Other cost functions, such as po-
tential energy, atomic coordination including bond valence sum10, Van der Waals
distances, and others can be used in addition to the diffraction data.7 As a matter
of fact, the direct-space optimization can be performed even without the diffrac-
tion data, which allows predicting the crystal structure by using optimal geometry
and/or minimum energy as cost functions, while varying the unit cell parameters and
the atomic coordinates.11 Moreover, these methods can be, and are used for ab ini-
tio structure determination of low crystallinity materials, for example, nanoclusters,
using a pair distribution function.12

Genetic algorithm is the direct-space-optimization method based on the evolu-
tion principle, in which only the members that fit best into the environment survive.
The improved subsequent generation is obtained by considering the current state
of a complex system and events that are equivalent to mating, mutation, and nat-
ural selection. In powder diffraction, the fit is defined as profile residual, RP (see
Sect. 15.6.2). The system, represented by a crystal structure, is split into fragments;
each “survives” or “dies,” depending on how it affects the fit (the cost function). In
addition to structure solution,13 this method can be, and has been applied to unit cell
determination from powder data (also see Sect. 14.8.1).14 Another example is the
application of the genetic algorithm method to solving protein structures by decon-
voluting a Patterson function.15

Maximum entropy method is a powerful numerical technique, which is based
on Bayesian estimation theory and is often applied to derive the most probable
values of missing data. For example, rolling a dice with six faces numbered 1
through 6 gives equal probability to see each face up, pi = 1/6, assuming a com-
pletely random distribution. In this case, the average value of multiple observations
is (1+2+3+4+5+6)/6 = 3.5. The problem is in finding the probability of events
(faces up) when the distribution is not random and only the average is known, for
example, when the average is 2.5. The maximum entropy method results in the
highest unbiased unique probability of events (e.g., faces up in the case of a dice)
using the entropy function, Σ pilogpi. This method, similar to the genetic algorithm

10 I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the
inorganic crystal structure database. Acta Cryst. B41, 244 (1985).
11 A. Le Bail, Inorganic structure prediction with GRINSP. J. Appl. Cryst. 38, 389 (2005).
12 P. Juhás, D.M. Cherba, P.M. Duxbury, W.F. Punch, S.J.L. Billinge, Ab initio determination of
solid-state nanostructure. Nature (London) 440, 655 (2006).
13 K.D.M. Harris, R.L. Johnston and B.M. Kariuki, The genetic algorithm: Foundations and
applications in structure solution from powder diffraction data, Acta Cryst. A54, 632 (1998);
K. Shankland, B. David, and T. Csoka, Crystal structure determination from powder diffraction
data by the application of a genetic algorithm, Z. Kristallogr. 212, 550 (1997).
14 B.M. Kariuki, S.A. Belmonte, M.I. McMahon, R.L. Johnston, K.D.M. Harris, and R.J. Nelmes,
A new approach for indexing powder diffraction data based on whole-profile fitting and global
optimization using a genetic algorithm, J. Synchrotron Rad. 6, 87 (1999).
15 G. Chang and M. Lewis, Using genetic algorithms for solving heavy-atom sites, Acta Cryst.
D50, 667 (1994).
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approach, finds applications in various fields of scientific analysis, especially in im-
age processing and reconstruction.16 In powder diffraction, the maximum entropy
technique can be, and is successfully employed both to restore the lost phase an-
gles17 and to determine the relative intensities of the overlapped reflections.18 Crys-
tal structure determination using the maximum entropy approach results in solving
the phase problem and therefore, it is a reciprocal space method.

Maximum likelihood method, similar to maximum entropy, works in reciprocal
space and results in finding a raw model that has the best chance to be improved
by applying small steps to achieve full agreement between the observed and cal-
culated structure amplitudes,19 rather than the final structure. Maximum likelihood
and maximum entropy techniques are often combined together.18,20

Various energy minimization methods that work in direct space may be em-
ployed in order to optimize positions, orientations, and conformations of molecules
or structural fragments. The problem is the presence of multiple local minima on the
way to a global minimum of energy that requires an initial structure model to be in
the range of the global minimum, thus making the search for the lowest energy ex-
ceedingly slow. Different approaches and optimization functions may be employed
to speed up the process. Typically, the potential energy of a system is used in com-
bination with some other criteria. Thus, the simulated annealing method is used
to explore local minima quickly by generating multiple trial models, using Monte
Carlo or grid search methods. Simulated annealing resembles the physical process
of annealing by virtually heating a sample to a certain temperature, and it includes
several control parameters defining the search of the global minimum that are anal-
ogous to the real annealing process. They are the initial temperature, the rate of
its decrease, and the magnitude of random atomic jumps. The initial temperature
should be set high, somewhere near the melting point; if it is too low, no changes
occur, or they occur very slowly and when it is too high, the structure may “melt”
and become amorphous.21

A modification of the simulated annealing method known as parallel tempering
optimizes or follows several configurations in parallel. It is faster when applied to
complex structures, and does not require the use of usual trial parameters such as

16 Examples of image processing can be found at http://www.maxent.co.uk/examples.html.
17 C.J. Gilmore, Maximum entropy and Bayesian statistics in crystallography: a review of practical
applications, Acta Cryst. A52, 561 (1996).
18 W. Dong and C.J. Gilmore, The ab initio solution of structures from powder diffraction data:
the use of maximum entropy and likelihood to determine the relative amplitudes of overlapped
reflections using the pseudophase concept, Acta Cryst. A54, 438 (1998).
19 A.J. Markvardsen, W.I.F. David, and K. Shankland, A maximum-likelihood method for global-
optimization-based structure determination from powder diffraction data, Acta Cryst. A58, 316
(2002).
20 G. Bricogne, A multisolution method of phase determination by combined maximization of
entropy and likelihood. III. Extension to powder diffraction data, Acta Cryst. A47, 803 (1991).
21 A.A. Coelho, Whole-profile structure solution from powder diffraction data using simulated
annealing, J. Appl. Cryst. 33, 899 (2000).
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the “initial temperature” and the “annealing rate.” In general, parallel tempering
method avoids being trapped in the false local minima in the parameters space.22

Simulated annealing methods can also be used for solving structure in reciprocal
space by annealing reflection phases23 as well as for unit cell determination.

Recently developed dual-space methods appear to be working in both reciprocal
and direct space. Starting reflection phases are generated using either random sam-
pling or Patterson function and are used in the following Fourier transformation to
compute the electron-density distribution. The latter is modified using certain rules
and used to calculate new reflection phases, which optionally may also be modified.
This process is recycled until a certain set of criteria is met. The obtained structure
model is then analyzed and stored, or if no improvement is detected, a new set of
starting phases is generated. We note that this algorithm mimics a typical pathway of
completing the structure determination. However, the latter is performed in an inter-
active fashion, and modifies electron density by improving the structural model by
adding missing or removing incorrectly placed atoms, while the dual-space meth-
ods are automatic and modify the electron density itself, not the atomic structure.
Sheldrick24 introduced the sphere of influence algorithm to predict potential atomic
positions. The electron density in such positions is changed to zero if it is nega-
tive, or sharpened if it is positive. This method was developed for determination
of macromolecular structures using single crystal data. It is insensitive to noise re-
sulting from the rapid truncation of the high Bragg angle data because of their low
intensity. It is also insensitive to the presence of disordered solvent molecules, and
therefore has been successfully applied to solve large crystal structures and/or when
using low-resolution data, as well as to structure determination from powder dif-
fraction data.

Another dual-space method, the so-called charge flipping algorithm,25 modifies
the electron density below a certain level by changing its sign (flipping the charge).
The charge flipping algorithm has several benefits: it is truly ab initio; electron den-
sity is represented by a grid rather than by atoms. Hence, no information about atom
types, composition, charge, etc. is required. This includes symmetry, which may be
kept as low as P1, and any additional symmetry operations found and applied later
after the crystal structure is solved. In addition to periodic structures, this method
can be used to solve commensurately modulated and quasi-crystalline structures.26

22 V. Favre-Nicolin, R. Cerný, FOX, “free objects for crystallography”: a modular approach to ab
initio structure determination from powder diffraction. J. Appl. Cryst. 35, 734 (2002).
23 G.M. Sheldrick, Phase Annealing in SHELX-90: Direct methods for larger structures. Acta
Cryst. A46, 467 (1990).
24 G.M. Sheldrick, Macromolecular phasing with SHELXE. Z. Kristallogr. 217, 644 (2002);
G.M. Sheldrick. A short history of SHELX. Acta Cryst. A64, 112 (2008).
25 G. Oszlányi, A. Süto, The charge flipping algorithm. Acta Cryst. A64, 123 (2008).
26 L. Palatinus, G. Chapuis, SUPERFLIP – a computer program for the solution of crystal struc-
tures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 40, 786 (2007).
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It has been successfully employed in structure determinations from powder diffrac-
tion data.27

Practically, all nontraditional methods for solving crystal structures have been
initially developed for either powder or single crystal diffraction data to man-
age intrinsic incompleteness or poor quality that cannot be improved experimen-
tally. Despite a variety of structure-solution approaches, traditional direct-phase-
determination methods, being ab initio methods, are commonly and successfully
used when powder diffraction data are adequate.28 Patterson methods also work
quite well, but they also require the presence of a heavy atom (or atoms), in ad-
dition to adequate data quality and, perhaps, more extensive crystallographic ex-
pertise. The nontraditional methods undergo rapid developments in both theory
and implementations, and therefore, they are becoming common and are success-
fully and more often applied to structure determinations from powder diffrac-
tion data. They are irreplaceable when dealing with low quality and/or poorly re-
solved powder diffraction patterns, substantial peak overlap due to low symmetry
or pseudo-symmetry,29 large and complex structures including aperiodic and quasi-
crystalline solids, low crystallinity materials, and nanomaterials. A recent demon-
stration that even a crystal structure of a protein can be solved from powder data is
worth noting. The crystal structure of a small protein containing 67 residues with
554 protein atoms and 101 water molecules within a unit cell that has volume of
64,879 Å3 was solved by molecular replacement (the technique common in protein
crystallography) with further enhancements of the model using maximum likeli-
hood refinement.30 Further, these methods being less demanding to the data quality,
and generally nearly fully automated, are more and more often applied to routine
periodic structures as well.

15.1.4 Validation and Completion of the Model

Regardless of how the model was created, it must be validated and/or completed by
computing the electron density distribution, or if neutron diffraction data are avail-
able, by the nuclear density distribution31 in the unit cell to confirm the placement

27 A.A. Coelho, A charge-flipping algorithm incorporating the tangent formula for solving difficult
structures. Acta Cryst. A63, 400 (2007); A.A. Coelho, TOPAS Academic 4.1 Technical Reference,
2007; for details, see http://members.optusnet.com.au/alancoelho.
28 C. Giacovazzo, Direct methods and powder data: state of the art and perspectives, Acta Cryst.
A52, 331 (1996).
29 An example of a large structure solved using simulated annealing methods in the presence of
pseudo-symmetry can be found in: I.R. Evans, J.A.K. Howard, J.S.O. Evans, α−Bi2Sn2O7 – a
176 atom crystal structure from powder diffraction data. J. Mater. Chem. 13, 2098 (2003).
30 I. Margiolaki, J.P. Wright, M. Wilmanns, A.N. Fitch, N. Pinotsis, Second SH3 domain of ponsin
solved from powder diffraction. J. Am. Chem. Soc. 129, 11865 (2007).
31 Nuclear density determined from neutron diffraction describes distribution of the scattering
power rather than the distribution of the nuclei in the unit cell.
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of known atoms and locate missing atoms, if any (see Sects. 10.1 and 10.2). The
observed structure factors and, therefore, intensities of individual Bragg peaks are
required at this stage of the structure solution process. Fourier map calculations may
be repeated several times using observed structure amplitudes and calculated phase
angles that have been refined by including additional atoms found from previous
distributions of electron (nuclear) densities and by modifying the coordinates of the
existing atoms to match those of the corresponding peaks on the Fourier maps.

A crystal-structure solution does not end with the development of a plausible
model: after the model has been built completely,32 multiple structural and profile
parameters should be refined to achieve the best possible agreement between the
observed and calculated powder diffraction patterns or, in other words, between
the crystal structure and the observed reciprocal space image. At the same time,
the crystal structure should make both chemical (e.g., connectivity, oxidation states,
charge balance, valence, coordination, etc.) and physical (e.g., interatomic distances,
valence and torsion angles, coordination polyhedra, etc.) sense. Rietveld refinement,
which is considered later in this chapter, is an important step in both the validation
and completion of the model.

15.2 The Content of the Unit Cell

Consider Fig. 15.3, which illustrates the crystal structure of elemental copper. If the
lattice parameters are known, so is the volume of its unit cell. Further, if we know

X

Y

Z

Fig. 15.3 One unit cell in the crystal structure of elemental copper illustrating that a point located
in a corner contributes 1/8 of an atom, and a point located on a face contributes 1/2 of an atom to
the overall content of the unit cell. Similarly, a point located on an edge would contribute 1/4 of an
atom. The overall content of this unit cell is 8×1/8+6×1/2 = 4 Cu atoms.

32 Especially when powder data are complex, it may be necessary to use Rietveld technique to
re-determine individual intensities before all structural details can be established using Fourier or
differential Fourier maps.
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the total number of atoms located in this or any other unit cell, it is easy to calculate
the gravimetric density of a material by dividing the mass of all atoms located in
one unit cell by its volume.

The inverse calculation is also possible: the content of the unit cell may be de-
termined from the known chemical composition, lattice parameters and density of a
material. Assume that the total mass of all atoms located in one unit cell is m. Also,
assume that the unit cell volume is V . The latter is known from diffraction analysis
as soon as lattice parameters have been established (see (14.42)). Thus, provided the
gravimetric density (ρ) of the crystalline material has been measured, the mass of
one unit cell can be easily calculated:

m = ρV (15.1)

It is usually the case that the chemical composition of a material is known as the
stoichiometry of its molecule, or in general, as its formula unit. Molecular mass or
formula unit mass, M, is given as:

M =
n

∑
j

x jA j (15.2)

where n is the number of different atom types in a molecule or in a formula unit; x j
is the total number of atoms of type j, and A j is the molar mass of atoms of type
j. The number of molecules or formula units, Z, in the unit cell is, therefore, found
from

Z =
m
M

=
ρV
M

(15.3)

Equation (15.3) may be transformed into a more useful form, where the mass of
the formula unit is given in a.m.u., the unit cell volume is in Å3, and the density is
in g/cm3:

Z =
ρV

/
1024

M
/

6.023×1023
= 0.6023

ρV
M

(15.4)

For example, the experimentally measured density of copper is 8.92g/cm3, the
unit cell dimension of its cubic unit cell is a = 3.615Å, and the molecular mass
of a formula unit is 63.55 a.m.u., which is the molar mass of copper, one atom
per formula unit. Thus, (15.4) results in Z = 3.99 ∼= 4 atoms per unit cell. The same
equation may be used to calculate the density of a material when its crystal structure
has been established. It is worth noting that the computed value of the material’s
gravimetric density is known as the X-ray density, and it is usually slightly higher
than the measured density because real materials always have some defects and
porosity that are not accounted in (15.4).

This method of calculating the contents of the unit cell requires experimentally
measured density,33 which is not always available. Nonetheless, even when the

33 The two methods, most commonly used to measure gravimetric density, are pycnometric and
flotation. In a pycnometric technique, the volume of the material is determined from the volume of
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gravimetric density cannot be measured, (15.4) still can be used, especially when
the chemical composition of the material is precisely known or when working with
molecular compounds. In these cases, Z can be estimated from restrictions imposed
by symmetry and from approximately known range of densities for a specific class
of compounds. For example, (15.4) is easily rearranged as:

ρ = 1.66
ZM
V

= 1.66
nzM
V

(15.5)

where n is the minimum number of molecules per unit cell, which is usually the
multiplicity of a general site position34 and z is a variable integer, which corresponds
to the number of molecules with mass M in the asymmetric (1/nth) part of the unit
cell. For instance, in the space group P21/m, n = 4, and by varying z, the acceptable
value of density ρ can be achieved.

Consider tetraphenylphosphonium (TPP) tetravanadate, which crystallizes in
the monoclinic crystal system in the space group P21/c. Its unit cell volume is
V = 6,806.6(6) Å3. The molecular weight of [(C6H5)4P]2V4O11 is 1,058.55 a.m.u.
The density range for this class of compounds (not the easiest but certainly a good
example) may be estimated between 1.2 and 1.6 g/cm3, given the presence of both
the metal–oxide core and large organic molecule. The multiplicity of the general
site position in this space group is 4. The V4O11 unit, however, can be centrosym-
metric because it has four V and ten O atoms, plus an additional O atom that can be
located in the center of inversion, and there are two TPP molecules in the formula
unit. Therefore, a minimum multiplier for the number of molecules per unit cell (n)
should be set to 4/2 = 2. We now consider densities while varying z. When z = 1
and z = 2 the densities are 0.516 and 1.033 g/cm3, respectively, which are too low.
When z = 4, the density is 2.065 g/cm3, which is too high. Therefore, z = 3 is the
only possibility left and it results in the density of 1.549 g/cm3. The latter value
falls into the expected range, so the resulting total number of the formula units in
the unit cell Z = nz = 6. Considering that the multiplicity of the general site is 4,
there are 1.5 formula units in the asymmetric part of the unit cell. Thus, there should
be 3 TPP ions in the general position, while the vanadate molecules (V4O11) may
occupy 1 general and 1 special, or 3 special positions, where special positions are
such that one of the O atoms are located in the centers of inversion.

a fluid displaced by the known mass of a material. In a flotation approach, a small particle, which
can be a single crystal, is placed in a low-density fluid, where it sinks. A high-density fluid is
then slowly added until neutral buoyancy of the particle is reached. The gravimetric density of the
particle is then determined from the density of the mixture of two fluids, provided their amounts
are known. Obviously, the two fluids should form an ideal solution, i.e., volume effects of mixing
should be negligible.
34 In general, n in (15.5 can be the multiplicity of a general or any special position or their sum.
The latter makes it complicated, but still keeps the solution integer with respect to z. Note that
symmetry of any special position and the molecule should agree; further, some special positions,
i.e., those at the center of inversion where all three coordinates are fixed, can be occupied by only
one atom.
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15.3 Pearson’s Classification

As noted in Sect. 15.1, when the material of interest is an intermetallic alloy, the
solution of its crystal structure may be simplified because intermetallics often form
series of isostructural compounds. Stoichiometries of the majority of intermetallic
phases are not restricted by “normal” valence and oxidation states of atoms and
ions. Therefore, crystal structures of metallic alloy phases are conveniently coded
using the classification suggested by W.B. Pearson,35 where each type of the crys-
tal structure is assigned a specific code (symbol), which is constructed from three
components as follows:

– The first position in a structure type symbol is occupied by a small letter des-
ignating the crystal system of the material: c for cubic, t for tetragonal, h for
hexagonal, trigonal and rhombohedral, o for orthorhombic, m for monoclinic,
and a for triclinic (anorthic).

– The second position in the symbol is occupied by a standard notation of Bravais
lattice. Thus, the first two elements in the Pearson’s symbol are letters and they
classify all available alloy structures according to 14 Bravais lattices, as shown
in Table 15.1.

– The third (and last) position in Pearson’s symbols is occupied by the total number
of atoms located in one unit cell of the compound.

For example, considering the crystal structure of copper, which has cubic face-
centered lattice (Fig. 15.3) and a total of four atoms in the unit cell, its Pearson’s
symbol is cF4. On the other hand, if the material has Pearson’s symbol oI32, this

Table 15.1 Pearson’s symbols used to designate 14 types of Bravais lattices.

Crystal system Bravais lattice First two parts of
Pearson’s symbol

Cubic Primitive, P cP
Body-centered, I cI
Face-centered, F cF

Tetragonal Primitive, P tP
Body-centered, I tI

Hexagonal/trigonal Primitive, P hP
Hexagonal/rhombohedral Rhombohedral, R hR
Orthorhombic Primitive, P oP

Base-centered, C oC
Body-centered, I oI
Face-centered, F oF

Monoclinic Primitive, P mP
Base-centered, C mC

Triclinic (anorthic) Primitive, P aP

35 W.B. Pearson, Handbook of lattice spacings and structures of metals, Vol. 2, Pergamon Press,
New York (1967); W.B. Pearson, The crystal chemistry and physics of metals and alloys, Wiley-
Interscience, New York (1972).
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means that its crystal structure is orthorhombic, and one body-centered unit cell
contains a total of 32 atoms.

Pearson’s classification is insensitive to both chemical compositions and stoi-
chiometries of metallic alloys. It is quite useful because all known intermetallic
crystal structures are grouped according to their structural symbols, which are quite
simple. Thus, once the symmetry and the content of the unit cell of a new alloy
phase have been established, it only makes sense to search for potentially isostruc-
tural compounds among those that have identical Pearson’s symbols.

Tens of thousands of intermetallic phases have been systematized and classified
using Pearson’s symbols. They are listed in a source commonly known as Pearson’s
Handbook.36 The handbook also provides detailed information about the coordi-
nates of atoms in unit cells of all known structure types of metals, alloys, and related
phases, which makes it a valuable tool in the structure solution of metallic materials.

15.4 Finding Structure Factors from Powder Diffraction Data

When the ab initio solution of a crystal structure is attempted from powder dif-
fraction data using reciprocal space methods, eventually integrated intensities and
structure factors of individual Bragg reflections are required, see Fig. 15.1. A sim-
ple numerical integration (8.40) is rarely applicable and nearly always, intensities
can be determined only after decomposition (or deconvolution) of partially over-
lapped Bragg reflections. Sometimes, decomposition is carried out peak-by-peak or
group-by-group, as was described in Chap. 13, but more often, individual observed
structure factors are determined by using the so-called full pattern decomposition
techniques. Pattern decomposition is also used in the structure determination using
direct-space methods but usually later, at the stage of completing the structure.

In addition to the determination of individual observed structure factors, the full
pattern deconvolution carries several supplementary functions:

– First to verify the correctness of indexing solution or to select one of several
possible indexing solutions, which is easily established by visually comparing
the observed and “calculated” patterns to ensure that every observed peak has
a matching calculated Bragg reflection, in addition to a simple comparison of
profile residuals Rp or Rwp (see (15.19) and (15.20) in Sect. 15.6.2).

– Second to precisely determine the unit cell dimensions without performing a
semimanual profile fitting (see Chap. 13), which may be biased when there is a
significant peak overlap.

– Third to estimate the best figures of merit (see Sect. 15.6.2), achievable in a
Rietveld refinement using the existing set of diffraction data, and the structure-
only related residual RB (or RF

2), see (15.21) in Sect. 15.6.2.

36 Pearson’s handbook of crystallographic data for intermetallic phases, P. Villars and L.D. Calvert,
Eds., Second edition, ASM International, Materials Park, OH (1991). ASM International on the
Web: http://www.asm-intl.org/.
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The two related full pattern decomposition methods in common use today were
suggested by Pawley37 and by Le Bail et al.38 Pawley’s approach is based on (8.21)
and when Kα1/Kα2 doublets are present, full pattern decomposition is performed
by solving the following system of equations using a least squares minimization:

Y1 = b1 +
m

∑
k=1

Ik[yk(xk)+0.5yk(xk +Δxk)]

Y2 = b2 +
m

∑
k=1

Ik[yk(xk)+0.5yk(xk +Δxk)]

. . .

Yn = bn +
m

∑
k=1

Ik[yk(xk)+0.5yk(xk +Δxk)]

(15.6)

The notations used in (15.6) are identical to (8.21). Individual integrated intensi-
ties (Ik) are treated as free least squares parameters. Peak-shape function parameters
are represented, as described in Sect. 8.5.1, and Bragg peak positions, which affect
the values of xk, are established by the unit cell dimensions, see Sect. 8.4. The back-
ground, bi, where 1 ≤ i ≤ n and n is the total number of measured data points, is
modeled by one of the several functions described in Chap. 13 (see (13.1)–(13.6)).

When peak-shape functions and their parameters, including Bragg reflection po-
sitions, are known precisely and the background is modeled by a polynomial func-
tion with j coefficients, the solution of (15.6) is trivial because all equations are
linear with respect to the unknowns (B j, see (13.1), and Ik). It facilitates the use of
a linear least squares algorithm, described in Sect. 14.12.1. In practice, it is nearly
always necessary to refine both peak shape and lattice parameters in addition to B j
and Ik to achieve a better precision of the resultant integrated intensities. Thus, a
nonlinear least squares minimization technique (see Sect. 15.5) is usually employed
during full pattern decomposition using (15.6).

Pawley’s method works best when the complexity of a powder diffraction pat-
tern is relatively low (a few hundred or so Bragg peaks total). When the number of
independent Bragg peaks (m) exceeds several thousand, the size of the least squares
normal equation matrix increases proportionally to m2. As a result, Pawley’s algo-
rithm may become unstable, especially if there are multiple Bragg reflections with
low intensity and/or when there is a severe overlap. The latter is quite normal when
the total number of measurable Bragg peaks exceeds ∼1,000 in the scanned range.
In the case of complex patterns, this algorithm has problems in keeping values of all
integrated intensities Ik nonnegative, which is obvious from (15.6).

Le Bail’s approach is also based on (15.6), and it differs from the Pawley’s
method in that the individual intensities remain unaltered during each least squares
cycle. They are extracted from a total observed intensity of the pattern between the

37 G.S. Pawley, Unit-cell refinement from powder diffraction scans, J. Appl. Cryst. 14 , 357 (1981).
38 A. Le Bail, H. Duroy, and J.L. Fourquet, Ab initio structure determination of LiSbWO6 by X-ray
powder diffraction, Mat. Res. Bull. 23, 447 (1988). The method is also commonly known as Le
Bail extraction.
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least squares cycles after subtraction of the background. The extraction is performed
using a decomposition approach that has been employed in the Rietveld method
since its development,39 in which intensity observed in every point of the powder
pattern is divided among different reflections in proportion to their calculated inten-
sities:

yobs
k,i = pk,i

(
Y obs

i −bi

)
, where pk,i =

ycalc
k,i

m
∑

k=1
ycalc

k,i

(15.7)

In (15.7), yobs
k,i is the pseudo-observed intensity of the kth reflection in the ith

point, pk,i is the fractional contribution of the kth reflection to the ith point, Y obs
i

is the observed total intensity in the ith point, ycalc
k,i is the calculated intensity of

the kth reflection in the ith point. The main difference between Rietveld and Le Bail
decompositions is in the calculated intensities. The former technique uses intensities
computed from the model of the crystal structure, while the latter approach uses
intensity obtained from the previous cycle during the decomposition. Initially, all
“calculated” intensity values in the Le Bail’s method are set to arbitrary identical
quantities, typically unity.

It is worth noting that in the Le Bail’s decomposition, the number of free least
squares variables becomes independent of the number of Bragg reflections and only
background, peak shape, and lattice parameters are refined during each least squares
cycle. A small inconvenience of Le Bail’s approach is that the unit cell dimensions
should be known with a greater precision than in Pawley’s method. It also takes
more least squares refinement cycles to complete, but the fit converges in much
more complex cases. The disadvantage of the approach suggested by Le Bail is the
separate handling of intensities for Kα1 and Kα2 peaks during the decomposition
according to (15.7) and correction for the proper intensity ratio after the decomposi-
tion, which increases the time required for the completion of the fitting process. As
far as suitable software is of concern, it is essential to check the manual and find out
how the presence of the Kα1/Kα2 doublet is handled because some computer codes
do not address this issue and the resulting intensities of Kα1 and Kα2 components
may become unreasonable.

There is a variety of freely available software, which enables one to deconvolute a
powder diffraction pattern and determine either or all: individual intensities, lattice,
and peak-shape function parameters, and observed structure factors of all possible
Bragg reflections. Freeware codes include FOX, EXPO, FullProf, GSAS, LHPM-
Rietica, and others.40 Further, nearly all manufacturers of powder diffractometers
offer software for sale either as a package with the sale of the equipment or as
standalone products.

39 H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta
Cryst. 22, 151 (1967); H.M. Rietveld, A profile refinement method for nuclear and magnetic struc-
tures, J. Appl. Cryst. 2, 65 (1969).
40 The most extensive sources of various software links are found at the International Union of
Crystallography (www.iucr.org) and/or Collaborative Computational Project No. 14 (http://www.
ccp14.ac.uk) web sites.
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15.5 Nonlinear Least Squares

Both the full pattern decomposition and Rietveld refinement are based on the non-
linear least squares minimization of the differences between the observed and cal-
culated profiles. Therefore, the nonlinear least squares method is briefly considered
here.

Assume that we are looking for the best solution of a system of n simultaneous
equations with m unknown parameters (n >> m), where each equation is a nonlinear
function with respect to the unknowns, x1, x2, . . ., xm. In a general form, this system
of equations can be represented as:

f1(x1,x2, . . . ,xm) = y1

f2(x1,x2, . . . ,xm) = y2

. . .

fn(x1,x2, . . . ,xm) = yn

(15.8)

Obviously, a linear least squares algorithm described in Sect. 14.12.1 is not di-
rectly applicable to find the best solution of (15.8). In some instances, it may be
possible to convert each equation in (15.8) into a linear form by appropriate substi-
tutions of variables, and thus reduce the problem to a linear case. In general, the least
squares solution of (15.8) is obtained by expanding the left-hand side of every equa-
tion using Taylor series and truncating the expansion after the first partial derivatives
of the respective functions.41 Hence, (15.8) may be converted into:

∂ f1(x0
1, . . . ,x
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∂x1
Δx1 + . . .+
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. . .

∂ fn(x0
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0
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∂xm
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1, . . . ,x
0
m)

(15.9)

41 Taylor series is an expansion of a real function about a point. In the case of a function of one
variable, f (x), the expansion about a point x = x0 is given as:

f (x) = f (x0)+Δx f ′(x0)+
Δx2

2!
f ′′(x0)+ ...+

Δxn

n!
f n(x0)+Rn

where Δx = (x− x0) and Rn is a remainder. When f (x1,x1, . . .xk) is a function of k variables, the
expansion about a point (x0

1,x
0
2, . . .x

0
k ) is obtained by substituting each derivative in the equation

above with the sum of partial derivatives multiplied, respectively, by Δx1,Δx2, . . .Δxk taken to the
appropriate power and divided by the corresponding n!. Brook Taylor (1685–1731) was an English
mathematician best know for representing a function as an infinite sum of terms – Taylor series.
See http://en.wikipedia.org/wiki/Brook Taylor for a brief biography.



514 15 Solving Crystal Structure from Powder Diffraction Data

as long as the corresponding derivatives exist and are finite. Equation (15.9) is linear
with respect to Δx1, Δx2, . . ., Δxn and its solution is obtained by applying conven-
tional linear least squares technique as:

Δx = (ATWA)−1(ATWy) (15.10)

The notations in (15.10) are as follows:

Δx =

⎛
⎜⎜⎜⎝

x− x0
1

x− x0
2

. . .
x− x0

m

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝
Δx1
Δx2
. . .
Δxm

⎞
⎟⎟⎠ (15.11)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1(x0
1, . . . ,x

0
m)

∂x1

∂ f1(x0
1, . . . ,x

0
m)

∂x2
. . .

∂ f1(x0
1, . . . ,x

0
m)

∂xm
∂ f2(x0

1, . . . ,x
0
m)

∂x1

∂ f2(x0
1, . . . ,x

0
m)

∂x2
. . .

∂ f2(x0
1, . . . ,x

0
m)

∂xm
. . . . . . . . . . . .

∂ fn(x0
1, . . . ,x

0
m)

∂x1

∂ fn(x0
1, . . . ,x

0
m)

∂x2
. . .

∂ fn(x0
1, . . . ,x

0
m)

∂xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15.12)

y =

⎛
⎜⎜⎜⎝

y1 − f1(x0
1, . . . ,x

0
m)

y2 − f2(x0
1, . . . ,x

0
m)

. . .
yn − fn(x0

1, . . . ,x
0
m)

⎞
⎟⎟⎟⎠ (15.13)

W =

⎛
⎜⎜⎝

w2
1 0 . . . 0

0 w2
2 . . . 0

. . . . . . . . . . . .
0 0 . . . w2

n

⎞
⎟⎟⎠ (15.14)

where W is a square matrix representing individual weights (wi) for each of the
available n data points, and AT is the transpose of A.

The refined parameters are computed by using both the set of the original x0
1, x0

2,
. . ., x0

m, which represents the initial approximation of the unknowns, and the vector
Δx, which has been obtained from least squares (15.10), as:

x = x0 +Δx =

⎛
⎜⎜⎜⎝

x0
1 +Δx1

x0
2 +Δx2

. . .
x0

m +Δxm

⎞
⎟⎟⎟⎠ (15.15)
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The standard deviations42 for each refined parameter according to the least
squares method are calculated from

σ(x j) =

√√√√ (ATWA)−1
j j

n
∑

i=1
wi(yi)2

n−m
, j = 1, . . . ,m (15.16)

Where,

– n is the number of equations in (15.9),
– m is the number of unknown parameters in (15.9),
– (AT WA)−1

j j is the corresponding diagonal element of the inverse normal equation
matrix,

– wi is the corresponding weight,
– yi is the corresponding element of the vector y.

The major differences between the nonlinear least squares technique and the lin-
ear least squares method, described in Sect. 14.12.1, are as follows:

– The substitution of the original (15.8) with (15.9) requires the knowledge of ini-
tial (i.e., approximate) values of parameters to be refined, which are represented
by the set x0

1, x0
2, . . ., x0

m. That is why the structure must be solved before it can
be refined.

– The least squares solution (15.10) results in the shifts (vector Δx, (15.11)), which
shall be added to the corresponding initial parameters, as shown in (15.15).

– Because (15.9) is not exact, usually more than 1 cycle of a least squares refine-
ment is necessary to achieve a full convergence: during the second and following
least squares cycles, the new set of parameters as obtained in the previous step
from (15.15) is used as the initial approximation. Thus, nonlinear least squares
refinement is an iterative process, where the result of the next iteration depends
on the result obtained during the prior iteration.

– Because of the iterative nature of nonlinear least squares, convergence may be
difficult to achieve, especially when the initial approximation is far from cor-
rect (Fig. 15.4, left) or when the minimized function (see (14.34), (14.35), and
(15.9)) is poorly defined. The latter often occurs when certain least squares pa-
rameters correlate.43 Instead of converging, nonlinear least squares may diverge
and become unstable, as illustrated in Fig. 15.4 (right).

Therefore, various numerical conditioning techniques should be employed to im-
prove both the convergence and stability of the method. Their detailed consideration
exceeds the scope of this book, except for two commonly used approaches that are

42 Recently, the term “standard uncertainty” (s.u.) is becoming more common than the “standard
deviation” (s.d.).
43 Considering, for example, (8.41) and (9.3), when the phase scale (K) is refined together with
the population parameters of all atoms (gj), a complete correlation results: an increase of the
phase scale by a factor k is completely offset by the reduction of all population parameters by
the factor

√
k.
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Fig. 15.4 Two examples when the nonlinear least squares technique may fail in finding the best
solution of (15.9): left – the initial approximation (x0) is located near a false minimum; right –
the minimum is poorly defined. The arrows represent the possible outcomes of two least squares
cycles. In the case on the left the minimization ends in a false minimum. In the case on the right the
obtained shifts have correct signs but wrong magnitudes and instead of converging (i.e., instead of
all |Δxi| becoming smaller), their absolute values continue to increase. True solutions (i.e., global
minima) are marked as xtrue.

briefly mentioned next, and the reader is referred to a large amount of special liter-
ature covering this subject.

The simplest way is to proceed with smaller steps as obvious from Fig. 15.4, and
a simple way of doing this is to modify the shifts Δxi before applying them (15.15)
by the so called damping factors mi ·Δxi, where 0 < mi ≤ 1. The damping factors
can be different for different parameters or group of parameters. This reduces the
risk of jumping out of the minimum. Unfortunately, the latter is true for both the
global and false minima.

Another approach is to modify the normal equation matrix ATWA or, some-
times, its inverse as is done in a commonly used Marquardt damping (compare
with (15.10)):44

Δx = (ATWA+λD)−1(ATWy) (15.17)

where D is usually either a diagonal of a normal equation matrix or the unity ma-
trix, and λ is a damping factor. In practice, λ is set large at the beginning of the
refinement to ensure stability and convergence, and is later decreased by a user,
or automatically as the algorithm begins to converge. Ideally, but not necessarily,
damping factor should be zero (or unity in GSAS, which uses 1 + λ as the input
damping factor) during the final stages of refinement, which is the same as not us-
ing the damping. The advantage of this damping approach is that, if set correctly,
only parameters that correlate are affected significantly.

44 D. Marquardt, An algorithm for least squares estimation of nonlinear parameters: SIAM, J.
Appl. Math. 11, 431 (1963).
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The inverse of the normal equation matrix, (ATWA)−1, may be used to evaluate
the correlation coefficients (ρi j) among the pairs of free least squares variables (xi
and x j):

ρi j = (ATWA)−1
i j

/√
(ATWA)−1

ii (ATWA)−1
j j (15.18)

The correlation coefficients vary from 0 to 1 (absolute) and when they are in the
range from−0.5 to 0.5, the associated parameters show little to no correlation. When
|ρi j| is unity, the corresponding variables (xi and x j) are fully (100%) correlated and
one of them should be excluded from the refinement. It is useful to check the matrix
of the correlation coefficients during the refinement, especially when the nonlinear
least squares process appears unstable, which is usually detected as a continuous
worsening of one or more numerical figures of merit (see Sect. 15.6.2) in addition
to erratic changes of the values of some free variables included into the refinement.
The analysis of correlation coefficients may help in identifying the nonobvious and
serious problems, and show which parameters strongly correlate, that is, depend
on each other, and therefore, decide which of them cannot be successfully refined
together or provide a reason to invoke damping of correlations that are not severe.

15.6 Quality of Profile Fitting

Since both Pawley and Le Bail full pattern decompositions are based on finding a
least squares solution of (15.6), the problem may be considered solved and the pat-
tern suitably deconvoluted when the best possible fit between the calculated, Y calc

i ,
and observed intensities, Y obs

i , is achieved. Indeed, the left-hand sides of each equa-
tion in (15.6) represent Y obs

i , and the right-hand sides represent Y calc
i .

It is, therefore, of utmost importance to have certain assessment tools in order
to make a decision that the fitting process has converged to a true minimum, espe-
cially considering the iterative nature of the nonlinear least squares algorithm. Two
approaches are in common use today. The first one is visual examination of the dif-
ference Y obs

i −Y calc
i , which ideally must be zero or nearly zero for any 1 ≤ i ≤ n,

where n is the total number of the data points in the measured profile. Visual analysis
requires some experience to quickly determine the most critical source(s) of poten-
tial mismatch between Y obs

i and Y calc
i and make adjustments to a selection of free

least squares variables. The second approach utilizes a set of numerical figures of
merit that quantify the quality of the least squares fit and therefore, may also be
used to estimate the reliability of both the fit and the extracted integrated intensities
and observed structure factors. Unlike visual examination of data, numerical fig-
ures of merit provide no clues about potential source(s) of problems with the least
squares fit.
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15.6.1 Visual Assessment of the Quality of Profile Fitting

As noted by McCasker et al.,45 any problem in approximation of Bragg peak profile
leads to a characteristic difference (Y obs

i −Y calc
i ) profile. Therefore, visual examina-

tion of the difference usually provides important clues about which additional pa-
rameter(s) must be adjusted (refined). All examples found in this section have been
obtained using X-ray powder diffraction data46 collected from a sample of HoIn3
compound. The material is cubic, and it crystallizes in space group Pm3̄m with the
unit cell dimension of ∼4.57 Å. After the powder was prepared by grinding in an
agate mortar with a pestle, it was screened through a 35μm sieve and heat-treated
at 600◦ for 1 h to anneal strains. Experimental data have been collected using mono-
chromatic Cu Kα1 radiation on a PANalytical X’Pert Pro diffractometer equipped
with Johansson monochromator. In every case, peak-shape function was pseudo-
Voigt (8.24) with asymmetry correction in Finger, Cox and Jephcoat approximation
(see Footnote 27 on page 176).

Figure 15.5 illustrates a good fit of a single Bragg peak together with the other
two fits in which computed integrated intensity has been either overestimated or
underestimated. When intensity is too high, the difference has a characteristic mini-
mum centered at the calculated position of the Bragg peak. A maximum is found at
the calculated location of the Bragg peak when the computed integrated intensity is
too low.

A different situation is illustrated in Fig. 15.6, where the discrepancies are due
to problems in determining the location of the Bragg peak. When the calculated
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Fig. 15.5 The observed (circles), calculated (solid lines), and difference (solid lines at the bottom)
profiles. The dotted line at the bottom corresponds to Y obs

i −Y calc
i = 0. The short vertical lines

correspond to the calculated position of the Bragg peak. The panel on the left shows a good fit.
The panel in the middle shows the result when the calculated integrated intensity is overestimated,
while the panel on the right is for the underestimated integrated intensity.

45 L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi, Rietveld refinement guide-
lines, J. Appl. Cryst. 32, 36 (1999).
46 Experimental data used in Figs. 15.5–15.8 are courtesy of Dr. Ya. Mudryk.
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Fig. 15.6 The panel on the left shows a good fit. The panel in the middle shows the result when
the calculated Bragg angle is overestimated, while the panel on the right is for the underestimated
Bragg angle. See Fig. 15.5 for the explanation of notations.
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Fig. 15.7 The panel on the left shows a good fit. The panel in the middle shows the result when the
calculated FWHM is overestimated, while the panel on the right is for the underestimated FWHM.
See Fig. 15.5 for the explanation of notations.

profile is displaced into the high Bragg angle region, the difference is a combination
of an asymmetric peak followed by an asymmetric valley. When the displacement
is toward the low Bragg angle, the profile of the difference is reversed, that is, a
valley is followed by a maximum. These types of discrepancies result from either an
incorrect determination of the unit cell dimensions, or from an improper treatment
of sample displacement or zero-shift errors.

Figure 15.7 illustrates the case when poor fits are related to wrong full widths
at half maximum. When FWHM is too large, the difference profile exhibits a peak
enclosed between two shallow asymmetric minima. When the full width at half
maximum is too small, a sharp minimum is centered between two shallow asymmet-
ric humps. The FWHM-related discrepancies are common when anisotropic peak
broadening is present.

Finally, problems related to improperly accounted asymmetry are illustrated in
Fig. 15.8. Here, when asymmetry has been overestimated, a shallow minimum in
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Fig. 15.8 The panel on the left shows a good fit. The panel in the middle shows the result when
peak asymmetry is overestimated, while the panel on the right is for the underestimated asymmetry.
See Fig. 15.5 for the explanation of notations.
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Fig. 15.9 The panel on the left shows a good fit of a Mo Kα1/Kα2 doublet of the (021) Bragg
peak of spherical LaNi4.85Sn0.15 powder. The panel in the middle shows the result when both peak
intensity and full width at half maximum are overestimated, while the panel on the right is for the
underestimated integrated intensity and asymmetry. See Fig. 15.5 for the explanation of notations.

the difference profile is followed by a reasonable fit of the top of the peak, and then
a shallow maximum, and when asymmetry has been underestimated, the locations
of the minimum and the maximum are reversed.

We note that cases illustrated in Figs. 15.5–15.8 are due to problems caused by
a discrepancy of one kind. In real least squares fits of powder diffraction profiles,
it is common to have a combination of reasons for a less-than-ideal fits. Wrong
FWHM may be in addition to incorrect intensity, or wrong integrated intensity may
be complicated by problems related to an incorrect approximation of peak asym-
metry. Further, when Kα1/Kα2 doublets are used to record powder diffraction pat-
terns, difference profiles illustrated in Figs. 15.5–15.8 are more complex. All the
aforementioned issues complicate visual analysis of difference profiles (e.g., see
Fig. 15.9), and the best way to approach the problem is to determine the most im-
portant contribution to the observed discrepancies, and therefore, adjust the choice
of most critical fitting parameters in the refinement process as early as possible.45
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15.6.2 Figures of Merit

The following figures of merit are customarily used to characterize both the full
pattern decomposition and Rietveld refinement quality.

The profile residual (or reliability) factor, Rp:

Rp =

n
∑

i=1

∣∣Y obs
i −Y calc

i

∣∣
n
∑

i=1
Y obs

i

×100% (15.19)

The weighted profile residual, Rwp:

Rwp =

⎡
⎢⎢⎣

n
∑

i=1
wi

(
Y obs

i −Y calc
i

)2

n
∑

i=1
wi

(
Y obs

i

)2

⎤
⎥⎥⎦

1/2

×100% (15.20)

The Bragg residual, RB (this figure of merit is quite important in Rietveld refine-
ment but has little to no use during full pattern decomposition because only observed
Bragg intensities are meaningful in both Pawley and Le Bail methods):

RB =

m
∑
j=1

∣∣∣Iobs
j − Icalc

j

∣∣∣
m
∑
j=1

Iobs
j

×100% (15.21)

The expected profile residual, Rexp:

Rexp =

⎡
⎢⎢⎣ n− p

n
∑

i=1
wi

(
Y obs

i

)2

⎤
⎥⎥⎦

1/2

×100% (15.22)

The goodness of fit, χ2 (sometimes referred as chi-squared):

χ2 =

n
∑

i=1
wi

(
Y obs

i −Y calc
i

)2

n− p
=

[
Rwp

Rexp

]2

(15.23)

In (15.19)–(15.23), the following notations have been used:

– n is the total number of points measured in the powder diffraction pattern.
– Y obs

i is the observed intensity of the ith data point.
– Y calc

i is the calculated intensity of the ith data point.
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– wi is the weight of the ith data point, which is usually taken as wi = 1/σ2
i =

1/Y obs
i (see (12.8) in Sect. 12.3.1 for the definition of spread, σi).

– m is the number of independent Bragg reflections.
– Iobs

j is the “observed” integrated intensity of the jth Bragg peak, which has been
calculated after Y obs

i have been partitioned according to the calculated intensities
of the contributing Bragg peaks (see (15.7)).

– Icalc
j is the calculated integrated intensity of the jth Bragg peak.

– p is the number of free least squares parameters.

All figures of merit except one (15.21) include a contribution from the back-
ground. This raises an interesting point about the “reliability of profile reliability
factors” (pardon the tautology) when the correctness of the structural model is of
concern, which is further discussed in Chaps. 16 onward.

The importance of taking the background out of the equation can easily be illus-
trated when the background is high, that is, the same order of magnitude or higher
than the intensity of Bragg peaks. This is the case when, for example, an iron-rich
or a gadolinium-rich (see Fig. 11.25) compound is measured using Cu Kα radia-
tion without diffracted beam monochromatization, or a hydrogen (not deuterium)
containing sample is studied by neutron diffraction (see Fig. 20.7). It is easy to see
that denominators in (15.19), (15.20), and (15.22) (but not in (15.21) and (15.23))
are proportional to the total count of the scattered intensity, and therefore are highly
affected by the level of the background. On the other hand, the numerators contain
the differences of the observed and calculated intensities, and therefore, they are in-
dependent of the background provided the fit of the background is reasonable. Be-
cause of this, strong backgrounds lead to low residuals and even extremely poor fits
may result in excellent profile residuals. The residuals become more realistic when
the observed scattered intensity in the denominator is reduced by the contribution
from the background. Thus, the profile residual with the background contribution
subtracted47 is given as follows:

Rpb =

n
∑

i=1

∣∣Y obs
i −Y calc

i

∣∣ ·
∣∣Y obs

i −Y back
i

∣∣
Y obs

i
n
∑

i=1

∣∣Y obs
i −Y back

i

∣∣ ×100% (15.24)

where Y back refers to the background contribution to the profile and the correspond-
ing weighted profile residual as:

Rwpb =

⎡
⎢⎢⎢⎢⎢⎣

n
∑

i=1
wi

((
Y obs

i −Y calc
i

) (Y obs
i −Y back

i
)

Y obs
i

)2

n
∑

i=1
wi

(
Y obs

i −Y back
i

)2

⎤
⎥⎥⎥⎥⎥⎦

1/2

×100% (15.25)

47 A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos
National Laboratory Report LAUR 86-748 (2004).
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A simple analysis of (15.19)–(15.21) and (15.23) indicates that a better fit results
in lower values of all residuals. Unfortunately, there are no exact thresholds for Rp,
Rwp and/or RB, below which a fit is acceptable, good or excellent. To a certain de-
gree, the “absolute quality” of the result is established by the relationship between
Rwp and Rexp, that is, by the value of χ2. The expected residual (15.22) character-
izes the quality of experimental data because a larger denominator means a better
counting statistics (see Sect. 12.3.1). The last figure of merit – the goodness of fit
– should therefore, approach unity when Rwp approaches Rexp. In practice, this is
rarely achieved even with high-quality powder diffraction data when Rexp are quite
low, which is usually due to the inadequacy of peak shape and background func-
tions.

Another useful figure of merit is the Durbin–Watson d-statistic:

d =

n
∑

i=2

(
ΔYi

/
σi −ΔYi−1

/
σi−1)

2

n
∑

i=1

(
ΔYi

/
σi

) (15.26)

where ΔYi = Y obs
i −Y calc

i and σi is the corresponding statistical error (see (12.8)).
According to Hill and Flack,48 the weighted Durbin–Watson statistic may be used to
provide a sensitive measure of refinement progress, and to quantify serial correlation
between adjacent least squares residuals in a full pattern decomposition or Rietveld
refinement based on step-scan experimental data. It remains discriminating when
other residuals fail, for example, when comparing the results obtained at different
step sizes. Ideally, the d-parameter (15.26) should be close to 2, thus indicating
the absence of serial correlation, although in practice it often deviates considerably
from this ideal value. In general, if correlation is insignificant, d is closer to 2 than
another parameter, Q, which is defined as:

Q = 2
[

n−1
n− p

− 3.0902√
n+2

]
(15.27)

where n and p are the number of experimental observations and free least squares
parameters, respectively. When d < Q < 2 serial correlation is positive and sequen-
tial observations have the same sign, while in the case of d > 4 −Q > 2, serial
correlation is negative and sequential observations have opposite signs.49

48 R.J. Hill and H.D. Flack, The use of the Durbin–Watson d-statistic in Rietveld analysis, J. Appl.
Cryst. 20, 356 (1987).
49 Ideally, experimental data (intensity) should be randomly distributed both above and below the
calculated intensity profile. If there are multiple sequences with all observed points above or all
below the calculated intensity values, it is said that serial correlation occurs. In other words, the
d-statistic reflects correlation between adjacent least-squares residuals and it can be used as an
indicator that refined parameters are unbiased.
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15.7 The Rietveld Method

The determination of a crystal structure may be considered complete only when
multiple-pattern variables and crystallographic parameters of a model have been
fully refined against the observed powder diffraction data. Obviously, the refined
model should remain reasonable from both physical and chemical standpoints. The
refinement technique, most commonly employed today, is based on the idea sug-
gested in the middle 1960s by Rietveld.50,51 The essence of Rietveld’s approach
is that experimental powder diffraction data are utilized without extraction of the
individual integrated intensities or the individual structure factors, and all struc-
tural and instrumental parameters are refined by fitting a calculated profile to the
observed data.

To a certain extent, the Rietveld method (also known as the full pattern or the
full profile refinement) is similar to the full pattern decomposition using Pawley
and/or Le Bail algorithms, except that the values of the integrated intensities are
no longer treated as free least squares variables (Pawley), or determined iteratively
after each refinement cycle (Le Bail).52 They are included into all calculations as
functions of relevant geometrical, specimen and structural parameters (see Sect. 8.6
and Chap. 9).

Full profile refinement is computationally intense and employs the nonlinear
least squares method (Sect. 15.5), which requires a reasonable initial approxima-
tion of many free variables. These usually include peak-shape parameters, unit cell
dimensions and coordinates of all atoms in the model of the crystal structure. Other
unknowns (e.g., constant background, scale factor, overall atomic displacement pa-
rameter, etc.) may be simply guessed at the beginning and then effectively refined
as the least squares fit converges to a global minimum. When either Le Bail’s or
Pawley’s techniques were employed to perform a full pattern decomposition prior
to Rietveld refinement, it only makes sense to use suitably determined relevant pa-
rameters (background, peak shape, zero shift or sample displacement, and unit cell
dimensions) as the initial approximation.

The successful practical use of the Rietveld method, though directly related to the
quality of powder diffraction data (the higher the quality, the better the outcome),
largely depends on the experience and the ability of the user to properly select a

50 Hugo M. Rietveld (b. 1932). Dutch physicist, who between 1964 and 1966 demonstrated that
accurate determination of crystal and magnetic structures, is possible using neutron diffraction
data from powders. His approach was later extended to X-rays. At present, crystal structures of
hundreds, if not thousands of polycrystalline materials, are studied and refined every year using the
Rietveld method. In recognition of the “Rietveld method,” the Royal Swedish Academy of Sciences
awarded the author, Dr. Hugo M. Rietveld, the Aminoff prize in 1995. For more information, see
http://home.wxs.nl/∼rietv025/.
51 The following two papers are considered seminal: H.M. Rietveld, Line profiles of neutron
powder-diffraction peaks for structure refinement, Acta Cryst. 22, 151 (1967); H.M. Rietveld, A
profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2, 65 (1969). Both
papers are available at http://home.wxs.nl/∼rietv025/.
52 We introduce this analogy for clarity, even though both Pawley’s and Le Bail’s techniques were
developed following Rietveld’s work.
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sequence in which various groups of parameters are refined. Regardless of the rel-
atively long history of the method, it is certainly true that almost everyone familiar
with the technique has his/her own set of “unique” secrets about how to make the
refinement stable, complete, and triumphant. Therefore, for the remainder of this
chapter, we introduce the basic theory of Rietveld’s approach. A series of hands-
on examples demonstrating the solution and refinement of crystal structures with
various degrees of complexity is assembled in the last ten chapters of this book.
Every example is supplemented by actual experimental data found online, thus al-
lowing the reader many opportunities to follow our reasoning, as well as to create
and test his/her own strategies, leading to the successful determination of the crystal
structure from powder diffraction data.

Consider Fig. 15.10, which shows both the observed and calculated powder dif-
fraction patterns of LaNi4.85Sn0.15 for a narrow range of Bragg angles. Assum-
ing that

– We have an adequate structural model, which makes both physical and chemical
sense

LaNi4.85Sn0.15, Cu Kα
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Fig. 15.10 A fragment of a powder diffraction pattern of LaNi4.85Sn0.15 collected on a Rigaku
TTRAX rotating anode powder diffractometer using Cu Kα radiation with a step Δ2θ = 0.02◦.
The observed scattered intensity (Y obs

i ) is shown using the open circles; calculated intensity (Y calc
i )

is shown using the filled circles connected with thin solid line. The differences between the ob-
served and calculated intensities are shown using the open triangles. The thick solid line drawn
across the open triangles corresponds to Y obs

i −Y calc
i = 0. The differences between the observed

and calculated intensities are usually plotted using the scale identical to Y obs
i and Y calc

i with a
constant displacement for clarity. The vertical tick marks (bars) indicate calculated positions of
Bragg peaks.
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– The model yields correct (i.e., close to experimentally observed) integrated in-
tensities

– We have a suitable peak shape and a suitable background function

the fully refined crystal structure of a material should result in a calculated powder
diffraction pattern closely resembling collected data. In other words, the difference
between the measured and calculated powder diffraction profiles should be close
to zero. This basic idea, extended to the entire powder diffraction pattern, is the
foundation of the Rietveld method.

The development of the Rietveld method, and especially subsequent work that
showed its applicability to processing conventional X-ray powder diffraction data,53

began a remarkable era, which continues today, where more and more complex crys-
tal structures are routinely solved, and fully refined using a very basic experimental
technique – powder diffraction. Although the utility of the method is somewhat
restricted by both the one-dimensionality of the data and limited instrumental reso-
lution, its power is astonishing: a simple property – the observed scattered intensity
as a function of Bragg angle – coupled with the computed powder diffraction profile
serves as a sufficient evidence of the correctness of a crystal structure model.

No other technique, including a much more sophisticated single crystal diffrac-
tion method, comes close to the Rietveld method in its visual elegance. Yet when
applied properly, the latter competes in accuracy and in many instances wins easily
over the former, especially when a material is only available in a fine-grained, pow-
dered, untextured thin film or other states, making it out of reach for a single crystal
diffraction study. Further, given several orders of magnitude difference in speci-
men size – micrograms in single crystal diffraction versus hundreds of milligrams
in powder diffraction – the latter is a much better representative of the materials’
structure in the bulk.

It is important, however, to remember that the Rietveld method requires a model
of a crystal structure, and by itself offers no clue on how to create such a model from
first principles. Thus, the Rietveld technique is nothing else than a powerful refine-
ment and optimization tool, which may also be used to establish structural details
(sometimes subtle) that were missed during a partial or complete ab initio structure
solution process, as described in some examples found in the last ten chapters of
this book.

Finally, the continuing development of Rietveld refinement methods, which
is due to an increasing demand on precise structural information from complex
structures, goes far beyond simply improving the accuracy and quality of routine
structure determinations. The technique is becoming more and more useful in the
following applications:

53 J. Malmros and J.O. Thomas, Least-squares structure refinement based on profile analysis of
powder film intensity data measured on an automatic microdensitometer, J. Appl. Cryst. 10, 7
(1977); R.A. Young, P.E. Mackie, and R.B. Von Dreele, Application of the pattern-fitting structure-
refinement method of X-ray powder diffractometer patterns, J. Appl. Cryst. 10, 262 (1977); C.P.
Khattak and D.E. Cox, Profile analysis of X-ray powder diffractometer data: structural refinement
of La0.75Sr0.25CrO3. J. Appl. Cryst. 10, 405 (1977).



15.7 The Rietveld Method 527

– Structures of complex organic and metal–organic structures can be reliably
determined using rigid body description

– Structures of small- and medium-size proteins, and other macromolecules can be
refined using stereo-chemical restraints

– Charge-density distribution from powder diffraction data can be studied because
of much improved accuracy of powder diffraction experiment and profile simu-
lation54

– Structures of low crystallinity and nano-crystalline materials can be refined using
a pair distribution function

– A wealth of noncrystallographic structural information can be extracted from
Rietveld refinement, which includes reliable phase composition, including amor-
phous content, grain size, microstrain information, texture analysis, and others

15.7.1 Fundamentals of the Rietveld Method

During refinement using the Rietveld method, the following system of equations is
solved by means of a nonlinear least squares minimization:55

Y calc
1 = kY obs

1

Y calc
2 = kY obs

2

. . .

Y calc
n = kY obs

n

(15.28)

Here Y obs
i is the observed and Y calc

i is the calculated intensity of a point i of the
powder diffraction pattern, k is the pattern scale factor, which is usually set at k = 1
because scattered intensity is measured on a relative scale and k is absorbed by the
phase scale factor (e.g., see (15.30) and (15.31)), and n is the total number of the
measured data points. Hence, a powder diffraction pattern in a digital format, in
which scattered intensity at every point is measured with high accuracy, is indeed
required for a successful implementation of the technique. In the Rietveld method
the minimized function, Φ, is therefore, given by:

Φ =
n

∑
i=1

wi(Y obs
i −Y calc

i )2 (15.29)

54 V.A. Streltsov, N. Ishizawa, Synchrotron X-ray analysis of the electron density in HoFe2. Acta
Cryst. B55, 321 (1999).
55 In this section, we are concerned with an experiment, which consists of a single pattern. The
Rietveld technique may also be used to conduct refinement of the crystal structure employing
multiple patterns collected from the same material. For example, conventional X-ray data collected
using different wavelengths, conventional and synchrotron X-rays, conventional or synchrotron
X-rays and neutron source may be used simultaneously in a combined Rietveld refinement. The
fundamentals of the combined Rietveld refinement are briefly considered in Sect. 16.5.
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where wi is the weight assigned to the ith data point and k (15.28) is unity. The
summation in (15.29) is carried over all measured data points, n.56

Considering (8.21) and taking into account the one-dimensionality of powder
data, which introduces multiple Bragg reflection overlaps, the expanded form of
(15.29) in the simplest case, that is, when the powder is a single phase crystalline
material, becomes

Φ =
n

∑
i=1

wi(Y obs
i − [bi +K

m

∑
j=1

I jy j(x j)])2 (15.30)

for a single wavelength experiment, or

Φ =
n

∑
i=1

wi(Y obs
i − [bi +K

m

∑
j=1

I j{y j(x j)+0.5y j(x j +Δx j)}])2 (15.31)

for dual wavelength (Kα1 +Kα2) data. In (15.30) and (15.31), bi is the background
at the ith data point, K is the phase scale factor, m is the number of Bragg reflections
contributing to the intensity of the ith data point, I j is the integrated intensity of the
jth Bragg reflection, y j(x j) is the peak-shape function, and Δx j is the difference in
positions of Kα1 and Kα2 components in the doublet, and x j = 2θcalc

j −2θi.
A simple analysis of these two equations indicates that the experimental mini-

mization of the background, which generally contains little or no useful structural
information, is of utmost importance for a successful outcome of a full profile-based
refinement. When the background is low, that is, when bi << KΣ I jy j(x j), the func-
tions given in both (15.30) and (15.31) are defined by contributions from the inte-
grated intensities and peak-shape parameters. On the other hand, when the back-
ground is high, i.e., when bi ∼= KΣ I jy j(x j) and, especially when bi >> KΣ I jy j(x j),
the function, which is minimized during a least squares refinement, becomes nearly
entirely dependent on the adequacy of the background and not the integrated intensi-
ties and peak shapes. Therefore, in general, a structural model cannot be satisfactory
refined using data collected in the presence of a large background.

In the absence of a background and assuming that the measured intensity is only
affected by statistical errors (see (12.8) and (12.9)), the weight can be given as:

wi = [Y obs
i ]−1 (15.32)

56 In a typical experiment, n varies from ∼103 to ∼104 data points. In powder diffraction, the
value of n is determined only by the scanned Bragg angle range and by the data collection step,
Δ2θ: n = (2θmax–2θmin)/Δ2θ+1. It is unrelated to both the complexity of the crystal structure and
the number of Bragg reflections, M, which can be observed between 2θmin and 2θmax. Obviously,
M is proportional to the number of symmetrically independent points in a “visible” fraction of the
reciprocal lattice. A simple estimate based on the volumes of the Ewald’s sphere and the unit cell of
a reciprocal lattice, results in M ∝V/λ 3, where V is the volume of the primitive unit cell in direct
space and λ is the wavelength. Thus, as unit cell volume increases, the number of possible Bragg
reflections (M) also increases but the number of observations (n) in powder diffraction remains
constant, provided experimental conditions (λ , 2θmax, 2θmin, and Δ2θ) remain constant.
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In practice, the weight is usually calculated without subtracting the background,
which yet again emphasizes the importance to have the latter at its practical minimum.

