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Preface

The role of quantum coherence in promoting the efficiency
of the initial stages of photosynthesis is an open and
intriguing question.
Lee, Cheng, and Fleming, Science 316, 1462 (2007)

The understanding and design of functional biomaterials is one of today’s
grand challenge areas that has sparked an intense exchange between biology,
materials sciences, electronics, and various other disciplines. Many new de-
velopments are underway in organic photovoltaics, molecular electronics, and
biomimetic research involving, e.g., artifical light-harvesting systems inspired
by photosynthesis, along with a host of other concepts and device applications.
In fact, materials scientists may well be advised to take advantage of Nature’s
3.8 billion year head-start in designing new materials for light-harvesting and
electro-optical applications.

Since many of these developments reach into the molecular domain, the un-
derstanding of nano-structured functional materials equally necessitates fun-
damental aspects of molecular physics, chemistry, and biology. The elementary
energy and charge transfer processes bear much similarity to the molecular
phenomena that have been revealed in unprecedented detail by ultrafast opti-
cal spectroscopies. Indeed, these spectroscopies, which were initially developed
and applied for the study of small molecular species, have already evolved into
an invaluable tool to monitor ultrafast dynamics in complex biological and
materials systems. The molecular-level phenomena in question are often of
intrinsically quantum mechanical character, and involve tunneling, non-Born-
Oppenheimer effects, and quantum-mechanical phase coherence. Many of the
advances that were made over recent years in the understanding of complex
molecular systems can therefore be transposed and extended to the study of



VI Preface

biomaterials. As suggested by the above quotation, fundamental quantum ef-
fects like coherence and decoherence could eventually have a direct impact on
biological and material function.

The present volume summarizes recent progress in this direction, focusing
on the role of quantum dynamical phenomena in biological and nanostructured
systems. The book grew out of a workshop that was held in October 2007 in
Paris on the topic of “Energy flow dynamics in biomaterial systems”. This
workshop drew together researchers from several fields including the spec-
troscopy and theory of light-harvesting systems, DNA and organic materials,
molecular electronics, quantum chemistry of excited states and nonadiabati-
cally coupled systems, and mixed quantum-classical simulation methods for
processes in condensed phases and in spatially extended systems. Similarly to
the workshop, the scientific scope of this book is deliberately broad in terms of
the physical systems studied and yet unified in the use of spectroscopic tech-
niques, quantum dynamical methods, or a combination thereof to study tran-
sient and often ultrafast energy and charge transfer events in complex systems.
The goal of this book is to illustrate the many aspects of today’s theoretical
picture of the fundamental electronic, vibronic, and transport phenomena in
biological systems, molecular electronics materials, and biomimetic systems.
At the same time, the book includes methodological parts which highlight
that today’s theoretical and simulation strategies still involve fundamental
open questions, especially relating to the treatment of non-equilibrium trans-
port, the mixing of quantum and classical descriptions and the coupling to
environments of varying complexity.

The volume is structured into five parts, the first three of which are more
focused on applications and systems, while the last two parts are mainly
methodologically oriented. The first part addresses excitation energy transfer
in photosynthetic reaction centers, polypeptides, and other multichromophoric
systems. The second part gives a tour d’horizon of DNA research, involving
photoexcitation and energy migration, anharmonic vibrational dynamics, as
well as drug intercalation into DNA. In the third part, quantum transport
at interfaces and junctions is addressed, with examples from organic pho-
tovoltaics and molecular electronics. The techniques used here range from
explicit quantum simulations of high-dimensional interfacial electron-phonon
dynamics to non-equilibrium Green’s function techniques for studying charge
transport along a molecular wire connected between two semi-infinite con-
tinua. Finally, the last two parts cover recent methodological developments in
open system dynamics and hybrid quantum-classical methods, and highlight
that the need for approximate but consistent quantum-statistical treatments
is of paramount importance for all of the systems considered here.

Even though this volume can only cover certain aspects of a rapidly evolv-
ing field, we believe that it illustrates the many challenges ahead, and also
the success of today’s theoretical and spectroscopic methods in achieving a
molecular-level understanding of nanostructured systems. As we learn more
about the scientific foundations of the subject, we can hope to increase the
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number of materials that would optimize functionality in both structure and
properties. For example, lattices of nanostructured adsorbates could be good
candidates for light harvesting, among many other types of novel materi-
als. Therefore, theoretical insight and computational tools as provided in the
following chapters might allow us to broaden the search for suitable light har-
vesting and conversion devices – a very timely quest as the world searches for
renewable sources of energy.

We are grateful to the workshop participants who agreed to submit a
chapter reviewing their work in a pedagogic style that would be accessible to
someone who is not an expert in their particular discipline. Certainly without
their enthusiasm and diligent efforts, this volume would never have got off the
ground.

We also wish to thank Dr. Gayle Zachmann and the staff of the Paris Re-
search Center (PRC) for providing a wonderful venue for this second “PRC
workshop”. Funding for the workshop came from various sources, including in
particular the European Science Foundation’s “Simulations of Bio-Materials”
(SimBioMa) program, the French Centre National de la Recherche Scientifique
(CNRS), and the US National Science Foundation (NSF) through the Mate-
rials Computation Center at the University of Illinois and the Texas Center
for Superconductivity (TcSUH).

Finally, we are thankful to Dr. Marion Hertel, Ingrid Samide, and Dr.
Christian Caron of the Springer office at Heidelberg for their cooperation and
invaluable help with publishing this volume. We are also most grateful to Dr.
Stephan Wefing for his help with the typesetting of the manuscript. Together
with the preceding PRC workshop publication on “Quantum Dynamics of
Complex Molecular Systems” (Springer Chemical Physics Series 83), we hope
that this volume will foster new insights at the border between molecular sci-
ences, biology, and materials research.

Paris, France Irene Burghardt
Berlin, Germany Volkhard May
Gainesville (Florida), USA David Micha
Houston (Texas), USA, and Cambridge, Great Britain Eric Bittner

March 2009
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Part I

Excitation Energy Transfer in Complex
Molecular and Biological Systems



Electronic Energy Transfer in Photosynthetic
Antenna Systems

Elisabetta Collini, Carles Curutchet, Tihana Mirkovic, and Gregory D.
Scholes

Department of Chemistry, 80 St. George Street, Institute for Optical Sciences, and
Centre for Quantum Information and Quantum Control, University of Toronto,
Toronto, Ontario M5S 3H6 Canada gscholes@chem.utoronto.ca

Abstract. Electronic energy transfer is reviewed with a particular emphasis on its
role in photosynthesis. The article describes the advances in theory that have been
motivated by studies of photosynthetic light harvesting antenna proteins. Noting
that most theoretical work presently focuses on just a few photosynthetic systems,
the extraordinary scope and diversity of systems actually found in nature is de-
scribed.

1 Introduction

Electronic energy transfer (EET) is a topic found in thousands of scientific
papers each year. It is a process whereby the energy of absorbed light is trans-
mitted between molecules. EET is used, for example, to harvest light in photo-
synthesis, measure distances in proteins, and it accelerates the photodegrada-
tion of polymers. [1] In recent years attention has turned to the study of EET
in complex assemblies of molecules. An example of the importance of energy
transfer involves the EET antenna-effect, which is essential to assist in the
capture of light in photosynthesis. We now know that photosynthetic organ-
isms, including higher plants, algae and bacteria, employ specialized antenna
complexes that have evolved to optimize the spectral and spatial cross-section
for light absorption. The light, once captured by an antenna protein, is effi-
ciently distributed to specialized energy conversion machinery known as the
reaction center. In the reaction center, the solar energy is converted to chemi-
cal energy. This chain of events is achieved, over a hierarchy of time scales and
distances, with remarkable efficiency. Förster theory has enabled the efficiency
of EET to be predicted and analyzed in numerous and diverse areas of study.
Through studies of photosynthetic light harvesting antennas, recent work has
contributed to learning how the nanoscale organization of molecules changes
the way that EET happens. Theoretical work hints at interesting dynamical

 © Springer-Verlag Berlin  Heidelberg 2009 
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aspects of EET (coherence) that may be explored by learning precisely how
the interplay between electronic couplings among molecules and their interac-
tion with the random fluctuations of the environment dictate localization of
excitation and dynamics of ensuing photo-processes. The current status and
some future opportunities in the field will be described below.

Photosynthetic proteins have served as excellent model systems for study-
ing EET and, in particular, for testing EET theory. This is because they are
highly organized, photostable, and soluble multichromophoric systems. While
many findings are not critically relevant to photosynthetic efficiency, they
have had a considerable impact on our knowledge of the chemical physics of
EET. The key feature of this body of work is bringing together detailed struc-
tural information with theory and photophysical measurements (including
ultrafast laser spectroscopy). Questions previously addressed include whether
wavefunction overlap contributes to electronic couplings between molecules,
whether the point-dipole approximation realistically captures the Coulombic
part of the interchromophore electronic coupling, and how excitonic effects
change the dynamics. Questions of current interest include coherent contri-
butions to dynamics, the nature of bath fluctuations (in particular the idea
of correlated fluctuations), solvent screening in proteins, and extrapolation
between the limits of weak versus strong electronic coupling.

2 Overview of photosynthetic organisms and their
Light-Harvesting Antenna complexes

2.1 Introduction

According to the broadest definition of photosynthesis, any process in which
some kind of cellular energy is derived from light can be defined as photo-
synthetic. Key processes in photosynthesis are the absorption of solar energy
by antenna complexes and the efficient transfer of excitation energy to pho-
tochemical reaction centers (RCs), where the energy is trapped in the form of
a stable charge separation, which eventually is converted to chemical energy
through a series of dark reactions. There is a remarkable variety of organ-
isms carrying out photosynthesis, from the well known green plants (trees,
shrubs, grasses and other type of vegetation) to microscopic forms of life such
as algae and photosynthetic bacteria. [2–4] In this section a brief overview of
different types of photosynthetic organisms will be outlined, with particular
attention to their antenna complexes. The vast majority of the pigments in
a photosynthetic organism are not chemically active, but are bound in an-
tenna complexes. The photosynthetic antenna system is organized to collect
and deliver the energy of incident sunlight, by means of excitation transfer,
to the reaction center complexes where photochemistry takes place. Their
functions are to increase the effective cross section of photon absorption by
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increasing the number of pigments associated with each photochemical com-
plex and to optimize and regulate light absorption for various growth and
habitat conditions. By incorporating many pigments into a single unit, the
biosynthetically expensive reaction center and electron transport chain can
be used to maximum efficiency. A remarkable variety of antenna complexes
have been identified from various classes of photosynthetic organisms, show-
ing no apparent correlations in their structural organization or in terms of the
pigments they utilize. This seems to suggest different evolutionary patterns for
different antennas, but also emphasizes the importance of the light-gathering
process in general.

In section 2.2 an overview of the organisms capable of photosynthesis will
be outlined, with particular attention to the evolutionary relationships be-
tween their antenna complexes. In section 2.3 some of the most representative
antenna families will be described and discussed in more detail. Finally, a
deeper look in the EET mechanism will be given in section 2.4, in which the
dynamics of EET in a particular antenna complex will serve as an example.

2.2 Antenna complexes: evolutionary point of view

Among the many different ways to classify the light-harvesting complexes, one
of the most informative for our purpose is to organize organisms according to
their evolutionary relationship. This approach is also known as the phyloge-
netic approach [5] since the classification of organisms is based on comparison
of the sequence of RNA molecules, believed to retain information about their
evolutionary history. [6–8] The evolutionary tree of life drawn based on this
method is shown in Fig. 1. Only the Eukarya and Bacteria domains are shown
whereas the third domain (Archaea) is omitted here since no organisms be-
longing to this group show photosynthetic ability.

An overview of the main groups of prokaryotic and eukaryotic photosyn-
thetic organisms is summarized in Table 1. The table illustrates the main
groups in which prokaryotes and eukaryotes can be divided, together with
their antenna complexes, reaction centers (RC), pigment types, photosyn-
thetic reactions and ecology of significant organisms. Among the Bacteria
domain, five different groups (or phyla) with photosynthetic ability can be
distinguished. [9] Four of them (purple bacteria, green sulfur, green non-sulfur
bacteria, and heliobacteria [10]) are anoxygenic, since they do not release oxy-
gen as product of the photosynthetic reaction [11], whereas cyanobacteria are
the only oxygenic group. [12]

According to the fossil records [13], the early photosensitizers were purple
bacteria and green sulfur bacteria. Purple bacteria have been the subject of
many structural [14] and spectroscopic studies. [15–17] Particular attention
was focused on their antenna complexes (LH1, LH2), which represent the best
understood system in terms of light collection and energy transfer. Recently,
some interest has also been directed to green bacteria containing chlorosomes,
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Fig. 1: Evolutionary tree of Eukarya and Bacteria domains. The third domain (Ar-
chaea) is omitted here since no organisms belonging to this group show photosyn-
thetic ability. The tree is further annotated to indicate the distribution of photo-
synthesis among the major groups: ∗ photosynthetic organisms, • organisms with
relict plastid but no photosynthetic genes, � some species with algal symbionts or
sequestered plastids, § organisms with no plastids but potentially photosynthetic
genes in nucleus.

highly specialized antenna structures whose efficiency in light-harvesting al-
lows these organisms to live in environments with the lowest light intensity of
any known photosynthetic organism. [11,18] In green nonsulfur bacteria, each
RC is accompanied by a membrane-intrinsic light-harvesting complex, gener-
ally denoted as B808-865, believed to be similar to LH1 of purple bacteria
based on protein sequence similarities, although there is no direct evidence
that it forms a ring around the RC.

The next step in the evolution of prokaryotic photosynthesis was the ap-
pearance of the first oxygenic organisms, the cyanobacteria. This group now
encloses a large variety of organisms, living wherever light is available. [12]
Cyanobacteria evolved a more sophisticated linear electron transfer involving
two RCs instead of one as in anoxygenic bacteria. The two RC types can
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be distinguished by their ability to reduce either quinones (type II) or FeS
centers (type I) as terminal electron acceptors. Cyanobacteria (and all other
oxygenic organisms) utilize both types of RCs in a two-step sequence known
as the “Z-scheme” where H2O is the reductant. [3] Anoxygenic photosyn-
thetizers employ instead only one type of RC (purple bacteria: type II, green
photosynthetic bacteria: type I) and different electron donors. [11] Structural
models based on X-ray crystallographic data seem to confirm that the two
RC types share a common evolutionary origin despite the substantial dif-
ferences between the protein sequences. [19] The light-harvesting apparatus
of cyanobacteria is characterized by large antenna complexes called phyco-
bilisomes (PBS), elaborate multi-subunit structures containing chlorophylls
(Chl) and bilins (bil, open-chain tetrapyrrole chromophores) associated with
the cytoplasmic surface of the thylakoid membrane. [20]

In contrast to prokaryotes, which are single-cell organisms with simple cel-
lular organization, eukaryotes are more sophisticated organisms. In many cases
they are multi-cellular organisms with highly differentiated cells containing
subcellular organelles, called chloroplasts [21], where photosynthesis is carried
out. There is evidence that chloroplasts originated from a cyanobacteral-like
cell initially incorporated from the host cell by an endosymbiosis process. [22]
Photosynthetic eukaryotic organisms can be mainly divided in two groups:
algae and plants. Algae can be further classified in many groups, based on
different classification systems. The most commonly studied are green algae
(chlorophytes), red algae (rhodophytes), chromophytes (including brown al-
gae, diatoms and cryptophytes), and dinophytes. [23]

The red algal chloroplasts, like their cyanobacterial ancestors, use PBS as
light-harvesting antennas as well as membrane-intrinsic antennas associated
only to the photosystem (PS) I and binding Chl a. The green algal chloro-
plasts have membrane-intrinsic antenna proteins associated to both the pho-
tosystems, binding Chl b as well as Chl a, whereas the many groups of brown
and yellow algae (dinoflagellates, cryptophytes, and chromophytes sensu lato)
have related antenna proteins binding Chl c and Chl a. The antenna proteins
of these two groups are members of a very large protein family, the light-
harvesting complex (LHC) superfamily. Usually these complexes are referred
as LHCI and LHCII, depending on their association with PS I or PS II, re-
spectively.

Genetic analyses show that also the Chl a-binding proteins of red algae
must be considered members of the LHC superfamily, even though they bind
only Chl a and are associated only with PS I. [24] This shows that PBS
(associated primarily with PS II) and membrane-intrinsic antennas of the
LHC superfamily could coexist in the same chloroplast, and strongly supports
a common evolutionary origin for all chloroplasts. [25]

Land plants are believed to originate from a single branch of the green
algae. [26] This group is the most complex and heterogeneous: it includes
bryophytes, which are the simplest ones, often resembling algae, and vascular
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Table 1: Phototropic Organisms on Earth
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Fig. 2: Molecular structure and absorption spectra at 77K of some of the most
representative light-harvesting antennas. The names of the corresponding organisms
are given between brackets.

plants like ferns and seed plants. We direct the reader to the literature for a
more comprehensive classification. [27]

2.3 Classes of Antenna: structure and function

As already pointed out, there are only two types of photosynthetic reaction
centers showing a highly conserved molecular structure, despite the enormous
diversity among photosynthetic organisms and their different habitats. [47]
There are instead several classes of antenna complexes, which show no ap-
parent correlations in the structural organization or in terms of the pigments
they utilize. In the previous section a general overview of these complexes was
given, with particular attention to the evolutionary relations between them.
In this section some representative antenna systems will be considered in more
detail.

Fig. 2 shows the absorption spectra and the structure of some of the most
representative antenna complexes. The figure highlights how antenna com-
plexes from different organisms can have extremely different protein structures
and can differ widely in the nature, number and organization of the absorbing
pigments. Photosynthetic organisms clearly must have evolved adapting their
antenna complexes to the light quality in their habitats. In general, green
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plants, largely based on land, have a limited repertoire of pigment types com-
pared to algae living in aquatic environments where penetrating wavelengths
of light may be variously attenuated by the water column and overlying or-
ganisms. A first broad classification of the antenna complexes can be made
according to their position with respect to the photosynthetic membrane: inte-
gral membrane antennas, containing proteins that cross the lipid bilayer, and
peripheral membrane antennas, which are linked to one side of the membrane,
can thus be distinguished. In the second class lie, for example, phycobilisomes
(PBSs) [20] of cyanobacteria and red algae, chlorosomes and FMO protein of
green bacteria [16, 27–29] and peridinin-chlorophyll proteins (PCPs) of dino-
phytes. [42] Furthermore, integral membrane antennas can further be divided
in core antennas, intimately associated with the RC, as CP43 and CP47 com-
plexes of PS II or LH1 complex of purple bacteria, and accessory antennas,
as LHCI / LCHII in PS I / II and LH2 complex of purple bacteria. In Fig. 3
a schematic model of the major light-harvesting complexes in different organ-
isms is depicted, showing their relative positions with respect to the membrane
and reaction centers.

LH1 and LH2 antenna complexes

The antenna system of purple bacteria is the best understood of all the light-
harvesting antennas. It consists of two types of pigment-protein complexes
known as light-harvesting 1 and 2 (LH1, LH2). The LH1 complex is an integral
membrane core antenna, which is found in fixed proportion to the reaction
centre and physically surrounding it. The LH2 complex is an integral accessory
membrane antenna typically arranged more peripherally and not in contact
with the reaction center, found in most but not all of the organisms. The
exact ratio of LH2/LH1 complexes present in the photosynthetic membrane
is controlled by growth conditions. [11, 18] LH1 complex consists of ca. 16
α−β subunits in the shape of a large ring of ca. 120Å diameter, surrounding
the RC complex. LH2 is built up from subunits consisting of a heterodimer
of α and β peptides along with three molecules of bacteriochlorophyll (BChl)
a or b and one molecule of carotenoid. These subunits aggregate into larger
complexes in which eight or nine subunits assemble into ring-shaped units of
ca. 65Å diameter. [14]

The absorption spectrum of LH2 exhibits two bands, centered at 800 and
approximately 850 nm (depending on the species). The structure of the com-
plex provides a clear explanation for these two absorption features which arise
from the same type of BChl a chromophore. The pigments contributing the
800 nm feature form a ring with the molecular plane of each BChl parallel
to the membrane plane. These pigments are usually known as B800 pigments
and owing to their large center-to-center distances they show photophysical
features of monomeric BChl a. The pigments that contribute the 850 nm
absorption feature (B850 pigments) are arranged with their molecular plane
almost perpendicular to the membrane plane and their π-electron systems ap-
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Fig. 3: Schematic model of light-harvesting compartments in photosynthetic or-
ganisms and their position with respect to the membrane and the reaction cen-
ters. RC1(2): Photosystem I(II) reaction centre. Peripheral membrane antennas:
Chlorosome/FMO in green sulfur and nonsulfur bacteria, phycobilisome (PBS) in
cyanobacteria and rhodophytes and peridinin-chlorophyll proteins (PCP) in dyno-
phytes. Integral membrane accessory antennas: LH2 in purple bacteria, LHC family
in all eukaryotes. Integral membrane core antennas: B808-867 complex in green non-
sulfur bacteria, LH1 in purple bacteria, CP43/CP47 (not shown) in cyanobacteria
and all eukaryotes.

proach closely (≈3.5 Å closest approach and ≈9 Å center-to-center). Their
collective interaction with light leads to a band of exciton states, where the
oscillator strength is concentrated into the states absorbing at ≈850 nm. This
system is reviewed in refs [15,15,51]. The LH2 system has been deeply studied
and a great deal has been learned by comparing experimental results and dif-
ferent theories proposed to explain EET mechanisms. A review covering other
aspects of the light-harvesting proteins from purple bacteria can be found in
ref. [48].

Chlorosomes and FMO protein

Chlorosomes are the characteristic light-harvesting complexes of green non-
sulfur bacteria and green sulfur bacteria and constitute the most efficient low-
light light-harvesting complexes found in nature. [52] The chlorosome is the
only known photosynthetic system where the majority of pigments (BChl c, d,
e) are not organized in pigment-protein complexes but instead are assembled
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into aggregates filling the internal part of the chlorosome. No high-resolution
structural information is available for this complex so researchers have devel-
oped models based on microscopy, NMR, small-angle X-ray diffraction and
spectroscopic data. Rod-like [11, 53] and lamellar-like [54] models have been
proposed, and it is not clear yet which model is more realistic. In addition
to BChl c, d and e, all chlorosomes contain a small amount of BChl a. BChl
a is associated with CsmA, a small protein in the so-called baseplate of the
chlorosome. [11, 52] The chlorosomes from green filamentous bacteria are ap-
proximately 100 nm long, 20-40 nm wide and 10-20 nm high. Chlorosomes
from green sulfur bacteria are considerably larger with lengths from 70 to 260
nm and widths from 30 to 100 nm. [18]

The Fenna-Matthews-Olson (FMO) protein is an unusual, water-soluble
chlorophyll protein found only in green sulfur bacteria. [18] It is believed to be
located between the chlorosome and the cytoplasmatic membrane and func-
tions as an excitation transfer link between the chlorosome and the reaction
center. Each subunit contains 7 BChl a molecules embedded in a primarily
β sheet structured protein. The protein has a trimeric quaternary structure,
with a three-fold axis of symmetry in the center of the complex. [55] The green
nonsulfur bacteria do not contain the FMO protein. In these organisms the
chlorosome transfers energy directly to the integral membrane core antenna
B808-865, and then to the reaction center.

LHC family

The light-harvesting complexes (LHCs) are a superfamily of membrane-
intrinsic chlorophyll-binding proteins present in all photosynthetic eukaryotes.
LHCs of chlorophytes, chromophytes, dinophytes, and rhodophytes are similar
in that they have three transmembrane α-helix regions and several highly con-
served Chl-binding residues. All LHCs bind Chl a, but in specific taxa certain
characteristic pigments accompany Chl a: Chl b and lutein in chlorophytes,
Chl c and fucoxanthin in chromophytes, Chl c and peridinin in dinophytes,
and zeaxanthin in rhodophytes. [25] The two major antennas belonging to
this family are generally known as LHCI and LHCII since they are associated
with PS I and PS II, respectively.

LHCI consists of four different membrane proteins with varying stoichiom-
etry depending on light intensity and other environmental factors. These
four proteins, binding in total ca. 80-100 Chls and 55-60 carotenes, assem-
ble into two dimers creating a half-moon-shaped belt on one side of the RC1
core. [43,44,56,57] The LHCII complex is the most abundant membrane pro-
tein in the biosphere. It is organized into trimeric complexes consisting of vari-
ous combinations of three very similar subunit proteins. The complex contains
between 36 and 42 Chls (a and b) and 10 to 12 xanthophyll molecules. [58,59]
Unlike LHCI, tightly bound to RC1, the LHCII complexes are usually found
associated to PS II but under certain conditions they can dissociate from
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it and migrate independently between stacked and unstacked regions of the
thylakoid membrane. [60]

Beside the major trimeric peripheral antenna complexes LHCII, the outer
antenna apparatus of PS II also contains the so-called minor peripheral an-
tenna complexes CP24, CP26 and CP29. [59] These proteins show significant
sequence homology with LHCII and are generally believed to adopt structure
similar to that of LHCII, although these minor complexes are monomeric.
They bind approximately 8-10 Chls (a and b), besides several xanthophylls.
In general, one copy of each protein is found per PS II RC. [46]

The PS II bind also two core antennas, CP43 and CP47, Chl a-binding
proteins closely associated with RC2 in cyanobacteria and chloroplasts (there
is always one CP43 and one CP47 per RC2). Both proteins bind approximately
14 Chl a and at least two β-carotene molecules. Since both CP47 and CP43
occupy the closer position to the RC, it is generally believed that they have
an important role in transferring the energy absorbed by the major antennas
to the RC. [36, 59] These core antenna proteins may play an important role
in regulation of light-harvesting.

Phycobiliproteins and Phycobilisomes (PBS)

Cyanobacteria and red algae contain supramolecular light-harvesting com-
plexes called phycobilisomes, that are attached to the stromal side of the
photosynthetic membrane [3, 62]. Several types of PBS are found in various
organisms, although the most studied type is know as hemidiscoidal PBS.
This complex consists of two or three types of pigment-proteins known as
phycobiliproteins. There are four major groups of phycobiliproteins, namely
phycoerythrin (PE), phycoerythrocyanin (PEC), phycocyanin (PC), and al-
lophycocyanin (APC), whose absorption is centered in the spectral region
between 470 and 650 nm, the portion of the visible spectrum that is poorly
utilized by chlorophyll. In cyanobacteria and red algae, phycobiliproteins are
arranged into large protein complexes called phycobilisomes (PBSs) [20] com-
posed of a core, which holds allophycocyanin, and several outwardly oriented
rods that are made of stacked disks of phycocyanin and phycoerythrin. This
antenna system is attached through the core allophycocyanin proteins to the
stromal side of the thylakoid membrane, usually in close proximity to PS II.
The overall architecture of the hemidiscoidal PBS is shown in Fig. 3.

Phycobiliproteins are found also in cryptophytes but, differently from
cyanobacteria and red algae, they are not organized into a phycobilisome,
but instead they are located in the thylakoid lumen. Unique for cryptophytes,
their phycobiliproteins do not exhibit a trimeric aggregation state character-
istic for cyanobacteria, but instead they are present as α1β α2β heterodimers,
with each α subunit having a distinct amino acid sequence. [40]
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Peridinin-Chl a-protein (PCP)

The unique water-soluble peridinin-Chl a-protein (PCP) complexes are found
in many dynoflagellates in addition to intrinsic membrane complexes. [64] It
contains Chl a and the unusual carotenoid peridinin in stoichiometric ratio of
1:4. Unlike other families of antennas, the main light-harvesting pigments are
carotenoids, not chlorophylls. The structure of the PCP consists of a protein
that folds into four domains, each of which embeds four peridinin molecules
and a single Chl a. The protein then forms trimers, suggested to be located in
the lumen [64] in contact with both LHCI and LHCII [66], allowing efficient
EET to occur.

2.4 Dynamics of EET: an example

In the previous sections we highlighted the enormous variety of structures
and diversity of pigment cofactors used by photosynthetic organisms. Despite
this variety, all antennas show high efficiency in the light-harvesting process,
reaching almost 100% at low light levels. One of the key ways to attain this
efficiency is to ensure that the EET processes for transport of excitation to the
RC is ultrafast: excitation transfer must be fast enough to deliver excitations
to RC and have them trapped in a time short compared to the excited state
lifetime in the absence of trapping. Excited state lifetimes of isolated antenna
complexes, where the reaction centers have been removed, are typically in
the 1-5 ns range. Observed excited state lifetimes of systems where antennas
are connected to reaction centers are generally on the order of a few tens of
picoseconds, which is sufficiently fast so that under physiological conditions
almost all the energy is trapped by photochemistry.

The photosynthetic cryptophyte, Rhodomonas CS24, is an interesting
model organism for which the dynamics and the mechanism of light har-
vesting have recently been investigated. [67] The light harvesting apparatus
of this algal species is located in the chloroplast which houses a complex sys-
tem of flattened sacs of membranes, the thylakoids, which are embedded, or
suspended, in a matrix, the stroma. The overall impression of the chloroplast
structure, can be gathered from micrographs in Fig. 4. The localization of
the chloroplast inside the unicellular organism is manifested from the confo-
cal micrograph (Fig. 4 a), where the emission originates from chromophores
active in light harvesting. In Fig. 4 b)-c) enough details are visible to portray
the structural components of the chloroplast, where the interthylakoid space
is seen as electron-transparent, whereas the intrathylakoid space is strongly
electron-opaque. The intrathylakoid material has been identified as a densely
packed matrix of phycobiliproteins, [63,68,69], phycoerythrin 545 (PE545) in
the case of Rhodomonas CS24, which cryptophytes utilize as their primary
light harvesting antenna. In addition to the phycobiliproteins located in the
lumenal compartment of the thylakoids, the pigment composition of crypto-
phytes is completed with Chl a, Chl c2, and the carotenoid alloxanthin. [70,71]
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The three main chlorophyll-protein complexes that have been isolated from
the thylakoid membrane of Rhodomonas CS24 are PS I, PS II, and a Chl
a/c2 carotenoid light-harvesting complex (LHC). A comprehensive organiza-
tion model of cryptophyte thylakoid components based on the localization
of PE in the intrathylakoid space has been proposed by Spear-Bernstein [63],
suggesting that the reaction centres PS I and PS II in addition to the Chl a/c2
LHC are distributed throughout the thylakoids. More precisely, as depicted in
Fig. 4 d), Chl a/c2 LHC may be predominantly located in the stacked regions
of the thylakoid, whereas the unstacked regions accommodate a homogeneous
distribution of both photosystems.

Studies [67] on electronic energy transfer in vivo on intact cells have shed
light on how the major components of the photosynthetic apparatus work to-
gether in the processes of light absorption, energy transfer and trapping. The
elucidation of this complex problem was possible due to the great advances
that have been made in the understanding of the dynamics and mechanisms
of light harvesting by isolated photosynthetic antenna complexes. [40, 72] In
vivo, the primary function of these chromoproteins is to absorb light, and fa-
cilitate energy migration with great efficiency to a reaction centre of PS I or
PS II. The initial energy hopping steps in the light harvesting process occur
among the chromophores of the biliprotein and those fast, light-initiated pro-
cesses have been studied extensively in proteins isolated from the photosyn-
thetic organisms. [40,72] Isolated chromoproteins are ideal multichromophoric
model systems for energy transfer studies, since their structural model can be
elucidated on the basis of x-ray diffraction data, from which the positions,
orientations and conformational differences of constituent bilins can exactly
be determined. That information is fundamental for energy transfer studies,
as it has become evident that subtle differences in the structural organiza-
tion of light harvesting chromophores can lead to various adaptations and
mechanisms of optimization for light capture and energy funneling.

Over the past years, progress in ultrafast spectroscopies and high-resolution
techniques has allowed elucidation of detailed structural and dynamical infor-
mation that has, in turn, prompted the development of improved methods for
calculating molecular interactions and energy transfer mechanisms. Compari-
son between experimental measurements and theoretical models has recently
revealed that the most rapid energy transfer events in photosynthetic proteins
cannot be explained with the conventional Förster’s theory. [1, 72] An intro-
duction to Förster’s theory and how to think about EET in multichromophoric
systems will be outlined in the following section. Here we report, as an exam-
ple, the study of light-harvesting dynamics in cryptophyte phycocyanin 645
by means of steady-state and time-resolved spectroscopy in combination with
high-resolution structural analysis and quantum chemical calculations. [41,74]

Phycocyanin 645 (PC645) is a biliprotein antenna recently isolated from
cryptophyte organism Chroomonas CCMP270. The crystal structure [Fig. 5,
panel (a)] revealed that the protein consists of four polypeptide chains, α1, α2

plus two β subunits, arranged in a complex known by convention as a dimer of
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Fig. 4: (a) Confocal micrograph of Rhodomonas CS24, where the emission illustrates
the location of the fluorescent chromophores of the light harvesting system housed
inside the chloroplast of the unicellular organism. (b) Transmission electron micro-
graph of Rhodomonas CS24 displaying finer structural details, including the large
network of thylakoid membranes within the chloroplast. (c) Magnified view of the
thylakoids from (b), displaying the electron rich intrathylakoid region, filled with
PE545. (d) A schematic diagram illustrating the possible organization of thylakoid
components in cryptophyte algae based on the localization of the phycobiliprotein
in the intrathylakoid space of Rhodomonas CS24.

αβ monomers. [41] Three different types of bilins are employed as absorbing
pigments: two 15,16-dihydrobiliverdins (DBVs), two mesobiliverdins (MBVs)
and four phycocyanobilins (PCBs). The MBVs are located on both α-subunits
at the α19 position, the DBVs on both β-subunits at the central doubly bound
β50-61 position and the PCBs are located in both β-subunits at positions β82
and β158. The complexity of the bilin composition of cryptomonad biliproteins
is suggested by the characteristic absorption spectrum that contains several
absorption maxima [Fig. 5, panel (b)].

The timescales of population dynamics associated with the energy funnel
were determined with pump-probe measurements with laser spectra centered
at different wavelengths, so that different sets of pigments could be initially
excited. From the pump-probe results analysis combined with quantum chem-
ical calculations, the model of energy transfer depicted in panel (c) of Fig. 5
can be proposed.

Specifically, in the first step of the energy cascade, the light is captured
by the DVB dimer located in the core of the complex. The energy is then
transferred to peripherally located bilins (MBV, PCB 158) through a complex
network of interactions that, owing to the very similar timescales and spectral
features, are hard to separate. Probably, energy migration from DBV bilins
to the MBV bilins occurs on a timescale (T1 ≈0.6 ps) faster than the transfer
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Fig. 5: (a) Crystal structure of PC645 at 1.4Å resolution showing the four subunits
with different colors: α1 (chain A) light green, α2 (chain B) yellow, β (chain C)
light blue, β (chain D) pink. The chromophores are also represented in different
colors: central DVB dimer (green), PCBs (red) and MBVs (blue). (b) Absorption
spectrum of PC645 at 77 K. (c) Model of energy transfer in PC645 based on ultrafast
pump-probe measurements and quantum mechanical calculations. Bilins names are
followed by a number and a letter identifying the amino acidic residue and the
subunit chain to which the chromophores are linked, respectively.

to the PCB 158 bilins (T2 ≈ 12 ps), since the latter are slightly further apart
from the central dimer and have a smaller spectral overlap with DBV bilins,
compared to the MBV chromophores. The energy transfer processes between
MBV and PCB 158 (T3) and from them to the red-most PCB 82 bilins (T4)
cannot be resolved, due to their similar timescale, in the order of ten ps.
The final energy transfer hop was specifically investigated and pump-probe
anisotropy results confirmed that it occurs between the two red-most bilins
PCB 82 with a timescale T5 of approximately 15 ps. T6 is the fluorescence
lifetime of the emitting bilin, which have been found to be 1.44 ns. [75]
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3 The mechanism of EET: Perspective from theory

3.1 Introduction

A key step in the understanding of the dynamics of EET was put forward by
Förster more than 50 years ago, when he proposed an elegant theory relating
experimental observables to the mechanisms of EET. [76] Förster’s paper has
had an enormous impact on many diverse areas of study, such us the under-
standing of the light-harvesting machinery in photosynthesis, [73] or the use
of EET to achieve high internal quantum efficiencies in organic-based light
emitting diodes. [77] A fascinating application of Förster theory is given by
the fluorescence resonance energy transfer (FRET) technique, [78] in which
EET is used as a spectroscopic ruler for the measurement of distances in bio-
logical systems, thus allowing to observe, for example, the dynamics of protein
folding.

The great strength of Förster theory is that EET dynamics can be pre-
dicted from simple spectroscopic observables, such as the overlap between the
donor emission and acceptor absortion line shapes. One important aspect of
Förster theory, however, is the fact that it is formulated in the weak coupling
limit, because it is based on the Golden Rule. This approximation assumes
that the electronic interaction between donor and acceptor molecules is small
compared to the coupling to the bath, so the bath equilibrates subsequent to
donor excitation in a time scale considerably faster than that of EET. This
ensures that the transfer is incoherent (Markovian). On the other hand, in
the strong coupling limit the excitation is delocalized between the donor and
the acceptor, giving rise to a so-called exciton state.

However, even when the weak coupling approximation holds, Förster the-
ory predictions can be substantially affected by the approximations introduced
in the ingredients needed to predict the rate: the electronic coupling between
the donor and the acceptor, the solvent screening of this interaction, and
the spectral overlap factor. In Förster theory, the shapes of the molecules
are neglected, because the solvent-screened coupling promoting EET is ap-
proximated as an interaction between point transition dipoles immersed in a
dielectric medium. On the other hand, the spectral overlap that ensures energy
conservation in the EET process is obtained from donor and acceptor spectral
lineshapes measured at the ensemble level. However, a more rigorous approach
consists on estimating the overlap from the homogenously broadened single
molecule spectra, and then performing the average over the ensemble static
disorder. In addition, Förster theory has to be modified when one is dealing
with multichromophoric systems, in which the incoherent hopping of excita-
tion energy occurs between donor and acceptor states delocalized over several
chromophores. [50]

In the last decade there has been an extraordinary progress towards ac-
curate estimation of each one of the ingredients involved in the Förster rate
equation, and comparison of these theories with available single-molecule EET
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experiments has allowed researchers to better understand the intrinsic limita-
tions of the Förster model. [80] In the following, we will introduce the Förster
rate equation, then we will discuss recent advances achieved in the estimation
of each one of these important quantities involved in the estimation of EET
rates. Finally, we will comment on the special attributes of EET occurring in
multichromophoric systems.

3.2 Förster theory for donor-acceptor pairs

The rate of EET between a pair of weakly coupled donor (D) and acceptor (A)
molecules, according to Förster theory, [76] depends on the interchromophoric
distance R, expressed in units of cm, their relative orientation (through the
orientation factor k), and the spectral overlap I between donor emission and
acceptor absorption spectra. The rate expression is:

k =
1
τD

9000(log 10)κ2φDI

128π5NAn4

1
R6

(1)

where NA is Avogadro’s number (in units of mol−1, n is the refractive index
of the medium, φD is the fluorescence quantum yield and τD is the lifetime of
the donor (in the same units as 1/k).

The spectral overlap I is obtained from the overlap, on a wavenumber or
wavelength scale, of the absortion spectrum of A, where intensity is in molar
absorbance, with an area-normalized emission spectrum of D. I has units of
M−1cm3
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Another way to express the rate introduces R0, the Förster distance or critical
transfer distance, at which the EET efficiency is 0.5:
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n4R6

)
(3)

This latter expression is very useful, as R0 is characteristic of each donor-
acceptor pair, so it can be calibrated and then be used to predict distances
from EET measurements. In Fig. 6 we show a schematic representation of
the spectral overlap between donor emission and acceptor absorption given
by Eq. 2 as well as a plot of the EET efficiency as a function of the donor-
acceptor separation.

The great success of Förster theory lies on the simplicity of these expres-
sions, which can be applied from purely spectroscopic data. However, the
approximations underlying these equations are not evident at first sight. It is
better to turn to the Golden Rule expression of the rate:
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Fig. 6: Schematic representations of: (a) the spectral overlap between donor emis-
sion and acceptor absorption spectra promoting energy transfer; (b) energy transfer
efficiency as a function of the donor acceptor distance.

k =
2π
�
|sVs|2

∫ ∞
0

dεJ(ε) (4)

where Vs is the electronic coupling between the donor and the acceptor, s is
the solvent screening factor, and J(ε) is the overlap between donor emission
fhom(ε) and acceptor absortion spectra ahom(ε), both normalized to unit area
on an energy scale, J(ε) = fhom(ε)ahom(ε).

In Eq. 4, one assumes that the electronic coupling V = sVs is independent
of energy, and that there is no static disorder, the superscript hom indicat-
ing homogenously broadened spectra. However, the derivation of the Förster
expression for the rate, Eq. 1, from the Golden Rule expression, Eq. 4, intro-
duces two additional significant assumptions: i) that the electronic coupling
can be appropriately described as a purely Coulombic interaction between
point dipole transition moments of D and A, and ii) that the screening of
this interaction by the surrounding medium can be described by the simple
s = 1/n2 factor. The characteristinc R−6 dependence of the Förster rate arises
from the dipole approximation adopted in Vs. In addition, the orientation fac-
tor between the interacting dipoles is often assumed a value κ2 = 2/3, which
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is obtained as an average by considering that D and A are free to rotate inde-
pendently in space. Obviously, if the rotational motion of the chromophores
is significantly restricted, as is the case in many molecular systems, this latter
assumption can lead to important discrepancies between theory and experi-
ment (note that κ2 can vary between 0 and 4). On the other hand, the dipole
approximation and the screening factors assumed in Förster theory are a rea-
sonable approximation if D and A are far apart, but more rigorous theoretical
approaches demonstrate that they can severely fail to describe the coupling
when D and A are in close proximity, as will be shown in next sections.

3.3 Electronic coupling

The electronic coupling is the driving force of EET processes, and accounts for
the dependence of the rates on the interchromophoric separation and mutual
orientation. In the last decade, there has been a lot of research effort aimed
at the development of theoretical methods able to accurately estimate this
quantity. [1] We shall start by noting that the electronic coupling can be
partitioned into a long-range Coulombic contribution, V Coul, and a short-
range term which depends on the orbital overlap between D and A, V short:

Vs = V Coul + V short (5)

In Förster theory, [76] the short-range term Vshort is neglected, and the
Coulomb contribution is approximated as a dipole-dipole interaction between
the transition dipole moments of D and A:

Vs ≈ V Coul ≈ V dd =
κμTDμTA

R3
(6)

where the orientation factor is given by

κ = μ̂TD · μ̂TA − 3(μ̂TD · R̂)(μ̂TA · R̂) (7)

and μTD/μTA are the transition dipole moments of D and A andR is their center-
to-center separation (μ̂TD, μ̂

T
A, and R̂ are the corresponding unit vectors).

As the transition dipole strength can be obtained from experimental spec-
tra, Eq. 6 allows the derivation of the Förster rate expression, Eq. 1, which only
depends on spectroscopic observables. However, for dipole-forbidden transi-
tions, one must go beyond this expression and include higher order multipoles
of the transition density in V Coul or account for V short terms. The short-range
contribution accounts for overlap-induced interactions due to nonorthogonal-
ity of the D and A wavefunctions such as exchange, involving the two-electron
term introduced by Dexter, or charge transfer. Here it is important to note
that exchange interactions, however, are much weaker than charge transfer
terms.

These short-range contributions to the coupling, however, are significant
only when D and A are closely spaced (by ≈ 4 Å), [82] so in most cases it
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is safe to neglect them as in Förster expression. The situation turns to be
more delicate regarding an accurate calculation of the Coulomb term. There
have been many studies pointing to the breakdown of the dipole approxima-
tion when the separation of the chromophores is similar to their molecular
dimensions. [50] This happens because at close distances, the molecules begin
to “feel” the shape of the others, so one cannot average the transition den-
sity onto a simple point dipole but has to take into account its distribution
along the molecule. An efficient way of doing this is by computing transition
charges displaced on the atomic sites, the transition monopole approxima-
tion (TMA), so that the V Coul term is computed from the sum of pairwise
interactions between these charges:

V Coul =
∑
ij

qTD,iq
T
A,i

Rij
(8)

where qTD,i and qTA,i indicate transition charges located on sites i and j from
D and A, respectively, and separated by a distance Rij .

An accurate way of deriving these charges was proposed recently by Renger
and co-workers based on fitting the electrostatic potential originated from
quantum-mechanical (QM) derived transition densities, [83] the same way
electrostatic charges are derived from ground state QM electrostatic potentials
for use in molecular dynamics simulations.

A more rigorous approach, however, is to directly compute the interaction
between the transition densities. This was first done numerically by discretiz-
ing the transition densities into finite volume elements of a 3D grid in the
transition density cube (TDC) method: [84]

qTX,i =
∫ zi+δz

zi

∫ yi+δy

yi

∫ xi+δx

xi

ρTX(r)dxdydz (9)

where qTX,i represent the charges distributed along the 3D grid representing
the transition density ρTX(r) of molecule X. From these charges, the Coulomb
coupling can be straightforwardly computed applying Eq. 8, but now the i
and j indices indicate points in the 3D grids.

The TDC method takes into account the shape of the molecules in detail,
and its accuracy in the calculation of the Coulomb coupling depends only on
the size of the volume elements used in the grid (the “cube”). In this way, the
TDC method has proven extremely useful in understanding the limitations
of the point dipole approximation (PDA) in a variety of systems. In particu-
lar, how the PDA fails to describe the coupling when the interchromophoric
center-to-center distance is comparable to the molecular dimensions, a situa-
tion found, for example, in many of the relevant interactions present in natural
light-harvesting antennas. [50]

A further recent advance in the field has been the development of ab initio
QM approaches able to compute analytically the Coulomb coupling between
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transition densities, thus avoiding the discretization procedure used in the
TDC method. [85–88] In this context, the most sophisticated method has
been developed by Mennucci and co-workers, [85, 86] as in addition to the
Coulomb term it solves for short-range contributions to the coupling, and
more importantly, is able to coherently account for the effect of the environ-
ment both on the transition densities and on their interaction through the
Polarizable Continuum Model (PCM). [89] We will discuss the importance of
appropriately accounting for the effect of the surrounding environment in the
next section, whereas here we will limit to the gas phase expressions. Such
a method relies on a first-order perturbative expression of the coupling pro-
posed by Hsu et al. [90] based on time-dependent density functional theory
(TD-DFT). To first-order, the electronic coupling is given by:

Vs =
∫

dr

∫
dr′ρT∗A (r′)

(
1

|r − r′| + gxc(r′, r)
)

ρTD(r)− ωo

∫
drρT∗A (r)ρTD(r)

(10)

where gxc(r′, r) is the exchange plus correlation kernel, r is the electronic
coordinate, and ωo indicates the resonant transition energy.

In Eq. 10, Vs describes a chromophore-chromophore Coulomb and exchange-
correlation (through the kernel gxc) interaction corrected by an overlap con-
tribution. The same expression can be applied to other methods different
than TD-DFT to obtain the transition densities. In such cases, however, the
exchange-correlation term reduces to an exchange contribution. We note also
that short-range charge transfer contributions are not included in Eq. 10, as
it relies on transition densities computed for the chromophores in the absence
of their interaction. Obviously, the accuracy of the couplings obtained from
either of the above mentioned approaches also strongly relies on the quality of
the QM approach used to obtain the transition densities. Typically, semiem-
pirical approaches or the configuration interaction of single excitations (CIS)
methods have been widely used for such purpose, often along with empiri-
cal scaling procedures to correct for the overestimation of transition dipoles
predicted by such methods. Of course, it would be desirable to avoid such
scalings, and recently more accurate QM methods including electron correla-
tion effects are starting to be used to obtain transition densities and compute
EET couplings. These include time-dependent density functional theory (TD-
DFT), [86] second-order approximate coupled cluster (CC2), [88] complete-
active-space self-consistent-field (CASSCF) [91] and symmetry-adapted clus-
ter/configuration interaction (SAC-CI). [91]

We have recently examined the applicability of Förster dipole-dipole ap-
proximation used in the calculation of the electronic coupling for a set of over
100 pairs of chromophores (chlorophylls, carotenoids, bilins) taken from struc-
tural models of photosystem II (PSII) from the cyanobacteria T. elongatus,
the phycoerythrin 545 (PE545) and phycocyanin 645 (PC645) light-harvesting
antenna from the cryptophyte algae Rhodomonas CS24 and Choomonas
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Fig. 7: Ratio between electronic couplings calculated from quantum-mechanically de-
rived transition densities at the configuration interaction of single excitations (CIS)
level, Vs, and the estimates of the dipole-dipole approximation used in Förster model,
V dd, as a function of the donor-acceptor center-to-center separation. Dipole-dipole
values are obtained using the transition dipole moments given by the correspond-
ing CIS calculations. Data points correspond to various chromophore pairs from
the following structures: pink triangles = PE545, blue squares = PC645, green cir-
cles = PSII or LHCII, except orange diamonds = data involving the carotenoid in
PSII. Reproduced with permission from J. Phys. Chem. B 2007, 111, 13253-13265.
Copyright 2007 American Chemical Society.

CCMP270, and the peripheral light-harvesting complex (LHCII) from pea
plant. In this study, [92] we evaluated the transition densities and transition
dipoles from CIS quantum-mechanical calculations, and then compared the
electronic couplings obtained by applying Eq. 10, the full Vs coupling, and the
dipole-dipole coupling V dd given by Eq. 6. Note here that at the CIS level the
exchange-correlation term of Eq. 10 reduces to an exchange term. In Fig. 8
we plot the ratio Vs/V

dd as a function of the donor-acceptor separation for
the various chromophore pairs. The results illustrate the strong errors that
the dipole-dipole approximation can introduce in the estimation of the cou-
pling. As expected, the dipole approximation improves at large donor-acceptor
separations. However, even at separations much larger than the dimensions
of the chromophores (≈15 Å for chlorophylls and bilins and ≈ 27 Å for
the carotenoind in PS II) significant deviations are found, especially for bilin
chromophores in PE545 and PC645, probably owing to their elongated and
somewhat asymmetric structure.
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3.4 Solvent screening

In the previous section, we have discussed the importance of taking into ac-
count the shape of the molecules in the calculation of electronic couplings, thus
computing the interaction between transition densities not averaged over the
molecular topology onto simple point dipoles. Similarly, taking into account
the molecular shape has been recently demonstrated to be equally important
in evaluating the screening of such interactions by the surrounding environ-
ment.

Let us start by considering the simple screening factor proposed by Förster,
s = 1/n2, where n is the refractive index of the medium. For a typical solvent,
such as water, for example, this factor leads to strong reduction (by a factor
of ≈4) in the predicted EET rate, such screening being independent of the
relative position and orientation of the interacting chromophores. It is rea-
sonable to think, however, that such screening would be different when two
molecules are closely packed, so that the solvent (or surrounding medium) is
excluded from the intermolecular region. Despite the importance of this issue,
it has not been until recently that accurate studies on the screening of EET
interactions have started to emerge due to the complexity of this problem.
Hsu et al. [90] showed, for example, that when D and A share a common
cavity inside the surrounding medium, the electronic coupling can be either
enhanced or reduced, depending on the particular position and orientation of
the molecules. However, in such a study the chromophores were assumed to be
inserted in spherical cavities inside the dielectric representing the polarizable
environment.

An important step towards the understanding of the screening of electronic
couplings has been the development of a linear response model by Mennucci
and co-workers, [85,86] which coherently couples the calculation of the transi-
tion densities, the excited-states calculation using a TD-DFT, CIS or ZINDO
methods, and the interchromophore electronic coupling with the Polarizable
Continuum Model (PCM) to account for the effect of the environment. [89]
In the PCM model, the molecular system under scrutiny is fully described at
a QM level, while the environment is represented as a structureless polariz-
able medium characterized by its macroscopic dielectric properties. Then, the
response of the environment, obtained by solving the Laplace-Poisson equa-
tion, is represented as a set of apparent surface charges displaced on a properly
molecular-shaped cavity. Such a method captures key features of the problem,
such as accurate calculation of excited-states, the molecular shape, and the
response of the surrounding medium to charge and, importantly, transition
densities.

In the linear-response-PCM method, the electronic coupling is given by a
sum of two terms:

V = Vs + Vexplicit (11)
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Vexplicit =
∑
k

(∫
drρT∗A (r)

1
|r − s|

)
q(sk; εopt, ρTD) (12)

where the k index runs over the apparent surface charges q displaced over the
molecular-shaped cavity at position sk that represent the solvent response.
Here, such response to the transition densities is determined by the optical
dielectric permittivity of the medium, εopt, i.e., approximately the square of
the refractive index n.

The first term, Vs, accounts for the Coulomb-exchange direct interaction
between D and A (see Eq.10), and the second, Vexplicit, describes a solvent-
mediated chromophore-chromophore contribution between the transition den-
sities. In addition to this explicit medium effect (Vexplicit), we note that an-
other implicit effect of the environment is included in the Vs term, due to
changes on the transition densities upon solvation. It is useful to define a
screening factor s, conceptually equivalent to the 1/n2 term in the Förster
equation, so that V = sVs:

s =
Vs + Vexplicit

Vs
(13)

Recently, we have applied this methodology to examine the screening fac-
tor s for a set of over 100 pairs of chromophores (chlorophylls, carotenoids,
bilins) taken from structural models of photosynthetic light-harvesting an-
tenna systems discussed in the previous section. In that study, we found a
striking exponential attenuation of s at separations less than about 20Å, thus
interpolating between the limits of no apparent screening and a significant at-
tenuation of the EET rate. Such observation reveals a previously unidentified
contribution to the distance-dependence of Förster EET rate. We fitted our
results to the following distance-dependent screening function, averaged over
multiple chromophores, shapes and orientations:

s = A exp(−βR) + so (14)

where the pre-exponential factor is A = 2.68, the attenuation factor is β =
0.27, and so = 0.54 is the asymptotic value of s at large distances. We note
that to simulate the protein environments we used values of static permittivity
equal to ε = 15 and optical permittivity n2 ≈ εopt = 2 . As realized by Förster,
however, the screening is mainly affected only by the optical value. [92]

The asymptotic value of s, s0 = 0.54, falls in between the predictions of
Förster model, so = 1/n2 = 0.5, which assumes infinitely thin point dipoles,
and the Onsager value, so = 3/(2n2 + 1) = 0.6, which considers point dipoles
contained in spherical cavities. It is reasonable to think that real molecules
fall in between these two limits. The solvent screening factors obtained for the
data set, along with the fitted screening function, Eq. 14, and the Förster and
Onsager values are plotted in Fig. 8.

On the other hand, in such studies we also focus on the implicit medium
effects on the transition densities, and how these affect the estimation of the
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Fig. 8: Solvent screening of electronic couplings. The correspondence between data
point and structure is pink triangles = PE545, blue squares = PC645, green circles
= PSII or LHCII, except orange diamonds = data involving the carotenoid in PSII.
The protein medium was modeled as a dielectric continuum with a relative static
dielectric constant of ε = 15 and optical dielectric constant of n2=2. Calculated
values for the solvent screening factor s = (Vs+Vexplicit)/Vs for various chromophore
pairs. The Förster value, 1/n2, is indicated by the lower horizontal line, and the
Onsager value, 3/(2n2 + 1), is the upper line. The dashed curve is a fit through the
data points by Eq. 14. Reproduced with permission from J. Phys. Chem. B 2007,
111, 6978-6982. Copyright 2007 American Chemical Society.

coupling through the Vs term. [92] Unfortunately, such effects are significantly
dependant on the particular system under consideration, so no general empir-
ical rules can be drawn as done for the screening.

3.5 Spectral Overlap

As introduced in Section 3.1, Förster theory assumes that there is no inhomo-
geneous line broadening, i.e. static disorder, in the spectra of donor emission
and acceptor absorption. However, if one considers an ensemble of inhomoge-
neously broadened spectra, the spectral overlap is given by:

J =
∫ ∞

0

dω〈ahomA (ω;ωa + δa)fhomD (ω;ωd + δd)〉 (15)

where δa and δd are the static offsets for donor emission and acceptor ab-
sorption spectra, respectively, and the angle brackets mean ensemble averag-
ing over these offsets, whereas ahomA (ω;ωa + δa) and fhomD (ω;ωd + δd) denote
homogenous acceptor absorption and donor emission line shapes functions
normalized to unit area on a frequency scale.
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On the other hand, in the presence of static disorder the Förster expression
assumes the following ensemble averaging:

J ≈
∫ ω

0

dω〈ahomA (ω;ωa + δa)〉〈fhomD (ω;ωd + δd)〉 (16)

This expression is equivalent to Eq. 15 when there is a single donor-acceptor
pair, or when there is no static disorder.

3.6 Special attributes of multichromophoric systems

Standard Förster theory describes incoherent hopping of the energy between
weakly coupled molecules. However, in multichromophoric systems, there can
be a mixture of weakly and strongly coupled chromophores. In such aggre-
gate systems, different groups of molecules can show collective spectroscopic
behaviour due to strong coupling, so that one can think of weakly coupled
effective donor and acceptor states, each one contributed by a group of chro-
mophores. In such a case, one can still express the EET rate between such
effective donors and acceptors by using the Golden Rule expression, in the
spirit of Förster theory. However, some modifications of Förster theory must
be introduced. First, one has to consider electronic couplings and spectral
overlaps between effective donor and acceptor states. [73] To this end, one
has to include a correct ensemble averaging procedure to account for static
disorder in the donor and acceptor transition energies. In contrast to standard
Förster theory, however, such static disorder induces disorder also in the elec-
tronic couplings, given that the effective donor and acceptor states depend on
the energies of the single units. This can be effectively done, for example, by
considering electronic coupling-weighted spectral overlaps. [50] The subject
has been the topic of several recent developments. [93]

4 Summary and conclusions

Photosynthetic organisms, including higher plants, algae and bacteria, have
evolved specialized antenna complexes with the specific function of capturing
solar energy then transferring it to the photochemical reaction centers where
it is ultimately converted to chemical energy. This sequence of fine-tuned pho-
tophysical and photochemical reactions is achieved, over a hierarchy of time
scales and distances, with remarkably efficiency. In the course of evolution,
nature has produced an extraordinary variety of antenna systems showing
no apparent correlations in terms of protein structure and in terms of types,
number and organization of the absorbing pigments. The driving force of this
evolutionary process was to adapt antenna complexes of different organisms
to exploit with the greatest efficiency the solar light available in different
habitats.
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Investigations of various light-harvesting proteins, differing in the architec-
tural arrangement of their chromophores, can help us understand strategies
for optimizing light capture and funneling by EET in natural complexes. It is
of particular interest to discover how the efficiency of light-harvesting relates
to the structural organization of light-absorbing molecules on the nanometer
length scale. Inspired by nature, optimization of EET is a fundamental key
in the development of synthetic light-harvesting devices capable of mimicking
the efficiency of the natural systems. Even though over the past years the
development of ultrafast spectroscopies and high-resolution structural tech-
niques have allowed us to elucidate the detailed operation of many of these
complexes, especially components of purple bacteria, namely LH1 and LH2,
and the major antenna complex of higher plants, LHCII, there are still several
aspects in which our knowledge is limited.

Owing to the complex interplay of a variety of factors that affect the effi-
ciency of EET, theory is expected to play a key role in relating structural and
spectroscopic information. The challenge for attaining a fundamental under-
standing of EET in photosynthetic systems drives our deeper elucidation of
theory. In recent years, there have been important advances in the application
of sophisticated quantum-mechanical methods to the study of EET dynam-
ics, as well as in the development of quantitative theories to describe EET in
multichromophoric antenna systems. In this context, a big challenge is still
represented by the need to develop strategies able to describe the effect of
the complex protein environment in present models. That means exploring
not only the effect of the structural arrangement of pigments in EET, but
also learning how the protein tunes the pigments energies, and thus influences
EET pathways. Another challenge for theory in the near future is to describe
the coupling between the structural fluctuations of the protein host and the
EET dynamics, which is a formidable challenge due to the different length and
time scales involved. This will allow, for example, shedding light on the role
of the protein in protecting electronic coherences, which have been suggested
recently to play an important role in the nature of EET in photosynthetic
proteins. [94]
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Abstract. Photoinduced electronic excitation energy transfer in chromophore com-
plexes is studied by utilizing a mixed quantum classical methodology. In order to
describe the electronic excitations a Frenkel–exciton model is used and treated quan-
tum mechanically while all nuclear coordinates are described classically, finally by
carrying out room-temperature MD simulations. The theory is applied to chro-
mophore complexes dissolved in ethanol, with the single complex formed by a bu-
tanediamine dendrimer to which pheophorbide–a molecules are covalently linked.
The improved exciton model introduced for the description of the chromophore
complex accounts for charge distributions in the chromophores electronic ground
and excited state. It also includes a correct description of the excitonic coupling
among different chromophores by introducing atomic centered transition charges.
Excitation energy transfer, linear absorbance, and time and frequency resolved lu-
minescence are computed and a good agreement with measured data is found.

1 Introduction

It is of increasing interest to achieve a detailed understanding of photo ab-
sorption and excitation energy transfer (EET) dynamics in large chromophore
complexes (CC). To mention a few examples we refer to EET studies in helical
polyisocyanides with regularly arranged porphyrin pendants [1]. The proper-
ties of covalently linked multiporphyrin arrays have been reported in [2]. EET
in dendrimeric structures was investigated either in using single molecule spec-
troscopy [3] or ensemble measurements [4]. Recent experiments uncover EET
details in huge chromophore assemblies templated by the tobacco mosaic virus
coat protein [5].

Of particular interest for the following are the different types of pheophorbi-
de–a (Pheo) CC studied in [6,7]. We focus here on those CC build up by bu-
tanediamine dendrimers to which Pheo molecules are covalently linked [6] (see
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also the Figs. 1, 2, and 3 as well as our own earlier work of Refs. [8–11]). Dif-
ferent generations of dendrimer Pheo complexes could be synthesized, so far
extending from P2 with two Pheo moieties, over P4 with four up to P32 with
32 [6]. After photo excitation the Pn are capable to form Frenkel–exciton states
and to generate singlet oxygen. Since the Pn posses a rather flexible structure
they may realize conformations where some Pheo molecules are attached close
together to form dimers, trimers etc.. It is a particular challenge to uncover
signatures of different conformations and possible strong excitonic coupling.
The latter results in a spatial delocalization of the CC excitation across some
chromophores, it changes the spectrum of excitations and influences the type
of EET dynamics. Spectra of linear absorbance and time and frequency re-
solved emission [6] should carry signatures of the excitonic coupling. Since it
is observed up to the nanosecond region, the formation of delocalized states
may interfere with numerous conformational transitions in the CC. Therefore,
the related EET appears in a CC with pronounced structural changes.

Noting the structure of the dissolved CC P16 displayed in Fig. 1 it is ob-
vious that only mixed quantum classical schemes may be ready to simulate
the EET which proceeds on the highly flexible structure of the CC. The so–
called QM/MM method (quantum mechanical/molecular mechanics method)
represents a prominent example for such mixed methods. It has been applied
to model, for example, surface reactivity and enzymatic activities by defining
the quantum mechanical subsystem as that part which undergoes electronic
changes associated with chemical activity. The rest of the system is described
in using a molecular mechanics force field (see [12] as well as the recent pub-
lications [13–15], also for further references). While it is conceptually easy
to account for the electrostatic and van der Waals interactions between the
QM and MM regions a proper treatment of covalent bonds at this border is
a subject of current studies. Interestingly, the majority of QM/MM method
applications reported in literature does not concern the computation of (ul-
trafast) optical and infrared spectra of molecular systems. Such investigations
are usually done under the headline of a mixed quantum classical description
of molecular dynamics (see, for example, [16–18] and the nice general overview
in [19]). In the mixed quantum classical scheme usually a quantum simulation
of all electronic degrees of freedom is carried out while the nuclear degrees of
freedom are put into a classical description [19–21]. Ab initio MD simulations
represent an example for such mixed methods where the electronic structure
problem is solved on the fly. Unfortunately, this approach is inappropriate
for such huge systems which are of interest here (an exception might be the
calculation schemes based on the DFT tight–binding method, see, e.g., [22]).

There are some recent application of a mixed quantum classical description
to investigate quantum dynamics in large CC. The absorbance of a photosyn-
thetic light harvesting complex caused by electronic Frenkel–exciton formation
has been considered in Ref. [23], and Refs. [24,25] focused on excitation energy
transfer in a DNA double helix strand. In both cases, however, the considera-
tions have been restricted to an approximate description based on the use of
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Fig. 1: The dendrimer Pheo complex P16 (with 16 chromophores) in a solvent box of
ethanol molecules (the Pheo molecules are shown in red, the dendrimeric structure is
displayed in green). Respective MD runs comprise 272613 atoms with 78 per Pheo,
310 of the dendrimeric structure and with 2895 ethanol molecules.

adiabatic exciton levels. Such a restriction had been overcome in Refs. [26–29]
discussing infrared spectra of polypeptides within the amide I band. The only
difference to the considerations here is the use of vibrational Frenkel–excitons
(formed by the coupling of high frequency vibrational peptide group excita-
tions) instead of electronic ones.

A specialty of our approach is the extension of the standard Frenkel exci-
ton theory to the inclusion of permanent charge distributions in the electronic
ground and excited state of the individual chromophores, what is indispens-
able when dealing with Pheo molecules. Resulting from the introduction of
atomic partial charges the excited state of a Pheo molecule becomes strongly
modulated, caused by its Coulomb coupling to the permanent charge distri-
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Fig. 2: The molecular structure of a single Pheo (C35H36N4O5, carbon in cyan,
oxygen in red, nitrogen in blue, hydrogen in white).

bution of all other molecules (staying in the electronic ground state). Using
the concept of atomic partial charges also for the excitonic coupling by in-
troducing so–called transition charges [30] this coupling could be calculated
nearly exactly (far beyond the approximation of coupled transition dipoles
and much more efficient than the transition density cube method introduced
in Ref. [31]).

The mixed quantum classical methodology which will be of interest for
all subsequent consideration is known as Ehrenfest dynamics (see the recent
review in [19]). It assumes the propagation of the time–dependent electronic
wave function which depends on the actual nuclear configuration. The latter
changes according to Newton’s equation but in the mean field induced by the
actual electronic state. Therefore, the approach accounts for a back reaction
of the electron dynamics on that of the nuclei. As it is well–known, the mean–
field approximation inherent to the Ehrenfest dynamics is overcome by the
surface hopping method (see also [19]). According to the size of our CC this
back reaction of the electron dynamics on the nuclear motion cannot be ac-
counted for. Consequently, our MD simulations are done in the presence of the
CC electronic ground–state force field. We simply arrive at a time dependent
exciton Hamiltonian. Its ingredients, the single chromophore excitation ener-
gies Em and the inter chromophore Coulomb couplings Jmn responsible for
excitation energy transfer are considered as time–dependent quantities. There-
fore, our approach can be related to the well known Haken–Strobl–Reineker
model of electronic Frenkel excitons (see, for example, [32]), where the exci-
ton vibrational coupling is replaced by time–dependent exciton parameters.
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Fig. 3: Flat dendrimeric structure of P8 (left) and of P16 (right, the red (light grey)
R symbolize the covalently bound Pheo, Fig. 2).

In order to calculate ensemble averages the explicit time–dependence of the
exciton Hamiltonian is replaced by stochastic processes. If drastic changes of
Jmn appear due to CC conformational transitions it is hard to apply this
approach (Refs. [33] and [34] introduced a dichotomically fluctuating transfer
coupling to cover such large conformational transitions). Instead, as it will
be demonstrated here, it is more appropriate to directly generate the time–
dependence of the exciton parameters Em and Jmn by MD simulations. Then,
a microscopic account for solvent effects as well as a detailed description of
solvent induced conformational transitions is possible.

The standard full quantum treatment of EET is either based on single
chromophore populations (obeying rate equations with Förster–type rates)
or on the excitonic density matrix following from a Redfield–like equation
(see, for example, [35–38]). In any case one determines quantities which have
been already averaged with respect to a CC ensemble and with respect to
a thermal bath. Therefore, all descriptions are of such a type that thermal
equilibrium is reached asymptotically due to energy relaxation and dephasing.
This is in fundamental contrasts to mixed quantum classical approaches where
a single quantum system moves in an environment (all nuclear coordinates)
treated classically. In the most simple variant the solution of a time–dependent
Schrödinger equation defined by an explicit time–dependent Hamiltonian has
to be achieved. The resulting EET dynamics in this single CC is completely
coherent. Dephasing appears if an ensemble average is carried out, i.e. if the
results of different MD runs starting with different thermalized initial configu-
rations have been averaged. This has some similarity to the Monte Carlo wave
function method (see, for example, [39]) with the exception, however, that the
environment does not cause quantum jumps but acts via a time–dependent
Hamiltonian continuously on the excitation energy motion. We also note that
the mixed quantum classical description of EET dynamics in CC is ready
to describe any strength of electron (exciton) vibrational coupling. This is
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in contrast to the full quantum description where it is usually necessary to
distinguish between the weak and strong coupling case. When extended to
a nanosecond time scale including an ensemble average of those quantities
measured in the experiment the mixed quantum classical description of EET
simultaneously accounts for what is often named dynamic as well as static
disorder.

A mixed quantum classical description of EET does not represent a unique
approach. On the one hand side, as already indicated, one may solve the time–
dependent Schrödinger equation responsible for the electronic states of the
system and couple it to the classical nuclear dynamics. Alternatively, one may
also start from the full quantum theory and derive rate equations where, in a
second step, the transfer rates are transformed in a mixed description (this is
the standard procedure when considering linear or nonlinear optical response
functions). Such alternative ways have been already studied in discussing the
linear absorbance of a CC in [9] and the computation of the Förster–rate
in [10].

The paper is organized as follows. The next section quotes details of the
Frenkel exciton model necessary for the later discussion. Comments on a full
quantum dynamical description of all those quantities which are of interest
in the mixed description are shortly introduced in Section 3. The used mixed
quantum classical methodology is introduced in Section 4. Its application to
EET processes is given in 5, to the computation of linear absorbance in Section
3.2, and to the determination of emission spectra in Section 7. The paper ends
with some concluding remarks in Section 8.

2 The Model for the Chromophore Complex in a Solvent

We first describe an appropriate model for the isolated CC (neglect of so-
lute solvent coupling, see also Fig. 4). Afterwards, the electrostatic couplings
within the CC and between the solvent and the CC are incorporated.

2.1 The Chromophore Complex Hamiltonian

For all the following considerations it is an important fact that within the
CC of interest mutual chromophore wave function overlap and electron ex-
change effects among different chromophores do not take place (absence of
the Dexter mechanism). Therefore, we may assume the orthogonality relation
〈ϕma|ϕnb〉 = δm,nδa,b to be valid, where ϕma(rm;Rm) denotes the electronic
wave function of chromophore m in state a (electronic ground–state: a = g,
first excited electronic state a = e). The electronic coordinates are abbrevi-
ated by rm (related to the m’th chromophore center of mass). Moreover, the
wave function parametrically depends on all nuclear coordinates Rm of chro-
mophore m. The related single chromophore electronic Hamiltonian is denoted
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Fig. 4: Energy level scheme and interactions for the dendrimer Pheo complex P4

(displayed in the background, solvent molecules are not shown). Every chromophore
is characterized by an electronic ground–state and a single excited electronic state
(the positioning of small red (light grey) spheres indicates that the chromophore
right in the background has been excited while the others stay in their ground
state). Full blue (light grey) lines indicate the inter chromophore Coulomb coupling
affecting the CC ground state (Eq. (7)) as well as the excited CC state (Eqs. (10)
and (11), the chromophore solvent coupling is not shown). The green (light grey,
vertical) arrows symbolize the excitonic interaction responsible for EET (also Eq.
(10)).

by H
(el)
m and the eigenvalues are Ema. Thus, the approach is based on isolated

chromophore quantities with all additional couplings treated separately.
Accordingly, the total CC Hamiltonian takes the form (the presence of an

external radiation field will be accounted for later)

HCC = Tnuc + VCC , (1)

where Tnuc =
∑
m Tm is the kinetic energy operator of all involved nuclear

coordinates separated here into the contributions Tm of the various chro-
mophores. The potential VCC reads in more detail

VCC =
∑
m

H(el)
m +

1
2

∑
m,n

Vmn . (2)
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If electronic matrix elements have been taken the single chromophore elec-
tronic Hamiltonians H

(el)
m will define the single chromophore potential energy

surfaces (PES) Uma. The Vmn cover the complete Coulomb interaction be-
tween chromophore m and n, including the interaction V

(el−el)
mn among elec-

trons, the interactions V
(el−nuc)
mn as well as V

(nuc−el)
mn among electrons and

nuclei, and the interaction between nuclei V (nuc−nuc)
mn .

Since inter chromophore electron exchange can be neglected the product of
single chromophore electronic wave functions

∏
m ϕma(rm;Rm) can be used as

an expansion basis. To order the CC Hamiltonian with respect to the number
of basic excitations we start with the electronic ground–state

φ0(r;R) =
∏
m

ϕmg(rm;Rm) . (3)

Singly excited states (with the excitation of the single chromophore m into
the state ϕme) are written as

φm(r;R) = ϕme(rm;Rm)
∏
n �=m

ϕng(rn;Rn) . (4)

Doubly excited electronic CC states can be introduced in a similar way but
are of no interest here. Possible ground–state excited–state couplings will be
also neglected [10]. Therefore, the expansion simply reads (see also Fig. 4)

HCC ≈ 〈φ0|HCC|φ0〉|φ0〉〈φ0|+
∑
m,n

〈φm|HCC|φn〉|φm〉〈φn| . (5)

The overall electronic ground state matrix element follows as [9, 10]

〈φ0|HCC|φ0〉 ≡ H0 = Tnuc + V0(R) , (6)

with the ground–state vibrational Hamiltonian H0 and the respective PES

V0(R) =
∑
m

Umg(Rm) +
1
2

∑
m,n

Jmn(gg, gg;Rm, Rn) . (7)

Besides the single chromophore PES Umg, this expression includes inter chro-
mophore couplings Jmn describing the Coulomb–interaction among the dif-
ferent unexcited chromophores. They are the electronic ground–state variant
of the general expression

Jmn(ab, cd) =
∫

drmdrn ϕ∗ma(rm)ϕ
∗
nb(rn)Vmnϕnc(rn)ϕmd(rm) , (8)

which will be analyzed in more detail in Section 2.3.
The inter chromophore couplings are reduced here to a simple electrostatic

coupling among the charge distribution of the electrons and nuclei in chro-
mophore m and n. It appears if the electron charge and that of the nuclei are
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locally unbalanced giving a local net charge within every chromophore. Since
electron exchange is of no importance it might be sufficient to concentrate on
the electrostatic coupling when determining the CC excitation energies (see
next section), but V0 has to be extended by polarization forces if it is used to
determine the MD force field.

The singly excited state matrix elements take the form [9,10] (see also Fig.
4)

〈φm|HCC|φn〉 ≡ Hmn = δm,nTnuc + Vmn(R) , (9)

with the PES matrix written as

Vmn(R) = δm,n(V0(R) + Umeg(R)) + (1− δm,n)Jmn(eg, eg;Rm, Rn) .
(10)

The Jmn(eg, eg;Rm, Rn) define the so–called excitonic coupling responsible
for EET and the formation of delocalized exciton states. The PES

Umeg(R) = Ume(Rm) +
∑
k

Jmk(eg, ge;Rm, Rk)

−[Umg(Rm) +
∑
k

Jmk(gg, gg;Rm, Rk)] . (11)

characterizes the excitation of chromophore m and includes its electrostatic
coupling (in the ground as well as in the excited state) with all other chro-
mophores.

2.2 Standard Exciton Hamiltonian

The standard Hamiltonian for a CC (see, for example [40]) assumes that the
single chromophore is locally neutral (the electron charge and that of the nuclei
are completely balanced). Thus, it neglects inter–chromophore electrostatic
couplings. The ground–state PES V0 is written in a form following from a
vibrational normal–mode analysis:

H0 =
∑
j

�ωjc
+
j cj , (12)

where the ωj are the normal–mode frequencies, and the c+j as well as cj
denote respective harmonic oscillator operators. Then, the singly excited state
Hamiltonian matrix reduces to

Hmn = δm,n(Em +H0) + (1− δm,n)Jmn(eg, eg)

+
∑
j

�ωjgj(mn)(cj + c+j ) . (13)
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The excitation energy of chromophore m, Eq. (11), but fixed at the Franck–
Condon transition region is given by Em (site energy). Excitation energy nor-
mal mode vibration coupling has been restricted to the lowest–order nuclear
coordinate contribution and is characterized by the coupling matrix gj(mn).
It may modulate the excitation energy (diagonal contribution) as well as the
excitonic coupling (off–diagonal contribution). Standard exciton states

|α〉 =
∑
m

Cα(m)|φm〉 (14)

follow by diagonalizing δm,nEm + (1− δm,n)Jmn(eg, eg).

2.3 The Coulomb Interaction Matrix Element

To compute the Coulomb matrix element, Eq. (8), we first note that the
multiple integration with respect to the coordinates of all electrons of chro-
mophore m and n can be reduced to a two–fold coordinate integration. This
becomes possible because of the antisymmetric character of the chromophore
electronic wave functions. Therefore, we introduce single electron densities of
chromophore m:

�
(m)
ab (x) = eNm

∫
drδ(x− r1)ϕ∗ma(r)ϕmb(r) . (15)

The integration covers all electronic coordinates of chromophore m (the re-
spective electron number is given by Nm), and the δ–function guarantees that
the electronic coordinate r1 is replaced by the new variable x. If Eq. (15) is
specified to �

(m)
gg (x) it gives the (permanent) electronic charge density in the

electronic ground–state and �
(m)
ee (x) is that of the excited electronic state. If

a �= b the so–called transition charge density is obtained.
A compact notation of Eq. (8) is achieved if we introduce the overall single

chromophore charge density where electrons and nuclei contribute (the latter
are positioned at Rμ and have the charge number Zμ)

n
(m)
ab (x) = �

(m)
ab (x)− δa,b

∑
μ∈m

eZμδ(x−Rμ) . (16)

Now, Eq. (8) turns into the form [30]:

Jmn(ab, cd) =
∫

d3xd3x′
n

(m)
ad (x)n(n)

bc (x′)
|x− x′| . (17)

The molecular density n
(m)
ab reduces to the electronic transition density when

a �= b. It results in zero total charge when integrated (
∫
d3xn

(m)
ab (x) = 0)

indicating charge neutrality of the molecule.
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Fig. 5: Coulomb coupling between Pheo m and n formulated in terms of atomic
centered partial charges (transition charges) qmμ and qnν , Eq. (18).

To carry out the computation of Jmn for a particular pair of chromophores
the Coulomb matrix element can be translated with high accuracy into the
following form (see Fig. 5 and [30]):

Jmn(ab, cd) =
∑
μ,ν

qmμ(ad)qnν(bc)
|Rmμ −Rnν | . (18)

The qmμ(ad) and qnν(bc) are charges placed at the atoms of chromophore m
positioned at Rmμ and at the atoms of chromophore n positioned at Rnν ,
respectively. If a = d (b = c) the charges represent ordinary ones, but if a �= d
(b �= c) they are named transition charges (for more details see Section 4.2).

2.4 Inclusion of Solvent Molecules

The inclusion of non–balanced charge distributions in the chromophores
ground and excited state suggests an account for respective solvent molecule
contributions, resulting in a solvent solute Coulomb coupling. This is for-
mally achieved by including all solvent molecules into the definition of the
electronic CC states φ0 and φm. Since solvent molecule excitation energies
should be much larger than those of the chromophores, solvent solute EET
does not appear. The respective coupling, however, is responsible for solute
solvent polarization forces. Related contributions can be included on a micro-
scopic basis, but this is postponed to future work. Here, we account for the
related single chromophore excitation energy shift phenomenologically using
experimental known values but neglect polarization effects on the excitonic
coupling.
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To include the electrostatic solvent solute coupling we multiply the φ0 and
φm by the solvent part φsol =

∏
m∈sol ϕ̃mg with the single solvent molecule

electronic ground–state wave functions ϕ̃mg. As a result, the nuclear kinetic
energy operator Tnuc has to include solvent contributions. Moreover, V0, Eq.
(7), may include in its m and n summation solvent contributions. Concern-
ing Vmn, Eq. (10), besides V0 solvent contributions are restricted to the k–
summations in Vmeg, Eq. (11).

2.5 Adiabatic Exciton States

In contrast to Eq. (14) introducing ordinary exciton states, adiabatic exciton
states are defined as the instantaneous eigenstates of the singly excited CC, i.e.
they are obtained by diagonalizing Vmn, Eq. (10). The states can be expanded
according to

Φα(r;R) =
∑
m

Cα(m;R)φm(r;R) , (19)

forming an orthogonal basis at every set R of nuclear coordinates. We directly
arrive at CC excitation energies when solving∑

n

(
Vmn(R)− δm,nV0(R)

)
Cα(n;R) = Eα(R)Cα(m;R) . (20)

The Eα and Cα can be used to describe excitation energy dynamics [10] but
also to estimate the CC absorbance (see Section 6.3 and [8,9]).

2.6 Coupling to External Fields

The coupling to the classical radiation field reads

Hfield(t) = −μ̂E(t) , (21)

with the CC dipole operator

μ̂ =
∑
m

dm|φm〉〈φ0|+H.c. , (22)

where the dm are the single chromophore transition dipole matrix elements.
The quantized photon field enters via the standard Hamiltonian

Hphot =
∑
λ,k

�ωk(a+
λkaλk + 1/2) (23)

determined by creation and annihilation operators of photons a+
λk and aλk,

respectively (with polarization λ and wave vector k) and by the photon energy
�ωk. The coupling of photons to the CC takes the form
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HCC−phot = �
∑
λ,k

ĥλk(aλk + a+
λk) , (24)

where we abbreviated

ĥλk =
∑
m

gλk(m)|φm〉〈φ0|+ h.c. . (25)

The coupling constant follows as

gλk(m) = −i

√
2π�

V ωk
ωmegnλkdm . (26)

V denotes the quantization volume, �ωmeg is the basic electronic transition
energy in chromophore m, and nλk the unit vector of transversal polarization.

3 Full Quantum Dynamical Description

We quote some central formulas valid for an exact quantum description of EET
and related optical spectra. The formulas will serve as reference relations to
change to a mixed quantum classical description. To present the full quantum
formulas we need the so–called site representation of the overall statistical
operator:

ρ̂mn(t) = 〈φm|ρ̂(t)|φn〉 , (27)

which uses the singly excited CC states, Eq. (4). Obviously, this quantity
remains an operator in the state space of all vibrational degrees of freedom.

3.1 Excitation Energy Transfer

The standard quantum statistical description of excitation energy motion in
CC arrives at irreversible (dissipative) dynamics originated by energy relax-
ation and dephasing due to the coupling to vibrational degrees of freedom (see,
for example, [40]). There are two basic approaches which have to be distin-
guished according to the interrelation between the excitonic coupling and the
chromophore vibrational coupling (vibrational reorganization). If the latter
dominates one can carry out a perturbation theory with respect to the exci-
tonic coupling. EET may be described in terms of rate equations governing
the single chromophore excited state populations

Pm(t) = trvib{ρ̂mm(t)} , (28)

with the trace trvib{...} accounting for all nuclear coordinates involved (intra
chromophore, inter chromophore as well as solvent coordinates). Transition
rates may be sufficient which are of second order with respect to the excitonic
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coupling (often of the so–called Förster type, fourth–order rates of EET have
been discussed recently in [41]):

km→n =
2
�2

Re

∞∫
0

dt trvib{R̂mU+
m(t)JmnUn(t)Jnm} . (29)

The vibrational equilibrium statistical operators R̂m and the time evolution
operators Um(t) are defined by the Hamiltonians Hm = V0+Tm+Umeg (with
the PES given in Eq. (11)).

Perturbation theory with respect to the chromophore vibrational coupling
can be introduced if the excitonic coupling dominates. Now, it is advisable to
change to an exciton representation and to introduce the (reduced) exciton
density matrix

ραβ(t) = trvib{〈α|ρ̂(t)|β〉} , (30)

where standard exciton levels, Eq. (14) (referring to the fixed CC ground
state nuclear equilibrium configuration) have been used. Respective equations
of motion with a second order account of exciton vibrational coupling have
been widely used in literature (see, for example, [35–38], much less, however,
has been published for the intermediate region where both couplings are com-
parable).

Both mentioned approaches are based on ensemble averages (quantum
statistical averages with respect to a reservoir staying in thermal equilibrium).
In the infinite time limit (ignoring radiative or non radiative decay) the Pm(t)
turn into respective equilibrium distributions fm. In the case of the exciton
density matrix the off–diagonal elements of ραβ(t) decay while the diagonal
elements tend to an equilibrium distribution fα. The mentioned theories are
only applicable for small fluctuations around a single reference CC structure.
Strong conformational changes cannot be accounted for.

3.2 Linear Absorption Spectra

Using the standard expression of the dipole–dipole correlation function the
CC absorption cross section can be derived as [9, 42]:

I(ω) = Re

∞∫
0

dτ eiωτ
∑
m,n

trvib{R̂0d
(0)∗
m (τ)eiH0τ/�〈φm|e−iHCCτ/�|φn〉dn} .

(31)

Here, R̂0 denotes the respective statistical operator for the nuclear coordinate
equilibrium motion in the electronic ground state of the CC. The dn are scalar
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single chromophore transition dipole matrix elements introduced in Eq. (22).
They are obtained as the projection on the polarization direction of the incom-
ing field (note that we disclaimed to introduce the Condon approximation).
The time dependent transition dipole matrix elements d

(0)
m (t) corresponds to

a representation defined by the CC ground state vibrational Hamiltonian H0

d(0)
m (τ) = eiH0τ/�dme−iH0τ/� . (32)

For comparison we present the absorption cross section for the case where
inter–chromophore coupling can be neglected and where the use of the
Condon–approximation becomes possible. We arrive at

I(ω) =
∑
m

|dm|2Re
∞∫
0

dτ eiωτ trvib{R̂mgeiHmgτ/�e−iHmeτ/�} . (33)

The total absorption spectrum appears as the simple addition of the individ-
ual absorbance of all chromophores in the CC. The trace is reduced to the
vibrational wave packet overlap in the electronic ground and excited state (av-
eraged with respect to the chromophore electronic ground–state vibrational
equilibrium, described by the density operator R̂mg; Hma = Tm + Uma).

3.3 Spectra of Time and Frequency Resolved Luminescence

Since exact formulas for time and frequency resolved emission spectra are less
standard we shortly comment on the derivation of the full quantum expres-
sions [43–45]. To characterize the emission we introduce the rate Rλk(t) which
follows as the number of photons emitted per time into the state with polar-
ization λ and wave vector k. Since emission appears into the photon vacuum
we may set Rλk = ∂Nλk/∂t, where

Nλk = tr{Ŵ (t)a+
λkaλk} (34)

is the expectation value of the photon number at time t. The trace concerns
the photon states as well as the CC and solvent contributions. The statis-
tical operator Ŵ (t) also accounts for photon states and the presence of the
exciting laser pulse. Therefore, the density operator of the CC solvent system
introduced in Eq. (27) is obtained after a reduction which projects out photon
contributions, i.e. we have to use

ρ̂(t) = trphot{Ŵ (t)} . (35)

A trace which only accounts for CC and solvent states yields the reduced
photon density operator

Ŵphot(t) = trCC+sol{Ŵ (t)} . (36)
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The overall emission rate of photons with energy �ω at time t reads (note
the use of spherical coordinates for k and the abbreviation of the solid angle
integration by

∫
do)

F (ω; t) =
V ω2

(2πc)3
∑
λ

∫
do Rλk(t) . (37)

It is sufficient to determine the quantity Rλk in the second order with respect
to the CC photon interaction. We further assume that the optical preparation
of the excited state by the applied field E is short compared to the emission
process and, finally, we neglect anti–resonant contributions. When calculating
F (ω; t) we also have to perform a summation with respect to the transversal
polarization and a solid angle integration. Introducing dm = dmem where em
is the unit vector pointing in the direction of the transition dipole moment
one gets ∑

λ

∫
do [nλkem][nλken] =

8π
3
[emen] . (38)

Consequently, F (ω; t) will contain the transition dipole matrix elements in
forming a common scalar product. The full quantum expression for the emis-
sion rate (rate of ideal time and frequency resolved emission) takes the form

F (ω; t) =
4ω3

3πc3�
Re

t∫
t0

dt̄ e−iω(t−t̄) ∑
m,n,k

trvib{ρ̂nk(t̄)〈φk|eiHCC(t−t̄)/�|φm〉e−iH0(t−t0)/�[d(0)
m (t)d(0)+

n (t̄)]eiH0(t̄−t0)/�} .

(39)

Again, we prevent to take the Condon approximation. The ρ̂nk have been in-
troduced in Eq. (27) and account for EET among the different chromophores
(after optical excitation at t0, note also the use of Eq. (32)). Many com-
putations focus on emission spectra in the picosecond and sub–picosecond
time–region where the influence of radiative and non–radiative decay can be
neglected when determining the ρ̂nk (see, for example, [44,45]). For the present
nanosecond studies, however, it becomes essential to account for these pro-
cesses when calculating ρ̂nk(t̄) (see the subsequent section).

We consider an approximate expression for the emission spectrum. It ne-
glects inter–chromophore coupling, assumes that the Condon–approximation
can be carried out, and considers the case of fast vibrational relaxation in the
excited electronic state of the individual chromophores:

F (ω; t) =
4ω3

3πc3�

∑
m

|dm|2Pm(t)Re
∞∫
0

dτ e−iωτ

× trvib{R̂meeiHmeτ/�e−iHmgτ/�} . (40)
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In this limiting case the time–dependence of the emission spectrum is deter-
mined by the overall probability Pm to find chromophore m in the excited
state while the frequency distribution of the emitted photons is determined
by the Fourier–transformed standard trace expression for the radiative decay
of an excited molecular state (see, for example, [40]; R̂me describes vibrational
equilibrium in the excited electronic state).

As already indicated Eq. (39) (Eq. (40)) gives the rate of ideal time and
frequency resolved emission. If compared with experimental data gained by
single photon counting, F (ω; t) has to undergo a time averaging with the
respective apparatus function which determines the possible time resolution
of the measurement (for up conversion techniques see [44]).

Density Matrix Theory of Excitation Energy Motion Including
Radiative Decay

To account for the radiative decay of CC excited states we consider the density
operator ρ̂, Eq. (35), reduced to the CC solvent states. It is a standard task
of dissipative quantum dynamics to derive an equation of motion for ρ̂ with
a second order account for the CC–photon coupling, Eq. (24) (see, for exam-
ple, [40]). Focusing on the excited CC–state contribution, in the most simple
case (Markov and secular approximation) we expect the following equation of
motion

∂

∂t
ρ̂mn(t) = − i

�

∑
k

(Hmkρ̂kn(t)− ρ̂mk(t)Hkn
)

−1
2
(km + kn)ρ̂mn(t) . (41)

The rates km cover the km→0 accounting for the excited state decay of chro-
mophore m (by radiative as well as non–radiative transitions) and the k

(ISC)
m

originated by inter–system crossing to triplet states (ISC rate). The simple km
do not include the effect of excited state wave function delocalization and a
possible decay out of exciton states [45]. Therefore, we shortly demonstrate the
computation of the photon emission part of the km including such a delocal-
ization effect (determination of excitonic augment rates). It will be important
for the mixed quantum classical simulations discussed in the following (for
more details see also [11]).

A dissipative quantum dynamics approach including spontaneous photon
emission is based on a separation of the total Hamiltonian into a system part,
here the CC Hamiltonian Eq. (1), the reservoir part given by the photon
Hamiltonian and a system reservoir coupling HS−R represented by the CC–
photon coupling, Eq. (24). In most applications the latter Hamiltonian can
be written as follows

HS−R =
∑

KuΦu , (42)
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where the Ku are operators acting in the system state space and the Φu are
operators defined with respect to the reservoir state space. To identify them
with those entering the CC–photon coupling we have to set (see Eqs. (24),
(25), and (26)) Ku = ĥλk(R) and Φu = �(aλk + a+

λk), i.e. the index u equals
λk.

The equation of motion for the reduced density operator (quantum master
equation) takes the form [40]

∂

∂t
ρ̂(t) = − i

�
[HCC(t), ρ̂(t)]− − D̂(t, t0) , (43)

According to Eq. (42) for HS−R the part responsible for dissipation reads

D̂(t, t0) =
∑
u,v

t∫
t0

dt̄

(
Cuv(t, t̄)

[
Ku(t), UCC(t, t̄)Kv(t̄)ρ̂(t̄)U+

CC(t, t̄)
]
−

−C∗uv(t, t̄)
[
Ku(t), UCC(t, t̄)ρ̂(t̄)Kv(t̄)U+

CC(t, t̄)
]
−

)
.

(44)

Be aware of the fact that we have to consider the non–Markovian version
of the quantum master equation to stay at a level of description where the
emission rate, Eq. (39), can be deduced. Moreover, to be ready for a translation
to a mixed quantum classical description a variant has been presented where
the time evolution operators might be defined by an explicitly time–dependent
CC Hamiltonian, i.e. exp(−iHCC[t − t̄]/�) has been replaced by the more
general expression UCC(t, t̄).

Since the photon version of the reservoir correlation functions Cuv includes
the photon statistical operator which is defined by the projector on the photon
vacuum the correlation functions simply read

Cλk,κq(t− t̄) = δλk,κqe
−iωk(t−t̄) . (45)

We change to CC excited state matrix elements of ρ̂ as well as of Eq. (43)
which are of only interest here. Using the same assumptions as to arrive at
F (ω; t), Eq. (39), (matrix elements of the CC time evolution operator UCC

between the CC ground and a singly excited CC state do not contribute,
anti–resonant contribution are neglected) we arrive at (m ↔ n indicates the
chromophore index interchange)

D̂mn(t, t0) =
∑
k,l

t∫
t0

dt̄
2

3πc3�

∞∫
0

dωω3e−iω(t−t̄)

e−iH0(t−t0)/�d(0)
m (t)d(0)+

k (t̄)eiH0(t̄−t0)/�ρ̂kl(t̄)〈φl|U+
CC(t, t̄)|φn〉

+
(
c.c.+ (m ↔ n)

)
. (46)
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e.g. [40]From this expression we, first, may deduce the time resolved spon-
taneous emission spectrum, Eq. (39). The total photon emission rate F (t) is
obtained from total rate of de–excitation of the CC which follows as the time
derivative of the total probability

∑
m trvib{ρ̂mm(t)} to have the CC in the

singly excited state. We note

−
∑
m

∂trvib{ρ̂mm(t)}
∂t

=
∑
m

trvib{D̂mm(t, t0)} =

∞∫
0

dω F (ω; t) , (47)

where F (ω; t) is identical with Eq. (39).
Second, Eq. (46) is ready to deduce excitonic augmented radiative decay

rates since the matrix element 〈φl|U+
CC(t, t̄)|φn〉 fully account for the excitonic

coupling among different chromophores (for details we refer to [46]).

4 Mixed Quantum Classical Description

A systematic route to achieve a mixed quantum classical description of EET
may start with the partial Wigner representation ρ̂(R,P ; t) of the total den-
sity operator referring to the CC solvent system. R and P represent the
set of all involved nuclear coordinates and momenta, respectively. However,
ρ̂(R,P ; t) remains an operator in the space of electronic CC states (here
φ0 and the different φm). Setting up an equation of motion for ρ̂(R,P ; t)
up to the first order of the �–expansion one can change to electronic ma-
trix elements. Focusing on singly excited state dynamics we have to consider
ρmn(R,P ; t) = 〈φm|ρ̂(R,P ; t)|φn〉 which obeys the following equation

∂

∂t
ρmn(R,P ; t) = − i

�

∑
k

(Hmkρkn − ρmkHkn
)

+
1
2

∑
ν

{∑
k

(∂Vmk
∂Rν

∂ρkn
∂Pν

+
∂ρmk
∂Pν

∂Vkn
∂Rν

)− 2
∂Tnuc

∂Pν

∂ρmn
∂Rν

}
. (48)

The first term on the right–hand side is identical with that of Eq. (41) (since
the nuclear kinetic energy cancel the Hamiltonian matrixHmn can be replaced
by the PES matrix Vmn, Eq. (10)). The derivatives in the second term on the
right–hand side of Eq. (48) are responsible for the formation of a nuclear
coordinate and momentum dependence of the density matrix. The multitude
of involved coordinates and momenta, however, avoids any direct calculation
of the ρmn(R,P ; t), and respective applications finally arrive at a computation
of bundles of nuclear trajectories which try to sample the full density matrix.

Therefore, it is more appropriate to start from an approach which is known
as Ehrenfest dynamics. In the present case it is based on the following time–
dependent Schrödinger equation for the CC electronic wave function

i�
∂

∂t
Ψ(r,R(t); t) =

[
HCC(R(t)) +Hfield(R(t); t)

]
Ψ(r,R(t); t) . (49)
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The CC Hamiltonian has been introduced in Eq. (1) (again, the nuclear kinetic
energy contribution may be removed), and the coupling to the radiation field
follows from Eq. (21). The nuclear coordinates are time–dependent functions
determined by Newton’s equations

Mν
∂2

∂t2
Rν(t) = −∇ν〈Ψ(R(t); t)|[VCC(R(t)) +Hfield(R(t); t)

]|Ψ(R(t); t)〉 .
(50)

Here, the Rν denote the position of the ν’th nuclei and the Mν are the related
masses. Since the force the nuclei experience depends on the actual electronic
state the latter reacts back on the nuclear dynamics. Noting, again, the huge
amount of nuclear coordinates for the types of CC discussed in the following
the mixed quantum classical approach should be of a type where this back
reaction of the actual electronic state on the nuclear dynamics is neglected.
Therefore, the potential 〈Ψ |VCC + Hfield|Ψ〉 appearing in Eq. (50) which is
determined by the actual electronic excitation is replace by the one of the
electronic ground–state (ground–state classical path approximation [16–18,21,
43], note also the additional neglect of the external field contribution). This
is just the potential V0 introduced in Eq. (7). It defines the force field used in
the MD simulations.

One may also introduce this approximation from a more qualitative point
of view by stating that in a large CC the presence of only a single excita-
tion should not change the nuclear dynamics considerably (the atomic partial
charges changes by less than 5 % when moving from the ground to the excited
state). Regardless of the concrete justification we will proceed in the spirit of
ground–state classical path approximation in all what follows. In particular,
this approximation avoids any difficulties related to electronic transitions in-
duced by the external field. Next we present some details on the used MD
approach and the used electrostatic couplings. Afterwards, EET dynamics as
well as linear absorbance and photo emission spectra are discussed.

4.1 MD Simulations of the CC in a Solvent

MD simulations of the various Pn of interest (dissolved in ethanol) have been
carried out with the NAMD program package [47] using the AMBER force
field with the parm99 and GAFF parameter sets [48, 49] (details on how to
handle the electrostatic interactions are given in the next section).

The assignment of the atom types and possibly missing bond and torsion
angle parameters were done in analogy to existing atom types in the parameter
set. To achieve the restrained electrostatic potential (RESP) fitting and to
check the parameters we applied the Antechamber module [53] of the AMBER
program. Afterwards, the RESP fitted atomic charges were used together with
the GAFF parameter set.

The initial conformation of the Pn solvated in a box of ethanol molecules
was built by the LEAP module of the AMBER program version 8.0 [54] with
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Fig. 6: Snapshots of P4 in ethanol along a 1 ns room–temperature MD run (the
chromophores have been labeled to identify their changed positions).

the GAFF [49] parameters for the CC. Parameters for the ethanol solvent
model were obtained from Ref. [51], and have been made compatible with
the AMBER force field [48]. Introducing periodic boundary conditions, the
electrostatic interactions were computed by the particle mesh Ewald method
[55]. The non–bonding potential cutoff distance has been fixed at 15 Å, which
was sufficient to account for inter chromophore as well as chromophore solvent
interactions and led to a reasonable computation time (an integration time
step of 1 fs was used for the MD trajectories). The minimization procedure
for the whole system, necessary to remove unfavorable conformations, has
been carried out in two steps. First, Pn was kept fixed and only the spatial
configurations of the ethanol molecules were minimized. In the second step,
the entire system energy was minimized. Afterwards, the system was heated
up from 0 to 300 K over a timescale of about 30 ps. All the simulations were
performed at constant pressure and constant temperature. Bonds involving
hydrogen atoms were constrained with the ShakeH algorithm [56].

We applied the Langevin temperature control [57] (temperature: 300 K,
damping coefficient: 1/ps) and the Nosé-Hoover Langevin piston pressure con-
trol [58, 59] (target pressure: 1 atm, oscillation period: 100 fs, and oscillation
decay time: 50 fs). To ensure stable temperature and pressure, an equilibra-
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tion run of about 50 ps was performed. Then, a short simulation followed
from which a number of initial configurations (coordinates and velocities)
were sampled.

The coordinates of all atoms were recorded every 2 fs, and were used to
construct the time–dependent CC Hamiltonian including the solvent–induced
site energy shifts. A typical MD simulation time was 1 ns for each trajectory.
Fig. 6 shows snapshots of P4 along a 1 ns MD run with various positions of
the single chromophores to each other. Compared with our earlier simulations
reported in Ref. [8] the change from a methanol to an ethanol solvent reduced
somewhat the conformational flexibility of P4.

4.2 Coulomb Interactions

The electrostatic potentials related to Pheo and the dendrimeric part were
calculated utilizing Gaussian03 [50] at the ab initio HF/6-31G* level and
with fully optimized molecular geometries (the reliability of the Pheo data has
been proven by TDDFT as well as HF–CIS calculations also used to determine
the excited state electronic wave function). Afterwards, electrostatic potential
based atom centered point charges were obtained in a two–step RESP fitting
[51, 52] To be complete we note that the use of atomic centered charges is
exact only for the nuclear equilibrium configuration at which they have been
introduced. Using them within MD simulations probably my introduce small
errors.

The excitonic coupling is determined according to Eq. (18) by introducing
atomic centered transition charges qmμ(eg) [30] (it has been also demonstrated
in [30] that this approach reproduces exact data for the inter–chromophore
coupling obtained by using the so–called density cube method [31], but
with tremendously reduced computational efforts). In Ref. [8] we carried out
TDDFT/B3LYP calculations to get charges for Pheo molecules. These atomic
partial charges have been also used to calculate the single chromophore per-
manent and transition dipole moments. Carrying out structure minimization,
the gas–phase value for the transition dipole moment is 4.6 D. The perma-
nent dipole moment of the ground state amounts 5.8 D and that of the first
excited state 4.9 D. Such calculations have been repeated for P4 dissolved in
ethanol. The values remain almost constant around 4.4 D with small fluctu-
ations of about 0.2 D. To arrive at measured values for the transition dipole
moment [60] transition charges are scaled by 0.81.

4.3 Influence of Intra Chromophore Vibrations

Intra chromophore vibrations, i.e. the relative motion of all atoms of a par-
ticular chromophore, of course, are included in the MD simulations. But,
it is less easy to account for their influence on the EET dynamics. They
enter via the single chromophore PES of the ground and the excited state
Umg(Rm) and Ume(Rm), respectively. If the nuclear coordinate dependence
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Fig. 7: EET in the CC P4 including solvent induced modulations. Shown are the
chromophore excited state populations, blue curve: m = 1, red curve: m = 2, black
curve : m = 3, green curve : m = 4. Upper panel: averaged populations (across a
time slice of 10 ps), lower panel: non–averaged populations in a 5 ps time window.

of both types of PES is known (possibly in a harmonic approximation) the
single chromophore excitation energy fluctuation could be calculated from
Ume(Rm(t)) − Umg(Rm(t)). However, data for the two types of PES are not
available at present and we have to carry out different versions of an approx-
imate account of these vibrations (see below).
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5 Mixed Description of Excitation Energy Transfer
Dynamics

The mixed quantum classical description of EET can be achieved in using
Eq. (49) together with the electronic ground–state classical path version of
Eq. (50). As already indicated this approach is valid for any ratio between
the excitonic coupling and the exciton vibrational interaction. If an ensemble
average has been taken appropriately we may also expect the manifestation of
electronic excitation energy dissipation and coherence decay, however, always
in the limit of an infinite temperature approach.

To compute the overall CC electronic wave function Ψ(r, t;R(t)) intro-
duced in Eq. (49) an expansion with respect to the CC electronic ground and
the singly excited states is carried out

Ψ(r;R(t)) = A0(t)φ0(r;R(t)) +
∑
m

Am(t)φm(r;R(t)) . (51)

If inserted into the time–dependent Schrödinger equation (49) an multipli-
cation with φ∗0 and φ∗m from the left results in equations of motion for the
expansion coefficients. In doing so, one also produces overlap expressions
like 〈φ0|∂/∂t|φ0〉, 〈φm|∂/∂t|φ0〉, and 〈φm|∂/∂t|φn〉 (non–adiabatic couplings),
which all can be neglected in line with the neglect of the mutual chromophore
wave function overlap. Therefore, we obtain the expansion coefficient’s equa-
tions of motion as

i�
∂

∂t
A0(t) = H0(t)A0(t)−

∑
m

d∗m(t)E(t)Am(t) , (52)

and

i�
∂

∂t
Am(t) =

∑
n

Hmn(t)An(t)− dm(t)E(t)A0(t) . (53)

Once MD simulations for the CC have been carried out the Eqs. (52) and
(53) for the expansion coefficients can be easily solved (also in the presence
of an external radiation field). Moreover, the coefficients are used to compute
observables of interest. The excited state population follows as

Pm(t) = |Am(t)|2 . (54)

Probably, an ensemble average < Pm(t) > of the population would become of
interest (it can be approximated by an appropriate time average [10]).

