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Preface

For well over a decade statistical program packages have been providing
standard routines for fitting probit and logit models, and these methods
have become commonplace tools of applied statistical research. The logit
model is the more versatile of the two: its simple and elegant analytical
properties permit its use in widely different contexts and for a variety
of purposes. This monograph treats logistic regression as the core of a
number of such variations and generalizations. Its purpose is to present
several widely used models that are based on the logit transformation
and to answer the questions that arise in the practice of empirical re-
search. It explains the theoretical background of these models, their
estimation and some further statistical analysis, the interpretation of
the results, and their practical applications, all at an elementary level.
I assume that readers are familiar with ordinary linear regression and
with the estimation theory and matrix algebra that go with it.

Parts of the book are taken from The Logit Model: an Introduction for
Economists, published in 1989 by Edward Arnold. One of the things I
have learned since then is that several varieties of logit analysis have been
developed independently, in almost perfect isolation, in various branches
of biology, medicine, economics, and still other disciplines. In each field
practitioners use distinct approaches, interpretations and terminologies
of their own. I have tried to overcome these differences and to do justice
to the main developments in other fields, but this will not conceal that
my own background and inspiration are in econometrics.

I have also recorded the course of the discovery of the logit by former
generations and some highlights of its subsequent development. This
material of historical and nostalgic interest is collected in the last chap-
ter, which readers can easily avoid.

ix



x Preface

I have benefited from the advice of Heinz Neudecker, Hans van Ophem
and Jan Sandee, even when I did not follow it, and from the technical
support of Jeroen Roodhart and Ruud Koning.

J. S. Cramer
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Introduction

1.1 The role of the logit model

Logit analysis is in many ways the natural complement of ordinary lin-
ear regression whenever the regressand is not a continuous variable but a
state which may or may not hold, or a category in a given classification.
When such discrete variables occur among the independent variables or
regressors of a regression equation, they are dealt with by the introduc-
tion of one or several (0, 1) dummy variables; but when the dependent
variable belongs to this type, the regression model breaks down. Logit
analysis or logistic regression (which are two names for the same method)
provides a ready alternative. At first sight it is quite different from the
familiar linear regression model, and slightly frightening by its apparent
complexity; yet the two models have much in common.
First, both models belong to the realm of causal relations, as opposed

to statistical association; there is a clear a priori asymmetry between
the oddly named independent variables, the regressors or covariates,
which are the explanatory variables or determinants, and the dependent
variable or outcome. Both models were initially designed for the analysis
of experimental data, or at least for data where the direction of causation
is not in doubt. In interpreting empirical applications it is often helpful
to bear these origins in mind.
Within this causal context, the ordinary linear regression model offers

a crude but almost universal framework for empirical analysis. Admit-
tedly it is often no more than a simplified approximation to something
else that would presumably be better; but it does serve, within its limi-
tations, for empirical screening of the evidence. Logistic regression can
be used in quite the same way for categorical phenomena.
There are of course also differences. Unlike regression, the logit model
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2 Introduction

permits of a specific economic interpretation in terms of utility maxi-
mization in situations of discrete choice. Among economists this confers
a higher status on the model than that of a convenient empirical device.
And there is a subtle distinction in that the ordinary regression model
requires a disturbance term which is stuck on to the systematic part as a
necessary nuisance, while in the logit model the random character of the
outcome is an integral part of the initial specification. Together with the
probit model, the logit model belongs to the class of probability models
that determine discrete probabilities over a limited number of possible
outcomes.
Finally, like the regression model, the logit model permits of all sorts of

extensions and of quite sophisticated variants. Some of these are touched
upon in the later chapters, but the present text is mainly concerned
with plain logistic regression as a convenient vehicle for studying the
determination of categorical variables.
A survey of the literature will show that a number of different vari-

eties of the same model have been developed in almost perfect isolation
in various disciplines such as biology (toxicology), medicine (epidemiol-
ogy) and economics (econometrics). This has given rise to separate and
distinct paradigms which share a common statistical core, but which em-
ploy different approaches, terminologies and interpretations, since they
deal with different types of data and pursue different ends. Even when
the application of the technique has become a mechanical routine, the
original justificatory arguments still linger at the back of the practition-
ers’ minds and condition their views. In the present text we follow the
approach which originated in the bio-assay of toxicology and was later
adopted (and developed further) in certain branches of economics and
econometrics. We shall however try to provide links to the work in other
fields wherever this is appropriate, and the reader is encouraged to follow
these up.

1.2 Plan of the book and further reading

The book consists of nine chapters. Chapter 2 presents the central model
that sets the course. Consideration of a single attribute gives rise to the
binary model, and this simple vehicle carries the overwhelming majority
of practical applications. Chapter 3 deals at some length with its es-
timation by what is now the standard method of maximum likelihood;
while most readers will rely on program packages for their calculations,
it is important that they understand the method since it determines the
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properties of the resulting estimates. Chapter 3 also provides a prac-
tical illustration. Chapter 4 deals with some statistical tests and the
assessment of fit, and Chapter 5 with defects like outliers, misclassi-
fied outcomes and omitted variables. At this stage just over half of the
book has dealt exclusively with the simple case of a binary analysis in
a random sample. In Chapter 6 we consider the analysis of separate
samples, but still only of a pair. It is only in the next two chapters that
the treatment is widened to more than two possible outcomes. Chap-
ter 7 is devoted to the standard multinomial model, which is a fairly
straightforward generalization of the binary model; the particular vari-
ety of multinomial models known as random utility models, which is an
economic specialty, is the subject of Chapter 8. Some but not all of the
embellishments of the binary model in Chapters 4, 5 and 6 carry easily
over to the multinomial case. Finally Chapter 9 gives a brief account of
the history of the subject, with special reference to the approach adopted
here.
Since this is after all a slim book, designed for newcomers to the sub-

ject, readers are expected to skim through the entire text, and then to
return when the need arises to the bits they can use, or – even better – to
continue at once with further reading. We have already noted the diver-
sity of parallel but quite separate developments of essentially the same
subject in a number of disciplines. Apart from natural differences in the
type of data under consideration and in the ends that are pursued, fur-
ther differences of style have arisen in the course of this development. No
discipline is satisfied with establishing empirical regularities. In epidemi-
ology and medicine the tendency is towards simplicity of technique, but
statistical associations, even if they are as strong as between cigarette
smoking and lung cancer, must be complemented by a reconstruction
of the physiological process before they are fully accepted. Economists
and econometricians on the other hand never leave well alone, favour
all sorts of complications of the statistical model, and believe that the
validity of empirical results is enhanced if they can be understood in
terms of optimizing behaviour. Each discipline thus has a paradigm of
its own that supports the same statistical technique, with huge differ-
ences in approach, terminology and interpretation. These differences
are at times exaggerated to almost ideological dimensions and they have
become an obstacle to open communication between scholars from dif-
ferent disciplines. The reader’s outlook will be considerably widened by
looking with an open mind at one or two texts from an alien discipline.
For this purpose we recommend such varied sources as the classic book
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on bio-assay of Finney (1971) (first published in 1947), or the up-to-date
monograph on logistic regression from the epidemiological perspective by
Hosmer and Lemeshow (2000). For the purely statistical view the reader
can turn to Cox and Snell (1989), to the much more general text of Mc-
Cullagh and Nelder (1989), or to the treatise on categorical variables by
Agresti (1996). The survey article on case–control studies by Breslow
(1996) reflects the practice of medical and epidemiological research. For
the econometric approach one should read the early survey article of
Amemiya (1981) or, for a rigorous treatment, Chapter 9 of his textbook
of 1985. Another text from econometrics is Maddala’s wide ranging sur-
vey of a whole menagerie of related models (1983), or, with a much more
theoretical slant, the book of Gourieroux (2000). An introductory text
that conveys the flavour of the use of the logit model in the social sci-
ences is Menard (1995). In the book by Franses and Paap (2001) these
techniques are presented as part of a much broader range with a view
to marketing applications. For early economic applications we refer to
the handbook of discrete choice in transportation studies of Ben-Akiva
and Lerman (1987); a recent record of the achievements in this tradition
is McFadden’s address of acceptance of the Nobel prize (2001). Pudney
(1989) gives a rigorous survey of advanced micro-economics with equal
attention to the theory and to empirical issues.
This list is by no means complete, and there are also further spe-

cializations within each field: the current literature in learned journals
shows a separate development of econometrics in marketing and in fi-
nance. Readers should browse for themselves to keep abreast of these
advances.

1.3 Program packages and a data set

Maximum likelihood estimation is by now the accepted standard method
of estimation, and for the simple binary model and the standard multi-
nomial model this is included as a simple routine in many program pack-
ages. One of the first to do so was the bmdp package (for BioMedical

Data Processing), in the late 1970s, but by now logit and probit rou-
tines are a common part of general statistical packages like sas, spss and
stata. They are also found in programs of econometric inspiration, like
tsp (Time Series Processing), limdep (specifically aimed at the wider
class of Limited Dependent Variables) and e-views (so far binary mod-
els only). All these routines will provide coefficient estimates with their
standard errors and a varying assortment of diagnostic statistics. Most
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illustrations in this book have been produced by logitjd, an early fore-
runner of the logit module that is now part of the econometric program
package pcgive. It is useless to give further technical details of this and
other packages as they are continually being revised and updated.
Many programs, however, do not permit the immediate calculation

of specific magnitudes like the Hosmer–Lemeshow goodness-of-fit test
statistic, nor do they all readily permit the estimation of even quite mild
variations of the standard model, like the logit model with allowance for
misclassification or the nested logit model. While the standard routines
can sometimes with great ingenuity be adapted to produce nonstandard
results, analysts who wish to explore new avenues are much better off
writing specific programs of their own in programming languages like
gauss or ox. Suitable short-cut procedures for maximum likelihood
estimation are available in either language and these can be embedded
in programs that suit the particular wishes of the analyst. By now these
programming languages are quite user-friendly, and the effort of learning
to use them is amply rewarded by the freedom to trim the statistical
analysis to one’s personal tastes.
Many program packages and some textbooks come with sample data

sets that readers can use for exercises. In this book we make repeated
use of a data set on private car ownership of Dutch households in 1980,
and since 2000 this has been made available to users of the pcgive
program package. It is now available to all readers of this text, who can
obtain it from the Cambridge University Press website. The address is
http://publishing.cambridge.org/resources/0521815886/.
The data come from a household budget survey among Dutch house-

hold held in 1980 by the then Dutch Central Bureau of Statistics (now
Statistics Netherlands). This survey recorded extensive and detailed in-
formation about income and expenditure of over 2800 households. The
survey is unusual in that it contains a great deal of information about the
cars at the disposal of the households, with a distinction between private
cars and business cars that are primarily used for business and profes-
sional purposes. Although the data are by now out of date as a source
of information about car ownership, they are well suited to demonstrate
various models (as in this book) and for trying out new statistical tech-
niques (as in a number of other studies). As a rule, Statistics Nether-
lands, like all statistical agencies, is very reluctant to release individual
survey records to third parties, in view of the disclosure risk, that is the
risk that individual respondents can be identified. In the present case
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a welcome exception was made since the information, which is anyhow
severely limited, is over 20 years old.
We use only a small fraction of the rich material of the budget survey,

namely the information about car ownership, income, family size, ur-
banization and age. The data set consists of 2820 records, one for each
household, with six variables. In the order of the dataset (which differs
from the order of the analyses in this book) these are:
• private car ownership status in four categories, numbered from 0
to 3, namely none, used, new (for one used or new car respectively)
and more. Private cars are all cars at the disposal of the households
that are not business cars (see below).