When a powder diffraction pattern is collected from a material, which is a mix-
ture of several (p) phases, the contribution from every crystalline phase is accounted
for by modifying (15.30) and (15.31) as follows:

Φ =
n

∑
i=1

wi(Y obs
i − [bi +

p

∑
l=1

Kl

m

∑
j=1

Il, jyl, j(xl, j)])2 (15.33)

Φ =
n

∑
i=1
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∑
j=1

Il, j{yl, j(xl, j)+0.5yl, j(xl, j +Δxl, j)}])2 (15.34)

Considering (15.33) and (15.34), it is clear that each additional crystalline phase
adds multiple Bragg peaks plus a new scale factor along with a set of corresponding
peak-shape and structural parameters into the nonlinear least squares. Even though
mathematically they are easily accounted for, the finite accuracy of measurements
as well as the limited resolution of even the most advanced powder diffractome-
ter, usually result in lowering the quality and stability of the Rietveld refinement in
the case of multiple phase samples. Thus, when the precision of structural parame-
ters is of concern, it is best to work with single-phase materials, where (15.30) and
(15.31) are applicable. On the other hand, since individual scale factors may be in-
dependently determined, Rietveld refinement of multiple-phase powder diffraction
patterns offers an opportunity for a quantitative analysis of a mixture or a multiple
phase crystalline material.57

15.7.2 Classes of Rietveld Refinement Parameters

Analytical expressions for the background ((13.1)–(13.6)), integrated intensity
((8.41)–(8.47), (8.51)–(8.65), and (9.1)–(9.22)), and peak shape ((8.22)–(8.39))
have been considered earlier, and the minimum of the corresponding function de-
fined by one of the relevant formulae ((15.30), (15.31), (15.33), or (15.34)) can
be found by applying a nonlinear least squares technique (see (15.8)–(15.15)).
Thus, the following groups of independent least squares parameters may be and are
usually refined using the Rietveld method:

(a) 1–12 parameters representing the background, although there may be as many
as 36.

(b) Sample displacement, sample transparency or zero-shift corrections.
(c) Peak-shape function parameters, which usually include full width at half max-

imum, asymmetry, and other relevant variables, which depend on the type of

57 In this text, we are not specifically concerned with quantitative phase analyses of multiple phase
mixtures, except for a single example considered in Chap. 16. Interested reader is referred to an
excellent overview given by R.J. Hill, Data collection strategies: fitting the experiment to the need,
in: R.A. Young, Ed., The Rietveld method, Oxford University Press, Oxford, New York (1993).
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a function selected to represent a peak shape. In a multiple-phase diffraction
pattern, these may be constrained to be identical or refined independently for
each identified phase (generally except for the asymmetry, which is common
for all of the phases since, for the most part, asymmetry is a function of the
axial and in-plane divergence of the X-ray beam, see Fig. 8.15), if warranted
both by the quality of the data and considerable differences due to the physical
state of various phases in the specimen.

(d) Unit cell dimensions, usually from 1 to 6 independent parameters for each crys-
talline phase present in the specimen.

(e) Preferred orientation, and if necessary, absorption, porosity, and extinction pa-
rameters, which usually are independent for each phase.

(f) Scale factors, one for each phase (Kl), and in the case of multiple sets of powder
diffraction data, one per pattern excluding the first, which is fixed at k = 1.

(g) Positional parameters of all independent atoms in the model of the crystal struc-
ture of each crystalline phase, usually from 0 to 3 per atom.

(h) Population parameters, if certain site positions are occupied partially or by dif-
ferent types of atoms simultaneously, usually one per site.58

(i) Atomic displacement parameters, which may be treated as an overall displace-
ment parameter (one for each phase or a group of atoms) or individual atomic
displacement parameters, with the number of independent variables between
one (isotropic approximation) and six (anisotropic approximation) per site.

The least squares parameters listed in items (a) through (d) are the same in Paw-
ley and Le Bail full pattern decomposition, and in Rietveld refinement. Other vari-
ables, that is, those found in items (e) through (i) in the list given here, are specific
to the Rietveld method. Although it is nearly impossible to prescribe a universal
and rigid order in which various groups of physically different parameters should
be included in a Rietveld refinement, the most common parameter turn-on sequence
based on their importance and potential for least squares instability, as suggested by
Young,59 is illustrated in Table 15.2.

The turn-on sequence described in Table 15.2 may be, and often is altered de-
pending on many variables, which include data quality, accuracy of the initial struc-
tural model, and knowledge of the instrumental contributions to profile parameters.
It is important to realize that rarely, if ever, it is possible to refine all relevant vari-
ables simultaneously from the beginning due to the complexity of the problem and
many possibilities for an out-of-control least squares. As noted by Young, a sys-
tematic, one-by-one turn-on sequence is nearly always the most effective tool to
establish which parameter is causing the trouble when the refinement does not go
well, and it is not clear why.

58 When more than two types of atoms occupy the same site, more than one variable per site may
be adjusted. However, these cases are usually extremely difficult to refine sensibly.
59 R.A. Young, Introduction to the Rietveld method, in: R.A. Young, Ed., The Rietveld method,
Oxford University Press, Oxford, New York (1993).
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Table 15.2 A suggested parameter turn-on sequence in a single-phase, single-pattern Rietveld
refinement using constant wavelength X-ray or neutron data (adopted from Young).59

Parameter or group of
parameters

Linear in (15.30)–(15.34) Stable Comment Sequence

Phase scale Yes Yes a 1
Specimen
displacement

No Yes b 1

Linear background Yes Yes c 2
Lattice parameters No Yes d 2
More background Generally no Fairly c 2 or 3
W No Poorly e 3 or 5
Coordinates of atoms No Fairly f 3
Preferred orientation No Fairly f 4 or not
Population and
isotropic
displacements

No Varies Correlated 5

U , V , other profile
parameters

No No e Last

Anisotropic
displacements

No Varies Last

Zero shift No Yes b 1, 5 or not

a When the scale factor is far off, or when the model of the crystal structure is wrong or too far
from reality, the refined scale factor may become incorrect.
b The specimen displacement parameter usually varies from sample to sample, and it usually takes
up some of the effects of sample transparency. For a properly aligned goniometer, the zero-shift
error should be negligible. Even if the goniometer is misaligned, the zero-shift correction should
remain sample-independent.
c When the background is large, at least its constant component should be estimated and included
at the very beginning. In a polynomial approximation, the background parameters are linear. When
more than the required background parameters are employed, severe correlations may result.
d When one or more lattice parameters are incorrect, one or more calculated Bragg peaks can lock-
on to a wrong observed peak, thus leading to a solid false minimum.
eU , V , W tend to be highly correlated and various combinations of quite different values can lead
to essentially the same peak widths.
f When coordinates of all atoms are refined, the plot of the observed and calculated diffraction data
should be used to determine whether preferred orientation should be included. Coordinates may
strongly correlate in the presence of pseudo-symmetry.

15.7.3 Restraints, Constraints, and Rigid-Bodies

We already mentioned that all chemical and physical information must be consid-
ered in order to succeed and/or speed up the process of solving the crystal structure
from powder diffraction data. The same is true for Rietveld refinements, especially
when diffraction data are of low resolution and/or the structures are complex. Only
relatively simple structures can be refined using good data without any or with mini-
mal restrictions. Instead of employing numerical tools in order to stabilize the refine-
ment and obtain a sensible result (e.g., using damping, see Sect. 15.5) that are not
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related to the chemical knowledge, the expected structural features can be used to
control the stability of the refinement by enhancing the powder diffraction data with
crystallographic and chemical information. This is especially important, and often
needed when dealing with structural complexity exacerbated by limited diffraction
data. The result is the increased ratio of the available to the resultant information; in
other words, the greater number of observations per refined parameter.

Obviously, structural and chemical restrictions biasing the least squares refine-
ment must be used carefully because if incorrect information is fed in, there is no
chance for a correct outcome. We note that this approach is extensively used in
single crystal refinements, not only when dealing with complex macromolecular or
disordered structures, but also in routine structures when handling hydrogen atoms
in groups with well-known configurations. In both single crystal and powder struc-
ture refinements, the chemical and structural information is introduced using the
mechanism of the so-called restraints, constraints, and rigid bodies, which are de-
scribed here to the extent necessary to familiarize the reader with the meaning and
possible applications.

In common use, the words “restraint” and “constraint” are nearly synonymous,
yet they have a different flavor in crystallography. Specifically, restraints and con-
straints in structure refinement are different since they describe different kinds of
restrictions imposed on the structural parameters. Thus, restraints60 mean approxi-
mate limitations or relationships between parameters, and therefore are sometimes
called soft restraints or soft constraints. In contrast, constraints61 impose strict lim-
itations, or exact relationships between specific parameters. In practice, the lat-
ter reduce the number of free variables, while the former effectively increase the
number of observations (see (15.35)), thus stabilizing the nonlinear least squares
refinement.

Restraints

Restraints are defined by a user, based on known chemical and structural informa-
tion. Each type of restraints is included in the refinement as a set of observations (a
histogram in GSAS), in addition to the main set (histogram), that is, the intensities
(Y ) of the experimental profile. The most comprehensive application of restraints is
implemented in GSAS as described in detail in the corresponding manual.62 Several
common types of restraints are shown in (15.35) that represents a combined mini-
mization function.

60 “Those who restrain desire, do so because theirs is weak enough to be restrained.” William
Blake.
61 “The more constraints one imposes, the more one frees one’s self. And the arbitrariness of the
constraint serves only to obtain precision of execution.” Igor Stravinsky.
62 A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los
Alamos National Laboratory Report LAUR 86-748 (2004). The GSAS manual is available at
http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/gsas/public/gsas/manual/GSASManual.pdf.
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where Y are profile intensities; f is weight factor; w is weight of each restraint. The
restrained type of parameters are as follows: c – chemical composition or charge
balance, δ – distances, α – valence angles, p – displacement from a plane, P –
positive Pawley extracted integrated intensity, and z – positive pole figure.

The weight factors ( f j, j = c, δ, . . . ) set for each type of the restraint are needed
to scale the restraints with one another and with the experimental profile. In other
words, they define how important restraints are relatively to the pattern, which al-
ways has unity weight factor. Usually, f j are set large at the beginning, and then are
gradually decreased as the refinement converges.

The weights (wj, j = c, δ, . . . ) are defined as 1/σ2 with σ being expected or
desired deviation from the average value of the restrained parameter (rcalc), so that
r is kept within the rcalc −σ ≤ r ≤ rcalc +σ range. In reality, the refined parameters
falling or not within the desired range depends on the value of the weight factor for
a particular restraint and also on the correctness of the selected restrained model.
Therefore, all deviations from the expected rcalc values must be thoroughly analyzed
after the refinement is completed.

Restraints on the composition (c) are usually imposed when a chemical element
is statistically disordered in two or more sites, as often happens in naturally occur-
ring minerals. For a particular element, the chemical composition is calculated as a
sum over all n involved sites:

ccalc =
n

∑
i=1

simigi (15.36)

where g is the fractional site occupation, m is the site multiplicity, and s is the multi-
plier, which when set to unity, restrains the content of a particular chemical element
to match the known chemical composition. Compositional restraint(s) can also be
imposed using valence or ionic charge to balance the electroneutrality of the unit
cell.63

Restraints on interatomic distances (δ) and bond angles (α) are applied most
often, compared to other common types of restraints, since these are readily avail-
able and their expected values are usually known quite well, for example, for sim-
ple inorganic ions and organic molecules and groups. Examples of imposing the
distance and angle restraints for a tetrahedral tetramethyl ammonium ion can be

63 See the online tutorial “Setting charge balance restraint in GSAS,” which is available at
http://www.ccp14.ac.uk/solution/gsas/charge balance restraint.html.
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found in Sect. 21.3.2 and restrained refinement of acetaminophen is described in
Sect. 25.3.

When a molecule or a functional group is flat, the root mean square (RMS) dis-
placements of atoms from the plane (p) can be restrained to be within ±σ from
zero. RMS, which is also known as the quadratic mean, is calculated as:

xRMS =

√
1
n

n

∑
i=1

x2
i (15.37)

Restraints can also be applied to profile and other parameters . Thus, integrated
intensities extracted using Pawley method (P) can be restrained to ensure that they
remain positive, as is done in GSAS when negative intensities that result from the
least squares Pawley extraction (see Sect. 15.4) are restrained to be zero, while pos-
itive intensities remain unaffected. Yet another restraint (z) is designed to keep pole
figure positive (since a negative value is unphysical) by restricting coefficients of
the spherical harmonics in the preferred orientation correction (see (8.62) and the
remainder of Sect. 8.6.6), or in other corrections that are described by spherical
harmonics.

More restraints are introduced as more complex structures and diffraction pat-
terns are analyzed. For example, torsion angle pseudopotentials (single and cou-
pled), chiral volumes, Van der Waals distances, and hydrogen bond lengths64 re-
straints were used together with all of the restraints mentioned here in the first work
describing refinement of a macromolecular structure using Rietveld method.65 In
complex protein structures, the number of introduced restraints can be extremely
large, significantly increasing the total number of observations. In a recent re-
port, combined Rietveld and stereochemical refinement of hen egg white lysozyme
protein complex was performed using 5,750 measured data points and a total of
5,391 restraints, nearly doubling the number of experimental observations. This was
enough to fit as many as 3,279 parameters.66

Constraints

Constraints are defined as exact relationships between least squares parameters.
There are several types of constraints, that is, those imposed by symmetry, by a
user, and the so-called rigid body constraints.

Symmetry constraints are mandated by symmetry transformations present in an
object, and they are imposed by many crystallographic applications automatically

64 We note that for Van der Waals contacts and hydrogen bonds only minimum distances are
restrained.
65 R.B. Von Dreele, Combined Rietveld and stereochemical restraint refinement of a protein crystal
structure J. Appl. Cryst. 34, 1084 (1999).
66 R.B. Von Dreele, Binding of N-acetylglucosamine oligosaccharides to hen egg-white lysozyme:
a powder diffraction study. Acta Cryst. D61, 22 (2005).
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without us even noticing it. Thus, lattice symmetry establishes specific relationships
between the unit cell dimensions as shown in Table 2.10. Point-group symmetry of
a site in a special position (see Sect. 3.6) establishes certain relationships between
the coordinates of an atom occupying the site, as was illustrated in Fig. 3.8. Site
symmetries higher than 1 also impose constraints on the anisotropic atomic dis-
placement parameters. For example, U22 = U11 for an atom located on a fourfold
axis; U22 =U11 and U12 = 1/2U11 for an atom located on a three- or sixfold axis. The
relationships between the atomic coordinates can easily be obtained from symme-
try operations of the corresponding special site, and these are listed in the Interna-
tional Tables for Crystallography, but constraints applicable to atomic displacement
parameters are not as straightforward. However, numerous structure refinement ap-
plications (both single crystal and powder) automatically deduce and impose these
constraints, and therefore, the algorithm will not be discussed here.

Lattice symmetry also imposes constraints on other parameters, not related to
the crystal structure. For example, coefficients of spherical harmonics used to
model complex preferred orientations67 (Sect. 8.6.6) and peak broadening due to
anisotropic stress ((8.35) in Sect. 8.5.1). In both cases, applications such as GSAS
automatically apply required constraints.

User-defined constraints are often employed to control site occupancies when
disorder is present in one or more sites (see (9.4) in Sect. 9.1.1). For example, if three
atoms A, B, and C occupy the same site then, assuming the full total occupancy of
the site, the following relationship (or constraint) results: gA + gB + gC = 1. Thus,
only two of the fractional occupancies should be refined, for example, gA and gB
are free least squares variables but gC = 1−gA −gB. Other restrictions may also be
imposed if corresponding information is available. For example, if it is known that
content of A and B is the same, then only one occupation factor is independent, for
example, gA, then gB = gA and gC = 1−2gA.

Constraining site occupancies is only one of the many possible kinds of user-
imposed constraints. Profile and other parameters often require constraining. For
example, when working with a multiple-phase sample, it is reasonable to constraint
sample displacement (or other corrections on the peak positions) to be the same
for all phases. The same is true for peak asymmetry, since a major contribution in
this case comes from goniometer optics (see Fig. 12.21). Often, during the initial
stages of multiple-phase refinements, it may be assumed that peak broadening is the
same for all phases, especially if visually this also appears to be the case, and set
proper constraints. These, however, should be removed during the final stages of the
refinement.

Finally, a researcher can introduce any other constraints (and restraints too), but
only if there are compelling reasons to do so. Indeed, this is only possible if a par-
ticular software application allows setting a constraint for parameters believed to be
in the need of constraining.

67 Note that constraints on spherical harmonics coefficients imposed by symmetry are different
from restraints that are meant to ensure physically meaningful pole figure (15.35).
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Rigid Bodies

Rigid bodies are molecules or groups that are treated as a whole (rigidly) using
the Cartesian coordinate system,68 or sometimes using Euler angles.69 The most
recent developments in the rigid body algorithms in the Rietveld refinement have
been reviewed by Dinnebier,70 and many applications of the technique have been
incorporated in GSAS by Von Dreele.71 Here, we only give a brief description in
order to help the reader with a general understanding of the rigid-body approach
and its possible applications.

Transformations of the crystallographic coordinates (x) into the Cartesian coor-
dinates (X) and back are performed as:

X = H(x− t) and x = H−1X+ t (15.38)

where

H =

⎛
⎝a bcosγ ccosβ

0 bsinα∗ sinγ 0
0 −bcosα∗ sinγ csinβ

⎞
⎠ (15.39)

and t is the center of the rigid body consisting of n atoms defined as

t =
1
n

n

∑
i=1

xi (15.40)

The location of the center and orientation of the rigid body in the Cartesian co-
ordinate system is fully defined by six parameters: three coordinates of the center
describing the displacement of the rigid body from the origin, and three angles de-
scribing the orientation of the rigid body. Thus, instead of 3n coordinates in general,
the number of parameters is reduced to no more than six and both the location and
orientation of the rigid body can easily be adjusted. If the rigid body is located on
a finite symmetry element, the number of parameters is reduced. For example, a
molecule located on a mirror plane can only move in the plane (two positional pa-
rameters), and it can only rotate around a normal to the plane (one orientational
parameter); a molecule located on a twofold axis has one positional (along the axis)
and one rotational (around the axis) parameter.

Thermal motions of a rigid body are described using the so-called TLS matrices:

T =

⎛
⎝T11 T12 T13

T12 T22 T23
T13 T23 T33

⎞
⎠ , L =

⎛
⎝L11 L12 L13

L12 L22 L23
L13 L23 L33

⎞
⎠ , and S =

⎛
⎝S11 S12 S13

S21 S22 S23
S31 S32 S33

⎞
⎠ (15.41)

68 Cartesian coordinate system uses there mutually perpendicular coordinate axes with equal scal-
ing, e.g., 1 Å or 1 nm.
69 The Euler angles were developed by Leonhard Euler to describe the orientation of a rigid body.
For more details see http://en.wikipedia.org/wiki/Euler angles.
70 R.E. Dinnebier, Rigid bodies in powder diffraction. A practical guide. Powder Diffraction, 14,
84 (1999).
71 Available at http://www.ccp14.ac.uk/solution/gsas/.
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where the T is translation, L is libration, and S is a screw matrix that describes
thermal motions. Matrices T and L are symmetric (Mi j = Mji), and matrix S is not.
The screw matrix defines mixing of the translational and librational motions and is
often 0, e.g., for a centrosymmetric rigid body. The maximum number of the TLS
parameters is 20 (6+6+9-1); one parameter is subtracted since only two diagonal
elements of S are independent, and they are usually refined as SAA = S22 −S11 and
SBB = S33 −S22. When the center of a rigid body is located in a special position, the
site symmetry imposes additional constraints72 on the allowed rigid body motions.
As a result, the number of independent parameters (which are the elements of the
TLS matrices) is reduced, sometimes significantly.

The tensor U (see (9.10)) representing thermal motions of the ith atom (1≤ i≤ n)
is obtained from the TLS parameters as follows:

Ui = T+AiS+ST AT
i +AiLAT

i (15.42)

where matrix Ai is constructed from Cartesian coordinates of an atom:

Ai =

⎛
⎝ 0 Zi −Yi
−Zi 0 Xi
Yi −Xi 0

⎞
⎠ (15.43)

The anisotropic atomic displacement parameters Ui j (see (9.9)) can be obtained
from the tensor U by using the so-called g matrix, which is the same as that used
to calculate the d-spacings, that is, (1/d)2 = hTgh, also see (8.10), (14.44), and
(14.45):

Ui j =
(gUg)i j√giig j j

, where g =

⎛
⎝ a∗2 a∗b∗ cosγ∗ a∗c∗ cosβ ∗

a∗b∗ cosγ∗ b∗2 b∗c∗ cosα∗

a∗c∗ cosβ ∗ b∗c∗ cosα∗ c∗2

⎞
⎠ (15.44)

The TLS approach is far from trivial, especially with respect to symmetry im-
posed relationships between the elements of the matrices, and attention is needed
in order to provide a stable and correct refinement.73 Yet, the mechanism of rigid
bodies results in many advantages. These are: elimination of meaningless changes
in the geometry; a substantial reduction of the number of free variables, which can
be determined with a higher accuracy; a better convergence to a correct structure
when compared to the unconstrained refinement; inclusion of hydrogen atoms at
early stages; and reliable anisotropic atomic displacement parameters, which is usu-
ally difficult to expect from powder data. The following rules proposed by Dinnebier
should be followed:

– If the center of the rigid body is also the center of gravity, the components of the
S matrix can normally be set to zero.

72 V. Shomaker, K.N. Trueblood, On the rigid body motion of molecules in crystal. Acta Cryst.
B24, 63 (1986).
73 “If one sticks too rigidly to one’s principles, one would hardly see anybody.” Agatha Christie.
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– Refining only the diagonal components of the T matrix constrained to be identi-
cal, and keeping all elements of L and S equal to zero is the same as refining an
overall isotropic temperature factor for the rigid body.

– Refining all elements of the T matrix, with L = S = 0, is the same as refining an
overall anisotropic temperature factor for the rigid body.

– For planar molecules, it is often sufficient to refine only the components of the
T matrix and the diagonal elements of the L matrix.

– If the rigid body is located on a finite symmetry element, some elements of the
TLS matrices must be set to zero or constrained accordingly.

An example on the rigid body refinement of a complex 16 atoms ligand in a
metal–organic compound can be found in recent paper by Nielson at all.74 In addi-
tion, a variety of tutorials and practical guides on how to use the rigid body refine-
ment can be found on the GSAS web page.75

15.7.4 Figures of Merit and Quality of Rietveld Refinement

Similar to both Le Bail’s and Pawley’s full pattern decompositions, the quality of
the refinement using the Rietveld method is quantified by the corresponding figures
of merit: profile residual, Rp, weighted profile residual Rwp, Bragg residual, RB,
expected residual Rexp, and goodness of fit, χ2 (see (15.19)–(15.23)). The Durbin–
Watson d-statistic ((15.26) and (15.27)) may be used to quantify a serial correlation
between adjacent least squares residuals in a Rietveld refinement based on step-scan
experimental data. As noted earlier, all but one (RB) residuals depend on both the
profile and structural parameters. The Bragg residual becomes especially significant
during Rietveld refinement because it is the only figure of merit, which is nearly ex-
clusively dependent on structural parameters and therefore, primarily characterizes
the accuracy of the model of the crystal structure.76

Regardless of the importance of various numerical figures of merit used to mea-
sure the quality of the Rietveld refinement, none of the residuals is a substitute for
the plots of the observed and calculated powder diffraction patterns supplemented
by the difference, ΔYi =Y obs

i −Y calc
i , plotted on the same scale (see Figs. 15.5–15.8).

74 R.B. Nielsen, K.O. Kongshaug, H. Fjellvåg, Delamination, synthesis, crystal structure and ther-
mal properties of the layered metal-organic compound Zn(C12H14O4). J. Mat. Chem. 18, 1002
(2008).
75 http://www.ccp14.ac.uk/solution/gsas/.
76 Bragg residual, (15.21), as calculated in Rietveld refinement, uses true calculated integrated
intensities but the “observed” integrated intensities are never actually measured experimentally.
They are simply calculated by prorating the observed experimental profile proportionally to the
contributions from multiple overlapped calculated reflection profiles after the background has been
subtracted (see (15.7)), followed by the numerical integration (see (8.40)). In this regard, Bragg
residual also depends on the profile parameters, although this dependence is far less critical when
compared to Rp, Rwp, and χ2. In some references, RB, which is based on the square roots of the
integrated intensities, is used as an equivalent of RF. The latter employs the absolute values of the
observed and calculated structure factors: RF = Σ(|K|Fobs

i |− |Fcalc
i ||)/Σ(K|Fobs

i |).
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A standard in the modern representation of the refinement results also requires in-
clusion of tick marks indicating the calculated positions of Bragg peaks (e.g., see
Fig. 12.16). For dual wavelength data, Bragg reflections positions calculated for
Kα1 or both Kα1 and Kα2 components in the doublet, may be included (e.g., see
Fig. 15.10).

The need for a graphical representation of the results is especially important be-
cause both Rp and Rwp absorb the contribution from the background. In extreme
cases, when the background is high, it is possible that the corresponding numeri-
cal figures of merit appear to be excellent due to extremely large denominators in
(15.19) and (15.20), but neither the model, nor the fit of Bragg peaks make much
sense. When the background is unusually high, both the observed and calculated
powder diffraction patterns should be plotted after a constant component of the
background has been subtracted to enable easy examination of a potential inade-
quacy of the selected peak-shape function and/or other unusual discrepancies not
visible on top of a vast background. Truly, the numbers may be biased but the figure
can be trusted when it comes to assessing the quality of Rietveld fits.

15.7.5 Common Problems and How to Deal with Them

Every powder diffraction pattern has its own problems when subject to Rietveld re-
finement, but some of them are more common than the others, and therefore, certain
guidelines have been developed under the auspices of the Commission on Powder
Diffraction of the International Union of Crystallography.77 In this section we fol-
low suggestions laid out by L.B. McCusker et al.,77 while also urging the reader to
consult this excellent paper. Short of the obvious, that is, a variety of errors related
to data files used in Rietveld refinement, McCusker, Von Dreele, Cox, Louër, and
Scardi give the following brief description of common problems. Later, we support
the description given in the next few subsections by numerous practical examples
found in Chaps. 16–25.

Poor Fit of the Background

Most commonly, problems with the background occur when the primary, rather
than diffracted beam, has been conditioned by a crystal monochromator (e.g., see
Fig. 11.25). Complicated backgrounds are common when a sample has been en-
closed in any kind of a controlled environment (see Sect. 11.4) due to additional
scattering on windows and other parts of sample attachment. In some cases, it may
be useful to eliminate complex background contribution from the surroundings by
measuring it without the sample, in others, changing the background function or
increasing the number of parameters used to fit the background will address the

77 L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi, Rietveld refinement guide-
lines, J. Appl. Cryst. 32, 36 (1999).



540 15 Solving Crystal Structure from Powder Diffraction Data

problem. It may be necessary to do both in order to attain a sufficient approxima-
tion of the background present in some powder patterns. Needless to say, measuring
the background without a sample must be done using configuration (sample holder,
optics, and power settings) that are identical to those employed during the actual
measurement of the powder diffraction pattern.

Complexity of the background may also be intrinsic to a sample, reflecting poor
crystallinity, extreme disorder, or nanocrystallinity. When deviations from the con-
ventional, weakly Bragg angle dependent behavior are weak, adding a few free vari-
ables to fit the background usually helps. Otherwise, one’s best bet is to employ tools
developed for total scattering analysis78 rather than Rietveld refinement.

Poor Fit of Peak Shapes

This usually occurs when one or more critical peak-shape parameters have been
overlooked, or became unphysical during previous refinement steps. The latter often
happens when too many of the peak-shape-related parameters have been set as free
variables during early stages of the refinement. Common solutions include

– Checking the difference profile (see Figs. 15.5–15.9) and identifying the cul-
prit responsible for discrepancies in the majority of strong, well-resolved Bragg
peaks. When the source of the problem has been identified, an incorrect parame-
ter must be reset and/or the forgotten parameter included into the refinement.

– It is possible that the selected peak-shape function does not describe this par-
ticular experiment well. The best way to find the right function is to examine a
well-characterized standard, such as LaB6 (SRM-660a, which is available from
NIST79). Once the function that fits peak shapes of the standard is found, it
should be used to fit profiles of all other samples measured using the same dif-
fractometer and the same goniometer optics.

– Asymmetry correction is commonly overlooked. Make sure that an appropriate
model (see Sect. 8.5.2) is selected, and relevant parameters are included in the
refinement.

– Sometimes, peak widths exhibit strong anisotropy due to anisotropic strain, ex-
treme particle anisotropy, or stacking faults. If this is the case, it may be necessary
to use appropriate corrections to the conventional, smoothly varying as a function
of Bragg angle FWHM (e.g., see (8.34)).

Mismatch Between Calculated and Observed Peak Positions

Most commonly, this problem occurs when experimental data have been affected
by errors due to zero shift, sample displacement, or sample transparency. Setting

78 T. Egami and S.J.L. Billinge, Underneath the Bragg peaks. Pergamon Materials Series (Perga-
mon, Amsterdam, 2003).
79 SRM is Standard Reference Material. Consult http://ts.nist.gov/measurementservices/
referencematerials/index.cfm for details.
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either the zero-shift or sample-displacement parameter as a free variable will help.
Sometimes, a problem may be less obvious. One example is when a model used to
approximate peak asymmetry is inadequate. As a result, Rietveld refinement of the
unit cell dimensions may not converge properly when asymmetry is strong. Another
example is when there is a problem with the goniometer, slipping through a data
point, or getting stuck at the same position during data collection, which remains
undetected by the data-collection software. If these mechanical errors are repro-
ducible, measuring a standard will help to pinpoint the cause. Yet another possible
reason is the presence of a subtle structural distortion, or incorrectly assumed lattice
symmetry (such as forcing cubic symmetry upon a structure which is tetragonal or
rhombohedral). A careful analysis of mismatches, anisotropy of peak shapes, and/or
signs of peak splitting is required to find out the reality.

The Tails of Strong Peaks Are Cut off Prematurely

This problem often occurs when Bragg peaks are more Lorentzian than they are
Gaussian (see Fig. 8.12). Then, Bragg intensity spreads far away to the left and to
the right from the peak center, and if the calculated peak-shape function is truncated
prematurely, distinct steps are observed upon a close examination of the calculated
profile (see Fig. 16.6). The solution is to increase the range over which the peak
profile is calculated.

The Relative Intensities Do Not Match

An obvious reason is an incorrect or incomplete model of the crystal structure. A
solution is to either find the right model, or to complete it by positioning missing
atoms in the unit cell. Assuming that the model of the crystal structure is complete
and correct, a variety of reasons may cause intensity mismatch.

One of the reasons is preferred orientation. Typically, Bragg peaks with spe-
cific combination of indices are too strong, but there are others that are too weak.
For example, if observed intensities of all Bragg peaks (00l) are higher than the
corresponding calculated intensities but the relationships between observed and cal-
culated intensities are opposite for all resolved (h00), (0k0), and (hk0) reflections,
most likely the sample is textured along the [001] direction. Refining preferred ori-
entation using any of the models discussed in Sect. 8.6.6 may solve the problem but
only when the texture is moderate. If this does not help, the experiment has to be
redone paying special attention to minimize texture.

Another potential problem with intensity mismatch is when coarse powder was
used to prepare the specimen (see Figs. 12.13–12.15), and/or when the sample was
not spinning. It is usually recognized by seeing a few observed intensities that are
too high but none are too low. This situation cannot be remedied analytically, and the
experiment must be repeated with a much finer powder while spinning the specimen.
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Presence of Weak Unindexed Bragg Peaks

These may be either due to crystalline impurities, or they may indicate formation
of a superstructure (doubling, tripling, etc. of one or more unit cell dimensions).
The best way to identify the source is to repeat synthesis of the same material. If
the unindexed peaks remain where they were, plus their relative intensities remain
similar when compared to intensities of the main (indexed) phase, chances are that
these unindexed peaks signal the formation of a superstructure. When a different
batch of the same material results in a different set of unindexed peaks, or some of
the peaks have disappeared or changed relative intensity, these are likely impurity
peaks. An attempt should be made to index them and to assign them to a particular
crystalline solid.

Problems with Converging Refinement

If the structural model is complete, most likely some, or all initial approximations
are too far away from their true values, or there are correlations between several
parameters (see Fig. 15.4). Problem-causing variables may be identified by moni-
toring their shifts, standard deviations, and correlations during several consecutive
refinement cycles. Opposite signs with gradually increasing amplitudes of the shifts
and/or unusually large standard deviations are good indicators of the problematic
parameter. Damping should be applied as needed. It may be necessary to refine pa-
rameters in groups rather than altogether. For example, population parameters are
usually correlated with atomic displacement parameters, and these may need to be
refined separately. In some cases, constraints and restrains must be added to avoid
least squares instabilities. Care must always be taken to ensure that the data support
the number and types of parameters being refined (n >> m in (15.8)).

15.7.6 Termination of Rietveld Refinement

Nonlinear least squares technique results in finding a set of increments that are
added to a set of free variables chosen to represent a certain initial approximation.
Parameters obtained in this ways are carried over into the next refinement cycle as
a more precise initial approximation. In some cases, it may take a few refinement
cycles to achieve the best fit, that is, to minimize the corresponding function, while
in many instances the number of required least squares steps may be quite large.
Especially in Rietveld refinement, where various groups of parameters have a dif-
ferent and often unrelated physical origin, the ability to detect the completion of the
minimization, that is, the complete convergence of the least squares, is essential.

The critical variables to watch during the refinement are indeed, a set of standard
figures of merit (FOM’s), that is, Rp, Rwp, RB and χ2. When the Rietveld algo-
rithm is stable, they should gradually decrease and then level off, showing minimal
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fluctuations about certain minimum values, which are experiment- and structure-
specific. In some cases, FOMs may begin to rise. More often than not, their steady or
erratic rise indicates the undesired divergence of the nonlinear least squares, which
is usually associated with severe correlations between two or more variables. If this
condition is detected, the refinement should be stopped without saving the results,
and the array of free variables reanalyzed to introduce proper constraints.

Even if the refinement is stable, it should be terminated at a certain point. Because
of the finite accuracy of both the data and computations, it is unrealistic to wait until
increments of all least squares parameters become zero. The latter usually never
happens anyway, due to simplifications introduced in the nonlinear least squares
algorithm (see (15.9)). In addition to the stabilization of all figures of merit near
their respective minima, another important factor that should be considered is the
relationships between the increments and corresponding standard deviations after
each least squares cycle. It is commonly accepted that when all residuals converge
and stabilize at their minima, and when the absolute values of all increments become
smaller than the estimated standard deviations of the corresponding free variables,80

the least squares refinement may be considered converged (indeed, the model must
remain rational).

15.8 Concluding Remarks

In the remainder of this book, we consider multiple practical structure solution ex-
amples. For the most part, individual intensities and structure factors are extracted
by using Le Bail’s algorithm of full-pattern decomposition. This technique is chosen
instead of Pawley’s approach because the former algorithm is usually more stable
and it has been incorporated into several freely available software programs, which
are coupled with Patterson and Fourier calculations. These are: LHPM-Rietica,81

GSAS,82 and FOX,83 although other well-developed and tested computer codes are
available.84 In some of the more complex examples, however, we will employ man-
ual profile fitting. The latter approach is less “user-friendly” in terms of automation,

80 Usually lower than a small (at least 1/10th) fraction of the standard deviation.
81 LHPM-Rietica (authors B.A. Hunter and C.J. Howard) may be downloaded from ftp://ftp.
ansto.gov.au/pub/physics/neutron/rietveld/Rietica LHPM95/ or via a link at http://www. ccp14.
ac.uk.
82 GSAS (authors A.C. Larson and R.B. Von Dreele) may be downloaded from http://www.
ccp14.ac.uk/solution/gsas/. A convenient graphic user interface for GSAS (author Brian Toby) may
be downloaded from the same site or from http://www.ncnr.nist.gov/programs/crystallography/.
83 R. Černý, V. Favre-Nicolin, J. Rohlı́ček, M. Hušák, Z. Matěj, R. Kužel, Expanding FOX:
Auto-indexing, grid computing, profile fitting. p. 16 in: CPD Newsletter “Real-Space and Hybrid
Methods for Structure Solution from Powders,” Issue 35, (2007); available at http://www.iucr-
cpd.org/PDFs/CPD 35 total.pdf.
84 One of these is EXPO – an integrated package for full pattern decomposition and for solv-
ing crystal structure by direct methods (authors A. Altomare, B. Carrozzini, G. Cascarano,
C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, R. Rizzi, M.C. Burla, G. Polidori, and
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but it avoids the unrestricted and sometimes unrealistic determination of the inten-
sities of Kα1 and Kα2 peaks.

By solving crystal structures of different classes of materials,85 we illustrate only
a few of the possible approaches to the ab initio structure solution from powder dif-
fraction data. It is worth noting that parameters identical to those listed in our exam-
ples can be expected only when the same computer codes are used to perform full
profile refinement due to small but detectable differences in the implementation of
the Rietveld method by various software developers. Further, even when the same
version of an identical computer program is employed to treat the same set of exper-
imental data, small deviations may occur due to subjective decisions, such as when
to terminate the refinement. In the latter case, however, the differences should be
within a few least squares standard deviations.
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Chapter 16
Crystal Structure of LaNi4.85Sn0.15

Consider a powder diffraction pattern of LaNi4.85Sn0.15, which is shown in
Fig. 16.1.1 From Chap. 14 (Sects. 14.3.1, 14.7.1, and 14.11.1) we already known
that the alloy is hexagonal and the lattice parameters are a = 5.0421, c = 4.0118 Å.
Analysis of Table 14.6 indicates that there are no forbidden reflections, and from
Tables 9.7 and 9.8 the possible space-group symmetries for this material are as
follows: P6/mmm, P6̄m2, P6̄2m, P6mm, P622, P6/m, P6̄, P6, P3̄1m, P31m, P312,
P3̄m1, P3m1, P321, P3̄, and P3.

The fact that a total of 16 (!) space groups are possible for this material could
make it a complicated choice for the ab initio structure solution. However, its unit
cell is quite small. Further, LaNi4.85Sn0.15 is an intermetallic compound and there-
fore, the highest symmetry space group (P6/mmm) is quite probable.

The measured gravimetric density of the alloy is 8.21 g/cm3. After calculat-
ing the mass of its formula unit, M = 441.4 a.m.u., and the unit cell volume,
V =

√
3a2c/2 = 88.327 Å3, (15.4) results in Z = 0.99 ∼= 1. Thus, one unit cell

of the compound contains 1 La, 4.85 Ni, and 0.15 Sn atoms. Because of the frac-
tional amounts in the unit cell, the Ni and Sn atoms may be distributed statistically
in their respective crystallographic sites (they have similar atomic radii: rNi = 1.35,
rSn = 1.45 Å), but much larger La atoms (rLa = 1.95 Å) should occupy a separate
crystallographic site. Thus, before proceeding with the full pattern decomposition,
it is advisable to check whether some of the space groups that are possible for this
compound can be eliminated.2 Analysis of the multiplicities of site positions of the

1 Files Ch16Ex01 CuKa.dat and Ch16Ex01 CuKa.xy, which contain the same experimental data
saved in two different formats, are found online (See www.springer.com/978-0-387-09578-3).
2 Generally, it is unnecessary to have the exact space group symmetry information during the full
pattern decomposition. In fact, it is more practical to select the most symmetrical space group in the
established diffraction group and avoid multiple and complete Bragg peak overlaps. For example,
when both trigonal and hexagonal symmetry (primitive lattice) groups are possible, full pattern
decomposition is best performed in the hexagonal crystal system assuming Laue class 6/mmm.
This eliminates Bragg doublets (e.g., hkl and khl, which are present in the Laue class 6/m) and
quadruplets (e.g., hkl, hk l̄, khl, and kh l̄, which should be taken into account in the Laue class 3̄),
which are indistinguishable using both Le Bail and Pawley techniques. For structure solution, it

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 547
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 16,
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Fig. 16.1 The powder diffraction pattern collected from a sample of LaNi4.85Sn0.15 using Cu Kα
radiation on a Rigaku TTRAX rotating anode diffractometer. The divergence slit was 0.75◦ and
the receiving slit was 0.03◦. The experiment was carried out in a continuous scanning mode with
a rate 0.5 deg/min and with a sampling step 0.02◦. The powder used in this experiment was pre-
pared by gas atomization from the melt and therefore, particles were nearly spherical (see inset in
Fig. 12.16).

16 possible space groups indicates that none of the groups can be excluded outright
because every space-group symmetry has one-, two- and threefold sites (some of
the trigonal space groups have only one- and threefold sites), which are sufficient to
accommodate one La and a total of five Ni+Sn atoms.

In this example,3 we use LHPM-Rietica. For readers that have no experience with
the program, we suggest using both the manual, which is available for download
with the software, and a Web-based tutorial4 in combination with the experimental
data found online. Ideally, the results presented here should be reproduced nearly
exactly, although small deviations may occur due to the nature of the nonlinear least
squares.

may be necessary to add the missing combinations of indices to the array of structure amplitudes
obtained in the highest symmetry space group.
3 Due to its simplicity, this example is purely academic; however, it is an excellent sample to
gain initial experience in deconvoluting powder diffraction patterns using Le Bail’s technique.
Therefore, it is considered in detail.
4 Brett Hunter, LHPM-Rietica Rietveld for Win95/NT. Tutorial is accessible via http://www.ccp14.
ac.uk/, then “Tutorials” on the site map, then “LHPM-Rietica Rietveld.”
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16.1 Full Pattern Decomposition

Full pattern decomposition usually begins with the refinement of the background
while keeping peak shape and instrumental parameters fixed at their default values,
and unit cell dimensions fixed at their best-known values. We begin with only two
parameters representing the background as a straight line, which is sufficient as a
first approximation (see Fig. 16.1). Peak shapes are represented using a pseudo-
Voigt function.5 The progression of the full pattern decomposition is illustrated by
the corresponding figures of merit, which are assembled in Table 16.1.

Initial refinement of only two background parameters serves an important func-
tion: it enables preliminary determination of the individual integrated intensities,
which are initially set to unity (see Sect. 15.4), and the calculated diffraction pattern
begins to resemble the observed diffraction data (Fig. 16.2). When this initial re-
finement step is completed and the refinement appears stable, it is possible to begin
releasing other relevant parameters. The refinement has been performed in the order
shown in Table 16.1; the results are illustrated in Figs. 16.3–16.8, and in Table 16.2.

The initial refinement of a linear background (Fig. 16.2) is far from an ideal fit.
Although the unit cell dimensions are quite precise, we know that the experimental
data are affected by a small systematic error in Bragg angles (see Table 14.6, which
indicated a zero shift of 0.032◦, or an equivalent sample-displacement error). Fur-
ther, peak-shape parameters have been set at their defaults, which may be unsuitable
to describe the observed profile quite well. A relatively poor fit is reflected in high
residuals, as seen in Row 2 of Table 16.1. When major peak shape (U , V , W , and
η0) and lattice parameters were refined along with zero shift, the fit improves con-
siderably, as seen in Rows 3 and 4 in Table 16.1 and visualized in Figs. 16.3 and
16.4, respectively. For such a simple pattern, the order in which these parameters
have been refined is practically irrelevant, but for the cases that are more complex,
it may be necessary to examine the differences, Y obs

i –Y calc
i (see Sect. 15.6.1), and

to decide which set of parameters is more likely to have the largest effect on the
improved fit: they should be refined first.

In this example, lattice parameters and the zero-shift correction have a substantial
impact on the quality of the fit and the weighted profile residual, Rwp, decreases
nearly twofold (from ∼24 to ∼12%), while the refinement of peak-shape parameters
decreases Rwp by only ∼4%. Therefore, in this case, lattice parameters should have
been refined first. However, it is not always obvious which parameters are more
important and should be released at a particular stage of the least squares refinement.
Because of this, in complex cases a trial-and-error approach is often employed.6

5 Asymmetry was treated in the approximation given by: C.J. Howard, The approximation of asym-
metric neutron powder diffraction peaks by sums of Gaussians, J. Appl. Cryst. 15, 615 (1982). See
also (8.39).
6 An idiosyncrasy of the Le Bail’s approach nearly always requires that early refinement includes
the simplest suitable background function with all other relevant parameters kept fixed at their
default or approximately known values. This ensures the proper determination of the individual
integrated intensities, which are initially set to identical values, and the overall success of the full
pattern decomposition.
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Fig. 16.2 The observed (circles) and calculated (lines) powder patterns of LaNi4.85Sn0.15 after a
linear background has been refined. Peak-shape parameters were kept at their default values and
lattice parameters were fixed at a = 5.0421, c = 4.0118 Å. The vertical bars located just below the
background level indicate calculated positions of Bragg peaks for λKα1. The curve in the bottom
part of the plot represents the difference Y obs

i −Y calc
i . The scales for the observed, calculated, and

difference plots are identical. The inset clarifies details in the vicinity of the strongest Bragg peak.
Same notations are maintained in all similar figures that follow, and throughout the book.

Table 16.1 Figures of merit obtained at different stages during the full pattern decomposition of
the powder diffraction pattern of LaNi4.85Sn0.15 using Le Bail approach incorporated in LHPM-
Rietica. Wavelengths used: λKα1 = 1.54059 Å, λKα2 = 1.54441 Å; Rexp = 5.24%.

Refined parameters Illustration Ra
p Ra

wp χ2

Experimental data Fig. 16.1 – – –
Background (linear) Fig. 16.2 22.75 28.25 29.02
+ U , V , W , η0 Fig. 16.3 19.40 24.13 21.20
+ a, c, zero shift Fig. 16.4 7.75 12.23 5.44
+Background (third order), asymmetry Fig. 16.5 5.61 9.16 3.06
All, plus broader base width Fig. 16.7 4.82 8.31 2.52
Second phase, all parameters Fig. 16.8 4.38 6.47 1.53
a Here and in all other similar tables, the residuals are listed in percent and χ2 is dimensionless (see
(15.19)–(15.21) and (15.23)).

The result illustrated in Fig. 16.4 shows a satisfactory fit and the next groups
of parameters included in the refinement were: a more complex background (third-
order polynomial instead of a linear function) and peak asymmetry. The fit further
improves and when the calculated and observed profiles match quite well (i.e.,
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Fig. 16.3 The observed and calculated powder diffraction patterns of LaNi4.85Sn0.15 after peak
shape parameters, U , V , W and η0, were refined together with linear background.
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Fig. 16.4 The observed and calculated powder diffraction patterns of LaNi4.85Sn0.15 after zero
shift and lattice parameters were included in the refinement.
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Y obs
i –Y calc

i approach 0), as shown in Fig. 16.5, it is useful to examine the bases
of the strongest Bragg peaks to establish whether the selected peak range is ade-
quate or not. The peak width at the base was seven FWHM’s so far (default) and,
as seen in Fig. 16.6, it is too narrow. Therefore, from this point on it was increased
to 12 FWHMs, which further improves the fit (Fig. 16.7 and Row 6 in Table 16.1).
The proper selection of peak widths at the base is best established visually, that
is, it should be gradually increased until “steps,” which are indicated by arrows in
Fig. 16.6 disappear. While it is possible to select an even larger peak width at the
base, it is always better to choose a realistic minimum value because as the com-
plexity of the pattern increases, the excessive widths of peaks may have a deleterious
effect on the background function, especially at high Bragg angles.

The powder diffraction pattern is contaminated by a small amount of an impurity
phase, which is a solid solution of Sn in Ni. Its structure is cubic, space group Fm3̄m,
and approximate lattice parameter is a = 3.54 Å. When its presence is accounted,
the fit and all residuals further improve.7 The corresponding parameters,as obtained
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Fig. 16.5 The observed and calculated powder diffraction patterns of LaNi4.85Sn0.15 after the poly-
nomial background and asymmetry were refined together with lattice parameters, zero-shift and
peak-shape parameters (U , V , W and η0).

7 When the crystal structure of the impurity (or at least its lattice parameters) is unknown, the
contaminated ranges of the powder diffraction pattern may be simply excluded from the least
squares refinement. In this example, the following ranges may be excluded to improve the fit:
43.6◦–44.6◦, 51◦–52◦, 75◦–77◦, and 97◦–99◦ of 2θ. One impurity Bragg peak (at 2θ = 92.3◦)
nearly completely overlaps with the peak from the major phase in the sample. Hence, exclusion
may not be a suitable alternative if there are multiple overlaps of Bragg peaks that belong to the
main and impurity phases, especially when the amount of the latter is significant.
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Fig. 16.6 Expanded view of the bases of the strongest Bragg peaks indicating that peak ranges
should be increased. The additional Bragg peak at 2θ∼= 44.2◦ is from Ni impurity.
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Fig. 16.7 The observed and calculated powder diffraction patterns of LaNi4.85Sn0.15 after all pa-
rameters have been refined with the increased peak base widths.
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Table 16.2 Parameters obtained at different stages during the full pattern decomposition of the
powder diffraction pattern of LaNi4.85Sn0.15.

Free parameters Refined values

Initial (default) parameters Background: b0–b4 and b−1, all zero
U = 0.0100; V = −0.0050; W = 0.0200;
η0 = 0.2000; η1 = 0.0000; η2 = 0.0000
Asymmetry = 0.020; Anisotropy (001) = 0.0000
a = 5.0421 Å; c = 4.0118 Å; δ2θ = 0.000◦

Background (linear) b0 = 146.58; b1 = −0.448
Background (linear), U , V , W , η0 b0 = 154.24; b1 = −0.699

U = 0.0164; V = 0.0599; W = −0.0023; η0 = 0.2614
Background (linear), U , V , W , η0, b0 = 157.95; b1 = −0.698
a, c, zero shift U = 0.0403; V = −0.0081; W = 0.0056; η0 = 0.4064;

a = 5.0432 Å; c = 4.0126 Å; δ2θ = 0.02◦

Background (third order
polynomial plus hyperbolic term,
b−1), U , V , W , η0, asymmetry,

b0 = 41.921; b1 = −0.112; b2 = 4×10−4; b3 = 3×10−5;
b−1 = 3332.1;
U = 0.0311; V = 0.0022; W = 0.0031; η0 = 0.4152;

a, c, zero shift Asymmetry = −0.025;
a = 5.0419 Å; c = 4.0115 Å; δ2θ = 0.049◦

Background (third order), U , V , W ,
η0, η1, η2, asymmetry, anisotropy
+12 FWHM peak base, a, c, zero
shift

b0 = 37.941; b1 =−0.272; b2 = 3×10−3; b3 = 1×10−5;
b−1 = 3470.6;
U = 0.0283; V = −0.0046; W = 0.0058;
η0 = 0.1066; η1 = 0.0086; η2 = 0.0000;
Asymmetry = −0.016; Anisotropy (001) = 0.0165
a = 5.0421 Å; c = 4.0116 Å; δ2θ = 0.044◦

Same as above plus a second phase
included. Due a small amount of
the impurity, all of the peak shape
parameters of a second phase were
constrained to be identical to those
of the majority phase.

b0 = 31.562; b1 =−0.423; b2 = 7×10−3; b3 = 7×10−6;
b−1 = 3654.2;
U = 0.0281; V = −0.0042; W = 0.0056; η0 = 0.1256;
η1 = 0.0080; η2 = 0.0000;
Asymmetry = −0.016; Anisotropy (001) = 0.0165
a = 5.0419 Å; c = 4.0114 Å; δ2θ = 0.044◦

a = 3.5416 Å (second phase, Ni1−xSnx)

after each refinement step, are assembled in Table 16.2. The inclusion of an impurity
phase at the last step is not critical, yet is noticeable (see Table 16.1 and Fig. 16.8),
because the amount of this phase is quite small, totaling ∼2vol.% according to a
microstructural analysis, or ∼2.5wt.% according to the Rietveld refinement (see
later in the text).

The results of the full pattern decomposition are shown in Table 16.2 as a list of
peak shape and lattice parameters, and also in Table 16.3 as a list of Miller indices
with the corresponding individual |Fobs|2 and their standard deviations. The array of
intensity data can now be processed by any suitable crystallographic software, and
used to calculate a Patterson function, or in a combination with direct phase angle
determination algorithm(s) to solve the crystal structure of LaNi4.85Sn0.15.
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Fig. 16.8 The observed and calculated powder diffraction patterns of LaNi4.85Sn0.15 after a second
phase (solid solution of Sn in Ni) was included in the refinement. Considering the low background
(the peak-to-background ratio exceeds 200 for the strongest Bragg peak at 2θ ∼= 42.3◦), the final
residuals are excellent.

Table 16.3 The list of Bragg reflections with their corresponding observed structure factors
squared determined from Le Bail’s full pattern decomposition of the powder diffraction pattern
of LaNi4.85Sn0.15. Only the data for the major phase are listed.

h k l |Fobs|2 σ|Fobs|2 h k l |Fobs|2 σ|Fobs|2

0 1 0 85 1 0 3 2 1,040 6
0 0 1 617 5 1 3 1 678 5
0 1 1 2,012 6 0 2 3 255 4
1 1 0 3,328 13 0 4 0 1,846 17
0 2 0 5,604 19 2 2 2 3,862 19
1 1 1 7,488 16 0 4 1 124 2
0 0 2 13,440 54 1 2 3 500 4
0 2 1 816 6 1 3 2 73 1
0 1 2 50 1 0 0 4 3,436 36
1 2 0 75 2 2 3 0 87 1
1 1 2 1,713 10 0 3 3 1,842 13
1 2 1 1,003 5 0 1 4 42 1
0 2 2 2,979 14 2 3 1 548 5
0 3 0 1,559 14 0 4 2 1,509 12
0 3 1 3,503 16 1 4 0 749 7
0 0 3 201 4 1 1 4 682 7
0 1 3 641 6 1 4 1 1,787 9
1 2 2 60 1 2 2 3 129 2
2 2 0 5,592 30 0 2 4 1,291 10
1 3 0 78 2 1 3 3 502 4
2 2 1 166 3 2 3 2 91 1
1 1 3 2,611 15



556 16 Crystal Structure of LaNi4.85Sn0.15

16.2 Solving the Crystal Structure

Strictly speaking, in this case it is not necessary to solve the crystal structure from
first principles, because after finding that the Pearson’s symbol of the material is
hP6, it is easy to identify the correct structure type of this alloy by consulting Pear-
son’s Handbook. Further, in such a small and high symmetry unit cell the possibil-
ities to place different atoms are quite limited due to geometrical constraints, and
chances are quite high that this type of crystal structure is already known. Nonethe-
less, this example is useful to illustrate how a simple combination of available data
about the chemical composition, unit cell contents and symmetry provides required
information, which may be used to locate all atoms in the unit cell.

As established earlier, a total of 16 space groups are possible for LaNi4.85Sn0.15
but the highest symmetry is quite likely because the material is an intermetallic
compound. Hence, we first concentrate our attention on the space group P6/mmm.
If the structure is solved in this space-group symmetry, then there is no need to test
lower symmetry groups. However, if the solution could not be found, the symmetry
should be gradually lowered until the crystal structure is solved, see Fig. 15.1.

We already know that we must locate a total of one La, and five Ni+Sn atoms in
the unit cell. According to the International Tables for Crystallography,8 only two
sites in this space-group symmetry have multiplicity one and, therefore, are suitable
to accommodate the La atom (Table 16.4). These are: 1(a) with coordinates of a
point in 0,0,0, and 1(b) 0,0,1/2. Considering the fact that La is the strongest scattering
atom in this crystal structure, it has the largest contribution to the phase angles of
all reflections. Hence, Ni atoms should be easily located from a Fourier map.9

As is easy to verify by calculating interatomic distances, the La atoms can be
accommodated in 1(a) or 1(b) sites, which differ only by a shift of the origin of
coordinates, and La–La distances are identical regardless of where the La atom is

Table 16.4 Low multiplicity sites available in the space group P6/mmm.

Site Coordinates of symmetrically equivalent points

1(a) 0,0,0
1(b) 0,0, 1/2
2(c) 1/3,2/3,0 2/3,1/3,0
2(d) 1/3,2/3,1/2 2/3,1/3,1/2
2(e) 0,0,z 0,0, z̄
3(f) 1/2,0,0 0,1/2,0 1/2,1/2,0
3(g) 1/2,0,1/2 0,1/2,1/2 1/2,1/2,1/2
4(h) 1/3,2/3,z 2/3,1/3,z 1/3,2/3, z̄ 2/3,1/3, z̄

8 International Tables for Crystallography, vol. A, Fifth revised edition, Theo Hahn, Ed.,
Published for the International Union of Crystallography by Kluwer Academic Publishers,
Boston/Dordrecht/London (2002).
9 The amount of Sn in the alloy is small and assuming random distribution of Ni and Sn in the
corresponding sites, the mixture is nearly pure nickel: 97at.% Ni and 3at.% Sn.
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placed. We place La in the 1(a) site. Calculation of phase angles always involves the
calculation of |Fcalc

hkl | and therefore, it is also possible to compute the corresponding
figure of merit, RF, which is similar to the Bragg residual (15.21) except that the
integrated intensities are substituted with the absolute values of structure factors.10

After a La atom is placed in the 1(a) site, the RF = 54.8%, which is quite good
considering that five atoms are still missing from our model.

The coordinates and heights11 of the electron density peaks after calculating a
three-dimensional electron density distribution (Fig. 16.9) are listed in Table 16.5.
The strongest peak (No. 1) confirms the placement of a La atom in the unit cell.
It is easy to see that two additional and distinct peaks (No. 2 and 3) appeared on
the Fourier map. Their heights are about half of the expected number of electrons
in pure Ni, which is normal, given the incomplete accuracy of reflection phases,
which were calculated using only the La atom. Between peaks No. 3 and 4, there is
a sharp reduction in the heights of the electron density maxima (double underlined
in Table 16.5), and this feature usually indicates that no more atoms are located in
the unit cell.

A simple calculation of the interatomic distances between the La atom in the 1(a)
site and all peaks listed in Table 16.5 shows that only the distances for Peaks 2 and
3 are a good match for La–Ni distances. The distance between Peaks 2 and 3 corre-
sponds to the sum of radii of Ni atoms. Further, Peak No. 2 represents coordinates of

Fig. 16.9 The cross-sections of the three-dimensional Fourier map of LaNi4.85Sn0.15 at Z = 0 (left)
and at Z = 1/2 (right) calculated using structure amplitudes listed in Table 16.3 and phase angles
determined by the La atom placed in the 1(a) site. The triplets of numbers indicate the coordinates
of the strongest peaks in the unit cell. The following groups of peaks are symmetrically equivalent
to one another: 0,0,0; 1,0,0; 0,1,0 and 1,1,0 (all four correspond to the La atom in 1(a) and Peak No.
1 in Table 16.5); 1/3,2/3,0 and 2/3,1/3,0 (Peak No. 2 in Table 16.5), and 1/2,0,1/2; 0,1/2,1/2; 1/2,1/2,1/2;
1,1/2,1/2 and 1/2,1,1/2 (Peak No. 3 in Table 16.5).

10 This figure of merit is customarily used in single crystal diffraction, where individual |Fobs
hkl |2 are

determined directly from the experiment.
11 Peak heights are usually used instead of integrated peak volumes for simplicity.
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Table 16.5 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of LaNi4.85Sn0.15 calculated using the observed structure factors determined
from Le Bail’s extraction (Table 16.3) and phase angles determined by the La atom placed in the
1(a) site of the space group P6/mmm (RF = 54.8%).

Fourier map peak number x y z Peak heighta

1 0 0 0 58
2 0.6667 0.3333 0 14
3 0.5 0 0.5 14

4 0.5 0 0 4
5 0 0 0.288 3
6 0.462 0.124 0.240 2
7 0.540 0.249 0.512 2
8 0.211 0.075 0.516 1
9 0.231 0.200 0.151 1
a Peak heights have been normalized the number of electrons in the site occupied by La.

the 2(c) sites, and peak No. 3 corresponds to the 3(g) sites in space group P6/mmm.
Thus, a total of six atoms have been placed in the unit cell of LaNi4.85Sn0.15, in other
words, exactly as many as established from the gravimetric density of the alloy.

It is important to emphasize that La in the 1(a) site has been confirmed by the
electron density calculation, although it is worth noting that in a heavy-atom ap-
proach it is often the case that a single strongly scattering atom always appears on
the Fourier map even when it has been placed incorrectly. However, if the location of
the heavy atom is wrong, additional strong peaks in the electron-density distribution
will normally be incorrect, as can be easily established by the computation of the
interatomic distances. Such a model of the crystal structure is impossible to com-
plete, that is, the missing atoms typically will not appear on the subsequent Fourier
maps due to wrong phase angles.

After all three independent atoms (peaks 1–3 in Table 16.5) have been included in
computations assuming identical displacement parameters in an isotropic approxi-
mation (B = 0.5 Å2), the resulting RF = 6.9% without refinement. This value is
excellent because (i) the powder diffraction pattern is relatively simple with mini-
mum overlap, and (ii) the powder particles used in the diffraction experiment were
nearly ideal (spherical), thus preferred orientation effects were negligible. The fol-
lowing electron density distribution (Fig. 16.10 and Table 16.6) was obtained using
the newly determined set of phase angles.

The major difference between the two Fourier maps shown in Figs. 16.9 and
16.10, Tables 16.5 and 16.6 is that peak heights of the correctly placed atoms are
much stronger than the heights of false peaks.12 Further, the coordinates of false

12 False peaks (e.g., peak No. 4 in Table 16.5 which is easily recognizable in Fig. 16.9) appear on
Fourier maps due to a variety of reasons: (i) the largest contribution comes from the truncation of
the Fourier summation ((10.6)) because only a limited amount of diffraction data is available (see
Table 16.3); (ii) the structure amplitudes are not exact, especially when powder diffraction data
were used in combination with Le Bail’s extraction, and (iii) phase angles calculated using atomic
parameters, which are not fully refined, are still imprecise because we used randomly assigned
displacement parameters and assumed completely random distribution of Ni and Sn in two possible
sites.
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Fig. 16.10 The cross-sections of the three-dimensional Fourier map of LaNi4.85Sn0.15 at Z = 0
(left) and at Z = 1/2 (right) calculated using structure amplitudes listed in Table 16.3 and phase
angles determined by the La atom placed in the 1(a) site and Ni atoms placed in the 2(c) and 3(g)
sites. The notations are identical to Fig. 16.9.

Table 16.6 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of LaNi4.85Sn0.15 calculated using the observed structure factors determined
from Le Bail’s extraction (Table 16.3) and phase angles determined by the La atom placed in the
1(a), and Ni atoms placed in the 2(c) and 3(g) sites of the space group P6/mmm (RF = 6.9%).

Fourier map peak number x y z Peak height

1 0 0 0 70
2 0.5 0 0.5 27
3 0.6667 0.3333 0 25

4 0 0 0.304 3
5 0.141 0.067 0.5 2

peaks vary but the coordinates of true maxima remain the same. As is easy to ver-
ify by the calculation of distances, none of the peaks listed below Peak No. 3 in
Table 16.6 has a reasonable distance to the La and Ni atoms already located in the
unit cell.

Considering the low RF, the absence of new peaks on the second Fourier map,
which may correspond to additional atoms, and the fact that the contents of the
unit cell matches that established from the gravimetric density of the material, we
conclude that all atoms in the unit cell of LaNi4.85Sn0.15 have been located. It makes
no sense to proceed with the least squares refinement of atomic parameters using
structure factors determined from Le Bail’s extraction, and the refinement of the
crystal structure should be completed using the Rietveld technique (see Sect. 16.3).
The coordinates and possible distribution of atoms are listed in Table 16.7.
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Table 16.7 Coordinates of atoms in the unit cell of LaNi4.85Sn0.15 as determined from powder dif-
fraction data. All coordinates are fixed by symmetry of the corresponding sites and only population
and displacement parameters can and should be refined using Rietveld technique.