Fig. 7 displays the time averaged populations (upper panel) and non–
averaged populations in a 5 ps time window (lower panel; the behavior is
typical for all calculations). A remarkable excitation energy redistribution
among the four chromophores becomes observable. The time window cor-
responds to the central snapshot (800 ps) of the lower part of Fig. 6. The
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population of chromophore 3 stays rather constant while the close distance
of the remaining chromophores to each other induces EET proceeding on a
sub ps time scale (some further examples can be found in [10]). These fast
oscillations are averaged out in an ensemble average [10]. In particular, Fig. 7
indicates the long–term survival of electronic coherences. If we compute, for
example, < Am(t)A∗n(t) > representing off–diagonal density matrix elements
ρmn (if m �= n) similar curves as in Fig. 7 are obtained (not shown). At best,
they indicate intermediate dephasing which is compensated by something like
rephasing, i.e. a later increase of < Am(t)A∗n(t) >. Excitation energy mo-
tion appears to be irregular since it is dominated by the equilibrium solvent
dynamics inducing CC conformational changes.

6 Mixed Description of Linear Absorption Spectra

The standard translation of the full quantum formula of the absorbance, Eq.
(31), to a mixed quantum classical description (see, e.g., [16–18]) is similar
to what is the essence of the (electronic ground–state) classical path approx-
imation introduced in the foregoing section. One assumes that all involved
nuclear coordinates behave classically and their time–dependence is obtained
by carrying out MD simulations in the systems electronic ground state. This
approach when applied to the absorbance is known as the dynamical classical
limit (DCL, see, for example, Res. [17]).

In Ref. [9] we demonstrated how one approaches the DCL for the CC
absorption cross section, Eq. (31). In a first step, the overall time evolution
operator exp(iHCCt/�) has to be replaced by the S–operator S1(t, 0) which
includes the difference Hamiltonian of the excited CC state and of the ground–
state. Then, the vibrational Hamiltonian matrix appearing in the exponent
of S1(t, 0) is replace by an ordinary matrix the time-dependence of which
follows from classical nuclear dynamics in the CC ground–state. The time–
dependence of the dipole moment d∗m follows from intra chromophore nuclear
rearrangement and changes of the overall spatial orientation. At last, this
translation procedure replaces the CC state matrix elements of the S–operator
by complex time–dependent functions

Ãm(t;n) = 〈φm|S1(t, 0)|φn〉 . (55)

The index n indicates that |φn〉 is the initial state of the propagation, just
resulting in Ãm(0;n) = δm,n. If the considerations are reduced to a complex
with a single chromophore only Ã(t) equals exp[−i/�

∫ t
0
dτUeg(R(τ))], where

Ueg has been introduced in Eq. (11) and is often named energy gap function
[43].

Using Ãm(t;n) valid for the whole CC the absorbance is obtained as
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I(ω) = Re

∞∫
0

dt eiωt
∑
m,n

< d∗m(t)Ãm(t;n)dn > ,

(56)

To distinguish this mixed quantum classical formula for the absorbance from
the other introduced later we name it DCL absorbance. While in the full
quantum formula, Eq. (31), it is guaranteed that I(ω) is always positive this
is not the case here. Calculating the absorbance from a single MD run, neg-
ative values become possible. However, they are removed within the thermal
averaging procedure via destructive interferences i.e. dephasing. The extend
to which this becomes possible depends on the number of MD runs used to
carry out the averaging. Often this number is restricted due to computational
limitations and the incomplete destructive interferences are repaired by in-
troducing an empirical dephasing term ∼ exp(−t/τdeph). Now, however, the
single MD run should only extend up to an upper time of some multiples of
τdeph (t < 3...5τdeph).

The determination of the various coefficients Ãm(t;n) appearing in Eq.
(56) is achieved via the following equations of motion

i�
∂

∂t
Ãm(t;n) =

∑
k

(Hmk(t)− δm,kH0

)
Ãk(t;n) . (57)

A similar translation scheme from the full quantum approach to a mixed quan-
tum classical description has been used recently in Ref. [26–29] to calculate
infrared absorption spectra of polypeptides within the amide I band (note
that the translation scheme has been also used in the mentioned references to
compute nonlinear response functions).

Since the translation scheme from the full quantum formula to a mixed
quantum classical description is not unique we also refer to a slightly different
way where the absorption coefficient is derived by linearizing the CC dipole
moment d(t) with respect to the field–strength E [9].

6.1 Linear Response Theory Approach

In contrast to the computations of the preceding section we directly calculate
the expectation value of the CC dipole operator (finally linearized with respect
to the external field) applying the classical path approximation for nuclear
dynamics. Such a direct calculation of the dipole operator expectation value
becomes of particular interest when focusing on ultrafast nonlinear optical
properties (transient absorption, photon echo signal, etc.).

Assuming the external field in the form E(t) = nE(t) exp(−iωt) + c.c.,
with polarization unit vector n, field envelope E(t), and photon energy �ω,
the absorption signal (the energy gain per sample volume the CC experiences
at the presence of the field) can be written as Sabs(ω) = 2ωIm

∫
dt E∗(t)P (t)
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(the integration has to cover the interval of the E(t) action here from t0 up
to tf ). The polarization field P(t) with envelope P (t) takes the same form as
the electric field–strength. Since P is understood as the dipole moment per
volume it can be calculated as nCC < d(t) > (nCC is the volume density of
CC in the sample). Thus, the polarization envelope follows as

P (t) ≡ eiωtnP(t) = nCCeiωt < nd(t) > . (58)

If Sabs is divided by the intensity of the field, the absorption coefficient is
obtained as α(ω) = 2πSabs(ω)/c

∫
dt |E(t)|2. According to Ref. [9] we arrive

at:

Sabs(ω) =
ωnCC

�

∑
m

< |D(ω;m)|2 > , (59)

where D(ω;m) is a total time–integrated function interpreted as the Fourier–
transform with respect to the frequency ω of the external field (be aware of
t0 → −∞, tf → ∞). The related time–dependent D–function reads

D(t;m) = eiωtE∗(t)
∑
n

d∗n(t)Ãn(t;m) , (60)

with the Ãn(t;m) introduced in Eq. (55).
To distinguish the absorbance calculated here from the DCL absorbance of

Eq. (56) we will name it absorbance according to a direct use of linear response
theory (LRT absorbance). For this type of absorbance it is guaranteed that
it stays positive. The thermal averaging exclusively leads to a constructive
interferences

6.2 Inclusion of Intra Chromophore Vibrations

As indicated in Section 4.3 there are no data available at present providing an
intra chromophore coordinate dependence of the single chromophore electronic
energies that could be included in the calculation of the absorbance. Therefore,
we will suggest two approximations to include the effects induced by intra
chromophore vibrations [9]. The first one introduces an additional random
energy �Δω added to all chromophore excitation energies entering Eq. (11).
When calculating Ãn(t;m), Eq. (57), �Δω can be easily included leading to a
shift of the frequency argument by Δω in the absorption signal, Eq. (59). An
averaging with respect to the distribution of the �Δω results in an averaged
LRT absorption cross section according to

Ī(ω) =
∫

dΔω g(Δω)I(ω −Δω) . (61)

The function g(Δω) describes the distribution of the random energy shift
around zero. We note that this approach is different from the standard way of
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Fig. 8: Absorbance of the CC P4 using different approximations (the red (full outer)
line gives the measured spectrum). Black (full inner) curve: estimate according to
Eq. (64) using adiabatic exciton levels (see also Fig. 10), gray area: LRT absorbance,
Eq. (59), green (dash-dotted) curve: DCL absorbance including intra chromophore
vibrations resulting in an additional broadening according to Eq. (62) (with vibra-
tional reorganization energy of 110 cm−1), blue (dashed) curve: the same as before
but with the direct use of a dephasing time of 20 fs.

averaging by introducing an additional factor exp(−t/τdeph) in Eq. (56). Here,
such a treatment is not possible since the LRT absorbance is determined by
the square of a time integral.

Our more basic account for intra chromophore vibrations uses the DCL
absorbance, Eq. (56). We stay at a quantum description of the intra chro-
mophore vibrations and get the cross section as [9]

I(ω) = Re

∞∫
0

dteiωt
∑
m,n

ϑmge(t) < d∗m(t)Ãm(t;n)dn > ,

(62)

where we introduced the mth single chromophore trace expression

ϑmge(t) = trm{R̂mgeihmgt/�e−ihmet/�} . (63)

This is the standard quantum correlation function determining the absorbance
of an isolated molecule, where the hma (a = g, e) are the Hamiltonians of intra
chromophore vibrations in chromophore m (defined with respect to the min-
imum of the actual PES) and R̂mg denotes the respective electronic ground
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Fig. 9: Adiabatic exciton levels of P4 (introduced in Section 2.5) versus time. Upper
panel: neglect of the electrostatic CC solvent coupling, lower panel: inclusion of the
electrostatic CC solvent coupling.

state vibrational equilibrium statistical operator. Note, that Eq. (62) neglects
any vibrational overlap with respect to the inter–chromophore excitonic cou-
pling [9].

Fig. 8 shows respective simulation results. The estimate using adiabatic
exciton states (see the subsequent section) coincides with the LRT absorbance.
Although the electrostatic coupling to solvent molecules has been included the
achieved broadening is insufficient to meet the measured curve. An additional
broadening due to the inclusion of intra chromophore vibrations removes this
discrepancy.

6.3 Estimate of the Absorbance Using Adiabatic Exciton States

Adiabatic exciton states have been introduced in Section 2.5. They are used
to arrive at the following approximate formula for the CC absorption cross
section [9]:
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Fig. 10: Room temperature absorption spectra of P4 (upper two panels), P8 (two
central panels), and P16 (bottom panels) estimated according to Eq. (66) and in us-
ing adiabatic exciton energies and oscillator strengths. The overall spectrum (thick
line) follows as the sum of single exciton level contributions (thin lines). The left col-
umn of figures shows spectra without including the modulation of the chromophore
excitation energy by a coupling to the solvent. The right column of figures shows
spectra where this effect is included.

I(ω) ∼
∑
α

∫
dR R0(R)Oα(R)δ(ω − Eα(R)/�) .

(64)

The oscillator strengths have been introduced according to

Oα(R) = |
∑
n

dn(R)C∗α(n;R)|2/d2 , (65)
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where d fixes a reference value of the dipole moment (absolute value of the
molecular transition dipole). Moreover, R0(R) is the nuclear coordinate equi-
librium distribution.

To evaluate the absorbance according to Eq. (64) we replace the nuclear
coordinates by trajectories and

∫
dRR0(R) by an averaging with respect to

different initial thermalized CC configurations. The frequency axis is divided
into equidistant grid points ωj with spacing Δω. Then, the oscillator strength
weighted density of states of exciton level α can be computed in using dα and
Eα at time steps tk (k = 1, ..., N , θ denotes the unit–step function) [8]:

Dα(ωj) =<
1
N

∑
k

θ(ωj +Δω/2− Eα(tk)/�)

θ(Eα(tk)/� − ωj +Δω/2)Oα(tk) > . (66)

Consequently, the formula counts how often a fluctuating exciton level appears
in a particular frequency interval. If the contributions of all four excitons levels
are added up, the result becomes proportional to the absorbance. Fig. 8 shows
the respective result for P4. It coincides with the more involved computation
according to the LRT scheme of Section 6.1. Respective adiabatic exciton lev-
els are shown in Fig. 9 either for the neglect of the electrostatic solvent solute
coupling as well as for its inclusion. In the latter case the spectra fluctuate
rather strongly indicating that non–adiabatic couplings among exciton levels
may become of some importance. However, the overall absorbance, Fig. 8,
if compared with the LRT results does not give any hint on this particular
effect.

Finally we indicate that the inclusion of intra chromophore vibrations
according to Eq. (61) can be also translated to the present case yielding the
averaged density of states as

D̄(ω) =
∫

dΔω g(Δω)
∑
α

Dα(ω −Δω) . (67)

The function g(Δω) has been already introduced in relation to Eq. (61).
Since the estimate of the absorbance using adiabatic exciton states leads

to rather good results we use this approximation to compare in Fig. 10 the
absorbance of P4 with that of P8 and P16. While the neglect of an elec-
trostatic solvent solute coupling (when calculating the chromophore excited
states) gives structured absorption spectra with an increasing broadening at
an increasing CC size the inclusion of the electrostatic solvent solute coupling
leads to rather uniform spectra. The much stronger excited state energy fluc-
tuations due to this coupling (cf. also Fig. (9)) results in a Gaussian like line
shape.
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Fig. 11: Normalized time and frequency resolved emission spectrum of the CC P4.
A 6 ps time averaging has been carried out to mimic the apparatus function of the
single photon detector. Radiative and non–radiative decay has been accounted for
by a common chromophore excited–state life time of 5 ns.

7 Mixed Description of Time and Frequency Resolved
Emission

A rather direct translation of F (ω; t), Eq. (39), to the mixed quantum classical
case is obtained by, again, replacing the vibrational state trace by an averaging
with respect to the initial CC equilibrium configuration. Such configurations
are used for the MD run from t0 to t̄ and determine the respective density
matrix propagation to arrive at ρnk(t̄). Time evolution operators referring to
the CC ground and first excited state are replaced by the quantity introduced
in Eq. (55) and determined by Eq. (57). The magnitude and spatial orientation
of the two transition dipole moments directly follows from the MD run. Thus,
we arrive at

F (ω; t) =
4ω3

3πc3�
Re

t∫
t0

dt̄ e−iω(t−t̄) ∑
m,n,k

< ρnk(t̄)Ã∗m(t, t̄; k)[dm(t)d
+
n (t̄)] > . (68)

A version of the reduced density operator to be used in the mixed quantum
classical description may be obtained if we replace ρ̂(t̄) by the pure state
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expression |Ψ(t̄)〉〈Ψ(t̄)|, with the electronic CC wave function Ψ introduced
in Eq. (49). Then, the ρ̂nk(t̄) can be identified with 〈φm|Ψ(t̄)〉〈Ψ(t̄)|φm〉 ≡
Bm(t̄)B∗n(t̄). As already indicated in Section 3.3 such an approach, however,
is unable to account for CC excited state decay just by photon emission. One
has to achieve a mixed quantum classical translation of the complete reduced
density operator. It should be reduced with respect to the photon states and
may be computed in a way to include photon emission. This would be given
by Eq. (41) if the quantities ρ̂mn(t̄) introduced there are interpreted as den-
sity matrices ρmn(t̄) and the Hmn as forming a time–dependent Hamiltonian
matrix. Intra chromophore vibrations can be included as it already has been
done in Eq. (62) for the absorbance, but now with ϑmge(t), Eq. (63), replaced
by

ϑmeg(t) = trm{R̂meeihmet/�e−ihmgt/�} . (69)

It describes single chromophore excited state decay where the statistical op-
erator R̂me defines intra chromophore vibrational equilibrium in the excited
electronic state. The whole ϑmeg has to be taken at time argument t− t̄ and,
then, to be multiplied to Ã∗m(t, t̄; k) in Eq. (68).

Fig. 11 shows the time and frequency resolved emission spectrum of P4

following from Eq. (68) by introducing a time averaging due to the finite
time resolution of the single photon counting measurements. Predictably, the
line shape is similar to that of the absorbance, Figs. 8 and 10 (for more
details see [11]; concerning the inclusion of excitonic augmented decay rates
as introduced at the end of Section 3.3 we refer to [46]).

8 Conclusions

A mixed quantum classical description of excitation energy transfer dynam-
ics in huge pheophorbide–a complexes has been presented together with the
computation of related spectra of the linear absorbance as well as of the time
and frequency resolved spontaneous emission. Ground and excited electronic
states of the whole set of chromophores forming the complex are defined ac-
cording to the well known Frenkel exciton model (absence of charge transfer
states between adjacent chromophores). Going beyond the standard formula-
tion of the Frenkel exciton model electrostatic couplings among chromophores
as well as chromophores and solvent molecules have been included. This exten-
sion became essential for pheophorbide–a molecules since their overall charge
distribution in the ground and first excited state is noticeable unbalanced.
Introducing atomic centered partial charges also for the transition charges en-
tering the excitonic coupling among different chromophores, the latter could
be described nearly exactly and for all possible nuclear configurations appear-
ing in the MD runs.
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According to the size of the system the MD runs have to be carried out in
a way not to notice the actual CC excited state (electronic ground state clas-
sical path approximation). However, it seems rather reasonable that any back
reaction of the actual excited electronic state should be of minor importance
since even in the largest studies complexes only singly excited states (single
exciton states) are incorporated.

While the mixed quantum classical description of CC linear absorbance has
been already discussed at different places a formulation of time and frequency
resolved spontaneous emission spectra is new in literature. Such spectra di-
rectly offer signatures of excitation energy transfer proceeding in a picosecond
up to nanosecond time region. When trying to achieve a detailed explanation
of the transfer processes, however, one should be always aware of the fact that
the mixed quantum classical description corresponds to a high temperature
limit, i.e it is only applicable if characteristic energy differences to be over-
come in the excitation energy motion are comparable or less then the thermal
energy kBT .

The whole approach offers a promising route to uncover the structure func-
tion relationships of huge supramolecular complexes either with biological or
non–biological origin. Respective studies should proceed in a close collabora-
tion of theory and experiment and with the focus on spectroscopic techniques.
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Abstract. Various ways of extracting information on the conformational struc-
ture, dynamics and correlations between them from single-molecule measurements
of florescence resonance energy transfer are surveyed. The information obtained via
those various ways is then analyzed in detail in the case of an off-lattice model of a
two-stranded coiled-coil polypeptide that follows Langevin dynamics. The analysis
includes a consideration of the cases of a freely diffusing and surface-immobilized
polypeptide as well as the effect of different types of surface and denaturation con-
ditions.

1 Introduction

The elucidation of the structure, dynamics and self assembly of biopolymers
has been the subject of many experimental, theoretical and computational
studies over the last several decades. [1, 2] More recently, powerful single-
molecule (SM) techniques have emerged which make it possible to explore
those questions with an unprecedented level of detail. [3–55] SM fluorescence
resonance energy transfer (FRET), [56–60] in particular, has been established
as a unique probe of conformational structure and dynamics. [26–55] In those
SM-FRET experiments, one measures the efficiency of energy transfer between
a donor dye molecule and an acceptor dye molecule, which label specific sites
of a macromolecule. The rate constant for FRET from donor to acceptor is
assumed to be given by the Förster theory, namely: [59, 61–64]

kET (R) = kD

(
R0

R

)6

, (1)

where k−1
D is the fluorescence life-time of the free donor, R is the distance

between donor and acceptor, and R0 is a parameter that depends on the choice
of donor-acceptor pair and other experimental conditions. [64] The strong
dependence of the FRET efficiency on the donor-acceptor distance therefore
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Fig. 1: A schematic view of the donor-acceptor photophysics. D/A and D∗/A∗ cor-
respond to the ground and excited donor/acceptor, respectively. It is assumed that
only the donor is photoexcited at the rate of kex. kET is the donor-to-acceptor en-
ergy transfer rate constant, and kD/kA are the free donor/acceptor fluorescence rate
constants.

makes it possible to obtain information on the underlying conformational
structure and dynamics from SM-FRET measurements.

In a typical SM-FRET experiment, one photoexcites the donor dye at
a rate of kex ∼ 108s−1. The photoexcited donor either fluoresces back to
the ground state, with a rate constant kD (∼ 109s−1), or is quenched by
nonradiatively transferring its energy to the acceptor, with a rate constant kET
(Cf. Fig. 1). In the case where energy transfer (ET) from donor to acceptor
takes place, emission of a fluorescence photon by the excited acceptor, with
rate constant kA (∼ 109s−1), follows. The fluorescence photon from the donor
is typically blue-shifted relative to that from the acceptor, so that they can
be detected in a selective manner. While the rate constants kD and kA are
typically insensitive to the conformational state of the macromolecule, the ET
rate constant kET is strongly dependent on the conformational state of the
macromolecule at the time when ET takes place (Cf. Eq. (1)). The probability
per excitation event for quenching via ET is given by:

E =
kET

kET + kD
≡ kET

k
, (2)
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where k−1 = (kET +kD)−1 is the donor fluorescence life-time. The probability
for the complimentary donor fluorescence event is given by:

F = 1− E =
kD

kET + kD
=

kD
k

. (3)

The measurement of the FRET efficiency of a freely-diffusing single
molecule is limited by the time it spends within the focal volume. Extend-
ing the time of the measurement is often achieved by spatially confining the
macromolecule. One popular strategy for achieving this is by attaching the
biopolymer to a surface. Thus, a self-consistent interpretation of SM FRET ex-
periments also calls for a better understanding of how surface-immobilization
impacts the conformational structure and dynamics of the macromolecule.

In the present paper, we review recent work in our group that aimed
at understanding the relationship between quantities that can be measured
via SM FRET and the underlying conformational structure and dynamics of
freely diffusing and surface-immobilized protein molecules. [54,55,65,66] Our
approach differs from that employed by other researchers in order to interpret
SM FRET measurements [49–53,67] in the following respects:

• It is based on Langevin dynamics simulations of an off-lattice heteropolymer-
like model of the polypeptide chain which is characterized by a a well-
defined native state.

• It includes a detailed consideration of the impact of different types of
surface-immobilization schemes and different denaturation conditions on
the results obtained via SM FRET measurements.

• It puts special emphasis on the rather unique ability of SM FRET mea-
surements to provide information on conformational dynamics and it cor-
relation with conformational structure.

The various aspects of our approach are demonstrated below within the
context of a two-stranded coiled-coil polypeptide model that was designed
to mimic the disulfide cross-linked two-stranded coiled-coil from the yeast
transcription factor GCN4 [68–74] which was used by Hochstrasser and co-
workers in their pioneering SM-FRET experiment. [30, 33]

The plan of the remainder of this paper is as follows. Different ways of mea-
suring conformational structure and dynamics via single-molecule FRET are
described in Sec. 2 and demonstrated on the two-stranded coiled-coil polypep-
tide model in Sec. 3. The results are summarized and discussed in Sec. 4.

2 Measurement of conformational structure and
dynamics via single-molecule FRET

2.1 Conformational structure

In a time-resolved ensemble-averaged FRET experiment, one measures the
donor fluorescence, following the simultaneous photo-excitation of a large
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number of donor molecules. [75] The ensemble-averaged fluorescence decay
can then be described by:

I(τ) =
∫ ∞

0

dRP (R)e−kD

h
1+(R0

R )6
i
τ

. (4)

Here, P (R) corresponds to the probability density of R at the time of excita-

tion, and
(
kD

[
1 + (R0/R)6

])−1

is the R-dependent life-time of the donor’s
excited state. It is important to note that R typically changes on the time
scales of ∼ μs, which is considerably longer than the donor’s fluorescence life-
time (∼ ns), thereby justifying the assumption that R is frozen during the flu-
orescence process. Thus, at least in principle, one may obtain the distribution
of donor-acceptor distance, P (R), from the ensemble-averaged fluorescence
decay, I(τ), via the relationship in Eq. (4). However, the inversion of I(τ) to
obtain P (R) is numerically unstable. More specifically, writing I(τ) in terms
of the probability density of kET : [76]

I(τ) = e−kDτ

∫ ∞
0

dkETP (kET )e−kET τ , (5)

shows that I(τ) corresponds to the Laplace transform of P (kET ). Thus, ex-
tracting P (kET ) from I(τ) corresponds to calculating its inverse Laplace
transform, which is known to be numerically unstable (i.e., small errors in
I(τ) will be exponentially amplified in P (kET )). This problem is usually by-
passed by assuming a certain ad-hoc functional form of P (R), such as a linear
combination of Gaussians, and best fitting the parameters via a least square
procedure.

SM-FRET experiments are typically performed by using a dual-channel
detection scheme. More specifically, one photo-excites the donor with CW
radiation or a train of pulses, while simultaneously detecting the fluorescence
photons from the donor and acceptor in a selective manner. The fraction of
photons detected in the acceptor channel, over a given time averaging window
of length TW , provides a direct measure of the time-averaged FRET efficiency,
which we will denote by E(TW ). One may then define a time-averaged and
TW -dependent donor-acceptor distance, which will be denoted by 〈R〉TW

, such
that

E(TW ) ≡ 1
1 + [〈R〉TW

/R0]6
. (6)

It should be noted that in the limit where TW is very short in comparison
to the time scale of conformational dynamics, R remains fixed during the
time interval TW and E(TW ) therefore reduces to its instantaneous value,E =
{1 + [R/R0]6}−1. In such a case, there is a direct and exact relationship
between the probability distribution of E and P (R):

P (R) = P
(
EET = (1 + [R/R0]6)−1

) d

dR
(1 + [R/R0]6)−1 . (7)
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Fig. 2: A schematic view of an experimental setup for measuring the dynamical
variable τ(t). A single macromolecule is subjected to a train of short pulses with a
repetition rate kex. τ(tj) is defined as the time interval between photoexcitation of
the donor at time tj and the emission of a fluorescence photon by either the donor
(green) or the acceptor (red).

Thus, whereas ensemble-averaged time-resolved FRET measurements can
yield P (R) in an indirect manner, SM FRET measurements can yield P (R)
in a direct manner, but only if TW is very short in comparison to the time
scale of conformational dynamics.

2.2 Conformational dynamics

One way of extracting information regarding the time scale of conformational
dynamics is by considering the following quantity: [33]

D(j;TW ) = [〈R〉TW
(j + 1)− 〈R〉TW

(j)]2/TW . (8)

Here, 〈R〉TW
(j) and 〈R〉TW

(j+1) correspond to the averaged value of R on the
subsequent j and (j+1)-th time windows. Thus, D(j;TW ) can be thought of
as the square of the displacement of the window-time-averaged donor-acceptor
distance when going from one window to the next, divided by the time window
length TW . In the analysis below we will employ the following definition of
the time-window-averaged donor-acceptor distance:

〈R〉TW
=

1
TW

∫ TW

0

dτR(τ) . (9)

Although this convenient definition of 〈R〉TW
is somewhat different from that

employed in the context of SM-FRET [Cf. Eq. (6)], one does not expect this
distinction to modify the main observations reported below.

The time scale of conformational dynamics can be obtained from the TW -
dependence of D(j;TW ). When TW is much shorter than the time scale of



78 E. Geva and J. Shang

conformational dynamics, 〈R〉TW
(j) can be assumed to be constant within

the time-window so that D(j; δt) = [R(tj + TW ) − R(tj)]2/TW ≈ TW Ṙ2(tj),
where Ṙ(tj) is the instantaneous time derivative of R. Thus, as TW becomes
vanishingly small so does D(j;TW ). The opposite extreme corresponds to
the case where TW is very large in comparison to the characteristic time
scale of conformational dynamics. In this case, the ergodic hypothesis implies
that averaging R over the time window is equivalent to taking the ensemble
average, namely 〈R〉TW

= R. Thus, D(j, TW ) will vanish since 〈R〉TW
(j+1) =

〈R〉TW
(j) = R. The facts that D(j, TW ) is non-negative and vanishes at the

limits TW → 0 and TW → ∞ imply that the average value of D(j;TW ),
D̄(TW ), will exhibit a turnover behavior as a function of TW . The value of
TW at the turnover and its width therefore correspond to the the time-scale
and dynamical range of conformational dynamics, respectively.

Another way of obtaining the characteristic time scale and dynamical
range of conformational dynamics is from the equilibrium correlation func-
tions of the FRET efficiency:

〈F z1(t1)F z2(t2)〉 = kz1+z2D 〈k−z1(t1)k−z2(t2)〉 (10)

where z1, z2 > 0. A related correlation function can be defined by considering
the variable τ(t), which is defined as the time delay between photoexcitation
of the donor at time t and the emission of a fluorescence photon by either
donor or acceptor (Cf. Fig. 2). The time-delay τ(t) can then be viewed as a
dynamical variable. The important point is that the correlation function of
this single-photon dynamical variable can be related to the FRET efficiency
correlation function via the following general relationship (the proof of this
relation can be found in Ref. [65]).

〈τz1−1
1 τz2−1

2 〉D =
Γ (z1)Γ (z2)
kz1+z2−2
D

〈F z11 F z22 〉
〈F1F2〉 = Γ (z1)Γ (z2)

〈k−z11 k−z22 〉
〈k−1

1 k−1
2 〉 , (11)

where Γ (z) is the familiar Gamma function. The main advantage of measuring
〈τz1−1

1 τz2−1
2 〉D over directly measuring 〈F z1(t1)F z2(t2)〉 lies in the fact that

〈τz1−1
1 τz2−1

2 〉D only requires a single photon per data point and can therefore
be obtained with significantly better time resolution.

Finally, we note that the above mentioned two ways for extracting the
time scale and dynamical range of conformational dynamics can be related
via the following identity:

TW D̄(TW ) ≡ 2[〈R2〉 − 〈R(t)R(t+ Tw)〉] (12)

Thus, measuring TW D̄(TW ) as a function of TW is equivalent to probing the
correlation function 〈R(t)R(t + Tw)〉, which is in turn closely related to the
correlation function in Eq. (10).
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2.3 Correlation between conformational structure and dynamics

A unique feature of SM-FRET experiments is their ability to provide in-
formation on the correlations between structure and dynamics. One way of
extracting this information is by monitoring the distribution of 〈R〉TW

as a
function of TW . [30] Correlations between conformational structure and the
time scale on which it moves can be obtained from the different values of TW
at which different subsets of the ensemble which are characterized by different
values of R reach the ergodic limit.

Information on the correlation between structure and dynamics can also
be obtained from the correlation between D(j;TW ) and 〈R〉TW

(j) [Cf. Eq.
(8)]. As mentioned above, D(j;TW ) follows a turnover behavior as a function
of TW , and the value of TW at the turnover corresponds to a “characteristic”
time scale of conformational dynamics. Thus, one may obtain information on
the correlation between structure and dynamics by averaging D(j;TW ) over
the subset of conformations that correspond to the same value of 〈R〉TW

(j),
instead of over the ensemble of all the conformations. We will denote this
conditional average by D(〈R〉TW

).

3 Application to a model of a two-stranded coiled-coil
polypeptide

3.1 Model and simulation techniques

In this section, we analyze in detail the information obtained via SM FRET
measurements in the case of a two-stranded coiled-coil polypeptide model
under different denaturation and surface-immobilization conditions.. To this
end, we employed a 78-bead off-lattice model of the polypeptide backbone as
a chain consisting of connected spherical beads. All the beads are assumed to
have the same mass m and to be centered on the α-carbon of the correspond-
ing amino acid residues. The beads are also assumed to be either hydrophobic
(B) or hydrophilic (L). They were arranged along the chain in the follow-
ing sequence: (LLBLLBB)5LLB−LL−BLL(BBLLBLL)5. The sequences
(LLBLLBB)5LLB and BLL(BBLLBLL)5 are designed to form a five-turn
helix in the folded state, while the intermediate LL sequence provides a flex-
ible link between the two helices.

The interaction potentials between beads were adopted from Refs. [77,78],
and are briefly described below for the sake of completeness. The intramolec-
ular potential energy of the freely diffusing protein is given by

V = VBL + VBA + VDIH + VHB + VNB , (13)

where VBL, VBA, VDIH , VHB, and VNB correspond to the bond-length, bond-
angle, dihedral-angle, hydrogen-bond and nonbonding potentials, respectively.
The bond-length potential, VBL, imposes connectivity along the chain via
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a spring potential of the form vBL(r) = 1
2 kr(r − a)2 between subsequent

beads, where kr = 100ε/a2. Here, ε is the average strength of the hydrophobic
interaction which is used as the unit of energy (see below). The bending
potential, VBA, is assumed to be harmonic in the bending angle, with a force
constant kθ = 20ε/rad2 and an equilibrium angle of 105◦.

The dihedral-angle potential, VDIH , is given by

VDIH =
N−3∑
j=1

[A(1− cosφj) +B(1 + cos 3φj) + C(1− sinφj)] , (14)

where N = 78 and φj is the angle between the planes defined by beads
(j, j+1, j+2) and (j+1, j+2, j+3). Here, A = ε, B = 1.6ε and C = 2ε [78].
It should be noted that this dihedral potential provides the main driving force
for helix formation. The flexibility of the turn region that links the two helices
is introduced by setting the dihedral potential energy of these beads to zero.

The hydrogen-bond potential is given by

VHB = − ε

3

N−4∑
i=1

e−αhb(cos
2 Φi+cos2 Ψi) . (15)

Here, cosΦi = (rOH · ri,i+1)/|rOH ||ri,i+1| and cosΨi = (rOH · ri+3,i+4)/
|rOH ||ri+3,i+4|, where ri,j is the distance between the i-th and j-th beads
along the backbone, and rOH is the vector pointing from the virtual CO group
on the i-th residue to the virtual NH group on the (i+ 4)-th residue. [78]

The nonbonding potential, VNB , is given by

VNB =
N−3∑
k=1

N∑
l=k+3

vNB(rk,l) (16)

where

vNB(r) = 4ε
[(a

r

)12

− λ
(a
r

)6
]

. (17)

The L-L and L-B nonbonding interactions are assumed to be purely repulsive
and therefore correspond to λ = 0, while the B-B nonbonding interaction is
assumed to be attractive and corresponds to λ = 1.

Reduced units are used throughout, where the units of mass, energy, length
and time are given by m ∼ 3× 10−22g, ε ∼ 1.0kcal/mol, a ∼ 5× 10−8m and
τ =

√
ma2/ε ∼ 3ps, respectively.

The conformational dynamics is assumed to be governed by a Langevin
equation of the form

m
d2rj
dt2

= −ζ
drj
dt

−∇jV + f j . (18)

Here, rj is the position of the j-th bead (j = 1, . . . N), −∇jV and f j are
the systematic and random forces it is subject to, respectively, and ζ is the
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friction coefficient, which is set to 0.05 in all the simulations reported in this
paper. Eq. (18) is integrated via the Verlet algorithm [79,80]. Temperature is
introduced via the variance of the Gaussian random force, which is assumed
to be delta-correlated. The integration time step is given by δt = 0.005.

The value of ζ used here corresponds to ∼ 10−3 of its value in room tem-
perature aqueous solutions. [80] On the one hand, using such weak friction
improves the sampling efficiency in the simulations and does not affect equi-
librium structural properties. On the other hand, the dynamical properties
that we observe may be different from those probed by SM-FRET techniques,
which would not be able to resolve conformational dynamics on such fast time
scales. Thus, the relevance of the following analysis of dynamical properties
relies on the assumption that increasing the friction will not significantly alter
our main conclusions. It is interesting to note in this context that the folding
mechanism in similar models has been observed to be relatively insensitive to
the value of the friction coefficient. [81]

We have determined the native conformation of the polypeptide by the
multiple slow cooling method [78]. To this end, we generated 50 trajectories
with random initial configurations at a high temperature (Th = 1.5ε/kB), and
propagated them in time while decreasing the temperature by 0.02ε/kB after
every 5 × 105 time steps. The conformation with the lowest energy at the
lowest temperature (Tl = 0.02ε/kB) is then used to define the native state.

The temperature was held fixed at T = 0.40(which is lower than the fold-
ing temperature) in all the simulations reported in this paper. Denaturation
by a chemical agent was assumed to take effect by weakening the interactions
that promote forming native contacts. One way to bring about denaturation
is by weakening the attractive nonbonding B-B interactions, [54] which rep-
resent a major driving force for folding. [82] We will refer to the ensemble of
unfolded conformations obtained by following this route as “unfolded state
α”. In this case, the folded and unfolded states correspond to setting λ in the
B-B interaction potential, Eq. (17), equal to 1 or 0, respectively. Intermediate
states can be obtained by setting λ to values between 0 and 1. A midpoint
can be defined at λ = 0.50, where the fractions of folded and unfolded con-
formations are found to be 0.43 and 0.57, respectively, in the case of a freely
diffusing polypeptide.

It is important to note that weakening the B-B interactions does not dis-
rupt the helical structure. The two arms of the polypeptide therefore retain
their helical structure in unfolded state α. However, the isolated helices in
coiled-coils are believed to be unstable in aqueous solution because the hy-
drophobic residues are on one face of the helix. [83] We therefore also consider
another scenario where the presence of the denaturant also disrupts the helical
structure. This can be achieved by weakening the dihedral and nonbonding
interactions. Weakening the dihedral interactions is achieved by adjusting the
values of A, B and C in Eq. (14). We will refer to the ensemble of unfolded
conformations obtained by setting A, B and C to zero as “unfolded state β”.
The midpoint along the denaturation curve can be defined by setting λ and
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{A,B,C} to 0.55 times their values in the native state. The fractions of folded
and unfolded conformations are found to be 0.37 and 0.63, respectively, in the
case of a freely diffusing polypeptide.

The results reported below were obtained from equilibrium simulations
that were performed for a single polypeptide which is either freely diffusing or
surface-immobilized. The surface was assumed to be planar, and to consist of
beads of diameter a that were arranged on a 2D square lattice with distance
a between nearest neighbors. Surface-immobilization was introduced by fixing
the position of the 40-th bead such that it lies a distance a above a surface
bead. The interaction between the polypeptide and surface beads is described
by a pair-wise potential of the form:

vkSP (r) = 4εs

[(a
r

)12

− λks

(a
r

)6
]

, (19)

where k = L,B. Here, r is the distance between the polypeptide bead and
the surface bead. The interaction between the L beads and the surface is
assumed to be purely repulsive and corresponds to setting λLs = 0 in Eq.
(19). The interaction between the B beads and the surface depends on the
hydrophobicity of the surface. Thus, setting λBs equal to zero in Eq. (19)
corresponds to the case of a repulsive (hydrophilic) surface, and increasing
the value of λBs corresponds to making the surface more sticky (i.e., making it
more hydrophobic). The results reported below were obtained for λBs = 0 and
λBs = 0.9, respectively. which are referred to as repulsive surface and attractive
surface, respectively.

Equilibrium properties under each set of conditions were obtained by aver-
aging over 10 trajectories. Each trajectory starts with an equilibration period
of 105 time steps, followed by a data collection period of 5× 105 time steps in
the folded state and 5× 107 time steps at the midpoint and unfolded states.
Error bars were assumed to be given by one standard deviation.

Finally, the simulation of the stochastic streams of emitted fluorescence
photons was performed via kinetic Monte Carlo simulations. It should be
noted that each stochastic trajectory of R as obtained from the Langevin dy-
namics simulation of the polypeptide gives rise to an ensemble of stochastic
photon streams. The kinetic Monte Carlo simulation of the photon streams
was carried out via the algorithm of Makarov and Matiu. [84] More specifi-
cally, the residence time in state (D∗, A) following photoexcitation is given
by − ln(η)/(kD + kET ), where η is a random number between 0 and 1.
Following this, the system makes a transition to either the ground state,
with probability F = kD/(kD + kET ), or the state (D,A∗), with probabil-
ity E = kET /(kD+kET ). It should be noted that the value of kET at the time
of the transition depends on the instantaneous value of R, which obviously
differs from one stochastic trajectory of R to another. In the case where the
system ends up in state (D,A∗), its residence time in this state is given by
− ln(η)/kA, after which it makes a transition back to the ground state.
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Fig. 3: Typical conformations of the model polypeptide under different conditions.

3.2 Conformational structure

The native state conformation of the freely diffusing polypeptide is seen to
be a helical dimer (Cf. Fig. 3). Assuming that the donor-acceptor distance
R is given by the end-to-end distance, the corresponding distribution of R
clearly shows that surface-immobilization does not affect the conformations
in the folded state, regardless of whether the surface is repulsive or attractive
(Cf. Fig. 4). This can be explained by the fact that the two helices are held
together by the attractive nonbonding B-B interactions so that the B residues
form a hydrophobic core, and therefore cannot effectively interact with the
surface.

The two helical arms become uncoiled in unfolded state α, which is the
result of turning off the attractive nonbonding B-B interactions (Cf. Fig. 3).
However, the helical structure of the two arms is retained in this unfolded
state. The corresponding R distributions are clearly influenced by immobi-
lization, as well as by the type of surface (Cf. Fig. 4). In comparison to the
freely diffusing polypeptide, the R distribution in unfolded state α on the
attractive surface is seen to be more asymmetrical and shifted to longer val-
ues of R. The opposite trend is observed in the case of the repulsive surface,
where the distribution becomes more symmetrical and shifts to lower values
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of R in comparison to the freely diffusing polypeptide. The asymmetry of the
R distribution results from the relative rigidity of the helical arms, which im-
plies that conformations with larger values of R are more likely. The increased
symmetry and shift to shorter values of R in the case of a repulsive surface
can be explained by the exclusion of stretched conformations where the two
helical arms lie on opposite sides of the surface. The increased asymmetry and
shift to larger values of R in the case of an attractive surface can be explained
by the transition from a 3D space of conformations in the case of a freely dif-
fusing polypeptide to a 2D space of conformations in the case of the attractive
surface.

The chain loses its helical structure in unfolded state β, as a result of
turning off the dihedral angle potential. The polypeptide in unfolded state β
effectively reduces into a stiff Gaussian chain with excluded volume effects.
Indeed, the R distributions are symmetrical and of Gaussian shape. Their
dependence on immobilization and the type of surface is similar to that we
previously reported in the case of a free-jointed homopolymer model. [55]
The shift of the distribution to larger values of R when going from the freely
diffusing polypeptide to the attractive surface-immobilized polypeptide is con-
sistent with the scaling laws for a Gaussian chain. [85] More specifically, one
expects 〈R〉 = 26 and 14 in 2D and 3D, respectively, which is consistent with
the distributions reported in Fig 4.

Finally, we consider the behavior of the polypeptide chain at the midpoint
of the denaturation curves. The corresponding R distributions for the freely
diffusing polypeptide and the attractive surface-immobilized polypeptide are
very similar, and significantly different from the repulsive surface case (Cf.
Fig. 4). Generally speaking, the spatial confinement associated with the re-
pulsive surface leads to less unfolding at the midpoint. The similarity in the
extent of unfolding between the freely diffusing case and the attractive sur-
face case indicates that it is relatively insensitive to the dimensionality of the
conformational space.

3.3 Conformational dynamics

The characteristic time scale and dynamical range of conformational dynamics
can be estimated from the equilibrium correlation functions of the end-to-end
distance R:

C(t) = 〈R(t)R(0)〉 − 〈R〉2 . (20)

This correlation function is shown under different conditions in Fig. 5. In
the folded state, the decay of the correlation function is characterized by a
relatively narrow dynamical range and short time scales, on the order of ∼ 1.
The rapid decay of C(t) in this case can be attributed to fluctuations around
the native conformation, within the corresponding basin of attraction. The
fact that those fluctuations are fast is consistent with the fact that this is a
rapid two-state folder. More specifically, the native conformation is expected
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Fig. 4: Distributions of end-to-end distance, R, under different conditions. Black, red
and green correspond to the cases of free diffusion, repulsive surface-immobilization
and attractive surface-immobilization, respectively. The results were converged to
within an error bar of 5%.

to be significantly more stable in comparison to neighboring conformations,
such that small displacements relative to it will give rise to strong returning
forces. The behavior of C(t) in the folded state is also seen to be unaffected
by surface-immobilization.

In the case of the unfolded (either α or β) freely diffusing polypeptide,
C(t) is seen to decay on time scales of 10-100, which are significantly slower
and correspond to a wider dynamical range in comparison to the folded state.
This is consistent with the fact that the underlying interactions are of the
excluded volume type, which are short-ranged so that the dynamics is mostly
diffusive and relatively slow. Immobilization on a repulsive surface does not
alter C(t), since the surface-polypeptide interactions are very similar to the
intramolecular interactions in this case. However, C(t) is observed to decay
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Fig. 5: Time correlation functions of the end-to-end distance, R, under different
conditions. Black, red and green correspond to the cases of free diffusion, repulsive
surface-immobilization and attractive surface-immobilization, respectively.

more slowly and on a wider dynamical range of 102 − 104 when the unfolded
polypeptide is immobilized on an attractive surface. The slow-down in this
case can be attributed to the relatively large barriers that one needs to over-
come when detaching segments of the polypeptide from the surface, which is
necessary for rearranging the conformation.

The decay of C(t) in the midpoint state (either α or β) is characterized
by an even wider dynamical range. The short time scales in the cases of freely
diffusing and repulsive surface-immobilized polypeptides are attributed to dy-
namics within the folded and unfolded sub-populations mentioned above. An
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additional slower component that corresponds to time scales of 102 − 104 is
attributed to transitions between the unfolded and folded states (the aver-
age first passage time for the unfolded-folded transition in the case of un-
folded state α is ∼ 103). C(t) is also seen to be rather insensitive to surface-
immobilization, regardless of whether it is repulsive or attractive. This can
be attributed to the fact that the transitions between the folded and un-
folded states are dominated by intramolecular interactions rather than by
polypeptide-surface interactions.
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One way of obtaining information on the time scale of conformational
dynamics from SM FRET measurements is via the TW -dependence of the
average D(j;TW ) (see Eq. (8)), which is given by:

D(TW ) = lim
NW→∞

1
NW

NW∑
j=1

D(j;TW ) , (21)

where NW is the overall number of time windows. In Fig. 6, we show D(TW ) as
a function of TW under different conditions. As expected, it exhibits a turnover
behavior. The results in the case of the folded state are consistent with rapid
conformational dynamics, a relatively narrow dynamical range, and insensi-
tivity to surface-immobilization. The results in the case of unfolded states α
and β of the freely diffusing or repulsive surface-immobilized polypeptide are
consistent with slower conformational dynamics and a wider dynamical range.
The results at the corresponding midpoint states are consistent with an even
wider dynamical range, which is rather insensitive to surface-immobilization.
These features are similar to the conclusions obtained based on the corre-
sponding R correlation functions (Cf. Fig. 5). However, the turnover in the
case of the unfolded state on the attractive surface suggests faster dynamics
and a narrower dynamical range than on the repulsive surface, which appears
to contradict the behavior of the corresponding C(t) (Cf. Fig. 4). This differ-
ence implies that D(TW ) and C(t) do not always convey the same dynamical
information. In this case, D(TW ) starts out smaller and drops faster because
of its sensitivity to the motion of the polypeptide relative to the surface. The
latter has a narrow dynamical range and occurs on a fast time scale, since the
interactions between the polypeptide and the attractive surface are similar
to the intramolecular interactions in the native state. Indeed, D(TW ) of the
unfolded attractive surface-immobilized polypeptide is observed to be rather
similar to that in the folded state.

It should also be noted that, for the same value of TW , D(TW ) in the
folded state is smaller than that in the unfolded state. This observation is
consistent with the fact that the dynamics in the folded state is in fact faster
than that in the unfolded state. It should also be noted that the values of
D(TW ) in the folded and unfolded states are rather similar in the case of the
attractive surface. This is due to the above mentioned rapid dynamics of the
unfolded polypeptide relative to the attractive surface.

Finally, the correlation functions 〈τ1τ2〉D (see Eq. (11)) are shown on a
semilog plot in Figs. 7 and 8, as obtained for the following values of the
parameters: (1) Folded state: kD = kA = 2000, kex = 200; (2) Unfolded
state α: kD = kA = 200, kex = 20; (3) Unfolded state β: kD = kA = 200,
kex = 20. The results reported in those two figures differ with respect to the
choice of R0 (see Eq. (1)). More specifically, in Fig. 7, we have chosen values
of R0 in the vicinity of the maximum of the corresponding distributions of
the end-to-end distance, namely R0 = 3.6 in the folded state, R0 = 25 in
unfolded state α and R0 = 15 in unfolded state β. Under those conditions, we
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Fig. 7: The correlation function 〈τ1τ2〉D as obtained from kinetic Monte Carlo sim-
ulations for the polypeptide model (green). The normalized correlations functions
〈k−2

1 k−2
2 〉 (red) and 〈R1R2〉 (black) are also shown for the sake of comparison. All cor-

relation function are normalized so that their initial value is equal to 1. The following
parameters were used under different conditions: (1) Folded state: kD = kA = 2000,
kex = 200, R0 = 3.6; (2) Unfolded state α: kD = kA = 200, kex = 20, R0 = 25; (3)
Unfolded state β: kD = kA = 200, kex = 20, R0 = 15.

observe that 〈τ1τ2〉D is proportional to 〈k−2
1 k−2

2 〉 and that 〈τ1τ2〉D does indeed
reflect the time scales of conformational dynamics as manifested in the end-to-
end distance autocorrelation function. In contrast, the results in Fig. 8 were
obtained for larger values of R0, namely R0 = 5.0 in the folded state, R0 = 40
in unfolded state α and R0 = 25 in unfolded state β. Under those conditions,
we observe that 〈τ1τ2〉D is not proportional to 〈k−2

1 k−2
2 〉 in the folded state

and in unfolded state β and that 〈τ1τ2〉D does not accurately reflect the time
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relation function are normalized so that their initial value is equal to 1. The following
parameters were used under different conditions: (1) Folded state: kD = kA = 2000,
kex = 200, R0 = 5.0; (2) Unfolded state α: kD = kA = 200, kex = 20, R0 = 40; (3)
Unfolded state β: kD = kA = 200, kex = 20, R0 = 25.

scales of conformational dynamics in the folded state and unfolded state α,
as manifested in the end-to-end distance autocorrelation function.

3.4 Correlation between conformational structure and dynamics

A unique feature of SM-FRET experiments is their ability to provide in-
formation on the correlations between structure and dynamics. One way of
extracting this information is by monitoring the distribution of 〈R〉TW

as a
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Fig. 9: The distributions of the time-window-averaged end-to-end distance for a
freely diffusing polypeptide, as obtained for the indicated values of the averaging-
time-window, TW .

function of TW . [30] The distributions of 〈R〉TW
obtained for a freely diffusing

polypeptide using different values of TW are presented in Fig. 9. The folded
state is characterized by a relatively narrow distribution, which appears to
be uni-modal and peaked at the relatively small value of R. The distribu-
tion becomes narrower when TW is larger than the characteristic time scale
of conformational dynamics in the folded state (∼ 1). The distribution also
becomes more asymmetrical with increasing TW , which suggests that folded
conformations with a larger value of R move on a slower time scale.
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Unfolded state α is characterized by a wide uni-modal and asymmetrical
distribution of R, with a slow rise and a sharp drop. The distribution becomes
narrower and more symmetrical when the averaging time window is larger
than the characteristic time scale of conformational dynamics in this unfolded
state. This indicates a correlation between structure and dynamics, where
conformations that correspond to shorter R move on faster time scales.

Unfolded state β is characterized by a wide uni-modal and symmetrical
distribution of the end-to-end distance. The distribution narrows down in a
uniform manner with increasing TW . Thus, in the case of unfolded state β, one
does not observe a correlation between R and the time scale of conformational
dynamics. This behavior is similar to that previously observed in the case of
a free-jointed homopolymer model. [54]

The midpoint states are characterized by a bi-modal distribution, with
one narrow peak at the small R region, which corresponds to the folded sub-
population, and another, wider, peak at the large R region, which corresponds
to the unfolded sub-population. Distinguishing between the two peaks be-
comes easier with increasing TW , as long as T−1

W is larger than the transition
rate between the folded and unfolded states. The 〈R〉TW

distribution changes
from bi-modal to uni-modal when T−1

W is smaller than the transition rate be-
tween the folded and unfolded states. The peak of the emerging uni-modal
distribution corresponds to a value of R which is intermediate between the
folded and unfolded states.

The distributions of 〈R〉TW
obtained for a polypeptide immobilized on the

repulsive surface are presented in Fig. 10. As expected, the results in the folded
state are not affected by surface immobilization. The 〈R〉TW

distributions in
unfolded states α and β are also seen to follow the same general trends as for
the freely diffusing polypeptide. The behavior at the two midpoint states is
however rather different from that observed in the case of the freely diffusing
polypeptide. More specifically, the 〈R〉TW

distribution is not bi-modal for all
values of TW considered. Thus, the geometrical constraint represented by the
repulsive surface is sufficient for introducing a significant bias toward the
folded state at the midpoint.

The distributions of 〈R〉TW
obtained for a polypeptide immobilized on

the attractive surface are presented in Fig. 11. Surface-immobilization is seen
once again not to affect the behavior of the folded state. In this case, surface
immobilization is also seen to have a relatively minor effect on the behavior
at the midpoint. However, the behavior in unfolded states α and β is clearly
influenced by surface immobilization in this case. More specifically, the 〈R〉TW

distributions are hardly affected by the time-window-averaging for values of
TW that were seen to significantly modify the 〈R〉TW

distributions in the freely
diffusing and repulsive surface-immobilized cases. This can be attributed to
the slower dynamics of the unfolded polypeptide on the attractive surface. At
the same time, conformations with a small value of R are still seen to move
faster than conformations with a large value of R, as for the freely diffusing
polypeptide.
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Fig. 10: The distributions of the time-window-averaged end-to-end distance for a
repulsive-surface-immobilized polypeptide, as obtained for the indicated values of
the averaging-time-window, TW .

Finally, consider the correlation between structure and dynamics, as re-
flected in the correlation between D(j;TW ) and 〈R〉TW

(j) [Cf. Eq. (8)]. As
mentioned above, D(j;TW ) follows a turnover behavior as a function of TW ,
and the value of TW at the turnover corresponds to a “characteristic” time
scale of conformational dynamics. Thus, one may obtain information on the
correlation between structure and dynamics by averaging D(j;TW ) over the
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Fig. 11: The distributions of the time-window-averaged end-to-end distance for an
attractive-surface-immobilized polypeptide, as obtained for the indicated values of
the averaging-time-window, TW .

subset of conformations that correspond to the same value of 〈R〉TW
(j), in-

stead of over the ensemble of all the conformations. We will denote this con-
ditional average by D(〈R〉TW

).
In Fig. 12, we show D(〈R〉TW

) as a function of 〈R〉TW
under different

conditions. The values of TW that were used to generate these plots correspond
to the vicinity of the corresponding turnovers in Fig. 5, and are therefore
comparable to the time scale of conformational dynamics. In the folded state,
D(〈R〉TW

) is reminiscent of the corresponding inverted R distribution (Cf.
Fig. 4). The fact that the lowest value of D(〈R〉TW

) corresponds to the native
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Fig. 12: The dependence of D(〈R〉TW ) on 〈R〉TW under different conditions.
Black, red and green correspond to the cases of free diffusion, repulsive surface-
immobilization and attractive surface-immobilization, respectively.

state, suggests that the characteristic time scale for conformational dynamics
is faster in the native conformation and its close vicinity. This is because the
ergodic limit will be approached more rapidly, i.e. for lower values of TW , in
this case. It should be noted that a smaller value of D(〈R〉TW

) is correlated
with faster dynamics of the corresponding subset of conformational states.
This observation is consistent with the point of view that associates the native
state with the minimum of a deep and narrow well on the protein’s potential
energy surface.
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The correlation between structure and dynamics also persists in the mid-
point and unfolded states. In the midpoint states D(〈R〉TW

) shows two min-
ima, at the positions of the maxima in the corresponding R distributions of
Fig. 4. In the unfolded states, D(〈R〉TW

) exhibits wide minima that coincide
with the wide maxima of the corresponding R distribution of Fig. 4.

4 Discussion

The results reviewed in this paper provide a rather detailed picture of the sig-
nature of the underlying conformational structure and dynamics of a polypep-
tide on quantities that can be measured via SM FRET, including the effect
of surface immobilization and denaturation. They clearly show that the fact
that surface-immobilization does not impact the structure and dynamics of
the protein in the native state does not imply that the same is true for the
partially or fully denaturated protein. Indeed, surface-immobilization was seen
to give rise to very significant shifts in distributions of structural quantities
such as the end-to-end distance. Furthermore, the actual shift was seen to
follow opposite trends depending on whether the protein-surface interactions
are repulsive or attractive. It should be noted that the two types of surface-
protein interactions that we have considered are rather simple and essentially
amount to introducing different spatial confinement constraints (to half of the
3D space or to a 2D space in the cases of repulsive and attractive surfaces, re-
spectively). Nevertheless, we believe that similar effects will emerge for other
types of protein-surface interactions. In fact, comparing the results obtained
for freely diffusing and surface-immobilized polypeptides at different points
along the denaturation curve may be a useful way for figuring out the nature
of surface-protein interactions. A related observation is that the correlation
between structure and dynamics in the unfolded states can be rather sensitive
to the denaturation mechanism. For example, while conformations with small
end-to-end distance move on a faster time scale in unfolded state α, no such
correlation was observed in unfolded state β. Thus, the existence of such a
correlation provides evidence for residual secondary structure in the unfolded
state.

It is also of interest to compare our results with experiment. The ex-
perimental study most closely related to the model considered here is the
SM-FRET assay by Hochstrasser and co-workers on the disulfide cross-linked
two-stranded coiled-coil from the yeast transcription factor GCN4. [30,33] Our
results appear to be consistent with many of the experimental observations
reported in Refs. [30, 33]. For example, surface-immobilization in the folded
state has a rather small effect on the R distribution, the folded and unfolded
states are seen to correspond to narrow and broad R distributions, respec-
tively, and conformational dynamics is seen to be characterized by a wide
dynamical range in the midpoint and unfolded states. Our analysis can also
help in the interpretation of the experimental results. For example, surface-
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immobilization is experimentally observed to significantly broaden the R dis-
tribution, and change it from asymmetrical with a slow rise and a sharp drop
to a more symmetrical form. This trend is consistent with our predictions for
the repulsive surface, but is clearly in conflict with our predictions for the
attractive surface. Another example corresponds to the 〈R〉TW

-dependence
of D(〈R〉TW

) in the unfolded state, which shows a broad minimum similar
to what is observed experimentally. Yet another example corresponds to the
experimental observation that conformations with smaller values of the end-
to-end distance move on faster time scales, [30] which is consistent with our
results for unfolded state α, and may suggest residual helical structure in the
unfolded state. Interestingly, this prediction appears to be in conflict with
other experimental results which suggest that coiled-coils fold cooperatively,
i.e. that the individual helices are unstable in the absence of native tertiary
contacts. [70, 83] A possible explanation for this discrepancy is that surface-
protein interactions stabilize the individual helices in the unfolded state.

Finally, we also find several discrepancies between our results and ex-
periment. For example, surface-immobilization is experimentally observed to
slow down conformational dynamics in the unfolded state, which would be
consistent with our results in the case of an attractive surface. However, as
mentioned above, the effect of surface-immobilization on the distribution of
end-to-end distance is clearly inconsistent with this scenario. Furthermore,
〈D〉TW

is experimentally observed to be about an order of magnitude smaller
in the unfolded state in comparison to the folded state. [33] Our results in
the case of the freely diffusing polypeptide suggest that the value of 〈D〉TW

in
the unfolded state should actually be larger than in the folded state. It is also
interesting to note that while the authors of Ref. [33] argue that low values
of 〈D〉(TW ) are indicative of slow conformational dynamics, we find that the
opposite is true. Thus, while our results are consistent with the idea that con-
formational dynamics in the unfolded state is slower than in the folded state,
we find that this would lead to a smaller value of 〈D〉(TW ) in the folded state.
One may speculate that this discrepancy results from surface-immobilization.
Indeed, we found that the value of 〈D〉(TW ) obtained in the case of the at-
tractive surface case can be significantly lower than in free solution (Cf. Fig.
5). Unfortunately, the results for the end-to-end distance distributions appear
to be inconsistent with this possibility.

To summarize, the model used in this paper captures many important
features of protein structure and dynamics and is indeed seen to reproduce
many of the general trends observed in SM-FRET experiments. At the same
time, we have also observed several intriguing discrepancies between the model
predictions and the experimental results. One possibility is that these discrep-
ancies originate from shortcomings of the model. For example, the SM-FRET
measurements reported in Refs. [30, 33] were performed on a coiled-coil that
was immobilized on a positively charged amino-silanized glass surface and
involved charged dye molecules. This implies that the protein-surface and
donor-acceptor interactions may be dominated by electrostatic forces. Our
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model may not be able to fully account for the effects of such interactions.
We have also assumed that the chemical denaturant operates by selectively
weakening specific intramolecular interactions, which probably represents an
oversimplification. More specifically, we have accounted for the fact that the
formation of helical structure requires the formation of tertiary contacts by
weakening the dihedral interactions in unfolded state β. A more accurate
model would have to include a more realistic treatment of how a chemical
denaturant such as urea destabilizes the native state structure. [82] Finally,
we note that the experimental SM-FRET efficiency distributions reflect fluc-
tuations due to sources other than conformational dynamics, including shot
noise, spectral diffusion and dipole angle distributions. Those other sources of
noise were not accounted for in the simulations reported in this paper. Fur-
ther investigation of these issues is clearly desirable and will be the subject of
future work.
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Abstract. We consider here the theoretical and quantum chemical description of
the photoexcitated states in DNA duplexes. We discuss the motivation and limi-
tations of an exciton model and use this as the starting point for more detailed
excited state quantum chemical evaluations. In particular, we focus upon the role
of interbase proton transfer between Watson/Crick pairs in localizing an excitation
and then quenching it through intersystem crossing and charge transfer.

1 Quantum Biology

But when a biochemist begins to use quantum-mechanical language
. . . we may justifiably suspect he is talking nonsense. H. C. Longuet-
Higgins, “Quantum mechanics and biology”, Biophys. J. 2, 207-213
(1962).

At the risk of being too broad and perhaps too conservative, very few
processes that occur in a biological system require a deep understanding of
quantum theory. While all intermolecular forces and chemical structures are
ultimately of quantum mechanical origin and their proper description does
require the use of quantum theory, very few reactions are truly quantum me-
chanical. The reason is that in order for something to exhibit quantum like
behavior, quanta of energy being exchanged must be discrete and large com-
pared to the thermal energy. Thus, few ordinary chemical processes meet this
criteria. Those that do, however, typically involve excitations of the electronic
states, excitations of highly-local high-frequency vibrational modes, such as
a CO group bound to the metal center on a heme, or tunneling of either an
electron or proton between a donor and acceptor.

The quotation at the beginning of this section comes from an address
given by H. C. Longuet-Higgins in the early 1960 at a workshop on “Emerging
techniques in Biophysics”. In it, he concludes that at the moment (in 1960)
there was very little point in trying to conjure up a quantum theory to explain
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Fig. 1: Hierarchy of important photo-biophysical processes by typical timescales. The
line at “10 fs” indicates the time-resolution of modern (2008) ultrafast spectroscopic
experiments.

a particular biological process like enzyme catalysis. Perhaps one could cook
up some strange quantum force that guides and directs the substrate to the
reaction center that is without parallel in the non-biological world, but that
seems highly unlikely since the forces that direct atoms and molecules are
the same be it in an enzyme or in a jar of mustard. While quantum theory
may provide a way to understand what happens once the substrate reaches
the reaction center and quantum chemical investigations have greatly enriched
our understanding of biochemical processes, the same quantum theory hold all
living and non-living systems. For most biochemical and biophysical processes,
there is an analogous non-biological process in solid-state or condensed matter
physics.

On a more philosophical or meta-physical level, one may suspect that free
will and consciousness may have some quantum mechanical origin rooted in
the Heisenberg Uncertainty Principle. Perhaps at some neurological level an
electron at a synapse exists in a superposition of two or more states that
ultimately results in someone making some sort of decision. “Should I run
for President, or not?” “Should I get married, or not?”. Perhaps there are
two states with eigenvalues “yes” or “no” that asymptotically lead to very
different actions. Does quantum theory enter into our decision making pro-
cess? Perhaps the brain itself acts as some sort of quantum computer taking
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advantage of fact that a quantum state can be delocalized and hence sam-
ple multiple possible states at once and arrive at an answer far faster than a
classical deterministic computer. While popular science and New Age gurus
tout such claims, I highly doubt this is to be the case. First, thermal noise
at ambient physiological conditions is certainly as much of a contribution to
randomness as the fluctuations due to quantum uncertainty. Secondly, as we
shall encounter in thinking about how long quantum coherence can survive in
a condensed phase system, the lifetime of any quantum superposition state of
an within a neuron is subject to the dielectric reorganization of the surround-
ing media. If we take this to the rotational reorganization time of water, we
can easily suspect that the longest any electronic superposition my last is on
the order of 10−12 seconds. This is a billion times shorter than the time scale
for electrical synapses of 2.0×10−2 seconds. Any quantum information that
could have been passed from neuron to neuron across the nexus junction has
long decayed before the message is relayed.

What is true, however, is that the the optical and electro-optical proper-
ties of many biological and materials devices are determined by delocalized
π-conjugated systems within their molecular frameworks. In living systems,
π conjugated systems serve a variety of roles. In plants, the process of pho-
tosynthesis is triggered by the absorption of a photon by chlorophyl which
initiates a series of ultrafast energy and electron transfer processes that ulti-
mately converts the photoexcitation into chemical energy that can be used by
the plant. This is perhaps the most important form of solar energy conversion
in living systems. In fact, even though our current civilization derives most of
its energy from the fossilized remains of plants and animals, the energy stored
within the remaining coal, oil, and natural gas was originally harvested from
the sun hundreds of millions years ago by some living plant or algae.

2 Excited state dynamics in DNA

It is generally agreed upon that life arose on the earth approximately 3.8
billion years ago. This is roughly 200 million years after the planet itself cooled.
This in an of itself is remarkable since it indicates that in a relatively short
time after the earth cooled and became a stable planet, the first identifiable
traces of life began to appear. Evidence of this primitive bacteria can be found
in certain rock out-croppings dating to this period.

However, before bacteria could evolve, the fundamental chemistry of life
needed to be established. For this we need to turn back the clock to around
4.5 - 4.1 billion years ago where the earth’s crust has cooled and solidified and
the oceans and atmosphere begin to form. It is speculated that iron-sulfide
synthesis along deep oceanic platelets may have lead to the synthesis of the
first RNA and self-replicating molecules. Exactly how this chemical evolution
came about remains an open question. It is possible that RNA may have
used clays and similar self-replicating materials as substrates. Eventually, this
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chemistry of self-replication would lead to replicating organisms. Such proto-
lifeforms would require energy, food, and space and would eventually compete
with each other for these vital resources. This competition naturally leads to a
selection criteria where the organisms best capable of acquiring the necessary
components would pass these traits on to their progeny through replication.
Certainly, many trial chemistries would have been explored. Due to natural
selection, the chemistries that are more faithful and efficient in replication
have an evolutionary edge over chemistries that are more error prone and
less efficient. At some point DNA based replication supplanted RNA based
replication and became the dominant chemistry of life.

DNA is very stable with respect to the photochemical decay. This is re-
markable since the base components of DNA: adenosine, thymine, cytosine,
and guanine all are cyclic aromatic molecules with very large photo-absorption
cross-sections in the ultraviolet range. Hence, the bases themselves are highly
susceptible to photo-initiated chemical reactions. The path chosen by nature
to protect DNA is through the very rapid decay pathways of the electronic
excitation energy which prevents the localization of electronic energy. Given
the importance of DNA in biological systems and its emerging role as a scaf-
fold and conduit for electronic transport in molecular electronic devices, [1]
DNA in its many forms is a well studied and well characterized system. What
remains poorly understood, however, is the role that base-pairing and base-
stacking plays in the transport and migration of the initial excitation along
the double helix. [2–4]

The absorption of UV radiation by DNA initiates a number of photo-
chemical reactions that can ultimately lead to carcinogenic mutations. [5–9]
The UV absorption spectrum of DNA largely represents the weighted sum
of the absorption spectra of it constituent bases. However, the distribution
of the primary photochemical products of UV radiation, including bipyrimi-
dine dimers, [10] is depends quite strongly upon base sequence, which implies
some degree of coupling between the DNA bases. [3] Inasmuch as both the base
stacking and base pairing are suspected to mediate the excess of electronic
excitation energy, understanding of the excited-state dynamics is of primary
importance for determining how the local environment affects the formation
of DNA photolesions.

Recent work by various groups has underscored the different roles that
base-stacking and base-pairing play in mediating the fate of an electronic ex-
citation in DNA. [2,3] Over 40 years ago, Löwdin discussed proton tunneling
between bases as a excited state deactivation mechanism in DNA [11] and
evidence of this was recently reported by Schultz et al. [12] In contrast, ul-
trafast fluorescence of double helix poly(dA)·poly(dT) oligomers by Crespo-
Hernandez et al. [2] and by Markovitsi et al. [3] give compelling evidence
that base-stacking rather than base-pairing largely determines the fate of an
excited state in DNA chains composed of adenosine and thymine bases with
long-lived intrastrand states forming when ever adenosine is stacked with itself
or with thymine. However, there is considerable debate regarding whether or
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not the dynamics can be explained via purely Frenkel exciton models [3,4,13]
or whether charge-transfer (excimer) states play an intermediate role. [14]

Upon UV excitation, the majority of excited molecules shows a subpicose-
cund singlet lifetimes. [15–18] Owing to the technical difficulties in measuring
the ultrashort lifetimes the study of the charge and excitation energy transfer
in DNA has only recently received much of attention with the advances in
the femtosecond spectroscopy. Although, so far, no clear picture of the ex-
cited -state deactivation mechanism has been offered by the experiment, two
possible decay channels have been investigated. Kohler and coworkers in their
recent study of the duplex poly(dA)·poly(dT) suggested that π-stacking of
the DNA base determines the fate of a singlet electronic excited state. [2]
Alternative decay mechanism involves interstrand hydrogen or proton trans-
fer. Douhal and coworkers observed excited-state proton transfer in base pair
mimincs in gas-phase. [19] The experimental results suggests that these very
fast decay pathways play an important role in quenching the reactive decay
channels and providing DNA with intrinsic photochemical stability. However,
they do not provide a clear picture which arrangement of bases, pairing or
stacking, is of primary importance.

3 Justification for a purely Exciton Model

Until recently, most theoretical investigations of excitation energy transfer in
DNA helices has been within the Frenkel exciton model which treats the ex-
citation as a coherent hopping process between adjacent bases. [20, 21] This
model has tremendous appeal since it allows one to construct the global ex-
cited states (i.e of the complete chain) in terms of linear combinations of local
excited states. The key parameter in the evaluation of the electronic excitation
energy transfer (EET) is the electronic coupling between the individual bases.
To a first-order approximation, the base to base coupling can be estimated us-
ing a dipole-dipole approximation in which the interaction between the donor
and acceptor is calculated using only the transition dipole associated with each
chromophore. While this approach is certainly suitable for cases in which the
distance between the donor and acceptor sites is substantially greater than
the molecular length scale. In case of double stranded DNA, where the DNA
bases are in relatively close contact compared to their dimensions this ap-
proach leads to the neglect of the effect of the size and spatial extent of the
interacting transition densities associated with each chromophore.

An important issue in the nature of the excited states in stacks of DNA
bases is whether or not the states extended over a number of the bases are neu-
tral Frenkel excitons or if they carry some degree of charge transfer character
(exciplex or excimer).3 [2–4] A purely excitonic model neglects configurations
3 The simple distinction between an exciplex and an excimer is that an exciplex

is a charge-separated state between two different species and and excimer is a
charge-seperated state between two identical species.
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in which the electron and hole reside on different sites and one can argue
against excimer formation in stacked homodimers since the exciton binding
energy (≈ 0.4 − 0.5 eV typical for conjugated organic species) is far greater
than the difference in either electron affinities or ionization potentials of the
stacked pair. [24,25] Based upon the exciton stability criteria, exciplex states
are only expected for stacked heterodimers (eg. AT, CG, etc...). The signifi-
cance of the breakup of the exciton is twofold. First, it is well recognized that
photoexcitation of adjacent stacked pyrimidine bases leads to the formation
of cis-syn cyclobutane pyrimidine-dimer lesions. However, this dimerization
occurs only in the triplet (rather than singlet) excited state. [8] Consequently,
spin-flip must occur ether via spin-orbit coupling or via recombination of po-
laron pairs. [26] If we assume that the spins are decorrelated at some interme-
diate distance r ∝ e2/εkT where the Coulomb energy is equal to the thermal
energy, photoexcitation of a thymine sequence could rapidly result in a popu-
lation of triplet excitons formed by exciton dissociation followed by geminate
recombination. Secondly, the process is reversible and triplet reactivation of
the dimer can lead to repair of the lesion.

3.1 Exciplexes, Excimers, and Excitons

It is constructive at some point to carefully define the difference between the
various types of electronic states that arise when two molecules are brought
into close contact, as in the case of the stacked bases in a DNA chain. Let us
consider a simple model for understanding the various excited state configu-
rations that can arise between stacked molecules. For the sake of simplicity,
consider the following 4 electronic configurations:

φ1 = ⊗−� (1)
φ2 = �−⊗ (2)
φ3 = ⊕−� (3)
φ4 = �−⊕ (4)

where −⊗− denotes an electron/hole pair localized on the same base (i.e. a
local exciton), −�− denotes a base without an excitation, −⊕− denotes a
base with an electron removed from its HOMO orbital (i.e. a hole) and −�−
denotes a base with an electron placed in its LUMO orbital. For a homod-
imer in the absence of electron/hole interaction or ground-state polarization,
these states are degenerate with energy equal to the LUMO-HOMO energy
difference. Let us consider a simple Hubbard-like model where the electronic
interaction, U corresponds to the exciton binding energy. We also will have
two types of hopping terms, one in which the a local exciton ⊗ is transfered
from one base to the other and a second hopping term for the swapping of
the two charges. A schematic sketch of the relative placement of the energy
levels is shown in Fig. 2. Under these assumptions, H can be written as the
4× 4 matrix:



Photoexcitations in DNA 109

H =

⎛⎜⎜⎝
ΔEa − U −J −t −t

−J ΔEb − U −t −t
−t −t ELb − EHa 0
−t −t 0 ELa − EHb

⎞⎟⎟⎠ . (5)

For a homo-dimer, ELa−EHa = ELb−EHb = ELa−EHb = ELb−EHa = ΔE
and we take J , U , and t to be positive energies. By defining symmetrized states

ψ1 = (φ1 − φ2)/
√
2 (6)

ψ2 = (φ3 − φ4)/
√
2 (7)

ψ3 = (φ1 + φ2)/
√
2 (8)

ψ4 = (φ3 + φ4)/
√
2 (9)

H can be brought in to a block diagonal form

T.H.TT =

⎛⎜⎜⎝
J − U 0 0 0

0 0 0 0
0 0 −(J + U) −t
0 0 −t 0

⎞⎟⎟⎠ . (10)

and we take the energy-zero to be the LUMO-HOMO gap ΔE. The first two
of these symmetrized states are purely excitonic or charge-transfer and do not
depend upon the electron/hole hopping term. The eigenstates of the second
block are mixed exciton/charge-transfer states

ψ± = cos(θ)ψ1 + sin(θ)ψ2

where θ is now the mixing angle given by

tan(2θ) =
2t

(J + U)
.

with energy

E± =
1
2

(
−(J + U)∓

√
16t2 + (J + U)2

)
.

Typically for molecular dimers, the exciton binding energy U � J and J ≈ t.
Thus, the lowest energy excited state will be dominated by excitonic-type
configurations with some mixing with the charge-separated configurations.
Consequently, to good approximation, these intrachain states can be consid-
ered to be Frenkel-type excitons.

Finally, let us consider how much of an energy off-set, εb, is required so
that the lowest energy excited state is a charge-transfer state. For simplicity,
we take the HOMO-LUMO gap on each monomer to be identical ELa−EHa =
ELb−EHb = ΔE and thus, ELb−EHa = ΔE−2εb and ELa−EHb = ΔE+2εb

H =

⎛⎜⎜⎝
ΔE − U −J −t −t

−J ΔE − U −t −t
−t −t ΔE − 2εb 0
−t −t 0 ΔE + 2εb

⎞⎟⎟⎠ (11)
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ELa

EHa

ELb

EHb

�Ea

�Eb

�

Fig. 2: Relative placement of HOMO and LUMO energy levels in a molecular dimer.
The dashed lines indicate the energies for the homo-dimer. For the heterodimer,
these levels are shifted up or down by ε so that the band off-set is 2ε. In the dis-
cussion, we assume that ΔEa = ΔEb. Shown also is the electron/hole configuration
corresponding to state φ3 = ⊕−�.

Again, using the symmetrized states above, we can transform this H into⎛⎜⎜⎝
ΔE + J − U 0 0 0

0 ΔE 0 −2εb
0 0 ΔE − J − U −2t
0 −2εb −2t ΔE

⎞⎟⎟⎠ . (12)

The band off-set polarizes the system and it is convenient to transform the
lower 3× 3 submatrix into a basis defined by

ψ+ = φ3 =
1√
2
(ψ2 + ψ4) (13)

ψ− = φ4 =
1√
2
(ψ2 − ψ4) (14)

ψ0 = ψ3 (15)

producing the tri-diagonal matrix⎛⎝ΔE + 2ε
√
2t 0√

2t ΔE− J − U −√
2t

0 −√
2t ΔE− 2ε

⎞⎠ . (16)

Taking the hopping as a perturbation we can define the two energetically
lowest states as

ψexciton ≈ ψ0 +
√
2t

2ε− (J + U)
ψ+ (17)

ψexciplex ≈ ψ+ −
√
2t

2ε− (J + U)
ψ0 (18)
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When 2ε < (U+J), the exciton state is lower in energy than the corresponding
exciplex state. Also, we can see from this analysis how an exciplex state can
acquire oscillator strength to the ground state through mixing with ψ0. Taking
ε → 0 as in the case of the homo-dimer,

ψexciton ≈ ψ0 +
t

(J + U)
(φ3 + φ4) (19)

ψexcimer ≈ 1√
2
(φ3 + φ4)−

√
2t

(J + U)
ψ0 (20)

Again, the excimer state acquires some oscillator strength due to mixing with
purely excitonic configurations induced by the electron and hole hopping in-
tegrals. However, since the mixing is proportional to t/(J + U) and U � t,
this mixing is expected to be quite weak. On the other hand, at typical stack-
ing distances, the transfer integral t could be significant and some degree of
excimer formation could be expected.

While this analysis is compelling motivation for a purely excitonic model,
one must bear in mind that we are neglecting the fact that the Coulomb
integrals should be screened by the local environment. This begs the question:
“Exactly what is the local environment about a base pair?” On one extreme, it
is essentially salt water with a very high dielectric, on the other extreme they
are in a low dielectric environment since they primarily interact with their
conjugated heterocyclic neighbors. To understand the effect of screening, we
next consider a simple screening model.

3.2 Onsager criteria for intrachain charge-separated species.

Having argued against the formation of intrachain charge separated species it
is only fair at this point to provide an argument in favor of intrachain charge
separation. For this, let us consider a DNA chain as a continuous and homo-
geneous dielectric medium and the electron/hole pair as a quasi-hydrogenic
species. In order for complete charge separation to occur the electron and
hole must be far enough apart so that their mutual attraction is less than the
thermal energy. This distance is termed the Onsagar radius. If we consider
this as a prototypical hydrogenic atom, then the virial theorem tells us that

〈T 〉 = −1
2
〈V 〉 (21)

Setting 〈T 〉 = 3kBT/2 for a “free particle” moving in 3 dimensions and using
the standard expectation values for a hydrogenic atom one finds that

rc =
e2

ε

1
2kT

ao (22)

where ao is the Bohr radius of the electron/hole quasi-hydrogenic atom, e is
the charge and ε is the dielectric constant of the material. In atomic units and
300K this comes out to be
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Fig. 3: Coulombic coupling between the lowest ππ∗ transition moments of Watson
Crick AT base pair (left) and two stacked and parallel Ts (right) as a function of
the distance between the two bases. The distance is measured between N1 and N3
atoms of A and T, respectively, for the AT pair (left) and between the centers of
the mases of the two Ts (right). (From Ref. [23])

rc ≈ 1
ε
535ao =

1
ε
278Å

At 25◦C, the dielectric constant of water is 78.4. In contrast, the typical dielec-
tric constant of an organic poly-phenylene-type semiconductor is between 3
and 11. This implies that the rc for charge separation along a DNA should be
someplace in between 78.4 (due to the water surrounding the DNA chain) and
11 since the interior of the chain should looks more like stacked poly-aromatic
hydrocarbons. In short, depending upon how exposed the low dielectric inte-
rior of the DNA chain is to the higher dielectric constant of the surrounding
water, the Onsager radius can be between 25Åand 3.5Å, which does lend
credence the formation of intrachain charge separated species; however, their
presence should be highly sensitive the solvent environment and the average
dielectric within the DNA helix.

3.3 Exciton coupling matrix elements

Molecules interact with each other at a distance via Coulomb forces deter-
mined by the shape and polarizibility of the electronic density surrounding
each them. In general, we work in the limit that a given pair of molecules are
far enough apart that electron exchange and correlation contributions can be
safely ignored. Thus, the interaction can be written as

Vab =
1
2

∫
d3ra

∫
d3rb

e2ρa(ra)ρb(rb)
|ra − rb| (23)

where ρa and ρb are the transition densities of molecules A and B respectively
between the initial and final electronic states. In loose terms, the transition
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density can be thought of as the induced charge oscillations in the ground
state electronic density in response to a linear oscillating driving force (i.e. the
electro-magnetic field) at the transition frequency. If the distance, R, between
A and B is large compared to the size of either molecule, a, we can safely
expand the integrand in terms of its multipole moments and write

Vab ≈ Vdd + Vdq + Vqd + Vqq + · · ·
where Vdd is the “dipole-dipole” term, Vqd is the “quadrupole-dipole” interac-
tion, and so forth. For R � r we can truncate the multiple expansion at the
first term and write the interaction in terms of the transition dipole moments
of each molecule.

M =
1
R3

(
pA · pB − 3

R2
(pA · R)(pB · R)

)
(24)

where R is a vector extending from the charge center of A the charge center
of B. Setting this to be the z axis, we can write M as a function of the angles

χ(θa, θb, φ) = sin θa sin θb cosφ− 2 cos θa cos θb (25)

If all angles are statistically possible, one obtains the mean value

χ2 = 2/3 (26)

for the orientation
However, for molecules that are in close proximity to each other, i.e. R ≈ r,

then we need to include essentially every term in the multipole expansion
in order to accurately approximate the coupling. By far the most precise
way to calculate the excitonic coupling elements is to directly integrate the
Coulomb coupling matrix element between transition densities localized on
the respective basis. [22] The basic ideas behind this approach are examined
in the next chapter by Scholes. The accuracy is then limited only by the
numerical quadrature in integrating the matrix element and by the level and
accuracy of the quantum chemical approach used to construct the transition
densities in the first place. The values of the Coulombic couplings between
the lowest energy ππ∗ transitions of the adenine and thymine and two π -
stacked thymines as a function of distance between the bases (Fig. 3) were
calculated using the TDC and IDA methods. The comparison of the coupling
elements obtained with two methods (Fig. 3) shows a good agreement at a
separation between the bases larger than 5 and 6 Å for AT pair and stacked
THYs, respectively. At a shorter separations, in the range of 3-4 Å, which is
typical for DNA structures, the agreement between IDA and TDC is very poor
with the differences between calculated couplings in error larger than 100%
in case of AT pair. The aforementioned good agreement between IDA and
TDC at a large separation and poor agreement at shorter distances between
nucleobases indicates that the shape and spatial extent of transition density
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(Fig. 3) become important and cannot be neglected at distances between the
bases typical for double helices DNA. The agreement between the two methods
becomes very good in the limit of very large separation, (z >8 Å).

In Fig. 4 we show the delocalized ππ∗ transition density differences for a
stacked pentamer of 9H-adenine computed using an ab initio Hartree Fock
description of the ground state followed by a CIS(D) description of the ex-
citations. The configurations shown here are sampled from a molecular dy-
namics simulation of a dAdT oligomer in water in its B-form. From these
calculations we see little evidence of charge transfer (excimer) states between
stacked bases. None of the 20 excited states calculated at the CIS(D)/cc-pVDZ
level have a charge transfer character. The lowest energy states can be most
adequately classified as nπ∗ and ππ∗ states. Likewise the vertical excitation
energies (VEE) of the AT base pair the VEEs of the former states of stacked
pentamer are slightly lower than the VEEs of the latter states. The ππ∗ states
with the largest oscillator strength are also the most delocalized, the corre-
sponding molecular orbitals being delocalized over all five adenine bases. On
the contrary, the nπ∗ states can be localized on a single thymine base. CIS(D)
calculations on stacked adenosine pentamers based upon MD configurations
give little evidence for excimer formation, although depending upon the in-
stantaneous geometry of the chain, excitons may have a small static dipole
due to differing degrees of localization of the occupied and virtual orbitals
contributing to the configuration-interaction expansion of the excited state
wave functions. The difference densities corresponding to the ππ∗ states of
the pentamer with the largest oscillator strength are shown in Fig. 4. These
calculations were performed in vacuum, consequently, it is entirely possible
that contributions from solvent polarization, counter-charges, and near by
water molecules could stabilize intrastrand excimer states even within a chain
of identical bases. [27]

3.4 Exciton localization: disorder

The simplest Frenkel exciton model consists of diagonal energies εn repre-
senting the exciton energies of the individual bases with off-diagonal elements
corresponding to the Coulomb coupling between exciton states, J

Hexciton =
∑
n

|φn〉〈φn|εn +
∑
n �=m

|φn〉〈φm|Jnm(θnm). (27)

Since short strands of DNA are fairly rigid, the electronic coupling terms are
likely most sensitive to the base-base dihedral angle, θij between adjacent
bases. If we take the fluctuations in θij to be δθ2 = kBT/IΩ2 where I is the
reduced moment of inertia of the AT base-pair and Ω = 25cm−1 is the tor-
sional frequency. This gives an RMS angular fluctuation of about 5% about
the avg. θi,i+1 = 35.4◦ helical angle. [28] Since this is a small angular devi-
ation, we take the fluctuations in the electronic terms to be proportional to
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Fig. 4: The difference densities of stacked 9H-adenine pentamer (left) calculated
at the CIS(D)/cc-pVDZ level corresponding to two different localized ππ∗ states
(middle and right).

δθ2 and sample these terms from normal distributions about B-DNA aver-
age values. Such fluctuations in the electronic couplings are consistent with
more robust estimates based upon combined molecular dynamics/quantum
chemical simulations by our group. [23]

In Fig. 5 we computed the Jnm coupling matrix elements between each
base for 12-base pair dAdT oligomer in water (in its B DNA form) over the
course of an 80 ps molecular dynamics simulation and determined the Frenkel
exciton states by diagonalizing Eq. 27. From these simulations, two states
carried the majority of the oscillator strength, #13 corresponding to a exci-
ton delocalized over the A side of the chain and the other #22 corresponding
to an exciton delocalized over the T side of the chain. The spatial extent of
the eigenstates was evaluated based on the participation ratio (PR = 1/Lk)
of a given eigenstate, which indicates the number of coherently bound chro-
mophores [29]. The participation ratio of the eigenstates <13> and <22> as
a function of energy is ploted in Figure 5. The PR values for these two eigen-
states of (A)12(T)12 calculated for 240 conformations taken from the MD
simulations show large fluctuactions in the range of 2−10. The higher energy
eigenstate with index <22>, calculated using either IDA and TDC coupling
elements, on average shows larger delocalization compared with the lower en-
ergy eigenstate number <13>. However, only for a handful configurations the
value of PR exceeds the theoretical value of 8.4 (indicated by a dashed line in
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Fig. 5: Plot of the participation ratio of the eigenstate numbers <13> and <22> as a
function of energy determined for 240 conformations of (A)12(T)12. (From Ref. [23])

Figure 5) corresponding to the completely delocalized exciton over one strand
of the (A)12(T)12. This indicates that both eigenstates <13> and <22> which
are localized on the transition associated with adenine remains localized on
only one strand of the (A)12(T)12 composed of adenine nucleobases.

In Fig. 6 we consider a Gaussian noise model where we sampled the off-
diagonal elements of Eq. 27 from normal deviates centered about the B DNA
average values as computed using the transition density cube approach and
assuming a fluctuation of 50 cm−1 between nearest neighbor bases consistent
with our estimates based upon our MD simulation. In this case, we consider
a 20 base-pair chain in order to eliminate any effect of the finite length of the
chain and sample over 2000 individual realizations. Even though the gaussian-
noise model does not include correlation between values of Jnm, it does a
good job of reproducing the average inverse participation ratio compared to
the molecular dynamics results.

This suggests that to first order the effect of disorder induced localization
can be introduced into a reduced model for DNA by sampling the couplings
from a normal distribution about the average B-DNA coupling. However, this
may introduce too severe of an approximation when it comes to dynamics and
transport related properties that may be sensitive to dynamical correlations
amongst the coupling terms.
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Fig. 6: Comparison of the localization length vs. exciton energy for a gaussian-noise
model for dAdT.

Fig. 7: Proton transfer reaction coordinate between amide/keto and imino/enol tau-
tomer forms of the A-T base pair.

4 Role of proton transfer

Lastly we consider the role of proton transfer between the Watson Crick bases.
As discussed above, experimental evidence supported by quantum chemical
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calculations on isolated bases point to a significant role played by proton
exchanges between bases in quenching photoexcitations. [12] In short, these
studies indicate that the ππ∗ states are strongly coupled to the proton transfer
coordinate carrying the system from the (normal) amide/keto form to the
(rare) imino/enol forms of the bases. For A-T, there are two hydrogen bonds
between the two bases, one coming from the amine N in the 6 position on
adenine and the carbonyl oxygen at the 4 position on thymine and the other
between the N1 on adenine and the N3 on thymine. We can represent this as

A

⎧⎨⎩
: H → :
: ← H :

⎫⎬⎭T → A∗

⎧⎨⎩
: H :
: H :

⎫⎬⎭T ∗ (28)

where : represent a pair of electrons. The other Watson/Crick pair has the
following match up:

C

⎧⎨⎩
: H → :
: ← H :
: H :

⎫⎬⎭G → C∗

⎧⎨⎩
: H :
: H :

H :

⎫⎬⎭G∗ (29)

These rare tautomer forms A∗, T ∗, C∗ and G∗ are of concern since it has
been suggested that these may serve as a source for point mutations in DNA
since the pyrimidine tautomer of one WC pair is now complementary to the
purene of the other WC pair and vice versa. The genetic implication of these
tautomer forms can be appreciated by considering the following scheme.

A− T
↓ proton transfer

A∗ − T ∗

↙↘ replication
A∗ − C G− T ∗

↙ ↓ ↓ ↘
A∗ − C G− C G− C G− T ∗

(30)

Here we show how an initial AT pair can be transformed in to a GC pair if
the pair is in the tautomer form at the time of replication. One can see that
after only two replication cycles, proton transfer can introduce a permanent
point mutation where AT �→ GC or GC �→ AT . In the ground state this is
rare since thermodynamically only 1 : 109 bases are in the tautomer form at
any given time.

In Fig. 8 we plot the vertical excitation energies (VEE) of the lowest
nπ∗, localy excited ππ∗ excitonic states and charge transfer ππ∗ states of
the Watson-Crick base pair calculated as a function of the N6-H distance
of adenine at the CIS(D) level. The chemical structure of the dAdT base-
pair is shown in the inset of Fig. 8 along with several key bond distances. In
agreement with previous calculations both equilibrium structures were found
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slightly buckled and propeller-twisted. Unless otherwise noted, all of our cal-
culations were performed using Hartree-Fock (HF) theory with a high-quality
basis (cc-pVDZ). Excited states were determined using a configuration inter-
action expansion of the wavefunction that included both single and double ex-
citation terms. In addition, the distance between the two fragments, A and T,
is shorter in the “rare” tautomer, a feature also calculated by Villani. [31] Par-
ticularly, the N6-H-O4 hydrogen bridge in the imino/enol-tautomer is shorter
by 0.324 Å compared with the corresponding distance in the Watson/Crick
structure.

The energy profile shown in Fig. 8 was constructed by moving the N6 pro-
ton of adenine toward thymine and reoptimizing all other bases geometrical
parameters. These states are energetically very close together and resolving
them accurately requires both large electronic bases-sets, accurate treatment
of electronic-correlations, and the inclusion of virtual excitations. Furthermore
the influence of these effects is magnified as the system is pushed towards the
two conical intersections encountered as we stretch the rN6−H bond. Finally,
we found that there is is considerable interplay between the bases and the sug-
ars that we could not simply replace them with methyl groups. The barrier
for the double proton transfer dAdT → dA*dT* in the ground state calcu-
lated at the HF/cc-pVDZ is rather high, 31.1 kcal/mol, while the barrier for
the reverse process dA*dT* → dAdT calculated at the same level amounts to
14.9 kcal/mol (Fig.8). Especially, the latter barrier is significantly higher com-
pared with the values of 0.2 and 0.02 kcal/mol reported by Gorb et al [32] and
Guallar et al, [33] respectively, for a AT base pair without sugars. However,
reoptimization of the structures with sugars at the MP2/def-SV(P) level low-
ers the barriers for the forward and reverse processes to 18.2 and 2.0 kcal/mol
respectively.

At the ground state equilibrium geometry, the calculated lowest energy
excited state corresponds to the nπ∗ state with both the n and π∗ orbitals
completely localized on thymine. The ππ∗ exciton states are just about 0.2–0.4
eV above the nπ∗ state. We also determine that the state corresponding to the
charge-transfer (ππ∗ CT) state is approximately 0.6 eV above the ππ∗ local-
ized exciton states. The vertical excitation energy calculated at CIS(D) level
are generally in good agreement with those calculated at the CC2 level for the
AT base pair without sugars using similar quality basis set [34]. The primary
configurations in all three ππ∗ exciton states correspond to electron/hole ex-
citations localized on either thymine or adenine bases. The weights of these
configurations are by and large similar, below 50%, producing the ππ∗ ex-
cited states delocalized over both bases with none of them entirely localized
on just one base. The calculated vertical excitation energy of the ππ∗ exciton
states increase while the vertical excitation of the ππ∗ CT state decreases
with increasing N6–H (adenine) bond distance up to 1.4 Å. As the adenine
N6–H bond distance becomes longer this trend is reversed. Furthermore, the
character of the excited states also changes. The ππ∗ exciton states become
increasingly localized on just one base either adenine or thymine with the
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Fig. 8: Ab initio ground and excited state potential curves for a dAdT Watson/Crick
nucleoside pair along the N6(A)–H stretching coordinate. At each point along the
curve, the ground-state geometry was optimized constraining the sugars to their
positions in a B-DNA chain.

contribution from the corresponding excitation greater than 80%. Ultimately,
this is related to the formation of the tautomer, When the dAdT base pair ge-
ometry is reoptimized with the N6–H (adenine) bond distance rH = 1.5 Å the
N3 hydrogen of thymine moves over to the other side forming a covalent bond
with the adenine N1 to form the imino/enol tautomer.

For purpose of developing a model for DNA excited sates we consider
Hamiltonian consisting of interactions between the ground state of a Watson-
Crick base pair and lowest energy localy excited (LE) and charge transfer (CT)
ππ∗ stetes, j1 and j2, respectively, on neighboring base pairs. The coupling
between the LE and CT ππ∗ states is denoted by j2, while λ introduces
coupling between two LE ππ∗* states localized on neighboring base pairs.
Such coupling suggest a The model hamiltonian for N -stacked Watson/Crick
bases can be written in the form
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Fig. 9: Geometry of stacked AT nucleosides. In all calculations reported upon here
we have fixed the positions of the atoms in the sugars to correspond to their atomic
positions in the B-DNA configuration as generated by the X3DNA [35] program.

H = Hel +Hprotons

= Eg|g〉〈g|+
N∑
n=1

Ext|en〉〈en|+ Ect|cn〉〈cn|+ j1(|en〉〈cn|+ h.c.)

+
N∑
n=1

λ(|en〉〈en+1|+ h.c)

+
N∑
n=1

j2(|cn〉〈g|+ h.c)

+
N∑
n=1

rn(g1|en〉〈en|+ g2|cn〉〈cn|)

+
1
2

N∑
n=1

(p2
n + r2

n). (31)

The diagonal elements of the model Hamiltonian were taken as the ground-
state energy at equilibrium geometry of an isolated AT base pair (Eg), the
vertical excitation energies of the localy excited (LE) ππ∗ and charge transfer
(CT) ππ∗ states, Ee1,2 and Ec1,2 respectively. The indices 1 and 2 correspond
to the respective AT monomers of the dimer. The coordinate rn is a collec-
tive normal-mode coordinate corresponding to the symmetric stretch of the
N6–H stretch on A and the N3–H stretch on T. In our model, rn is taken to
be both frequency and mass-scaled. The g1 and g2 electron/phonon couplings
are related to the distortion molecule along the proton stretching coordinateof
the excitonic state and charge-transfer state away from the initial equilibrium
geometry of the ground-state. For g1, we note in Fig. 8 that the geometry of
the excitonic state is only slightly distorted and we set g1 = 0. For g2, we
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assume that the ground-state minima corresponding to the imino/enol tau-
tomer is diabatically related to the charge-transfer state in the amino/keto
configuration. Thus, we set g2 by requiring that the diabatic parabola for the
charge-transfer state intersect the vertical energy of the charge-transfer state
in the amino/keto configuration (E2) and the ground-state energy (Er) of
the imino/enol configuration. In terms of the dimensionless (mass-frequency
scaled variables) g2 =

√
2(E2 − Er). The off-diagonal coupling elements be-

tween the LE ππ∗ states (λ) and between the CT and LE ππ∗ states (j2)
were calculated using the Transition Density Cube (TDC) method described
in [23]. The remaining off diagonal elements j1 and j3 were adjusted until
satisfactory agreement with ab initio data was reached. While the model cer-
tainly over simplifies the details of the actual potential energy surfaces, we
believe that it captures its salient topographical and topological features. A
summary of these values is give in Table 1.

The model hamiltonian takes the following form (using dimensionless units
for rn). For a stacked A-T dimer, our model Hamiltonian takes the form:

H =

⎛⎜⎜⎜⎜⎝
Eg j1 j3 j1 j3
j1 Ee1 + g1r1/2 j2 λ 0
j3 j2 Ec1 + g2r1/2 0 0
j1 0 0 Ee2 + g1r2/2 j2
j3 0 0 j2 Ec2 + g2r2/2

⎞⎟⎟⎟⎟⎠+Hprotons

(32)

For a dimer, diagonalizing Eq.32 gives a series of 5 energy surfaces cor-
responding to the ground adiabatic electronic state and 4 excited states as
functions of the two proton transfer coordinates r1 and r2 as shown in Fig.
10 First, the lowest surface is the potential surface for tautomerization in the
ground state. Two minima occur at (r1, r2) = (3, 0) and (0, 3) corresponding
to one base pair or the other in the tautomer form. However, both excitonic
states are unstable with respect to the proton exchange coordinates. Once
the system has moved away from the origin along one of the proton-transfer

Table 1: Model Parameters as derived from quantum chemical calculations.

E1 5.625 Vertical excition energy
E2 6.371 Vertical CT energy
Er 1.4 eV Tautomer energy
λ 200-400 cm−1 coupling between stacked excitonic states
j1 0 coupling between gs. and local ππ∗

j2 50cm−1 coupling between local ππ∗ and local CT
j3 2500cm−1 coupling between gs. and local CT
g1 0 distortion of local ππ∗

g2 8 distortion of local CT (equivalent to geometry of tautomer)
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Fig. 10: The three-dimensional potential energy surface describing the motion of
protons between N6(A) and O4(T) and between N3(T) and N1(A) shows two criti-
cal points in the ground state. The deeper minimum corresponds to the amine/keto
structure of AT and a shallow one to the imine/enol structure (A*T*). Upon ab-
sorption of a UV photon the initaly delocalized excitonic states (1) undergo a rapid
localization on ≈10 ps timescale for single bases and ≈100 ps timescale for stacked
base pairs to form a charge transfer (CT) states. The subsequent CT states passing
through a conical intersection are carried back to the ground state.

coordinates, the electronic states rapidly localize and we are carried towards
the conical intersection between the local CT state and the ground state.

Let us assume that the lifetime of the delocalized state is limited by pro-
ton transfer between one of the base pairs such that as soon as one proton
coordinate cross the XT/CT intersection, the delocalized state collapses to
from a localized state. Assuming the usual Condon separation between the
nuclear and electronic dynamics, we can write this within the non-adiabatic
Marcus approximation
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kloc =
2π
�
|Vab|2 1√

4πErkBT
e−(ΔE+Er)2/(4ErkBT ) (33)

where Vif = j2 is the diabatic coupling. We can estimate this rate by setting
the driving force ΔE to be the energy difference between the vertical exciton
and the ground-state tautomer and the reorganization energy Er as Er =
Ect−Et. This sets the time-scale for interbase electron transfer of τ = 1/kloc =
10.3 ps. This gives a lower limit to the exciton lifetime since even a small
error in our values can change this by a factor of 2 to 5. Moreover, for the
delocalized case, the coupling matrix element will be at least proportional to
the probability for finding the exciton on a given site, Vab ∝ j2ρn. Thus, for
the delocalized case where the exciton is extended over 3–5 bases we expect
τ ≈ 100 to 250 ps.

In summary, this study combined with our previous study of exciton delo-
calization in B-DNA chains [23] proposes the following mechanism. Following
vertical π − π∗ excitation of an adenosine, the exciton rapidly delocalizes
between 3–4 neighboring stacked A’s on a time-scale given by the exciton-
exciton coupling, λ. The delocalization length is limited by the fact that λ
is strongly modulated by the structural fluctuations of the DNA chain about
its ideal B-DNA form. This initial delocalization occurs on the femtosecond
time-scale. Next, these states are unstable with respect to the fluctuations of
the stretching motions of the protons involved in the hydrogen-bonding be-
tween the Watson/Crick pairs. This causes a re-localization of the exciton to
occur on the time-scale of 10s to 100s of pico-seconds. Subsequent relaxation
to the ground-state occurs on a longer time scale as determined by the conical
intersection between the CT and the ground-state.

5 Summary

The results described herein paint a similar picture to that described by recent
ultrafast spectroscopic investigations of (dA).(dT) oligomers in that the ini-
tial excitonic dynamics is dominated by base-stacking type interactions rather
than by inter-base couplings. Interchain transfer is multiple orders of magni-
tude slower than the intrachain transport of both geminate electron/hole pairs
as excitons and independent charge-separated species. Indeed, for an exciton
placed on the adenosine chain, our model predicts that exciton remains as a
largely cohesive and geminate electron/hole pair wave function as it scatters
along the adenosine side of the chain. Our model also highlights how the dif-
ference between the mobilities in the conduction and valence bands localized
along each chain impact the excitonic dynamics by facilitating the break up
of the thymidine exciton into separate mobile charge-carriers. In the actual
physical system, the mobility of the free electron and hole along the chain will
certainly be dressed by the polarization of the medium and reorganization of
the lattice such that the coherent transport depicted here will be replaced by
incoherent hopping between bases.
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Isolating the photoexcitation to the originally excited chain minimizes the
potential mutagenenic damage to the DNA sequence since it preserves the
complementary chain as an undamaged back-up copy of the genetic informa-
tion. It is fascinating to speculate whether or not the isolation of a photoexci-
tation and its photoproducts to the original chain was an early evolutionary
selection criteria for the eventual emergence of DNA as the carrier of genetic
information.

In conclusion, we present herein a rather compelling model for the short-
time dynamics of the excited states in DNA chains that incorporates both
charge-transfer and excitonic transfer. It is certainly not a complete model and
parametric refinements are warranted before quantitative predictions can be
established. For certain, there are various potentially important contributions
we have left out: disorder in the system, the fluctuations and vibrations of
the lattice, polarization of the media, dissipation, quantum decoherence. We
hope that this work serves as a starting point for including these physical
interactions into a more comprehensive description of this system.
Note added in proof: Since writing this chapter, we have preformed an ex-

tensive series of quantum chemical simulations based upon CIS(D)/cc-pVDZ
with MP2 corrected ground states (same basis as used above) on stacks of
4 A-T base pairs in a PCM solvent cavity. Our results indicate that while
the excitonic π − π∗ states are energetically lower than the corresponding
intra-strand excimers in both single strand (poly A) and double strand DNA
(polyA·polyT) as discussed herein, small variations in the hydrogen bonding
can rapidly stabilizes the intrastrand excimer state. Similar effects can be seen
in CIS(D)/cc-pVDZ calculations of stacked A’s which include explicit water
molecules hydrogen bonded to the bases. This strongly suggests that hydro-
gen bonding interactions also play a central role in the photophysics of this
system.

Acknowledgements

This work was funded by the National Science Foundation and the Robert
A. Welch Foundation. ERB also acknowledges the John Simon Guggenheim
Foundation. The authors also wish to acknowledge the Texas Center for Learn-
ing and Computation (TLC2) for computer support.

References

1. Kelley, S. O.; Barton, J. K. Science 1999, 283, 375.
2. Crespo-Hernandez, C. E.; Cohen, B.; Kohler, B. Nature 2005, 436, 1141.
3. Markovitsi, D.; Onidas, D.; Gustovsson, T.; Talbot, F.; Lazzarotto, E. J. Am.

Chem. Soc. 2005, 127, 17130.
4. Markovitsi, D.; Talbot, F.; Gustavsson, T.; Onidas, D.; Lazzarotto, E.; Marguet,

S. Nature 2006, 441, E7.



126 E. R. Bittner and A. Czader

5. Besaratinia, A.; Synold, T. W.; Chen, H.-H.; Chang, C.; Xi, B.; Riggs, A. Proc
Natl Acad Sci U S A 2005, 102(29), 10058.