• inc, income per equivalent adult in Dutch guilders per annum.
• size, household size, measured by the number of equivalent adults.
This is calculated by counting the first adult as 1, other adults as 0.7,
and children as 0.5.

• age, the age of the head of household, measured by five-year classes,
starting with the class ‘below 20’.

• urba, the degree of urbanization, measured on a six-point scale from
countryside (1) to city (6).

• buscar, a (0, 1) dummy variable for the presence of a business car in
the household. A business car is a car that is primarily used for
business or professional purposes, regardless of whether it is paid
for wholly or in part by the employer or whether its costs are tax-
deductible.

In all analyses in this book we follow the common usage of taking the
logarithm of income and, since it is closely related to this, of size as well,
denoting the transformed variables by linc and lsize.
When Windmeijer (1992) used this data set he identified one outlier:

this is a household which owns a new private car while it has a very low
income and disposes of a business car. In the dataset this is observation
817. In the calculations reported in this book it has not been removed
from the sample.

1.4 Notation

I have aimed at a consistent use of various scripts and fonts while re-
specting established usage, but the resulting notation is not altogether
uniform. It is also often incomplete in the sense that it can only be
understood in the context in which it is used. A full classification with a
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distinct notation for each type of expression and variable is so cumber-
some that it would hinder understanding: as in all writing, completeness
does not ensure clarity. I must therefore put my trust in the good sense
of the reader. My main misgiving is that I found no room for a separate
typographical distinction between random variables and their realiza-
tion; in the end the distinction of boldface type was awarded to vectors
and matrices as opposed to scalars.
The first broad distinction is that, as a rule, the Greek alphabet is

used for unknown parameters and for other unobservables, such as dis-
turbances, and Roman letters for everything else. The parameter β (and
the vector β) has the same connotation throughout, but λ and to a lesser
extent α are used as needed and their meaning varies from one section
to another. Greek letters are also occasionally employed for specific
functions, like the normal distribution function.
In either alphabet there is a distinction between scalars and vectors

or matrices. Scalars are usually designated by capital letters, without
further distinction, but vectors and matrices are set in boldface, with
lower-case letters for (column) vectors and capitals for matrices. I use a
superscript T for transposition, the dash being exclusively reserved for
differentiation.
The differentiation of vector functions of a scalar and of scalar func-

tions of a vector habitually causes notational problems. In an expression
like

y = f(X),

y is a column vector with elements that are functions of a scalar X.
Differentiation will yield f ′, which is again a column vector. But in

Y = f(x),

the scalar Y is a function of several arguments that have been arranged
in the column vector x. Differentiation with respect to (the elements
of) x will yield a number of partial derivatives, which we arrange, by
convention, in a row vector f ′. By the same logic, if y is an r× 1 vector
and x an s × 1 vector, and if y = f(x), f ′ is an r × s matrix of partial
derivatives, and it should be named by a capital letter.
We use the standard terms of estimation theory and statistics, such as

the expectation operator E, the variance of a scalar var and the variance-
covariance matrix V, applying them directly to the random variable to
which they refer, as in EZ, varZ, andVz. The arguments on which these



8 Introduction

(and other) expressions depend are indicated in parentheses. Thus

Vz (θ)

indicates that the variance matrix of z is a function of the parameter
vector θ, while

Vθ̂

is the variance matrix of θ̂. This is an estimate of θ as indicated by the
circumflex or hat above it. Again,

V̂z = Vz(θ̂)

indicates how an estimated variance matrix is obtained.
Probabilities abound. We write

Pr(Yi = 1)

for the probability of an event, described within brackets; the suffix i

denotes a particular trial or observation. We will then continue as in

Pr(Yi = 1) = Pi = P (Xi)

where Pi is a number between 0 and 1 and P (Xi) the same probability
as a function of Xi. Its complement is denoted by

Qi = 1− Pi, Q(Xi) = 1− P (Xi).

The vector p consists of a number of probabilities that usually sum to
1. At times we shall also make use of a different notation and use Pr(Yi)
for the probability of the observed value Yi; in the binary case this is Pi
if Yi = 1 and Qi if Yi = 0, and it can be written as

Pr(Yi) = PYi
i Q1−Yi

i .

Equations are numbered by chapter, but sparingly, and only if they
are referred to elsewhere in the text.
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The binary model

Binary discrete probability models describe the relation between one or
more continuous determining variables and a single attribute. These
simple models, probit and logit alike, account for a very large number
of practical applications in a wide variety of disciplines, from the life
sciences to marketing. In this chapter we discuss their background, their
main properties, their justification and their use. Section 2.3 presents the
latent variable regression model that is used as the standard derivation
throughout this book. Although the emphasis is on the logit model,
much of the discussion applies to the probit model as well.

2.1 The logit model for a single attribute

The logit model has evolved independently in various disciplines. One of
its roots lies in the analysis of biological experiments, where it came in
as an alternative to the probit model. If samples of insects are exposed
to an insecticide at various levels of concentration, the proportion killed
varies with the dosage. For a single animal this is an experiment with
a determinate, continuously variable stimulus and an uncertain or ran-
dom discrete response, viz. survival or death. The same scheme applies
to patients who are given the same treatment with varying intensity,
and who do or do not recover, or to consumer households with different
income levels who respond to this incentive by owning or not owning
a car, or by adopting or eschewing some other expensive habit. Mar-
ried women may or may not take up paid employment and their choice
is influenced by family circumstances and potential earnings; students’
choices among options of further education are affected by their earlier
performance. The class of phenomena or models thus loosely defined is
variously referred to in the biological literature as quantal variables or as

9
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X

Y

0

1

Fig. 2.1. Car ownership as a function of income in a sample of households.

stimulus and response models, in psychology and economics as discrete
choice, and in econometrics as qualitative or limited dependent variables.
We examine the car ownership example more closely. The relation

of household car ownership to household income can be observed in a
household survey. The independent or determining variable is household
income, which is continuous, and the dependent variable or outcome is
ownership status, which is a discrete variable. For a single attribute (like
car ownership as such) the outcome Y is a scalar which can take only
two values, conventionally assigned the values 0 and 1. The event Y = 1
is habitually designated as a success of the experiment, and Y = 0 as a
failure, regardless of their nature. In the present case we have

Yi = 1 if household i owns a car,
Yi = 0 otherwise.

When these values are plotted against income Xi for a sample of house-
holds we obtain the scatter diagram of Figure 2.1.
A regression line could be fitted to these data by the usual Ordinary

Least Squares (OLS) technique, but the underlying model that makes
sense of this exercise does not apply.† One may of course still define a
linear relationship, and make it hold identically by the introduction of
an additive disturbance εi, as in

Yi = α+ βXi + εi.

† There is no short-cut formula for the OLS regression of Y on X. If X were
regressed on Y , however, the regression line would pass through the mean incomes
of car-owners and of non-car-owners.
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In order to restrict the Yi to the observed values 0 and 1, however,
special properties must be attributed to the disturbance εi; the simple
properties that are the main appeal of the OLS model will not do.
Instead, the natural approach to the data of Figure 2.1 is to recognize

that Yi is a discrete random variable, and to make the probability of
Yi = 1, not the value of Yi itself, a suitable function of the regressor Xi.
This leads to a probability model which specifies the probability of the
outcome as a function of the stimulus, as in

Pi = Pr(Yi = 1) = P (Xi,θ),
Qi = Pr(Yi = 0) = 1− P (Xi,θ) = Q(Xi,θ).

Recall that, as a matter of notation, Pr(A) is the probability of the
event A, P (·) is a probability as a function of certain arguments, and
P a shorthand notation for either; Q(·) and Q are the complements of
P (·) and P . Here P (Xi) is a probability that is a function of Xi; the
vector θ of parameters that govern its behaviour has been added for the
sake of completeness. In the sequel we shall often turn to a simpler and
less formal notation. – Since P is a probability, it is bounded between 0
and 1. In the present use this is an open interval, and the two bounds
are never attained. Many formulae in the sequel break down if this
convention is disregarded.
The regression equation may be briefly revived by specifying

P (X) = α+ βX,

which is the linear probability model. It suggests the estimation of α and
β by a regression of the Yi on the Xi, with suitable embellishments like a
correction for heteroskedasticity; see Goldberger (1964, p. 250) or, for a
fuller treatment and a comparison with statistical discrimination, Ladd
(1966). Reasonable results are obtained if a linear regression is fitted
to observed frequencies that remain within a limited range, well away
from their bounds 0 and 1; see Agresti(1996, p. 85) for an example. But
technical improvements and special cases do not remove the principal
objection, which is that the linear specification does not respect the
limited range from 0 to 1 which is imposed on probabilities. If we wish
the probability to vary monotonically with X and yet remain within
these bounds, we must look for an S-shaped or sigmoid curve which
flattens out at either end so as to stay within these natural limits. There
are innumerable transformations that meet this requirement; its great
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analytical simplicity recommends the logistic function,

P (X) = exp(α+ βX)/ [1 + exp(α+ βX)] ,
Q(X) = 1− P (X) = 1/ [1 + exp(α+ βX)] .

(2.1)

Throughout the present chapter this particular probability function P (·)
is denoted by Pl (with l for logit or logistic). This function is defined by

Pl(Z) = expZ/(1 + expZ),

so that (2.1) can be written as

P (X) = Pl(α+ βX).

In the present section the argument Z is a linear function of a single
regressor, but it can equally well be a function of several regressors
xTβ.
There is no direct intuitive justification for the use of the logistic

function; we return to this point in the next section. Here we shall first
examine its properties. It follows from the definition of Pl(Z) that

1− Pl(Z) = Pl(−Z), (2.2)

so that the pair of (2.1) can be rewritten as

P (X) = Pl(α+ βX),
Q(X) = Pl(−α− βX).