Atom Site x y z

La 1(a) 0 0 0
0.97Ni+0.03Sn 2(c) 1/3 2/3 0
0.97Ni+0.03Sn 3(g) 1/2 0 1/2

It is easy to verify that if we would start with the La atom in the 1(b) site with
coordinates 0,0,1/2, then the missing five Ni+Sn atoms will appear on a subsequent
Fourier map in 2(d) – 1/3,2/3,1/2,1/2 and 3(f) – 1/2,0,0 sites.13 The two crystal struc-
tures are indeed identical to one another because they are only different by a trans-
lation vector (0,0,1/2), that is, they correspond to a different choice of the unit cell
origin.

According to Pearson’s Handbook, this crystal structure is commonly known as
the CaCu5-type structure.14 The parent LaNi5 alloy is well-known for its excellent
hydrogen storage properties, and many closely related alloys with the same crystal
structure have been commercialized as electrode materials in rechargeable nickel–
metal hydride batteries.

16.3 Rietveld Refinement Using Cu Kα1,2 Radiation

To demonstrate the Rietveld refinement of this crystal structure we begin with the
profile and unit cell parameters determined from Le Bail’s algorithm (Table 16.2)
and the model of the crystal structure determined from sequential Fourier maps
listed in Table 16.7. To account for the presumably statistical distribution of Ni and
Sn atoms in the 2(c) and 3(g) sites in this crystal structure, the initial distribution of
atoms in the unit cell has been assumed as listed in Table 16.8. The initial profile
and structural parameters are found online in the input file for LHPM-Rietica.15 We
remind the reader that experimental diffraction data, collected on a Rigaku TTRAX
rotating anode powder diffractometer using Cu Kα radiation in a continuous scan
mode are also available online.16

The last column in Table 16.8 contains site occupancies by all atoms in the format
required by LHPM-Rietica.17 The occupancy of each site (n) is given as a product

13 We leave verification of this statement to the reader as a self-exercise.
14 W.Z. Haucke, Kristallstruktur von CaZn5 and CaCu5, Z. Anorg. Chem. 244, 17 (1940).
15 The file name is Ch16Ex01a.inp.
16 The file name is Ch16Ex01 CuKa.dat.
17 Some software products, e.g., GSAS, require specification of the population parameters as g,
while the multiplicities of site positions are automatically included by the program.
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Table 16.8 Coordinates of atoms (x, y, and z) and site occupancies (n) in the unit cell of
LaNi4.85Sn0.15 according to the initial model of the crystal structure (compare with Table 16.7).

Atom Site x y z n

La 1(a) 0 0 0 0.04167
0.97Ni1 2(c) 1/3 2/3 0 0.08083
0.03Sn1 2(c) 1/3 2/3 0 0.00250
0.97Ni2 3(g) 1/2 0 1/2 0.12125
0.03Sn2 3(g) 1/2 0 1/2 0.00375

of the population parameter (g) and site multiplicity (m) divided by the multiplicity
of the general site position (M):

n =
gm
M

(16.1)

The fractional population parameter, g, varies from 1 (fully occupied site) to 0
(completely unoccupied site). Thus, the fully occupied 1(a) site has occupancy by
La: n = 1/24 = 0.04167; the 97% occupancy of 2(c) and 3(g) sites by Ni results in
nNi1 = 0.97×2/24 = 0.08083 and nNi2 = 0.97×3/24 = 0.12125, respectively. The 3%
occupancy of the same two sites by Sn yields nSn1 = 0.00250 and nSn2 = 0.00375,
respectively. The overall atomic displacement parameter, B = 0.5 Å2, has been as-
sumed at the beginning of Rietveld refinement. The progression of the refinement
using LHPM-Rietica is illustrated in Table 16.9 and in Figs. 16.11–16.14.

16.3.1 Scale Factor and Profile Parameters

Initial residuals (Row 1 in Table 16.9), calculated using profile parameters deter-
mined from the full pattern decomposition employing Le Bail’s algorithm and the
default value of the scale factor (K = 0.01), are quite low.18 The corresponding plot
of the observed and calculated powder diffraction data is shown in Fig. 16.11, from
which it is obvious that the intensities of nearly all observed Bragg peaks are lower
than those of the calculated reflections. As follows from (15.31), this is indeed the
effect of an overestimated scale factor. Thus, one of the critical parameters which
should be determined at the beginning of every Rietveld refinement, is the scale fac-
tor, K (also see Table 15.2). Several refinement cycles (all variables except K are
fixed) are usually sufficient to reach convergence (Row 2, Table 16.9) since in this
case the least squares procedure, in fact, becomes linear.19

18 This is usually not the case in the majority of Rietveld refinements because the default value of
the scale factor selected in LHPM-Rietica (K = 0.01) is arbitrary. For example, see Table 16.11,
where initial residuals are much higher due to the inadequacy of the default phase scale.
19 One cycle is usually enough to determine K; additional cycles may be needed for a proper
determination of the intensities of overlapped Bragg peaks.
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Table 16.9 The progress of Rietveld refinement of the crystal structure of LaNi4.85Sn0.15 using
powder diffraction data. Wavelengths used: λKα1 = 1.54059 Å, λKα2 = 1.54441 Å. In this and
all other tables, the Rp, Rwp, and RB are listed in percent; χ2 is dimensionless.

Refined parameters Rp Rwp RB χ2

Initial residuals: peak shape, background, zero shift
and unit cell from Table 16.2, initial model from
Table 16.8; see Fig. 16.11

19.75 25.11 21.11 22.91

Scale factor 11.26 14.47 9.35 7.62
Scale factor, peak shape parameters, background
(third order polynomial), zero shift, unit cell; see
Fig. 16.12

10.35 13.21 9.30 6.36

All of the above plus overall atomic displacement
parameter

7.90 10.81 5.75 4.26

Individual atomic displacement parameters in
isotropic approximation plus all peak shape
parameters, background, zero shift, unit cell, scale

6.77 9.95 3.98 3.61

Overall atomic displacement parameter but
individual population parameters of 2(c) and 3(g)
sites plus peak shape parameters, background, zero
shift, unit cell, scale

6.48 9.68 3.55 3.42

Individual atomic displacement parameters in
isotropic approximation plus all peak shape
parameters, background, zero shift, unit cell, scale

6.44 9.68 3.58 3.42

Individual atomic displacement parameters in
anisotropic approximation plus all peak shape
parameters, background, zero shift, unit cell, scale
(i.e., all free variables)

6.26 9.57 3.10 3.34

Same as above plus a second phase as Le Bail’s
extraction, i.e., all free variables including those of
an impurity phase; see Fig. 16.14

5.85 8.07 3.10 2.38

Under normal circumstances,20 the scale factor is one of the few least squares
parameters, which is always kept as a free variable in a Rietveld refinement. Since
in this example, all profile and lattice parameters have been refined using Le Bail’s
approach, the next reasonable step is to release all associated variables before pro-
ceeding with individual atomic parameters (the scale factor remains a least squares
free variable).21 As expected, the resultant change in the figures of merit, listed in
third row in Table 16.9, is small because the background, peak shape, and lattice
parameters are already quite accurate.

20 In rare cases, e.g., when all sites in the crystal structure are partially occupied, the scale factor
may become strongly correlated with the population parameters. This requires special attention
and detailed consideration of all possibilities exceeds the scope of this text. One of the options
is to use the known scale factor as a fixed parameter while refining population parameters of all
crystallographic sites. This option is, however, seldom available because relative, and not absolute
intensities are customarily measured in a powder diffraction experiment.
21 In this structure, only individual displacement and population parameters can be refined.



16.3 Rietveld Refinement Using Cu Kα1,2 Radiation 563

Bragg angle, 2θ (deg.)
20 30 40 50 60 70 80 90 100 110 120

−10

−5

0

5

10

15

20

25

30

35

40

Rp = 19.75%
Rwp = 25.11%
RB = 21.11%
χ2  = 22.91

In
te

ns
ity

, Y
 (

10
3 

co
un

ts
)

LaNi4.85Sn0.15, Cu Kα

Fig. 16.11 The observed (open circles) and calculated (solid line) diffraction patterns of
LaNi4.85Sn0.15. Scattered intensity was calculated using instrumental and lattice parameters deter-
mined during Le Bail’s refinement and default scale factor (K = 0.01). The difference, Y obs

i –Y calc
i ,

is displaced by −5,000 counts for clarity. Vertical bars in the lower part of the figure indicate
calculated positions of the Kα1 components of Bragg reflections in LaNi4.85Sn0.15.

16.3.2 Overall Atomic Displacement Parameter

So far, the only “structural” parameter included in the refinement was the scale fac-
tor. This particular crystal structure has no free coordinates of individual atoms – all
are fixed by the symmetry of the occupied special positions. Thus, given the rela-
tively low values of all residuals and recalling that at the beginning we assumed an
arbitrary value for the overall atomic displacement parameter (B = 0.5 Å2), it is time
to include it into the least squares minimization. The inconsistency of the randomly
chosen overall atomic displacement parameter is also easily distinguishable from
the plot of the observed and calculated intensities, which is shown in Fig. 16.12.
The intensities of the majority of Bragg peaks observed at low angles exceed cal-
culated intensities but at high angles (2θ > ∼65◦) the relationships become just the
opposite. Given the effect of the atomic displacement parameters on the integrated
intensity as a function of Bragg angle (see (9.5)), it is easy to conclude that the
actual overall B is considerably higher than 0.5 Å2.

The refinement of the overall B results in a significant reduction of all residuals
(fourth line in Table 16.9), which is also expected since now we have a realistic
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Fig. 16.12 The observed and calculated diffraction patterns of LaNi4.85Sn0.15. The scattered in-
tensity was calculated using scale factor, instrumental and lattice parameters determined during
Rietveld refinement, and guessed overall atomic displacement parameter B = 0.5 Å2. All notations
are identical to Fig. 16.11.

global estimate of thermal motions of atoms in the crystal lattice of LaNi4.85Sn0.15.
The refined value of the overall atomic displacement parameter is B = 1.32(2) Å2,
where the number in parenthesis indicates a standard deviation in the last significant
digit.

16.3.3 Individual Parameters, Free and Constrained Variables

At this point, we may begin to refine atomic displacement parameters of the individ-
ual atoms. This is done by substituting individual B’s (which were kept at 0) by the
refined overall atomic displacement parameter. The overall B after this substitution
should be set to 0. The distribution of atoms in the model of the crystal structure of
LaNi4.85Sn0.15 is such that two of the sites, 2(c) and 3(g), see Table 16.8, are oc-
cupied by different types of atoms simultaneously in equal proportions. Generally,
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atomic displacement parameters of different atoms occupying the same crystallo-
graphic site should be constrained at identical values.22

In LHPM-Rietica and almost every other commonly available software product,
any dependent parameter, Pdependent , may be constrained to any free least squares
parameter, Pf ree. The differentiation of the corresponding linear relationship be-
tween the two variables results in the numerical constraint, which is employed
during the calculation of the normal equations matrix in the least squares and is ap-
plied to the shift obtained for the free parameter before adding it to the constrained
variable:

Pdependent = f (Pf ree) ⇒ ΔPdependent =
∂ f (Pf ree)
∂Pf ree

ΔPf ree (16.2)

Considering (16.2) and assuming than BNi1 = BSn1 and BNi2 = BSn2, the proper
constraints are ΔBSn1 = 1× ΔBNi1 and ΔBSn2 = 1× ΔBNi2. This implies that in-
dividual isotropic atomic displacement parameters of Ni atoms are maintained as
free least squares variables and the same for Sn atoms are taken as constrained
parameters.23

The resulting refinement further reduces the residuals (see Row 5 in Table 16.9)
and yields the following distribution of the individual atomic displacement
parameters:

La in 1(a), B = 1.30(1) Å2

0.97Ni+0.03Sn in 2(c), B = 1.81(2) Å2

0.97Ni+0.03Sn in 3(g), B = 0.98(2) Å2

It is obvious that atoms in the 2(c) site have much larger atomic displacement
parameters than identical atoms in the 3(g) site. This situation is quite unusual for
a simple intermetallic compound and likely indicates that our assumption about a
statistical distribution of Ni and Sn in both crystallographic sites was incorrect. The
enhanced isotropic atomic displacement parameter in the 2(c) site points to a lower
scattering ability, while the reduced atomic displacement parameter in the 3(g) site
points to a higher scattering factor when compared to the current distribution of

22 This is a reasonable simplification especially because it is nearly impossible to differentiate
properly between the vibrational motions of different atoms located in the identical environment.
Further, individual displacement parameters of atoms occupying the same crystallographic sites
have a tendency to strong correlation, thus causing severe instabilities of non-linear least squares.
If a site has variable coordinate parameters, the latter should be constrained equal for all atoms
occupying the site due to the same reasons.
23 In the hexagonal crystal system, a and b unit cell parameters are constrained by symmetry.
(a = b). In LHPM-Rietica, lattice parameters are constrained automatically for all crystal systems.
The input file, Ch16Ex01b.inp, with all other up-to-the-point parameters refined and properly con-
strained is found online (consult both the LHPM-Rietica manual and the on-line tutorial – Brett
Hunter, LHPM-Rietica Rietveld for Win95/NT, which is accessible via http://www.ccp14.ac.uk/,
then “Tutorials” on the site map, then “LHPM-Rietica Rietveld” – for details on how to introduce
constraints into the input file).
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atoms. Indeed, we may speculate that only 3(g) sites contain Sn atoms, which have
greater scattering ability than Ni atoms. Another possibility is that the 2(c) sites are
depleted in Sn, while some Sn atoms are still located there, and the 3(g) sites are
enriched in Sn.

When the precision of X-ray diffraction data is high, which is the case here,
it is possible to refine the population of different crystallographic sites to eliminate
guesses and obtain a quantitative result. The best way to do so is to return to the over-
all displacement parameter and instead of refining individual atomic displacement
parameters, include the refinement of the individual population parameters in the
corresponding sites.24

Assuming full occupancy of all sites, that is, gNi1 = 1−gSn1 and gNi2 = 1−gSn2,
the corresponding constraints (16.2) should be set at ΔnSn1 = −1 × ΔnNi1 and
ΔnSn2 = −1×ΔnNi2.25 This Rietveld refinement step results in the following oc-
cupancies of the two sites in question:

2(c) : nNi1 = 0.085(1), nSn1 = −0.002(1)
3(g) : nNi1 = 0.118(1), nSn1 = 0.007(1)

The negative occupancy by Sn of the 2(c) site has no physical sense, especially
given that the absolute value of the occupancy is comparable with the standard de-
viation. Thus, this site appears to be pure Ni. On the other hand, it is confirmed by
the refinement that all Sn is segregated in the 3(g) sites. It is worth noting that when
the chemical composition of the formula unit is calculated from the refined occu-
pancies, the result is LaNi4.83(2)Sn0.17(2), which matches the as-prepared chemical
composition of the material within one standard deviation.26

24 We note that since one of the sites, 1(a) seems to be fully occupied by La, the least squares
refinement of the population parameters of the two remaining sites, 2(c) and 3(g) may be carried
out together with the scale factor. Only when the population of all sites is in question, special
precautions should be taken to avoid severe correlation between the scale factor and all population
parameters. When all sites are occupied partially, diffraction data alone normally do not provide an
adequate answer because both K and g j are simple multipliers, which affect the scattered intensity.
Other experimental methods should be employed to establish and/or prove that defects exist on all
lattice sites. One of these is measuring gravimetric density.
25 The file Ch16Ex01c.inp, in which all parameters are properly constrained, is found online.
26 Refinement of the crystal structure is, therefore, a powerful chemical analysis technique. Unlike
conventional chemical analysis, which only yields the bulk composition of the sample, powder dif-
fraction facilitates accurate determination of the occupancies of different crystallographic sites by
various chemical elements, or in other words, establishes precise chemical composition of the crys-
tal at the atomic resolution. It should be noted that the results may be considered reliable only when
the difference in the scattering by atoms in question is significant, in addition to a very high quality
of experimental data. This is indeed the case here because normal scattering factors of Sn and Ni
are related as ∼1.8:1. We note that when using synchrotron radiation, it is also possible to tune
the energy of the X-ray photons so that one of the elements scatters anomalously, e.g., see (9.15)
and Fig. 9.5. Then, even elements that are neighbors in the periodic system, such as for example
Cu and Zn that have nearly identical normal scattering factors of 29 and 30 electrons, respectively,
become distinguishable because of large anomalous scattering components Δf’ and Δf”.
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Proceeding with the refinement of the individual atomic displacement parameters
after removing Sn atoms from the 2(c) site and setting its occupancy to nNi1 =
0.08333,27 we find that the individual isotropic atomic displacement parameters of
all atoms become much closer to one another. The resultant residuals are listed in
Row 7 of Table 16.9.

16.3.4 Anisotropic Atomic Displacement Parameters

The only remaining degree of freedom in this crystal structure is to refine the dis-
placement parameters of all atoms in the anisotropic approximation (the presence of
preferred orientation is quite unlikely since the used powder was spherical and we
leave it to the reader to verify its absence by trying to refine the texture using avail-
able experimental data). As noted in Sect. 9.1.2, special positions usually mandate
certain relationships between the anisotropic atomic displacement parameters of the
corresponding atoms. In the space group P6/mmm, the relevant constraints are as
follows:

La in 1(a) : β11(free) = β22 = 2β12;β33–free;β13 = β23 = 0
Ni in 2(c) : β11(free) = β22 = 2β12;β33–free;β13 = β23 = 0
Ni+Sn in 3(g) : β11,β22,β33–free;β12 = 0.5β22;β13 = β23 = 0

After the individual isotropic atomic displacement parameters were replaced by
the properly constrained individual anisotropic displacement parameters (LHPM-
Rietica uses βij, see (9.7)), the refinement converges to the residuals listed in Row 8
of Table 16.9.28

16.3.5 Multiple Phase Refinement29

The presence of a minor second phase impurity can be added either in the form of
the actual structural model of Ni or as a Le Bail’s phase, where only the unit cell
and peak-shape parameters are taken into account. The latter option has been chosen
since we are not interested in the crystal structure of this minor impurity, and it may
be a difficult task, given its small contribution to the total scattered intensity.

The refinement with both crystalline phases contributing to the computation of
the scattered intensity (Row 9, Table 16.9) converges rapidly and yields the residu-
als, which are only slightly higher than those, obtained when no model of the crystal
structure was present during full pattern decomposition.

27 The file Ch16Ex01d.inp is located online.
28 The parameters of the fully refined structure are found in the file Ch16Ex01e.inp online.
29 The input file after the completion of the refinement (Ch16Ex01f.inp) is included online.
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16.3.6 Refinement Results

The final parameters in the crystal structure of the LaNi4.85Sn0.15 as determined
from the Rietveld refinement are listed in Table 16.10. The refined model of the
crystal structure of the LaNi4.85Sn0.15 compound is shown in Fig. 16.13. All inter-
atomic distances are normal and the atomic displacement parameters of all atoms
show little anisotropy, which is typical for many intermetallic compounds, struc-
tures of which are based on the close packing of spheres. The resultant observed
and calculated diffraction patterns are plotted in Fig. 16.14 in a standard Rietveld
format.

Table 16.10 Structural parameters of the major phase (LaNi4.85Sn0.15), fully refined by the
Rietveld technique employing powder diffraction data collected using Cu Kα radiation (see
Fig. 16.14). The refined unit cell dimensions are: a = 5.04228(6), c = 4.01170(5) Å.

Atom Site x y z ga 104 ×βb
11 104 ×βb

22 104 ×βb
33 104 ×βb

12

La 1(a) 0 0 0 1 156(2) 156(2) 258(3) 78(1)
Ni1 2(c) 1/3 2/3 0 1 227(3) 227(3) 183(5) 113(1)
Ni2 3(g) 1/2 0 1/2 0.944(2) 178(3) 174(4) 187(5) 87(2)
Sn 3(g) 1/2 0 1/2 0.056(2) 178(3) 174(4) 187(5) 87(2)
aThe population parameters of the 3(g) site are listed as g, i.e., they represent fractional occupancies
by Ni and Sn, refined assuming full overall occupancy of the site.
bThe following anisotropic displacement parameters are fixed by symmetry for all sites: β13 =
β23 = 0.

X
Y

Z

La
Ni

0.94Ni+
0.06Sn

Fig. 16.13 One unit cell of the crystal structure of LaNi4.85Sn0.15 as determined from Rietveld
refinement. The model reflects different distribution of the Ni and Sn atoms between 2(c) and
3(g) sites (dark- and light-gray, respectively). The displacement ellipsoids are shown at 99%
probability.
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Rp = 5.85%
Rwp = 8.07%
RB = 3.10%
χ2  =   2.38
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Fig. 16.14 The observed and calculated diffraction patterns of LaNi4.85Sn0.15 after the completion
of Rietveld refinement. Notations are identical to Fig. 16.11 and the second set of vertical bars
indicates the calculated positions of the Kα1 components of Bragg peaks in the impurity phase
(solid solution of Sn in Ni).

16.4 Rietveld Refinement Using Mo Kα1,2 Radiation

The X-ray powder diffraction data were also collected from the same specimen
of LaNi4.85Sn0.15 using Mo Kα radiation. The experimental data are shown in
Fig. 16.15. One of the most obvious benefits of using higher energy photons is the
greater volume of the reciprocal lattice, which can be examined experimentally. An
important advantage of including the data measured at higher sinθ/λ into the Ri-
etveld refinement is in obtaining more accurate values of the individual atomic dis-
placement parameters together with the more precise site populations in this crystal
structure. The better accuracy, when compared to Cu Kα radiation, becomes obvious
from a simple analysis of (9.3) and (9.5), which indicate that the effect of varying g
is independent of the Bragg angle, while the varying B has the largest influence on
the intensity, scattered at high sinθ/λ. Thus, by including intensity scattered at high
sinθ/λ we reduce the correlation between the atomic displacement and population
parameters.

Since we did not perform Le Bail’s decomposition of this powder diffraction
pattern, we illustrate the Rietveld refinement sequence in this case beginning from
all profile parameters selected at their default values and the same starting model of
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Fig. 16.15 The X-ray powder diffraction pattern of LaNi4.85Sn0.15 collected on a Rigaku TTRAX
rotating anode powder diffractometer using Mo Kα radiation with a step Δ2θ = 0.01◦. The spher-
ical LaNi4.85Sn0.15 powder was produced by high pressure gas atomization. The two short thick
vertical arrows show the range of sinθ/λ examined using Cu Kα radiation (e.g., see Fig. 16.1),
and the long thin vertical arrow indicates the fundamental upper limit of the reciprocal space
(2θ = 180◦) accessible when using Cu Kα radiation.

the crystal structure as was used in the case of Cu Kα radiation data. The progression
of the refinement is shown in Table 16.11.30

When peak-shape and background parameters are unknown, the Rietveld refine-
ment strategy usually changes. At the beginning (first nine rows in Table 16.11),
major attention has been paid to a sensible refinement of the peak shape, back-
ground, and lattice parameters along with the zero shift to achieve the best-possible
agreement between the observed and calculated scattered intensity. Only then were
the overall displacement and properly constrained individual population parameters
included into the refinement. At this point, the examination of low Bragg angle peak
shapes indicated that Howard’s asymmetry approximation is not suitable, and asym-
metry was changed to a more realistic Finger, Cox and Jephcoat model, as indicated
in the footnotes to Table 16.11.

Since the quality of this powder diffraction pattern is excellent, we can imme-
diately switch to the refinement of the individual anisotropic parameters. Further,
the presence of diffraction data at high sinθ/λ enables us to refine the individual
displacement and population parameters in the 3(g) site simultaneously. Finally, the

30 The input file Ch16Ex01g.inp with initial variables and the experimental data file Ch16Ex01
MoKa.dat are found online.
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Table 16.11 The progress of Rietveld refinement of the crystal structure of LaNi4.85Sn0.15 using
powder diffraction data shown in Fig. 16.15. Wavelengths used: λKα1 = 0.70932 Å, λKα2 =
0.71361 Å.

Refined parameters Rp Rwp RB χ2

Initial (all default, model from Table 16.8)a 617.8 808.3 608.7 3×104

Scale factora 52.96 60.34 36.38 172.8
Scale factor plus linear backgrounda 39.91 47.28 27.55 106.1
Scale, linear background plus U , V , W a 22.85 29.97 12.29 42.67
Scale, linear background, U , V , W plus ηa

0 20.44 26.51 10.13 33.39
Scale, linear background, U , V , W , η0, a and ca 14.93 19.59 9.21 18.24
Scale, linear background, U , V , W , η0, a, c plus
asymmetrya

13.25 17.91 9.15 15.25

Scale, linear background, U , V , W , η0, a, c, asymmetry,
plus zero shifta

13.02 17.77 9.02 15.01

Scale, U , V , W , η0, a, c, asymmetry, zero shift,
background (third order)a

11.81 15.75 8.73 11.79

Scale, U , V , W , η0, a, c, asymmetry, zero shift,
background (third order) plus overall Ba

9.13 12.96 4.33 7.99

Scale, U , V , W , η0, a, c, asymmetry, zero shift,
background (third order), overall B plus individual
population parameters a

8.47 12.18 2.76 7.06

Scale, U , V , W , η0, a, c, zero shift, background (third
order), overall B, individual population parameters.
Asymmetry in FCJ approximationb

7.49 11.20 2.47 5.97

Scale, U , V , W , η0, a, c, asymmetry, zero shift,
background (third order), individual population
parameters plus individual anisotropic displacement
parametersb,c

6.95 10.80 1.52 5.56

Scale, all peak shape, lattice, zero shift, background
(third order), individual population and anisotropic
parametersb,c

6.21 10.28 1.48 5.03

All as above plus a second phase (Le Bail’s
decomposition)b,c

5.71 8.41 1.33 3.38

a Pseudo-Voigt peak shape function with Howard’s asymmetry, see (8.39).
b Pseudo-Voigt peak shape function. Asymmetry in Finger, Cox and Jephcoat approximation,
which better represents peak shapes measured on this powder diffractometer using Mo Kα
radiation.
c Population of the 2(c) site set to pure Ni, while the population of the 3(g) site remained free
parameter.

presence of an impurity was also accounted as the “Le Bail’s” phase. The resultant
observed and calculated powder diffraction patterns are shown in Fig. 16.16 and the
final parameters of individual atoms are listed in Table 16.12.31

A comparison of the results presented in Table 16.12 with those shown in
Table 16.10 indicates no discrepancies in the refined populations of Ni2 and Sn
atoms, which simultaneously occupy the 3(g) site, although a small difference in
the anisotropic displacement parameters of all atoms is evident. Regardless of this

31 The fully refined input data file Ch16Ex01h.inp is located online.
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Fig. 16.16 The observed and calculated powder diffraction patterns of LaNi4.85Sn0.15 after the
completion of Rietveld refinement. Notations are identical to Fig. 16.11. The second set of vertical
bars indicates the calculated positions of the Kα1 components of Bragg peaks in the impurity
phase, which is a solid solution of Sn in Ni. The virtual absence of a Bragg peak at 2θ∼= 9◦ and the
presence of the same reflection at 2θ∼= 20◦ when Cu Kα radiation was employed (see Fig. 16.14)
is the result of differences in the anomalous scattering (see also (9.15) and (9.22)).

Table 16.12 Structural parameters of the major phase (LaNi4.85Sn0.15), fully refined by the
Rietveld technique using powder diffraction data shown in Fig. 16.16. The refined unit cell dimen-
sions are: a = 5.04479(3), c = 4.01303(3) Å. The following anisotropic displacement parameters
are constrained by symmetry in all sites: β13 = β23 = 0.

Atom Site x y z ga 104 ×β11 104 ×β22 104 ×β33 104 ×β12

La 1(a) 0 0 0 1 135(2) 135(2) 252(4) 68(1)
Ni1 2(c) 1/3 2/3 0 1 194(2) 194(2) 130(4) 97(1)
Ni2 3(g) 1/2 0 1/2 0.944(2) 136(2) 104(3) 137(4) 52(2)
Sn 3(g) 1/2 0 1/2 0.056(2) 136(2) 104(3) 137(4) 52(2)
aThe population parameters of the 3(g) site are listed as g, i.e., they represent fractional occupancies
by Ni and Sn, refined assuming full overall occupancy of the site.

difference, as seen in Fig. 16.17, displacement ellipsoids have nearly identical ori-
entations and shapes. The preference should be given to the results obtained using
Mo Kα radiation because Bragg reflections at higher sinθ/λ were included into the
determination of the individual anisotropic displacement parameters.

On the other hand, the comparison of lattice parameters obtained using Cu Kα
(Table 16.10) and Mo Kα (Table 16.12) data indicates small, but statistically sig-
nificant differences. Considering the fact that the longer wavelength experiment
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Fig. 16.17 Atomic displacement ellipsoids in the crystal structure of LaNi4.85Sn0.15, shown at 99%
probability, as refined using Cu Kα (left) and Mo Kα (right) powder diffraction data.

includes reflections at higher Bragg angles, the preference should be given to the
unit cell dimensions obtained in the refinement based on Cu Kα radiation data.

Given the observed small variations in the Rietveld refinement results, it is much
better to employ all available data while performing the combined least squares fit
of the model. This can be done using the majority of available Rietveld refinement
programs and is illustrated in the Sect. 16.5.

16.5 Combined Refinement Using Different Sets
of Diffraction Data

We begin combined Rietveld refinement of the crystal structure of LaNi4.85Sn0.15
using profile parameters (background, zero shifts, and peak shape) determined for
each set of diffraction data during independent refinements. The starting unit cell
dimensions have been chosen as established from Cu Kα data, and the starting pop-
ulation and individual atomic displacement parameters are taken from the Mo Kα
result.32 The progression of Rietveld refinement is illustrated in Table 16.13. The
initial residuals are shown in the first row in Table 16.13, where as expected, the
figures of merit for the second set of data (Mo Kα ) are much worse than for the
first (see Tables 16.9 and 16.11).

When more than one set of experimental diffraction data is employed in the com-
bined Rietveld refinement, the minimized function (in the simplest case of (15.30))
becomes

Φ =
h

∑
s=1

ns

∑
i=1

ws,i[ks(Y obs
s,i −bs,i)−K

m

∑
j=1

Iiys,i(xs, j)]2 (16.3)

32 The corresponding input data file Ch16Ex01i.inp is found online. For LHPM-Rietica, a single
data file should contain both sets of powder diffraction data, and these are found online in the file
Ch16Ex01 Cu&MoKa.dat.
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Table 16.13 The progress of the combined Rietveld refinement of the crystal structure of
LaNi4.85Sn0.15 employing two sets of experimental data obtained using Cu Kα and Mo Kα
radiations.

Refined parameters Cu Kα Mo Kα
Rp Rwp RB Rp Rwp RB

Initial 11.78 14.45 11.45 523.6 612.5 589.1
Scale factorsa 6.97 10.08 4.40 22.44 27.02 8.12
Scale factors plus a, c and zero shifts 8.00 11.38 4.60 7.55 11.39 1.40
As above plus peak shape, background 7.44 10.51 4.35 6.38 10.27 1.42
As above plus βi j (all) and population
parameter, n, in 3(g) site

7.29 10.39 4.13 6.43 10.30 1.53

All plus an impurity phase 6.87 9.02 4.13 5.99 8.62 1.40
aWhen multiple sets of data are used in a combined Rietveld refinement, the first set has a fixed
scale, k = 1, but all other sets have their own scales in addition to a phase scale. Thus, in our
case when we have two sets of diffraction data and one crystalline phase, two scale factors (K and
kMoKα) have been refined independently (see (16.3)).

In (16.3), h is the number of different sets of powder diffraction data, ns is the
number of data points collected in the sth set, and ks is the scale factor for the
sth diffraction pattern, which appears because scattered intensity is measured on
a relative scale. Other notations are identical to (15.30). Different scale factors,
ks and K, are simple multipliers. Hence, they strongly correlate, and usually are
not refined simultaneously. Constraining one of the scale factors (usually k1, for
the first diffraction data set) at 1 enables successful refinement of the phase scale
(K) and scale factors of all remaining sets of diffraction data (k2,k3, . . .,kh). Equa-
tions (15.31), (15.33), and (15.34) are modified in the same way as (15.30) for a
combined Rietveld refinement. Further, it is often the case that X-ray and neutron,
or conventional X-ray and synchrotron data are used in combined refinements, there-
fore, the corresponding groupings of (15.30), (15.31), (15.33), and (15.34), modified
as shown in (16.3), are employed to express the minimized function.

Hence, the subsequent step is to refine both the phase scale factor and the scale
factor of the Mo Kα experiment. As shown in Row 2 of Table 16.13, these two
variables have a tremendous effect on the resulting figures of merit. The residuals
for Mo Kα data, however, remain far from the best, and a simple examination of the
Rietveld plot (Fig. 16.18) indicates that this is due to the inadequacy of the unit cell
parameters determined from the Cu Kα experiment.

Thus, the next refinement step includes releasing unit cell dimensions and zero-
shift parameters. The latter are usually different for different sets of diffraction data.
As seen in Row 3 of Table 16.13, overall the fit becomes much better, although
residuals for Cu Kα data are slightly increased. After including all possible variables
into the refinement (Rows 4 and 5 in Table 16.13), the fit improves for both sets of
experimental data.33

33 The fully refined model of the crystal structure of LaNi4.85Sn0.15 without including the impurity
phase is found in the file Ch16Ex01j.inp online.
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Fig. 16.18 The observed (Mo Kα radiation) and calculated powder diffraction patterns of
LaNi4.85Sn0.15 after combined refinement of scale factors only. The inset shows the expanded view
between 18.4◦ and 19.5◦ of 2θ to illustrate the inaccuracy of lattice parameters.

Table 16.14 Structural parameters of the major phase (LaNi4.85Sn0.15), fully refined by the
Rietveld technique using the combined powder diffraction data collected employing Cu Kα and
Mo Kα radiations from the same specimen. The refined unit cell dimensions are: a = 5.04430(3),
c = 4.01292(3) Å. The following restrictions are imposed by symmetry: β13 = β23 = 0.

Atom Site x y z g 104 ×β11 104 ×β22 104 ×β33 104 ×β12

La 1(a) 0 0 0 1 141(1) 141(1) 252(3) 71(1)
Ni1 2(c) 1/3 2/3 0 1 205(2) 205(2) 151(4) 103(1)
Ni2 3(g) 1/2 0 1/2 0.956(2) 142(2) 117(3) 139(3) 59(1)
Sn 3(g) 1/2 0 1/2 0.044(2) 142(2) 117(3) 139(3) 59(1)

As expected, adding the contribution from the impurity phase (again as Le Bail’s
approximation) results in further reduction of the profile residuals, see Row 6 in
Table 16.13. Structural parameters of the final model, as determined using the
combined Rietveld refinement in the two-phase approximation are listed in
Table 16.14.34

34 And found in the data file Ch16Ex01k.inp online.
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Fig. 16.19 The observed and calculated powder diffraction patterns of LaNi4.85Sn0.15 (Cu Kα
radiation) after the completion of the combined Rietveld refinement.

The resultant unit cell dimensions and structural parameters shown in Table 16.14
are closer to those obtained in an independent Rietveld refinement using Mo Kα
data (see Table 16.12). Further, the population of the 3(g) site is slightly different
from that obtained in both independent refinements. The resulting chemical compo-
sition of the major phase is LaNi4.87(1)Sn0.13(1), which remains within two standard
deviations from the alloy stoichiometry.

The Rietveld plots of both powder diffraction data sets are shown in Figs. 16.19
and 16.20. Visual analysis of both figures indicates a good fit, which was ex-
pected from the low residuals (Table 16.13). The model of the crystal structure
(Table 16.14) appears to be complete, and makes both physical (reasonable atomic
displacement parameters) and chemical sense (no overlapping atoms, the 3(g) sites
are occupied simultaneously by atoms that have close atomic volumes – Ni and S –,
the chemical composition of the major phase established from X-ray data is nearly
identical to the known composition of the alloy). Therefore, the outcome of this
crystal structure determination may be accepted as satisfactory.

The presence of an impurity phase in this specimen may also be accounted for
by including its crystal structure into a “normal” Rietveld refinement process rather
than as a “Le Bail’s” phase.35 It is unfeasible to refine the chemical composition of
the Ni-based impurity because of its low concentration in the sample. Thus, only the

35 For the sake of illustration, this has been done and the set of fully refined parameters can be
found in the data file Ch16Ex01m.inp.
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Fig. 16.20 The observed and calculated powder diffraction patterns of LaNi4.85Sn0.15 (Mo Kα
radiation) after the completion of the combined Rietveld refinement.

scale factor, unit cell dimensions, and overall atomic displacement parameter have
been refined for the impurity phase, while its chemical composition was assumed
as Ni4.85Sn0.15. All residuals remain practically identical to those shown in the last
row of Table 16.13.

As noted earlier (Sect. 13.3.4), Rietveld refinement offers an opportunity to de-
termine the phase composition of the sample quantitatively. This information can be
found in the general output file after Rietveld refinement; its extension is “out.” The
corresponding concentrations are as follows: the major LaNi4.85Sn0.15 phase makes
97.5(4) and the impurity Ni0.97Sn0.03 phase accounts for 2.5(3) per cent by weight
of the alloy.



Chapter 17
Crystal Structure of CeRhGe3

In this example, we work with powder diffraction patterns of CeRhGe3,1 collected
using Mo Kα radiation and thermal neutrons. We already discussed this compound
in problem 2, Chap. 14. The crystal system is tetragonal with a = 4.3979(1) and
c = 10.0329(3) Å.2

Analysis of possible systematic absences (see solution of Problem 2 in Chap. 14)
points to a body-centered lattice with no additional forbidden reflections. Thus, one
of the following eight space groups is to be expected: I4/mmm, I4̄m2, I4̄2m, I4mm,
I422, I4/m, I4̄, or I4. The measured gravimetric density of the alloy is 7.79 g/cm3.
One unit cell (V = 194.05 Å3) contains two formula units of CeRhGe3 (Z = 1.98
∼= 2) or a total of two Ce, two Rh, and six Ge atoms. Similar to the earlier exam-
ple, none of the eight space groups can be excluded because all contain two- and
fourfold sites suitable to accommodate all three types of atoms in either an ordered
or a disordered fashion. Both Rh and Ge atoms have similar atomic volumes and
may occupy same sites simultaneously, while Ce atoms are much larger and should
occupy their own sites.

17.1 Full Pattern Decomposition

Full pattern decomposition has been performed using LHPM-Rietica. Peak shapes
have been represented using a pseudo-Voigt function. The progression of the full
pattern decomposition is shown by the corresponding figures of merit, which are
assembled in Table 17.1, and the results are illustrated in Figs. 17.1 and 17.2, and
Table 17.2.

1 V.K. Pecharsky and K.A. Gschneidner, Jr., unpublished. The alloy was prepared by arc-melting
a stoichiometric mixture of pure components and then heat treated at 900◦C for one week. Metal-
lographic examination indicated that the alloy was essentially a single phase material.
2 Files with experimental data (Ch17Ex01 MoKa.dat and Ch17Ex01 MoKa.xy, and
Ch17Ex01 Neut.dat) are found online (www.springer.com/978-0-387-09578-3) in the supple-
mentary information accompanying this book.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 579
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 17,
c© Springer Science+Business Media LLC 2009
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Table 17.1 Figures of merit obtained during Le Bail decomposition of the powder diffraction
pattern of CeRhGe3. Wavelengths used: λKα1 = 0.70932 Å, λKα2 = 0.71361 Å; Rexp = 2.96%.

Refined parameters Illustration Rp Rwp χ2

Background (linear) – 32.68 44.44 226.1
+a, c – 27.35 35.45 143.9
+U , V , W , η0, asymmetry – 7.63 10.74 13.23
+Background (fourth order), broader base – 4.89 7.03 5.67
All, with Howard’s3 asymmetry Fig. 17.1 4.71 6.87 5.41
All, with FCJ4 asymmetry Fig. 17.2 4.45 6.52 4.88
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Fig. 17.1 The observed and calculated powder diffraction patterns of CeRhGe3 after all parameters
were refined in the same approximation as in Chap. 16. The data were collected from a ground
sample of CeRhGe3 using Mo Kα radiation on a Rigaku TTRAX rotating anode diffractometer.
The divergence slit was 0.38◦; the receiving slit was 0.03◦. The experiment was carried out in a
step-scan mode with a step 0.01◦ and counting time 4 s per step. The inset illustrates an inadequate
asymmetry approximation.

The use of Mo Kα radiation shifts all Bragg peaks to lower angles, and therefore,
asymmetry is more severe than in the previous example, where Cu Kα radiation
was used. As a result, the order in which parameters were refined was changed
to avoid potential least squares instability problems. When everything was refined
in essentially the same approximation as Chap. 16 (see Row 5 in Table 17.1), the

3 See footnote 5 on page 549.
4 Asymmetry was treated in the two-parameter approximation given by L.W. Finger, D.E. Cox,
and A.P. Jephcoat, A correction for powder diffraction peak asymmetry due to axial divergence,
J. Appl. Cryst. 27, 892 (1994).
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Table 17.2 The list of Bragg reflections with their corresponding observed structure factors
squared determined after Le Bail’s full pattern decomposition of the X-ray powder diffraction
pattern of CeRhGe3.

h k l |Fobs|2 σ|Fobs|2 h k l |Fobs|2 σ|Fobs|2

0 0 2 13 0a 2 3 7 146 1
0 1 1 94 0 0 4 6 76 1
1 1 0 756 2 2 4 4 229 2
0 1 3 1,435 2 0 2 10 39 0
1 1 2 1,984 2 0 1 11 44 1
0 0 4 1,054 4 0 3 9 273 2
0 2 0 4,329 7 3 3 6 428 3
0 2 2 6 0 0 5 1 22 0
1 1 4 929 3 3 4 1 22 0
1 2 1 53 0 1 5 0 151 1
0 1 5 895 3 1 4 7 104 1
1 2 3 950 2 0 5 3 298 1
0 0 6 185 1 3 4 3 298 1
0 2 4 720 3 1 5 2 301 1
2 2 0 3,276 8 2 4 6 54 0
2 2 2 2 0 2 2 10 0 0
1 1 6 1,249 4 0 0 12 568 5
0 3 1 37 0 1 2 11 86 1
1 2 5 664 2 0 4 8 315 2
1 3 0 382 2 2 3 9 385 2
0 1 7 363 2 1 5 4 189 1
0 3 3 756 2 2 5 1 23 0
1 3 2 1,006 2 1 3 10 170 1
0 2 6 141 1 1 1 12 272 2
2 2 4 558 3 0 5 5 226 1
0 0 8 806 6 3 4 5 226 1
1 3 4 520 2 3 3 8 53 1
2 3 1 19 0 2 5 3 271 2
0 3 5 593 3 0 2 12 612 4
1 1 8 78 1 4 4 0 1,346 8
1 2 7 240 1 0 3 11 48 0
2 3 3 549 2 2 4 8 382 2
2 2 6 107 1 1 4 9 329 2
0 4 0 2,012 9 4 4 2 7 0
0 2 8 871 4 1 5 6 390 2
0 1 9 696 3 0 1 13 50 0
0 4 2 343 2 2 5 5 193 1
1 3 6 724 3 3 5 0 149 1
1 4 1 33 0 0 5 7 107 1
2 3 5 407 2 3 4 7 107 1
3 3 0 502 3 3 5 2 309 2
0 3 7 212 2 4 4 4 181 1
1 4 3 492 2 0 4 10 69 1
3 3 2 564 2 2 2 12 556 4
0 4 4 316 2 0 6 0 764 6

(Continued)
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Table 17.2 (Continued)

h k l |Fobs|2 σ|Fobs|2 h k l |Fobs|2 σ|Fobs|2

0 0 10 113 1 2 3 11 51 0
2 4 0 1,530 6 0 6 2 45 0
2 2 8 541 3 3 5 4 162 1
1 2 9 383 2 1 6 1 0 0
2 4 2 25 0 3 3 10 153 1
3 3 4 277 2 1 2 13 27 0
1 1 10 306 2 0 0 14 9 0
1 4 5 317 2 1 3 12 129 1
1 3 8 46 0 1 5 8 101 1
aSome of the errors are listed as zeros because of automatic rounding to integers.

CeRhGe3, MoKα
Rp= 4.45%

Rwp= 6.52%
χ2= 3.88   
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Fig. 17.2 The observed and calculated powder diffraction patterns of CeRhGe3 after refinement of
all parameters with an asymmetry correction in the Finger, Cox, and Jephcoat approximation. The
inset illustrates an adequately treated asymmetry (compare with the inset in Fig. 17.1).

resultant figures of merit are satisfactory, but a careful analysis of Fig. 17.1 indicates
that the shapes of low-angle Bragg peaks are not approximated adequately.

An improvement (Fig. 17.2) was obtained by choosing a different asymmetry
correction, that is, that suggested by Finger, Cox, and Jephcoat (FCJ), where the
effects of axial divergence are treated by introducing a two-parameter asymme-
try function. The residuals are lower (see Table 17.1), and this modification has
an effect on the lattice parameters: the unit cell dimensions and zero shift re-
fined using Howard’s asymmetry approximation are a = 4.3986, c = 10.0331Å,
δ2θ = 0.044◦, while they become a = 4.3981, c = 10.0320 Å, δ2θ = 0.038◦ in
the FCJ approximation. Given the fact that the least squares standard deviations of
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lattice parameters are smaller than 10−4Å, these differences are statistically signif-
icant and the result shown in Fig. 17.2 should be considered as a better outcome of
the full pattern decomposition.

17.2 Solving the Crystal Structure from X-Ray Data

Similar to the example found in Chap. 16, CeRhGe3 is an intermetallic compound
and it makes sense to assume the highest symmetry space group – I4/mmm – as a
first attempt to solve the crystal structure. Cerium is the strongest scattering atom
(58 electrons), while Ge is the weakest (32 electrons). Considering the simplicity of
the unit cell and the presence of only two heavy atoms per cell (Ce), the Patterson
technique should be an adequate tool to solve this crystal structure.5

The file with the observed structure factors (Table 17.2) was processed accord-
ingly, and the resultant distribution of the interatomic vectors in the asymmetric part
of the unit cell in the space group I4/mmm is listed in Table 17.3. A cross-section
of the three-dimensional distribution of the interatomic vectors in the unit cell of
CeRhGe3 at V = 0 is also illustrated in Sect. 10.2.1, Fig. 10.4 (left). It only makes
sense to take into consideration those vectors, which have reasonable lengths, that
is, which are approximately equal or longer than the expected shortest interatomic
distance. In the case of CeRhGe3 they should exceed ∼2.5 Å, and these are the
six strongest peaks, in the Patterson function, which are highlighted in bold and
separated from the rest by a double line in Table 17.3 (rCe = 1.85, rRh = 1.35, and
rGe = 1.25 Å).

Table 17.3 The three-dimensional distribution of the interatomic vectors (the Patterson function)
in the symmetrically independent part of the unit cell of CeRhGe3 calculated using the observed
structure factors determined from Le Bail’s extraction (Table 17.2).

Peak number u v w Peak height

1 0 0 0 6,000
2 0.5 0 0.253 1,673
3 0 0 0.341 1,666
4 0 0 0.5 1,424
5 0 0 0.239 926
6 0.5 0 0.390 829

7 0.5 0.271 0.474 112
8 0.266 0 0.301 62
9 0.268 0 0.433 41
10 0.176 0.176 0.322 20

5 Patterson method has a high success rate when applied to intermetallic structures mainly because
of the high resolution of the resultant three-dimensional distribution of interatomic vectors. The
latter is due to notably greater minimal interatomic distances and lower atomic displacements when
compared to other classes of compounds.
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17.2.1 Highest Symmetry Attempt

After consulting the International Tables for Crystallography (see Table 17.4) there
are two sites in the unit cell with I4/mmm symmetry that may accommodate two Ce
atoms: 2(a) with the coordinates 0,0,0; and 2(b) with the coordinates 0,0,1/2. Both
sites differ only by a (0,0,1/2) shift of the whole structure, and produce no additional
peaks on the Patterson map except 0,0,0 and its symmetrical equivalent 1/2,1/2,1/2.
We note that since there are only two Rh atoms in the unit cell, they can be ac-
commodated in the second twofold position. The corresponding Ce–Rh interatomic
vector is 0,0,1/2 [(0,0,0)Ce − (0,0,1/2)Rh = (0,0,1/2)Ce−Rh], and it is Peak No. 4 in
Table 17.3. Thus, it appears that we have to test only one possible model: two Ce
in 2(a) and two Rh in 2(b) because switching the occupancy of these two sites is
the result of shifting the entire structure by 0,0,1/2. The interatomic distance Ce–Rh
(3.11 Å) is slightly shorter than the sum of the corresponding atomic radii, but it
remains within acceptable limits.6

Phase angles were calculated using the model where Ce is in the 2(a) and Rh is
in the 2(b) sites. The RF = 55.6% is nearly identical to the earlier example, and the
resultant electron density distribution is listed in Table 17.5. Analysis of Table 17.5
immediately indicates that the Rh atom, which was placed in the 2(b) site with co-
ordinates 0,0,1/2, was not confirmed on the Fourier map because there is no peak
with the coordinates 0,0,1/2 or 1/2,1/2, 0, which are symmetrically equivalent due to
the presence of the body-centered translation. Thus, our reasoning may have been
flawed, and Rh and Ge could be distributed statistically between 2 fourfold sites or
in a single eightfold site in this space-group symmetry, instead of being ordered.
The second strongest peak in the Fourier map has coordinates 1/2,0,1/2, which cor-
responds to the 4(d) site in space group I4/mmm. After placing 25% Rh and 75%
Ge in this site and removing Rh from the 2(b) site, the corresponding RF = 44.0%
and the subsequent three-dimensional Fourier map is shown in Table 17.6.7

Table 17.4 Low multiplicity sites available in the space group I4/mmm.

Site Coordinates of symmetrically equivalent points

2(a) 0,0,0; 1/2 ,1/2,1/2

2(b) 0,0,1/2; 1/2,1/2,0
4(c) 0,1/2,0; 1/2 ,0,0; 1/2 ,0,1/2; 0,1/2 ,1/2

4(d) 0,1/2,1/4; 1/2 ,0,1/4; 1/2 ,0,3/4; 0,1/2,3/4

4(e) 0,0,z; 0,0,z̄; 1/2,1/2,1/2 + z; 1/2,1/2,1/2− z
8(f) 1/4,1/4,1/4; 3/4,3/4,1/4; 1/4,3/4,1/4; 3/4,1/4,1/4; 3/4,3/4,3/4; 1/4, 1/4,3/4; 3/4,1/4,3/4; 1/4,3/4,3/4

8(g) 0,1/2,z; 0, 1/2, z̄; 1/2 ,0,z; 1/2,0,z̄; 1/2 ,0, 1/2 + z; 1/2,0,1/2− z; 0,1/2,z; 0,1/2 ,1/2− z
8(h) x,x,0; x̄, x̄,0; x,x̄,0; x̄,x,0; 1/2 + x, 1/2 + x,1/2; 1/2− x,1/2− x,1/2; 1/2 + x,1/2− x,1/2; 1/2− x,1/2 + x,1/2;
8(i) x,0,0; x̄,0,0; 0,x,0; 0,x̄,0; 1/2 + x,1/2,1/2; 1/2− x,1/2 ,1/2; 1/2,1/2 + x,1/2; 1/2,1/2− x,1/2

8(j) x,1/2,0; x̄,1/2,0; 1/2 ,x,0; 1/2,x̄,0; 1/2 + x,0,1/2; 1/2− x,0,1/2; 0,1/2 + x,1/2; 0,1/2− x,1/2

6 When compared to sums of empirical atomic radii, 5–10% reduction of the interatomic distances
is common in intermetallic phases.
7 Another possibility would be to place 2 Rh and 2 Ge (i.e., a 50:50 mixture of Rh and Ge in this
site) assuming that the remaining four-fold site is fully occupied by Ge, and we leave this exercise
to the reader.
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Table 17.5 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.2) and phase angles determined by Ce atoms placed in the 2(a), and
Rh atoms placed in the 2(b) sites of the space group I4/mmm (RF = 55.6%).

Peak number x y z Peak height

1 0 0 0 72
2 0.5 0 0.250 13
3 0 0 0.3424 11
4 0 0 0.434 11
5 0 0 0.243 7
6 0.5 0 0.372 5
7 0.5 0.25 0.472 2

Table 17.6 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.2) and phase angles determined by Ce atoms placed in the 2(a), and
0.25Rh+0.75Ge atoms placed in the 4(d) sites of the space group I4/mmm (RF = 44.0%).

Peak number x y z Peak height

1 0 0 0 58
2 0.5 0 0.250 43
3 0 0 0.368 15
4 0.5 0 0 9
5 0.5 0 0.413 5

Table 17.7 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.2) and phase angles determined by Ce atoms placed in the 2(a), and
0.25Rh+0.75Ge atoms placed in the 4(d) and 4(c) [z = 0.368] sites of the space group I4/mmm
(RF = 32.2%).

Peak number x y z Peak height

1 0 0 0 47
2 0 0 0.363 25
3 0.5 0 0.250 23
4 0 0 0.211 8
5 0 0 0.100 5

Both atoms have been confirmed on the Fourier map and it appears that the next
missing atom is located in the 4(e) site with coordinates 0,0,0.368. All interatomic
distances are normal and after including this atom into the computation of struc-
ture factors and phase angles, the corresponding RF = 32.2%. This value is quite
high, but it is still worthwhile to calculate a third Fourier map, which is shown in
Table 17.7.

All atoms present in the model have been confirmed (Peaks No. 1–3 in
Table 17.7). The fourth peak, however, is only ∼1/3 of Peak No. 3 and, therefore,
it corresponds to more than ten electrons, because a statistical mixture of 25%Rh
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and 75%Ge has 35 1/4 electrons. Assuming that an atom or a fraction of atom is
located in this position, it has prohibitively short distances (δ) with all other atoms,
already located in the unit cell: δ1−4 = 2.12 Å; δ2−4 = 1.57 Å and δ3−4 = 2.22 Å.
This result, combined with a high RF (compare RF = 32.2% obtained in the last
iteration with RF = 6.9% when all atoms were found in the crystal structure of
LaNi4.85Sn0.15), is usually a strong indicator that the symmetry of the material has
been overestimated.

It is possible to use this model of the crystal structure and attempt Rietveld re-
finement (as illustrated later in this chapter), but we proceed with testing other space
groups from the list of eight possible (I4/mmm, I4̄m2, I4̄2m, I4mm, I422, I4/m,
I4̄, and I4). Analysis of space groups I4̄m2 and I4̄2m indicates that available low-
multiplicity sites are essentially identical to those of the space group I4/mmm. When
these two groups are tested as described here the resultant models are also quite sus-
picious and we leave verification of this statement as a self-exercise for the reader.

17.2.2 Low-Symmetry Model

The next space group on the list is I4mm (Table 17.8). This group has no fixed
origin along the Z-axis: one available twofold site 2(a) has coordinates 0,0,z, and the
only available fourfold site has coordinates 1/2,0,z. We note that there is no reason
to recalculate the Patterson function, because its symmetry remains I4/mmm. To
ensure that we do not place any of the atoms incorrectly, we now position only two
Ce atoms in the 2(a) site in this space group. Because the origin along the Z-axis
can be chosen arbitrarily in this space group, it does not matter which z-coordinate
is chosen for Ce. After placing two Ce in 2(a) with z = 0.000, the RF is 42.6%, and
the resultant electron density distribution is shown in Table 17.9.

There is no sharp reduction of peak heights between any pair of peaks in
Table 17.9 except after the first, and therefore, we proceed by adding only one
twofold site for the next iteration. Choosing Peak No. 2, and assuming that it is
the next strongest scattering atom, that is, Rh, the distance between this peak and
Ce atom in 2(a) with z = 0.000 is normal. The residual did not change after Rh in
2(a) with z = 0.662 has been added to the model (RF = 42.3%). The subsequent
Fourier map is shown in Table 17.10.

Table 17.8 Low multiplicity sites available in the space group I4mm.

Site Coordinates of symmetrically equivalent points

2(a) 0,0,z; 1/2 ,1/2, 1/2 + z
4(b) 0,1/2,z; 1/2 ,0,z; 1/2 ,0,1/2 + z; 0,1/2 ,1/2 + z
8(c) x,x,z; x̄, x̄,z; x̄,x,z; x, x̄,z; 1/2 + x, 1/2 + x, 1/2 + z; 1/2− x, 1/2− x, 1/2 + z; 1/2− x, 1/2 + x, 1/2 + z; 1/2 + x, 1/2− x, 1/2 + z
8(d) x,0,z; x̄,0,z; 0,x,z; 0, x̄,z; 1/2 + x, 1/2, 1/2 + z; 1/2− x, 1/2, 1/2 + z; 1/2, 1/2 + x, 1/2 + z; 1/2, 1/2− x, 1/2 + z;
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Table 17.9 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.2) and phase angles determined by the Ce atom placed in the 2(a)
site of the space group I4mm with z = 0.000 (RF = 42.6%).

Peak number x y z Peak height

1 0 0 0 60
2 0 0 0.662 9
3 0.5 0 0.253 9
4 0 0 0.341 9
5 0 0 0.500 7
6 0 0 0.429 7

Table 17.10 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.2) and phase angles determined by the Ce and Rh atoms placed in
the 2(a) sites of the space group I4mm with z = 0.000 and 0.662, respectively (RF = 42.3%).

Peak number x y z Peak height

1 0 0 0 55
2 0 0 0.665 27
3 0 0 0.427 9
4 0.5 0 0.259 9
5 0 0 0.242 8
6 0 0 0.495 6

Table 17.11 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.2) and phase angles determined by Ce in 2(a) with z = 0.000, Rh in
2(a) with z = 0.665 and Ge in 2(a) with z = 0.427 in the space group I4mm (RF = 32.1%).

Peak number x y z Peak height

1 0 0 0 47
2 0 0 0.666 33
3 0 0 0.429 23
4 0.5 0 0.262 9
5 0.5 0 0.400 5
6 0 0 0.177 3

Proceeding slowly, we add the third peak as Ge and change the z-coordinate of
Rh from 0.662 to 0.665, as had been determined from the latest electron density map
(Table 17.10). All distances remain normal and the residual lowers to RF = 32.1%;
the Fourier map calculated using phase angles determined by all three independent
atoms is shown in Table 17.11.

The fourth peak is now about twice as high as the fifth, and all atoms already
present in the unit cell have been confirmed. After changing z-coordinates of Rh
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and the first Ge atom to 0.666 and 0.429, respectively, and adding the coordinates of
the fourth peak as Ge in 4(b) with z = 0.262 the RF = 9.7%, which is a much lower
value when compared to that achieved in the space group I4/mmm. The Fourier map
calculated using phase angles determined by all four independent atoms is shown
in Table 17.12. As follows from this Fourier map, all four atoms have been con-
firmed and in addition, there is a sharp reduction in peak heights after the fourth
maximum (double underlined) in Table 17.12. The latter is a clear indication that
the structure solution is completed. Therefore, the model (Table 17.13), built in the
noncentrosymmetric space group I4mm, may be considered a correct solution of the
problem, and all structural parameters of CeRhGe3 should be finalized by Rietveld
refinement (see Sect. 17.4).

Pearson symbol of this crystal structure is tI10 and after consulting Pearson’s
Handbook it easy to find that it belongs to the BaNiSn3-type structure.8

Table 17.12 The three-dimensional electron density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.2) and phase angles determined by Ce in 2(a) with z = 0.000, Rh in
2(a) with z = 0.666, Ge in 2(a) with z = 0.429 and Ge in 4(b) with z = 0.262 in the space group
I4mm (RF = 9.7%). See also Figure 10.2, left, where this Fourier map is visualized, although with
a different selection of the origin of coordinates.

Peak number x y z Peak height

1 0 0 0 42
2 0 0 0.665 32
3 0 0 0.428 22
4 0.5 0 0.265 20

5 0 0 0.173 2
6 0.25 0 0.700 2

Table 17.13 Coordinates of atoms in the unit cell of CeRhGe3 as determined from X-ray powder
diffraction data in the space-group symmetry I4mm.

Atom Site x y z

Ce 2(a) 0 0 0.000
Rh 2(a) 0 0 0.665
Ge1 2(a) 0 0 0.428
Ge2 4(b) 1/2 0 0.265

8 W. Doerrscheidt and H. Schaefer, The structure of barium-platinum-tin (BaPtSn3), barium-
nickel-tin (BaNiSn3) and strontium-nickel-tin (SrNiSn3) and their relation to the thorium-
chromium-silicon (ThCr2Si2) structure type, J. Less-Common Met. 58, 209 (1978).
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17.3 Solving the Crystal Structure from Neutron Data9

We now consider a neutron powder diffraction pattern of CeRhGe3. The full pattern
decomposition has been conducted using LHPM-Rietica and peak shapes have been
represented by means of the pseudo-Voigt function with asymmetry in Howard’s
approximation (see footnote 5 on page 549). The progression of the Le Bail refine-
ment is shown by the corresponding figures of merit, which are listed in Table 17.14.
The obtained result is illustrated in Fig. 17.3 and the individual structure factors are
listed in Table 17.15. A few additional intensity maxima appear between 35.2◦ and
39.1◦2θ due to instrumental contribution, and this region of the powder diffraction
pattern was excluded from calculations.

Ignoring the dissimilarities in the values of both the scattered intensity and struc-
ture factors for X-rays (Fig. 17.2 and Table 17.2, respectively) and neutrons, which
are due to the differences in the scattering factors,10 the most significant difference
between the X-ray and neutron diffraction profiles is in the widths of Bragg peaks
and the mixing parameter of the pseudo-Voigt function, as illustrated in Fig. 17.4.
The Bragg peaks in the X-ray experiment are narrow and they are well-described
by a nearly pure Lorentzian. On the other hand, Bragg peaks are much broader and
they are closer to a pure Gaussian distribution in the neutron-diffraction experiment.

Since in Sect. 17.2.2 we established that the correct space-group symmetry for
this material is I4mm, we will not try any other space groups. The distribution of
peaks in the Patterson function calculated using the observed structure factors ob-
tained in the neutron powder diffraction experiment is shown in Table 17.16. The
U0W cross-section of the three-dimensional Patterson function using the same pow-
der diffraction data is illustrated in Sect. 10.2.1, Fig. 10.4, right. The height of an

Table 17.14 Figures of merit obtained at different stages during the full pattern decomposition of
the powder diffraction pattern of CeRhGe3 collected using thermal neutrons with the wavelength
λ = 1.494 Å; Rexp = 3.09%. The temperature of the experiment was 200 K.