6. Sutherland, B. M.; Oliver, R.; Fuselier, C. O.; Sutherland, J. C. Biochem. 1976,
15(2), 402.

7. Callis, P. R. Chem. Phys. Lett. 1979, 61, 563–567.
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Abstract. This chapter focuses on the singlet excited states of model DNA helices
with simple base sequence: poly(dGdC).poly(dGdC), poly(dAdT).poly(dAdT) and
poly(dA).poly(dT). We discuss their absorption spectra, which reflect the properties
of Franck-Condon states, in connection with theoretical studies, performed in the
frame of the exciton theory taking into account conformational disorder and spec-
tral broadening. Then we turn to fluorescence properties studied using fluorescence
upconversion and time-correlated single photon counting. We review the behavior
of the fluorescence decays and we look more closely on the fluorescence anisotropy,
explaining how this property can provide information on energy transfer in molec-
ular systems and we show the results obtained in this way for the three examined
polymeric helices. Finally, we present a qualitative model describing energy flow in
DNA helices; this model involves population of excited states that are delocalized
over a few bases, ultrafast (<100 fs) intraband scattering and emission from the
lower part of the exciton band.

1 Motivations and simplifications

Two opposite motivations are put forward by researchers who are interested
in the excited states of DNA components: on the one hand the stability of
the genetic code and on the other the correlation between skin cancer and ex-
posure to ultraviolet radiation. The former position is mainly justified by the
extremely short lifetimes of the excited singlet ππ∗ states of DNA monomeric
components, the nucleotides: 2’-deoxyadenosine 5’-monophosphate (dAMP),
thymidine 5’-monophosphate (TMP), 2’-deoxyguanosine 5’-monophosphate
(dGMP), and 2’-deoxycytidine 5’-mono-phosphate (dCMP). Indeed, femtosec-
ond spectroscopic measurements have shown that the deactivation of these
excited states in aqueous solution takes place in less that 1 ps [1–6]. However,
when these chromophores are organized in double helices, long-lived compo-
nents are detected in the transient signals [7–13]. Although it has been sug-
gested that such long-lived species correspond to UV-protecting excimers [8],
there is no doubt that absorption of UV radiation by DNA bases does trigger
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Fig. 1: Watson-Crick guanine-cytosine (G-C) and adenine-thymine (A-T) base-pairs.

photochemical reactions [14–17]. Fortunately, the action of repair enzymes re-
duces the probability for the appearance of carcinogenic mutations. But these
reactions remain a major problem for the experimentalist who studies inter-
action of UV-induced processes in DNA helices. Therefore, specific care has
to be taken in order to avoid photodamage during the collection of data, es-
pecially when high intensity lasers are used for their study [18]. The price to
pay is simply the cost of large amounts of duplexes rendering these technically
delicate experiments also awfully expensive.

No matters the philosophical considerations or concerns for public health,
the fact is that the primary photoprocesses occurring in double helices follow-
ing photon absorption by the letters of the genetic code remain still poorly
understood. The methodology followed by us and other groups for their eluci-
dation consists in studying model helices composed of only one type of base-
pairs, guanine-cytosine or adenine-thymine Fig. 1, arranged in homopolymeric
or alternating sequence (Fig. 2). Dealing with two chromophores instead of
four and arranged in a repetitive manner simplifies somewhat this extremely
complex problem. [19]

The above described model sequences have been studied both as oligomers
[7, 8, 11–13, 19] and as polymers [9, 11, 20]. An increase in the size of the he-
lix is known to reinforce its stability, as revealed by their melting curves [18]
and attested by X-ray diffraction measurements in solution [21]. Therefore,
in this chapter we focus on the polymeric duplexes poly(dGdC).poly(dGdC)
[≡ 1000 base-pairs], poly(dAdT).poly(dAdT) [≡ 200-400 base-pairs] and
poly(dA).poly(dT) [≡ 2000 base-pairs] studied by us. First we discuss the
absorption spectra, which reflect the properties of Franck-Condon states, in
connection with theoretical studies. Then we turn to fluorescence properties:
fluorescence intensity decays (hereafter called simply “fluorescence decays”),
fluorescence anisotropy decays and time-resolved fluorescence spectra. We
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Fig. 2: Schematic representations of two model duplexes composed of homopolymeric
and alternating adenine-thymine base-pairs; for clarity adenines are shown in green.

present the two techniques we use to study excited state relaxation, fluores-
cence upconversion (FU, also called sum-frequency generation technique) and
time-correlated single photon counting (TCSPC). We discuss their respective
advantages and drawbacks. We review the behavior of the fluorescence decays
recorded by FU for the three types of base sequence. For one of these systems,
poly(dA).poly(dT), which was more thoroughly studied [9, 10], we comment
on the fluorescence spectra and the fluorescence decays recorded over a large
time domain, from the femtosecond to the nanosecond time-scales. Finally, we
look more closely on the fluorescence anisotropy, explaining how this property
can provide information on energy transfer in molecular systems and we show
the results obtained in this way for the three examined polymeric helices.

2 Absorption spectra: the sine qua non starting point

The knowledge of the excited states which are initially populated by the laser
beam is a necessary condition in a time-resolved experiment aiming to eluci-
date energy flow in DNA helices. A commonly accepted idea since the 1960s
is that excited states of DNA helices are localized on single bases because the
DNA absorption spectrum resembles the sum of the spectra of its monomeric
constituents. However, a careful inspection of the Fig. 3, where the spectrum
of each polymeric duplex is compared with that of an equimolar mixture of the
corresponding nucleotides, clearly shows that this is not the case. The most
striking feature of the duplex spectra is the weaker values of the molar absorp-
tion coefficients around the maximum. This so-called DNA hypochromism has
been largely exploited in biochemistry in order to study the stability of the
duplexes by recording their melting curves (variation of the absorbance as a
function of temperature). But for a long time this empirical observation was
not correlated with the excited states properties although it was known that
a loss of oscillator strength may result from interchromophore charge transfer
states as evidenced in other systems (see for example Ref. [22]). The first at-
tempt to rationalize DNA hypochromism was made by Starikow who studied
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Fig. 3: Experimental absorption spectra obtained for poly(dGdC).poly(dGdC)
(green), poly(dAdT).poly(dAdT) (blue) and poly(dA).poly(dT) (red) in phosphate
buffer. Spectra in black correspond to an equimolar mixture of nucleotides (left:
dGMP and dCMP; right: dAMP and dCMP). Molar absorption coefficients are
given per base.

base-pairs and dimers of base pairs [23]. Later came a work by Varsano et
al. [24] and more recently by Santoro et al. who reproduced the absorption
spectrum of an adenine single strand [25]. To this date the calculation of re-
alistic absorption spectra of duplexes including charge transfer interactions
among bases remains an important challenge for theoreticians.

Besides charge transfer interactions, dipolar coupling between ππ∗ tran-
sitions of bases may lead to delocalization of the excited states. In order to
obtain some guidelines for our experimental studies, we have undertaken the
calculation of excited Frank-Condon states within the framework of the exci-
ton theory [26]. These studies were enriched by combining data from quantum
chemistry and molecular dynamics calculations in collaboration with Krystyna
Zakrzewska and Richard Lavery [26, 27, 27–29]. The general formalism is de-
scribed in the Chapter by E. Bittner and A. Czader in the present volume.

Below we summarize the specific conditions used in our calculations, we
underline the approximations made and we focus on the conclusions which
are connected directly to experimental observables. Our calculations were per-
formed for the alternating duplexes (dCdG)5.(dCdG)5 and (dAdT)5.(dAdT)5
and the homopolymeric one (dA)10.(dT)10.

We consider two electronic transitions for each guanine and adenine chro-
mophore and one for each cytosine and thymine chromophore. The dipolar
coupling among all the pairs of the thirty transitions was considered and
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Fig. 4: Experimental absorption spectra of poly(dGdC).poly(dGdC) (green, left) and
poly(dA).poly(dT) (red, right) shown together with the participation ratio of var-
ious eigenstates calculated for (dCdG)5.(dCdG)5 and (dA)10.(dT)10, respectively.
The position of the circles corresponds to the excitation energy of the associated
eigenstates resulting from diagonalization of 500 exciton matrices simulating diago-
nal disorder.

calculated using atomic transition charges (off-diagonal terms of the exciton
matrix); we demonstrated that the point dipole approximation is not valid
for closely lying bases (Fig. 4 in Ref. [26]). The geometry of the duplexes in
their ground state was determined from molecular dynamics simulations in-
cluding water and counter ions; one hundred conformations were calculated
for each base sequence. The diagonal terms of the exciton matrix were repre-
sented by Gaussian functions whose maximum and width were derived from
the absorption spectra of the nucleotides in solution.

The most important conclusions of this part are as follows:

• The dipolar coupling alone is capable to induce delocalization of the ex-
cited states over a few bases even in the presence of spectral broadening.
The extent of the Franck-Condon states may reach up to 7-8 sites, but
the participation ratio averaged over the ensemble of the eigenstates is
close to two. However, it should be stressed that the calculated degrees
of delocalization are underestimated because dispersion in diagonal terms
was represented by the experimental spectral width including both homo-
geneous and inhomogeneous broadening.

• Although this type of modeling does not take into account orbital overlap
and neglects higher order ππ∗ transitions, the calculated spectra repro-
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duce two trends observed in the experimental spectra. First, the spec-
trum of (dA)10(dT)10 is located to higher energies with respect to that
of(dA)10.(dT)10 [27]. Second, the barycentre of the (dCdG)5.(dCdG)5
spectrum is blue-shifted compared to that of non interacting dGMP and
dCMP (Fig. 3).

• The absorption spectrum of each duplex is the envelop of a large num-
ber of transitions corresponding to the energy distribution of the thirty
eigenstates characterizing each conformation. Their dispersion in energy
arises from both conformational disorder and spectral broadening, the lat-
ter contribution being by far more important.

• The most delocalized excited states are located near the absorption max-
imum (Fig. 4).

Having, thus demonstrated the delocalized nature of the Franck-Condon
excited states, it was a challenge to probe experimentally the dynamics of
energy transfer in the DNA helices.

3 Time-resolved fluorescence: one laser, two detection
techniques

When deciding to study the dynamics of electronic excitation energy transfer
in molecular systems by “conventional” spectroscopic techniques (in contrast
to those based on non-linear properties such as photon echo spectroscopy) one
has the choice between time-resolved fluorescence and transient absorption.
This choice is not inconsequential because the two techniques do not necessar-
ily monitor the same populations. Fluorescence is a very sensitive technique,
in the sense that single photons can be detected. In contrast to transient ab-
sorption, it monitors solely excited state populations; this is the reason for
our choice. But, when dealing with DNA components whose quantum yield is
as low as 10−4, [3, 30] such experiments are far from trivial.

Our objective was to probe fluorescence over a time domain as large as
possible. To this end we combined two different detection techniques, FU
and TCSPC, allowing us to perform measurements from 100 fs to hundreds
of nanoseconds. Notably, we use the same laser excitation source: the third
harmonic of a titane:sapphire laser (267 nm, 100 fs). This is important because
the excited state population is created under identical conditions in the two
types of experiments. The time-resolution obtained after deconvolution of the
recorded signals is 100 fs and 10 ps for FU and TCSPC, respectively. For
reasons explained below, FU only detects emission corresponding to highly
allowed transitions. TCSPC, on the other hand, is capable to monitor not
only allowed but also very weak or forbidden transition. Therefore, particular
care must be taken when merging data obtained by these two techniques as
described in Ref. 10.

While TCSPC is a well-known and commercially available technique, our
FU setup is “special” in the sense that it allows the recording not only decays
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Fig. 5: Schematic view of a fluorescence upconversion setup.

but also time-resolved fluorescence spectra in the UV region [31]. FU is an all-
optical pump-probe technique relying on ultrashort laser pulses, but contrary
to the transient absorption technique, the probe pulse does not interrogate
the photoexcited sample but the emitted fluorescence. This is realized by an
optical mixing of the fluorescence and the probe pulse in a non-linear crystal.
Since the sum-frequency generation is only active during the passage of the
probe pulse, one can say that the probe pulse “opens a door” in the crystal
providing an excellent time-resolution only limited by the temporal width of
the laser pulse. Consequently, the photon flux during this time-window has
to be very large, which is only the case of allowed transitions. A schematic
view of a fluorescence upconversion setup is shown in Fig. 5. Examples of
time-resolved spectra recorded by FU are shown in Fig. 6.

4 The unbearable complexity of the emission decays

The fluorescence decays of all three polymeric duplexes exhibit a strong depen-
dence with the emission wavelength: as the wavelength increases the decays
become slower. In the case of poly(dA).poly(dT), which has been studied sys-
tematically over a large time domain by both FU and TCSPC, at least four
exponentials are needed for their fit [9, 10]. Most of the resulting time con-
stants, ranging from 100 fs to a few nanoseconds, vary with the wavelength.
Such parametric adjustments allow a quantitative description of the decays
but they do not necessarily correspond to precise emitting states.

Despite the above mentioned complexity, it is possible to make some qual-
itative observations by focusing on the decays recorded by FU at 330 nm
(30300 cm−1) e.g. close to the maximum of the time-resolved spectra ob-
tained by the same technique (Fig. 6). Fig. 7 shows the fluorescence decays
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Fig. 6: Time-resolved fluorescence spectra obtained for poly(dGdC).poly(dGdC)
(green), poly(dAdT).poly(dAdT) (blue) and poly(dA).poly(dT) (red) in phosphate
buffer at zero-time. Circles correspond to experimental data and solid lines to fits
with log-normal functions. Excitation wavelength: 267 nm.

Fig. 7: Fluorescence decays obtained for poly(dGdC).poly(dGdC) (green),
poly(dAdT).poly(dAdT) (blue) and poly(dA).poly(dT) (red) in phosphate buffer.
Black signals correspond to an equimolar mixture of nucleotides (left: dGMP and
dCMP; center and right: dAMP and TMP). Excitation wavelength: 267 nm. Emis-
sion wavelength: 330 nm.

recorded for the three examined polymers by FU with those obtained for an
equimolar mixture of nucleotides. We remark a progression when going from
poly(dGdC).poly(dGdC) to poly(dAdT).poly(dAdT) and poly(dA).poly(dT).
Not only the decays of the duplexes become slower, but also their relation with
the behavior of non-interacting chromophores is modified: the average lifetime
is successively shorter, equal or longer indicating the presence of different se-
quence dependent deactivation processes.



Energy Flow in DNA Duplexes 135

As mentioned above, emission detected by FU is correlated with excited
states carrying substantial oscillator strength. They correspond to ππ∗ states,
which may be delocalized or localized and have a partial charge transfer char-
acter. The signals in Fig. 7 reveal that the deactivation of ππ∗ is accelerated in
alternating G-C helices. An acceleration of the excited state dynamics within
Watson-Crick G-C pairs was predicted by theoretical calculations who un-
derlined the role of interbase proton transfer [32–34] and was confirmed by
fluorescence measurement carried out for isolated base-pairs dissolved in chlo-
roform [35]. The effect of mixed sequences on the excited state relaxation of
oligomeric duplexes has been investigated recently by FU [36]. In spite of the
growing number of experimental data of fluorescence decays of various DNA
double strands, it is impossible to directly link them to an energy transfer
process among bases.

Contrary to FU, the decays of the duplexes detected by TCSPC contain
also contributions from excited states carrying very weak oscillator strength.
These may be delocalized ππ∗ exciton states located at the bottom of the ex-
citon band, charge transfer states or combination of both. It is worth-noticing
that in the case of poly(dA).poly(dT), a time constant equal to 2.3 ± 0.1 ns
has been determined from the fit of the decays recorded at different wave-
lengths with exponential functions. Its weight increases with the wavelength
with a maximum around 420 nm. These characteristics point towards emission
from a fully developed excimer. Interestingly, its lifetime is much longer than
the excimers detected in (dA)18·(dT)18 (150 ps) by transient absorption [8].

5 Fluorescence anisotropy: a precious witness

As we explained in the previous section, fluorescence decays do not bring any
direct evidence about energy transfer among DNA bases within a helix. In
contrast, fluorescence anisotropy decays can provide this type of information.
Such a possibility is based on the correlation of macroscopic observables to
molecular parameters. On the molecular scale, r is related to the angle θ
formed between the transition dipoles associated to photon absorption and
photon emission:

r = 1/5(3 cos 2θ − 1)

The limiting values of the fluorescence anisotropy are 0.4 and -0.2, corre-
sponding to parallel and perpendicular absorption and emission dipoles, re-
spectively. For a chromophore undergoing internal conversion, the change in
angle between the two vectors can be instantaneous. It may also be caused by
energy transfer or physical motion. On the laboratory scale, the time-resolved
anisotropy decay is determined as:

r(t) =
I(t)|| − I(t)⊥(t)
I(t)|| + 2I(t)⊥(t)
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Fig. 8: Schematic view of the time-evolution of a spatial distribution of a transition
dipole and the corresponding drop in fluorescence anisotropy.

where I(t)|| and I(t)⊥ are the fluorescence decays recorded by using at the
detection side a polarizer respectively parallel or perpendicular to the polar-
ization of the laser beam. In the case of fluid solutions, the anisotropic distri-
bution of the emitting state of a given chromophore is gradually lost due to
the rotational diffusion, which is evidently reflected by a drop in fluorescence
anisotropy as depicted in Fig. 8.

The same effect is produced if, instead of physical rotation of the chro-
mophore, energy transfer takes place among them. A randomization of the
emitting dipoles in a three-dimensional space results to a limiting value of r
equal to zero. If the transport process involves transition dipoles orthogonal
to an axis, the limiting value of r is equal to 0.137. The loss of anisotropy
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Fig. 9: “Fluorescence anisotropy” calculated for each one of the thirty eigenstates
of (dAdT)5.(dAdT)5 with respect the highest eigenstate 〈30〉. This is defined as
ri,30 = 1/5(3cos2θi,30 − 1), where θi,30 is the angle formed between the vectors of
the transitions < 0 >→< k > and < 0 >→< 30 >.

characterizes energy transfer involving either localized or delocalized excited
states.

Fig. 9 shows the “fluorescence anisotropy” calculated for a given ground
state conformation of (dAdT)5.(dAdT)5. We suppose that excitation popu-
lates only the highest eigenstate (〈30〉). If emission arises from any of the lower
eigenstates, r is expected to be drastically lower.

From an experimental point of view, if we want to establish whether a
loss of anisotropy is due to rotational diffusion or to energy transfer, we must
probe very short times when molecular motions are inhibited. This is precisely
what we did by observing fluorescence anisotropy on the sub-picosecond time-
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Fig. 10: Fluorescence anisotropy decays obtained for poly(dGdC).poly(dGdC)
(green), poly(dAdT).poly(dAdT) (blue) and poly(dA).poly(dT) (red) in phosphate
buffer. Black signals correspond to an equimolar mixture of nucleotides (left: dGMP
and dCMP; center and right: dAMP and TMP). Excitation wavelength: 267 nm.
Emission wavelength: 330 nm.

scale. Again it was important to compare the behavior of the helices with that
of non-interacting chromophores. The r values of an equimolar mixture of nu-
cleotides depend on the r values and the lifetimes of the purine and the pyrim-
idine composing each Watson-Crick pair. It is higher for the dAMP/TMP
mixture compared to the dGMP/dCMP one (Fig. 10). The anisotropy of all
three polymeric duplexes, the fluorescence anisotropy is clearly lower than
that of non-interacting chromophores and it decays more rapidly. Knowing
that rotational diffusion is much slower for double helices than for free nu-
cleotides, the anisotropy decays clearly show that energy transfer takes place
within the helices on the sub-picosecond time-domain. The anisotropy values
detected for the helices are lower than that of the nucleotide mixture already
at zero-time. This means that the onset of energy transfer occurs at times
shorter than the 100 fs, time-resolution of our setup. Such an ultrafast energy
transfer cannot take place via Förster transfer considering, in particular, the
very large Stokes shift associated with the monomeric chromophores [3].

6 Just a qualitative picture...

The ensemble of the experimental results briefly reviewed here, e.g. steady-
state absorption and fluorescence spectra, fluorescence decays, fluorescence
anisotropy decays and time-resolved fluorescence spectra, allow us to draw
a qualitative picture regarding the excited state relaxation in the examined
polymeric duplexes. Our interpretation is guided by the theoretical calculation
of the Franck-Condon excited states of shorter oligomers with the same base
sequence.
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Fig. 11: Illustration of the excited state relaxation derived from experimental re-
sults obtained for poly(dA).poly(dT) by steady-state absorption and fluorescence
spectroscopy, fluorescence upconversion and based on the modeling of the Franck-
Condon excited states of (dA)10(dT)10. In red (full line): experimental absorption
spectrum; yellow circles arranged at thirty steps represent the eigenstates, each circle
being associated with a different helix conformation and chromophore vibrations.

The laser beam at 267 nm populates a large number of excited states, each
one connected with a particular conformation of the helix and vibrations of
the involved chromophores (simulated by the spectral width). Most of these
states are delocalized over a few bases. Then, intraband scattering takes place
and emission arises from excited states located at the bottom of the exciton
band; these low-lying states have, in general, different polarization from the
initially populated states and lead to a loss of anisotropy. Intraband scatter-
ing is obviously faster than 100 fs because, at that time, the anisotropy of the
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helices is lower than that found for an equimolar mixture of nucleotides. In
the case of poly(dA).poly(dT), this is also attested by the fact that the shape
and quantum yield of the steady-state state fluorescence spectra do not vary
with the excitation wavelength, proving that emission arises always from the
same distribution of excited states no matters of the initially excited popula-
tion. Moreover, the various emitting states have different lifetimes, explaining
the wavelength dependence of the fluorescence properties. On the picosecond
and nanosecond time-scales, conformational motions interfere with the purely
electronic processes. These may result to localization of exciton states and for-
mation of fully developed excimers and/or assist further energy transfer. The
complexity of the fluorescence lifetimes reflects all these intricate processes.

The picture of energy flow drawn here is just qualitative. The development
of theoretical models which started to appear [38, 39] is blatantly needed in
order to get a detailed description of energy flow in DNA.
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Abstract. Combining two-color infared pump-probe spectroscopy and anharmonic
force field calculations we characterize the anharmonic coupling patterns between
fingerprint modes and the hydrogen-bonded symmetric νNH2 stretching vibration
in adenine-thymine dA20-dT20 DNA oligomers. Specifically, it is shown that the
anharmonic coupling between the δNH2 bending and the νC4=O4 stretching vibration,
both absorbing around 1665 cm−1 , can be used to assign the νNH2 fundamental
transition at 3215 cm−1 despite the broad background absorption of water.

1 Introduction

Vibrational energy redistribution and relaxation in complex systems depends
on the network of anharmonically coupled vibrational states subject to fluc-
tuations due to the interaction with some environment [1]. Focussing on
hydrogen-bonded systems there is considerable evidence that the time scales
for relaxation can be in the subpicosecond range pointing to a rather strong
interaction, e.g., of the excited stretching vibration with other hydrogen bond
(HB) related modes such as the bending and the low-frequency HB distance
vibration as well as with the solvent [2–6].

One of the most prominent hydrogen-bonded systems is DNA. Despite
numerous experimental and theoretical investigations on vibrational spectra of
nucleic acid bases [7–13], information on inter- and intramolecular interactions
in base pairs and DNA oligomers is still limited [14–25]. A recent example
is the work on single adenine-uracil (AU) base pairs in the Watson-Crick
geometry in solution, which showed an enhancement of vibrational energy
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relaxation of the NH stretching vibration by a factor of three as compared to
the isolated uracil base [21].

DNA oligomers adopt different types of conformations, both in gas and
condensed phases, such as the A, B, B’, C, D, and Z form, depending on water
and salt concentration, type of cations, pH, and base sequences [8,12,25–29].
In the condensed phase the conformations of DNA oligomers are stabilized by
water molecules that form water networks, predominantly in the major and
minor grooves, and near the phosphate groups of the backbone [12]. Among
the different types of base sequences, adenine-thymine (AT) oligomers are
special because they do not undergo transitions from the B to the A form
upon reducing the water content. Instead, AT oligomers adopt the B’ form
at low water concentrations, with 4 to 6 water molecules per base pair that
may be hydrogen-bonded to the oligomer [12,30–32]. In the B’ form of the AT
DNA oligomer two HBs are formed in the Watson-Crick configuration, i.e.,
between oxygen (O4) of the thymine and the NH2 group of the adenine (N6),
and between the NH group of the thymine (N3T) and the nitrogen atom of
the adenine (N1), see Fig. 1.

Vibrational modes expected to be strongly influenced by the hydrogen-
bonding in the DNA helix are the carbonyl stretches νC2=O2 at 1716 cm−1

and νC4=O4 at 1665 cm−1 and the amine bending δNH2 at 1665 cm−1 [7–9,14,
34–38]. Note, that in contrast to H2O, in D2O the δND2 vibration of adenine
and the carbonyl vibrations of thymine are decoupled, due to the frequency
shift from δNH2 to δND2 [22, 23]. The δH2O vibration of water molecules in
DNA samples typically absorbs in the same spectral region, i.e., around 1650
cm−1 [7, 35, 39]. A direct experimental assignment of νNH2 and νNH in AT
DNA oligomers in the condensed phase is very difficult. Typically, symmetric
and antisymmetric νNH2 stretching vibrations absorb around 3300 cm−1 [7].
However, the spectral range from 3050 to 3600 cm−1 is dominated by the
strong absorption of the water OH stretching vibration. Reducing the water
content of the DNA oligomers does not solve this problem, because at ex-
tremely low water contents the DNA oligomers do not adopt a well defined
structure.

Ultrafast time-resolved infrared (IR) spectroscopy is ideally suited to ad-
dress this issue as has been shown in studies of inter- and intramolecular
couplings and energy relaxation dynamics in various hydrogen-bonded sys-
tems [2–4,40,41]. In this contribution we focus on shifts in oligomer vibrational
modes induced by excitation of the νC2=O2 or the νC4=O4 / δNH2 oligomer
fingerprint vibration. These shifts originate from inter- and intramolecular
couplings among different vibrational modes of the DNA oligomer and de-
pend on the strength of the couplings as well as the energy mismatch between
different transitions. Related effects are particularly pronounced if overtones
or combination modes match a fundamental vibrational transition (resonance
enhancement). This already affects the linear absorption band shape, but also
the vibrational relaxation dynamics [5]. A particular strength of the ultra-
fast IR pump-probe spectroscopy is the capability of uncovering vibrational
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Fig. 1: (a) Scheme of the AT DNA Watson-Crick configuration. (b) Structure of a
single AT DNA base pair in the Watson-Crick configuration of a dodecamer (taken
from 428d.pdb [33]). The oxygen atoms of water molecules forming HBs to the nu-
cleic acids are presented as spheres. Distances of the oxygen atoms of water molecules
in the major groove a, b, and c to the O4, N6, and N7 atoms are 2.93 Å, 2.93 Å, and
2.80 Å, respectively. Water molecules d, e, and f of the minor groove have distances
of 2.88 Å, 4.16 Å, and 2.61 Å to the O2 and N3 atoms, respectively. Intrastrand
distances of the O2, O4, and N6 atoms to neighbooring thymine and adenine bases
are 4.12 Å, 3.53 Å, and 3.34 Å, respectively.

spectral features not visible in linear spectroscopy due to excessive solvent
absorption. This is demonstrated in the experiments presented here, where
we excite oligomer vibrations between 1600 and 1760 cm−1 and probe for the
oligomer νNH2 vibration in the region of 3050 - 3250 cm−1, which is dominated
by water absorption.

The experimental assignment of the adenine νNH2 vibration and the cou-
pling pattern across the HBs is supported by quantum chemical calculations
of anharmonic couplings which are used for obtaining fundamental transi-
tion frequencies for a set of relevant modes of a microsolvated gas phase AT
model. In principle accurate theoretical modelling of the vibrational dynam-
ics of DNA AT base pairs requires taking into account several effects: (i) The
intermolecular double HB between adenine and thymine, (ii) The interaction
between different base pairs along the DNA strand, (iii) The charges as well
as the dynamics of the backbone, and (iv) The influence of water molecules
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which may, for instance, make a HB to the base pair. Here, we are aiming to
obtain a semiquantitative understanding of the transient band shifts, whereby
it is assumed that they are dominated by effect (i), that is, the anharmonic
coupling pattern due to the intermolecular HB. The effect of (ii)-(iv) can be
of static nature, e.g., changes in the anharmonic frequencies and coupling
constants, and also of dynamic nature, e.g., fluctuation of the energy levels.
However, here we will only focus on the static influence of a well-defined en-
vironment determined by microsolvation of the AT base pair by several water
molecules.

Isolated and microsolvated base pairs have been extensively studied the-
oretically, focussing in particular on the stability of different isomers, see,
e.g. the work by Hobza and coworkers [42–44] as well as by Fonseca-Guerra
et al. [45]. Although there is a number of reports on potential energy sur-
faces of base pairs in harmonic approximation, there appear to be only a few
calculations addressing anharmonicity in the context of, e.g., proton trans-
fer [10, 46, 47], the coupling to the intermolecular HB vibration [15] or the
assignment of different gas phase isomers [48]. Most notable in this respect is
the recent study of the anharmonic spectrum of a guanine-cytosine pair [49] as
well as the development of a vibrational exciton model to describe nonlinear
IR spectra involving DNA fingerprint modes [20,22–25,50].

This Chapter is organized as follows. In the next Section we will first dis-
cuss the effect of solvating water molecules on the anharmonic IR spectra
of an isolated AT pair. In this context we will scrutinize the applicability of
a dual level approach which combines different quantum chemistry methods
within a correlation expansion of the potential energy surface (PES). For the
case of two water molecules we will present an analysis of the anharmonic
coupling patterns between the νC2=O2 , νC4=O4 and δNH2 vibrations and the
symmetric νNH2 mode in Section 2.2. Section 3 gives details on the experi-
mental setup and presents results of two-color pump-probe spectra. Finally,
we give a comparison between theory and experiment in Section 4 which leads
us to the assignment of the νNH2 fundamental transition.

2 Microsolvated AT Base Pairs

2.1 Fundamental Transitions Using a Dual Level Approach

In the following we present results on fundamental vibrational transitions of
isolated AT base pairs microsolvated with 1-4 water molecules. The aim of
this study is twofold: First to find out about overall changes of IR transitions
of base pair modes due to the interaction with water molecules. And, second,
to test the performance of a dual level approach combining density functional
(DFT) and semiempirical PM3 data to expand the PES. Throughout we will
assume that the deviations from equilibrium structures are small enough such
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as to allow the use of normal mode coordinates Q for spanning the PES, i.e.
V = V (Q).

Under the conditions of the experiment there are 4 to 6 water molecules
per AT pair which can form different HBs to the base pair (see also Fig. 1).
Our interest will be in the IR transitions of the NH2 and C4=O4 groups such
that water situated in the major groove shall be of importance. However,
for comparison we also consider a structure where a water molecule is on
the C2=O2 side. There are several microsolvation studies which focussed on
the effect of water on base pair properties such as interaction energies or HB
lengths [43–45,51]. To our knowledge there is, however, no theoretical account
on anharmonic IR spectra of HB related modes. The four structures which
will be discussed in the following are shown in Figs. 2 and 3. They have been
obtained by geometry optimization at the DFT/B3LYP level of theory with
a 6-31++G(d,p) basis set using Gaussian 03 [52]. Notice that these are not
necessarily the most stable structures at this level of theory (see also discussion
in Ref. [44]). Our choice has been biased by the requirement that the water
molecules should be close or even hydrogen-bonded to the considered target
modes. The latter are shown in terms of their normal mode displacement
vectors in Figs. 2 and 3 as well. The respective harmonic frequencies are
compiled in Table 1.

In AT-H2O, Fig. 2 (left column), the water molecule is hydrogen-bonded
between the adenine N6-H and the N7 sites. This causes the νNH2 vibration to
acquire some water stretching character lowering its harmonic frequency. The
δNH2 vibration is only slightly mixed with some water motion and essentially
constrained so that its frequency is blue-shifted. The next water molecule in
AT-(H2O)2, Fig. 2 (right column), makes a HB to the oxygen of C4=O4 lower-
ing the νC4=O4 frequency slightly, but at the same time mixing this vibration
with δNH2 type motions. For the case of three water molecules, Fig. 3 (left
column), there is the possibility to form a hydrogen bonded water chain con-
necting the O4, N6-H, and N7 sites. This reduces the mixing of the νNH2 and
water motions, but the δNH2 vibration contains a water bending now as does
the νC4=O4 mode. Adding another water at the C2=O2 site leads as expected
to a shift of the νC2=O2 transition only, Fig. 3 (right column). Overall we no-
tice that the presence of solvating water molecules has the strongest impact
on the δNH2 and νC4=O4 vibrations, with the latter acquiring substantial δNH2

character.
So far we have only discussed harmonic frequencies. The effect of anhar-

monicity can be treated using either a Taylor expansion of the PES in terms
of normal mode coordinates or by explicitly spanning the PES on a numer-
ical grid. The discussion of anharmonic force constants is postponed to the
following section. Here, we will focus on an explicit PES generated by means
of the following correlation expansion, here written up to three-mode correla-
tions, [53]
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Table 1: Harmonic frequencies (in cm−1 ) for the target modes of the different model
structures as obtained using DFT/B3LYP with a 6-31++G(d,p) basis set. The dis-
placement vectors for the solvated structures are shown in Figs. 2 and 3.

modes AT AT-H2O AT-(H2O)2 AT-(H2O)3 AT-(H2O)4
νNH2 3410 3393 3401 3415 3410
νC2=O2 1797 1794 1799 1799 1776
δNH2 1689 1718 1720 1727 1727
νC4=O4 1728 1731 1714 1720 1720

Table 2: Anharmonic frequencies (in cm−1 ) for the target modes of the different
model structures as obtained using Eq. (1) with the one mode potential generated
by the DFT/B3LYP method with a 6-31++G(d,p) basis set and the two- and three-
mode PES obtained by the PM3 approach.

mode AT-H2O AT-(H2O)2 AT-(H2O)3 AT-(H2O)4
νNH2 3326 3332 3307 3310
νC2=O2 1803 1813 1797 1785
δNH2 1732 1760 1777 1753
νC4=O4 1701 1664 1635 1643

V (Q) =
∑
i

V (1)(Qi) +
∑
i<j

V (2)(Qi, Qj) +
∑
i<j<k

V (3)(Qi, Qj , Qk) . (1)

Neglecting rotation [54], i.e. assuming that the kinetic energy operator is
diagonal, the eigenstates of the respective Hamiltonian can be obtained by
straightforward diagonalization using, e.g., the Lanczos method. For systems
of the size of solvated base pairs the calculation of higher order correlation
terms becomes rather expensive. Here, an interesting alternative are so-called
dual level schemes where low-order correlation PES are calculated at a higher
level of quantum chemistry than multi-mode correlation PES. For instance,
Scheurer and coworker have combined MP2 and PM3 calculations to find a
rather good description of IR spectra of a model peptide [55].

In Table 2 we present results of dual level calculations on 4D models in-
cluding the target modes of Figs. 2 and 3. Here the one-mode potentials,
V (1)(Qi), have been calculated using the DFT method, while two- and three
mode PES were generated using the semiempirical PM3 approach. Compar-
ing these anharmonic results with the harmonic values in Table 1 we notice the
following: The νNH2 vibration is strongly affected and red-shifts by about 70-
100 cm−1 depending on the cluster size. The νC2=O2 vibration is only slightly
affected. Essentially, these two modes behave as expected. Except for the
AT-H2O case the δNH2 vibration is blue-shifted by about 40 cm−1 . The fun-
damental transition of the νC4=O4 mode, on the other hand, is considerably
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Fig. 2: Normal mode displacement vectors for the target modes as calculated in
harmonic approximation of the AT-(H2O)n=1,2 PES using DFT/B3LYP with a 6-
31++G(d,p) basis set.

red-shifted by about 30-80 cm−1 . In terms of the experimental assignment
given in Table 6 below the νC4=O4 agrees fairly well with experiment which
puts this transition at 1665 cm−1 [7, 8, 14]. However, the δNH2 vibration is
believed to absorb around 1665 cm−1 as well, which is at variance with the
prediction of the dual level scheme. Moreover, in the harmonic case, but also
in the fourth order anharmonic force field calculations reported below, the
frequencies of νC4=O4 and δNH2 are almost identical. It would be surprising if
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Fig. 3: Normal mode displacement vectors for the target modes as calculated in
harmonic approximation of the AT-(H2O)n=3,4 PES using DFT/B3LYP with a 6-
31++G(d,p) basis set.

the higher order anharmonic terms implicitly included in the PES expansion
changes this situation to such an extent.

Since multimode calculations are rather expensive we have chosen to scru-
tinize the effect of the PM3 approximation by comparing different 2D models
of AT-(H2O)2 at the full DFT, PM3, and dual level. The results are com-
piled in Table 3. The correlation between the νNH2 and δNH2 modes is rather
well-desribed by the dual level scheme, the error being just a few cm−1 . The
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Table 3: Comparison of anharmonic frequencies (in cm−1 ) for the target modes
of the AT-(H2O)2 model structures of different two-dimensional calculations and
different levels of quantum chemistry (DFT: full DFT/B3LYP, 6-31++G(d,p); PM3:
full PM3; DUAL: DFT one-mode and PM3 two-mode PES).

2D model mode DFT PM3 DUAL

νNH2 ,δNH2 νNH2 3311 3154 3321
δNH2 1727 1950 1730

νC2=O2 , δNH2 νC2=O2 1796 1901 1796
δNH2 1742 1703 1742

νC4=O4 ,δNH2 νC4=O4 1715 1807 1680
δNH2 1744 1671 1777

same holds true for the correlation between the νC2=O2 and δNH2 modes. How-
ever, the hybrid scheme is performing poorly for the correlation between the
νC4=O4 and δNH2 modes and gives the frequency shifts of opposite sign also
observed for the full 4D calculation in Table 2. The failure of the dual level
scheme to describe the coupling of the νC4=O4 stretching and δNH2 bending
motion can be understood in terms of their considerable mixing as quantified
by a normal mode internal coordinate decomposition. In general, an internal
coordinate may contribute to the displacement along several normal modes.
Analyzing the present situation using the scheme of Boatz and Gordon [56]
the internal coordinate describing the NH2 angle contributes to the decompo-
sition of the δNH2 bending normal mode by only 29 %, while its contribution
to the νC4=O4 stretching normal mode (see also Fig. 2 ) and several purine
ring deformations normal modes ranges between 15 and 17%. On the other
hand, the internal NH2 angle does not contribute to the decomposition of the
νC2=O2 and νNH2 normal modes which are 92% stretching of the C2=O2 bond
and 82% and 17% stretchings of the N-H bonds, respectively.

2.2 Anharmonic Coupling Patterns

In this section we explore the second possibility to generate multidimensional
PES, i.e. a Taylor expansion in terms of normal mode coordinate with respect
to the geometry of the stable structure. Including terms up to fourth order
we have (using dimensionless coordinates)

V (Q) =
1
2!

∑
i

�ωiQ
2
i +

1
3!

∑
ijk

K
(3)
ijkQiQjQk +

1
4!

∑
ijkl

K
(4)
ijklQiQjQkQl . (2)

Third and fourth order anharmonic coupling constants are calculated using a
combination of analytical second derivatives and finite differences [57]. Specif-
ically, we have used the symmetric expressions [58]
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Table 4: Harmonic and diagonal anharmonic force constants (in cm−1 ) of the rele-
vant system modes for AT-(H2O)2.

νNH2 νC2=O2 δNH2 νC4=O4

ω 3401 1799 1713 1720

K(3)/3! -261 61 -19 -31

K(4)/4! 24 5 4 2

Table 5: Third order coupling constants between the νNH2 mode and relevant fin-
gerprint modes (in cm−1 ) in AT-(H2O)2. The numbers in parentheses refer to the
isolated AT case.

νC2=O2 δNH2 νC4=O4

νC2=O2 -1 (-2) 5 (8) 0 (-2)
δNH2 96 (87) -66 (-17)
νC4=O4 11 (2)

K
(3)
ijk =

−K
(+2)
ij + 8K(+)

ij − 8K(−)
ij +K

(−2)
ij

12ΔQk
, (3)

K
(4)
ijkl =

K
(++)
ij +K

(+−)
ij −K

(−+)
ij +K

(+−)
ij

4ΔQkΔQl
. (4)

Here, K±
ij is the Hessian calculated at displaced geometries where for the

displacement we used ΔQ = 0.03 for the cubic and ΔQ = 0.04 for the quartic
force field. Note that for the construction of the Hamiltonian we have neglected
contributions which are off-resonant by more than ∼1000 cm−1 .

In the following we will focus on the case of two water molecules only,
i.e. AT-(H2O)2, since this already contains the essential effect of hydrogen-
bonding waters as discussed in the previous section. The diagonal force con-
stants for the four target modes of Fig. 2 (right panel) are given in Table
4. Important third order anharmonic coupling constants involving the νNH2

mode are compiled in Table 5. As expected the diagonal anharmonic force
constants are largest for the νNH2 mode. More interesting, however, is the cou-
pling pattern between this mode and the fingerprint modes. Here, we observe
two dominating Fermi-type resonance couplings: (i) to the bending overtone
2δNH2 which is by far the strongest coupling, (ii) to the combination tone be-
tween the δNH2 and the νC4=O4 modes. In Table 5 we also give the couplings
for the isolated AT case. Notice that here only the 2δNH2 overtone is strongly
coupled. In other words, the presence of water establishes a new coupling
channel. And, going back to Fig. 2 it requires a water molecule at the C4=O4
site which mixes the δNH2 and the νC4=O4 modes.
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Table 6: Anharmonic frequencies (in cm−1 ) for the target modes of the AT-(H2O)2
model calculated using the anharmonic expansion, Eq. (2) and the DFT/B3LYP
method with a 6-31++G(d,p) basis set. The 4D model is compared with a 6D
model which includes in addition the most strongly coupled water stretching and
bending modes at the N6-H site whose anharmonic frequencies are 3752 cm−1 and
1588 cm−1 , respectively. Also given are results for a 4D model which does not
include water molecules [59]. The experimental assignment is shown as well (νNH2

from Ref. [59], the other modes from Refs. [7–9,14,34–38]).

mode 4D (AT) 4D 6D exp.

νNH2 3330 3297 3280 3215
νC2=O2 1758 1796 1792 1716
δNH2 1719 1718 1708 1665
νC4=O4 1645 1709 1702 1665

The fundamental transition frequencies obtained from this 4D anharmonic
force field are given in Table 6 which besides the experimental values con-
tains frequencies calculated for a 6D model which additionally includes most
strongly coupled water stretching and bending modes at the N6-H site [59].
Inspecting 4D and 6D cases we notice that the effect of explicit inclusion
of water modes is only modest especially in comparison to the isolated case
(4D(AT), see also Table 1). Given the simplicity of the model, the agreement
between theory and experiment is rather reasonable with deviations being
about 2% except for the νC2=O2 mode whose frequency is about 4% above the
experimental value. Perhaps this is not very surprising as the C2=O2 mode is
close to the thymine N1 site where in DNA the base is linked to the backbone.

3 Experimental Section

3.1 Methods

AT DNA double strand oligomers with sodium counterions and a length of
20 base pairs were obtained from Biotherm, and were dissolved in water and
dried on a CaF2 window at 293 K in an atmosphere of 52% relative humid-
ity (saturated solution of NaHSO4.H2O at 20◦ Celsius [60]). This results in
DNA samples with approximately 4 to 6 water molecules per base pair [37]
(sample thickness ∼ 6.5 μm). It has been reported that under these condi-
tions AT DNA oligomers adopt the B’-form [35]. Femtosecond time-resolved
IR pump-probe experiments were performed with two independently tunable
femtosecond pulses generated by parametric conversion processes pumped by
a regenerative Ti:sapphire laser system (800 nm, repetition rate 1 kHz, pulse
duration 100 fs) [61]. The central frequency of the pump pulse was varied
from 1630 to 1760 cm−1 and the probe was centred around 1650 cm−1 or 3200
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cm−1 . The cross correlation between pump and probe pulses had a temporal
width of 130 fs (FWHM). With the used pump pulse energy of 1 μJ approx-
imately 2% of the AT base pairs in the sample volume were excited. After
interaction with the sample, the probe pulses were spectrally dispersed and
detected with a HgCdTe detector array (resolution 5 cm−1 ).

3.2 Experimental Results

The absorption between 3050 and 3600 cm−1 (see Fig. 4a and 5, solid line) is
dominated by more than 85% by the broad OH stretching absorption of water
molecules. Therefore, it is not possible to directly determine the νNH2 stretch
absorption frequency of the DNA oligomer from this absorption spectrum. In
the fingerprint region, the absorption of νC2=O2 is located at 1716 cm−1 and
the combined absorption of δNH2 and νC4=O4 peaks at 1665 cm−1 (see Fig. 4a,
solid line) [7,8,14,31,38,48]. Both the νC4=O4 and the δNH2 vibration absorb at
1665 cm−1 and therefore cannot be excited separately in our experiment. Fig-
ure 5 shows results of femtosecond pump-probe experiments with excitation
in the fingerprint region and probing between 3050 and 3600 cm−1 . Excita-
tion with a broad pump pulse at 1740 cm−1 (FWHM 170 cm−1 ) leads to an
instantaneous spectrally narrow response around 3200 cm−1 . Furthermore, a
spectrally broad response over the entire range of 3050 cm−1 to 3600 cm−1 is
seen to increase on a picosecond time scale (see Fig. 5). At 1740 cm−1 the
pump pulse mainly excites the νC2=O2 stretching vibration. Given the photon
energy and pulse intensity, two-photon excitation of vibrations around 3300
cm−1 is unlikely by the pump pulse. As a consequence, both the instantaneous
and the increasing broad negative signal must result from exciting vibrations
in the fingerprint region. The broad negative signal, which becomes positive
above 3530 cm−1 , is known to correspond to the OH stretching vibration of
hot bulk water. Excess energy in low frequency vibrations of water (e.g. libra-
tions) weakens the HB strength, resulting in an increase of the OH stretching
force constant, and therefore in a higher OH stretching frequency [2, 62, 63].
The instantaneous narrow response around 3200 cm−1 , after excitation at
1740 cm−1 , decreases in time and should therefore correspond to a different
process.

Figure 6 shows absorbance changes in the range between 3050 and 3250
cm−1 , upon excitation at 1630 cm−1 (FWHM 160 cm−1 ), before and after
subtraction of the spectrally broad 13 ps component of the hot water forma-
tion, obtained from a global fit. At 1630 cm−1 the pump pulse mainly excites
the δNH2 and νC4=O4 vibrations. An instantaneous bleach signal is observed
with a maximum at 3215 cm−1 and a width of 50 cm−1 , which decays on a
subpicosecond time scale. The perturbed free induction decay of this band
gives a total dephasing time T2 of 0.5 ± 0.1 ps, which corresponds to a ho-
mogeneous line width of 21 ± 5 cm−1 . This indicates that the origin of the
observed 50 cm−1 width of the bleaching band is not caused by a single ho-
mogenously broadened absorption line. The maximum of the instantaneous
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Fig. 4: (a) Absorption spectra of AT DNA oligomers prepared in 52% relative hu-
midity (black solid line), neat water (dashed line), and AT DNA oligomers dried for
two days in a N2 atmosphere (gray solid line). (b) Scheme describing the two color
IR pump-probe detection of the νNH2 stretching vibration in AT base pairs. Because
of the anharmonic coupling between the νC4=O4 , δNH2 , and νNH2 vibrations, the
νNH2 =0→ 1 transition is bleached upon excitation of the νC4=O4 and δNH2 modes.
Population of the excited state levels will locally heat the molecule, inducing a shift
of the hot ground-state νNH2 transition.

response at 3215 cm−1 decays with a 0.6 ± 0.2 ps time constant. Around 3130
cm−1 a positive signature seems to be present for early delay times evolving
into a negative band with a rise time of about 0.4 ps, that decays with a time
constant of 1.4 ± 0.4 ps. The time constants characterizing the kinetics for
various pump-probe wavelength combinations are summarized in Table 7.

In order to identify the origin of the instantaneous bleaching signal at 3215
cm−1 we compared transients at 3215 cm−1 after excitation at 1630 cm−1 and
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Fig. 5: Absorption spectrum of AT DNA oligomers around 3300 cm−1 (solid line) and
absorbance difference spectra for several pump-probe delay times after excitation at
1740 cm−1 (FWHM 170 cm−1 ). The picosecond OH stretching response of water
ranges from 3600 to 3050 cm−1 . The spectrum at 0 ps delay time was obtained by
averaging from -200 to 200 fs to eliminate nonabsorbing signal contributions.

1730 cm−1 , respectively, in Fig. 7. Excitation at 1730 cm−1 results in a ≈
7 times weaker and barely visible instantaneous negative signal around 3215
cm−1 . In contrast, excitation around 1630 cm−1 result in a pronounced in-
stantaneous signal around 3215 cm−1 . Comparing the two transients at 3215
cm−1 , we observe that, excitation at 1630 cm−1 leads to a three-exponential
decay of the bleach with 0.6 ps, 3 ps, and 13 ps. A transient with similar time
constants (0.9 ps, 4 ps, and 13 ps), but very different amplitudes is observed
after pumping at 1730 cm−1 , where mainly the νC2=O2 stretching vibration is
excited. Thus, excitation in the spectral range of the νC4=O4 / δNH2 vibrations
results in significant instantaneous signals around 3215 cm−1 .

Experiments where both the pumping and probing takes place in the fin-
gerprint region are presented in Fig. 8. In Fig. 8a the AT DNA oligomer
sample was excited at 1760 cm−1 and probed between 1605 and 1740 cm−1 .

Table 7: Time constants of transients. r: rising signals; d: decaying signals.

mode pump (cm−1 ) (FWHM) probe (cm−1 ) time constants (ps)

νNH2 1630 (160) 3215 (d) 0.6 ± 0.2 // (d) 3.0 ± 1.5 // (r) 13 ± 2
νH2O

a 1630 (160) 3130 (r) 0.4 ± 0.2 // (d) 1.4 ± 0.4 // (r) 13 ± 2
νNH2 1730 (90) 3215 (d) 0.9 ± 0.4 // (r) 4.0 ± 1.5 // (r) 13
νC2=O2 1760 (100) 1725 (d) 0.9 ± 0.1
νC2=O2 1760 (100) 1685 (d) 0.7 ± 0.1
νC2=O2 1630 (130) 1720 (d) 2.4 ± 0.2
νC4=O4 / δNH2 1630 (130) 1665 (d) 0.4 ± 0.1 // (d) 1.4 ± 0.4
δH2O 1630 (130) 1650 (d) 0.2 ± 0.1 // (d) 1.0 ± 0.2
δH2O 1630 (130) 1640 (r) 0.6 ± 0.1
νC4=O4 / δNH2 1630 (130) 1625 (d) 0.5 ± 0.1

a Suggested assignment (see text)
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Fig. 6: (a) Contour plot of the absorbance change as a function of delay time on a
log scale after excitation at 1630 cm−1 (FWHM 160 cm−1 ). On the picosecond time
scale the water response is visible. (b) Contour plot of the absorbance change after
subtraction of the monoexponential 13 ps rise time of the hot water response. The
negative peak around 3215 cm−1 is clearly visible for early delay times.

The pump-probe spectrum shows a negative band at 1725 cm−1 and a positive
band at 1685 cm−1 . The band at 1725 cm−1 decays mono-exponentially with
0.9 ± 0.1 ps, while the band at 1685 cm−1 decays with 0.7 ± 0.1 ps. Transients
at these frequency positions are presented together with their simulations in
Fig. 9. The positive signal can be assigned to the νC2=O2 = 1 → 2 transition.
A similar lifetime was obtained by Zanni et al. for measurements on GC DNA
oligomers with excitation in the same frequency region [20]. The difference
between the 0.7 ps excited state lifetime and the 0.9 ps ground state recovery
time signals is that the νC2=O2 energy is first converted into excitation of lower
frequency modes. As a consequence of this, the ground state absorption fre-
quency is shifted due to anharmonic coupling to these lower frequency modes,
and will not recover before these modes loose their excitation energy.

Results for excitation of the AT DNA oligomer at 1630 cm−1 , presented
in Fig. 8b, show bleaching signals at the ground state absorption positions
of the νC2=O2 vibration (1716 cm−1 ), the νC4=O4 and δNH2 vibrations (both
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Fig. 7: (a) Contour plot of the absorbance change as a function of delay time af-
ter excitation at 1630 cm−1 (FWHM 160 cm−1 ) from 3140 to 3250 cm−1 . The
instantaneous negative signal at 3215 cm−1 as well as the dynamics of the hot water
vibrations on a picosecond time scale is clearly visible. (b) Contour plot of the ab-
sorbance change after excitation at 1730 cm−1 (FWHM 90 cm−1 ). The signals are
much weaker. The picosecond dynamics of hot water vibrations is clearly visible,
but the instantaneous response around 3215 cm−1 is negligible.

1665 cm−1 ), and the water δH2O vibration (1650 cm−1 ) [7, 22, 31, 63]. The
νC2=O2 bleach recovers exponentially with 2.4 ± 0.2 ps on a significantly
longer time scale than after direct νC2=O2 excitation. This shows that there
are at least two different energy relaxation pathways in DNA involving the
νC2=O2 vibration. For the νC4=O4 / δNH2 vibrations biexponential recoveries
were observed with 0.4 ± 0.1 ps and 1.4 ± 0.4 ps, and for the water δH2O

with 0.2 ± 0.1 ps and 1.0 ± 0.2 ps. For the bending vibration δH2O of wa-
ter molecules in bulk water a lifetime of 170 ± 30 fs [63] has been reported,
which agrees with the fast component observed here for δH2O . Instantaneous
increased absorption signals below 1640 cm−1 , decay with a time constant of
0.5 ± 0.1 ps, matching the fast component of the νC4=O4 / δNH2 bleach re-
covery. In addition, a positive band appears around 1640 cm−1 , rising in 0.6
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Fig. 8: (a) Contour plot of the absorbance change as a function of delay time after
excitation at 1760 cm−1 (FWHM 100 cm−1 ). (b) Contour plot in the same frequency
range (1605 to 1740 cm−1 ) after excitation at 1630 cm−1 (FWHM 160 cm−1 ).

± 0.1 ps. Signals at this spectral position have been assigned to the bending
vibration of hot water molecules [63].

The dynamics of experiments with different pump frequencies in the
fingerprint region, are compared to confirm that the bleach band at 3215
cm−1 originates from the νNH2 stretching vibration of adenine and not from
water. First, we point out, that even the fastest recovery time of the bleach
signal at 3215 cm−1 after excitation in the fingerprint region (where the wa-
ter δH2O also absorbs), is three times slower than the reported lifetime of
the water δH2O vibration [63]. Second, the width of the bleaching band at
3215 cm−1 of 50 cm−1 is considerably narrower than the 200 cm−1 estimate
for the δH2O overtone band of bulk water [64]. Having assigned the 3215
cm−1 bleaching signal to the AT DNA oligomer νNH2 vibration, we now com-
pare the dynamics at this frequency for excitation at 1630 cm−1 and 1730
cm−1 , which correspond to the absorption bands of both the νC4=O4 and
δNH2 vibrations, and the νC2=O2 vibration, respectively.

For both excitation frequencies the picosecond dynamics, shown in Fig.
7, can be modelled by the same 13 ps time constant, corresponding to the



160 O. Kühn et al.

Fig. 9: Transients at 1685 cm−1 (circles) and 1725 cm−1 (squares) after excitation
at 1760 cm−1 (FWHM 100 cm−1 ). Solid lines represent fits with 0.7 ± 0.1 ps and
0.9 ± 0.1 ps time constants for 1685 and 1725 cm−1 , respectively. System response
(dashed lines).

rise of hot water signal due to energy transfer from the DNA oligomer to the
water molecules. However, the initial sub-picosecond dynamics are markedly
different for these two excitation frequencies, further confirming that both
signals can not be due to the overtone excitation of the water δNH2 . Although
the absorption at both frequencies is comparable, the signal strength after
excitation at 1630 cm−1 is in fact seven times stronger than after excitation
at 1730 cm−1 , which indicates that the νC2=O2 vibration couples substantially
weaker to the νNH2 vibration than both the νC4=O4 and the δNH2 vibration.

4 Discussion

A model summarizing the theoretical and experimental results is given in Fig.
4b. The calculated couplings of the νC4=O4 , δNH2 , and νC2=O2 to the νNH2

vibration indicate that excitation of either of these modes should result in a
bleaching signal due to the shifting of the νNH2 = 0→ 1 transition. The bleach
signals in Fig. 7 around 3215 cm−1 agree with this theoretical result. Further-
more, the force constants in Table 5 predict that excitation of the νC4=O4 and
δNH2 vibrations should result in a larger shift of the νNH2 vibration than of the
νC2=O2 vibration. This is confirmed by the data in Fig. 7. Experimentally, one
cannot distinguish between the contributions of the νC4=O4 and δNH2 modes.
From the force constants in Table 5, however, we conclude that excitation
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of the δNH2 vibration is expected to have the most substantial effect on the
shift of the νNH2 vibration. The agreement between theoretical predictions
and IR pump-probe measurements allows us to assign the bleaching signal at
3215 cm−1 at least partially to the symmetric νNH2 vibration of adenine. This
absorption band lies about 100 cm−1 lower in energy than the same mode in
modified adenine-uracil Watson-Crick base pairs in solution [21]. The lower
frequency of the hydrogen-bonded νNH2 vibration in DNA films compared
to single AU base pairs in CDCl3 solution can be rationalized by significant
interactions with neighbouring base pairs and water molecules, that weaken
the force constant. The theoretical results further show, that inclusion of wa-
ter molecules leads to a HB between a water molecule and the NH2 group of
adenine, and therefore a coupling of the adenine νNH2 vibration and of the
water bending vibration. Due to this coupling, this water molecule could act
as a primary energy sink in energy disposal by DNA. Since the amount of
water molecules and the coupling of water molecules to the nucleic acids is
different for the major groove and the minor groove, one would expect differ-
ent energy relaxation pathways with deviating time constants for energy flow
from water to DNA and DNA to water, for both sides. Energy redistribution
processes in DNA itself provide complex relaxation patterns as presented for
the νC2=O2 vibration.

In summary, the presented results demonstrate the capacity of combining
IR-pump-probe methods with calculations on microsolvated base pairs to re-
veal information on hidden vibrational absorption bands. The simulation of
real condensed phase dynamics of HBs, however, requires to take into account
all intra- and intermolecular interactions mentioned in the Introduction. As
far as DNA is concerned, Cho and coworkers have given an impressive account
on the dynamics of the CO fingerprint modes [22–25]. Promising results for a
single AU pair in deuterochloroform [21] have been reported recently using a
QM/MM scheme [65].
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164 O. Kühn et al.

62. H. Nienhuys, S. Woutersen, R. van Santen, H. Bakker, J. Chem. Phys. 111,
1494 (1999)

63. N. Huse, S. Ashihara, E. Nibbering, T. Elsaesser, Chem. Phys. Lett. 404, 389
(2005)

64. Z. Wang, A. Pakoulev, Y. Pang, D. Dlott, J. Phys. Chem. A 108, 9054 (2004)
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Abstract. Intercalation of anti-cancer drugs into DNA is the insertion of the planar
aromatic portion of the drug molecules between a pair of DNA basepairs, inducing
certain local structural changes in the DNA and subsequently stopping its replica-
tion. Despite its importance, a detailed mechanistic understanding of this process
at the molecular level is lacking. Here we recount some of the key aspects of our
recent extensive simulation study addressed to this issue [A. Mukherjee, R. Lavery,
B. Bagchi, and J. T. Hynes, J. Am. Chem. Soc. 130, 9747 (2008)]. In particular,
we discuss the molecular aspects of the intercalation mechanism of a well-known
anticancer drug daunomycin into a twelve basepair DNA with the help of a free
energy landscape of the process constructed using extensive computer simulations
(>0.3 μsec) with umbrella sampling techniques. The results give an intercalation
free energy change (-12.3 kcal/mol) in reasonable agreement with experiment (-9.4
kcal/mol). They also point to a mechanism in which the drug first binds to the
minor groove and then intercalates into the DNA in an activated process, in general
agreement with experimental kinetic results.

1 Introduction

Anthracycline anti-cancer drug intercalation into DNA is a process in which
the planar aromatic portion of the drug molecules inserts between a pair of
DNA basepairs. This insertion subsequently leads to the stopping of DNA
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replication, resulting in cell death [1]. While aspects of the intercalation pro-
cess have been studied over the years and important information has been
gained (as indicated below), the molecular level mechanism of the intercala-
tion is not known. In the present contribution, we recount some of the high-
lights of our recent computational study [2] aimed at providing new insights
on the mechanism of the intercalation of the anthracycline drug daunomycin
into DNA. No attempt is made here at completeness; the interested reader is
referred to the original work [2] for further details and more extensive refer-
ences.

The intercalation process has been the subject of extensive thermodynamic
studies [3,4], providing free energy, entropy and enthalpy differences between
the intercalated and free states of various drug molecules. On the other hand,
dynamic studies are far less common. Some different aspects of the intercalat-
ing molecules have been studied using ultrafast methods [5]. Kinetic studies
of drug intercalation are few in number, and a consensus on the mechanism
has not been reached [6,7]. Thus, Chaires et al. [6] have proposed a three step
model for daunomycin intercalation from the stopped flow association, while
Rizzo et al. [7] have proposed a five step kinetic model.

Due to the complexity involved, theoretical studies related to intercala-
tion [8, 9] are not common and have been restricted to a main focus of cal-
culating the intercalation free energy, i.e., the free energy difference between
intercalated and free states, using a continuum solvent approach [10,11]. These
valuable studies have a number of limitations. They involve a very large cancel-
lation of different contributions to the total free energy. Moreover, the molec-
ular level role of water is missing in continuum solvent-based calculations.
Finally, no information is provided about the mechanism of the intercalation.

Our study [2] addressed the question of the mechanism of DNA intercala-
tion of the drug daunomycin (also known as daunorubicin [12]), widely used
in various cancer treatments [13], by calculating a static free energy landscape
for the process using an extensive set of all-atom simulations and umbrella
sampling techniques [14]. This simulation study is a first effort to understand
the intercalation process per se in atomistic detail and to elucidate its molecu-
lar aspects. It provides [2] an intercalation free energy in reasonable agreement
with the experimental estimates, and points to a two-step mechanistic pro-
cess in which daunomycin first goes, in a process downhill in free energy, to a
minor groove-bound state and then crosses a barrier in an activated process
to go to the intercalated state [2].

The outline of the remainder of this contribution is as follows. We describe
the simulation approach in the next section and then discuss the results in
Sect. 3, including a comparison with available experimental kinetic results.
Finally, some concluding remarks are offered in Sect. 4.
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Fig. 1. Atomistic structure of daunomycin

2 Simulation Details

2.1 Construction of the Intercalated and the Minor Groove-bound
States

The molecular structure of the anticancer drug daunomycin is shown in Fig. 1.
It consists of an anthraquinone ring system (aglycon), the portion which in-
tercalates into the DNA [15], and an amino sugar group (daunosamine), which
stays in the DNA minor groove.

As described in more detail within, our actual calculations for the inter-
calation pathway proceeded in a “reverse” fashion. We calculated free energy
changes as the drug was pulled out from the intercalated state and from a
minor groove-bound state. The construction of these states is now discussed.

The crystal structure of the intercalated state of daunomycin-DNA was
solved by Wang et al. [15] at 1.2 Å resolution and deposited in the protein
data bank (PDB) [16] with PDB id 1D11. The crystal structure has a repeat-
ing unit of four base pairs d(ACGT)2 in which two daunomycin molecules
are intercalated between two separate CG base pairs. Using this crystal struc-
ture, we constructed a bigger, twelve basepair DNA. We kept the geometry
of the three base pairs (ACG) intact and added four base pairs d(CGCG)2
above and five base pairs d(ACGCG)2 below using the DNA structure build-
ing and minimization program JUMNA [17] to construct a twelve basepair
DNA. The complete DNA sequence is d(GCGCACGTGCGC)2. As explained
below, daunomycin was intercalated at the C6-G7 site, with the sugar group
of daunomycin close to the A5 base pair.

Figure 2 shows the initial equilibrated intercalated state. The DNA se-
quence is d(GCGCACGTGCGC)2. The intercalated structure’s geometry is
that of the B-DNA except for the 5th to 7th base pairs (A5 to G7), which
stay close to the crystal structure used for the starting conformation, with a
root mean square deviation of 3.2 Å for all the heavy atoms of those three
basepairs. In this sequence, daunomycin is in contact with the strongest bind-
ing triplet sequence (A/T)CG [18, 19]. Moreover, due to the chosen sequence
of the DNA, the intercalation site is flanked by the same sequence of base-
pairs in either direction, eliminating any related orientational preference of
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Fig. 2. Equilibrated structures of
the intercalated state, plotted using
Chimera. DNA is shown in a sur-
face representation with residue-based
color (yellow for C, green for G, red
for A and blue for T), whereas dauno-
mycin is represented via a ball and
stick model with element-based CPK
color.

the daunosamine sugar group. The four terminal base pairs on each DNA end
were chosen as CG base pairs to increase overall stability [20].

Experimental studies [6,7] of the kinetics of daunomycin intercalation have
indicated an initial bimolecular associated state which has been characterized
as an intermediate “outside bound” state. Since a DNA minor groove-bound
state is such a stable outside bound state and is known to be primary mode of
binding for many other drugs [21], we constructed a minor groove-bound state
of daunomycin and DNA as follows. Since the drug’s binding in a minor groove
does not affect the DNA structure, we constructed the DNA for the minor
groove-bound state (Fig. 3) using the same sequence as that of the intercalated
DNA with a complete B-DNA geometry using JUMNA [17]. The drug was
then docked into the DNA minor groove using the docking program HEX [22].
Figure 3 shows the initial equilibrated structure of the minor groove-bound
state.

2.2 Forcefield and Equilibration

All simulations were carried out with the GROMACS molecular dynamics sim-
ulation program [23] with some modification to perform the umbrella sampling
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Fig. 3: Equilibrated structures of the minor groove-bound state, plotted using
Chimera. Representation is same as used in Fig. 2.

along the chosen coordinate. Periodic boundary conditions were employed and
Particle Mesh Ewald [24] was used for the long range electrostatic interac-
tions. The AMBER94 force-field [25] was selected because it well describes
B-DNA [20] (a refinement to the AMBER94 force-field has been published
recently [26] which rectifies the problem of α/γ transition observed in DNA
trajectories longer than those studied here), using AMBER ports in GRO-
MACS [27]. Most daunomycin force-field parameters were obtained from AM-
BER94 [25], with those absent in AMBER94 obtained from AMBER99 [28]
and GAFF [29]. The RESP charges of daunomycin were calculated using the
antechamber module of AMBER7 molecular dynamics software [30] and Gaus-
sian03 [31] using the Hartree-Fock method with the 6-31G* basis set.

The initial configurations of the intercalated and minor groove-bound
states of the DNA/drug system were placed in a cubic box of side length
65 Å and then solvated by
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TIP3P [32] water molecules. Twenty-two Na+ ions and 1 Cl− ion were
placed randomly in the box to neutralize the DNA and positively charged
daunomycin. In addition to the added ions, the system consists of 756 DNA
atoms and 68 daunomycin atoms, solvated by 8822 water molecules, making a
27313 atom system. We also constructed a larger box of length 76.6 Å, which
allowed us to study larger drug separations and to verify that the smaller box
did not produce any artifacts in the energetic or structural features of the
intercalation process.

After the initial configuration construction, we performed a standard equi-
libration protocol for DNA simulations [20]. The entire structure was mini-
mized by the steepest descent method in order to avoid close atomic contacts,
followed by slow constant volume heating to 300 K over 100 ps using 2.4
kcal/mol harmonic restraints. These restraints were slowly reduced to zero
during a series of energy minimization and 50 ps equilibration steps at con-
stant temperature (300 K) and pressure (1 bar) with a 0.2 ps coupling constant
for both parameters. The final equilibration step was a 100 ps constant volume
run.

2.3 Simulation Approach

The potential of mean force (PMF) gives the system free energy along a chosen
reaction coordinate, and has for example recently been calculated in atomistic
detail for protein - small molecule association [33]. In order to calculate this
free energy and other reaction path quantities of the drug-DNA complex as
a function of separation between the drug and the DNA, we carried out the
simulations with an extra harmonic “umbrella potential” [14] acting on the
drug-DNA separation X (sampling coordinate) along a particular vectorial
direction [2]. Our coordinate choice was guided by (a) the necessity of pulling
the drug out of the DNA intercalating center (IC), defined by the pair of base
pairs involved in the intercalation, without affecting the drug’s structure and
(b) allowance of sampling of the drug on the minor groove side from where
intercalation seems very likely to occur (given the experimentally observed
position of the bulky daunomycin side chain in the minor groove following
intercalation [15]). Related considerations [2] apply to the pulling out of the
drug from the minor groove-bound state.

This sampling coordinate is measured by the projection (Fig. 4) of the
vector d joining the center of mass (COM) of the IC to the COM of dauno-
mycin onto a body-fixed unit vector b̂, defined by the vector joining the COM
of IC to the COM of two out of four ribose sugar groups (attached to the cor-
responding guanosine nucleotides) belonging to the intercalating set of base
pairs which lie more towards the minor groove direction, i.e., X = b̂ ·d. A har-
monic umbrella potential U = 1

2k(X − X0)2 is applied along the coordinate,
with k the spring constant and X0 the harmonic potential center.

With the equilibrated system, we began a series of canonical ensemble
simulations by placing the umbrella potential center close to the intercalated
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Fig. 4. Diagram of the body-
fixed vector viewed along the
DNA helical axis. “A” is the
COM of the four bases as
labeled (C6, G7, C19, G18).
“B” is the COM of the sugar
groups of G7 and G18 marked
as “F” and “E”. “C” is the
COM of daunomycin. “AB”
is the body-fixed vector b̂ and
“AC” is d. p̂ is the vector
used to calculate an angle θ
described in Fig. 7.

state and carrying out a 0.5 ns simulation. Subsequent simulations, each of
0.5 ns, were performed commencing with the previous simulation’s end con-
figuration by changing the umbrella potential center by only 0.4 to 0.5 Å to
accelerate equilibration. For the intercalated to separated state transition, we
performed 35 simulations, and for the minor groove-bound to separated state
transition, 25 umbrella simulations were used. Bond lengths were constrained
using the LINCS algorithm [34] and 2 fs integration time step was used for
the simulations. The above 0.5 ns length for each umbrella simulation gave a
far too large intercalation free energy ≈ -30 kcal/mol. Progressively increasing
that length to 5 ns reduced this to ≈ 12 kcal/mol; the PMF calculated using
all the umbrella simulations for various run lengths showed that the results
varied with run lengths, so that convergence with 5 ns umbrella simulations
was not guaranteed. To examine this, we took the final configurations of each
5 ns umbrella simulation and performed a further 2.5 ns simulation, with
random initial velocities. The PMF calculated for various time lengths using
these 2.5 ns trajectories produced an intercalation free energy -13.2 kcal/mol
within ± 0.5 kcal/mol, indicating satisfactory convergence.

The slow convergence of the intercalation pathway can be reasonably
linked to the large structural changes which are required in the DNA oligomer.
Such changes are absent for the transition from separated to minor groove-
bound drug, and an umbrella simulation length of 2.5 ns was found to be
sufficient for a comparable convergence.

3 Results and Discussion

In the following, we discuss the simulation results [2] in terms of the transitions
of the separated drug to the intercalated state and to the minor groove-bound
state. We then discuss the minor groove-bound to intercalated state transition.
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Fig. 5: Calculated changes in the average rise and roll angle of the separated to the
intercalated state transition along the sampling coordinate X. Note that the roll
angle increases earlier than the rise as the intercalating drug approaches.

3.1 Structural Changes in DNA during Intercalation: Rise and
Roll

Although DNA obviously has a complicated structure, there are never-the-less
six essential degrees of freedom (dof) of the base pair steps in terms of which
the DNA structure can be described reasonably well [35]. The translational
dof are the rise, shift, and slide, while the rotational dof are roll, tilt, and
twist. These base pair step parameters provide a standard description of the
base pair geometry defined by the Cambridge accord [36]. We monitored these
parameters along each trajectory using the CURVES program [37]. Of these
six parameters, the rise, roll and twist were found to be the important ones
involved in the intercalation process [2]. Here we focus only on the first two of
these parameters. The rise denotes the distance between two base pairs along
the DNA helical axis; its value in normal B-DNA is ≈ 3.4 Å [38]. The roll is
the angle made by two base pairs towards the minor groove side, and is close
to zero in canonical B-DNA.
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Figure 5 shows the average rise and roll values for each sampling window
against the sampling coordinate X for the separated to intercalated state
transition. Following the direction of the drug’s approach from separated to
intercalated state in this figure (i.e. from large to small X), the rise and roll
values fluctuate around their normal values i.e., without any significant DNA
structure change down to X ≈ 8.5 Å. For smaller X, first the roll angle starts
to increase (implying opening towards the minor groove side of the double
helix), followed by the increase in the rise. The ’front’ part of the drug starts
its insertion between the pair of base pairs around X=7.8 Å, where the roll
angle has its maximum. Once the drug intercalates further into the DNA, the
roll angle drops again to its normal value, allowing further increase in the rise.
This sequence appears to be a natural one for the intercalation.
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Fig. 6: Potential of mean force (PMF) along the sampling coordinate X leading to
intercalation (solid line, X decreases as the drug approaches DNA) and leading to
the minor groove-bound state transition (dashed line). The dotted line shows the
barrier height for intercalation from the minor groove-bound state.

3.2 Potential of Mean Force of Intercalation

The umbrella sampling technique [14] allowed the obtaining of our sampling
coordinate (X) probability distributions, which then were combined by the



174 A. Mukherjee, R. Lavery, B. Bagchi, and J. T. Hynes

weighted histogram analysis method (WHAM) [39,40] to obtain the PMF or
free energy along X. This is useful not only to understand the driving force for
intercalation, but also to give some information on its kinetic aspects. Figure 6
(solid line) shows the PMF along X. The separated state (X=16.5 Å) is taken
to have a reference zero value for the free energy.

Several features of the daunomycin intercalation free energy profile in
Fig. 6 can be noted. First, the free energy minimum coincides with the crys-
tal structure. Second, the PMF gives the difference in the free energy of the
intercalated and separated states as -13.2 kcal/mol. In order to compare this
with the experimental estimate of this intercalation free energy, we needed to
include two corrections, connected to drug and ion concentrations [2]. With
these two corrections, the resulting intercalation free energy is ≈ -12.3 kcal/
mol, which is in reasonable agreement with the experimental value (≈-9.4
kcal/mol) [4].

We note parenthetically that the calculated [2] intercalation enthalpy -7.1
kcal/mol is also in reasonable agreement with the experimental estimate -8.2
kcal/mol [41], although as is well-known [42], such energetic calculations are
subject to large uncertainties.

3.3 Minor Groove-bound State Analysis

We now investigate possible pathways of intercalation. To this end, we have
created a minor groove-bound state which we consider a probable intermedi-
ate state in the intercalation process. Figure 6 shows the PMF of the sepa-
rated state to the minor groove-bound state along the sampling coordinate X
(dashed line), together with the corresponding PMF ending in the intercalated
state for comparison.

Figure 6 indicates that the drug will first arrive at the minor groove-
bound state following the minimum free energy path, i.e. there is a downhill
free energy path to the minor groove when the daunomycin approaches the
DNA from a completely separated state.

3.4 Minor Groove-bound to Intercalated State Transition

We next considered the transition from the groove-bound state to the interca-
lated state [2]. In order to intercalate starting from the former state, the drug
needs to be oriented in such a way that the tip of the drug’s planar aglycon
portion (Fig. 1) could insert between the pair of base pairs. This criterion
compels the drug to be in a correct orientation at a correct distance (X ≈ 8
Å, see below) from the intercalating base pairs. (Once the drug is intercalated,
the orientation becomes automatically restricted due to the geometrical con-
straints imposed by the DNA.) The combination of distance and orientation
could be termed a “critical” or “gate” region (defined below) through which
the drug has to pass in order to intercalate. An estimate of the barrier height
can be derived from Fig. 6 by noting that the free energy is downhill from
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the critical region to the intercalated state. Therefore, the barrier height for
the minor groove to intercalated state transition would be obtained from the
difference of free energy at the critical region at X ≈ 8 Å (≈ -0.3 kcal/mol) to
the free energy of the minor groove-bound state (-12.2 kcal/mol) giving rise
to a barrier of 11.9 kcal/mol. This value is fairly close to the experimental es-
timate of 14.9 kcal/mol calculated (see Sect. 3.6) using a rate constant in the
kinetic model of Chaires et al. [6] A more detailed approach to the theoretical
estimate of the barrier height is taken up next.

3.5 Two dimensional (2D) Free Energy Landscape of Daunomycin
Intercalation

Simple geometric considerations, sketched in Fig. 7, indicate that a two di-
mensional (2D) description of the minor groove-bound to intercalated state
transition for the drug is necessary, with attention to the orientation of the
drug. Rigorous calculation of a 2D free energy surface for the present system
is extremely difficult and time consuming. However, an approximate calcu-
lation can give insight into the reaction path not readily obtained in a 1D
approach. We calculated [2] two 2D free energy surfaces from two independent
sets of simulations, one leading to the intercalated state from the separated
state and another leading to the minor groove-bound state from the separated
state, using the probability distributions of X and an angle θ and combining
the distributions using WHAM [39, 40]. The second dimension θ is the angle
made by the body-fixed vector and the vector parallel to the aglycon plane
pointing towards the tip of the drug (see Fig. 4), and is a useful parameter to
distinguish the minor groove-bound state from the intercalated state (Fig. 7):
θ is small (<50◦) for the former and large (>150◦) for the latter. The essential
approximation is that no umbrella potential was used for θ. The angle is in-
stead free to fluctuate, which naturally does not ensure sufficient sampling in
all regions of the individual free energy surfaces. To approximately overcome
this limitation, we combined the two 2D free energy surfaces into a single 2D
free energy surface (Fig. 8), in which we averaged the values for each grid
point wherever the two individual surfaces overlap.

The resulting free energy contour plot [2] Fig. 8 indicates that in order
to intercalate, the drug first follows the minimum free energy path to the
minor groove-bound state. It then - with accompanying DNA distortions -
climbs up a free energy barrier by changing both distance and orientation to
reach the critical region (loosely defined by X ≈ 8 Å and θ > 150◦), which
serves a gate for the subsequent intercalated state, and finally descends to
the intercalated state. From Fig. 8, the estimated free energy barrier for the
minor groove-bound to intercalated state transition is 12 kcal/mol, very close
to our estimate mentioned above.
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Fig. 7. Schematic picture for the
angle θ for the (a) minor groove-
bound state, (b) the critical region
and (c) the intercalated state. The
DNA is shown as a stack of bars and
the drug is shown as a combination
of two ellipses. θ is the angle for the
dot product of unit vectors b̂ and, p̂.
see Fig. 4.

3.6 Comparison with Experimental Kinetics Results

The calculations performed in ref. [2] and briefly summarized above for dauno-
mycin intercalation into DNA give an overall intercalation free energy in rea-
sonable agreement with experimental estimates. They have indicated a se-
quence of DNA roll and rise distortions (as well as changes in water H-bonds
not discussed here; see ref. 2) associated with the process. These free energy
calculations suggest that the overall mechanistic picture for the reaction path-
way is, first, a downhill transition in free energy from the completely separated
drug to a DNA minor groove-bound state, and second, an activated transition
of the drug from this groove-bound state to the intercalated state, with a free
energy barrier ≈11.9 kcal/mol (Fig. 6).

While these free energy calculations do not directly address the intercala-
tion dynamics, we could nonetheless discuss [2] this mechanistic picture in the
context of the two most extensive experimental kinetic studies [6,7] for dauno-
mycin intercalation (which as noted in the Introduction are not in complete
accord with each other). We do not enter into the details of this comparison
here, but refer the reader to our original article [2]. Suffice it to say here that
reasonable accord with some of the kinetics results of Chaires et al. [6] was
obtained, and we assigned the first two steps of the three step mechanism of
these authors in terms of the two step mechanism we have described above.

There is however a discrepancy in that Chaires et al. [6] proposed a final,
third step. The final unimolecular step in the mechanism was postulated by
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Fig. 8: Free energy landscape in the umbrella sampling coordinate X and the angle
θ (see Figs. 4 and 7). The intercalated, minor groove-bound, and separated states
are indicated, as is the critical region. The yellow (light grey) arrowed dashed lines
(and their blue (black) projections onto the X-θ plane) are schematic guides to
show the most probable path from separated → minor groove-bound → intercalated
state through the critical region (see Fig. 7b). Due to the approximate nature of
the calculations, it is not possible at this stage to say whether or not the small
corrugations in the surface are physically meaningful.

these authors to be an activated readjustment of either the intercalated drug
or the DNA in the presence of the intercalated drug. It is possible that the
second and third steps observed by Chaires et al. represent a first intercalation
to less stable site, followed by intercalation to the most stable site, whereas
our calculations involve intercalation to the most stable site. Another possi-
bility is the following. It is important to recall that in the PMF calculations
of ref. [2] summarized here, the entire drug/DNA system is equilibrated at
each sampling coordinate(s) value, as in Figs. 6 and 8. In such calculations,
any nonequilibrium dynamical character of adjustments in the intercalated
drug/DNA system would be absent. It is thus possible that the second and
third step [6] in Chaires et al [6] are folded together, in an equilibrium path
fashion, in the second, groove-bound state→ intercalated state transition that
we have found. This possibility is currently being investigated via appropriate
nonequilibrium simulations, for which the study summarized here provides an
important starting point.
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4 Concluding Remarks

The extensive all-atom simulations of ref. [2] summarized here for daunomycin
intercalation into DNA have given an overall intercalation free energy in rea-
sonable agreement with experimental estimates. They indicate a sequence of
DNA roll and rise distortions as well as changes in water H-bonds associated
with the process. The free energy calculations suggest that the overall mech-
anistic picture for the reaction pathway is, first, a downhill transition in free
energy from the completely separated drug to a DNA minor groove-bound
state, and second, an activated transition of the drug from this groove-bound
state to the intercalated state, with a free energy barrier ≈ 11.9 kcal/mol.
Comparison with available kinetic results indicates reasonable quantitative
agreement with this mechanistic picture, although the experiments suggest
that the final intercalation step may be more complex than the one depicted
in the present equilibrium path calculations. This issue is currently under in-
vestigation. Finally, one should note that the free energetically favorable mi-
nor groove-bound state that we have found need not be unique, and could be
one representative of several possible “outside bound”, i.e. non-intercalated,
bound states in an experimental situation. This issue too is also under current
investigation.
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Abstract. This contribution gives an overview of our recent studies of the electronic
structure and ultrafast photophysics of semiconductor polymer junctions. We focus
on the phonon-assisted exciton dissociation at donor-acceptor heterojunctions, using
state-of-the-art electronic structure methods in conjunction with vibronic coupling
models and multiconfigurational quantum dynamical techniques. The decay of the
photogenerated exciton towards an interfacial charge-separated state is an ultrafast
(femtosecond to picosecond scale) process which precedes photocurrent generation.
We describe this process using a linear vibronic coupling model parametrized for
two to three electronic states and 20-30 phonon modes. Several representative in-
terface configurations are considered, which are shown to differ significantly in their
cross-chain interactions but exhibit an efficient exciton dissociation in all cases inves-
tigated. The exciton decay depends critically on the presence of intermediate states
and on the dynamical interplay between high-frequency (C=C stretch) and low-
frequency (ring-torsional) modes. The resulting molecular-level picture of exciton
dissociation could contribute to the design of efficient polymer junctions.

1 Introduction

The photophysics of semiconducting conjugated polymers is a key ingredient
for the understanding and design of optoelectronic devices such as organic
light-emitting diodes (OLEDs) and solar cells [1–10]. In view of these ma-
terials’ composition of molecular building blocks, a natural approach is to
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interpret polymer photophysics by analogy with the photophysics and pho-
tochemistry of smaller organic species. One would thus typically expect vi-
brational relaxation and ultrafast internal conversion processes that lead to
deexcitation on a femtosecond to picosecond time scale. These efficient deex-
citation mechanisms are reflected, e.g., in Kasha’s rule [11–13], a key rule of
molecular photochemistry which states that fluorescence always occurs from
the lowest excited state. (A related formulation known as the Kasha-Vavilov
rule [14] states that the fluorescence quantum yield is independent of ex-
citation frequency.) Even though exceptions to these rules occur – due to
photophysical pathways that do not lead to the lowest excited state – their
remarkable generality has been confirmed for a majority of organic systems.
The Kasha-Vavilov rule has indeed been found to also hold for polymers of
poly-phenylene-vinylene (PPV) type, according to the observations, e.g., of
Ref. [15] which reports on the independence of the observed photolumines-
cence signal of the excitation wavelength.

However, beyond these similarities with conventional organic photochem-
istry, a host of new phenomena occur which reflect the extended nature of
the conjugated π electronic system. This entails the formation of delocalized
exciton states [6], along with excitation energy transfer (exciton migration)
and dissociation of excitons to polaron pairs, i.e., formation of charge transfer
states which are precursors of photocurrent carrying states. These processes
can also be ultrafast and are expected to compete with the internal conver-
sion pathways addressed above. Thus, the dissociation into charge carriers
has been found to compete with the decay to the lowest excited state in PPV
type systems, leading to a (partial) breakdown of Kasha’s rule [16,17]. In all of
these processes, both site-site interactions and electron-phonon coupling play
a decisive role. Time-resolved experiments have provided evidence for the ul-
trafast [16, 18, 19] and coherent [20], quantum-mechanical nature of many of
the processes involved. Very recent experiments indicate long-lived electronic
coherences in the ultrafast exciton migration dynamics along polymer chains
even at room temperature [21]. To provide an appropriate theoretical descrip-
tion of these dynamical phenomena, a perspective has to be adopted that
interpolates between a molecular-level picture and a description in terms of a
disordered, solid-like phase.

In the present contribution, we illustrate a molecular-level approach to
the electronic structure and charge transfer dynamics at polymer heterojunc-
tions [22–26], i.e., interfaces between phase-separated semiconducting poly-
mer domains. So-called bulk heterojunctions [26] provide conditions for an
extremely efficient charge separation at the interface; the advent of this type
of heterojunctions in fact brought significant advances in device efficiency. In
photovoltaic diode devices, the primary excitation is a photogenerated ex-
citon stabilized by the electron-hole Coulombic interaction, with a typical
binding energy of εB ∼ 0.5 eV [26–29], i.e., considerably larger than in inor-
ganic semiconductors where εB typically lies in the 50 meV range. Due to the
highly folded interfacial area in bulk heterojunction materials, the exciton has
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an enhanced probability of reaching the interface within the diffusion length
(typically ∼ 10 nm [28,30,31]). The exciton decay towards a charge-separated
state (“exciplex”) [26, 32, 33, 35–38] is largely determined by molecular-level
electronic interactions at the interface. Recent time-resolved photolumines-
cence studies have shown that the exciton decay falls into a (sub)picosecond
regime [32,34].

In the following, we first give an account of the electronic structure side,
summarizing recent time-dependent density functional theory (TD-DFT) cal-
culations for interface fragments with different stacking geometries [41,43]. We
then focus on the crucial role of electron-phonon coupling in mediating the
ultrafast decay of the initially generated exciton to an interfacial charge trans-
fer state. The currently accepted picture of the processes at a heterojunction
involves the formation of both photoluminescent exciplex states and optically
dark charge transfer states [41, 44]. The dynamical treatments which we de-
scribe here therefore include both 2-state and 3-state models which attempt
to capture the relevant features of the dynamics. In the present analysis, we
focus on the earliest events at the interface, which are followed by exciton
regeneration and photocurrent generation [32,34,39,40] on longer time scales.

The approach adopted here combines high-level excited-state electronic
structure calculations, vibronic coupling models that are adapted to the
spatially extended nature of the system, and state-of-the-art techniques for
the quantum dynamical description of electron-phonon coupling in high-
dimensional systems. Using full quantum-dynamical calculations by the multi-
configuration time-dependent Hartree (MCTDH) method [45–49] for 2-3 elec-
tronic states and 20-30 explicit phonon modes, a molecular-level picture of the
exciton dissociation event is obtained. As detailed in Refs. [50–53], the exciton
dissociation involves a coherent nonadiabatic transfer dynamics between the
photogenerated exciton state and one or several charge transfer states; this
process is found to be ultrafast (∼100 fs–1 ps). A key factor in the dynamics is
the interplay between high-frequency (C=C stretch) and low-frequency (ring-
torsional) modes. Importantly, the exciton decay is found to be inefficient in
the absence of the low-frequency modes [50, 51]. The dynamical mechanism
is interpreted in terms of a hierarchical electron-phonon model which allows
one to identify generalized reaction coordinates for the nonadiabatic process.
This analysis highlights that the electron-phonon coupling is dominated by
high-frequency modes, but the presence of low-frequency modes is crucial in
mediating the transition to a charge-separated state. Further, the presence of
intermediate states is favorable to the exciton dissociation, and the process
is found to remain dynamically robust with respect to variation of the cross-
chain interactions [53]. The ultrafast nature of the dynamics is in agreement
with time-resolved spectroscopic observations [32].

In the remainder of this chapter, we first give an overview of electronic
structure calculations for the donor-acceptor heterojunction systems under
consideration (Sec. 2). We then introduce the electron-phonon coupling model
adopted to describe the extended polymer system (Sec. 3), followed by an
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account of the dynamical analysis based on a linear vibronic coupling Hamil-
tonian (Sec. 4). We employ, in particular, recently developed techniques by
which a relevant set of effective modes is constructed that account for the
short-time dynamics in high dimensional systems involving conical intersec-
tion topologies [51,54,55]. In Sec. 5, these methods are applied to the exciton
dissociation at a heterojunction. Given that the systems under study typi-
cally involve high- vs. low frequency phonon distributions, we identify certain
mechanistic aspects which should carry over to a related class of systems.
Finally, Sec. 6 gives an outlook on possible extensions of the present analysis.

2 Overview of interfacial electronic states of polymer
heterojunctions

Here, a brief summary is provided of the current understanding of the elec-
tronic structure properties of the heterojunction interface. We start with the
basic picture of the energetics (Sec. 2.1), based on the offset between the fron-
tier orbitals of the two polymer species; this offset triggers the dissociation
of the photogenerated exciton if the exciton binding energy εB ∼ 0.5 eV can
be overcome. To refine this picture, explicit electronic structure calculations
are necessary, which pose a formidable challenge for the interfacial systems
under consideration. Secs. 2.2 and 2.3 summarize recent efforts in this direc-
tion [41,43,44,56].

2.1 Energetics of a type-II heterojunction

The basic picture of the heterojunction energetics is formulated in terms of
the offset between the frontier orbitals of the two polymer species, i.e., the
respective highest occupied molecular orbitals (HOMOs) and lowest unoc-
cupied molecular orbitals (LUMOs). The heterojunctions we are considering
here are “type II” junctions [10,33], where the respective offsets between the
HOMO and LUMO levels have the same sign and are of comparable magni-
tude, ΔEHOMO ∼ ΔELUMO ∼ ΔE. A schematic illustration is shown in Fig.
1. If the offset ΔE exceeds the exciton binding energy εB ∼ 0.5 eV, the pho-
togenerated exciton (XT) is destabilized and tends to decay to an interfacial
charge transfer state (CT) [3, 23, 28]. This is desirable for photovoltaic appli-
cations. Conversely, if ΔE < εB , the exciton is stable, and this is best suited
for OLED applications. However, intermediate cases where ΔE � εB cannot
straightforwardly be addressed in these terms. This applies, for example, to
the TFB:F8BT junction [26, 32, 33, 57] which we focus on in this chapter.
Here, the interface is composed of the poly[9,9-dioctylfluorene-co-bis-N,N-
(4-butyl-phenyl)-bis-N,N-phenyl-1,4-phenylenediamine] (TFB) and poly[9,9-
dioctylfluorene-co-benzothiadiazole] (F8BT) polymer components, see Fig. 2
where the molecular structure of the junction is illustrated. For this system,
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Fig. 1: Band offsets, i.e., relative HOMO/LUMO energies, for two representative
type II polymer junctions, i.e., the TFB:F8BT and PFB:F8BT heterojunctions.
Both are fluorene-based polymer materials [26,33]. In this chapter, we focus on the
TFB:F8BT junction.
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Fig. 2: Molecular structure of a model F8BT(top):TFB(bottom) polymer hetero-
junction in the “eclipsed” stacking configuration, see also Fig. 3. In the actual poly-
mer, the residues are R = C8H12; in the calculations reported here, R = H was used
(Adapted from Ref. [43]).

recent time-resolved photoluminescence studies suggest that both exciton de-
cay and regeneration phenomena are observed [32, 34, 42], with the earliest
events falling into the (sub)picosecond regime.
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2.2 Electronic structure calculations of interfacial singlet states

Excited-state electronic structure calculations, even for small fragments of
the polymer interfaces under consideration, are barely feasible using high-
level ab initio methodology, and are a formidable task even if performed at
a semiempirical level. This is all the more true if such calculations are to be
carried out for a range of relevant geometries. Here, we summarize the results
of Refs. [41, 43] for selected geometries, using single-excitation configuration
interaction (CIS) and time-dependent density functional theory (TD-DFT)
methods. The results of these studies are in qualitative agreement with semi-
empirical calculations [44,56].

In the calculations reported in Refs. [41,43], a finite-sized fragment of the
interface region is considered, composed of a F8BT moiety consisting of six
co-monomer units (i.e., three benzothiadiazole (BT) units alternating with
three fluorene (F) units) and a TFB moiety consisting of five co-monomer
units (three F units alternating with two triarylamine units). The rationale
for considering a finite portion of the interface region is that the delocaliza-
tion length of the photogenerated exciton generally does not exceed a few
monomer units [6, 29, 57, 58]. The CIS and TD-DFT methods were employed
to determine the heterojunction excited states at the Franck-Condon geom-
etry, either for the isolated TFB:F8BT or including a solvent modeled by a
dielectric continuum [41].

Since intermolecular interactions at the interface play a key role, two rep-
resentative interface structures were considered, which will be referred to as
eclipsed (E) vs. staggered (S), see Fig. 3. These structures correspond to at-
tractive vs. repulsive π-stacked interface configurations, which result from the
following stacking patterns in the lowest-lying exciton state:

attractive (E configuration):
[
(−F8δ+ −BTδ−)n
(−F8δ− −TBδ+)n

]
(1)

repulsive (S configuration):
[
(−F8δ+ −BTδ−)n
(−TBδ+ − F8δ−)n

]
(2)

As indicated by the partial charges, the F8 sub-unit acquires a net partial
positive charge when co-polymerized with BT (in the F8BT moiety), but a
net partial negative charge when co-polymerized with TB (in the TFB moi-
ety) [34, 41]. This leads to a strongly attractive electrostatic interaction in
the E configuration, but a repulsive interaction in the S configuration. Both
structures were optimized in the electronic ground state using molecular me-
chanics force fields (i.e., the MM3 force field as implemented in TINKER [41]).
Subsequently, CIS and TD-DFT calculations were carried out at this geome-
try. Geometry relaxation in the excited states was not accounted for. Overall,
TD-DFT was found to give results that compare well with experimental ab-
sorption spectra [41] while CIS tends to significantly overestimate the relevant
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excitation energies. However, due to the known deficiencies of TD-DFT in de-
scribing long-range charge transfer states, as a consequence of the local nature
of the approximate exchange-correlation functionals [59], charge transfer state
energies tend to be underestimated by about 0.5 eV [41].

(a) Eclipsed Orientation

(b) Staggered Orientation

Fig. 3: TFB:F8BT structures (slightly tilted forward) showing two different orienta-
tions of the polymer constituents. In each, the FBT (top chain) consists of 3 fluorene
(F) units and 3 benzothiadiazole (BT) units while the TFB (bottom chain) consists
of 3 F units and 2 triarylamine (TB) units. These co-monomer units are labeled with
indices. The eclipsed orientation (panel a) has the middle F units (F12 and F22) of
both chains π-stacked while the staggered orientation (panel b) has the middle BT
of FBT (BT2) and the middle F of TFB (F22) π-stacked, see Eqs. (1)-(2). Reprinted
with permission from Ref. [41]. Copyright 2007, American Institute of Physics.

Fig. 4 illustrates the low-lying singlet states obtained from TD-DFT calcu-
lations for the E vs. S structures [41]. The observed states fall into two classes:
excitonic states (XT), which feature electron-hole (e-h) configurations on the
same polymer chain (FBT∗ or TFB∗) and charge transfer states (CT), which
feature e-h configurations on adjacent chains. In particular, the lowest-lying
XT state is essentially of FBT∗ character, while the lowest-lying CT state
corresponds to a TFB+-FBT− inter-chain e-h configuration. In Fig. 4, these
lowest-lying XT vs. CT states are highlighted. The XT → CT transition thus
involves the inter-chain transfer of an electron from a TFB to an FBT unit.

Importantly, the excited electronic states are not of pure XT vs. CT char-
acter, and the observed admixtures of electronic state character strongly de-
pend upon the interface geometry. While the XT states exhibit significantly
larger oscillator strength and, hence, photoluminescence intensity, some of the
nominal CT states can acquire non-negligible photoluminescence by intensity
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Fig. 4: Energy correlation diagram between the gas phase (/G) and solvated
(toluene) (/S) lowest excited states in a TFB:F8BT model system calculated by
TD-DFT (B3LYP/6-31G(d)). The eclipsed vs. staggered structures as shown in Fig.
3 are compared. The lowest-lying excitonic (XT) and charge transfer (CT) states
are highlighted in red. Solvation effects tend to stabilize the CT state. Reprinted
with permission from Ref. [41]. Copyright 2007, American Institute of Physics.

borrowing. For example, for the E configuration, the CT (1.96 eV) state is
92% TFB+-FBT− and 8% FBT∗ in character while the XT (2.40 eV) state
is 74% FBT∗ and 26% TFB+-FBT− in character. Conversely, for the S con-
figuration, the CT (1.95 eV) state is purely TFB+-FBT− while the XT (2.36
eV) state almost has a 1:1 admixture, i.e., 51% TFB+-FBT− and 49% FBT∗.

Thus a non-negligible FBT∗ admixture (as in the E configuration) is
thought to account for the luminescence of the lowest-lying CT state [41],
which is characterized as a long-lived “exciplex” state that essentially corre-
sponds to an inter-chain e-h pair pinned to the interface [44]. Other charge
transfer states are optically dark; these states could be precursors to partially
dissociated geminate e-h pairs that eventually contribute to the field-induced
photocurrent observed in this system [34]. Indeed, as will be further discussed
below, a picture which is solely based on the two dominant XT and CT states
is not accurate enough to obtain a detailed understanding of the photophysical
processes at the heterojunction.

2.3 Triplet states at the heterojunction

Finally, we briefly comment on the role of triplet states, a detailed characteri-
sation of which has been given in Ref. [43]. Triplet states are generally lower in
energy than their singlet counterparts, due to the exchange interaction which
can lead to a stabilization of up to 0.5 eV. Since triplet states are optically
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dark, they do not play a role in the photoexcitation process and subsequent
ultrafast internal conversion events. Even on longer time scales, intersystem
crossing (ISC) to form triplets is presumably not important. This is not only
due to the fact that ISC is very slow in the absence of heavy atoms (of the
order of 5 ns to 1 ms), but more importantly, is a consequence of the fact that
the relevant spin-orbit matrix elements between singlet vs. triplet ππ∗ states
are generally zero [43].

Therefore, the only mechanism by which triplet generation is feasible is
by recombination from bi-polaron like, charge separated states. This is com-
parable to direct electron-hole recombination in organic light-emitting diode
(OLED) devices, where triplet formation indeed leads to a significant reduc-
tion in the theoretical efficiency of the device [60]. Using the results of TD-
DFT calculations as reported above, we conclude that for TFB+-FBT− type
states, the electron can essentially be assumed to be localized on an N 2p or S
3p orbital of the BT sub-unit. A “back of the envelope” estimate based on the
spin-orbit coupling of hydrogenic systems then suggests that the time scale
for spin flipping is around 700-800 ps. Since the TFB+-FBT− configuration
appears as a significant admixture in the triplet exciton state of the eclipsed
stacking (E) configuration, we expect spin interconversion to be more efficient
in the E configuration.

It is tempting to speculate on the significance of the triplet states in these
heterojunction systems. For OLED applications, triplets are generally unde-
sirable since they are not emissive and hence potentially limit the efficiency
of the device. However, for a heterojunction, it is possible that triplets pinned
to the interface may undergo conversion to singlets and decay via exciplex
or excitonic emission at long times. This would give an enhancement to the
time-integrated emission and thereby account in part for the high electrolu-
minescence efficiency reported for this system [26,33].

3 Electron-phonon Hamiltonian

While the electronic structure calculations addressed in the preceding Section
could in principle be used to construct the potential surfaces that are a prereq-
uisite for dynamical calculations, such a procedure is in practice out of reach
for large, extended systems like polymer junctions. At most, semiempirical
calculations can be carried out as a function of selected relevant coordinates,
see, e.g., the recent analysis of Ref. [44]. To proceed, we therefore resort to
a different strategy, by constructing a suitably parametrized electron-phonon
Hamiltonian model. This electron-phonon Hamiltonian underlies the two- and
three-state diabatic models that are employed below (Secs. 4 and 5). The key
ingredients are a lattice model formulated in the basis of localized Wannier
functions and localized phonon modes (Sec. 3.1) and the construction of an as-
sociated diabatic Hamiltonian in a normal-mode representation (Sec. 3.2) [61].
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3.1 Two-band configuration interaction lattice model

Following Refs. [61, 62], a two-band (valence and conduction band) config-
uration interaction model is introduced, using a basis of monoexcited con-
figurations on the polymer chain. These correspond to electron-hole states
|n〉 = |nen̄′h〉 = |ne〉C ⊗ |n̄′h〉V localized at sites n and n′ of the chain. Here,
|ne〉C denotes a conduction-band (C) Wannier function (WF) localized at site
n and occupied by an electron (e), while |n̄′h〉V denotes a valence-band (V )
WF localized at site n′ and occupied by a hole (h). The configurations |n〉
thus correspond to neutral (ne = n′h) or charge transfer (ne �= n′h) e-h pairs
(excitons).

We now introduce creation and annihilation operators a†n and an which
create/annihilate e-h pairs at a given combination of sites n ≡ (n, n′), i.e.,
a†n|0〉 = |n〉 = |nen̄′h〉, where |0〉 is the ground state. Using these operators, a
generic monoexcitation configuration interaction Hamiltonian can be formu-
lated as follows in second quantization notation,

Hel =
∑
mn

(
Fmn + Vmn

)
a†man (3)

Here, the Fmn’s are one-particle matrix elements which yield the energy lev-
els (m = n) and transfer integrals (m �= n) for the e-h pairs composed of
conduction electrons and valence holes,

Fmn = 〈me|f |ne〉δm′
hn

′
h
− 〈m̄′h|f |n̄′h〉δmene (4)

The Vmn’s of Eq. (3) contain two-particle interactions, including Coulomb,
exchange, and dipole-dipole contributions, which are parameterized according
to semi-empirical functional forms [61]. The parameters are adapted to PPV
and are then transposed by scaling to other polymer species.

The electronic Hamiltonian Hel is now augmented by the electron-phonon
interaction [61],

H = Hel +Hel-ph +Hph

=
∑
mn

(
Fmn + Vmn

)
a†man +

∑
nm

∑
lα

(
∂Fmn

∂qlα

)
a†manqlα

+
∑
ll′

∑
α

1
2
(ω2
lα q2

lα + p2
lα) + λlqlαql′αδl′,l+1 (5)

The electron-phonon coupling term is constructed so as to account for the
modulation of the band gap – stemming from the diagonal single-particle
matrix elements of Eq. (4) – as a function of the (lα) phonon modes belonging
to the αth phonon branch and lth site [29],(

∂fmn
∂q�α

)
=
(
∂f̄mn
∂q�α

)
=

S

2
(2�ω3)1/2(δm� + δn�) (6)
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Here, S is the Huang-Rhys factor [63], which is related to the intensity of the
0-n vibronic transition, I0−n = e−SSn/n!, and reflects the time-dependent
Stokes shift associated with a given type of vibrational mode (e.g., S ∼ 0.6
for the high-frequency C=C stretch modes [61,64,65]). For the class of systems
studied here, two types of phonon modes are considered per monomer unit, i.e.,
high-frequency C=C stretch modes and low-frequency ring-torsional modes.

The parametrization for different polymer species is constructed by refer-
ence to the PPV case, by adjusting the relative HOMO and LUMO energies.
For copolymer species which are not characterized by uniform sites, the site
energies are varied along the chain. For the case of parallel chains, inter-chain
single-particle terms are introduced, e.g., if the electrostatic coupling between
the chains is strong. With regard to the electron-phonon coupling, it is as-
sumed that no inter-chain phonon coupling terms occur.

3.2 Diabatic representation

Given the lattice Hamiltonian Eq. (5), which casts the interactions in terms
of site-specific and site-site interaction terms, a complementary diabatic rep-
resentation can be constructed which diagonalizes the Hamiltonian excluding
the electron-phonon interaction, H0 = Hel +Hph. This leads to the form

Hdia =
∑
a

εa|a〉〈a|+
∑
ab

∑
ξ

gabξ xξ (|a〉〈b|+ |b〉〈a|)

+
1
2

∑
ξ

(ω2
ξx

2
ξ + p2

ξ) (7)

Here, the xξ are normal mode coordinates. Note that off-diagonal electron-
phonon coupling terms appear both in the representation Eq. (7) and in the
excitonic site representation of Eq. (5).

The Hamiltonian Eq. (7) provides the basis for the quantum dynami-
cal treatment to be detailed in the following sections, typically involving a
parametrization for 20-30 phonon modes. Eq. (7) is formally equivalent to a
class of linear vibronic coupling (LVC) Hamiltonians which have been used
for the description of excited-state dynamics in molecular systems [66] as well
as the Jahn-Teller effect in solid-state physics. In the following, we will elab-
orate on the general properties of the Hamiltonian Eq. (7) and on quantum
dynamical calculations based on this Hamiltonian.