The behaviour of the logistic function is simple. It follows the sigmoid
curve shown in Figure 2.2, with a point of inflection at Pl(0) = 0.5, that

X

Y

0

1

Xo

Fig. 2.2. The logistic curve Pl(α+ βX).
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is at X◦ which satisfies α + βX◦ = 0, or X◦ = −α/β. It follows from
(2.2) that the curve is symmetrical around this midpoint, in the sense
that the same curve is obtained if we reverse the direction of the X-
axis and then turn the diagram upside down. The original curve for
Pl(X) and this mirror image for Ql(X) cross at the midpoint X◦ with
Pl(0) = Ql(0) = 0.5. The slope of the curve is governed by β, while
its position with respect to the X-axis is set by the location parameter
or intercept α. For continuous X, the effect of (a change of) X on
Pr(Y = 1) is given by the derivative of the curve, and this varies quite
strongly with the level of P and therefore with the point at which it is
evaluated. This derivative is

Pl′(α+ βX) = Pl(α+ βX) [1− Pl(α+ βX)]β

= P (X)Q(X)β. (2.3)

It goes to 0 as P approaches its bounds of 0 or 1, and has a maximum of
β/4 at the midpoint. All we can say is that its sign is determined by the
sign of β. For a positive β, Pl(α+βX) increases monotonically from 0 to
1 asX ranges over the entire real line, which is precisely what is required.
In some fields, like epidemiology, the analysis traditionally bears on

the odds rather than on the probability of a particular event; this is
defined as

odds P (Z) = P (Z)/[1− P (Z)]. (2.4)

While probabilities are confined to the interval (0, 1), odds range over
the positive half of the real number axis. Upon taking logarithms we
obtain the log odds or logit of a probability (or frequency),

log odds = logit [P (Z)] = R(Z) = log {P (Z)/[1− P (Z)]} . (2.5)

Once more we have two names for the same quantity, which may vary
over the entire real number axis from −∞ to +∞. For logistic proba-
bilities the odds are

odds (Z) = exp(Z) = exp(α+ βX),

and the log odds or logit is

logit [Pl(Z)] = Rl(Z) = log {Pl(Z)/[1− Pl(Z)]} = Z,

or

logit [Pl(α+ βX)] = α+ βX. (2.6)

The simplicity of this inverse transformation is a major attraction of
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the logistic model. The linear form of the logit is just as much an
identifying characteristic of the model as the original logistic function of
(2.1) for the probability; the two are equivalent. Since the probability
P (Yi = 1) is equal to the expected value of the random variable Yi, the
logit transformation can also be regarded as a link function from the
theory of General Linear Models, giving E(Yi) as a linear function of
Xi; see McCullagh and Nelder (1989, p. 31).
These arguments suggest that the model may well be derived from

the other end by starting off from a consideration of odds and log odds,
and then arriving at the logistic function. This is common usage in
case–control studies, which deal with the special case of a single binary
categorical regressor variable X. The log odds therefore takes two values
only,

log odds (P ) = α+ β for Xi = 1, log odds (P ) = α for Xi = 0.

As a result, the log of the odds ratio is simply equal to β, and this is a
measure of the effect of X. This is the central approach of case–control
studies, with the odds determined directly from sample frequencies; we
return to the subject in Section 6.4.
Several summary characteristics of the logistic curve for a continuous

X can be derived from the two parameters α and β. Insecticides and
similar products are often graded by the midpoint concentration level
X◦ = −α/β, known as the 50% effective dosage, or ED50. But in many
analyses the main interest is not in the level of P but in the effect of
particular regressor variables on P . This is reflected by the derivative
(2.3), evaluated at a suitable value of X or P . In economic analyses,
such effects are habitually expressed in elasticities of the form

∂ logW/∂ log V,

for any pair of causally related variables W and V . The popular in-
terpretation is that this represents ‘the percentage change in W upon
a 1% change in V ’, and the major reason why it is preferred to the
derivative is that it is invariant to the arbitrary units of measurements
of both variables. In the present case, however, the dependent variable
is a probability, and its scale is not arbitrary since it ranges from 0 to
1. We therefore recommend the use of quasi-elasticities, defined as

η = ∂P (X)/∂ logX,

and given in the present instance by

η(X) = Pl(α+ βX)[1− Pl(α+ βX)]βX. (2.7)
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This indicates the percentage point change of the probability upon a 1%
increase ofX. Like the derivative (and the elasticity) its value varies with
P and hence with X. These measures are therefore usually evaluated
at the sample mean or some other convenient point. Note that the
probability at the sample mean X̄, Pl(α+ βX̄), is not in general equal
to the sample mean of Y (the sample frequency of Y = 1), because of
the nonlinearity of P (·). As P and Q sum to 1, their derivatives sum to
0, and so do the quasi-elasticities which are equal but of opposite sign.
Ordinary elasticities do not have this property.
This is not the only solution to the problem that the value of β (and

hence the derivative (2.3)) varies with the arbitrary scale of X. A simple
alternative from sociological studies is to switch to standardized regres-
sors: X is scaled by its standard deviation, or if it is left unscaled β,
and the derivative, are multiplied by the same factor. This renders the
effects of different regressors comparable.
In the controlled laboratory conditions of bio-assay, the concentration

of the insecticide is the only observable cause of death, all other condi-
tions being kept constant as far as is feasible. Epidemiological studies
often concentrate on a single treatment variable, and also seek to limit
heterogeneity in other respects; still a case can be made for taking into
account other sources of variation, insofar as the observations permit.
Car ownership is of course affected by many household characteristics
other than income, and in the design of household surveys their variation
cannot be avoided. When studying a random sample from the popula-
tion we must therefore control for several obvious additional determi-
nants of car ownership, like family size and the degree of urbanization,
by including them in the analysis. The logit model easily accommodates
additional variables, as in P (xi) = Pl(xi

Tβ), where x and β are vectors.
Any linear function of relevant regressor variables can thus be inserted
in the logistic function; its argument may be treated exactly like a lin-
ear regression equation. The vector x invariably includes a constant ‘1’
with the intercept parameter β0 as its coefficient. Just as in a regression
function the other regressor variables may be transformed, e.g. by tak-
ing logarithms or by adding squares or products (‘interaction terms’).
Particularly rich and flexible nonlinear scale variations of the regressor
variables are provided by the use of fractional polynomials, discussed at
some length by Hosmer and Lemeshow (2000, Ch. 4). Categorical regres-
sor variables can be represented by one or more (0, 1) dummy variables.
So far we have usually designated the independent variables, determi-

nants or explanatory variables of the model as regressors, following the
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usage in economics and econometrics; in the biomedical and statistical
literature they are known as covariates. From now on we shall use these
two terms without discrimination.

2.2 Justification of the model

Even when techniques like ordinary regression or fitting a simple logit
are almost mechanically applied, the original arguments leading up to
the model and establishing its properties are still present in some distant
recess of the analyst’s mind and affect the understanding of the findings.
The logit model has no immediate intuitive appeal, but it can be justi-
fied in several ways: as a simple approximation, by the consideration of
random processes, or from models of individual behaviour. Some of the
latter permit an interpretation of economic choices in terms of utility.
The various arguments are here discussed for a single regressor variable
X, but they are equally valid for models with several covariates.
The approximation argument is quite similar to viewing the linear

regression equation as an approximation to a more complex analytical
relation between the regressors and the dependent variable. The logit
model can be regarded in the same light as an approximation to any
other probability model, provided the log odds is taken as the starting
point; in biomedical research its primacy is generally accepted. By (2.5)
this is defined for any P (X) as

R(X) = log {P (X)/[1− P (X)]} .
A Taylor series expansion around X◦ yields

R(X) = R(X◦) +R′(X◦)(X −X◦) + remainder

= [R(X◦)−R′(X◦)X◦] +R′(X◦)X + remainder.

The first term is a constant, the second is linear in X, and the remainder
represents terms in the higher-order derivatives. If P (X) is the logistic
function the linear function holds exactly and the remainder is zero, as
in (2.6). For other probability functions the linear part constitutes an
approximation. Its quality depends on the form of P (X), and in partic-
ular on its higher derivatives; but these do not easily lend themselves to
further discussion.
The logit model can also be obtained from a random process in which

individuals alternate between two states, such as sickness and health,
employment and unemployment. The durations or spells of either state
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are nonnegative random variables; if they depend on a regressor X,
various models will lead to expected durations of the intervals spent
in states 0 and 1 of the form exp(α0 + β0X), exp(α1 + β1X). Under
quite general conditions the probability of finding an individual drawn
at random in state 1 is then

P (X) = exp(α1 + β1X)/[exp(α0 + β0X) + exp(α1 + β1X)];

see Ross (1977, Ch. 5). Since the numerator and the denominator can
be multiplied by exp(δ + ζX) without affecting P (X), the original pa-
rameters cannot be separately established, and some simplification is in
order; upon writing α = α1 − α0, β = β1 − β0 the logit model (2.1) is
obtained.
There is a wide range of models of individual behaviour involving

random elements that lead to a probability model which turns into the
logit model upon further specification of the random term. This is the
class of threshold models, so named after their classic use in bio-assay or
the testing of insecticides. The stimulusX is the dosage of an insecticide,
a nonrandom variable set by the analyst; the discrete response is death
of the insect, determined by a comparison of X with its threshold value
or tolerance level ε. The response function for a single experiment looks
like the step function of Figure 2.3; for a given insect the threshold is
a constant. It is treated as a random variable because it varies among

ε X
0

1

Y

ε X
0

1

Y

Fig. 2.3. An individual response function in the threshold model.
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insects and we are considering an individual drawn at random from this
population. For observation i we have

Pr(Yi = 1) = P (Xi) = Pr (εi ≤ Xi)

so that

Pr(Yi = 1) = F (Xi)

where F is the distribution function of ε. In the classic example this
is a normal distribution, and it is transformed to the standard normal
distribution Φ as in

P (Xi) = Φ
(
Xi − µ

σ

)
= Φ(α+ βXi).

Other assumptions are needed to obtain a logistic function; we deal with
this in the next section.
This threshold model for the responses of living organisms is applica-

ble to a wide range of human behaviour. If examinations take the form
of multiple-choice questionnaires success consists in giving the correct
answer, and this depend on the students’ ability surpassing a certain
threshold; consumer expenditure on particular items, household owner-
ship of durable goods or housing decisions of a family can all be regarded
as responses to the stimuli of income, prices or advertising campaigns.
According to the circumstances the model may be elaborated by intro-
ducing specific determinants of the stimulus and of the threshold, and
by speculating about the nature of the random elements involved. In the
above example, the tolerance level of the subject insect is random and
the stimulus is not, but in other cases it may be the other way around,
and in still other cases it may be sensible to introduce several distinct
stochastic elements. In the multiple-choice example, the students’ ability
is not directly observable, but a function of a number of characteristics,
while the threshold depends on the difficulty of the set question; both
may contain a random term. In a simple utility or discrete choice model
of the choice between two options (like owning a car or not) the individ-
ual attaches separate random utilities to the two possible states Y = 1
and Y = 0. Both utilities vary with the same covariate, as in the pair

U1 = α1 + β1X + ε1,

U0 = α2 + β2X + ε2.