Refined parameters Illustration Rp Rwp χ2

Background (linear) – 27.11 34.38 124.0
+a, c – 20.57 27.18 77.52
+U , V , W , η0, asymmetry – 3.87 5.33 2.99
All, background (fourth order) Fig. 17.3 3.54 4.78 2.40

9 O. Zaharko, V.K. Pecharsky and K.A. Gschneidner, Jr., unpublished. Neutron diffraction data
were collected using the High Resolution Position Sensitive Detector Powder Diffractometer for
Thermal Neutrons at the Paul Scherrer Institute, Switzerland (http://sinq.web.psi.ch/sinq/instr/
hrpt.html). The same alloy was used in X-ray and neutron diffraction experiments. The file with
experimental data (Ch17Ex01 Neut.dat) is found online.
10 Coherent neutron scattering lengths (b) are 4.84, 5.88, and 8.185 fm for Ce, Rh and Ge, respec-
tively. Since for these three elements the neutron scattering ability accidentally increases with the
decreasing atomic number, Ge is determined from neutron data with better accuracy than Ce. On
the contrary, the X-ray scattering factors are proportional to the atomic number, and therefore, Ce
is determined from X-ray diffraction with a better precision than Ge.
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CeRhGe3, neutrons, λ = 1.494 Å 
Rp = 3.54%

Rwp = 4.78%
χ2= 2.40 
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Fig. 17.3 The observed and calculated powder diffraction patterns of CeRhGe3 after refinement
of all parameters. The region 35.2◦ < 2θ < 39.1◦ (outlined in the inset) was excluded from the
refinement because it contains three additional peaks due to instrumental contribution. The powder
diffraction data were collected with a step 0.05◦ of 2θ.

interatomic vector between two atoms of type i and j is proportional to the product
of their scattering power, which in this case is proportional to the product of the cor-
responding coherent scattering lengths, bib j. For example, Ce–Ce vectors should be
proportional to b2

Ce(∼23 fm2), while Ge–Ge vectors should be almost three times
stronger: b2

Ge
∼= 67 fm2.

Only the eight strongest independent peaks in Table 17.16 (highlighted in
bold and separated by the double line from the rest) have meaningful lengths
between ∼2.4 and 5Å. The differences in the heights of Patterson peaks between
Tables 17.16 and 17.3 are expected because now Ge atoms are the strongest scatter-
ing species. Between the two sites (see Table 17.8) that may accommodate six Ge
atoms, the 2(a) site results in the 0,0,0 vector, and the 4(b) site yields one additional
1/2,1/2,0 vector. Indeed, the second strongest vector found in Table 17.16 is identical
to the latter (0,0,1/2 + 1/2,1/2,1/2 = 1/2,1/2,0). Thus, the Patterson function points to
a strongly scattering atom in the 4(b) site of the space group I4 mm. Since the origin
of coordinates here is not fixed along the Z-axis, we may choose any z-coordinate
for the Ge atom in this site.

Assume that four Ge atoms are located in 4(b) with z = 0.000. Let us try to use
the Patterson function (Table 17.16) and locate a second Ge, which should be in
a twofold site because there is a total of six Ge atoms in the unit cell. The coor-
dinates of a point in 2(a) are 0,0,z. Hence, the corresponding vector between the
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Table 17.15 The list of Bragg reflections and observed structure factors squared determined after
Le Bail’s full pattern decomposition of the neutron powder diffraction data of CeRhGe3.

h k l |Fobs|2 σ |Fobs|2 h k l |Fobs|2 σ |Fobs|2

0 0 2 1,667 10 2 4 0 1,4985 71
0 1 1 537 3 2 2 8 7,328 44
1 1 0 0 0 1 2 9 3,329 21
0 1 3 2,372 9 2 4 2 1,299 10
1 1 2 8,241 24 3 3 4 7,445 44
0 0 4 3,567 27 1 1 10 5,300 34
0 2 0 17,951 65 1 4 5 2,360 17
0 2 2 1,564 11 1 3 8 2,813 18
1 1 4 9,641 36 2 3 7 1,213 9
1 2 1 466 4 0 4 6 3,318 25
0 1 5 2,992 18 2 4 4 2,834 18
1 2 3 2,318 13 0 2 10 2,225 17
0 0 6 3,320 28 0 1 11 0 0
0 2 4 3,301 21 0 3 9 2,854 22
2 2 0 18,709 84 3 3 6 3,603 27
2 2 2 1,467 12 0 5 1 357 3
1 1 6 4,597 27 3 4 1 357 3
0 3 1 512 5 1 5 0 0 0
1 2 5 3,060 17 1 4 7 1,123 9
1 3 0 210 2 0 5 3 1,934 9
0 1 7 1,584 13 3 4 3 1,930 9
0 3 3 2,250 10 1 5 2 5,994 26
1 3 2 7,326 28 2 4 6 3,082 18
0 2 6 3,616 23 2 2 10 1,802 14
2 2 4 3,038 21 0 0 12 10,617 78
0 0 8 9,660 75 1 2 11 18 0
1 3 4 8,333 34 0 4 8 6,892 40
2 3 1 496 4 2 3 9 3,171 19
0 3 5 3,310 24 1 5 4 7,187 30
1 1 8 3,286 23 2 5 1 2,825 13
1 2 7 1,460 11 1 3 10 2,458 11
2 3 3 2,065 14 1 1 12 3,134 20
2 2 6 3,821 27 0 5 5 2,415 13
0 4 0 15,318 89 3 4 5 2,415 13
0 2 8 7,911 45 3 3 8 2,621 18
0 1 9 3,449 25 2 5 3 1,712 11
0 4 2 1,217 10 0 2 12 11,012 47
1 3 6 4,074 23 4 4 0 16,837 76
1 4 1 375 4 0 3 11 366 2
2 3 5 2,611 18 2 4 8 6,659 25
3 3 0 0 0 1 4 9 3,265 15
0 3 7 1,366 12 4 4 2 1,146 6
1 4 3 1,916 11 1 5 6 3,428 15
3 3 2 6,705 37 0 1 13 931 5
0 4 4 2,635 21 2 5 5 2,513 10
0 0 10 1,453 14
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Fig. 17.4 Full widths at half maximum (FWHM) and mixing parameters (η) of the pseudo-Voigt
function used to approximate peak shapes in the X-ray (Fig. 17.2) and neutron (Fig. 17.3) powder
diffraction patterns collected from the same CeRhGe3 powder.

Table 17.16 The three-dimensional distribution of the interatomic vectors in the symmetrically
independent part of the unit cell of CeRhGe3 calculated using the observed structure factors deter-
mined from Le Bail’s extraction employing neutron diffraction data (Table 17.15).

Patterson map peak
number

u v w Peak height

1 0 0 0 6,000
2 0 0 0.5 2,675
3 0.5 0 0.355 1,500
4 0.5 0 0.145 1,500
5 0.5 0 0.250 1,500
6 0 0 0.237 1,124
7 0 0 0.346 687
8 0 0 0.404 489

9 0.125 0.125 0.088 266
10 0.218 0.218 0.457 260

two independent Ge atoms should be 1/2,0,0− 0,0,z = 1/2,0,−z ≡ 1/2,0,z due to
a mirror plane perpendicular to Z at z = 1/2, which is present in the space group
I4/mmm that describes Patterson symmetry. A second vector can be found from
1/2,0,0 + 1/2,1/2,1/2 − 0,0,z = 0,1/2,1/2 − z. Given the presence of a fourfold axis
parallel to Z, this vector is identical to 1/2,0,1/2− z. These are Vectors No. 3 and 4 in
Table 17.16 assuming z = 0.355(or z = 0.145). Without other atoms in the model of
the crystal structure, the two choices are equivalent, and any of the two z-coordinates
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may be selected to represent Ge atom in the 2(a) site. Thus, the two indepen-
dent Ge atoms, according to the Patterson function, are as follows: 4Ge1 in 4(b):
1/2,0,0.000, and 2Ge2 in 2(a): 0,0,0.355. The corresponding residual RF = 29.0%.
The coordinates of peaks found on the three-dimensional Fourier map calculated
using phase angles determined from this partial model of the crystal structure are
listed in Table 17.17.

The next strongest peak (No. 3) also belongs to the 2(a) site with the coordi-
nate z = 0.754. Its shortest interatomic distances are δ3−Ge1 = 3.30 and 3.36 Å and
δ3−Ge2 = 3.27 Å. All three correspond to Ce rather than to Rh, even though Ce is
a light scattering atom when compared to Rh. Thus, after placing 2Ce in 2(a) with
z = 0.754, the RF = 19.8% and the subsequently calculated Fourier map is illus-
trated in Table 17.18.

So far three atoms have been confirmed, and the fourth strongest peak points to
an atom that also belongs to the 2(a) site with z = 0.580. The only atom which is
missing from our model, is Rh. When 2 Rh atoms are placed in this site, the inter-
atomic distance δRh−Ce = 1.75 Å, which is too short. The fourth peak is therefore a
false maximum, and it should be discarded.11 After the next strongest peak (No. 5)
is tested, all distances are normal. The RF = 16.3% and the subsequent Fourier map

Table 17.17 The three-dimensional nuclear density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.15) and phase angles determined by Ge in 4(b) with z = 0.000 and
Ge in 2(a) with z = 0.355 in the space group I4mm (RF = 29.0%).

Fourier map peak number x y z Peak height

1 0 0 0.355 73
2 0.5 0 0 63
3 0 0 0.754 18
4 0 0 0.587 15
5 0 0 0.119 11
6 0 0 0.921 10

Table 17.18 The three-dimensional nuclear density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.15) and phase angles determined by Ge in 4(b) with z = 0.000, Ge
in 2(a) with z = 0.355, and Ce in 2(a) with z = 0.754 in space group I4mm (RF = 19.8%).

Fourier map peak number x y z Peak height

1 0 0 0.353 61
2 0.5 0 0 55
3 0 0 0.758 29
4 0 0 0.580 13
5 0 0 0.113 10
6 0.5 0 0.258 7

11 False peaks may be stronger than the real peaks on the Fourier map, especially when a model
is incomplete and/or accuracy of structure factors is low, which is the case here. One atom still
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is listed in Table 17.19, which now displays a sharp drop in peak heights after Peak
4. The cross-section of the nuclear density distribution in the X0Z plane calculated
using the same powder diffraction data is shown in Fig. 10.2. It is worth noting that
Fig. 10.2 represents a different origin of coordinates since its selection along the
Z-axis is arbitrary in this space-group symmetry.

Since we did not change the coordinates of atoms to those refined from the pre-
vious Fourier map computations, we will do it now and assume the distribution of
atoms in the unit cell of CeRhGe3 as shown in Table 17.20. All atoms were assigned
identical isotropic displacement parameters B = 0.5 Å2. The resulting RF = 9.8%,
which is quite close to that obtained using X-ray diffraction data (see Sect. 17.2).
The coordinates of all atoms may be further refined by calculating another Fourier
map. This is, however, unnecessary since the model of the crystal structure appears
complete and all relevant structural parameters should be, and are refined next using
the Rietveld technique based on the available neutron powder diffraction data.

A comparison of Tables 17.13 and 17.20 indicates that the coordinates of the
atoms are different in the two models. Nonetheless, the models are identical: the
two crystallographic bases are related to one another by the center of inversion and
by different origins of coordinates, which will be visualized later in Fig. 17.8.

Table 17.19 The three-dimensional nuclear density distribution in the symmetrically independent
part of the unit cell of CeRhGe3 calculated using the observed structure factors determined from
Le Bail’s extraction (Table 17.15) and phase angles determined by Ge in 4(b) with z = 0.000, Ge
in 2(a) with z = 0.355, Ce in 2(a) with z = 0.754, and Rh in 2(a) with z = 0.113 in the space group
I4mm (RF = 16.3%).

Fourier map peak number x y z Peak height

1 0 0 0.349 48
2 0.5 0 0 47
3 0 0 0.108 33
4 0 0 0.759 24

5 0 0 0.233 6
6 0 0 0.000 3

Table 17.20 Coordinates of atoms in the unit cell of CeRhGe3 as determined from neutron powder
diffraction data in the space-group symmetry I4mm. RF = 9.8%

Atom Site x y z

Ge1 4(b) 0.5 0 0.000
Ge2 2(a) 0 0 0.349
Ce 2(a) 0 0 0.759
Rh 2(a) 0 0 0.108

missing from the model is Rh. It is the second strongest scattering atom and, therefore, phase
angles are imprecise thus resulting in a strong false peak.
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17.4 Rietveld Refinement

The X-ray data were collected at room temperature, while the neutron scattering
experiment (λ = 1.494 Å) was conducted at 200 K. Hence, combined Rietveld re-
finement is impossible because of the differences in the lattice and structural pa-
rameters of the alloy due to thermal expansion,12 and we use the two sets of data
independently.

17.4.1 X-Ray Data, Correct Low Symmetry Model

Initial parameters for Rietveld refinement were assumed as follows: background,
peak shape, unit cell dimensions, and zero shift as determined from Le Bail’s full
pattern decomposition (see Sect. 17.1), and the model of the crystal structure from
the ab initio solution in the space group I4mm Table 17.13.

Refinement of all free variables except the coordinates and displacement parame-
ters of individual atoms, beginning with the scale factor (Rows 1–3 in Table 17.21),
results in low residuals, basically confirming the model of the crystal structure.
When the coordinate parameters of atoms in the unit cell were included in the refine-
ment (Row 4, Table 17.21), all residuals improve, especially RB, which is lowered
from 6.45 to 3.12%. Similar to the example from Chap. 16, the quality of the exper-
imental data is quite high, and therefore, we easily refine individual isotropic and
then individual anisotropic displacement parameters of all atoms.

Finally, as may be established by a trial-and-error approach, a small extinction
correction further improves the agreement between the observed and calculated in-
tensities, as shown in the last row of Table 17.21. Attempts to include preferred
orientation assuming several possible texture axes (such as [100], [110], [001] and
a few others) did not result in the improvement of the fit, thus indicating that in this
experiment, preferred orientation effects are nonexistent within the accuracy of the
data.

The plot of the observed and calculated intensities is shown in Fig. 17.5 and the
fully refined structural parameters are listed in Table 17.22. It is easy to verify by the
calculation of the Fourier map that there are no additional atoms in the unit cell of
this compound. All interatomic distances are normal. The crystal structure is shown
in Fig. 17.6, from which it is easy to see that thermal ellipsoids of all atoms are
reasonable.

12 Displacement parameters of atoms are also expected to be different as the temperature of the
powder diffraction experiment varies. Further, it is also feasible that atomic positions may change
due to generally anisotropic thermal expansion of crystal lattices. These considerations are in ad-
dition to the most obvious cause (different lattice parameters) preventing combined refinement
using powder diffraction data collected at different temperatures. In general, material may also
be polymorphic but this is not the case here, as was established in Sects. 17.2 and 17.3, also see
Fig. 17.8.
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Table 17.21 The progress of Rietveld refinement of the crystal structure of CeRhGe3 using X-ray
powder diffraction data. Wavelengths used: λKα1 = 0.70932 Å, λKα2 = 0.71361 Å.

Refined parameters Rp Rwp RB χ2

Initial (profile from Le Bail, model from Table 17.13, overall
B = 0.5 Å2)

1,468 1,557 1,526 3×105

Scale factor 8.87 11.46 7.05 15.03
Scale, all profile, a and c, overall displacement 8.25 10.91 6.45 13.66
All of the above plus coordinates of individual atomsa 5.88 8.04 3.12 7.43
All of the above plus individual isotropic displacement
parameters

5.78 7.92 3.07 7.22

All of the above plus individual anisotropic displacement
parametersb

5.75 7.86 3.00 7.11

All of the above plus extinctionc 5.42 7.54 2.14 6.54
a In the space group I4mm the origin of coordinates along the Z-axis is not fixed by symmetry.
Therefore, the z-coordinate of one atom in the unit cell must be excluded from the least squares at
all times to avoid severe correlation problems. We selected the z-coordinate of Ce atom (z = 0.000)
as the fixed coordinate parameter.
b All atoms in this crystal structure are located in special sites. This introduces certain relationships
between individual anisotropic displacement parameters: β22 = β11 for the atoms in 2(a) sites (Ce,
Rh and Ge1); β12 = β13 = β23 = 0 for all sites.
c Extinction parameter 0.00001 was used as the initial approximation. Extinction (see (8.41) and
(8.64)) may correlate with phase scale factor and, therefore, it may be necessary to keep the scale
factor fixed during the initial refinement of extinction.

CeRhGe3, MoKa
Rp= 5.42%

Rwp= 7.54%
RB= 2.14%
χ2 = 6.54   
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Fig. 17.5 The observed and calculated powder diffraction patterns of CeRhGe3 after the comple-
tion of Rietveld refinement. The data were collected from a ground CeRhGe3 powder dusted on
a flat sample holder using a rotating anode Rigaku TTRAX powder diffractometer in a step scan
mode with a step Δ2θ = 0.01◦. All notations on the plot are identical to Fig. 16.2.
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Table 17.22 Structural parameters of CeRhGe3, fully refined by the Rietveld technique employ-
ing powder diffraction data collected from a ground powder using Mo Kα radiation. The space
group is I4mm. The unit cell dimensions are: a = 4.39830(3), c = 10.03259(8) Å. Some of the
anisotropic displacement parameters are fixed by site symmetry: β12 = β13 = β23 = 0. All sites are
fully occupied.13

Atom Site x y z 104 ×β11 104 ×β22 104 ×β33

Ce 2(a) 0 0 0.0000a 111(2) 111(2) 16(1)
Rh 2(a) 0 0 0.6589(1) 48(3) 48(3) 20(1)
Ge1 2(a) 0 0 0.4209(1) 70(4) 70(4) 24(1)
Ge2 4(b) 1/2 0 0.2615(1) 160(5) 58(5) 26(1)

a This coordinate was fixed to determine the origin of coordinates.
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Ge

Rh

Fig. 17.6 The crystal structure of CeRhGe3 as determined from Rietveld refinement in the space
group I4mm (see Table 17.22 and Fig. 17.5). Displacement ellipsoids are shown at 99% probability.
Also, see the footnote on page 599.

When the final residuals obtained after the Rietveld refinement (Table 17.21)
are compared with those obtained during Le Bail’s full pattern decomposition
(Table 17.1), the differences are small, which serves as another confirmation of the
correctness of the structural model in the space group I4mm. In this regard, it is
useful to illustrate the Rietveld refinement of a different model of the same crystal
structure (see Table 17.7), which was constructed earlier in the higher symmetry
space group – I4/mmm. This model was discarded based on high RF, and also based
on the presence of strong peaks on the Fourier map, which were too close to the
atoms already located in the unit cell.

13 The refined model of the crystal structure can be found in the file Ch17Ex01a.inp online and the
experimental patterns are located in the data file Ch17Ex01 MoKa.dat.
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17.4.2 X-Ray Data, Wrong High-Symmetry Model

Beginning again with the background, peak shape, and unit cell parameters along
with the zero shift determined during Le Bail’s full pattern decomposition, we
attempt to perform Rietveld refinement of the crystal structure model shown in
Table 17.23.14 The observed and calculated intensities after the full profile least
squares are plotted in Fig. 17.7.

Visual analysis of Fig. 17.7 immediately indicates that the agreement between
the observed and calculated intensity is poor. Moreover, Rietveld refinement of this
model of the crystal structure, during which the coordinates of atoms in the 4(e)
site plus population of 4(d) and 4(e) sites were optimized together with the overall

Table 17.23 Coordinates of atoms in the unit cell of CeRhGe3 as determined from X-ray powder
diffraction data in the space-group symmetry I4/mmm (earlier discarded as wrong, see Table 17.7).

Atom Site x y z

Ce 2(a) 0 0 0
0.25Rh+0.75Ge 4(d) 1/2 0 1/4
0.25Rh+0.75Ge 4(e) 0 0 0.363
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Fig. 17.7 The observed and calculated powder diffraction patterns of CeRhGe3 after Rietveld
refinement of the model in the space group I4/mmm. Compare with Fig. 17.5.

14 The corresponding data file, Ch17Ex01b.inp, containing initial parameters for the Rietveld re-
finement using LHPM-Rietica is found online.
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isotropic displacement parameter, results in the removal of Rh atoms from all sites:
population of both sites by Rh becomes negative.15

Hence, this model has no chemical sense because Rh is indeed present in the ma-
terial. Finally, all residuals (see Fig. 17.7) are much higher when compared to those
obtained in both the earlier refinement (in the space group I4mm) and Le Bail’s full
pattern decomposition (see Table 17.1). Thus, Rietveld refinement of the model in
the space-group symmetry I4/mmm corroborates the conclusion made earlier about
its inadequacy.

17.4.3 Neutron Data

When we solved this crystal structure using neutron diffraction data, we found a
model (Table 17.20) where the origin of coordinates was shifted with respect to
that solved from X-ray diffraction (Tables 17.13 and 17.22). Here, we first use the
coordinates of atoms determined from X-ray data16 and then perform a refinement
of the “original” model as established from a neutron diffraction experiment.17

Table 17.24 lists the residuals obtained at different stages of Rietveld refinement.
After the determination of the scale factor, all residuals are quite low, and there-
fore, the completion of Rietveld refinement in this case presents no problems. The
least squares refinement of both models of CeRhGe3 converges to identical residuals
(compare the two rows at the end of Table 17.24) thus confirming our earlier conclu-
sion about their identity. The final parameters of the individual atoms are assembled
in Table 17.25.

Both models of the crystal structure are shown in Fig. 17.8. It is easy to verify that
thermal ellipsoids of individual atoms are identical in the two models, even though
the β11 and β22 of Ge2 are switched, which is due to the different selection of the
origin of coordinates. When compared to the results obtained at room temperature
(Table 17.22 and Fig. 17.6), the individual displacement parameters of all atoms are
reduced. This reduction is expected because thermal excitations in the crystal lattice
are lowered when temperature decreases. Some differences in the anisotropy of Ge2
and Rh (compare Fig. 17.6 with Fig. 17.8) may be associated with both the reduction
of temperature and with the different sensitivity of X-rays and neutrons: Ge has the
lowest scattering ability for X-rays, and it has the largest coherent scattering length
for neutrons.18

15 See the data file Ch17Ex01c.inp online
16 This fully refined crystal structure is found in the file Ch17Ex02a.inp.
17 Data file Ch17Ex02b.inp. The measured neutron powder diffraction pattern is also found online
in the data file Ch17Ex01 Neut.dat.
18 Anisotropic parameters obtained employing neutron data, where scattering occurs on nuclei,
are more reliable because in the X-ray diffraction, the anisotropy reflects stronger and potentially
improperly accounted absorption/porosity effects in addition to a deformation of the electron den-
sity. Overall, displacement anisotropy obtained from powder diffraction data should be carefully
analyzed, especially if preferred orientation is present.
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Table 17.24 The progress of Rietveld refinement of the crystal structure of CeRhGe3 using neutron
powder diffraction dataa collected at T = 200K. The wavelength used: λ = 1.494 Å.

Refined parameters Rp Rwp RB χ2

Initial (profile parameters from Le Bail, model from
Table 17.22 overall B = 0.5 Å2)

38.44 49.21 78.08 253.7

Scale factor 4.29 5.62 2.56 3.31
Scale, all profile, a and c, overall displacement 4.03 5.30 2.08 2.96
Scale, all profile, a and c, overall displacement plus
coordinates of individual atoms and individual isotropic
displacement parametersb

3.97 5.24 1.89 2.91

All, individual anisotropic displacement parametersc 3.91 5.20 1.69 2.85
Fully refined “original” model from Table 17.20d 3.91 5.20 1.69 2.85
a As was done earlier (see Fig. 17.3), the region 35.2 < 2θ < 39.1◦ was excluded from the refine-
ment because it contains three additional peaks due to instrumental contribution.
b In the space group I4mm the origin of coordinates along the Z-axis is not fixed. Therefore, the z-
coordinate of one atom in the unit cell must be excluded from least squares at all time. We choose
the z-coordinate of the Ce atom (z = 0.000) as a fixed coordinate parameter.
c All atoms in this crystal structure are located in special site positions. This introduces certain
relationships between anisotropic displacement parameters: β22 = β11 for the atoms in 2(a) sites
(Ce, Rh and Ge1); β12 = β13 = β23 = 0 for all sites.
d In this refinement the z-coordinate of the Ge1 atom (z = 0.000) was chosen as a fixed coordinate
parameter to define the origin of coordinates.

Table 17.25 Structural parameters of CeRhGe3 fully refined by Rietveld technique using neutron
data. The space group is I4mm. The unit cell dimensions are: a = 4.39180(4), c = 10.0238(1) Å.
Some of the anisotropic displacement parameters are fixed by symmetry: β12 = β13 = β23 = 0. All
sites are fully occupied.

Atom Site x y z 104 ×β11 104 ×β22 104 ×β33

Model 1
Ce 2(a) 0 0 0.0000a 57(5) 57(5) 10(2)
Rh 2(a) 0 0 0.6598(3) 53(6) 53(6) 3(1)
Ge1 2(a) 0 0 0.4219(3) 43(4) 43(4) 12(1)
Ge2 4(b) 1/2 0 0.2630(3) 74(5) 41(4) 7(1)

Model 2
Ce 2(a) 0 0 0.7630(3) 57(5) 57(5) 10(2)
Rh 2(a) 0 0 0.1033(2) 53(6) 53(6) 3(1)
Ge2 2(a) 0 0 0.3412(2) 43(4) 43(4) 12(1)
Ge1 4(b) 1/2 0 0.0000a 41(4) 74(5) 7(1)

aThis coordinate was fixed to determine the origin of coordinates.

The Rietveld plot of the observed and calculated neutron diffraction patterns of
CeRhGe3 is shown in Fig. 17.9. Given excellent residuals and both physical and
chemical rationale of the refined model, we conclude that the results presented in
Table 17.25 are correct.
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Fig. 17.8 The two models of the crystal structure of CeRhGe3 refined using neutron powder dif-
fraction data collected at T = 200K. The thermal displacement ellipsoids are shown at 99% prob-
ability. The models are identical except for the inversion of the coordinate system and differently
chosen origin of the unit cell.

CeRhGe3, neutrons, l  = 1.494 Å
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Fig. 17.9 The observed and calculated neutron powder diffraction patterns of CeRhGe3 after the
completion of Rietveld refinement. The region 35.2◦ < 2θ < 39.1◦ was excluded from the refine-
ment (data courtesy of Dr. O. Zaharko).



Chapter 18
Crystal Structure of Nd5Si4

The next example is also an intermetallic compound, Nd5Si4, which is the most
complex among those considered so far. The powder diffraction pattern (Fig. 18.1)1

has been indexed in a tetragonal crystal system with a = 7.871 and c = 14.812 Å.
Analysis of the systematic absences indicates that reflections h00 with h �= 2n
and 00l with l �= 4n are extinct and points to two possible space groups:
P41212 or P43212. The complexity of this example arises from a large primi-
tive unit cell of the material, which results in over 440 Bragg reflections possible
between 18◦ and 120◦ 2θ when using Cu Kα radiation. One of the major difficul-
ties in the full pattern decomposition here is in the uncertainty of the background
at high Bragg angles, where multiple reflections heavily overlap. Therefore, the
background baseline should be monitored at all times during the refinement.

18.1 Full Pattern Decomposition

The progression of the Le Bail full pattern decomposition is illustrated in Table 18.1
and the results are shown in Fig. 18.1. Bragg peaks were represented by the pseudo-
Voigt function with Howard’s asymmetry correction.2

The measured gravimetric density of the alloy is 5.96 g/cm3 and one unit cell
contains Z = 3.95∼= 4 formula units of Nd5Si4. The two possible space-groups sym-
metry are enantiomorphous, and they cannot be distinguished using powder diffrac-
tion data. The results shown in Table 18.1 and Fig. 18.1 are obtained in the space
group P41212.

1 Files with experimental data (Ch18Ex01 CuKa.dat and Ch18Ex01 CuKa.xy) are found online
(http://www.springer.com/978-0-387-09578-3) in the supplementary information accompanying
this book.
2 Due to a large number of Bragg reflections, the list of individual structure factors squared is found
online in the data file Ch18Ex01 F2.dat.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 603
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 18,
c© Springer Science+Business Media LLC 2009
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Table 18.1 Figures of merit obtained at different stages during the full pattern decomposition
of the powder diffraction pattern of Nd5Si4. Wavelengths used: λKα1 = 1.54059 Å, λKα2 =
1.54441 Å; Rexp = 4.64%.

Refined parameters Illustration Rp Rwp χ2

Background (linear) – 13.70 19.06 16.86
Background (fifth order) – 10.42 14.15 9.29
+a, c, U, V, W, η0, asymmetry – 5.14 7.03 2.30
All Fig. 18.1 4.70 6.54 1.99

Nd5Si4, Cu Kα
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Fig. 18.1 The observed and calculated powder diffraction patterns of Nd5Si4 after refinement of
all parameters. The powder diffraction data were collected from a ground sample of Nd5Si4 using
Cu Kα radiation on a Rigaku TTRAX rotating anode diffractometer. The divergence slit was 0.75◦

and the receiving slit was 0.03◦. The experiment was carried out in a continuous scanning mode
with a sampling step 0.02◦ and a scan rate of 0.5 deg/min. The inset shows the low-intensity region
of the powder diffraction pattern with a properly determined background (solid line).

18.2 Solving the Crystal Structure

The complexity of this crystal structure precludes easy interpretation of the
Patterson function because there is a total of 20 Nd atoms in the unit cell. There-
fore, we will solve the crystal structure of this alloy using direct methods. The
space-group symmetry P41212 contains only two possible sites, which are listed in
Table 18.2.

The array of the individual structure factors determined from Le Bail’s full pat-
tern decomposition was processed using WinCSD (see footnote 85 on page 544)
and, according to a combined figure of merit, one of the possible solutions was
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Table 18.2 Sites available in space-group symmetry P41212.

Site Coordinates of symmetrically equivalent points

4(a) x,x,0 x,x,1/2 1/2− x, 1/2 + x, 1/4 1/2 + x, 1/2− x, 3/4
8(b) x,y,z x,y, 1/2 + z 1/2− y,1/2 + x, 1/4 + z 1/2 + y,1/2− x, 3/4 + z

y,x,z y,x, 1/2− z 1/2− x, 1/2 + y,1/4− z 1/2 + x, 1/2− y,3/4− z

Table 18.3 The three-dimensional E-map in the symmetrically independent part of the unit cell of
Nd5Si4 calculated using the observed structure factors determined from Le Bail’s extraction and
directly determined phase angles in the space group P41212.

E-map peak number x y z Peak height

1 0.3698 0.0021 0.4543 36
2 0.1268 0.9925 0.8768 28
3 0.8118 0.1882 0.7500 19
4 0.2089 0.1725 0.6881 8
5 0.8661 0.9856 0.2168 7
6 0.1218 0.0046 0.0224 7
7 0.6805 0.1999 0.4311 7

Table 18.4 The three-dimensional Fourier map in the symmetrically independent part of the unit
cell of Nd5Si4 calculated using the observed structure factors determined from Le Bail’s extraction
and phase angles determined by three Nd atoms: 8Nd1 in 8(b) with x = 0.3698, y = 0.0021, z =
0.4543; 8Nd2 in 8(b) with x = 0.1268, y = 0.9925, z = 0.8768 and 4Nd3 in 4(a) with x = 0.3118
in the space group P41212 (RF = 31.1%).

Fourier map peak number x y z Peak height

1 0.3713 0.0053 0.4564 75
2 0.1276 0.9908 0.8780 72
3 0.8107 0.1893 0.7500 63
4 0.4238 0.1989 0.8100 13
5 0.1799 0.2036 0.3114 12
6 0.2322 0.0429 0.4980 10
7 0.1282 0.0793 0.1500 9
8 0.7451 0.0777 0.4221 9

notably better than the others. The subsequently calculated E-map is shown in
Table 18.3 as a list of coordinates and heights of the electron density peaks.

The first two peaks in Table 18.3 correspond to atoms in the general site position
8(b) of the space group P41212, and the third peak indicates an atom in the 4(a) site.
Interatomic distances among peaks No. 1–3 vary from ∼3.4 to ∼3.7 Å, which match
the atomic radius of Nd (∼1.85 Å) well. Thus, it appears that the direct phase angles
determination results in finding all Nd atoms, which are expected to be in one unit
cell of the compound (8+8+4 = 20). Recalling that Nd is the strongest scattering
atom in this crystal structure, it makes little, if any, sense to further analyze the e-
map: the locations of Si atoms should be easily revealed on a subsequent Fourier
map (Table 18.4) after calculating reflection phases using the coordinates of the first
three peaks as three independent Nd atoms. At this point RF = 31.1%.
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All three Nd atoms were confirmed on the Fourier map. Even though there is
no sharp reduction of peak heights among Peaks 4–8, calculation of the interatomic
distances indicates that only Peaks No. 4 and 5 can be used as positions of silicon
atoms. Both coordinate triplets correspond to the general site in the space group
P41212. Assuming that these are the missing Si atoms, the Nd–Si distances vary
between ∼2.9 and ∼3.3 Å, and Si–Si distances are 2.50 Å (rSi = 1.17 Å). The
calculated RF = 27.3% when all five atoms are placed as determined from the E-map
(Nd) and the Fourier map (Si), and the coordinates of the electron density peaks on
the subsequent Fourier map are shown in Table 18.5.

The entire model of the crystal structure has been confirmed by the last Fourier
map, which in addition has a twofold reduction in the heights of the observed elec-
tron density maxima after Peak No. 5 (double underlined). After the coordinates of
all atoms have been changed as determined by the latest electron density distrib-
ution, the model of the crystal structure, which is shown in Table 18.6, results in
RF = 27.1%.

Table 18.5 The three-dimensional Fourier map in the symmetrically independent part of the
unit cell of Nd5Si4 calculated using the observed structure factors determined from Le Bail’s
extraction and phase angles determined by three Nd and two Si atoms: 8Nd1 in 8(b) with
x = 0.3698, y = 0.0021, z = 0.4543; 8Nd2 in 8(b) with x = 0.1268, y = 0.9925, z = 0.8768; 4Nd3
in 4(a) with x = 0.3118; 8Si1 in 8(b) with x = 0.4238, y = 0.1989, z = 0.8100 and 8Si2 in 8(b)
with x = 0.1799, y = 0.2036, z = 0.3114 in the space group P41212 (RF = 27.3%).

Fourier map peak number x y z Peak height

1 0.3714 0.0057 0.4561 61
2 0.1280 0.9903 0.8779 59
3 0.8103 0.1897 0.7500 52
4 0.4220 0.2004 0.8095 17
5 0.1778 0.2070 0.3108 15

6 0.2371 0.0395 0.5003 7
7 0.8345 0.1294 0.3169 7
8 0.1239 0.0444 0.1529 7

Table 18.6 Coordinates of atoms in the unit cell of Nd5Si4 as determined from X-ray powder
diffraction data in the space-group symmetry P41212 (RF = 27.1%).

Atom Site x y z

Nd1 8(b) 0.3714 0.0057 0.4561
Nd2 8(b) 0.1280 0.9903 0.8779
Nd3a 4(a) 0.3103 0.3103 0
Si1 8(b) 0.4220 0.2004 0.8095
Si2 8(b) 0.1778 0.2070 0.3108

aThe coordinates of Nd3 were modified from 0.8103,0.1897, 3/4
(Table 18.5) to represent the triplet in a standard notation, i.e., x,x,0
instead of 1/2+x,1/2−x,3/4 with x = 0.3103 (see Table 18.2), by us-
ing the following transformation: x− 1/2,1/2− y,z− 3/4.
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The value of the residual is higher than any of the RFs we have seen so far. This
is associated with the multiple overlapping Bragg peaks at high angles, which be-
comes especially severe at 2θ > ∼70◦ (see Fig. 18.1). As a result, the full pattern
decomposition produces individual intensities and squared structure factors, which
are affected by larger than usual errors. This is easy to verify by eliminating high
Bragg angle reflections: when only reflections below 70◦ 2θ are included in the com-
putation, the corresponding RF becomes 20.3%. The Pearson symbol of this crystal
structure is tP36 and after consulting Pearson’s Handbook, it is easy to find that the
crystal structure of Nd5Si4 belongs to the Zr5Si4-type.3

18.3 Rietveld Refinement

The coordinates of individual atoms listed in Table 18.6 were used as a starting
point together with the background, peak shape, zero shift, and lattice parameters
determined from Le Bail’s full pattern decomposition.4 The progress of the Rietveld
refinement is illustrated in Table 18.7.

The initial model of the crystal structure results in acceptable residuals without
refinement of coordinates and displacement parameters of individual atoms. When
the coordinates of all atoms and the overall displacement parameter were included
into the least squares, the residuals further improve (Row 4 in Table 18.7). The great-
est improvement is observed in the Bragg residual, RB, which is expected because

Table 18.7 The progress of Rietveld refinement of the crystal structure of Nd5Si4 using X-ray
powder diffraction data. Wavelengths used: λKα1 = 1.54059 Å, λKα2 = 1.54441 Å.

Refined parameters Rp Rwp RB χ2

Initial (profile parameters from Le Bail, model from
Table 18.6, overall B = 0.5 Å2)

1× 105 1× 105 1× 104 6× 106

Scale factor 10.17 13.09 7.64 7.95
Scale, all profile, a and c, overall B 9.46 12.23 6.57 6.97
Scale, all profile, a and c, overall B plus coordinates
of individual atomsa

7.12 9.23 4.04 3.98

All of the above plus preferred orientation, [001] 7.04 9.18 3.89 3.93
All of the above, plus individual isotropic
displacement parameters of Nd only (both Si atoms
were constrained to have the same isotropic B)

7.01 9.12 3.68 3.89

All of the above, plus individual anisotropic
displacement parameters of Nd,b both Si atoms were
constrained to have the same isotropic B

6.92 9.01 3.52 3.80

a The coordinates of Nd3 in the 4(a) site are constrained by symmetry: y = x.
b The individual anisotropic parameters of Nd3 in 4(a) site are constrained by symmetry: β22 =
β11; β23 = −β13.

3 H.U. Pfeifer and K. Schubert, Crystal structure of Zr5Si4, Z. Metallk. 57, 884 (1966).
4 Data file Ch18Ex01a.inp is found online.
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this figure of merit is mostly affected by the adequacy of the structural model and it
is least affected by the inaccuracies in profile parameters.

Unlike in any of the examples considered earlier, a small preferred orientation
contribution is evident in this powder diffraction pattern after including a relevant
parameter (8.58) into the refinement, as seen in Row 5 in Table 18.7. An important
issue to consider when refining preferred orientation is the direction of the texture
axis. When the preferred orientation effects are strong, axis direction is usually easy
to recognize from a simple analysis of the relationships between the observed and
calculated intensities of groups of Bragg reflections with related indices. For exam-
ple, if most or all Bragg reflections with indices (00l) have observed intensities much
stronger (or weaker) than calculated, this suggests that the preferred orientation axis
is [001] (see Sects. 8.6.6 and 12.1.2). When the preferred orientation effects are
small, the only feasible way to determine the direction of the preferred orientation
axis in LHPM-Rietica is to refine the texture parameter with different texture axes
beginning from its default value (τ= 1, i.e., no preferred orientation is present). The
axis, which results in the lowest residuals, is selected as the most probable. In this
example, the following directions were tested as potential texture axes: [001], [010],
[011], [111], and [112]. The best result was obtained for the [001] direction.

Refinement of the individual isotropic displacement parameters of all atoms
yields a small negative B of Si1. It is unfeasible that Nd atoms are statistically
mixed in the same sites with Si because their volumes are too different (∼27 Å3

for versus ∼7 Å3 for Si). Given the density of the alloy, it is also impossible that
all sites except this one are partially occupied. Therefore, the negative BSi1 is likely
due to the fact that Si atoms have only a fraction of the scattering ability of Nd
atoms, and individual displacement parameters of the former cannot be reliably de-
termined from this experiment. Another possible reason is the nonideality of the
selected peak-shape function, or other small but unaccounted systematic errors.
One of these is an unknown polarization constant of the employed monochroma-
tor (see (8.45)). Another possibility is a more complex preferred orientation. As a
result, the isotropic displacement parameters of two independent sites occupied by
Si were constrained to be identical. In a way, the Si atoms were refined in an “overall
isotropic” approximation.

The Rietveld refinement was finalized by optimizing the individual anisotropic
displacement parameters of three independent Nd atoms. The refinement converges,
and the resulting residuals are only slightly higher when compared to those ob-
tained during Le Bail’s full pattern decomposition, thus confirming the model of
the crystal structure. It is worth noting that when individual integrated intensities
are re-determined at the end of Rietveld refinement in a usual way by prorating
profile intensities proportionally to the calculated intensities of contributing Bragg
peaks (15.7), the resulting RF = 2.03%. This value is much smaller when compared
to that calculated earlier in this chapter during the crystal structure solution when
individual structure factors determined from the full pattern decomposition were
employed. In fact, such a low value of RF would be considered an excellent result
in a single crystal diffraction experiment, especially because all 445 possible Bragg
reflections were included into the calculation of RF. The Fourier map calculated
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Table 18.8 Coordinates of atoms in the crystal structure of Nd5Si4, fully refined by Rietveld tech-
nique using powder diffraction data collected from a ground powder employing Cu Kα radiation.
The space group is P41212. The unit cell dimensions are: a = 7.8714(1), c = 14.8117(3) Å. All
sites are fully occupied.

Atom Site x y z

Nd1 8(b) 0.3687(2) 0.0104(2) 0.4530(1)
Nd2 8(b) 0.1292(2) 0.9844(2) 0.8742(1)
Nd3 4(a) 0.3115(2) 0.3115(2) 0
Si1 8(b) 0.4255(8) 0.2044(8) 0.8081(4)
Si2 8(b) 0.1632(8) 0.1911(8) 0.3079(3)

Table 18.9 Displacement parameters of atoms in the crystal structure of Nd5Si4.

Atom Site 104 ×β11 or B 104 ×β22 104 ×β33 104 ×β12 104 ×β13 104 ×β23

Nd1 8(b) 53(4) 24(4) 7(1) −18(2) −11(1) 1(1)
Nd2 8(b) 15(3) 21(3) 10(1) −3(3) 3(1) 2(1)
Nd3a 4(a) 19(3) 19(3) 10(1) −3(3) 5(1) −5(1)
Si1b 8(b) 0.18(7)
Si2b 8(b) 0.18(7)
a In this site the following relationships are imposed by symmetry: β11 = β22 and β23 = −β13.
b Common isotropic displacement parameter, listed as B.

Z

X

Y

Nd

Si

Fig. 18.2 The model of the crystal structure of Nd5Si4 shown with displacement ellipsoids of Nd
atoms at 99% probability as determined in the process of the Rietveld refinement. Sizeable dis-
placement anisotropy of Nd atoms may be indicative of the presence of unidentified experimental
errors (also see the footnote on page 599).
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Fig. 18.3 The observed and calculated powder diffraction patterns of Nd5Si4 after the completion
of Rietveld refinement. The data were collected from a ground Nd5Si4 powder dusted on a flat
sample holder using a rotating anode Rigaku TTRAX powder diffractometer in a step scan mode
with a step Δ2θ = 0.02◦.

using the re-determined structure factors is clean, that is, there is a sharp reduction
of peak intensity after the last Si atom, which indicates that there are no additional
atoms in the unit cell of Nd5Si4.

The refined parameters of individual atoms are listed in Tables 18.8 and 18.9.
The model of this crystal structure is shown in Fig. 18.2 together with the atomic
displacement ellipsoids of Nd atoms.5 The plot of the observed and calculated inten-
sities is shown in Fig. 18.3. Low residuals, combined with the normal interatomic
distances indicate that the solution of this crystal structure is adequate.

5 The fully refined profile and structural data are found online in the file Ch18Ex01b. inp.



Chapter 19
Empirical Methods of Solving Crystal Structures

In addition to reciprocal and direct space techniques considered in the earlier sec-
tions, a large variety of approaches may be employed to create a model of the crystal
structure in direct space. One of these, that is, the geometrical method has been im-
plicitly employed in Chap. 16, where the location of a single La atom in the unit
cell was established from a simple analysis of the unit cell dimensions and from the
availability of low multiplicity sites in the space-group symmetry P6/ mmm. Here
we consider a more complex example, that is, the solution of several crystal struc-
tures occurring in the series of Gd5(SixGe1−x)4 alloys.1 These examples illustrate
the power of the powder diffraction method in detecting subtle details of the atomic
distribution in the unit cell in addition to highlighting how structural information
is an enabling step in establishing critical structure – properties correlations.2 It is
worth noting that empirical techniques nearly always require extensive literature
searches to find out as much as possible about the crystal structures of closely re-
lated materials.3

According to Smith, Tharp and Johnson,4 both the silicide and germanide of Gd
at 5:4 stoichiometries belong to the same type of crystal structure; the distributions
of atoms in their unit cells are essentially identical to the orthorhombic Sm5Ge4-type

1 V.K. Pecharsky and K.A. Gschneidner, Jr., Phase relationships and crystallography in the
pseudobinary system Gd5Si4-Gd5Ge4, J. Alloys Comp. 260, 98 (1997).
2 V.K. Pecharsky and K.A. Gschneidner, Jr., Gd5(SixGe1−x)4: An extremum material, Adv. Mater.
13, 683 (2001).
3 Examples considered in this section are also similar to the case of hydrated and anhydrous
FePO4 discussed later in Chap. 24. The major difference is in the better crystallinity of the
Gd5(SixGe1−x)4 materials and in the resulting higher quality of powder diffraction data, which
facilitate a straightforward Rietveld refinement of individual atomic and profile parameters with-
out the need for a preliminary quantum mechanical and/or geometrical optimizations.
4 G.S. Smith, A.G. Tharp, and Q. Johnson, Rare earth – germanium and –silicon compounds at 5:4
and 5:3 compositions, Acta Cryst. 22, 940 (1967).

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 611
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 19,
c© Springer Science+Business Media LLC 2009
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Table 19.1 Coordinates of atoms in the unit cell of Sm5Ge4 as determined from single crystal
diffraction data in the space-group symmetry Pnma, after Smith et al., Acta Cryst. 22, 269 (1967).

Atom Site x y z

Sm1 4(c) 0.2880 1/4 0.0024
Sm2 8(d) −0.0283 0.1004 0.1781
Sm3 8(d) 0.3795 0.8843 0.1612
Ge1 4(c) 0.1761 1/4 0.3667
Ge2 4(c) 0.9132 1/4 0.8885
Ge3 8(d) 0.2206 0.9551 0.4688

structure.5 Further, as reported by Holtzberg, Gambino and McGuire,6 extended
solid solutions based on both binary compounds exist in the Gd5(SixGe1−x)4 sys-
tem in addition to the formation of an intermediate phase with an unknown crystal
structure near the Gd5Si2Ge2 stoichiometry. The coordinates of atoms in the unit
cell of Sm5Ge4 are listed in Table 19.1.

Powder diffraction patterns collected from three different samples, which be-
long to three different phase regions in the Gd5(SixGe1−x)4 system are shown in
Fig. 19.1. Both the similarities and differences are noteworthy: the patterns have
distinct clusters of Bragg peaks in the regions ∼10◦ < 2θ < ∼18◦and ∼21◦ <
2θ<∼26◦, however, a conspicuous variation in peak intensities from one pattern to
another is also observed.

This simple visual analysis of powder diffraction patterns is usually a good in-
dicator of the fact that there are detectable changes in the atomic structures of the
materials in question, but the overall structural motif remains closely related. Based
on this conclusion and assuming that at least one of the materials belongs to the
Sm5Ge4 type, it should be possible to establish details of atomic distributions in
these three lattices, provided the quality of diffraction data is sufficient.7

19.1 Crystal Structure of Gd5Ge4

As reported by Smith et al. (see reference 4 on page 611), pure gadolinium ger-
manide, Gd5Ge4, has the following unit cell dimensions: a = 7.69, b = 14.75, c =
7.76 Å. From the similarity of the electronic structure, chemical properties, and
atomic volumes of Sm and Gd, the assumption about the identity of the crystal

5 G.S. Smith, Q. Johnson, and A.G. Tharp, Crystal structure of Sm5Ge4, Acta Cryst. 22, 269
(1967).
6 F. Holtzberg, R.J. Gambino, and T.R. McGuire, New ferromagnetic 5:4 compounds in the rare
earth silicon and germanium systems, J. Phys. Chem. Solids 28, 2283 (1967).
7 Holtzberg et al., J. Phys. Chem. Solids 28, 2283 (1967), also noted the differences in the powder
diffraction patterns of Gd5Ge4, Gd5Si2Ge2, and Gd5Si4. However, considering the state-of-the-art
in X-ray powder diffraction analysis in 1960s, it was difficult, if at all possible, to establish the
details of the distribution of atoms in these complex crystal structures.
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Fig. 19.1 Low Bragg angle regions of the powder diffraction patterns of Gd5Ge4, Gd5Si2Ge2,
and Gd5Si4. The three patterns are representative for materials in the Gd5Ge4-based solid solu-
tion, the intermediate intermetallic phase, and the Gd5Si4-based solid solution, respectively. The
experimental data were collected on a Rigaku TTRAX rotating anode powder diffractometer using
MoKα radiation from 8◦ to 50◦ 2θ in a step scan mode with a step Δ2θ = 0.01◦ and counting
time 15 s/point. Distinct clusters of Bragg peaks observed in the regions ∼10◦ < 2θ < ∼18◦ and
∼21◦ < 2θ < ∼26◦ point to close relationships between the three crystal structures. Gradual re-
distribution of peak intensities from one pattern to another, however, cannot be solely associated
with the expected change in lattice parameters due to the substitution of smaller Si for larger Ge
atoms. Therefore, we conclude that three crystal structures are closely related, yet different.

structures of Gd5Ge4 and Sm5Ge4, appears to be quite reasonable. Moreover, Si
and Ge are electronic and crystallographic twins, and it is likely that they may sub-
stitute for one another in an extended range of concentrations in metallic alloys.
Nonetheless, assumptions like this usually require initial verification by computing
the distribution of intensities in the powder diffraction pattern of the compound in
question using proper or approximate unit cell dimensions coupled with the distri-
bution of atoms taken from a prototype crystal structure. The result is illustrated
in Fig. 19.2.

The unit cell dimensions for this sample were determined by employing Le
Bail’s method applied to the fragment of data from 8.5◦ to 27◦2θ(a = 7.6984, b =
14.8278, c = 7.7849 Å) along with the relevant peak shape and background para-
meters, the results of which are illustrated in Fig. 19.3. All of them were used in the
modeling of the calculated powder diffraction pattern using coordinates of atoms
listed in Table 19.1 and assuming that Gd atoms occupy Sm-sites. Individual dis-
placement parameters of all atoms were set at B = 0.5 Å2.

Even though some discrepancies between the observed and calculated profiles
are obvious from Fig. 19.2, the overall good agreement and low residuals are solid
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Fig. 19.2 The observed and calculated intensities in a fragment of a powder diffraction pattern of
Gd5Ge4. The calculated intensity has been scaled to match the observed profile.8
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Fig. 19.3 The results of Le Bail’s full pattern decomposition of the powder diffraction pattern of
Gd5Ge4. The discrepancies between the observed and calculated profiles are small and all residuals
are low, indicating that the unit cell dimensions are accurately determined and that the chosen peak-
shape function (pseudo-Voigt) is a good choice for this experiment.

8 The observed data are available in the data files Ch19Ex01 MoKa.xy and Ch19Ex01 MoKa.dat
online.
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indicators that the crystal structure of this material indeed belongs to the Sm5Ge4
type. All relevant parameters of individual atoms should be and are refined using the
Rietveld method applied to the entire measured range of Bragg angles, as described
in Sect. 19.4.1.

19.2 Crystal Structure of Gd5Si4

As reported by Smith et al. (see reference 4 on page 611), pure gadolinium silicide,
Gd5Si4, has the following unit cell dimensions: a = 7.45, b = 14.67, c = 7.73 Å.
The reduction of lattice parameters, when compared to the germanide, is expected,
given a smaller effective radius of Si in comparison with that of Ge.

Following the same approach, that is, after determining the unit cell dimensions
(a = 7.4863, b = 14.7465, c = 7.7503 Å), peak shape and background parameters
by means of Le Bail’s full pattern decomposition (Fig. 19.4), the observed and
calculated powder diffraction profiles of the Gd5Si4 alloy are shown in Fig. 19.5.
The coordinates of atoms listed in Table 19.1 were used in the computation of the
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Fig. 19.4 The results of Le Bail’s full pattern decomposition of the powder diffraction pattern of
Gd5Si4. The discrepancies between the observed and calculated profiles are small and all residuals
are low, indicating that the unit cell dimensions are accurately determined and that the chosen
peak-shape function (Pearson-VII) is a good choice for this experiment.9

9 The observed data are available in the data files Ch19Ex02 MoKa.xy and Ch19Ex02 MoKa.dat
online.
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Fig. 19.5 The observed (circles) and calculated (lines) intensities in a fragment of powder diffrac-
tion pattern of Gd5Si4. The calculated intensity has been normalized to match the observed profile.
Peak shape, background, and lattice parameters employed to compute the calculated profile have
been obtained by a full pattern decomposition of the observed data using Le Bail’s technique, as
shown in Fig. 19.4. Note that the difference plot has been compressed tenfold for clarity.

scattered intensity assuming that Gd occupies Sm-sites and Si occupies the corre-
sponding Ge-sites. Unlike in the case of Gd5Ge4 (Fig. 19.2), the match between the
observed and calculated intensities in Fig. 19.5 is quite poor.

The Fourier map, calculated using this model of the crystal structure, confirms
the locations of all Gd and two independent Si atoms, simultaneously indicating
quite significant deviations from the coordinates listed in Table 19.1.10 Thus, at this
point we may conclude that although the structure of the Gd5Si4 alloy is closely
related to that of the Gd5Ge4 alloy, the distributions of atoms in their unit cells are
not truly identical. By using Rietveld refinement, we should be able to establish
the necessary structural details, and the structure completion process is described in
Sect. 19.4.2.

19.3 Crystal Structure of Gd5Si2Ge2

Attempts to index the powder diffraction pattern of Gd5Si2Ge2 in any unit cell in
the space-group symmetry Pnma with dimensions intermediate between those of the

10 We leave this as a self-exercise to the reader noting that several sequential Fourier maps, each
preceded by the re-determination of the individual intensities, may be required to establish the
coordinates of all atoms in the unit cell leading to an acceptable match between the observed and
calculated intensities.
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Gd5Ge4 and Gd5Si4 alloys (see the pattern in the middle of Fig. 19.1), fail because
not all peaks even at low Bragg angles can be indexed. Thus, we have to assume
that the formation of the intermediate phase is accompanied by the change of the
symmetry of the material. The ab initio indexing leads to a monoclinic unit cell with
lattice parameters a = 7.581, b = 14.809, c = 7.784 Å, γ = 93.19◦. The obtained
unit cell dimensions are obviously related to those observed in the orthorhombic
Gd5Ge4, see Sect. 19.1 and it is quite reasonable to assume that the intermediate
intermetallic phase in the Gd5(SixGe1−x)4 system is a monoclinic distortion of the
Sm5Ge4-type structure.

We begin with establishing the space-group symmetry of the material. In this
case, a straightforward analysis of the systematic absences is difficult because of
the overwhelming number of Bragg reflections, which are possible in the exam-
ined range of Bragg angles: a total of ∼1,500 reflections could be observed up to
2θ = 50◦ when Mo Kα radiation is employed. However, considering a monoclinic
distortion of the orthorhombic lattice, the analysis becomes relatively easy, as illus-
trated in Fig. 19.6. When the angle between the a and b basis vectors is no longer
90◦, both the mirror plane m, which is perpendicular to b, and the glide plane n, per-
pendicular to a, are no longer possible. The glide plane, a, which is perpendicular to
c, the screw axis 21 parallel to c, and the center of inversion remain unaffected by
this distortion.

X

Y

¼

¼

¼

z

z

1/2+z

1/2+z

1/2

1/2 −z

−z

−z

−z

¼

X

Y

z

z’

1/2+z’

1/2+z

1/2-z

1/2-z’

−z’

−z

Pnma P1121/a

Fig. 19.6 The disappearance of mirror planes, m, and glide planes, n, during a monoclinic distor-
tion of the orthorhombic unit cell corresponding to the space-group symmetry Pnma (left) when
the angle between a and b unit cell edges deviates from 90◦(right). The resulting space-group
symmetry is P1121/a: centers of inversion, twofold screw axes perpendicular to the XY plane, and
glide planes, a, parallel to the XY plane remain unaffected by this distortion. The open circles on the
left represent symmetrically equivalent atoms located in a general site position, 8(d), in the space
group Pnma. The eightfold site splits into two independent 4(e) fourfold sites in the space-group
symmetry P1121/a, as indicated by both open and hatched circles on the right, for which z′ ∼= z.
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Thus, the likely resulting space-group symmetry is P1121/a, which is a subgroup
of Pnma. As also shown in Fig. 19.6, any atom located in a general site position of
the space group Pnma (the multiplicity of this site is 8) breaks into two symmetri-
cally independent atoms located in two general fourfold sites in the monoclinic sym-
metry (the open circles and the hatched circles in the right hand part of the figure).
Further, atoms located in special sites on mirror planes in the orthorhombic crystal
system, where the value of the y-coordinate has been fixed at y = 1/4 (see Table 19.1),
are no longer special sites, and their y-coordinates become free parameters.

Before proceeding with creating a model of the crystal structure of the monoclin-
ically distorted Gd5Si2Ge2 we verify the correctness of both the lattice parameters
and space-group symmetry (P1121/a) by performing Le Bail’s refinement of the
experimental profile. The result shown in Fig. 19.7 indicates a high probability for
this unit cell.

Considering Table 19.1 and Fig. 19.6, the approximate model of the crystal struc-
ture of Gd5Si2Ge2 can be easily derived by splitting the coordinates of atoms located
in 8(d) sites in the space-group symmetry Pnma into two 4(e) sites in the space group
P1121/a. The coordinates of atoms in the split positions are approximately related
as x,y,z and x,1/2 − y,z, where x,y,z are the coordinates of the symmetrically in-
dependent atoms in the 8(d) sites. The coordinate triplets of atoms located in 4(c)
sites in the space group Pnma remain unchanged, except for the fact that the values
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Fig. 19.7 The results of Le Bail’s full pattern decomposition of the powder diffraction pattern
of Gd5Si2Ge2. The discrepancies between the observed and calculated profiles are small and all
residuals are low, indicating that the unit cell dimensions are accurately determined and that the
chosen peak-shape function (pseudo-Voigt) is a good choice for this experiment.11

11 The observed data are available in the data files Ch19Ex03 MoKa.xy and Ch19Ex03 MoKa.dat
online.
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of their y-coordinates are no longer fixed at y = 1/4. The positions of all of the in-
dependent atoms obtained in this way and which represent the initial model of the
Gd5Si2Ge2 crystal structure are listed in Table 19.2.

The feasibility of this model of the crystal structure has been verified by com-
puting scattered intensity using all relevant parameters as determined from Le
Bail’s decomposition and coordinates of atoms from Table 19.2. It is easy to see
from Fig. 19.8 that although the discrepancies are considerable, the calculated and

Table 19.2 Approximate coordinates of atoms in the unit cell of Gd5Si2Ge2 as obtained by split-
ting general site positions from the space group Pnma into two sites in the space-group symmetry
P1121/a. As a first approximation, a completely random distribution of Si and Ge atoms in the
corresponding sites is assumed.

Atom Site (Pnma) Site (P11/21a) x y z

Gd1 4(c) 4(e) 0.29 0.25 0.00
Gd2a 8(d) 4(e) −0.03 0.10 0.18
Gd2b 4(e) −0.03 0.40 0.18
Gd3a 8(d) 4(e) 0.38 0.88 0.16
Gd3b 4(e) 0.38 0.62 0.16
(Si,Ge)1 4(c) 4(e) 0.18 0.25 0.37
(Si,Ge)2 4(c) 4(e) 0.91 0.25 0.89
(Si,Ge)3a 8(d) 4(e) 0.22 0.96 0.47
(Si,Ge)3b 4(e) 0.22 0.54 0.47
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Fig. 19.8 The observed (circles) and calculated (lines) intensities in a fragment of powder diffrac-
tion pattern of Gd5Si2Ge2. The calculated intensity has been normalized to match the observed
profile. Peak shape, background and lattice parameters employed to compute the calculated profile
have been obtained by a full pattern decomposition of the observed data using Le Bail’s technique,
as shown in Fig. 19.7. Note, that the difference plot has been compressed fivefold for clarity (the
differences are too large to be well seen).
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observed profiles match better than in the case of Gd5Si4 (Fig. 19.5). Thus, we con-
clude that not only the model derived by a monoclinic distortion of the orthorhom-
bic lattice is feasible, but also the structure of the Gd5Si2Ge2 alloy is likely to be an
intermediate between those of the gadolinium silicide and germanide. Obviously,
this structure, as well as two others considered in this section, should be completed
and fully refined using the Rietveld technique, which is described in Sect. 19.4.3.
The relationships between these three crystal structures together with their influ-
ence on the magnetism of the alloys in the Gd5(SixGe1−x)4 system, are also briefly
mentioned in Sect. 19.5.

19.4 Rietveld Refinement of Gd5Ge4, Gd5Si4, and Gd5Si2Ge2

Considering the results obtained in Sects. 19.1–19.3, it appears that the three crystal
structures are related to one another, and that the closest to reality is the model of
the germanide, Gd5Ge4 (Fig. 19.2). Therefore, we begin with illustrating its refine-
ment, and then proceed with the second orthorhombic phase, Gd5Si4, even though
it seems that the agreement between the observed and calculated diffraction data
(Fig. 19.5) was the poorest for the binary silicide. Finally, we establish the details of
the crystal structure of Gd5Si2Ge2, which appears to be a monoclinically distorted
derivative of Gd5Ge4, as concluded earlier. In every case, we employ all available
experimental data which were collected on a Rigaku TTRAX rotating anode powder
diffractometer using Mo Kα radiation between 8.5◦ and 50◦2θ in a step scan mode
with a step Δ2θ = 0.01◦ and a counting time of 15 s/step. As in the earlier Chapters,
here we use LHPM-Rietica.

19.4.1 Gd5Ge4

The initial coordinates of atoms were taken from Table 19.1 along with the unit
cell dimensions and all profile parameters determined from Le Bail’s full pattern
decomposition.12 The progress of Rietveld refinement is illustrated in Table 19.3.

Refinement quickly converges to low residuals, thus confirming the correctness
of the model of the crystal structure of this compound. Refined individual parame-
ters of all atoms are listed in Table 19.4. When individual displacement parameters
are refined in an anisotropic approximation, residuals can be lowered further, but
the displacement ellipsoid of the Gd3 atom becomes unphysical, and therefore the
refinement was completed using the isotropic approximation.13 The observed and
calculated powder diffraction patterns are shown in Fig. 19.9.

12 The input data file, Ch19Ex01a.inp, and the file with diffraction data, Ch19Ex01 MoKa.dat, are
located online.
13 Final values of all parameters can be found in the data file Ch19Ex01b.inp online.
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Table 19.3 The progress of Rietveld refinement of the crystal structure of Gd5Ge4 using X-ray
powder diffraction data. Wavelengths used: λKα1 = 0.70932 Å,λKα2 = 0.71361 Å.

Refined parameters Rp Rwp RB χ2

Initial (profile parameters from Le Bail, model
from Table 19.1, overall B = 0.6Å2)

3×104 3×104 3×104 2×108

Scale factor 11.54 14.65 9.53 43.17
Scale, U,V,W,η , asymmetry, a,b,c, sample
displacement, overall displacement parameter

7.36 9.57 5.14 18.45

All as above plus coordinates of all atoms and
background

5.85 7.90 3.38 12.62

All, plus individual isotropic displacement
parameters and preferred orientation along [001]a

5.70 7.69 3.25 12.01

a The selection of the preferred orientation axis was based on the lowest residuals after attempting
to refine texture in the March–Dollase approximation along the three major crystallographic axes.

Table 19.4 Coordinates of atoms and individual isotropic displacement parameters in the crys-
tal structure of Gd5Ge4. The space group is Pnma. The unit cell dimensions are: a = 7.6997(3),
b = 14.8309(4), c = 7.7861(3) Å. All sites are fully occupied.