Regarding the parametrization of the Hamiltonian Eq. (7), the present ap-
proach relies on the parameters of the underlying lattice model Eq. (5). How-
ever, one could envisage an alternative approach, similar to the one described
in Refs. [66–69] for small molecular systems, where a systematic diabatiza-
tion is carried out based on supermolecular electronic structure calculations
as described in Sec. 2.2.
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4 Vibronic coupling in many dimensions: conical
intersections and effective modes

The excited-state dynamics of the polymer systems studied here is a paradigm
case of vibronic coupling in high-dimensional polyatomic systems. These sys-
tems are generally characterized by complex topologies of intersecting sur-
faces, involving in particular conical intersections (CoIn’s) [66–69]. The linear
vibronic coupling (LVC) Hamiltonian Eq. (7) is the simplest Hamiltonian
which correctly accounts for the excited-state structure and topology. Gen-
eralizations of this Hamiltonian involve the inclusion of higher-order terms
in a systematic Taylor expansion [66], or the embedding of the locally lin-
earized structure into a correct representation of the overall adiabatic poten-
tial surfaces [70,71]. For the purpose of describing the polymer systems under
consideration, the LVC model is appropriate since essentially small-amplitude
motions are involved.

The LVC model further allows one to introduce coordinate transformations
by which a set of relevant effective, or collective modes are extracted that act
as generalized reaction coordinates for the dynamics. As shown in Refs. [54,
55,72], neff = nel(nel + 1)/2 such coordinates can be defined for an electronic
nel-state system, in such a way that the short time dynamics is completely
described in terms of these effective coordinates. Thus, three effective modes
are introduced for an electronic two-level system, six effective modes for a
three-level system etc., for an arbitrary number of phonon modes that couple
to the electronic subsystem according to the LVC Hamiltonian Eq. (7). In
order to capture the dynamics on longer time scales, chains of such effective
modes can be introduced [50,51,73]. These transformations, which are briefly
summarized below, will be shown to yield a unique perspective on the excited-
state dynamics of the extended systems under study.

4.1 LVC model and effective modes

We start by re-writing the generic Hamiltonian Eq. (7) for an electronic two-
level system coupled to N nuclear modes,

H = VΔ +
N∑
i=1

ωi
2

(
p2
i + x2

i

)
1+

N∑
i=1

⎛⎜⎝κ
(1)
i xi λixi

λixi κ
(2)
i xi

⎞⎟⎠ (8)

where mass and frequency weighted coordinates were used for convenience.
Here, 1 and VΔ denote the unit matrix and a coordinate-independent matrix
of offsets, respectively. The diagonal (κ(1,2)

i ) and off-diagonal (λi) potential
terms correspond to diabatic tuning and coupling terms [66]. The Hamiltonian
Eq. (8) allows for the presence of a conical intersection (CoIn) topology at
nuclear configurations where the diabatic couplings vanish and the adiabatic
states become degenerate. A CoIn corresponds to an (N − 2)-dimensional
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hypersurface of degeneracy points of the adiabatic potential energy surfaces
(PES). The degeneracy is lifted by displacements within the two-dimensional
branching plane [66–69,74].

The Hamiltonian Eq. (8) can alternatively be represented in terms of sum
and difference parameters κ(±) = 1/2(κ(1)

i ± κ
(2)
i ),

H = VΔ +
N∑
i=1

ωi
2

(
p2
i + x2

i

)
1+

N∑
i=1

κ(+) xi +

⎛⎜⎝κ
(−)
i xi λixi

λixi −κ
(−)
i xi

⎞⎟⎠ (9)

This illustrates that only the electron-phonon coupling terms associated with
the κ

(−)
i (tuning) and λi (coupling) parameters contribute to the lifting of the

CoIn degeneracy [55,74].
Following the analysis of Refs. [54,55,72], we now make use of the fact that

the nuclear modes of the Hamiltonian Eq. (8) produce cumulative effects by
their coupling to the electronic subsystem. From Eq. (9), the electron-phonon
interaction can be absorbed into the following collective modes,

X+ =
N∑
i=1

κ
(+)
i xi

X− =
N∑
i=1

κ
(−)
i xi

XΛ =
N∑
i=1

λi xi (10)

which represent collective shift (X+), tuning (X−), and coupling (XΛ) ef-
fects. These modes entirely define the coupling to the electronic subsystem.
The modes of Eq. (8) can be orthogonalized [54, 55, 72] so as to yield a set
of effective coordinates (X1, X2, X3). By introducing an orthogonal transfor-
mation in the full coordinate space, X = Tx, the remaining coordinates
are identified as a complementary set of residual modes (X4, . . . , XN ). These
modes do not couple directly to the electronic subsystem but couple bilinearly
to the effective modes.

The Hamiltonian in the new coordinates reads

H = Heff + Hres (11)

with the 3-mode effective Hamiltonian part

Heff = VΔ +
3∑
i=1

Ωi
2
(P 2
i + X2

i ) 1+
3∑

i,j=1,j>i

dij(PiPj +XiXj) 1

+
3∑
i=1

KiXi1+

⎛⎝D1X1 +D2X2 ΛX1

ΛX1 −D1X1 −D2X2

⎞⎠(12)
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Here, a topology-adapted representation [55] was chosen, where (X1, X2)
lift the degeneracy at the intersection and thus span the branching plane [74].
These modes are obtained by orthogonalizing the modes (X−, XΛ) of Eq. (10).
The third mode X3 is in turn orthogonal to (X1, X2) and carries information
on the intersection space, i.e., the X+ component of Eqs. (9)–(10). Alternative
construction schemes are possible; in particular, the bilinear coupling terms
can be eliminated within the three-mode subspace [54,72].

The residual Hamiltonian Hres contains the remaining (N−3) modes, and
their bilinear coupling to the effective modes,

Hres =
N∑
i=4

Ωi
2
(P 2
i +X2

i )1+
N∑
i=1

N∑
j=4

dij

(
PiPj +XiXj

)
1 (13)

Using this transformation, it has been shown in Refs. [54,72] that the effective-
mode Hamiltonian Heff by itself reproduces the short-time dynamics of the
overall system exactly. This is reflected by an expansion of the propagator, for
which it can be shown that the first few terms of the expansion – relating to
the first three moments of the overall Hamiltonian – are exactly reproduced
by the reduced-dimensional Hamiltonian Heff .

The effective-mode transformation described here is closely related to
earlier works which led to the construction of so-called interaction modes
[75, 76] or cluster modes [77, 78] in Jahn-Teller systems. The approach of
Refs. [54, 55, 72] generalizes these earlier analyses to the generic form – inde-
pendent of particular symmetries – of the linear vibronic coupling Hamiltonian
Eq. (8).

In Refs. [55, 79], the truncation at the level of Heff has been tested for
several molecular systems exhibiting an ultrafast dynamics at CoIn’s, and
it was found that this approximation can give remarkably good results in
reproducing the short-time dynamics. This is especially the case if a system-
bath perspective is appropriate, and the effective-mode transformation is only
applied to a set of weakly coupled bath modes [55,72]. In that case, the system
Hamiltonian can take a more complicated form than given by the LVC model.

4.2 Hierarchical electron-phonon (HEP) representation

For the polymer systems studied here, the approximation defined by Heff is
not necessarily sufficient, as demonstrated below (Sec. 5). We therefore resort
to a strategy which generalizes the effective-mode approach in such a way
that a chain of effective modes is generated, which successively unravel the
dynamics as a function of time.

To this end, an additional orthogonal coordinate transformation is intro-
duced, by which the bilinear couplings occurring in Eq. (13) are transformed to
a band-diagonal form that only allows a coupling to the (three) nearest neigh-
bors. By concatenating the effective-mode construction described in the previ-
ous section with this additional transformation in the residual-mode subspace,
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a series of nth-order approximate Hamiltonians are generated [50,51,80],

H(n) = Heff +
n∑
l=1

H(l)
res (14)

with the lth-order residual Hamiltonian

H(l)
res =

3l+3∑
i=3l+1

Ωi
2
(P 2
i +X2

i )1+
3l+3∑
i=3l+1

i−1∑
j=i−3

dij

(
PiPj +XiXj

)
1 (15)

For (3 + 3n) = N , Eqs. (14)-(15) yield an exact, transformed version of the
original LVC Hamiltonian Eq. (8), as well as the effective-mode form Eqs. (11)-
(13). We refer to this transformed LVC Hamiltonian as a hierarchical electron-
phonon (HEP) model [50, 51, 80]. This form of the model is schematically
illustrated in Fig. 5.

Successive orders H(n) can be shown to correspond to successive orders
in a moment (or cumulant) expansion of the propagator, which takes one
to increasing times. Truncation of the chain at a given order n (i.e., 3 +
3n modes) leads to an approximate, lower-dimensional representation of the
dynamical process, which reproduces the true dynamics up to a certain time.
In Ref. [51], we have demonstrated explicitly that the nth-order (3n+3 mode)
truncated HEP Hamiltonian exactly reproduces the first (2n + 3)rd order
moments (cumulants) of the total Hamiltonian. A related analysis is given in
Ref. [73].

Fig. 5: Schematic illustration of the HEP construction. In addition to the transforma-
tion which identifies the three effective modes that couple directly to the electronic
subsystem, further transformations are introduced for the residual bath in such a
way that the chain-like representation of Eqs. (14)-(15) is obtained.

In the examples addressed below, for a two-band phonon distribution, the
HEP scheme willl be shown to yield essential insight into the interplay between
high-frequency (C=C stretch) and low-frequency (ring-torsional) modes of the
polymer heterojunction model of Eq. (7).
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4.3 Dissipative closure of the HEP model

If the phonon distribution of the model Eq. (8) spans a dense spectrum – as
is generally the case for the extended systems under consideration, which are
effectively infinite-dimensional – the dynamics induced by the Hamiltonian
will eventually exhibit a dissipative character. However, the effective-mode
construction demonstrates that the shortest time scales are fully determined
by few effective modes, and by the coherent dynamics induced by these modes.
The overall picture thus corresponds to a Brownian oscillator type dynamics,
and is markedly non-Markovian [81,82].

If the HEP chain is truncated at a given order, a natural approach to
impose an irreversible character on the dynamics is to close the hierarchy by
adding a dissipation mechanism, e.g., employing a Markovian master equa-
tion or a corresponding collection of explicit bath modes. By this technique,
one prevents the occurrence of artificial recurrences that “propagate back”
along the chain, and an effectively irreversible dynamics results. This scheme
is known from Mori theory [83–86] as well as the Generalized Langevin Equa-
tion [82,87] and translates to the following form of an nth-order system-bath
Hamiltonian,

H
(n)
diss = H(n) + H

(n)
bath

= Heff +
n∑
l=1

H(l)
res + H

(n)
bath (16)

Here, H
(n)
bath is an external bath Hamiltonian which generates a Markovian

(Langevin-type) friction acting at the level of the highest order n of the hier-
archy. In Ref. [88], we have constructed a hierarchy of approximate spectral
densities representing the combined effect of the residual modes and bath
modes; these converge towards the true spectral density as more chain modes
are added in the residual space. One should again emphasize that the overall
process is strongly non-Markovian [81,82] even though the “end of the chain”
undergoes a simple Markovian damping.

In Refs. [51,53], we used an explicit representation of the bath in terms of a
collection of oscillators which are bilinearly coupled to the last three members
of the HEP hierarchy,

H
(n)
bath =

NB∑
i=1

ωB,i
2

(p2
B,i + x2

B,i)1+
n∑

i=n−3

NB∑
j=1

dBij

(
Pipj +Xixj

)
1 (17)

The coupling parameters dBij are sampled according to a specified spectral
density, which is here taken to be Ohmic [89–91]. More generally, the external
bath itself can be taken to be non-Markovian. An example of this scheme
is given in Fig. 8 of Sec. 5.1, for an Ohmic bath at zero temperature, i.e.,
exhibiting no thermal fluctuations. Here, the damping effect is generated by
“quantum fluctuations” at T = 0 [90,91].
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More generally, a treatment which allows for the inclusion of temperature
leads to a master equation of the form [88]

∂ρ(n)

∂t
= − i

�
[H(n), ρ(n)] + Ldissρ

(n) (18)

where Ldiss is a dissipative Liouvillian which can be derived from an explicit
representation of the bath as given in Eq. (17). The density operator ρ(n) is
a reduced density operator comprising all modes of the HEP hierarchy that
are accounted for explicitly.

From the viewpoint of system-bath theory, the hierarchical structure of
the HEP Hamiltonian thus allows for a flexible partitioning into system and
bath subspaces. A chosen subset of effective modes can be absorbed into the
system space, while approximations are introduced for the residual space. For
a partitioning that identifies the electronic subsystem as the system part,
the dynamics is generally non-Markovian and exhibits an inertial, coherent
regime on short time scales. This coherent regime is determined by a limited
number of effective environmental modes. The irreversible, multi-mode nature
of the bath determines the dynamical behavior on intermediate and long time
scales. Using cumulant expansion techniques [81], one can introduce a series
of finite-dimensional bath propagators corresponding to successive orders of
the HEP hierarchy, whose cumulant expansions are identical to the one of the
full propagator up to a certain order.

4.4 Generalization to three and more states

A generalization of the effective-mode construction to three or more electronic
states is straightforward, using a set of neff = nel(nel + 1)/2 effective modes
as mentioned above. In Refs. [52, 53], we have thus employed a three-state
representation with six effective modes, based on the following form of the
Hamiltonian which generalizes Eq. (14),

H(n)(X1, . . . , X6n+6) = Heff(X1, . . . , X6)

+
n∑
l=1

H(l)
res(X6l+1, . . . , X6l+6) (19)

where the effective Hamiltonian reads as follows,

Heff =
6∑
i=1

Ωi
2
(P 2
i +X2

i )1+
6∑
i=1

⎛⎜⎝ (Ki +Di)Xi Λ
(12)
i Xi Λ

(13)
i Xi

Λ
(12)
i Xi (Ki −Di)Xi Λ

(23)
i Xi

Λ
(13)
i Xi Λ

(23)
i Xi K

(3)
i Xi

⎞⎟⎠
+

6∑
i=1

6∑
j=i+1

dij

(
PiPj +XiXj

)
1+ C (20)
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The detailed derivation of Heff is given in Ref. [53]. Here, two of the six
modes (i.e., X1 and X2) are chosen as topology-adapted modes that span the
branching plane for a chosen pair of electronic states (here, states 1 and 2).
Each lth-order residual term now also comprises 6 modes,

H(l)
res =

6l+6∑
i=6l+1

Ωi
2
(P 2
i +X2

i )1+
6l+6∑
i=6l+1

i−1∑
j=i−6

dij

(
PiPj +XiXj

)
1 (21)

The moment conservation rules described above – i.e., conservation of the
(2n+3)rd Hamiltonian moments (cumulants) at the nth order of the hierarchy
– carry over to an arbitrary number of electronic states [51,53,73].

5 Quantum dynamics of exciton dissociation at a
polymer heterojunction

The dynamics associated with the Hamiltonian Eq. (8) or its variants Eq.
(11) and Eq. (14) can be treated at different levels, ranging from the explicit
quantum dynamics to non-Markovian master equations and kinetic equations.
In the present context, we will focus on the first aspect – an explicit quantum
dynamical treatment – which is especially suited for the earliest, ultrafast
events at the polymer heterojunction. Here, the coherent vibronic coupling
dynamics dominates over thermally activated events. On longer time scales,
the latter aspect becomes important, and kinetic approaches could be more
appropriate.

In Refs. [50–53], we have used the MCTDH method [47–49] in order to
calculate the femtosecond to picosecond scale evolution of the relevant state
populations at the TFB:F8BT heterojunction. MCTDH is numerically exact
and currently one of the most efficient methods for time-dependent quantum
propagation for systems with many degrees of freedom. In the applications
of Refs. [50–53], we have employed the method at a wavefunction level, using
pure-state initial conditions and an explicit time propagation for all phonon
modes. On longer time scales, the irreversible nature of the dynamics – due to
the infinite-dimensional nature of the phonon mode space – can be accounted
for by an augmented version of the model including a Markovian closure [51,
53], see Sec. 4.3. A related approach using a non-Markovian master equation
formulation has been developed in Ref. [92]; this approach is able to capture
both the coherent and dissipative aspects of the dynamics.

In the following, we summarize the pertinent results of our analysis of
Refs. [50–53] where we applied the LVC Hamiltonian Eq. (1) in conjunction
with a 20-30 mode phonon distribution composed of a high-frequency branch
corresponding to C=C stretch modes and a low-frequency branch correspond-
ing to ring-torsional modes. In all cases, the parametrization of the vibronic
coupling models is based on the lattice model of Sec. 3.1 and the complemen-
tary diabatic representation of Sec. 3.2.
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Fig. 6: Schematic illustration of the phonon-assisted exciton dissociation process.
Due to the electronic state couplings, the photogenerated exciton (XT) wavepacket
undergoes transitions to an interfacial charge transfer (CT) state, along with indirect
XT → IS → CT transitions via an intermediate (IS) state (see panel (b)). In Ref.
[52], the diabatic Hamiltonian of Eqs. (19)–(20) was parametrized for two relevant
interface configurations (eclipsed (E) vs. staggered (S) as shown in panel (a)) which
correspond to the configurations of Fig. 3.

In Refs. [50–53], two levels of analysis were successively addressed: (i) a
two-state XT-CT model which is able to capture the basic features of the
phonon-mediated exciton dissociation process; (ii) a three-state XT-IS-CT
model which also comprises an intermediate state (IS), i.e., an additional
charge transfer state whose presence can have a significant influence on the
dynamics, see Fig. 6. In the latter case, comparative calculations for several
interface configurations were carried out, leading to a realistic, molecular-level
picture of the photophysical events at the heterojunction. In the following, we
start with a summary of the findings reported in Refs. [50,51], where the two-
state model was explored (Sec. 5.1). Following this, we address in more detail
the analysis of Refs. [52, 53] for the three-state model (Sec. 5.2).

5.1 Two-state XT-CT model

We now briefly summarize the key results of the analysis of Refs. [50,51] for a
reduced XT-CT model of the TFB:F8BT heterojunction, using explicit quan-
tum dynamical (MCTDH) calculations for a two-state model parametrized for
20-30 phonon modes. At this level of analysis, an ultrafast (∼ 200 fs) XT state
decay is predicted, followed by coherent oscillations, see Fig. 8 (trace “exact”
in panel (a)). Further analysis in terms of an effective-mode model and the
associated HEP decomposition (see Sec. 4.2) highlights several aspects:

i. The high-frequency vs. low-frequency modes appear in alternation at suc-
cessive orders of the HEP hierarchy. The lowest order of the hierarchy, i.e.,
H(0) = Heff comprising modes (X1, X2, X3), is entirely composed of high-
frequency modes, reflecting that the high-frequency C=C stretch modes

(a) (b)
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Fig. 7: For the two-state XT-CT model, the projection of the three effective modes
(X1, X2, X3) (shown in red, blue, and green, respectively) onto the primitive phonon
modes {xi} is illustrated, for a model comprising 14 primitive high-frequency modes
and 14 primitive low-frequency modes (i.e., 28 modes overall). Even though the
projection involves contributions from both phonon bands, the low-frequency con-
tributions are small, and all three effective modes are of high-frequency type. (Note
the change in scale between the l.h.s. and the r.h.s. of the figure.) Furthermore,
since the primitive modes are localized on the individual molecular units, the effec-
tive modes can be shown to be partially localized as well. Thus, two of the effective
modes (shown in blue and green) are dominated by local contributions coming from
either the F8BT chain or the TFB chain. The third mode (shown in red) exhibits
contributions from both chains. (Reproduced from Ref. [93].)

dominate the coupling to the electronic subsystem. The next highest or-
der, i.e., H

(1)
res comprising modes (X4, X5, X6), is exclusively composed of

low-frequency (ring torsional) modes. The second-order contribution H
(2)
res

in turn consists again of high-frequency modes. At higher orders of the
hierarchy, high-frequency and low-frequency components start to mix.

ii. From the branching plane representation of the potential in the (X1, X2)
coordinates (see Sec. 4.1), one can infer that the system exhibits a conical
intersection. However, the Franck-Condon geometry is found to lie signif-
icantly below this intersection, and the dynamics evolves in an extended
avoided-crossing region in the vicinity of the intersection.

iii. Despite the predominance of the high-frequency modes in the electronic
coupling, the low-frequency ring-torsional modes which appear at the or-
der H

(1)
res of the mode hierarchy play a key role in the XT-CT transfer.
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Fig. 8: Time-evolving XT state populations obtained from quantum dynamical
(MCTDH) calculations for the 2-state model of Sec. 5.1, for different levels of the
HEP hierarchy as compared with the full-dimensional (24-mode) result. Panel (a)
shows the H(0) approximation (3 modes) as compared with the H(1) approxima-
tion (6 modes) and the H(2) approximation (6 modes). Panel (b) presents a com-

parison with the H
(1)
diss approximation including a Markovian closure as described

in Sec. 4.3. Here, the coherent oscillations are largely damped out (adapted from
Refs. [50, 51,53]).

Indeed, exciton dissociation is observed to be inefficient in the absence of
the low-frequency modes.

Figs. 7 and 8 illustrate the HEP analysis for the XT-CT model in more
detail. Fig. 7 shows the decomposition of the first three modes of the hierarchy
(X1, X2, X3) into the primitive phonon modes [93]. As mentioned above, these
modes constituting Heff , are all of high-frequency type. Two of these effective
modes can be seen to be localized on the TFB vs. F8BT moieties, whereas
the third mode is delocalized over both chains.

Fig. 8 shows time-dependent state populations as obtained from quan-
tum dynamical (MCTDH) calculations. While the full (here, 24 dimensional)
model exhibits an ultrafast XT decay, no net decay is observed for the reduced
3-mode model truncated at the lowest level of the effective mode hierarchy.
The dynamics is strongly diabatic if confined to the high-frequency subspace
(Heff) and involves repeated coherent crossings [51]. The dynamical interplay
between the high-frequency and low-frequency modes is apparently a cen-
tral feature of the process. To account for these effects, a treatment at the
level of H(1) is necessary, i.e., a six-mode model including the low-frequency
modes. At the level of H(2), the dynamics is found to be essentially exact.
Similar conclusions can be drawn from a non-Markovian master equation ap-
proach [92,93].

A qualitatively correct picture of the dynamics can indeed be obtained
from a two effective-mode model – one high-frequency mode plus one low-
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frequency mode – similarly to an early analysis by Halperin and Englman
who proposed a two-frequency description of the Jahn-Teller coupling in
solids [94]. A reduced-dimensional potential surface spanned by two relevant
high-frequency vs. low-frequency modes shows that the XT-CT transition is
essentially determined by low-frequency motion while the dynamics in the
high-frequency direction remains diabatic [53].

An alternative explanation can be given in terms of a vibronic resonance
effect, i.e., population transfer occurs due to the fact that the high-frequency
subspace is tuned into resonance as a function of the low-frequency mo-
tions [88, 96]. This is very similar to resonant vibration-vibration coupling in
liquids [95] where the transfer of vibrational excitation between solute species
is mediated by low-frequency solvent modes.

Finally, we address the inclusion of dissipative effects in accordance with
the discussion of Sec. 4.3. Dissipation is not expected to induce major changes
in the dynamics, but its effect could be important in view of the fact that the
finite-dimensional model under consideration tends to overemphasize coherent
features on intermediate and long time scales. Fig. 8 (panel (b)) illustrates the
effects of dissipation included at the level of the Markovian closure addressed
in Sec. 4.3. We consider the H

(1)
diss approximation according to Eq. (16), i.e.,

the HEP hierarchy is carried to the first order (thus including six modes) and
the external bath is added so as to close the hierarchy at this order. Here,
an explicit bath composed of 15 external modes is included, using an Ohmic
spectral density. The bath is resonant with the low-frequency modes of the
H

(1)
res subspace, i.e., the bath is itself composed of low-frequency modes dis-

tributed according to an Ohmic spectral density. As expected, a pronounced
attenuation of the coherent oscillatory behavior is observed. A realistic model-
ing of the exciton dissociation process is presumably intermediate between the
strongly coherent, oscillatory evolution of Fig. 8a) and the partially damped
dynamics of Fig. 8b).

5.2 Three-state XT-CT-IS model

While the two-state XT-CT model accounts for some of the essential features
of the exciton dissociation process, a more detailed, molecular-level picture
should include (i) intermediate electronic states that feature a non-negligible
coupling to the XT and/or CT states, (ii) an ensemble of relevant interface
configurations, as illustrated in Figs. 3 and 6. In Refs. [52, 53], these two
aspects have been addressed. This analysis further allows one to verify whether
the conclusions of the two-state analysis are corroborated by a more realistic
treatment.

Regarding the role of intermediate states, we have focused on an additional
charge transfer state which exhibits a non-negligible coupling to the exciton
state and could therefore play a significant role in the exciton dissociation dy-
namics. Recent experimental studies provide strong indications that such an
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intermediate state (here denoted IS) could contribute to photocurrent produc-
tion [32]. In the semiempirical calculations of Ref. [44] for the same system,
the CT state is identified as an exciplex state which remains “pinned” to the
interface, while an additional charge transfer state is assigned as a potential
photocurrent generating state (see the discussion of Sec. 2.2).

Fig. 9: Time-evolving state populations for the interface configurations of Fig. 3: (a)
3-state 28-mode wavepacket propagation for the E configuration, and (b) a comple-
mentary 2-state 28-mode calculation for the E configuration that was restricted to
the XT-CT subspace; (c) and (d) are analogous calculations for the S configuration.
Reproduced from Ref. [52]. Copyright 2008 by the American Physical Society.

In Refs. [52, 53], we have carried out a series of three-state simulations
based on the model Eq. (20), including a comparative analysis of two rep-
resentative interface structures at the TFB:F8BT heterojunction, i.e., the
eclipsed (E) vs. staggered (S) configurations shown in Figs. 3 and 6. As men-
tioned above, the E vs. S configurations generate significantly different model
parametrizations, pertaining to a strong-coupling vs. weak-coupling regime,
respectively. As shown in Fig. 9, an ultrafast decay of the photogenerated ex-
citon state is observed for both interface structures, even though the details
of the dynamics differ in the two cases. Complementary calculations carried
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out for a two-state model comprising the XT and CT states in the absence
of the intermediate (IS) state (see panels (b) and (d) of Fig. 9), provide clear
evidence that the intermediate “bridge” state plays an important role in ac-
celerating the process.

Fig. 10: For the 3-state model of Sec. 5.2., projections of the coupled diabatic XT,
CT and IS potential surfaces (E configuration) onto the XT-CT branching plane
are shown. The white and black circles indicate the conical intersection and Franck-
Condon geometry, respectively. Reproduced from Ref. [52]. Copyright 2008 by the
American Physical Society.

In order to obtain a reduced-dimensional picture of the dynamics and
identify the roles of the respective phonon branches involved in the process, we
again employ the HEP model. The hierarchy of effective modes – now with six
modes at each level of Heff and H

(n)
res , see Eqs. (19)–(20) – again features the

high-frequency vs. low-frequency modes in alternation. We therefore expect
that the main dynamical features of the previous two-state model carry over to
a more realistic treatment. Fig. 10 shows a projection of the diabatic states on
the XT-CT branching plane. The inclusion of intermediate states generates
a landscape of intersecting surfaces, thus opening various competing decay
pathways. As pointed out above, the indirect XT → IS → CT pathway plays
an important role and significantly accelerates the exciton dissociation. The
IS state mediates the charge separation while also acting as a competing final
state [53].

We conjecture that the dynamical robustness of the ultrafast exciton decay
indeed results from the presence of multiple decay pathways. While the trans-
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fer efficiency at individual avoided-crossing or conical intersection topologies
can depend in a sensitive fashion on the molecular polymer structure, the
ensemble of such structures is characterised by an efficient decay. The present
approach suggests a systematic procedure by which a molecular-level analysis
is carried out for such an ensemble of interface structures.

6 Discussion and Conclusions

In the analysis summarized here, we have attempted a molecular-level de-
scription of exciton dissociation at a polymer heterojunction, using a detailed
electronic structure and quantum dynamical characterisation of the polymer
interface. This study leads to detailed insight into the nature of the electron-
phonon coupling mechanism which generates an ultrafast (fs–ps scale) ex-
citon decay. The main ingredients of the analysis are (i) explicit electronic
structure calculations (CIS and TD-DFT) for fragments of the polymer in-
terface to determine the relevant electronic states and the Franck-Condon
transition energies (Sec. 2), (ii) the construction of a linear vibronic coupling
Hamiltonian which is initially set up in a localized site representation and
then applied in a delocalized diabatic representation (Sec. 3), (iii) efficient
multiconfigurational quantum dynamical techniques as applied to this linear
vibronic coupling model, along with variants of the model which use the ef-
fective mode transformations described in Sec. 4. This analysis has led to the
formulation of two-state and three-state model Hamiltonians involving the
photogenerated exciton state and a charge-separated “exciplex” state, along
with an additional, intermediate charge transfer state that could be relevant
for photocurrent generation. This picture is in general agreement with other
studies of the same system [44].

The effective mode decomposition described in Sec. 4 leads to a mechanis-
tic interpretation of the vibronic coupling dynamics which involves both high-
frequency (C=C stretch) and low-frequency (ring-torsional) modes. While the
electron-phonon coupling is largely dominated by the subset of high-frequency
modes, these modes taken by themselves cannot account for the ultrafast de-
cay dynamics. The low-frequency ring-torsional modes which only appear at
the second order of the HEP hierarchy (Sec. 5) are thus found to play a crucial
role. The dynamical interplay of high- vs. low-frequency modes can be under-
stood in terms of the nonadiabatic dynamics induced by the low-frequency
motions via a vibronic resonance effect. The present picture points to the
generic nature of the observed dynamical pattern for a two-band phonon dis-
tribution (see also Refs. [58, 97] which address the spectroscopic signature of
both types of phonon modes in phenylene based polymers). A very similar dy-
namical mechanism could hold in related systems like carbon nanotubes [98].

The bulk heterojunction material exhibits an ensemble of interface config-
urations, such that spectroscopic observables and measurable photocurrents
reflect statistically averaged properties (with the exception of observations



208 I. Burghardt et al.

pertaining to single-molecule spectroscopy). Here, we have examined two rep-
resentative configurations, i.e., the eclipsed (E) vs. staggered (S) configura-
tions described in Sec. 2.2. These configurations differ significantly in the
model parametrization, illustrating the importance of inter-chain interactions.
The present analysis shows that even though the details of the exciton disso-
ciation dynamics differ between these two configurations, an ultrafast process
is observed in both cases. This suggests that the exciton dissociation process
is dynamically robust. Given that this observation does not necessarily hold
for the simpler two-state model of Sec. 5.1 (where the low-frequency modes
do not always match the resonance window which guarantees that an efficient
transfer occurs), we conjecture that the presence of intermediate states is of
key importance.

The present approach has focused on the exciton dissociation event at
the heterojunction, and does not account for exciton migration towards the
interface region. This is justified by the fact that the highly filamented bulk
heterojunction structure facilitates an immediate decay since the exciton is
likely to reach the interface within its short diffusion length (of the order of
10 nm). Experimental observations for related polymer interfaces show that a
considerable range of decay time scales can exist, reflecting an ultrafast decay
of a subset of excitons, while longer time scales are associated with exciton
states that are not localized in the immediate vicinity of the interface [102].
The present study focuses on the former subset of rapidly decaying states.
However, site-site transfer could straightforwardly be included by returning
to the lattice Hamiltonian of Sec. 3.1.

Further, the present analysis does not give a complete picture of all vi-
bronic coupling pathways available to the system, but is primarily concerned
with the intermolecular charge transfer at the heterojunction interface. Even
though competing intramolecular internal conversion processes involving the
monomer excited states could play a role (see the discussion of Sec. 1), the
TD-DFT electronic structure calculations described in Sec. 2 confirm that the
lowest-lying charge transfer states are of inter-chain character. The relevant
states and their geometry dependence are described in a qualitatively correct
way by the model Hamiltonian of Sec. 3, which builds upon a simplified elec-
tronic structure description in terms of monoexcited configurations. A more
elaborate electronic structure picture for a range of geometries could lead
to an even more complex scenario involving both inter- and intramolecular
vibronic coupling pathways.

Finally, our analysis focuses on the primary events at the heterojunction
and does not yet include a description of photocurrent production and the
possible regeneration of excitons at the heterojunction. Both effects require
going to longer time scales and accounting for finite temperatures. Exciton
regeneration is in fact of crucial importance in the TFB:F8BT blend, since
LEDs fabricated from this material have been shown to exhibit a remarkably
large photoluminescence efficiency that must originate in secondary exciton
formation [26,32,42].
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The question as to how photocurrent is generated from either the exciplex
states – i.e., long-lived charge-transfer excitons pinned to the interface – or
from other charge transfer states (e.g., the intermediate state identified in our
analysis [52] and related studies [44]) is currently an open issue. Recent experi-
mental observations indicate that the dissociation of interfacial charge-transfer
excitons constitutes the bottleneck for photocurrent generation [99–104]. A
theoretical description that includes the prediction of photocurrent genera-
tion requires the use, e.g., of non-equilibrium Green’s function techniques (see
the Chapter by G. Cuniberti and collaborators in this volume) as combined
with the vibronic coupling models described here. A detailed understanding of
all phases of carrier generation, recombination, and transport is of paramount
importance, especially in view of the fact that carrier generation and mobil-
ity are still the key limiting factors to device efficiency. The present analysis
paves the way for such a complete ab initio picture of the processes at polymer
junctions.
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Abstract. The theoretical investigation of charge (and spin) transport at nanome-
ter length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly include
out-of-equilibrium situations typical for electrical/heat transport as well as to take
into account interaction effects in a systematic way. Equilibrium Green function
techniques and their extension to non-equilibrium situations via the Keldysh for-
malism build one of the pillars of current state-of-the-art approaches to quantum
transport which have been implemented in both model Hamiltonian formulations
and first-principle methodologies. In this chapter we offer a tutorial overview of the
applications of Green functions to deal with some fundamental aspects of charge
transport at the nanoscale, mainly focusing on applications to model Hamiltonian
formulations.

1 Introduction

The natural limitations that are expected to arise by the further miniaturiza-
tion attempts of semiconductor-based electronic devices have led in the past
two decades to the emergence of the new field of molecular electronics, where
electronic functions are going to be performed at the single-molecule level, see
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the recent overviews in Refs. [1–6]. The original conception which lies at the
bottom of this fascinating field can be traced back to the paper by Ari Avi-
ram and Mark Ratner in 1974 [7], where a single-molecule rectifying diode was
proposed. Obviously, one of the core issues at stake in molecular electronics is
to clarify the question whether single molecules (or more complex molecular
aggregates) can support an electric current. To achieve this goal, extremely
refined experimental techniques are required in order to probe the response of
such a nano-object to external fields. The meanwhile paradigmatic situation is
that of a single molecule contacted by two metallic electrodes between which
a bias voltage is applied.

Recent experiments

Enormous progress has been achieved in the experimental realization of such
nano-devices, we only mention the development of controllable single-molecule
junctions [8]–[22] and scanning tunneling microscopy based techniques [23]–
[44]. With their help, a plethora of interesting phenomena like rectification [18],
negative differential conductance [9, 35], Coulomb blockade [10, 11, 15, 16, 21,
23], Kondo effect [11,12], vibrational effects [10,13,14,16,21,25,31–33,35,36],
and nanoscale memory effects [34, 39, 40, 42, 44], among others, have been
demonstrated.

The traditional semiconductor nanoelectronics also remains at the fore-
front of modern research, in particular due to recent experiments with small
quantum dots, where cotunneling effects were observed [45–47], as well as
new rectification effects in double quantum dots, interpreted as spin block-
ade [48–51]. Note that semiconductor experiments are very well controlled at
present time, so they play an important role as a benchmark for the theory.

Apart from single molecules, carbon nanotubes have also found extensive
applications and have been the target of experimental and theoretical studies
over the last years, see Ref. [52] for a very recent review. The expectations
to realize electronics at the molecular scale also reached into the domain of
bio-molecular systems, thus opening new perspectives for the field due to the
specific self-recognition and self-assembling properties of biomolecules. For
instance, DNA oligomers have been already used as templates in molecular
electronic circuits [53–55]. Much less clear is, however, if bio-molecules, and
more specifically short DNA oligomers could also act as wiring systems. Their
electrical response properties are much harder to disclose and there is still
much controversy about the factors that determine charge migration through
such systems [56–64].

Theoretical methods

The theoretical treatment of transport at the nanoscale (see introduction
in [65–70]) requires the combined use of different techniques which range from
minimal model Hamiltonians, passing through semi-empirical methods up to
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full first-principle methodologies. We mention here some important contribu-
tions, while we have no possibility to cite all relevant papers.

Model Hamiltonians can in a straightforward way select, out of the many
variables that can control charge migration those which are thought to be
the most relevant ones for a specific molecule-electrode set-up. They contain,
however, in a sometimes not well-controlled way, many free parameters; hence,
they can point at generic effects, but they must be complemented with other
methodologies able to yield microscopic specific information. Semi-empirical
methods can deal with rather large systems due to the use of special subsets
of electronic states to construct molecular Hamiltonians as well as to the
approximate treatment of interactions, but often have the drawback of not
being transferable. Ab initio approaches, finally, can deal in a very precise
manner with the electronic and atomic structure of the different constituents
of a molecular junction (metallic electrodes, molecular wire, the interface)
but it is not a priori evident that they can also be applied to strong non-
equilibrium situations.

From a more formal standpoint, there are roughly two main theoretical
frameworks that can be used to study quantum transport in nanosystems at
finite voltage: generalized master equation (GME) [71,72] and nonequilibrium
Green function (NGF) techniques [66, 73–76]. The former also lead to more
simple rate equations in the case where (i) the electrode-system coupling can
be considered as a weak perturbation, and (ii) off-diagonal elements of the
reduced density matrix in the eigenstate representation (coherences) can be
neglected due to very short decoherence times. Both approaches, the GME and
NGF techniques, can yield formally exact expressions for many observables.
For non-interacting systems, one can even solve analytically many models.
However, once interactions are introduced - and these are the most interesting
cases containing a very rich physics - different approximation schemes have
to be introduced to make the problems tractable.

In this chapter, we will review mainly the technique of non-equilibrium
Keldysh Green functions (NGF). This approach is able to deal with a very
broad variety of physical problems related to quantum transport at the molec-
ular scale. It can deal with strong non-equilibrium situations via an extension
of the conventional GF formalism to the Schwinger-Keldysh contour [74] and
it can also include interaction effects (electron-electron, electron-vibron, etc)
in a systematic way (diagrammatic perturbation theory, equation of motion
techniques). Proposed first time for the mesoscopic structures in the early
seventies by Caroli et al. [77–80], this approach was formulated in an ele-
gant way by Meir, Wingreen and Jauho [66, 81–84], see also Refs. [306, 307],
who derived an exact expression for nonequilibrium current through an in-
teracting nanosystem placed between large noninteracting leads in terms of
the nonequilibrium Green functions of the nanosystem. Still, the problem of
calculation of these Green functions is not trivial. We consider some possible
approaches in the case of electron-electron and electron-vibron interactions.
Moreover, as we will show later on, it can reproduce results obtained within
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the master equation approach in the weak coupling limit to the electrodes
(Coulomb blockade), but it can also go beyond this limit and cover interme-
diate coupling (Kondo effect) and strong coupling (Fabry-Perot) domains. It
thus offer the possibility of dealing with different physical regimes in a unified
way.

Now we review briefly some results obtained recently in the main directions
of modern research: general nanoscale quantum transport theory, atomistic
transport theory and applications to particular single-molecule systems.

General nanoscale quantum transport theory

On the way to interpretation of modern experiments with single-molecule
junctions and STM spectroscopy of single molecules on surfaces, two main
theoretical problems have to be solved. The first is development of appropri-
ate models based on ab initio formulations. The second is an effective and
scalable theory of quantum transport through multilevel interacting systems.
We first consider the last problem, assuming that the model Hamiltonian is
known. Quantum transport through noninteracting system can be considered
using the famous Landauer-Büttiker method [85–94], which establishes the
fundamental relation between the wave functions (scattering amplitudes) of
a system and its conducting properties. The method can be applied to find
the current through a noninteracting system or through an effectively non-
interacting system, for example if the mean-field description is valid and the
inelastic scattering is not essential. Such type of an electron transport is called
coherent, because there is no phase-breaking and quantum interference is pre-
served during the electron motion across the system. In fact, coherence is
initially assumed in many ab initio based transport methods (DFT+NGF,
and others), so that the Landauer-Büttiker method is now routinely applied
to any basic transport calculation through nanosystems and single molecules.
Besides, it is directly applicable in many semiconductor quantum dot systems
with weak electron-electron interactions. Due to simplicity and generality of
this method, it is now widely accepted and is in the base of our understanding
of coherent transport.

However, the peculiarity of single-molecule transport is just essential role of
electron-electron and electron-vibron interactions, so that Landauer-Büttiker
method is not enough usually to describe essential physics even qualitatively
(see, however Refs. [303–305] for inelastic scattering effects).

During last years many new methods were developed to describe transport
at finite voltage, with focus on correlation and inelastic effects, in particular
in the cases when Coulomb blockade, Kondo effect and vibronic effects take
place.

Vibrons (the localized phonons) are very important because molecules
are flexible. The theory of electron-vibron interaction has a long history, but
many questions it implies are not answered up to now. While the isolated
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electron-vibron model can be solved exactly by the so-called polaron or Lang-
Firsov transformation [95–97], the coupling to the leads produces a true many-
body problem. The inelastic resonant tunneling of single electrons through the
localized state coupled to phonons was considered in Refs. [98–103]. There
the exact solution in the single-particle approximation was derived, ignoring
completely the Fermi sea in the leads. At strong electron-vibron interaction
and weak couplings to the leads the satellites of the main resonant peak are
formed in the spectral function.

The essential progress in calculation of transport properties in the strong
electron-vibron interaction limit has been made with the help of the master
equation approach [104–112]. This method, however, is valid only in the limit
of very weak molecule-to-lead coupling and neglects all spectral effects, which
are the most important at finite coupling to the leads.

At strong coupling to the leads and the finite level width the master equa-
tion approach can no longer be used, and we apply alternatively the nonequi-
librium Green function technique which have been recently developed to treat
vibronic effects in a perturbative or self-consistent way in the cases of weak
and intermediate electron-vibron interaction [113–130].

The case of intermediate and strong electron-vibron interaction at inter-
mediate coupling to the leads is the most interesting, but also the most dif-
ficult. The existing approaches are mean-field [131–133], or start from the
exact solution for the isolated system and then treat tunneling as a pertur-
bation [134–140]. The fluctuations beyond mean-field approximations were
considered in Refs. [141,142]

In parallel, the related activity was in the field of single-electron shuttles
and quantum shuttles [143–153]. Finally, based on the Bardeen’s tunneling
Hamiltonian method [154–158] and Tersoff-Hamann approach [159, 160], the
theory of inelastic electron tunneling spectroscopy (IETS) was developed [113–
116,161–163].

The recent review of the electron-vibron problem and its relation to the
molecular transport see in Ref. [164].

Coulomb interaction is the other important ingredient of the models,
describing single molecules. It is in the origin of such fundamental effects as
Coulomb blockade and Kondo efect. The most convenient and simple enough
is Anderson-Hubbard model, combining the formulations of Anderson im-
purity model [165] and Hubbard many-body model [166–168]. To analyze
such strongly correlated system several complementary methods can be used:
master equation and perturbation in tunneling, equation-of-motion method,
self-consistent Green functions, renormalization group and different numerical
methods.

When the coupling to the leads is weak, electron-electron interaction re-
sults in Coulomb blockade, the sequential tunneling is described by the master
equation method [169–176] and small cotunneling current in the blockaded
regime can be calculated by the next-order perturbation theory [177–179].
This theory was used successfully to describe electron tunneling via discrete
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quantum states in quantum dots [180–183]. Recently there were several at-
tempts to apply master equation to multi-level models of molecules, in par-
ticular describing benzene rings [184–186].

To describe consistently cotunneling, level broadening and higher-order
(in tunneling) processes, more sophisticated methods to calculate the reduced
density matrix were developed, based on the Liouville - von Neumann equa-
tion [186–193] or real-time diagrammatic technique [194–201]. Different ap-
proaches were reviewed recently in Ref. [202].

The equation-of-motion (EOM) method is one of the basic and powerful
ways to find the Green functions of interacting quantum systems. In spite of
its simplicity it gives the appropriate results for strongly correlated nanosys-
tems, describing qualitatively and in some cases quantitatively such important
transport phenomena as Coulomb blockade and Kondo effect in quantum dots.
The results of the EOM method could be calibrated with other available cal-
culations, such as the master equation approach in the case of weak coupling
to the leads, and the perturbation theory in the case of strong coupling to the
leads and weak electron-electron interaction.

In the case of a single site junction with two (spin-up and spin-down) states
and Coulomb interaction between these states (Anderson impurity model),
the linear conductance properties have been successfully studied by means
of the EOM approach in the cases related to Coulomb blockade [203, 204]
and the Kondo effect [205]. Later the same method was applied to some two-
site models [206–209]. Multi-level systems were started to be considered only
recently [210, 211]. Besides, there are some difficulties in building the lesser
GF in the nonequilibrium case (at finite bias voltages) by means of the EOM
method [212–214].

The diagrammatic method was also used to analyze the Anderson impu-
rity model. First of all, the perturbation theory can be used to describe weak
electron-electron interaction and even some features of the Kondo effect [215].
The family of nonperturbative current-conserving self-consistent approxima-
tions for Green functions has a long history and goes back to the Schwinger
functional derivative technique, Kadanoff-Baym approximations and Hedin
equations in the equilibrium many-body theory [216–223]. Recently GW ap-
proximation was investigated together with other methods [224–227]. It was
shown that dynamical correlation effects and self-consistency can be very im-
portant at finite bias.

Finally, we want to mention briefly three important fields of research, that
we do not consider in the present review: the theory of Kondo effect [205,228–
234], spin-dependent transport [235–239], and time-dependent transport [83,
240–243].
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Atomistic transport theory

Atomistic transport theory utilizes semi-empirical (tight-binding [244, 245,
301,302]) or ab initio based methods. In all cases the microscopic structure is
taken into account with different level of accuracy.

The most popular is the approach combining density-functional theory
(DFT) and NGF and known as DFT+NGF [246–268]. This method, however
is not free from internal problems. First of all, it is essentially a mean-filed
method neglecting strong local correlations and inelastic scattering. Second,
density-functional theory is a ground state theory and e.g. the transmission
calculated using static DFT eigenvalues will display peaks at the Kohn-Sham
excitation energies, which in general do not coincide with the true excitation
energies. Extensions to include excited states as in time-dependent density-
functional theory, though very promising [269–271], are not fully developed
up to date.

To improve DFT-based models several approaches were suggested, includ-
ing inelastic electron-vibron interaction [121, 126, 272–279] or Coulomb inter-
action beyond mean-field level [280], or based on the LDA+U approache [281].
The principally different alternative to DFT is to use an initio quantum chem-
istry based many-body quantum transport approach [282–285].

Finally, transport in bio-molecules attracted more attention, in particular
electrical conductance of DNA [286–290].

Outline

The review is organized as follows. In Section 2 we will first introduce the
Green functions for non-interacting systems, and present few examples of
transport through non-interacting regions. Then we review the master equa-
tion approach and its application to describe Coulomb blockade and vibron-
mediated Franck-Condon blockade. In Section 3 the Keldysh NGF technique
is developed in detail. In equilibrium situations or within the linear response
regime, dynamic response and static correlation functions are related via
the fluctuation-dissipation theorem. Thus, solving Dyson equation for the
retarded GF is enough to obtain the correlation functions. In strong out-
of-equilibrium situations, however, dynamic response and correlation func-
tions have to be calculated simultaneously and are not related by fluctuation-
dissipation theorems. The Kadanoff-Baym-Keldysh approach yield a com-
pact, powerful formulation to derive Dyson and kinetic equations for non-
equilibrium systems. In Sec. 4 we present different applications of the Green
function techniques. We show how Coulomb blockade can be described within
the Anderson-Hubbard model, once an appropriate truncation of the equation
of motion hierarchy is performed (Sec. 4.A). Further, the paradigmatic case of
transport through a single electronic level coupled to a local vibrational mode
is discussed in detail within the context of the self-consistent Born approx-
imation. It is shown that already this simple model can display non-trivial
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physics (Sec. 4.B). Finally, the case of an electronic system interacting with
a bosonic bath is discussed in Sec. 4.C where it is shown that the presence
of an environment with a continuous spectrum can modified the low-energy
analytical structure of the Green function and lead to dramatic changes in the
electrical response of the system. We point at the relevance of this situation to
discuss transport experiments in short DNA oligomers. We have not addressed
the problem of the (equilibrium or non-equilibrium) Kondo effect, since this
issue alone would require a chapter on its own due to the non-perturbative
character of the processes leading to the formation of the Kondo resonance.

In view of the broadness of the topic, the authors were forced to do a
very subjective selection of the topics to be included in this review as well as
of the most relevant literature. We thus apologize for the omission of many
interesting studies which could not be dealt with in the restricted space at
our disposal. We refer the interested reader to the other contributions in this
book and the cited papers.

2 From coherent transport to sequential tunneling
(basics)

2.1 Coherent transport: single-particle Green functions

Nano-scale and molecular-scale systems are naturally described by discrete-
level models, for example eigenstates of quantum dots, molecular orbitals, or
atomic orbitals. But the leads are very large (infinite) and have a continuous
energy spectrum. To include the lead effects systematically, it is reasonable
to start from the discrete-level representation for the whole system. It can
be made by the tight-binding (TB) model, which was proposed to describe
quantum systems in which the localized electronic states play an essential role,
it is widely used as an alternative to the plane wave description of electrons in
solids, and also as a method to calculate the electronic structure of molecules
in quantum chemistry.

A very effective method to describe scattering and transport is the Green
function (GF) method. In the case of non-interacting systems and coherent
transport single-particle GFs are used. In this section we consider the matrix
Green function method for coherent transport through discrete-level systems.

(i) Matrix (tight-binding) Hamiltonian

The main idea of the method is to represent the wave function of a particle as a
linear combination of some known localized states ψα(r, σ), where α denote the
set of quantum numbers, and σ is the spin index (for example, atomic orbitals,
in this particular case the method is called LCAO – linear combination of
atomic orbitals)

ψ(ξ) =
∑
α

cαψα(ξ), (1)
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here and below we use ξ ≡ (r, σ) to denote both spatial coordinates and spin.
Using the Dirac notations |α〉 ≡ ψα(ξ) and assuming that ψα(ξ) are or-

thonormal functions 〈α|β〉 = δαβ we can write the single-particle matrix (tight-
binding) Hamiltonian in the Hilbert space formed by ψα(ξ)

Ĥ =
∑
α

(εα + eϕα)|α〉〈α|+
∑
αβ

tαβ |α〉〈β|, (2)

the first term in this Hamiltonian describes the states with energies εα, ϕα
is the electrical potential, the second term should be included if the states
|α〉 are not eigenstates of the Hamiltonoian. In the TB model tαβ is the hop-
ping matrix element between states |α〉 and |β〉, which is nonzero, as a rule,
for nearest neighbor sites. The two-particle interaction is described by the
Hamiltonian

Ĥ =
∑
αβ,δγ

Vαβ,δγ |α〉|β〉〈δ|〈γ|, (3)

in the two-particle Hilbert space, and so on.
The energies and hopping matrix elements in this Hamiltomian can be

calculated, if the single-particle real-space Hamiltomian ĥ(ξ) is known:

εαδαβ + tαβ =
∫

ψ∗α(ξ)ĥ(ξ)ψβ(ξ)dξ. (4)

This approach was developed originally as an approximate method, if the
wave functions of isolated atoms are taken as a basis wave functions ψα(ξ),
but also can be formulated exactly with the help of Wannier functions. Only
in the last case the expansion (1) and the Hamiltonian (2) are exact, but
some extension to the arbitrary basis functions is possible. In principle, the
TB model is reasonable only when local states can be orthogonalized. The
method is useful to calculate the conductance of complex quantum systems
in combination with ab initio methods. It is particular important to describe
small molecules, when the atomic orbitals form the basis.

In the mathematical sense, the TB model is a discrete (grid) version of
the continuous Schrödinger equation, thus it is routinely used in numerical
calculations.

To solve the single-particle problem it is convenient to introduce a new rep-
resentation, where the coefficients cα in the expansion (1) are the components
of a vector wave function (we assume here that all states α are numerated by
integers)

Ψ =

⎛⎜⎜⎜⎝
c1
c2
...

cN

⎞⎟⎟⎟⎠ , (5)

and the eigenstates Ψλ are to be found from the matrix Schrödinger equation
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HΨλ = EλΨλ, (6)

with the matrix elements of the single-particle Hamiltonian

Hαβ =
{

εα + eϕα, α = β,
tαβ , α �= β.

(7)

1ε 2ε 1Nε − Nε

t t t
Fig. 1: A finite linear chain of single-level sites.

Now let us consider some typical systems, for which the matrix method
is an appropriate starting point. The simplest example is a single quantum
dot, the basis is formed by the eigenstates, the corresponding Hamiltonian is
diagonal

H =

⎛⎜⎜⎜⎜⎜⎝
ε1 0 0 · · · 0
0 ε2 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 εN−1 0
0 · · · 0 0 εN

⎞⎟⎟⎟⎟⎟⎠ . (8)

The next typical example is a linear chain of single-state sites with only
nearest-neighbor couplings (Fig. 1)

H =

⎛⎜⎜⎜⎜⎜⎝
ε1 t 0 · · · 0
t ε2 t · · · 0
...

. . . . . . . . .
...

0 · · · t εN−1 t
0 · · · 0 t εN

⎞⎟⎟⎟⎟⎟⎠ . (9)

The method is applied as well to consider the semi-infinite leads. Although
the matrices are formally infinite-dimensional in this case, we shall show below,
that the problem is reduced to the finite-dimensional problem for the quantum
system of interest, and the semi-infinite leads can be integrated out.

Finally, in the second quantized form the tight-binding Hamiltonian is

Ĥ =
∑
α

(εα + eϕα) c†αcα +
∑
α�=β

tαβc
†
αcβ . (10)
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Fig. 2: A quantum system coupled to the left and right leads.

(ii) Matrix Green functions and contact self-energies

The solution of single-particle quantum problems, formulated with the help
of a matrix Hamiltonian, is possible along the usual line of finding the wave-
functions on a lattice, solving the Schrödinger equation (6). The other method,
namely matrix Green functions, considered in this section, was found to be
more convenient for transport calculations, especially when interactions are
included.

The retarded single-particle matrix Green function GR(ε) is determined
by the equation

[(ε+ iη)I − H]GR = I, (11)

where η is an infinitesimally small positive number η = 0+.
For an isolated noninteracting system the Green function is simply ob-

tained after the matrix inversion

GR = [(ε+ iη)I − H]−1
. (12)

Let us consider the trivial example of a two-level system with the Hamiltonian

H =
(

ε1 t
t ε2

)
. (13)

The retarded GF is easy found to be (ε̃ = ε+ iη)

GR(ε) =
1

(ε̃− ε1)(ε̃− ε2)− t2

(
ε̃− ε2 t

t ε̃− ε1

)
. (14)

Now let us consider the case, when the system of interest is coupled to
two contacts (Fig. 2). We assume here that the contacts are also described by
the tight-binding model and by the matrix GFs. Actually, the semi-infinite
contacts should be described by the matrix of infinite dimension. We shall
consider the semi-infinite contacts in the next section.

Let us present the full Hamiltonian of the considered system in a following
block form
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H =

⎛⎝ H0
L HLS 0

H†
LS H0

S H†
RS

0 HRS H0
R

⎞⎠ , (15)

where H0
L, H0

S , and H0
R are Hamiltonians of the left lead, the system, and

the right lead separately. And the off-diagonal terms describe system-to-lead
coupling. The Hamiltonian should be hermitian, so that

HSL = H†
LS , HSR = H†

RS . (16)

The Eq. (11) can be written as⎛⎝E − H0
L −HLS 0

−H†
LS E − H0

S −H†
RS

0 −HRS E − H0
R

⎞⎠⎛⎝ GL GLS 0
GSL GS GSR
0 GRS GR

⎞⎠ = I, (17)

where we introduce the matrix E = (ε+ iη)I, and represent the matrix Green
function in a convenient form, the notation of retarded function is omitted in
intermediate formulas. Now our first goal is to find the system Green function
GS which defines all quantities of interest. From the matrix equation (17)(

E − H0
L

)
GLS − HLSGS = 0, (18)

−H†
LSGLS +

(
E − H0

S

)
GS − H†

RSGRS = I, (19)

−HRSGS +
(
E − H0

R

)
GRS = 0. (20)

From the first and the third equations one has

GLS =
(
E − H0

L

)−1
HLSGS , (21)

GRS =
(
E − H0

R

)−1
HRSGS , (22)

and substituting it into the second equation we arrive at the equation(
E − H0

S − Σ
)
GS = I, (23)

where we introduce the contact self-energy (which should be also called re-
tarded, we omit the index in this chapter)

Σ = H†
LS

(
E − H0

L

)−1
HLS + H†

RS

(
E − H0

R

)−1
HRS . (24)

Finally, we found, that the retarded GF of a nanosystem coupled to the
leads is determined by the expression

GRS (ε) =
[
(ε+ iη)I − H0

S − Σ
]−1

, (25)

the effects of the leads are included through the self-energy.
Here we should stress the important property of the self-energy (24), it is

determined only by the coupling Hamiltonians and the retarded GFs of the
isolated leads G0R

i =
(
E − H0

R

)−1 (i = L,R)
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t t
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Fig. 3: A quantum system coupled to a semi-infinite 1D lead.

Σi = H†
iS

(
E − H0

i

)−1
HiS = H†

iSG0R
i HiS , (26)

it means, that the contact self-energy is independent of the state of the
nanosystem itself and describes completely the influence of the leads. Later
we shall see that this property conserves also for interacting system, if the
leads are noninteracting.

Finally, we should note, that the Green functions considered in this section,
are single-particle GFs, and can be used only for noninteracting systems.

(iii) Semi-infinite leads

Let us consider now a nanosystem coupled to a semi-infinite lead (Fig. 3). The
direct matrix inversion can not be performed in this case. The spectrum of a
semi-infinite system is continuous. We should transform the expression (26)
into some other form.

To proceed, we use the relation between the Green function and the eigen-
functions Ψλ of a system, which are solutions of the Schrödinger equation (6).
Let us define Ψλ(α) ≡ cλ in the eigenstate |λ〉 in the sense of definition (5),
then

GRαβ(ε) =
∑
λ

Ψλ(α)Ψ∗λ(β)
ε+ iη − Eλ

, (27)

where α is the TB state (site) index, λ denotes the eigenstate, Eλ is the energy
of the eigenstate. The summation in this formula can be easy replaced by the
integration in the case of a continuous spectrum. It is important to notice,
that the eigenfunctions Ψλ(α) should be calculated for the separately taken
semi-infinite lead, because the Green function of isolated lead is substituted
into the contact self-energy.

For example, for the semi-infinite 1D chain of single-state sites (n,m =
1, 2, ...)

GRnm(ε) =
∫ π
−π

dk

2π
Ψk(n)Ψ∗k (m)
ε+ iη − Ek

, (28)

with the eigenfunctions Ψk(n) =
√
2 sin kn, Ek = ε0 + 2t cos k.
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Let us consider a simple situation, when the nanosystem is coupled only to
the end site of the 1D lead (Fig. 3). From (26) we obtain the matrix elements
of the self-energy

Σαβ = V ∗1αV1βG
0R
11 , (29)

where the matrix element V1α describes the coupling between the end site of
the lead (n = m = 1) and the state |α〉 of the nanosystem.

To make clear the main physical properties of the lead self-energy, let us
analyze in detail the semi-infinite 1D lead with the Green function (28). The
integral can be calculated analytically ( [70], p. 213, [244])

GR11(ε) =
1
π

∫ π
−π

sin2 kdk

ε+ iη − ε0 − 2t cos k
= −exp(iK(ε))

t
, (30)

K(ε) is determined from ε = ε0 + 2t cosK. Finally, we obtain the following
expressions for the real and imaginary part of the self-energy

ReΣαα =
|V1α|2

t

(
κ−

√
κ2 − 1 [θ(κ− 1)− θ(−κ− 1)]

)
, (31)

ImΣαα = −|V1α|2
t

√
1− κ2θ(1− |κ|), (32)

κ =
ε− ε0
2t

. (33)

The real and imaginary parts of the self-energy, given by these expressions,
are shown in Fig. 4. There are several important general conclusion that we
can make looking at the formulas and the curves.

(a) The self-energy is a complex function, the real part describes the energy
shift of the level, and the imaginary part describes broadening. The finite
imaginary part appears as a result of the continuous spectrum in the leads.
The broadening is described traditionally by the matrix

Γ = i
(
Σ − Σ†) , (34)

called level-width function.
(b) In the wide-band limit (t → ∞), at the energies ε−ε0 � t, it is possible

to neglect the real part of the self-energy, and the only effect of the leads is
level broadening. So that the self-energy of the left (right) lead is

ΣL(R) = −i
ΓL(R)

2
. (35)

(iv) Transmission, conductance, current

After all, we want again to calculate the current through the nanosystem.
We assume, as before, that the contacts are equilibrium, and there is the
voltage V applied between the left and right contacts. The calculation of the
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Fig. 4: Real and imaginary parts of the contact self-energy as a function of energy
for a one-band one-dimensional lead.

current in a general case is more convenient to perform using the full power
of the nonequilibrium Green function method. Here we present a simplified
approach, valid for noninteracting systems only, following Paulsson [291].

Let us come back to the Schrödinger equation (6) in the matrix represen-
tation, and write it in the following form⎛⎝ H0

L HLS 0
H†
LS H0

S H†
RS

0 HRS H0
R

⎞⎠⎛⎝ΨL
ΨS
ΨR

⎞⎠ = E

⎛⎝ΨL
ΨS
ΨR

⎞⎠ , (36)

where ΨL, ΨS , and ΨR are vector wave functions of the left lead, the nanosys-
tem, and the right lead correspondingly.

Now we find the solution in the scattering form (which is difficult to call
true scattering because we do not define explicitly the geometry of the leads).
Namely, in the left lead ΨL = Ψ0

L + Ψ1
L, where Ψ0

L is the eigenstate of H0
L,

and is considered as known initial wave. The ”reflected” wave Ψ1
L, as well

as the transmitted wave in the right lead ΨR, appear only as a result of the
interaction between subsystems. The main trick is, that we find a retarded
solution.

Solving the equation (36) with these conditions, the solution is

ΨL =
(
1 + G0R

L HLSG
R
SH†

LS

)
Ψ0
L, (37)

ΨR = G0R
R HRSG

R
SH†

LSΨ
0
L (38)

ΨS = GRSH†
LSΨ

0
L. (39)

The physical sense of this expressions is quite transparent, they describe the
quantum amplitudes of the scattering processes. Three functions ΨL, ΨS , and
ΨR are equivalent together to the scattering state in the Landauer-Büttiker
theory. Note, that GRS here is the full GF of the nanosystem including the
lead self-energies.
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Now the next step. We want to calculate the current. The partial (for some
particular eigenstate Ψ0

Lλ) current from the lead to the system is

ji=L,R =
ie

�

(
Ψ †iHiSΨS − Ψ †SH

†
iSΨi

)
. (40)

To calculate the total current we should substitute the expressions for
the wave functions (37)-(39), and summarize all contributions [291]. As a
result the Landauer formula is obtained. We present the calculation for the
transmission function. First, after substitution of the wave functions we have
for the partial current going through the system

jλ = jL = −jR =− ie

�

(
Ψ †RHRSΨS − Ψ †SH

†
RSΨR

)
=

− ie

�

(
Ψ0†
L HLSG

A
SH†

RS

(
G0†
R − G0

R

)
HRSG

R
SH†

LSΨ
0
L

)
=

e

�

(
Ψ0†
L HLSG

A
SΓRGRSH†

LSΨ
0
L

)
. (41)

The full current of all possible left eigenstates is given by

I =
∑
λ

jλ =
∑
λ

e

�

(
Ψ0†
LλHLSG

A
SΓRGRSH†

LSΨ
0
Lλ

)
fL(Eλ), (42)

the distribution function fL(Eλ) describes the population of the left states,
the distribution function of the right lead is absent here, because we consider
only the current from the left to the right.

The same current is given by the Landauer formula through the transmis-
sion function T̄ (E)

I =
e

h

∫ ∞
−∞

T (E)fL(E)dE. (43)

If one compares these two expressions for the current, the transmission
function at some energy is obtained as

T (E) = 2π
∑
λ

δ(E − Eλ)
(
Ψ0†
LλHLSG

A
SΓRGRSH†

LSΨ
0
Lλ

)
= 2π

∑
λ

∑
δ

δ(E − Eλ)
(
Ψ0†
LλHLSΨδ

)(
Ψ †δG

A
SΓRGRSH†

LSΨ
0
Lλ

)
=
∑
δ

(
Ψ †δG

A
SΓRGRSH†

LS

(
2π
∑
λ

δ(E − Eλ)Ψ0
LλΨ

0†
Lλ

)
HLSΨδ

)
= Tr

(
ΓLGASΓRGRS

)
. (44)

To evaluate the sum in brackets we used the eigenfunction expansion (27) for
the left contact.

We obtained the new representation for the transmission formula, which
is very convenient for numerical calculations
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T = Tr
(
t̂t̂†
)
= Tr

(
ΓLGAΓRGR

)
. (45)

Finally, one important remark, at finite voltage the diagonal energies in
the Hamiltonians H0

L, H0
S , and H0

R are shifted εα → εα+eϕα. Consequently,
the energy dependencies of the self-energies defined by (26) are also changed
and the lead self-energies are voltage dependent. However, it is convenient to
define the self-energies using the Hamiltonians at zero voltage, in that case the
voltage dependence should be explicitly shown in the transmission formula

T (E) = Tr
[
ΓL(E − eϕL)GR(ε)ΓR(E − eϕR)GA(ε)

]
, (46)

where ϕR and ϕL are electrical potentials of the right and left leads.
With known transmission function, the current I at finite voltage V can

be calculated by the usual Landauer-Büttiker formulas (without spin degen-
eration, otherwise it should be multiplied additionally by 2)

I(V ) =
e

h

∫ ∞
−∞

T (E) [fL(E)− fR(E)] dE, (47)

where the equilibrium distribution functions of the contacts should be written
with corresponding chemical potentials μi, and electrical potentials ϕi

fL(E) =
1

exp
(
E−μL−eϕL

T

)
+ 1

, fR(E) =
1

exp
(
E−μR−eϕR

T

)
+ 1

. (48)

The zero-voltage conductance G is

G =
dI

dV

∣∣∣∣
V=0

= −e2

h

∫ ∞
−∞

T (E)
∂f0(E)

∂E
dE, (49)

where f0(E) is the equilibrium Fermi function

f0(E) =
1

exp
(
E−μ
T

)
+ 1

. (50)

2.2 Interacting nanosystems and master equation method

The single-particle matrix Green function method, considered in the previous
section, can be applied only in the case of noninteracting electrons and without
inelastic scattering. In the case of interacting systems, the other approach,
known as the method of tunneling (or transfer) Hamiltonian (TH), plays an
important role, and is widely used to describe tunneling in superconductors,
in ferromagnets, effects in small tunnel junctions such as Coulomb blockade
(CB), etc. The main advantage of this method is that it is easely combined
with powerful methods of many-body theory. Besides, it is very convenient
even for noninteracting electrons, when the coupling between subsystems is
weak, and the tunneling process can be described by rather simple matrix
elements.
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Tunneling and master equation

(i) Tunneling (transfer) Hamiltonian

The main idea is to represent the Hamiltonian of the system (we consider first
a single contact between two subsystems) as a sum of three parts: ”left” ĤL,
”right” ĤR, and ”tunneling” ĤT

Ĥ = ĤL + ĤR + ĤT , (51)

ĤL and ĤR determine ”left” |Lk〉 and ”right” |Rq〉 states
ĤLψk(ξ) = Ekψk(ξ), (52)
ĤRψq(ξ) = Eqψq(ξ), (53)

below in this lecture we use the index k for left states and the index q for right
states. ĤT determines ”transfer” between these states and is defined through
matrix elements Vkq = 〈Lk|ĤT |Rq〉. With these definitions the single-particle
tunneling Hamiltonian is

Ĥ =
∑
k∈L

Ek|k〉〈k|+
∑
q∈R

Eq|q〉〈q|+
∑
kq

[
Vqk|q〉〈k|+ V ∗qk|k〉〈q|

]
. (54)

The method of the tunneling Hamiltonian was introduced by Bardeen
[154], developed by Harrison [155], and formulated in most familiar second
quantized form by Cohen, Falicov, and Phillips [156]. In spite of many very
successful applications of the TH method, it was many times criticized for it’s
phenomenological character and incompleteness, beginning from the work of
Prange [157]. However, in the same work Prange showed that the tunneling
Hamiltonian is well defined in the sense of the perturbation theory. These
developments and discussions were summarized by Duke [158]. Note, that the
formulation equivalent to the method of the tunneling Hamiltonian can be
derived exactly from the tight-binding approach.

Indeed, the tight-binding model assumes that the left and right states can
be clearly separated, also when they are orthogonal. The difference with the
continuous case is, that we restrict the Hilbert space introducing the tight-
binding model, so that the solution is not exact in the sense of the continuous
Schrödinger equation. But, in fact, we only consider physically relevant states,
neglecting high-energy states not participating in transport.

Compare the tunneling Hamiltonian (54) and the tight-binding Hamilto-
nian (2), divided into left and right parts

Ĥ =
∑
αβ∈L

ε̃αβ |α〉〈β|+
∑
δγ∈R

ε̃δγ |δ〉〈γ|+
∑

α∈L, δ∈R

[
Vδα|δ〉〈α|+ V ∗δα|α〉〈δ|

]
. (55)

The first two terms are the Hamiltonians of the left and right parts, the
third term describes the left-right (tunneling) coupling. The equivalent matrix
representation of this Hamiltonian is
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H =
(

H0
L HLR

H†
LR H0

R

)
. (56)

The Hamiltonians (54) and (55) are essentially the same, only the first one
is written in the eigenstate basis |k〉, |q〉, while the second in the tight-binding
basis |α〉, |β〉 of the left lead and |δ〉, |γ〉 of the right lead. Now we want to
transform the TB Hamiltonian (55) into the eigenstate representation.

Canonical transformations from the tight-binding (atomic orbitals) rep-
resentation to the eigenstate (molecular orbitals) representation play an im-
portant role, and we consider it in detail. Assume, that we find two unitary
matrices SL and SR, such that the Hamiltonians of the left part H0

L and of
the right part H0

R can be diagonalized by the canonical transformations

H̄0
L = S−1

L H0
LSL, (57)

H̄0
R = S−1

R H0
RSR. (58)

The left and right eigenstates can be written as

|k〉 =
∑
α

SLkα|α〉, (59)

|q〉 =
∑
δ

SRqδ|δ〉, (60)

and the first two free-particle terms of the Hamiltonian (54) are reproduced.
The tunneling terms are transformed as

H̄LR = S−1
L HLRSR, (61)

H̄†
LR = S−1

R H†
LRSL, (62)

or explicitly ∑
α∈L, δ∈R

Vδα|δ〉〈α| =
∑
kq

Vqk|q〉〈k|, (63)

where
Vqk =

∑
α∈L, δ∈R

VδαSLαkSRδq. (64)

The last expression solve the problem of transformation of the tight-binding
matrix elements into tunneling matrix elements.

For applications the tunneling Hamiltonian (54) should be formulated in
the second quantized form. We introduce creation and annihilation Schrödinger
operators c†Lk, cLk, c

†
Rq, cRq. Using the usual rules we obtain

Ĥ = ĤL

({
c†k; ck

})
+ ĤR

({
c†q; cq

})
+ ĤT

({
c†k; ck; c

†
q; cq
})

, (65)
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Ĥ =
∑
k

(εk + eϕL(t))c
†
kck +

∑
q

(εq + eϕR(t))c†qcq +
∑
kq

[
Vqkc

†
qck + V ∗qkc

†
kcq

]
.

(66)
It is assumed that left ck and right cq operators describe independent

states and are anticommutative. For nonorthogonal states of the Hamiltonian
Ĥl+ĤR it is not exactly so. But if we consider ĤL and ĤR as two independent
Hamiltonians with independent Hilbert spaces we resolve this problem. Thus
we again should consider (66) not as a true Hamiltonian, but as the formal
expression describing the current between left and right states. In the weak
coupling case the small corrections to the commutation relations are of the
order of |Vqk| and can be neglected. If the tight-binding formulation is possible,
(66) is exact within the framework of this formulation. In general the method
of tunneling Hamiltonian can be considered as a phenomenologicalmicroscopic
approach, which was proved to give reasonable results in many cases, e.g. in
the description of tunneling between superconductors and Josephson effect.

(ii) Tunneling current

The current from the state k into the state q is given by the golden rule

Jk→q = eΓqk =
2πe
�

|Vqk|2fL(k) (1− fR(q)) δ(Ek − Eq), (67)

the probability (1 − fR(Eq)) that the right state is unoccupied should be
included, it is different from the scattering approach because left and right
states are two independent states!

Then we write the total current as the sum of all partial currents from
left states to right states and vice versa (note that the terms fL(k)fR(q) are
cancelled)

J =
2πe
�

∑
kq

|Vqk|2 [f(k)− f(q)] δ(Eq − Ek). (68)

For tunneling between two equilibrium leads distribution functions are
simply Fermi-Dirac functions (48) and current can be finally written in the
well known form (To do this one should multiply the integrand on 1 =

∫
δ(E−

Eq)dE.)

J =
e

h

∫ ∞
−∞

T (E, V ) [fL(E)− fR(E)] dE, (69)

with

T (E, V ) = (2π)2
∑
qk

|Vkq|2δ(E − Ek − eϕL)δ(E − Eq − eϕR). (70)

This expression is equivalent to the Landauer formula (47), but the trans-
mission function is related now to the tunneling matrix element.



Green Function Techniques in the Treatment of Quantum Transport 233

Now let us calculate the tunneling current as the time derivative of the
number of particles operator in the left lead N̂L =

∑
k c
†
kck. Current from the

left to right contact is

J(t) = −e

〈(
dNL
dt

)〉
S

= − ie

�

〈[
ĤT , NL

]
−

〉
S

, (71)

where 〈...〉S is the average over time-dependent Schrödinger state. N̂L com-
mute with both left and right Hamiltonians, but not with the tunneling Hamil-
tonian [

ĤT , NL

]
−
=
∑
k′

∑
kq

[(
Vqkc

†
qck + V ∗qkcqc

†
k

)
c†k′ck′

]
−
, (72)

using commutation relations

ckc
†
k′ck′ − c†k′ck′ck = ckc

†
k′ck′ + c†k′ckck′ = (ckc

†
k′ + δkk′ − ckc

†
k′)ck′ = δkk′ck,

we obtain
J(t) =

ie

�

∑
kq

[
Vqk
〈
c†qck

〉
S
− V ∗qk

〈
c†kcq

〉
S

]
. (73)

Now we switch to the Heisenberg picture, and average over initial time-
independent equilibrium state〈

Ô(t)
〉
= Sp

(
ρ̂eqÔ(t)

)
, ρ̂eq =

e−Heq/T

Sp
(
e−Heq/T

) . (74)

One obtains

J(t) =
ie

�

∑
kq

[
Vqk
〈
c†q(t)ck(t)

〉− V ∗qk
〈
c†k(t)cq(t)

〉]
. (75)

It can be finally written as

J(t) =
2e
�
Im

⎛⎝∑
kq

Vqkρkq(t)

⎞⎠ =
2e
�
Re

⎛⎝∑
kq

VqkG
<
kq(t, t)

⎞⎠ .

We define ”left-right” density matrix or more generally lesser Green func-
tion

G<kq(t1, t2) = i
〈
c†q(t2)ck(t1)

〉
.

Later we show that these expressions for the tunneling current give the
same answer as was obtained above by the golden rule in the case of nonin-
teracting leads.
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(iii) Sequential tunneling and the master equation

Let us come back to our favorite problem – transport through a quantum sys-
tem. There is one case (called sequential tunneling), when the simple formulas
discussed above can be applied even in the case of resonant tunneling

Assume that a noninteracting nanosystem is coupled weakly to a thermal
bath (in addition to the leads). The effect of the thermal bath is to break phase
coherence of the electron inside the system during some time τph, called deco-
herence or phase-breaking time. τph is an important time-scale in the theory,
it should be compared with the so-called ”tunneling time” – the character-
istic time for the electron to go from the nanosystem to the lead, which can
be estimated as an inverse level-width function Γ−1. So that the criteria of
sequential tunneling is

Γτph � 1. (76)

The finite decoherence time is due to some inelastic scattering mechanism
inside the system, but typically this time is shorter than the energy relaxation
time τε, and the distribution function of electrons inside the system can be
nonequilibrium (if the finite voltage is applied), this transport regime is well
known in semiconductor superlattices and quantum-cascade structures.

In the sequential tunneling regime the tunneling events between the left
lead and the nanosystem and between the left lead and the nanosystem are
independent and the current from the left (right) lead to the nanosystem
is given by the golden rule expression (68). Let us modify it to the case of
tunneling from the lead to a single level |α〉 of a quantum system

J =
2πe
�

∑
k

|Vαk|2 [f(k)− Pα] δ(Eα − Ek), (77)

where we introduce the probability Pα to find the electron in the state |α〉
with the energy Eα.

(iv) Rate equations for noninteracting systems

Rate equation method is a simple approach base on the balance of incoming
and outgoing currents. Assuming that the contacts are equilibrium we obtain
for the left and right currents

Ji=L(R) = eΓiα
[
f0
i (Eα)− Pα

]
, (78)

where
Γiα =

2π
�

∑
k

|Vαk|2δ(Eα − Ek). (79)

In the stationary state J = JL = −JR, and from this condition the level
population Pα is found to be

Pα =
ΓLαf

0
L(Eα) + ΓRαf

0
R(Eα)

ΓLα + ΓRα
, (80)
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with the current

J = e
ΓLαΓRα

ΓLα + ΓRα

(
f0
L(Eα)− f0

R(Eα)
)
. (81)

It is interesting to note that this expression is exactly the same, as one can
obtain for the resonant tunneling through a single level without any scatter-
ing. It should be not forgotten, however, that we did not take into account
additional level broadening due to scattering.

(v) Master equation for interacting systems

Now let us formulate briefly a more general approach to transport through
interacting nanosystems weakly coupled to the leads in the sequential tunnel-
ing regime, namely the master equation method. Assume, that the system can
be in several states |λ〉, which are the eigenstates of an isolated system and
introduce the distribution function Pλ – the probability to find the system in
the state |λ〉. Note, that these states are many-particle states, for example for
a two-level quantum dot the possible states are |λ〉 = |00〉, |10〉, 01|〉, and |11〉.
The first state is empty dot, the second and the third with one electron, and
the last one is the double occupied state. The other non-electronic degrees
of freedom can be introduce on the same ground in this approach. The only
restriction is that some full set of eigenstates should be used∑

λ

Pλ = 1. (82)

The next step is to treat tunneling as a perturbation. Following this idea,
the transition rates Γλλ

′
from the state λ′ to the state λ are calculated using

the Fermi golden rule

Γ fi =
2π
�

∣∣∣〈f |ĤT |i〉∣∣∣2 δ(Ef − Ei). (83)

Then, the kinetic (master) equation can be written as

dPλ
dt

=
∑
λ′

Γλλ
′
Pλ′ −

∑
λ′

Γλ
′λPλ, (84)

where the first term describes tunneling transition into the state |λ〉, and the
second term – tunneling transition out of the state |λ〉.

In the stationary case the probabilities are determined from∑
λ′

Γλλ
′
Pλ′ =

∑
λ′

Γλ
′λPλ. (85)

For noninteracting electrons the transition rates are determined by the
single-electron tunneling rates, and are nonzero only for the transitions be-
tween the states with the number of electrons different by one. For example,



236 D. A. Ryndyk, R. Gutiérrez, B. Song, and G. Cuniberti

transition from the state |λ′〉 with empty electron level α into the state |λ〉
with filled state α is described by

Γnα=1 nα=0 = ΓLαf
0
L(Eα) + ΓRαf

0
R(Eα), (86)

where ΓLα and ΓRα are left and right level-width functions (79).
For interacting electrons the calculation is a little bit more complicated.

One should establish the relation between many-particle eigenstates of the
system and single-particle tunneling. To do this, let us note, that the states
|f〉 and |i〉 in the golden rule formula (83) are actually the states of the whole
system, including the leads. We denote the initial and final states as

|i〉 = |k̂i, λ′〉 = |k̂i〉|λ′〉, (87)

|f〉 = |k̂f , λ〉 = |k̂f 〉|λ〉, (88)

where k̂ is the occupation of the single-particle states in the lead. The param-
eterization is possible, because we apply the perturbation theory, and isolated
lead and nanosystem are independent.

The important point is, that the leads are actually in the equilibrium
mixed state, the single electron states are populated with probabilities, given
by the Fermi-Dirac distribution function. Taking into account all possible
single-electron tunneling processes, we obtain the incoming tunneling rate

Γλλ
′

in =
2π
�

∑
ikσ

f0
i (Eikσ)

∣∣〈ik̄, λ ∣∣H̄T ∣∣ ik, λ′〉∣∣2 δ(Eλ′ + Eikσ − Eλ), (89)

where we use the short-hand notations: |ik, λ′〉 is the state with occupied k-
state in the i−th lead, while |ik̄, λ〉 is the state with unoccupied k-state in the
i−th lead, and all other states are assumed to be unchanged, Eλ is the energy
of the state λ .

To proceed, we introduce the following Hamiltonian, describing single elec-
tron tunneling and charging of the nanosystem state

ĤT =
∑
kλλ′

[
Vλλ′kckX

λλ′ + V ∗λλ′kc
†
kX

λ′λ
]
, (90)

the Hubbard operators Xλλ
′
= |λ〉〈λ′| describe transitions between eigen-

states of the nanosystem.
Substituting this Hamiltonian one obtains

Γλλ
′

in =
2π
�

∑
ikσ

f0
i (Eikσ) |Vikσ|2 |Vλλ′k|2 δ(Eλ′ + Eikσ − Eλ). (91)

In the important limiting case, when the matrix element Vλλ′k is k-
independent, the sum over k can be performed, and finally

Γλλ
′

in =
∑
i=L,R

Γi(Eλ − Eλ′) |Vλλ′ |2 f0
i (Eλ − Eλ′). (92)
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Similarly, the outgoing rate is

Γλλ
′

out =
∑
i=L,R

Γi(Eλ′ − Eλ) |Vλλ′ |2
(
1− f0

i (Eλ′ − Eλ)
)
. (93)

The current (from the left or right lead to the system) is

Ji=L,R(t) = e
∑
λλ′

(
Γλλ

′
i in Pλ′ − Γλλ

′
i outPλ′

)
. (94)

This system of equations solves the transport problem in the sequential
tunneling regime.

Electron-electron interaction and Coulomb blockade

(i) Anderson-Hubbard and constant-interaction models

To take into account both discrete energy levels of a system and the electron-
electron interaction, it is convenient to start from the general Hamiltonian

Ĥ =
∑
αβ

ε̃αβd
†
αdβ +

1
2

∑
αβγδ

Vαβ,γδd
†
αd
†
βdγdδ. (95)

The first term of this Hamiltonian is a free-particle discrete-level model (10)
with ε̃αβ including electrical potentials. And the second term describes all
possible interactions between electrons and is equivalent to the real-space
Hamiltonian

Ĥee =
1
2

∫
dξ

∫
dξ′ψ̂†(ξ)ψ̂†(ξ′)V (ξ, ξ′)ψ̂(ξ′)ψ̂(ξ), (96)

where ψ̂(ξ) are field operators

ψ̂(ξ) =
∑
α

ψα(ξ)dα, (97)

ψα(ξ) are the basis single-particle functions, we remind, that spin quantum
numbers are included in α, and spin indices are included in ξ ≡ r, σ as vari-
ables.

The matrix elements are defined as

Vαβ,γδ =
∫

dξ

∫
dξ′ψ∗α(ξ)ψ

∗
β(ξ

′)V (ξ, ξ′)ψγ(ξ)ψδ(ξ′). (98)

For pair Coulomb interaction V (|r|) the matrix elements are

Vαβ,γδ =
∑
σσ′

∫
dr

∫
dr′ψ∗α(r, σ)ψ

∗
β(r

′, σ′)V (|r − r′|)ψγ(r, σ)ψδ(r′, σ′).
(99)
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Assume now, that the basis states |α〉 are the states with definite spin
quantum number σα. It means, that only one spin component of the wave
function, namely ψα(σα) is nonzero, and ψα(σ̄α) = 0. In this case the only
nonzero matrix elements are those with σα = σγ and σβ = σδ, they are

Vαβ,γδ =
∫

dr

∫
dr′ψ∗α(r)ψ

∗
β(r

′)V (|r − r′|)ψγ(r)ψδ(r′). (100)

In the case of delocalized basis states ψα(r), the main matrix elements
are those with α = γ and β = δ, because the wave functions of two different
states with the same spin are orthogonal in real space and their contribution
is small. It is also true for the systems with localized wave functions ψα(r),
when the overlap between two different states is weak. In these cases it is
enough to replace the interacting part by the Anderson-Hubbard Hamiltonian,
describing only density-density interaction

ĤAH =
1
2

∑
α�=β

Uαβn̂αn̂β . (101)

with the Hubbard interaction defined as

Uαβ =
∫

dr

∫
dr′|ψα(r)|2|ψβ(r′)|2V (|r − r′|). (102)

In the limit of a single-level quantum dot (which is, however, a two-level
system because of spin degeneration) we get the Anderson impurity model
(AIM)

ĤAIM =
∑
σ=↑↓

εσd
†
σdσ + Un̂↑n̂↓. (103)

The other important limit is the constant interaction model (CIM), which
is valid when many levels interact with similar energies, so that approximately,
assuming Uαβ = U for any states α and β

ĤAH =
1
2

∑
α�=β

Uαβn̂αn̂β ≈ U

2

(∑
α

n̂α

)2

− U

2

(∑
α

n̂2
α

)
=

UN̂(N̂ − 1)
2

.

(104)
where we used n̂2 = n̂.

Thus, the CIM reproduces the charging energy considered above, and the
Hamiltonian of an isolated system is

ĤCIM =
∑
αβ

ε̃αβd
†
αdβ + E(N). (105)

Note, that the equilibrium compensating charge density can be easily in-
troduced into the AH Hamiltonian

ĤAH =
1
2

∑
α�=β

Uαβ (n̂α − n̄α) (n̂β − n̄β) . (106)
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(ii) Coulomb blockade in quantum dots

Here we want to consider the Coulomb blockade in intermediate-size quantum
dots, where the typical energy level spacing Δε is not too small to neglect it
completely, but the number of levels is large enough, so that one can use the
constant-interaction model (105), which we write in the eigenstate basis as

ĤCIM =
∑
α

ε̃αd
†
αdα + E(n), (107)

where the charging energy E(n) is determined in the same way as previously,
for example by the expression (104). Note, that for quantum dots the usage of
classical capacitance is not well established, although for large quantum dots
it is possible. Instead, we shift the energy levels in the dot ε̃α = εα + eϕα by
the electrical potential

ϕα = VG + VR + ηα(VL − VR), (108)

where ηα are some coefficients, dependent on geometry. This method can be
easily extended to include any self-consistent effects on the mean-field level by
the help of the Poisson equation (instead of classical capacitances). Besides, if
all ηα are the same, our approach reproduce again the the classical expression

ÊCIM =
∑
α

εαnα + E(n) + enϕext. (109)

The addition energy now depends not only on the charge of the molecule,
but also on the state |α〉, in which the electron is added

ΔE+
nα(n, nα = 0 → n+ 1, nα = 1) = E(n+ 1)− E(n) + εα, (110)

we can assume in this case, that the single particle energies are additive to the
charging energy, so that the full quantum eigenstate of the system is |n, n̂〉,
where the set n̂ ≡ {nα} shows weather the particular single-particle state |α〉
is empty or occupied. Some arbitrary state n̂ looks like

n̂ ≡ {nα} ≡ (n1, n2, n3, n4, n5, ...
)
=
(
1, 1, 0, 1, 0, ...

)
. (111)

Note, that the distribution n̂ defines also n =
∑
α nα. It is convenient, how-

ever, to keep notation n to remember about the charge state of a system,
below we use both notations |n, n̂〉 and short one |n̂〉 as equivalent.

The other important point is that the distribution function fn(α) in the
charge state |n〉 is not assumed to be equilibrium, as previously (this condition
is not specific to quantum dots with discrete energy levels, the distribution
function in metallic islands can also be nonequilibrium. However, in the pa-
rameter range, typical for classical Coulomb blockade, the tunneling time is
much smaller than the energy relaxation time, and quasiparticle nonequilib-
rium effects are usually neglected).
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With these new assumptions, the theory of sequential tunneling is quite
the same, as was considered in the previous section. The master equation
is [172,180–182]

dp(n, n̂, t)
dt

=
∑
n̂′

(
Γnn−1
n̂n̂′ p(n− 1, n̂′, t) + Γnn+1

n̂n̂′ p(n+ 1, n̂′, t)
)−∑

n̂′

(
Γn−1n
n̂′n̂ + Γn+1n

n̂′n̂

)
p(n, n̂, t) + I {p(n, n̂, t)} , (112)

where p(n, n̂, t) is now the probability to find the system in the state |n, n̂〉,
Γnn−1
n̂n̂′ is the transition rate from the state with n−1 electrons and single level

occupation n̂′ into the state with n electrons and single level occupation n̂.
The sum is over all states n̂′, which are different by one electron from the state
n̂. The last term is included to describe possible inelastic processes inside the
system and relaxation to the equilibrium function peq(n, n̂). In principle, it
is not necessary to introduce such type of dissipation in calculation, because
the current is in any case finite. But the dissipation may be important in
large systems and at finite temperatures. Besides, it is necessary to describe
the limit of classical single-electron transport, where the distribution function
of qausi-particles is assumed to be equilibrium. Below we shall not take into
account this term, assuming that tunneling is more important.

While all considered processes are, in fact, single-particle tunneling pro-
cesses, we arrive at

dp(n̂, t)
dt

=
∑
β

(
δnβ1Γ

nn−1
β p(n̂, nβ = 0, t) + δnβ0Γ

nn+1
β p(n̂, nβ = 1, t)

)
−

∑
β

(
δnβ1Γ

n−1n
β + δnβ0Γ

n+1n
β

)
p(n̂, t), (113)

where the sum is over single-particle states. The probability p(n̂, nβ = 0, t)
is the probability of the state equivalent to n̂, but without the electron in
the state β. Consider, for example, the first term in the right part. Here the
delta-function δnβ1 shows, that this term should be taken into account only if
the single-particle state β in the many-particle state n̂ is occupied, Γnn−1

β is
the probability of tunneling from the lead to this state, p(n̂, nβ = 0, t) is the
probability of the state n̂′, from which the system can come into the state n̂.

The transitions rates are defined by the same golden rule expressions, as
before, but with explicitly shown single-particle state α

Γn+1n
Lα =

2π
�

∣∣∣〈n+ 1, nα = 1|ĤTL|n, nα = 0
〉∣∣∣2 δ(Ei − Ef ) =

2π
�

∑
k

|Vkα|2 fkδ(ΔE+
nα − Ek), (114)
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Fig. 5: Linear conductance of a QD as a function of the gate voltage at different
temperatures T = 0.01EC , T = 0.03EC , T = 0.05EC , T = 0.1EC , T = 0.15EC

(lower curve).

Γn−1n
Lα =

2π
�

∣∣∣〈n− 1, nα = 0|ĤTL|n, nα = 1
〉∣∣∣2 δ(Ei − Ef ) =

2π
�

∑
k

|Vkα|2 (1− fk) δ(ΔE+
n−1α − Ek), (115)

there is no occupation factors (1 − fα), fα because this state is assumed to
be empty in the sense of the master equation (113). The energy of the state
is now included into the addition energy.

Using again the level-width function

Γi=L,Rα(E) =
2π
�

∑
k

|Vik,α|2δ(E − Ek). (116)

we obtain

Γn+1n
α = ΓLαf

0
L(ΔE+

nα) + ΓRαf
0
R(ΔE+

nα), (117)

Γn−1n
α = ΓLα

(
1− f0

L(ΔE+
n−1α)

)
+ ΓRα

(
1− f0

R(ΔE+
n−1α)

)
. (118)

Finally, the current from the left or right contact to a system is

Ji=L,R = e
∑
α

∑
n̂

p(n̂)Γiα
(
δnα0f

0
i (ΔE+

nα)− δnα1(1− f0
i (ΔE+

nα))
)
. (119)

The sum over α takes into account all possible single particle tunneling events,
the sum over states n̂ summarize probabilities p(n̂) of these states.

(iii) Linear conductance

The linear conductance can be calculated analytically [172, 181]. Here we
present the final result:
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Fig. 6: Coulomb staircase.

G =
e2

T

∑
α

∞∑
n=1

ΓLαΓRα
ΓLα + ΓRα

Peq(n, nα = 1)
[
1− f0(ΔE+

n−1α)
]
, (120)

where Peq(n, nα = 1) is the joint probability that the quantum dot contains
n electrons and the level α is occupied

Peq(n, nα = 1) =
∑
n̂

peq(n̂)δ

⎛⎝n−
∑
β

nβ

⎞⎠ δnα1, (121)

and the equilibrium probability (distribution function) is determined by the
Gibbs distribution in the grand canonical ensemble:

peq(n̂) =
1
Z

exp

[
− 1

T

(∑
α

ε̃α + E(n)

)]
. (122)

A typical behaviour of the conductance as a function of the gate voltage at
different temperatures is shown in Fig. 5. In the resonant tunneling regime at
low temperatures T � Δε the peak height is strongly temperature-dependent.
It is changed by classical temperature dependence (constant height) at T �
Δε.

(iv) Transport at finite bias voltage

At finite bias voltage we find new manifestations of the interplay between
single-electron tunneling and resonant free-particle tunneling.

Now, let us consider the current-voltage curve of the differential conduc-
tance (Fig. 7). First of all, Coulomb staircase is reproduced, which is more
pronounced, than for metallic islands, because the density of states is limited
by the available single-particle states and the current is saturated. Besides,
small additional steps due to discrete energy levels appear. This characteristic
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Fig. 7: Contour plot of the differential conductance.

behaviour is possible for large enough dots with Δε � EC . If the level spacing
is of the oder of the charging energy Δε ∼ EC , the Coulomb blockade steps
and discrete-level steps look the same, but their statistics (position and height
distribution) is determined by the details of the single-particle spectrum and
interactions [182].

Finally, let us consider the contour plot of the differential conductance
(Fig. 7). Ii is essentially different from those for the metallic island. First, it is
not symmetric in the gate voltage, because the energy spectrum is restricted
from the bottom, and at negative bias all the levels are above the Fermi-level
(the electron charge is negative, and a negative potential means a positive
energy shift). Nevertheless, existing stability patterns are of the same origin
and form the same structure. The qualitatively new features are additional
lines corresponding to the additional discrete-level steps in the voltage-current
curves. In general, the current and conductance of quantum dots demonstrate
all typical features of discrete-level systems: current steps, conductance peaks.
Without Coulomb interaction the usual picture of resonant tunneling is re-
produced. In the limit of dense energy spectrum Δε → 0 the sharp single-level
steps are merged into the smooth Coulomb staircase.

Vibrons and Franck-Condon blockade

(i) Linear vibrons

Vibrons are quantum local vibrations of nanosystems (Fig. 8), especially im-
portant in flexible molecules. In the linear regime the small displacements of
the system can be expressed as linear combinations of the coordinates of the
normal modes xq, which are described by a set of independent linear oscillators
with the Hamiltonian

Ĥ
(0)
V =

∑
q

(
p̂2
q

2mq
+

1
2
mqω

2
q x̂

2
q

)
. (123)
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The parameters mq are determined by the microscopic theory, and p̂q
(p̂q = −i� ∂

∂xq
in the x-representation) is the momentum conjugated to x̂q,

[x̂q, p̂q]− = i�.
Let us outline briefly a possible way to calculate the normal modes of

a molecule, and the relation between the positions of individual atoms and
collective variables. We assume, that the atomic configuration of a system is
determined mainly by the elastic forces, which are insensitive to the transport
electrons. The dynamics of this system is determined by the atomic Hamilto-
nian

Ĥat =
∑
n

P 2
n

2Mn
+W ({Rn}) , (124)

where W ({Rn}) is the elastic energy, which includes also the static exter-
nal forces and can be calculated by some ab initio method. Now define new
generalized variables qi with corresponding momentum pi (as the generalized
coordinates not only atomic positions, but also any other convenient degrees
of freedom can be considered, for example, molecular rotations, center-of-mass
motion, etc.)

Ĥat =
∑
i

p2
i

2mi
+W ({qi}) , (125)

”masses” mi should be considered as some parameters. The equilibrium co-
ordinates q0

i are defined from the energy minimum, the set of equations is

∂W
({q0

i }
)

∂qi
= 0. (126)

The equations for linear oscillations are obtained from the next order ex-
pansion in the deviations Δqi = qi − q0

i

Ĥat =
∑
i

p2
i

2mi
+
∑
ij

∂2W
({q0

j }
)

∂qi∂qj
ΔqiΔqj . (127)

ˆx
αε

βε
t α β

Fig. 8: A local molecular vibration. The empty circles show the equilibrium positions
of the atoms. The energies εα, εβ and the overlap integral tαβ are perturbed.
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This Hamiltonian describes a set of coupled oscillators. Finally, applying
the canonical transformation from Δqi to new variables xq (q is now the index
of independent modes)

xq =
∑
i

Cqiqi (128)

we derive the Hamiltonian (123) together with the frequencies ωq of vibra-
tional modes.

It is useful to introduce the creation and annihilation operators

a†q =
1√
2

(√
mqωq

�
x̂q +

i√
mqωq�

p̂q

)
, (129)

aq =
1√
2

(√
mqωq

�
x̂q − i√

mqωq�
p̂q

)
, (130)

in this representation the Hamiltonian of free vibrons is (� = 1)

Ĥ
(0)
V =

∑
q

ωqa
†
qaq. (131)

(ii) Electron-vibron Hamiltonian

A system without vibrons is described as before by a basis set of states |α〉
with energies εα and inter-state overlap integrals tαβ , the model Hamiltonian
of a noninteracting system is

Ĥ
(0)
S =

∑
α

(εα + eϕα(t)) d†αdα +
∑
α�=β

tαβd
†
αdβ , (132)

where d†α,dα are creation and annihilation operators in the states |α〉, and
ϕα(t) is the (self-consistent) electrical potential (108). The index α is used
to mark single-electron states (atomic orbitals) including the spin degree of
freedom.

To establish the Hamiltonian describing the interaction of electrons with
vibrons in nanosystems, we can start from the generalized Hamiltonian

ĤS =
∑
α

ε̃α ({xq}) d†αdα +
∑
α�=β

tαβ ({xq}) d†αdβ , (133)

where the parameters are some functions of the vibronic normal coordinates
xq. Note that we consider now only the electronic states, which were excluded
previously from the Hamiltonian (124), it is important to prevent double
counting.

Expanding to the first order near the equilibrium state we obtain

Ĥev =
∑
α

∑
q

∂ε̃α(0)
∂xq

xqd
†
αdα +

∑
α�=β

∑
q

∂tαβ(0)
∂xq

xqd
†
αdβ , (134)
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where ε̃α(0) and tαβ(0) are unperturbed values of the energy and the overlap
integral. In the quantum limit the normal coordinates should be treated as
operators, and in the second-quantized representation the interaction Hamil-
tonian is

Ĥev =
∑
αβ

∑
q

λqαβ(aq + a†q)d
†
αdβ . (135)

This Hamiltonian is similar to the usual electron-phonon Hamiltonian, but
the vibrations are like localized phonons and q is an index labeling them,
not the wave-vector. We include both diagonal coupling, which describes a
change of the electrostatic energy with the distance between atoms, and the
off-diagonal coupling, which describes the dependence of the matrix elements
tαβ over the distance between atoms.

The full Hamiltonian

Ĥ = Ĥ0
S + ĤV + ĤL + ĤR + ĤT (136)

is the sum of the noninteracting Hamiltonian Ĥ0
S , the Hamiltonians of the

leads ĤR(L), the tunneling Hamiltonian ĤT describing the system-to-lead cou-
pling, the vibron Hamiltonian ĤV including electron-vibron interaction and
coupling of vibrations to the environment (describing dissipation of vibrons).

Vibrons and the electron-vibron coupling are described by the Hamiltonian
(� = 1)

ĤV =
∑
q

ωqa
†
qaq +

∑
αβ

∑
q

λqαβ(aq + a†q)d
†
αdβ + Ĥenv. (137)

The first term represents free vibrons with the energy �ωq. The second term
is the electron-vibron interaction. The rest part Ĥenv describes dissipation of
vibrons due to interaction with other degrees of freedom, we do not consider
the details in this chapter.

The Hamiltonians of the right (R) and left (L) leads read as usual

L R
0εLΓ RΓ

0ω

Fig. 9: Single-level electron-vibron model.
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Ĥi=L(R) =
∑
kσ

(εikσ + eϕi)c
†
ikσcikσ, (138)

ϕi are the electrical potentials of the leads. Finally, the tunneling Hamiltonian

ĤT =
∑
i=L,R

∑
kσ,α

(
Vikσ,αc

†
ikσdα + V ∗ikσ,αd

†
αcikσ

)
(139)

describes the hopping between the leads and the molecule. A direct hopping
between two leads is neglected.

The simplest example of the considered model is a single-level model
(Fig. 9) with the Hamiltonian

Ĥ = ε̃0d
†d+ ω0a

†a+ λ
(
a† + a

)
d†d+

∑
ik

[
ε̃ikc

†
ikcik + Vikc

†
ikd+ h.c.

]
, (140)

where the first and the second terms describe free electron state and free vi-
bron, the third term is electron-vibron interaction, and the rest is the Hamil-
tonian of the leads and tunneling coupling (i = L,R is the lead index).

The other important case is a center-of-mass motion of molecules between
the leads (Fig. 10). Here not the internal overlap integrals, but the coupling to
the leads Vikσ,α(x) is fluctuating. This model is easily reduced to the general
model (137), if we consider additionaly two not flexible states in the left and
right leads (two atoms most close to a system), to which the central system
is coupled (shown by the dotted circles).

The tunneling Hamiltonian includes x-dependent matrix elements, consid-
ered in linear approximation

HT =
∑
i=L,R

∑
kσ,α

(
Vikσ,α(x̂)c

†
ikσdα + h.c.

)
, (141)

L R
0ε

( )L xΓ ( )R xΓ

0ω

E

x0

Fig. 10: A center-of-mass vibration.
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VL,R(x) = V0e
∓x̂/L ≈ V0

(
1∓ x̂

L

)
. (142)

Consider now a single-level molecule (α ≡ 0) and extend our system,
including two additional states from the left (α ≡ l) and right (α ≡ r) sides
of a molecule, which are coupled to the central state through x-dependent
matrix elements, and to the leads in a usual way through ΓL(R). Then the
Hamiltonian is of linear electron-vibron type

ĤM+V =
∑
α=l,0,r

(εα + eϕα) d†αdα + tl(d
†
l d0 + h.c.) + tr(d†rd0 + h.c.)+

+ ω0a
†a+ (a+ a†)

(
λ0d

†
0d0 − λl(d

†
l d0 + h.c.) + λr(d†rd0 + h.c.)

)
.

(143)

(iii) Local polaron and canonical transformation

Now let us start to consider the situation, when the electron-vibron interaction
is strong. For an isolated system with the Hamiltonian, including only diagonal
terms,

ĤS+V =
∑
α

ε̃αd
†
αdα +

∑
q

ωqa
†
qaq +

∑
α

∑
q

λqα(aq + a†q)d
†
αdα, (144)

the problem can be solved exactly. This solution, as well as the method of the
solution (canonical transformation), plays an important role in the theory of
electron-vibron systems, and we consider it in detail.

Let’s start from the simplest case. The single-level electron-vibron model
is described by the Hamiltonian

ĤS+V = ε̃0d
†d+ ω0a

†a+ λ
(
a† + a

)
d†d, (145)

where the first and the second terms describe free electron state and free
vibron, and the third term is the electron-vibron interaction.

This Hamiltonian is diagonalized by the canonical transformation (called
”Lang-Firsov” or ”polaron”) [95–97]

H̄ = Ŝ−1ĤŜ, (146)

with

Ŝ = exp
[
− λ

ω0

(
a† − a

)
d†d
]
, (147)

the Hamiltonian (145) is transformed as

H̄S+V = Ŝ−1ĤS+V Ŝ = ε̃0d̄
†d̄+ ω0ā

†ā+ λ
(
ā† + ā

)
d̄†d̄, (148)

it has the same form as (145) with new operators, it is a trivial consequence
of the general property
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Ŝ−1
(
f̂1f̂2f̂3...