Utility maximization implies that the state with the higher utility obtains,



2.2 Justification of the model 19

or

P (X) = Pr(Y = 1) = Pr(U1 > U0)

= Pr[(α1 − α2) + (β1 − β2)X + (ε1 − ε2) > 0].

The parameters α reflect utility levels of the two alternatives, and the β
the effect of the regressor on these utilities; the utility differential is the
stimulus that triggers the response, with a threshold of zero. Once more,
however, the parameters of the initial formulation cannot be established,
as they can be varied without affecting the probability of the outcome as
long as utility differences remain the same. Once more we are compelled
to reduce the model to a single inequality of a linear function of the
regressor and a (composite) random term. As in the insecticide example
the behaviour of P is governed by the latter’s distribution, which must
still be specified to complete the model. The reformulation in utility
differentials, not levels, is in keeping with the view that utility measures
at best permit the ordering of alternatives. This is a very simple model
of utility maximization, if only by its limitation to the comparison of
two alternatives; a much more sophisticated model for any number of
alternatives will be presented in Section 8.2.
In the utility example we have been obliged to simplify the model from

its first, rather grandiose inception because we have invented more than
we can observe. In economics this is a common occurrence. The natural
description of the process under consideration leads to a surfeit of pa-
rameters which cannot be established from the observed facts since there
is no one-to-one correspondence from parameter values to the outcome
or its probability distribution. Even if this probability distribution were
known there is no unique vector of parameter values associated with it;
several parameter vectors are observationally equivalent in the sense that
no observed sample, however accurate or large, permits us to discrimi-
nate between them. In economics this is known as lack of identification
of the model. In the utility model the issue is resolved by replacing
the four parameters α1, α2 and β1, β2 by two pairwise differences (with
similar simplifications of the disturbances). The original parameters are
structural parameters, in the sense that they correspond to behavioural
constants that are the same across observations from different sources
and different contexts; in other models, like variations of the insecticide
example, they may represent physiological constants. If these struc-
tural parameters are unidentified, the solution is to reduce their number
by fixing a priori values for some parameters, or by replacing several
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structural parameters by a smaller number of functions, like the dif-
ferences in the utility model. The resulting composite parameters that
can be established from data are known as reduced form coefficients.
We shall presently give another instance of underidentification and its
resolution in this manner.
The somewhat romantic flavour of these behavioural models is en-

hanced by further details. In many instances the stimulus variable like
income or the dosage of a poison is always positive and has a skew dis-
tribution, and logX often gives better results than X in terms of fit;
the logarithmic transformation is standard practice in the original field
of bio-assay. This is sometimes attributed to the law of proportionate
effect or Weber–Fechner law, which says that the physiological impact of
a stimulus is an exponential function of its physical strength. This law
was empirically established in the middle of the 19th century by such
experiments as asking subjects to select the heavier of two weights; the
standard reference is Fechner (1860).
All these models assume a causal relation between the original stim-

ulus X, perhaps some intermediate latent variable like the impact or
utility, and the outcome Y . In the ‘approximation’ and ‘alternating
states’ arguments, X moreover clearly stands for external determinants.
There is always a definite asymmetry between X and Y with X the
cause and Y the (uncertain) effect, without any feedback; X is not af-
fected by the actual outcome Y . In Section 3.2 this basic assumption
is used to justify the treatment of X in estimation. Any idea of a joint
distribution of Y and X without a clear causal link from the one to the
other is alien to the models under review, and will not be followed up
in this book, apart from a brief discussion of discriminant analysis in
Section 6.1.
The threshold model and other behavioural models all end up in a

probability model whereby the outcome depends on a linear inequality
in the regressors and a random disturbance. Further assumptions are
needed to turn this into logistic regression, and this is the subject of the
next section.

2.3 The latent regression equation; probit and logit

The statistical specification of various behavioural models consists of a
linear regression equation for a continuous latent variable Y ∗ and an
inequality that establishes the observed discrete variable Y . This latent
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regression model will be invoked on several occasions throughout this
book, and we shall here present it at some length.
The model consists of two equations. The first is the latent variable

regression equation

Y ∗
i = xTi β∗ + ε∗i (2.8)

where the vector xi invariably includes a unit constant and β∗ an inter-
cept. This has all the properties of a classic linear regression equation.
The regressors or covariates xi are known constants, ε∗ is a random
disturbance that is uncorrelated with the regressors, and β∗ represents
unknown parameters of the underlying process that determines Y ∗. The
latent variable Y ∗

i is not observed, but the (0, 1) outcome Yi is; these
observations are determined by the inequality condition

Yi = 1 if Y ∗
i > 0,

Yi = 0 otherwise. (2.9)

It follows at once that

Pr(Yi = 1) = P (xi) = P (εi > −xTi β∗)

= 1− F (−xTi β∗), (2.10)

where F (·) is the distribution function of ε∗.
The function P (xi) now depends entirely on the distribution of ε∗.

We make a number of assumptions about this distribution. The first is
that it has zero mean,

Eε∗ = 0.

This is a universal assumption, here as well as in the case of ordinary
regression; but it is not a natural assumption, for there is no reason why
ε∗ (which covers, among other things, the effect of missing regressor
variables) should not have a nonzero mean µ∗. But this mean would
not be identified, since it is confounded with the intercept β∗

0 of the
regression equation. By assuming that the mean is zero any nonzero µ∗

is absorbed into the intercept, and this may account for the general lack
of interest in this parameter.
In later chapters we shall come across other instances of irrelevant

factors or nuisance parameters that enter into the intercept but not into
the other elements of β. If the need arises to emphasize this distinction
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we shall partition x and β∗ or other similar coefficient vectors as

x =
[
1
x̃

]
,

β∗ =

[
β0

β̃
∗

]
. (2.11)

x thus consists of a unit constant and the elements of x̃, which are
termed proper regressors or covariates, and β∗ of the intercept and the
slope coefficients of β̃

∗
.

The second assumption is that the distribution of ε∗ is symmetrical
around zero. As a result (2.10) can be rewritten as

Pr(Yi = 1) = P (xi) = F (xTi β∗). (2.12)

Thus the sigmoid curve of Section 2.1 is a cumulative distribution func-
tion.
The third assumption fixes the variance of ε∗. Like the assumption

of a zero mean this is needed to ensure identification. The need arises
because the inequality (2.9) is invariant to changes of scale of all its
terms. This indeterminacy is resolved by imposing a set value c2 on
the variance of the disturbances, putting their standard deviation σ∗

equal to c. Both sides of (2.8) are then multiplied by c/σ∗, so that it is
replaced by

Y ◦
i = xTi β + εi

with

Y ◦
i = Y ∗

i

c

σ∗ , β = β∗ c

σ∗ , εi = ε∗i
c

σ∗ . (2.13)

and Yi is determined as before by the sign of Y ◦
i . Note in particular the

change to a new set of normalized or standardized regression coefficients
β. This normalization of β is usually passed by as a merely technical
adjustment, but it may have material consequences. It is motivated by
the need to ensure identification, and it is certain that in the terms of
the earlier discussion the elements of β are reduced form coefficients. It
is not so certain however that the β∗ represent structural coefficients,
for they themselves may have been earlier derived from a more elabo-
rate underlying model, as in the utility maximization example of the
preceding section.
We return to the choice of the distribution function of (2.12). As all

distribution functions produce sigmoid curves that rise from 0 to 1, any
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symmetrical distribution with zero mean will do; but in practice only
two distributions are chosen, the normal and the logistic distribution.
The normal distribution is the natural specification of any residual

or otherwise unknown random variable; it has a direct intuitive appeal,
if only because of its familiarity. Here we assume a standard normal
distribution with zero mean and unit variance. Its density is

φ(Z) =
1√
(2π)

exp
(
−1
2
Z2

)
,

and the distribution function is

Φ(Z) =
1√
(2π)

∫ Z

−∞
exp

(
−1
2
t2

)
dt.

If this is used as a probability function it is denoted by Pn(Z), just as
Pl(Z) denotes the logistic. This specification

Pr(Yi = 1) = P (xi) = Pn(βTxi)

= Φ(βTxi) (2.14)

is the probit model. Historically the probit model precedes the logit, as
is recounted in Chapter 9. In addition to zero mean the standard normal
distribution has unit variance: the scaling constant c introduced above
is equal to 1. There is no reason to suppose that the standard deviation
of ε∗ has this particular value, and the assumption is solely prompted
by the need for identification.
The major merit of the logistic density for ε∗ is that it leads to the logit

model; we may as well derive it from the desired distribution function,
which is

F (Z) = Pl(Z) = expZ/(1 + expZ).

This gives the density

f(Z) = expZ/(1 + expZ)2. (2.15)

This is known as the logistic density, the sech2 or the Fisk density;
see Johnson and Kotz (1970, vol. 2, Ch. 22) for details. I know of no
experiment or process which engenders this distribution in a natural
way. The density has mean zero and variance λ2 = π2/3, or standard
deviation

λ = π/
√
3 ≈ 1.814.

The standardized logistic distribution with zero mean and unit variance
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therefore has the distribution function

F (Z) = expλZ/ (1 + expλZ)

and density

f(Z) = λ expλZ/ (1 + expλZ)2 .