Atom Site x y z B (Å2)

Gd1 4(c) 0.2915(3) 1/4 −0.0008(3) 0.84(4)
Gd2 8(d) −0.0236(2) 0.1004(1) 0.1793(2) 1.48(3)
Gd3 8(d) 0.3782(2) 0.8839(1) 0.1623(2) 0.97(3)
Ge1 4(c) 0.1754(5) 1/4 0.3653(6) 1.4(1)
Ge2 4(c) 0.9187(6) 1/4 0.8905(6) 1.1(1)
Ge3 8(d) 0.2189(4) 0.9544(2) 0.4710(4) 1.5(1)

The model of the crystal structure of the Gd5Ge4, after all parameters have been
refined is shown in Fig. 19.10. This structure is built from distinct slabs, formed by
Gd and Ge atoms; the slabs are infinite along both the X and Z directions, but they
are limited along the Y direction. In a way, this crystal structure is built from thin
layers of tightly bound atoms stacked along the Y -direction, and the thickness of
each layer (slab) is approximately 7Å.

All interatomic distances are within normal limits, and the Fourier map calcu-
lated after the completion of Rietveld refinement confirms that no additional atoms
are present in the unit cell of this material. The refined coordinates of all atoms are
nearly identical to those determined from a single crystal diffraction experiment for
the Sm5Ge4 compound.14 Thus, we conclude that the crystal structure of Gd5Ge4 is
solved correctly, and that it belongs to the Sm5Ge4-type of crystal structure in which
Gd atoms occupy Sm-positions and Ge atoms are distributed in the corresponding
Ge-sites of the prototype.

14 G.S. Smith, Q. Johnson, and A.G. Tharp, Crystal structure of Sm5Ge4, Acta Cryst. 22, 269
(1967).
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Fig. 19.9 The observed and calculated powder diffraction patterns of Gd5Ge4 after the completion
of Rietveld refinement. A total of 809 independent Bragg reflections are possible in the examined
range of Bragg angles.

Fig. 19.10 The model of the
crystal structure of Gd5Ge4
as determined by Rietveld
refinement. The slabs, which
are infinite along X and Z and
are limited to ∼7Å thickness
along Y , are shown as bonded
Gd and Ge atoms.
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19.4.2 Gd5Si4

The initial coordinates of atoms were taken from Table 19.1 along with the unit cell
dimensions and all profile parameters determined from Le Bail’s refinement.15 As
already established in Sect. 19.2 (see Figs. 19.4 and 19.5), this model of the crystal
structure is feasible but far from complete, which was evidenced by a poor agree-
ment between the observed and calculated intensities. Thus, the Rietveld refinement
strategy is slightly different from the earlier example as illustrated in Table 19.5.

Refinement of the scale factor results in poor residuals, as shown in Row 2 of
Table 19.5. Considering Fig. 19.5, which shows no systematic deviations between
the observed and calculated intensities as a function of Bragg angle, it is easy to
conclude that the coordinates of atoms in the unit cell of Gd5Si4 deviate significantly
from those assumed as in the model of the Sm5Ge4-type structure. In the unit cell
of Gd5Si4, the Gd atoms are the strongly scattering species, and the Si atoms are
the weakly scattering kind. Further, all profile and unit cell parameters have been
determined quite precisely during the full pattern decomposition. Therefore, we first
proceed with refining the coordinates of heavy atoms, and if the result is satisfactory,
we then include the coordinates of light atoms.

Table 19.5 The progress of Rietveld refinement of the crystal structure of Gd5Si4 using X-ray
powder diffraction data. Wavelengths used: λKα1 = 0.70932Å, λKα2 = 0.71361Å.

Refined parameters Rp Rwp RB χ2

Initial (profile parameters from Le Bail, model
from Table 19.1, overall B = 0.6Å2)

2×104 2×104 2×104 1×108

Scale factor 34.52 42.89 27.01 460.1
Scale and coordinates of all Gd atoms 10.54 14.43 7.12 52.2
Scale and coordinates of all Gd and Si atoms 8.08 10.71 4.82 28.8
Scale, U, V, W, η, asymmetry, a, b, c, zero shift,
background, coordinates of all atoms, overall
displacement parameter

6.77 9.21 3.67 21.4

All, plus individual isotropic displacement
parameters and preferred orientation along [001]

6.57 9.07 3.54 20.7

Pearson-VII: all profile, then unit cell, coordinate
and overall displacement parameters, preferred
orientation along [001] (parameters were
released sequentially)

6.16 8.28 3.16 17.3

Pearson-VII: all, plus individual isotropic
displacement parameters and preferred
orientation along [001]

6.07 8.19 3.02 16.9

Pearson-VII: all, plus individual isotropic
displacement parameters of Gd; Si constrained to
be identical; preferred orientation along [001]

6.13 8.22 3.13 17.1

15 The input data file, Ch19Ex02a.inp, and the file with diffraction data, Ch19Ex02 MoKa.dat, are
located online.
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Fig. 19.11 The observed and calculated powder diffraction patterns of Gd5Si4 after only the co-
ordinates of Gd atoms have been refined together with the phase scale factor. Compare this figure
with Fig. 19.5.

The refinement of the coordinates of gadolinium atoms together with the scale
factor results in a considerable improvement of all residuals (Row 3 in Table 19.5)
and the calculated pattern is now quite close to the measured profile (Fig. 19.11).
When the coordinates of the Si atoms were included in the fit, further reduction of
residuals is observed, thus indicating that the model of the crystal structure is nearly
complete.

At this point, it is useful to calculate a Fourier map to verify that no other weakly
scattering atoms (i.e., Si) have been missed. The electron density distribution has
been calculated and it confirms that there are no additional atoms in the unit cell
of Gd5Si4. Proceeding with the refinement of all relevant parameters in the order
indicated in Table 19.5, the full profile least squares fit converges easily.16

The residuals are comparable to those obtained for Gd5Ge4. However, the dis-
placement parameter of Si1 becomes negative, while the displacement parameter of
Si3 is about twice than that of other atoms, as shown in Table 19.6. It is unfeasible
that some of the Gd atoms are mixed statistically with Si1 atoms because of the large
difference in their atomic volumes. Refinement of the occupancy of the Si3 site does
not result in any defects. As already explained before, this experimental artifact may
be the result of the low scattering ability of Si when compared to that of Gd, coupled
with small but unaccounted experimental errors that could be present in the data (see
Sect. 18.3 describing the refinement of a related crystal structure of Nd5Si4.

16 Data file Ch19Ex02b.inp is found online.
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Table 19.6 Coordinates of atoms and individual isotropic displacement parameters in the crystal
structure of Gd5Si4 fully refined by Rietveld technique using the pseudo-Voigt peak-shape
function. The space group is Pnma. The unit cell dimensions are: a = 7.4896(4), b = 14.7544(8),
c = 7.7519(4) Å. All sites are fully occupied.

Atom Site x y z B (Å2)

Gd1 4(c) 0.3539(4) 1/4 0.0099(3) 0.89(5)
Gd2 8(d) 0.0294(2) 0.0974(1) 0.1787(2) 1.18(3)
Gd3 8(d) 0.3159(2) 0.8780(1) 0.1837(2) 0.98(3)
Si1 4(c) 0.244(1) 1/4 0.367(1) −0.6(2)
Si2 4(c) 0.990(2) 1/4 0.919(2) 1.0(3)
Si3 8(d) 0.159(1) 0.9510(6) 0.490(1) 2.2(2)

Hence, we continue the refinement and employ a different peak-shape function.
The use of the Pearson-VII function to represent peak shapes results in lower resid-
uals (Rows 7 and 8 in Table 19.5). Nonetheless, individual isotropic parameters
of Si1 atoms remain unphysical and we may conclude that this is due to the low
scattering power of Si and other errors present in the measured powder diffraction
pattern. The errors were likely introduced during sample preparation, as it is easy
to overlook inhomogeneities in the coverage of a flat sample holder with a powder
when the specimen has been prepared by dusting. An additional argument, which
supports the potential for problems with the specimen employed to collect powder
diffraction data follows from considering the physical properties of the silicide. Ac-
cording to Holtzberg et al. (see footnote 6 on page 612), Gd5Si4 is ferromagnetic
at room temperature (its Curie temperature is ∼335K). Thus, it is possible that an
unusual preferred orientation exists in the powder sample, even though the material
is magnetically soft.

All things considered, the simplest solution is to refine the displacement pa-
rameters of Si atoms in a pseudo-overall isotropic approximation by constraining
them to be identical, as is often done with light elements, such as C, N, and O (see
Chaps. 16–24). The resulting residuals (the last row in Table 19.5) are only slightly
higher when compared to the refinement of the individual displacement parameters
of all atoms. The final free variables in the crystal structure of Gd5Si4 are listed in
Table 19.7. A small difference in the unit cell dimensions obtained using different
peak-shape functions is normal because peak asymmetry has been treated differ-
ently. The observed and calculated powder diffraction patterns after all parameters
in the crystal structure of Gd5Si4 have been refined are shown in Fig. 19.12.

When the coordinates of atoms listed in Table 19.717 are compared to those from
Table 19.4, the differences are obvious, especially in the values of the x-coordinates.
It appears that all atoms are shifted along the X-direction when the Gd5Ge4 structure
is compared with the Gd5Si4. The latter is shown in Fig. 19.13, from which it is clear
that Gd5Si4 is built from the slabs that are essentially the same as those found in
Gd5Ge4 (Fig. 19.10), except that Ge atoms are replaced with Si. The shifts along the

17 Data file Ch19Ex02c.inp is located online.
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Table 19.7 Coordinates of atoms and individual isotropic displacement parameters in the crystal
structure of Gd5Si4 fully refined by Rietveld technique using the Pearson-VII peak shape
function. The space group is Pnma. The unit cell dimensions are: a = 7.4877(2), b = 14.7496(5),
c = 7.7497(2) Å. All sites are fully occupied.

Atom Site x y z B (Å2)

Gd1 4(c) 0.3544(2) 1/4 0.0102(3) 0.88(4)
Gd2 8(d) 0.0289(2) 0.0987(1) 0.1790(2) 1.14(3)
Gd3 8(d) 0.3159(2) 0.8778(1) 0.1839(2) 0.94(3)
Si1 4(c) 0.246(1) 1/4 0.369(1) 0.9(1)
Si2 4(c) 0.984(2) 1/4 0.912(2) 0.9(1)
Si3 8(d) 0.158(1) 0.9518(5) 0.490(1) 0.9(1)

Bragg angle, 2θ (deg.)
10 20 30 40 50

In
te

ns
ity

,Y
 (

10
3  

co
un

ts
) 

−5

0

5

10

15

20

25

30
Gd5Si4, Mo Kα

Rp   = 6.13%
Rwp = 8.22%
RB   = 3.13%
χ2    = 17.1

Fig. 19.12 The observed and calculated powder diffraction patterns of Gd5Si4 after the comple-
tion of the refinement using Pearson-VII peak-shape function. A total of 808 independent Bragg
reflections are possible in the examined range of Bragg angles.

X-direction result in short Si–Si distances (∼2.76Å), which are shown as bonded
Si2 pairs connecting the slabs in Fig. 19.13. No Ge–Ge bonds are found between
the slabs in the Gd5Ge4 structure, where the corresponding Ge–Ge distance exceeds
3.6Å. This variation in the interatomic distances is much larger than the difference
in the atomic radii of Si (1.17Å) and Ge (1.23Å). Thus, the two-crystal structures
are closely related, but different.18

18 The distinct difference between the crystal structures of two materials has tremendous
effect on their magnetic properties. The silicide is ferromagnetic below 335 K, while the
germanide is antiferromagnetic below ∼130K [e.g., see V.K. Pecharsky and K.A. Gschneidner,
Jr., Gd5(SixGe1−x)4: An extremum material, Adv. Mater. 13, 683 (2001)].
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Fig. 19.13 The model of the
crystal structure of Gd5Si4
as determined by Rietveld
refinement. The slabs, which
are infinite along X and Z
and limited along Y to ∼7Å,
are shown as bonded Gd and
Si atoms. The major differ-
ence between this structure
and Gd5Ge4 (Fig. 19.10) is
the presence of short Si–Si
interslab bonds (which are
connected by gray lines)
here, and the absence of short
Ge–Ge bonds between the
slabs in Gd5Ge4.
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19.4.3 Gd5Si2Ge2

As a starting model, we use the coordinates of atoms taken from Table 19.2 together
with the unit cell dimensions and all profile parameters determined from Le Bail’s
full pattern decomposition.19 As already established in Sect. 19.3, this model of the
crystal structure is also feasible, but far from complete because the observed and
calculated intensities do not match well. Thus, the refinement strategy is similar to
the preceding example. The least squares fit here may become complicated by the
pseudosymmetry introduced when we derived the coordinates of atoms, assuming a
monoclinic distortion of the orthorhombic Gd5Ge4-type structure. The progress of
Rietveld refinement is illustrated in Table 19.8.

The residuals steadily decrease when we include coordinates of Gd and then
Si/Ge atoms into the least squares fit, followed by profile, lattice, and displacement
parameters as seen in rows 2–6 in Table 19.8. A Fourier map, calculated at this
point, reveals no additional atoms in the unit cell. When compared to the two earlier
considered examples, an additional degree of freedom in the Gd5Si2Ge2 structure is
the distribution of the Si and Ge atoms among the corresponding lattice sites. Thus,
as the next step we refine site occupancies constrained to full occupancy by Si/Ge
(i.e., gGe = 1− gSi). Final refinement of all parameters converges to low residuals,

19 They are found in the input file, Ch19Ex03a.inp for LHPM-Rietica. The powder diffraction data
are located in the file Ch19Ex03 MoKa.dat online.
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Table 19.8 The progress of Rietveld refinement of the crystal structure of Gd5Si2Ge2 using X-ray
powder diffraction data. Wavelengths used: λKα1 = 0.70932Å, λKα2 = 0.71361Å.

Refined parameters Rp Rwp RB χ2

Initial (profile parameters from Le Bail, model
from Table 19.2, overall B = 0.6Å2)a

3×104 3×104 3×104 2×108

Scale factora 19.5 25.2 15.0 131.4
Scale and coordinates of all Gd atomsa 9.19 11.9 6.85 29.4
Scale and coordinates of all Gd and Si/Ge atomsa 6.51 8.53 4.46 15.2
Scale, U, V, W, η, asymmetry, a, b, c, γ, sample
displacement, background, coordinates of all
atoms, overall displacement parameter, preferred
orientation along [001]a

5.14 6.82 2.72 9.78

All, plus individual isotropic displacement
parameters of Gd atoms; Si/Ge atoms
displacements in overall approximation;
preferred orientation along [001]a

5.10 6.76 2.67 9.61

All as above plus occupancies of Si/Ge sitesb 5.04 6.69 2.61 9.43
All parameters togetherb 5.03 6.69 2.59 9.41
aSi and Ge atoms are distributed randomly and equally among four available crystallographic sites.
bConstrained to full occupancy, i.e., gSi +gGe = 100%.

Table 19.9 Atomic parameters in the crystal structure of Gd5Si2Ge2 fully refined by Rietveld
technique using pseudo-Voigt peak shape function. The space group is P1121/a. The unit cell
dimensions are: a = 7.5814(3), b = 14.8039(6), c = 7.7801(3) Å, γ = 93.203(2)◦.

Atom Site x y z B (Å2) g (%)

Gd1 4(e) 0.3258(4) 0.2485(2) 0.0045(3) 0.91(5) 100
Gd2 4(e) −0.0048(3) 0.0989(2) 0.1778(4) 0.88(6) 100
Gd3 4(e) 0.0180(3) 0.4023(2) 0.1799(4) 1.20(6) 100
Gd4 4(e) 0.3583(3) 0.8812(2) 0.1665(3) 1.05(5) 100
Gd5 4(e) 0.3286(4) 0.6226(2) 0.1768(3) 0.64(5) 100
Si1a 4(e) 0.211(1) 0.2496(5) 0.3706(8) 0.8(2) 42(1)
Si2a 4(e) 0.958(1) 0.2511(6) 0.896(1) 0.3(2) 65(1)
Si3a 4(e) 0.206(1) 0.9580(5) 0.470(1) 1.2(2) 44(1)
Si4a 4(e) 0.156(1) 0.5413(5) 0.474(1) 1.5(2) 50(1)
a Ge atoms occupy the same site with identical coordinates and displacement parameter. The oc-
cupancy is gGe = 100−gSi%. Population parameters were refined with the common displacement
parameter of all Si and Ge atoms to avoid potential correlations.

indicating that the model of the crystal structure is correct and complete. The pa-
rameters of individual atoms in the crystal structure of Gd5Si2Ge2 are listed in Ta-
ble 19.920.

It is worth noting that the chemical composition of the material was not re-
stricted in any other way except to maintain the full occupancy of all Si/Ge

20 They are also found in the file Ch19Ex03b.inp online.
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Fig. 19.14 The observed and calculated powder diffraction patterns of Gd5Si2Ge2 after completion
of Rietveld refinement. Compare this figure with Fig. 19.8. A total of 1,532 independent Bragg
reflections are possible in the examined range.

sites.21 As follows from Table 19.9, the chemical composition of the powder is
Gd5Si2.01(4)Ge1.99(4), which is a nearly ideal match to the nominal composition of
the as-prepared sample. The observed and calculated powder diffraction patterns are
shown in Fig. 19.14.

The refined model of the crystal structure of Gd5Si2Ge2 is shown in Fig. 19.15,
from which it is clear that similar to both Gd5Ge4 and Gd5Si4, it is built from the
same slabs. The Gd5Si2Ge2 structure is an intermediate between the two parent
compounds because here pairs of the slabs (B and C) are connected by short (Si,Ge)
– (Si,Ge) bonds, while no similar bonds exist between the next neighboring slabs
(A to B and D to C). It is interesting to note that these small, but distinct differ-
ences between the three closely related structures were established first from powder
diffraction22, and only later were confirmed by a single-crystal diffraction experi-
ment.23 Indeed, the single-crystal diffraction investigation was complicated by the
inherent twinning of the monoclinic phase, which has no effect on the powder dif-
fraction data.

21 In some algorithms (e.g., GSAS), it is permissible to impose restrictions on chemical composi-
tion, if the latter is known, by setting and fixing the total number of atoms of a specific element in
the unit cell during the refinement of population parameters.
22 V.K. Pecharsky and K.A. Gschneidner, Jr., Phase relationships and crystallography in the
pseudobinary system Gd5Si4-Gd5Ge4, J. Alloys Comp. 260, 98 (1997).
23 W. Choe, V.K. Pecharsky, A.O. Pecharsky, K.A. Gschneidner, Jr., V.G. Young, Jr., and G.J.
Miller, Making and breaking covalent bonds across the magnetic transition in the giant magne-
tocaloric material Gd5(Si2Ge2), Phys. Rev. Lett. 84, 4617 (2000).
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Fig. 19.15 The model of
the crystal structure of
Gd5Si2Ge2 as determined
by Rietveld refinement. The
slabs, which are infinite along
X and Z and limited along Z
to ∼7 Å are shown as bonded
Gd and Si atoms. This struc-
ture is intermediate between
Gd5Ge4 (Fig. 19.10) and
Gd5Si4 (Fig. 19.13): only
pairs of slabs (B and C) are
connected with short (Si,Ge)
– (Si,Ge) bonds, while no
such bonds exist between the
pairs (A–B and C–D).
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19.5 Structure–Property Relationships

The series of compounds existing in the pseudobinary Gd5(SixGe1−x)4 system is
exceptionally interesting because of the distinct role the crystal structure plays
in defining the magnetic properties of the alloys. As discussed by Pecharsky and
Gschneidner,24 all Gd5Si4-type phases undergo a second-order paramagnetic to fer-
romagnetic transformation on cooling, which occurs without changing the crystal
structure. However, both Gd5Si2Ge2 – and Sm5Ge4-type phases order ferromagnet-
ically simultaneously with a crystallographic phase change, during which the slabs
move with respect to one another in a shear fashion, and all interslab bonds reappear
as shown in Fig. 19.16.

The coupled magnetic-crystallographic ordering, therefore, becomes a first-order
transformation. In the ferromagnetic state, only the Gd5Si4-type crystal structure is
stable. It is also important to mention that the crystallographic phase change as a
function of temperature in this system was discovered first using powder diffrac-
tion data25 and two years later, it was confirmed from a single crystal diffraction
experiment by Choe et al. (see reference No. 23 in the footnote on page 629).

24 See V.K. Pecharsky and K.A. Gschneidner, Jr., Gd5SixGe1−x4 : An extremum material, Adv.
Mater. 13, 683 (2001), and references therein.
25 L. Morellon, P.A. Algarabel, M.R. Ibarra, J. Blasco, B. Garcia-Landa, Z. Arnold, and
F. Albertini, Magnetic-field-induced structural phase transition in Gd5(Si1.8Ge2.2), Phys. Rev. B
58, R14721 (1998).
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Fig. 19.16 The nature of the crystallographic phase changes when the Gd5Ge4-type (left) or the
Gd5Si2Ge2-type structures (right) transform into the Gd5Si4-type structure. Short black arrows
indicate the directions and the numbers above the arrows the extent of the interslab shear.



Chapter 20
Crystal Structure of NiMnO2(OH)

This is an example of a fairly simple inorganic compound – nickel manganese oxide
hydroxide, NiMnO2(OH)1 – which has a relatively good, but far from perfect crys-
tallinity. Due to the peculiar shape of the crystallites, which grow as well-defined
and elongated faceted needles (see inset in Fig. 20.1), the powder exhibits a ten-
dency toward a complex-preferred orientation. The latter is always a complicating
factor, especially when a structure solution from first principles should be under-
taken.2 This example also illustrates how to detect and refine hydrogen atoms from
powder data, which may be a daunting task to accomplish using exclusively X-rays.

Powder diffraction data were collected using a specimen prepared from a thor-
oughly ground powder screened through a 38 μm sieve. First, a fast experiment was
conducted in the range 2◦ ≤ 2θ≤ 70◦ using a continuous scan with a sampling step
of 0.03◦ and a scan rate of 1 deg/min. Positions of 23 individual Bragg reflections
at 2θ ≤ 60◦ were determined using a semimanual profile fitting. Indexing was per-
formed using TREOR, which resulted in an orthorhombic base-centered lattice with
27 possible reflections, F20 = 135 (0.003,27).

20.1 Observed Structure Factors from Experimental Data

In order to proceed with the structure solution, a high-quality powder diffraction
pattern to 2θmax = 110◦ was collected in a weekend experiment (Fig. 20.1).3 The

1 R. Chen, P.Y. Zavalij, M.S. Whittingham, J.E. Greedan, N.P. Raju, and M. Bieringer, The hy-
drothermal synthesis of the new manganese and vanadium oxides, NiMnO3H, MAV3O7 and
MA0.75V4O10 · 0.67H2O(MA = CH3NH3), J. Mater. Chem. 9, 93 (1999). The polycrystalline
material was prepared by hydrothermally treating a mixture of Li2CO3, N(CH3)4MnO4, and
Ni(CH3COO)2 taken in a molar ratio 1:1.5:1 at 200◦C for 2 days.
2 When preferred orientation effects are strong, the intensities of Bragg reflections become biased
by systematic errors. A correction is nearly impossible before the crystal structure is solved and the
preferred orientation refined using an acceptable model. These errors are in addition to the errors
introduced by deconvolution of the overlapped Bragg peaks.
3 Data files Ch20Ex01 CuKa.xy and Ch20Ex01 CuKa.raw are found at www.springer.com/978-0-
387-09578-3.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 633
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 20,
c© Springer Science+Business Media LLC 2009
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Fig. 20.1 Powder diffraction pattern collected from the NiMnO2(OH) powder using CuKα radi-
ation on a Scintag XDS2000 diffractometer. The experiment was carried out in a step-scan mode
with a step 0.02◦ and counting time 30 s per step. The vertical bars indicate calculated positions
of the Kα1 components of all possible Bragg reflections. The inset shows the scanning electron
microscopy (SEM) image of particle morphology in the as-received state.

unit cell dimensions were refined using all 75 observed Bragg peaks resulting in
a = 2.8609(1) Å, b = 14.6482(5) Å, c = 5.2703(2) Å, V = 220.86(2) Å3, and sam-
ple displacement of −0.123(6) mm for a 250 mm goniometer radius.

Analysis of the systematic absences indicated three possible space groups: Cmcm
or one of its noncentrosymmetric subgroups Cmc21 or C2cm (Ama2 in a standard
setting). The pattern decomposition was carried out by using profile fitting of manu-
ally selected small ranges of Bragg angles.4 For each group of peaks, present in the
processed range, a least squares profile fitting was conducted while refining both the
positions and full widths at half maximum (FWHM) of potentially resolvable Bragg
reflections. A parabolic background, a mixing parameter of the pseudo-Voigt func-
tion, and an asymmetry parameter were identical for all peaks within each selected
range. The average Rp was ∼2.5%.5 In order to maintain stability of the nonlinear

4 Semimanual profile fitting was chosen over the full pattern decomposition to facilitate a better
control over the resultant integrated intensities extracted from groups of overlapped Bragg peaks
due to significant anisotropic peak broadening (see Fig. 20.2). Small fitting ranges were chosen
visually such that they contained one or more distinct Bragg reflections clearly delimited by the
background. Full pattern decomposition of this pattern can be carried out using Le Bail or Pawley
techniques. Both should converge to Rp ∼= 4.2 %,Rwp ∼= 5.5%, and χ2 ∼= 4.1. We encourage the
reader to undertake this effort and use thus extracted intensities to solve the crystal structure as an
exercise.
5 This value is considerably lower than Rp reachable during full pattern decomposition because
the extended background-only ranges are usually excluded from the semimanual profile fitting.
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Fig. 20.2 Full width at half maximum as a function of Bragg angle, observed in the powder dif-
fraction pattern of NiMnO2(OH).

least squares, the FWHM was constrained to be identical for all peaks only in a
few ranges at high Bragg angles. As can be seen from Fig. 20.2, the distribution of
FWHMs is rather broad, which is associated with the anisotropic broadening due to
peculiar shapes of the particles.

In illustrating the solution of this crystal structure, we use the extracted intensi-
ties of 30 observed peaks at 2θ ≤ 70◦ with a total of 36 possible Bragg reflections.
Only two pairs of reflections overlap nearly completely in this range of Bragg an-
gles and cannot be decisively resolved.6 Four unobserved reflections were assigned
some small intensity values, each totaling about 1% of the intensity of the nearest
observed peak, because the presence of all, even near-zero-intensity, Bragg reflec-
tions increases the chances of solving the structure using direct phase determination
methods. The absence of zero-intensity reflections is especially important when data
sets are small, as is the case here with only 36 possible reciprocal lattice points.

The indexed list of |Fobs| and the corresponding crystal data are stored in the
SHELX format7 for further use in structure determination. The intensities of all
observed Bragg reflections8 may also be employed in the solution of this crystal
structure, even with a greater success, and we encourage the reader to use it as a
practical self-exercise.

Further, an independent treatment of positions and full widths at half maximum of Bragg peaks
observed within the processed range enables a better fit between the observed and calculated
intensities.
6 The ability to see which Bragg peaks are resolvable with acceptable accuracy and those which
are not resolvable is a benefit available in a semimanual profile fitting.
7 Online files Ch20Ex01.hkl and Ch20Ex01.ins.
8 Online file Ch20Ex01 full.hkl.
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20.2 Solving the Crystal Structure

Chemical composition of the crystals was established from microprobe and thermo-
gravimetric (TGA) analyses. According to microprobe data, the ratio of Mn to Ni is
1:1. From TGA results, the amount of oxygen was determined to be 1.5 times that of
both metals, thus suggesting a 1:1:3 stoichiometry, that is, NiMnO3. The amount of
hydrogen cannot be accurately established due to the complexity of the TGA trace,
which has several different weight losses in both oxygen and nitrogen atmospheres.

The gravimetric density of the crystals was not measured, but the content of the
unit cell may be established by using (15.5) and the expectation that the reason-
able value of ρ should be between 4 and 5 g/cm3. The estimated density assuming
NiMnO3 composition has a reasonable value of 4.86 g/cm3 when Z = 4. The two
closest numbers of formula units (Z = 3 or 5) are impossible due to the restrictions
imposed by symmetry: in a base-centered lattice, sites with odd multiplicities are
impossible. The next two closest numbers (Z = 2 or 6) result in unrealistically low
and high densities, respectively. Thus, we assume that there are four Mn, four Ni,
and 12 O atoms in the unit cell.

Considering space group Cmcm first, the multiplicity of the general site here is
16. The group also includes several eight- and fourfold sites, suggesting that at least
one special position with the multiplicity four is occupied by oxygen. Both Mn and
Ni atoms should occupy fourfold sites. The remaining eight O atoms can occupy
one position with the multiplicity 8 or 2 fourfold sites. The very short unit cell di-
mension, a ∼= 2.86Å, and the presence of mirror planes perpendicular to it further
limits possible locations of atoms in this unit cell: all atoms must be located in the
mirror planes. Thus, only the following sites 4(a): 0,0,0; 4(b): 0,1/2,0; 4(c): 0, y,1/4;
and 8(f): 0,y,z may be occupied. If x accepts a nonzero value, the distance between
symmetrically related atoms becomes ∼1.43Å or shorter,9 which is unrealistic. An-
other possibility is to use the noncentrosymmetric groups. The space group C2cm
does not look promising because the absence of the mirror plane perpendicular to
X , which is a very short unit cell edge, is highly unlikely as discussed here. The
noncentrosymmetric space group Cmc21 looks more promising as it has a fourfold
special position in the mirror plane perpendicular to X : 4(a) with coordinates 0yz,
where all atoms can be located.

The structure was solved10 using SHELXS-90 and partial least squares refine-
ment using SHELXL-97 programs.11 The centrosymmetric space-group symmetry
Cmcm was tested first, however, several attempts with varying parameters produced

9 Mirror planes are spaced at 1/2a. Thus, every atom with the coordinates x, y, z has nearest sym-
metrically equivalent atoms at −x, y, z and 1−x, y, z. The pairs of atoms are separated by 2xa
and (1− 2x)a, respectively. The distances are at maximum when x = 1/4, i.e., the spacings are
a/2 ∼= 1.43Å.
10 Ready to use reflection file Ch20Ex01.hkl and crystal data file Ch20Ex01.ins are found online.
Both can be used as input files for SHELXS-90.
11 G. M. Sheldrick, Phase annealing in SHELXS-90: direct methods for larger structures, Acta
Cryst. A46, 467 (1990); G. M. Sheldrick, SHELXL-97. University of Göttingen, Germany (1997).
See the footnote on page 544 on how to obtain the programs.
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no acceptable model. It may be difficult to recognize the incorrect selection of space-
group symmetry based on a few failures to find the model, especially when relatively
low quality or truncated structure factor data are employed (e.g., those extracted
from the powder pattern). If a solution at certain conditions in the selected space-
group symmetry was not found, this does not necessarily mean that it does not exist.
Often, it may be tricky to identify a true solution.

Taking into account that the number of formula units per cell (Z = 4) gives a
preference to the space group Cmc21, it was chosen for the next attempt. At first,
the direct phase angles determination using SHELXS-90 was attempted with all
default parameters. The program automatically assigns heavy atoms to the peaks
from the E-map, and in this case, the first three peaks were treated as Mn. However,
analysis of interatomic distances indicated that the second strongest peak cannot be
a metal and therefore, this solution was abandoned.12

The following step, which is usually recommended when working with powder
data and when the default parameters do not result in an acceptable solution, is
to decrease the minimum normalized structure amplitude (Emin) employed in the
generation of phases. In general, this reduction decreases the probability of phase
relationships (see (10.17), (10.20), and (10.21)) but it increases the number of re-
flections included in the process. In our case, decreasing Emin from the default 1.2
to Emin = 1.1, increases the number of reflections from 11 to 14. The best solution,
shown in Table 20.1, contains the first two peaks that are suitable as metals, and the
next three can be suitable as oxygen atoms.13 Peaks beginning from Q4 and below
are unacceptable because they are too close to the already assigned peaks.

The obtained model was refined by using SHELXL-97 to RF = 25%, which re-
sulted in the coordinates listed in Table 20.2. Two oxygen atoms, O2 and O3, con-
verged into locations that are too close to Mn1 and therefore, were eliminated from
the model. A difference Fourier map was calculated using phase angles determined
by Mn1, Mn2, and O1 and the first two strongest maxima are at reasonable distances
to both metal atoms.

This is a good place to comment on a nearly blind inclusion of O2 and O3 in
the previous step: it was done without the proper analysis of the geometry of the
model, that is, bond angles and coordination polyhedra should be always analyzed
in addition to bond distances.14 The insertion of “incorrect” atoms could be more
detrimental than the simple removal of these atoms at a later point. Indeed, this may
disable solving a structure as a whole. Therefore, only those atoms which are ra-
tional from chemical and physical points of view should be included/added to the

12 Generally, a situation like that does not necessarily mean that the model of the crystal structure
cannot be completed using this solution. It may take longer and it may be harder to make decisions
about which peaks should be included, and what atom types should be assigned to them.
13 The suitability of peaks as atoms has been judged based on the relative heights of the peaks on
the E-map and from the shortest interatomic distances. The distance Mn2 – Q2 (1.59 Å) is quite
short, but at this point in the structure solution it may be acceptable considering a small number of
reflections included into the computation of both the phases and E-map.
14 Analysis of bond angles is usually unnecessary in the case of intermetallic structures, where
bonding is predominantly metallic. However, knowing bond angles is critical when solving struc-
tures with principally covalent bonding.



638 20 Crystal Structure of NiMnO2(OH)

Table 20.1 Maxima localized from the E-map refined for the best solution obtained by SHELXS-
97 using 14 reflections with Emin = 1.1 employing intensity data at 2θ≤ 70◦.

Peaka x y z Height Bond distances (Å) Comment

Mn1b Mn2b

Mn1 0.0000 0.3018 0.4909 711.5
Mn2 −0.5000 0.4934 0.7409 508.9
Mn3 −1.0000 0.4550 1.0060 343.3 2.04, 2.08 O1
Q1 0.0000 0.4109 0.7040 162.3 1.96 1.89 O2
Q2 −0.5000 0.3482 0.4986 154.5 1.59 2.48 O3
Q3 −0.5000 0.4254 1.0030 103.6
Q4 −0.5000 0.2987 0.1932 86.4
Q5 −0.5000 0.2276 0.3901 60.1
a Mn is indistinguishable from Ni at this stage because the former contains 25 electrons, while the
latter has 28 electrons, i.e., both atoms have similar scattering factors.
b This column lists the distances to the indicated atom in Å.

Table 20.2 Results of structure refinement (SHELXL-97) and the difference Fourier peaks com-
puted using all reflection data below 2θ = 70◦ (RF = 25%).

Atom/Peak x y z Height Bond distances (Å) Comment

Mn1a Mn2a O2a O3a

Mn1 0.0000 0.3021 0.4777
Mn2 0.5000 0.4904 0.7232
O1 0.0000 0.4384 1.0096 2.10,2.21
O2 1.0000 0.3822 0.4185 1.22 2.67 b

O3 0.5000 0.3255 0.5629 1.54 2.56 b

Q1 0.5000 0.3961 0.4660 4.5 1.99 1.94 1.47 1.16 O2
Q2 0.5000 0.2192 0.4574 4.0 1.88 1.66 O3
Q3 0.0000 0.3931 0.7511 2.9
Q4 1.0000 0.2146 0.7047 2.8
a This column lists the distances to the indicated atom in Å.
b Deleted.

model. If there is a suspicion about a partially built model, a conventional Fourier
map should be computed and used to improve the coordinates of already known
atoms and verify their positioning in the unit cell (e.g., see Sect. 17.2.1, where the
improper positioning of the Rh atom was easily detected from a Fourier map calcu-
lated in the space group I4/mmm).

Two new oxygen atoms improve the geometry of the model and the following re-
finement lowers RF to 9.5% (Table 20.3). Overall, this result gives a great confidence
in the correctness of the model. All peaks on the subsequent difference Fourier map
(only two are listed in Table 20.3) are too close to the already present atoms.

Thorough readers, who try to use the full array of diffraction data in order to
verify the solution of this simple crystal structure, will easily find out how important
is the completeness of the data: the whole model may be obtained from an E-map
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Table 20.3 Results of structure refinement (SHELXL-97) and the difference Fourier peaks com-
puted using all reflection data below 2θ = 70◦ (RF = 9.5%).

Atom/ x y z Uiso/ Bond distances (Å) Comment
Peak Height

Mn1a Mn2a O2a O3a

Mn1 0.0000 0.3047 0.4759 0.022
Mn2 0.5000 0.5004 0.7235 0.032
O1 0.0000 0.4496 0.9497 0.000 2.01,2.16
O2 0.5000 0.3920 0.4445 0.029 1.93 1.96,2.17
O3 0.5000 0.2177 0.5605 0.007 1.97, 2.22
Q1 −0.500 0.4302 0.9673 1.9 1.65 1.46 b

Q2 0.5000 0.4249 0.6171 1.5 1.24 1.03 b

a This column lists the distances to the indicated atom in Å.
b Distances are unreasonably short.

employing phase angles, generated by using Emin = 1.1.15 The refinement of atomic
parameters, however, converges to RF = 27%, which is much higher than RF = 9.5%
obtained for the data array truncated at 2θ = 70◦. This increase in RF is associated
with the weaker and broader peaks and with a substantial overlap at high Bragg
angles, which disable accurate determination of the individual integrated intensities.
A similar situation was observed in the intermetallic Nd5Si4, see Chap. 18.

It is critical to realize that low RF alone cannot be taken as a sufficient evidence
for the rationality of the structural model.16 Far more important measures of whether
the model is correct are its geometry (bond distances, angles, coordination polyhe-
dra) and electroneutrality of the crystal. In this example, the structure consists of
square pyramids for Mn1 and octahedra for Mn2, which share oxygen atoms and
form a three-dimensional framework, as shown later in Fig. 20.8. Further, this fig-
ure clearly illustrates that there are no mirror planes perpendicular to Z and confirms
the correctness of the space group Cmc21. The resulting model appears reasonable
and complete, except Mn and Ni atoms must be distinguished, and locations of
hydrogen atoms should be established. The latter may require a different type of
experimental data, while the former should be possible during Rietveld refinement
of the structural parameters using the existing X-ray diffraction data.

15 The full array of the individual structure factors is located online in the file Ch20Ex01 full.hkl.
Identical Bragg reflections have slightly different values of |Fobs

hkl | when compared to Ch20Ex01.hkl
because two files were created during two independent profile-fitting attempts. Readers can use this
file, or they can create their own list of the observed structure factors by using Le Bail or Pawley
full pattern decomposition approaches. In this example, the anisotropic peak broadening should
be refined to achieve good convergence between the observed and calculated powder diffraction
profiles.
16 RF and profile residuals ((15.19)–(15.23)) can be easily lowered by increasing the number of ad-
justable parameters in a completely unreasonable structural model. Thus, relevant residuals should
be employed to gauge the fit between the observed and experimental data rather than as an exclu-
sive measure of the rationality of the underlying crystal structure.
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20.3 A Few Notes About Using GSAS

Computations described here and in the following few chapters have been performed
using GSAS (General Structure Analysis System), one of the most advanced imple-
mentations of the Rietveld refinement approach combined with a variety of com-
putational crystallographic routines, which has been developed by A.C. Larson and
R.B. Von Dreele.17

Computations in GSAS are controlled via a DOS-based text command interface,
which may be difficult to manage for some Windows users who are addicted to the
extensive use of a mouse. For them, the solution may be a user-friendly graphic
interface, EXPGUI, developed by B.H. Toby.18 EXPGUI simplifies the work with
GSAS considerably, although not all of the possibilities available with the native
DOS-based interface are accessible. Both the GSAS and EXPGUI are freely avail-
able and can be downloaded along with the installation instructions, manuals and
several examples.19

One of the peculiarities of the GSAS is the use of the instrumental parameters
file. The latter contains default values of peak-shape parameters along with other
instrumental and sample factors, including the wavelength, Kα2/Kα1 intensity ra-
tio, default zero-shift, or sample displacement corrections, etc. The instrumental
parameters file can be created for a specific instrumental setup, for example, a com-
bination of divergence, Soller and receiving slits in a given data-collection geome-
try, and used as the default or starting values of profile parameters in the Rietveld
refinement.20

We emphasize that sometimes, not all profile parameters should or could be rou-
tinely refined due to the quality of a particular pattern and/or sample crystallinity.
For example, U , V , and W parameters, which define the instrumental part of the
FWHM as a function of Bragg angle (see (8.26) and Fig. 8.14), can be kept fixed
assuming that their values in the instrumental parameters file were thoroughly de-
termined using a standard with a high degree of crystallinity, for example, LaB6
(NIST SRM-660 or 660a). Another example is when Gaussian and Lorentzian com-
ponents of peak broadening, which correspond to grain size and strain contributions
(see (8.29)–(8.33)), respectively, correlate severely and cannot be refined simulta-
neously. The latter may be due to an insufficient quality of diffraction data, low

17 A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos
National Laboratory Report, LAUR 86-748 (2004). Although GSAS is suitable for treatment of
both powder diffraction and single crystal data, in the context of this book we are chiefly concerned
with its capabilities to processing powder data.
18 B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst. 34, 210 (2001).
19 GSAS may be downloaded from http://www.ccp14.ac.uk/solution/gsas/. A convenient graphic
user interface for GSAS, EXPGUI, may be downloaded via a link at http://www.ccp14.ac.uk or
from http://www.ncnr.nist.gov/programs/crystallography/.
20 Other computer programs handle default settings in a similar way. For example, in LHPM-
Rietica these can be specified for a variety of diffractometers and experimental setups and then
chosen to represent initial parameters of every data set, which is included in the processing.
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resolution, or both. Then, only one of them should be refined because both produce
similar broadening effects.

Overall, when initial parameters are relatively far from the correct values and
especially in the presence of noticeable correlations between certain free variables,
Rietveld refinement may be difficult to converge. When this happens, the calculated
parameter shifts are much greater than needed and the minimization diverges, or
in other words, the refinement process moves the free variables away from a global
minimum (e.g., see Fig. 15.4, right). There are several ways of stabilizing the refine-
ment and reducing the risk of the undesired divergence. One of them is numerical
damping of the nonlinear least squares by using the Levenberg–Marquardt tech-
nique, see (15.17) on page 516 and relevant discussion.

Another way of avoiding the “out-of-control” least squares, is by applying a
damping multiplier, 0 < d ≤ 1, to the calculated shifts for all or some of the re-
fined variables, not necessarily to those that correlate. The damping multiplier in
the GSAS is specified by using a numerical constant (D), which varies from 0 (de-
fault) to 9. The shifts (δxi) are computed as δxi = Δxid = Δxi(10−D)/10, where
Δxi is the shift of the ith free variable as determined from (15.10), and δxi is the
shift of the ith free variable, which is added to the current value of xi. Thus, d is 1
for D = 0 and 0.5 for D = 5. The latter constant was employed in examples found
in the following few chapters and all free variables except for the scale factor and
background parameters were dampened.21

Both damping techniques stabilize Rietveld refinement, but obviously require
more least squares cycles for its completion. It is worth noting, that according to
the GSAS default (which can be changed), the refinement process is considered
converged to a global minimum when the maximum shift (Δxi) observed among all
free variables is less than 1/100th of the corresponding standard deviation (σxi), i.e.,
when |Δxi|/σxi < 0.01, i = 1,2, . . .p and p is the number of free variables.22

Structure and properties of both the metal–oxides and their intercalates, which
are used as examples in the following few chapters, result in high anisotropy of
crystal shapes. Distinct, plate-like (see Fig. 21.1) or needle-like (Fig. 20.1) shapes
of particles cause a highly nonrandom distribution of particle orientations, even af-
ter thorough grinding and screening. The state of the specimen often cannot be ad-
equately described using a simple single-parameter preferred orientation model(s)
and two preferred orientation axes or a spherical harmonics expansion should be em-
ployed. In parallel, the anisotropy of the particle shapes almost necessarily causes
the anisotropy in the broadening of the diffraction peaks, which, in order to obtain
a good fit, has to be accounted for as well.

21 Examples considered in Chaps. 16–18 did not require damping, yet LHPM-Rietica and other
commonly available Rietveld refinement computer codes foresee either or both damping ap-
proaches described here. Applying damping cannot be deleterious even when it is unnecessary.
It leads to more least squares cycles required to achieve convergence (global minimum), but si-
multaneously prevents accidental “out-of-control” least squares, thus enabling one to use starting
parameters, which are relatively far from correct values.
22 IUCr imposes the requirement |Δxi|/σxi ≤ 0.05 to ensure completeness of refinements based on
single crystal data. In Rietveld fits, |Δxi|/σxi < 0.1 are quite satisfactory.
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Unless noted to the contrary, the initial values of peak-shape parameters were ob-
tained from a refinement using the experimental powder diffraction pattern of LaB6
measured on a Scintag XDS2000 diffractometer employing Cu Kα radiation and a
liquid nitrogen-cooled Ge(Li) solid-state detector at typical experimental settings.23

We note that all profile parameters employed in GSAS are in centidegrees (i.e., the
corresponding values in degrees have been multiplied by 100). Thus, the following
settings and initial parameters were used:

– The peak-shape function was a Thompson modified pseudo-Voigt.24 It is referred
as No. 2 in GSAS (also see Sect. 8.5.1 and relevant equations).

– Bragg peaks were extended over the range where their calculated intensity was
greater or equal to 0.5% of the intensity at the peak maximum.

– The instrumental part of FWHM: U = 0.7104, V =−0.9565, W = 1.7318; P = 0.
– Isotropic peak broadening due to grain size and strain with X = 2.2952, Y =

3.9551, and Xa = 0 and Ya = 0.
– Peak asymmetry α = 2.5471.
– Porosity and absorption effects were initially accounted for by using the Suortti

approach (see (8.55)) with parameters a1 = 0.4 and a2 = 0.4. These two parame-
ters have a tendency to strong correlation, and they were refined only when the
quality of the pattern was sufficiently high.

– The sample displacement parameter Ss calculated for each particular case from
the displacement (s, in mm) obtained during unit cell refinement as: Ss =
−36,000s/(πR) or Ss = −144s/π for the goniometer radius R = 250mm.

– Cu Kα radiation wavelengths used were 1.540562 and 1.544390 Å for Kα1 and
Kα2 components, respectively.

– The initial value of the phase scale factor was always 1.25

– The initial background was set to a constant value of 100 counts or, in some
difficult cases, fitted manually and kept fixed during initial refinement steps.

– Unless noted to the contrary, a 6-parameter shifted-Chebyshev function was em-
ployed to fit the background at later refinement stages.

– The initial atomic displacement parameters were always set to Uiso = 0.015Å2,
which is equivalent to Biso(=8π2Uiso) of ∼1.2Å2.

– Fractional population factors in GSAS are treated as g’s (see (16.1)), while site
multiplicities are automatically accounted for, and cannot be changed. Site pop-
ulations, however, can be refined when needed. For example, a population factor
g = 0.75 for an A atom in a site with multiplicity 4 means that 75% of the site is
occupied and that there are 3 A atoms in the unit cell. Obviously, the fractional

23 These are found online in the file Scintag.prm.
24 P. Thompson, D.E. Cox, and J.B. Hastings, Rietveld refinement of Debye–Scherrer synchrotron
X-ray data from A12O3, J. Appl. Cryst. 20, 79 (1987).
25 Phase scales are treated differently in different realizations of the Rietveld algorithm, e.g., in
GSAS and in LHPM-Rietica. In the latter, the calculated absolute intensity is scaled (normalized)
to match the observed relative intensity, i.e., the scale factor is applied exactly as shown in (15.30)
and (15.31). In the former, the observed relative intensity is scaled to match the calculated absolute
scattered intensity. In other words, the scale factors in GSAS and LHPM-Rietica are related to one
another as KGSAS = 1/KRietica.
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population factor cannot be greater than unity or less than zero. When the refined
value is out of the range 0 ≤ g ≤ 1, this usually points to the incorrect assign-
ments of atom types or incorrectly located atom(s).

20.4 Completion of the Model and Rietveld Refinement

This example shows how to refine complex preferred orientation, and how to distin-
guish chemical elements with similar scattering factors (Ni, 28 electrons and Mn,
25 electrons) using X-ray powder data. Further, in this section we will also see how
easy the latter can be done when neutron diffraction data are available. The availabil-
ity of the latter also illustrates how to locate the hydrogen atom(s) in the unit cell.
Finally, some important geometrical aspects of the interpretation of the structural
data will also be considered.

20.4.1 Initial Refinement Steps

The initial model of the crystal structure is listed in Table 20.3. Both independent
metal atoms are treated as manganese (Mn1 and Mn2) and the hydrogen atom is
missing in this model. Thus, our goal is to distinguish between Mn and Ni atoms,
locate the H atom from the Fourier map(s), and obtain accurate positional, atomic
displacement, and profile parameters.

Often, the initial stages of Rietveld refinement are both important and difficult
because the initial values of both the structural and profile parameters may be far
from the correct values. Hence, nonlinear least squares may be less stable when
compared to the same at the end of the refinement, that is, when nearly all parameters
are close to their accurate values. As mentioned above, variables should be refined
in a proper order, usually starting from only a few most critical parameters, and
then adding other relevant variables, while continuously monitoring how parameters
refined earlier continue to change. Those that correlate or begin to diverge should
be excluded from the refinement and, perhaps, constrained.

The following initial parameters were employed to begin this refinement:26,27

– Default profile parameters from the instrumental parameter file28 as described in
Sect. 20.3.

26 The starting model of the crystal structure with all of the necessary parameters is found online in
files Ch20Ex01a.exp (which is the main GSAS data file, which contains all structural, instrumental
and other parameters needed for refinement), and in Ch20Ex01a.cif. The latter is a Crystallographic
Information File (CIF file), which records all information in a standard format acceptable by the
majority of crystallographic programs, and which is required by the majority of technical journals
for publication of the structure determination results.
27 The experimental pattern is located in the file Ch20Ex01 CuKa.raw – the profile (histogram)
file – which contains experimental powder pattern in a standard GSAS format. Note that this format
is also suitable for LHPM-Rietica.
28 The file Scintag.prm is available online.
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– Sample shift, Ss = 5.64 to represent sample displacement s =−0.123mm, which
was obtained together with the unit cell dimensions during the lattice parameter
refinement.

– Space group Cmc21 and unit cell dimensions a = 2.8609Å, b = 14.6482Å, c =
5.2703Å, as determined earlier.

– Structure model from Table 20.3 with overall isotropic displacement parameter
Uiso = 0.015Å2.

Initially, only the scale factor has been refined, resulting in the residuals shown
in Row 2 in Table 20.4. The calculated pattern matches the observed data quite
well, considering the unrefined model, as can be seen from Fig. 20.3. The strong

Table 20.4 The progress of Rietveld refinement of the crystal structure of NiMnO2(OH) first using
X-ray and later both X-ray and neutron powder diffraction data.

Refined parameters Rp Rwp RB χ2

Initial29 36.9 50.8 99.7 350
Scale factor only (Fig. 20.3) 18.2 25.9 36.0 90.9
Scale, background, unit cell dimensions,
grain size (X)

14.9 22.4 34.0 68.1

All of the above plus preferred orientation
(PO) for [010] axis and then adding
another PO for [100] axis

9.6 13.5 12.2 24.8

All of the above plus strain (Y ) instead of
X , PO1/PO2 ratio, asymmetry (α),
coordinates of all atoms, Uover
(Fig. 20.4)30

7.4 10.6 8.9 15.3

All of the above plus Mn2 was changed to
Ni1 (5 cycles), then individual Uiso for
Mn1 and Ni1

7.3 10.5 9.6 15.0

All of the above plus Ss, profile
parameters, grain size, strain together
with their anisotropy (Xa and Ya)

5.9 8.0 6.8 8.75

Only scale, background, unit cell
dimensions and absorption, a1 and a2, in
the Suortti approximation

6.0 8.1 6.3 8.79

All of the above plus coordinates, Uiso for
Mn1 and Ni1, Uoverall for O, PO[010],
PO[100], X , Xa α.

6.0 8.0 6.7 8.77

All of the above plus U , V , W , Y , Ya. Final
(X-ray only), see Fig. 20.5

5.1 6.6 6.7 5.99

Combined final: X-ray 5.1 6.7 6.7 n/a
Combined final: neutrons 4.0 5.0 24.4 n/a
Combined final: total (Fig. 20.7a,b,
Table 20.5)31

5.0 6.5 n/a 5.85

29 Files online: Ch20Ex01 CuKa.raw, Ch20Ex01a.exp, Ch20Ex01a.cif.
30 Files online: Ch20Ex01b.exp and Ch20Ex01b.cif.
31 Files online: Ch20Ex01c.exp and Ch20Ex01c.cif.



20.4 Completion of the Model and Rietveld Refinement 645

−5

0

5

10

15

20

25

30

35

40

70 75 80 85 90

0

5
NiMnO2(OH), Cu Kα

Bragg angle, 2θ (deg.)
10 20 30 40 50 60 70 80 90 100 110

In
te

ns
ity

, Y
 (

10
3  

co
un

ts
) 

Bragg angle, 2θ (deg.)

Rp= 18.16%
Rwp= 25.91%
RB= 36.02%
χ2= 90.9

Fig. 20.3 The observed and calculated powder diffraction patterns of NiMnO2(OH) after the initial
Rietveld refinement with only the scale factor determined. The inset clarifies the range between 70◦

and 90◦2θ. The difference (Y obs
i −Y calc

i ) is shown using the same scale as both the observed and
calculated data but the plot is truncated to fit within the range [−1,500, 1,500] for clarity.

calculated Bragg reflections correspond to the strong observed peaks and the weak
reflections to the low observed intensity peaks, which is a reasonable confirmation
of the initial model. The quite good initial approximation of both the unit cell di-
mensions and sample displacement are clear from the inset in Fig. 20.3.

The subsequent refinement step included six background coefficients for a
shifted-Chebyshev polynomial, unit cell dimensions and grain-size parameter (X).
Only a little improvement in the fit results. Next, the preferred orientation was
refined using the March–Dollase approach (see Sect. 8.6.6). At first, the preferred
orientation axis was chosen along the [010] direction. This direction is perpendicu-
lar to the metal–oxide layers (Fig. 20.8, below), which are found in the structure and
it coincides with the longest unit cell edge, b. The preferred orientation parameter,
τ010, was refined to τ010 = 0.80, which corresponds to the preferred orientation
magnitude of 2.73.32 A second preferred orientation axis, [100], was added after
the first, and this choice was based on the presence of metal-oxide chains along
the shortest unit cell edge, a. Both preferred orientation parameters were refined
together with other variables already included in the least squares, resulting in a
substantial lowering of all residuals (Row 4 in Table 20.4). The preferred orientation

32 The magnitude of the preferred orientation is the ratio between the maximum and the minimum
correction factors, which in this case, is the ratio between the correction factors for reflections
whose reciprocal lattice vectors are parallel to d∗

010 and those, which are perpendicular to d∗
010,

i.e., T||/T⊥.
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axes could be easily predicted in this structure by comparing the unit cell dimen-
sions and simple geometrical analysis of the model. In many instances, the longest
unit cell dimension (in this material the b-axis), which is perpendicular to the layers
formed in the crystal structure, is also parallel to the shortest dimension of the
plate-like crystallites.

Similarly, the shortest unit cell dimension is usually parallel to the chain-like
formations in the structure (if any) and, simultaneously, to the longest dimension
of the needle-like crystallites. In NiMnO2(OH), the a-axis is much shorter than the
two others: the needle-like crystallites are elongated along the [100] direction, with
the additional preferred orientation axis [010] perpendicular to the flat sides of the
needles (see the inset in Fig. 20.1).

When the two preferred orientation axes are assumed, the ratio between them
should be refined as well. This was done subsequently, together with the refinement
of the coordinates of individual atoms, overall isotropic displacement parameter,
Uoverall, and peak asymmetry, α. The resulting fit is substantially improved, as shown
in Fig. 20.4. It is clear, however, that there are still some differences between the
observed and calculated intensities, as well as in the peak shapes (e.g., see the inset
in Fig. 20.4, where some calculated peaks appear too narrow when compared with
the observed peak shapes).
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Fig. 20.4 The observed and calculated powder diffraction patterns of NiMnO2(OH) after preferred
orientation, coordinates of all atoms and the overall displacement parameter were refined in addi-
tion to the scale factor, unit cell dimensions, background, grain size and strain effects, and peak
asymmetry. The insert clarifies the range between 70◦ and 90◦2θ.
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20.4.2 Where Is Mn and Where Is Ni?

The next structure determination step is to distinguish the Mn and Ni atoms in two
positions, presently treated as manganese. There are several possible ways of ac-
complishing this task:

– Refining individual isotropic atomic displacement parameters with a larger value
pointing to the lighter atom and a smaller or even negative displacement para-
meter indicating the heavier atom. This method works well in refinements us-
ing single-crystal diffraction data or very precise powder data, and usually for
chemical elements with substantial differences in the scattering ability (number
of electrons), for example, see Sect. 16.3.3.

– Refining site population factors: this is similar to the earlier approach but is a
more appropriate way of testing for the scattering power of an atom because
the multiplication of the atomic number of the element, currently present on a
certain site, by its fractional occupation factor results in the approximate number
of electrons in the element that should occupy the given site.

– Conducting the refinement using all possible combinations of the elements, and
then selecting the best model based on the resultant figures of merit. This ap-
proach may be time-consuming if a large number of permutations are possible.
However, in the case of NiMnO2(OH), only two possibilities exist: Mn1 is Mn
and Mn2 is Ni, or Mn1 is Ni and Mn2 is Mn.

– Analyzing the geometry of the model. This approach is nearly always used in
molecular compounds, even when single-crystal data are available. The analysis
involves prior knowledge of possible bond distances, angles, coordination poly-
hedra, etc.

– Employing information other than Cu Kα X-ray diffraction data, for example,
anomalous scattering near the K-absorption edge of one of the metals, neutron
diffraction data (see later), and/or spectroscopic results.

Despite a variety of available methods, some of them may not always work well.
In this case, the first three approaches based on X-ray diffraction data did not al-
low clear differentiation between Mn and Ni atoms because the differences between
atomic displacement parameters, site populations, and standard figures of merit were
not statistically significant. However, quite different environments of the two inde-
pendent metal atoms suggest that a geometrical analysis may be helpful.

Thus, the bond valence sum method,33 which is used mainly to differentiate be-
tween the oxidation states of chemical elements rather than the elements themselves,
was employed. The calculated bond valence sum should be as close as possible to
the oxidation state for which it was calculated. In our model, the bond valence sum

33 Bond valence sum is calculated using interatomic distances and empirical bond valence para-
meters tabulated for each type of the bond. The analysis was conducted using VaList software
(A.S. Wills and I.D. Brown, VaList, CEA, France (1999)), available from ftp://ftp.ucl.ac.uk/pub/
users/uccaawi/VaList setup.exe; the manual can be found at http://www.chem.ucl.ac.uk/people/
wills/bond valence/bond valence.html.
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technique resulted in 2.93 for the first atom, treated as Mn3+, and 1.96 for the sec-
ond atom, assumed to be Ni2+. The next closest possibility was 2.78 for Ni3+ in the
first position and 2.61 for Mn3+ in the second metal site (see Table 20.3). Therefore,
bond valence sum clearly reveals that the first metal (Mn1) is actually Mn, while the
second atom (Mn2) is Ni. Further, their oxidation states are 3+ and 2+ for Mn and
Ni, respectively. The final chemical composition is, therefore, Ni2+Mn3+O2(OH),
thus confirming the presence of a hydroxyl group in the compound. In NiMnO3,
both Mn and Ni atoms should have oxidation states 3+ to maintain charge balance.
Hence, all subsequent refinement steps included Mn and Ni in proper sites and their
atomic displacement parameters were refined independently.

20.4.3 Finalizing the Refinement of the Model Without Hydrogen

Including both grain size and strain contributions to the full width at half maximum
(X and Y ), together with their anisotropic parts (Xa and Ya), noticeably improves
the fit (Table 20.4). Setting the porosity and absorption effects using the Suortti
approach as free variables (the majority of other parameters were fixed to avoid
correlations) changed the corresponding parameters from 0.40 and 0.40 to 0.32 and
0.51, respectively, without improvement of the figures of merit. Finally U , V , and W
parameters, which represent the instrumental part of the FWHM, were refined until
the full convergence was achieved. The visible improvement of the profile figures of
merit, after U , V , and W were refined, points to the improper preset values of U , V ,
and W . We note also that X and Xa were kept fixed during the last few least squares
cycles because of their strong correlation with Y and Ya, and it was nonessential
which pair was refined since we had no intent to analyze grain-size distribution and
micro-strain effects. The resultant observed and calculated diffraction patterns are
shown in Fig. 20.5.

20.4.4 Locating Hydrogen

The results of the last refinement can be considered final if the location of a single
independent hydrogen atom in the unit is not of concern.34 Not surprisingly, it was
impossible to locate hydrogen from the X-ray data unambiguously. Therefore, we
also employ neutron powder diffraction data collected on a powder diffractometer at
the McMaster University nuclear reactor using thermal neutrons with λ = 1.3920Å.

34 Due to the low X-ray scattering ability of hydrogen atoms, their effect on the intensity of powder
diffraction patterns measured using conventional X-ray sources is usually negligible, especially in
the presence of relatively strongly scattering atoms, such as Mn and Ni. Therefore, the localization
of hydrogen atoms from X-ray powder diffraction data usually presents a serious and often inex-
plicable problem. Hydrogen atoms positions are, however, important in crystallography because
they reveal the nature of hydrogen bonds, which are often critical for understanding the stability of
both inorganic and organic crystals.
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Fig. 20.5 The observed and calculated powder diffraction patterns of NiMnO2(OH) after the com-
pletion of Rietveld refinement using only X-ray powder diffraction data (the hydrogen atom is still
missing from the model). The inset clarifies the range between 70◦ and 90◦2θ.

It is worth noting that a normal sample containing hydrogen, and not its
deuterium-substituted analogue, was employed in this experiment. The presence
of 1H instead of 2H, causes a substantial diffuse scattering and significantly in-
creases the background, but on the other hand, it assures that both the neutron and
X-ray diffraction data were collected using exactly the same compound.

The availability of neutron diffraction data enables the combined X-ray and neu-
tron Rietveld refinement.35 The following neutron scattering lengths (b) were em-
ployed: bMn = −3.73, bNi = 10.3, bO = 5.803 and bH = −3.739 (all are in fm).36

The negative values of the scattering lengths of Mn and H can be used to distin-
guish them from other elements easily. After several cycles of the refinement, a good
agreement between the observed and calculated patterns was achieved. This result
decisively proves that the Mn and Ni positions were recognized accurately: their
scattering factors have opposite signs and, when switched, the computed intensities
are quite different.