)
Ŝ = (Ŝ−1f̂1Ŝ)(Ŝ−1f̂2Ŝ)(Ŝ−1f̂3Ŝ)... = f̄1f̄2f̄3... (149)

and new single-particle operators are

ā = Ŝ−1aŜ = a− λ
ω0

d†d, (150)

ā† = Ŝ−1a†Ŝ = a† − λ
ω0

d†d, (151)

d̄ = Ŝ−1dŜ = exp
[
− λ
ω0

(
a† − a

)]
d, (152)

d̄† = Ŝ−1d†Ŝ = exp
[
λ
ω0

(
a† − a

)]
d†. (153)

Substituting these expressions into (148) we get finally

H̄S+V =
(
ε̃0 − λ2

ω0

)
d†d+ ω0a

†a. (154)

We see that the electron-vibron Hamiltonian (145) is equivalent to the free-
particle Hamiltonian (154). This equivalence means that any quantum state
|ψ̄λ〉, obtained as a solution of the Hamiltonian (154) is one-to-one equivalent
to the state |ψλ〉 as a solution of the initial Hamiltonian (145), with the same
matrix elements for any operator

〈ψ̄λ|f̄ |ψ̄λ〉 = 〈ψλ|f̂ |ψλ〉, (155)

f̄ = Ŝ−1f̂ Ŝ, (156)

|ψ̄λ〉 = Ŝ−1|ψλ〉. (157)

It follows immediately that the eigenstates of the free-particle Hamiltonian
are

|ψ̄nm〉 = |n = 0, 1;m = 0, 1, 2, ...〉 = (d†)n
(a†)m√

m!
|0〉, (158)

and the eigen-energies are

E(n,m) =
(
ε̃0 − λ2

ω0

)
n+ ω0m. (159)

The eigenstates of the initial Hamiltonian (145) are

|ψnm〉 = Ŝ|ψ̄nm〉 = e−
λ

ω0
(a†−a)d†d(d†)n

(a†)m√
m!

|0〉, (160)

with the same quantum numbers (n,m) and the same energies (159). This
representation of the eigenstates demonstrates clearly the collective nature of
the excitations, but it is inconvenient for practical calculations.

Now let us consider the polaron transformation (146)-(147) applied to the
tunneling Hamiltonian
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ĤT =
∑
i=L,R

∑
kσ

(
Vikσc

†
ikσd+ V ∗ikσd

†cikσ
)

(161)

The electron operators in the left and right leads cikσ are not changed by this
operation, but the dot operators dα, d†α are changed in accordance with (152)
and (153). So that transformed Hamiltonian is

H̄T =
∑
i=L,R

∑
kσ

(
Vikσe

− λ
ω0
(a†−a)c†ikσd+ V ∗ikσe

λ
ω0
(a†−a)d†cikσ

)
. (162)

Now we see clear the problem: while the new dot Hamiltonian (154) is
very simple and exactly solvable, the new tunneling Hamiltonian (162) is
complicated. Moreover, instead of one linear electron-vibron interaction term,
the exponent in (162) produces all powers of vibronic operators. Actually, we
simply remove the complexity from one place to the other. This approach
works well, if the tunneling can be considered as a perturbation, we consider
it in the next section. In the general case the problem is quite difficult, but in
the single-particle approximation it can be solved exactly [98–101].

To conclude, after the canonical transformation we have two equivalent
models: (1) the initial model (145) with the eigenstates (160); and (2) the
fictional free-particle model (154) with the eigenstates (158). We shall call
this second model polaron representation. The relation between the models is
established by (155)-(157). It is also clear from the Hamiltonian (148), that
the operators d̄†, d̄, ā†, and ā describe the initial electrons and vibrons in the
fictional model.

(iv) Inelastic tunneling in the single-particle approximation

In this section we consider a special case of a single particle transmission
through an electron-vibron system. It means that we consider a system cou-
pled to the leads, but without electrons in the leads. This can be considered
equivalently as the limit of large electron level energy ε0 (far from the Fermi
surface in the leads).

The inelastic transmission matrix T (ε′, ε) describes the probability that an
electron with energy ε, incident from one lead, is transmitted with the energy
ε′ into a second lead. The transmission function can be defined as the total
transmission probability

T (ε) =
∫

T (ε′, ε)dε′. (163)

For a noninteracting single-level system the transmission matrix is

T 0(ε′, ε) =
ΓR(ε)ΓL(ε)δ(ε− ε′)

(ε− ε0 − Λ(ε))2 + (Γ (ε)/2)2
, (164)

where Γ (ε) = ΓL(ε) + ΓR(ε) is the level-width function, and Λ(ε) is the real
part of the self-energy.
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Fig. 11: Transmission function as a function of energy at different electron-vibron
coupling: g = 0.1 (thin solid line), g = 1 (dashed line), and g = 3 (thick solid line),
at Γ = 0.1.

We can do some general conclusions, based on the form of the tunneling
Hamiltonian (162). Expanding the exponent in the same way as before, we
get

H̄T =
∑
i=L,R

∑
kσ

(
Vikσc

†
ikσd

[
α0 +

∞∑
m=1

αm
(
(a†)m + am

)]
+ h.c.

)
, (165)

with the coefficients

αm =
(
− λ

ω0

)m
e−(λ/ω0)

2/2

m!
. (166)

This complex Hamiltonian has very clear interpretation, the tunneling of one
electron from the right to the left lead is accompanied by the excitation of
vibrons. The energy conservation implies that

ε− ε′ = ±mω0, (167)

so that the inelastic tunneling with emission or absorption of vibrons is pos-
sible.

The exact solution is possible in the wide-band limit. [98–101]
It is convenient to introduce the dimensionless electron-vibron coupling

constant, known as the Huang-Rhys factor,

g =
(

λ

ω0

)2

. (168)

At zero temperature the solution is
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Fig. 12: Transmission function as a function of energy at different coupling to the
leads: Γ = 0.01 (thin solid line), Γ = 0.1 (dashed line), and Γ = 1 (thick solid line),
at g = 3.

T (ε′, ε) = ΓLΓRe
−2g

∞∑
m=0

gm

m!
δ(ε− ε′ −mω0)

×
∣∣∣∣∣∣
m∑
j=0

(−1)j
m!

j!(m− j)!

∞∑
l=0

gl

l!
1

ε− ε0 + gω0 − (j + l)ω0 + iΓ/2

∣∣∣∣∣∣
2

, (169)

the total transmission function T (ε) is trivially obtain by integration over ε′.
The representative results are presented in Figs. 11 and 12.

At finite temperature the general expression is too cumbersome, and we
present here only the expression for the total transmission function

T (ε) =
ΓLΓR
Γ

e−g(1 + 2nω)
∫ ∞
−∞

dt

× exp
(
−Γ

2
|t|+ i(ε− ε0 + gω0)t− g

[
(1 + nω)e−iω0t + nωe

iω0t
])

, (170)

where nω is the equilibrium number of vibrons.

(v) Master equation

When the system is weakly coupled to the leads, the polaron representation
(154), (162) is a convenient starting point. Here we consider how the sequential
tunneling is modified by vibrons.

The master equation for the probability p(n,m, t) to find the system in
one of the polaron eigenstates (158) can be written as

dp(n,m)
dt

=
∑
n′m′

Γnn
′

mm′p(n′,m′)−
∑
n′m′

Γn
′n
m′mp(n,m) + IV [p], (171)
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where the first term describes tunneling transition into the state |n,m〉, and
the second term – tunneling transition out of the state |n,m〉, IV [p] is the
vibron scattering integral describing the relaxation to equilibrium. The tran-
sition rates Γnn

′
mm′ should be found from the Hamiltonian (162).

Taking into account all possible single-electron tunneling processes, we
obtain the incoming tunneling rate

Γ 10
mm′ =

2π
�

∑
ikσ

f0
i (Eikσ)

∣∣〈ik̄, 1,m ∣∣H̄T ∣∣ ik, 0,m′〉∣∣2 δ(E0m′ + Eikσ − E1m)

=
2π
�

∑
ikσ

f0
i (Eikσ) |Vikσ|2

∣∣∣〈m ∣∣∣e λ
ω0
(a†−a)

∣∣∣m′〉∣∣∣2 δ(E0m′ + Eikσ − E1m)

=
∑
i=L,R

Γi(E1m − E0m′) |Mmm′ |2 f0
i (E1m − E0m′), (172)

where
Mmm′ =

〈
m
∣∣∣e λ

ω0
(a†−a)

∣∣∣m′〉 (173)

is the Franck-Condon matrix element. We use usual short-hand notations:
|ik, n,m〉 is the state with occupied k-state in the i−th lead, n electrons, and
m vibrons, while |ik̄, n,m〉 is the state with unoccupied k-state in the i−th
lead, Enm is the polaron energy (159).

Similarly, the outgoing rate is

Γ 01
mm′ =

∑
i=L,R

Γi(E1m′ − E0m) |Mmm′ |2 (1− f0
i (E1m′ − E0m)

)
. (174)

The current (from the left or right lead to the system) is

Ji=L,R(t) = e
∑
mm′

(
Γ 10
imm′p(0,m′)− Γ 01

imm′p(1,m′)
)
. (175)

The system of equations (171)-(175) solves the transport problem in the
sequential tunneling regime.

(v) Franck-Condon blockade

Now let us consider some details of the tunneling at small and large values of

the electro-vibron coupling parameter g =
(
λ
ω0

)2

.
The matrix element (173) can be calculated analytically, it is symmetric

in m−m′ and for m < m′ is

Mm<m′ =
m∑
l=0

(−g)l
√
m!m′!e−g/2g(m′−m)/2

l!(m− l)!(l +m′ −m)!
. (176)

The lowest order elements are
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0 5 1 0 1 5 2 0

m
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

M
0m

Fig. 13: Franck-Condon matrix elements M0m for weak (g = 0.1, squares), inter-
mediate (g = 1, triangles), and strong (g = 10, circles) electron-vibron interaction.
Lines are the guides for eyes.

M0m = e−g/2
gm/2√

m!
, (177)

M11 = (1− g)e−g/2, (178)

M12 =
√
2g
(
1− g

2

)
e−g/2... (179)

The characteristic feature of these matrix elements is so-called Franck-
Condon blockade [107,108], illustrated in Fig. 13 for the matrix element M0m.
From the picture, as well as from the analytical formulas, it is clear, that in
the case of strong electron-vibron interaction the tunneling with small change
of the vibron quantum number is suppressed exponentially, and only the tun-
neling through high-energy states is possible, which is also suppressed at low
bias voltage and low temperature. Thus, the electron transport through a
system (linear conductance) is very small.

There are several interesting manifestations of the Franck-Condon block-
ade.

The life-time of the state |n,m〉 is determined by the sum of the rates of
all possible processes which change this state in the assumption that all other
states are empty

τ−1
nm =

∑
n′m′

Γn
′n
m′m. (180)

As an example, let us calculate the life-time of the neutral state |0, 0〉,
which has the energy higher than the charged ground state |1, 0〉.

τ−1
00 =

∑
n′m′

Γn
′0
m′0 =

∑
m

∑
i=L,R

Γi(E1m − E00) |Mm0|2 f0
i (E1m − E00). (181)

In the wide-band limit we obtain the simple analytical expression
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Fig. 14: The inverse life-time (τΓ )−1 as a function of λ/ω0 at optimal electron level
position ε0 = λ2/2ω0 for neutral state (thin solid line), and for the charged state
(dashed line), and for the neutral state at other level position ε0 = λ2/4ω0 (thick
solid line).

τ−1
00 = Γ

∑
m

e−g
gm

m!
f0

(
ε̃0 − λ2

ω0
+ ω0m

)
. (182)

The corresponding expression for the life-time of the charged state (which can
be excited by thermal fluctuations) is

τ−1
10 = Γ

∑
m

e−g
gm

m!
f0

(
−ε̃0 +

λ2

ω0
+ ω0m

)
. (183)

The result of the calculation is shown in Fig. 14, it is clear seen that the
tunneling from the state |0, 0〉 to the charged state and from the state |1, 0〉
to the neutral state is exponentially suppressed in comparison with the bare
tunneling rate Γ at large values of the electron-vibron interaction constant
λ. This polaron memory effect can be used to create nano-memory and nano-
switches. At finite voltage the switching between two states is easy accessible
through the excited vibron states. It can be used to switch between memory
states [112].

The other direct manifestation of the Franck-Condon blockade, – suppres-
sion of the linear conductance, was considered in Refs. [107,108].

3 Nonequilibrium Green function theory of transport

3.1 Standard transport model: a nanosystem between ideal leads

First of all, we formulate a standard discrete-level model to describe nanoscale
interacting quantum systems (quantum dot, system of quantum dots, molecule,
below ”nanosystem”, ”central system”, or simply ”system”) coupled to free
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conduction electrons in the leads. We include the Coulomb interaction with
the help of the Anderson-Hubbard Hamiltonan to be able to describe cor-
relation effects, such as Coulomb blockade and Kondo effect, which could
dominate at low temperatures. At high temperatures or weak interaction
the self-consistent mean-field effects are well reproduced by the same model.
Furthermore, electrons are coupled to vibrational modes, below we use the
electron-vibron model introduced previously.

(i) The model Hamiltonian

The full Hamiltonian is the sum of the free system Hamiltonian Ĥ
(0)
S , the inter-

system electron-electron interaction Hamiltonian ĤC , the vibron Hamiltonian
ĤV including the electron-vibron interaction and coupling of vibrations to the
environment (dissipation of vibrons), the Hamiltonians of the leads ĤR(L), and
the tunneling Hamiltonian ĤT describing the system-to-lead coupling

Ĥ = ĤS + ĤC + ĤV + ĤL + ĤR + ĤT . (184)

An isolated noninteracting nanosystem is described as a set of discrete
states |α〉 with energies εα and inter-orbital overlap integrals tαβ by the fol-
lowing model Hamiltonian:

Ĥ
(0)
S =

∑
α

(εα + eϕα(t)) d†αdα +
∑
α�=β

tαβd
†
αdβ , (185)

where d†α,dα are creation and annihilation operators in the states |α〉, and
ϕα(t) is the effective (self-consistent) electrical potential. The index α is used
to mark single-electron states (e.g. atomic orbitals) including the spin degree
of freedom. In the eigenstate (molecular orbital) representation the second
term is absent and the Hamiltonian is diagonal.

For molecular transport the parameters of a model are to be determined
by ab initio methods or considered as semi-empirical. This is a compromise,
which allows us to consider complex molecules with a relatively simple model.

The Hamiltonians of the right (R) and left (L) leads are

Ĥi=L(R) =
∑
kσ

(εikσ + eϕi(t))c
†
ikσcikσ, (186)

ϕi(t) are the electrical potentials of the leads, the index k is the wave vector,
but can be considered as representing an other conserved quantum number,
σ is the spin index, but can be considered as a generalized channel number,
describing e.g. different bands or subbands in semiconductors. Alternatively,
the tight-binding model can be used also for the leads, then (186) should be
considered as a result of the Fourier transformation. The leads are assumed
to be noninteracting and equilibrium.

The tunneling Hamiltonian
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ĤT =
∑
i=L,R

∑
kσ,α

(
Vikσ,αc

†
ikσdα + V ∗ikσ,αd

†
αcikσ

)
(187)

describes the hopping between the leads and the system. The direct hop-
ping between two leads is neglected (relatively weak molecule-to-lead cou-
pling case). Note, that the direct hoping between equilibrium leads can be
easy taken into account as an additional independent current channel.

The Coulomb interaction inside a system is described by the Anderson-
Hubbard Hamiltonian

ĤC =
1
2

∑
α�=β

Uαβn̂αn̂β . (188)

This Hamiltonian is used usually only for the short-range part of Coulomb
interaction. The long-range interactions can be better introduced through the
self-consistent electrical potential ϕα, which is determined by the Poisson
equation with the average electron density.

Vibrations and the electron-vibron coupling are described by the Hamil-
tonian

ĤV =
∑
q

�ωqa
†
qaq +

∑
αβ

∑
q

λqαβ(aq + a†q)d
†
αdβ + Ĥe. (189)

Here vibrations are considered as localized phonons and q is the index labeling
them, not the wave-vector. The first term describes free vibrons with the
energy �ωq. The second term represents the electron-vibron interaction. The
third term describes the coupling to the environment and the dissipation of
vibrons. We include both diagonal coupling, which originates from a change of
the electrostatic energy with the distance between atoms, and the off-diagonal
coupling, which can be obtained from the dependence of the matrix elements
tαβ over the distance between atoms.

(ii) Nonequilibrium current and charge

To connect the microscopic description of a system with the macroscopic (elec-
trodynamic) equations and calculate the observables, we need the expressions
for the nonequilibrium electrical charge of the system and the current between
the system and the leads.

The charge in a nonequilibrium state is given by (Q0 is the background
charge)

QS(t) = e
∑
α

〈
d†αdα

〉−Q0. (190)

To calculate the current we find the time evolution of the particle number
operator N̂S =

∑
α d†αdα due to tunneling from the left (i = L) or right (i = R)

contact.
The current from the left (i = L) or right (i = R) contact to the nanosys-

tem is determined by (note, that we consider e as the charge of the electron
(negative) or the hole (positive))
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Ji(t) = −e

〈(
dNS
dt

)
i

〉
= − ie

�

〈
[H(i)
T , NS ]

〉
, (191)

where
H

(i)
T =

∑
kσ,α

(
Vikσ,αc

†
ikσdα + V ∗ikσ,αd

†
αcikσ

)
(192)

is the Hamiltonian of the coupling to the corresponding contact. The current
is determined by this only part of the full Hamiltonian (136), because all other
terms commute with N̂S .

Applying the commutation relation[
dα, d

†
βdβ

]
= dαd

†
βdβ − d†βdβdα =dαd

†
βdβ + d†βdαdβ =

(dαd
†
β + δαβ − dαd

†
β)dβ = δαβdα, (193)

one obtains finally

Ji(t) =
ie

�

∑
kσ,α

[
Vikσ,α

〈
c†ikσdα

〉
− V ∗ikσ,α

〈
d†αcikσ

〉]
. (194)

(iii) Density matrix and NGF

The averages of the operators in Eqs. (190) and (194) are the elements of the
density matrix in the single-particle space

ραα(t) =
〈
d†α(t)dα(t)

〉
, (195)

ρα,ikσ(t) =
〈
c†ikσ(t)dα(t)

〉
. (196)

It is possible, also, to express it as a two-time Green function at equal
times

QS(t) = e
∑
α

ραα(t) = −ie
∑
α

G<αα(t, t), (197)

Ji(t) =
2e
�
Im

⎛⎝∑
kσ,α

Vikσ,αρα,ikσ(t)

⎞⎠ =
2e
�
Re

⎛⎝∑
kσ,α

Vikσ,αG
<
α,ikσ(t, t)

⎞⎠ ,

(198)

where we define the system-to-lead lesser Green function

G<α,ikσ(t1, t2) = i
〈
c†ikσ(t2)dα(t1)

〉
, (199)

while nonequilibrium charge distribution of the molecule is determined by the
system lesser function

G<αβ(t1, t2) = i
〈
d†β(t2)dα(t1)

〉
. (200)
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One can ask: what is the advantage to use the more complex two-time
Green functions instead of density matrices? There are several reasons. First of
all, NGF give, as we shall see below, a clear description of both density of states
and distribution of particles over this states. Then, the equations of motion
including interactions and the influence of environment can be obtained with
the help of a diagrammatic technique, and (very important) all diagrammatic
results of equilibrium theory can be easily incorporated. Retardation effects
are conveniently taken into account by two-time Green functions. And, ...
finally, one can always go back to the density matrix when necessary.

It is important to note, that the single-particle density matrix (195) should
not be mixed up with the density matrix in the basis ofmany-body eigenstates.

In these review we consider different methods. The density matrix can be
determined from the master equation. For Green functions the EOM method
or Keldysh method can be applied. Traditionally, the density matrix is used
in the case of very weak system-to-lead coupling, while the NGF methods are
more successful in the description of strong and intermediate coupling to the
leads. The convenience of one or other method is determined essentially by the
type of interaction. Our aim is to combine the advantages of both methods.

3.2 Nonequilibrium Green functions: definition and properties

In the previous section we found, that the current through a system (as well
as other observables) can be expressed through nonequilibrium Green func-
tions. Here we give the definitions of retarded, advanced, lesser, and greater
Green functions and consider some simple examples. We also introduce a very
important concept of the Schwinger-Keldysh closed-time contour, and define
contour Green functions. This section is a little bit technical, but we need
these definitions in the next sections.

Spectral - retarded (GR) and advanced (GA) functions

(i) Definition

Retarded Green function for fermions is defined as

GRαβ(t1, t2) = −iθ(t1 − t2)
〈[

cα(t1), c
†
β(t2)

]
+

〉
, (201)

where c†α(t), cα(t) are creation and annihilation time-dependent (Heisenberg)
operators, [c, d]+ = cd + dc is the anti-commutator, 〈...〉 denotes averaging
over equilibrium state.

We use notations α, β, ... to denote single-particle quantum states, the
other possible notation is more convenient for bulk systems

GR(x1, x2) = −iθ(t1 − t2)
〈[

c(x1), c†(x2)
]
+

〉
, (202)
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where x ≡ r, t, σ, ... or x ≡ k, t, σ, ..., etc. Some other types of notations can
be found in the literature, they are equivalent to (201).

The advanced function for fermions is defined as

GAαβ(t1, t2) = iθ(t2 − t1)
〈[

cα(t1), c
†
β(t2)

]
+

〉
. (203)

Finally, retarded and advanced functions for bosons can be defined as

G̃Rαβ(t1, t2) = −iθ(t1 − t2)
〈[

aα(t1), a
†
β(t2)

]
−

〉
, (204)

G̃Aαβ(t1, t2) = iθ(t2 − t1)
〈[

aα(t1), a
†
β(t2)

]
−

〉
, (205)

where a†α(t), aα(t) are creation and annihilation boson operators, [a, b]− =
ab− ba is the commutator.

(ii) Discussion of averaging

The average value of any operator Ô can be written as 〈Ô〉 = 〈t|ÔS |t〉 in
the Schrödinger representation or 〈Ô〉 = 〈0|ÔH(t)|0〉 in the Heisenberg rep-
resentation, where |0〉 is some initial state. This initial state is in principle
arbitrary, but in many-particle problems it is convenient to take this state as
an equilibrium state, consequently without time-dependent perturbation we
obtain usual equilibrium Green functions.

In accordance with this definition the Heisenberg operators cα(t), c†β(t),
etc. are equal to the time-independent Schrödinger operators at some initial
time t0: cα(t0) = cα, etc. Density matrix of the system is assumed to be
equilibrium at this time ρ̂(t0) = ρ̂eq. Usually we can take t0 = 0 for simplicity,
but if we want to use t0 �= 0 the transformation to Heisenberg operators should
be written as

f̂H(t) = eiĤ(t−t0)f̂Se−iĤ(t−t0). (206)

In fact, the initial conditions are not important because of dissipation
(the memory about the initial state is completely lost after the relaxation
time). However, in some pathological cases, for example for free noninteracting
particles, the initial state determines the state at all times. Note also, that the
initial conditions can be more convenient formulated for Green functions itself,
instead of corresponding initial conditions for operators or wave functions.

Nevertheless, thermal averaging is widely used and we define it here explic-
itly. If we introduce the basis of exact time-independent many-particle states
|n〉 with energies En, the averaging over equilibrium state can be written as

〈Ô〉 = 1
Z

∑
n

e−En/T
〈
n
∣∣∣ÔH(t)∣∣∣n〉 , Z =

∑
n

e−En/T . (207)
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In the following when we use notations like
〈
Ô
〉
or
〈
Ψ
∣∣∣Ô(t)

∣∣∣Ψ〉, we as-
sume the averaging with density matrix (density operator) ρ̂〈

Ô
〉
= Sp

(
ρ̂Ô
)
, (208)

for equilibrium density matrix and Heisenberg operators it is equivalent to
(207).

(iii) Free-particle retarded function for fermions

Now consider the simplest possible example – retarded Green function for free
particles (fermions).

The free-particle Hamiltonian has equivalent form if one uses Schrödinger
or Heisenberg operators

Ĥ =
∑
α

εαc
†
αcα =

∑
α

εαc
†
α(t)cα(t), (209)

because (here we assume t0 = 0)

c†α(t)cα(t) = eiĤtc†αe
−iĤteiĤtcαe−iĤt

= eiĤtc†αcαe
−iĤt = c†αcα, (210)

where we used that c†αcα is commutative with the Hamiltonian Ĥ =
∑
α εαc

†
αcα.

From the definitions (201) and (207)〈[
cα(t1), c

†
β(t2)

]
+

〉
=
〈
cα(t1)c

†
β(t2) + c†β(t2)cα(t1)

〉
=
〈
eiĤt1cα(t1)e−iĤt1eiĤt2c

†
β(t2)e

−iĤt2 + eiĤt2c†β(t2)e
−iĤt2eiĤt1cα(t1)e−iĤt1

〉
= eiεβt2−iεαt1

〈
cαc

†
β + c†βcα

〉
= e−iεα(t1−t2)δαβ , (211)

GRαβ(t1, t2) = −iθ(t1 − t2)
〈[

cα(t1), c
†
β(t2)

]
+

〉
= −iθ(t1 − t2)e−iεα(t1−t2)δαβ , (212)

where we used some obvious properties of the creation and annihilation oper-
ators and commutation relations.

We consider also the other method, based on the equations of motion for
operators. From Liouville – von Neumann equation we find (all c-operators
are Heisenberg operators in the formula below, (t) is omitted for shortness)
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i
dcα(t)

dt
=[cα(t), H]−=

∑
β

εβ

[
cα, c

†
βcβ

]
−

=
∑
β

εβ

(
cαc

†
βcβ − c†βcβcα

)
=
∑
β

εβ

(
cαc

†
βcβ + c†βcαcβ

)
=
∑
β

εβ

(
cαc

†
β + c†βcα

)
cβ=

∑
β

εβδαβcβ=εαcα(t), (213)

so that Heisenberg operators for free fermions are

cα(t) = e−iεαtcα(0), c†α(t) = eiεαtc†α(0). (214)

Substituting these expressions into (201) we obtain again (212). Note also
that if we take t0 �= 0, then Heisenberg operators for free fermions are

cα(t) = e−iεα(t−t0)cα(t0), c†α(t) = eiεα(t−t0)c†α(t0), (215)

but the result for the Green functions is just the same, because〈[
cα(t1), c

†
β(t2)

]
+

〉
=
〈
cα(t1)c

†
β(t2) + c†β(t2)cα(t1)

〉
=

= eiεβ(t2−t0)−iεα(t1−t0)
〈
cαc

†
β + c†βcα

〉
= e−iεα(t1−t2)δαβ . (216)

It is interesting to make a Fourier-transform of this function. In equilibrium
two-time function GRαβ(t1, t2) is a function of the time difference only, so that
we define transform over time difference (t1 − t2)

GR(ε) =
∫ ∞

0

GR(t1 − t2)ei(ε+i0)(t1−t2)d(t1 − t2), (217)

we add infinitely small positive complex part to ε to make this integral well
defined in the upper limit (this is necessary for free particles without dissi-
pation because function (212) oscillates at large times τ = t1 − t2 and the
integral (217) can not be calculated without i0 term. Then we obtain

GRαβ(ε) =
δαβ

ε− εα + i0
. (218)

More generally, transformation (217) can be considered as the Laplace
transformation with complex argument z = ε+ iη.

For advanced function

GAαβ(t1, t2) = iθ(t2 − t1)e−iεα(t1−t2)δαβ , (219)

the Fourier transform is given by

GA(ε) =
∫ 0

−∞
GA(t1 − t2)ei(ε−i0)(t1−t2)d(t1 − t2), (220)

with other sign of the term i0.
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(iv) Spectral function

Finally, we introduce the important combination of retarded and advanced
functions known as spectral or spectral weight function

Aαβ(ε) = i
(
GRαβ(ε)−GAαβ(ε)

)
, (221)

in equilibrium case Fourier-transformed retarded and advanced functions are
complex conjugate GA(ε) =

(
GR(ε)

)∗, and Aαβ(ε) = −2ImGRαβ(ε).
For free fermions the spectral function is

Aαβ(ε) = −2Im
(

δαβ
ε− εα + i0

)
= 2πδ(ε− εα)δαβ . (222)

The result is transparent – the function Aαβ(ε) is nonzero only at particle
eigen-energies, so that

ρ(ε) =
1
2π

SpAαβ(ε) =
1
2π

∑
α

Aαα(ε) =
∑
α

δ(ε− εα) (223)

is the usual energy density of states. Note that the imaginary part i0 is neces-
sary to obtain this result, thus it is not only mathematical trick, but reflects
the physical sense of a retarded Green function.

If we introduce finite relaxation time

GRαβ(τ) = −iθ(τ)e−iεατ−γτδαβ , (224)

then the spectral function has familiar Lorentzian form

Aαβ(ε) =
2γδαβ

(ε− εα)2 + γ2
. (225)

Finally, spectral function has a special property, so-called sum rule, namely∫ ∞
−∞

Aαβ(ε)
dε

2π
= δαβ . (226)

Kinetic - lesser (G<) and greater (G>) functions

(i) Definition

Spectral functions, described before, determine single-particle properties of
the system, such as quasiparticle energy, broadening of the levels (life-time),
and density of states. These functions can be modified in nonequilibrium state,
but most important kinetic properties, such as distribution function, charge,
and current, are determined by lesser Green function

G<αβ(t1, t2) = i
〈
c†β(t2)cα(t1)

〉
. (227)
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Indeed, the density matrix is the same as equal-time lesser function

ραβ(t) =
〈
c†β(t)cα(t)

〉
= −iG<αβ(t, t). (228)

the number of particles in state |α〉 (distribution function) is

nα(t) =
〈
c†α(t)cα(t)

〉
= −iG<αα(t, t), (229)

the tunneling current is

J(t) =
ie

�

∑
kq

[
Vqk
〈
c†q(t)ck(t)

〉− V ∗qk
〈
c†k(t)cq(t)

〉]

=
2e
�
Re

⎛⎝∑
kq

VqkG
<
kq(t, t)

⎞⎠ . (230)

In addition to the lesser the other (greater) function is used

G>αβ(t1, t2) = −i
〈
cα(t1)c

†
β(t2)

〉
. (231)

For bosons lesser and greater functions are defined as

G̃<αβ(t1, t2) = −i
〈
a†β(t2)aα(t1)

〉
, (232)

G̃>αβ(t1, t2) = −i
〈
aα(t1)a

†
β(t2)

〉
. (233)

The name ”lesser” originates from the time-ordered Green function, the
main function in equilibrium theory, which can be calculated by diagrammatic
technique

Gαβ(t1, t2) = −i
〈
T
(
cα(t1)c

†
β(t2)

)〉
, (234)

Gαβ(t1, t2) =

⎧⎪⎨⎪⎩
−i
〈
cα(t1)c

†
β(t2)

〉
if t1 > t2 ⇒ Gαβ ≡ G>αβ ,

i
〈
c†β(t2)cα(t1)

〉
if t1 < t2 ⇒ Gαβ ≡ G<αβ ,

(235)

here additional sing minus appears for interchanging of fermionic creation-
annihilation operators. Lesser means that t1 < t2.

From the definitions it is clear that the retarded function can be combined
from lesser and greater functions

GRαβ(t1, t2) = θ(t1 − t2)
[
G>αβ(t1, t2)−G<αβ(t1, t2)

]
. (236)
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(ii) Free-particle lesser function for fermions

Now let us consider again free fermions. Heisenberg operators for free fermions
are (t0 = 0)

cα(t) = e−iεαtcα(0), c†α(t) = eiεαtc†α(0). (237)

Lesser function is

G<αβ(t1, t2) =i
〈
c†β(t2)cα(t1)

〉
= ieiεβt2−iεαt1

〈
c†βcα

〉
= ie−iεα(t1−t2)f0(εα)δαβ , (238)

one sees that contrary to the retarded function, the lesser function is propor-
tional to the distribution function, in equilibrium this is Fermi distribution
function

f0(ε) =
1

e
ε−μ

T + 1
. (239)

It is interesting to compare this answer with the result for nonthermal
initial conditions. Assume that initial state is described by the density matrix
ρ0
αβ =

〈
c†βcα

〉
, now with nonzero off-diagonal elements. Time dependence of

the density matrix is given by

ραβ(t) = ei(εβ−εα)tρ0
αβ . (240)

We obtain the well known result that off-diagonal elements oscillate in time.
Now define Fourier-transform for lesser function (τ = t1 − t2)

G<(ε) =
∫ ∞
−∞

G<(τ)ei[ε+i0sign(τ)]τdτ, (241)

note that here we use Fourier-transform with complicated term i0sign(τ),
which makes this transformation consistent with previously introduced trans-
formations (217) for retarded (τ > 0) and (220) advanced (τ < 0) functions.

Applying this transformation to (238) we obtain

G<αβ(ε) =if0(εα)δαβ
∫ ∞
−∞

e+i[ε−εα+i0sign(τ)]τdτ

= 2πif0(εα)δ(ε− εα)δαβ . (242)

For free fermion greater functions one obtains

G>αβ(t1, t2) = −ie−iεα(t1−t2)(1− f0(εα))δαβ , (243)

G>αβ(ε) = −2πi(1− f0(εα))δ(ε− εα)δαβ . (244)
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(iii) Equilibrium case. Fluctuation-dissipation theorem

Now we want to consider some general properties of interacting systems. In
equilibrium the lesser function is not independent and is simply related to the
spectral function by the relation

G<αβ(ε) = iAαβ(ε)f0(ε). (245)

This relation is important because establish equilibrium initial condition for
nonequilibrium lesser function, and propose useful Ansatz if equilibrium distri-
bution function f0(ε) is replaced by some unknown nonequilibrium function.

Here we prove this relation using Lehmann representation – quite useful
method in the theory of Green functions. The idea of the method is to use
exact many-particle eigenstates |n〉, even if they are not explicitly known.

Consider first the greater function. Using states |n〉 we represent this func-
tion as

G>αβ(t1, t2) = −i
〈
cα(t1)c

†
β(t2)

〉
= − i

Z

∑
n

〈
n
∣∣∣e−Ĥ/T cα(t1)c†β(t2)∣∣∣n〉 =

= − i

Z

∑
nm

e−En/T 〈n|cα|m〉〈m|c†β |n〉ei(En−Em)(t1−t2). (246)

In Fourie representation

G>αβ(ε) = −2πi
Z

∑
nm

e−En/T 〈n|cα|m〉〈m|c†β |n〉δ(En − Em + ε). (247)

Similarly, for the lesser function we find

G<αβ(ε) =
2πi
Z

∑
nm

e−Em/T 〈n|c†β |m〉〈m|cα|n〉δ(Em − En + ε). (248)

Now we can use these expressions to obtain some general properties of
Green functions without explicit calculation of the matrix elements. Exchang-
ing indices n and m in the expression (248) and taking into account that
Em = En − ε because of delta-function, we see that

G>αβ(ε) = −e−ε/TG<αβ(ε). (249)

From this expression and relation (236), which can be written as

Aαβ(ε) = i
[
G>αβ(ε)−G<αβ(ε)

]
(250)

we derive (245).
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Interaction representation

In the previous lectures we found that nonequilibrium Green functions can
be quite easy calculated for free particles, and equations of motion for one-
particle Green functions (the functions which are the averages of two creation-
annihilation operators) can be formulated if we add interactions and time-
dependent perturbations, but these equations include high-order Green func-
tions (the averages of three, four, and larger number of operators). The equa-
tions can be truncated and formulated in terms of one-particle Green functions
in some simple approximations. However, a systematic approach is needed to
proceed with perturbation expansion and self-consistent methods (all together
is known as diagrammatic approach). The main idea of the diagrammatic ap-
proach is to start from some ”simple” Hamiltonian (usually for free particles)
and, treating interactions and external fields as a perturbation, formulate per-
turbation expansion, and summarize all most important terms (diagrams) in
all orders of perturbation theory. The result of such procedure gives, in princi-
ple, a nonperturbative description (ordinary mean-field theory is the simplest
example). The starting point of the method is so-called interaction represen-
tation.

Let us consider the full Hamiltonian Ĥ as the sum of a free-particle time-
independent part Ĥ0 and (possibly time-dependent) perturbation V̂ (t) (note
that this ”perturbation” should not be necessarily small)

Ĥ = Ĥ0 + V̂ (t). (251)

We define new operators in interaction representation by

f̂ I(t) = eiĤ0tf̂Se−iĤ0t, (252)

where f̂S is the time-independent Schrödinger operator. This is equivalent
to the time-dependent Heisenberg operator, defined by the part Ĥ0 of the
Hamiltonian. For a free-particle Hamiltonian Ĥ0 the operators f̂ I(t) can be
calculated exactly.

A new wave function corresponding to (252) is

Ψ I(t) = eiĤ0tΨS(t). (253)

It is easy to see that transformation (252), (253) is unitary transformation
and conserves the average value of any operator

〈ΨS |f̂S |ΨS〉 = 〈Ψ I |f̂ I |Ψ I〉. (254)

Substituting (253) into the ordinary Schrödinger equation, we derive the
equation

i
∂Ψ I

∂t
= V̂ I(t)Ψ I , (255)
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where V̂ I(t) = eiĤ0tV̂ S(t)e−iĤ0t is in the intreraction representation.
Equation (255) seems to be quite simple, however the operator nature of

V̂ makes this problem nontrivial. Indeed, consider a small time-step Δt. Then

Ψ(t+Δt) =
[
1− iV̂ S(t)Δt

]
Ψ(t) = exp−iV̂

S(t)Δt Ψ(t), (256)

linear in Δt term can be transformed into the exponent if we understand the
exponential function of the operator in the usual way

expÂ = 1 + Â+
1
2!

Â2 + ...+
1
n!

Ân + ..., (257)

and assume that only linear term should be taken at Δt → 0.
If we now repeat this procedure at times ti with step Δt, we obtain finally

Ψ I(t) = Ŝ(t, t0)Ψ I(t0), (258)

with

Ŝ(t, t0) =
t∏

ti=t0

exp
(
−iV̂ I(ti)Δt

)
, (259)

this product, however, is not simply exp
(
−i

∫ t
t0

V̂ I(t′)dt′
)

in the limit Δt →
0, because operators V̂ I(t′) are not commutative at different times, and for
two noncommutative operators Â and B̂ eÂ+B̂ �= eÂeB̂ .

In the product (259) operators at earlier times should be applied first,
before operators at later times. In the limit Δt → 0 we obtain

Ŝ(t, t0) = T exp
(
−i

∫ t
t0

V̂ I(t′)dt′
)

, (260)

where T is the time-ordering operator (”-” for fermionic operators)

T
(
Â(t1)B̂(t2)

)
=

⎧⎨⎩ Â(t1)B̂(t2) if t1 > t2,

±B̂(t2)Â(t1) if t1 < t2.

(261)

Of cause, expression (260) is defined only in the sense of expansion (257).
Consider for example the second-order term in the time-ordered expansion.

T

[∫ t
t0

V̂ I(t′)dt′
]2

= T

[∫ t
t0

V̂ I(t′)dt′
∫ t
t0

V̂ I(t′′)dt′′
]
=

=
∫ t
t0

dt′
∫ t′
t0

dt′′V̂ I(t′)V̂ I(t′′) +
∫ t
t0

dt′′
∫ t′′
t0

dt′V̂ I(t′′)V̂ I(t′).

(262)

If we exchange t′ and t′′ in the second integral, we see finally that

T

[∫ t
t0

V̂ I(t′)dt′
]2

= 2
∫ t
t0

dt′
∫ t′
t0

dt′′V̂ I(t′)V̂ I(t′′). (263)
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(i) Properties of Ŝ(t, t0)

Ŝ is the unitary operator and

Ŝ−1(t, t0) = Ŝ†(t, t0) = T̃ exp
(
i

∫ t
t0

V̂ I(t′)dt′
)

, (264)

where T̃ is time-anti-ordering operator. Some other important properties are

Ŝ−1(t, t0) = Ŝ(t0, t), (265)

Ŝ(t3, t2)Ŝ(t2, t1) = Ŝ(t3, t1), (266)

Ŝ−1(t2, t1)Ŝ−1(t3, t2) = Ŝ−1(t3, t1). (267)

Finally, we need the expression of a Heisenberg operator, defined by the
full Hamiltonian Ĥ = Ĥ0 + V̂ (t), through an operator in the interaction rep-
resentation. The transformation, corresponding to (258), is given by

f̂H(t) = e−iĤ0t0 Ŝ−1(t, t0)f̂ I(t)Ŝ(t, t0)eiĤ0t0 , (268)

and the state Ψ I(t0) is related to the Heisenberg time-independent wave func-
tion by

Ψ I(t0) ≡ eiĤ0t0ΨS(t0) = eiĤ0t0ΨH , (269)

in accordance with our previous discussion of averaging we assume that at
time t = t0 Heisenberg operators coincide with time-independent Schrödinger
operators f̂H(t0) = f̂S , and Schrödinger wave function coincides at the same
time with Heisenberg time-independent wave function ΨS(t0) = ΨH . To avoid
these additional exponents in (268) we can redefine the transformation to the
interaction representation as

f̂ I(t) = eiĤ0(t−t0)f̂Se−iĤ0(t−t0), (270)

in accordance with the transformation (206) for time-independent Hamilto-
nian. Previously we showed that free-particle Green functions are not de-
pendent on t0 for equilibrium initial condition, if we want to consider some
nontrivial initial conditions, it is easier to formulate these conditions directly
for Green functions. Thus below we shall use relations

f̂H(t) = Ŝ−1(t, t0)f̂ I(t)Ŝ(t, t0), (271)

and
Ψ I(t0) ≡ ΨS(t0) = ΨH . (272)
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(ii) Green functions in the interaction representation

Consider, for example, the lesser function

G<αβ(t1, t2) = i
〈
c†β(t2)cα(t1)

〉
= i
〈
ΨH
∣∣∣c†β(t2)cα(t1)∣∣∣ΨH〉 , (273)

c-operators here are Heisenberg operators and they should be replaced by
operators cI(t) ≡ c̃(t) in the interaction representation:

G<αβ(t1, t2) = i
〈
ΨH
∣∣∣Ŝ−1(t2, t0)c̃

†
β(t2)Ŝ(t2, t0)Ŝ

−1(t1, t0)c̃α(t1)Ŝ(t1, t0)
∣∣∣ΨH〉 .

(274)
Using properties of Ŝ operators, we rewrite this expression as

G<αβ(t1, t2) = i
〈
Ŝ(t0, t2)c̃

†
β(t2)Ŝ(t2, t1)c̃α(t1)Ŝ(t1, t0)

〉
. (275)

Schwinger-Keldysh time contour and contour functions

(i) Closed time-path integration

Now let us introduce one useful trick, so-called closed time-path contour of
integration. First, note that the expression of the type

f̂H(t) = Ŝ−1(t, t0)f̂ I(t)Ŝ(t, t0) = T̃ e
i

R t
t0
V̂ I(t′)dt′

f̂ I(t)Te
−i R t

t0
V̂ I(t′)dt′

, (276)

can be written as

f̂H(t) = TCt exp
(
−i

∫
Ct

V̂ I(t′)dt′
)

f̂ I(t), (277)

where the integral is taken along closed time contour from t0 to t and then
back from t to t0 ∫

Ct

dt′ =
∫ t
t0

dt′ +
∫ t0
t

dt′, (278)

contour time-ordering operator TCt
works along the contour Ct, it means

that for times t→ it is usual time-ordering operator T , and for times t← it is
anti-time-ordering operator T̃ . Symbolically

TCt

∫
Ct

dt′ = T

∫
→

dt′ + T̃

∫
←

dt′. (279)

Consider now the application of this closed time-path contour to calcu-
lation of Green functions. It is convenient to start from the time-ordered
function at t2 > t1〈

T
(
B̂(t2)Â(t1)

)〉
=
〈
Ŝ(t0, t2)B̃(t2)Ŝ(t2, t1)Ã(t1)Ŝ(t1, t0)

〉
, (280)
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here Â(t) and B̂(t) are Heisenberg operators, Ã(t) and B̃(t) are operators in
the interaction representation, in the case of fermionic operators the additional
minus should be added for any permutation of two operators.

Using the properties of the Ŝ-operator, we transform this expression as〈
Ŝ(t0, t2)B̃(t2)Ŝ(t2, t1)Ã(t1)Ŝ(t1, t0)

〉
=
〈
Ŝ−1(t2, t0)B̃(t2)Ŝ(t2, t1)Ã(t1)Ŝ(t1, t0)

〉
=
〈
Ŝ−1(∞, t0)Ŝ(∞, t2)B̃(t2)Ŝ(t2, t1)Ã(t1)Ŝ(t1, t0)

〉
=
〈
Ŝ−1T

(
B̃(t2)Ã(t1)Ŝ

)〉
, (281)

where we defined operator
Ŝ = Ŝ(∞, t0). (282)

Using contour integration, it can be written as〈
T
(
B̂(t2)Â(t1)

)〉
=
〈
TC

(
ŜCB̃(t→2 )Ã(t→1 )

)〉
, (283)

ŜC = TC exp
(
−i

∫
C

V̂ I(t′)dt′
)

, (284)

contour C goes from t0 trough t1 and t2, and back to t0. If t2 > t1 it is
obvious that contour ordering along C→ gives the terms from Ŝ(t1, t0) to
B̂(t2) in (280). The integral over the back path C← gives

TC exp
(
−i

∫
←

V̂ I(t′)dt′
)

= T̃ exp
(
−i

∫ t0
t2

V̂ I(t′)dt′
)

=

= T̃ exp
(
i

∫ t2
t0

V̂ I(t′)dt′
)

= Ŝ−1(t2, t0) = Ŝ(t0, t2). (285)

For t2 < t1 the operators in (280) are reordered by T -operator and we
again obtain (283).

The lesser and greater functions are not time-ordered and arguments of
the operators are not affected by time-ordering operator. Nevertheless we
can write such functions in the same form (283). The trick is to use one time
argument from the forward contour and the other from the backward contour,
for example 〈

B̂(t2)Â(t1)
〉
=
〈
TC

(
ŜCB̃(t←2 )Ã(t→1 )

)〉
, (286)

here the time t1 is always before t2.
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(ii) Contour (contour-ordered) Green function

Now we are able to define contour or contour-ordered Green function – the
useful tool of Keldysh diagrammatic technique. The definition is similar to
the previous one

GCαβ(τ1, τ2) = −i
〈
TC

(
cα(τ1)c

†
β(τ2)

)〉
, (287)

where, however, τ1 and τ2 are contour times. This function includes all
nonequilibrium Green functions introduced before. Indeed, depending on con-
tour position of times we obtain lesser, greater, or time-ordered functions
(below we give different notations used in the literature)

GCαβ(τ1, τ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1, τ2 ∈ C→ : −i
〈
Tcα(t1)c

†
β(t2)

〉
=⇒ G−− or GT (t1, t2),

τ1 ∈ C←, τ2 ∈ C→ : −i
〈
cα(t1)c

†
β(t2)

〉
=⇒ G+− or G>(t1, t2),

τ1 ∈ C→, τ2 ∈ C← : i
〈
c†β(t2)cα(t1)

〉
=⇒ G−+ or G<(t1, t2),

τ1, τ2 ∈ C← : −i
〈
T̃ cα(t1)c

†
β(t2)

〉
=⇒ G++ or GT̃ (t1, t2).

(288)
These four functions are not independent, from definitions it follows that

G< +G> = GT +GT̃ , (289)

and anti-hermitian relations

GTαβ(t1, t2) = −GT
∗
βα(t2, t1), (290)

G<αβ(t1, t2) = −G<
∗
βα(t2, t1), (291)

G>αβ(t1, t2) = −G>
∗
βα(t2, t1). (292)

It is more convenient to use retarded and advanced functions instead of
time-ordered functions. There is a number of ways to express GR and GA

through above defined functions

GR = θ(t1 − t2)
[
G> −G<

]
= GT −G< = G> −GT̃ , (293)

GA = θ(t2 − t1)
[
G< −G>

]
= GT −G> = G< −GT̃ . (294)

(iii) Contour Green function in the interaction representation

In the interaction representation one should repeat the calculations performed
before and given the expressions (275), (280), and then replace usual times
by contour times τ , so we obtain
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TC

(
cα(τ1)c

†
β(τ2)

)〉
=
〈
TC

(
Ŝ(τ0, τ2)c̃

†
β(τ2)Ŝ(τ2, τ1)c̃α(τ1)Ŝ(τ1, τ0)

)〉
.

(295)

Using contour integration, it can be written as

GCαβ(τ1, τ2) = −i
〈
TC

(
cα(τ1)c

†
β(τ2)

)〉
= −i

〈
TC

(
ŜC c̃α(τ1)c̃

†
β(τ2)

)〉
, (296)

ŜC = TC exp
(
−i

∫
C

V̂ I(t′)dt′
)

. (297)

3.3 Current through a nanosystem: Meir-Wingreen-Jauho formula

Now we consider the central point of the NGF transport theory through
nanosystems - the Meir-Wingreen-Jauho current formula [66,81,83]. This im-
portant expression shows that the current can be calculated, if the spectral
and kinetic Green functions of the central system are known, and it is exact
in the case of noninteracting leads. The details of the derivation can be found
in the above cited papers, so we only briefly outline it.

(i) Derivation by the NGF method

In the absence of interactions in the leads (besides the tunneling) one can
derive the following exact expression for the lead-system function:

G<α,ikσ(ε) =
∑
β

V ∗ikσ,β
[
GRαβ(ε)g

<
ikσ(ε) +G<αβ(ε)g

A
ikσ(ε)

]
, (298)

where g<ikσ(ε) and gAikσ(ε) are Green functions of isolated leads, Substituting
it into (198), we obtain for the current

Ji(t) =
2e
�

∫
dε

2π
Re

⎡⎣ ∑
kσ,αβ

Vikσ,αV
∗
ikσ,β

[
GRαβ(ε)g

<
ikσ(ε) +G<αβ(ε)g

A
ikσ(ε)

]⎤⎦ .

(299)
For equilibrium right or left lead Green functions we obtain directly

g<kσ(t1 − t2) = i
〈
c†kσ(t2)ckσ(t1)

〉
= if0

σ(εkσ)e
−i(εkσ+eϕ)(t1−t2), (300)

gRkσ(t1 − t2) = −iθ(t1 − t2)
〈[

ckσ(t1), c
†
kσ(t2)

]
+

〉
+ −iθ(t1 − t2)e−i(εkσ+eϕ)(t1−t2), (301)

gAkσ(t1 − t2) = iθ(t2 − t1)
〈[

ckσ(t1), c
†
kσ(t2)

]
+

〉
+ iθ(t2 − t1)e−i(εkσ+eϕ)(t1−t2), (302)
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or after the Fourier transform

g<kσ(ε) =
∫

g<kσ(t1 − t2)eiε(t1−t2)d(t1 − t2) = 2πif0
σ(εkσ)δ(ε− εkσ − eϕ),

(303)

g>kσ(ε) = −2πi[1− f0
σ(εkσ)]δ(ε− εkσ − eϕ), (304)

gRkσ(ε) =
1

ε− εkσ − eϕ+ i0
, (305)

gAkσ(ε) =
1

ε− εkσ − eϕ− i0
, (306)

f0
σ(ε) =

1
exp
(
ε−μσ

T

)
+ 1

. (307)

Using the level-width function (below without spin polarization of the
leads)

Γi=L(R)(ε) ≡ Γiαβ(ε) = 2π
∑
kσ

Vikσ,βV
∗
ikσ,αδ(ε− εikσ)

= 2π
∑
σ

ρiσ(ε)Viσ,β(ε)V ∗iσ,α(ε), (308)

and changing the momentum summation to the energy integration∑
k

⇒
∫

ρ(εk)dεk, we obtain the following expression for the current

Ji=L,R =
ie

�

∫
dε

2π
Tr
{
Γi(ε− eϕi)

(
G<(ε) + f0

i (ε− eϕi)
[
GR(ε)− GA(ε)

])}
,

(309)
where f0

i is the equilibrium Fermi distribution function with chemical poten-
tial μi. Thus, we obtain the well-known Meir-Wingreen formula. Note, that
we use explicitly the electrical potential of the leads in this expression. It is
important to mention, that at finite voltage the arguments of the left and
right level-width functions are changed in a different way, which means, in
particular, that the known condition of proportional coupling ΓL = λΓR can
be fulfilled only in the wide-band limit, when both functions are energy inde-
pendent.

(ii) Different forms of the MWJ formula

In a stationary state JR = −JL = J and one can use the symmetric form

J =
ie

2�

∫
dε

2π
Tr
{[

ΓL(ε− eϕL)− ΓR(ε− eϕR)
]
G<(ε)+

+
[
ΓL(ε− eϕL)f0

L(ε− eϕL)− ΓR(ε− eϕR)f0
R(ε− eϕR)

] [
GR(ε)− GA(ε)

]}
.

(310)
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For the proportional coupling ΓL(ε) = λΓR(ε) in linear response (ϕi de-
pendence of Γi is ignored!)

J =
2e
�

∫
dε

4π
[
f0
L(ε− eϕL)− f0

R(ε− eϕR)
]
Tr
(

ΓL(ε)ΓR(ε)
ΓL(ε) + ΓR(ε)

A(ε)
)

. (311)

A = i(GR−GA) is the spectral function. This expression is valid for nonlinear
response if the energy dependence of Γ can be neglected (wide band limit).

(iii) Noninteracting case

Finally, in the noninteracting case it is possible to obtain the usual Landauer-
Büttikier formula with the transmission function

T (ε) = Tr
[
ΓL(ε− eϕL)GR(ε)ΓR(ε− eϕR)GA(ε)

]
. (312)

This expression is equivalent to the one derived earlier by the single-particle
Green function method.

We should stress once more that this formula is valid for finite voltage.
Therefore, the voltage dependence of the level-width functions is important.

3.4 Nonequilibrium equation of motion method

Now we start to consider the case of interacting nanosystems. Although the
MWJ current formula is exact, the problem to find the Green functions of the
central region is sometimes highly nontrivial. At the present time there are
several techniques developed to solve this problem.

Nonequilibrium equation of motion (NEOM) method is the simplest ap-
proximate approach. In spite of its simplicity, it is very useful in many cases,
and is very convenient for numerical implementation. In this section we con-
sider only a general formulation, some particular examples are considered
further.

We start from the general definition of a Green function as the average of
two Heisenberg operators Â(t) and B̂(t), denoted as〈〈

Â(t1), B̂(t2)
〉〉R,A,<

.

The particular definitions of the averages for spectral and kinetic functions
are 〈〈

Â(t1), B̂(t2)
〉〉R

= −iθ(t1 − t2)
〈[

Â(t1), B̂(t2)
]
∓

〉
, (313)

where upper sign here and below is for boson functions, lower sign for fermions,〈〈
Â(t1), B̂(t2)

〉〉<
= −i

〈
Â(t1), B̂(t2)

〉
. (314)

The equations of motion for NGF are obtained from the Heisenberg equa-
tion of motion for operators
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i
∂Â

∂t
=
[
Â, Ĥ

]
−
= ÂĤ − ĤÂ, (315)

for any Heisenberg operator Â(t). Here and below all Hamiltonians are time-
independent. We consider the stationary problem.

(i) Spectral (retarded and advanced) functions

Let us start from a retarded function〈〈
Â(t1), B̂(t2)

〉〉R
= −iθ(t1 − t2)

〈[
Â(t1), B̂(t2)

]
∓

〉
. (316)

Taking the time derivative we obtain

i
∂

∂t1

〈〈
Â(t1), B̂(t2)

〉〉R
= δ(t1 − t2)

〈[
Â(t1), B̂(t1)

]
∓

〉
+
〈〈[

Â(t1), Ĥ
]
−
, B̂(t2)

〉〉R
,(317)

where the first term originates from the time-derivative of the θ-function, and
the equation (315) is used in the second term.

In the stationary case the Fourier transform can be used

(ε+ iη)
〈〈

Â, B̂
〉〉R
ε
=
〈[

Â, B̂
]
∓

〉
+
〈〈[

Â, Ĥ
]
−
, B̂
〉〉R
ε
. (318)

Now let us assume that the Hamiltonian can be divided into ”free particle”
and ”interaction” parts Ĥ = Ĥ0 + Ĥ1, and [Â, Ĥ0]− = ε̂0Â. (The simple
example. For the free particle Hamiltonian Ĥ0 =

∑
β εβd

†
βdβ and the operator

Â = d†α one has [Â, Ĥ0]− =
∑
β εβ [d

†
α, d

†
βdβ ]− = εαd

†
α, ε̂0 = εα is simply a

number. In general, ε̂0 is some time-independent operator). So that

(ε+ iη − ε̂0)
〈〈

Â, B̂
〉〉R
ε
=
〈[

Â, B̂
]
∓

〉
+
〈〈[

Â, Ĥ1

]
−
, B̂
〉〉R
ε
, (319)

the second term includes interaction and can not be easy simplified.
It is convenient now to introduce the ”free particle” function ĝRε as a

solution of the equation
(ε+ iη − ε̂0)ĝRε = 1. (320)

Now we multiply the right and left parts of (319) by ĝRε . Using the function
ĝR(t) =

∫
ĝRε e

−iεt dε
2π we can write the time-dependent solution of (317) as〈〈

Â(t1), B̂(t2)
〉〉R

=ĝR(t1 − t2)
〈[

Â(t1), B̂(t1)
]
∓

〉
+
∫

ĝR(t1 − t′)
〈〈[

Â(t′), Ĥ1

]
−
, B̂(t2)

〉〉R
dt′. (321)
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(ii) EOM on the Schwinger-Keldysh contour

The calculation of the lesser functions by the EOM technique requires some
care. To demonstrate it let us compare the EOM for retarded and lesser func-
tions of free particles.

The equation for gRαβ is (assuming the diagonal matrix ε̃αβ)

(ε+ iη − ε̃α) gRαβ = δαβ , (322)

from which the free-particle Green function is easily obtained.
At the same time for the lesser function we have the equation

(ε− ε̃α) g<αβ = 0, (323)

from which, however, the free-particle lesser function g<αβ = 2πf0(ε)δ(ε −
εα)δαβ can not be obtained.

The problem can be generally resolved by using the EOM on the Schwinger-
Keldysh time contour. Contour-ordered Green function is defined as〈〈

Â(τ1), B̂(τ2)
〉〉C

= −i
〈
Tc

(
Â(τ1), B̂(τ2)

)〉
, (324)

where Â(τ1) and B̂(τ2) are two Heisenberg operators, defined along the con-
tour.

Taking the time derivative we obtain the equation

i
∂

∂τ1

〈〈
Â(τ1), B̂(τ2)

〉〉C
= δc(τ1 − τ2)

〈[
Â(τ1), B̂(τ1)

]
∓

〉
+
〈〈[

Â(τ1), Ĥ
]
−
, B̂(τ2)

〉〉C
, (325)

in the stationary case this equation can be formally solved if one applies
the Fourier transform along the contour, or perturbation expansion in the
interaction representation (Niu et al. 1999). Using the free particle solution
ĝC(τ1 − τ2) we can write the time-dependent solution as〈〈

Â(τ1), B̂(τ2)
〉〉C

=ĝC(τ1 − τ2)
〈[

Â(τ1), B̂(τ1)
]
∓

〉
+
∫

ĝC(τ1 − τ ′)
〈〈[

Â(τ ′), Ĥ1

]
−
, B̂(τ2)

〉〉C
dτ ′. (326)

(iii) Kinetic (lesser) function

Applying now the Langreth rules (see the next section for details), which
shows, that from

C(τ1, τ2) =
∫
C

A(τ1, τ3)B(τ3, τ2)dτ3 (327)
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it follows

CR(t1, t2) =
∫
AR(t1, t3)BR(t3, t2)dt3, (328)

C<(t1, t2) =
∫ (

AR(t1, t3)BR(t3, t2) +A<(t1, t3)BA(t3, t2)
)
dt3, (329)

we get (321) for the retarded function, and〈〈
Â(t1), B̂(t2)

〉〉<
= ĝ<(t1 − t2)

〈[
Â(t1), B̂(t1)

]
∓

〉
+
∫

ĝR(t1 − t′)
〈〈[

Â(t′), Ĥ1

]
−
, B̂(t2)

〉〉<
dt′

+
∫

ĝ<(t1 − t′)
〈〈[

Â(t′), Ĥ1

]
−
, B̂(t2)

〉〉A
dt′ (330)

for the lesser function. And the Fourier transform is〈〈
Â, B̂

〉〉<
ε
= ĝ<ε

〈[
Â, B̂

]
∓

〉
+ ĝRε

〈〈[
Â, Ĥ1

]
−
, B̂
〉〉<
ε
+ ĝ<ε

〈〈[
Â, Ĥ1

]
−
, B̂
〉〉A
ε
.

(331)

3.5 Kadanoff-Baym-Keldysh method

Now we review briefly the other approach. Kadanoff-Baym-Keldysh (KBK)
method systematically extends the equilibrium many-body theory to the
nonequilibrium case. Potentially, it is the most powerful approach. Below
we give a simple introduction into the method, which is currently actively
developed.

(i) Perturbation expansion and diagrammatic rules for contour functions

We found that Green functions can be written in the interaction representation
with a help of the Ŝ-operator. For example, time-ordered fermionic Green
function is

GTαβ(t1, t2) =− i
〈
T
(
cα(t1)c

†
β(t2)

)〉
= −i

〈
Ŝ−1T

(
c̃α(t1)c̃

†
β(t2)Ŝ

)〉
, (332)

using ”usual” Ŝ-operator

Ŝ = Ŝ(∞, t0) = T exp
(
−i

∫ ∞
t0

V̂ I(t′)dt′
)

, (333)

or
GTαβ(t1, t2) = −i

〈
TC

(
c̃α(t→1 )c̃†β(t

→
2 )ŜC

)〉
, (334)

using ”contour” ŜC-operator

ŜC = TC exp
(
−i

∫
C

V̂ I(t′)dt′
)

. (335)
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We first consider the zero temperature case, when one can set t0 = −∞,

Ŝ = Ŝ(∞,−∞) = T exp
(
−i

∫ ∞
−∞

V̂ I(t′)dt′
)

, (336)

and assume that interaction is switched on and switched off at t → +∞
adiabatically. This condition is necessary to prevent excitation of the system
from its ground state. The other necessary condition is that the perturbation
is time-independent in the Schrödinger representation. In this case if the initial
state |Ψ(t = −∞)〉 = |Ψ0〉 is the ground state (of free particles), then the final
state |Ψ(t = +∞)〉 = Ŝ|Ψ0〉 = eiθ|Ψ0〉 is also the ground state, only the phase
can be changed. Now, using the average value of the Ŝ-operator

〈Ŝ〉 = 〈Ψ0|Ŝ|Ψ0〉 = eiθ〈Ψ0|Ψ0〉 = eiθ, (337)

we obtain
Ŝ|Ψ0〉 = 〈Ŝ〉|Ψ0〉, (338)

and

〈Ψ0|Ŝ−1 =
〈Ψ0|
〈Ŝ〉 . (339)

So that (332) can be written as

GTαβ(t1, t2) = −i

〈
T
(
c̃α(t1)c̃

†
β(t2)Ŝ

)〉
〈Ŝ〉 . (340)

Now we can expand the exponent (note that S-operator is defined only in
the sense of this expansion)

Ŝ = T exp
(
−i

∫ ∞
−∞

V̂ I(t′)dt′
)

= T

∞∑
n=0

(−i)n

n!

∫ ∞
−∞

dt′1...
∫ ∞
−∞

dt′n V̂ I(t′1)...V̂
I(t′n), (341)

and numerator and denominator of the expression (340) are〈
T
(
c̃α(t1)c̃

†
β(t2)Ŝ

)〉
=

∞∑
n=0

(−i)n

n!

∫ ∞
−∞

dt′1...
∫ ∞
−∞

dt′n
〈
T c̃α(t1)c̃

†
β(t2)V̂

I(t′1)...V̂
I(t′n)

〉
,

(342)

〈Ŝ〉 =
∞∑
n=0

(−i)n

n!

∫ ∞
−∞

dt′1...
∫ ∞
−∞

dt′n
〈
T V̂ I(t′1)...V̂

I(t′n)
〉
. (343)

These expressions are used to produce the perturbation series.
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The main quantity to be calculated is the contour Green function

G(1, 2) ≡ GCαβ(τ1, τ2) = −i
〈
TC

(
cα(τ1)c

†
β(τ2)

)〉
, (344)

where τ1 and τ2 are contour times. Here 1c ≡ α, τ1.
The general diagrammatic rules for contour Green functions are exactly

the same as in the usual zero-temperature technique (we call it standard
rules). The correspondence between diagrams and analytical expressions is
established in the following way.

1. Open bare electron line is iG0(1, 2).
2. Closed bare electron line is n0(1) ≡ n

(0)
α (τ1).

3. Bare interaction line is −iv(1, 2).
4. Self-energy is −iΣ(1, 2).
5. Integration over internal vertices, and other standard rules.

(ii) Langreth rules

Although the basic equations and diagrammatic rules are formulated for con-
tour Green functions, the solution of these equation and final results are much
more transparent when represented by real-time spectral and kinetic func-
tions.

As in the ordinary diagrammatic technique, the important role is played
by the integration (summation) over space and contour-time arguments of
Green functions, which is denoted as∫

d1c ≡
∑
α

∫
C

dτ1. (345)

After application of the Langreth rules, for real-time functions these integrals
become ∫

d1 ≡
∑
α

∫ ∞
−∞

dt1. (346)

The Langreth rules show, for example, that from

C(τ1, τ2) =
∫
C

A(τ1, τ3)B(τ3, τ2)dτ3 (347)

it follows

CR(t1, t2) =
∫

AR(t1, t3)BR(t3, t2)dt3, (348)

C<(t1, t2) =
∫ (

AR(t1, t3)B<(t3, t2)

+ A<(t1, t3)BA(t3, t2)
)
dt3. (349)

The other important rules are: from
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C(τ1, τ2) = A(τ1, τ2)B(τ1, τ2) (350)

it follows

CR(t1, t2) = AR(t1, t2)BR(t1, t2)
+ AR(t1, t2)B<(t1, t2) +A<(t1, t2)BR(t1, t2), (351)

C<(t1, t2) = A<(t1, t2)B<(t1, t2), (352)

and from
C(τ1, τ2) = A(τ1, τ2)B(τ2, τ1) (353)

it follows

CR(t1, t2) = AR(t1, t2)B<(t2, t1) +A<(t1, t2)BA(t2, t1), (354)
C<(t1, t2) = A<(t1, t2)B>(t2, t1). (355)

(iii) First-order self-energy and polarization operator

Consider, as an example, the first order expression for the self-energy, shown
in Fig. 15. Following the diagrammatic rules, we find

Σ1(1, 2) = δ(1− 2)
∫

v(1, 3)n0(3)d3 + iv(1, 2)G0(1, 2), (356)

where the first term is the Hartree contribution, which can be included into
the unperturbed Green function G0(1, 2). This expression is actually sym-
bolic, and translation from contour (Keldysh-time) to real-time functions is
necessary. Using the Langreth rules, one obtains

ΣR1 (1, 2) =δ(1+ − 2)
∫

vR(1, 3)n0(3, 3)d3 + ivR(1, 2)GR0 (1, 2)

+ iv<(1, 2)GR0 (1, 2) + ivR(1, 2)G<0 (1, 2), (357)

Σ<1 (1, 2) = iv<(1, 2)G<0 (1, 2). (358)

There is no Hartree term for lesser function, because the times τ1 and τ2 are
always at the different branches of the Keldysh contour, and the δ-function
δ(τ1 − τ2) is zero.

In the stationary case and using explicit matrix indices, we have, finally
(τ = t1 − t2!, not to mix with the Keldysh time)

Σ
R(1)
αβ (τ) = δ(τ+)δαβ

∑
γ ṽ
R
αγ(0)n

(0)
γ

+ivRαβ(τ)G
R(0)
αβ τ) + iv<αβ(τ)G

R(0)
αβ (τ) + ivRαβ(τ)G

<(0)
αβ (τ), (359)

Σ
<(1)
αβ (τ) = iv<αβ(τ)G

<(0)
αβ (τ), (360)

and we define the Fourier transform of the bare interaction
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1Σ = +
Fig. 15: Diagrammatic representation of the first-order self-energy.

�Π =

Fig. 16: Diagrammatic representation of the first-order polarization operator.

ṽRαγ(0) =
∫

vRαγ(τ)dτ. (361)

Finally, the Fourier transforms are

Σ
R(1)
αβ (ε) = δαβ

∑
γ

ṽRαγ(0)n
(0)
γ

+ i

∫
dε′

2π

[
vRαβ(ε

′)GR(0)
αβ (ε− ε′) + v<αβ(ε

′)GR(0)
αβ (ε− ε′) + vRαβ(ε

′)G<(0)
αβ (ε− ε′)

]
,

(362)

Σ
<(1)
αβ (ε) = i

∫
dε′

2π
v<αβ(ε

′)G<(0)
αβ (ε− ε′). (363)

The second important function is the polarization operator (”self-energy
for interaction”), showing in Fig. 16. Following the diagrammatic rules, we
find

Π1(1, 2) = −iG0(1, 2)G0(2, 1), (364)

note the order of times in this expression.
Using the Langreth rules,

ΠR1 (1, 2) = iGR0 (1, 2)G
<
0 (2, 1) + iG<0 (1, 2)G

A
0 (2, 1), (365)

Π<1 (1, 2) = iG<0 (1, 2)G
>
0 (2, 1). (366)

And in the stationary case, restoring the matrix indices

Π
R(1)
αβ (ε) = −i

[
G
R(0)
αβ (τ)G<(0)

βα (−τ) +G
<(0)
αβ (τ)GA(0)

βα (−τ)
]
, (367)
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Σ+=
Π+=

� �

�

��

�υ

��

υ

Fig. 17: Diagrammatic representation of the Dyson equations.

Π
<(1)
αβ (ε) = −iG

<(0)
αβ (τ)G>(0)

βα (−τ). (368)

In the Fourier representation

Π
R(1)
αβ (τ) = −i

∫
dε′

2π

[
G
R(0)
αβ (ε′)G<(0)

βα (ε′ − ε) +G
<(0)
αβ (ε′)GA(0)

βα (ε′ − ε)
]
,

(369)

Π
<(1)
αβ (τ) = −i

∫
dε′

2π
G
<(0)
αβ (ε′)G>(0)

βα (ε′ − ε). (370)

These expressions are quite general and can be used for both electron-
electron and electron-vibron interaction.

For Coulomb interaction the bare interaction is is v(1, 2) ≡ Uαβδ(τ+
1 −τ2),

so that

vR(1, 2) ≡ Uαβδ(t+1 − t2), (371)
v<(1, 2) = 0. (372)

(iv) Self-consistent equations

The diagrams can be partially summed in all orders of perturbation theory.
The resulting equations are known as Dyson equations for the dressed Green
function G(1, 2) and the effective interaction W (1, 2) (Fig. 17). Analytically
these equations are written as

Σ = ++���

Fig. 18: Diagrammatic representation of the full self-energy.
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Π =

Fig. 19: Diagrammatic representation of the full polarization operator.

= + + ���

Fig. 20: Diagrammatic representation of the vertex function.

G(1, 2) = G0(1, 2) +
∫ ∫

G0(1, 3)Σ(3, 4)G(4, 2)d3d4, (373)

W (1, 2) = v(1, 2) +
∫ ∫

v(1, 3)Π(3, 4)W (4, 2)d3d4. (374)

In the perturbative approach the first order (or higher order) expressions
for the self-energy and the polarization operator are used. The other possibility
is to summarize further the diagrams and obtain the self-consistent approxi-
mations (Figs. 18,19), which include, however, a new unknown function, called
vertex function. We shall write these expressions analytically, including the
Hartree-Fock part into unperturbed Green function G0(1, 2).

Σ′(1, 2) = i

∫ ∫
W (1, 3)G(1, 4)Γ (3; 4, 2)d3d4, (375)

Π(1, 2) = −i

∫ ∫
G(1, 3)G(4, 1)Γ (2; 3, 4)d3d4. (376)

The equation for the vertex function can not be closed diagrammatically
(Fig. 20). Nevertheless, it is possible to write close set of equations (Hedin’s
equations), which are exact equations for full Green functions written through
a functional derivative. Hedin’s equations are equations (373)-(376) and the
equation for the vertex function

Γ (1; 2, 3) = δ(1, 2)δ(1, 3) +
∫ ∫ ∫ ∫

G(4, 6)G(7, 5)Γ (1; 6, 7)
δΣ(2, 3)
δG(4, 5)

d4d5d6d7.

(377)
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4 Applications

4.1 Coulomb blockade

In Section 2 we have seen that Coulomb blockade phenomena mediated by
electron-electron interactions on a quantum dot can be dealt within a straight-
forward way by using master equation (ME) approaches, which are based on
Fermi’s Golden Rule. [172,176,180–185] However, due to its intrinsic pertur-
bative character in the lead-dot coupling, ME techniques cannot cover the
whole interaction range from weak-coupling (Coulomb blockade), intermedi-
ate coupling (Kondo physics), up to strong coupling (Fabry-Perot physics).
It is thus of methodological and practical interest to develop schemes which
allow, in a systematic way, to describe the three mentioned regimes also in
out-of-equilibrium situations. As stated in the introduction, we believe that
Green function techniques are such a tool; in this section we will show how
a non-equilibrium treatment of the Hubbard-Anderson model together with
appropriate approximations allow us to reproduce the well-known Coulomb
blockade stability diagrams obtained with the master equation approach (see
also Section 2). For the sake of simplicity we will deal with the problem of
single and double-site dots in the CB regime, although the method can be
straightforwardly extended to multi-level systems. Our purpose is to study
the problem of a two site donor/acceptor molecule in the CB regime within
the NGF as a first step to deal with the phenomenology of a rigid multilevel is-
land. The nuclear dynamics (vibrations) always present in molecular junctions
could be then modularly included in this theory. Our method can be calibrated
on the well-studied double quantum dot problem [176,192] and could be possi-
bly integrated in the density functional theory based approaches to molecular
conductance. The Kondo regime would require a separate treatment involv-
ing more complex decoupling schemes and will be thus left out of this review,
for some new results see Ref. [213] (EOM method) and Refs. [224–226] (the
self-consistent GW approximation).

The linear conductance properties of a single site junction (SSJ) with
Coulomb interactions (Anderson impurity model), have been extensively stud-
ied by means of the EOM approach in the cases related to CB [203,204] and
the Kondo effect. [205] Later the same method was applied to some two-site
models. [206–208,214] Multi-level systems were started to be considered only
recently. [210,211] For out-of-equilibrium situations (finite applied bias), there
are some methodological unclarified issues for calculating correlation functions
using EOM techniques. [212–214] We have developed an EOM-based method
which allows to deal with the finite-bias case in a self-consistent way. [209]
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Nonequilibrium EOM formalism

(i) The Anderson-Hubbard Hamiltonian

We consider the following model Hamiltonian (which can be called the multi-
level Anderson impurity model, the Hubbard model, or the quantum cluster
model)

Ĥ =
∑
αβ

ε̃αβd
†
αdβ+

1
2

∑
αβ

Uαβn̂αn̂β+
∑
ikσ

ε̃ikσc
†
ikσcikσ+

∑
ikσ,α

(
Vikσ,αc

†
ikσdα + h.c.

)
,

(378)
electrical potentials are included into the energies ε̃ikσ = εikσ + eϕi(t) and
ε̃αα = εαα + eϕα(t).

This model is quite universal, describing a variety of correlated electron
systems coupled to the leads: the Anderson impurity model, the multilevel
quantum dot with diagonal noninteracting Hamiltonian ε̃αβ , a system (cluster)
of several quantum dots, when the off-diagonal matrix elements of ε̃αβ describe
hopping between individual dots, and, finally, the 1D and 2D quantum point
contacts.

(ii) EOM for Heisenberg operators

Using the Hamiltonian (378) one derives

i
∂cikσ
∂t

=
[
cikσ, Ĥ

]
−
= ε̃ikσcikσ +

∑
α

Vikσ,αdα, (379)

i
∂c†ikσ
∂t

= −ε̃ikσc
†
ikσ −

∑
α

V ∗ikσ,αd
†
α, (380)

i
∂dα
∂t

=
∑
β

ε̃αβdβ +
∑
β �=α

Uαβn̂βdα +
∑
ikσ

V ∗ikσ,αcikσ, (381)

i
∂d†α
∂t

= −
∑
β

ε̃αβd
†
β −

∑
β �=α

Uαβn̂βd
†
α −

∑
ikσ

Vikσ,αc
†
ikσ, (382)

i
∂n̂γ
∂t

=
∑
ikσ

[
−Vikσ,γc

†
ikσdγ + V ∗ikσ,γd

†
γcikσ

]
+
∑
β

ε̃γβd
†
γdβ −

∑
α

ε̃αγd
†
αdγ . (383)

These equations look like a set of ordinary differential equations, but are,
in fact, much more complex. The first reason is, that there are the equations
for operators, and special algebra should be used to solve it. Secondly, the
number of cikσ operators is infinite! Because of that, the above equations
are not all sufficient, but are widely used to obtain the equations for Green
functions.
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(iii) Spectral (retarded and advanced) functions

Now we follow the general NEOM method described in the Section 3. Using

(381), we get the equation for GRαβ = −i

〈[
dα, d

†
β

]
+

〉
ε

(ε+ iη)GRαβ −
∑
γ

ε̃αγG
R
γβ = δαβ +

∑
γ �=α

UαγG
(2)R
αγ,β +

∑
ikσ

V ∗ikσ,αG
R
ikσ,β (384)

which includes two new functions: G(2)R
αγ,β and GRikσ,β .

The equation for GRikσ,β is closed (includes only the function GRαβ intro-
duced before)

(ε+ iη − ε̃ikσ)GRikσ,β =
∑
δ

Vikσ,δG
R
δβ . (385)

The equation for

G
(2)R
αγ,β(t1 − t2) = −iθ(t1 − t2)

〈[
dα(t1)n̂γ(t1), d

†
β(t2)

]
+

〉
is more complicated

(ε+ iη)G(2)R
αγ,β−

∑
δ

ε̃αδG
(2)R
δγ,β = nγδαβ + (δαβ − ραβ)δβγ

+
∑
δ

Uαδ

〈〈
n̂δdαn̂γ ; d

†
β

〉〉R
+
∑
ikσ

V ∗ikσ,α
〈〈

cikσnγ ; d
†
β

〉〉R
+

+
∑
ikσ

V ∗ikσ,γ
〈〈

dαd
†
γcikσ; d

†
β

〉〉R
−
∑
ikσ

Vikσ,γ

〈〈
dαc

†
ikσdγ ; d

†
β

〉〉R
+
∑
δ

ε̃γδ

〈〈
dαd

†
γdδ; d

†
β

〉〉R
−
∑
δ

ε̃δγ

〈〈
dαd

†
δdγ ; d

†
β

〉〉R
. (386)

The equation (386) is not closed again and produces new Green functions
of higher order. And so on. These sequence of equations can not be closed in
the general case and should be truncated at some point. Below we consider
some possible approximations. The other important point is, that average
populations and lesser Green functions should be calculated self-consistently.
In equilibrium (linear response) these functions are easy related to the spectral
functions. But at finite voltage they should be calculated independently.

(iv) Kinetic (lesser) function

Following the same way, as for the retarded functions (using only the defi-
nitions of NGF and Heisenberg equations of motion) one derives instead of
(384)-(386)

εG<αβ −
∑
γ

ε̃αγG
<
γβ =

∑
γ �=α

UαγG
(2)<
αγ,β +

∑
ikσ

V ∗ikσ,αG
<
ikσ,β , (387)
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(ε− ε̃ikσ)G<ikσ,β =
∑
δ

Vikσ,δG
<
δβ , (388)

εG
(2)<
αγ,β −

∑
δ

ε̃αδG
(2)<
δγ,β =

∑
δ �=α

Uαδ

〈〈
n̂δdαn̂γ ; d

†
β

〉〉<
+

+
∑
ikσ

V ∗ikσ,α
〈〈

cikσnγ ; d
†
β

〉〉<
+
∑
ikσ

V ∗ikσ,γ
〈〈

dαd
†
γcikσ; d

†
β

〉〉<
−
∑
ikσ

Vikσ,γ

〈〈
dαc

†
ikσdγ ; d

†
β

〉〉<
+
∑
δ

ε̃γδ

〈〈
dαd

†
γdδ; d

†
β

〉〉<
−
∑
δ

ε̃δγ

〈〈
dαd

†
δdγ ; d

†
β

〉〉<
. (389)

To find G<ikσ,β we should divide the right parts by (ε− ε̃ikσ), which is not
well defined at ε = ε̃ikσ. In the section 3 we considered the general prescription
to avoid this problem, we use the equation (331), and instead of (388)we obtain

G<ikσ,β = gRikσ
∑
δ

Vikσ,δG
<
δβ + g<ikσ

∑
δ

Vikσ,δG
A
δβ . (390)

The equations (387) and (389) can be used without modifications because
they include the imaginary parts (dissipation) from the lead terms.

At this point we stop the general consideration, and introduce a powerful
Ansatz for the NGF which is related both to the equation-of-motion (EOM)
method and to the Dyson equation approach. [209] From the knowledge of
the Green functions we then calculate the transport observables. For clarity,
we first describe our method in the more familiar problem of a single site
junction, which is the well-known Anderson impurity model. Then we apply
it to a double quantum dot. The equations obtained below by the heuristic
mapping method can be obtained straightforward from the general NEOM
equations derived in this section using the same approximations as in the
mapping method.

Anderson impurity model (single site)

The Anderson impurity model is used to describe the Coulomb interaction on
a single site:

H = HD +
∑
α

(Hα +HαD),

where
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HD =
∑
σ

εσd
†
σdσ +

1
2
Unσnσ̄,

Hα =
∑
k,σ

εαk,σc
†
α,k,σcα,k,σ,

HαD =
∑
k,σ

(
Vα,k,σc

†
α,k,σdσ + V ∗α,k,σd

†
σcα,k,σ

)
,

where d and c are the operators for electrons on the dot and on the left (α = L)
and the right (α = R) lead, U is the Coulomb interaction parameter, εσ is the
σ level of the quantum dot, while εαk,σ is the spin σ level of lead α in k space,
σ =↑, ↓. With the help of the EOM and the truncation approximation, we can
get a closed set of equations for the retarded and advanced GFs G

r/a
σ,τ [66,204]

(ω − εσ −Σr/a
σ )Gr/a

σ,τ = δσ,τ + UG(2)r/a
σ,τ , (391a)

(ω − εσ − U −Σr/a
σ )G(2)r/a

σ,τ = 〈nσ̄〉δσ,τ , (391b)

where G
r/a
σ,τ = 〈〈dσ|d†τ 〉〉r/a, G(2)r/a

σ,τ = 〈〈nσ̄dσ|d†τ 〉〉r/a and

Σr/a
σ (ω) = Σ

r/a
L,σ +Σ

r/a
R,σ =

∑
α,k

|Vα,k,σ|2
ω − εαk,σ ± i0+

(392)

are the electron self-energies.

(i) Mapping on retarded Green functions

For retarded GFs, from the EOM method, and with the help of Eqs. (391a)
and (391b), we can get

Gr = Gr
0 +Gr

0UG(2)r = Gr
0 +Gr

0Σ
EOMG(1)r,

where Gr is single-particle GF matrix

Gr =
(
Gr
↑,↑ Gr

↑,↓
Gr
↓,↑ Gr

↓,↓

)
,

and G
(1)r
σ,τ = G

(2)r
σ,τ /〈nσ̄〉. Gr

0 describes the single-particle spectrum without
Coulomb interaction, but including the effects from the electrodes. ΣEOM

σ,τ =
U〈nσ̄〉 is the Hartree-like self-energy of our model. Since there is only Coulomb
interaction on the site with the levels εσ, the Fock-like self-energy is vanishing.

Alternatively, by means of the Dyson equation and the second-order trun-
cation approximation, taking Hartree-like self-energies ΣH

σ,τ = U〈nσ̄〉 (=
ΣEOM
σ,τ ), we can also get the retarded GFs as follows

Gr = Gr
0 +Gr

0Σ
HGr

1, (393)
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where Gr
1 = Gr

0 +Gr
0Σ

HGr
0 is the first-order truncation GF.

Within the level of the second-order truncation approximation, we see that
there is a map between the EOM results and the Dyson results:

Gr = Gr
0 + Gr

0 ΣH G(1)r (EOM), (394a)
� �
Gr = Gr

0 + Gr
0 ΣH Gr

1 (Dyson). (394b)

Eqs. (394) prompts a way to include further many-particle effects into the
Dyson equation, Eq. (394b), by replacing theDyson-first-order retarded Green
function Gr

1 with the EOM G(1)r. Then one obtains already the correct results
to describe CB while keeping the Hartree-like self-energy.

(ii) Mapping on contour and lesser Green functions

Introducing now the contour GF Ǧ, we can get the Dyson equation as fol-
lows [66,73,74,76]

Ǧ = Ǧ0 + Ǧ0Σ̌Ǧ, (395)

where Σ̌ is the self-energy matrix [66].
According to the approximation for the retarded GF in Eq. (393), we take

the second-order truncation on Eq. (395), and then get

Ǧ = Ǧ0 + Ǧ0Σ̌
HǦ1,

where Ǧ1 = Ǧ0 + Ǧ0Σ̌
HǦ0 is the first-order contour GF, and Ǧ0 has already

included the lead broadening effects.
Similar to the mapping in Eq. (394), we perform an Ansatz consisting

in substituting the Dyson-first-order G
r/a/<
1 with the EOM one G(1)r/a/< to

consider more many-particle correlations, while the EOM self-energy is used
for the Dyson equation for consistency:

Ǧ = Ǧ0 + Ǧ0 Σ̌H Ǧ1 (Dyson),
� ↑
Ǧ Ǧ(1) (EOM).

(396)

Then, using the Langreth theorem [66] we get the lesser GF,

G< = G<0 +Gr
0Σ

H,rG(1)< +G<0 ΣH,aG(1)a

= G<0 +Gr
0UG(2)< +G<0 UG(2)a (397)

where G
r/a/<
0 are GFs for U = 0, but including the lead broadening effects,

i.e.

G<0 = g<0 + gr
0Σ
<Ga

0 + g<0 ΣaGa
0 + gr

0Σ
rG<0 ,

G
r/a
0 = g

r/a
0 + g

r/a
0 Σr/aG

r/a
0 ,



Green Function Techniques in the Treatment of Quantum Transport 291

with g
r/a/<
0 the free electron GF, and

Σr/a/< =

(
Σ

r/a/<
↑ 0
0 Σ

r/a/<
↓

)
,

Σ<σ = i
∑
α Γαfα(ω), and Γα = i(Σr

α − Σa
α), fα(ω) = f(ω − μα), f is the

equilibrium Fermi function and μα is the electro-chemical potential in lead
α; Σr/a

α are the retarded/advanced electron self-energies from Eq. (392) and
G

(1)r/a/<
σ,τ = G

(2)r/a/<
σ,τ /〈nσ̄〉. Performing the same Ansatz on the double-

particle GF, from Eq. (391b) we can get

G(2)< = G(2)rΣ(2)<G(2)a, (398)

with Σ
(2)<
σ = Σ<σ /〈nσ̄〉.

The lesser GFs in Eq. (397) can also be obtained directly from the general
formula [66]

G< = G<0 +Gr
0Σ

rG< +Gr
0Σ
<Ga +G<0 ΣaGa,

with the help of the Ansatz in Eq. (396). It should be noted that Eq. (397) is
very different from the lesser GF formula,

G< = GrΣ<Ga, (399)

with the self-energy Σ< containing only contributions from the electrodes.
The equation (399) is widely used for both first-principle [236, 255, 258] and
model Hamiltonian calculations. [207]

The numerical calculation results of conductance dependence on the bias
and gate voltages by the two different NGF Eqs. (397) and (399) are shown
in Fig. 21. As we can see in the left panel, the adoption of Eq. (399) results in
an incorrectly symmetry-breaking in the gate potential. This wrong behavior
is corrected in the right panel where Eq. (397) has been used.

Note, that the expressions for the retarded and lesser functions, described
above, can be obtained in a more formal way by the EOM method formulated
on the Keldysh contour.

(iii) Comparison with the master equation result

In the single site model with two (spin-up and spin-down) levels it is possible
to make the direct comparison between our Ansatz and the master equation
methods. For the latter, we used the well known master equations for quantum
dots [180,181].

In the Fig. 22 the typical curves of the differential conductance as a func-
tion of the bias voltage at fixed gate voltage obtained by the two methods are
shown together: there is basically no difference in the results obtained by these
two methods. In the Fig. 23 the contour plot of the differential conductance
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Fig. 21: Stability diagram of a SSJ with εσ = 2.0 eV, U = 4.0 eV,
ΓL = ΓR = 0.05 eV. (a) The incorrect result obtained by means of the widely used
formula in Eq. (399) for the lesser GF is not symmetric for levels εσ and εσ +U . (b)
Results obtained by means of our Ansatz in Eq. (397) shows correctly symmetric
for levels εσ and εσ + U .
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Fig. 22: The comparison of the master equation method and our Ansatz for the
differential conductance of the two level model with ε↑ = −0.35 eV, ε↓ = −0.65 eV,
U = 1.0 eV, Vg = 1.0 V, ΓL = ΓR = 0.05 eV.

obtained by our Ansatz is shown. We do not present here the contour plot
obtained by the master equation method because it looks exactly the same.

It is quite clear from the presented figures that our Ansatz and the master
equation method give essentially the same results in the limit of weak coupling
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to the leads. The systematic investigation of the deviations between the two
methods at stronger tunneling will be presented in a separate publication.

It is important that our Ansatz can be applied straightforwardly to mul-
tilevel systems in the case when the exact eigenstates of an isolated system
are unknown and the usage of the master equation method is not easy. In this
paper we consider the simplest example of such a system, namely a double
site case.

Fig. 23: Stability diagram (the contour plot of the differential conductance) calcu-
lated by our Ansatz for the two level model with parameters as in Fig. 22. The latter
is indicated with a dash line at Vg = 1.0 V.

Double quantum dot (two sites)

We now return to the investigation of the DSJ system (Fig. 24) with Coulomb
interaction on each site. The Hamiltonian is expressed as follows,

H = HD +Ht +
∑
α

(Hα +HαD),

where
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Fig. 24: The general configuration of a double site junction. The levels ε1,2 with
charging energies U1,2 are connected via t and coupled to the electrodes via the
linewidth injection rates γi

α.

HD =
∑
i,σ

εi,σd
†
i,σdi,σ +

Ui
2

ni,σni,σ̄,

Ht =
∑
i �=j,σ

t

2
(d†i,σdj,σ + d†j,σdi,σ),

Hα,σ =
∑
k,σ

ε
(α)
k,σc

†
α,k,σcα,k,σ,

HαD,σ =
∑
k,σ

(
Vα,k,σc

†
α,k,σdi,σ + V ∗α,k,σd

†
i,σcα,k,σ

)
,

with i, j = 1, 2 indicate the site, t is the constant for electron hopping between
different sites.

With the help of the EOM, and by means of the truncation approximation
on the double-particle GFs, we obtain the closed form for the retarded GFs
as follows

(ω − εi,σ −Σr
i,σ)G

(U,t)r
i,σ;j,τ = δi,jδσ,τ + UiG

(2)(U,t)r
i,σ;j,τ + t G

(U,t)r
i,σ;j,τ , (400a)

(ω − εi,σ − Ui −Σr
i,σ)G

(2)(U,t)r
i,σ;j,τ = 〈ni,σ̄〉δi,jδσ,τ + t ni,σ̄G

(U,t)r
i,σ;j,τ , (400b)

where the DSJ retarded GFs are defined as

G
(U,t)r
i,j;σ,τ = 〈〈di,σ|d†j,τ 〉〉r, (401)

G
(2)(U,t)r
i,j;σ,τ = 〈〈ni,σ̄di,σ|d†j,τ 〉〉r. (402)

Here ī means ‘NOT i’, and Σr
i,σ are the electron self-energy from leads.

From Eqs. (400a), (400b) and performing the same Ansatz as in the case
of SSJ, we can obtain the DSJ lesser GFs with Coulomb-interaction effects as
follows

G(U,t)<(ω) = (1 +G(U,t)rΣr
t )G

(U)<(1 +Σa
tG

(U,t)a) +G(U,t)rΣ<t G(U,t)a,(403)

with
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Σr
t = Σa

t =

⎛⎜⎜⎝
0 t 0 0
t 0 0 0
0 0 0 t
0 0 t 0

⎞⎟⎟⎠ ,

and Σ<t = 0. G(U)< is the DSJ lesser GF with the same form as Eq. (397),
but taking

U =

⎛⎜⎜⎝
U1 0 0 0
0 U2 0 0
0 0 U1 0
0 0 0 U2

⎞⎟⎟⎠ , Γα =

⎛⎜⎜⎝
γ1
α 0 0 0
0 γ2

α 0 0
0 0 γ1

α 0
0 0 0 γ2

α

⎞⎟⎟⎠ , (404)

where γiα indicates the line width function of lead α to site i, and Ui is the
charging energy at site i. Gr/a and G(2)r/a are the GF matrix from Eqs. (400a)
and (400b). Here, in order to distinguish different GFs, we introduce the
subscript ‘(U, t)’ for the one with both Coulomb interaction U and inter-site
hopping t, while ‘(U)’ for the one only with Coulomb interaction.

For our models, the lesser GFs in Eq. (397), (398) and (403), which are
obtained with help of our Ansatz, can also be obtained by the EOM NEGF
formula (331) within the same truncation approximation.

The current can be generally written as [81]

J =
ie
2�

∫
dε

2π
Tr{(ΓL −ΓR)G(U,t)<+ [fL(ω)ΓL − fR(ω)ΓR](G(U,t)r −G(U,t)a)},

where the lesser GF is given by Eq. (403). The differential conductance is
defined as

G =
∂J

∂Vbias
,

where the bias voltage is defined as Vbias = (μR − μL)/e.

(i) Serial configuration

By taking γ2
L = γ1

R = 0, we obtain a serial DSJ, which could describe
the kind of molecular quantum junctions like the ones studied in Ref. [18].
First, at small bias voltages, the conductance with the two gate voltages Vg1
and Vg2 was calculated, and the relative stability diagram was obtained as
shown in Fig. 25. Because of the double degeneracy (spin-up and spin-down)
considered for each site and electrons hopping between the dots, there are
eight resonance-tunnelling regions. This result is consistent with the master-
equation approach. [176]

Further, we studied the nonequilibrium current for large bias-voltages
(Fig. 26). Because ε1,σ and ε2,σ are taken as asymmetric, for the case with-
out Coulomb interaction, the I-V curve is asymmetric for ±Vbias, and there
are one step and one maximum for the current. The step contributes to one
peak for the conductance. When we introduce the Coulomb interaction to the



296 D. A. Ryndyk, R. Gutiérrez, B. Song, and G. Cuniberti

Fig. 25: Stability diagram of a serial DSJ with ε1,σ = ε2,σ = −0.15 eV, U1 = U2 =
0.3 eV, t = 0.05 eV, γ1

L = γ2
R = 0.02 eV, γ2

L = γ1
R = 0 ,Vbias = 0.005V . The

maximums of conductance are observed when the levels of the first site (ε1,σ or
ε1,σ + U) are overlapped with the levels of the second site (ε2,σ or ε2,σ + U), and
with the Fermi energy in the leads. The splitting of the four maximums is due to
the hopping between the dots.

system, the one conductance peak is split into several: two peaks, one pseudo-
peak and one dip, while the current maximum comes to be double split (see
Fig. 26). The origin of this is in the effective splitting of the degenerate level
when one of the spin states is occupied and the other is empty. When both
spin states are occupied, the degeneracy is restored.

This process can be illustrated by the help of Fig. 27. At zero bias-voltage,
ε2,σ is occupied and ε1,σ is empty. Then we start to increase the bias voltage. a)
The level ε2,σ+U is first opened for transport. It will contribute the first peak
for conductance. b) Further, the levels ε2,σ and ε1,σ come into the transport
window between the left and the right Fermi levels, resulting in the second
peak. c) When the level ε1,σ+U comes into play, only a pseudo-peak appears.
This is because there is only a little possibility for electrons to occupy the
level ε1,σ under positive bias voltage. d) Levels ε2,σ +U and ε1,σ meet, which
results in electron resonant-tunnelling and leads to the first maximum of the
current. Then a new level ε1,σ + U appears over the occupied ε1,σ due to
the Coulomb interaction. e) The meeting of ε2,σ and ε1,σ results in electron
resonant tunnelling. It means that ε1,σ will be occupied, which leads to the
appearance of a new level ε1,σ+U . Then ε2,σ+U meets ε1,σ+U and another
resonant tunnelling channel is opened for electrons. The two channels result
in the second current maximum. f) finally, the level ε1,σ +U disappears if the
level ε1,σ is empty. This means that a dip appears in the conductance.
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Fig. 26: Current and conductance vs. bias-voltage of a DSJ far from equilibrium
with parameters ε1,σ = 0.5 eV, ε2,σ = −0.5 eV, U1 = U2 = U = 0.2 eV, t = 0.07 eV,
γ1
L = γ2

R = 0.03 eV, Vg2 = −Vg1 = Vbias/4 and VR = −VL = Vbias/2. The red curve
represents the current, while the blue the conductance. The inset is the blow-up
for the conductance peak split. The dash and dot-dash curves are for current and
conductance with U = 0, respectively.

It should be noted that the characteristics of serial DSJ in Fig. 26
have showed some reasonable similarities to experiments of a single-molecule
diode. [18]

(ii) Parallel configuration

If on the other hand, the two sites are symmetrically connected to the elec-
trodes, possibly with a small inter-dot hopping, but with charging energies
U1 and U2 fixed to different scales for transport. The resulting stability dia-
gram contains both interference effects for parallel pathways and an overlap
of U1 and U2 stability diagrams, which we refer to a nesting characteristic.
(see Fig. 28).

The physics of the weak lines in the figure can be understood by the help
of charging effects. For simplicity, here we would ignore the site index i. In
the region of large positive gate voltage at zero bias voltage, ε↑ and ε↓ are all
empty, which means that the two levels are degenerate. Therefore adding a
bias voltage, first, there will be two channels (ε↑ and ε↓) opened for current
(thick lines). After then, one level εσ (spin-up or spin-down) is occupied, while
the other obtains a shift for Coulomb interaction: εσ̄ → εσ̄ + U . Therefore,
when the bias voltage is further increased to make the Fermi-window boundary
meeting level εσ̄+U , only one channel is opened for the current, which results
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)a( )b( )c(

)d( )e( )f(

Fig. 27: Processes involved in the transport characteristics in figure 26. ε1 ≡ ε1,σ,
ε2 ≡ ε2,σ, The red line indicates electron resonant-tunnelling. a) The first conduc-
tance peak. b) The second conductance peak. c) The pseudo-peak of conductance.
d) The first current maximum, and the red line indicates resonant tunnelling of
electrons. e) The second current maximum for electron resonant tunnelling. f) The
dip of conductance.

in the weak lines in Fig. 28, which is the characteristic of CB. The similar
case appears in the region of large negative gate voltages.

Finally, we have introduced a powerful Ansatz for the lesser Green func-
tion, which is consistent with both the Dyson-equation approach and the
equation-of-motion approach. By using this Ansatz together with the stan-
dard equation-of-motion technique for the retarded and advanced Green func-
tions, we obtained the NGF for both the single and the double site junctions in
the Coulomb blockade regime at finite voltages and calculated the transport
observables. The method can be applied to describe self-consistently trans-
port through single molecules with strong Coulomb interaction and arbitrary
coupling to the leads.

To test our method, we have analyzed the CB stability diagrams for a SSJ
and a DSJ. Our results are all consistent with the results of experiments and
the master-equation approach. We showed, that the improved lesser Green
function gives better results for weak molecule-to-contact couplings, where a
comparison with the master equation approach is possible.

For the serial configuration of a DSJ, such as a donor/acceptor rectifier,
the I-V curves maintain a diode-like behavior, as it can be already inferred
by coherent transport calculations. [265] Besides, we predict that as a result
of charging effects, one conductance peak will be split into three peaks and
one dip, and one current maximum into two. For a DSJ parallel configuration,
due to different charging energies on the two dot sites, the stability diagrams
show peculiar nesting characteristics.
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Fig. 28: Nested stability diagram of a parallel DSJ with parameters ε1,σ = −1.8 eV,
ε2,σ = −0.3 eV, U1 = 3.6 eV, U2 = 0.6 eV t = 0.001 eV, γ1

L = γ1
R = 0.04 eV,

γ2
L = γ2

R = 0.05 eV, Vg2 = Vg1/2 = Vg/2 and VR = −VL = Vbias/2. See discussion in
the text.

4.2 Nonequilibrium vibrons

Though the electron-vibron model described in the Section II has a long his-
tory, the many questions it implies are not answered up to now. While the
isolated electron-vibron model can be solved exactly by the so-called polaron
or Lang-Firsov transformation [95–97], the coupling to the leads produces
a true many-body problem. The inelastic resonant tunneling of single elec-
trons through the localized state coupled to phonons was first considered in
Refs. [98–101]. There, the exact solution in the single-particle approxima-
tion was derived, ignoring completely the Fermi sea in the leads. At strong
electron-vibron couplings and weak couplings to the leads, satellites of the
main resonant peak are formed in the spectral function (Fig. 11). The num-
ber of the relevant side-bands is determined by the well known Huang-Rhys
factor [292] g = (λ/ω0)2. The question which remains is whether these side-
bands can be observed in the differential conductance, when the coupling to
all electrons in the leads should be taken into account simultaneously. New
theoretical treatments were presented recently in Refs. [84,102–109,111,112,
117,118,120–129,132–136,138–140,164,209,274–279,288–290].

In parallel, the theory of inelastic scanning tunneling spectroscopy was de-
veloped [113–116,161–163]. For a recent review of the electron-vibron problem
and its relation to charge transport at the molecular scale see Ref. [164]. Note
the related problem of quantum shuttle [143,145,147,149].
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Many interesting results by the investigation of quantum transport in the
strong electron-vibron coupling limit has been achieved with the help of the
master equation approach [104,106–109]. This method, however, is valid only
in the limit of very weak molecule-to-lead coupling and neglects all spectral
effects, which are the most important at finite coupling to the leads.

Nonequilibrium Dyson-Keldysh method

(i) The model electron-vibron Hamiltonian

We use the minimal transport model described in the previous sections. For
convenience, we present the Hamiltonian here once more. The full Hamiltonian
is the sum of the molecular Hamiltonian ĤM , the Hamiltonians of the leads
ĤR(L), the tunneling Hamiltonian ĤT describing the molecule-to-lead cou-
pling, the vibron Hamiltonian ĤV including electron-vibron interaction and
coupling of vibrations to the environment (describing dissipation of vibrons)

Ĥ = ĤM + ĤV + ĤL + ĤR + ĤT . (405)

A molecule is described by a set of localized states |α〉 with energies εα
and inter-orbital overlap integrals tαβ by the following model Hamiltonian:

Ĥ
(0)
M =

∑
α

(εα + eϕα(t)) d†αdα +
∑
α�=β

tαβd
†
αdβ . (406)

Vibrations and the electron-vibron coupling are described by the Hamil-
tonian [120–122,124] (� = 1)

ĤV =
∑
q

ωqa
†
qaq +

∑
αβ

∑
q

λqαβ(aq + a†q)d
†
αdβ . (407)

Here vibrations are considered as localized phonons and q is an index labeling
them, not the wave-vector. The first term describes free vibrons with the
energy ωq. The second term represents the electron-vibron interaction. We
include both diagonal coupling, which describes a change of the electrostatic
energy with the distance between atoms, and the off-diagonal coupling, which
describes the dependence of the matrix elements tαβ over the distance between
atoms.

The Hamiltonians of the right (R) and left (L) leads read

Ĥi=L(R) =
∑
kσ

(εikσ + eϕi)c
†
ikσcikσ, (408)

ϕi(t) are the electrical potentials of the leads. Finally, the tunneling Hamil-
tonian

ĤT =
∑
i=L,R

∑
kσ,α

(
Vikσ,αc

†
ikσdα + h.c.

)
(409)

describes the hopping between the leads and the molecule. A direct hopping
between two leads is neglected.
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(ii) Keldysh-Dyson equations and self-energies

We use the nonequilibrium Green function (NGF) method, as introduced in
Section III. The current in the left (i = L) or right (i = R) contact to the
molecule is described by the expression

Ji=L,R =
ie

�

∫
dε

2π
Tr
{
Γi(ε− eϕi)

(
G<(ε) + f0

i (ε− eϕi)
[
GR(ε)−GA(ε)

])}
,

(410)
where f0

i (ε) is the equilibrium Fermi distribution function with chemical po-
tential μi, and the level-width function is

Γi=L(R)(ε) = Γiαβ(ε) = 2π
∑
kσ

Vikσ,βV
∗
ikσ,αδ(ε− εikσ).

The lesser (retarded, advanced) Green function matrix of a nonequilibrium
moleculeG<(R,A) ≡ G

<(R,A)
αβ can be found from the Dyson-Keldysh equations

in the integral form

GR(ε) = GR0 (ε) +GR0 (ε)Σ
R(ε)GR(ε), (411)

G<(ε) = GR(ε)Σ<(ε)GA(ε), (412)

or from the corresponding equations in the differential form (see e.g. Refs.
[123,124] and references therein).

Here
ΣR,< = ΣR,<(T )

L +ΣR,<(T )
R +ΣR,<(V ) (413)

is the total self-energy of the molecule composed of the tunneling (coupling
to the left and right leads) self-energies

ΣR,<(T )
j=L,R ≡ Σ

R,<(T )
jαβ =

∑
kσ

{
V ∗jkσ,αG

R,<
jkσ Vjkσ,β

}
, (414)

and the vibronic self-energy ΣR,<(V ) ≡ Σ
R,<(V )
αβ .