If we proceed in the reverse direction, from the regression equation via
the density to the distribution, the parameter vector β∗ of (2.8) must
again be normalized in the interest of identification; but now the set
value c of the standard deviation of the disturbances must be λ, not 1.
With the same parameters β∗ of the original regression equation, and
the same residual variance σ∗2 of ε∗, the coefficients of the logit model
are thus a factor λ greater than the coefficients of the probit model.
While the probit specification is analytically less tractable than the

logistic function, the two functions are quite similar in shape, as was first
demonstrated by Winsor (1932). This can be illustrated graphically and
numerically.
Figure 2.4 shows the two densities in standardized form with zero

mean and unit variance, as given above. The logistic density has a
higher peak than the normal, it is thinner in the waist, and it has thicker

-4 -3 -2 -1 0 1 2 3 4 Z
0

Z
0

Fig. 2.4. Logistic (broken line) and normal (solid line) density functions with
zero mean and unit variance.
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tails, but these appear only at fairly extreme values of more than three
standard deviations from the mean. This is measured by the kurtosis of
the distribution, which is 1.2 for the logistic distribution as against zero
for the normal.
For the course of probabilities as a function of X in the two mod-

els we should consider distribution functions rather than densities. The
distribution function of the logistic was shown in Figure 2.2; it might
be compared in the same diagram with a normal distribution function,
drawn to the same scale, but the two curves would be virtually indis-
tinguishable. A numerical comparison is therefore in order. In panel
A of Table 2.1 the two standardized distribution functions given earlier
and their difference ∆ are tabulated for deviations from the mean. This
shows how the two probabilities vary with the argument, adjusted to
a common scale. Over the range of P from 0.1 to 0.9 the logit rises
more steeply than the normal, but beyond these values the position is
reversed. Panel B of the table gives a tabulation of the inverse functions
and their ratio. This shows that after standardization to the common

Table 2.1. Comparison of logit and probit probabilities.

A B

X F (X) Φ(X) ∆ P logit probit ratio

0.00 0.500 0.500 0 0.50 0 0 -
0.10 0.545 0.540 0.005 0.51 0.022 0.025 1.136
0.20 0.590 0.579 0.011 0.52 0.044 0.050 1.138
0.30 0.633 0.618 0.015 0.53 0.066 0.075 1.138
0.40 0.674 0.655 0.019 0.54 0.088 0.100 1.136
0.50 0.712 0.692 0.020 0.55 0.111 0.126 1.136
0.75 0.796 0.773 0.023 0.60 0.224 0.253 1.133
1.00 0.860 0.841 0.019 0.65 0.341 0.385 1.129
1.25 0.906 0.894 0.012 0.70 0.467 0.524 1.123
1.50 0.938 0.933 0.005 0.75 0.606 0.675 1.114
1.75 0.960 0.960 0.000 0.80 0.764 0.842 1.101
2.00 0.974 0.977 −0.003 0.85 0.956 1.036 1.084
2.25 0.983 0.988 −0.005 0.90 1.211 1.282 1.058
2.50 0.989 0.994 −0.005 0.95 1.623 1.645 1.013

Part A: for negative Z, take complements.
Part B: for complements of P, reverse signs.
Normal values from Fisher and Yates (1938).
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variance of 1 (which implies a reduction of the logit coefficients by a fac-
tor λ), the logit is systematically too small in absolute value, at least for
moderate values of P . To bring about a closer correspondence with the
probit over this range the standardized logit coefficients must be raised
by some 10%; in other words, the original coefficients should be reduced
by a factor of about 1.6 rather than λ = 1.814 to match the probit co-
efficients. This is in line with the conclusion of Amemiya (1981), who
equates the slope of the two curves at the midpoint of P = 0.5, X = 0
and finds a ratio of 1.6. In many empirical applications the midpoint
is however by no means representative of the observed sample. Sample
proportions of 0.8/0.2 and beyond are more common than 0.5/0.5, and
the range of the probabilities of the sample observations will then lie far
outside the limits of 0.1 and 0.9. This may lead to different ratios of the
logit to probit coefficients if both curves are fitted to the same data.
The conclusion is that by judicious adjustment of their coefficients

logit and probit models can be made to virtually coincide over a fairly
wide range. The ratio of the two sets of coefficients depends on the actual
range of probabilities which the two curves must describe; it varies from
one application to another. Upon fitting the two curves to the same data
the ratio of the estimated coefficients may lie anywhere between 1.6 and
2.0. Nevertheless, the two probability functions are as a rule virtually
indistinguishable, and it is practically impossible to choose between them
on empirical grounds. As for theoretical arguments, they have most force
for multinomial models; see Section 8.4.

2.4 Applications

The primary product of logit and probit routines of program packages
consists of estimates of the parameters β and of their variances. This
is enough for the investigation of statistical association, but not for two
equally important purposes of empirical research, namely selection or
discrimination and (conditional) prediction. We briefly discuss these
three forms of application, and quote some typical examples to convey
the flavour of applied work; but logit and probit analyses are used as
widely as ordinary regression, and it would be pointless to attempt a
survey of their subject matter.
Statistically significant or just convincing values of slope coefficients

or of odds ratios establish a statistical association between covariates
and the outcome under consideration. In many cases this is all the ana-
lyst is looking for; such findings may lead the way to further substantive
research, or they may just satisfy scientific curiosity. Gilliatt (1947)
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performed laboratory experiments to establish vasoconstriction of the
skin, which means that some people get white knuckles when they take
a deep breath quickly. The data set of 39 observations is a favourite il-
lustration in Finney’s early treatise on the probit model (Finney (1971),
first published in 1947). Another illustration which found its way into
a textbook is the study of depression in Los Angeles by Frerichs et al.
(1981). These authors have screened over 30 potential explanatory vari-
ables in a survey among a thousand people or so; part of the data found
their way into the textbook of Afifi and Clark (1990) and from there
into the bmdp manual of 1992. The well known textbook of Hosmer
and Lemeshow (2000) illustrates logistic regression for the incidence of
coronary heart disease and of low weight at birth and for the survival
of patients in intensive care. The latter example is taken from an orig-
inal study by Lemeshow et al. (1988) which employs hospital records
for about 800 patients to assess the effect of treatment variables like
the characteristics of intensive care units after controlling for the con-
ditions of the patients. In the same vein, Silber et al. (1995) analyse
over 70 000 hospital admissions for simple surgery, employing about 50
patient covariates (including interactions) and 12 hospital characteris-
tics. The importance of such analyses for those who have the misfortune
to need surgery or intensive care is self-evident. Returning to textbook
examples we cite Agresti (1996), who demonstrates logistic regression
(and other techniques) on data for Florida horseshoe crabs. The nesting
females of this species have one or more male crabs attached to them,
who are called satellites; the presence (and number) of these satellites is
related to such attractive traits of the female as her colour, spine condi-
tion, weight and carapace width. An example of settling a factual issue
in economics is the analysis of Oosterbeek (2000), who employs a probit
analysis to resolve the public policy issue of adverse selection, that is the
question whether or not individuals are more inclined to take out addi-
tional health insurance if their personal risk profile is unfavourable (they
are). And Layton and Katsuura (2001) employ logit and probit models
to identify turning points in the business cycle (this fails). In epidemiol-
ogy there is an extensive literature of case–control studies that establish
what conditions contribute to particular diseases, as a preliminary to
closer physiological examination; the relationship of cigarette smoking
and lung cancer is the classic example from an almost endless list.
The second application of discrete probability models is in selection or

discrimination, and on this subject we offer more arguments and fewer
anecdotes. The estimates of β serve to calculate predicted probabilities
for individuals or items with given covariates, and these probabilities are
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then used for their classification, identification or segmentation into two
(or more) groups. This use of discrete probability models is an alterna-
tive to discriminant analysis, which deals with the same classification
problem in a more direct manner (see Section 6.1). Examples of target
groups are individuals who are prone to a certain disease, and hence eli-
gible for preventive treatment; prospective customers who are interested
in a particular product; potential borrowers who are likely to default;
firms heading for bankruptcy, and corporations that are likely objects of
take-over bids. In all such dichotomies the probabilities are calculated
for a group of subjects, and the individuals are ranked accordingly; it
remains to set a critical cut-off value that separates the target group
from the others.
This choice is of more than academic interest when selection has di-

rect consequences for the selecting agent and for the chosen subjects. In
marketing and financial choices it is a matter of maximizing the agent’s
money profit, or rather of minimizing the expected money loss, since the
actual decision is always suboptimal. This is an elementary application
of decision theory. There are two types of misclassification and we as-
sume their costs are known: C1 is the cost of erroneously attributing a
successful outcome to an individual, and C0 the cost of the reverse error.
The cut-off criterion P ◦ is applied to the (estimated) probabilities with
a distribution F (P ). The expected loss due to misclassification is then

E(L) = C1

∫ 1

P◦
(1− P )dF (P ) + C0

∫ P◦

0

PdF (P ),

the minimum condition is

−C1(1− P ◦) + C0P
◦ = 0,

and the optimal value of the cut-off criterion is

P ◦ =
C1

C1 + C0
.

At equal costs the criterion is 0.5; this is a popular (but quite unfounded)
choice in situations of ignorance. In most applications the costs are
highly unequal: upon comparing the profit on a sale with the cost of a
circular letter, or the cost of default or bankruptcy with the profit on a
loan, we arrive at cut-off rates of a few per cent. But then the proportions
of sales or of defaults in a random sample of clients or borrowers are of the
same order of magnitude, and so are the estimated probabilities.† The

† This is not as obvious as it may seem; see Cramer (1999).
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dilemmas of dealing with default risk in real life are more complex, even
if the consequences of various courses of action are easily expressed in
money terms: for excellent demonstrations we refer to the identification
of take-over targets by Palepu (1986) and to the analysis of the default
of credit card holders by Greene (1992).
Binary models are also used to describe sample selection in a number of

econometric models. In the Tobit model, due to Tobin (1958), household
expenditure on durable goods Y ∗ is described by a linear regression on
income and age. Negative values of Y ∗

i , indicating that the household
would rather undo its purchases of durable goods, are recorded as zero.
This is a special case of the model of Section 2.3: (2.8) is not completed
by (2.9) but by

Yi = Y ∗
i if Y ∗

i > 0,
Yi = 0 otherwise.