The difference Fourier map was calculated using the neutron data and it is shown
in Fig. 20.6a. The position of an H atom can be found as the deepest minimum on

35 In order to carry out the combined refinement in GSAS, the neutron powder diffraction pat-
tern (online file Ch20Ex01 Neut.raw) should be added as the second histogram using the neutron
instrumental parameter file (data file Neutron.prm is also located online).
36 GSAS employs neutron scattering lengths divided by 10, i.e., the units are 10−12 cm. Also note
that the incoherent scattering length of 1H is 25 fm, which is quite large.
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Fig. 20.6 Distributions of the nuclear density in the unit cell of NiMnO2(OH) at x = 0: (a) the
difference Fourier map calculated using |ΔF| = |Fobs −Fcalc| and phase angles calculated without
H atom (ρmin = −2.4fm/Å3, ρmax = 2.4fm/Å3, Δρ = 0.4fm/Å3, ρ(H) = −2.4fm/Å3); (b) the
conventional Fourier map computed using |Fobs| and phase angles calculated including the H atom
(ρmin = −12fm/Å3, ρmax = 18fm/Å3 (high ρ on Ni atoms is not shown), Δρ = 2fm/Å3, ρ(H) =
−10fm/Å3, ρ(Mn) = −12fm/Å3). Solid lines show positive values, thin dotted lines negative,
and thick dotted lines indicate zero level.

the map. Yet this minimum is only slightly deeper than other extremes, all of which
could be considered as noise, which appears due to the relatively low accuracy of the
experimental data. The confirmation of the H position was made by using chemical
intuition considering the crystal structure model, especially because the geometry of
the hydrogen bond O1−H· · ·O3 is nearly ideal. Positions of all atoms in the model
have been confirmed on the conventional Fourier map, which is shown in Fig. 20.6b.

20.4.5 Combined Rietveld Refinement

The final Rietveld refinement, combining both neutron and X-ray powder diffraction
data, was performed until the complete convergence was achieved, and the result-
ing observed and calculated powder diffraction patterns are illustrated in Fig. 20.7.
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Fig. 20.7 The observed and calculated powder diffraction patterns of NiMnO2(OH) after the com-
pletion of combined Rietveld refinement using neutron (a) and X-ray (b) powder diffraction data.

The refined parameters of the individual atoms are listed in Table 20.5.37 The agree-
ment between the observed and calculated X-ray data (Fig. 20.7b) is only slightly
inferior to the one obtained when only X-ray data were included in the refinement
(Fig. 20.5), which is likely associated with the contribution from a rather high back-
ground noise present in the neutron pattern (Fig. 20.7a) due to the incoherent scat-
tering of hydrogen. The relatively large value of the Bragg residual computed using
neutron data is also related to the fairly low quality of the neutron diffraction data,
in which the strongest peak-to-background ratio is less than 2.5 (also see relevant
discussion in Sect. 15.7.1).

The population parameter of hydrogen has been refined to a value of 62(5)%
and, therefore, the chemical composition of the material is NiMnO3Hδ, or
NiMnO3−δ(OH)δ, where δ = 0.62(5). Hence, a fraction of the Mn atoms should be
in the 4+ oxidation states. The latter was confirmed by the magnetic susceptibility
measurements. The preferred orientation parameters, refined for both preferred
orientation axes, that is, [010] and [100], are 0.74 and 1.40, respectively, resulting
in the texture factors ranging between 0.52 and 2.10, which corresponds to the
preferred orientation magnitude of about 4.

37 They can also be found online in the files Ch20Ex01c.exp and Ch20Ex01c.cif.
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Table 20.5 Atomic parameters and interatomic distances (in Å) after the completion of the com-
bined Rietveld refinement based on both the X-ray and neutron powder diffraction data col-
lected from NiMnO2(OH) powder. The refined chemical composition is NiMnO3−δ(OH)δ where
δ = 0.62(5). The unit cell parameters are: a = 2.86112(4), b = 14.6516(1), c = 5.27097(5) Å,
V = 220.959(7) Å3, the space group is Cmc21.

Atom Site x y z Ua
iso Bond distances (Å)

Mnb Nib Hb

Mn 4(a) 0 0.30556(6) 0.3800c 0.0164(5)
Ni 4(a) 1/2 0.4989(3) 0.618(2) 0.0159(4)
O1 4(a) 0 0.4480(2) 0.876(4) 0.0124(8) 2.07(1)2,

2.11(1)2

1.10(4)

O2 4(a) 1/2 0.3909(2) 0.382(3) 0.0124(8) 1.900(2)2 2.01(1),
2.13(1)

O3 4(a) 1/2 0.2308(3) 0.490(2) 0.0124(8) 1.892(3)2,
2.126(7)

1.73(4)

Hd 4(a) 0 0.387(3) 0.998(8) 0.0124(8)
a Displacement parameters of oxygen and hydrogen atoms were refined in the overall isotropic
approximation.
b The subscript after the distance shows how many times this bond occurs for this particular central
atom.
c The z-coordinate of this atom was fixed to define the origin of coordinates along the Z-axis in
this space-group symmetry.
d The refined population parameter of the hydrogen atom is g = 0.62(5). The hydrogen bond
characteristic angle O1–H...O3 is 143(4)◦.

Y
X

Z

Mn

Ni O H

Fig. 20.8 The model of the crystal structure of NiMnO3−δ(OH)δ. The covalent O1–H bonds are
shown as cylinders, and the H...O3 hydrogen bonds are shown using thin lines.
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It appears that all pieces of this crystallographic puzzle are now in place, and
they both agree with each other and with all available information. These are: the
chemical composition and the oxidation states of the metal atoms; the crystal struc-
ture in general, including the distribution of Mn and Ni atoms, and the amount and
positions of hydrogen atoms; geometry, which includes bond lengths, coordination
polyhedra, and hydrogen bonding; and basic magnetic properties, which confirm a
mixture of Mn3+ and Mn4+ in the material. Thus, the fully determined and refined
crystal structure of NiMnO3−δ(OH)δ makes good chemical and physical sense, and
its model is illustrated in Fig. 20.8.



Chapter 21
Crystal Structure of tmaV3O7

1

This example illustrates an unconventional case of solving a crystal structure that
shows relatively broad, and therefore, substantially overlapped at high angles Bragg
peaks in addition to a significant preferred orientation. The latter occurs due to a dis-
tinct platelet-like shape of the crystallites. The powder diffraction pattern (Fig. 21.1)
was collected from a tetramethylammonium (tma) trivanadate powder – a black
graphite-like crystalline material – that was thoroughly ground and screened. The
specimen was prepared by filling a 1 mm deep cavity of a sample holder without
applying any pressure (see Sect. 12.1) to minimize preferred orientation effects.

Regardless of all precautions in the sample preparation, the pattern (Fig. 21.1)
contains two distinct Bragg peaks, which are substantially stronger than all others.
The first peak at ∼9.4◦(d = 9.308 Å) is shown at one fourth of its height, and the
second at ∼19.1◦(d = 4.640 Å) has intensity ∼4 times lower than the first, yet it is
∼3 times higher than any other Bragg reflection. The intensities of the remaining
Bragg reflections are below 10% of the strongest. The d-spacing ratio for the two
strongest peaks is 2.006, which clearly indicates that they belong to the same zone,
for example, 001 and 002 in the 00l zone (or, in general, they are related as hkl and
2h2k2l, respectively). Combined with the markedly planar shape of the crystallites
(inset in Fig. 21.1), these features strongly suggest the presence of a substantial
preferred orientation, which may create problems in solving the structure and in
refining structural and profile parameters. On the other hand, the fact that the two
strongest reflections belong to the same zone can be used to correct the observed
peak positions for the sample displacement or zero-shift errors during the ab initio
indexing, as was actually done in the original work.2

1 P.Y. Zavalij, T. Chirayil, and M.S. Whittingham, Layered tetramethylammonium vanadium oxide
[N(CH3)4]V3O7 by X-ray Rietveld refinement, Acta Cryst. C53, 879 (1997); tma – tetramethylam-
monium [N(CH3)4]+. The material in a form of a black crystalline powder that was prepared by
hydrothermal treatment at 185◦C of a mixture of V2O5, tmaOH, and LiOH taken in 1:2:1 molar
ratio and acidified with CH3COOH to pH = 6.5.
2 This example can be used to illustrate an interesting approach that may be helpful in the indexing
from first principles. Assume that two patterns were collected from the same powder. The first, us-
ing a specimen with minimum or no preferred orientation, and the second with artificially induced

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 655
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 21,
c© Springer Science+Business Media LLC 2009
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Fig. 21.1 Powder diffraction pattern collected from the tmaV3O7 powder using Cu Kα radiation
on a Scintag XDS2000 diffractometer. The experiment was carried out in a step scan mode with
a step 0.02◦ and counting time 60 s per step. The vertical bars indicate calculated positions of
the Kα1 components of all possible Bragg reflections. The inset shows the SEM image of particle
morphology in the as-received state.

The first 41 peaks in the range below 2θ = 39◦ were indexed using the ITO
program in a monoclinic unit cell (M20 = 37), which was the best and the only so-
lution with all peaks indexed. The unit cell refinement resulted in a = 18.453 Å,
b = 6.560 Å, c = 8.437 Å, β= 91.12◦, and V = 1021.1 Å 3. Analysis of the system-
atic absences results in h+ l = 2n for h0l reflections and l = 2n for 00l reflections,
which unambiguously points out to P21/n (P21/c in standard setting) as the only
possible space-group symmetry. This makes indexing result highly probable after
recalling that P21/c is one of the most common groups observed among natural and
man-made materials (see Sect. 3.4.4).

21.1 Observed Structure Factors

Due to the complexity of the pattern, multiple overlaps (e.g., about 90 Bragg re-
flections are possible in the range of the first 40 observed peaks below 2θ = 40◦)

strong texture. Provided the texture axis coincides with one of the principal crystallographic direc-
tions (e.g., [001], [010], or [001]), the comparison of two patterns may provide critical information
about the indices of certain peaks, whose intensity was affected (increased or reduced) the most.
Once their indices are determined by analyzing the ratios between the corresponding d-spacings,
the problem of finding the remaining lattice parameters is simplified by eliminating one unknown.
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and the relatively broad peaks, the pattern decomposition was carried out using a
semimanual profile fitting. For each group of Bragg reflections, located within the
manually selected ranges of the powder diffraction pattern as described in footnote
4 on page 634, the least squares profile fitting was conducted by refining the individ-
ual 2θ position and integrated intensity of each peak. Common for each range were
parabolic background, full width at half maximum, and the mixing and asymmetry
parameters of the pseudo-Voigt function. The average Rp was ∼2.5%. When 2θ ex-
ceeds 35◦, peak widths increase to over 0.15◦. Together with the increasing density
of peaks, this makes it quite difficult to refine both profile and positional parameters
independently. Therefore, full widths at half maximum were linearly extrapolated
from previous ranges (Fig. 21.2) and only individual intensities and positions of
Bragg peaks were included as free least squares parameters.

This type of profile fitting is actually a modification of the Pawley decomposition
technique performed without restricting peak positions by unit cell dimensions, and
in small ranges instead of a full pattern. The observed intensities of 236 individual
peaks up to 2θ = 69◦ were determined in this way with a total of 425 Bragg reflec-
tions possible in this range of Bragg angles. Unobserved reflections were assigned
small intensity values (equal to about 1% of the intensity of the nearest observed
peaks) to improve the chances of solving the structure using direct methods.3
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Fig. 21.2 Full width at half maximum as a function of Bragg angle observed (below 2θ = 35◦)
and linearly interpolated (above 2θ = 35◦) in the powder diffraction pattern of tmaV3O7 shown in
Fig. 21.1.

3 Experimental data are found online in the following files: GSAS and tabular (XY) formats,
files Ch21Ex01 CuKa.raw and Ch21Ex01 CuKa.xy, respectively; the indexed list of the individ-
ual structure factors |Fobs| is in the file Ch21Ex01.hkl, and relevant crystal data are in the file
Ch21Ex01.ins. The latter two files are in SHELX format.
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21.2 Solving the Crystal Structure

Chemical composition of the powder was established from the following data: ther-
mogravimetric analysis in an oxygen atmosphere shows a ∼4% weight gain around
200◦C and then a sharp weight loss (19.2%) at ∼320◦C. The orange product, ob-
tained after the TGA, was identified from a powder diffraction pattern using the
Powder Diffraction File as vanadium pentoxide, V2O5. The decomposition temper-
ature, as detected from the weight loss, is typical for the loss of tetramethylam-
monium. Thus, the chemical composition of the residue, temperature, and weight
changes were used to deduct a possible formula of the material, the simplest of
which is tmaV3O7, giving a calculated weight loss of 19.5 wt.%. The latter is in
good agreement with the experimentally observed 19.2%. The oxidation states of
vanadium in [V3O7]− are 4+ for two vanadium atoms and 5+ for the third one. A
weight gain of 4% in an O2 atmosphere can be explained by the oxidation of all
vanadium to V5+ and by the formation of tmaV3O8. The theoretical weight gain of
4.7% is slightly higher than that observed experimentally (4%) because the oxida-
tion reaction was not completed before the decomposition began.

The density was not measured but assuming Z = 4, which is reasonable for the
P21/n space-group symmetry where the multiplicity of the general site is 4, the
calculated density is 2.20 g/cm3. Other Z values either do not agree with site mul-
tiplicities (e.g., Z = 3 or 5) or they result in the unrealistically high density (e.g.,
Z = 8). Thus, the final chemical composition, tmaV3O7, appears to be the only fea-
sible choice, and it was employed in the structure determination by using direct
phase recovery methods.

As mentioned earlier, pattern decomposition resulted in 236 distinguishable ob-
served peaks and, therefore, there is a substantial number of unresolved Bragg re-
flections, which is partially due to a significant peak broadening.4 Further, there
are 12 light atoms (C, N, and O, not counting 12 hydrogen atoms) per 3 vanadium
atoms in the formula unit. The ratio of light to relatively heavy atoms is 4:1. A frac-
tion of electrons in the heavy atoms is 41%, which may be insufficient to recover
the whole structure from the phase angles calculated using only the V atoms posi-
tions, especially taking into account the relatively poor resolution of the diffraction
data. Therefore, it is highly unlikely that the Patterson method is suitable in this
case, even though it is less sensitive to the data quality. Thus, this structure solution
case is far from trivial. All things considered, direct phase determination methods
should be employed to find a more significant portion of the model than just the
three independent vanadium atoms.

The structure was solved using SHELXS-90 based on the extracted structure am-
plitudes of 425 possible reflections below 2θ = 70◦. The direct phase determination
with Emin = 1.1 resulted in the E-map containing an acceptable model with three
“heavy” peaks (Table 21.1) that were automatically assigned to vanadium. The dis-
tances from the vanadium atoms to all but one from the list of nine strongest peaks

4 Structure amplitudes of unresolved Bragg reflections were determined by dividing the total in-
tensity among all overlapped reflections equally.
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Table 21.1 Maxima localized from the E-map refined for the best solution obtained by SHELXS-
90 using 425 reflections data below 70◦2θ; Emin = 1.1.

Atom/Peak x y z Uiso/Height Bond distances (Å) Commentsb

V1a V2a V3a

V1 0.794 0.176 0.019 429.9
V2 0.722 0.683 0.069 342.8
V3 0.785 −0.112 −0.252 281.2
Q1 0.797 0.189 −0.211 178.5 1.94 2.01 O1a
Q2 0.736 0.482 −0.031 151.7 2.31 1.59 1.96 O2a
Q3 0.892 0.192 0.068 137.1 1.85 O3a
Q4 0.664 0.019 −0.193 133.3 2.46 Deleted
Q5 1.040 0.270 −0.308 132.3 N5a
Q6 0.862 −0.295 −0.284 124.2 1.89 O6a
Q7 0.815 −0.129 0.037 121.1 2.05 2.15 O7a
Q8 0.760 0.263 0.242 116.8 2.07 1.71 O8a
Q9 0.685 0.118 0.040 114.7 2.06 O9a
a This column lists the distances to the indicated atom in Å.
b The names assigned to atoms consist of the chemical symbol of the element, E-map or Fourier
map peak number, and a letter (if any), which indicates the sequential number of the calculated
Fourier map: a – corresponds to the first iteration, b – second, and so on.

are a good match for V–O bonds. The only exception is Q4, which is too far from
all V atoms and too close to Q6 (1.32 Å). The Q4–Q6 distance is not listed in
Table 21.1.

Since the Q6 distance to V3 is nearly ideal (1.89 Å), the Q6, but not the Q4
peak was included into the trial model. One of the peaks, Q5, is not in contact
with vanadium or oxygen atoms, and it was treated as nitrogen. Peaks following
Q9 have conflicting distances with the first 12 strongest maxima. The analysis of
bond angles and coordination polyhedra confirms the reasonableness of this model.
Its composition,V3O7 plus one isolated light atom (presumably nitrogen from the
tetramethylammonium molecule), agrees well with the TGA data, symmetry re-
strictions, and estimated density.

The least squares refinement of this model using SHELXL-97 yields RF = 42%,
as shown in Table 21.2. All oxygen atoms and the isolated nitrogen atom look rea-
sonable because their distances to the vanadium atoms are within acceptable limits.
What is not shown in Table 21.2 is that the coordination polyhedra of V atoms make
both chemical and physical sense: vanadium oxide forms a layer, composed of VO5
pyramids and tetrahedral VO4, as will be illustrated below in Fig. 21.6. This layer
is similar to layers known for other vanadates. Thus, the model shown in Table 21.2
may be considered a good approximation for the following Rietveld refinement,
which is discussed later in the text. Since the difference Fourier map was calculated,
analysis of the existing maxima leads to a conclusion that four peaks (not all are the
strongest) can be interpreted as carbon atoms: they have reasonable bond distances,
and form a distorted tetrahedral surrounding of the already found nitrogen atom,
which is expected for the tetramethylammonium [N(CH3)4]+ cation.
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Table 21.2 Coordinates of atoms after structure refinement using SHELXL and peaks found on
the difference Fourier map, which may correspond to possible locations of carbon atoms. All data
below 2θ = 70◦ were used; RF = 42%.

Atom/Peak x y z Uiso/Height Bond distances (Å) Comments

V1a V2a V3a N5a

V1 0.791 0.178 1.015 0.016
V2 0.722 0.669 1.088 0.046
V3 0.782 −0.106 0.759 0.039
O1a 0.793 0.164 0.797 0.003 1.84 1.81,2.10
O2a 0.755 0.450 0.993 0.000 1.91 1.75 2.24
O3a 0.884 0.224 1.052 0.005 1.76
O6a 0.846 −0.192 0.757 0.008 1.31
O7a 0.781 −0.159 0.968 0.089 2.25 1.87
O8a 0.759 0.154 1.230 0.012 1.93 1.58
O9a 0.698 0.156 1.000 0.108 1.72
N5a 0.014 0.259 0.793 0.005
Q3 0.060 0.301 0.903 2.6 1.27 C3b
Q8 0.064 0.247 0.630 2.4 1.66 C8b
Q9 −0.036 0.440 0.761 2.1 1.53 C9b
Q11 −0.001 0.072 0.736 2.1 1.34 C11b
a This column lists the distances to the indicated atom in Å.

Table 21.3 Results of structure refinement by using SHELXL; RF = 42%. Coordinates of all atoms
were shifted by a vector (−1/2,0,−1/2) when compared to Table 21.2.

Atom/Peak x y z Uiso/Height Bond distances (Å) Comments

V1a V2a V3a N5a

V1 0.292 0.182 0.513 0.011
V2 0.224 0.665 0.585 0.042
V3 0.277 −0.108 0.257 0.050
O1a 0.291 0.193 0.298 0.000 1.81 1.86, 2.02
O2a 0.257 0.462 0.485 0.000 1.96 1.70 2.17
O3a 0.389 0.230 0.546 0.018 1.82
O6a 0.339 −0.181 0.249 0.051 1.24
O7a 0.272 −0.137 0.473 0.068 2.15 1.84 1.84
O8a 0.262 0.152 0.727 0.000 1.91 1.60
O9a 0.191 0.189 0.503 0.030 1.87
N5a −0.493 0.241 0.310 0.000
C3b −0.449 0.308 0.373 0.000 1.05
C8b −0.425 0.223 0.142 0.070 1.90 Incorrect
C9b −0.507 0.353 0.206 0.010 1.17
C11b −0.508 0.078 0.226 0.000 1.31
a This column lists the distances to the indicated atom in Å.

The result of structure refinement after including carbon atoms is shown in
Table 21.3. Neither the residual nor the distances improve, and one carbon atom,
C8b, moves too far away from the nitrogen. The inconsistency in the location of C8b
can be detected even without the refinement from a careful analysis of the nitrogen
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environment and/or from C–N–C bond angles. Yet again, this example emphasizes
the importance of chemical, physical, and geometrical criteria in the process of solv-
ing and refining crystal structures when quality, resolution and/or completeness of
the data are limited by the technique or by the properties of the specimen.

The high value of RF and poor convergence of the model (for example, the C–N
and O6a–V3 bond distances are getting worse instead of improving) are due to both
the low resolution, and the suspected strong preferred orientation, which was dis-
cussed at the beginning of this chapter but not confirmed at this point. Actually, in
the original paper (see footnote 1 on page 655), an arbitrary scale factor of two-third
was applied to the intensities of all h00 reflections in order to reduce preferred ori-
entation effects. Later we will see that the preferred orientation here is quite strong.
No correction has been applied so far in this example, yet the model of the crystal
structure is reasonable. Geometrical, chemical, and physical considerations play a
far more important role in this conclusion than the residual at this stage of the crystal
structure-determination process.

21.3 Completion of the Model and Rietveld Refinement

This example illustrates the completion of the model and Rietveld refinement of a
rather complex structure containing inorganic vanadium oxide layers (a total of ten
independent V and O atoms) intercalated with tetramethylammonium (tma) ions
(the latter has a total of 17 independent atoms: four carbon, one nitrogen, and 12
hydrogen) using conventional powder diffraction data. The diffraction data are of
high, but far from the best quality, and they are affected by a strong and unavoidable
preferred orientation (see plate-like shapes in the inset of Fig. 21.1). Here, we also
provide some basic information about the restraints,5 which can be imposed on the
known bond lengths and valence angles to improve both the stability of the least
squares, and the reasonableness of the model.

The following initial parameters were used in the model completion and refine-
ment:

– The initial model of the crystal structure was taken from Table 21.3.
– The default profile parameters were taken from the instrumental parameter file6

(see Sect. 20.3).
– The sample shift parameter Ss = 8.94 corresponds to the sample displacement

s = −0.195mm, which was determined together with the unit cell dimensions
during the least squares refinement of lattice parameters.

5 A constraint is an exact mathematical relationship existing between two or more parameters; it
completely eliminates one or more variables from the least-squares refinement. For example, y = x,
and B33 = B22 = B11, eliminate y, and B33 and B22, respectively (also see (16.2)). A restraint is
additional information, which is subject to a probability distribution. For example chemically (but
not symmetrically) identical bond lengths in tetramethylammonium: δN−C1 = δN−C2 = δN−C3 =
δN−C4 = 1.55 ±0.05Å. See Sect. 15.7.3 for details.
6 The file Scintag.prm is available online.
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– The space group is P21/n and the unit cell dimensions are a = 18.482, b =
6.5526, c = 8.4297Å, β = 91.103◦, as determined earlier.

– The overall isotropic displacement parameter, Uiso = 0.015 Å2.

21.3.1 Unrestrained Rietveld Refinement

Initially,7 only the scale factor and six coefficients for a shifted-Chebyshev polyno-
mial approximation of the background were refined. The resulting residuals, which
are shown in the second row of Table 21.4, are higher than one could expect for a
nearly complete model (all nonhydrogen atoms were thought to be located). As can
be seen from the inset in Fig. 21.3, both the calculated intensities and peak shapes
are far-off from their observed values. The intensity mismatch may be associated,
to a certain extent, with a considerable preferred orientation, which is expected
from the highly anisotropic shapes of the crystallites (see the inset in Fig. 21.1),
and nearly guaranteed easy cleaving of the particles along the planes parallel to the
vanadate layers expanded by the tma molecules.

Table 21.4 The progress of Rietveld refinement of the crystal structure of tmaV3O7.

Refined parameters Rp Rwp RB χ2

Initial7 60.7 68.6 99.4 535
Scale, shifted-Chebyshev polynomial background (Fig. 21.3) 35.7 44.7 45.7 228
Plus grain broadening (X) and preferred orientation, PO, with
[100] texture

33.0 41.7 41.6 198

Plus unit cell dimensions and asymmetry, α 22.9 30.2 35.0 104
Added O8; coordinates and Uindiv included, Table 21.5 15.2 19.7 20.3 45.1
Deleted O7 and C2 15.5 20.2 19.1 47.2
Added C2 and replaced C3 from a difference Fourier map
(Fig. 21.4)8

13.3 17.7 15.6 36.5

Strain broadening (Y ), asymmetry (α), and sample shift 13.2 17.1 13.9 33.4
Scale, background, and unit cell dimensions: first with porosity
(absorption) a1 and a2; and then with PO [100], X , sample shift
and overall Uiso

11.8 15.2 13.4 26.4

Excluded 8◦–12◦2θ; PO [010], then Y , α, Xa, Ya 10.0 13.4 16.8 16.1
Plus coordinates of V and O 8.6 11.6 15.4 12.1
Plus coordinates of N and C 6.1 8.2 13.2 6.12
Plus PO ratio, individual Uiso(V), overall Uiso(O) and Uiso
(N, C) (Fig. 21.5)9

4.7 6.3 11.9 3.59

Plus restraints on C–N distances and C–N–C angles
(Table 21.6)10

4.9 6.6 12.6 4.01

7 The starting model is found online in the files Ch21Ex01a.exp and Ch21Ex01a.cif, and the ex-
perimental powder pattern is located in the file Ch21Ex01 CuKa.raw.
8 Files online: Ch21Ex01b.exp and Ch21Ex01b.cif.
9 Files online: Ch21Ex01c.exp and Ch21Ex01c.cif.
10 Files online: Ch21Ex01d.exp and Ch21Ex01d.cif.
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Fig. 21.3 The observed and calculated powder diffraction patterns of tmaV3O7 after the initial
Rietveld least squares with only the scale factor and shifted-Chebyshev polynomial background
refined. The difference (Y obs

i −Y calc
i ) is shown using the same scale as both the observed and

calculated data but the plot is truncated to fit within the range [−1,500,1,500] for clarity. The
ordinate is reduced to ∼1/3 of the maximum intensity to better illustrate low intensity Bragg peaks.
The inset clarifies the range between 34◦ and 50◦2θ.
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Fig. 21.4 The observed and calculated powder diffraction patterns of tmaV3O7 after all nonhy-
drogen atoms are in place. The difference (Y obs

i −Y calc
i ) is shown using the same scale as both the

observed and calculated data but the plot is truncated to fit within the range [−1,500,1,500] for
clarity. The ordinate is reduced to ∼1/3 of the maximum intensity to better illustrate low intensity
Bragg peaks. The inset clarifies the range between 34◦ and 50◦2θ.
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Table 21.5 Results of Rietveld refinement after adding O8 and refining coordinates and indi-
vidual isotropic displacement parameters of all atoms in the model of the crystal structure of
tmaV3O7.Rwp = 19.7%. The values highlighted in bold indicate problems in the model.

Atom Site x y z Uiso
a Bond distances (Å)

V1b V2b V3b N1b

V1 4(e) 0.2954 0.1840 0.5117 0.039
V2 4(e) 0.2278 0.6740 0.5781 0.017
V3 4(e) 0.2837 −0.1077 0.2538 0.041
O1 4(e) 0.2792 0.171 0.279 −0.038 1.98 1.84,1.88
O2 4(e) 0.2358 0.480 0.493 0.007 2.23 1.47 2.18
O3 4(e) 0.3987 0.229 0.556 0.043 1.96
O4 4(e) 0.3664 −0.203 0.254 0.078 1.65
O5 4(e) 0.2686 −0.095 0.483 0.010 1.91 1.88 1.96
O6 4(e) 0.2585 0.153 0.733 0.049 2.01 1.61
O7 4(e) 0.2540 0.203 0.524 0.600 0.78
O8 4(e) 0.3542 0.216 0.931 0.040 1.54
N1 4(e) 0.5150 0.243 0.280 −0.011
C1 4(e) 0.5554 0.305 0.407 −0.060 1.36
C2 4(e) 0.5643 0.286 0.128 −0.068 1.61
C3 4(e) 0.4928 0.415 0.217 0.015 1.31
C4 4(e) 0.5034 0.064 0.234 −0.057 1.25
a Individual isotropic displacement parameters vary considerably because the model is incom-
pletely refined. The value, which is an order of magnitude larger than all others, indicates in-
correctly positioned atom.
b This column lists the distances to the indicated atom in Å.

Therefore, the subsequent refinement included the grain-size broadening para-
meter (X) and the preferred orientation along the [100] axis, resulting in some im-
provement of the fit. Rietveld minimization continued by including porosity effects,
which were refined with the majority of other parameters fixed, and then released.
The fit improves, and Rwp is reduced to ∼15%. To this point, the refinement of
the grain size and strain-broadening effects and their anisotropy, as well as the co-
ordinates of atoms in the organic molecule could not be easily conducted due to
noticeable correlations: the resulting shifts of free least squares parameters were
forcing the solution out of a global minimum.

One of the reasons for the instability of the least squares is the presence of an
extremely intense low Bragg angle peak (2θ ∼= 9.5◦), which is strongly affected
by various systematic errors, in addition to being much larger than all other reflec-
tions. The high intensity translates into the largest contribution of this peak into the
least squares (see (15.29)) and, therefore, strongly influences the refinement results.
Hence, from this moment and through the end of the refinement, the low Bragg
angle range below 12◦2θ was excluded from the least squares minimization. This
decision noticeably stabilizes the least squares, although it has little influence on all
figures of merit, and the latter is actually quite unexpected.11

11 Often, when a single and tremendously intense peak is present in the data, all residuals may
become quite low when the fit of the strongest peak is excellent. Even though the remaining peaks
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Fig. 21.5 The final Rietveld plot of tmaV3O7 data. Low Bragg angle range (2θ < 12◦) was ex-
cluded from the refinement because it contains the strongest peak (an order of magnitude stronger
than all others), which is most affected by experimental errors and may strongly influence the
refinement.

Next, a second preferred orientation axis, [010] was included into the minimiza-
tion, which was based both on the model of the crystal structure (the orientation
of chains in the vanadate layers) and on the observed shapes of the crystallites (the
plates are elongated in one direction). The refinement was completed by subse-
quently releasing the coordinates of atoms forming an inorganic framework (the V
and O atoms), the organic molecule (the N and C atoms), the individual Uiso for
the metal atoms (V1–V3), and the overall Uiso for the oxygen atoms and the or-
ganic molecule (two different overall parameters); these were refined together with
all profile parameters except for U , V , W , and P. The resulting fit is quite good as
shown in Fig. 21.5.

21.3.2 Rietveld Refinement with Restraints

Despite the reasonable fit between the observed and calculated intensities, the analy-
sis of the interatomic distances and bond angles reveals that the geometry of the

may not be fitted well, their intensities have little effect on all figures of merit because the denom-
inators in (15.19)–(15.22) become defined by a few extremely large numbers.
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tetramethylammonium ion, though acceptable considering data quality, quantity,12

and complexity, is slightly out of the expected range. The geometry was improved by
using restraints,13 which are realized in GSAS. The limits on the C–N bond lengths
were set to 1.500± 0.015 Å and the values of C–N–C angles were restrained to
109.5± 1.5◦. The weights for bonds and angles were manually selected as 4 and
6, respectively, after testing their influence on the least squares. Application of re-
straints slightly increases all residuals, as seen from a comparison of the two last
rows in Table 21.4, but it substantially improves the geometry of the organic mole-
cule (Table 21.6). Before the restrained refinement, the C–N bond lengths were in
the 1.48–1.67 Å range with the average bond length 1.56 Å. The C–N–C angles
varied from 100◦−127◦, and the spread from the ideal tetrahedral angle was quite
large. After the refinement with restraints, the C–N bond lengths fall within the
1.50−1.55 Å range and bond angles are between 106◦ and 114◦, both of which are
acceptable. It is worth noting that instead of restraints, a rigid-body refinement of

Table 21.6 Parameters of atoms and interatomic distances (in Å) in the model of tmaV3O7, fully
refined using the Rietveld technique in the GSAS environment. The unit cell parameters are a =
18.4878(5),b = 6.5552(2),c = 8.4318(2) Å, β= 91.131(2)◦, V = 1021.66(7) Å3, the space group
is P21/n.14

Atom x y z Uiso Bond distances (Å)

V1 V2 V3 N1

V1 0.2956(2) 0.1816(8) 0.5149(5) 0.027(2)
V2 0.2228(2) 0.6793(8) 0.5781(4) 0.018(2)
V3 0.2864(2) −0.1121(6) 0.2487(5) 0.028(2)
O1 0.2843(1) 0.178(2) 0.288(2) 0.014(1) 1.93(1) 1.93(1), 1.92(1)
O2 0.2465(5) 0.436(2) 0.476(2) 0.014(1) 1.92(2) 1.87(1) 2.00(1)
O3 0.3814(5) 0.213(2) 0.560(1) 0.014(1) 1.636(8)
O4 0.3677(4) −0.203(2) 0.234(1) 0.014(1) 1.624(9)
O5 0.2702(5) −0.106(2) 0.475(2) 0.014(1) 1.97(1) 1.88(1) 1.94(1)
O6 0.2555(5) 0.164(2) 0.731(2) 0.014(1) 1.99(1) 1.65(1)
O7 0.3627(1) 0.202(2) 0.928(1) 0.014(1) 1.59(1)
N1 0.5287(4) 0.267(1) 0.254(1) 0.034(4)
C1 0.5664(1) 0.287(2) 0.412(1) 0.034(4) 1.498(7)
C2 0.5849(1) 0.280(2) 0.125(2) 0.034(4) 1.519(7)
C3 0.4676(5) 0.427(2) 0.236(2) 0.034(4) 1.547(7)
C4 0.4927(1) 0.063(2) 0.245(2) 0.034(4) 1.495(7)

12 Due to the presence of the large number of lightly scattering atoms, intensity diffracted by this
powder specimen becomes extremely low above 2θ= 70◦(sinθ/λ< 0.37 Å−1). In a typical powder
diffraction experiment, it is necessary to collect the data to sinθ/λ ∼= 0.5 Å−1, preferably to even
higher values.
13 Restraints set limits on the bond distances and/or angles, which are known and are desired to
reach or keep during the least squares minimization (see Sect. 15.7.3). The influence of restraints,
when compared to a straightforward profile fitting, is regulated by varying the so-called weight,
which can be increased to force the geometry closer to the desired values. The latter generally
considerably worsens the fit if actual bond angles and distances contradict diffraction data.
14 All crystallographic data are also found online in the files Ch21Ex01d.exp and Ch21Ex01d.cif.
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Fig. 21.6 The fully refined model of the crystal structure of tmaV3O7 showing the layered vana-
dium oxide framework and the intercalated tma ions. The V1 and V3 atoms (large dark spheres)
are inside the dark gray [VO5] square pyramids; the V2 atoms (large gray spheres) are inside the
light gray [VO4] tetrahedra. The N atoms are dark spheres, the C atoms are light gray spheres,
and the H atoms are small black spheres. The H atoms positions were computed assuming the sp3

hybridization of carbon and trans-configurations of methyl groups.

the tma molecule, whose geometry is well-known, may also be employed (the rigid
body approach is yet another method of geometrical restrictions, which is realized
in GSAS).

The final Rietveld refinement yields a reasonable structural model (Fig. 21.6),
which fits nicely as a new member in the series of V3O7-based structures with vana-
dium oxide layers differing only by the orientations of the square pyramids and
tetrahedra.15 A specific feature of this refinement is a strong preferred orientation
along two axes, [100] and [010], with parameters τ100 = 0.76 and τ010 = 1.38 in a
ratio of 2:1. The preferred orientation multipliers range from 0.58 to 2.08, which
results in a total magnitude of about 4, similar to the case described Sect. 21.3.1.

15 P.Y. Zavalij, F. Zhang, and M.S. Whittingham, Crystal structure of layered bis(ethylene-
diamine)nickel hexavanadate as a new representative of the V6O14 series. Acta Cryst. B55,
953 (1999).



Chapter 22
Crystal Structure of ma2Mo7O22

1

A white crystalline powder, prepared by hydrothermal treatment at 200◦C of a mix-
ture of molybdic acid, H2MoO4, and methylammonium (ma) chloride, CH3NH3Cl,
taken in a 1:2 molar ratio and acidified with hydrochloric acid, HCl, to pH = 3.5,
resulted in a complex powder diffraction pattern, shown in Fig. 22.1. It was in-
dexed in the monoclinic crystal system as was discussed in Sect. 14.11.2. The space
group C2/c (or its acentric subgroup Cc) was established from the analysis of the
systematic absences, and the unit cell dimensions were refined using 120 resolved
reflections below 2θ = 60◦: a = 23.0648(6) Å, b = 5.5134(2) Å, c = 19.5609(5) Å,
β = 122.931(1)◦, and the sample displacement δ = −0.098(3)mm for a 250 mm
goniometer radius. The unit cell volume is 2087.8 Å3.

The Powder Diffraction File search was unsuccessful and therefore, further
analysis and a structure solution were undertaken. Thermogravimetric analysis in
an oxygen atmosphere reveals sharp 7.3 wt.% weight loss at 300◦C and the powder
diffraction pattern, collected from a solid residue after the TGA, confirms the forma-
tion of molybdenum oxide, MoO3. Assuming the following decomposition reaction:

(CH3NH3)mMonO3n+k → nMoO3 +mCO2 +m/2N2 +3mH2O (22.1)

it can be shown that the observed weight loss nearly precisely corresponds to m:n
ratio 2:7 and k = m/2 = 1. The latter ratio also follows from the white color of the
substance under investigation, which implies that Mo is in the 6+ oxidation state.
Thus, the chemical composition of the material is (CH3NH3)2Mo7O22.

22.1 Possible Model of the Crystal Structure

A relatively large volume of the monoclinic unit cell translates into a considerable
complexity of the diffraction pattern even in the case of a base-centered lattice, as
can be seen from Fig. 22.1. There are ∼10 reflections per degree at 2θ ∼= 50◦ and
about 20 reflections per degree at 2θ ∼= 100◦.

1 P.Y. Zavalij and M.S. Whittingham, The crystal structure of layered methylammonium molybdate
(CH3NH3)2Mo7O22 from X-ray powder data, Acta Cryst. C53, 1374 (1997).

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 669
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 22,
c© Springer Science+Business Media LLC 2009
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Fig. 22.1 Powder diffraction pattern collected from a ground ma2Mo7O22 powder using CuKα
radiation on a Scintag XDS2000 diffractometer in a step-scan mode with a step 0.02◦. The counting
time was 30 s/step in the range 7◦ ≤ 2θ ≤ 67◦ and 60 s/step for 67◦ ≤ 2θ ≤ 98◦. The counting
time was increased at high Bragg angles to improve the counting statistics for a large number of
weak Bragg peaks possible in this range. To ensure consistency of intensity measurements, the
high Bragg angle part of the diffraction pattern has been scaled to 30 s/step counting time for
further processing. The vertical bars indicate calculated positions of the Kα1 components of all
possible Bragg reflections. The inset shows the expanded view from 60◦ to 65.7◦, which contains
76 possible reflections.

The total number of possible Bragg reflections below 2θ = 98◦ is 1,032. There-
fore, before attempting an ab initio structure solution, a more thorough search of the
relevant databases was performed. A search based on the unit cell dimensions and
volume produced no results, but after searching the ICSD database for a matching
stoichiometry of the molybdate anion,2 two compounds, both with the space-group
symmetry C2/c, were found and they are listed together with the title compound in
Table 22.1.

Considering the unit cell dimensions listed in Table 22.1, the title compound
is likely to have a structure, which is closely related to both cesium and thallium
heptamolybdates. Perhaps they are isostructural to the extent where methylammo-
nium substitutes for metal cations in the crystal lattice. A thallium compound can
be also found in the Powder Diffraction File, record No. 30-1349. It is clear why all
powder pattern and unit cell dimensions searches failed: unit cell volumes are quite
different due to the differences in a. The latter is not surprising taking into account

2 First, 1174 compounds containing Mo and O were found. Second, the list was narrowed to 151
structures that have monoclinic base-centered or body-centered lattices. Third, “Mo7O22” text in
the chemical formula was searched. Searching all ICSD records for a specific text would be very
slow.
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Table 22.1 Unit cell dimensions for Mo7O22–containing compounds found in the ICSD database.

Compound a(Å) b(Å) c(Å) β(deg) V (Å3) ICSD References

Cs2Mo7O22 21.54(1) 5.537(3) 18.91(1) 122.71(3) 1,897.7 1887 Gatehouse
and
Miskin
(1975)3

Tl2Mo7O22 20.512(6) 5.526(2) 19.460(6) 125.20(3) 1,802.4 343 Tolédano
et al.
(1976)4

ma2Mo7O22 23.0648(6) 5.5134(2) 19.5609(5) 122.931(1) 2087.8

Table 22.2 Coordinates of Mo and O atoms in the unit cell of ma2Mo7O22 as assumed from the
model of the crystal structure of Tl2Mo7O22. The space-group symmetry is C2/c.

Atom Site x y z

Mo1 4(e) 1/2 0.1375 1/4
Mo2 8(f) 0.4081 0.0553 0.4751
Mo3 8(f) 0.3732 0.5000 0.0935
Mo4 8(f) 0.0533 0.1061 0.1378
O1 8(f) 0.3140 0.0880 0.3882
O2 8(f) 0.1496 0.1560 0.2199
O3 8(f) 0.0779 0.1750 0.4549
O4 8(f) 0.3995 0.1770 0.0266
O5 8(f) 0.3906 0.2330 0.1641
O6 8(f) 0.0393 0.3870 0.0677
O7 8(f) 0.0234 0.4480 0.1977
O8 8(f) 0.4960 0.4500 0.3196
O9 8(f) 0.4361 0.3800 0.4157
O10 8(f) 0.1395 0.2290 0.3577
O11 8(f) 0.2820 0.4630 0.0033

that methyl ammonium ions should occupy larger cavities both due to their size and
weaker interactions of a hydrophobic methyl group with oxygen atoms. In view of
the expected similarity among the three crystal structures listed in Table 22.1, the
atomic coordinates of the Mo7O22 layer from the Tl compound were used as the
initial model of the metal–oxygen framework for the methylammonium compound
(Table 22.2 and Fig. 22.2).

If our hypothesis about the relationship between the crystal structures of
Tl2Mo7O22 and ma2Mo7O22 is correct, refining relevant atomic parameters and
completing the model, that is, finding the coordinates of missing methylammonium
groups should be easier done after the Rietveld refinement, which is described in
Sect. 22.2.

3 B.M. Gatehouse and B.K. Miskin, The crystal structures of cesium pentamolybdate, Cs2Mo5O16,
and cesium heptamolybdate, Cs2Mo7O22, Acta Cryst. 31, 1293 (1975).
4 P. Tolédano, M. Touboul, and P. Herpin, Structure crystalline de l’heptamolybdate de thallium(I),
Tl2Mo7O22, Acta Cryst. B32, 1859 (1976).
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Fig. 22.2 Metal-oxide layer in the crystal structure of maMo7O22, shown in two different orienta-
tions. The Mo atoms are shown as large dark gray spheres, and the O atoms as small gray spheres.

22.2 Rietveld Refinement and Completion of the Model

Structure determination should be completed by locating the methyl ammonium
(CH3NH3

+) ion from a difference Fourier map and refining all relevant parameters.
When located in the unit cell, the N atom is clearly distinguished from carbon by
much shorter distances the former makes with oxygen, because of N–H · · ·O hydro-
gen bonding.

The following parameters were used at the beginning of this refinement:

– The initial model of the structure (the molybdenum oxide layer) was taken from
Table 22.2.

– The default profile parameters were taken from the instrumental parameter file5

as described in Sect. 20.3.
– The sample shift parameter Ss = 4.49 for the sample displacement s =
−0.098mm, was obtained together with the unit cell dimensions during lat-
tice parameters refinement.

5 The file Scintag.prm is available online.
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– The space group is C2/c and the unit cell dimensions are a = 23.065, b = 5.5134,
c = 19.561Å, β = 122.93◦ as determined earlier.

– The overall isotropic atomic displacement parameter was assumed at Uiso =
0.015Å2.

Initially,6 only the phase scale factor and six coefficients of the shifted-
Chebyshev polynomial to approximate the background were refined, resulting
in relatively high residuals, which are listed in Table 22.3. The poor fit is mainly
due to a mismatch between the observed and calculated intensities, as can be seen
in Fig. 22.3.

It is highly likely that the intensity mismatches are caused by a relatively crude
initial structural model since the atomic coordinates were taken directly from the Tl-
based structure, even without correcting for the lattice distortion along a (compare
the unit cell dimensions of both materials in Table 22.1). Further, a considerable
preferred orientation could be expected because of yet another distinctly layered
structure (see Fig. 22.2). Therefore, the subsequent refinement included unit cell di-
mensions, grain-size contribution to peak broadening (X) and preferred orientation
(PO) parallel to the [100] direction, along which the Mo7O22 layers are stacked.
Some improvement of the fit has been observed as a result. Unlike in the two exam-
ples considered in Chaps. 20 and 21, the preferred orientation is not as strong here,
possibly due to a less severe cleaving of the particles during grinding.

A noticeable improvement, especially in the Bragg residual, occurs when the co-
ordinates of all atoms have been refined together with the isotropic displacement
parameters: individual for the Mo atoms and one parameter, common for all oxygen
atoms. A second preferred orientation parameter along the [010] axis was added

Table 22.3 The progress of Rietveld refinement of the crystal structure of ma2Mo7O22.

Refined parameters Rp Rwp RB χ2

Initial model from Tl2Mo7O22 (Mo and O only)7 93.3 93.5 98.8 1,579
Scale and background (Fig. 22.3) 37.6 46.8 38.2 396
Plus unit cell, X , and preferred orientation (PO) along [100] 34.2 43.1 36.9 335
Plus coordinates, Uiso and PO along [010] 19.4 25.6 15.2 120
Scale, background, PO, X , asymmetry (α), and porosity a1, a2 13.7 18.8 12.0 64.3
Scale, background, PO, X , α, coordinates, Uiso (Fig. 22.4)7 12.9 17.9 10.6 58.5
Same as above with the region 2θ < 15◦ excluded 10.5 14.5 11.8 31.8
Plus PO ratio and Xa 7.2 9.4 7.1 13.5
X , Y , α, sample shift, N1 and C1 located and added 5.4 7.4 5.9 8.3
All profile parameters X , Y , α, sample shift, Xa, Ya, with fixed
PO ratio (Fig. 22.5 and Table 22.4)8

5.3 7.2 5.9 7.8

6 The starting model with all necessary parameters is found online in the files Ch22Ex01a.exp
and Ch22Ex01a.cif. Experimental data are found online in the data files Ch22Ex01 CuKa.xy and
Ch22Ex01 CuKa.raw.
7 Files online: Ch22Ex01b.exp and Ch22Ex01b.cif.
8 Files online: Ch22Ex01c.exp and Ch22Ex01c.cif.
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Fig. 22.3 The observed and calculated powder diffraction patterns of ma2Mo7O22 after the initial
Rietveld least squares minimization with only the scale factor and the background refined. The
difference (Y obs

i −Y calc
i ) is shown using the same scale as both the observed and calculated data

but the plot is truncated to fit within the range [−3,000, 3,000] for clarity. The ordinate is reduced
to ∼1/4 of the maximum intensity to better illustrate low intensity Bragg peaks. The inset clarifies
the range between 73◦ and 86◦ 2θ.

as well, but its effect on the improvement of the fit was quite small. A slightly
negative overall isotropic displacement parameter, Uiso = −0.002(4) Å2, for the O
atoms likely indicates a contribution from the specimen porosity, which to a certain
extent, also incorporates other unaccounted systematic errors, for example, absorp-
tion and beam size exceeding the sample dimensions at low Bragg angles due to
an improper selection of the divergence slit aperture. Therefore, the porosity effect
was optimized in a subsequent refinement using two parameters (a1 and a2) in the
Suortti approximation. The latter refinement was carried out after isotropic atomic
displacement parameters were set to 0.015Å2 for all molybdenum and 0.020Å2 for
all oxygen atoms, and all atomic parameters were kept fixed. The two porosity co-
efficients were refined to a1 = 0.31 and a2 = 0.16 starting from the initial 0.40 and
0.40, respectively, after which they were kept fixed through the end of the Rietveld
refinement. Next, the individual atomic parameters were released and re-refined.
This substantially improves the fit as shown in Fig. 22.4.

Regardless of the considerable improvement, some mismatches between the ob-
served and computed intensities remain. At this point, we are still missing one ni-
trogen and one carbon from the methyl ammonium ion, not counting six hydrogen
atoms, which are nearly impossible to locate from X-ray powder data (see Chap. 20).
Pinpointing the locations of carbon and nitrogen in the unit cell and their inclusion
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Fig. 22.4 The observed and calculated powder diffraction patterns of ma2Mo7O22 after preferred
orientation, individual atomic parameters of the Mo and O atoms were refined together with some
profile parameters and correction for porosity effects. The difference (Y obs

i −Y calc
i ) is shown using

the same scale as both the observed and calculated data but the plot is truncated to fit within the
range [−3,000, 3,000] for clarity. The inset clarifies the range between 73◦ and 86◦2θ.

into the model should indeed improve the fit. However, another potentially deleteri-
ous effect on the overall fit is the presence of a large intensity peak at low Bragg an-
gle (2θ ∼= 9◦), in front of which there is a much smaller and broader impurity peak.
Hence, similar to the earlier example, the range below 2θ = 15◦ was excluded from
further refinement. It is certainly worthwhile to note that this exclusion eliminates
∼400 points (∼9%) from the profile, which contains more than 4,600 data points
total, but it leaves out only 3(∼0.3%) of about 1,000 possible Bragg reflections. As
far as the structural model is of concern, such truncation of the experimental data is
indeed valid, and is often employed in structure determination from powder diffrac-
tion. With this modification, followed by several least squares minimization steps,
profile residuals decrease but RB is slightly increased.

The subsequent Rietveld refinement of the preferred orientation ratio and
anisotropic peak broadening, further improves the fit resulting in Rwp = 9.4%.
At this point, a difference Fourier map was computed and it produces two peaks,
which are notably stronger than the others. Their geometry is a nearly ideal match
with the two missing atoms – N and C – of the methyl ammonium ion. After in-
cluding them into the model and completing the Rietveld refinement, the final fit
(Fig. 22.5) is quite satisfactory.

Attempts to adjust other parameters, which can be potentially refined, do not
lead to a statistically significant improvement of the fit, or they have a tendency
to move the solution away from a global minimum, and/or the free variables out
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Fig. 22.5 The final Rietveld plot of ma2Mo7O22 data. Low Bragg angle range below 2θ= 15◦ was
excluded from the final refinement because it contains an extremely strong peak (nearly an order
of magnitude stronger that all other peaks), which is susceptible to all kinds of experimental errors
and may strongly influence the least squares minimization.

of an acceptable range. Certain combinations of simultaneously refined variables
cause the least squares to diverge, despite an already good fit. For example, adding
preferred orientation in a spherical harmonics approximation gives a minuscule ad-
ditional correction of 1.006 and, therefore, does not improve the fit. When individual
isotropic displacement parameters were refined for light atoms (O, C, and N), they
were chaotic: from unexpectedly high to unphysical negative values, without lower-
ing the residuals. When anisotropic displacement parameters of the heavy Mo atoms
were refined, they too, were unphysical, resulting in the so-called open ellipsoids,
or represented abnormally strong anisotropy – tremendously elongated or flattened
ellipsoids. Thus, the fit shown in Fig. 22.5 may be considered final, and the resulting
model of the crystal structure is found in Table 22.4.9

The correctness of the crystal structure is nearly certain because the Mo7O22
layer is isotypical to both Tl- and Cs-based compounds (see Table 22.1). The nearly
identical layer also exists in the intercalate, containing a larger organic molecule:
RMo7O22·H2O, where R = 4,4′-bipyridinium (H–NC5H4–C5H4N–H)2+.10 The ori-
entation of the methyl ammonium molecule (in other words, the recognition of
the nitrogen and carbon atoms) is also convincing because the N atom is much

9 The final model is also found online in the files Ch22Ex01c.exp and Ch22Ex01c.cif.
10 P.J. Zapf, R.C. Haushalter, and J. Zubieta. Crystal engineering of inorganic/organic composite
solids: the structure-directing role of aromatic ammonium cations in the synthesis of the “step”-
layered molybdenum oxide phase [4,4′-H2bpy][Mo7O22] ·H2O, Chem. Comm. 321 (1997).
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Table 22.4 Final atomic parameters and interatomic distances (in Å) of ma2Mo7O22 obtained
from Rietveld refinement using GSAS. The refined unit cell parameters are: a = 23.0707(3),
b = 5.51522(7), c = 19.5669(2)Å, β = 122.930(1)◦, V = 2,089.68(5)Å3, space group C2/c.11

Atom x y z Uiso Bond distances (Å)

Mo1 Mo2 Mo3 Mo4

Mo1 1/2 0.1231(7) 1/4 0.015(1)
Mo2 0.4211(1) 0.0676(5) 0.4783(2) 0.015(1)
Mo3 0.3912(1) 0.4777(6) 0.0970(1) 0.019(1)
Mo4 0.0480(1) 0.1020(5) 0.1380(2) 0.014(1)
O1 0.3381(7) 0.094(3) 0.4034(9) 0.014(1) 1.67(1)
O2 0.1309(8) 0.157(3) 0.216(1) 0.014(1) 1.71(2)
O3 0.0663(7) 0.146(3) 0.454(1) 0.014(1) 1.98(2) 1.97(2) 2.26(1)
O4 0.4146(9) 0.161(3) 0.037(1) 0.014(1) 1.76(2) 2.33(2)
O5 0.4087(7) 0.219(3) 0.168(1) 0.014(1) 2×1.90(1) 1.88(2)
O6 0.0358(7) 0.382(3) 0.066(1) 0.014(1) 1.98(2),

1.76(2)
2.00(2)

O7 0.0224(6) 0.439(3) 0.201(1) 0.014(1) 2×1.66(2) 2.48(2)
O8 0.4961(7) 0.432(3) 0.319(1) 0.014(1) 2×2.20(2) 2.21(1) 1.89(2)
O9 0.4472(8) 0.379(3) 0.422(1) 0.014(1) 2.29(2) 1.74(2)
O10 0.1191(7) 0.198(3) 0.360(1) 0.014(1) 1.56(2)
O11 0.3124(6) 0.425(3) 0.010(1) 0.014(1) 1.71(1)
N1a 0.2855(8) 0.991(4) 0.153(1) 0.014(4)
C1b 0.265(1) 0.143(4) 0.196(2) 0.014(4)
a Hydrogen bond distances for N1 are: 2.97(3) Å to O5, 2.88(3) Å to O2, 2.85(3) Å to O10, and
2.76(2) Å to O11.
b C1 distances: 1.46(3) Å to N1, 3.31(4) Å to O2, 3.25(3) Å to O1, and 3.39(3) Å to O2.

closer to the O atoms than the C atom, which is due to the formation of strong
N–H · · ·O hydrogen bonds. The C-H · · ·O interactions are much weaker, as follows
from the comparison of bond lengths: 2.8 to 2.9Å for N · · ·O and 3.3Å or more
for the C · · ·O distances. The C–N bond length, 1.46(3) Å, is within the expected
range (compare to single crystal data for maV3O7, where the C–N bond length is
1.487(8) Å). Stacking of the layers with the intercalated methyl ammonium ions
forming N–H · · ·O hydrogen bonds, which hold the layers together, is illustrated in
Fig. 22.6.

The peculiarity of this refinement is the relatively large unit cell with 17 nonhy-
drogen atoms in the asymmetric unit, resulting in 1,035 possible independent Bragg
reflections and a total of 75 free least squares variables, respectively. This example
also illustrates that the location and the quality of the determination of light C and
N atoms, forming a small organic molecule encapsulated between massive molyb-
denum oxide layers, is quite reliable, provided sufficient quality powder diffraction
data are available. The preferred orientation in this case is less severe when com-
pared to the two preceding examples: τ100 = 0.690(3) and τ010 = 1.091(4) with

11 All crystallographic data can be also found online in the files Ch22Ex01c.exp and
Ch22Ex01c.cif.
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Fig. 22.6 The crystal structure of ma2Mo7O22 shown along the Y -axis in perspective view. The Mo
atoms are depicted as large dark spheres located inside translucent octahedra formed by oxygen
atoms (small light spheres). The N atoms are shown as small black spheres and the C atoms as
small gray spheres. The N–[H] · · · O hydrogen bonds are shown using thin lines without hydrogen
atoms. Unlike in the crystal structure of the tmaV3O7 (see Chap. 21), the coordinates of hydrogen
atoms cannot be easily computed because methylammonium ion can rotate around the C–N bond,
although this rotation is restrained by the formation of N–H · · · O hydrogen bonds. Hydrogen atoms
could not be located from a differential Fourier map because of the presence of the large amount
of strongly scattering atoms (Mo) in the material.

an approximate 1:2 ratio, which corresponds to the correction range between 0.7
and 1.8, or to the preferred orientation magnitude of about 2.6. The latter value is
still significant, and it may be partially responsible for the unphysical anisotropic
displacement parameters of the Mo atoms.



Chapter 23
Crystal Structure of Mn7(OH)3(VO4)4

1

Using this example, we illustrate a solution of a medium complexity inorganic struc-
ture with ten independent atoms occupying various sites in noncentrosymmetric
hexagonal space-group symmetry. Several sites are occupied partially and therefore,
we also learn how to perform a sensible refinement of the chemical composition (a
simpler example has been considered earlier in Chap. 16). During the least squares
minimization, partially vacant sites are identified and their populations refined in the
first approximation independently, and then with reasonable restrictions on chemical
composition, until the complete convergence is achieved. This example also shows
how some of the constraints, realized in GSAS, can be invoked.

A diffraction pattern (Fig. 23.1) collected using a powder prepared from brown
rod-like hollow crystals produced hydrothermally2 (Fig. 23.1, inset) was indexed
employing TREOR and using 16 peaks below 2θ = 40◦ in the hexagonal crys-
tal system with a = 13.255, c = 5.265 Å, V = 801.1 Å3. The FN figure of merit,
F16 = 335(0.0021,23), is extremely high. ITO indexing produces the same result
but in a C-centered orthorhombic lattice with aortho = ahex,cortho = chex, and bortho =√

3ahex. Unit cell refinement using 150 reflections observed below 2θ= 130◦ results
in highly accurate unit cell parameters (see Table 23.1) and a sample displacement
of −0.112(3) mm for a 250 mm goniometer radius.3 The analysis of systematic
absences points to the following possible space groups P63/mmc, P63mc, P6̄2c,
P31c, or P3̄1c.

1 Idealized composition; F. Zhang, P.Y. Zavalij, and M.S. Whittingham, Synthesis and characteri-
zation of a pipe-structure manganese vanadium oxide by hydrothermal reaction, J. Mater. Chem.,
9, 3137 (1999).
2 The material was prepared by hydrothermal treatment of V2O5, Mn(CH3COO)2 and N(CH3)4Cl
taken in 1:1:4 molar ratio at 165◦C for 3 days.
3 The maximum absolute difference between the observed and calculated 2θ was 0.005◦, which is
an exceptionally low value.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 679
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 23,
c© Springer Science+Business Media LLC 2009
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Fig. 23.1 Powder diffraction pattern collected from a ground Mn7(OH)3(VO4)4 powder (screened
through a 38μm sieve) using Cu Kα radiation on a Scintag XDS2000 diffractometer in a step scan
mode with a step 0.01◦ and counting time 15 s/step in the range of 7◦ ≤ 2θ ≤ 70◦ and 30 s/step
for 70◦ < 2θ ≤ 132◦ to improve counting statistics of weak reflections observed at high Bragg
angles. The high Bragg angle range has been scaled to a constant counting time of 15 s/step for
further use of the data. The vertical bars indicate calculated positions of the Kα1 components of
all possible Bragg reflections. The inset shows the scanning electron microscopy image of peculiar
empty hexagonal-pipe particle morphology in the as-received state.4

23.1 Solving the Crystal Structure

Thermogravimetric analysis resulted in complex traces in both the oxygen and nitro-
gen atmospheres with gradual ∼2 and ∼4% weight losses, respectively. The powder
diffraction pattern of the thermal decomposition product can be identified as a mix-
ture of Mn2V2O7 and Mn2O3. Available data only allow a qualitative assumption
about the absence of organic or water molecules, simultaneously pointing to the
presence of a small amount of hydroxyl groups because of the continuous weight
loss.5 In general, it may be assumed that this compound contains Mn cations, OH−

groups and individual or shared corner [VO4]3− tetrahedra, as in V2O7, V4O12, or
(VO3)n. The latter conclusion is based on the color, since all other oxidation states
or coordinations of V would result in black, dark green, or dark blue crystals. This
reasoning is provided here to show how various chemical and physical information

4 Powder diffraction data are located in the files Ch23Ex01 CuKa.xy and Ch23Ex01 CuKa.raw
online.
5 Compounds containing organic molecules or water of crystallization usually demonstrate rapid
weight loss, while hydroxyl groups are lost slowly over a broad temperature range.
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may be used when considering composition, predicting, proposing, or solving the
structure.

An identification attempt using the Powder Diffraction File failed as no accept-
able matches were found. Undoubtedly, such high quality of the powder diffraction
data should be sufficient to solve the structure from first principles using either Pat-
terson or direct methods. Yet, a structure solution is not fully automated and there-
fore, the ICSD database was searched in the following order:

– All compounds containing oxygen and one or both of the metals, Mn and V,
resulted in 3,413 entries.

– All hexagonal and primitive trigonal systems were considered, thus reducing the
number of entries to 204.

– Search for the unit cell volume in the range between 700 and 900 Å3, that is,
within ∼100 Å3 of the title compound, shortened the list to 16 compounds.

– Twelve of them belong to a different diffraction class and two have different c/a
ratios, where c is much greater than a.

– Two remaining entries belong to the P63mc space-group symmetry and have sim-
ilar unit cell dimensions, as shown in Table 23.1.

Note that Mn6−x(OH)3(HPO3)4 has a unit cell volume and dimensions close to
those of the title material. In fact, it is much closer than the Zn-containing com-
pound, and is also present in the PDF file. Theoretically, it may have been found
by a powder pattern search-match. The search, conducted among all inorganic com-
pounds with a narrow (0.04◦) window and five matching reflections, failed in this
example because of the relatively large discrepancies in the unit cell dimensions
and, therefore, peak positions.

The Zn-containing structure may be easily modified to represent the crystal struc-
ture of Mn−OH−VO4 (the composition derived earlier) by substituting Zn with
Mn and S with V. Therefore, it was chosen as the initial model in the Rietveld refine-
ment (see Fig. 23.2 and Table 23.2). The second structure does not look promising,
because it consists of Mn cations, hydroxyl and HPO3 groups; the latter have a dif-
ferent geometry. It was not tested at all because the first model results in a successful
solution as discussed in the following section.

Table 23.1 Unit cell dimensions of potentially closely related compounds identified as a result of
searching the ICSD database.