For the retarded tunneling self-energy ΣR(T )
i one obtains

ΣR(T )
i (ε) = Λi(ε− eϕi)− i

2
Γi(ε− eϕi), (415)

where Λi is the real part of the self-energy, which usually can be included in
the single-particle Hamiltonian Ĥ

(0)
M , and Γi describes level broadening due

to coupling to the leads. For the corresponding lesser function one finds

Σ<(T )
i (ε) = iΓi(ε− eϕi)f0

i (ε− eϕi). (416)

In the standard self-consistent Born approximation, using the Keldysh
technique, one obtains for the vibronic self-energies [106, 117, 118, 120–122,
124,164]
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ΣR(V )(ε) =
i

2

∑
q

∫
dω

2π
(
MqGRε−ωM

qDKqω+

+MqGKε−ωM
qDRqω − 2DRqω=0M

qTr
[
G<ωM

q
])

, (417)

Σ<(V )(ε) = i
∑
q

∫
dω

2π
MqG<ε−ωM

qD<qω, (418)

whereGK = 2G<+GR−GA is the Keldysh Green function, andMq ≡ Mq
αβ .

If vibrons are noninteracting, in equilibrium, and non-dissipative, then the
vibronic Green functions write:

DR0 (q, ω) =
1

ω − ωq + i0+
− 1

ω + ωq + i0+
, (419)

D<0 (q, ω) =− 2πi
[
(f0
B(ωq) + 1)δ(ω + ωq) + f0

B(ωq)δ(ω − ωq)
]
, (420)

where the equilibrium Bose distribution function is

f0
B(ω) =

1
exp (ω/T )− 1

. (421)

In the Migdal model the retarded vibron function is calculated from the
Dyson-Keldysh equation

DR(q, ω) =
2ωq

ω2 − ω2
q − 2ωqΠR(q, ω)

, (422)

where Π(q, ω) is the polarization operator (boson self-energy). The equation
for the lesser function (quantum kinetic equation in the integral form) is

(ΠRqω −ΠAqω)D
<
qω − (DRqω −DAqω)Π

<
qω = 0, (423)

this equation in the stationary case considered here is algebraic in the fre-
quency domain.

The polarization operator is the sum of two parts, environmental and
electronic: ΠR,<qω = Π

R,<(env)
qω +Π

R,<(el)
qω .

The environmental equilibrium part of the polarization operator can be
approximated by the simple expressions

ΠR(env)(q, ω) = − i

2
γqsign(ω), (424)

Π<(env)(q, ω) = −iγqf
0
B(ω)sign(ω), (425)

where γg is the vibronic dissipation rate, and f0
B(ω) is the equilibrium Bose-

Einstein distribution function.



Green Function Techniques in the Treatment of Quantum Transport 303

The electronic contribution to the polarization operator within the SCBA
is

ΠR(el)(q, ω) = −i

∫
dε

2π
Tr
(
MqG<ε M

qGAε−ω +MqGRε M
qG<ε−ω

)
, (426)

Π<(el)(q, ω) = −i

∫
dε

2π
Tr
(
MqG<ε M

qG>ε−ω
)
. (427)

We obtained the full set of equations, which can be used for numerical
calculations.

Single-level model: spectroscopy of vibrons

The isolated single-level electron-vibron model is described by the Hamilto-
nian

ĤM+V = (ε0 + eϕ0)d†d+ ω0a
†a+ λ

(
a† + a

)
d†d, (428)

where the first and the second terms describe the free electron state and the
free vibron, and the third term is electron-vibron minimal coupling interaction.

The electrical potential of the molecule ϕ0 plays an important role in
transport at finite voltages. It describes the shift of the molecular level by
the bias voltage, which is divided between the left lead (tip), the right lead
(substrate), and the molecule as ϕ0 = ϕR + η(ϕL − ϕR) [293]. We assume
the simplest linear dependence of the molecular potential (η = const), but its
nonlinear dependence [294] can be easily included in our model.

Here we assume, that the vibrons are in equilibrium and are not excited by
the current, so that the self-consistent Born approximation is a good starting
point. The vibron Green function are assumed to be equilibrium with the
broadening defined by the external thermal bath, see for details Refs. [117,
118,120,124,164].

For the single-level model all equations are significantly simplified. Com-
bining JL and JR the expression for the current can be written for energy
independent ΓL(R) (wide-band limit) as

J =
e

h

ΓLΓR
ΓR + ΓL

∫
dεA(ε)

[
f0(ε− eϕL)− f0(ε− eϕR)

]
. (429)

It looks as simple as the Landauer-Büttiker formula, but it is not trivial,
because the spectral density A(ε) = −2ImGR(ε) now depends on the distri-
bution function of the electrons in the fluctuating molecule and hence the
applied voltage, ϕL = −ϕR = V/2 [123]. Indeed, GR(ε) can be found from
(201)

GR(ε) =
1

ε− ε̃0 −ΣR(V )(ε) + i(ΓL + ΓR)/2
, (430)

where ΣR(V )(ε) is a functional of the electron distribution function inside a
molecule. Actually, the lesser function G<(ε) is used in the quantum kinetic
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Fig. 29: Spectral function at different electron-vibron couplings: λ/ω0 = 0.4 (black),
λ/ω0 = 1.2 (blue, dashed), and λ/ω0 = 2 (red); at ε0/ω0 = 5, ΓL/ω0 = ΓR/ω0 = 0.1.
In the insert the spectral function at λ/ω0 = 1.2 is shown at finite voltage, when
the level is partially filled. Energies are in units of �ω0.

formalism as a distribution function. In the single-level case the usual distri-
bution function can be introduced through the relation

G<(ε) = iA(ε)f(ε). (431)
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Fig. 30: Differential conductance of a symmetric junction (η = 0.5, ΓR = ΓL) at
different molecule-to-lead coupling, from ΓL/ω0 = 0.1 (lower curve) to ΓL/ω0 = 10
(upper curve), λ/ω0 = 1, ε0/ω0 = 2. Voltage is in the units of �ω0/e.
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Note the essential difference between symmetric (ΓL = ΓR) and asymmet-
ric junctions. It is clear from the noninteracting solution of the transport
problem. Neglecting for a moment the vibron self-energies, we obtain the
noninteracting distribution function

f(ε) =
ΓLf

0
L(ε− eϕL) + ΓRf

0
R(ε− eϕR)

ΓL + ΓR
. (432)

For strongly asymmetric junctions (e.g. ΓL � ΓR) the distribution function
remains close to the equilibrium function in the right lead f0

R(ε− eϕR), thus
essentially simplifying the solution. While for symmetric junctions the dis-
tribution function has the double-step form and is very different from the
equilibrium one.

A typical example of the spectral function at zero voltage is shown in
Fig. 29. At finite voltage it should be calculated self-consistently. In the insert
the spectral function of the symmetric junction at finite voltage is shown, it
is changed essentially because the distribution function is changed.

Let us discuss a general picture of the vibronic transport in symmetric
and asymmetric single-molecule junctions, provided in experiments with the
molecular bridges and STM-to-molecule junctions, respectively. The differen-
tial conductance, calculated at different molecule-to-lead coupling, is shown
in Fig. 30 (symmetric) and Fig. 31 (asymmetric). At weak coupling, the vi-
bronic side-band peaks are observed, reproducing the corresponding peaks in
the spectral function. At strong couplings the broadening of the electronic
state hides the side-bands, and new features become visible. In the symmetric
junction, a suppression of the conductance at V � ±�ω0 takes place as a re-
sult of inelastic scattering of the coherently transformed from the left lead to
the right lead electrons. In the asymmetric junction (Fig. 31), the usual IETS
increasing of the conductance is observed at a negative voltage V � −�ω0, this
feature is weak and can be observed only in the incoherent tail of the resonant
conductance. We conclude, that the vibronic contribution to the conductance
can be distinguished clearly in both coherent and tunneling limits.

Now let us discuss the particular situation of STS experiments [32,33,35,
36]. Here we concentrate mainly on the dependence on the tip-to-molecule dis-
tance [33]. When the tip (left lead in our notations) is far from the molecule,
the junction is strongly asymmetric: ΓL � ΓR and η → 0, and the con-
ductance is similar to that shown in Fig. 31. When the tip is close to the
molecule, the junction is approximately symmetric: ΓL ≈ ΓR and η ≈ 0.5,
and the conductance curve is of the type shown in Fig. 30. We calculated the
transformation of the conductance from the asymmetric to symmetric case
(Fig. 32). It is one new feature appeared in asymmetric case due to the fact
that we started from a finite parameter η = 0.2 (in the Fig. 31 η = 0), namely
a single peak at negative voltages, which is shifted to smaller voltage in the
symmetric junction. The form and behavior of this peak is in agreement with
experimental results [33].
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Fig. 31: Differential conductance of an asymmetric junction (η = 0, ΓR = 20ΓL) at
different molecule-to-lead coupling, from ΓR/ω0 = 0.2 (lower curve) to ΓR/ω0 = 4
(upper curve), λ/ω0 = 2, ε0/ω0 = 5. The voltage is in the units of �ω0/e
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Fig. 32: Differential conductance at different molecule-to-STM coupling (see the
text), from asymmetric junction with ΓL/ω0 = 0.025, ΓR/ω0 = 0.5 and η = 0.2
(lower curve, blue thick line) to symmetric junction with ΓL/ω0 = ΓR/ω0 = 0.5 and
η = 0.5 (upper curve, red thick line), λ/ω0 = 1, ε0/ω0 = 2. Voltage is in the units
of �ω0/e

In conclusion, at weak molecule-to-lead (tip, substrate) coupling the usual
vibronic side-band peaks in the differential conductance are observed; at
stronger coupling to the leads (broadening) these peaks are transformed into
step-like features. A vibronic-induced decreasing of the conductance with volt-
age is observed in high-conductance junctions. The usual IETS feature (in-
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creasing of the conductance) can be observed only in the case of low off-
resonant conductance. By changing independently the bias voltage and the
tip position, it is possible to determine the energy of molecular orbitals and
the spectrum of molecular vibrations. In the multi-level systems with strong
electron-electron interaction further effects, such as Coulomb blockade and
Kondo effect, could dominate over the physics which we address here; these
effects have to be included in a subsequent step.

Multi-level model: nonequilibrium vibrons

Basically there are two main nonequilibrium effects: the electronic spec-
trum modification and excitation of vibrons (quantum vibrations). In the
weak electron-vibron coupling case the spectrum modification is usually small
(which is dependent, however, on the vibron dissipation rate, temperature,
etc.) and the main possible nonequilibrium effect is the excitation of vibrons
at finite voltages. We have developed an analytical theory for this case [124].
This theory is based on the self-consistent Born approximation (SCBA), which
allows to take easily into account and calculate nonequilibrium distribution
functions of electrons and vibrons.

If the mechanical degrees of freedom are coupled strongly to the envi-
ronment (dissipative vibron), then the dissipation of molecular vibrations is
determined by the environment. However, if the coupling of vibrations to the
leads is weak, we should consider the case when the vibrations are excited by
the current flowing through a molecule, and the dissipation of vibrations is also
determined essentially by the coupling to the electrons. Here , we show that
the effects of vibron emission and vibronic instability are important especially
in the case of electron-vibron resonance.

We simplify the equations and obtain some analytical results in the vi-
bronic quasiparticle approximation, which assumes weak electron-vibron cou-
pling limit and weak external dissipation of vibrons:

γ∗q = γq − 2ImΠR(ωq) � ωq. (433)

So that the spectral function of vibrons can be approximated by the Dirac δ,
and the lesser function reads

D<(q, ω) = −2πi [(Nq + 1)δ(ω + ωq) +Nqδ(ω − ωq)] , (434)

where Nq is (nonequilibrium) number of vibrations in the q-th mode. So, in
this approximation the spectrum modification of vibrons is not taken into
account, but the possible excitation of vibrations is described by the nonequi-
librium Nq. The dissipation of vibrons is neglected in the spectral function,
but is taken into account later in the kinetic equation for Nq. A similar ap-
proach to the single-level problem was considered recently in [106, 113–118].
The more general case with broadened equilibrium vibron spectral function
seems to be not very interesting, because in this case vibrons are not excited.
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Nevertheless, in the numerical calculation it can be easy taken into consider-
ation.

From the general quantum kinetic equation for vibrons, we obtain in this
limit

Nq =
γqN

0
q − ImΠ<(ωq)

γq − 2ImΠR(ωq)
. (435)

This expression describes the number of vibrons Nq in a nonequilibrium
state, N0

q = f0
B(ωq) is the equilibrium number of vibrons. In the linear ap-

proximation the polarization operator is independent of Nq and −2ImΠR(ωq)
describes additional dissipation. Note that in equilibrium Nq ≡ N0

q because
ImΠ<(ωq) = 2ImΠR(ωq)f0

B(ωq). See also detailed discussion of vibron emis-
sion and absorption rates in Refs. [113–116].

For weak electron-vibron coupling the number of vibrons is close to equilib-
rium and is changed because of vibron emission by nonequilibrium electrons,
Nq is roughly proportional to the number of such electrons, and the distribu-
tion function of nonequilibrium electrons is not change essentially by the inter-
action with vibrons (perturbation theory can be used). The situation changes,
however, if nonequilibrium dissipation −2ImΠR(ωq) is negative. In this case
the number of vibrons can be essentially larger than in the equilibrium case
(vibronic instability), and the change of electron distribution function should
be taken into account self-consistently.

In the stationary state the nonlinear dissipation rate

γ∗q = γq − 2ImΠR(ωq) (436)

is positive, but the nonequilibrium contribution to dissipation −2ImΠR(ωq)
remains negative.

Additionally to the vibronic quasiparticle approximation, the electronic
quasiparticle approximation can be used when the coupling to the leads is
weak. In this case the lesser function can be parameterized through the number
of electrons Fη in the eigenstates of the noninteracting molecular Hamiltonian
H

(0)
M

G<αβ = i
∑
γη

AαγSγηFηS
−1
ηβ , (437)

we introduce the unitary matrix S, which transfer the HamiltonianH ≡ H
(0)
Mαβ

into the diagonal form H̃ = S−1HS, so that the spectral function of this
diagonal Hamiltonian is

Ãδη(ε) = 2πδ(ε− ε̃δ)δδη, (438)

where ε̃δ are the eigenenergies.
Note that in the calculation of the self-energies and polarization operators

we can not use δ-approximation for the spectral function (this is too rough
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Fig. 33: Vibronic emission in the symmetric multilevel model: voltage-current curve,
differential conductance, and the number of excited vibrons in the off-resonant (tri-
angles) and resonant (crosses) cases (details see in the text).

and results in the absence of interaction out of the exact electron-vibron res-
onance). So that in the calculation we use actually (437) with broadened
equilibrium spectral function. This approximation can be systematically im-
proved by including nonequilibrium corrections to the spectral function, which
are important near the resonance. It is important to comment that for stronger
electron-vibron coupling vibronic side-bands are observed in the spectral func-
tion and voltage-current curves at energies ε̃δ±nωq, we do not consider these
effects in the rest of our paper and concentrate on resonance effects.

After correspondingly calculations we obtain finally

Nq =
γqN

0
q −

∑
ηδ κηδ(ωq)Fη(Fδ − 1)

γq −
∑
ηδ κηδ(ωq)(Fη − Fδ)

, (439)

where coefficients κηδ are determined by the spectral function and electron-
vibron coupling in the diagonal representation

κηδ(ωq) =
∫

dε

2π
M̃q
ηδÃδδ(ε− ωq)M̃

q
δηÃηη(ε), (440)

Fη =
Γ̃Lηηf

0
Lη+Γ̃Rηηf

0
Rη+

∑
qη

[
ζ−qηδ FδNq+ζ+q

ηδ Fδ(1+Nq)
]

Γ̃Lηη+Γ̃Rηη+
∑
qη

[
ζ−qηδ (1−Fδ+Nq)+ζ+q

ηδ (Fδ+Nq)
] , (441)
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ζ±qηδ = M̃q
ηδÃδδ(ε̃η ± ωq)M̃

q
δη, (442)

here Γ̃iηη and f0
iη are the level width matrix in the diagonal representation

and Fermi function at energy ε̃η − eϕi.
These kinetic equations are similar to the usual golden rule equations, but

are more general.
Now let us consider several examples of vibron emission and vibronic in-

stability.
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Fig. 34: Vibronic instability in an asymmetric multilevel model: voltage-current
curve, differential conductance, and the number of excited vibrons (crosses). Dashed
line show the voltage-current curve without vibrons (details see in the text).

First we consider the most simple case, when the instability is not pos-
sible and only vibron emission takes place. This corresponds to a negative
imaginary part of the electronic polarization operator: ImΠR)(ωq) < 0. From
the Eq. (440) one can see that for any two levels with the energies ε̃η > ε̃δ
the coefficient κηδ is larger than κδη, because the spectral function Ãδδ(ε) has
a maximum at ε = ε̃δ. The contribution of κηδ(ωq)(Fη − Fδ) is negative if
Fη < Fδ. This takes place in equilibrium, and in nonequilibrium for trans-
port through symmetric molecules, when higher energy levels are populated
after lower levels. The example of such a system is shown in Fig. 33. Here we
consider a simple three-level system (ε̃1 = 1, ε̃2 = 2, ε̃3 = 3) coupled sym-
metrically to the leads (ΓLη = ΓRη = 0.01). The current-voltage curve is the
same with and without vibrations in the case of symmetrical coupling to the
leads and in the weak electron-vibron coupling limit (if we neglect change of
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the spectral function). The figure shows how vibrons are excited, the number
of vibrons NV in the mode with frequency ω0 is presented in two cases. In
the off-resonant case (green triangles) NV is very small comparing with the
resonant case (ω0 = ε̃2 − ε̃1, red crosses, the vertical scale is changed for the
off-resonant points). In fact, if the number of vibrons is very large, the spectral
function and voltage-current curve are changed. We shall consider this in a
separate publication.
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Fig. 35: Floating level resonance: voltage-current curve and the number of excited vi-
brons (crosses). Dashed line show the voltage-current curve without vibrons (details
see in the text).

Now let us consider the situation when the imaginary part of the electronic
polarization operator can be positive: ImΠR(ωq) > 0. Above we considered
the normal case when the population of higher energy levels is smaller than
lower levels. The opposite case F2 > F1 is known as inversion in laser physics.
Such a state is unstable if the total dissipation γ∗q (436) is negative, which
is possible only in the nonstationary case. As a result of the instability, a
large number of vibrons is excited, and in the stationary state γ∗q is positive.
This effect can be observed for transport through asymmetric molecules, when
higher energy levels are populated before lower levels. The example of a such
system is shown in Fig. 34. It is the same three-level system as before, but the
first and second levels are coupled not symmetrically to the leads (ΓL1 = 0.001,
ΓR1 = 0.1, ΓL2 = 0.1, ΓR2 = 0.001). The vibron couple resonantly these levels
(ωq = ε̃2 − ε̃1). The result is qualitatively different from the symmetrical case.
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The voltage-current curve is now asymmetric, a large step corresponds to the
resonant level with inverted population.

Note the importance of the off-diagonal electron-vibron coupling for the
resonant effects. If the matrix M̃ in the eigen-state representation is diagonal,
there is no resonant coupling between different electronic states.

Finally, let us consider the important case, when initially symmetric
molecule becomes asymmetric when the external voltage is applied. The rea-
son for such asymmetry is simply that in the external electric field left and
right atoms feel different electrical potentials and the position of the levels
εα = ε

(0)
α + eϕα is changed (float) with the external voltage. The example of

a such system is shown in Fig. 35. Here we consider a two-level system, one
level is coupled electrostatically to the left lead ε̃1 ∝ ϕL, the other level to the
right lead ε̃2 ∝ ϕR, the tunneling coupling to the leads also is not symmetri-
cal (ΓL1 = 0.1, ΓR1 = 0.001, ΓL2 = 0.001, ΓR2 = 0.1). The frequency of the
vibration, coupling these two states, is ω0 = 1. When we sweep the voltage,
a peak in the voltage-current curve is observed when the energy difference
ε̃1 − ε̃2 ∝ eV is going through the resonance ε̃1 − ε̃2 ≈ ω0.

4.3 Coupling to a vibrational continuum: dissipation and
renormalization

The model Hamiltonian

In the previous section we have dealt with a simple, but nevertheless physically
rich, model describing the interaction of an electronic level with some specific
vibrational mode confined to the quantum dot. We have seen how to apply
in this case the Keldysh non-equilibrium techniques described in Section III
within the self-consistent Born and Migdal approximations. The latter are
however appropriate for the weak coupling limit to the vibrational degrees of
freedom. In the opposite case of strong coupling, different techniques must
be applied. For equilibrium problems, unitary transformations combined with
variational approaches can be used, in non-equilibrium only recently some
attempts were made to deal with the problem. [139]

In this section we will consider the case of a multi-level electronic system
in interaction with a bosonic bath [288,289]. We will use unitary transforma-
tion techniques to deal with the problem, but will only focus on the low-bias
transport, so that strong non-equilibrium effects can be disregarded. Our in-
terest is to explore how the qualitative low-energy properties of the electronic
system are modified by the interaction with the bosonic bath. We will see that
the existence of a continuum of vibrational excitations (up to some cut-off fre-
quency) dramatically changes the analytic properties of the electronic Green
function and may lead in some limiting cases to a qualitative modification
of the low-energy electronic spectrum. As a result, the I-V characteristics at
low bias may display “metallic” behavior (finite current) even if the isolated
electronic system does exhibit a band gap. The model to be discussed below
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has been motivated by the very exciting electrical transport measurements
on short poly(dG)-poly(dC) DNA molecular wires carried out at the group
of N. Tao some time ago [60]. Peculiar in these experiments was the large
measured currents -up to 150 nA at 0.8 V- at low voltages, which stood in
strong contrast to the usually accepted view that DNA should behave as an
insulator at low applied bias. Further, a power-law length scaling of the linear
conductance with increasing wire length was demonstrated, indicating that
long-range charge transport was possible. Since the experiments were carried
out in an aqueous solution, the possibility of a solvent-induced modification
of the low-energy transport properties of the wire lied at hand, although ad-
ditional factors like internal vibrations could also play a role.

The proposed model is based on an earlier work [286] and assumes, within
a minimal tight-binding picture, that the DNA electronic states can be qual-
itatively classified into extended (conducting) and localized (non-conducting)
states. The former may correspond e.g. to the π-orbital stack of the base pairs,
the latter to energetically deeper lying (w.r.t. the frontier orbitals) base-pair
states or sugar-phosphate backbone states. A further assumption is that any
modification of the conducting states through the environment only takes
place through a coupling to the non-conducting set. The tight-binding elec-
tronic Hamiltonian for N sites can then be written as (see also Fig. 36):

Hel = εb
∑
j

b†jbj − t||
∑
j

[
b†jbj+1 +H.c.

]
+ ε
∑
j

c†jcj

− t⊥
∑
j

[
b†jcj +H.c.

]
= HC +Hb +HC-b. (443)

Hereby HC and Hb are the Hamiltonians of the extended and localized
states (called in what follows “backbone” states for simplicity), respectively,
and HC-b is the coupling between them. t|| and t⊥ are hopping integrals
along the central chain (extended states) and between the localized states and
the central chain, respectively. If not stated otherwise, the on-site energies
will be later set equal to zero to simplify the calculations. Notice that this
model displays a gap in the electronic spectrum roughly proportional to the
transversal coupling t⊥. This can be easely seen by looking at the limit N →
∞ which leads to a periodic system. In this case, the Hamiltonian can be
analytically diagonalized and two energy dispersion curves are obtained, which
are given by E±(k) = t|| cos(k)±

√
t2⊥ + t2|| cos

2(k). The direct gap between the

two bands is simply δ = 2
√

t2⊥ + t2||. Since this model further shows electron-

hole symmetry, two electronic manifolds (bands in the limit of N → ∞)
containing N states each, are symmetrically situated around the Fermi level,
which is taken as the zero of energy.

The gap is obviously temperature independent and furthermore it is ex-
pected that transport at energies E < δ will be strongly suppressed due to
the absence of electronic states to suport charge propagation. As a result,
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Fig. 36: Schematic drawing of a DNA molecular wire in contact with a dissipative
environment. The central chain (extended states) with N sites is connected to semi-
infinite left (L) and right (R) electronic reservoirs. The bath only interacts with the
side chain sites (c), which we call for simplicity backbone sites, but which collectively
stay for non-conducting, localized electronic states. The Hamiltonian associated with
this model is given by Eqs. (443), (444), and (445) in the main text.

the linear conductance should display a strong exponential dependence as a
function of the chain length N . In view of this behavior, an immediate issue
that arises is how stable this electronic structure, i.e. two electronic manifolds
separated by a gap, is against the coupling to an environment. This is an is-
sue which reaches farther than the problem of charge transport in DNA wires,
since it addresses the interaction of an open quantum mechanical system with
a countable number of electronic energy levels to a continuum of states (“uni-
verse”). A generic example of such a situation is the measurement process in
quantum mechanics. It is well-known that the interaction with complex envi-
ronments is a source of dissipation and decoherence in quantum mechanical
systems. [71] Concerning more specifically the case of DNA (and proteins),
there is broad experimental evidence that the molecule dynamics follows the
solvent dynamics over a broad temperature range. Especially, conformational
changes, low-energy vibrational excitations and the corresponding tempera-
ture dependences turn out to be very sensitive to the solvents dynamics. [295]
We will thus consider the vibrational degrees of freedom of counterions and
hydration shells of the solvent as a dynamical bath able to break the elec-
tronic phase coherence and additionally to act as a dissipative environment.
We do not consider specific features of the environment but represent it in a
generic way by a bosonic bath of M harmonic oscillators. Then, the previous
Hamiltonian can be extended to:

HW = Hel +
∑
α

ΩαB
†
αBα+

∑
α,j

λαc
†
jcj(Bα+B†α) = Hel +HB +Hc-B, (444)

where HB and Hc-B are the phonon bath Hamiltonian and the (localized)
state-bath interaction, respectively. Bα is a bath phonon operator and λα
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denotes the electron-phonon coupling. Note that we assume a local coupling
of the bath modes to the electronic density at the side chain. Later on, the
thermodynamic limit (M → ∞) in the bath degrees of freedom will be carried
out and the corresponding bath spectral density introduced, so that at this
stage we do not need to further specify the set of bath frequencies Ωα and
coupling constants λα. Obviously, the bath can be assumed to be in thermal
equilibrium and be described by a canonical partition function.

To complete the formulation of the model, we have to include the inter-
action of the system with electronic reservoirs in order to describe charge
transport along the same lines as before. We assume, as usual, a tunnel-type
Hamiltonian with the form:

H = HW +
∑

k∈L,R,σ

εkσd
†
kσdkσ +

∑
k∈L,σ

(Vk,1 d†kσ b1 +H.c.)

+
∑

k∈R,σ
(Vk,N d†kσ bN +H.c.) = HW +HL/R +HL-C +HR-C. (445)

The Hamiltonian of Eq. (445) is the starting point of our investigation.
For a weak charge-bath coupling, a perturbative approach similar to the sec-
ond order Born approximation, as described in the previous section can be
applied. We expect, however, qualitative new effects rather in the opposite
limit of strong coupling to the bath. To deal with this problem, a unitary
transformation, the Lang-Firsov (LF) transformation, can be performed on
the Hamiltonian of Eq. (445), which allows to eliminate the linear charge-
vibron interaction Hc-B. In the limiting case of an isolated system with a
single electron (or hole) this transformation becomes exact and allows for a
full decoupling of electronic and vibronic propagators, see e.g. Ref. [97]. In
the present case, this transformation is not exact and further approximations
have to be introduced in order to make the problem tractable.

The generator of the LF transformation is given by

S =
∑
α,j

(λα/Ωα)c
†
jcj(Bα −B†α)

and S† = −S. In the transformed Hamiltonian H̄ = e SHe−S the linear
coupling to the bath is eliminated. One should notice that in H̄ only the
“backbone” part of the Hamiltonian is modified since the conducting state
operators b� as well as the lead operators dkσ are invariant with respect to
the above transformation. The new Hamiltonian reads:

H̄ = HC +HL/R +HB +HL/R-C + (ε−Δ)
∑
j

c†jcj − t⊥
∑
j

[
b†jcjX +H.c.

]
,

X = exp

[∑
α

λα
Ωα

(Bα −B†α)

]
, Δ =

∑
α

λ2
α

Ωα
. (446)

As a result of the LF we get a shift of the onsite energies (polaron shift
or reorganization energy in electron transfer theory) and a renormalization of
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both the tunneling and of the transversal coupling Hamiltonian via the bosonic
operators X . There is also an additional electron-electron interaction term
which we will not be concerned with in the remaining of this section and is
thus omitted. Since we are mainly interested in qualitative statements, we will
assume the wide-band approximation in the coupling to the electrodes which
is equivalent to substituting the electrode self-energies by a purely imaginary
constant, i.e. ΣL,R ≈ −iΓL,R. We are thus not interested in specific features
of the electrode electronic structure.

To further proceed, let us now introduce two kinds of retarded thermal
Green functions related to the central chain Gj�(t) and to the “backbones”
Pj�(t), respectively (taking � = 1):

Gj�(t, t′) = −iΘ(t− t′)
〈[

bj(t), b
†
�(t
′)
]
+

〉
, (447)

Pj�(t, t′) = −iΘ(t− t′)
〈[

cj(t)X (t), c†�(t
′)X †(t′)

]
+

〉
,

where Θ is the Heaviside function. Notice that the P -Green function doe not
have a pure electronic character but also contains the bath operators X . For a
full out-of-equilibrium calculation, the full Keldysh formalism including lesser-
and greater-GF would also be needed. However, as we will briefly show below,
the final expression for the electrical current at low applied voltages and for
small transversal coupling t⊥ will only include the retarded propagators.

We now use the equation of motion technique (EOM) to obtain an expres-
sion for the GF Gj�(t). We first remark that in the time domain two EOM
can be written, depending on which time argument in the double-time GF
the time derivative will act. One thus obtains in general:

i ∂tG(t, t′) =
〈[

b(t), b†(t′)
]
+

〉
δ(t− t′) + (([b(t), H] |b†(t′))).

G(t, t′)[−i ∂t′ ] =
〈[

b(t), b†(t′)
]
+

〉
δ(t− t′)− ((b(t)| [b†(t′), H])).

The EOM for the GF Gj�(t) reads then in the energy space:∑
n

[
G−1

0 (E)
]
�n

Gnj(E) = δ�j − t⊥((c�X|b†j)) (448)[
G−1

0 (E)
]
�n

= (E − εb)δn� + t||(δn,�+1 + δn,�−1)−ΣLδ�1δn1 −ΣRδ�NδnN

ΣL(R) =
∑

k∈L(R)

|Vk,1(N)|2
E − εk + i 0+

≈ −iΓL,R

In the next step, EOM for the “right” time argument t′ of the GF
ZX�j (t, t

′)((c�(t)X (t)|b†j(t′))) can be written. This leads to:∑
m

ZX�m(E)
[
G−1

0 (E)
]
mj

= −t⊥((c�X|c†jX †)) = −t⊥P�j(E) (449)
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Inserting Eq. (449) into Eq. (448) we arrive at the matrix equation:

G(E) = G0(E) + G0(E)ΣB(E)G0(E),

which can be transformed into a Dyson-like equation when introducing the
irreducible part ΣB(E) = Σirr

B (E) + Σirr
B (E)G0(E)Σirr

B (E) + . . . :

G(E) = G0(E) + G0(E)Σirr
B (E)G(E), (450)

or equivalently:

G−1(E) = G−1
0 (E)− t2⊥P (E) (451)

G−1
0 (E) = E1−HC −ΣL(E)−ΣR(E).

Σirr
B (E) = t2⊥P (E) is the crucial contribution to the GF since it contains

the influence of the bosonic bath. Note that Σirr
B (E) includes the transversal

hopping t⊥ to all orders, the leading one being t2⊥.
In the next step, an expression for the electrical current flowing through

the system must be derived. Using the results of Sec. 2, we can directly write
the following expression:

I =
2e
h

∫
dE Tr(fL(E)− fR(E)) t(E)

+ t2⊥
2e
h

∫
dE
{
Tr[Σ>

L P< − Σ<
L P>]− (L ↔ R)

}
. (452)

The first summand has the same form as Landauer’s expression for the
current with an effective transmission function t(E) = Tr[G†ΓRGΓR]. How-
ever, the reader should keep in mind that the GFs appearing in this expression
do contain the full dressing by the bosonic bath and hence, t(E) does not de-
scribe elastic transport. The remaining terms contain explicitly contributions
from the bath. It can be shown after some transformations that the leading
term is proportional to (t2⊥)

2 so that within a perturbative approach in t⊥
and at low bias it can be approximately neglected. We therefore remian with
the exression I = 2e

h

∫
dE Tr(fL(E)− fR(E)) t(E) to obtain the current.

To remain consistent with this approximation, the bath selfenergy should
also be treated to order t2⊥, more explicitly:

P�j(t, t′) = ((c�(t)X (t)|c†j(t′)X †(t′)))
≈ −i θ(t− t′)

{〈
c�(t)c

†
j(t
′)
〉 〈X (t)X †(t′)〉+ 〈c†j(t′)c�(t)〉 〈X †(t′)X (t)

〉}
≈ −i δ�jθ(t− t′)

{〈
cj(t)c

†
j(t
′)
〉 〈X (t)X †(t′)〉+ 〈c†j(t′)cj(t)〉 〈X †(t′)X (t)

〉}
= −i δ�jθ(t− t′)e−i (ε−Δ) t

{
(1− fc)e−Φ(t) + fce−Φ(−t)

}
. (453)

In the previous expression we have replaced the full averages of the “back-
bone” operators by their zero order values (free propagators). e−Φ(t) =
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B

is a dynamical bath correlation function to be specified later
on. The average 〈·〉B is performed over the bath degrees of freedom. fc is the
Fermi function at the backbone sites. In what follows we consider the case of
empty sites by setting fc = 0. The Fourier transform P�j(E) reads then:

P�j(E) = −i δ�j
∫ ∞

0

dt e i (E+i 0+)t e−i (ε−Δ) t
[
(1− fc)e−Φ(t) + fce−Φ(−t)

]
(454)

In order to get closed expressions for the bath thermal averages it is ap-
propriate to introduce a bath spectral density [71] defined by :

J(ω) =
∑
α

λ2
αδ(ω −Ωα) = J0(

ω

ωc
)se−ω/ωcΘ(ω), (455)

where ωc is a cut-off frequency related to the bath memory time τc ∼ ω−1
c .

It is easy to show that the limit ωc → ∞ corresponds to a Markovian bath,
i.e. J(t) ∼ J0δ(t). Using this Ansatz, Φ(t) can be written as:

Φ(t) =
∫ ∞

0

dω
J(ω)
ω2

[
1− e−iωt + 2

1− cosωt

e βω − 1

]
. (456)

Although the integral can be performed analytically [71], we consider Φ(t) in
some limiting cases where it is easier to work directly with Eq. (456).

Limiting cases

We use now the results of the foregoing section to discuss the electronic trans-
port properties of our model in some limiting cases for which analytic expres-
sions can be derived. We will discuss the mean-field approximation and the
weak-coupling regime in the electron-bath interaction as well as to elaborate
on the strong-coupling limit. Furthermore, the cases of ohmic (s = 1) and
superohmic (s = 3) spectral densities are treated.

(i) Mean-field approximation

The mean-field approximation is the simplest one and neglects bath fluctua-
tions contained in P (E). The MFA can be introduced by writing the phonon
operator X as 〈X 〉B + δX in HC-c in Eq. (446), i.e.

HMF
C-b = −t⊥

∑
j

[
b†jcj 〈X 〉B +H.c.

]
+O(δX ).

As a result a real, static and temperature dependent term in Eq. (451) is
found:

G−1(E) = G−1
0 (E)− t2⊥

| 〈X 〉B |2
E − ε+Δ+ i 0+

1, (457)
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Fig. 37: Electronic transmission and corresponding current in the mean-field approx-
imation for two different temperatures. Parameters: N = 20, J0/ωc = 0.12, t⊥/t|| =
0.5, ΓL/R/t|| = 0.5.

where |〈X 〉B|2 = e−2κ(T ) and κ(T ) is given by:

κ(T ) =
∫ ∞

0

dω
ω2

J(ω) coth
ω

2kBT
. (458)

The effect of the MF term is thus to scale the bare transversal hopping t⊥ by
the exponential temperature dependent factor e−κ(T ).

In the case of an ohmic bath, s = 1, the integrand in κ(T ) scales as
1/ωp, p = 1, 2 and has thus a logarithmic divergence at the lower integration
limit. Thus, the MF contribution would vanish. In other words, no gap would
exist on this approximation level.

In the superohmic case (s = 3) all integrals are regular. One obtains Δ =∫
dω ω−1J(ω) = Γ (s− 1)J0 = 2J0, with Γ (s) being the Gamma function and

κ(T ) reads:

κ(T ) =
2J0

ωc

[
2
(
kBT

ωc

)2

ζH

(
2,

kBT

ωc

)
− 1

]
. (459)

ζH(s, z) =
∑∞
n=0(n + z)−s is the Hurwitz ζ-function, a generalization of the

Riemann ζ-function. [296]
It follows from Eq. (17) that κ(T ) behaves like a constant for low tem-

peratures (kBT/ωc < 1), κ(T ) ∼ J0/ωc, while it scales linear with T in the
high-temperature limit (kBT/ωc > 1), κ(T ) ∼ J0/ωc(1 + 2kBT/ωc)).

For J0 �= 0 and at zero temperature the hopping integral is roughly reduced
to t⊥e−

J0
ωc which is similar to the renormalization of the hopping in Holstein’s
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Fig. 38: Electronic transmission and corresponding current in the weak-coupling
limit with ohmic dissipation (s = 1) in the bath. Parameters: N = 20, J0/ωc =
0.2, t⊥/t|| = 0.6, ΓL/R/t|| = 0.5

polaron model [297], though here it is t⊥ rather than t|| the term that is
rescaled. At high temperatures t⊥ is further reduced (κ(T ) ∼ T ) so that
the gap in the electronic spectrum finally collapses and the system becomes
“metallic”, see Fig. 37. An appreciable temperature dependence can only be
observed in the limit J0/ωc < 1; otherwise the gap would collapse already at
zero temperature due to the exponential dependence on J0. We further remark
that the MFA is only valid in this regime (J0/ωc < 1), since for J0/ωc � 1
multiphonon processes in the bath, which are not considered in the MFA,
become increasingly relevant and thus a neglection of bath fluctuations is not
possible.

(ii) Beyond MF: weak-coupling limit

As a first step beyond the mean-field approach let’s first consider the weak-
coupling limit in P (E). For J0/ωc < 1 and not too high temperatures
(kBT/ωc < 1) the main contribution to the integral in Eq. (456) comes from
long times t � ω−1

c . With the change of variables z = ωt, Φ(t) can be written
as:

Φ(t) = J0ω
−s
c t1−s

∫ ∞
0

dz zs−2e−
z

ωct

×
(
1− e−i z + 2

1− cos z

e z
βωc
ωct − 1

)
. (460)

As far as ωct � βωc this can be simplified to:
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Φ(t) ≈ J0ω
−s
c t1−s

∫ ∞
0

dx zs−2e−
z

ωct

×
(
1− e−i z + 2

βωc

ωct

1− cos z
z

)
. (461)

Since in the long-time limit the low-frequency bath modes are giving the
most important contribution we may expect some qualitative differences in
the ohmic and superohmic regimes. For s = 1 we obtain Φ(t) ∼ π J0ωc

kBT
ωc

(ωct)
which leads to (Δ(s = 1) = J0):

G−1(E) = G−1
0 (E)− t2⊥

1
E + J0 + iπ J0ωc kBT

1, (462)

i.e. there is only a pure imaginary contribution from the bath. For the simple
case of N = 1 (a two-states model) one can easily see that the gap approx-
imately scales as

√
kBT ; thus it grows with increasing temperature. This is

shown in Fig. 38, where we also see that the intensity of the transmission reso-
nances strongly goes down with increasing temperature. The gap enhancement
is induced by the suppression of the transmission peaks of the frontier orbitals,
i. e. those closest to the Fermi energy.

For s = 3 and kBT/ωc < 1, Φ(t) takes a nearly temperature independent
value proportional to J0/ωc. As a result the gap is slightly reduced (t⊥ →
t⊥e−J0/ωc) but, because of the weak-coupling condition, the effect is rather
small.
From this discussion we can conclude that in the weak-coupling limit ohmic
dissipation in the bath induces an enhancement of the electronic gap while
superohmic dissipation does not appreciably affect it. In the high-temperature
limit kBT/ωc > 1 a short-time expansion can be performed which yields
similar results to those of the strong-coupling limit (see next section), [298] so
that we do not need to discuss them here. Note farther that the gap obtained
in the weak-coupling limit is an “intrinsic” property of the electronic system;
it is only quantitatively modified by the interaction with the bath degrees of
freedom. We thus trivially expect a strong exponential dependence of t(E =
EF), typical of virtual tunneling through a gap. Indeed, we find t(E = EF) ∼
exp (−β L) with β ∼ 2− 3 Å−1.

(iii) Beyond MF: strong coupling limit (SCL)

In this section we elaborate on the strong-coupling regime, as defined by the
condition J0/ωc > 1. In the SCL the main contribution to the time integral in
Eq. (456) arises from short times. Hence a short-time expansion of Φ(t) may
already give reasonable results and it allows, additionally, to find an analytical
expression for P (E). At t � ω−1

c we find,
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Fig. 39: Temperature dependence of the real and imaginary parts of P (E) for N =
20, J0/ωc = 10, t⊥/t|| = 0.4, ΓL/R/t|| = 0.5. With increasing temperature the slope
of the real part near E = 0 decreases and the imaginary part broadens and loses
intensity. A similar qualitative dependence on J0 was found (not shown).

Φ(t) ≈ iΔt+ (ωct)2 κ0(T ) (463)

P�j(E) = −i δ�j
∫ ∞

0

dt e i (E−ε+i 0+)t e−(ωct)
2κ0(T )

= −i δ�j

√
π

2
1

ωc

√
κ0(T )

exp
(
− (E − ε+ i 0+)2

4ω2
cκ0(T )

)

×
(
1 + erf

[
i (E − ε+ i 0+)
2ωc

√
κ0(T )

])
,

κ0(T ) =
1

2ω2
c

∫ ∞
0

dωJ(ω) coth
ω

2kBT
.

Before presenting the results for the electronic transmission, it is useful
to first consider the dependence of the real and imaginary parts of P (E) on
temperature and on the reduced coupling constant J0/ωc. Both functions are
shown in Fig. 39. We see that around the Fermi level at E = 0 the real
part is approximately linear, ReP (E) ∼ E while the imaginary part shows
a Lorentzian-like behavior. The imaginary part loses intensity and becomes
broadened with increasing temperature or J0, while the slope in the real part
decreases when kBT or J0 are increased.

If we neglect for the moment the imaginary part (the dissipative influ-
ence of the bath), we can understand the consequences of the real part be-
ing nonzero around the Fermi energy, i.e. in the gap region of the model of
Ref. [286]. The solutions of the non-linear equation det|(E − t2⊥ReP (E))1−
HC| = 0 give the new poles of the Green function of the system in presence of
the phonon bath. For comparison, the equation determining the eigenstates
without the bath is simply det|(E − t2⊥/E)1−HC| = 0. It is just the 1/E de-
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Fig. 40: ImP (E) = 0; the intensity of the resonances on the central narrow band
is strongly dependent on J0/ωc and kBT (not shown). Temperature dependence of
t(E) with full inclusion of P (E) (middle panel) and corresponding current (lower
panel) for N = 20, J0/ωc = 5, t⊥/t|| = 0.5, ΓL/R/t|| = 0.2. The pseudo-gap increases
with temperature.

pendence near E = 0 that induces the appearance of two electronic bands of
states separated by a gap. In our present study, however, ReP (E → 0) has no
singular behavior and additional poles of the Green function may be expected
to appear in the low-energy sector. This is indeed the case, as shown in Fig. 40
(upper panel). We find a third band of states around the Fermi energy, which
we may call a polaronic band because it results from the strong interaction
between an electron and the bath modes. The intensity of this band as well as
its band width strongly depend on temperature and on J0. When kBT (or J0)
become large enough, these states spread out and eventually merge with the
two other side bands. This would result in a transmission spectrum similar of
a gapless system.

This picture is nevertheless not complete since the imaginary component
of P (E) has been neglected. Its inclusion leads to a dramatic modification
of the spectrum, as shown in Fig. 40 (middle panel). We now only see two
bands separated by a gap which basically resembles the semiconducting-type
behavior of the original model. The origin of this gap or rather pseudo-gap
(see below) is however quite different. It turns out that the imaginary part
of P (E), being peaked around E = 0, strongly suppresses the transmission
resonances belonging to the third band. Additionally, the frontier orbitals
on the side bands, i.e. orbitals closest to the gap region, are also strongly
damped, this effect becoming stronger with increasing temperature (ImP (E)
broadens). This latter effect has some similarities with the previously discussed
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Fig. 41: Upper panel: Arrhenius plot for t(EF ). Parameters: N = 20, t|| =
0.6 eV, t⊥/t|| = 0.2, ΓL/R/t|| = 0.3. Middle and lower panels: Length dependence
of t(EF ) at different temperatures for two different strengths of the electron-bath
coupling J0/ωc. The electronic coupling parameters are the same as in the upper
panel.

weak-coupling regime. Note, however, that the new electronic manifold around
the Fermi energy does not appear in the weak-coupling regime. We further
stress that the density of states around the Fermi level is not exactly zero
(hence the term pseudo-gap); the states on the polaronic manifold, although
strongly damped, contribute nevertheless with a finite temperature dependent
background to the transmission. As a result, with increasing temperature, a
crossover from “semiconducting” to “metallic” behavior in the low-voltage
region of the I-V characteristics takes place, see Fig. 40 (lower panel). The
slope in the I-V plot becomes larger when t⊥ is reduced, since the side bands
approach each other and the effect of ImP (E) is reinforced.

In Fig. 41 (top panel) an Arrhenius plot of the transmission at the Fermi
energy is shown, which suggests that activated transport is the physical mech-
anism for propagation at low energies. Increasing the coupling to the phonon
bath makes the suppression of the polaronic band around E = 0 less effective
(ImP (E ∼ 0) decreases) so that the density of states around this energy be-
comes larger. Hence the absolute value of the transmission will also increase.
On the other side, increasing t⊥ leads to a reduction of the transmission at
the Fermi level, since the energetic separation of the side bands increases with
t⊥.
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A controversial issue in transport through molecular wires is the actual
length dependence of the electron transfer rates or correspondingly, of the
linear conductance. This is specially critical in the case of DNA nanowires
[56,57,59]. Different functional dependences have been found in charge trans-
fer experiments ranging from strong exponential behavior related to superex-
change mediated electron transfer [56] to algebraic dependences typical of
thermal activated hopping [57, 59]. As far as transport experiments are con-
cerned, the previously mentioned experiments at the group of N. Tao [60]
reported an algebraic length dependence of the conductance for poly(GC)
oligomers in solution. We have investigated the length dependence of t(EF )
and found for the strong dissipative regime J0/ωc > 1, an exponential law for
energies close to EF, t(EF) ∼ exp(−γN). At the first sight, this might be not
surprising since a gap in the spectrum does exist. Indeed, in the absence of
the bath, i.e. with an intrinsic gap, we get decay lengths γcoh of the order of 2
AA−1. However, as soon as the interaction with the bath is included, we find
values of γ much smaller than expected for virtual tunneling, ranging from
0.15 Å−1 to 0.4 Å−1. Additionally, γ is strongly dependent on the strength
of the electron-bath coupling J0/ωc as well as on temperature; γ is reduced
when J0/ωc or kBT increases, since in both cases the density of states within
the pseudo-gap increases. Remarkably, a further increase of the electron-bath
coupling eventually leads to an algebraic length dependence, see lower panel
of Fig. 41.

The studies presented in this section indicate that the presence of a com-
plex environment, which induces decoherence and dissipation, can dramat-
ically modify the electronic response of a nanowire coupled to electrodes.
Electron transport on the low-energy sector of the transmission spectrum
is supported by the formation of (virtual) polaronic states. Though strongly
damped, these states manifest nonetheless with a finite density of states inside
the bandgap and mediate thermally activated transport.

5 Conclusions and Perspectives

In this chapter we have reviewed the method of nonequilibrium Green func-
tions and few selected applications to problems related with charge transport
at the molecular scale. Hereby we have only focused on minimal model Hamil-
tonian formulations which build a very appropriate starting point to illustrate
the power and range of validity of such techniques. We have showed how this
approach can be used to deal with a variety of physical systems, covering
both noninteracting and interacting cases. Thus, so different issues as co-
herent transport, Coulomb blockade phenomena, charge-vibron interaction,
coupling to dissipative environments, and the Kondo effect (not addressed
in this review) can be in principle treated on the same footing. Specially,
the existence of well-developed diagrammatic techniques allows for a system-
atic treatment of interactions in nanoscale quantum systems. For the sake of
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space, we did not deal with applications of NGF techniques to spin-dependent
transport, a field that has been increasingly attracting the attention of the
physical community in the past years due to its potential applications in quan-
tum information theory and quantum computation [299, 300]. For the same
reason, the implementation of NGF into first-principle based approaches was
not discussed neither. This is nevertheless a crucial methodological issue, since
system-specific and realistic information about molecule-metal contact details,
charge transfer effects, modifications of the molecular electronic structure and
configuration upon contacting, the electrostatic potential distribution in a de-
vice, etc can only be obtained via a full ab initio description of transport. For
charge transport through noninteracting systems this has been accomplished
some years ago by combining NGF with DFT methods. The inclusion of inter-
actions, however, represents a much stronger challenge and has been mainly
carried out, within the self-consistent Born-approximation, for the case of
tunneling charges coupling to vibrational excitations in the molecular region.
Also there were some efforts to include dynamical correlations into DFT-based
approach. Much harder and till the present not achieved at all is the inclu-
sion of electronic correlation effects, responsible for many-particle effects like
Coulomb blockade or the Kondo effect, in a non-equilibrium transport sit-
uation. DFT-based techniques, being essentially mean-field theories, cannot
deal in a straightforward way with such problems and have to be improved,
e.g. within the LDA+U approaches. For the case of equilibrium transport,
a generalization of the Landauer formula including correlations has been re-
cently formulated as well as first attempts to go beyond the linear response
regime; for strong out-of-equilibrium situations this will be, in our view, one
of the most demanding issues that the theoretical “transport” community will
be facing in the coming years.
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Abstract. The dynamics in open quantum systems is often described by quantum
master equations (QMEs). Here a certain class of these master equations, the so-
called time-local or time-convolutionless QMEs, are reviewed in combination with a
decomposition of the spectral density which describes the coupling between system
and environment. Details of the derivations are given jointly together with applica-
tions to damped harmonic oscillators, calculation of absorption spectra on one side,
and molecular wires on the other side. In the first class of applications the environ-
ment consists of a bosonic heat bath while in the second case the environments are
fermionic particle reservoirs.

1 Introduction

Open quantum systems have attracted much attention over the last decades.
While most of the studies dealt with systems coupled to bosonic heat baths,
recently systems coupled to fermionic reservoirs describing for example molec-
ular wires have been in the focus of many investigations. This chapter will not
try to give a concise overview of the available literature but will focus on a
particular approach: time-local (TL) quantum master equations (QMEs) and
in particular their combination with specific forms of the spectral density.

To determine the dynamics of a system coupled to an environment is a
formidable task which can only be solved analytically for a few basic examples.
Among these are the damped harmonic oscillator serving as an example for the
coupling to a bosonic bath [1] and the resonant level model as an example for
the coupling to fermionic reservoirs [2]. There is a huge variety of formalisms
developed to treat such systems. Exact treatments are for example possible
by using the path integral technique [3] or the self-consistent hybrid schemes
[4,5]. Also alternative approaches such as the surrogate Hamiltonian formalism
for spin baths are possible [6]. Furthermore, a huge number of perturbative
approaches are known either based on the Nakajima-Zwanzig identity [7–9] or
on the Hashitsume-Shibata-Takahashi identity [10, 11]. In these theories the
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time evolution of the complete system plus environment is projected onto the
relevant part of the system, leading to an explicit equation of motion for the
relevant system alone. In rare cases the Nakajima-Zwanzig identity can be used
to calculate the dynamics exactly [12]. However, in most cases perturbative
treatments have to be invoked. A famous and widely used example of such
a perturbative treatment is the so-called Redfield formalism [13–17] which is
second order in the system-bath interaction part of the Hamiltonian.

Basically the perturbative techniques can be grouped into two classes:
time-local (TL) and time-nonlocal (TNL) techniques, based on the Nakajima-
Zwanzig or the Hashitsume-Shibata-Takahashi identity, respectively. Within
the TL methods the QME of the relevant system depends only on the ac-
tual state of the system, whereas within the TNL methods the QME also
depends on the past evolution of the system. This chapter concentrates on
the TL formalism but also shows comparisons between TL and TNL QMEs.
An important way how to go beyond second-order in perturbation theory is
the so-called hierarchical approach by Tanimura, Kubo, Shao, Yan and oth-
ers [18–26]. The hierarchical method originally developed by Tanimura and
Kubo [18] (see also the review in Ref. [26]) is based on the path integral tech-
nique for treating a reduced system coupled to a thermal bath of harmonic
oscillators. Most interestingly, Ishizaki and Tanimura [27] recently showed
that for a quadratic potential the second-order TL approximation coincides
with the exact result. Numerically a hint in this direction was already visible
in simulations for individual and coupled damped harmonic oscillators [28].

In this chapter the work of our group in the direction of TL QMEs is
reviewed. Before going into the details of QMEs, issues concerning spectral
densities and correlation functions important for the present approach are
discussed for both, bosonic as well as fermionic environments. In section 3,
QMEs for dissipative quantum dynamics are derived and applied to model
systems, but also to more complicated ones. It is shown that non-Markovian
effects might also appear in static absorption spectra. Molecular wires and the
electron transport through them is the topic of section 4 while some concluding
remarks are given in the last section. The chapter is completed by an appendix
containing simple derivations of the Nakajima-Zwanzig and the Hashitsume-
Shibata-Takahashi identities. The Planck constant � is set to unity throughout
this chapter.

2 Spectral densities and correlations functions

By using special forms of the so-called spectral density J(ω) it is possible to
treat memory effects in QMEs. The spectral density J(ω) contains informa-
tion on the frequencies of the environmental modes and their coupling to the
system. Tanimura and coworkers [18, 20, 26] were the first to do calculations
along the lines described here using spectral densities of Drude shape. This
spectral densities lead to bath correlation functions with purely exponential
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time dependence (see also [29]). Spectral densities which are not of this spe-
cific form can be fitted as a sum of Lorentzians. This way bath correlation
functions with exponential time-dependencies are obtained. Among the first
to use to use a fitted form of the bath correlation function were Korolkov,
Paramonov and Manz [30,31] though their form included an extra fitting pa-
rameter. Meier and Tannor derived an approach based on the time-nonlocal
Nakajima-Zwanzig identity in which an arbitrary spectral density is being
fitted by a sum of Lorentzians [32]. By now this technique has been applied
successfully in different approaches and to several applications as described,
for example, in Refs. [29,33–38]. However, in special cases such as the Drude
spectral density, the present scheme can be employed even without the nu-
merical decomposition of the spectral density. For a bosonic bath of harmonic
oscillators with mass mi and frequency ωi the spectral density function is
defined as [3]

J(ω) =
π

2

∑
i

c2i
miωi

δ(ω − ωi) (1)

where ci determines the coupling strength between the system and the ith
environmental mode. Usually one assumes an infinite number of bath oscil-
lators and therefore a continuous spectral density. Many different forms of
the spectral density are discussed and applied in the literature either based
on model assumptions or based on the analysis of numerical calculations (for
example in Ref. [39]). The numerical decomposition of the spectral density
proposed by Meier and Tannor [32] is given by

J(ω) =
n∑
k=1

pk
ω

[(ω +Ωk)2 + Γ 2
k ][(ω −Ωk)2 + Γ 2

k ]
(2)

with arbitrary real parameters pk, Ωk, and Γk. For the Ohmic spectral density
with exponential cut-off J(ω) = ηω exp(−ω/ωc) the fit parameters are given
in table 1 of the paper by Meier and Tannor [32] together with a plot of
the original and the fitted spectral densities. For an accurate fit three terms
(n = 3) in Eq. (2) were needed in this case. Also more complicated spectral
densities like J(ω) = ηω2/(2ω3

c ) exp (−ω/ωc) which start quadratically in ω
for small ω could be fitted using nine terms [36]. 20 terms are necessary for
the spectral density for a light-harvesting systems obtained from molecular
dynamics simulations [37].

2.1 Bosonic bath

To describe the effect of the environment one usually needs to determine
the bath correlation function C(t). Let us start discussing this function for
a bosonic bath where the subscript ”Ph” indicates a bath of phonons. Using
the numerical decomposition of the spectral density Eq. (2) together with the
theorem of residues one obtains the complex bath correlation functions
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C(t) =

∞∫
−∞

dω

π
JPh(ω)nB(ω)eiωt =

∞∫
−∞

dω

π
JPh(ω)

eiωt

eβω − 1

=
n∑
k=1

pk
4ΩkΓk

{
eiΩ

+
k tnB(Ω+

k ) + e−iΩ
−
k t(nB(Ω−k ) + 1)

}

+
2i
β

n′∑
k=1

JPh(iνk)e−νkt (3)

using Ω+
k = Ωk + iΓk, Ω−k = Ωk − iΓk, the Bose-Einstein distribution nB(ω)

and the Matsubara frequencies νk = 2πk/β. For simplicity, the spectral den-
sity has been extended to negative frequencies through J(−ω) = −J(ω). In
principle, the sum over the Matsubara terms is an infinite one. But for all
practical purposes the sum can be truncated at some finite value n′. For very
low temperatures a larger number of terms might be needed. In the version
above we used the complex representation of the correlation function. Below
we will also make use of separate real and imaginary parts of the correlation
functions defined as

C(t) = a(t)− ib(t) =

∞∫
−∞

dω

2π
JPh(ω) cos(ωt) coth

(
βω

2

)

−i

∞∫
−∞

dω

2π
JPh(ω) sin(ωt) (4)

with

a(t) =
n∑
k=1

pk
8ΩkΓk

{
coth(βΩ−k /2)e−iΩ

−
k t + coth(βΩ+

k /2)eiΩ
+
k t
}

+
2i
β

n′∑
k=1

JPh(iνk)e−νkt (5)

and

b(t) =
n∑
k=1

ipk
8ΩkΓk

{
e−iΩ

−
k t − eiΩ

+
k t
}
. (6)

The important property of this form of the correlation function is the fully
exponential time-dependence which enables further analytical treatment. As
in Ref. [32] we introduce the abbreviations

a(t) =
nr∑
k=1

αr
ke
γrkt (7)
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and

b(t) =
ni∑
k=1

αi
ke
γikt (8)

with nr = 2n+ n′ and ni = 2n.

2.2 Fermionic reservoirs

Similar to the case of the bosonic bath, one may also define correlation func-
tions in the case of fermionic reservoirs . In contrast to the former case, two
different correlation functions will be introduced since there are also two differ-
ent parts of the system-reservoir interaction: one creates and one annihilates
an electron in the wire. The correlation functions are given by

C21(t) =
∫ ∞

0

dω
π

JR(ω)nF (ω − EF )eiωt , (9)

C12(t) =
∫ ∞

0

dω
π

JR(ω)nF (−ω + EF )e−iωt. (10)

The spectral density for the reservoir is denoted by JR. There are two ba-
sic differences to the bosonic correlation function. The lower bound of the
integrals is zero and not infinity and one has to introduce the Fermi energy
EF . By shifting the energy scale and therefore shifting the Fermi energy, one
can make sure that the integrands vanish for negative ω. Accordingly one can
extend the lower limits of the integrals to minus infinity and use the theorem
of residues yielding

C12(t) =
m∑
k=1

pk
4ΩkΓk

nF (−Ω−k + EF )e−iΩ
−
k t − 2i

β

m′∑
k=0

JR(ν∗k)e
−iν∗kt , (11)

C21(t) =
m∑
k=1

pk
4ΩkΓk

nF (Ω+
k − EF )eiΩ

+
k t − 2i

β

m′∑
k=0

JR(νk)eiνkt , (12)

with the abbreviations Ω+
k = Ωk+iΓk and Ω−k = Ωk−iΓk and νk = i 2πk+π

β +
EF . One has to note that the νk are now complex generalizations of the
Matsubara frequencies including the Fermi energy as an additional argument.
Since in general νk is non-zero for k = 0 the sum over the Matsubara terms
has to start at k = 0. Similar to the case of bosonic baths the abbreviations
C12(t) =

∑m+m′

k=0 ak12e
γk
12t and C21(t) =

∑m+m′

k=0 ak21e
γk
21t are introduced. The

Matsubara sum can be truncated to a finite number of terms depending on
the temperature of the reservoir.
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3 Dissipative dynamics

After discussing the properties of the environments, let us now turn to the
dynamics of a system in a dissipative environment, i.e. a system coupled to
a bosonic bath . The case of fermionic reservoirs will be treated in the next
section.

3.1 Model and quantum master equation

For a system-plus-bath complex the Hamiltonian is given by

H = HS +HB +HSB +Hren . (13)

Denoting the coordinate of the system by q and the momentum by p, which
both might be multi-dimensional variables in the general case, the system
Hamiltonian is given by

HS =
p2

2M
+ V (q, t) , (14)

where M defines the mass of the system. As indicated, the potential part
V (q, t) might be explicitly time-dependent. As is usually the case in system-
plus-bath models, the Hamiltonian of the bath is assumed to be the sum of
harmonic oscillators with mass mi and frequency ωi

HB =
1
2

N∑
i=1

(
p2
i

mi
+miω

2
i x

2
i

)
. (15)

The other two terms in Eq. (13) are the interaction Hamiltonian HSB

which is assumed to be separable

HSB =
∑
k

Kk(q)
∑
i

cikxi (16)

where the cik denote coupling constants. The operators Kk(q) are the sys-
tem parts of the system-bath coupling operator. In addition, one often adds
a renormalization term that compensates for artificial shifts of the system
frequencies due to the interaction term [3]

Hren =
∑
mn

Km(q)Kn(q)
∑
i

cimcin
miω2

i

=
∑
mn

Km(q)Kn(q)μmn . (17)

In the case of only one non-vanishing Km(q) and if the dissipation is assumed
to be bilinear (i.e. K(q) = −q), Eqs. (13)-(17) lead to the so-called Caldeira-
Leggett Hamiltonian

H =
p2

2M
+ V (t) +W (q, t) +

1
2

N∑
i=1

[
p2
i

mi
+miω

2
i

(
xi − ci

miω2
i

q

)2
]

. (18)
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This standard Hamiltonian has been discussed in a tremendous number of
publications under various aspects and will also be used in the examples de-
scribed here.

Having established the Hamiltonian, the next step is to derive an equa-
tion of motion for the density matrix. One can start with the Liouville-von
Neumann equation for the complete system-plus-bath density matrix σ(t)

i
∂

∂t
σ(t) = [H,σ(t)] = Lσ(t). (19)

The solution of this equation would give the time-evolution of all system as
well as bath degrees of freedom. This is often unnecessary and leads to a huge
number of equations. Therefore one normally introduces the reduced density
matrix ρ(t) of the system degrees of freedom only.

Two different starting points of deriving equations of motion for the
reduced density matrix ρ(t) are the Nakajima-Zwanzig identity [7–9] and
Hashitsume-Shibata-Takahashi identity [10, 11]. Derivations for these two
identities are given in the appendix since they are key identities for the
present approach and can be derived in a rather straightforward manner. The
Nakajima-Zwanzig identity is the starting point for the TNL approach which
is known under different names in the literature. Often it is called chronologi-
cal time ordering prescription (COP) [40–42], time-convolution approach [43],
or also Mori formalism [44]. Since the usual formal solution of the Liouville
equation contains only chronologically ordered operators, the operators in this
formalism are naturally time-ordered. Invoking a perturbation expansion of
the system-bath coupling to second order one obtains a TNL QME [14,32,45].
This approach has been very popular but will not be the main focus of the
current contribution due to reasons discussed below.

The time-local approach is based on the Hashitsume-Shibata-Takahashi
identity and is also denoted as time-convolutionless formalism [43], partial
time ordering prescription (POP) [40–42], or Tokuyama-Mori approach [46].
This can be derived formally from a second-order cumulant expansion of the
time-ordered exponential function and yields a resummation of the COP ex-
pression [40, 42]. Sometimes the approach is also called the time-dependent
Redfield theory [47]. As was shown by Gzyl [48] the time-convolutionless for-
mulation of Shibata et al. [10, 11] is equivalent to the antecedent version by
Fuliński and Kramarczyk [49, 50]. Using the Hashitsume-Shibata-Takahashi
identity whose derivation is reviewed in the appendix, one yields in second-
order in the system-bath coupling [51]

dρ(t)
dt

= −iLeff
S ρ(t) +

∫ t
0

dt′K(t′)ρ(t) , (20)

where

K(t′) =
∑
k

L−k US(t, t′)
[
a(t− t′)L−k − b(t− t′)L+

k

]U†S(t, t′) (21)
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Leff
S = [HS +Hren, • ] , L−k = −i [Kk, • ] , L+

k = [Kk, • ]+ (22)

and the free time evolution superoperator of the relevant system

US(t, t′) = T+ exp
{
−i

∫ t
t′
dτLS(τ)

}
(23)

with the time-ordering operator T+. In the expressions above no term stem-
ming from the initial correlations was taken into account and the initial state
σ(t = 0) = ρ(t = 0)ρeq

B was assumed to be separable. In a realistic simulation
one would have to include an excitation process into the simulation to account
for initial correlations.

We want to note in passing that one can obtain the TL QME by making
the approximate substitution [47]

ρ(t′) = U†S(t, t′)ρ(t) (24)

in the TNL equation, i.e. by neglecting the influence of dissipation on the
time propagation of the density matrix within the integral. This transforms
the integro-differential equation in the TNL formalism into one which is local
in time. Both the TNL and the TL approach are second order in the system-
bath coupling and we want to stress again that it is not easy to see if one
of them is superior. For very small system-bath coupling strength the TNL,
the TL and the Markovian approach are of course becoming identical. Using
the real and imaginary parts of the correlation function and carrying out
the commutators L−k and L+

k one can define the following time dependent
operators

Λrk(t) =

t∫
0

dt′a(t− t′)US(t, t′)Kk, (25)

Λik(t) =

t∫
0

dt′b(t− t′)US(t, t′)Kk (26)

and
Λk(t) = Λr

k(t)− iΛi
k(t). (27)

With these identities one can obtain an EOM for the reduced density matrix
[29,37]

∂

∂t
ρ(t) = −iLeff

S ρ(t) −
∑
k

[
KkΛk(t)ρ(t) + ρ(t)Λ†k(t)Kk

−Kkρ(t)Λ
†
k(t)− Λk(t)ρ(t)Kk

]
. (28)

This expression will be used in the following for time-independent as well as
time-dependent system Hamiltonians.
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At this point a remark is in order concerning the notion of “non-Markovian”
which is not used consistently in literature. Here we term non-Markovian ev-
erything which is beyond the Markov approximation in the TNL formalism.
The Markov approximation normally consists of two parts [14, 16] starting
from the TNL description: changing the equations in such a way that the
density matrix is independent of the integration variable and moving the up-
per limit of the integration to infinity. In the original meaning of Markovian, a
master equation can already be called Markovian if no time-convolution terms
are present as in the TL approach. Here we use the former notion.

3.2 Time-independent systems

As a first step we take a closer look at time-independent system Hamiltoni-
ans. In these cases, the energy representation can be employed without any
further approximation. In the following Greek letters will be used for the
eigenstate representation, i.e. eigenenergies Eμ and eigenstates |μ〉, etc. For
a time-independent Hamiltonian, the matrix elements of the operators Λk
can be calculated in this representation with transition frequencies ωμν . Tak-
ing advantage of the decomposition of the spectral density and a change of
integration variables one obtains [29,37]

〈μ|Λk |ν〉 = 〈μ|Kk |ν〉
t∫

0

dt′C(t′)e−iωμνt
′
= 〈μ|Kk |ν〉Θ+(t, ωμν) (29)

in which the complex function Θ+(t, ωμν) is given by

Θ+(t, ωμν) =
nr∑
j

αr
j

1
γr
j − iωμν

[
e(γ

r
j−iωμν)t − 1

]
−i

ni∑
j

αi
j

1
γi
j − iωμν

[
e(γ

i
j−iωμν)t − 1

]
. (30)

Here we followed the notation of Ref. [52] for Θ+(t, ωμν) and used Eqs. (5) and
(6) for the correlation functions a(t) and b(t). In the case of non-Markovian
treatments Θ+(t, ωμν) has to be calculated at every moment in time instead of
only once as in the Markovian limit. The Markovian limit of these expressions
can easily be obtained by moving the upper integration boundary in Eq. (29)
to infinity [16]. In both, the Markovian as well as the non-Markovian case,
the evaluation of the matrix elements (30) does not contain any numerical
integration anymore.

3.3 Time-dependent systems

For systems with time-dependent Hamiltonians one cannot use the eigenstate
representation to easily solve the problem. Even an instantaneous diagonaliza-
tion at every moment in time does not cure this problem because one would
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have to correct for time-dependent basis functions in this case. A solution of
this problem is a scheme with auxiliary quantities as developed by Meier and
Tannor for the TNL-QME [32]. In the TL approach one has to define auxiliary
operators instead of auxiliary density matrices [38]

Λr
k(t) =

t∫
0

dt′eγ
r
kt

′US(t, t′)K , (31)

Λi
k(t) =

t∫
0

dt′eγ
r
kt

′US(t, t′)K . (32)

Using these operators, the TL-QME can be written as

dρ(t)
dt

= −iLeff
S ρ(t) + L−

(
i

nr∑
k=1

[ρ(t)Λr
k(t)− Λr

k(t)ρ(t)]

−
ni∑
k=1

[ρ(t)Λi
k(t) + Λi

k(t)ρ(t)]

)
. (33)

Taking the time derivative of Λr
k(t) and Λi

k(t) the following differential equa-
tions can be found

dΛr
k

dt
= (γr

k − iLS)Λr
k +K , (34)

dΛi
k

dt
= (γi

k − iLS)Λr
k +K . (35)

These equations are representation independent and are valid for an arbitrary
time-dependence of the system Hamiltonian as, for example, in the case of
strong laser driving. In a suitable representation, the coupled set of differential
equations Eqs. (33) to (35) can be solved numerically, for example, using a
Runge-Kutta scheme. As already mentioned in the Introduction, Yan and
coworkers [33–35] independently developed a similar approach starting at a
correlation function which is assumed to be of the form Eqs. (5) and (6).

3.4 Example: damped harmonic oscillator

Memory effects play an important role for the description of dynamical ef-
fects in open quantum systems. As mentioned above, Meier and Tannor [32]
developed a time-nonlocal scheme employing the numerical decomposition of
the spectral density. The TL approach as discussed above as well as the ap-
proaches by Yan and coworkers [33–35] use similar techniques. Few systems
exist for which exact solutions are available and can serve as test beds for the
various theories. Among them is the damped harmonic oscillator for which
a path-integral solution exists [1]. In the simple model of an initially excited
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state of the oscillator, the Hamiltonian is time-independent and both meth-
ods described above, using the analytic matrix elements for the operators Λr

k

and Λi
k as well as their solutions of the corresponding differential equations,

can be used. In Ref. [29] the different non-Markovian theories were compared
among each other as well as to each other, to the Markovian limit neglecting
memory effects and to exact path integral calculations. For weak to moderate
damping strengths and short bath correlation times, good agreement between
the exact calculations and the non-Markovian results was obtained. For this
study a spectral density of Drude form

J(ω) =
ηω

1 + (ω/ωd)
2 (36)

was used. As can be seen in Fig. 1 , for large bath correlation times, i.e.
small cut-off frequencies of the spectral density, severe differences between
the non-Markovian TNL and the TL versions can be observed. Comparing
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Fig. 1: Population dynamics of a damped harmonic oscillator. The populations of
the ground state (n = 0) up to the third excited state (n = 3) are shown while
initially all population is in the third excited state. The parameters are ωd = ω0/2,
η = 0.544ω0, and β = 1/ω0. The results for the TNL theory are shown by the solid
curve, those for the TL approach by the dotted curve and those of the Markovian
limit by the dashed curve. (Reproduced from Ref. [29]. Copyright 2004, American
Institute of Physics.)

the expectation values and standard deviations of the coordinate operator
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to the exact solutions [1], no clear conclusion could be reached if the TL or
if the TNL scheme is more accurate. The problem is that those expectation
values are only averaged quantities and most of the difference between the
TL and TNL formalisms were washed out. To see the reasons for these differ-
ences we recently performed higher-order perturbative treatments of the same
system [53]. This higher-order treatment was based on a hierarchical method
developed by the groups of Yan and Shao [23,25]. This formulation is very sim-
ilar to the earlier one proposed by Tanimura and coworkers [18,20,26]. Fig. 2
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Fig. 2: Population dynamics of the third excited state for TL (left) and TNL (right)
truncation in different orders N of the system-bath coupling calculated using a
Drude spectral density with η = 0.544 and ωd = 0.5 a.u. (Reproduced from Ref. [28].
Copyright 2007, American Institute of Physics.)

shows the population dynamics for the third excited state and the long bath
correlation for the same parameters as in Fig. 1. This time the TL and TNL
approaches are displayed in different panels showing results up to eighth order
in the system-bath coupling strength. As can be seen clearly, the oscillations
in the TNL second order results are artificial and vanish using higher order
terms. Actually, as shown recently by Ishizaki and Tanimura [27] second-order
TL is exact for bosonic environments and, taking higher-order contributions
into account, this additional small but non-vanishing terms even introduce
inaccuracies. In addition, the hierarchical method was applied to calculate
the time evolution of the reduced density matrix of two coupled harmonic os-
cillators coupled to a thermal bath [53]. Calculations to several orders in the
system-bath coupling with two different truncation schemes were performed.
The respective density matrices were then used to calculate the time evolution
of the population dynamics as well as the variance in the coordinate. It could
clearly be seen that for the initial state chosen, the population dynamics for
one or two coupled damped harmonic oscillators converges faster in the TL
approach while the variance of the coordinate converges faster in the TNL
formalism [53].
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One point which has not been addressed in the example of the time-
independent harmonic oscillator is the non-perturbative treatment of the time
dependence in the system Hamiltonians. Both the TL and the TNL non-
Markovian theories employ auxiliary operators or density matrices, respec-
tively, and can be applied in strongly driven systems [29, 32]. This point will
be shown to be very important in the examples for the molecular wires under
the influence of strong laser fields.

3.5 Absorption spectra

Interestingly enough, one sees differences between the various variants of
Markovian and non-Markovian theories already in static linear absorption
spectra. In the regime of second-order perturbation theory in the coupling
to the electromagnetic field the linear absorption line-shape I(ω) can be cal-
culated from the Fourier transform of the dipole-dipole correlation function
as

I(ω) ∝ Re

∞∫
0

dt eiωt tr {σeq [μ̂(t), μ̂]} , (37)

where μ̂(t) denotes the dipole operator which is evolving according to the
Hamiltonian of the unperturbed system and σeq is the equilibrium density
matrix of the full system. As an example in Ref. [37] the linear absorption
spectrum of an ensemble of B850 rings of the light-harvesting system LH2 of
purple bacteria (Rhodospirillum molischianum) [37] was calculated. As can
be seen in Fig. 3 in the ensemble average calculated using 3000 samples over
a random site disorder, the deviations between the various theories is small.
But again, for configurations with longer bath correlation times, the TL theory
shows extra features not present in the TL and Markovian results. This might
become very important in calculating spectra for single molecule setups. In
Ref. [37] the influence of static disorder on the line shape in the ensemble
average was further demonstrated and the results of the calculations compared
to experimental data.

In addition to non-Markovian theories also the modified Redfield theory
was applied to determine the absorption spectra of light-harvesting systems
[37]. Moreover a time-dependent modified Redfield theory was employed to
calculate the linear absorption spectra for an ensemble of B850 rings [53].
This theory is an extension of the standard modified Redfield theory without
invoking the Markov approximation. The results for the modified Redfield
theory with and without Markov approximation were compared to the spectra
obtained from TL second-order perturbation theory sometimes also called
“time-dependent Redfield theory”. The influence of the shape of the spectral
density on the linear absorption spectrum was again demonstrated for single
samples and in the ensemble average. Stronger damping clearly leads to further
broadening, especially in the high-energy part of the static absorption line
shapes [53].
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Fig. 3: Absorption spectra of one sample of B850 calculated with different methods
for an Ohmic spectral density with η = 3.37 and ωc = 0.027 eV. Left: Methods with
Markov approximation, i.e. Redfield theory with and without secular approximation
and TL method. Right: TL with and without Markov approximation, TNL and
modified Redfield method. (Reproduced from Ref. [37]. Copyright 2006, American
Institute of Physics.)

4 Molecular wires

In the previous chapter the system was coupled to a thermal phononic bath.
In another type of open quantum systems the relevant system is coupled to
fermionic reservoirs [38]. The prime applications of this model are molecu-
lar wires and quantum dot systems in which the relevant system describes a
molecule or a set of quantum dots and the reservoirs the electronic contacts.
Although in the following the focus lies on molecular wires, most of the state-
ments are also true for quantum dots at this level of description. Concerning
possible systems, recent theoretical investigations discuss trans-polyacetylene
oligomers [54] or oligophenylene molecules [55] as candidates for an experi-
mental implementation of light-induced effects. It is also shown how to derive
tight-binding models for such systems. To theoretically investigate the effect
of time-dependent fields on molecular junctions one can, for example, apply
non-equilibrium Green’s functions [56] but in most approaches so far the cou-
pling of the wire to the leads was treated perturbatively [38,57–63].

4.1 Model and quantum master equation

As for the case of a bosonic bath, the Hamiltonian describing the molecular
junction is separated into the relevant system HS(t), describing the wire, the
field-matter interaction HF(t) and reservoirs HR modeling the leads

H(t) = HS(t) +HF(t) +HR +HSR , (38)

with wire-lead coupling HSR. The wire consists of N sites coupled to each
other by a hopping element Δ. The electrons in the molecular wire at site n
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are created (annihilated) by c†n (cn) and therefore the tight-binding description
of the wire reads

HS(t) =
∑
n

εnc
†
ncn −Δ

∑
n

(c†ncn+1 + c†n+1cn) + U
∑
n

c†ncnc
†
n+1cn+1 .(39)

The on-site energy contributions are described by the first term and the
nearest-neighbor hopping is contained in the second. The last term denotes
an electron-electron interaction term with strength U . For simplicity electron
spin has been neglected but can be incorporated in a straightforward man-
ner [64]. Denoting the dipole operator, which will be detailed below, by μ the
coupling between the wire and the laser field E(t) reads HF(t) = −μE(t).

The environment of the wire consists of two electronic leads that are mod-
eled by two independent reservoirs of uncorrelated electrons in thermal equi-
librium. For each lead, the Hamiltonian HR is given by HR =

∑
q ωqb

†
qbq with

b†q creating and bq annihilating an electron in the corresponding reservoir mode
|q〉 with energy ωq. In further derivations we will only refer to the left lead
but the formalism has to be applied as well to the right lead coupled to the
last site N of the wire. The coupling of the left electronic lead with the first
site of the wire is given by

HSR =
2∑
x=1

KxΦx =
∑
q

(Vqc
†
1bq + V ∗q b

†
qc1) (40)

with Φ1 =
∑
q Vqbq, Φ2 =

∑
q V

∗
q b
†
q, K1 = c†1, K2 = c1, and a wire-lead

coupling Vq for each reservoir mode.
As for the case of a bosonic bath, the starting point here is the TL ap-

proach and a TL QME based on a second-order perturbation theory in the
molecule-lead coupling was developed for the reduced density matrix ρ(t) of
the molecule [38,65]

∂ρ(t)
∂t

= −iLS(t)ρ(t)− iLFρ(t)−D(t)ρ(t) , (41)

D(t)ρ(t) =
∑
xx′

[Kx, Λxx′(t)ρ(t)] + H. c. (42)

with H. c. denoting the Hermitian conjugate and the auxiliary operators for
the wire-lead coupling

Λxx′(t) =
∫ t
t0

dt′Cxx′(t− t′)US(t, t′)Kx′ . (43)

Here we employed the definitions US(t, t′) = T+ exp
{
−i
∫ t
t′ dτ (LS(τ) + LF(τ))

}
,

LS(τ) = [HS(τ), •], LF(τ) = [HF(τ), •] with the time-ordering operator T+
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and the reservoir correlation functions Cxx′(t). To derive this shorter version
of D(t)ρ(t) in Eq. (42) compared to Refs. [38,65], one has to use the fact that
K1 = K2† and observe that US(t, t′) is a superoperator acting on Kx′ only.
Under these circumstances the operator Λ̂xx′(t) equals Λ†x′x(t).

4.2 Auxiliary operators

As in the bosonic case, a simplified algorithm can be derived for time-
independent system Hamiltonians. In eigenstate representation with eigen-
states |μ〉 , |ν〉 and transition frequencies ωμν the matrix elements of Λxx′(t)
are given by

〈μ|Λxx′ |ν〉 = 〈μ|Kx′ |ν〉
t∫

0

dt′Cxx′(t′)e−iωμνt
′
= 〈μ|Kx′ |ν〉Θ+

xx′(t, ωμν)

(44)
with

Θ+
xx′(t, ωμν) =

m+m′∑
k=0

akxx′
1

γkxx′ − iωμν

[
e(γ

k
xx′−iωμν)t − 1

]
(45)

where the expression C12(t) =
∑m+m′

k=0 ak12e
γk
12t and C21(t) =

∑m+m′

k=0 ak21e
γk
21t

for the correlation functions were used as defined in subsection 2.2. So the
treatment is of course very similar to that of the bosonic case and also the
same comments concerning the Markovian limit apply.

For time-dependent systems again the purely exponential time-dependence
of the correlation function allows the derivation of a set of differential equa-
tions for the auxiliary operators

∂

∂t
Λkxx′(t) = akxx′Kx′ρS(t)− i[HS(t), Λkxx′(t)] + γkxx′Λ

k
xx′(t) (46)

with Λxx′(t) =
∑m+m′

k=0 Λkxx′(t). Thus in addition to the QME for ρ(t) one has
to propagate m+m′ differential equation for the auxiliary operators.

4.3 Switching electron transport with laser pulses

In molecular wire systems the population dynamics is of course an interesting
quantity to analyze but probably the most interesting quantity is the electron
current. Using the electron number operator of the left lead with the sum-
mation performed over the reservoir degrees of freedom Nl =

∑
q b
†
qbq, the

expression for the current is given by [38]

Il(t) = e
d
dt

tr {NlρS(t)} = −ie tr {[Nl, H(t)]ρS(t)}

= 2eRe
(
trS
{
c†1Λ12(t)ρS(t)− c†1ρS(t)Λ

†
21(t)

})
. (47)
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Here e denotes the elementary charge. This equation describes the current
Il(t) from the left lead into the molecule. A similar expression holds for Ir(t)
from the right lead into the molecule. In a steady state and after averaging
over one period of the driving field, Il and Ir have the same magnitude but
opposite signs and therefore a total transient current through the molecular
junction can be defined as I(t) = (Il(t)−Ir(t))/2. The time-dependent average
current “Ī(t)” will be determined below by averaging I(t) over five periods of
the highly oscillating carrier field.

The advantage of the present QME for transport is the possibility to di-
rectly incorporate effects of laser fields. Molecular wires irradiated by laser
fields do show some new interesting effects and in the future can lead to optical
switching of electronic current which would open a whole new field of appli-
cations. Especially interesting about the theory above is the non-perturbative
treatment of the laser-matter interaction. This can be done in a TL but also
in a TNL formalism [66]. As the TL approach in second-order perturbation
theory is exact in many instances of the bosonic case, we also prefer it for the
case of fermionic reservoirs. Furthermore it allows for an easier definition of
the current operator which is important for the coherent control theory (see
below). In previous studies the non-perturbative treatment of the laser-matter
interaction and therefore of strong-field effects was often performed using the
Floquet theory for periodic driving. This restriction of periodic driving is not
present in the current TL QME and pulsed driving can be studied.

In the context of molecular wires, the Floquet theory was especially em-
ployed to study the phenomenon of coherent destruction of tunneling (CDT)
for monochromatic laser fields [57, 67–69] . For certain ratios of amplitude
and frequency of the driving field, a destructive quantum effect leads to a
vanishing current through the wire. Using the present QME it was shown [65]
that the average current through the system can be suppressed also for pulsed
driving as shown in Fig. 4. For different parameters of the model, which do
not show a net current without any optical field, a Gaussian laser pulse could
establish a temporary current. Electron interaction effects on the current can
easily be incorporated in this QME formalism.

Interestingly enough, CDT cannot only suppress the current through sys-
tems consisting of two or more sites but also through molecular junctions in
which only one site is needed to describe the molecule. In this case the current
is suppressed inbetween junction and molecule and only works for small ap-
plied bias voltages. For larger voltages so-called photon-assisted states come
into play and the current through those virtual states is not suppressed [70].

Moreover, instead of using a fixed laser pulse and calculating the result-
ing electron current one can employ the optimal control theory often used in
the area of molecular and chemical physics [71,72]. In this approach one first
defines a target, i.e. a time-dependent current flow pattern, and then calcu-
lates backwards the driving field resulting in the target. So the laser field is
determined in an inverse problem. The theory was applied in Ref. [73] and
an example is shown in Fig. 5. Here the target contains a high-frequency car-
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Fig. 4: The upper panel shows the Gaussian excitation pulse with a peak amplitude
fulfilling the CDT condition. The resulting current is given in middle panel and
its average over three periods of the fast pulse oscillations at the bottom. The on-
site energies are equal and centered between the left and the right Fermi energy.
(Reproduced from Ref. [38]. Copyright 2004, American Institute of Physics.)

rier wave and a pulse envelope. Averaging over five oscillatory periods of the
carrier wave yields an efficient suppression of the current.

These examples show that there is a multitude of possible effects that
laser field driving can have on the current through a molecular wire. In the
upcoming years this will certainly become an interesting field of research,
theoretically as well as experimentally. On the experimental side, the challenge
is to focus the laser light onto the molecular junction with a width below
the diffraction limit of the light. Nevertheless, the development of several
techniques such as tip-enhanced near-field scanning optical microscopy [74],
coupling of a laser field to an adsorbed molecule on a surface with the help of
scanning tunneling microscopy [75] or the laser illumination of an molecule in
a break-junction geometry [76] seems to be very promising.

5 Concluding remarks

Using a numerical decomposition of the spectral density which describes the
coupling of the system to the environment allows one to develop TL and TNL
non-Markovian QMEs. Using the hierarchical approach the results can be ex-
tended from second-order perturbation theory to higher orders to be able to
study the convergence properties of the different approaches. As shown in the
example for bosonic baths, the TL formalism shows numerically almost con-
verged results. Actually, this numerical finding has been analytically proven
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Fig. 5: A control target including a highly oscillating pattern. The control target
(dashed) and the achieved current (solid) are displayed in the middle panel while in
the top panel an average over five oscillatory periods is shown. The control field is
given in the lowest part of the figure. (Reproduced from Ref. [73]. Copyright 2008
by the American Physical Society.)

to be correct, i.e. for bosonic bath the second-order TL QME coincides with
the exact result [27]. For fermionic reservoirs no analysis in this direction has
been made yet but would be of high importance for further studies along these
lines.

Models describing the transport of electrons in molecular junctions have
been shown to be quite powerful. Here the emphasis was put on time-
dependent effects which can, for example, be triggered by external laser fields.
If these fields are strong, a non-perturbative treatment of the laser-matter in-
teraction is of large importance and is included in the presented TL QME.
Also the connection of transport through molecular wires or coherent laser
control scenarios may play an important role in the future.

Beyond the systems and applications described in this chapter, projection-
operator methods can, for example, be used to study the dynamics near glass
transitions [77] and the propagation of wave functions in systems with non-
resonant transitions. The latter application has recently been analyzed in
connection with the decomposition of the spectral density [78] showing the
wide range of applicability of the proposed schemes.
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Appendix

5.1 Nakajima-Zwanzig identity

Starting point for the derivation of the Nakajima-Zwanzig identity is the
Lioville-von Neumann equation for the density operator σ of the complete
system, i.e. relevant system plus environment. As stated before � ≡ 1 is used
and thus the QME reads

i
d

dt
σ(t) = Lσ(t) (48)

with the Liouville operator L• = [H, •]. For simplicity we restrict ourselves to
time-independent Hamilton operators H in the following. For time-dependent
Hamiltonians care has to be taken with respect to time ordering. To derive the
Nakajima-Zwanzig identity out of this equation one introduces a projector P
onto the relevant system. The sub- and superscripts E refer to the environment
which corresponds to a heat bath for the bosonic case and to electron reservoirs
for the fermionic case. In the context of the current chapter, this operator is
usually defined as

P• = ρE
eq ⊗ TrE(•) (49)

where ρE
eq is the equilibrium state of the environment with TrEρE

eq = 1. Since
the projector is idempotent, P = P2, the complementary operator is given by
Q with P +Q = 1. Nevertheless, for clarity reasons we will mainly stick to P
and 1− P below.

In a first step one applies the projectors for the relevant and irrelevant
part to the Lioville-von Neumann equation

i
d

dt
Pσ(t) = PLσ(t) = PLPσ(t) + PL(1− P)σ(t) (50)

i
d

dt
(1− P)σ(t) = (1− P)Lσ(t) = (1− P)LPσ(t) + (1− P)L(1− P)σ(t)

(51)

Then the equation for the irrelevant part is formally integrated

(1− P)σ(t) = e−i(1−P)L(t)(1− P)σ(t0)

−i

∫ t
0

e−i(1−P)L(t−τ)(1− P)LPσ(τ) dτ

(52)
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which can be checked easily by differentiation. The result is plugged into the
equation for the relevant part to obtain the Nakajima-Zwanzig identity

d

dt
Pσ(t) = −iPLPσ(t)−

∫ t
0

PLe−i(1−P)L(t−τ)(1− P)LPσ(τ) dτ

−iPLe−i(1−P)L(t−t0)(1− P)σ(t0) (53)

So within a few steps it is possible to derive the Nakajima-Zwanzig identity
starting from the Lioville-von Neumann equation.

5.2 Hashitsume-Shibata-Takahashi identity

The Nakajima-Zwanzig identity is of course not the only way to proceed.
Defining the operator D(t) using

D(t) = i

∫ t
0

e−i(1−P)L(t−τ)(1− P)LPeiL(t−τ) dτ , (54)

one can rewrite Eq. (52) to get

(1− P)σ(t) = e−i(1−P)L(t−0)(1− P)σ(t0)
−D(t)(Pσ(t) + (1− P)σ(t) . (55)

Moving the terms proportional to (1− P)σ(t) to the l.h.s. one gets

(1 +D(t))(1− P)σ(t) = −D(t)Pσ(t) + e−i(1−P)L(t−t0)(1− P)σ(t0) (56)

Multiplying this equation by the inverse of (1 +D(t)), an expression for the
irrelevant part of the density matrix can be derived

(1− P)σ(t) = (1 +D(t))−1
[
−D(t)Pσ(t) + e−i(1−P)L(t−t0)(1− P)σ(t0)

]
(57)

Plugging this result into the differential equation for the relevant part,
Eq. (50), the Hashitsume-Shibata-Takahashi identity can be obtained

d

dt
Pσ(t) = −iPL{Pσ(t)

+ (1 +D(t))−1
[
−D(t)Pσ(t) + e−i(1−P)L(t−t0)(1− P)σ(t0)

]}
= −iPL(1 +D(t))−1

[
Pσ(t) + e−i(1−P)L(t−t0)(1− P)σ(t0)

]
(58)

with D(t) defined in Eq. (54).
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44. V. Čápek, Physica A 203, 495 (1994)
45. F. Haake, Springer Tracts Mod. Phys. 66, 98 (1973)
46. V. Čápek, Physica A 203, 520 (1994)
47. D. Egorova, M. Thoss, W. Domcke, H. Wang, J. Chem. Phys. 119, 2761 (2003)
48. H. Gzyl, J. Stat. Phys. 26, 679 (1981)
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50. A. Fuliński, W.J. Kramarczyk, Physica 39, 575 (1968)
51. M. Tokuyama, H. Mori, Prog. Theor. Phys. 55, 411 (1976)
52. W.T. Pollard, R.A. Friesner, J. Chem. Phys. 100, 5054 (1994)
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Abstract. A many-atom system excited by light or by collisions, such as is found in
the photo-excitation of a molecule adsorbed on a surface or in photosynthesis and vi-
sion, leads to energy dissipation on different time scales. A fast dissipation typically
occurs due to electronic energy relaxation in the medium, while a slow (delayed) dis-
sipation arises from vibrational energy relaxation. In what follows we briefly present
a reduced density matrix treatment based on a self-consistent coupling of primary
and secondary regions which includes their time correlation, in a generalization valid
for an active medium. We also describe a numerical procedure based on an extended
Runge-Kutta algorithm which can be applied to systems undergoing simultaneous
fast and slow rates of dissipation. We illustrate our treatment with a realistic model
for an adsorbate on a solid surface, CO/Cu(001) photoexcited by a femtosecond
pulse of light and relaxing by electronic and vibrational pathways. Results for the
populations of vibronic states versus time show that they oscillate due to vibra-
tional coupling through dissipative interaction with the substrate, and are therefore
in coherent quantum states. The total populations of electronic states are however
little affected by vibrational motions. The same formalism and numerical procedure
can be followed for example in treatments of photoexcitation of chromophores in
biomolecular systems.

1 Introduction

A many-atom system excited by light or by collisions, such as occurs in the
photo-excitation of a molecule adsorbed on a surface or in photosynthesis
and vision, leads to energy dissipation on different time scales. A fast dis-
sipation typically occurs due to electronic energy relaxation in the medium,
while a slow (delayed) dissipation arises from vibrational energy relaxation .
Here we concentrate on localized phenomena where a relatively small number
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of atoms define a primary region of interest, while the medium comprises a
secondary region or bath. A theoretical and computational treatment of these
phenomena can be done in terms of a reduced density operator (RDOp) ρ̂ sat-
isfying a generalized Liouville-von Neumann equation , [1–5] which contains
the hamiltonian of the primary region and also terms describing fluctuation
and dissipative phenomena due to its coupling to the secondary region.

A convenient approximation in many applications is to assume that a
region of interest with a RDOp ρ̂ is in contact with a medium at thermal
equilibrium. The system and medium are chosen so that the latter can be
assumed to remain at equilibrium at all times, with a density operator γ̂eq. In
this case it is possible to search for solutions of the equations starting from a
factorized density operator for the whole system, Γ̂ = ρ̂⊗ γ̂eq, in a procedure
also called a Fano-factorization. [6] This however is not acceptable when the
total system is subject to excitations which induce transitions among states of
the medium. An example is a molecule adsorbed on a metal surface, excited
by visible light which first creates electronic excitations in the substrate. In
this case the active medium is described by a DOp evolving in time, and some
of the common developments in the literature must be generalized.

In what follows we briefly present a treatment based on a self-consistent
coupling of primary and secondary regions which includes their time correla-
tion. This is done by transforming equations between the Schroedinger and
interaction pictures of quantum mechanics, to introduce suitable approxima-
tions along lines found helpful in the special case of a secondary region at
equilibrium. The formalism allows for treament of phenomena occurring with
different time scales, where the medium contains both fast and slow variables
compared to periods of motion in the primary region of interest. This leads
to coexisting fast and slow dissipative phenomena, both of which can affect
the long time behaviour of the system.

Fast dissipation is treated numerically within the Markoff approximation,
which leads to differential equations in time, and dissipative rates most com-
monly written in the Redfield [9, 10] or Lindblad [11, 12] forms. Several nu-
merical procedures have been introduced for dissipative dynamics within the
Markoff approximation. The differential equations have been solved using a
pseudospectral method [13], expansions of the Liouville propagator in terms
of polynomials, [14–16] and continued fractions. [17]

More generally the formalism with both fast and slow dissipation leads to
integrodifferential equations (IDEqs) of motion for the primary RDOp, which
become coupled IDEqs in the time variable after expansions of operators in
basis sets or on a numerical grid for variables. There are few numerical treat-
ments of those IDEqs, including one where they have been solved expand-
ing the integral kernel in Laguerre polynomials, [18] and another done by
parametrizing the medium spectral density [19,20]. The present contribution
describes an extended Runge-Kutta algorithm [21] which can be applied quite
generally for systems undergoing simultaneous fast and slow rates of dissipa-
tion. Numerical results for state populations and quantum coherences have
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been obtained with this algorithm, which we developed and tested [22] and
then used in an application to vibrational relaxation of an adsorbed CO . [23]
Another approach for dissipative dynamics in open systems is based on the
Feynman-Vernon path integral formulation, [24] but it is not being covered in
this presentation. Reviews of this approach can be found in references [25,26].

In applications, it is desirable to start from a system of electrons and
nuclei to take advantage of the different time scales of electronic and vibra-
tional transitions, and to separate fast and slow dissipative phenomena. We
have chosen to illustrate our treatment with a realistic model for an adsor-
bate on a solid surface, CO/Cu(001) , but the same numerical procedure
can be followed for applications to many-atom systems arising, for example,
in biomolecular applications. Instantaneous dissipation within the Lindblad
formulation has been succesfully used in the description of dissipative dynam-
ics of adsorbates. [27, 28] We have implemented an alternative treatment for
the CO/Cu(001) system using a dissipative potential in the primary region
of adsorption and a Lindblad-type treatment of fast electronic decay in the
surrounding medium. [29,30] In our previous work we have compared calcula-
tions [23,31,32] with experimental results from femtosecond spectroscopy [33]
and time-of flight measurements. [34] Those studies dealt only with fast dissi-
pation in the case of femtosecond desorption, and only with slow dissipation
of CO molecules vibrationally excited by collisions, with the system in its
ground electronic state. Here we consider again CO/Cu(001) but now includ-
ing both fast and slow dissipative processes. In this way we can describe the
femtosecond excitation of the substrate metal which is known to create a vi-
brationally excited CO molecule on the electronically excited solid surface.
Fast electronic excitation is accompanied by slow vibrational relaxation of
the CO. The related delayed dissipation is given by a time integral with a
memory term derived from the time-correlation of atomic displacements in
the medium.

We present in Section 2 the formalism giving the equations for the reduced
density operator and for competing instantaneous and delayed dissipation.
Section 3 presents matrix equations in a form suitable for numerical work,
and the details of the numerical procedure used to solve the integrodiffer-
ential equations with the two types of dissipative processes. In Section 4 on
applications to adsorbates, results are shown for quantum state populations
versus time for the dissipative dynamics of CO/Cu(001). The fast electronic
relaxation to the ground electronic state is shown first without the slow re-
laxation of the frustrated translation mode of CO vibrations, for comparison
with previous work, and this is followed by results with both fast and slow
relaxation. In Section 5 we comment on the general conclusions that can be
reached in problems involving both vibrational and electronic relaxation at
surfaces.
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2 Density operator treatment

2.1 Equation for the reduced density operator

A molecule M plus its bath B in an external field can be described as a total
system with a Hamiltonian Ĥ = ĤM+ĤB+ĤMB+Ĥext(t) which may depend
on time if the total system is subject to an external electromagnetic field, as
indicated. Given this, the density operator Γ̂ (t) for the system satisfies the
Liouville-von Neumann (L-vN) equation,

i�∂Γ̂ /∂t = Ĥ(t)Γ̂ (t)− Γ̂ (t)Ĥ(t) = [Ĥ(t), ˆΓ (t)] (1)

with the initial condition Γ̂ (t0) = Γ̂0.
In the frequent cases where the molecule is strongly interacting with the

medium, as in chemisorption, or when there is strong polarization of solvent
shells by a charged or polar molecule, it is more convenient to redefine the
region where the dynamics of interest occurs to include part of the medium.
We begin by introducing a primary (p) region containing the molecule M and
adjacent bath atoms, and a secondary (s) region including the remaining bath,
both interacting with light (l). The Hamiltonian terms are regrouped into the
form

Ĥ(t) = Ĥ0 + Ĥpl(t) + Ĥsl(t)

Ĥ0 = Ĥp(X,
∂

∂X
) + Ĥs(Y ,

∂

∂Y
) + Ĥps(X,Y ) (2)

with X and Y sets of primary and secondary degrees of freedom, respec-
tively. The interactions of p- and s-regions with light are given in the dipole
approximation by

Ĥpl(t) = −D̂p(X)Êext(t) (3)

and
Ĥsl(t) = −

∫
d3r Êloc(r, t)P̂s(r,Y ) (4)

under the assumption that the dipole operator is a sum of the dipole D̂p of the
p-region, and the dipole per unit volume P̂s in the s-region, both projections
on the direction of the external electric field Eext and its local value Eloc inside
the s-region. This assumption can be verified as correct in practice by choosing
a p-region of increasing size.

We consider a secondary region described in terms of stochastic physi-
cal properties subject to thermodynamical boundary conditions, with a non-
equilibrium density operator Γ̂ (s)(t) in a general case. Our goal is to obtain
equations of motion for the reduced density operator (RDOp) which follow
from taking the trace of the density operator over the s-region degrees of free-
dom, so that trs(Γ̂ ) = ρ̂(t) describes the p-region. A perturbative treatment
would not suffice for the present strong interactions between p- and s-regions.
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Instead we begin with a selfconsistent field (SCF or mean field) molecular
approximation, justified by the introduction of a stochastic description of
the medium. We seek special solutions to the L-vN equation which can be
factorized after averaging over initial conditions in the s-region (shown by
overlines), so that Γ̂ (t) = Γ̂ (p)(t)⊗ Γ̂ (s)(t). Here both factors are normalized
and Γ̂ p = trs(Γ̂ ) = ρ̂(t) is the RDOp for the p-region. This assumes that the
s- and p- regions have been chosen so that their quantum entanglement can
be neglected. A more accurate description takes the previous factorized form
to be the leading term in an expansion of the total DOp, with the equations
for the reminder obtained by a partitioning method for the DOp. [3, 7, 8]

To derive an equation for ρ̂(t), we start from the full L-vN equation for
Γ̂ (t), and transform it into an integrodifferential form to display correlations
in the s-region. [1] We introduce the decomposition Ĥ = F̂ (t)+ ĤF (t), where
F̂ stands for an effective Hamiltonian possibly dependent on time, to be de-
fined in what follows, and ĤF is a small residual energy operator. We de-
fine an interaction picture (IP) generated by the time evolution operator
ÛF (t, 0) = expT [−(i/�)

∫ t
0
dt′ F̂ (t′)]and written in terms of a time-ordered

exponential, and the operator Γ̂ (I)(t) = ÛF (t, 0)†Γ̂ (t)ÛF (t, 0). Other IP op-
erators are similarly defined, and the RDOp in the IP is ρ̂(I)(t) = trs[Γ̂ (I)(t)].
The equation of motion for Γ̂ (I) becomes

i�∂Γ̂ (I)/∂t = [Ĥ(I)
F , Γ̂ (I)(t)] (5)

Integrating to obtain Γ̂ (I)(t), replacing in the DEq and taking the trace over
s-variables,

i�∂ρ̂(I)/∂t = trs([Ĥ
(I)
F (t), Γ̂ (I)(0)]) (6)

− (i/�)trs([Ĥ
(I)
F (t),

∫ t
0

dt′ [Ĥ(I)
F (t′), Γ̂ (I)(t′)]]

Here the first term to the right describes a rate of fluctuations for the given
initial conditions, and the second term describes a rate of dissipation due to
coupling back and forth between p- and s-regions. A similar equation can be
written for the RDOp of the s-region, trp[Γ̂ (I)(t)], if needed.

To generate a first approximation valid for strongly coupled p- and s-
regions, we’ll construct solutions for a factorized density operator, Γ̂ (I)(t) =
ρ̂(I)(t) ⊗ γ̂(I)(t), where γ̂(I) is the IP form of Γ̂ (s)(t). Insofar the s-region
is large and with many degrees of freedom, we’ll assume that on average

trs[Ĥ
(I)
F (t)γ(I)(0)] = 0, so that the fluctuation rate does not appear in what

follows. It can be restored in equations if needed.
To proceed it is convenient to make the choice of effective Hamiltonian

F̂ = F̂p + F̂s − 〈〈Ĥps〉〉
F̂p = Ĥp + Ĝp (7)
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with Ĝp = trs[ĤpsΓ̂ (s)] and 〈〈Ĥps〉〉 = tr[Ĥpsρ̂Γ̂ (s)], and similarly for the
s-operators after interchanging p- and s- labels, so that F̂ is an SCF Hamil-
tonian with an average equal to the instantaneous energy of the total sys-
tem, involving the SCF potentials Ĝp(t) and Ĝs(t). This definition leads to
ĤF = Ĥps− (Ĝp+ Ĝs)+ 〈〈Ĥps〉〉, a residual coupling due to the non-SCF cor-
relation of motions in the p- and s-regions that averages to zero at all times. In
addition it follows that ÛF (t, t′) = Ûp(t, t′)Ûs(t, t′), so that the time evolution
of primary and secondary regions generated by the effective Hamiltonian are
decoupled. Analogous relations are valid in the IP.