With a normal distribution of the disturbances, the proportion of zero
expenditure at given covariates follows a probit function (with a negative
slope), while the nonzero observations have a censored normal distribu-
tion; both are governed by the same regression equation. In the more
general model of Heckman (1979), the selection of the observations is
a separate mechanism, distinct from the main relationship under re-
view. If this is the relation of women’s labour supply (hours worked) to
wages, there is a separate discrete model with a latent regression that
determines whether women work at all. The two equations are related
through the correlation of their disturbances, which must be taken into
account in their estimation. In both types of model, Tobin’s and Heck-
man’s, the binary model (invariably a probit) plays only an auxiliary
role. For further particulars the reader is referred to Maddala (1983) or
Wooldridge (2002).
The third use of the results of empirical analyses is (conditional) pre-

diction. This is a vast but uncharted field which is badly in need of a little
theoretical discipline. Its more complex forms, often based on multino-
mial extensions of the model embracing more than two alternatives, are
the mainstay of applied economics like marketing and policy studies.
Discrete models have flourished in transport studies, and the sophisti-
cated theories of Chapter 8 have largely been developed in practical stud-
ies in preparation of public transport systems like San Francisco’s bart.
At the simplest level, economists wish to know the effect of (a change

of) a particular regressor on the outcome. The standard practice is to
consider the expected value of this random variable, and in ordinary re-
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gression the slope coefficient gives the derivative of this expectation with
respect to the regressor concerned. In discrete models, we may likewise
assess the effect of (changes in) covariates on the probability of success
by the derivatives, elasticities and quasi-elasticities of Section 2.1. Their
value depends strongly on the point at which they are evaluated, and it
is uncertain whether the choice of the sample mean or some other rep-
resentative point will indeed yield an estimate that is applicable to the
sample or to the population from which it is drawn. Yet this is what is
required, for interest centres on the effect of adjusting a regressor on the
incidence of outcomes in an aggregate and not on individual outcomes.
This is fortunate, for the practice of predicting expected values makes

little sense for a single discrete outcome Yi. At best we have a precise
estimate of the probability P (xi) which is the expected value of Yi; but
a probability is not an admissible predictor of an outcome that can only
take the values 0 or 1. It is a basic requirement of a prediction that
it is of the same dimension as its object; the temperature of sea water
must be predicted in degrees, and the balance of payments as a sum
of money, and it is of no use to predict the one as green and the other
as blue. The probability must therefore be transformed into a discrete
(0, 1) variable. In the literature this is often resolved by introducing a
prediction rule to the effect that the outcome with the larger probability
is adopted; in the binary case this is equivalent to generating predicted
values by classification with a cut-off point of 0.5. There is no basis
for this procedure; its repeated application to the same given covariates
will not lead to an acceptable result, nor will its use in a heterogeneous
group of individuals. The correct solution is to acknowledge the random
character of the outcome and to assign the value of 1 to Yi at random
with the estimated probability P̂i, putting it otherwise at 0. But this
method will only work if the individual prediction is repeated, or if the
procedure is applied to a group of individuals to yield a prediction of
the aggregate frequency; it offers no satisfactory solution to the problem
of predicting a single individual outcome. We give up on that problem;
it is insoluble, and it is of no practical interest. In practice the aim of
empirical work in forecasts and policy analyses is the conditional pre-
diction of the aggregate incidence of success in (sub)populations, and,
by varying the conditions, the assessment of the effect of changes in the
covariates on the result. Examples are the future course of car owner-
ship under certain demographic and economic developments, the future
composition of manpower by schooling, the demand for urban public
transport under a new fare structure, or, on a smaller scale, the number
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of parking lots in a housing estate, the number of passengers that will
turn up for for a particular flight, or the number of patients of a given
hospital that may need intensive care treatment.
In all these cases it is supposed that we know some characteristics of

N individuals that constitute the prediction sample, and that we have
estimated probabilities P̂i(xi) as a function of these characteristics. The
expected frequency of success (variously defined) in the group is then
predicted by the mean probability

P̄ =
1
N

∑
i

P̂ (xi).

It is easy to see that the expected value of this prediction is equal to the
expected value of the frequency. Its variance consists of two components

var(P̄ ) = var1(P̄ ) + var2(P̄ ).

The first is due to the binomial variation of the outcomes,

var1(P̄ ) =
1
N2

∑
i

P̂ [xi)(1− P̂ (xi)],

and this varies with the size of the prediction sampleN . The second term
is the variance that is due to the use of estimated values; it is given by

var2(P̄ ) =
1
N2

var

(∑
i

P̂ (xi)

)
.

The variance of the sum of estimated probabilities must be derived from
the variance of their common parameter estimates; we shall give a gen-
eral formula for this sort of thing in Section 3.1, but its application in the
present case is quite intractable. Note that this variance will vary with
the size of the sample used for estimation, which is different from N .
This method is prediction by enumeration for a sample of N obser-

vations with known covariate values; policy effects can be simulated by
changing these values and establishing the effect on P̄ . The prediction
sample may have been constructed so as to represent a larger group;
it may also be a random sample, and it may even be the same sample
that has served for estimation. When N is large, the distribution of the
covariates is more easily described by their joint density function g(x, ζ)
than by listing huge numbers of xi; the prediction is then

P̄ =
∫
x

P (x,β) g (x, ζ) dx.
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It might be worth looking for a pair of functions P and g that permit
explicit integration so that the prediction is at once given as a function
of the parameters ζ, which are characteristics of the population under
consideration like the mean and variance of the income distribution.
The effect of changes in these parameters on P̄ can then be assessed
immediately. There are however not many cases where g and P mesh to
produce a neat analytical expression; for exceptions, see Aitchison and
Brown (1957, p. 11,39), Lancaster (1979) or McFadden and Reid (1975).
But with present computing facilities enumeration is quite feasible even
for large samples.
There is still one case where aggregate predictions must be based on

admissible predictions of individual outcomes, namely in the microsim-
ulation of interdependent dynamic processes. The standard example is
the demographic development of a human population over a longer pe-
riod, involving birth, ageing, marriage, parenthood and death of single
individuals. These processes cannot be accurately represented by aver-
age birth rates, marriage rates and so on, and individual life histories
must be simulated instead. In the same way, the working of the economic
system can be represented by making representative sets of households,
individuals, and firms act out their interdependent behaviour under var-
ious conditions. The seminal work in this area is Orcutt et al. (1961);
for a later survey see Bergmann et al. (1980). If the probability model
is embedded in such a wider model, aggregate prediction is not good
enough. A given car ownership rate, for instance, must be specified by
indicating which individual households have cars, for in the next round
of the simulation these cars generate trips and mileage, affect other ex-
penditure, in short set off an entire train of consequences, and this can
only be followed up if car ownership is attributed to specific households.
This problem is resolved by generating the random outcome by simula-
tion according to its estimated probability.
It is often desirable to give the prediction in the form of a confidence

interval or at least to have an indication of its standard error, and this
would mean assessing the two sources of the variance of the overall out-
come distinguished earlier in an even more complicated form. This may
quickly become quite intractable, and in microsimulation the best one
can do is probably to assess the intrinsic variation of the process from
the variation among numerous replications of the entire simulation.
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Maximum likelihood estimation of the
binary logit model

This chapter deals with the elements of maximum likelihood estimation
and with their application to the binary logit model, as practised in the
logit routines of program packages. It explains the technique so that the
reader can understand what goes on, and it pays particular attention
to the properties of the resulting estimates that will be used in later
chapters. A detailed example follows.

3.1 Principles of maximum likelihood estimation

Probability models are often estimated from survey data, which provide
samples of several hundreds or even thousands of independent observa-
tions with a wide range of variation of the regressor variables. Since
the advent of modern computing the preferred technique of estimation
is the method of maximum likelihood. This permits the estimation of
the parameters of almost any specification of the probability function.
It yields estimates that are consistent and asymptotically efficient, to-
gether with estimates of their asymptotic covariance matrix and hence
of the (asymptotic) standard errors of the estimates. Many statistical
program packages provide ready routines for the maximum likelihood
estimation of logit and probit models (see Section 1.3), but even when
these are used it can be helpful to understand the first principles of the
method. The present section shows how it works for binary probability
models, without going into the underlying theory.
First consider the general case of any probability model. The data

consist of i = 1, 2, . . . , n observations on (a) the outcome or occurrence
of a certain event or state, represented by the (0, 1) variable Yi, and (b)
a number of covariates X0i,X1i,X2i, . . . (with the X0i unit constants),
which are arranged in the vector xi. The probability that observation i

33
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is a success and has Yi = 1 is

Pi = P (xi,θ), (3.1)

with any given specification of the probability function P (·). It is al-
ways assumed that successive observations are independent, so that the
probability density of any given ordering of observed outcomes, say
1, 0, 1, 1, . . . , is the product

P1 ·Q2 · P3 · P4 . . .

The sample density of a vector y of zeros and ones is therefore, written
in full,

f(y,X,θ) = P (x1,θ) ·Q(x2,θ) · P (x3,θ) · P (x4,θ) . . . ,

where X denotes a matrix arrangement of the n vectors of regressor
variables xi and Q(·) is the complement of P (·). In this density, the
sequence of outcomes y is the argument, θ is a vector of unknown fixed
parameters, and the elements of X are known constants. The likeli-
hood function L of the sample has exactly the same form, but now the
sequence of zeros and ones is fixed, as given by the sample observa-
tions, and θ is the argument. The character of X does not change. By
strict standards a combinatorial term should have been included in the
density, and hence in the likelihood, to allow for the number of permuta-
tions of the ordered observations. But this term does not contain θ and
merely adds a multiplicative constant to the density and the likelihood,
or an additive constant to logL; it is therefore of no consequence for the
maximization of that function with respect to θ that we shall shortly
undertake, and it is ignored throughout.
We make use of the probability Pr(Yi) of the observed outcome of

Section 1.4

Pr(Yi) = PYi
i Q1−Yi

i ,

to write the likelihood as

L =
∏
i

Pr(Yi).

Since the probabilities Pr(Yi) all lie between 0 and 1, so does their
product L, and its logarithm will never exceed 0. This is the loglikelihood
function

logL(θ) =
∑
i

log Pr(Yi), (3.2)
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or

logL(θ) =
n∑
i=1

[Yi logP (xi,θ) + (1− Yi) logQ(xi,θ)]. (3.3)

Another way to write logL is

logL(θ) =
∑
i∈A1

logP (xi, θ) +
∑
i∈A0

logQ(xi,θ), (3.4)

where A1 and A0 denote the sets of observations with Y equal to 1 and
0 respectively. The actual ordering of the observations in these expres-
sions is immaterial; since the observations are independent, their order
is arbitrary, and it does not affect their density nor the (log)likelihood.
The three expressions are identical; (3.4) suggests an attractive layout
of the calculations (but they are never performed by hand), while (3.3)
is more convenient in the derivations which follow.
The Maximum Likelihood Estimate or MLE of θ is θ̂ which maximizes

the likelihood or its logarithm; it is found by equating the derivatives
of logL to zero. By convention these derivatives form a row vector;
transposition yields the score vector, as in

(∂ logL/∂θ)T = q,

with typical element

qj = ∂ logL(θ)/∂θj .

The estimates θ̂ are obtained by solving the system of equations

q(θ̂) = 0. (3.5)

As a rule these equations have no analytical solution, and θ̂ is found by
successive approximation. One way to do this is to expand q(θ) around
some given θ◦ in the neighbourhood of θ̂ in a Taylor series. This yields

q(θ̂) ≈ q(θ◦) +Q(θ◦)(θ̂ − θ◦),

where Q denotes the matrix of second derivatives or Hessian matrix of
logL. From this we find

θ̂ ≈ θ◦ −Q(θ◦)−1q(θ◦).