Compound a (Å) c (Å) V (Å3) ICSD PDF References

Zn7(OH)3(VO4)3SO4 12.8130(6) 5.1425(2) 731.15 402-888 Kato et al. (1998)6

Mn6−x(OH)3(HPO3)4 13.1957(6) 5.1770(3) 780.68 75-269 47-868 Attfield et al. (1994)7

Mn7(OH)3(VO4)4 13.2294(1) 5.25529(7) 796.54 Refined from profile fitting

6 K. Kato, Y. Kanke, Y. Oka, and T. Zao, Crystal structure of zinc hydroxide vanadate (V)
Zn7(OH)3(SO4)(VO4)3, Z. Kristallogr. 213, 26 (1998).
7 M.P. Attfield, R.E. Morris, and A.K. Cheetham, Synthesis and structures of two isostructural
phosphites, Fe11(HPO3)8(OH)6 and Mn11(HPO3)8(OH)6, Acta Cryst. C50, 981 (1994).
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Fig. 23.2 The model of the crystal structure of Mn7(OH)3(VO4)4 derived from Zn7(OH)3
(VO4)3SO4 assuming that Mn atoms substitute for Zn (large black spheres), and V atoms occupy
positions of both V (large dark-gray spheres) and S (large light-gray spheres). Oxygen atoms
are shown as medium size light-gray spheres and hydrogen atoms are depicted using small black
spheres.

Table 23.2 Coordinates of Mn, V and O atoms in the unit cell of Mn7(OH)3(VO4)4 as assumed
from the model of the crystal structure of Zn7(OH)3(VO4)3SO4. The space-group symmetry is
P63mc.

Atoma Site x y z

Mn1 (Zn1) 12(d) 0.4266 0.0802 0
Mn2 (Zn2) 2(a) 0 0 0.8217
V1 (V1) 6(c) 0.1513 −0.1513 0.0257
V2 (S1) 2(b) 1/3 2/3 0.7479
O1 12(d) 0.0676 0.3460 0.8469
O2 6(c) 0.8090 −0.8090 0.815
O3 6(c) 0.5280 −0.5280 0.715
O4 6(c) 0.3967 −0.3967 0.642
O5 6(c) 0.9243 −0.9243 0.571
O6 2(b) 1/3 2/3 0.024
a Symbols in parentheses indicate the corresponding atoms in the parent Zn7(OH)3
(VO4)3SO4 structure.

23.2 Rietveld Refinement

The following parameters were used at the beginning of this refinement:

– The initial structural model was taken from Table 23.2 and the default profile
parameters were taken from the instrumental parameter data file,8 (Sect. 20.3).

8 The file Scintag.prm is available online.
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– The sample shift parameter Ss = 5.13 for the sample displacement s =
−0.112mm, which was obtained together with the unit cell dimensions at an
earlier stage of the structure solution.

– The space group is P63mc and the unit cell dimensions are a = 13.229 and c =
5.2553 Å.

– The overall isotropic displacement parameter Uiso = 0.015 Å2.

Initially,9 only the phase scale factor and six coefficients of a shifted-Chebyshev
polynomial to approximate the background were refined, which resulted in a rea-
sonable fit as shown in Fig. 23.3. The residuals, shown in Table 23.3, were quite
low, especially taking into account that the model of the crystal structure has been
adopted from a different compound, where the geometry is expected to be some-
what different (e.g., the SO4 group is smaller than the VO4 group). Combined with
a potential for a preferred orientation in the specimen,10 this causes obvious, but
not severe mismatches between the observed and calculated intensities (e.g., see the
inset in Fig. 23.3).
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Fig. 23.3 The observed and calculated powder diffraction patterns of Mn7(OH)3(VO4)4 after the
initial Rietveld minimization with only the scale factor and the background refined. The difference
(Y obs

i −Y calc
i ) is shown using the same scale as both the observed and calculated data but the plot

is truncated to fit within the range [–2,000, 2,000] for clarity. The inset clarifies the range between
78◦ and 106◦ 2θ.

9 The initial model with all other relevant parameters is found online in the files Ch23Ex01a.exp
and Ch23Ex01a.cif.
10 It is not expected to be significant because of the three-dimensional metal–oxide framework
(see Fig. 23.2), and not a layered structure as was always the case in the three previous examples.
Yet the obvious anisotropy of the crystallite shapes (see the inset in Fig. 23.1) suggests that the
possibility of a complex preferred orientation cannot be completely excluded.
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Table 23.3 The progress of Rietveld refinement of Mn7(OH)3(VO4)4.

Refined parameters Rp Rwp RB χ2

Initial 82.3 83.7 99.4 409
Phase scale and background (Fig. 23.3) 20.8 27.0 31.5 42.6
Plus unit cell, grain size broadening (X), peak
asymmetry (α) and preferred orientation (PO) along
[001]

13.3 16.6 18.7 16.1

Plus coordinates and individual Uiso of all atoms 11.1 13.7 14.4 11.0
Overall Uiso (Mn and V), overall Uiso (O), population
parameter (g) for Mn2, V2 and O6, (Fig. 23.4)11

11.0 13.8 14.3 11.1

Plus strain broadening, Y and Ya and sample
displacement

10.7 13.4 13.4 10.5

Porosity, a1 and a2, then coordinates of all atoms,
overall Uiso (Mn, V) and overall Uiso (O); population
parameters restricted as g(V2a) = g(O6) = 1−g(V2b)

10.7 13.3 13.7 10.4

Plus W , X , Y , asymmetry, sample displacement, Xa, Ya,
spherical harmonics of eighth order (6 free variables),
coordinates of all atoms

9.7 12.3 11.9 8.85

Plus 12 coefficients of the background, transmission
(Fig. 23.5, Table 23.4)12

9.0 11.7 10.7 7.98

The subsequent refinement included unit cell dimensions, grain-size peak broad-
ening (X), peak asymmetry (α) and preferred orientation along [001]. The latter is
a typical preferred orientation axis to try first, in both the hexagonal and tetragonal
crystal systems. All parameters refined, result in the noticeable improvement of the
fit, lowering the weighted profile residual by close to 10% – from 27 to 16.6%. Such
a substantial change is, for the most part, caused by adjustments in three parameters:
X from 0.023 to 0.044, asymmetry α from 0.025 to 0.010, and preferred orientation
along the [001] axis, with the associated parameter changing from 1 to 1.25 (correc-
tion factors vary between 0.5 and 1.4, which corresponds to the preferred orientation
magnitude of 2.8). The unit cell dimensions practically did not change.

Refining coordinates of all atoms except Mn2 and H13 and individual isotropic
atomic displacement parameters results in little improvement of the fit, yet another

11 Files online: Ch23Ex01b.exp and Ch23Ex01b.cif.
12 Files online: Ch23Ex01c.exp and Ch23Ex01c.cif.
13 The only potentially free variable in the coordinate triplet of Mn2 (z) was constrained
to z = 0.8217 [this somewhat unusual value has been taken from the original paper on
Zn7(OH)3(SO4)(VO4)3] to maintain the fixed origin along the Z-axis. The origin of coordinates
is not fixed in the space group P63mc due to the absence of symmetry elements (planes or axes),
perpendicular to Z, or centers of inversion. Thus, the z-coordinates (if none are fixed at a constant
value) become severely correlated and the whole structure may be shifted by any translation along
the Z-axis. A similar situation has already been discussed in the case of CeRhGe3 (see Chap. 17),
where there are no symmetry elements fixing the origin of coordinates along the Z-axis in the space
group symmetry I4mm. The coordinates of the H1 atom were constrained to be identical to those
determined in the original Zn-based structure because their refinement is unfeasible using the ex-
isting X-ray powder diffraction data due to the low scattering ability of a single-electron hydrogen
atom (also see Chap. 20).
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Fig. 23.4 The observed and calculated powder diffraction patterns of Mn7(OH)3(VO4)4 after pre-
ferred orientation, individual atomic parameters and occupancies of Mn2, V2, and O6 were refined.
The difference (Y obs

i −Y calc
i ) is truncated to fit within the range [–2,000, 2,000] for clarity. The inset

clarifies the range between 73◦ and 106◦ 2θ.

3% reduction has been achieved. All individual isotropic displacement parameters
are positively defined, but Uiso of Mn2, V2 and O6 were noticeably higher and
increase continually, which points to possible vacancies in these positions.14

The deficiency, if any, makes sense from a structural point of view as well, be-
cause the suspected defect sites are located along the tunnels, which exist around the
sixfold and threefold axes, thus leaving the main framework intact. At this point, the
overall Uiso were assigned separately to all metal and oxygen atoms and the occu-
pancies of the three suspicious sites were refined (Fig. 23.4).

23.3 Determining Chemical Composition

A difference Fourier map, calculated at this point, reveals an additional small elec-
tron density maximum in the tetrahedral cavity next to the partially occupied V2.15

14 When sinθ/λ increases, both the atomic scattering functions and temperature factors decrease
exponentially (see Sects. 9.1.3 and 9.1.2, respectively). Thus, the unreasonably high isotropic dis-
placement parameters of selected atoms indicate that the scattering ability of the respective sites
is reduced. Unlike in LaNi4.85Sn0.15, where some sites may be occupied by Ni, Sn, or their sta-
tistical mixtures (see Chap. 16), in Mn7(OH)3(VO4)4 the only reasonable explanation is that the
suspected sites are partially occupied.
15 This peak is characterized by a reasonable tetrahedral configuration created by the oxygen atoms,
except that it is too close to the existing V2. Considering the deficiency of the V2 site, it is feasible
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Thus, it is reasonable to assume that the V2 site splits into two independent par-
tially occupied positions with the coordinates, which distribute V atoms in a random
fashion in two adjacent tetrahedral positions, rather than being simply vanadium-
deficient. We label these two sites as V2a (corresponding to the former V2) and V2b
(corresponding to the Fourier peak). Refinement of this model slightly improves the
fit. Subsequently, additional profile parameters (Y , Ya, and sample displacement)
were included in the refinement, followed by a typical procedure of refining the
porosity in the Suortti approximation with fixed atomic coordinates and Uiso, and
then fixing the porosity parameters for the remainder of the refinement.

Obviously, the prohibitively short distance between V2a and V2b mandates that
the following relationship holds:

gV2a +gV2b = 1, in general,gV2a +gV2b ≤ 1 (23.1)

Further, the analysis of the values of the occupation factors refined for V2a, V2b,
and O6 points to the following relationship:

gV2a = gO6 (23.2)

These two relationships can be easily programmed in GSAS and in the major-
ity of Rietveld software codes by using a constraint apparatus, which was briefly
discussed earlier (see Sect. 16.3.3 and (16.2)). Since the constraints affect only the
shifts that are determined during every least squares refinement cycle but not the
values of the related parameters, the latter should be synchronized manually prior to
imposing constraints. For example, in our case when the computed shift for gV2a is
0.02, then the new values of the constrained parameters ((16.2), (23.1) and (23.2))
are calculated as follows:

gV2a = gV2a +0.02, gV2b = gV2b −0.02, and gO6 = gO6 +0.02 (23.3)

If, before the beginning of the constrained refinement, gV2a is not equal to gO6, for
example, they are 0.6 and 0.8, respectively, then after adding the shifts according to
(23.3), the corresponding values become 0.62 and 0.82. Thus, if needed, parameters
constrained in this way should be matched manually: in this example, both gV2a and
gO6 should be set to identical values and gV2a and gV2b should sum up to unity.16

The relationships between the occupancies in this crystal structure have both the
chemical and physical sense. The V2 atom and the surrounding four oxygen atoms
(three O4 and one O6) in a fully ordered structure create a chain shown in Fig. 23.6a,
where the occupied (gray) and empty (white) tetrahedra are alternated. Vanadium
atoms can also occupy pairs of corner-sharing tetrahedra, thus forming a well-known

that the structure contains two types of [VO4] tetrahedra distributed in the structure in a random
fashion.
16 Another example of synchronizing constrained parameters can be given considering the coordi-
nates of V1 and O2 – O5 atoms in this structure. All of them are located in the 6(c) sites, with the
coordinates of the independent atom xx̄z. Hence, when entering the respective coordinate parame-
ters it is necessary to ensure that y = −x.
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Fig. 23.5 The final Rietveld plot of Mn7(OH)3(VO4)4 data. The inset clarifies the details between
78◦ and 106◦ 2θ.

b

a

c O4 O6

- vacant site- VO4 - empty - V2O7

Fig. 23.6 Chains of tetrahedra in the Mn7(OH)3(VO4)4 structure. The fully ordered chain (a)
with the composition VO4, where vanadium occupies every other tetrahedron (shaded) and the
remaining are vacant (white). The disordered chain (b), where some vanadium atoms occupy pairs
of neighboring tetrahedra, forming V2O7 groups (hatched), thus creating vacancies on the O6 site
and resulting in the chemical composition (VO4)1−x(V2O7)x/2.

V2O7 group (hatched in Fig. 23.6b). When a “mistake” occurs and a vanadium atom
“jumps” to the next empty site, the corner sharing pair of empty tetrahedra appears,
in which the shared corner must be vacated because the corresponding oxygen atom
is no longer bound to any vanadium atom. Therefore, vacancies on the O6 sites,
constrained as shown in (23.2), should exist, as was confirmed by the independent
refinement of gO6.
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The subsequent refinement included profile parameters X , Y , Xa, Ya, peak asym-
metry, sample displacement, and transparency shift. Preferred orientation was
switched from the March–Dollase model to the eighth-order spherical harmonics
expansion (six variables total) and 12 coefficients of the shifted-Chebyshev polyno-
mial background approximation were employed. A reasonably good fit, shown in
Fig. 23.5, was achieved as a result.

The preferred orientation correction was accounted for in two ways during the
refinement. First, the March–Dollase approach with one texture axis [001] resulted
in τ = 1.247(2) and correction coefficients ranging from 0.52 to 1.39, which gives
the preferred orientation magnitude of 2.70. Second, the eighth-order spherical har-
monics expansion, which corresponds in this crystal system to six adjustable para-
meters (200, 400, 600, 606, 800, and 806) was attempted with the March–Dollase
preferred orientation correction (i) left as is but fixed (i.e., the spherical harmonics
were in addition to the March–Dollase model), or (ii) eliminated. Both ways result
in practically an identical result except for the magnitudes of the coefficients. In the

Table 23.4 The final atomic parametersa,b and interatomic distances (in Å) in the crystal structure
of Mn7(OH)3(VO4)4 obtained from Rietveld refinement using GSAS. The fully refined unit cell
parameters are: a = 13.2292(1), c = 5.25467(6) Å, V = 796.42(2) Å3, the space group is P63mc.17

Atom Site x y z Bond distances (Å)

Mn1 Mn2 V1 V2a

Mn1 12(d) 0.42649(8) 0.07921(8) 0.0061(8)
Mn2 2(a) 0 0 0.8217c

V1 6(c) 0.15041(6) −0.15041(6) 0.031(1)
V2a 2(b) 1/3 2/3 0.775(1)
V2b 2(b) 1/3 2/3 0.497(5)
O1 12(d) 0.0731(3) 0.3380(4) 0.863(1) 2.211(4), 1.602(5)2

2.191(5)
O2 6(c) 0.8108(3) −0.8108(3) 0.811(2) 2.122(4) 1.720(7)
O3 6(c) 0.5271(3) −0.5271(3) 0.710(2) 2.178(6),

2.392(6)
O4 6(c) 0.3987(2) −0.3987(2) 0.638(2) 2.172(4) 1.661(6)3
O5 6(c) 0.9199(3) −0.9199(3) 0.586(2) 2.214(7)3, 1.637(6)

2.302(8)3
O6 2(b) 1/3 2/3 0.118(3) 1.81(2)
H1d 6(c) 0.433 −0.433 0.156
a Uiso is 0.0145(8) Å2 for metal atoms and 0.0140(8) Å2 for O atoms.
b The population parameters are as follows: gV2a = gO6 = 0.819(4),gV2b = 0.181(4) = 1 −
gV2a,gMn2 = 0.873(4) ∼= (1− 2/3gV2b). All other sites are fully occupied.
c This parameter was kept constant at all times to maintain a fixed origin of coordinates along
the Z-axis. Although GSAS enables automatic fixation of the origin of coordinates, the refinement
may become unstable, especially when the fit is far from the best.
d Taken from the Zn-based compound and kept constant during the refinement.

17 Full set of crystallographic data is also found online in the files Ch23Ex01c.exp and
Ch23Ex01c.cif.
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second case, the correction coefficients ranged from 0.61 to 1.54, which corresponds
to the preferred orientation magnitude of 2.52.

The fully refined model of the crystal (coordinates, population, and individual
isotropic displacement parameters of atoms) and interatomic distances in the crystal
structure of Mn7(OH)3(VO4)4 is found in Table 23.4, and it is shown in Fig. 23.7
as the arrangement of the coordination polyhedra of the Mn and V atoms.

In addition to the already discussed vacancy relationships among V2a, V2b, and
O6 atoms, the refined deficiency of the Mn2 site is nearly equal to two-third of the
vacancies observed on the V2b site. Although the experimentally established rela-
tionship is approximate, when obeyed exactly (i.e., when gMn2 = 1−2/3gV2b), the
oxidation state of manganese in the Mn2 site is 3+, while it is 2+ for the Mn1 site.
All things considered, the following expression describes the chemical composition
of Mn7(OH)3(VO4)4:

Mn2+
6 Mn3+

1−y(OH)3(VO4)4−x(V2O7)1/2x; x = 0.181(4), y = 2/3x

This formula has been confirmed from single crystal diffraction data (RF =
2.2%), which give x = 0.202(3).18 The population of the Mn2 site is 0.792(4),
slightly lower than expected 1− 2/3x = 0.865. A small difference is acceptable
because a tiny single crystal may not be representative of a large polycrystalline
sample, especially in the case of occupational disorder.

Mn2

V2
Mn1

V1

X

Z

Y

Fig. 23.7 The model of the crystal structure of Mn7−y(OH)3(VO4)4−x(V2O7)x/2 shown along the
Z-axis. The Mn1 sites (Mn2+) are shown as light spheres inside the dark gray [MnO6] octahedra,
the partially occupied Mn2 sites (Mn3+) are shown as light spheres in the light gray [MnO6] octa-
hedra, both the V1 and V2 sites are shown as dark spheres inside the light gray [VO4] tetrahedra.
Hydrogen atoms from the hydroxyl groups are not shown in this figure.

18 P. Zavalij, S. Luta, and M.S. Whittingham, unpublished.



Chapter 24
Crystal Structure of FePO4

1

This example illustrates how a model of a crystal structure can be derived, based
on a suspected analogy with related compounds followed by geometry optimization
to enhance and improve the deduced structural model. Such a complex approach
in this case has been adopted because of poor crystallinity of the material, which
results in a low resolution of its powder diffraction pattern (see Fig. 24.1), where
the full widths at half maximum range from 0.25◦ to 0.55◦. Further, the pattern is
relatively complex, with as many as 255 Bragg reflections possible for 2θ ≤ 37.5◦

when Mo Kα radiation is employed.
As we find out in this chapter, there are only six atoms in the asymmetric unit but

Rietveld refinement of the model is also complicated by the inadequate quality of
the powder diffraction data. It even precludes an unrestrained refinement of even the
optimized model, and similar to the example considered in Chap. 21, restraints are
imposed on the geometry of the PO4 groups. We, therefore, take this opportunity to
illustrate the role of restraint weighting in Rietveld refinement.

The title compound was prepared by thermal decomposition of the monoclinic
dihydrate FePO4·2H2O. The solid-state preparation reaction is likely responsible for
the poor crystallinity, and therefore, peak broadening.2 The inadequate crystallinity
of the material results in the insufficient accuracy of both the peak positions and
intensities. A serious lack of resolution in this particular powder diffraction pattern,
which occurs due to the physical state of the powder, translates into considerable
problems in both the indexing and structure determination. When experimental data
collected using CuKα radiation were employed in the ab initio indexing, ITO and
TREOR runs did not result in a reasonable solution.

A single-crystal diffraction experiment conducted using a small low-quality
single crystal yielded only about 20 detectable Bragg reflections, all at low an-
gles. This truncated array of data was insufficient even for a reliable automatic

1 Y. Song, P.Y. Zavalij, M. Suzuki, and M.S. Whittingham, New iron(III) phosphate phases: Crystal
structure, electrochemical and magnetic properties, Inorg. Chem. 41, 5778 (2002).
2 This example is also an excellent illustration of a case where the physical state of a material
precludes single-crystal diffraction analysis, and a powder diffraction experiment becomes the only
option for a solution of its crystal structure.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 691
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 24,
c© Springer Science+Business Media LLC 2009
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FePO4: Cu Kα and Mo Kα
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Fig. 24.1 Powder diffraction patterns collected from a monoclinic FePO4 using Cu Kα radiation
on a Scintag XDS2000 diffractometer (top, step scan, 0.02◦ step) and MoKα radiation on a rotating
anode Rigaku TTRAX diffractometer (bottom, step scan, 0.01◦ step). Bragg angles in the pattern
collected using CuKα radiation have been converted to match MoKα radiation. The two patterns
are shown with a substantial displacement along the intensity axis for clarity. The vertical bars
indicate calculated positions of Bragg reflections for the locations of Kα1 components.3

indexing, but after a visual inspection, a monoclinic or an orthorhombic lattice with
the unit cell dimensions a ∼= 5.5, b ∼= 7.5, and c ∼= 8.0Å was clearly noticeable. A
solution with similar unit cell dimensions and a monoclinic angle around 95◦ was
found by employing ITO using MoKα data with 19 of 20 low Bragg angle peaks
indexed. The unit cell dimensions are a = 5.489(1), b = 7.493(1), c = 8.055(1) Å,
β = 95.81(1)◦. The monoclinic symmetry of the lattice and the systematic absences
(likely those of the space group P21/n) are the same as in the parent hydrate,
FePO4·2H2O.

24.1 Building and Optimizing the Model of the Crystal Structure

The identical symmetry and similar unit cell dimensions between the hydrated and
anhydrous iron phosphates are found in the two orthorhombic modifications (see
Table 24.1). Moreover, the latter have closely related crystal structures, that is, the
same bonding in the FePO4 frameworks except for the water of crystallization in

3 Experimental data, collected using MoKα radiation, are online: Ch24Ex01 MoKa.xy and
Ch24Ex01 MoKa.raw.
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Table 24.1 The comparison of unit cell dimensions of the orthorhombic and monoclinic modifi-
cations of hydrated and anhydrous iron phosphates.

Compound Space group a(Å) b(Å) c(Å) β(deg) V (Å3)

FePO4·2H2O Pbca 9.867 10.097 8.705 – 867.3
FePO4 Pbca 9.171 9.456 8.675 – 752.4
FePO4·2H2O P21/n 5.307 9.755 8.675 90.16 449.1
FePO4 P21/n 5.489 7.493 8.055 95.81 329.7

Y
Z

X

Y
X

Z

Z
X

Y

?

a b

c d

Fig. 24.2 Analogy between the crystal structures of the orthorhombic hydrate FePO4·2H2O (a)
and anhydrous orthorhombic FePO4 (b) motivates the use of the monoclinic hydrate FePO4 ·2H2O
structure (c) as the initial model of the monoclinic anhydrous FePO4 (d). The crystal structures are
shown as packing of the corresponding [XO4] polyhedra of iron (small black spheres) and phos-
phorus (large white spheres) atoms without the corresponding oxygen atoms from water molecules
that complete the coordination polyhedra of iron in the hydrates. Oxygen atoms are located in the
corners of the corresponding polyhedra.

the hydrated compound (see the reference listed in footnote 1 on page 691 for more
details). This fact can be used to solve the crystal structure of the anhydrous mono-
clinic compound assuming that FePO4 connectivity remains intact in the two mono-
clinic modifications as well. As illustrated in Fig. 24.2, the coordinates of Fe, P and
four independent O atoms from the hydrated monoclinic compound were incorpo-
rated as the initial model of the crystal structure of the anhydrous phosphate (Model
A, listed in Table 24.2). Water molecules, present in the monoclinic FePO4 ·2H2O,
were ignored in Model A.
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Table 24.2 Coordinates of Fe, P and O atoms in the unit cell of FePO4, model A, as assumed from
the model of the crystal structure of the monoclinic FePO4 ·2H2O.

Atom Site x y z

Fe 4(e) 0.0914 0.6739 0.6916
P 4(e) −0.0870 0.3509 0.6839
O1 4(e) −0.1164 0.5068 0.6700
O2 4(e) 0.1659 0.3221 0.7638
O3 4(e) −0.0944 0.2814 0.5268
O4 4(e) −0.3002 0.2937 0.7831

Unfortunately, a straightforward Rietveld refinement of Model A fails because
it is far from reality, in addition to the low resolution of powder diffraction data.4

Therefore, the initial Model A must be improved before attempting the Rietveld
refinement. The improvement was achieved using the following two approaches to
geometry optimization:

1. The first optimization attempts were conducted using routines that are included
in the Materials Studio5 suite of crystallographic programs: DMol3,6 which is
a molecular optimization technique based on density functional theory quan-
tum mechanical approach, and CASTEP7 (Cambridge Sequential Total Energy
Package), which is the ab initio quantum mechanical density functional theory
approach enabling modeling of properties of solids. However, when the FePO4
model A was employed, these optimizations were unstable and did not converge
in a reasonable number of cycles. Therefore, an attempt was made to optimize
Model A, in which Fe3+ is substituted with Al3+. Both the latter and the former
often form similar or isostructural compounds because of the same oxidation
states and nearly identical radii, yet Al as a p-element, has a simpler electronic
structure. The optimization performed by DMol3 successfully converged in 16
cycles resulting in Model B.8 The initial Model A, intermediate Model B1 ob-
tained after five optimization cycles, and final Model B are compared in Fig. 24.3.
It is easy to see the contraction of the octagonal ring where the water molecule
was located in the hydrate, which makes excellent chemical and physical sense.
Changes in the geometry of coordination polyhedra also make perfect sense,
where strongly distorted tetrahedra in Model A (which are actually parts of the

4 Note the considerable contraction along the b-axis, Table 24.1, and the expected distortion of the
FePO4 framework upon dehydration, Fig. 24.2a, b.
5 Accelrys Inc., San Diego, CA, http://www.accelrys.com/.
6 B. Delley, J. Chem. Phys. 92, 508 (1990); B. Delley, J. Chem. Phys. 94, 7245 (1991); B. Delley,
J. Phys. Chem. 100, 6107 (1996); and B. Delley, J. Chem. Phys. 113, 7756 (2000).
7 M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64,
1045 (1992), V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, and
R.H. Nobes, Int. J. Quant. Chem. 77, 895 (2000), and M.D. Segall, P.L.D. Lindan, M.J. Probert,
C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Cond. Matt. 14, 2717 (2002).
8 The optimization run takes approximately 24 h on a PC equipped with a single 2 GHz processor.
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Fig. 24.3 Back-bone models of the crystal structure of the anhydrous monoclinic FePO4 projected
along the X-axis: the initial model A derived from the monoclinic hydrate FePO4 ·2H2O (a); model
B1 after five optimization cycles as AlPO4 using DMol3 (c); model B after final optimization as
AlPO4 (16 cycles) using DMol3 (d); model C optimized using DLS-76 (b).

octahedra in the hydrate) are optimized into almost ideal tetrahedral configura-
tions of oxygen around iron atoms.9

2. In parallel to the quantum-mechanical optimization, in which multiple attempts
took many days of computing and analyzing the results, a purely geometrical op-
timization was attempted using the DLS-76 (Distance Least Squares) program,10

which is based on minimizing the differences between the existing and desired
distances that were set for Fe–O and P–O to 1.88 and 1.53 Å, respectively. In
addition, the O–O distances were set to 3.07 and 2.50 Å, respectively, for [FeO4]
and [PO4] tetrahedra. The process converges very quickly resulting in Model
C,11 which is quite similar to Model B obtained from DMol3. We note, however,

9 It is worth noting that energy minimization was carried out without applying any geometrical
restrictions. Nonetheless, quite reasonable geometry resulted.
10 Ch. Baerlocher, A. Hepp, and W.M. Meier, DLS-76, a program for the simulation of crystal
structures by geometric refinement. Institute of Crystallography and Petrography, ETH: Zurich,
Switzerland (1997).
11 The optimization run takes approximately 2/100th of a second on a PC equipped with a single
2 GHz processor.
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Table 24.3 Coordinates of Fe, P and O atoms in the unit cell of the anhydrous FePO4, model B,
obtained from DMol3 optimization.a

Atom Site x y z

Fe 4(e) 0.4385 0.7795 0.0764
P 4(e) 0.5544 0.4012 0.2674
O1 4(e) 0.5001 0.5792 0.1797
O2 4(e) 0.7980 0.4120 0.3802
O3 4(e) 0.5793 0.2536 0.1386
O4 4(e) 0.3450 0.3548 0.3720
a In order to directly compare models A and B, the atomic coordinates of
the former should be transformed as: x′A = xA + 1/2, y′A = yA, z′A = zA − 1/2
because atomic coordinates undergo several transformations during the
optimization process.

that the latter was achieved without any restrictions imposed on the geometry of
the crystal structure. Therefore, if geometrical restrictions in the DLS attempt are
wrong or even somehow are far from correct, the algorithm may not (and highly
likely will not) converge to a reasonable model. The final model C is compared
with the initial Model A and Models B1 and B from the DMol3 optimization in
Fig. 24.3. This model was not tested further because Model B was successful.

Model B, obtained as a result of DMol3 optimization, is shown in Table 24.3 and
it is used as the initial approximation in Rietveld refinement discussed next.

24.2 Rietveld Refinement

The experimental powder diffraction pattern was collected on a rotating anode
Rigaku TTRAX powder diffractometer using monochromatized Mo Kα radiation
from 5◦ to 50◦ 2θ in a step-scan mode with a 0.01◦ step and counting time of
10 s/step. The following parameters were employed at the beginning of this refine-
ment:

– The initial structure model derived and optimized above (Table 24.3);
– The default profile parameters from the instrumental parameter file12 obtained

from the refinement of the LaB6 standard as described in Sect. 20.3.
– The space group P21/n and the unit cell dimensions a = 5.489, b = 7.493,

c = 8.055 Å, and β = 95.81◦, see Table 24.1.
– The sample shift parameter Ss = 3.99 for the sample displacement s=−0.087mm

obtained together with the unit cell dimensions at a stage of lattice parameters
refinement.

– The overall isotropic displacement parameter Uiso = 0.015Å2.

12 The file Rigaku.prm is available online.
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Table 24.4 The progress of Rietveld refinement of the crystal structure of anhydrous FePO4 using
low resolution X-ray powder diffraction data.

Refined parameters Rp Rwp RB χ2

Initial 75.2 77.2 98.6 1,414
Scale factor, linear background adjusted manually 57.4 62.7 67.4 933.
Peak broadening X and Y multiplied by 10 then
phase scale (Fig. 24.4)

29.4 35.6 32.6 301.

Plus two background coefficients, coordinates, PO4
group soft-restrained with weight 4

13.3 16.8 22.6 67.6

Same but soft-restraints with weight increased to 10 11.1 13.8 13.8 46.2
Plus grain size broadening, X 8.5 11.1 10.7 30.1
Plus unit cell dimensions, PO [010], overall Uiso
(Fig. 24.6)13

8.1 10.8 9.9 28.1

Plus strain broadening, Y , then asymmetry and
sample displacement

7.3 9.7 6.2 22.7

Four coefficients of the background 6.5 8.6 4.1 17.9
X ,Y , peak asymmetry, Xa,Ya; (Fig. 24.7,
Table 24.5)14

5.2 7.1 3.6 12.3

Only the range from 5◦ to 37.6◦ 2θ was used in all calculations.15,16 The back-
ground was approximated manually with a straight line (i.e., two coefficients of a
shifted-Chebyshev polynomial were employed in this approximation) since unam-
biguous automatic background determination was impossible at the beginning of
the refinement due to heavily overlapped Bragg peaks. Only two data points (the
first and the last in the range) were used for background estimation. The initial re-
finement of the phase scale factor resulted in Rwp = 62.7% (Table 24.4) and a quite
poor fit, which showed that all calculated Bragg peaks were too narrow. Therefore,
both peak-broadening parameters, X and Y , were manually increased by a factor
of 10, yielding an acceptable weighted profile residual of 35.6% and resulting in a
tolerable fit, as shown in Fig. 24.4.

Both the complexity and low resolution of the experimental data, coupled with
the possibility of far-from-ideal coordinates of some or all atoms in the optimized
model of the crystal structure17 present an interesting dilemma in the selection of the
next set of parameters for a subsequent Rietveld refinement. Although it is obvious

13 Files online: Ch24Ex01b.exp and Ch24Ex01b.cif.
14 Files online: Ch24Ex01c.exp and Ch24Ex01c.cif.
15 This range of Bragg angles corresponds to a 2θmax ∼= 89◦ when using Cu Kα radiation. The use
of MoKα radiation in this case was justified by a large goniometer radius (285 mm) and therefore,
potentially high resolution, and by the presence of the significant amount of Fe in the material (iron
strongly absorbs Cu Kα radiation, see Table 8.3 on page 192, and creates a substantial fluorescent
background).
16 The initial model with all needed crystallographic parameters is found online in the files
Ch24Ex01a.exp and Ch24Ex01a.cif, and the experimental data are in the file Ch24Ex01
MoKa.raw.
17 It is worthy reminding one that the quantum chemical optimization of the geometry has been
performed after Fe was substituted by Al.
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Fig. 24.4 The observed and calculated powder diffraction patterns of the anhydrous FePO4 after
the initial Rietveld least squares minimization with only the scale factor and linear background
refined. The difference (Y obs

i −Y calc
i ) is shown using the same scale as both the observed and

calculated data but the plot is truncated to fit within the range [−2,000, 2,000] for clarity. The inset
clarifies the range between 20◦ and ∼29◦ 2θ.

that profile parameters require further improvement, it also appears that both the
inadequacy of the initial fit and low resolution of the data may not allow their un-
ambiguous refinement. On the other hand, atomic coordinates likely deviate signif-
icantly from their real values, which is easily seen in Fig. 24.4, indicating signifi-
cant discrepancies between the observed and calculated intensities for many Bragg
reflections.

Hence, the following refinement step included a linear background and coordi-
nates of all atoms.18 In anticipation of considerable problems with the least squares
minimization and high probability of moving away from a global minimum, re-
straints were employed to maintain the well-known geometry of the phosphate
group PO4.19 Its initial geometry, obtained as a result of quantum chemical opti-
mization, was nearly perfect: the P–O distances vary between 1.52 and 1.54 Å, while
the O–P–O angles were between 107.8◦ and 110.2◦. The following restrains were
imposed: the P–O distance of 1.53±0.01 Å, and the O–P–O angles of 109.5◦±2.0◦;

18 Positions (coordinates) of atoms in the unit cell are the strongest contributors into the computed
integrated intensities of Bragg reflections assuming that preferred orientation effects are weak. For
this powder, preferred orientation was expected (and later found) to be minor due to small particle
sizes and predominantly isotropic particle shapes.
19 A thorough reader should be able to verify the correctness of this statement by attempting
Rietveld refinement without imposing restraints.
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the weight was set to 4. The first 5 cycles of the refinement substantially improve
the fit, lowering Rwp by more than 20%, down to 16.8%. This reduction, however,
comes at the cost of worsening the PO4 geometry: the P–O distances now range
from 1.43 to 1.61 Å and the O–P–O angles vary from 103◦ to 117◦. The Fe–O dis-
tances remain acceptable, and they range from 1.83 to 1.95 Å but one additional
elongated Fe–O bond of 2.27 Å emerges.

In order to improve the geometry, the restraint weight factor was increased to 10,
and several subsequent least squares cycles were conducted. The weighted residual
further decreases and, most important, the geometry of the PO4 group recovers. The
correctness of this adjustment is demonstrated in Fig. 24.5, which illustrates relative
shifts of all atoms as functions of least squares cycle number. It is obvious that
setting the weight to 4 does little to stabilize the convergence, while increasing the
weight to 10 results in a rapid reduction of the magnitudes of atomic displacements
over a few refinement cycles.

The subsequent refinement included unit cell dimensions, the grain-size peak-
broadening parameter X , preferred orientation in the March–Dollase approximation

Least squares cycle number
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Fig. 24.5 Relative shifts of individual atoms (left-hand scale) and average shift (Δ) to standard
deviation (σ) ratio during the first 12 cycles of the least squares refinement of the coordinates of
all atoms in the model of the crystal structure of the anhydrous monoclinic FePO4. Both the P–O
distances and O–P–O angles were restrained with the weight of four during the initial five cycles.
The weight was set to ten beginning from cycle number six. The first five cycles indicate erratic
shifts of P and O atoms. Beginning from the sixth cycle, the shifts of all atoms steadily decrease
and approach zero after cycle No. 12.
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with the texture axis [010],20 and the overall isotropic displacement parameter Uiso,
in addition to the linear background, phase scale, and coordinates of individual
atoms, which were still restrained with the weight set to 10.21 The preferred ori-
entation correction in this example is insignificant. The corresponding parameter
(τ010 = 0.986) results in a range of correction factors varying between 0.98 and 1.04
and therefore, it can be ignored. This refinement results in an obvious improvement
of the geometry of the crystal structure. The P–O distances now range from 1.48 to
1.58 Å and the O–P–O angles are from 102◦ to 115◦. The profile fit (Fig. 24.6) is
also improved, with the weighted residual lowering to 10.8%.

To further improve the fit, the following parameters were consequently included
into the least squares minimization: strain peak-broadening parameter Y , then peak
asymmetry, α, and sample displacement. At this point, a linear background was
substituted by a fourth-order shifted-Chebyshev polynomial and refined with all
other profile parameters fixed. Finally, all relevant parameters were refined together.
The convergence was achieved, and the final fit, which is illustrated in Fig. 24.7, is
quite satisfactory, considering the poor resolution of the powder diffraction pattern.
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Fig. 24.6 The observed and calculated powder diffraction patterns of the anhydrous FePO4 after
the refinement of coordinates of all atoms restrained to match the ideal geometry of the PO4 group
with the weight set to 10 plus linear background, preferred orientation, grain-size peak broadening
parameter and unit cell dimensions. The inset clarifies the range between 20◦ and ∼29◦ 2θ.

20 The axis was chosen after trying the three major crystallographic directions as potential preferred
orientation axes.
21 The same weight was maintained through the end of this Rietveld refinement.
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Fig. 24.7 The final Rietveld plot of FePO4 data. The inset clarifies the details between 20◦ and
∼29◦ 2θ. The true background is quite difficult to determine due to heavily overlapped Bragg
peaks, especially at 2θ > 20◦.

Table 24.5 Atomic parametersa and interatomic distances (in Å) in the model of the crystal
structure of the anhydrous monoclinic FePO4 obtained from Rietveld refinement using GSAS.
The unit cell dimensions are: a = 5.4856(6), b = 7.4882(8), c = 8.0626(9) Å, β = 95.694(8)◦,
V = 329.56(5) Å3, space group P21/n.22

Atom Site x y z Bond distances (Å)

Fe P

Fe 4(e) 0.3891(5) 0.8060(4) 0.0585(3)
P 4(e) 0.5878(9) 0.4539(5) 0.2680(6)
O1 4(e) 0.471(1) 0.638(1) 0.225(1) 1.864(7) 1.544(6)
O2 4(e) 0.835(2) 0.464(1) 0.384(1) 1.944(8), 2.224(8) 1.569(7)
O3 4(e) 0.639(2) 0.362(1) 0.112(1) 1.857(8) 1.488(7)
O4 4(e) 0.402(2) 0.344(1) 0.362(1) 1.801(8) 1.565(7)

a Overall Uiso = 0.018(1) Å2.

The resultant structural parameters are listed in Table 24.5.23 The improvement
of the PO4 geometry is quite significant: the final P–O distances range from 1.49
to 1.57 Å with the average 1.54 Å; the O–P–O angles agree quite well and they

22 Full crystallographic data can be found online in the files Ch24Ex01c.exp and Ch24Ex01c.cif.
23 The complete geometrical characteristics of this crystal structure are found online in the file
Ch24Ex01c.cif.
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Fig. 24.8 The crystal structure of the monoclinic anhydrous FePO4 shown along the X-axis in
various representations. The octagon of alternating Fe (black spheres) and P (gray spheres) atoms
with weak Fe–O bonds (thin dark lines) stretching across the octagon (a). The packing of the
distorted [FeO4] (light gray) and nearly ideal [PO4] (dark gray) tetrahedra (b). The packing of the
stretched [FeO5] trigonal bi-pyramids (light gray) and [PO4] (dark gray) tetrahedra (c).

range from 107.4◦ to 113.9◦. The coordination of the Fe atom remains distorted and
its polyhedron has been transformed from a tetrahedron (the result of the geometry
optimization) into a trigonal bi-pyramid as shown in Fig. 24.8a. The latter is often
observed in Fe(III) compounds. One of the Fe–O bonds remains elongated, and
it is shown using dark lines extending across the octagonal tunnel in Fig. 24.8b,
which illustrates the distorted oxygen tetrahedra around the Fe atoms. Figure 24.8c
highlights the presence of [FeO5] trigonal bi-pyramids.



Chapter 25
Crystal Structure of Acetaminophen, C8H9NO2

At the end, we illustrate the determination of the crystal structure of a simple or-
ganic compound using powder diffraction data collected on a standard laboratory
X-ray powder diffractometer. The compound is N-(4-hydroxyphenyl)ethanamide,
p-HO —C6H4—NH—COCH3, which is a well-known active component of a pain
reliever. It is also known as acetaminophen, p-hydroxyacetanilide, panadol, parac-
etamol, or Tylenol R©. The material is readily available and its molecule is relatively
simple, as can be seen in Fig. 25.1. We hope that this example is useful to readers
interested in the structures of pharmaceuticals, especially considering that far from
perfect crystallinity is common in these compounds, which is also the case in this
particular specimen.

The powder was prepared by crushing and gently grinding two 500 mg pills of
Tylenol R© purchased at a local drug store.1 The powder diffraction pattern shown
in Fig. 25.2) was collected on a D8 Advance powder diffractometer equipped with
SolX point detector using Cu Kα radiation. Moderate peak broadening is evident:
peak widths at half maximum range from 0.13◦ at low Bragg angles to 0.25◦ when
2θ ∼= 40◦. At higher angles, broadening becomes more significant but it cannot be
quantified because peak intensities deteriorate as rapidly as the density of the Bragg
peaks increases. Such a rapid reduction of the scattered intensity is typical for or-
ganic compounds, and is due to rapidly decaying atomic scattering factors of C, N, O
and H (see Fig. 9.4 showing the atomic scattering functions of O and H) and to char-
acteristically large thermal displacements of light atoms (see Fig. 9.2). Thus, there
are only about 40 distinguishable Bragg peaks in the pattern for which positions
and intensities can be reliably determined, while there are near 130 possible reflec-
tions in the same range of Bragg angles (2θ < 47◦). Combined, these complications
make the solution and refinement of this crystal structure particularly challenging
and, basically, necessitate the use of direct space techniques. Here, we employ the

1 The inactive ingredients listed on the package, such as carnauba wax, castor oil, cellulose, corn
starch, magnesium stearate, titanium dioxide and others are not detected by X-ray powder diffrac-
tion, evidently due to amorphous state and/or small quantities.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 703
Characterization of Materials, DOI: 10.1007/978-0-387-09579-0 25,
c© Springer Science+Business Media LLC 2009
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Fig. 25.1 The illustration of
the molecular structure of
acetaminophen. The carbon
atoms and four hydrogen
atoms in the phenyl ring are
not labeled for clarity.
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Fig. 25.2 Powder diffraction pattern collected from two ground Tylenol R© pills using Cu Kα
radiation on a Bruker D8 Advance diffractometer equipped with SolX detector, The pattern
was recorded from a spinning flat sample using a step scan over the range of Bragg angles
10◦ ≤ 2θ ≤ 60◦ with a 0.01◦ of 2θ step and counting time of 13 s per step2. The vertical bars
indicate positions of the Kα1 components of the Bragg peaks observed below 47◦ of 2θ.3

simulated annealing method incorporated in FOX. The latter application is also used
for automatic peak search and ab initio indexing. In conclusion, the Rietveld refine-
ment using GSAS illustrates extensive use of restraints.

2 The total experiment time was 18 h using SolX point detector. The same counting statistics can
be achieved in less than an hour when a position-sensitive detector (LynxEye) is used. Using the
point detector leads to a much lower background, especially at low Bragg angles, and to about
10–15% lower instrumental broadening of the Bragg peaks, which is crucial in this case due to a
significant peak overlap and the presence of an amorphous component.
3 Diffraction data are located in the files Ch25Ex01 CuKa.xy and Ch25Ex01 CuKa.raw available
online.
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FOX – “Free Objects for Crystallography” – is a free, open-source application
for ab initio structure determination developed by Favre-Nicolin and Černý.4 We
selected this application to further illustrate direct space and general optimization
methods because FOX is readily available,5 relatively simple to use, and is suitable
for all types of structures (molecular and extended frameworks) and chemical com-
pounds (intermetallic, inorganic, organic, and metal–organic). It works with both
powder and single crystal diffraction data. Simulated annealing and parallel tem-
pering methods implemented in FOX are briefly described in Sect. 15.1.3, and this
section serves as a practical example of applying them to solve the crystal structure
of acetaminophen. As has been done throughout this book, only a few basic features
relevant to this example are discussed here. This Chapter is not meant to become
a substitute for a tutorial and/or a full application manual, which the reader should
study before attempting to either follow our steps, or attempt an independent solu-
tion of this or any other crystal structure. FOX is undergoing continuous revisions
and development.6 For example, recently it was expanded with several important
features, which include automatic peak search, ab initio indexing, and Le Bail full
profile fitting, all of which are discussed in the Sect. 25.1.

25.1 Ab Initio Indexing and Le Bail Fitting

Once positions of the Bragg peaks are determined, the ab initio7 indexing of the
pattern shown in Fig. 25.2 can be performed using any of the classic indexing ap-
plications (TREOR, ITO and DICVOL). However, FOX is convenient because it
has a built-in automatic peak search utility, which may be followed by two ab initio
indexing methods. One is a differential evolution algorithm8 and another is a new
implementation of DICVOL (see Sect. 14.10.2) – the successive dichotomy of vol-
ume algorithm specifically written for FOX. The latter is used in this section along

4 V. Favre-Nicolin, R. Černý, FOX, “Free objects for crystallography”: a modular approach to ab
initio structure determination from powder diffraction. J. Appl. Cryst. 35, 734 (2002); R. Černý,
V. Favre-Nicolin, FOX: A friendly tool to solve nonmolecular structures from powder diffraction.
Powder Diffraction. 20, 359 (2005); V. Favre-Nicolin, R. Černý, A better FOX: using flexible
modeling and maximum likelihood to improve direct-space ab initio structure determination from
powder diffraction. Z. Kristallogr. 219, 847 (2004).
5 The FOX program, manual, tutorials, and other information are available at: http://objcryst.
sourceforge.net/Fox.
6 The same version of FOX as used in this book can be downloaded via a link at the publisher’s
site in order to proceed in exactly the same way as described below.
7 Even though the crystal structure of acetaminophen is well-known, in order to illustrate capa-
bilities of direct space techniques we assume that neither the unit cell nor the crystal structure
of acetaminophen is known. We limit prior knowledge only to the connectivity of atoms in the
molecule, which is well-known from the general theory of molecular compounds.
8 For more details see: R. Černý, V. Favre-Nicolin, J. Rohlı́ček, M. Hušák, Z. Matěj, R. Kužel, Ex-
panding FOX: Auto-indexing, grid computing, profile fitting. Commission on Powder Diffraction,
Newsletter No. 35, 16 (2007), available at http://www.iucr-cpd.org/Newsletters.htm.
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with Le Bail full pattern fitting, which is employed to confirm the correctness of the
indexing solution and to establish space-group symmetry. The profile parameters
from the automated and semiautomated Le Bail fitting are also needed for structure
determination because they are not optimized during the solution process.

Indexing and structure solution in FOX begin by creating a new crystalline phase,
making a new pattern by importing experimental data, and setting other required
parameters such as radiation (Cu Kα1,2) and polarization factor (0.5). The next step
is the determination of the background, which is performed either by an automatic
Bayesian spline interpolation or from user defined points. In this case, the default –
20 points – produces a satisfactory background approximation shown in Fig. 25.3,
and reveals the presence of an amorphous component, which apparently results from
numerous inactive ingredients (see footnote 1 on page 703).

Positions of Bragg peaks can be determined in FOX by using either the auto-
matic peak search routine incorporated in the FOX9 or visually by manually marking
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Fig. 25.3 Experimental powder diffraction pattern of acetaminophen (solid line) and the back-
ground (dashed line) determined automatically using the 20-point Bayesian spline interpolation.
The solid line at the bottom depicts the background enlarged by a factor of two along the intensity
axis revealing the presence of amorphous phases. The vertical bars indicate positions of the Kα1
components of the Bragg peaks found by the automatic peak search routine.

9 Manipulations of Bragg peaks (searching, adding, removing, importing, etc.) and indexing are
available from the menu that may be invoked by right clicking in the FOX window that displays
the powder pattern (see the FOX application manual for details).



25.1 Ab Initio Indexing and Le Bail Fitting 707

peaks on the plot, or both. In this case, the automatic peak search yields 11 strongest,
well-resolved peaks below 30◦ of 2θ marked by vertical lines in Fig. 25.3.10 We
note that adding weak and/or overlapped Bragg peaks manually normally decreases
the chances of a successful indexing. If employed, manual additions of Bragg
peaks should be followed by profile fitting in order to obtain more reliable peak
positions.11

The ab initio indexing performed using FOX’s defaults12 and the 11 automati-
cally found peaks (Fig. 25.3) results in a single solution with a very high figure of
merit13 of 415.9, and a primitive monoclinic unit cell with a = 7.102, b = 9.390,
c = 11.708 Å, β = 97.41◦, and V = 774.3 Å3. This solution is reasonable because
on one hand, every indexing figure of merit higher than 50 is usually worth attention
and further examination, and on the other hand, the gravimetric density calculated
using Z = 4, which is the multiplicity of a general site in a primitive monoclinic lat-
tice (ρ = 1.296 g/cm3), is absolutely “normal” for an organic compound. Further
confirmation of the indexing solution comes from the Le Bail full pattern fitting us-
ing the obtained monoclinic cell. In FOX, pattern fitting is performed over 20 cycles
(20 + 10 when executed from the Cell Explorer window) by sequential refinement
of the following groups of parameters:14

– Zero shift
– Constant full width at half maximum
– Variable full width at half maximum
– Gaussian–Lorentzian mixing parameter
– Asymmetry
– Displacement and transparency shifts
– Background
– Unit cell

Le Bail profile fitting using all parameters listed here results in Rwp = 29.2%
after the first 20 cycles. The residual drops rapidly to Rwp = 7.27% over the next
10 cycles showing a good fit between the observed and calculated profiles. We note
that the profile fitting executed from the Cell Explorer window (as was done in this
case) is performed twice with 20 and 10 refinement cycles, respectively. In addition,
FOX automatically determines the range of 2θ used for the Le Bail fit, which in this
case, was about 45◦ (max sinθ/λ = 0.25).

10 These peaks can also be imported (loaded) into FOX from the data file Ch25Ex01.txt, which is
available online.
11 The current version of FOX does not have an option of fitting individual Bragg peaks. This can
be done using other applications and then the results can be imported into FOX.
12 Quick tab in FOX’s Cell Explorer window.
13 The figure of merit used in FOX is called “score” and is derived from MN (see Sect. 14.4.2)
according to the following equation: score = MN × dlast, where dlast is the d-spacing of the last
peak used in the indexing (V. Favre-Nicolin, Private communication, 2008).
14 By default, all parameters are free variables but refinement of any or all groups can be sup-
pressed.
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The resulting Rwp is low enough to look for possible space-group symmetry by
analyzing indices of Bragg reflections observed in the pattern. This analysis leads
to the space group P21/n because all observed (nonzero intensity) 0k0 reflections
have k even (i.e., k = 2n), and all observed h0l reflections have h + l = 2n. Bragg
reflections that do not satisfy either of these conditions, that is, 0k0 with k = 2n+1
and h0l with h + l = 2n + 1(these are marked with the triangles in Fig. 25.4) have
zero intensity since they are forbidden by symmetry and, therefore, systematically
absent. The following 20 refinement cycles in the space group P21/n further re-
duce Rwp to 5.73%. This reduction serves as an additional proof of the correct
choice of the space-group assignment (we recall that this space group, or P21/c
in standard setting, is the most frequent group found in organic structures, see
Sect. 3.4.4). When different space groups, P2/m or P21/m (or their noncentrosym-
metric subgroups P2, P21 or Pm) with fewer forbidden reflections are tested, only a
slightly lower residual (Rwp = 5.66%) results. This small reduction occurs because
adding forbidden reflections into the fit leads to a few additional free intensity vari-
ables and discrepancies between the observed and calculated profiles are naturally
reduced. When space groups with incorrect forbidden reflections are tested using
the same unit cell, for example, P21/a or P21/c, this leads to much higher residuals,
Rwp > 40%.
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Fig. 25.4 Le Bail fit showing the observed (circles) and calculated (solid line) diffraction patterns
of acetaminophen. The vertical bars indicate calculated positions of the Kα1 components of Bragg
peaks. The open triangles indicate locations of reflections that are forbidden in the space group
P21/n. The solid line at the bottom shows the difference between the observed and calculated
profiles.



25.2 Solving the Crystal Structure 709

Repeating the full profile fit several times and using all available 2θ range by
setting maximum sinθ/λ to 0.325, the following figures of merit can be reached:
Rwp = 5.27% and Rp = 4.79%. This corresponds to a very good fit, as can be seen
in Fig. 25.4. There is still room for improvement, such as increasing the number
of the background points to better describe the amorphous component. However,
the goal of this full profile fitting is not to obtain the most accurate values of the
integrated intensities, but only to get a reasonable set of profile parameters that will
not be optimized during the structure solution process; at this point, these appear to
be acceptable.

25.2 Solving the Crystal Structure

After the unit cell and its symmetry are established, which in this case has been
done with great confidence due to a high indexing figure of merit and an excellent
Le Bail fit between the observed and calculated profiles, the structure solution can
be attempted. This is done by using direct-space methods in two steps. First, the
initial structural model (or structure description) is created using the chemical and
physical knowledge about the compound. Second, the model is optimized in order
to minimize a cost function, which in the case of powder diffraction is usually a
difference between the observed and calculated profiles. We note that other cost
functions can also be used, as discussed later in this section.

25.2.1 Creating a Model

The initial model can be created in several different ways depending on what is
known about a compound or a class of compounds:

– A simplest model is a set of atoms of proper types and in proper quantities, which
can be elucidated from the known or estimated chemical composition and/or
known or estimated gravimetric density of a material. This type of a model is
usually used when dealing with intermetallic or relatively simple inorganic com-
pounds, and it can be accompanied by setting minimum interatomic distances,
that is, the so-called anti-bump restrictions.

– The model can be further improved by specifying known types of polyhedra
and other building blocks, such as groups of polyhedra (e.g., a pair of tetrahedra
in P2O7), solvent molecules, etc. This approach requires more knowledge and
certain assumptions about the structure, but specifying the building blocks can
substantially reduce the number of parameters to be optimized. It can be used to
model complex intermetallic compounds and inorganic frameworks, as well as
metal–organic compounds.

– Finally, the connectivity of whole molecules, if known, can be incorporated in the
initial model. It can be a rigid molecule (e.g., benzene), or a molecule consisting
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of several rigid groups (e.g., sugar molecule), or even a molecule without any
rigid groups (e.g., hexane). These types of models are often used when working
with organic or metal–organic compounds.

Similar to constrained Rietveld refinement (see Sect. 15.7.3), the use of rigid-
body approach substantially decreases the number of parameters to be optimized,
which in turn, speeds up the process of finding the correct structure, and when a
structure is complex, it is possible to solve the structure in a reasonable amount of
time. For example, a molecule consisting of ten atoms treated independently would
require optimization of 30 (3 × 10) coordinate parameters, while the same molecule
treated as a rigid body requires only six parameters, which is a fivefold reduction:
three parameters defining the location of the center and three parameters defining
the orientation of the molecule in the unit cell. When dealing with flexible mole-
cules or groups, rigid-body approach cannot be used but restraints can be applied
instead, which increases the number of observations. The use of restraints increases
the computational time, but on the other hand, it facilitates finding the minimum in
the global optimization process faster, using fewer trial models.

The acetaminophen molecule can be defined by two rigid groups: one consisting
of atoms O7, C1 through C6, H12 through H15 and N8; and the second consisting of
atoms N8, C9, C10, O11 and H17 as shown in Fig. 25.5. Two groups encircled by the
dashed ellipses do not include hydrogen atoms from the hydroxyl (H16) and methyl
(H18, H19, H20) groups because they can freely rotate around C4–O7 and C9–C10
bonds, respectively. Both rigid groups can also rotate freely around the common
C1–N8 bond, which is enclosed within a solid rectangle. Ignoring hydrogen in the
freely rotating functional groups, there are seven parameters to optimize: six for one
of the rigid groups, and one additional parameter that defines the conformation of
the molecule expressed as the rotation angle ϕ between two rigid groups. Therefore,
instead of optimizing or refining all atoms independently, which requires a total
of 33 coordinate parameters for 11 nonhydrogen atoms, the same can be achieved
using only seven independent variables. On the other hand, when molecules are
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Fig. 25.5 The numerical scheme identifying all atoms in the molecule of acetaminophen. The
dashed ellipses encircle two flat rigid groups and the solid rectangle encloses a common bond
around which the rigid groups may rotate relatively to one another.
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relatively simple, such as acetaminophen, a restrained model can also be optimized
quite quickly, which is exactly what has been done in this example.

There are several ways to define the geometry (known or expected) of a molecule,
group, polyhedron, or any other building unit. The simplest one is to specify coordi-
nates of each atom using crystallographic, Cartesian, spherical, or any other coordi-
nate system. It can be easily done when the unit is incorporated from another known
structure. However, when the knowledge about the geometry of the unit is based on
an analogy with similar compounds and consists only of expected bond lengths and
angles, such an approach is not at all simple, and it may be time-consuming. In such
cases, the so-called Z-matrix formalism can be applied to describe the structural unit
using only bond lengths and angles. This approach is based on the fact that when lo-
cations of any three atoms are known, the location of a fourth atom can be uniquely
defined by the distance, angle, and torsion angle this atom forms with the known
atoms as depicted in Fig. 25.6.

The locations of the first three atoms (first three rows in Table 25.1) are defined
as follows:

– The first atom (C1) is placed randomly, e.g., at the origin 0,0,0
– The second atom (C2) is placed at a specified distance (δC2−C1) from the first,

e.g., along the X axis
– The third atom (C3) is placed at a certain distance (δC3−C2) from the second (or

from the first) atom forming a specified angle (αC3−C2−C1), e.g., in the XY plane

The fourth and following atoms are placed using distances, angles, and torsion
angles using any of the three already defined atoms as a reference. Thus, the geom-
etry of the acetaminophen molecule can be specified as illustrated in Table 25.1,
where the first column shows the label of a new atom using the labeling scheme
from Fig. 25.5, the second column shows labels of the triplet used to define the cor-
responding atom in the first column, and the subsequent three columns describe the

1
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2 3
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α
δ

ϕ

Fig. 25.6 Illustration of how to derive the location of a new atom (atom 1) from the triplet of
known atoms (atoms 2, 3, and 4) by specifying the distance between atoms 1 and 2 (δ12), the angle
α123 and the torsion angle ϕ1234. The torsion or dihedral angle describes the conformation of four
atoms 1, 2, 3, and 4, and it is defined as the angle between the two planes formed by atoms 1, 2, 3,
and 2, 3, and 4, respectively.
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Table 25.1 The geometry of the acetaminophen molecule defined by distances (δ), angles (α) and
torsion angles (ϕ) using the Z-matrix formalism.

Atom Reference δ (Å) α (deg) ϕ (deg) Entries in the Z-matrix filea

1 (new) Atoms 2,3,4 1–2 1–2–3 1–2–3–4 Type 2 δ 3 α 4 ϕ

C1 – – – – C 1
C2 C1 1.39 – – C 1 1.39
C3 C2 C1 1.39 120 – C 2 1.39 1 120.
C4 C3 C2 C1 1.39 120 0 C 3 1.39 2 120. 1 0.
C5 C4 C3 C2 1.39 120 0 C 4 1.39 3 120. 2 0.
C6 C5 C4 C3 1.39 120 0 C 5 1.39 4 120. 3 0.
O7 C4 C3 C2 1.38 120 180 O 4 1.38 3 120. 2 180.
N8 C1 C2 C3 1.43 120 180 N 1 1.43 2 120. 3 180.
C9 N8 C1 C2 1.34 130 60 C 8 1.34 1 130. 2 60.
C10 C9 N8 C1 1.51 115 180 C 9 1.51 8 115. 1 180.
O11 C9 N8 C10 1.22 123 180 O 9 1.22 8 123. 10 180.
H12 C2 C1 C6 0.93 120 180 H 2 0.93 1 120. 6 180.
H13 C3 C2 C1 0.93 120 180 H 3 0.93 2 120. 1 180.
H14 C5 C4 C3 0.93 120 180 H 5 0.93 4 120. 3 180.
H15 C6 C5 C4 0.93 120 180 H 6 0.93 5 120. 4 180.
H16 O7 C4 C3 0.82 110 180 H 7 0.82 4 110. 3 180.
H17 N8 C9 C10 0.82 115 0 H 8 0.82 9 115. 10 0.
H18 C10 C9 N8 0.93 109 60 H 10 0.93 9 109. 8 60.
H19 C10 C9 N8 0.93 109 180 H 10 0.93 9 109. 8 180.
H20 C10 C9 N8 0.93 109 300 H 10 0.93 9 109. 8 300.
a First and second rows of the file (not shown in the table) contain the name (acetaminophen) and
the number of atoms (20), respectively. Sub-columns labeled “2,” “3” and “4” show sequential
number of an atom (row) in this list and correspond to atoms 2, 3, and 4 in the second column.

distances, angles, and torsion angles, respectively. The last column illustrates the
corresponding Z-matrix entries in the Z-matrix file used in this example to import
the acetaminophen geometry into FOX for structure determination.

The Z-matrix file can be easily created manually using Table 25.1 as a guide
when molecules or building blocks are simple. However, when structural units are
complex and their geometry is adopted from other known structures, the Z-matrix
can be generated automatically, for example using FOX. In order to do so, a known
structure containing a desired molecule or a group in CIF format can be opened
in FOX (or other suitable application), and than the desired molecule or the group
saved as the Z-matrix file in one of two available formats.15

The geometry of acetaminophen used here is idealized and is based on parame-
ters adopted from the orthorhombic polymorph of the acetaminophen.16 The tor-
sion angle between two rigid groups C9–N8–C1–C2 was set arbitrarily to 60◦. The

15 The format used here is the so-called Fenske-Hall Z-matrix. The alternative format uses atom
names instead of sequential numbers of atom, and therefore, has an additional column describing
atom types (chemical elements). The standard file extensions for these two formats are .fhz and
.zmat, respectively.
16 M. Haisa, S. Kashino, H. Maeda, The orthorhombic form of p-hydroxyacetanilide. Acta Cryst.
B30, 2510 (1974).
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geometry of acetaminophen with practically the same accuracy may be also derived
form bond lengths and angles found in similar functional groups, which are very
well-known in organic chemistry. It may also be established, for example, from the
Cambridge Structure Database, or using various handbooks.