These choices give the simple integrodifferential equation

i�∂ρ̂(I)/∂t = −(i/�)
∫ t

0

dt′ trs([Ĥ
(I)
F (t), [Ĥ(I)

F (t′), ρ̂(I)(t′)γ̂(I)(t′)]] (8)

similar to the ones in published work, but now valid for an active medium and
including its correlation with the system of interest. That can be described in
terms of time correlation functions (TCFs) of the medium, but the TCFs must
now involve an average over the non-equilibrium RDOp γ̂(I)(t) of the s-region,
instead of the usual average over an equilibrium γ̂eq at a given temperature.

The effect of time correlations in the medium can be displayed working
with a factorized coupling hamiltonian, which we choose here as Ĥps = ÂB̂,
with Â = Â† a hermitian operator dependent only on the p-variables, and
similarly for B̂ dependent only on s-variables. This expression can be easily
generalized to include several factorized terms. It leads to a residual Hamil-
tonian ĤF = (Â− 〈〈A〉〉)(B̂ − 〈〈B〉〉) = ΔÂ(t).ΔB̂(t). Turning to the IP, the
equation of motion for the RDOp is

∂ρ̂(I)/∂t = −(1/�2)
∫ t

0

dt′ trs([ΔÂ(I)(t)ΔB̂(I)(t),

[ΔÂ(I)(t′)ΔB̂(I)(t′), ρ̂(I)(t′)γ̂(I)(t′)]] (9)

where the double commutator can be expanded to factor TCFs in the s-region.
They are defined as the transient TCFs

CBB(t, t′; t′) = trs[ΔB̂(I)(t)ΔB̂(I)(t′)γ̂(I)(t′)] (10)
CBB(t′, t; t′) = trs[ΔB̂(I)(t′)ΔB̂(I)(t)γ̂(I)(t′)]

and contain an extra time variable relating to the RDOp of the s-region. It
can be shown going back to the Schroedinger picture (SP) that CBB(t′, t; t′) =
CBB(t, t′; t′)∗ and that they transform into standard TCFs when the s-region
is at thermal equilibrium. The equation of motion

∂ρ̂(I)/∂t = − (1/�2)
∫ t

0

dt′ {CBB(t, t′; t′)[ΔÂ(I)(t), ΔÂ(I)(t′)ρ̂(I)(t′)] (11)

+ CBB(t′, t; t′)[ρ̂(I)(t′)ΔÂ(I)(t′), ΔÂ(I)(t)]}
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gives a compact expression generalizing the ones in the literature, to include
an active medium.

Returning to the SP with the substitution ρ̂(I)(t) = Û†p(t, 0)ρ̂(t)Ûp(t, 0)
gives

∂ρ̂/∂t = −(i/�)[F̂p(t), ρ̂(t)]− (1/�2)
∫ t

0

dt′ M̂p(t, t′)ρ̂(t′) (12)

M̂p(t, t′)ρ̂(t) = CBB(t, t′; t′)[ΔÂ(t), Ûp(t, t′)ΔÂ(t′)ρ̂(t′)Ûp(t, t′)†]

+CBB(t′, t; t′)[Ûp(t, t′)ρ̂(t′)ΔÂ(t′)Ûp(t, t′)†, ΔÂ(t)]

for the general case where the effective hamiltonian in the p-region depends
on time through the SCF interaction Ĝp(t). Here we have introduced a su-
peroperator M̂p(t, t′) which describes dissipative phenomena and allows for
memory effects extending from the initial time t = 0 up to the time t at which
the rate of the RDOp is calculated.

2.2 Competing Instantaneous and Delayed Dissipation

The dissipative superoperator M̂p(t, t′) can in some cases be derived from
the dynamics of the s-region, and constructed from information about the
electronic and atomic structure of this region. Frequently the response and
decay of electronic motions is faster than that of atomic motions, with the
electronic dissipation occurring instantly (compared to the duration of a light
pulse) and atomic dissipation showing delays. Here we consider situations
where both are present, and describe the total system as made up of atomic
cores and electronic charge distributions. In what follows we associate fast
dissipation with electronic motions in the s-region, and slow dissipation with
atomic motions there, but the treatment would be suitable to other types of
degrees of freedom (such as in proton transfer) with their own time scales.

In general, couplings in ĤF are sums of factorized terms, which can be used
to express dissipative rates in terms of TCFs. The main features of dissipa-
tion rates can be discussed assuming that ĤF contains a term with a s-region
operator B̂(el) dependent on fast electronic variables, and a term B̂(at) depen-
dent on slow atomic electronic variables. The TCFs appearing in the memory
term are C

(el,el)
BB , C(at,at)

BB , and C
(el,at)
BB . The TCFs of electronic motions with

themselves and of atomic motions with themselves must be considered, but
the cross time-correlation terms are small on the average because of their dif-
ferent time scales when s-region electrons are excited by visible light, and can
be neglected. This leads to a memory superoperator with two terms. One of
them contains as factors time-correlation of electronic motions in the s-region
that decay rapidly due to electron-electron interactions there. The other one
involves memory terms with slow vibrational TCFs of the s-region motions.
Under these conditions we can write that

M̂p(t, t′) = M̂(el)
p (t, t′) + M̂(at)

p (t, t′) (13)



370 D. A. Micha and A. S. Leathers

where the first term describes fast dissipation, and the second gives one de-
layed dissipation . This leads to two separate rates of dissipation in the equa-
tion of motion for ρ̂,

∂ρ̂/∂t = −(i/�)[F̂p(t), ρ̂(t)] + (∂ρ̂/∂t)(el)D + (∂ρ̂/∂t)(at)D (14)

which we analyze in what follows.

Instantaneous dissipation

The memory kernel for the p-region arising from its coupling to the electronic
motions in the s-region is given in the IP by

M̂(el)
p (t, t′)ρ̂(I) = C

(el,el)
BB (t, t′; t′)[ΔÂ(I)(t), ΔÂ(I)(t′)ρ̂(I)(t′)] (15)

+ C
(el,el)
BB (t′, t; t′)[ρ̂(I)(t′)ΔÂ(I)(t′), ΔÂ(I)(t)]}

This can be simplified when the relaxation of electronic motions is fast and
the TCF for a fixed time t and earlier times t′ satisfies

C
(el)
BB (t, t

′; t′) ∼= g(t).exp[−f(t).|t− t′|/τ (el)
s ] (16)

and ‖ ∂ρ̂(I)/∂t′ ‖<<‖ ρ̂(I) ‖ /τ
(el)
s for |t − t′| >> τ

(el)
s , a relaxation time

constant. Then it is accurate to let ρ̂(I)(t′) ≈ ρ̂(I)(t) in the the memory integral
and to replace its upper limit with t → ∞. Returning to the SP this gives

(∂ρ̂/∂t)(el)D = −(1/�2){c(t)[ΔÂ(t)]2ρ̂(t) + c(t)∗ρ̂(t)[ΔÂ(t)]2 (17)

−[c(t) + c(t)∗]ΔÂ(t)ρ̂(t)ΔÂ(t)}
c(t) =

∫ ∞
0

dt′ C(el,el)
BB (t, t′; t′)

Therefore, rapid electronic motions lead to an instantaneous dissipative mem-
ory and M̂el

p (t, t′)ρ̂(t′)/� = δ(t − t′)Ŵ(el)
p (t)ρ̂(t), in terms of a new time-

dependent dissipative superoperator which gives a dissipative rate (∂ρ̂/∂t)(el)D =
−Ŵ(el)

p (t)ρ̂(t)/(2�) defined by the previous equation.
When the s-region can be assumed to remain at equilibrium, the dissipative

superoperator Ŵ(el)
p does not depend on time and can be constructed as a so-

called Lindblad-type dissipation expression, [11, 12]

(
∂ρ̂

∂t
)(el)D = −1

2

∑
k

[L̂(k)†
p L̂(k)

p , ρ̂(t)]+ − 2L̂(k)
p ρ̂(t)L̂(k)†

p (18)

where the L̂
(k)
p are operators in the p-region constructed from information

about relaxation and decoherence rates of each process k in the p-region in-
duced by couplings to the electronic motions in the s-region; here the subscript
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“+” indicates an anticommutator. This form maintains complete positivity
and leads to a density operator ρ̂(t) of constant norm. It has been imple-
mented for example to describe the relaxation of adsorbates. [27],

The dissipative superoperator Ŵ(el)
p can also be constructed from a dissi-

pative potential operator Ŵ (el)
p which describes the interaction of the p-region

with the electrons in the s-region followed by a back interaction, [8] and there-
fore depends on the initial equilibrium temperature T of the s-region. This
leads, for a general non-hermitian Ŵ

(el)
p , to the expression

(
∂ρ̂

∂t
)(el)D = − 1

2�
[Ŵ (el)
p ρ̂(t) + ρ̂(t)Ŵ (el)†

p

−(Ŵ (el)
p + Ŵ (el)†

p )1/2ρ̂(t)(Ŵ (el)
p + Ŵ (el)†

p )1/2] (19)

which appears in the equation for the RDOp and gives solutions with the
required constant normalization. This will be called the dissipative potential
form of the instantaneous dissipation, in what follows.

Delayed dissipation

For slow atomic motions, the dissipative kernel M̂(at)(t, t′) can be constructed
from the TCFs C

(at,at)
BB (t, t′; t′) but the integral over t′ in the equation of

motion must be in principle kept between limits t = 0 and t, as given in a
previous equation in the SP.

However, delayed dissipation typically occurs after the s-region has settled
into its thermal equilibrium, with RDOp γ̂eq, and the more familiar equations
for the dissipative rate can be used. Then M̂(at)(t, t′) is obtained to second
order from a p-s coupling Ĥps =

∑
j Â

(j)
p B̂

(j)
s , with trs(Γ̂ (s)B̂

(j)
s ) = 0 chosen

for convenience, and can be written in terms of the time-correlation func-
tions C

(jj′)
s (t, t′) = 〈〈B̂(j)

s (t)B̂(j′)
s (t′)〉〉 = trs[B̂

(j)
s (t)B̂(j′)

s (t′)γ̂eq] of the atomic
motions in the s-region, [3] as

M̂(at)
p (t, t′)ρ̂(t′) =

∑
jj′

C(jj′)
s (t, t′)[Â(j)

p , Ûp(t′)Â(j′)
p ρ̂(t− t′)Û†p(t

′)]

− C(j′j)
s (t′, t)[Â(j)

p , Ûp(t′)ρ̂(t− t′)Â(j′)
p Û†p(t

′)] (20)

where Ûp(t) = exp(−iF̂ 0
p t/�) is the time evolution operator in the p-region

without light. This follows from our equation for M̂(at)
p (t, t′) with the substi-

tution t′ → (t− t′) in the integral over time.
Combining both types of dissipation gives the integrodifferential equation

∂ρ̂/∂t = −(i/�)[F̂p(t), ρ̂(t)]−(1/2�)Ŵel
p (t)ρ̂(t)−(1/�2)

∫ t
0

dt′ M̂(at)
p (t, t′)ρ̂(t′),

(21)
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which includes fast electronic dissipation and delayed atomic dissipation and
is a linear integrodifferential equation in ρ̂. The upper limit of the integral
to the right must be kept equal to the time t for slow dissipation, instead of
replacing it with t → ∞ as done for fast dissipation.

3 Computational method

3.1 Matrix Equations in a Basis Set

Reintroducing the coupling of the p-region with light, and expanding Eq. (21)
in a basis set of stationary states {φα, α = 1...n} with energies Eα in the
p-region we have

dρ

dt
= − i

�
[Fp − E(t)Dp,ρ(t)]− 1

2�
W(el)
p (t)ρ(t)− 1

�2

∫ t
0

dt′M(at)
p (t, t′)ρ(t′)

(22)

Here matrices of the operators ρ̂, F̂p,and D̂p,have the same dimensions, (n×n),
while the supermatrices W(el)

p and M(at)
p are four-index n2 × n2 matrices,

which follows from Eq.(20) using n × n matrices A(j)
p and Up. This is a

set of coupled ordinary IDEqs which can be solved quite generally with the
numerical procedure that follows.

We introduce matrices in the p-basis, like V = [〈β|V̂p|α〉] and W =
[〈β|Ŵp|α〉]. The Lindblad form of the dissipation rate can be constructed
from state-to-state transition rates r(β ← α) in the p-region, induced by its
interaction with the s-region, and the operator for the transition k = (β ← α)
is

L̂(k)
p = |β〉[r(β ← α)]1/2〈α| (23)

The Lindblad operators become matrices L(k)
p , and the Lindblad rate is then

(
dρ

dt
)(el)D = −1

2

(∑
k

[L(k)†
p L(k)

p ,ρ(t)]+ − 2L(k)
p ρ(t)L(k)†

p

)
. (24)

This choice leads to a constant trp(ρ) = 1 normalization over time. For an
s-region near equilibrium at temperature T , the rates satisfy the detailed
balance relation r(β ← α)exp[−Eα/(kBT )] = r(α ← β)exp[−Eβ/(kBT )].

Alternatively, the rate of instantaneous dissipation in the equation of the
RDM is obtained from the dissipative potential form as

(
dρ

dt
)(el)D = − 1

2�
[Wρ(t) + ρ(t)W† − (W +W†)1/2ρ(t)(W +W†)1/2] (25)
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where 〈β|Ŵp|α〉T /� = r(β ← α;T ). This form of the dissipation rate also
conserves the norm of the density operator.

For computational purposes it is sometimes convenient to introduce a di-
adic notation where a square n × n matrix with indices (j, k) is transformed
into a column matrix with index J running from 1 to n2. [7, 10] This trans-
forms ρ to the n2×1 column matrix σ and allows us to write the commutators
in terms of n2 × n2 matrices A and B, so that the equations are now of the
diadic form

dσ(t)
dt

= A(t)σ(t) +
∫ t

0

dt′B(t, t′)σ(t′). (26)

3.2 Numerical Procedure

To begin, we write the integro-differential equation in a more compact form,

dσ

dt
= f [t, σ(t), z(t)] (27)

with

z(t) =
∫ t

0

K[t, t′, σ(t′)]dt′ (28)

An extended Runge-Kutta integration scheme from time tn to tn+Δt employs
an iterative procedure during time advancement, with the notation Yn,j =
σ(j)(tn) for the j − th iteration. With similar notation for other functions of
time, and with Δt = h, the following algorithm can be used [21]

Yn,j = σn + h

m∑
i=1

aj,if [tn + cih, Yn,i, F̃n(tn + cih) + hZn,i] (29)

Zn,i =
m∑
l=1

āi,lK(tn + cih, tn + clh, Yn.l) (30)

F̃n(t) = h

n−1∑
l=0

m∑
j=i

bjK(t, tl + cjh, Yl,j) (31)

σn+1 = σn + h
m∑
j=1

bjf [tn + cjh, Yn,j , F̃n(tn + cjh) + hZn,j ] (32)

where m is the number of iteration stages of the method, and the column
matrices b=[bj ], c= [cj ], and square matrices a = [aj,i], ā = [āi,l] depend
on the choice of the accuracy order in the Runge-Kutta method. The values
chosen here are based on the standard fourth order RK method (RK4), b=
( 1
6 ,

1
3 ,

1
3 ,

1
6 ), c= (0, 1

2 ,
1
2 , 1), and a = ā is in lower diagonal form, with the only

nonzero elements being a21 = a32 = 1
2 , a43 = 1.
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The procedure gives a simple recursion because the a matrices are in lower
diagonal form. Similar equations can be written for the original RDM ρ in-
stead of the diadic form σ. This recursive procedure has been previously tested
by us for density matrix calculations and found to be reliable. [22]

4 Application to adsorbates

4.1 A model for adsorbates

We introduce the vibrational wavefunctions φvI
(x) for each electronic state I

and work with the vibronic basis set {|I, vI〉} and matrices in this basis, like
V = [〈J, vJ |V̂p|I, vI〉] and W = [〈vI |WIJ |vJ〉]. The dissipative potential form
of the instantaneous dissipative rate in the RDM equation follows from W as
given above.

The Lindblad form of the dissipative rate is obtained from state-to-state
rates r(J, vJ ← I, vI ;T ) for of the adsorbate interacting with a medium at
temperature T . The operator for the transition k = (J, vJ ← I, vI) is then con-
structed as L̂

(k)
p = |J, vJ〉[r(J, vJ ← I, vI)]1/2〈I, vI |, corresponding to vibronic

transitions in the p-region.
For the delayed dissipation rate, we’ll use in Eq.(20) the form Ĥps = ÂB̂,

with Â = q̂ = x̂/x0 a dimensionless displacement and B̂ = 2�
∑
j κjQ̂j ,

suitable for a p-region with a single vibrational mode q, and where κj is a
measure of its coupling strength with s-region mode Qj of frequency ωj . This
coupling is present in both ground and excited electronic states, possibly with
different values for κ in each electronic state. With this coupling, the memory
matrices look like M

(I)
rs,cd = 〈〈B̂(t)B̂(0)〉〉qrsqcd for electronic state I and vi-

brational states vI = r, s, c, d. In the applications, the density of normal modes
in the substrates is large and it is better to use functions of a continuous vi-
brational frequency ω, obtained calculating κ(ω) from the pairs (κj , ωj) by
interpolation. In a model with a continuum of vibrational modes of frequen-
cies ω for the substrate solid, the p-region displacement is coupled to normal
vibrational displacements Q̂(ω) in the s-region given by the boson (phonon
superposition) operator B̂ = 2�

∫
dωg(ω)κ(ω)Q̂(ω), with g(ω) the density of

vibrational modes per unit frequency. The TCF 〈〈B̂(t)B̂(0)〉〉 follows from the
spectral density ω2J(ω) = 2g(ω)|κ(ω)|2, as

C(t) =
∫ ∞

0

dω ω2J(ω)[cos(ωt) coth(
�ω

2kBT
)− i sin(ωt)] (33)

for the total system initially at temperature T .

4.2 CO/Cu(001) dissipative dynamics

We consider the system CO/Cu(001) excited by a pulse of visible light, as an
example where electronic and vibrational excitation and further relaxation of
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CO on the Cu(001) surface can be used to elucidate the present treatment of a
dissipative dynamics. Here we focus on the frustrated-translation vibrational
mode of CO, parallel to the surface, with vibrational quantum numbers vI
for electronic states I = g, e. Absorption of a pulse of visible light leads to
photodesorption of a small fraction of adsorbed CO , and leaves the remaining
CO’s on an electronically excited surface. This happens by indirect excitation
of the CO adsorbate as illustrated in Figure 1. First, light is absorbed by
the substrate and excites electrons there. They get rapidly de-excited with
transfer of energy to the adsorbate (or p-) region. This interacts back with
the substrate (or s-) region and goes from its excited vibronic states (e, ve) to
its ground vibronic states (g, vg), which then slowly relax.

The fast desorption of CO in CO/Cu(001) has been measured [33] and also
calculated. [30, 31] The collision induced vibrational excitation and following
relaxation of CO on Cu(001) has also been experimentally explored using
time-of-flight techniques, and has been analyzed in experiments [34] and the-
ory. [23, 32] Our previous treatment of instantaneous electronic de-excitation
of CO/Cu(001) after photoexcitation is extended here to include delayed vi-
brational relaxation of CO/Cu(001) in its ground electronic state. We show
results for the density matrix, from calculations with the described numerical
procedure for the integrodifferential equations.

We use the previously developed model, with two diabatic electronic states,
I = g, e, and desorption by a pulse of light of wavelength 520 nm. [29,31] The
normal vibrational coordinates qi of the p-region can be obtained in prin-
ciple for the CO/Cu6 cluster, but in practice a simpler description can be
used. The vibrations perpendicular to the surface have a much larger energy
spacing than the frustrated translation and do not get excited, and the frus-
trated translation is weakly coupled to the Cu displacements because of the
large difference in masses. Therefore, here we concentrate on electronic and
vibrational relaxation of the adsorbed molecule with axis perpendicular to the
surface and its center of mass vibrating in a frustrated translation x parallel
to the surface, with the distance Z from CO to the surface kept constant at
Z = Zg, and the orientation angles of CO, which change slowly, fixed at θ = 0
and φ = 0. The potential energy functions are then VIJ(x) and form a 2× 2
matrix V(x) which is diagonal around Z = Zg in a basis of diabatic electronic
states. Diagonal elements have the form VII(x) = MCOΩ

2
I/2 + ΔVI , with

parameters taken from [29].
The light absorbed first by the substrate (the s-region) creates there elec-

tronic excitations described by the Γ̂ (s) density operator. They in turn create
a local electric field at the adsorbate (or p-) region, where the states I = (g, e)
are coupled by an SCF potential Gp,IJ(x) = Ep(t)sin(ω0t)DIJ(x), where DIJ
is a transition dipole and Ep is the envelope of the effective electric field in
the p-region when the applied light pulse has frequency ω0, as previously
published. [30]

Furthermore, in our previous work [29,30] we constructed a dissipative po-
tential energy 2×2 matrix [WIJ(x)] resulting from p-electric-dipole/s-electric-



376 D. A. Micha and A. S. Leathers

dipole coupling. Its off-diagonal element Wc = Wge is used in the present cal-
culations to obtain state-to-state rates r(g, vg ← e, ve;T ) = 〈vg|Wge|ve〉T /�

and r(e, ve ← g, vg;T ) = r(g, vg ← e, ve;T )exp{−[E(e, ve)−E(g, vg)]/(kBT )}
satisfying detailed balance.

After the adsorbed CO rapidly relaxes to its ground electronic state g due
to electronic dissipation, the s-region reaches equilibrium at a temperature T ,
but the p-region is yet found in a distribution of vibrational states φr, with
r = vg = 0, 1, 2, ....The kernel matrix for delayed dissipation of vibrational
energy has been given in terms of the dimensionless CO displacement q̂ =
�1/2/(mCOωV )1/2x̂ for a frustrated translation of frequency ωV and mass
mCO in the p-region.

Fig. 1: Energy levels for CO/Cu(001) showing the energy bands of the substrate and
potential energy functions of the adsorbate CO with its axis perpendicular to the
surface. The variable x refers to the frustrated-translation vibration of the center of
mass of CO parallel to the surface, and q here is the distance from the center of mass
of CO to the surface. Following an initial substrate photoexcitation, its de-excitation
transfers energy into the adsorbate, which relaxes to the ground vibronic states.

The functions κ(ω) and g(ω) in B̂ = 2�
∫
dωg(ω)κ(ω)Q̂(ω) have been

obtained from a Debye model of the substrate and are given in references [23,
32]. The matrix elements of the density operator for the ground electronic state
are of the form ρgr,gs = ρ

(g)
r,s , and the dissipative superoperator is expressed

in terms of four-index matrices M
(g)
rs,cd = 〈〈B̂(t)B̂(0)〉〉qrsqcd. The equation

of motion for the ground state density matrix is given in reference [23]. The
present model assumes that the electronic relaxation from state e to g is so
fast that vibrational relaxation plays a role only in the ground electronic state.
Therefore the following results do not involve a density matrix ρer,es = ρ

(e)
r,s .
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Fig. 2: (a) Populations of the ground electronic state of the adsorbate without de-
layed dissipation for two vibrational levels r = vg = 0, 1, Pg,r and their sum Pg; (b)
Results with delayed dissipation, versus time. Here the alternating populations of
states r = vg = 0, 1 show quantum state coherence.

Results obtained from Eq.(22) and numerical solution of the RDM equa-
tion with the instantaneous dissipation from the dissipative potential formula,
are in very good agreement with our previous results [29] using propagation
of density amplitudes. The adsorbate state populations PI reach at long times
constant values, with Pg(∞)+Pe(∞) = 1−PS(∞) and PS equal to the total
population of the substrate, maintained by a steady interaction between p-
and s-regions.

Presently we do our calculations with the Lindblad form of the instan-
taneous dissipation, to describe instead the relaxation of the adsorbate back
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to the initial state with the substrate at thermal equilibrium, through the
detailed balance relation for rates. In our calculations, the adsorbate starts
in the ground electronic state with a thermalized distribution of vibrational
states at 100 K and undergoes an electronic excitation by the light pulse. The
present results, including now delayed dissipation, are shown in Figs. 2 for a
gaussian light pulse centered at t0 = 100fs with a fluence of 3.0 mJ/cm2 and
a width of 100 fs (or 4.214× 103 au(T)).

Figure 2a shows p-region populations Pg,r(t) = ρ
(g)
r,r (t) of the ground elec-

tronic state and their sum Pg =
∑
r ρ

(g)
r,r , without delayed dissipation, versus

time, while Fig. 2b includes delayed dissipation. In both cases the population
of the ground electronic state is first rapidly depleted within 150 fs and then
recovers after the pulse. Including the delayed dissipation causes only a slight
decrease in the total population of the ground state. But we also see in Fig. 2b
pronounced oscillations of the vibrational state populations caused by their
dissipative coupling to the s-region. The coupling leads to quantum coherence
of vibrational states of the adsorbate as shown by the interchange of their
populations.

5 Conclusion

The present reduced density operator treatment allows for a general descrip-
tion of fluctuation and dissipation phenomena in an extended atomic system
displaying both fast and slow motions, for a general case where the medium is
evolving over time. It involves transient time-correlation functions of an active
medium where its density operator depends on time. The treatment is based
on a partition of the total system into coupled primary and secondary regions
each with both electronic and atomic degrees of freedom, and can therefore
be applied to many-atom systems as they arise in adsorbates or biomolecular
systems.

Density operator equations were converted into coupled integrodifferential
equations suitable for numerical processing, and an extended Runge-Kutta
algorithm has been implemented for solving the matrix equations in diadic
form. A similar procedure can be followed for the original density matrix.

As an illustration of the numerical treatment, the instantaneous dissipation
due to fast electronic motions was constructed from the Lindblad expression
in the treatment of CO/Cu(001), from decay and transition rates. The delayed
dissipation, present for slow atomic vibrations of the medium, was given in
terms of a memory kernel in the integrodifferential equation, calculated to
second order in the coupling of the adsorbate and its environment.

Results for CO/Cu(001) were obtained with a model of electronic and vi-
brational transitions we have previously derived, with populations and quan-
tum coherences calculated to compare with experimental results from fem-
tosecond spectroscopy and time-of flight measurements. The present results
show that the populations of individual vibronic states oscillate as a result
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of their coupling through the medium and are therefore in coherent quantum
states, but that total electronic populations are smoother over time and little
changed by vibrational relaxation. The delayed relaxation due to vibrational
motions of the medium has a small effect on total electronic populations of
the adsorbate region at short times.

An accurate description of the photoexcitation dynamics of adsorbates
or of biomolecular chromophores over times of the order of picoseconds or
longer must account for two different mechanisms of relaxation: electronic
and vibrational relaxation. The former one dominate at short times while the
latter one dominate at longer times. The present treatment describes both
processes within a single formulation, and should be applicable to a wide
variety of physical systems.
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Abstract. In this chapter we discuss approaches to solving quantum dynamics in
the condensed phase based on the quantum-classical Liouville method. Several repre-
sentations of the quantum-classical Liouville equation (QCLE) of motion have been
investigated and subsequently simulated. We discuss the benefits and limitations of
these approaches. By making further approximations to the QCLE, we show that
standard approaches to this problem, i.e., mean-field and surface-hopping methods,
can be derived. The computation of transport coefficients, such as chemical rate
constants, represent an important class of problems where the QCL method is ap-
plicable. We present a general quantum-classical expression for a time-dependent
transport coefficient which incorporates the full system’s initial quantum equilib-
rium structure. As an example of the formalism, the computation of a reaction rate
coefficient for a simple reactive model is presented. These results are compared to
illuminate the similarities and differences between various approaches discussed in
this chapter.

1 Introduction

The elucidation of real-time quantum molecular dynamics remains a challeng-
ing and fascinating problem of importance in physics, chemistry and biology.
Current experimental techniques are beginning to allow one to probe dynam-
ical events in previously unexplored regimes; for example, sub-femtosecond to
picosecond time scales in condensed media. In order to describe such dynam-
ics from both theoretical and numerical points of view, one is faced with a
task that becomes exponentially more difficult with the number of degrees of
freedom. For small systems, with roughly ten to one hundred particles, full
quantum simulations can be carried out but at a large computational cost.
In order to describe larger, more complicated systems we are forced to make
approximations to full quantum mechanics in order to obtain dynamical in-
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formation. Indeed, in some instances a full quantum mechanical treatment is
probably unnecessary. This is the case if one is interested in a small subset
of system degrees of freedom whose quantum mechanical character is impor-
tant, while the remainder of the system (environment) may be approximated
by classical mechanics [1–3]. For example, a decomposition of this type is ap-
propriate for a subsystem composed of light particles, like electrons or protons,
interacting with a solvent of heavy molecules.

In this paper we restrict our consideration of such systems to descriptions
based on quantum-classical Liouville dynamics [3]. We begin with a discussion
of this equation and its properties. The quantum-classical Liouville equation
describes the dynamics of a quantum subsystem coupled to an almost clas-
sical environment. The term “almost” used here and in the title refers to
the fact that while the environment evolves by the classical equations of mo-
tion in the absence of coupling to the quantum subsystem, in the presence of
coupling a description in terms of single classical trajectories is no longer pos-
sible. After this introduction, we outline a number of ways one may construct
numerical solutions to this equation by projecting it onto different bases. In
certain limits, making approximations, quantum-classical Liouville dynamics
may be reduced to some commonly-used mixed quantum-classical approaches,
in particular, mean field and surface hopping schemes, as well as the Wigner-
Liouville approach. Quantum time correlation functions, which are related to
transport properties, are then discussed. As an example, the computation of
quantum chemical reaction rates is described in the penultimate section. Some
perspectives on the work are given in conclusions.

2 Quantum-Classical Liouville Dynamics

The time evolution of a quantum mechanical system is governed by the quan-
tum Liouville-von Neumann equation,

∂

∂t
ρ̂(t) = − i

�
[Ĥ, ρ̂(t)], (1)

where ρ̂(t) is the density matrix, Ĥ is the total Hamiltonian, and the square
brackets denote the commutator. Quantum-classical Liouville dynamics is an
approximation to this equation that is appropriate for situations where the
full quantum system may be partitioned into a quantum subsystem, and a
classical environment. This partition is motivated by the observation that for
many condensed phase processes the quantum mechanical character of only a
few degrees of freedom need be taken into account to accurately describe the
system’s overall dynamics. To this end, we let q̂ = {q̂i}, i = 1, ..., n be a set
of coordinate operators for the n subsystem degrees of freedom with mass m,
while the remaining N environmental degrees of freedom with mass M have
coordinate operators Q̂ = {Q̂i}, i = 1, ..., N . The total Hamiltonian can then
be written as
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Ĥ =
P̂ 2

2M
+

p̂2

2m
+ V̂ (q̂, Q̂), (2)

where we have written the momentum operators for the subsystem and en-
vironment as p̂ and P̂ , respectively. In keeping with this partition scheme,
the potential energy operator, V̂ (q̂, Q̂) can be decomposed into subsystem,
environment, and coupling terms: V̂ (q̂, Q̂) = V̂s(q̂) + V̂e(Q̂) + V̂c(q̂, Q̂).

By performing a partial Wigner transform with respect to the coordinates
of the environment, we obtain a classical-like phase space representation of
those degrees of freedom. The subsystem coordinate operators are left un-
transformed, thus, retaining the operator character of the density matrix and
Hamiltonian in the subsystem Hilbert space [4]. In order to take the partial
Wigner transform of Eq. (1) explicitly, we express the Liouville-von Neumann
equation in the {Q} representation,

∂〈Q|ρ̂(t)|Q′〉
∂t

= − i

�

∫
dQ′′

(
〈Q|Ĥ|Q′′〉〈Q′′|ρ̂(t)|Q′〉 − 〈Q|ρ̂(t)|Q′′〉〈Q′′|Ĥ|Q′〉

)
.

(3)
Using the definition of the Wigner transform [5] of the density matrix,

ρ̂W (R,P ) = (2π�)−3N

∫
dZ eiP ·Z/�〈R− Z

2
|ρ̂|R+

Z

2
〉, (4)

and the formula for the partial Wigner transform of a product of two opera-
tors [6] (

ÂB̂
)
W

(R,P ) = ÂW (R,P )e�Λ/2iB̂W (R,P ), (5)

Eq. (3) becomes

∂ρ̂W (R,P, t)
∂t

= − i

�

(
ĤW (R,P )e�Λ/2iρ̂W (R,P, t)

−ρ̂W (R,P, t)e�Λ/2iĤW (R,P )
)
. (6)

The operator Λ =
←−∇P · −→∇R−←−∇R · −→∇P is the negative of the Poisson bracket

operator, and the subscript W indicates the partial Wigner transform. The
partial Wigner transform of the total Hamiltonian is written as,

ĤW (R,P ) =
P 2

2M
+

p̂2

2m
+ V̂W (q̂, R). (7)

The quantum-classical Liouville equation can be derived by formally ex-
panding the operator on the right side of Eq. (6) to O(�0). One may justify [4]
such an expansion for systems where the masses of particles in the environ-
ment are much greater than those of the subsystem, M � m. In this case the
small parameter in the theory is μ = (m/M)1/2. This factor emerges in the
equation of motion quite naturally through a scaling of the variables motivated
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by the classical theory of Brownian motion. Through such an analysis [4], one
obtains the quantum-classical Liouville (QCL) equation [3, 4, 7–15]

∂ρ̂W (R,P, t)
∂t

= − i

�

[
ĤW (R,P ), ρ̂W (R,P, t)

]
+
1
2
({ĤW (R,P ), ρ̂W (R,P, t)} − {ρ̂W (R,P, t), ĤW (R,P )})

= −iL̂ρ̂W (R,P, t). (8)

The last line defines the mixed quantum-classical Liouville (super)operator L̂.
The QCL superoperator has many desirable features required to produce

physical dynamics; it conserves total mass, energy, momentum and phase
space volumes [4,16,17]. However, it does not provide a fully consistent treat-
ment of mixed quantum-classical dynamics. The quantum-classical bracket
defined by the right side of Eq. (8) does not possess a Lie algebraic structure
since it fails to satisfy the Jacobi identity [16,18]. A detailed discussion of the
consequences of this lack of a Lie algebraic structure can be found in Ref. [16].
There have been attempts to construct quantum-classical brackets that pos-
sess a Lie algebraic structure [19, 20] although these constructions have been
shown to have difficulties [21, 22]. In addition to these attempts, there have
been more recent formulations of quantum-classical dynamics based on differ-
ent premises that have a Lie algebraic structure [23]. In spite of these limita-
tions the quantum-classical Liouville description is one of the most accurate,
computationally tractable methods for the study of the quantum dynamics of
large complex systems. In particular, we observe that it equivalent to the full
quantum dynamics described by Eq. (1) for arbitrary quantum subsystems
bilinearly coupled to harmonic baths. In addition, as we shall see, approxima-
tions to QCL dynamics yield mean field and surface-hopping schemes.

In the next section we describe how the QCL equation may be expressed
in any basis that spans the subsystem Hilbert space. Here we observe that
the subsystem may also be Wigner transformed to obtain a phase-space-like
representation of the subsystem variables as well as those of the environment.
Taking the Wigner transform of Eq. (8) over the subsystem, we obtain the
quantum-classical Wigner-Liouville equation [24],[

∂

∂t
+ iL(0)

� + iL(0)
h

]
ρW (p, P, r, R, t)

=
2

�(π�)n

∫
ds

[∫
dr̃ V (r − r̃, R) sin(

2sr̃
�

)
]
ρW (p− s, P, r, R, t)

+
∫

ds ΔF (R, s)
∂

∂P
ρW (p− s, P, r, R, t), (9)

where the force ΔF (R, s) is defined as

ΔF (R, s) =
1

(π�)n
∂

∂R

[∫
dr̃ cos(2sr̃/�)V (r − r̃, R)

]
. (10)
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The classical free streaming Liouville operators are iL(0)
� = p

m
∂
∂r and iL(0)

h =
P
M

∂
∂R for the light ($) subsystem particles and (h) heavy environmental par-

ticles, respectively. The quantum-classical Wigner-Liouville equation (9) can
be written in a more compact form,[

∂

∂t
+ iL� + iLh

]
ρW (p, P, r, R, t) =

∫
ds K(s, P, r, R)ρW (p− s, P, r, R, t)

(11)

where iL� = p
m
∂
∂r + Fs(r) ∂∂p is the full classical Liouville operator for the

subsystem and iLh = P
M

∂
∂R + Fe(R) ∂∂P is the full classical Liouville operator

for the environment. Here Fs(r) = −∂Vs(r)/∂r and Fe(R) = −∂Ve(R)/∂R.
The kernel K(s, P, r, R) is the sum of two contributions, K = K� +Kh with

Kh(s, P, r, R) =
1

(π�)n

{
∂

∂R

∫
dr̃ cos(2sr̃/�)Vc(r − r̃, R)

}
∂

∂P
,

K�(s, P, r, R) = −∂Vs(r)
∂r

dδ(s)
ds

+
2

�(π�)n

∫
dr̃ [Vs(r − r̃) + Vc(r − r̃, R)] sin(

2sr̃
�

). (12)

This equation gives the dynamics of the quantum-classical system in terms
of phase space variables (R,P ) for the bath and the Wigner transform vari-
ables (r, p) for the quantum subsystem. This equation cannot be simulated
easily but can be used when a representation in a discrete basis is not ap-
propriate. It is easy to recover a classical description of the entire system by
expanding the potential energy terms in a Taylor series to linear order in
r̃. Such classical approximations, in conjunction with quantum equilibrium
sampling, are often used to estimate quantum correlation functions and ex-
pectation values. Classical evolution in this full Wigner representation is exact
for harmonic systems since the Taylor expansion truncates.

3 Representations and Solutions

In many cases, in order to compute the dynamics of condensed phase systems,
one invokes a basis representation for the quantum degrees of freedom in the
system. Typically, one computes the dynamics of these systems in order to
obtain quantities of interest, such as an average value, A(t) = Tr [Âρ̂(t)], or a
correlation function, as will be discussed below. Since such averages are basis
independent one may project Eq. (8) onto any convenient basis. This is in
principle a nice feature, and one that is often exploited to aid in calculations.
However, it is important to note that the basis onto which one chooses to
project the QCLE has important implications on how one goes about solv-
ing the resulting equations of motion. Ultimately the time-dependent aver-
age value of an observable is expressed as a trace over quantum subsystem
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states and a phase space average over classical-like coordinates; this feature
is intimately linked to constructing a solution using statistical mechanics.
Trajectory-based simulation methods for computing phase-space averages are
often sought once the system Hamiltonian is known in a given basis. However,
other schemes have been proposed that do not rely on computing ensembles
of trajectories [25,26].

In this section we present the major basis representations that have been
used in the literature to solve the QCLE. For each representation - subsystem,
adiabatic, force, and mapping, respectively - we present the QCLE in the
particular representation, and briefly describe the schemes used to solve the
equation of motion in that particular basis. We discuss the strengths and
shortcomings of each representation.

3.1 The subsystem basis

When partitioning a system into a subsystem and its environment, the Hamil-
tonian one obtains, Eq. (2), is composed of subsystem, environment, and cou-
pling parts. Thus, representing the QCLE in the subsystem basis is a natural
starting point.

Let us consider a simple partitioning of the total Hamiltonian into two
parts; one containing terms corresponding to the isolated quantum subsystem
only, ĥs, and a remainder that contains all the bath and coupling terms. The
subsystem basis is then defined by the following eigenvalue problem, ĥs|α〉 =
εα|α〉, where ĥs = p̂2/2m + V̂s(q̂). These basis states, and the associated
energy eigenvalues, are independent of the coordinates of the environment.
The quantum-classical Liouville superoperator when written in the subsystem
basis is given by,

−iLsαα′,ββ′ = −i(ωsαα′ + Lsαα′)δαβδα′β′ +
i

�
(δαβV β

′α′
c − V αβc δα′β′)

+
1
2

(
δα′β′

∂V αβc
∂R

+ δαβ
∂V β

′α′
c

∂R

)
· ∂

∂P
, (13)

where we have used the following notation for subsystem quantities: ωsαα′ =
(εα − εα′)/�, V αα

′
c = 〈α|V̂c|α′〉, iLsαα′ = P

M · ∂
∂R + Fb(R) · ∂

∂P , and Fe(R) =
−∂Ve/∂R is the force exerted by the environment. Also, this equation of mo-
tion has been derived from the linearized influence functional in a path integral
representation expressed in this basis [15]. Thus, in this basis, QCL dynamics
is equivalent to the linearized path integral formulation.

Donoso and Martens [13, 27] have developed a method for simulating the
dynamics prescribed in this representation in the spirit of classical molecular
dynamics. The algorithm is based on writing each element of the density
matrix in the subsystem basis as a weighted sum over an ensemble of classical
trajectories,
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ραα
′

s (X, t) =
Nαα′∑
k=1

aαα
′

k (t)δ(X −Xαα
′

k (t)). (14)

The ensemble contains Nαα′ classical trajectories of the type

Xαα
′

k (t) = (Rαα
′

k (t), Pαα
′

k (t)),

with weight aαα
′

k (t). Population transfer and phase oscillations in the subsys-
tem occur via the time variation of the weights attributed to the ensemble.
However, in this construction the density is not a smooth function of the phase
space coordinates [13], so a smoothing process is implemented to obtain ap-
propriately scaled gaussian wavepackets. A short time approximation of the
propagator is then performed and the resulting equations of motion for the
weights are numerically integrated, whilst the ensemble undergoes Hamilto-
nian dynamics. The results from simulations using this algorithm (called the
semiclassical Liouville method) are generally in excellent agreement with exact
quantum mechanical solutions for model problems. The method has also been
applied to the computation of vibrational dephasing rates of the I2 molecule
in a low temperature Kr matrix and the results are in good agreement with
experiment [28].

3.2 The adiabatic basis

In contrast to the subsystem representation, the adiabatic basis depends on
the environmental coordinates. As such, one obtains a physically intuitive de-
scription in terms of classical trajectories along Born-Oppenheimer surfaces. A
variety of systems have been studied using QCL dynamics in this basis. These
include: the reaction rate and the kinetic isotope effect of proton transfer in a
polar condensed phase solvent and a cluster [29–33], vibrational energy relax-
ation of a hydrogen bonded complex in a polar liquid [34], photodissociation
of F2 [35], dynamical analysis of vibrational frequency shifts in a Xe fluid [36],
and the spin-boson model [37,38], which is of particular importance as exact
quantum results are available for comparison.

The adiabatic basis is defined by the eigenvalue problem,

ĥW (R)|α;R〉 = Eα(R)|α;R〉,

where
ĥW (R) = ĤW (R,P )− P 2/2M

is the Hamiltonian for the subsystem in a static environment, and the adia-
batic energies, Eα(R), depend parametrically on the coordinates of the envi-
ronment, R. In this representation, the time evolution of an element of the
density matrix,

〈α;R|ρ̂W (R,P, t)|α′;R〉 = ραα
′

W (R,P, t),
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is given by
∂ραα

′
W (R,P, t)

∂t
= −i

∑
ββ′

Lαα′,ββ′ρββ
′

W (R,P, t), (15)

where the evolution operator is now [4]

iLαα′,ββ′ = iL(0)
αα′δαβδα′β′ − Jαα′,ββ′

= (iωαα′ + iLαα′)δαβδα′β′ − Jαα′,ββ′ . (16)

The structure of L given above, consists of two distinct components; (i) classi-
cal propagation on mean surfaces accompanied by quantum mechanical phase
oscillations with frequency ωαα′ = (Eα−Eα′)/�, and (ii) nonadiabatic transi-
tions accompanied by changes in the momentum of the environment in order
to conserve energy. The classical Liouville operator

iLαα′ =
P

M
· ∂

∂R
+

1
2

(
FαW + Fα

′
W

)
· ∂

∂P
, (17)

propagates the environmental coordinates via Hellmann-Feynman forces,

FαW = −〈α;R|∂V̂W (q̂, R)
∂R

|α;R〉.

The operator, J , responsible for nonadiabatic transitions may be written as
follows,

Jαα′,ββ′ = − P

M
· dαβ

(
1 +

1
2
Sαβ · ∂

∂P

)
δα′β′

− P

M
· d∗α′β′

(
1 +

1
2
S∗α′β′ · ∂

∂P

)
δαβ . (18)

where the quantity Sαβ is defined as

Sαβ = FαW δαβ − FαβW (
P

M
· dαβ)−1 = Eαβdαβ(

P

M
· dαβ)−1,

where FαβW are the off-diagonal matrix elements of the force and dαβ is the
nonadiabatic coupling matrix element, dαβ = 〈α;R| ∂∂R |β;R〉. The presence
of the nonadiabatic coupling matrix elements in this operator accounts for
nonadiabatic transitions, which change the quantum state of the subsystem
from a diagonal to an off-diagonal state or vice versa. The environment mo-
mentum derivative accounts for the energy transfer involved in the subsystem
state change.

Shi and Geva [15] have also derived the QCLE in the adiabatic basis
starting from the full path integral expression for the quantum mechanical
problem. In this representation the derivation starts with the partial Wigner
transform of the environmental degrees of freedom in contrast to what is done
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in the subsystem basis. The final form of the equation is then obtained by
expressing the adiabatic matrix elements of the partially Wigner transformed
density, ρ̂αα

′
W (R,P ; t+ ε) in terms of ρ̂αα

′
W (R,P ; t), and linearizing the result-

ing system propagators. It is interesting to note that the choice of basis has
consequences on the order of operations between the linearization and partial
Wigner transform in the derivation of these equations. In the subsystem ba-
sis, the partial Wigner transform is a consequence of the linearization of the
forward-backward action, however in the adiabatic case, the partial Wigner
transform is applied to the equation of motion, and the propagators are sub-
sequently linearized in order to obtain the QCLE.

It is easy to see how a trajectory picture of the dynamics emerges by
applying the Dyson identity to the formal solution of Eq. (15). The iterative
solution of the Dyson equation results in a series of trajectory segments. These
segments consist of evolution along the surface (αα′), which may be adiabatic
(α = α′) or the arithmetic mean of two adiabatic surfaces, (α �= α′), gov-
erned by the propagator, e−i(ωαα′+Lαα′ )t. Each subsequent term in the series
includes this type of propagation interrupted by the nonadiabatic coupling
operator, J , an incremental number of times. Since, the operator J accounts
for nonadiabatic transitions, these contributions represent trajectory segments
that evolve along some surface, undergo a transition to a new surface, followed
by subsequent evolution on this surface and so on.

The presence of the momentum derivatives in J makes the action of this
operator difficult to simulate, because it acts on all functions to its right. This
will generate a branching tree of trajectories. This difficulty is avoided by
making the momentum-jump approximation. To see how this approximation
is obtained, the following change of variables is made:

1 +
1
2
Sαβ · ∂

∂P
= 1 +ΔEαβM

∂

∂(P · d̂αβ)2
. (19)

For small ΔEαβM this expression corresponds to the linear expansion of the

exponential translation operator e
ΔEαβM · ∂

∂(P ·d̂αβ)2 , whose action on a function
f(P ) is a translation of the environment momentum by ΔEαβM along the
component of the momentum that is parallel to the nonadiabatic coupling
matrix element:

e
ΔEαβM · ∂

∂(P ·d̂αβ)2 f(P ) (20)

= e
ΔEαβM · ∂

∂(P ·d̂αβ)2 f

(
(P · d̂⊥αβ)d̂⊥αβ + sgn(P · d̂αβ)

√
(P · d̂αβ)2)d̂αβ

)
= f

(
(P · d̂αβ)d̂⊥αβ + sgn(P · d̂αβ)

√
(P · d̂αβ)2 +ΔEαβMd̂αβ

)
.

The approximations surrounding the definition of the J operator comprise the
momentum-jump approximation. This translation or shift of the momentum
corresponds precisely to the amount of energy transferred during a transition
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and thus satisfies energy conservation. In situations where there is insufficient
kinetic energy available from the environment for the subsystem to make the
transition, ΔEαβM/(P · d̂αβ)2 > 1, the transition is simply not allowed, and
the evolution continues evolving on the surface it is on.

Several algorithms exist to simulate this evolution equation [14, 38–41].
The computation of observables in this approach is accomplished by Monte
Carlo sampling configurations from the initial quantum equilibrium distribu-
tion followed by propagation of the observable by some algorithm [38, 40].
The sequential short time propagation algorithm [40] is one such algorithm
where the propagator is divided into N propagators that act for a short time
interval:

(eiL̂t)αα′,αNα′
N
=

∑
(α1α′

1)...(αN−1α′
N−1)

N∏
j=1

(eiL̂Δtj )αj−1α′
j−1,αjα′

j
. (21)

The short-time propagators can be solved through application of the Dyson
identity truncated to first order. The subsequent dynamics of the quantity of
interest are obtained by propagating the classical variables along a surface that
corresponds to the quantum state (αα′) followed by Monte Carlo sampling of
the nonadiabatic transition events:

(eiL̂Δtj )αj−1α′
j−1,αjα′

j
≈ Wαj−1α′

j−1
(tj−1, tj)e

iLαj−1α′
j−1
Δtj

×
(
δαj−1αj

δα′
j−1α

′
j
+ΔtJαj−1α′

j−1,αjα′
j

)
. (22)

Simulations using this algorithm [40] and the Trotter-based scheme [38] are
able to reproduce the exact quantum results for the spin-boson model, veri-
fying its utility.

3.3 The force basis

When the quantum-classical Liouville equation is expressed in the adiabatic
basis, the most difficult terms to simulate come from the off-diagonal force
matrix elements, which give rise to the nonadiabatic coupling matrix elements.
As described above, contributions coming from this term were computed us-
ing the momentum-jump approximation in the context of a surface-hopping
scheme.

One way to simplify this term in the evolution equation is to make use
of a basis that diagonalizes the force contribution [42]; i.e., we represent the
quantum-classical Liouville equation in a basis |i;R〉 such that

−〈i;R|∂V̂ (R)
∂R

|j;R〉 = F iF (R)δij , (23)

where the subscript F is used to denote the force basis. Taking the matrix
elements of Eq. (8) in this basis, we obtain
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∂ρijF (X, t)
∂t

= − i

�

∑
k

(
HikF ρkjF (t)− ρikF (t)HkjF

)
−
(

P

M
· ∂

∂R
+

1
2
(F iF + F jF ) ·

∂

∂P

)
ρijF , (24)

where HijF = HijF + i� PM · dFij . Here dFij is the nonadiabatic coupling matrix
element in the force basis. It can be related to the usual nonadiabatic coupling
matrix element in the adiabatic basis by inserting complete sets of adiabatic
states:

dFij =
∑
αβ

〈i;R|α;R〉dαβ〈β;R|j;R〉. (25)

Evolution governed by the last term in Eq. (24) is simple and can be solved in
characteristics. The first term is responsible for coupling among the elements
of the density matrix and its inclusion makes the computation of the dynamics
a difficult task.

The quantum-classical Liouville equation in the force basis has been solved
for low-dimensional systems using the multithreads algorithm [42,43]. Assum-
ing that the density matrix is localized within a small volume of the classical
phase space, it is written as linear combination of matrices located at L dis-
crete phase space points as

ρ̂W (R,P, t) =
L∑
k=1

ρ̂(k)(t)δ(R−Rk(t))δ(P − Pk(t)). (26)

The evolution equations for the quantities entering the right side of this equa-
tion are obtained by substitution into the quantum-classical Liouville equa-
tion. For a variety of one- and two-dimensional systems for which exact results
are known, excellent agreement was found.

3.4 The mapping basis

The quantum-classical Liouville equation was expressed in the subsystem ba-
sis in Sec. 3.1. Based on this representation, it is possible to recast the equa-
tions of motion in a form where the discrete quantum degrees of freedom
are described by continuous position and momentum variables [44–49]. In the
mapping basis the eigenfunctions of the n-state subsystem can be replaced
with eigenfunctions of n fictitious harmonic oscillators with occupation num-
bers limited to 0 or 1: |λ〉 → |mλ〉 = |01, · · · , 1λ, · · · 0n〉. This mapping basis
representation then makes use of the fact that the matrix element of an op-
erator B̂W (X) in the subsystem basis, Bλλ

′
W (X), can be written in mapping

form as Bλλ
′

W (X) = 〈λ|B̂W (X)|λ′〉 = 〈mλ|B̂m(X)|mλ′〉, where

B̂m(X) =
∑
λλ′

Bλλ
′

W (X)â†λâλ′ . (27)
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The mapping annihilation and creation operators are given by

âλ =

√
1
2�

(q̂λ + ip̂λ), â†λ =

√
1
2�

(q̂λ − ip̂λ). (28)

The mapping basis has been exploited in quantum-classical calculations based
on a linearization of the path integral formulation of quantum correlation
functions in the LAND-map method [50–52].

Given this correspondence between the matrix elements of a partially
Wigner transformed operator in the subsystem and mapping bases, we can
express the quantum-classical Liouville equation in the continuous mapping
coordinates [53]. The first step in this calculation is to introduce an n-
dimensional coordinate space representation of the mapping basis,

〈mλ|B̂m(X)|mλ′〉 =
∫

dqdq′〈mλ|q〉〈q|B̂m(X, t)|q′〉〈q′|mλ′〉, (29)

and then write the coordinate space matrix elements in terms of Wigner trans-
forms in the mapping space to obtain

〈r − z

2
|B̂m(X, t)|r + z

2
〉 = 1

(2π�)n

∫
dp e−ipz/�Bm(x,X, t). (30)

Carrying out the this change of representation on the quantum-classical Li-
ouville equation and using the product rule formula for the Wigner transform
of a product of operators, we obtain

d

dt
ρm(x,X, t) = −2

�
Hm sin(

�Λm
2

)ρm(t) (31)

+
∂Hm
∂R

cos(
�Λm
2

) · ∂Bm(t)
∂P

− P

M
· ∂ρm(t)

∂R
,

where the negative of the Poisson bracket operator on the mapping phase
space coordinates is defined as Λm =

←−∇p · −→∇r −←−∇r · −→∇p. The Hamiltonian in
the mapping basis is

Hm(x,X) =
P 2

2M
+ Ve(R) +

1
2�

∑
λλ′

hλλ′(R)(rλrλ′ + pλpλ′ − �δλλ′),

where hλλ′(R) = 〈λ|p̂2/2m + Vs(q̂) + Vc(q̂, R)|λ′〉. Explicitly computing the
exponential Poisson bracket operators, we find the quantum-classical Liouville
equation in the mapping basis,

d

dt
Bm(x,X, t) = −{Hm, Bm(t)}x,X (32)

+
�

8

∑
λλ′

∂hλλ′

∂R
(

∂

∂rλ′

∂

∂rλ
+

∂

∂pλ′

∂

∂pλ
) · ∂

∂P
Bm(t)

≡ iLmBm(t),
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where {Am, Bm(t)}x,X denotes a Poisson bracket in the full mapping-bath
phase space of the system.

The first term in the evolution operator has the form of a Poisson bracket
and evolution under this part of the operator can be expressed in terms of
characteristics. The corresponding set of ordinary differential equations is

drλ(t)
dt

=
1
�

∑
λ′

hλλ′(R(t))pλ′(t),

dpλ(t)
dt

= −1
�

∑
λ′

hλλ′(R(t))rλ′(t),

dR(t)
dt

=
P (t)
M

,
dP (t)
dt

= − ∂Hm
∂R(t)

. (33)

The last term involves derivatives with respect to both mapping and environ-
mental variables. Its contribution is difficult to compute. Calculations on the
spin-boson model have shown that even if the last term is neglected, excellent
agreement with the exact results for a wide range of system parameters is
obtained [53].

4 Approximations to the QCL equation

The QCL approach discussed thus far in this chapter provides a good ap-
proximation to the quantum dynamics of condensed phase systems. Most of-
ten other approximate quantum-classical methods, such as mean field and
surface-hopping schemes, have been commonly employed to treat the same
class of problems as the QCLE. These methods are attractive due to their
computational simplicity; however, many important quantum features, such
as quantum coherence and correlations, are not properly handled in these ap-
proaches. In this section we discuss these methods and show that starting from
the QCLE, an approximate theory in its own right, further approximations
lead to these other approaches.

4.1 Mean field theory

Mean field theories of mixed quantum-classical systems are based on approx-
imations that neglect correlations in Ehrenfest’s equations of motion for the
evolution of the position and momentum operators of the heavy-mass nuclear
degrees of freedom. The approximate evolution equations take the form of
Newton’s equations of motion where the forces that the nuclear degrees of
freedom experience involve mean forces determined from the time-evolving
wave function of the system.

We now show how the mean field equations can be derived as an approx-
imation to the quantum-classical Liouville equation (8) [9]. The Hamiltonian
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can be written again as the sum of environmental, subsystem and interaction
contributions,

ĤW =
P 2

2M
+ Ve(R) +

p̂2

2m
+ V̂s(q̂) + V̂c(q̂, R) = He(X) + Ĥs(q̂) + V̂c(q̂, R).

In order to study the effects of neglecting correlations in this description of
the dynamics, we define the reduced density matrices for the environment and
subsystem, respectively, as

ρe(X, t) = Tr′ρ̂W (X, t), ρ̂s(t) =
∫

dX ρ̂W (X, t), (34)

which are normalized so that
∫
dX ρe(X, t) = 1 and Tr′ρ̂s(t) = 1. We also de-

fine the correlation density operator ρ̂cor(X, t) by ρ̂W (X, t) ≡ ρ̂s(t)ρe(X, t) +
ρ̂cor(X, t). Given that the density operator satisfies the normalization
Tr′
∫
dX ρW (X, t) = 1, we have Tr′

∫
dX ρcor(X, t) = 0.

If we substitute the above expression for ρ̂W (X, t) into the quantum-
classical Liouville equation we find

ρ̂s(t)
∂ρe(X, t)

∂t
+ ρe(X, t)

∂ρ̂s(t)
∂t

+
∂ρ̂cor(X, t)

∂t
=

−iL̂ρ̂s(t)ρe(X, t)− iL̂ρ̂cor(X, t). (35)

To obtain the mean field equations, we make the assumption that all terms in
this equation containing ρ̂cor(X, t) can be neglected. Then, integration over
X and use of the normalization conditions yields

∂ρ̂s(t)
∂t

= − i

�

[
Ĥs +

∫
dX V̂cρe(X, t), ρ̂s(t)

]
, (36)

while the trace over the quantum degrees of freedom gives

∂ρe(X, t)
∂t

=
{
He +Tr′V̂cρ̂s(t), ρe(X, t)

}
=
{
Heff , ρe(X, t)

}
, (37)

where Heff = P 2/2M + Veff(R) and the effective potential is defined as
Veff(R) = Ve(R)+Tr′V̂cρ̂s(t). This equation can be solved in terms of charac-
teristics. The density function takes the form ρe(X, t) = δ(X −X(t)), where
X(t) = (R(t), P (t)) satisfy Newtonian equations of motion,

Ṙ(t) =
P (t)
M

, Ṗ (t) = −∂Veff(R(t))
∂R(t)

. (38)

Using ρe(X, t) = δ(X −X(t)), we may write∫
dX V̂c(R)ρe(X, t) = V̂c(R(t)). (39)
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As a result, Eq. (36) is equivalent to the pair of Schrödinger equations,

i�
∂|ψ(R(t), t)〉

∂t
=
(
Ĥs + V̂c(R(t))

)
|ψ(R(t), t)〉, (40)

and its adjoint. Equations (38) and (40) are the standard mean field equations
of motion for a mixed quantum-classical system.

Thus, we see that in order to obtain the mean field equations of motion,
the density matrix of the entire system is assumed to factor into a product of
subsystem and environmental contributions with neglect of correlations. The
quantum dynamics then evolves as a pure state wave function depending on
the coordinates evolving in the mean field generated by the quantum density.
As we have seen in the previous sections, these approximations are not valid
and no simple representation of the quantum-classical dynamics is possible in
terms of single effective trajectories. Consequently, in contrast to claims made
in the literature [54], quantum-classical Liouville dynamics is not equivalent
to mean field dynamics.

4.2 Surface-hopping dynamics

Surface-hopping methods provide a more accurate description of nonadiabatic
dynamics since they do not force the system to evolve on the mean field deter-
mined by a superposition of quantum states. Instead, using a representation
in adiabatic eigenstates, in surface-hopping dynamics the classical degrees of
freedom evolve on single adiabatic surfaces with hops between these surfaces
determined by probabilistic rules [55]. Consequently, the dynamics of the sys-
tem is correctly described when the evolution takes the system in regions
where coupling between quantum states is small or zero. The precise form of
the surface-hopping method depends on the nature of the rule used to specify
quantum transitions. The fewest switches algorithm of Tully [2, 56] is one of
the most popular such schemes.

A connection between surface-hopping schemes and the dynamics pre-
scribed by the QCLE may be established by considering the conditions under
which it is reasonable to express the dynamics given by the QCLE in terms
of evolution along single adiabatic surfaces or, equivalently, the evolution of
diagonal matrix elements in the adiabatic representation. As we have seen,
since coherence is described by the off-diagonal elements of the density ma-
trix, the problem reduces to the examination of the conditions under which
decoherence leads to rapid decay of the off-diagonal elements. Here we describe
the quantum-classical master equation which results in surface-hopping-like
trajectories. The full details are given in Ref. [57].

Starting from the QCLE expressed in the adiabatic basis, it is not difficult
to derive a generalized master equation for the diagonal elements of the density
matrix by formally solving the QCLE (15) in the adiabatic basis for the off-
diagonal elements and substituting the resulting solution into the equation for
the diagonal elements. The result is the non-Markovian equation,
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∂

∂t
ραd (X, t) = −iLαρ

α
d (X, t) +

∫ t
0

dt′
∑
β

Mαβ(t′)ρ
β
d (X, t− t′), (41)

where the memory kernel operator Mαβ(t) is given by,

Mαβ(t) =
∑
νν′,μμ′

J d,oα,μμ′

(
e−iL

o(X)(t)
)
μμ′,νν′

J o,dνν′,β , (42)

and acts on all of the classical degrees of freedom that appear in functions to
its right.

By considering the action of the operators given in Eq. (42) on functions to
its right, the memory kernel operator may be reduced to a memory function.

Mαβ
αβ (X, t) = 2Re [Wαβ(t, 0)]Dαβ(X)Dαβ(X̄αβ,t), (43)

where Wαβ(t, 0) = e−i
R t
0 dτωαβ [R(τ)] is a phase factor, Dαβ = (P/M) · dαβ(R),

and the subscripts and superscripts on the memory function label the indices
on the first and second D function respectively. The bar on the phase space
variable X indicates the action of a momentum shift by the J operator, and
the subscript notation indicates that X has been evolved along the surface
(αβ) for a time t. In this form, the memory function accounts for all coherent
evolution segments in the dynamics.

Decoherence arising from interaction of the subsystem with an environ-
ment is incorporated into the evolution expression by averaging over an ini-
tial distribution of the environmental phase space coordinates. The resulting
expression prescribes the evolution of the diagonal elements of the subsystem
density matrix and contains the environmental average of the time depen-
dent memory kernel. The environmental average provides a mechanism for
decoherence and leads to decay of the memory kernel. In the absence of an
environmental average, the memory kernel is a purely oscillatory function and
does not decay. However, the environmentally averaged memory kernel does
decay and, depending on the system under investigation, if there is a sufficient
separation of time scales between the decay of the memory function and other
relevant system relaxation times, a Markovian approximation on the memory
term may be used. The resulting equation,

∂

∂t
ραs (X0, t) = −

∫
dXeiLαe

−iQ̂eLαtQ̂eραd (X, 0)− 〈iLα〉eραs (X0, t) (44)

−
∫ t

0

dt′〈iLαe−iQ̂eLαt
′
iQ̂eLα〉eραs (X0, t− t′)

+
∑
β

mαβ(X0)ĵα→βρβs (X0, t)−mαα(X0)ραs (X0, t) ,

gives the evolution of the subsystem density matrix ραs (X0, t) ≡
∫
dXeρ

α(X, t),
where X0 is the set of phase space variables of the subsystem. This expression
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is still non-Markovian in character as a result of the projection of the evolu-
tion equation onto the subsystem. The final master equation is obtained by
lifting the equation back into the full phase space to recover a fully Markovian
master equation description:

d

dt
ραd (X, t) = −iLαρ

α
d (X, t) +

∑
β

mαβ(X0)jα→βρ
β
d (X, t)−mαα(X0)ραd (X, t).

(45)

where

mαβ(X0) =
∫ ∞

0

dt′〈Mαβ
αβ (X, t′)〉e , (46)

and jα→β is a momentum shift operator [57]. Note that the subscripts on
the second memory term in Eq. (45) are the same. This term arises from the
memory function corresponding to 〈Mνα

αν (X, t)〉e, where the angle brackets
indicate that the average over the environment has been performed. Trajec-
tories accounted for by this term jump to the mean surface and then return
to their original surface. Thus, the net effect is no jump, but a phase factor is
introduced.

The master equation evolves the classical degrees of freedom on single adi-
abatic surfaces with instantaneous hops between them. Each single (fictitious)
trajectory represents an ensemble of trajectories corresponding to different en-
vironment initial conditions. This choice of different environment coordinates
for a given initial subsystem coordinate will result in different trajectories on
the mean surface; the average over this collection of classical evolution seg-
ments results in decoherence. Consequently, this master equation in full phase
space provides a description in terms of fictitious trajectories, each of which
accounts for decoherence. When the approximations that lead to the master
equation are valid, this provides a useful simulation tool since no oscillatory
phase factors appear in the trajectory evolution.

The surface-hopping trajectories obtained in the adiabatic representation
of the QCLE contain nonadiabatic transitions between potential surfaces in-
cluding both single adiabatic potential surfaces and the mean of two adi-
abatic surfaces. This picture is qualitatively different from surface-hopping
schemes [2, 56] which make the ansatz that classical coordinates follow some
trajectory, R(t), while the quantum subsystem wavefunction, expanded in
the adiabatic basis, is evolved according to the time dependent Schrödinger
equation. The potential surfaces that the classical trajectories evolve along
correspond to one of the adiabatic surfaces used in the expansion of the sub-
system wavefunction, while the subsystem evolution is carried out coherently
and may develop into linear combinations of these states. In such schemes, the
environment does not experience the force associated with the true quantum
state of the subsystem and decoherence by the environment is not automat-
ically taken into account. Nonetheless, these methods have provided com-
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putationally tractable and, under the conditions outlined above, reasonable
descriptions of nonadiabatic dynamics.

Coherence is created and destroyed in the QCLE through the action of
the momentum-jump operator, Ĵ , and phase information is obtained for
off-diagonal evolution segments through the phase term in the propaga-
tor (17). The master equation discussed above incorporates this decoherence
mechanism in the environmental average of the memory kernel. Decoher-
ence in the quantum subsystem of condensed phase systems is a well estab-
lished phenomenon [58, 59] and should be accounted for in surface-hopping
schemes. We note that various phenomenologically motivated prescriptions
have been proposed to incorporate decoherence into the dynamics of the sub-
system [56,60–63].

5 Observables and correlation functions

Thus far we have focussed on the dynamics of quantum-classical systems. In
practice, we are primarily interested instead in computing observables that
can be compared eventually to experimentally obtainable quantities. To this
end, consider the general quantum mechanical expression for the expectation
value of an observable,

A(t) = Tr(ρ̂(t)Â) = Tr(ρ̂Â(t)) (47)

= Tr′
∫

dQ1dQ2〈Q1|Â(t)|Q2〉〈Q2|ρ̂(0)|Q1〉

= Tr′
∫

dRdP ÂW (R,P, t)ρ̂W (R,P ) = Tr′
∫

dXÂW (X, t)ρ̂W (X).(48)

In the above expressions we have introduced the (primed) partial trace over
the Hilbert space of the susbsystem, Tr′ρ̂W (R,P ) = ρe(R,P ), and the sym-
bols Tr′ and Tre refer to taking the partial trace over the subsystem and
environment, respectively.

If we expand Eq. (47) in the coordinate {Q}-representation for the en-
vironmental degrees of freedom only we obtain the second line. Taking the
Wigner representation for these degrees of freedom and finally, defining the
general coordinate X = (R,P ) gives Eq. (48).

For a quantum mechanical system in thermal equilibrium a transport coef-
ficient λAB may be determined from the time integral of a flux-flux correlation
function [64].

λAB =
1
β

∫ ∞
0

dt〈 i
�
[ ˙̂B(t), Â]〉 , (49)

where ˙̂
B = (i/�)[Ĥ, B̂] is the flux of B̂, and β = (kBT )−1. The equilib-

rium quantum canonical average is 〈· · · 〉 = Z−1
Q Tr · · · e−βĤ where ZQ is the

partition function. The transport coefficient may then be obtained from the
plateau value of λAB(t) [65].
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The quantum mechanical forms of the correlation function expressions for
transport coefficients are well known and may be derived by invoking linear re-
sponse theory [64] or the Mori-Zwanzig projection operator formalism [66,67].
However, we would like to evaluate transport properties for quantum-classical
systems. We thus take the quantum mechanical expression for a transport
coefficient as a starting point and then consider a limit where the dynamics is
approximated by quantum-classical dynamics [68–70]. The advantage of this
approach is that the full quantum equilibrium structure can be retained.

In simulations it is convenient to obtain the transport coefficient from
the plateau value of λAB(t). Writing Eq. (49) in detail, we can express the
time-dependent transport coefficient λAB(t) as,

λAB(t) =
1
β

∫ t
0

dt′〈 ˙̂B(t); ˙̂
A〉

=
1

βZQ

∫ β
0

dλTr
( ˙̂
Ae

i
�
Ĥ(i�λ)B̂(t)e−

i
�
Ĥ(i�λ)−βĤ

)
. (50)

Here we have introduced the notation, 〈·; ·〉, to indicate the Kubo transformed-
correlation function. Rewriting the expression in the coordinate representation
for the full system, {Q} = {q}{Q} (calligraphic symbols are used to denote
variables for the entire system, subsystem plus bath),

λAB(t) =
1

βZQ

∫ β
0

dλ

∫
dQ1dQ′1dQ2dQ′2〈Q1| ˙̂A|Q′1〉〈Q′1|e

i
�
Ĥ(t+i�λ)|Q2〉

×〈Q2|B̂|Q′2〉〈Q′2|e−βĤ−
i
�
Ĥ(t+i�λ)|Q1〉. (51)

Making a change of variables, Q1 = R1 − Z1/2, Q′1 = R1 + Z1/2, etc., and
then expressing the matrix elements in terms of the Wigner transforms of the
operators, we have [69]

λAB(t) =
1
β

∫ β
0

dλ

∫
dX1dX2(Ȧ)W (X1)BW (X2)

1
(2π�)2ν ZQ

×
∫

dZ1dZ2e
− i

�
(P1·Z1+P2·Z2)

〈
R1 +

Z1

2

∣∣∣e i
�
Ĥ(t+i�λ)

∣∣∣R2 − Z2

2

〉
×
〈
R2 +

Z2

2

∣∣∣e−βĤ− i
�
Ĥ(t+i�λ)

∣∣∣R1 − Z1

2

〉
. (52)

Here we used the fact that the matrix element of an operator Â can be ex-
pressed in terms of its Wigner transform AW (X ) as〈

R− Z
2

∣∣∣Â∣∣∣R+
Z
2

〉
=

1
(2π�)ν

∫
dPe−

i
�
P·ZAW (X ), (53)

where ν is the coordinate space dimension.
If we define the spectral density by,
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W (X1,X2, t) =
1

(2π�)2ν ZQ

∫
dZ1dZ2e

− i
�
(P1·Z1+P2·Z2)

×
〈
R1 +

Z1

2

∣∣∣e i
�
Ĥt
∣∣∣R2 − Z2

2

〉〈
R2 +

Z2

2

∣∣∣e−βĤ− i
�
Ĥt
∣∣∣R1 − Z1

2

〉
, (54)

we can write the transport coefficient as

λAB(t) =
∫

dX1dX2(Ȧ)W (X1)BW (X2)W (X1,X2, t), (55)

where

W (X1,X2, t) =
1
β

∫ β
0

dλW (X1,X2, t+ i�λ) . (56)

To take the quantum-classical limit of this general expression for the trans-
port coefficient we partition the system into a subsystem and bath and use
the notation R = (r,R), P = (p, P ) and X = (r,R, p, P ) where the lower case
symbols refer to the subsystem and the upper case symbols refer to the bath.
To make connection with surface-hopping representations of the quantum-
classical Liouville equation [4], we first observe that AW (X1) can be written
as

AW (X1) =
∫

dz1 e
i
�
p1·z1〈r1 − z1

2
|ÂW (X1)|r1 +

z1

2
〉, (57)

where ÂW (X1) is the partial Wigner transform of Â over the bath degrees of
freedom. We may now express the subsystem operators in the adiabatic basis
to obtain,

AW (X1) =
∑
α1α′

1

∫
dz1 e

i
�
p1·z1〈r1 − z1

2
|α1;R1〉Aα1α

′
1

W (X1)〈α′1;R1|r1 +
z1

2
〉,

(58)

where A
α1α

′
1

W (X1) = 〈α1;R1|ÂW (X1)|α′1;R1〉. Inserting this expression, and
its analog for BW (X2), into Eq. (52) we have

λAB(t) = −
∑

α1,α′
1,α2,α

′
2

∫ 2∏
i=1

dXi A
α1α

′
1

W (X1)B
α2α

′
2

W (X2)

× ∂

∂t
W
α′
1α1α

′
2α2(X1, X2, t),

(59)

where the matrix elements of W are given by

Wα′
1α1α

′
2α2(X1, X2, t) =

∫ 2∏
i=1

dZie
− i

�
(P1·Z1+P2·Z2) 1

ZQ

1
(2π�)2νh

×〈α′1;R1|〈R1 +
Z1

2
|e i

�
Ĥt|R2 − Z2

2
〉|α2;R2〉

×〈α′2;R2|〈R2 +
Z2

2
|e− i

�
Ĥt′′ |R1 − Z1

2
〉|α1;R1〉 , (60)
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with t′′ = t− iβ�.
The quantum-classical limit of the transport coefficient is obtained by eval-

uating the evolution equation for the matrix elements of W in the quantum-
classical limit. This limit was taken in Ref. [68] and the result is

∂

∂t
W
α′
1α1α

′
2α2(X1, X2, t) =

1
2

∑
β′
1β1β

′
2β2

(
iLα′

1α1,β
′
1β1

(X1)δα′
2β

′
2
δα2β2 − iLα′

2α2,β
′
2β2

(X2)δα′
1β

′
1
δα1β1

)
×W

β′
1β1β

′
2β2(X1, X2, t) . (61)

We use the first equality in Eq. (61), insert this into Eq. (59), and move
the evolution operator iL(X1) onto the AW (X1) dynamical variable. Next, we
use the second equality in Eq. (61) and formally solve the equation to obtain
W (X1, X2, t) = e−iL(X2)tW (X1, X2, 0). Finally we substitute this form for
W (X1, X2, t) into Eq. (59) and move the evolution operator to the dynamical
variableBW (X2). In the adiabatic basis, the action of the propagator e−iL(X2)t

on B̂W (X2) is

B
α2α

′
2

W (X2, t) =
∑
β2β′

2

(
e−iL(X2)t

)
α2α′

2,β2β
′
2

B
β2β

′
2

W (X2) . (62)

The result of these operations is

λAB(t) =
∑

α1,α′
1,α2,α

′
2

∫ 2∏
i=1

dXi (iL(X1)AW (X1))α1α
′
1

×B
α2α

′
2

W (X2, t)W
α′
1α1α

′
2α2(X1, X2, 0). (63)

This equation can serve as the basis for the computation of transport prop-
erties for quantum-classical systems. Note that full quantum effects are de-
scribed by the initial value of W .

6 Example reaction rate calculation

The rate coefficient of a reactive process is a transport coefficient of interest
in chemical physics. It has been shown from linear response theory that this
coefficient can be obtained from the reactive flux correlation function of the
system of interest. This quantity has been computed extensively in the lit-
erature for systems such as proton and electron transfer in solvents as well
as clusters [29, 32, 33, 56, 71–76], where the use of the QCL formalism has al-
lowed one to consider quantum phenomena such as the kinetic isotope effect
in proton transfer [31]. Here, we will consider the problem of formulating an
expression for a reactive rate coefficient in the framework of the QCL theory.
Results from a model calculation will be presented including a comparison to
the approximate methods described in Sec. 4.
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6.1 Simulation results

Consider a simple reactive process A � B. The quantum mechanical expres-
sion for the time dependent forward rate coefficient for such a process is given
by,

kAB(t) = − 1
neqA

∫ t
0

dt′〈δ ˙̂
NB(t′); δ

˙̂
NA〉, (64)

where the δN̂i are the species operators representing the deviations of each
species from their equilibrium number densities, and the angled brackets de-
note the Kubo transformed correlation function as defined in Eq. (50). This
expression was derived previously by following the projection operator meth-
ods of Mori and Zwanzig in the linear response regime [77]. Following the
discussion of the previous section, the quantum classical limit of this expres-
sion, (63) can be obtained and is given by [70]

kAB(t) =
1

neqA

∑
α

∑
α′≥α

(2− δα′α) (65)

×
∫

dXRe
[
Nαα

′
B (X, t)Wα′α

A (X,
i�β

2
)
]
.

Here, the integration overX1 was performed in Eq. (63) to defineWαα′
A (X, i�β2 )

which is the integrated value of the combination of the spectral density func-
tion with the time independent operator. This spectral density function con-
tains the quantum equilibrium structure of the system. Nαα

′
B (X, t) is the time

evolved matrix element of the number operator for the product state B. Thus,
to calculate the rate, one samples initial configurations from the quantum equi-
librium distribution, and then computes the evolution of the number operator
for product state B. The QCL evolution of the species operator is accomplished
using one of the algorithms discussed in Sec. 3.2. Alternative approaches to
the dynamics may also be used such as the further approximations to the
QCLE discussed in Sec. 4.

The sampling of initial configurations from the spectral density function
remains a challenging task as the structure of this function is complicated. By
factoring this quantity into a subsystem and conditional environment distri-
bution, Wα′α

A (X, i�β2 ) = ρα
′α
A (X0)ρce(Xe;R0), the problem simplifies. In par-

ticular, if the environment consists of harmonic oscillators, as is the case here,
the exact form of the spectral density is known for the environment. For
the subsystem, one can appeal to the fact that typically the barrier region,
where the largest contribution to the dynamics in this problem take place,
is approximately harmonic. Doing so, one is able to obtain an approximate
analytic form of this function given by [78],
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ρα
′α
A (X0) =

ia

ZQπ2

∫
dZ0e

− i
�
(P0·Z0)

∑
α1α2

Aα
′α
α1α2Bα1α2(0) (66)

×
[
δα1α2e

−a(4R2
0+Z

2
0 )u′12aM0Z0ũ

2
1

−dα1α2(0)e
−2a

h
(R0+

Z0
2 )2u′1+(R0−Z0

2 )2u′2
i√

ũ1ũ2

]
,

where u′i = uicothui, ũi = uicschui, ui = β�ωi/2, ωi is the barrier region fre-
quency for the state αi which may be real or imaginary, and a = M0/(2β�2).
By numerically integrating over Z0 we obtain the quantum mechanical equi-
librium structure for the subsystem, ρ̂0(X0). Sampling from this distribution
is performed from the harmonic part and subsequently reweighted by the
remaining term. With this quantity, in conjunction with that for the environ-
ment and Eq. (65), the quantum mechanical rate-coefficient can be computed
via computer simulation.

We consider the same reaction model used in previous studies as a simple
model for a proton transfer reaction. [31, 57, 79] The subsystem consists of a
two-level quantum system bilinearly coupled to a quartic oscillator and the
bath consists of ν − 1 = 300 harmonic oscillators bilinearly coupled to the
non-linear oscillator but not directly to the two-level quantum system. In the
subsystem representation, the partially Wigner transformed Hamiltonian for
this system is,

HW =
(

Vq(R0) + �Ω �γ0R0

�γ0R0 Vq(R0)− �Ω

)
(67)

+

⎛⎝ P 2
0

2M0
+
ν−1∑
j=1

P 2
j

2Mj
+

Mjω
2
j

2

(
Rj − cj

Mjω2
j

R0

)2
⎞⎠ I.

The solution of the eigenvalue problem, ĥW (R)|α;R0〉 = Eα(R)|α;R0〉, yields
the adiabatic eigenstates, |α;R0〉, and eigenvalues

Eα(R) = Vq(R0) + Ve(Re;R0)∓ �
√

Ω2 + (γ0R0)2,

where 2Ω is the adiabatic energy gap. The parameters of this model charac-
terize a harmonic environment with ohmic spectral density, [80] the details
of which can be found elsewhere. [31, 68, 79] The reaction coordinate R0 un-
dergoes dynamics characteristic of a well defined barrier crossing process and
product species operator Nαα

′
B (R0) = θ(R0)δαα′ is initially diagonal in the

adiabatic basis. Here θ(R0) is the Heaviside function.
The plot in Fig. 1 shows the reaction rate computed via adiabatic versus

nonadiabatic dynamics. The rate constant, given by the plateau value of the
correlation function, is lower when nonadiabatic dynamics is considered. This
reduction is due to enhanced barrier crossing as a result of motion on either the
excited state or mean surfaces. This is seen more clearly in Fig. 2. When the
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Fig. 1: Nonadiabatic vs adiabatic reaction rate for β = 1.0. The blue (upper) curve
is the adiabatic result while the green (lower) curve is the nonadiabatic rate.

system is propagating on either the mean or excited state surface it is confined
close to the barrier region such that it crosses the barrier more frequently. On
the other hand, once the system jumps down to the ground state, it stabilizes
in one of the wells such that recrossings are less frequent. The increase of
recrossings due to dynamics on these surfaces leads to decay of the correlation
function.

In Fig. 2 one can see the qualitative differences between the dynamics on
the various surfaces. Although both excited state and mean surface evolution
segments oscillate around the barrier, the mean surface segments are able to
explore a wider region due to the broader structure of the mean free energy
surface for this model. In contrast, the excited surface trajectories are nar-
rowly confined to the barrier region where the probability of a transition is
high. Thus, excited state trajectory segments are short lived. The evolution of
trajectories along the mean surface is an important result in QCL dynamics as
it entails the proper treatment of coherence that is lacking in surface-hopping
approaches.

By inserting the form of the spectral density function discussed above into
the rate coefficient expression, the second line of Eq. (65) may be replaced by∫

dXRe
[
Nαα

′
B (X, t)Wα′α

A (X,
i�β

2
)
]
=∫

dX0Re
[
〈Nαα′
B 〉e(X0, t)ρα

′α
A (X0,

i�β

2
)
]
, (68)

where the angle brackets indicate an average over the conditional equilibrium
distribution, ρce(Xe;R0). In this form, the computation of the rate constant
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Fig. 2: A segment taken from the time series of a nonadiabatic trajectory. The blue
curve is the times series for R0, the red curve indicates the surface on which the
trajectory is evolving, where a value of 2 on the R0 axis corresponds to the ground
state (1,1), 3 corresponds to the mean surface (1,2) or (2,1), and 4 corresponds to
the excited state (2,2). During the evolution on the mean surface and excited state
surface the trajectory is confined to the barrier region where it may cross the barrier.
In contrast, when the trajectory is on the ground state surface the system stabilizes
in one well or the other.

involves the bath averaged observable discussed in Sec. 4.2, allowing us to
apply the master equation formalism discussed above.

In Fig. 3, the simulation results for the same model problem are presented
using the QCLE, the master equation, Tully’s surface-hopping approach, the
mean field approach, and adiabatic dynamics. The algorithmic details of each
approach can be found elsewhere [2, 40,79].

From the figure we see that the surface-hopping result using Tully’s algo-
rithm is almost identical to the adiabatic rate for the parameters given here.
By comparison to both the QCLE simulation and the master equation sim-
ulation, one can conclude that for this set of parameters this overestimates
the reaction rate. The primary reason for the discrepancy is the manner in
which coherence and decoherence is treated in the theory. Although the mas-
ter equation also restricts motion to single adiabatic surfaces, the probability
of hopping is obtained from a calculation that accounts for decoherence in a
different manner. The prediction of the rate obtained by the mean-field ap-
proach, shown in the figure, underestimates the rate. This can be attributed to
the neglect of correlations in the equations of motion as discussed in Sec. 4.1.

We remark that the simulation scheme for master equation dynamics has a
number of attractive features when compared to quantum-classical Liouville
dynamics. The solution of the master equation consists of two numerically
simple parts. The first is the computation of the memory function which
involves adiabatic evolution along mean surfaces. Once the transition rates
are known as a function of the subsystem coordinates, the sequential short-
time propagation algorithm may be used to evolve the observable or density.
Since the dynamics is restricted to single adiabatic surfaces, no phase factors
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Fig. 3: Forward rate coefficient kAB(t) as a function of time for β = 1.0. The upper
(blue) curve is the adiabatic rate, the purple curve is the result obtained by Tully’s
surface-hopping algorithm, the middle (black) curve is the quantum master equation
result, the green curve is the QCL result, and the lowest dashed line (grey) is the
result using mean-field dynamics.

enter this part of the calculation increasing the stability of the algorithm.
For complicated reaction coordinates which are arbitrary functions of the
environmental coordinates the calculation of the transition rates will be more
difficult and time consuming. Of course, the validity of this scheme rests on
the accuracy of the Markovian approximation to the memory kernel, which
must be determined for the system under consideration.

7 Conclusions

We have presented some of the most recent developments in the computa-
tion and modeling of quantum phenomena in condensed phased systems in
terms of the quantum-classical Liouville equation. In this approach we con-
sider situations where the dynamics of the environment can be treated as
if it were almost classical. This description introduces certain non-classical
features into the dynamics, such as classical evolution on the mean of two
adiabatic surfaces. Decoherence is naturally incorporated into the description
of the dynamics. Although the theory involves several levels of approximation,
QCL dynamics performs extremely well when compared to exact quantum cal-
culations for some important benchmark tests such as the spin-boson system.
Consequently, QCL dynamics is an accurate theory to explore the dynamics
of many quantum condensed phase systems.

In practice, one’s ability to model any realistic system via the QCLE de-
pends on the appropriate choice of representation of the quantum system.
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Each representation brings with it a unique set of challenges and limitations
in the development of efficient algorithms for computing the dynamics as well
as sampling initial configurations. For these reasons it is interesting to con-
sider some of the earlier more approximate schemes such as the mean field and
surface-hopping approaches. We have shown here that there are conditions un-
der which the approximations underlying these methods are reasonable and
thus one can take advantage of the computational simplicity involved in these
schemes to obtain a computationally cheap solution to the problem. One, how-
ever, must keep in mind that the QCLE is already an approximate approach,
and that these schemes involve further, often severe, approximations to the
QCLE. An important outcome of this analysis is that the QCLE emerges
as an analytic tool that one can use as a theoretical basis to evaluate alter-
native approaches to the problem of quantum dynamics in almost classical
environments.

As quantum-classical dynamics is a rapidly emerging field of increasing im-
portance, there are many areas in which further study is needed. For example,
as was discussed in Sec. 4.2, the QCLE provides a useful framework to inves-
tigate the mechanism of decoherence in various scenarios. This fact allows one
to assess the validity of a Markovian approximation to the generalized master
equation. Another important area involves alternate representations of the
QCLE. For example the mapping basis discussed in Sec. 3.4 is one such ex-
ample where the use of harmonic oscillator states leads to dynamics in terms
of classical trajectories involving new forces. The computational simplicity
that this affords is obviously appealing. Although the structure of the higher
order correlation terms in the equation of motion are not easily computed,
in certain cases it has been shown to be negligible. Further research into this
area will prove useful and may yield more stable algorithms allowing for the
study of far more difficult systems. For example, an important problem of
interest that still lacks a satisfactory solution is the simulation of quantum
systems in the condensed phase interacting with a field. Through the use of
appropriate choices of representations leading to improved algorithms, this
type of problem may soon be solvable.
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Abstract. In this Chapter we review the core ingredients of a class of mixed
quantum-classical methods that can naturally account for quantum coherence ef-
fects. In general, quantum-classical schemes partition degrees of freedom between
a quantum subsystem and an environment. The various approaches are based on
different approximations to the full quantum dynamics, in particular in the way
they treat the environment. Here we compare and contrast two such methods: the
Quantum Classical Liouville (QCL) approach, and the Iterative Linearized Density
Matrix (ILDM) propagation scheme. These methods are based on evolving ensem-
bles of surface-hopping trajectories in which the ensemble members carry weights
and phases and their contributions to time-dependent quantities must be added co-
herently to approximate interference effects. The side by side comparison we offer
highlights similarities and differences between the two approaches and serves as a
starting point to explore more fundamental connections between such methods. The
methods are applied to compute the evolution of the density matrix of a challenging
condensed phase model system in which coherent dynamics plays a critical role: the
asymmetric spin-boson. Various implementation questions are addressed.

1 Introduction

The difficulty in simulating the full quantum dynamics of large many-body
systems has stimulated the development of mixed quantum-classical dynami-
cal schemes. In such approaches, the quantum system of interest is partitioned
into two subsystems, which we term the quantum subsystem, and quantum
bath. Approximations to the full quantum dynamics are then made such that
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the bath or environmental degrees of freedom are treated classically. The man-
ner in which approximations are made to achieve this limit, and the resulting
nature of the coupling between the quantum and classical subsystems dis-
tinguish the various quantum-classical schemes. While there are fundamental
issues and difficulties that must be addressed when attempting to combine
quantum and classical dynamics, quantum-classical schemes are, at present,
the most useful and practical methods for treating realistic physical systems.
A variety of such methods has been proposed [1,2]. Some of the most popular
quantum-classical methods are based on surface-hopping dynamics, where the
system evolves classically on single adiabatic surfaces, with quantum transi-
tions between these surfaces to account for nonadiabatic effects [3]. An im-
portant issue concerning the validity and implementation of surface-hopping
schemes is the manner in which quantum coherence is treated.

In this chapter we describe two quantum-classical schemes that account
for quantum coherence and involve simulations using ensembles of surface-
hopping trajectories: the Quantum Classical Liouville (QCL) approach, and
the iterative linearized density matrix (ILDM) propagation scheme. These
methods are based on different approximations to the full quantum dynam-
ics, in particular in the way they treat the environment. The QCL approach
starts from an expansion of the quantum Liouville operator and develops
approximate evolution equations for the density, while the ILDM approach
employs a linearized path integral expression for the same quantity. Previous
work has been done that begins to explore the relationship between these ap-
proaches [4] but more theoretical analysis is needed to understand the precise
connection. In this chapter we present a side by side comparison of the two
theoretical approaches, the algorithmic issues needed to implement them, and
explore their performances on a common benchmark problem as a prelude for
the analysis of this connection. Rather than give complete and detailed deriva-
tions of these two approaches, here we summarize the conceptual framework
underlying the different methods and, where appropriate, point the reader to
the original articles for complete details.

A complete and detailed analysis of the formal properties of the QCL ap-
proach [5] has revealed that while this scheme is internally consistent, incon-
sistencies arise in the formulation of a quantum-classical statistical mechanics
within such a framework. In particular, the fact that time translation invari-
ance and the Kubo identity are only valid to O(�) have implications for the
calculation of quantum-classical correlation functions. Such an analysis has
not yet been conducted for the ILDM approach. In this chapter we adopt
an alternative prescription [6, 7]. This alternative approach supposes that we
start with the full quantum statistical mechanical structure of time correlation
functions, average values, or, in general, the time dependent density, and de-
velop independent approximations to both the quantum evolution, and to the
equilibrium density. Such an approach has proven particularly useful in many
applications [8, 9]. As was pointed out in the earlier publications [6, 7], the
consistency between the quantum equilibrium structure and the approximate
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dynamics is lost with such an approach, though we gain the ability explore
different independent approximations to the evolution and the equilibrium
structure.

The focus of this chapter is exploration of the ability of mixed quantum
classical approaches to capture the effects of interference and coherence in the
approximate dynamics used in these different mixed quantum classical meth-
ods. As outlined below, the expectation values of computed observables are
fundamentally non-equilibrium properties that are not expressible as equilib-
rium time correlation functions. Thus, the chapter explores the relationship
between the approximations to the quantum dynamics made in these different
approaches that attempt to capture quantum coherence.

The main goal in the development of mixed quantum classical methods
has as its focus the treatment of large, complex, many-body quantum sys-
tems. While applications to models with many realistic elements have been
carried out [10,11], here we test the methods and algorithms on the spin-boson
model, which is the standard test case in this field. In particular, we focus on
the asymmetric spin-boson model and the calculation of off-diagonal density
matrix elements, which present difficulties for some simulation schemes. We
show that both of the methods discussed here are able to accurately and
efficiently simulate this model.

The chapter is organized as follows: The quantum-classical Liouville dy-
namics scheme is first outlined and a rigorous surface hopping trajectory al-
gorithm for its implementation is presented. The iterative linearized density
matrix propagation approach is then described and an approach for its im-
plementation is presented. In the Model Simulations section the comparable
performance of the two methods is documented for the generalized spin-boson
model and numerical convergence issues are mentioned. In the Conclusions we
review the perspectives of this study.

2 Quantum-Classical Liouville Dynamics

In quantum-classical Liouville (QCL) dynamics the partition of the system
into bath and subsystem is motivated by the observation that for many con-
densed phase processes it is essential to account for the quantum mechanical
character of only a few light (characteristic mass m) degrees of freedom; the
remaining heavy (characteristic mass M) degrees of freedom may be treated
classically to a high degree of accuracy.

2.1 Evolution equation

In this scheme, for a system with hamiltonian Ĥ, the starting point is the
quantum Liouville equation for the density matrix, ρ̂(t),

∂

∂t
ρ̂(t) = − i

�
[Ĥ, ρ̂(t)]. (1)
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The quantum-classical Liouville equation is obtained from this equation by
introducing scaled variables such that the characteristic momenta of the light
and heavy degrees of freedom are comparable. This scaling introduces a small
parameter μ = (m/M)1/2 in the equations of motion. Expansion of the quan-
tum Liouville operator to O(μ) yields the quantum-classical Liouville equa-
tion [2, 4, 12–20],

∂ρ̂W (R,P, t)
∂t

= − i

�

[
ĤW (R,P ), ρ̂W (R,P, t)

]
+
1
2
({ĤW (R,P ), ρ̂W (R,P, t)} − {ρ̂W (R,P, t), ĤW (R,P )})

= −iL̂ρ̂W (R,P, t). (2)

The last line defines the mixed quantum-classical Liouville operator L̂. The
W subscripts denote a partial Wigner transform of an operator or density
matrix. The phase space variables of the bath are (R,P ) and the partial
Wigner transform of the total hamiltonian is given by,

ĤW (R,P ) =
P 2

2M
+

p̂2

2m
+ V̂W (q̂, R), (3)

where p̂ is the set of momentum operators for the quantum subsystem with
coordinate operators q̂, and V̂W (q̂, R) is the partial Wigner transform of the
total potential energy operator of the system. As usual, square brackets denote
quantum commutators and curly brackets denote Poission brackets. Similarly,
the quantum-classical Liouville equation of motion for an operator B̂ is

dB̂W (R,P, t)
dt

= iL̂B̂W (R,P, t). (4)

One noteworthy feature of Eqs. (2) and (4) is that they provide an exact
quantum description for an arbitrary quantum subsystem bilinearly coupled to
a quantum harmonic bath. Other aspects of this equation have been discussed
previously in the literature [2, 5].

2.2 Simulation of expectation values

The expectation value of an operator B̂ is given by

B(t) = TrB̂ρ̂(t) = TrB̂(t)ρ̂(0) = Tr′
∫

dRdP B̂W (R,P, t)ρ̂W (R,P ). (5)

In the last equality here we have introduced the partial Wigner transforms
of the density matrix and operator. The prime on the trace indicates a trace
over the subsystem degrees of freedom. All information on the quantum initial
distribution is contained in ρ̂W (R,P, 0). In the evaluation of this expression
we assume that the time evolution of B̂W (R,P, t) is given by Eq. (4). This
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equation may be simulated in a variety of representations, using various al-
gorithms [2,21]. Here we focus on a representation in the adiabatic basis and
a Trotter-based scheme which leads to a simulation algorithm involving an
ensemble of surface-hopping trajectories [22].

Given that the total hamiltonian may be written as ĤW = P 2/2M +
ĥW (R), the adiabatic eigenfunctions |α;R〉 are the solutions of the eigenvalue
problem, ĥW (R)|α;R〉 = Eα(R)|α;R〉. In this adiabatic basis the quantum-
classical Liouville operator has matrix elements [12],

iLαα′,ββ′ = (iωαα′ + iLαα′)δαβδα′β′ − Jαα′,ββ′

≡ iL0
αα′δαβδα′β′ − Jαα′,ββ′ . (6)

Here ωαα′(R) = (Eα(R) − Eα′(R))/� and iLαα′ is the Liouville operator
that describes classical evolution determined by the mean of the Hellmann-
Feynman forces corresponding to adiabatic states α and α′,

iLαα′ =
P

M
· ∂

∂R
+

1
2

(
FαW + Fα

′
W

)
· ∂

∂P
, (7)

where FαW = −〈α;R|∂ĤW (q̂,R)
∂R |α;R〉 is the Hellmann-Feynman force for state

α. The operator Jαα′,ββ′ is responsible for nonadiabatic transitions and asso-
ciated changes in the bath momentum and can be written as the sum of two
terms,

Jαα′,ββ′ = J1αα′,ββ′ + J2αα′,ββ′ , (8)

where

J1αα′,ββ′ = − (dαβδα′β′ + d∗α′β′δαβ) · P

M
, (9)

J2αα′,ββ′ = −1
2

(
(Eα − Eβ)dαβδα′β′ + (Eα′ − Eβ′)d∗α′β′δαβ

)
· ∂

∂P
, (10)

and dαβ(R) =< α;R| ∂∂R |β;R > is the nonadiabatic coupling matrix element.
The matrix elements of the quantum-classical propagator in the adiabatic
basis are

(
exp (iLt)

)
αα′,ββ′ . The superoperator notation involving pairs of

quantum states can be eliminated by associating an index s = αN + α′ with
the pair (αα′), where 0 ≤ α, α′ < N for an N -state quantum subsystem [22].
The quantum-classical propagator then takes the form

(
exp (iLt)

)
ss′ where

iLss′ = iL0
sδss′ − Jss′ .

Since the Liouville operator is time independent and commutes with it-
self we may write the propagator exactly as the product of N short time
propagators as

(
eiLt
)
s0sN

=
∑

s1s2...sN−1

N∏
j=1

(
eiL(tj−tj−1)

)
sj−1sj

, (11)



420 S. Bonella et al.

where tj = jδ and t = Nδ. The propagator for each of the small time intervals
tj − tj−1 = δ may be computed by using a Trotter factorization as(

eıL(tj−tj−1)
)
sj−1sj

≈ e
ıL0sj−1

δ/2 (
e−J δ

)
sj−1sj

e
ıL0sj

δ/2 +O(δ3) , (12)

where we have used the fact that iL0 is diagonal in the adiabatic basis. The
propagator eiL

0
s(tj−tj−1) can be written as the product of a phase factor and

a classical evolution operator as [12]

eiL
0
s(tj−tj−1) = e

i
R tj

tj−1
dτ ωs(Rs,τ )

eiLs(tj−tj−1) (13)
≡ Ws(tj−1, tj)eiLs(tj−tj−1),

where Rs,τ denotes the value of R at time τ obtained by classical evolution
under the Hellmann-Feynman force with quantum state index s.

The propagator
(
e−J δ

)
ss′ is responsible for quantum transitions and bath

momentum changes. In order to compute its action, we use the momentum-
jump approximation [12, 23] that replaces the small continuous momentum
changes with momentum jumps that accompany each quantum transition. In
this approximation, the matrix elements of e−J δ can be written in terms of a
matrix M to O(δ2),(

e−J δ
)
ss′

≈ (Q1)ss′eCss′ · ∂
∂P +O(δ2) = Mss′(δ) +O(δ2). (14)

The explicit forms of the Q1 and C matrices may be written for any N -state
quantum system. For a two-level system they have the forms,

Q1 =

⎛⎜⎜⎝
cos2(a) − cos(a) sin(a) − cos(a) sin(a) sin2(a)

sin(a) cos(a) cos2(a) − sin2(a) − sin(a) cos(a)
sin(a) cos(a) − sin2(a) cos2(a) − sin(a) cos(a)

sin2(a) sin(a) cos(a) sin(a) cos(a) cos2(a)

⎞⎟⎟⎠ , (15)

where a = P
M · d10(R)δ and

C =

⎛⎜⎜⎝
0 S01 S01 2S01

S10 0 0 S01

S10 0 0 S01

2S10 S10 S10 0

⎞⎟⎟⎠ , (16)

where Sαβ = �ωαβdαβ/(2(P/M) · dαβ). The momentum jump operators can
be evaluated as

eSαβ ·∂/∂P f(P ) = e�ωαβM∂/∂(d̂αβ ·P )2)f

(
P⊥ + d̂αβsgn(d̂αβ · P)

√
(d̂αβ · P)2

)
= f(P +ΔPαβ).

where
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ΔPαβ = d̂αβ

(
sgn(d̂αβ · P )

√
(d̂αβ · P )2 + �ωαβM − (d̂αβ · P )

)
(17)

and P has been decomposed into its components along and normal to d̂αβ as
P = (1− d̂αβ d̂αβ) ·P + d̂αβ(d̂αβ ·P ) ≡ P⊥+ d̂αβ(d̂αβ ·P ) = P⊥+ d̂αβsgn(d̂αβ ·
P)
√
(d̂αβ · P)2.

Using these expressions in the Trotter expansion (12) we obtain(
eıL(tj−tj−1)

)
sj−1sj

≈ e
iL0sj−1

δ/2Msj−1sj (δ)e
iL0sj

δ/2 (18)

= Wsj−1(tj−1, tj − δ/2)eiLsj−1δ/2Msj−1sj
(δ)Wsj

(tj − δ/2, tj)e
iLsj

δ/2 .

From left to right, the short-time propagator describes classical propagation
on the sj−1 surface through a time interval δ/2, a transition sj−1 → sj deter-
mined by the elements of M and classical propagation on the sj surface for a
time interval δ/2.

Short time segments may be concatenated to obtain the time evolution for
any time. Using Eq. (18), we may write the expression for B(t) more explicitly
as

B(t) =
∑
s0

∫
dRdP Bs0W (R,P, t)ρs

′
0
W (R,P )dRdP (19)

=
∑
s0

∫
ρ
s′0
W (R,P )

∑
s1,...,sN

[ N∏
j=1

Wsj−1(tj−1, tj − δ/2)eiLsj−1δ/2

× Msj−1sj
(δ)Wsj

(tj − δ/2, tj)e
iLsj

δ/2
]
BsN

W (R,P ),

where s′0 = (α′0, α0) is obtained from s0 = (α0, α
′
0) by the interchange

α0 � α′0. The summations on quantum indices and phase space integrals
can be performed through Monte Carlo sampling. The simulation algorithm
consists of three steps based on the structure of Eq. (19). The total time of
the simulation is divided into t/δ = N short time segments. Given the form
of the short time propagator in Eq. (18) we can rearrange Eq. (19) into the
form

B(t) =
N 2

K

K∑
κ=1

ρ
s′κ0
W (Rκ, Pκ)

|ρs′κ0W (Rκ, Pκ)|
[ N∏
j=1

(
Wsκ

j−1
(tj−1, tj − δ/2)eiLsκ

j−1
δ/2

×
∑
sκ

j
|(Q1)sκ

j−1s
κ
j
(δ)|

|(Q1)sκ
j−1s

κ
j
(δ)| Msκ

j−1s
κ
j
(δ)Wsκ

j
(tj − δ/2, tj)e

iLsκ
j
δ/2
)
sκ

j−1s
κ
j

]
×B

sκ
N

W (Rκ, Pκ), (20)

that can be evaluated by Monte Carlo sampling. Here the index κ refers to
the Monte Carlo sampling of the elementary event (Rκ, Pκ, s′κ0 , sκ1 , . . . , s

κ
N ),
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and results are averaged over K such events. The N 2 factor arises from the
uniform sampling for the sum on the initial states s0. Phase space is impor-
tance sampled according to |ρs′0W (R,P )|, which leaves in the sum the phase
factor, σ = ρ

s′0
W (R,P )/|ρs′0W (R,P )|.

Evaluation of Eq. (20) involves a combination of Monte Carlo sampling and
propagation steps. For (j = 1) the phase space point (R,P ) is propagated clas-
sically to eiLs0δ/2(R,P ) = (R′, P ′). The phase factorWs0 and all of the matrix
elements and operators, including the observable, at the value of this evolved
phase point, are updated. The value of the index s1 in the matrix Ms0s1(δ)
is chosen by sampling with probability |(Q1)sκ

0 s
κ
1
(δ)|/∑sκ

1
|(Q1)sκ

0 s
κ
1
(δ)|. This

introduces the factor
∑
sκ
1=0 |(Q1)sκ

0 s
κ
1
(δ)|/|(Q1)sκ

0 s
κ
1
(δ)|. Once the index s1 is

selected, the momentum jump (if any) specified by Ms0s1(δ) is applied to all
functions and operators to its right so that the new bath phase space point is
(R′, P̄ ′), where the overline denotes the momentum after the momentum-jump
operation. The phase factor Ws1 is then computed and the evolution operator
eiLs1δ/2 is used to propagate the bath phase space coordinates (R′, P̄ ′) to time
t1: eiLs1δ/2(R′, P̄ ′) = (R′′, P ′′). The procedure is then repeated starting from
the index j = 2 in the product in Eq. (20) with the updated value of the bath
phase space point.