Since this holds only approximately, it cannot be used to determine θ̂

from θ◦, but it can be used to obtain a closer approximation. In an
iterative scheme the next approximation θt+1 is calculated from θt by

θt+1 = θt −Q(θt)−1q(θt). (3.6)
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This is known as Newton’s method, or as the Newton–Raphson method
or as quadratic hill-climbing.
The Hessian Q has other uses as well. Its expected value with reverse

sign is the Fisher information matrix H,

H = −EQ, (3.7)

where E takes the mathematical expectation of each element of Q. The
inverse of H is the asymptotic covariance matrix of the MLE θ̂

V(θ̂) = H−1. (3.8)

The elements of Q, H and V are in general functions of θ; we estimate
them by substituting θ̂. The estimated covariance matrix is thus

V̂ = H(θ̂)−1.

Recall that H is constructed according to (3.7). (Asymptotic) stan-
dard deviations of the parameter estimates follow immediately by tak-
ing square roots of the diagonal elements. The variance (and hence the
standard deviation) of any transformation of the estimated coefficients,
like the derivative (2.3) or the quasi-elasticity (2.7) of Section 2.1, or a
prediction from Section 2.4, can also be obtained. For any reasonably
well-behaved function ϕ(θ̂) of the estimates θ̂ with covariance matrix V
we have

varϕ ≈ ϕ′Vϕ′T, (3.9)

where ϕ′ denotes the row vector of derivatives of φ with respect to θ. The
estimated variance is of course obtained by evaluating the derivatives at
θ̂ and inserting V̂ for V.
Since we need H in the end, we may as well use it at an earlier stage,

and substitute it for −Q into (3.6) which is after all only a means of
generating successive approximations. This leads to the iterative scheme
known as scoring, that is

θt+1 = θt +H(θt)−1q(θt). (3.10)

The method has been attributed to Gauss and to Fisher. In practical
computer implementations H is in its turn approximated by an expres-
sion based on the score vectors, so that the algorithm only requires
subroutines for logL and for the score vector q. There are a number
of other iterative techniques with equally modest requirements that also
lead to ever closer approximations of θ̂; the maxlik subroutine from the
gauss program, for example, offers a choice of six different algorithms.
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Their efficiency depends on the characteristics of the data set and the
nature of the model. We shall not go into these technical details; the
logit routine from a program package usually leaves the user little choice.
For the logit model the scoring method leads to particularly simple

formulae, as will be shown in the next section. Still, note that the
elements of Q, H and q all consist of sums of n terms. These terms are
functions of xi and of θ, and as the xi are usually all different, all n terms
have to be calculated anew for each successive θt. The computations
are therefore extensive, and with very large data sets – over a hundred
thousand observations or so – they may require some adjustment of
memory space in the program and perhaps of the computer memory
itself.
All iterative schemes must be completed by starting values θ0, and

by a convergence criterion to stop the process. The judicious choice of
starting values can contribute to speedy convergence, and if the analyst
has a choice in the matter this is an occasion to think in advance about
plausible parameter values; this will later be of great help in interpreting
the results. As for the convergence criterion, the iterative process may
be stopped (1) when logL ceases to increase perceptibly, (2) when the
score vector approaches zero, or (3) when successive parameter values
are nearly equal. Most program packages employ default convergence
criteria that are absurdly strict in view of the precision of the data and
of the statistical precision of the final point estimates; but this merely
adds a few more iterations at negligible computing cost.
In the end, the iterative scheme yields the following results:

• MLE θ̂ of the parameter vector. Under quite general conditions these
estimates are consistent, asymptotically efficient, and asymptotically
normal.

• Corresponding estimates of functions of θ like derivatives and quasi-
elasticities, which are also MLEs since a function of an MLE is itself
an MLE of that function.

• (Asymptotic) standard errors of the parameter estimates (and perhaps
of estimated functions of the parameters), derived from the estimate
of their (asymptotic) covariance matrix, or from (3.9).

• The maximum value of the loglikelihood function, logL(θ̂).

The value of the loglikelihood function for particular sets of param-
eter estimates is useful for testing simplifying assumptions, like zero
coefficients, or the absence of certain variables from the model, or other
restrictions on the parameter vector θ. Provided the restricted model is



38 Maximum likelihood estimation of the binary logit model

nested as a special case within the unrestricted model, the restrictions
can be tested by the loglikelihood ratio or LR test. The test statistic is

LR = 2[log L(θ̂u)− log L(θ̂r)], (3.11)

with u and r denoting unrestricted and restricted parameter estimates.
Under the null hypothesis that the restriction holds, this statistic is
asymptotically distributed as chi-squared with r degrees of freedom,
equal to the number of (independent) restrictions on the parameter vec-
tor. This is not the only test of a nested hypothesis; we return to the
subject in Section 4.1.

3.2 Sampling considerations

Before we implement the general principles of maximum likelihood esti-
mation we must clear up the role of the covariates xi. These were last
seen in the probabilities (3.1) at the very start of this chapter, and in the
loglikelihoods that followed, where they were described as ‘known con-
stants’. While they were tacitly dropped from the subsequent formulae,
they are of course still part of q, Q, and H.
The designation of the xi as ‘known constants’ is ambiguous. In a lab-

oratory experiment, the values of xi are set by the analyst, in accordance
with the rules of experimental design or otherwise, and they can validly
be regarded as known nonrandom constants. But this argument does
not hold for survey data from a genuine sample from a given population.
Yet the use of the same formulae can be vindicated for this case.
A proper description of a sample survey is to consider the sample

observations as drawings from a joint distribution of x and Y , with a
density h(·) for a single observation. In this way we treat the sample
regressor variables or covariates as random variables in their own right.
The joint density h(·) can be written as the product of the conditional
density of Y and the marginal density of x, or

h(Y,x,θ) = f(Y,x,θ) · g(x, ζ). (3.12)

The extended parameter vector η comprises both θ and ζ. Note that the
conditional density f(·) of Y corresponds to the initial probability (3.1).
The marginal density of x reflects both the joint distribution of these
variables in the population and the operation of the sampling method.
With random sampling it is identical to the population density; in a
stratified sample the sampling scheme deliberately distorts the popula-
tion distribution by selecting elements with reference to the value of x.
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This can be spelled out by writing h(·) itself as the product of the popu-
lation distribution of characteristics and the conditional probability that
a member of that population with certain characteristics is included in
the sample.
If we now follow the same passage as before from the density of a single

observation (3.12) to the density of the entire sample, from the density
to the likelihood, and from the likelihood to the loglikelihood, the latter
is found to consist of the sum of two terms. The first represents f(·) and
is identical to the original loglikelihood of (3.2), and the second reflects
g(·). The total loglikelihood of the sample is then

logL∗ = logL(θ) +
∑
i

log g (xi, ζ) . (3.13)

In the estimation of θ by maximizing this function with respect to θ

the second term can be ignored, and this brings us back to the same
loglikelihood function that formed the basis of estimation before. That
loglikelihood and the ensuing derivations therefore hold equally well for
a survey as for experimental data, but for different reasons. The survey
argument is generally known as ‘conditioning on the covariates’.
Closer examination of (3.13) prompts two further observations. The

first is that the same data used for estimating the relationship between
Y and x may also be informative about the distribution of x itself. This
should cause no surprise. If x is income, the same sample can be used
to study the relation of car ownership to income as well as the income
distribution. Most sample surveys are used for several analyses with
different purposes.
The second point to note is that the above argument for the use of

the partial loglikelihood depends critically on the fact that the marginal
distribution of x does not depend on θ, in other words that the sample
values of x are independent of the values taken by Y . If this is not so,
and the probability that an element of the population is included in the
sample is related to the value of Y , there is endogenous sample selec-
tion or state-dependent sampling, and the present argument no longer
holds. If this is disregarded it may do serious damage to the maximum
likelihood estimates and their properties no longer hold. The solution
is to write out the joint loglikelihood of x and y in full, allowing for the
effect of the outcome on the probability that an element is drawn into
the sample. As a rule this is a complicated process, but by an extraor-
dinary and unique property of the logistic function it is much simplified
for logit analyses, as we shall see in Section 6.3.
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In addition to laboratory experiments and genuine samples from a
larger population there is a third type of data set, namely a complete
set of records, like a bank’s administration of its borrowers or the client
database of a credit card company. These can be treated by a rather
artificial analogy as if they were samples from hypothetical superpopu-
lations.
A final point is that maximum likelihood methodology relies heavily

on asymptotic arguments, which apply by strict standards only if the
sample size increases without bounds. This is a theoretical construct,
which can never be realized; but it is generally held that asymptotic
results will hold approximately for large samples. In some cases this can
be checked. In general, however, it is an open question how large the
samples must be for the asymptotic results to hold. In practice, sample
sizes vary over a very wide range, from a score or so in laboratory trials
to several hundreds or thousands in sample surveys in the social sciences
and epidemiology, as in the car ownership example (3000 households) or
the analysis of hospital admission records by Silber et al. (1995) (over
70 000 records).
A related problem is that asymptotic arguments presuppose that the

data set can at least in principle be extended without bounds while the
sample observations retain some of their characteristics. It is uncertain
whether this must be a practical proposition or whether it is sufficient
that we can imagine such an exercise. For laboratory experiments it is
easily envisaged, and also for genuine samples, provided they are drawn
with replacement (in practice they never are). Abstruse problems may
arise if this issue is followed up in more detail, but we shall not do so here.

3.3 Estimation of the binary logit model

The principles of maximum likelihood estimation are now applied to a
binary probability model, and to the logit model in particular.
First we take the loglikelihood function (3.3) of a probability model

and derive expressions for q, Q and H, all in terms of the probabilities
Pi and Qi which are in turn functions of the parameters θ (and of the
constants xi), though these arguments are omitted. To begin with we
find from (3.3) for the j th element of the score vector q,

qj =
∂ logL
∂θj

=
∑
i

(
Yi
Pi

− 1− Yi
Qi

)
∂Pi
∂θj

. (3.14)
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For a typical element of Q we need the second derivative,

Qjh =
∂2 logL
∂θj∂θh

=
∑
i

(
Yi
Pi

− 1− Yi
Qi

)
∂2Pi
∂θj∂θh

−
∑
i

(
Yi
P 2
i

+
1− Yi
Q2
i

)
∂Pi
∂θj

∂Pi
∂θh

.

For H we must reverse the sign and take the expected value of this
expression, which brings about a substantial simplification: the only
random variable is Yi, and upon substituting EYi = Pi the first term
vanishes altogether and the second is much simplified. We end up with

Hjh =
∑
i

1
PiQi

∂Pi∂Pi
∂θj∂θh

. (3.15)

At this stage we introduce the logistic specification of the probability
function, or, in its general form,

Pi = Pl(Z) = expZ/(1 + expZ)

= Pl(xTβ) = exp
(
xTβ

)
/
[
1 + exp

(
xTβ

)]
.