25.2.2 Optimizing the Model (Solving the Structure)

Solving the crystal structure consists of searching for the location, orientation, and
conformation of the structural units that form the molecular model which best sat-
isfies the observed data. This is done by minimizing a particular cost function. The
cost function used in FOX in conjunction with powder diffraction is a difference
between observed and calculated profiles in the form of weighted profile residual,
Rwp, which is defined in (15.20). The corresponding Bragg residual (15.21) based
on the integrated intensities obtained in either a single crystal or a powder diffrac-
tion experiment (i.e., “observed” intensities obtained via Le Bail full pattern de-
composition) is also well-suited as a cost function. Other cost functions in addition
to, or even instead of experimental diffraction data can be used as well. These are
restraints applied to distances and angles, anti-bump distances keeping proper in-
termolecular contacts, bond valence sums17 defining polyhedra, etc. In principle,
the optimization of the crystal structure can be performed without using experimen-
tal diffraction data. For example, restraints, anti-bump distances, and bond valence
sum-cost functions, which in this case serve as observed data, can be used to op-
timize a hypothetical structure geometrically, for example, when a different metal
atom replaces the one in the original structure. The latter also assumes optimization
of the unit cell parameters.

The generated Z-matrix can be imported into FOX following the indexing and the
Le Bail fit.18 Atoms imported from the Z-matrix are automatically converted into
Cartesian coordinate system. The Cartesian atomic coordinates are converted into
the crystallographic fractional coordinates when the structural model is exported,
for example, into the CIF file. Restraints on bond lengths and angles, but not the
torsion angles are automatically generated by FOX upon the import of the model.
This makes it very easy to start the optimization process of the restrained model.
When a rigid body approach is desired, rigid groups must be imported or created,
and proper restraints must be set up instead of the automatically generated ones. This
is a sensible thing to do when dealing with complex structures containing large rigid
groups in order to minimize the number of optimized parameters, and therefore,
speed-up the structure solution process, or sometimes, to ensure that it converges
reasonable quickly. Since the acetaminophen molecule is relatively simple and the

17 See footnote on page 647.
18 The Z-matrix file in Fenske-Hall format (Ch25Ex02.fhz) shown in the rightmost column of
Table 25.1 is available online. If the reader has not performed the indexing and profile fitting, the
corresponding file Ch25Ex02.xml can also be found online and opened in FOX before importing
the model from the Z-matrix file.
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diffraction data are of relatively high quality, setting up rigid-body optimization
may take more time and effort when compared with the automatically generated
restraints.

As an exercise, the reader is encouraged to import both rigid groups separately19

and perform structure solution without restraining the configuration of the whole
molecule, for example, C1–N8 bond length and the corresponding angles. During
the optimization, both the optimized structure and the powder data (both experimen-
tal and calculated) can be monitored in real time using Crystal and Powder Pattern
windows, respectively. It is really entertaining to watch the animated changes in the
crystal structure and improvements in the profile fit as the optimization progresses.
For example, when two independent rigid body groups (C1–O7 and N8–O11) are
optimized independently, one may observe20 the optimization trapped in a false min-
imum when the methyl group (C10), instead of the amino group (N8), is placed next
to the phenyl ring (C1). In a while, the optimization falls into another minimum,
this time with the carboxyl group (O11) next to the phenyl. Finally, after bouncing
in this false minimum for a few more seconds, the global minimum is reached with
the amino group attached to the phenyl ring.

Regardless of the already successful solution using rigid bodies, we proceed with
illustrating the same using a restrained model. Again, the bond lengths and the cor-
responding angles are generated automatically, which brings the required input to a
minimum. The torsion angles are not automatically restrained and are left to vary
freely during the optimization. It is possible to set restraints on the torsion angles,
if there are good reasons to do so. It is worth mentioning that in this particular
case, only torsion angles that define the relative orientation of both rigid groups and
the orientation of the hydroxyl (O7) and methyl (C10) groups are not restrained,
while the other torsion angles are restrained through the bond length and bond an-
gles. We note that the optimization of hydroxyl and methyl groups at this stage of
solving the structure is unreliable due to their minimum impact on the cost function
(Rwp). We, however, let the optimization proceed since at this point no assumptions
can be made about their orientations.

In order to proceed with the optimization process after importing the Z-matrix of
the model, the following parameters and options should be set as follows:

1. In the Crystal tab:

– Disallow dynamic occupancy corrections. This option should be disabled only
if there is certainty that the optimized structural units cannot have common
atoms, and cannot be located on the symmetry elements.21

19 Files containing acetaminophen rigid groups are available online as Ch25Ex02a.fhz and
Ch25Ex02b.fhz.
20 With some luck, and since the optimization process and the initial model are randomized, correct
orientation of both groups may be achieved right away. Thus, several attempts and more optimiza-
tion cycles (at least 106) may be needed to observe the false “alternative” solutions described in
this paragraph.
21 Dynamic occupancy correction is an advanced feature in FOX that allows adjustment of the
occupancies of superimposed atoms, e.g., when the optimized structural units are located on the fi-
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– Randomization of the model is desired (but not mandatory) since by default
the initial model derived from the Z-matrix is placed in the origin of the unit
cell interacting with the center of symmetry.

– Optionally, open the Crystal window to watch the animated structure during
optimization.

2. In the Powder Diffraction tab:

– Set proper global isotropic displacement parameter (Biso) that is common to
all atoms but do not optimize it at this stage. For organic compounds Biso
typically varies from 3 to 6 Å2. Global Biso = 4 Å2 was used in this refinement.

– Optionally, open the Powder Pattern window to monitor the progress of how
the experimental and calculated profiles converge.

3. Using the menu Objects create a “New Monte Carlo Object” and a “Global Op-
timization” window will appear, in which:

– Select Optimized Objects, first Crystal and then Powder Pattern.
– Leave Parallel Tempering optimization algorithm to be used. The alternative

is Simulated Annealing.22

– Set the number of trials per run to 500,000 instead of the default of
10,000,000, which is way too many for such a simple structure.

– Leave other parameters and options at their default values or refer to the
FOX’s manual for their meaning.

– Save the project to be able to restart the solution process from this point with-
out going though the setup process again.

– Start a single optimization run and monitor the minimization of the cost func-
tion in the new window that appears, as well as structural changes and fitting
of the observed and calculated patterns in the corresponding windows. Rwp
and Rp residuals can be monitored in the Powder Diffraction tab.

Upon the completion of the optimization (it can be stopped at any moment), the
Rwp and Rp residuals are 10.81 and 8.68%, respectively. These low residuals along
with a very good match between the observed and calculated profiles and the ab-
sence of unrealistically short intermolecular contacts are a solid confirmation of the
correctness of the solution. The resulting structure can be saved in CIF format and
further analyzed using different applications. The resulting tilt between the two ac-
etaminophen rigid groups, or C9–N8–C1–C2 torsion angle, is 17◦ (or −17◦ if a
second molecule that is related via the center of inversion was saved), which agrees
quite well with the same torsion angle in the orthorhombic modification (18◦) and

nite symmetry elements or share atoms with each other as when using polyhedra to model extended
frameworks. Thus, when two or more atoms overlap (are too close to each other) their occupan-
cies are set to 1/N where N is the number of the overlapped atoms. It makes sense to disable this
correction for the acetaminophen molecule since it has no own symmetry elements, and obviously,
it cannot overlap with itself. Disabling this option yields improved cost function since uncorrected
overlapped molecules will have stronger impact on the residuals, yet this is not mandatory.
22 See details of the algorithms in Sect. 15.1.3, FOX application manual, and references therein.
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lies within the range of torsion angles observed in other known structures of aceta-
minophen solvates that can be found in the Cambridge Structure Database.

Small discrepancies between the observed and calculated profiles occur mainly
in the middle of several strongest peaks, which may be due to inadequate peak-
shape parameters, complex amorphous background, and/or preferred orientation.
Therefore, further optimization was undertaken starting from the already optimized
structure, but this time including in the optimization the global Biso and the pre-
ferred orientation along the [101] axis. The latter corresponds to the indices of
the worst fitted strong peak. We note that the peak-shape parameters, including the
background spline, are not adjusted during the structure optimization and must be
refined separately using Le Bail profile fitting procedure and Bayesian optimiza-
tion, respectively. Repeating the optimization process improves the fit, resulting in
Rwp = 8.34% and Rp = 6.58%. The global Biso becomes higher – 6.14 Å2 – yet this
value is within acceptable limits. The torsion angle C9–N8–C1–C2 changes slightly
(to 15◦), and there is no significant preferred orientation along the [101] axis. If there
are any doubts about the correctness of the structure or about assumptions about the
initial model, the Fourier map can be calculated and displayed as contour plots in
three-dimensions using the Crystal window.

Further improvement of the fit is possible; however, it makes no sense to con-
tinue since the fit is already quite good as can be seen in Fig. 25.7, and we may
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Fig. 25.7 Result of solving acetaminophen structure using FOX parallel tempering optimization
showing the observed (circles) and calculated (solid line) diffraction patterns. The vertical bars
indicate positions of the Kα1 components of calculated reflections. The oscillating curve at the
bottom shows the difference between observed and calculated profiles.
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proceed to the next step – the Rietveld refinement – which should allow us to ad-
just the structural and profile parameters together. The optimized structure of aceta-
minophen saved in a CIF file is used as the initial model in the Rietveld refinement.

As noted earlier, this relatively simple example is intended as an introduction to
the application of direct space methods to solving crystal structures, and in partic-
ular, to using the freely available FOX. The latter has been used extensively during
the last decade to solve structures of a wide variety of chemical compounds. A long,
yet far-from-complete list of references of the crystal structures solved using FOX
can be found online.23 Selected recent nontrivial examples of powder structure de-
termination using a variety of methods is found in the Additional Reading section
at the end of this chapter.

25.3 Restrained Rietveld Refinement

The Rietveld refinement of acetaminophen is performed using GSAS and EXPGUI
applications in order to apply restraints on distances, angles, and planar groups. It
starts with the import of the crystal structure solved using FOX and the experimental
diffraction pattern.24 The following refinement is performed in three steps:

1. Full profile fitting without a structural model (also known as the full pattern de-
composition), which can be done using either the Le Bail method or the method
employing equally weighted structure factors available in GSAS. This step is
needed to obtain accurate starting values of profile parameters because of the
complexity of the diffraction pattern arising from the amorphous background and
a substantial peak broadening in the presence of multiple peak overlap. Profile
parameters obtained from the Le Bail fit while solving the structure using FOX
cannot be easily imported into GSAS (at least not all of them) since peak-shape
functions used in both applications are somewhat different.

2. When profile parameters including the background function are satisfactory, the
next step is to switch to the Rietveld refinement using a structural model. The
latter was established quite accurately during the structure-solution step. There-
fore, it is not refined at this stage, except for the overall isotropic displacement
parameter, and profile and background functions are further optimized. In addi-
tion, other nonstructural features may be explored or tested before refining the
crystal structure itself. These are, for example, preferred orientation, absorption
and porosity effects, and also the type of the peak-shape function.

3. The last step is the Rietveld refinement of the crystal structure along with other
nonstructural parameters. In this case, the refinement starts with setting up and
adjusting the geometrical restraints, and ends with the crystallographic and chem-
ical analyses of the obtained structure.

23 http://objcryst.sourceforge.net/Fox/BiblioStructures.
24 The corresponding files in CIF and GSAS formats are available online as Ch25Ex03a.cif and
Ch25Ex01 CuKa.raw.
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The Le Bail profile fitting started with defining the background due to its com-
plexity. The background curve was initially extrapolated from about 20 manually
selected points using a shifted Chebyshev polynomial with 12 coefficients. The ini-
tial values of the profile parameters were taken from the instrumental parameters
file25 determined using the LaB6 standard and a modified pseudo-Voigt peak-shape
function.26 Initially, the coefficient X of the Lorentzian grain-size broadening was
adjusted to approximately match peak widths. During the first step, only this pa-
rameter was refined. Then other profile parameters were gradually released. First
was the transparency shift (acetaminophen is a low absorbing material and this cor-
rection is greater that sample displacement), then unit cell parameters, background
coefficients, the coefficient Y of strain broadening, and asymmetry parameters. The
latter did not converge, and were fixed again for the time being. The least squares
refinement was extremely unstable, and therefore, automatic adjustment of the Mar-
quardt damping (see Sects. 15.5 and 20.3) was allowed, in which the value of the
damping parameter is estimated from the correlation coefficients improving conver-
gence, but at the cost of long (often very long) refinement. Significant mismatch
between the observed and calculated intensities and peak shapes at this point re-
sulted in a relatively high Rwp of about 14%. Yet, the fit was good enough, so that
the structural model was added into the refinement.

In the next step, the Rietveld refinement of the acetaminophen crystal structure
was conducted, but due to a poor profile fit, including new parameters into the refine-
ment had to be done gradually and very carefully while monitoring correlation coef-
ficients and parameters themselves to ensure meaningful values. The crystal struc-
ture in this step was not refined, except for the isotropic displacement parameters
constrained to be identical for all atoms. Thus, the following parameters were added
to the refinement: asymmetry, specimen displacement, empirical extension of mi-
crostrain anisotropy (see (8.34) on page 177) and preferred orientation in the spher-
ical harmonics approximation. Regardless of this, the fit was improving slowly, still
showing discrepancies in the peak shapes as was reflected by a relatively high pro-
file residual Rwp = 12.85%, compared to the structural RB = 7.52%. At this point, a
different peak-shape function (number 4 in GSAS) that employs anisotropic micros-
train broadening suggested by P. Stephens (see (8.35) on page 177) was invoked. In
addition, the background function was expanded to 36 coefficients (the maximum
possible number). After numerous refinement cycles, these changes led to a much
better agreement between the calculated and observed profiles with Rwp = 8.99%,
Rp = 6.91% and RB = 6.68%.

Finally, the refinement of the crystal structure was undertaken by releasing the
atomic coordinate parameters and setting restraints for bond length and angles for

25 The file is available online as D8advance.prm.
26 This function (number 3 in GSAS) has 19 profile coefficients as parameterized in: P. Thompson,
D.E. Cox and J.B. Hastings, J. Appl. Cryst. 20, 79 (1987) with asymmetry correction by L.W.
Finger, D.E. Cox and A.P. Jephcoat, J. Appl. Cryst. 27, 892 (1994). See Sects. 8.5.1 and 8.5.2 for
details.



25.3 Restrained Rietveld Refinement 719

all 20 bonds and 31 bond angles.27 The bond lengths were restrained to be within
0.005 and 0.002 Å from the expected values for the nonhydrogen and hydrogen
atoms, respectively. The angle restraints were initially set to 1◦. The expected values
for bond lengths and angles were the same as used in the structure solution.28 Two
flat rigid groups of acetaminophen were also restrained by setting planar restraints
to keep atoms within 0.02 Å from the plane.

From this point onward, the refinement converges much faster, and the structural
parameters were analyzed. It appeared that the hydroxyl group (O7–H16) does not
form hydrogen bond29, even though it may form it with the carboxyl oxygen atom
O11 from the neighboring molecule. This was corrected by restraining the H17–
O11 distance to be within 0.001 Å from the estimated δH···O value of 1.85 Å. The
latter was set to such a small value in order to force the hydroxyl group to adopt the
desired orientation. However, in further refinements, this restraint was relieved to
0.05 Å, yet the hydrogen atom remained perfectly still and in the correct position.
This shows that light atoms can be often trapped in false minima, and it takes an
additional effort and chemical knowledge to prevent or correct this.

Initially, bond angles around C1 atom, that is, C2–C1–N8 and C6–C1–N8, were
set to the ideal 120◦ instead of 124◦ and 116◦ observed in other acetaminophen
structures. Therefore, the restraints on these angles and on some other angles were
relaxed to 4◦. Further refinement brought these angles to within 0.3◦ of the values
observed in other structures. This serves as another confirmation of the reliability of
the Rietveld refinement, of course if everything is done right.

In the final Rietveld refinement, the following parameters were refined:

– Scale factor
– 36 background coefficients
– 17 of 21 profile parameters; four were fixed as they approached zero
– Atomic coordinates for all atoms restricted by 21 distance, 31 angular, and two

planar restrains
– Isotropic displacement parameters, one for each on the rigid groups, and another

for the OH group.

The final refinement converges to Rwp = 7.71%, Rp = 5.80% and RB = 3.48%.
The observed and calculated profiles along with their difference, which are shown
in Fig. 25.8, exhibit a very good fit in general. However, minor discrepancies in the
peak shapes are still noticeable on the difference curve in the vicinities of several
strong peaks. Therefore, the Rietveld refinement of this structure was also conducted

27 Due to a complicated and time-consuming preliminary refinement, the reader wishing to concen-
trate on the application of restraints may use the up-to-this point GSAS EXP file available online
as Ch25Ex03.exp.
28 These values were adopted from the orthorhombic modification of acetaminophen, but these are
also well-known for organic compounds. They can be viewed in the Restraint Window in FOX.
29 As a rule, all hydroxyl and amino groups form hydrogen bonds in the presence of donors of
electrons.
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Fig. 25.8 The results of Rietveld refinement of acetaminophen structure using GSAS showing
the observed (circles) and calculated (solid line) diffraction patterns. The vertical bars indicate
positions of the Kα1 components of the calculated Bragg peaks. The line at the bottom shows the
difference between the observed and calculated profiles.

using a fundamental parameters approach in TOPAS-3.30 This results in better resid-
uals Rwp = 6.68%, Rp = 5.14% and RBragg = 2.66%, mainly due to a more realistic
peaks-shape function. The crystal structure (atomic parameters) was not refined.
Despite the obviously better fit, we do not discuss these results in detail, as it is
unlikely that TOPAS-3 is available to all our readers.

The fully refined structure31 is shown in Fig. 25.9 illustrating the arrangement
of the acetaminophen molecules in two-dimensional layers by hydrogen bonding
and stacking of these zigzag layers perpendicular to the b-axis. Finally, we should
mention that the structure shown in Fig. 25.9 is in good agreement with multiple
published single crystal data describing the crystal structure of the monoclinic poly-
morph of acetaminophen.32

30 Bruker AXS: TOPAS V3: General profile and structure analysis software for powder diffraction
data. User’s Manual, Bruker AXS, Karlsruhe, Germany (2005).
31 CIF file with the final structure is available online as Ch25Ex03b.cif.
32 For example, the most recent: E.V. Boldyreva, T.P. Shakhtshneider, M.A. Vasilchenko,
H. Ahsbahs, H. Uchtmann. Acta Cryst. B56, 299 (2000). Also see D.Y. Naumov,
M.A. Vasilchenko, and J.A.K. Howard, The monoclinic form of acetaminophen at 150 K, Acta
Cryst. C54, 653 (1998).



25.4 Chapters 15–25: Additional Reading 721

Fig. 25.9 The layer of H-bonded acetaminophen molecules (left) and its zigzag conformation
and packing (right). Oxygen atoms are dark gray, nitrogen – mid gray, and carbon – light gray.
Hydrogen atoms are shown as small circles and hydrogen bonds as dotted lines.
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25.5 Chapters 15–25: Problems33

1. The compound Mn5Si3O12 crystallizes in the space group Ia3̄d with lattice pa-
rameter a = 11.85 Å. The measured gravimetric density, ρ = 4.4 g/cm3. Calculate
the number of formula units in the unit cell and the number of atoms of each kind.
Make a suggestion, as to which sites can be occupied by the different types of atoms
in this unit cell.

2. The compound Co2Mn3O8 crystallizes in the space group Pmn21 with lattice
parameters a = 5.743, b = 4.915 and c = 9.361 Å. Assuming a reasonable density

33 Instrumental parameters for GSAS Rietveld refinement are available online in files Inst-
CuKa.prm and InstMoKa.prm.
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of a 3d-metal–oxide (3–6 g/cm3), find the number of formula units in the unit cell
and calculate the X-ray density of the material.

3. Cobalt oxide, CoO, crystallizes in the cubic crystal system, space group Fm3̄m,
a = 4.26 Å. The measured gravimetric density of the oxide is ρ = 6.438 g/cm3.
Using only these data, solve its crystal structure (find positions of atoms that make
chemical and physical sense and have reasonable interatomic distances).

4. The compound TaMn2O3 crystallizes in the hexagonal crystal system and belongs
to the space group P6/mmm with a = 5.321, c = 3.578 Å. The measured gravimetric
density of the material is ρ = 6.30 g/cm3. Using only these data, solve the crystal
structure of the material (find positions of atoms that make chemical and physical
sense, and have reasonable interatomic distances).

5. Hexamethylenetetramine molecule, C6H12N4 (hmta), has the configuration of a
tetrahedron, where the corners are occupied by nitrogen atoms, which are bonded
with each other by means of six methylene, CH2, groups located above the mid-
points of the edges of the tetrahedron as shown in Fig. 25.10. The compound crys-
tallizes in the cubic crystal system, space group I 4̄3m, a = 7.05 Å. The measured
gravimetric density is ρ = 1.33 g/cm3. Assuming that the tetrahedron is ideal and
that the C–N distances are 1.49 Å, solve this crystal structure (i.e., determine the
coordinates of nonhydrogen atoms) using data provided here, including both the
symmetry of the lattice and hmta molecule. To simplify calculations, consider the
following: the distance from the center (X) of the tetrahedron to the C atoms is
δX−C = 1.72 Å, and to the N atoms, δX−N = 1.49 Å.

N C H

Fig. 25.10 The molecule of hexamethylenetetramine, shown using displacement ellipsoids of
carbon and nitrogen atoms.
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"SrSi2", Mo Kα
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Fig. 25.11 Powder diffraction pattern collected from a ground powder with the approximate stoi-
chiometry SrSi2 on a rotating anode Rigaku TTRAX diffractometer. The data were collected with
a step Δ2θ = 0.015◦.

6. Consider the powder diffraction pattern shown in Fig. 25.11, which was col-
lected from an intermetallic compound with the approximate stoichiometry SrSi2
on a Rigaku TTRAX rotating anode powder diffractometer using Mo Kα radiation.
The density of the alloy was measured in a pycnometer and it is 3.3(1) g/cm3.
The pattern was indexed and the possible space groups were established during
solution of Problem 3 in Chap. 14. Experimental data are found in the data files
Ch25Pr06 MoKa.xy and Ch25Pr06 MoKa.raw online. Solve this crystal struc-
ture from first principles.

7. Consider the pattern from Problem 1 in Chap. 14 (Fig. 14.25). Powder diffraction
data were collected in the range of Bragg angles from 20◦ to 140◦ on an HZG-4a
powder diffractometer using filtered Cu Kα radiation. The data are found in the
files Ch25Pr07 CuKa.xy and Ch25Pr07 CuKa.raw online in the supplementary
information accompanying this book. Solve the crystal structure of this material,
knowing that its gravimetric density (measured pycnometrically) is ρ = 7.7 g/cm3.

8. Consider the powder diffraction pattern collected from a ground Hf2Ni3Si4 pow-
der, which is shown in Fig. 25.12. The pattern has been indexed in the orthorhombic
crystal system and the unit cell dimensions are a = 5.18, b = 13.65 and c = 6.85 Å.
An analysis of the systematic absences indicates that the following groups of reflec-
tions have nonzero intensity:

hkl, h+ k = 2n;
hk0, h and k = 2n;
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Hf2Ni3Si4, Cu Kα
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Fig. 25.12 Powder diffraction pattern collected from a ground Hf2Ni3Si4 powder on an HZG-
4a diffractometer. The data were collected with a step Δ2θ = 0.02◦. The inset shows splitting of
some Bragg peaks, which requires a relatively large orthorhombic lattice to index this seemingly
high-symmetry pattern (low Bragg angle peaks appear regularly spaced). Data courtesy of Dr. L.G.
Akselrud.

h0l,h and l = 2n;
0kl,k = 2n;
h00,h = 2n;
0k0,k = 2n;
00l, l = 2n.

Pycnometric density is 8.8(5) g/cm3. Solve the crystal structure of this material
without using handbooks and/or databases. Powder diffraction data are found in the
files Ch25Pr08 CuKa.xy and Ch25Pr08 CuKa.raw online.

9. The compound VO(CH3COO)2 crystallizes in the orthorhombic crystal sys-
tem with a = 14.066, b = 6.878, c = 6.925 Å. Its gravimetric density is less
than 2 g/cm3. The powder diffraction pattern (data files Ch25Pr09 CuKa.xy and
Ch25Pr09 CuKa.raw) is shown in Fig. 25.13. The extracted structure amplitudes
(data file Ch25Pr09 CuKa.hkl) are also found online. Solve the crystal structure
of this material.

10. Complete structure determination and perform Rietveld refinement of the model
of SrSi2, which you solved in Problem 6. The experimental powder diffraction pat-
tern is located online in the file Ch25Pr10 CuKa.raw.
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VO(CH3COO)2, Cu Kα
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Fig. 25.13 Powder diffraction pattern collected from a VO(CH3COO)2 powder on a Scintag
XDS2000 diffractometer. The data were collected with a step Δ2θ = 0.02◦. The strongest peak
is shown at ∼1/4 of its intensity.

11. Complete the solution of the crystal structure and perform Rietveld refinement
of the model of LaNi11.4Ge1.6 from Problem 7. The experimental powder diffraction
pattern is located online in the file Ch25Pr11 CuKa.raw.

12. Complete the solution of the crystal structure and perform Rietveld refinement
of the model of Hf2Ni3Si4 from Problem 8. The experimental powder diffraction
pattern is located online in the file Ch25Pr12 CuKa.raw.

13. Perform Rietveld refinement of the hexamethylenetetramine, C6H12N4, using
the model established in Problem 5. The experimental powder diffraction pattern is
located online in the file Ch25Pr13 CuKa.raw.

14. Complete the solution of the crystal structure and perform Rietveld refinement
of the model of vanadyl acetate, VO(CH3COO)2, using the model established in
Problem 9. The experimental powder diffraction pattern is located online in the file
Ch25Pr14 CuKa.raw.

15. Complete the solution of the crystal structure and perform Rietveld refinement
of the model of manganese oxide, MnO2, which crystallizes in the space group
P42 /mnm with a = 4.41, c = 2.88 Å. The gravimetric density of the material is ρ =
5.10 g/cm3. Assume that manganese atoms occupy the site 2(a): 0,0,0. The experi-
mental powder diffraction pattern is found online in the file Ch25Pr15 CuKa.raw.
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16. Solve the crystal structure and perform Rietveld refinement of the model of
NaV2O5, which crystallizes in the space group Pmmn with a = 11.317, b = 3.611,
c = 4.807 Å. It is known that V2O5 belongs to the same space-group symmetry
with the unit cell dimensions a = 11.51, b = 3.564, c = 4.368 Å. The coordinates of
atoms in V2O5 are: V in 4(f): 0.10, 1/4, 0.90; O1 in 4(f): 0.10, 1/4, 0.53; O2 in 4(f):
−0.07, 1/4, ∼0.00; O3 in 2(a): 1/4, 1/4, ∼0.00. The experimental powder diffraction
pattern is found online in the file Ch25Pr16 CuKa.raw.

17. Complete the solution of the crystal structure and perform Rietveld refinement
of the model of tungsten oxide peroxide hydrate, WO2(O2)(H2O), which crystal-
lizes in the space-group symmetry P21/n with a = 12.07, b = 3.865, c = 7.36 Å,
β = 102.9◦. The location of W has been found from a Patterson map and it has the
coordinates x = 0.680, y = 0.066, z = 0.364. Note that W usually exhibits octahe-
dral or square-pyramidal coordination (with the peroxide group, O–O, counted as
one ligand). The experimental powder diffraction pattern is found online in the file
Ch25Pr17 CuKa.raw.

18. Locate the missing water molecule and perform Rietveld refinement of zinc
vanadate (Zn3(OH)2V2O7 ·2H2O), which crystallizes in the space group P3̄m1 with
a = 6.05, c = 7.19 Å starting from the following model: Zn in 3(e): 1/2, 0, 0; V in
2(c): 0, 0, z, z = 0.25, O1 in 2(d): 2/3, 1/3, z, z = 0.88; O2 in 6(i): x, 2x, z, x =
0.15, z = 0.82; O3 in 1(b): 0, 0, 1/2. The experimental powder diffraction pattern
is found online in the file Ch25Pr18 CuKa.raw. The data have been affected by a
considerable sample displacement error: ∼0.2mm for a 250 mm goniometer radius.
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χ2, See quality of profile fitting
β-filter

balanced filters, 274
disadvantages of, 275
list of materials, 192
principles of, 275

ab initio indexing, See indexing
absolute intensity, 136, 185, 642
absorption edge

definition of, 190
examples, 190
proper location for filtering, 275

absorption factor, 192
calculation of, 188
definition of, 184

absorption–diffraction method, See phase
analysis, quantitative

acetaminophen, 703–706, 708, 710–721
Acta Crystallographica, 380
algebraic transformation of coordinates

augmentation of matrices, 87
by roto-inversion, 81
generalized, 82
generalized matrix–vector representation, 85
inversion through the origin of coordinates,

80
matrix–vector relationships, 83
on the plane, 80
properties of rotational matrices, 86
rotation matrix, 84
translation vector, 85
translations, 82

amorphous content, definition of, 396
amorphous solids, structure of, 255
angström, 107

anomalous scattering, See atomic scattering
factors, anomalous

aperiodic crystal, 97
aperiodic structures, 104
assignment of indices, See indexing
asymmetric unit, 18, 19, 64, 68
atomic displacement factor

anharmonic approximation, 209
definition of, 206
dependence on sin θ/λ, 187
harmonic anisotropic approximation, 208
isotropic approximation, 206

atomic displacement parameters
anharmonic, 209
anisotropic, ellipsoid representation, 209
anisotropic, relationships between, 209
anisotropic, tensor of, 208
harmonic anisotropic, 208
isotropic, 207
typical range of, 207

atomic scattering factor, 139
atomic scattering factors

anomalous, definition of, 213
definition of, 211
effects on atomic displacement parameters,

212
for neutrons, 211
for X-rays, 211
for X-rays, behavior as a function

of wavelength or photon energy, 214
for X-rays, dependence on sinθ/λ, 211
for X-rays, representation by an exponential

function, 211
normal vs. anomalous, 213

atomic scattering function, 139
augmented matrix, Also see algebraic

transformation of coordinates, 87

729
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augmented vector, Also see algebraic
transformation of coordinates, 87

automatic indexing, 440, 441, 446, 450, 483,
692

AUTOX, 443
axial (out of plane) divergence, definition of,

270

back filling, See sample preparation
background functions

Chebyshev polynomial, 358
diffuse background, 358
Fourier polynomial, 358
polynomial, 358

balanced filters, See β-filter
BaNiSn3, 588
BaPtSn3, 588
benzene molecule, 48
BGMN, 178
Bijvoet pair, See Friedel pair
Bijvoet, Johannes Martin, 218
Box Car Curve Fit method, 357
Bragg residual, RB, See quality of profile

fitting
Bragg, William Henry, 41
Bragg, William Lawrence, 41
Bragg–Brentano

focusing geometry, 280
focusing geometry, disadvantage of, 281
geometry with real time multiple strip

detector, 284
ideal vs. real focusing, 281

Braggs’ law, 143
Bravais lattices, 45
Bravais lattices in superspace, 102
Bravais, Auguste, 41
Bridgman anvils, 296
Bridgman, Percy Williams, 296
Bruker, 155, 178, 285, 290, 377, 385, 443, 704,

720

C6H12N4, 724, 727
C8H9NO2, 703
(CH3NH3)2Mo7O22, 462–464, 484, 669
CaCu5, 560
Caglioti formula, 171
Cambridge Structural Database (CSD), 381
Cartesian basis, 80
CdSe, 260
CeO2, 390
CeRhGe3, 236, 241–243, 247, 256, 488, 489,

579–583, 585, 587–594, 596–601, 684
characteristic radiation, See X-rays
chi squared, See quality of profile fitting

Co2Mn3O8, 723
coherent scattering, 133
coherent scattering length, See atomic

scattering factor for neutrons
Collaborative Computational Project No. 14,

421, 426, 450, 481, 512, 545
collimation

controlling in-plane divergence with a
divergence slit, 271

controlling axial (out-of-plane) divergence
with Soller slits, 272

commensurate modulation, See modulation
complex structure amplitude, 215
composite structures, 100
Compton scattering, See incoherent scattering
Compton, Arthur Holly, 133
constraining

anisotropic atomic displacement parameters,
567

atomic population parameters, 566
isotropic atomic displacement parameters,

565
constraints

between any parameters, 565
definition of, 534
mandated by symmetry, 534
user defined, 535

constructive interference, 134
continuous diffraction pattern, treatment of,

See total scattering analysis
continuous scan, See data acquisition
CoO, 724
coordinate triplet, 17
counting time, See data acquisition
Cr2O3, 390
CrysFire, 450
CRYSMET, See Metals and Alloys Database
crystal lattice

definition of, 4
origin of, 6
primitive or centered, 44

crystal monochromator, See monochromator
crystal system, definition of, 36
crystal systems, list of, 36
crystalline state

concept, 1
definition of, 2

crystallographic basis, 17
crystallographic coordinate system, 17
crystallographic databases, 381
crystallographic direction

definition of, 11
indices of, 11

crystallographic indices, 8
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crystallographic planes
definition of, 8
family of, 8
indices of, 8

crystallographic point groups
according to merohedry, list of, 39
classification, 40
definition of, 33, 36
list of, 38
symbols of, 39

crystallographic space groups
definition of, 57
derivation of, 59
equivalent positions (sites), 70
frequency of occurrence in nature, 63
full international symbols of, 60
general site, definition of, 70
Hermann–Mauguin symbols, 57
list of, 58
rules to construct symbols of, 57
special site, definition of, 70
visualization in three dimensions, 62
Wyckoff notation of sites, 70

CSD, See Cambridge Structural Database

d-spacing, See interplanar distance
d-statistic, See quality of profile fitting
Darwin, Sir Charles Galton, 169
data acquisition

β-filtering vs. using a crystal monochro-
mator, 320

accelerating voltage, selection of, 330
continuous scan, algorithm of, 334
continuous scan, definition of, 334
continuous scan, sampling interval, 335
continuous scan, scan rate, 335
errors in measured intensity, 340
incident beam aperture in Bragg–Brentano

geometry, effects of, 323, 325
incident beam aperture in Bragg–Brentano

geometry, proper selection of, 322
incident beam aperture in transmission

geometry, proper selection of, 322
intensity data quality, 339
monochromatization options, 320
positioning errors, 339
receiving slit in Bragg–Brentano geometry,

effects of, 326
receiving slit in Bragg–Brentano geometry,

proper selection of, 325
relationship between step scan

and continuous scan, 335
scan range, selection of, 336

scatter slit in Bragg–Brentano geometry,
proper selection of, 327

Soller slits selection, effects of, 325
Soller slits, proper selection of, 325
step scan, algorithm of, 332
step scan, counting time, 333
step scan, definition of, 332
step scan, step size, 333
step size, selection of, 333
tube current, selection of, 330
typical format of data, 332
typical scan ranges, 336
variable aperture (divergence, scatter and

receiving slits) in Bragg–Brentano
geometry, 329

varying step size, effects of, 333
wavelength, selection of, 319

de Broglie equation, 108
de Broglie, Louis, 108
Debye rings

interception by a receiving slit, 187
origin of, 153
spottiness of, 265, 315, 316

Debye, Petrus (Peter) Josephus Wilhelmus,
152

Debye–Scherrer camera, 264–266
Debye-Waller factor, 152
degree of crystallinity, definition of, 396
Delaunay, Boris Nikolaevich, 447
Delaunay–Ito, See Unit cell
destructive interference, 134
detector (Also see X-ray detectors)

characteristics, 122
dead time, 122
efficiency, 121
linearity, 121
proportionality, 122
resolution, 122

diamond anvil cell, 294
DICVOL, 441, 450, 451, 453–456, 462–468,

473, 489, 491, 492, 494, 705
difference electron density, See electron

density
difference Fourier map, See Fourier map
diffraction groups, 225
direct methods

basis of, 250
E-map, 252
normalized structure factors, 251
probability of phase relationship, 251
Sayre equation, 251
solving the phase problem, algorithm of,

252
tangent formula, 252
triplets of reflections, 250
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discovery of the fivefold symmetry, 97
divergence slit

establishing angular divergence, 271
schematic of, 272

DMSNT, 354, 357, 368, 373–376, 379, 383,
384

Durbin–Watson d-statistic, See quality of
profile fitting

dynamical theory of diffraction, 134

E-map, See direct methods
effective absorption, See factors affecting peak

positions
effective linear absorption coefficient, 192
EFLECH, 443
electron density

and Fourier transformation, 240
computing of, 240
difference, See Fourier map, difference
function, 240

enantiomorphous objects, definition of, 21
equivalent positions

general, 70
special, 70

ethylene molecule, 49
Euler angles, 536
Euler, Leonhard, 215
Ewald, Peter Paul, 11, 144, 162
Ewald’s sphere

and the Braggs’ law, 144
and the origin of powder diffraction pattern,

152
and visualization of diffraction, 145
definition of, 144

Euler’s formula, 215
expected residual, Rexp, See quality of profile

fitting
EXPGUI, 400, 640, 717
EXPO, 451, 512, 543
extinction

factor, definition of, 184
primary, See primary extinction
secondary, See secondary excitation

factors affecting intensity of Bragg peaks, 182
factors affecting peak positions

asymmetry, 165
axial divergence, 160, 165, 176
effective absorption, 166
in-plane divergence, 166
sample displacement, 166
zero shift, 167

fast experiment, 349, See powder diffraction
experiments, classification of

Fe7(PO4)6, 466, 467, 469
Fedorov, Evgraf Stepanovich, 57
FePO4, 147, 351, 611, 691–702
FePO4·2H2O, 147, 351, 691–695
Fibonacci sequence, 103
Fibonacci series, 103
Fibonacci, Leonardo Pisano, 103
finite symmetry elements, 1

center of inversion, 25
fourfold inversion axis, 28
fourfold rotation axis, 27
graphical symbols of, 22
interaction of, 29, 31
international symbols of, 23
mirror plane, 26
onefold inversion axis, See center of

inversion
onefold rotation axis, 25
sixfold inversion axis, 28
sixfold rotation axis, 28
threefold inversion axis, 27
threefold rotation axis, 26
twofold inversion axis, See mirror plane
twofold rotation axis, See mirror plane
typical interactions between, 32

finite symmetry operations
symbolic representation of, 77

fivefold rotational symmetry, 24
Fluorinert, 296
focusing optics, See powder diffraction method
forbidden reflections, See systematic absences
Fourier integrals, 239
Fourier map

computing of, 242
definition of, 241
difference, 244

Fourier transform
direct, 240
reverse, 240

Fourier, Jean Baptiste Joseph, 239
FOX, 443, 504, 512, 543, 545, 704–707,

712–717, 719, 722
fractional occupation, See population factor
Friedel pair, 218
Friedel, Georges, 218
Friedel’s law

and multiplicity factor, 220
formulation of, 219
illustration of, 219
violation of, 220

full pattern decomposition, See powder
diffraction data, also see Le Bail, also
see Powley

FullProf, 512
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function of interatomic vectors, See Patterson
function

FWHM, 171

G(r) function, See total scattering analysis
GADDS, 290, 291
Gauss, Johann Carl Friedrich, 170
Gd5(Si1.5Ge1.5), 279
Gd5(SixGe1−x)4, 611, 612, 617, 620, 626, 630
Gd5Ge4, 295, 297, 298, 500, 611–614, 616,

617, 620–622, 624, 625, 627, 629–631
Gd5Si2Ge2, 612, 613, 616, 618–620, 627–631
Gd5Si4, 611–613, 615–617, 620, 623–627,

629–631
general site, See crystallographic space

groups
glide planes

a, b and c, 52
d, 52
definition of, 21, 51
graphical symbols of, 52
list of, 52
n, 52
order of, 52
translation vectors of, 52

Göbel mirror, 290
golden mean, 103
goniometer

Bruker D8 Advance, 285
Bruker D8 Discover, 290
orientation of goniometer axis, 280
PANalytical X’Pert, 284
Rigaku TTRAX, 286
schematic of, 283
synchronization of arms, 282

goodness of fit, χ2, See quality of profile
fitting

gravimetric density
calculation of, 508
measurement of, 507

grid search method, See indexing
group

associability property, 34
closure property, 34
definition of, 33
examples, 35
identity property, 34
inversion property, 34
properties of, 34

GSAS, 62, 175, 176, 178, 194, 198, 400, 512,
522, 532–536, 538, 543, 545, 560, 629,
640–643, 649, 657, 666, 677, 679, 686,
688, 701, 704, 717–720

Guinier geometry, 269

Hanawalt search, 377
Hauptman, Herbert A., 252
Hermann, Carl, 57
Hermann–Mauguin symbols, See crystallo-

graphic space groups
Hf2Ni3Si4, 725–727
High Score, 376
HiStar, 290, 291
Hmap, 443
HoIn3, 518
Hull, Albert W., 264
HZG-4a, 433, 487, 725, 726

ICSD, See Inorganic Crystal Structure Data
incommensurate modulation. See
modulation

indexing
ab initio, automatic, low symmetry

(monoclinic) example, 462
ab initio, automatic, low symmetry (triclinic)

example, 466
ab initio, automatic, pseudo-symmetric

example, 470
ab initio, body centered cubic symmetry,

example of, 433
ab initio, critical requirements, 427
ab initio, cubic symmetry, principles of, 428
ab initio, definition of, 410
ab initio, grid search method, 441
ab initio, LaNi4.85Sn0.15 using DICVOL,

460
ab initio, LaNi4.85Sn0.15 using ITO, 459
ab initio, LaNi4.85Sn0.15 using TREOR, 458
ab initio, Monte Carlo search method, 442
ab initio, primitive cubic unit cell, example

of, 430
ab initio, primitive hexagonal unit cell,

example of, 437
ab initio, principles of using DICVOL, 453
ab initio, principles of using ITO, 454
ab initio, principles of using TREOR, 451
ab initio, selecting solution, principles of,

456
ab initio, tetragonal and hexagonal

symmetry, principles of, 434
ab initio, trial-and-error method, 445
ab initio, zone search method, 446
creating a spreadsheet, 415
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indexing (Continued)
FN figure of merit, definition of, 424
LaNi4.85Sn0.15, 414
M20 (MN) figure of merit, definition of, 425
preferences, 422
principles, description of, 409
problem, description of, 407
symmetrically independent combination of

indices, 421
tolerance for assigning indices, 418
when unit cell is known, algorithm of, 413
when unit cell is known, principles of, 410
when unit cell is unknown, principles of,

410
infinite symmetry elements, 1

glide planes, 52
interactions of, 54
screw axes, 54

infinite symmetry operations
symbolic representation of, 78

Inorganic Crystal Structure Data (ICSD), 381
in-plane divergence, definition of, 270
integrated intensity

definition of, 183
general expression of, 184
measuring of, 183

intensity of Bragg peaks, 160
interference function, 137
internal standard method, See phase

identification, quantitative
International Centre for Diffraction Data, 341,

351, 378, 381, 424
International Tables for Crystallography,

representation of space groups, 63
International Union of Crystallography, 2, 14,

20, 23, 38, 47, 73, 94, 105, 131, 148,
167, 192, 201, 206, 211, 218, 235, 239,
261, 299, 380, 400, 421, 426, 450, 481,
512, 539, 556, 722

interplanar distance
calculation of, 163
definition of, 9

inversion axis, definition of, 21
ITO, 427, 441, 449–451, 454, 455, 457, 462,

463, 465–468, 471, 473, 489, 491, 492,
494, 656, 679, 691, 692, 705

IZA, See Zeolite database

Jade, 377
JCPDS file, 378
Johansson monochromator, See monochro-

mator
Joint Committee on Powder Diffraction

Standards (JCPDS), 378

Kapton, 309
Karle, Jerome, 252
kinematical theory of diffraction, 133
Klug’s equation, 391

LaB6, 155, 156, 158, 173, 174, 178, 339, 390,
430, 431, 481, 482, 540, 640, 642, 696,
718

LaNi11.4Ge1.6, 727
LaNi11.6Ge1.4, 486, 487
LaNi4.85Sn0.15, 268, 323, 326, 327, 333, 337,

339, 350, 414–419, 423, 425, 437–439,
457–461, 520, 525, 547, 548, 550–564,
568–577, 586, 685

LaNi4.95Sn0.15, 318
LaNi5, 560
lattice centering

reduction to proper Bravais lattice, 45
translations due to, 45

Laue classes
definition of, 40
list of, 40
“powder”, 40

Laue equations, 142
Laue, Max von, 40
Le Bail full pattern decomposition, principles

of, 511
Leonardo of Pizza, See Fibonacci, Leonardo

Pisano
LEPAGE, 450
Levenberg–Marquardt damping, See non-linear

least squares
LHPM-Rietica, 512, 543, 548, 550, 560, 561,

565, 567, 573, 579, 589, 598, 608, 620,
627, 640–643

Li[B(C2O4)2], 470–473
Li2SiO3, 388, 389
Li2Sn(OH)6, 315, 317, 491, 492
linear absorption coefficient

behavior of, 190
calculation of, 191
definition of, 189

linear least squares
application to finding precise lattice

parameters, 477
introduction to, 475, 476
normal equations, 477
solution, 476
standard deviations, 480
weighted, 480

LMGP, 450
long range order

reduced length scale, 257
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long-range order
definition of, 3

Lorentz factor
definition of, 184

Lorentz, Hendrik Antoon, 170
Lorentz-polarization factor

calculation of, 187
low crystallinity solids, structure of, 255
LPF, See Pauling File
LP-Search, 443
LSI, 443
LuAu, 265, 315, 316
LynxEye, 285

ma2Mo7O22, 670, 671, 673–678
magnetostriction

forced, 296
spontaneous, 296

March–Dollase function, See preferred
orientation factor

Marquardt damping, See non-linear least
squares

mass absorption coefficient, 191
mass absorption coefficients, selected list of,

192
matrix–vector representation of symmetry, See

algebraic transformation of coordinates
Mauguin, Charles-Victor, 57
McMaille, 443, 444
merohedral twinning, 254
Metals and Alloys Database (CRYSMET), 381
method of standard additions, See phase

analysis, quantitative
Miller indices

definition of, 8
examples, 9

Miller, William Hallowes, 8
Mineralogy Database, 381
Mn5Si3O12, 723
Mn7(OH)3(VO4), 500
Mn7(OH)3(VO4)4, 679–685, 687–689
MnO2, 727
MnV2O5, 494, 495
modulation

commensurate, definition of, 98
function, amplitude of, 98
function, period of, 98
incommensurate, definition of, 99

monochromatization
by energy discrimination using a solid state

detector, 279
by pulse height selection, 278
methods of, 274
using a β-filter, 274
using a crystal monochromator, 275

monochromator
advanced applications, 276
commonly used geometries, 277
curved crystal, 278, 321
flat crystal, 278
Johansson, 277
of the diffracted beam, 278
of the primary beam, 278
on the primary beam, advantages and

disadvantages, 277
principle of operation, 276
schematic of operation, 276

Moseley, Henry Gwyn Jeffreys, 120
Moseley’s law, 120
multiplicity factor

calculation of, 186
definition of, 184

Mylar R©, 293

nanomaterials, structure of, 257
nanoparticles, structure of, 257
NaV2O5, 728
Nd5Si4, 603–607, 609, 610, 624, 639
neutron sources

conventional, 119
spallation, 119

Niggli reduction, See unit cell
Niggli unit cell, See unit cell
Niggli, Paul, 447
NiMnO2(OH), 355, 368–375, 384, 386,

633–635, 644–647, 649, 650, 652
NiMnO3, 386, 636, 648
NiMnO3H, 387, 633
NiMnO3−δ, 651–653
NIST – Crystal Data, 381
non-ambient powder diffractometry

as a function of magnetic field, 296
as a function of pressure, 294
as a function of temperature, 292
principles of, 292
protecting the sample, 293

non-linear least squares
conditioning to improve convergence, 515
differences compared to linear least squares,

515
introduction to, 513
iterative nature of, 515
Marquardt (or Levenberg–Marquardt)

damping, 516
potential problems in finding true solution,

515
solution, 514
standard deviations, 515

non-merohedral twinning, 254
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normalized structure factors, See direct
methods

nuclear density and Fourier transformation,
240

number of formula units in a unit cell, 507

out of plane divergence, See axial divergence
overnight experiment, 349, See powder

diffraction experiments, classification of

packing density, 193
pair distribution function, See total scattering

analysis
PANalytical, 284, 376, 518
Patterson function

analysis of, 249
calculation of, 246
definition of, 246
example of, 248
heavy atom method, 249
interpretation of, 246
number of peaks in, 247
symmetry of, 250

Patterson map, 247
Patterson, Arthur Lindo, 246
Pauling File (LPF), 381
Pb3F5(NO3), 147
PDB, See Protein data bank
PDF, See total scattering analysis, pair distri-

bution function, or Powder Diffraction
File

PDF-2, 381
PDF-4

Full, 381
Minerals, 381
Organics, 381

peak asymmetry, See factors affecting peak
positions

peak search, Also see powder diffraction data
automatic, 363
first derivative method, 364
profile scaling algorithm, 365
second derivative method, 363

peak shape function
crystallite size and microstrain, effects of,

169
definition of, 168
empirical, 169
Finger, Cox, and Jephcoat (FCJ) asymmetry

correction, 177
fundamental functions, 178
fundamental parameters, 170, 178
Gauss, 170
Gauss and Lorentz broadening, 176

Howard’s asymmetry correction, 175
instrumental function, 169
Lorentz, 170
Pearson-VII, 171
pseudo-Voigt, 171
specimen function, 169
spectral dispersion function, 169
treatment of asymmetry, 179

Pearson, Karl, 171
Pearson’s classification, 510
Pearson’s symbol, 509
Ph3PCH2COPh-Br, 351
phase analysis, quantitative, Also see phase

identification
absorption-diffraction method, 391
determining amorphous content using

Rietveld method, 396
error limits, 394
full pattern decomposition method, 393
goals of, 390
internal standard method, 392
method of standard additions or spiking

method, 391
reference intensity ratio method, 393
using Rietveld method, 394

phase angle
definition of, 141

phase identification
automatic search-and-match, 383
automatic search-and-match

with restrictions, 384
automatic, principles o, 383
manual, 383
qualitative, goals of, 382
visual comparison of patterns, 385

phase problem
definition of, 245
solution in direct space, 245
solution in reciprocal space, 245
solution using direct methods, See direct

methods
solution using Patterson technique, 249

Poisson, Siméon-Denis, 340
Poisson’s probability (errors in measured

intensity), 340
polarization factor

definition of, 184
polymorphism, 296
population factor

definition of, 204
fractional occupation, 204
statistical mixing, 205

positions of Bragg peaks, 160
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powder diffraction data
full pattern decomposition, 354
peak search, 353
profile fitting, 354
reduced pattern, 353
typical interpretation pathways, 349

powder diffraction data, preliminary processing
of

background fitting, 356
background subtraction, 355
functions employed to represent back-

ground, 358
K α2 stripping, 361
smoothing, 359

powder diffraction databases, 377, 381
powder diffraction experiments

classification of, 349
indexing and unit cell determination,

requirements to, 351
phase identification, requirements to, 351
structure solution, requirements to, 352

Powder Diffraction File (PDF)
description of, 378
record, 378
subsets, 381

powder diffraction method
Bragg–Brentano focusing technique,

designation of, 271
collimation, principles of, 271
Debye rings on film, 264
divergence slit, designation of, 270
first experiment by Debye and Scherrer, 264
first identification of phases by Hanawalt,

Rinn and Frevel, 264
goniometer (or goniostat), classification of,

270
goniometer circle, definition of, 270
goniometer radius, definition of, 270
monochromatization, principles of, 271
powder diffractometer, 266
powder diffractometer, overall view of, 267
receiving slit, designation of, 270
scatter slit, designation of, 270
Soller slits, designation of, 270
transmission geometries, 281
typical focusing optics, 269

powder diffraction pattern
origin of, 152
representation of, 153, 157
role of different parameters, 160

powder diffractometer, overall view of, See
powder diffraction method

Powley full pattern decomposition, principles
of, 511

preferred orientation
in plane, 195
uniaxial, 195

preferred orientation factor
angle between texture axis and reciprocal

lattice vectors, 196
definition of, 184
elliptical function, modeling with, 196
March–Dollase function, modeling with,

197
role of particle shape, 194
spherical harmonics approximation,

modeling with, 198
primary extinction, 199
profile fitting, Also see powder diffraction data

functions, 366
initial parameters, 367
parameters, 366
results of, 375

profile residual without background, Rpb, See
quality of profile fitting

profile residual, Rp, See quality of profile
fitting

propagation vector, 109
properties of rotational symmetry

order of an axis, 24
rotation angle, 24

Protein Data Bank (PDB), 381

quality of profile fitting
Bragg residual, RB, 521
Durbin–Watson d-statistic, 523
expected residual, Rexp, 521
goodness of fit, χ2, 521
profile residual without background, Rpb,

522
profile residual, Rp, 521
visual examination, multiple problems, 520
visual examination, principles of, 517
visual examination, wrong asymmetry

approximation, 519
visual examination, wrong full width at half

maximum (FWHM), 519
visual examination, wrong intensity, 518
visual examination, wrong locations

of Bragg peaks, 519
weighted profile residual without

background, Rwwpb, 522
weighted profile residual, Rwp, 521

quartz, 307, 388, 389
quasicrystals

definition of, 25
symmetry of, 103

Q-vector, definition of, 146
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RB, See quality of profile fitting
reciprocal lattice

and positions of Bragg peaks, 164
definition of, 11
elementary translations of, 12
relationship with direct lattice, 14
unit cell of, 12

reduced pattern, 353
reference intensity ratio method, See phase

analysis, quantitative
reflection conditions, See systematic absences
restraints

definition of, 532
extensive use, example of, 704
on composition, 533
on interatomic distances, 533
on other parameters, 534
weight factors, 533
weight in, 533

Rexp, See quality of profile fitting
Rietveld method

classes of parameters, 529
constraints, See constraints
definition of, 527
minimized function, 527
multiple phase approximation, 529
restraints, See restraints
rigid bodies, See rigid bodies
suggested turn-on sequence of parameters,

530
Rietveld refinement

background problems, dealing with, 539
combined X-ray and neutron data, 650
complex and strong preferred orientation,

in the presence of, 667
constrained refinement of chemical

composition, 686
poor convergence and what to do, 542
poor fit of intensities, dealing with, 541
poor fit of peak positions, dealing with, 540
poor fit of peak shapes, dealing with, 540
poor fit of peak widths, dealing with, 541
restraints on some bond lengths, 666
restraints plus broad Bragg peaks, 699
termination of, 542
two sets of X-ray data, based on, 573
unindexed Bragg peaks, dealing with, 542

Rietveld, Hugo M., 524
Rigaku TTRAX, 158, 268, 286, 293, 297, 323,

326, 327, 333, 337, 350, 403, 414, 488,
490, 525, 548, 560, 570, 580, 596, 604,
610, 613, 620, 692, 696, 725

right-hand rule, 12

rigid bodies
crystallographic and Cartesian coordinates,

transformation between, 536
definition of, 536
TLS matrices, 536

Roentgen, Wilhelm Conrad, 107
roto-inversion axis, 21
Rpb, See quality of profile fitting
Rp, See quality of profile fitting
Rwpb, See quality of profile fitting
Rwp, See quality of profile fitting

sample displacement, See factors affecting
peak positions

sample positioning
cylindrical sample, 313
flat sample, 313

sample preparation
back filling, 307
coarse powders, effects of, 315
cylindrical samples, 309
dusting, 308
filing, 304
filling sample holder, 307
flat transmission samples, 309
making powders, 302
particle size effects, 301
preferred orientation concerns, 305
sample holders, 306
sample size effects, 310
sample thickness and uniformity, 311
spraying, 308
tools, 303

sampling interval, See data acquisition
satellite peaks, 98
Sayre equation, See direct methods
scale factor

definition of, 141, 184
determination of, 185

scan range, See data acquisition
scan rate, See data acquisition
Scherrer, Paul, 264
Schönflies, Arthur Moritz, 57
Scintag, 157, 158, 354, 355, 368, 379, 431,

463, 466, 471, 491, 493, 494, 634, 642,
656, 670, 680, 692, 727

screw axes
definition of, 21, 53
graphical symbols of, 54
list of, 54
translation along, 54

search-and-match, See phase identification
secondary extinction, 200
Seemann–Bohlin geometry, 269
shape of Bragg peaks, 161
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SHELX, 504, 544, 545, 657, 660
SHELXE, 504
SiO2, 388, 389
sites

general, 70
special, 70
special, on centers of inversion, 73
special, on mirror planes, 71
special, on rotation and inversion axes, 72

smoothing
box car approach, 359
fast Fourier transformation approach, 360

solid
amorphous, 3
crystalline, 3

Soller slits
establishing angular divergence, 273
schematic of, 273

solving crystal structure
building a model using geometry, principles

of, 499
charge flipping algorithm, 504
database information, based on, 669
difficulties in determining individual

structure factors, 254
direct space methods, principles of, 501
direct space optimization example, 694
dual space methods, 504
generic algorithm, 497
genetic method, 502
introduction to, 253
locating hydrogen atoms from neutron

diffraction data, 649
maximum entropy method, 502
maximum likelihood method, 503
parallel tempering method, 503
simulated annealing method, 503

SolX, 284, 285, 703, 704
space group symmetry diagrams, 64
special site, See crystallographic space groups
spiking method, See phase analysis,

quantitative
SRM – standard reference material, 173
SRM 1976, 291
SRM 640b, 339
SRM 676, 339
SRM-660, 173, 430, 431, 640
SRM-674b, 390
SrSi2, 490, 725, 726
standard deviations, See linear least squares
state of matter

gas, 2
liquid, 2
solid, 2

statistical mixing, See population factor
step scan, See data acquisition
step size, See data acquisition
stereographic projection

construction of, 37
definition of, 36
examples, 38

structure amplitude
complex part of, 215
definition of, 141, 203
effect of symmetry on, 218
phase angle, definition of, 215
real part of, 215
representation as magnitude and phase

angle, 216
structure factor

definition of, 141, 184
superspace

definition of, 97
dimensionality of, 104
symmetry operations in, 100

SVD-Index, 443
symmetry

algebraic description of, 77
algebraic representation, 88
concept, 1
conventional, 1
crystallographic, 2
non-conventional, 2
of modulated structures, 99, 101
of quasicrystals, 103
symbolic description of, 77

symmetry element
complex, definition of, 19
definition of, 19
finite, 22
infinite, 22
order of, 22
simple, definition of, 19

symmetry group
definition of, 33
simple example, 33

symmetry operation
classification of, 21
definition of, 18, 19
improper, 21
inversion, 20
proper, 21
reflection, 20
rotation, 20
simple, 20
translation, 20
translational, 21
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symmetry operation (Continued)
visualization of, 19
without translations, 22

symmetry operations
generalized algebraic treatment

of interactions, 88
in superspace, 100
selected list of algebraic representation, 89,

91
synchrotron

schematic of, 118
typical distribution of wavelengths, 118

synchrotron source, 110
systematic absences

analysis of, 225
and space groups symmetry, 225
cubic crystal system, list of, 235
determination of space group symmetry

from, 227
due to glide planes, 222
due to glide planes, list of, 223
due to lattice centering, 221
due to lattice centering, list of, 222
due to screw axes, 223
due to screw axes, list of, 224
hexagonal crystal system, list of, 232
monoclinic crystal system, list of, 227
orthorhombic crystal system, list of, 228
tetragonal crystal system, list of, 233
triclinic crystal system, list of, 227
trigonal crystal system, list of, 231

systematic extinctions, 221

TaMn2O3, 724
tangent formula, See direct methods
Taylor series, 513
Taylor, Brook, 513
tea2Mo6O19, 492, 493
temperature factor, See atomic displacement

factor
temperature parameters, See atomic

displacement parameters
tenfold rotational symmetry, 24
ThCr2Si2, 588
thermal parameter, See atomic displacement
Thomson equation, 136
Thomson, Joseph John (J.J.), 136
time of flight (TOF) experiment, 120
TiO2, 390
TLS matrices, See rigid bodies
tmaV3O7, 655–658, 662–667, 678
tmaV8O20, 62, 63
torsion angle, 711

total scattering analysis
atomic pair density, definition of, 259
atomic pair density, physical meaning of,

259
Debye representation of scattered intensity,

258
definition of, 257
normalized pair density, physical meaning

of, 259
pair distribution function, (PDF) definition

of, 257
Q vector, use of, 258
reduced pair distribution function G(r),

definition of, 259
total scattering structure function, 258

TREOR, 427, 441, 450–455, 462, 464–468,
471–473, 489, 491, 492, 494, 633, 679,
691, 705

tridymite, 105, 388, 389
triplet of coordinates, See coordinate triplet
triplets of reflections, See direct methods
Tylenol, 703

U3Ni6Si2, 432, 433, 486
unit cell

asymmetric part of, 18
base-centered, 43
basis vectors, 7
body centered, 44
centering, definition of, 43
content of (definition), 18
coordinates of atoms in the, 18
definition of, 5
Delaunay–Ito transformation, 448
dimensions, 7
dimensions, density and content of the, 507
face centered, 44
Niggli reduction, 449
Niggli unit cell, 449
non-centered, See primitive
origin of, 64
primitive, 43
rhombohedral, 44
selection rules, 42, 43
selection rules in different crystal systems,

43
shape of, 6
shapes of in different crystal systems, 41
symmetry of in different crystal systems, 41

variable slits, See data acquisition
VO(CH3COO)2, 726, 727
Voigt, Woldemar, 171
VRML – Virtual Modeling Language, 62
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wavevector, definition of, 144
weekend experiment, 349, See powder

diffraction experiments, classification of
weighted least squares, See linear least squares
weighted profile residual without background,

Rwpb, See quality of profile fitting
weighted profile residual,Rwp, See quality of

profile fitting
white radiation, See X-rays
WinCSD, 372, 374–376, 544, 604
WinXRD, 354
WO2(O2)(H2O), 728
Wyckoff notation, See crystallographic space

groups
Wyckoff, Ralph W.G., 66

X’Celerator, 283
X’Pert Pro, 518
X-ray detectors

categories of, 123
charge coupled device, 130
classification of, 123
film, 123
gas proportional counter, 125
image plate, 130
multi-wire, 131
position sensitive, 128
real time multiple strip, 129
scintillation, 125
solid-state, 126
solid-state, potential problem with, 127

X-ray tube, 110
assembly, 111
current, 111
filament material deposits after a prolonged

use, effects of, 128
geometry, 113
line focus, 113
losses in, 111
micro-focus, 113

point focus, 113
rotating anode, 116
sealed, 111
voltage, 111

X-rays
bremsstrahlung radiation, 113
braking radiation (same as bremsstrahlung

radiation), 113
brightness of, 110
characteristic radiation, 113
characteristic radiation, the origin of the

doublet, 115
characteristic wavelengths of common

anode materials, 115
discovery of, 107
elastic scattering, 134
fluorescence, adverse effect of, 289
index of refraction, 108
nature of, 109
origin of characteristic radiation, 114
principles of detection, 121
production of, 110
range of wavelengths, 109
scattering by a lattice, 140
scattering by a periodic array of points

(electrons), 137
scattering by a point (electron), 134, 136
scattering by an atom, 138
shortest possible wavelength, 114
white radiation (same as bremsstrahlung

radiation), 113

Z-matrix formalism, 712
Zeolite database (IZA), 381
zero shift, See factors affecting peak positions
Zn3(OH)2V2O7·2H2O, 728
Zn7(OH)3(SO4)(VO4)3, 500, 681, 684
ZnO, 390
Zr5Si4, 607