An important additional part of the algorithm is the use of a filter. Es-
timates of averages are dominated by large fluctuations which come from
unusually large values of the summand of Eq. (20) and exacerbate the sign
problem that comes from the phase factors in the evolution. The use of a
filter can eliminate improperly large biasing fluctuations which should not
contribute to the averaged quantity. A simple filter involves putting an upper
bound, Z, on the magnitude of the factor in the square brackets appearing in
the summand in Eq. (20). When, at step j in the calculation of the product
in the summand, the running summand exceeds the bound, the factor in the
updating of the running product is put to unity and the index sj is set to
sj−1. The reader can find details of this approach in reference [10,22].

3 Iterative Linearized Density Matrix Propagation

Rather than starting from the exact quantum Liouville equation for the den-
sity matrix and approximating it by the mixed quantum-classical Liouville
equation as in the QCL scheme outlined above, the iterative linearized den-
sity matrix propagation approach, in contrast, starts from an exact expression
for the evolution of the density operator and then uses the time composi-
tion property of the quantum propagators to write this evolution in terms
of concatenated time segments. In much the same way as with the formal
development of path integral expressions, a short time approximation for the
propagating density matrix in each segment is developed. With in each in-
dividual time segment evolution occurs according to the prescriptions of the
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linearized approximation as outlined in the literature [24–28]. The basic idea
behind this alternative approximate scheme is that, for sufficiently short times,
the forward and backward paths of the environmental degrees of freedom that
are used to represent the evolving density matrix must remain close to one
another. Truncating an expansion in the difference between forward and back-
ward paths for these degrees of freedom at linear order should provide a good
short time approximation. With this approach, contributions from forward
and backward paths of the quantum subsystem degrees of freedom are in-
cluded to all orders. The time segments in the iterative implementation of this
short time approximation are joined by a stochastic mechanism that samples
the relevant contributions to the evolving density matrix at any given time.
Thus, linearization becomes a tool to obtain a satisfactory approximation for
a sequence of propagators in the spirit of a “finite time” path integral expres-
sion for the density operator in which the length of the “time slices” is not
necessarily infinitesimal. Since the approximations underlying the linearized
expression for the propagators are more accurate for short times, the perfor-
mance of the overall dynamics is expected to improve with the number of time
slices. During each individual propagation leg, non adiabaticity is described
through the evolution of quantum amplitudes represented in the mapping for-
mulation [29–33]. At the end of each finite time slice, the quantum subsystem
representation is refreshed by a Monte Carlo selection of the most important
term in the density matrix at that particular time in a similar fashion to that
outlined in the previous section. In the following we summarize the results
needed to derive the approach and present an algorithm that combines evo-
lution of classical trajectories and Monte Carlo sampling to implement the
theory.

3.1 Theory

The time evolution of density operator ρ̂(t) in the Heisenberg picture is given
by

ρ̂(t = nΔ) = e−
i
�
ĤΔ . . . e−

i
�
ĤΔρ̂(0)e

i
�
ĤΔ . . . e

i
�
ĤΔ (21)

where, to set the stage for the approach to be described, the total time prop-
agation to t has been broken up into n time intervals of finite duration Δ.

Inserting resolutions of the identity written in terms of tensor product
states |RjΔαjΔ〉 (with 0 ≤ j ≤ (n − 1)) in the coordinate and diabatic state
representation, matrix elements of the time dependent density operator are
conveniently written as
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〈RnΔαnΔ|ρ̂(nΔ)|R′nΔα′nΔ〉 =∑
α(n−1)Δ,α

′
(n−1)Δ

∫
dR(n−1)ΔdR′(n−1)Δ · · ·

∑
α0,α′

0

∫
dR0dR

′
0

×〈RnΔαnΔ|e− i
�
ĤΔ|R(n−1)Δα(n−1)Δ〉 . . . 〈RΔαΔ|e− i

�
ĤΔ|R0α0〉

×〈R0α0|ρ̂(0)|R′0α′0〉
×〈R′0α′0|e

i
�
ĤΔ|R′Δα′Δ〉 . . . 〈R′(n−1)Δα′(n−1)Δ|e

i
�
ĤΔ|R′nΔα′nΔ〉

(22)

In this expression, each individual sum extends over all the N diabatic basis
states.

A convenient expression for the incremental time evolution of the density
matrix in the time interval 0 ≤ τ ≤ Δ, for example, can be obtained as de-
scribed in detail in references [34–36]. Briefly, a hybrid coordinate-momentum
path integral representation of the forward and backward propagators for the
environmental degrees of freedom is introduced, together with the mapping
hamiltonian representation of the evolution of the quantum subsystem [29–33].
The latter can be evaluated explicitly and exactly as a parametric function
of the paths of the bath variables by averaging the contributions of a set of
auxiliary classical trajectories for the mapping variables (pτ,λ, qτ,λ) obtained
by solving the following equations:

q̇τ,λ = hλ,λ(Rτ )pτ,λ +
∑
μ�=λ

hλ,μ(Rτ )pτ,μ

ṗτ,λ = −hλ,λ(Rτ )qτ,λ −
∑
μ�=λ

hλ,μ(Rτ )qτ,μ

(23)

Here hλ,μ(Rτ ) is the matrix element of the quantum subsystem hamiltonian in
the diabatic basis, including its interaction with the environment (see reference
[37] for details). These manipulations transform the integrand in Eq. (22) into
an explicit complex function of the bath and mapping variables. A change
of variables is introduced that transforms the integration over forward, Rτ ,
and backward, R′τ environmental paths into integration over the mean R̄τ =
(Rτ + R′τ )/2 and difference paths Zτ = (Rτ − R′τ ). The total phase of the
new path integral expression is then expanded to linear order in the bath
difference path. This approximation makes it possible to evaluate all difference
integrals analytically to arrive at the following result for the reduced density
matrix elements for the first time increment Δ which is divided into K discrete
environmental path integral time steps of duration δ, i.e. Δ = Kδ.
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〈R̄K +
ZK
2

αΔ|ρ̂(Δ)|R̄K − ZK
2

α′Δ〉 =∑
α0,α′

0

∫
dR̄0dq0dp0dq

′
0dp

′
0r
′
0,α′

0
e
−iΘ′

0,α′
0G′0r0,α0e

iΘ0,α0G0

×
∫ K−1∏

k=1

dR̄k
dP̄k
2π

dP̄K
2π

[ρ̂]α0,α
′
0

W (R̄0, P̄1)eiP̄KZK (24)

×rΔ,αΔ
({R̄k})r′Δ,α′

Δ
({R̄k})e−iδ

PK
k=1(θαΔ

(R̄k)−θα′
Δ

(R̄k))

×
K−1∏
k=1

δ

(
P̄k+1 − P̄k

δ
− F

αΔ,α
′
Δ

k

) K∏
k=1

δ

(
P̄k
M

− R̄k − R̄k−1

δ

)
here, the notation δ(·) in the last line of Eq.(24) is the Dirac δ-function,
G0 = e−

1
2

P
λ(q20,λ+p20,λ), rΔ,αΔ

({Rk}) =
√

q2
Δ,αΔ

({Rk}) + p2
Δ,αΔ

({Rk}), and

ΘΔ,αΔ
({Rk}) = tan−1

(
p0,αΔ

q0,αΔ

)
+
∫ Δ

0

dτhαΔ,αΔ
(Rτ )

+
∫ Δ

0

dτ
∑
λ�=αΔ

[
hαΔ,λ(Rτ )

(pταΔ
pτλ + qταΔ

qτλ)
(p2
ταΔ

+ q2
ταΔ

)

]

= tan−1

(
p0,αΔ

q0,αΔ

)
+
∫ Δ

0

θαΔ
(Rτ )dτ (25)

The partial Wigner transform of the initial density matrix element (2nd line
of Eq.(24)) is

(ρ̂)α0,α
′
0

W (R̄0, P̄1) =
∫

dZ0〈R̄0 +
Z0

2
α0|ρ̂|R̄0 − Z0

2
α′0〉e−

i
�
P̄1Z0 (26)

and the “force” is

F
αΔ,α

′
Δ

k = −1
2
{∇R̄k

hαΔ,αΔ
(R̄k) +∇R̄k

hα′
Δ,α

′
Δ
(R̄k)

}
(27)

−1
2

∑
λ�=αΔ

∇R̄k
hαΔ,λ(R̄k)

{
(pαΔkpλk + qαΔkqλk)

(p2
αΔk

+ q2
αΔk

)

}

−1
2

∑
λ�=α′

Δ

∇R̄k
hα′

Δ,λ
(R̄k)

{
(p′α′

Δk
p′λk + q′α′

Δk
q′λk)

(p′2α′
Δk

+ q′2α′
Δk

)

}

A detailed description of the derivation of these results can be found in refer-
ences [34,36].

Using Eq.(24) in Eq.(22) gives the iterative scheme developed in reference
[37].
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3.2 Implementation

In the iterative scheme outlined above, the evolution of all degrees of freedom
has been reduced to classical trajectory propagation that can be efficiently
performed. However, the number of terms included in the multiple sums in
Eq. (22) grows exponentially with the number of time segments. This expo-
nential growth can be controlled using an importance sampled Monte Carlo
approach (see step (3) below). This involves implementing a trajectory surface
hopping -like technique similar to that adopted in Ref. [39] and outlined under
Eq. (20) above. The Monte Carlo induces hops between density matrix ele-
ments, i.e. pairs of state labels, and generates dynamical information about
both populations (diagonal elements of the density matrix) and coherences
(off-diagonal density matrix elements).

To demonstrate the algorithm let us consider two segments. There are five
relevant times or time intervals:

(1) τ = 0: The sum over initial quantum states α0, α
′
0 is performed ex-

plicitly. For each pair of initial quantum states selected, initial conditions for
the bath variables are sampled from a probability density derived from the
partial Wigner transform [ρ̂]α0,α

′
0

W [25,38]. The initial conditions for the map-
ping variables are specified by focusing on the occupied states for the forward
and backward propagation [33,37]. This initializes the occupied state mapping
variables at the phase space point (poα0 , q

o
α0) = (1/

√
2, 1/

√
2), while the un-

occupied state mapping variables originate from (puα0 , q
u
α0) = (0, 0) (a similar

set of conditions, with reversed initial momentum, is used to propagate the
mapping variables in the backward propagator).

(2) τ ∈ (0, Δ): The forces that evolve the initial conditions specified in
(1), FαΔ,α

′
Δ , depend on the labels of the quantum states at the end of the

first time segment. According to Eq. (22) we must sum over all these labels
as the starting states for the second propagation leg. Our approach thus gen-
erates N ×N = Nρ trajectories, each governed by a different force FαΔ,α

′
Δ ,

for the first propagation leg. The characteristics of the individual trajectories
depend on the pair of indexes selected as the final quantum states and on the
coupling between the electronic states during the propagation. In particular,
if αΔ = α′Δ, Eq. (27) induces evolution on a single diabatic surface (first term
on the right hand side) modulated by the coupling matrix elements and the
mapping variables (second and third terms). On the other hand, if αΔ �= α′Δ,
the first term in the definition of the force amounts to propagation on a mean
surface, while the second and third terms include modulation from couplings
and mapping evolution as in the previous situation. Along the trajectories,
the polynomial phase weights rΔ,αΔ

r′Δ,α′
Δ
exp[−i

∫Δ
0

dτ(θαΔ
(τ)−θα′

Δ
(τ))] es-

timate the contributions of the different evolutions to the various density ma-
trix elements. Note that, due to the focusing, initially occupied states start
with weight equal to one, while unoccupied states begin with zero weight.
These weights change, in the presence of couplings between the electronic
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states, due to the amplitude transfer described by the evolution of the map-
ping variables.

(3) τ = Δ: At the end of the first segment, the Nρ trajectories have moved
to different bath and mapping phase space points. In order to propagate the
next leg we should, for each final point, propagate a new set of Nρ trajectories
that experience different forces Fα2Δ,α

′
2Δ . If we were to propagate all these

alternatives, the number of trajectories would grow as N σ
ρ where there are σ

trajectory segments. To tame the exponential growth of the number of trajec-
tories we implement a Monte Carlo (MC) procedure that substitutes the brute
force sum over the quantum states at the intermediate time points along the
propagation with an importance sampling of the different terms contributing
to the value of the density matrix at the given time. The approach exploits
the observation that during a given trajectory segment many of the quantum
amplitudes that start out at zero at the beginning of the segment, remain very
small at the end of the segment and this results in small polynomial weights
and therefore small contributions to the integrals in Eq. (22). An MC branch-
ing procedure, whose probability distribution is based on the change in the
quantum amplitudes during the current segment, is then used to decide which
term in the double sum over states at the intermediate time is the most im-
portant. Thus, at the end of the first segment we compute the magnitudes of
the contribution of the particular initial phase space point (R0, P1, α0, α

′
0) to

the density matrix elements for the new time, Δ, when this point has evolved
to the Nρ final points (R(αΔ,α

′
Δ)

K , P
(αΔ,α

′
Δ)

K , αΔ, α′Δ) under the influence of
the different forces FαΔ,α

′
Δ . As described above, the magnitudes of these dif-

ferent contributions are rΔ,αΔ
r′Δ,α′

Δ
, so we define the normalized probability

distribution
MαΔ,α′

Δ
= rΔ,αΔ

r′Δ,α′
Δ
/η(Δ) (28)

with η(Δ) =
∑
αΔ,α′

Δ
rΔ,αΔ

r′Δ,α′
Δ
. We define the cumulative probabilities

CβΔ,β′
Δ
=
∑βΔ

αΔ=1

∑β′
Δ

α′
Δ=1 MαΔ,α′

Δ
. A uniform random number ξ on the inter-

val (0 < ξ < 1) is then selected. If the cumulative probability first becomes
larger than ξ for indexes βΔ = α∗Δ and β′Δ = α′∗Δ, the trajectory segment gen-
erated with forces Fα

∗
Δ,α

′∗
Δ which evolves the density matrix from (α0, α

′
0) to

(α∗Δ, α′∗Δ) over the current segment is used as the MC sampled representative
for the double sum

∑
αΔ,α′

Δ
in Eq. (22). Since the Monte Carlo branching

process is normalized by dividing by η(Δ) we must multiply out this time de-
pendent normalization to preserve the true weight of the sampled trajectory
segment. The sampled trajectory segment thus carries a weight and phase fac-
tor η(Δ) exp[−i

∫Δ
0

dτ(θαΔ
(τ)−θα′

Δ
(τ))] which multiplies its contributions to

the ensemble averages. Once the new pair of quantum state labels (α∗Δ, α′∗Δ) is
selected, the integrals over the corresponding mapping variables are again per-
formed by focusing and this may introduce discontinuities in the polynomial
weights and in the forces acting on the bath variables.
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(4) τ ∈ (Δ, 2Δ): The new propagation segment evolves as in (2) with forces
Fα2Δ,α

′
2Δ .

(5) τ = 2Δ: At the final time of the propagation, the “measurement” time,
the overall weight of each contribution to the Monte Carlo in the initial condi-
tions and state labels is computed. In the case of two segments, this is given by
η(Δ) exp[−i

∫Δ
0

dτ(θαΔ
(τ)−θα′

Δ
(τ))]r2Δ,α2Δ

r′2Δ,α′
2Δ

exp[−i
∫ 2Δ

Δ
dτ(θα2Δ

(τ)−
θα′

2Δ
(τ))]. The different elements of the evolved density matrix can be evalu-

ated by averaging these contributions over a set of repetitions of the Monte
Carlo (and molecular dynamics) procedure described in (1)-(4).

The approach outlined above can be immediately generalized to the case
of n propagation segments simply by iterating points (3) and (4). In this case,
the weight at the final time nΔ becomes

Ωn =

{
n−1∏
k=1

η(kΔ) exp[−i

∫ kΔ
(k−1)Δ

dτ(θαkΔ
(τ)− θα′

kΔ
(τ))]

}

× rnΔ,αnΔ
r′nΔ,α′

nΔ
exp[−i

∫ nΔ
(n−1)Δ

dτ(θαnΔ
(τ)− θα′

nΔ
(τ))] (29)

The combination of these phase factors and the weights that come from re-
normalizing after implementing the Monte Carlo density matrix element sam-
pling lead to the same sorts of statistical convergence problems observed with
the QCL implementation. Filtering techniques have not been implemented in
these ILDM calculations so far, however, an approach inspired by the method
outlined at the end of section 2 could be used to mitigate these convergence
difficulties that can be particularly serious at longer times.

4 Model Simulations

In this section we present results using the two approaches described in the
previous sections: the Trotter factorized QCL (TQCL), and iterative linearized
density matrix (ILDM) propagation schemes, to study the spin-boson model
consisting of a two level system that is bi-linearly coupled to a bath with Mh

harmonic modes. This popular model of a quantum system embedded in an
environment is described by the following general hamiltonian:

Ĥ =
1
2

Mh∑
j=1

(P̂ 2
j + ω2

j R̂
2
j ) + εσ̂z + σ̂z

Mh∑
j=1

gjR̂j −Ωσ̂x (30)

where mass scaled coordinates have been used for the bath. We choose the
couplings, gj , and mode frequencies, ωj , to be consistent with the exponen-
tially truncated ohmic spectral density model for which the spectral density is
J(ω) = ξωe−ω/ωc [34,39], where ξ is the friction or Kondo parameter and ωc is
the peak frequency in the spectral density. All the calculations outlined below
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employ 20 bath modes coupled to the two level spin system. In this model
hamiltonian Ω is the off-diagonal coupling strength between the two diabatic
states of the quantum subsystem, and the parameter ε controls the asymme-
try in energy between these states. This term acts like a “driving force” when
the spin-boson model is applied to study charge transfer reactions in solution.

As noted earlier, the fundamental equations of the QCL dynamics ap-
proach are exact for this model, however, in order to implement these equa-
tions in the approach detailed in section 2 the momentum jump approximation
of Eq.(14) is made in addition to the Trotter factorization of Eq.(12). Both
approximations become more accurate as the size of the time step δ is reduced.
Consequently, the results presented below primarily serve as tests of the va-
lidity and utility of the momentum-jump approximation. For a discussion
of other simulation schemes for QCL dynamics see Ref. [21] in this volume.
The linearized approximate propagator is not exact for the spin-boson model.
However when used as a short time approximation for iteration as outlined
in section 3 the approach can be made accurate with a sufficient number of
iterations [37].

Figure 1 presents results for the time dependence of the diabatic state pop-
ulation difference, B̄(t) = 〈σz〉(t), for the symmetric spin-boson model (ε = 0)
for two interesting sets of conditions corresponding to low temperature-low
friction, and intermediate temperature-high friction cases (see captions for de-
tails). Results from calculations employing the approximate methods outlined
above are compared with exact benchmark results. Generally the agreement
between results from the different approaches is quite reasonable though some
systematic differences are apparent. The results obtained with the TQCL ap-
proach for the low temperature - low friction conditions show coherent pop-
ulation oscillations that have a slightly higher frequency and a slower decay
than those obtained with the ILDM propagation scheme which generally show
very good agreement with the exact results under these conditions. Much
smaller differences between the various results are found at higher temper-
atures and frictions. The results presented here are converged with Trotter
timestep (TQCL), number of attempted hops (ILDM), and ensemble size.
Given that the QCL formulation should be exact for the spin-boson model
the systematic differences observed in the low temperature-low friction results
for TQCL approach can be attributed to the momentum-jump approximation
that is made when implementing the formulation. This approximation seems
to have the most noticeable effect under weak coupling conditions. If simula-
tions of QCL dynamics for these system parameters are carried out using a
mapping hamiltonian basis, the results are indistinguishable from exact quan-
tum dynamics [40]. This again suggests that the small discrepancies are due
to the use of the momentum-jump approximation.

The asymmetric spin boson model presents a significantly more challenging
non-adiabatic condensed phase test problem due to the asymmetry in forces
from the different surfaces. Approximate mean field methods, for example, will
fail to reliably capture the effects of these different forces on the dynamics.
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Fig. 1: Plots of B̄(t) = population difference = 〈σz〉(t) for the symmetric spin-boson
(ε = 0) as functions of time: Exact quantum results from Ref. [41] (solid circles),
TQCL algorithm (squares), ILDM propagation (open circles). Upper panel presents
results for low temperature, weak system-bath coupling case: β = 12.5, ξ = 0.09 and
Ω = 0.4. Lower panel presents exact quantum results from Ref. [42] (solid circles),
TQCL algorithm (squares), and ILDM propagation (open circles) for intermediate
temperature and strong system-bath coupling: β = 3, ξ = 0.5 and Ω = 0.333.

In Fig. 2 we compare results using ε = 0.4 for the two mixed quantum-
classical methods outlined in this chapter with exact results obtained from
MCTDH wavepacket dynamics calculations. To make a reliable comparison
the approximate finite temperature calculations were performed at very low
temperatures (β = 25), though a product of ground state wave functions for
the independent harmonic oscillator modes could have been used to make the
initial conditions identical to those used in the MCTDH calculations.

From the upper panel in Fig. 2 we see that both the ILDM, and TQCL
results reproduce those obtained from MCTDH wavepacket propagation. The
ILDM calculations were run with 2 attempted hops per time unit and results
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Fig. 2: B̄(t) = 〈σz〉(t) versus time for the asymmetric spin-boson model with β =
25, ξ = 0.13 and Ω = 0.4, ε = 0.4. (Top) Comparison of exact quantum results
(filled circles), ILDM simulations (small open circles), and QCL dynamics (filled
triangles). Both ILDM and QCL simulations were carried out for an ensemble of
2 × 106 trajectories and no filters are employed. (Bottom) Convergence of TQCL
dynamics with ensemble size: 2 × 104 (filled squares) and 1 × 106 (filled triangles).
Exact quantum results (filled circles). A filter parameter of Z = 500 is used for these
calculations .

are presented for an ensemble of N = 2× 106 trajectories. Beyond this time,
without using a filtering approach the statistical noise in the ILDM calcula-
tions becomes overwhelming. Convergence with ensemble size for the TQCL
approach using a small value of the filter cutoff (Z=500) is explored in the
other curves presented in the lower panel.

The nature of the quantum coherent dynamics in the system can be in-
vestigated by computing the off-diagonal elements of the quantum subsys-
tem density matrix obtained by tracing over the bath degrees of freedom,
ρ12(t) =

∫
dRdPρ12(R,P, t). The time dependence of the real and imaginary

parts of ρ12(t) are shown in Fig. 3. The off-diagonal elements of the reduced
density matrix computed with the two different mixed quantum classical ap-
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Fig. 3: Real (top) and imaginary (bottom) parts of ρ12(t) versus time for the same
system parameters as in Fig. 2. Small circles, ILDM simulations; triangles, QCL
dynamics. In both cases 106 trajectories were used to obtain the results.

proaches agree to within the statistical uncertainty of the calculations. One
of the important properties of these methods that distinguishes them from
many other mixed quantum classical approaches is their ability to treat these
coherence terms with out making ad hoc approximations. Traditional surface
hopping trajectory approaches [1, 3], for example, either completely neglect
decoherence, or incorporate its effects by damping out off-diagonal elements
of the reduced density matrix with some phenomenological exponential de-
coherence time. In contrast, both the QCL and ILDM propagation schemes
include decoherence effects in a completely ab initio fashion by accumulating
interfering contributions to the off-diagonal density matrix elements over the
ensemble of phase factor weighted trajectories. In general the reliable compu-
tation of such interference effects is numerically intensive as large ensembles
are required to accurately add the interfering contributions. The results in
Fig. 3 for the asymmetric spin-boson system considered here show long lived
coherent oscillation of the off-diagonal elements for these conditions, with
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no evidence of exponential decay assumed in the phenomenological models
of condensed phase decoherence processes. The dephasing is at least as long
lived as the population relaxation dynamics for this model system.

5 Conclusion

The two quantum-classical dynamical schemes discussed in this Chapter pro-
vide ways to investigate the dynamics of large, many-body systems where
quantum degrees of freedom are coupled to an environment. The results pre-
sented here have shown that both schemes yield good agreement with exact
calculations for the symmetric and asymmetric spin-boson models for a wide
range of system parameters. In particular coherences are accurately described.
Our simulation results have documented the performances of the algorithms
with respect to quantities such as the number of trajectories in the ensem-
ble needed to obtain good results, the use of filters and the utility of the
momentum-jump approximation. The QCL formulation can be shown to be
exact for the spin-boson model so our comparison with numerically exact
results for this model tests only the approximations in the implementation
scheme. Calculations on models for which this formulation is not exact would
offer more challenging tests and may provide a more stringent basis for com-
paring the different methods in future studies.

While the two methods are, at face value, quite different in the ways in
which full quantum dynamics is reduced to quantum-classical dynamics, there
are common elements in the manner in which they are simulated. The Trotter-
based scheme for QCL dynamics makes use of the adiabatic basis and is based
on surface-hopping trajectories where transitions are sampled by a Monte
Carlo scheme that requires reweighting. Similarly, ILDM calculations make
use of the mapping hamiltonian basis and also involve a similar Monte Carlo
sampling with reweighting of trajectories in the ensemble used to obtain the
expectation values of quantum operators.

As noted above, however, the theoretical frameworks of the two approaches
appear quite different. This is a common situation in mixed quantum-classical
simulations: many methods exist, and they may have very different ranges of
applicability. A systematic assessment of differences and similarities, of the
accuracy of various approximations, and in general of their relative merits
presents a significant challenge. Investigating the relationships between dif-
ferent methods, however, can provide a better understanding of the nature,
advantages and limitations of mixed quantum-classical methods in general,
and may lead to a more firm theoretical foundation on which to base the
development of new methods, as well as more efficient algorithms for imple-
mentation.

The two methods described in this Chapter are good candidates for such
comparative investigation. They are both derived employing well-defined ap-
proximations to exact quantum expressions and they can be used to study
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the same set of, general, observables. Furthermore, it has already been shown
that, for some choices of the quantum sub-system basis set, QCL can be ob-
tained via a linearization procedure that shares some similarities with the
linerization used to derive the ILDM propagation [4]. Future work will inves-
tigate the theoretical connections between the methods that, as a first step,
we have compared in their existing formulations in this Chapter.
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Abstract. A rigorous derivation of quantum-classical equations of motion is still
lacking. The framework proposed so far to describe in a consistent way the dynamics
of a mixed quantum-classical system using systematic approximations have failed.
A recent attempt to solve the inconsistencies of quantum-classical approximated
methods by introducing a group-theoretical approach is discussed in detail. The new
formulation which should restore the consistency of the proposed quantum-classical
dynamics and statistical mechanics will be shown to produce, instead, a purely
classical description. In spite of that, the discussed approach remains interesting
since it could produce non-trivial formulations.

1 Introduction

The formulation of a consistent scheme to derive mixed quantum-classical
equations of motion is a relevant goal both from a purely theoretical point of
view and for practical (e.g., computational) applications.

Although the constituents of matter are ultimately quantum objects, in
many circumstances the behaviour of nuclei is satisfactorily described by the
laws of classical mechanics. This is the reason why classical molecular dy-
namics is a formidable tool to derive the statistical properties of macroscopic
bodies. However, there are situations in which the classical description is not
suitable, because at least some degrees of freedom behave according to the
laws of quantum mechanics. Examples are given by the motion of light parti-
cles in a system composed by heavier particles (e.g., an electron or a proton
diffusing in a condensed phase system), or the interaction of spin variables
with the surrounding environment. In this case, the alternative route of a full
quantum dynamical approach is usually made arduous by the large number of
degrees of freedom: the solution of the time-dependent Schrödinger equation
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for the full many-body wavefunction of a macroscpic body is not computa-
tionally achievable.

The question then arises if a convenient mixed quantum-classical descrip-
tion exists, which allows to treat as quantum objects only the (small number
of) degrees of freedom whose dynamics cannot be described by classical equa-
tions of motion. Apart in the limit of adiabatic dynamics, the question is open
and a coherent derivation of a consistent mixed quantum-classical dynamics
is still lacking. All the methods proposed so far to derive a quantum-classical
dynamics, such as the linearized path integral approach [2, 6, 7], the coupled
Bohmian phase space variables dynamics [3,4,9] or the quantum-classical Li-
ouville representation [11, 17–19], are based on approximations and typically
fail to satisfy some properties that are expected to hold for a consistent me-
chanics [5, 19].

Let us briefly discuss, as an example of inconsistency, the case of the
quantum-classical Liouville representation [19]. The starting point of such a
derivation is the Liouville-von Neumann equation of motion for the evolution
of the density matrix ρ̂,

∂ρ̂

∂t
= − i

�

[
Ĥ, ρ̂

]
(1)

where � is the reduced Planck constant, Ĥ is the hamiltonian operator, and
[ · , · ] is the commutator. The hamiltonian Ĥ can be generically written as

Ĥ =
P̂ 2

2M
+

p̂2

2m
+ V̂

(
r̂, R̂
)
=

P̂ 2

2M
+ ĥ

where we assumed that the system can be divided into two interacting
subsystems, respectively composed by n light particles of mass m, with
phase-space coordinates (r, p) = (r1, . . . , rn, p1, . . . , pn) and by N heavy
particles of mass M (M � m) with phase-space coordinates (R,P ) =
(R1, . . . , RN , P1, . . . , PN ).

To exploit the classical nature of the heavier particles, it is convenient to
introduce the partial Wigner transform [10] for the density matrix,

ρ̂w(R,P ) =
(

1
2π�

)3N ∫
dz eiPz/�

〈
R− z

2

∣∣∣ ρ̂ ∣∣∣R+
z

2

〉
(2)

and for a generic operator Â,

Âw(R,P ) =
∫

dz e−iPz/�
〈
R+

z

2

∣∣∣ Â ∣∣∣R− z

2

〉
. (3)

The last expression allows us to write the partial Wigner transform of the
hamiltonian

Ĥw (R,P ) =
P 2

2M
+

p̂2

2m
+ V̂ (r̂, R) =

P 2

2M
+ ĥw(R)
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which acts as an operator on the quantum degrees of freedom, through the
dependence on r̂ and p̂, and is a function of the classical phase-space variables
(R,P ).

Performing the partial Wigner transform in eq.(1) and applying the rule
for the partial Wigner transform of the product of two operators [10](

ÂB̂
)
w
= Âw (R,P ) e

�Λ
2i B̂w (R,P ) (4)

we obtain

∂ρ̂w
∂t

= − i

�

[
Ĥw(R,P )e

�Λ
2i ρ̂w(R,P )− ρ̂w(R,P )e

�Λ
2i Ĥw(R,P )

]
. (5)

The operator Λ is given by Λ ≡←∇P
→
∇R − ←

∇R
→
∇P= −{ · , · }, where { · , · }

are the Poisson brackets with respect to the classical phase-space variables
(R,P ) [10].
A quantum-classical approximation for eq.(5) can be obtained by expanding
the exponential operator in a power series of the reduced Planck constant �

(or, equivalently, in a power series of (m/M)1/2 [11])

e
�Λ
2i � 1 +

�Λ

2i
+O(�2). (6)

Using this approximation, eq.(5) becomes [5, 11]

∂ρ̂w
∂t

= − i

�

[
Ĥw, ρ̂w

]
+

1
2

({
Ĥw, ρ̂w

}
−
{
ρ̂w, Ĥw

})
≡ −

(
Ĥw, ρ̂w

)
. (7)

However, the quantum-classical brackets ( · , · ) introduced in eq.(7) are not
Lie brackets [19], because they do not satisfy properties that are instead
satisfied by the commutator and the Poisson brackets (respectively, quantum
and classical Lie brackets), e.g., the Jacobi identity.

Indeed, the product
(
ÂB̂Ĉ

)
w

is associative but, if the exponential oper-
ator is linearized, we obtain[(

Âw

(
1 +

�Λ

2i

)
B̂w

)(
1 +
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2i

)
Ĉw

]
=[

Âw

(
1 +

�Λ

2i

)(
B̂w

(
1 +

�Λ

2i

)
Ĉw

)]
+O(�2).

As a consequence, the Jacobi identity is no longer valid, and instead((
Âw, B̂w

)
, Ĉw

)
+
((

Ĉw, Âw

)
, B̂w

)
+
((

B̂w, Ĉw

)
, Âw

)
= O(�).

An immediate and undesirable consequence of the violation of the Jacobi iden-
tity is that the quantum-classical brackets between two constants of motion
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are no longer a constant of motion, as it would instead be expected within a
consistent formulation of quantum-classical dynamics.

Another important property which is missed by the approximate quantum-
classical mechanics based on the Liouville representation is the time trasla-
tional invariance of the response functions at equilibrium, i.e., given any two
operators Â and B̂,〈(

B̂†w, Âw(t)
)〉

eq
�=
〈(

B̂†w(τ), Âw(t+ τ)
)〉

eq
, (8)

where the subscript eq indicates that the averages are calculated at equilib-
rium. As a consequence of non-associativity, the Kubo formula [16] holds only
approximately, since(

ρ̂w, B̂
†
w

)
=
∫ β

0

dλ ρ̂w

(
1 +

�Λ

2i

)
˙̂
B†w(−i�λ) +O(�).

The inconsistencies arising from the formulation of quantum-classical mechan-
ics based on eq.(7) are at the origin of important complications within numer-
ical implementations of the resulting quantum-classical molecular dynamics.

Recently, a formal derivation of a consistent quantum-classical mechanics
has been proposed [12–14, 20], which is based on a group-theoretical formu-
lation of quantum and classical mechanics. The quantum-classical brackets
introduced thereby are easily shown to obey the Jacobi identity. Therefore,
the resulting quantum-classical mechanics has attracted a great interest, and
some effort was devoted to clarify the meaning of the quantum-classical brack-
ets and of the coupling between the quantum and the classical subsystems. In
the formal derivation, the two subsystems were equipped with two different
values of the Planck constant, h1 and h2. The quantum-classical limit was
then formally obtained as the limit h1 → h and h2 → 0. However, a deeper
glance at the formal derivation allowed us to put in evidence the purely clas-
sical nature of the assumedly quantum-classical equations of motion [1]. The
present work is devoted to a pedagogical derivation of this result. This is not
without interest, since the group-theoretical approach may provide the tools
to introduce more successful schemes. We failed until now, but our failure is
far from conclusive.

The plan of the paper is the following. In section 2 we introduce the ele-
ments at the basis of the Heisenberg group representation representation the-
ory [12–14,20] that are needed to understand the alternative group-theoretical
formulation of quantum mechanics. In section 3 the Heisenberg representa-
tion of quantum mechanics (with the time dependence transferred from the
vectors of the Hilbert space to the operators) is used to introduce quantum
observables and quantum Lie brackets within the group-theoretical formalism
described in the previous section. In section 4 classical mechanics is obtained
by taking the formal limit h → 0 of quantum observables and brackets to
obtain their classical counterparts. Section 5 is devoted to the derivation of
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the mixed quantum-classical mechanics, as presented in Ref. [15], and to the
proof that the proposed ansatz brings to a purely classical evolution [1]. A
deeper discussion concerning this proof is contained in section 6. Throughout
the paper we indicate with h the Planck constant and with � the reduced
Planck constant, such that h = 2π�.

2 Heisenberg group description

In this section, we provide a succinct survey of the definitions and results
of group theory required for a group-theoretical formulation of quantum and
classical mechanics, which are the objects of the following sections.

A group G is a set of elements g equipped with an application G×G → G

(called multiplication) such that ∀g1, g2 ∈ G also g1g2 ∈ G, and for which the
following properties hold:

associativity (g1g2) g3 = g1 (g2g3) ∀ g1, g2, g3 ∈ G

existence of the identity ∃ e ∈ G such that eg = ge = g, ∀ g ∈ G

existence of the inverse ∀ g ∈ G∃ g−1 ∈ G such that g−1g = gg−1 = e.

The definition is very abstract. In general, the nature of a group G can be
understood by studying its representations, ρ(g), by linear operators acting on
vector spaces V of various dimensions. The formulation of quantum mechanics
we deal with requires that the elements of the group are associated with
linear operators acting on a vector Hilbert space V , since we need a one to
one correspondence between group elements and the linear operators of the
chosen representation. The application ρ(g) defines then an isomorphism of
the group. In particular, ρ(e) = Î, where Î is the identity operator acting on
V .

The representation is called unitary if ρ(g) is a unitary operator for all g.
The representation ρ(g) is called irreducible if a non-trivial invariant subspace
V1 does not exist4. We are now ready to introduce the Heisenberg group, which
is the main object of this section.

The Heisenberg group Hn is defined by the nature of its elements g and
by the law which defines the multiplication between group elements. Each
element is a set of 2n+ 1 variables

g ≡ (s, x, y) where s ∈ R; x, y ∈ Rn.

The variables carry physical units: s has units of the inverse of an action[
tm−1l−2

]
, x has units of the inverse of a length

[
l−1
]
; y has units of the

inverse of a momentum
[
tm−1l−1

]
. The multiplication law is5

4 An invariant subspace of the representation ρ(g) is a subspace V1 of the Hilbert
space V such that for all g ∈ G and ψ ∈ V1, ρ(g)ψ ∈ V1.

5 The products xy′ and x′y are understood as scalar products in Rn. This conven-
tion for products involving the variables x and y will be maintained henceforth.
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gg′ = (s, x, y)(s′, x′, y′) =
(
s+ s′ +

1
2
(xy′ − x′y), x+ x′, y + y′

)
. (9)

It is therefore evident that Hn is a non-abelian group (i.e., gg′ �= g′g). The
identity and inverse elements are e = (0, 0, 0) and g−1 = (−s,−x,−y), respec-
tively, as it is easily proved using eq.(9).

The formulation of quantum mechanics requires a representation of the
Heisenberg group on the Hilbert space L2 (Rn) spanned by the functions ψ (ξ)
where the variable ξ indicates a n−dimensional vector ξ = (ξ1 . . . , ξn) whose
elelments have physical units of a length [l]. Let us first introduce the set
of operators, generators of the Lie group Hn, Î, X̂j , and hD̂j (j = 1, . . . , n)
satisfying the commutation relation

2π
[
X̂j , hD̂k

]
= ihδjk.

The operators Î, X̂j , and hD̂j are identified with the identity, position and
momentum operators on L2 (Rn), respectively. Their action is specified as
follows

Îψ(ξ) = ψ(ξ)
X̂jψ(ξ) = ξjψ(ξ)

hD̂jψ(ξ) = −i�
∂

∂ξj
ψ(ξ).

(10)

These operators are used to define the isomorphism ρ(g) which characterizes
the unitary irreducible and infinite-dimensional representation of Hn, through
the exponential map

ρh(g) = e2πi(−hsÎ+yhD̂+xX̂), (11)

where we made explicit that the representation of the Heisenberg group has
a parametric dependence on the Planck constant. The set of operators ρh(g)
preserves the multiplication law in eq.(9), i.e.,

ρh(g)ρh(g′) = ρh(gg′), (12)

and ρh(e) ≡ ρh(0, 0, 0) = Î. The proof of eq.(12) will be left to the reader. It
requires the use of the Weyl identity6

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂] (13)

6 The proof of eq.(12) is obtained starting from Weyl identity, by showing that the
r.h.s.,

e2πi(−hsÎ+yhD̂+xX̂)e2πi(−hs′ Î+y′hD̂+x′X̂) = e2πi[−h(s+s′)Î+(y+y′)hD̂+(x+x′)X̂]

e−2π2
P

j,k[hD̂j ,X̂k](x′
kyj−xky′

j),

is exactly ρh(gg′).
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which holds whenever the commutator of two operators Â and B̂ commutes
with both, as it is the case for X̂j and hD̂k.

The Weyl identity is also used to derive the identity

e2πi(−hsÎ+yhD̂+xX̂) = e−2πih(s+ 1
2xy)e2πiyhD̂e2πixX̂ , (14)

which is used to determine the action of the representation ρh(g) on each
element of the Hilbert space ψ(ξ) ∈ L2 (Rn):

ρh(s, x, y)ψ(ξ) = e−2πihs+2πiξx+πihxyψ (ξ + hy) , (15)

where we also used eqs.(10).
Although the representation of the Heisenberg group on L2

(
R2n
)
allows

for a straightforward formulation of quantum mechanics, in the following we
shall also discuss the classical limit. This is much more easily obtained by a
different representation of the group, acting on a vector space F2

h ⊂ L2

(
R2n
)
,

spanned by the functions f(q, p), where both q and p are n−dimensional
vectors, whose components carry physical units of a length and a momentum,
respectively. As we shall see, these variables yield, in the classical limit, the
values of the corresponding observables.

The vector space F2
h is defined through the application w acting on L2 (Rn)

such that

f(q, p) = w [ψ(ξ)] (q, p) ≡
〈
Φ0(ξ), ρh

(
0,− 2

h
p,

2
h
q

)
ψ(ξ)

〉
L2(Rn)

, (16)

which is called Fourier-Wigner transform [8]. The symbol 〈 · , · 〉L2(Rn) indi-
cates the standard scalar product in L2(Rn),

〈ψ1(ξ), ψ2(ξ)〉L2(Rn) ≡
∫

Rn

dξψ∗1(ξ)ψ2(ξ)

and Φ0(ξ) is a real normalized gaussian in L2(Rn)

Φ0(ξ) =
(

2
hΔ

)n
4

e−
π

hΔ ξ
2
.

As the value of the parameter Δ is immaterial, in the following we set Δ = 1.
The map w from L2(Rn) to F2

h is a one-to-one mapping of ψ(ξ), onto
f(q, p) (by definition), i.e.,

surjective (onto) ∀ f ∈ F2
h, ∃ψ ∈ L2 (Rn) such that f = w [ψ]

injective (one-to-one) ∀ψ1, ψ2 ∈ L2 (Rn) , f1 = f2 if and only if ψ1 = ψ2,

with f1, f2 ∈ F2
h.

If we define the norm of the function f(q, p) as
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||f ||F2
h
≡
(
4
h

)n ∫
R2n

dqdp |f(q, p)|2 , (17)

the Fourier-Wigner transform preserves the distances

d [ψ1, ψ2] ≡ ||ψ1 − ψ2||L2(Rn) = d [f1, f2] ≡ ||f1 − f2||F2
h
.

To demonstrate this equality, we show that the Fourier-Wigner transform
preserves the norm. The action of ρh on ψ can be determined by means of
eq.(15), which yields

ρh

(
0,− 2

h
p,

2
h
q

)
ψ(ξ) = e−

4πi
h pqe−

4πi
h p(ξ+2q)ψ(ξ + 2q). (18)

The scalar product in L2(Rn) brings then to the result

f(q, p) =
(
2
h

)n
4
∫

Rn

dξe−
4πi
h pqe−

4πi
h p(ξ+2q)ψ(ξ + 2q)e−

π
h ξ

2
, (19)

which gives the expression of the function f(q, p) obtained from the function
ψ(ξ).

The proof of the equivalence of the two norms is straightforward, since we
have only to calculate the integral

||f ||F2
h
= 2n

(
2
h

) 3
2n

×∫
R2n

dqdp

∫
R2n

dξdξ′e−
8π
h q

2
e−

π
h (ξ2+ξ′2)e−

4π
h q(ξ+ξ

′)e−
4πi
h p(ξ−ξ′)ψ(ξ)ψ∗(ξ′).

The integration over the variable p gives as result (h/2)nδ(ξ − ξ′) and this
makes trivial the integration over ξ′,

||f ||F2
h
= 2n

(
2
h

)n
2
∫

Rn

dq

∫
Rn

dξe−
2π
h (ξ+2q)2 |ψ(ξ)|2 .

The integral over q is a gaussian integral that yields to the final result

||f ||F2
h
=
∫

Rn

dξ |ψ(ξ)|2 = ||ψ||L2(Rn) .

Using the Fourier-Wigner transform, we can calculate the explicit expres-
sions for position and momentum operators, corresponding to eqs.(10). The
transformation is applied to the functions X̂jψ(ξ) and hD̂jψ(ξ) to obtain the
results

w
[
X̂jψ(ξ)

]
(q, p) = w [ξjψ(ξ)] (q, p)

and
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w
[
hD̂jψ(ξ)

]
(q, p) = w

[
h

2πi
∂

∂ξj
ψ(ξ)

]
(q, p).

For instance, the expression of the position operator is calculated starting
from the expression

w [ξjψ(ξ)] (q, p) =
(
2
h

)n
4
∫

Rn

dξ e−
4πi
h p(ξ+q)e−

π
h (ξ+2q)2ξψ(ξ),

which is obtained from eq.(18). Due to the exponential dependence of the
integrand on p, the multiplication by ξ inside the integral is equivalent to the
action of the operator

− 1
2πi

(
h

2
∂

∂p
− 2πiq

)
where ∂/∂p acts on the function e−

4πi
h p(ξ+q). The operator can be brought

outside the integral and we find that it acts on the remaining expression,
which is exactly f(q, p), as given by eq.(19). The same procedure is performed
to calculate te expression of hD̂ on f(q, p) and this yields the expressions we
are looking for,

X̂jf(q, p) =
(
qj +

ih

4π
∂

∂pj

)
f(q, p)

hD̂jf(q, p) =
(
pj − ih

4π
∂

∂qj

)
f(q, p)

(20)

with j = 1, . . . , n. These expressions are particularly suitable to obtain the
classical limits, since the action of each operator is simply multiplicative in
the corresponding classical variable, and the operatorial part vanishes when
the formal limit h → 0 is taken.

Eqs.(20) are also used to calculate the expression describing the action of
the operator ρh(g) on the vector space F2

h. We start introducing in eq.(14)
the expressions given by eqs.(20) for position and momentum operators,

ρh(s, x, y) = e−2πih(s+ 1
2xy)ey(

h
2

∂
∂q +2πip)e−x(

h
2

∂
∂p−2πiq).

The application of this operator to f(q, p) gives

ρh(s, x, y)f(q, p) = e2πi(−hs+qx+py)+πihxyf
(
q +

h

2
y, p− h

2
x

)
, (21)

which is the expression corresponding to eq.(15).
We described so far the mathematical apparutus which will be used to

obtain a group-theoretical formulation of quantum mechanics (section 3), by
means of the Heisenberg group, and to obtain the connection between quan-
tum and classical mechanics (section 4) within the group-theoretical formal-
ism.
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3 Quantum mechanics

In order to discuss the group-theoretical formulation of quantum mechan-
ics, which is the object of this section, we need to show that the infinite-
dimensional representation of the Heisenberg group ρh(g) can be used as a
basis for the vector space of hermitian operators [8].

In the formalism of quantum mechanics, observables are associated to her-
mitian operators that act on the Hilbert space of square integrable functions
representing the state of the quantum system. In the following, for the sake
of definiteness, we shall consider hermitian operators B̂ which can be written
as hermitain combinations of position and momentum operators,

B̂ ≡ B̂
(
X̂, hD̂

)
,

and cover the most familiar examples of observables (e.g., energy, angular
momentum, virial, ...)

Interestingly, hermitian operators can be expressed as a Fourier-like ex-
pansion with the basis provided by the operators ρh(g),

B̂
(
X̂, hD̂

)
=
∫

Hn

dg B̃(g)ρh(g)

≡
∫

R2n+1
dsdxdy B̃(s, x, y)e2πi(−hsÎ+yhD̂+xX̂). (22)

Thus, a generic hermitian operator can be expressed in terms of the represen-
tation of the group Hn. The existence of this expansion is demonstrated in
Appendix 1. There, we also prove that the functions B̃(g) have to be obtained
as the inverse Fourier transform of the functions Bw (q, p) of the phase-space
variables (q, p) = (q1, . . . , qn, p1, . . . , pn), which are associated to the quan-
tum operators, B̂, via the Wigner transform [10]. Since we are considering
hermitian operators of the form B̂

(
X̂, hD̂

)
, the coefficients in eq.(22) are

B̃(s, x, y) = δ(s)
∫

R2n

dqdpBw(q, p) e−2πi(qx+py) (23)

where the presence of δ(s) is the consequence of the assumed independence
of B̂ (or, equivalently of Bw) on hÎ, that is the operator conjugated to s in
the expansion (22). As shown in Appendix 1, the function Bw (q, p) has to
be obtained from eq.(3). This is a standard way to associate functions of the
phase-space variables (q, p) to hermitian operators, like B̂, that are hermitian
combinations of position and momentum operators.

Since the commutator of two hermitian operators multiplied by the imag-
inary unit, i[Â, B̂] ≡ i(ÂB̂ − B̂Â), is still a hermitian operator, it can be
represented by an expression similiar to eq.(22),

i
[
Â, B̂

]
= i

∫
Hn

dg

([̃
Â, B̂

])
(g)ρh(g), (24)
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where we have to determine explicitly the quantity in brackets. As we show
hereafter, it can be expressed as a convolution integral on the group Hn. The
product ÂB̂ is

ÂB̂ =
∫

Hn

dg Ã(g)ρh(g)
∫

Hn

dg′ B̃(g′)ρh(g′). (25)

Here, we make use of the property of the representation ρh(g) given in eq.(12)
and we write

ÂB̂ =
∫

Hn

dg

∫
Hn

dg′ Ã(g)B̃(g′)ρh(gg′).

Performing the change of variable g′′ = gg′ (i.e., g′ = g−1g′′) we find

ÂB̂ =
∫

Hn

dg′′
[∫

Hn

dg Ã(g)B̃(g−1g′′)
]
ρh(g′′).

The convolution product in square brackets is indicated as(
Ã ∗ B̃

)
(g′′) ≡

∫
Hn

dg Ã(g)B̃(g−1g′′). (26)

This is used to write the commutator as[
Â, B̂

]
=
∫

Hn

dg′′
(
Ã ∗ B̃ − B̃ ∗ Ã

)
(g′′)ρh(g′′).

Further manipulations can be performed on the convolution products in the
integral(

Ã ∗ B̃ − B̃ ∗ Ã
)
(g′′) =

∫
Hn

dg
[
Ã(g)B̃(g−1g′′)− B̃(g)Ã(g−1g′′)

]
.

The change of variable g′ = g−1g′′ (i.e., g = g′′g′−1) in the second term on
the r.h.s. yields(

Ã ∗ B̃ − B̃ ∗ Ã
)
(g′′) =

∫
Hn

dg Ã(g)B̃(g−1g′′)−
∫

Hn

dg′ B̃(g′′g′−1)Ã(g′).

Since g′ is an dummy integration variable, it is possible to change g′ → g and
obtain the result(

Ã ∗ B̃ − B̃ ∗ Ã
)
(g′′) =

∫
Hn

dg Ã(g)
[
B̃(g−1g′′)− B̃(g′′g−1)

]
≡
[̃
Â, B̂

]
(g′′). (27)

This result can be inserted in eq.(24) to obtain an implicit expression for the
commutator.
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The group-theoretical formalism we have introduced so far is particularly
suited to formulate quantum mechanics in the Heisenberg representation,
where the time dependence is shifted from the wavefunctions to the oper-
ators. As we shall show in the next section, the formalism allows to show in a
straightforward way that the Poisson brackets are obtained as a formal limit
of the commutator when h → 0.

In the following, we indicate the time derivative of a hermitian operator B̂
with the symbol ˙̂

B. In the Heisenberg representation of quantum mechanics,
it obeys the Heisenberg equation of motion

˙̂
B =

2π
ih

[
B̂, Ĥ

]
. (28)

This equation defines the quantum Lie brackets and consequently the operator
2π/(ih)

[
· , Ĥ
]
, which generates the dynamical evolution of B̂.

To take full advantage of the group-theoretical formulation, it is desirable
to write the pre-factor 2π/(ih) in eq.(28) as a group integral of a suitable op-
erator. This is achieved introducing the antiderivative operator A [12], which
acts on functions f(s) ∈ Lv1(R), Lv1(R) being the linear subspace of L1(R)
such that

lim
s→−∞ s

∫ s
−∞

ds′ f(s′) = 0 lim
s→+∞ s

∫ +∞

s

ds′ f(s′) = 0.

The antiderivative operator acts as

[Af ] (s) = 4π2

∫ s
−∞

ds′ f(s′)

and it is easily proved that the equalities (∂/∂s)A = A(∂/∂s) = 4π2Î hold in
Lv1(R). The equality∫

R

ds
[
AB̃
]
(s) e−2πihs =

2π
ih

∫
R

ds B̃(s) e−2πihs (29)

can be derived as it is shown in [12] with an integration by parts.
Introducing the operatorA to get the pre-factor in eq.(28) and representing

the commutator by means of eq.(24) and eq.(27), we write the r.h.s. of the
Heisenberg equation of motion in the form

2π
ih

[
B̂, Ĥ

]
=
∫

Hn

dg

(
A
[̃
B̂, Ĥ

])
(g)ρh(g). (30)

This expression will be used in the next section to obtain the classical equation
of motion as a straighforward formal limit of the quantum equation of motion.

We summarize the results of this section. We start expressing hermitian
operators as a Fourier-like expansion, with the basis set being provided by
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the representation of the Heisenberg group ρh(g). The coefficients of such
an expansion can be obtained by inverse Fourier transform of the Wigner
transform of the initial operator. Then, we find a group-integral representation
of the commutator of two hermitian operators. These results are then used to
write the r.h.s. of the Heisenberg equation of motion as a group integral, after
introducing the antiderivative operator A. As we will discuss in section 4, the
presence of the operator A removes the apparent singularity of the Heisenberg
equation of motion (28) when h → 0. Therefore, the formal limit h → 0
(classical limit) can be taken and yields the classical equation of motion, giving
a prescription on the connection between quantum and classical mechanics.

4 Classical mechanics

This section is devoted to the derivation of classical mechanics (observables
and equations of motion) as a formal limit of quantum mechanics, within
the group-theoretical formulation discussed in the previous sections. To this
purpose, we need to recall here some properties of the Heisenberg group.

First of all, we want to emphasize once again the parametric dependence
of the representatives of the group Hn on the Planck constant h,

ρh(g) = e2πi(−hsÎ+yhD̂+xX̂).

Another crucial ingredient to derive classical mechanics, is the Fourier-
Wigner transform, defined in eq.(16). Thereby, we introduced the vector space
F2
h ⊂ L2(R2n) spanned by the functions f(q, p), on which position X̂j and

momentum hD̂j operators (as usual, j = 1, . . . , n is a vector index in Rn) act
as

X̂jf(q, p) =
(
qj +

ih

4π
∂

∂pj

)
f(q, p),

hD̂jf(q, p) =
(
pj − ih

4π
∂

∂qj

)
f(q, p).

Finally, when these expressions are inserted into ρh(g) to determine the action
of the representatives of the Heisenberg group on F2

h, we obtain

ρh(s, x, y) = e−2πih(s+ 1
2xy)ey(

h
2

∂
∂q +2πip)e−x(

h
2

∂
∂p−2πiq).

When the formal limit h → 0 is taken on X̂j and hD̂j , we obtain

lim
h→0

X̂jf(q, p) = qj f(q, p),

lim
h→0

hD̂jf(q, p) = pj f(q, p),
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i.e., the generators of the group act multiplicatively, and the corresponding
eigenvalues are the classical counterparts of position and momentum opera-
tors. Thus, q and p are to be interpreted as the phase-space variables. The
above expressions are used to take the limit h → 0 on ρh(g), which yields

lim
h→0

ρh(g) = ρ(q,p)(g) = ρ(q,p)(s, x, y) = e2πi(qx+py). (31)

Hence, we see that the isomorphic representation of the group Hn becomes
abelian. According to eq.(22), the classical observable B, that is a function of
the phase-space variables (q, p), can be written as

B(q, p) =
∫

Hn

dg B̃(g)ρ(q,p)(g) =
∫

R2n+1
dsdxdy B̃(s, x, y)e2πi(qx+py) (32)

having replaced ρh(g) with ρ(q,p)(g) after eq.(31). It is worth noting that the
expansion coefficients B̃(g) are the same as in eq.(22), and we only changed
the basis set elements on which the expansion is performed.

A similiar procedure is applied to obtain the time derivative Ḃ(q, p). As
we did for eq.(22) to deduce eq.(32), we will calculate

lim
h→0

∫
Hn

dg

(
A
[̃
B̂, Ĥ

])
(g)ρh(g) =

∫
Hn

dg

(
A
[̃
B̂, Ĥ

])
(g)ρ(q,p)(g)

in which the limit is taken on ρh(g) only, because it is the only element
depending on h. The corresponding expression yields the time derivative of
the function B(q, p),

Ḃ(q, p) =
∫

Hn

dg

(
A
[̃
B̂, Ĥ

])
(g)ρ(q,p)(g) (33)

represented as a Fourier-like expansion on the basis set ρ(q,p)(g). As before,
the coefficients in this expansion are[̃

B̂, Ĥ
]
= B̃ ∗ H̃ − H̃ ∗ B̃.

To find the explicit expression of the r.h.s. in eq.(33) we have to show how
the antiderivative operator acts. In this case we have∫

R

ds
[
AB̃
]
(s) =

∫
R

ds B̃(s) (−4π2s) (34)

as it is easily obtained performing an integration by parts [12]. If the result
in eq.(34) is inserted in eq.(33) we can write

Ḃ(q, p) =
∫

R2n+1
dsdxdy

[̃
B̂, Ĥ

]
(s, x, y)

(−4π2 s
)
e2πi(qx+py).
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Hence, by making the convolution product in
[̃
B̂, Ĥ

]
explicit and by alge-

braically manipulating the expression as shwon in Appendix 2, we obtain the
Poisson brackets between the function B(q, p) and the hamiltonian H.c.(q, p)

Ḃ(q, p) =
∂B(q, p)

∂q

∂H.c.(q, p)
∂p

− ∂B(q, p)
∂p

∂H.c.(q, p)
∂q

≡ {B(q, p),H.c.(q, p)}(q,p) . (35)

We have thus obtained the expected result: classically, the time derivative of a
function of the phase-space (that does not depend explicitly on time) is given
by the Poisson brackets between the function itself and the hamiltonian. This
result has been obtained by taking the formal limit h → 0 on the quantum
expression in eq.(30), i.e.,

lim
h→0

2π
ih

[
B̂
(
X̂, hD̂

)
, Ĥ
(
X̂, hD̂

)]
= {B(q, p),H.c.(q, p)}(q,p) . (36)

The apparent singularity of the pre-factor 2π/(ih) in the l.h.s. for h = 0 is
removed because of the presence of ρh(g) in the Fourier-like expansion of the
commutator. The limit for h → 0 exists and indeed it corresponds to the
Poisson brackets.

This result concludes the presentation of the Heisenberg group approach
as the powerful tool that allows to derive classical mechanics as a formal limit
of quantum mechanics, for h → 0. The most important ingredients that have
been introduced to obtain this result are the Fourier-like representation of
observables and equations of motion and the definition of the antiderivative
operator. These elements will be used in section 5 to derive a similiar proce-
dure for a mixed quantum-classical mechanics. An ansatz on the quantum-
classical equations of motion will be necessary, but the subsequent application
of Heisenberg group formalism will be a straightforward generalization of what
has been done so far.

5 Mixed quantum-classical dynamics

In the present and in the following section we discuss the application of the
group-theoretical formalism to the formulation of quantum-classical mechan-
ics. Our purpose is to determine evolution equations for two coupled sub-
systems, with two different degrees of quantization. We have shown in the
previous sections that the classical behaviour of a system is formally obtained
as a limiting case of the quantum behaviour, when the Planck constant h tends
to zero. In this section we will associate two different values of the Planck con-
stant, say h1 and h2, to the two subsystems and introduce suitable Lie brackets
to determine the evolution of the two subsystems [15]. The consistency, e.g.,
with respect to Jacobi identity, is guaranteed by the very definition of the
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quantum-classical brackets. The claim is that the formal limit h1 → h, h2 → 0
should allow for a quantum-classical description, obtained by a consistent and
formally rigorous derivation. However, problems arise when we try to single
out the starting assumptions. Quantum dynamics is described by the Heisen-
berg equation of motion: the group-theoretical formalism has been successfully
applied to translate this equation by means of the irreducible representations
of the Heisenberg group. Classical dynamics has been subsequently obtained
as a formal limit of quantum dynamics, letting h → 0 in the quantum equa-
tion of motion. The expression for the generator of the time evolution in the
mixed quantum-classical case is instead unknown, i.e., we are not equipped
with quantum-classical Lie brackets which take the place of the commutator
or of the Poisson brackets. In Ref. [15], an ansatz for quantum-classical Lie
brackets has been introduced. However, these assumedly quantum-classical
brackets produce instead a purely classical evolution. In this section we will
describe the derivation of the supposed quantum-classical equations of motion
whereas in section 6 this derivation will be commented and corrected.

In Ref. [15] the group Dn has been introduced as the direct sum of two
Heisenberg groups, Dn ≡ Hn ⊕ Hn. The elements of Dn are

g ≡ (g1; g2) where g1 ∈ Hn, g2 ∈ Hn.

The multiplicative law is

gg′ = (g1; g2)(g′1; g
′
2) = (g1g

′
1; g2g

′
2)

where the products gig
′
i, with i = 1, 2, are read off eq.(9),

gig
′
i =
(
si + s′i +

1
2
(xiy′i − x′iyi), xi + x′i, yi + y′i

)
.

As in section 2, we introduce the identity, position and momentum operators,
labelling the two subsystems with α = 1, 2, Îα, X̂j,α, hαD̂j,α (as before, j =
1, . . . , n is a vector index in Rn), whose commutation relations are

2π
[
X̂j,α, hβD̂k,β

]
= ihαδαβδjk. (37)

and we define the unitary irreducible infinite-dimensional representation
ρh1,h2(g1; g2) of the group Dn as

ρh1,h2(g1; g2) = e2πi(−h1s1Î1+y1h1D̂1+x1X̂1)e2πi(−h2s2Î2+y2h2D̂2+x2X̂2) (38)
= ρh1(g1)ρh2(g2). (39)

As in eq.(12), we have

ρh1,h2(g1; g2)ρh1,h2(g
′
1; g

′
2) = ρh1,h2(g1g

′
1; g2g

′
2) (40)

using eq.(13) also for this proof.



Non-Adiabatic Quantum-Classical Statistical Mechanics 453

On the Hilbert space L2

(
R2n
)
spanned by the functions ψ (ξ1; ξ2), where7

(ξ1, ξ2) = (ξ1,1 . . . , ξ1,n, ξ2,1 . . . , ξ2,n), identity, position and momentum oper-
ators, introduced above, act as

Îαψ (ξ1; ξ2) = ψ (ξ1; ξ2)
X̂j,αψ (ξ1; ξ2) = ξα,jψ (ξ1; ξ2)

hD̂j,αψ (ξ1; ξ2) = −i�α
∂

∂ξα,j
ψ (ξ1; ξ2) ,

(41)

having used the relations in eqs.(10). More useful expressions for these oper-
ators, that will be used later, are obtained after defining the Fourier-Wigner
transform which yields the functions f(q1, p1; q2, p2) ∈ F2

h1,h2
⊂ L2(R4n) of

the phase-space variables8 (q1, p1; q2, p2) = (q1,1 . . . , q1,n, p1,1 . . . , p1,n;
q2,1 . . . , q2,n, p2,1 . . . , p2,n) from ψ (ξ1; ξ2) ∈ L2

(
R2n
)
,

f(q1, p1; q2, p2) = w [ψ(ξ1, ξ2)] (q1, p1; q2, p2)

=
〈
Φ0(ξ1, ξ2), ρh1,h2

(
0,− 2

h1
p1,

2
h1

q1; 0,− 2
h2

p2,
2
h2

q2

)
ψ(ξ1, ξ2)

〉
L2(R2n)

(42)

having simply generalized its espression in eq.(16). The symbol
〈 · , · 〉L2(R2n) indicates the standard scalar product in L2(R2n),

〈ψ1 (ξ1; ξ2) , ψ2 (ξ1; ξ2)〉L2(R2n) =
∫

R2n

dξ1dξ2ψ
∗
1 (ξ1; ξ2)ψ2 (ξ1; ξ2) ,

and Φ0 (ξ1; ξ2) is a real normalized gaussian in L2(R2n)

Φ0 (ξ1; ξ2) =
(

2
h1Δ1

)n
4

e−
π

h1Δ1
ξ21

(
2

h2Δ2

)n
4

e−
π

h2Δ2
ξ22 .

As before, the values of the parameters Δ1, Δ2 are immaterial, so we set
Δ1 = Δ2 = 1.

We presented the formal elements that are necessary to discuss the mixed
quantum-classical mechanics, but we still need to define the dynamical quan-
tities characterizing the two coupled systems to which we associate h1 and h2

as the values of the Planck constant.
An observable B is represented by the expression

B̂
(
X̂1, h1D̂1; X̂2, h2D̂2

)
=
∫

Dn

dg1dg2 B̃ (g1; g2) ρh1,h2(g1; g2) (43)

and its time evolution is described by the equation of motion, first introduced
in Ref. [15],
7 The variables ξ1,j ; ξ2,j have physical units of a length.
8 The variables q1,j ; q2,j have physical units of a length and p1,j ; p2,j of a momen-

tum.
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˙̂
B
(
X̂1, h1D̂1; X̂2, h2D̂2

)
=

1
2

(
2π
ih1

+
2π
ih2

)[
B̂, Ĥ

]
. (44)

Some remarks about this equation of motion will be made later on, in section
6. Here, we only want to underline that we recover quantum and classical
dynamics by performing the limits h1, h2 → h and h1, h2 → 0, respectively.
Using an integral representation of the form of eq.(43), eq.(44) becomes

˙̂
B
(
X̂1, h1D̂1; X̂2, h2D̂2

)
=
∫

Dn

dg1dg2

(
A1 +A2

2

[̃
B̂, Ĥ

])
(g1; g2)

ρh1,h2 (g1; g2) , (45)

where the antiderivative operators A1 and A2 have been introduced. They are
defined as in eq.(3), but they only act on s1 or s2, respectively.

The property of the new (Lie) brackets (44) of being correct in the known
full quantum and full classical limits may reasonably convince ourselves that
the intermediate situation, in which h1 → h and h2 → 0, generates quantum-
classical dynamics. If the assumedly quantum-classical limit is performed on
ρh1,h2(g1; g2), we obtain

lim
h1→h,h2→0

ρh1,h2(g1; g2) = ρh(g1) ρ(q,p)(g2) (46)

= e2πi(−hs1Î+y1hD̂+x1X̂)e2πi(qx2+py2) (47)

for the quantum-classical expression of the representations of the group Dn.
The quantum-classical expression for an observable B is, using eq.(46),

B̂qc =
∫

Dn

dg1dg2 B̃ (g1; g2) ρh(g1) ρ(q,p)(g2) (48)

and its time evolution is determined by the expression

˙̂
Bqc =

∫
Dn

dg1dg2

(
A1 +A2

2

[̃
B̂, Ĥ

])
(g1; g2) ρh(g1) ρ(q,p)(g2) (49)

=
∫

Dn

dg1dg2

( π

ih
− 2π2s2

) [̃
B̂, Ĥ

]
(g1; g2) ρh(g1)ρ(q,p)(g2). (50)

The second line has been obtained by making the action of A1 and A2 in
the first line explicit, as shown in eq.(29) and eq.(34). Eq.(49) defines the
quantum-classical brackets as

lim
h1→h,h2→0

1
2

(
2π
ih1

+
2π
ih2

)[
B̂, Ĥ

]
=
[
B̂qc, Ĥqc

]
qc

, (51)

and a more explicit expression can be obtained by algebraically manipulating
eq.(50). We start by dividing eq.(50) in the two following terms
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B̂qc, Ĥqc

]
qc

=
π

ih

∫
Dn

dg1dg2

[̃
B̂, Ĥ

]
(g1; g2) ρh(g1)ρ(q,p)(g2) + (52)∫

Dn

dg1dg2

(−2π2s2

) [̃
B̂, Ĥ

]
(g1; g2) ρh(g1)ρ(q,p)(g2). (53)

We will now introduce the short-hand notation g1g2 = g and ρh(g1)ρ(q,p)(g2) =
ρqc(g) to simplify the following equations.

The term in the r.h.s. of eq.(52) has a simple interpretation, as it gives to
the standard commutator between the quantum-classical expression for the
observables B and H.c., multiplied by the factor π/(ih),

π

ih

∫
Dn

dg
[̃
B̂, Ĥ

]
(g) ρqc(g) =

π

ih

[
B̂qc, Ĥqc

]
. (54)

This is easily shown if we remember that the function
[̃
B̂, Ĥ

]
is the coeffi-

cient used for the representation of the commutator as a Fourier-like expan-
sion. Eq.(53) is more complicated but we will use the procedure adopted in
Appendix 2 on a similar expression. We will use the equality[̃

B̂, Ĥ
]
(g) =

∫
Dn

dg′
[
B̃ (g′)H.c.

(
g′−1g

)− H̃.c. (g′) B̃
(
g′−1g

)]
which is obtained by a change of variables in the equation[̃

B̂, Ĥ
]
(g) =

∫
Dn

dg′ B̃ (g′)
[
H.c.

(
g′−1g

)− H̃.c.
(
gg′−1

)]
,

used in Appendix 2. Indeed, after the change of variable g′−1g = g′′ in the
second term, we have g = g′g′′. Since g′′ is a dummy integration variable, we
set g′′ → g and write eq.(53) as∫

Dn

dg
(−2π2s2

) [̃
B̂, Ĥ

]
(g) ρqc(g) =

∫
Dn

dg

∫
Dn

dg′ρqc(g′g)
(−2π2

)
[
B̃(g′)H̃.c.(g)− H̃.c.(g′)B̃(g)

] [
s2 + s′2 +

1
2
(x′2y2 − x2y

′
2)
]
.

From the r.h.s. of this expression we obtain two terms: the first is

I1 = −2π2

∫
Dn

dg

∫
Dn

dg′
[
B̃(g′)H̃.c.(g)− H̃.c.(g′)B̃(g)

]
(s2 + s′2) ρ

qc(g′g)

(55)
and we will keep it unchanged; the second is the difference

I2 − I3 = π2

∫
Dn

dg

∫
Dn

dg′
[
H̃.c.(g′)B̃(g)− B̃(g′)H̃.c.(g)

]
× (x′2y2 − x2y

′
2) ρ

qc(g′g)
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that can still be manipulated. We use eqs.(81) to obtain9

I2 =
1
4

(
∂B̂qc

∂q

∂Ĥ.c.
qc

∂p
− ∂B̂qc

∂p

∂Ĥ.c.
qc

∂q

)
(56)

=
1
4

{
B̂qc, Ĥ.c.

qc
}

(q,p)
(57)

and10

I3 =
1
4

(
∂Ĥ.c.

qc

∂q

∂B̂qc

∂p
− ∂Ĥ.c.

qc

∂p

∂B̂qc

∂q

)
(58)

=
1
4

{
Ĥ.c.

qc
, B̂qc

}
(q,p)

. (59)

The quantum-classical brackets, using eqs.(54), (55), (57) and (59), are finally
written as[

B̂qc, Ĥ.c.
qc
]
qc

=
π

ih

[
B̂qc, Ĥ.c.

qc
]
+

1
4

[{
B̂qc, Ĥ.c.

qc
}
−
{
Ĥ.c.

qc
, B̂qc

}]
−2π2

∫
Dn

dg

∫
Dn

dg′(s2 + s′2)
[
B̃(g′)H̃.c.(g)− H̃.c.(g′)B̃(g)

]
ρqc(g′g).

(60)

We have thus reconstructed the derivation and interpreted the results of
Ref [15]. The first two terms, i.e., the commutator and the Poisson brack-
ets, are already present in a theory based on the quantum-classical Liouville
representation discussed in section 1. The new term, which appears within the
Heisenberg group approach, needs to be explained. In the attempt to provide
a physical interpretation to this term we have shown, in Ref. [1], that the new
equation of motion is purely classical. This will be illustrated in the following
section.
9 The intermediate step is

I2 =
1

4

»
∂

∂q

Z
Dn

dg′ eB(g′)ρqc(g′)
∂

∂p

Z
Dn

dggH.c.(g)ρqc(g)−

∂

∂p

Z
Dn

dg′ eB(g′)ρqc(g′)
∂

∂q

Z
Dn

dggH.c.(g)ρqc(g)

–
.

10 The intermediate step is, as before,

I3 =
1

4

»
∂

∂q

Z
Dn

dg′ gH.c.(g′)ρqc(g′)
∂

∂p

Z
Dn

dg eB(g)ρqc(g)−

∂

∂p

Z
Dn

dg′ gH.c.(g′)ρqc(g′)
∂

∂q

Z
Dn

dg eB(g)ρqc(g)

–
.
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6 Comments

This section represents the conclusive part of our work on the quantum-
classical equations of motion derived in section 5, following the prescriptions
of Ref. [15]. We will show an alternative derivation of the quantum-classical
equation of motion (60), obtained by taking the limit h1 → h, h2 → 0 in
eq.(44), which is an ansatz on the mixed dynamical generator, after making
some remarks on the equation of motion itself and on the operators used as
generators in the representation of the group Dn, i.e., the position X̂j,α and
momentum hαD̂j,α operators.

As we anticipated in the previous section, we need to underline two aspects
emerging from the analysis of eq.(44), which we recall here

˙̂
B =

1
2

(
2π
ih1

+
2π
ih2

)[
B̂, Ĥ

]
. (61)

First of all, we observe that this equation of motion couples the two sys-
tems even in the absence of an interaction potential in the hamiltonian Ĥ.
Suppose that the two systems are not coupled by the hamiltonian, that is,
the hamiltonian is the sum of two hamiltonians Ĥ1 and Ĥ2, each acting ont
the corresponding subsystem only. The time evolution of an observable B̂1

representing a property of system 1 is

˙̂
B1 =

1
2

(
2π
ih1

+
2π
ih2

)[
B̂1, Ĥ1

]
.

We used the property
[
B̂1, Ĥ2

]
= 0, because the operators B̂1 and Ĥ2 act on

two different vector spaces, each representing the state of a different subsys-
tem. The expression just written shows that the two systems influence each
other even if they are not interacting, through the presence of the Planck
constant of the subsystem whose degrees of freedom are not involved in
the commutator (h2, in this example). The peculiar form of the pre-factor
[2π/(ih1) + 2π/(ih2)] /2 is the cause of this undesirable behaviour.

The second aspect is connected to the mathematical properties at the basis
of the theory. The commutation relations holding for position and momentum
operators, as illustrated in section 2, are

2π
ih

[
X̂j , hD̂k

]
= δjk (62)

and are strictly linked to the equation of motion

˙̂
B =

2π
ih

[
B̂, Ĥ

]
.

Indeed, in this context, position and momentum operators are canonically
conjugated operators, through the relations (62). When eq.(61) is used as
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dynamical generator, new commutation relations must be introduced to define
conjugated operators, as it is correctly observed in Ref. [15]. Hence, position
X̂j,α and momentum hαD̂j,α are no longer conjugated operators, since

1
2

(
2π
ih1

+
2π
ih2

)[
X̂j,α, hβD̂k,β

]
�= δjkδαβ ,

and instead, according to eq.(62) and to the commutativity of operators re-
ferring to different subsystems, we have

2π
ihα

[
X̂j,α, hβD̂k,β

]
= δjkδαβ .

A new momentum operator P̂j,α must therefore be introduced, defined in such
a way to be canonically conjugated to X̂j,α through the commutation relations

1
2

(
2π
ih1

+
2π
ih2

)[
X̂j,α, P̂k,β

]
= δjkδαβ . (63)

The operator P̂j,α is easily shown to be

P̂j,α =
2h3−α
h1 + h2

hαD̂j,α, (64)

so it is strictly connected to the old momentum operator. Its action on the
functions ψ(ξ1; ξ2) ∈ L2(R2n) is

P̂j,αψ(ξ1; ξ2) =
2h1h2

h1 + h2

1
2πi

∂

∂ξα,j
ψ(ξ1; ξ2)

and on the functions f(q1, p1; q2, p2) ∈ F2
h1,h2

is

P̂j,αf(q1, p1; q2, p2) =
1
2πi

2h3−α
h1 + h2

(
hα
2

∂

∂qj,α
+ 2πipj,α

)
f(q1, p1; q2, p2).

(65)
This expression has been obtained by the application of the Fourier-Wigner
transform of eq.(42) to the function P̂j,αψ(ξ1; ξ2),

P̂j,αf(q1, p1; q2, p2) = w
[
P̂j,αψ(ξ1, ξ2)

]
(q1, p1; q2, p2),

whereas the corresponding expression for the position operator is

X̂j,αf(q1, p1; q2, p2) = w
[
P̂j,αψ(ξ1, ξ2)

]
(q1, p1; q2, p2)

= − 1
2πi

(
hα
2

∂

∂pj,α
− 2πiqj,α

)
f(q1, p1; q2, p2). (66)

We are now ready to deduce the consequences of the quantum-classical limit
derived in section 5.
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If the limit h1 → h, h2 → 0 is taken in eqs.(65) and (66), we obtain

X̂j,1 = − 1
2πi

(
h

2
∂

∂pj,1
− 2πqj,1

)
X̂j,2 = qj,2

P̂j,1 = 0 P̂j,2 = 2pj,2,
(67)

that are different from either the full quantum or the full classical expressions.
This unusual behaviour of the position and momentum quantum-classical op-
erators does not support the hypothesis that the limit h1 → h, h2 → 0 in
the dynamics defined by eq.(61) gives a correct way to formulate a coherent
quantum-classical dynamics. Indeed, already a first observation should raise
doubts on such a construction. The pre-factor in eq.(61) can be rewritten
introducing the effective Planck constant

heff =
2h1h2

h1 + h2
−→ 1

heff
=

1
2

(
1
h1

+
1
h2

)
, (68)

which is the harmonic average of h1 and h2. In eq.(61) we thus have

˙̂
B =

2π
iheff

[
B̂, Ĥ

]
. (69)

Moreover, the definition (64) can be written as

P̂j,α = heffD̂j,α,

and the canonical commutation relations in eq.(63) is recovered,

2π
iheff

[
X̂j,α, P̂k,β

]
= δαβδjk. (70)

With that in mind, we have to suggest a second important correction which
concerns the role of the momentum operators, hαD̂j,α and P̂j,α. Once we real-
ize that the momentum operator P̂j,α is the canonically conjugated partner of
X̂j,α, we understand that the use of hαD̂j,α in the representation ρh1,h2(g1; g2),
although legitimate, is improper and subtle. Moreover, since h1 and h2 are
connected by the relation (68), it should be useful to introduce the new pa-
rameter heff in the formulation. Both these requirements can be fulfilled if we
determine a new unitary irreducible and infinite-dimensional representation
of the group Dn

ρh1,h2(g1; g2) −→ ρheff (g1; g2)

where the rescaled variables

s′α =
heff

hα
sα; x′α = xα; y′α =

heff

hα
yα.

are used. We note that between ρh1,h2(g1; g2) and ρheff (g1; g2), whose expres-
sion is
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ρheff (g1; g2) = ρheff (g1)ρheff (g2)

= e2πi(−heffs1Î1+y1P̂1+x1X̂1)e2πi(−heffs2Î2+y2P̂2+x2X̂2), (71)

there is a one-to-one correspondence. The new representation will be used to
define a new Fourier-Wigner transform, because the latter is strictly related
to the representation adopted. The suitable Fourier-Wigner transform is

f(q1, p1; q2, p2) = w [ψ(ξ1, ξ2)] (q1, p1; q2, p2)

=
〈
Φ0(ξ1, ξ2), ρheff

(
0,− 2

heff
p1,

2
heff

q1; 0,− 2
heff

p1,
2

heff
q1

)
ψ(ξ1, ξ2)

〉
L2(R2n)

,

which can be used to determine the action of position and momentum oper-
ators on F2

h1,h2
,

X̂j,α = − 1
2πi

(
heff

2
∂

∂pj,α
− 2πiqj,α

)
P̂j,α =

1
2πi

(
heff

2
∂

∂qj,α
+ 2πipj,α

)
.

(72)

The quantum-classical limit h1 → h, h2 → 0 can be replaced by the equiva-
lent limit heff → 0 in which the new effective Planck constant appears. The
representation of the group becomes

lim
heff→0

ρheff (g1; g2) = ρ(q1,p1)(g1)ρ(q2,p2)(g2) = e2πi(q1x1+p1y1)e2πi(q2x2+p2y2),

(73)
like the full classical representation determined in section 4, eq.(31); positions
and momenta act multiplicatively, yielding the classical phase-space variables
corresponding to the quantum operators

lim
heff→0

X̂j,α = qj,α and lim
heff→0

P̂j,α = pj,α,

and the equation of motion becomes

lim
heff→0

2π
iheff

[
B̂, Ĥ

]
= {B,H.c.}(q1,p1;q2,p2)

. (74)

as it shown in section 4.
We can summarize the procedure followed in the present section to achieve

the result obtained above. In Ref. [15] the new momentum operator was cor-
rectly introduced, together with the new commutation relations of eq.(70),
but P̂j,α was not used in the formal construction of the theory. The expres-
sions for the quantum-classical variables (position and momentum) are those
shown in eqs.(67), insted of eq.(72), because X̂j,α and P̂j,α are represented
using ρh1,h2(g1; g2) in which the operators hαD̂j,α, no more generators of the
corresponding Lie group, are present11.
11 The variable pj,α used in eqs.(65) and (66) is the eigenvalue of the operator hαD̂j,α

when it acts on the eigenfunctions ψhD(ξ1; ξ2)
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The generalization of the Heisenberg group formalism to the group Dn is
not consistent. The comparison between the approaches proposed in section
3 and in section 5 can be summarized in the following scheme:

1. commutation relations to single out the canonically conjugated position
and momentum operators;

2. equation of motion directly derived from the commutation relations (or
vice versa);

3. use of the right operators to create the representation of the group.

In the theory based on the group Dn, as presented in section 5, the third
point is missing. In the present section, we removed the inconsistency of the
whole construction and showed the classical nature of the presumed quantum-
classical limit, which was hidden when the inconsistent, although formally
equivalent, representation of the group Dn where adopted.

A comment on eq.(61) is in order. The direct introduction of heff in eq.(61),
as it was done to derive eq.(69), would have brought straightforwardly to
eq.(74) because in section 4 we learnt how to treat the singularity for heff → 0
(h → 0 in eq.(36)).

ψhD(ξ1; ξ2) ∝ e
2πi

“
p1
h1

ξ1+
p2
h2

ξ2

”

because
hαD̂j,αψhD (ξ1, ξ2) = pj,αψhD (ξ1, ξ2) .

The eigenfunctions of P̂j,α are plane waves of a different kind,

ψP (ξ1, ξ2) ∝ e
2πi

“ ep1
heff

ξ1+
ep2

heff
ξ2

”
.

Indeed,
P̂j,αψP (ξ1, ξ2) = heffD̂j,αψP (ξ1, ξ2) = epj,αψP (ξ1, ξ2) .

The eigenfunctions ψP (ξ1, ξ2) can be obtained from ψhD (ξ1, ξ2) by making the
substitution

pα

hα
−→ epα

heff

that can be performed as well on eqs.(65) and (66) to obtain

X̂j,α = − 1

2πi

„
heff

2

∂

∂epj,α
− 2πiqj,α

«

P̂j,α =
1

2πi

2h3−α

h1 + h2

„
hα

2

∂

∂qj,α
+ 2πi

hα

heff
epj,α

«

in order to express P̂j,α using its eigenvalues. This expression for P̂j,α is the same
as in the second line of eqs.(72).
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7 Conclusion

In this piece of work we analyzed some open issues concerning the formulation
and implementation of a mixed quantum-classical dynamics, beyond the adi-
abatic approximation. We discussed the reasons why, in many circumstances,
a quantum treatment of the (statistical) mechanical properties of a physi-
cal system is necessary, at least for some degrees of freedom, and described
some of the existing mixed quantum-classical approximations that allow to
generate a computationally feasible dynamical evolution. We observed that
such approximated approaches need to be overcome by a rigorous and consis-
tent method based on a coherent derivation of quantum-classical mechanics,
suitable for wide-range applications. This is not the state of the art, because
the existing approximation schemes are generally appropriate for a resctricted
class of systems, sometimes depending on the properties under investigation.
Nonetheless, approximated methods are able to produce reliable results, es-
pecially in the field of numerical simulations.

An attempt to solve the difficulties and inconsistencies arising from an
approximated derivation of quantum-classical equations of motion was made
some time ago [15] to restore the properties that are expected to hold within a
consistent formulation of dynamics and statistical mechanics, and are instead
missed by the existing approximate methods. We refer not only to the proper-
ties that the Lie brackets, which generate the dynamics, satisfy in a full quan-
tum and full classical formulation, e.g., the bi-linearity and anti-symmetry
properties, the Jacobi identity and the Leibniz rule12, but also to statistical
mechanical properties, like the time translational invariance of equilibrium
correlation functions [see eq.(8)].

The derivation of a consistent mixed quantum-classical dynamics discussed
in this paper was first proposed in Ref. [15] and commented and clarified in
Ref. [1]. This derivation is based on a group-theoretical formulation of quan-
tum and classical mechanics, which introduces a very elegant and formally
rigorous mathematical apparatus and allows to directly obtain classical me-
chanics as the limit for h → 0 of quantum mechanics, in the Heisenberg
representation of quantum dynamics.

However, the Heisenberg group formalism is a very useful tool to represent
quantum and classical dynamical quantities, such as observables and equations
of motion, only when a prescription on the generator of the time evolution
exists. The comparison with the fully quantum or fully classical dynamics al-
lows us to deduce only the formal properties that the mixed quantum-classical
brackets have to satisfy in order to generate a consistent evolution, but does

12 For generic operators Â, B̂ and Ĉ, the Leibniz rule states that the equality“
ÂB̂, Ĉ

”
= Â

“
B̂, Ĉ

”
+

“
Â, Ĉ

”
B̂

holds, where the symbol ( · , · ) represents some (quantum or classical) Lie brack-
ets.
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not produce a unique recipe for mixed quantum-classical Lie brackets (or dy-
namical generators). The need for an ansatz on the quantum-classical equa-
tions of motion leaves the question about the existence of a consistent way to
generate a mixed quantum-classical dynamics still open. The ansatz proposed
in Ref. [15] was proved to lead to a purely classical dynamics [1] and more
work is certainly needed to find a conclusive solution to this problem.

Appendix 1

In this appendix we shall demonstrate the existence of the expansion in
eq.(22),

B̂
(
X̂, hD̂

)
=
∫

R2n+1
dsdxdy B̃(s, x, y)e2πi(−hsÎ+yhD̂+xX̂).

This is done by showing that the set of operators e2πi(−hsÎ+yhD̂+xX̂) repre-
sents a basis set for the space of operators B̂ ≡ B̂

(
X̂, hD̂

)
. We have to show

that the operators e2πi(−hsÎ+yhD̂+xX̂) are an orthogonal and complete set,
for all the values of g ≡ (s, x, y), defining a scalar product on the space of
operators. Since we are restricting our analysis to hermitian operators of the
form B̂

(
X̂, hD̂

)
, the coefficient B̃(s, x, y) will depend on the variable s as

δ(s). Therefore, we can limit ourselves to show that the expansion

B̂
(
X̂, hD̂

)
=
∫

dxdy B̃(x, y)e2πi(yhD̂+xX̂) (75)

exists, with the function B̃(x, y) defined as the inverse Fourier transform of
the Wigner transform of the operator B̂, i.e.,

B̃(x, y) =
∫

dqdpBw(q, p) e−2πi(qx+py) (76)

where Bw(q, p) is obtained from B̂ according to eq.(3). We show that both
sides of this equality have the same matrix elements on a basis set, and to
this purpose we choose the position operators eigenstates |q〉. Thus, we need
to prove that

〈q′′| B̂ |q′〉 =
∫

dxdy B̃(x, y) 〈q′′| e2πi(yhD̂+xX̂) |q′〉 . (77)

Using Weyl identity (13), the matrix elements in the r.h.s. are

〈q′′| e2πi(yhD̂+xX̂) |q′〉 = e2πi(q′+ 1
2hy)xδ (hy − (q′′ − q′))

and replacing the function B̃(x, y) with the expression (76) we obtain
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dxdy

∫
dqdpBw(q, p) e−2πi(qx+py)e2πi(q′+ 1

2hy)xδ (hy − (q′′ − q′)) .

The integration over the variable y is straightforward, because of the presence
of the δ−function, and yields

1
h

∫
dqdpBw(q, p)e−2πi p

h (q′′−q′)
∫

dx e−2πi(q− 1
2 q

′′− 1
2 q

′)x.

The integrations over the variables x and q bring to the expression

1
h

∫
dpBw

(
1
2
(q′ + q′′) , p

)
e−2πi p

h (q′′−q′).

The function Bw is now replaced by the explicit expression of the Wigner
transform, yielding

1
h

∫
dp

∫
dze−2πi p

h (z+q′′−q′)
〈
1
2
(q′ + q′′) +

z

2

∣∣∣∣ B̂ ∣∣∣∣12(q′ + q′′)− z

2

〉
.

The two integrations over p and z bring to the expected identity∫
dxdy B̃(x, y) 〈q′′| e2πi(yhD̂+xX̂) |q′〉 = 〈q′′| B̂ |q′〉 .

Moreover, we can show that the operators e2πi(yhD̂+xX̂) are orthogonal if the
scalar product 〈

Â, B̂
〉
= Tr

(
Â†B̂

)
is defined between two generic elements of the space of linear operators (Â†

being the adjoint of Â). We need to calculate〈
e2πi(y′hD̂+x′X̂), e2πi(yhD̂+xX̂)

〉
=
∫

dq 〈q| e−2πi(y′hD̂+x′X̂)e2πi(yhD̂+xX̂) |q〉

where in the r.h.s. the trace is explicitly calculated in the basis of the eigen-
states |q〉.
As usual we rely on the Weyl identity and find〈

e2πi(y′hD̂+x′X̂), e2πi(yhD̂+xX̂)
〉
=
∫

dq e−πih(xy+x
′y′)

〈q| e−2πiy′hD̂e−2πix′X̂e2πiyhD̂e2πixX̂ |q〉 .
(78)

Hence, we get

〈q| e−2πiy′hD̂e−2πix′X̂e2πiyhD̂e2πixX̂ |q〉 =
〈q| e2πi(x−x′)[q+h(y−y′)] |q + h (y − y′)〉 .
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When the integral over the variable q is performed, the result is〈
e2πi(y′hD̂+x′X̂), e2πi(yhD̂+xX̂)

〉
= δ (h(y − y′)) δ(x− x′)

that proves the orthogonality of the elements e2πi(yhD̂+xX̂) which then pro-
vides a basis for the vector space of the hermitian operators B̂

(
X̂, hD̂

)
.

Appendix 2

In this appendix we will show the calculations which have to be performed to
obtain the Poisson brackets expression in eq.(35) starting from eqs.(33) and
(34).

The starting point is

Ḃ(q, p) =
∫

Hn

dg

(
A
[̃
B̂, Ĥ

])
(g)ρ(q,p)(g)

that becomes

Ḃ(q, p) =
∫

R2n+1
dsdxdy

[̃
B̂, Ĥ

]
(s, x, y)

(−4π2 s
)
e2πi(qx+py) (79)

when the action of the antiderivative operator A on the s-variable functions
is explicited. In the integral, we make the substitution[̃

B̂, Ĥ
]
(g) =

∫
Hn

dg′B̃(g′)
[
H̃.c.

(
g′−1g

)− H̃.c.
(
gg′−1

)]
. (80)

The products g′−1g and gg′−1 are

g′−1g =
(
s− s′ +

1
2
(xy′ − x′y) , x− x′, y − y′

)
gg′−1 =

(
s− s′ +

1
2
(x′y − xy′) , x− x′, y − y′

)
and we change variables g′′ = g′−1g, g′′ = gg′−1 in both expressions to write

(s, x, y) =
(
s′′ + s′ +

1
2
(x′y′′ − x′′y′) , x′′ + x′, y′′ + y′

)
(s, x, y) =

(
s′′ + s′ +

1
2
(x′′y′ − x′y′′) , x′′ + x′, y′′ + y′

)
.

The integration variables in eq.(79), using eq.(80), are g′ and g′′ → g, so we
write
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Ḃ(q, p) =
∫

R2n+1
dsdxdy

∫
R2n+1

ds′dx′dy′B̃(s′, x′, y′)H̃.c.(s, x, y)
(−4π2

)
[(

s+ s′ +
1
2
(x′y − xy′)

)
−
(
s+ s′ +

1
2
(xy′ − x′y)

)]
e2πi[q(x+x′)+p(y+y′)],

that is

Ḃ(q, p) =
∫

R2n+1
dsdxdy

∫
R2n+1

ds′dx′dy′B̃(s′, x′, y′)H̃.c.(s, x, y)[−4π2 (x′y − xy′)
]
e2πi[q(x+x′)+p(y+y′)].

The r.h.s of this expression can be written in a suitable way

Ḃ(q, p) =
∫

R2n+1
ds′dx′dy′B̃(s′, x′, y′)(2πix′) e2πi(qx′+py′)∫

R2n+1
dsdxdyH̃.c.(s, x, y)(2πiy) e2πi(qx+py) −∫

R2n+1
ds′dx′dy′B̃(s′, x′, y′)(2πiy′) e2πi(qx′+py′)∫

R2n+1
dsdxdyH̃.c.(s, x, y)(2πix) e2πi(qx+py)

to recognize the Poisson brackets. In fact,

(2πix)e2πi(qx+py) =
∂

∂q
e2πi(qx+py)

(2πiy)e2πi(qx+py) =
∂

∂p
e2πi(qx+py)

(81)

and the same identities hold for the prime variables. Thus we write

Ḃ(q, p) =
∂

∂q

∫
Hn

dg′ B̃(g′)ρ(q,p)(g′)
∂

∂p

∫
Hn

dg H̃.c.(g)ρ(q,p)(g)−
∂

∂p

∫
Hn

dg′ B̃(g′)ρ(q,p)(g′)
∂

∂q

∫
Hn

dg H̃.c.(g)ρ(q,p)(g).

But each integral represents the classical expression of the corresponding ob-
servable, so

Ḃ(q, p) =
∂

∂q
B(q, p)

∂

∂p
H.c.(q, p)− ∂

∂p
B(q, p)

∂

∂q
H.c.(q, p)

= {B(q, p),H.c.(q, p)}(q,p) .

In the last line, the Poisson brackets have been obtained and the procedure
just shown explains how to deduce eq.(35) from eq.(33).
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π-conjugated materials, 105, 183

ab initio MD, 36
absorption spectra, 10, 155
adiabatic exciton states, 46
adsorbed CO, 365, 375
amide I band, 37
Anderson impurity model (AIM), 238,

288
Anderson-Hubbard Hamiltonian, 238,

255, 286
anharmonic couplings, 144
anisotropy, 135
antenna complexes, 29
antenna-effect, 3
anti-cancer drugs, 165

anthracycline, 165
daunomycin, 167

bath, see reservoir, 341
correlation function, 341

biopolymers, 73
bleaching signal, 155
Born-Oppenheimer surfaces, 147, 389
Bose-Einstein distribution, 341
bosonic bath, 339, 344
branching plane, 195, 196, 200

canonical ensemble simulation, 170
chromophore couplings, 42
classical path approximation, 54
cluster modes, 196
CO/Cu(001), 365, 374, 376
collective modes, 195

Condon approximation, 50
conductance

differential, 242
linear, 241

configuration
parallel, 297
serial, 295

conformational dynamics, 77, 78, 80,
84, 87, 96

conical intersection (CoIn), 194
correlations between structure and

dynamics, 90
Coulomb blockade, 214, 216, 239, 285
Coulomb staircase, 242
cumulant expansion, 199
current, 263

nonequilibrium, 295
current-voltage curve, 242
CURVES, 172

damped harmonic oscillator, 348
decoherence, 313, 398, 400, 432

time, 234
dendrimeric, 35
density functional theory (DFT), 147
dephasing, 40
diabatic representation, 193
diagrammatic technique, 264, 267
differential conductance

negative, 214
dissipation, 313

delayed, 363, 365, 370, 374
energy, 363
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fast, 363, 365, 369
instantaneous, 370, 372, 377
slow, 364, 365, 369

dissipative
dynamics, 344, 364, 374
phenomena, 364, 369
potential, 365, 372, 375
quantum dynamics, 51

DNA, 105, 127, 143, 165, 167
absorption spectrum, 129
basepairs, 143, 165
bases, 106
chemistry of life, 105
conformations, 144
dAMP, 127
dCMP, 127
dGMP, 127
electronic transitions, 130
evolution, 105
hydrogen bonding, 144
hypochromism, 129
microsolvated base pairs, 143
minor groove, 177
molecular wire, 313
oligomers, 143
photochemical products, 106
photolesions, 106
proton transfer, 119
rare tautomer forms, 118
solvated base pairs, 146
TMP, 127
Watson Crick pairs, 117, 128, 137

dual level calculations, 148
Dyson equation, 219

effective modes
chain, 196
hierarchical representation, 196

Ehrenfest
dynamics, 38, 53
equations, 395

electron transport, 340, 354
electron-phonon

coupling, 185
Hamiltonian, 191, 246

electron-vibron coupling, 246
electronic coupling, 22
electronic energy relaxation, 363
electronic energy transfer, 3, 4, 19, 20

electronic Hamiltonian, 41
emission rate, 50
equation of motion (EOM) technique,

277
evolution, 29
evolutionary tree of life, 5

archea, 5
bacteria, 5
eukarya, 5

excimer, 108
exciplex, 108, 184, 190, 204
excitation energy transfer (EET), 35,

40, 184
electronic, 132
fourth-order rates of EET, 47

exciton, 108, 184, 185
diffusion length, 184
dissociation, 184, 200

Förster
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rates, 39
spectral overlap, 20, 28
theory, 4, 16, 19, 20, 73, 138
transition dipole strength, 22

Fabry-Perot domain, 216
Fenna-Matthews-Olson (FMO) protein,

13
Fermi level, 296, 322
Fermi’s Golden Rule, see golden rule,

285
fermionic reservoirs, 339, 352
filter, 422
fingerprint mode, 144
fluctuation-dissipation theorem, 266
fluctuations, 84
fluorescence, 132

anisotropy, 135
upconversion, 129, 132

FMO protein of green bacteria, 10
force basis, 392
force field, 168

AMBER, 169
Franck-Condon

blockade, 219, 254
matrix element, 253
states, 131, 138

Frenkel-exciton, 35



Index 471

vibrational, 37
FRET, 73

efficiency, 75, 78
single-molecule (SM-FRET), 73, 75,

76, 81, 96

Generalized Langevin Equation, 198
golden rule, 19, 20
Green function

lesser, for fermions, 265, 290
retarded, 259, 289

Green function (GF) methods, 220, 225
single-particle matrix, 229
time-ordered, 264

GROMACS, 168

Haken-Strobl-Reinecker model, 38
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340
Heisenberg

equation of motion, 448, 449, 452
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452, 456, 461, 462
group representation, 440

Hellmann-Feynman forces, 390
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TFB:F8BT, 186, 205
triplet states, 190
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model, 196

homopolymer model, 84
Huang-Rhys parameter, 193
Hubbard

interaction, 238
model, 108

hydrogen bonding, 144, 176
hydrophilic, 82
hydrophobic, 82

incoherent hopping, 29
incoherent transfer, 19
inertial regime, 199
initial conditions

nonthermal, 265
integro-differential equation

numerical procedure, 373
interaction modes, 196
interaction representation, 267

intercalation, 165, 166
barrier height, 175
free energy, 165, 166, 175
rate constant, 175

interface configurations, 204
internal conversion, 183
intersystem crossing (ISC), 190
IR-pump-probe methods, 143
iterative linearized density matrix, 416

Jahn-Teller effect, 193
junction

asymmetric, 305
differential conductance, 304, 305
single-site, 285
symmetric, 304

Kadanoff-Baym-Keldysh (KBK)
method, 219, 278

Kasha’s rule, 183
Kasha-Vavilov rule, 183

kinetic Monte Carlo simulations, 82
kinetic properties, 263
Kondo effect, 214, 216, 255
Kondo parameter, 428
Kubo transformed correlation function,

404

Landauer formula, 232
Landauer-Büttiker formula, 229, 275
Lang-Firsov transformation, 216
Langevin

dynamics, 75
equation, 80

lattice model, 193
two-band configuration interaction,

192
leads

Fermi sea, 216
isolated, 224
molecule-to-lead coupling, 216

Lehmann representation, 266
level-width function, 226, 241
Lie brackets, 439, 451, 452, 462, 463

quantum, 440
light-harvesting complex (LHC), 5, 351

BChl chromophore, 11
chlorosomes, 12
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LH1, 6, 11
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peridinin-Chl a-protein (PCP), 15

phycobiliproteins, 14
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phycocyanin 645 (PC645), 16

Rhodomonas CS24, 15

Lindblad form, 372, 377

linear vibronic coupling (LVC), 193

linearized approximation, 423

linearized density matrix propagation,
417

Liouville dynamics, 417

Liouville-von Neumann equation, 364

mapping

basis, 394

formulation, 423

phase space coordinates, 394

Markovian approximation, 364, 398

master equation, 229, 235

dynamics, 407

Matsubara frequencies, 341

mean-field approximation, 318

Meir-Wingreen formula, 274

Meir-Wingreen-Jauho current formula,
273

minor groove, 167, 169

mixed quantum-classical methods, 40,
47, 52, 53, 59, 67, 415, 416

mixing angle, 109

molecular dynamics (MD), 167

umbrella sampling, 168

molecular wires, 339, 352, 357

momentum shift operator, 399

momentum-jump, 420

approximation, 391, 392

Monte Carlo, 40

branching, 427

Mori theory, 198

multi-level system, 285, 312
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nano-devices, 214
Newton’s equation, 38, 54
non-Markovian, 198, 346
nonadiabatic

dynamics, 185, 397, 415
transitions, 419

nonequilibrium equation of motion
(NEOM), 275, 285

nonequilibrium Green function (NGF)
method

Keldysh NGF technique, 215, 219

off-diagonal coupling, 429
Ohmic

bath, 198, 204
spectral density, 428

on the fly dynamics, 36
Onsager model, 111
organic light-emitting diode (OLED),

183, 191
oscillator strength, 64

path integral, 416
PDB, 167
peridinin-chlorophyll proteins, 10
perturbative techniques

time-local (TNL), 340
time-nonlocal (TNL), 340, 348

phenomenological microscopic ap-
proach, 232

phonon-assisted exciton dissociation,
200

photocurrent, 204
photosynthesis, 3, 4, 105
photosynthetic

bacteria, 4
proteins, 4

photosynthetic organisms, 5, 29
chloroplasts, 7
chlorosomes, 10
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cyanobacteria, 6, 10
eukaryotes, 7
eukaryotic, 5
green non-sulfur bacteria, 5
green sulfur bacteria, 5
heliobacteria, 5
phycobilisomes, 10
prokaryotic, 5
purple bacteria, 5

photovoltaic diode, 184
Planck constant, 438–442, 449, 451,

453, 457, 459, 460
PMF, see potential of mean force, 171,

173, 177
Poisson bracket, 439, 448, 451, 452, 456,

465, 466
operator, 394

Polarizable Continuum Model (PCM),
23, 26

linear-response-PCM, 26
Onsager, 27

polarization, 135
polaron representation, 250
polypeptide model, 79
potential energy surfaces (PES), 147,

195
potential of mean force, 170
projection operators

Mori-Zwanzig, 400, 404
proton transfer, 403

QM/MM method, 36, 161
quantum biology, 103
quantum coherence, 415
quantum dot, 239

inter-dot hopping, 297
single- and double-site, 285

quantum fluctuations, 198
quantum Liouville-von Neumann

equation, 384
quantum master equation (QME)

time-local (TL), 339, 345
quantum metaphysics, 105

New Age science, 105
quantum transport, 215
quantum-classical

brackets, 439, 440, 452, 454, 456, 462
equations of motion, 437, 440, 451,

452, 457, 462, 463

limit, 440, 454, 458, 460, 461
Liouville (QCL) approach, 416, 418
Liouville dynamics, 407, 417
Liouville equation, 385, 418
Liouville method, 383
mechanics, 440, 441, 451, 453, 462
Wigner-Liouville equation, 386

radiative decay rates, 53
rectification, 214
Redfield equation, 39
reduced density operator, 364, 366, 378
representation, 441–443, 446, 447, 449,

450, 452, 457, 459–461
Heisenberg group, 443
irreducible, 441
unitary, 441

reservoir
bosonic, 341
electronic, 315
fermionic, 343

RNA, 105
Runge-Kutta algorithm, 364

sampling coordinate, 171
Schwinger-Keldysh, 270

closed-time contour, 259
self-energy

contact, 224
semiempirical PM3 approach, 148
single-excitation configuration interac-

tion (CIS), 188
single-molecule junctions, 214
skin cancer, 127
solar energy conversion, 105
solvent screening, 26

factor, 26, 27
spectral density

bath, 198, 318, 340
Drude form, 349

spectral function, 263
spin-boson model, 429

asymmetric, 429
surface-hopping, 399

fewest switches algorithm, 397
method, 38, 397
scheme, 392
trajectory, 426, 432



474 Index

TCSPC, see time-correlated single
photon counting, 129

tight binding (TB) model, 220
time-correlated single photon counting,

129, 132, 133
time-dependent density functional

theory (TD-DFT), 185, 188
time-dependent Schrödinger equation,

40
time-path integration

closed, 270
time-resolved infrared spectroscopy, 144
topology-adapted

modes, 200
representation, 196

transformation
canonical, 248
Lang-Firsov, 248
polaron, 248

transient TCF, 368
transition charges, 38
transition density, 23

cube (TDC) method, 23
differences, 114

transition monopole approximation
(TMA), 23

Trotter factorization, 420
tunneling

current, 232
Hamiltonian, 230, 247
sequential, 234
time, 234

Verlet algorithm, 80
vibrational energy relaxation, 144, 363
vibrational transitions, 146
vibronic resonance, 204
vibrons, 243

electron-vibron coupling, 299
electron-vibron Hamiltonian, 299
nonequilibrium, 299

Wannier function, 191, 192
weak coupling approximation, 19
WHAM, 174
Wigner representation, 53, 400
Wigner transform, 438, 439, 443, 444,

446, 449, 458, 460, 463, 464
partial, 385, 402, 418

Z-scheme, 6