We have

dPli/dZi = PliQli,

and

(∂Zi/∂β)T = xi.

As before, transposition is in order since the derivatives of a scalar with
respect to a vector argument are conventionally arranged in a row vector.
– Upon substitution of these expressions by the chain rule into (3.14)
we obtain the score vector

q =
∑
i

(
Yi
Pi

− 1− Yi
Qi

)
PliQlixi

=
∑
i

(YiQli − (1− Yi)Pli)xi

=
∑
i

(Yi − Pli)xi. (3.16)

Substitution of the same expressions into (3.7) yields an equally simple
expression for the information matrix, namely

H =
∑
i

PliQlixixTi . (3.17)
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We recall that Pli and Qli are functions of the values assigned to the pa-
rameter vector θ (as well as of the xi). Upon restoring these arguments
and substituting the result in (3.10), the iterative scheme is written in
full as

θt+1 = θt +

[∑
i

Pli (θt)Qli (θt)xixTi

]−1 ∑
i

[Yi − Pliθt)]xi. (3.18)

This is the scoring method of determining the MLE of the parameters
of the logit model by successive approximation.
Bearing in mind that the regressor vectors xi form the rows of X, so

that ∑
i

xixTi = XTX,

the Hessian (3.17) bears a close resemblance to the Hessian of the linear
regression model,

(XTX)σ2.

The difference lies only in the weights PliQli, which represent the vari-
ance of Yi, just as σ2 does in ordinary linear regression. Several consid-
erations from the linear regression model carry over.† To begin with, X
must have full column rank, and strong but imperfect collinearity of the
regressors will lead to a near-singular information matrix and to large
elements of the covariance matrix (3.8), and hence to large standard er-
rors of the estimates. In the present case we have an additional interest
in a well-conditioned matrix H since any numerical difficulties that may
arise in its inversion will affect the speed and efficiency of the iterative
process. Apart from not being near-singular, XTX should preferably be
well balanced in the sense that its elements do not vary too much in ab-
solute size. This can be ensured by appropriate scaling of the regressor
variables.
Once the MLE θ̂ has been obtained we may consider the estimated or

predicted sample probabilities

P̂ li = Pl(xi, θ̂). (3.19)

At the MLE θ̂ the score vector must satisfy (3.5), so that by (3.16)∑
i

(Yi − P̂ li)xi = 0. (3.20)

† Note that the solution of (3.18) cannot be represented as a weighted linear regres-
sion problem, since the weights P li(θ)Qli(θ) depend on the parameter values and
must be adjusted in every round of the iterative process.
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The first term on the left can be defined as a (logit) quasi-residual

eli = Yi − P̂ li (3.21)

and el as the vector of quasi-residuals, so that in self-evident notation

y = p̂+ el. (3.22)

From (3.21) we have

XTel = 0. (3.23)

This is a direct analogue of

XT e = 0

for the ordinary residuals of OLS regression, which in that model leads
to the normal equations

XTXb = XTy.

The quasi-residuals eli do indeed share several properties of the OLS
residuals ei. Like these, they represent the difference between the ob-
served outcome and the estimate of its expected value, and have expec-
tation zero; but the logit quasi-residuals are constrained to the interval
(−1,+1), and they are intrinsically heteroskedastic as their variance is

PliQli.

This suggests the use of standardized (quasi-)residuals with variance 1

ẽli = eli/

√
P̂iQ̂i (3.24)

also known as Pearson or Studentized residuals, since they are scaled
by estimated probabilities. – Note that the quasi-residuals do not in
any sense correspond to the random disturbances εi of the underlying
regression equation (2.8) of Section 2.3.
If β contains an intercept (as it invariably does), the xi contain a unit

element, and it follows from (3.23) that

ıTel =
∑

eli = 0,

where ı is the unit vector. Thus the quasi-residuals sum to zero, again
just like OLS residuals. This can be rewritten as∑

i

(Yi − P̂ li)/n = 0,
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or ∑
i

P̂ li/n =
∑
i

Yi/n. (3.25)

This is the equality of the means: the mean predicted probability of
the sample equals the actual sample relative frequency. It comes about
because the score vector of the logit model is linear in xi.
This property also holds for a logit model with an intercept only, the

null model or base-line model. This logistic regression with all slope
coefficients constrained to zero can be used as a benchmark in an LR
test of the significance of the set of covariates. In the base-line model,
the argument xTi β is reduced to a single constant β0, and the same
probabilities apply to all observations, namely

Pl◦ = expβ0/(1 + expβ0),

Ql◦ = 1− Pl◦ = 1/(1 + expβ0).

By (3.25), the maximum likelihood estimate β̂0 must satisfy

P̂ l
◦
=

∑
i

Yi/n = m/n = f,

with m the number of sample observations with Yi = 1 or success, and
f its relative frequency in the sample. It follows that β̂0 is the logit or
log-odds of this relative sample frequency,

β̂0 = R(P̂ l
◦
) = log P̂ l

◦
/Q̂l

◦
= log [f/(1− f)]

= logm− log(n−m). (3.26)

The corresponding null loglikelihood is

logL◦ = m log f + (n−m) log(1− f)

= m logm+ (n−m) log(n−m)− n log n. (3.27)

The null model is a restricted version of the model with argument xTβ,
all slope coefficients being equated to zero. The corresponding LR test
statistic (3.11) is

LR◦ = 2[logL(β̂)− logL◦], (3.28)

and under the null hypothesis that the regressor variables have no effect
this has a chi-squared distribution with k degrees of freedom, with k the
number of slope coefficients in the unrestricted model.
We return to the practice of estimation. The iterative scheme (3.18)

must still be supplemented by starting values β0 of the parameters, and
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by a convergence criterion to stop the process. It will be shown in Section
7.2 that for the logit model the scoring algorithm always converges to a
single maximum in the end, so that any starting value will do: its choice
is important only for the speed of convergence, not for the final result.
Awkward starting values may however still occasionally cause compu-
tational difficulties. Program routines may set all parameters equal to
zero, which implies that in the first round all Pi are set equal to 0.5;
another method is to put all slope coefficients equal to zero and the in-
tercept at its estimate of (3.26), equating all Pi to the sample frequency.
With reasonable data there should be no problems in running a logit

routine from a program package. In the case of perfect multicollinear-
ity the program usually protests by sending an error message indicating
overflow or division by zero or the like, and the same holds in case the
zero cell complication described in the next section occurs. Convergence
should be achieved in something like five or, at the outside, ten iter-
ations; if the number is much larger, something is wrong. First, the
data may be ill conditioned, with an almost singular regressor matrix,
or with covariates of widely different orders of magnitude (as measured
by their variance). If the regressors are severely collinear, one or two can
be omitted; if they show too little variation, other regressors must be
sought; if the regressor matrix is unbalanced, rescaling the variables will
help. The convergence criterion is seldom at fault; it is usually much
too strict by any reasonable standards, but this will at worst cause a
number of unnecessary iterations. If necessary the convergence criterion
built into a program package can sometimes be circumvented by making
the program print output at each iteration, and stopping the process by
hand when the loglikelihood or the parameter values cease to vary in
successive iterations.

3.4 Consequences of a binary covariate

Two special cases worth mentioning arise if there is a regressor that is
itself a discrete binary variable which only takes the values 0 or 1. The
first is an unpleasant complication of the estimation process and the
second opens the way to case–control studies.
For the estimation problem we recall that for any particular regressor

Xj from among many (3.23) implies∑
i

Xjieli = 0,
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or, partitioning the observations according to the outcome, as in (3.4),∑
i∈A1

Xjieli +
∑
i∈A0

Xjieli = 0.

Since eli = Yi − P̂i and 0 < P̂i < 1, all eli of the first term are positive
and those of the second term are negative. In the special case that Xj is
itself a binary discrete variable taking the values 0 and 1 only, the first
sum is nonnegative and the second sum nonpositive. But in the very
special case that Xji happens to be 0 for all observations with Yi = 0,
the second term is 0. The first term will then be positive, for all its eli
are positive and at least some of its Xji must be 1 (obviously not all Xji
can be 0). In other words, this element of the score vector cannot be 0,
and (3.5) has no solution. In this very special case the derivative of logL
with respect to the slope coefficient βj is therefore always positive, the
algorithm that seeks to maximize logL attaches ever increasing values
to this coefficient, and the maximum likelihood method breaks down.
In the example that we have presented Xji is 0 for all observations

with Yi = 0, and in a 2× 2 table of frequencies by Xj and Y the cell for
(Xj = 1, Y = 0) is empty. This complication is therefore known as the
zero cell defect of the data. It may also arise in a less obvious manner, for
example with an Xj that is either 0 or positive, not necessarily 1, that
is again 0 for all observations with the same outcome. The presence of
one covariate with these particular properties among many is enough to
play havoc with the estimation routines. If there is a cell with very small
but nonzero frequency, estimation will not break down, but the quality
of the estimates will be unfavourably affected. If this defect occurs,
inspection must show whether it reflects a systematic effect, and hence
is of substantive interest, or whether it is merely an accident of sampling
or of recording the observations. In most cases the offending covariate
will have to be deleted. Agresti(1966, p. 190 ff.) and Menard(1995, p.
67 ff.) give more details.
The second special case arises if a binary discrete variable X is the

only regressor variable in addition to the unit constant. The argument
of the logit model can be written as

α+ βXi,

and the xi consist of two elements and come in two varieties only, namely
[ 1 1 ]T and [ 1 0 ]T . The Pli take only two values, namely Pl(α + β) in
the first case and Pl(α) in the second. As a result, the score vector q
of (3.16) consists of two elements that are easily expressed in terms of
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these two probabilities and of the four frequencies of observations for
the double dichotomy Yi = 0, 1, Xi = 0, 1. Upon equating q to zero
we have two equations in two unknowns (the two probabilities) that can
be solved directly; and from these probabilities follow the parameters α
and β. This is one of the rare exceptions that the maximum condition
q = 0 does have a simple analytical solution. This forms the basis of
the estimation of the odds ratio or the log odds ratio (which is β) in the
case–control studies of Section 6.4.

3.5 Estimation from categorical data

Survey data often contain variables that are categorical, either by their
nature, like gender or nationality, or by convention as in variables like
‘level of education’ or ‘degree of urbanization’, which are quite capable
of continuous variation but which are limited to a few broad classes by
the way they have been recorded or by a deliberate choice of the analyst.
Sensitive variables like income are sometimes determined by asking re-
spondents to indicate their position on a list of fairly broad intervals; for
items like habitat and education it makes sense to adopt the standard
classification. In the past survey observations were also often grouped
into classes and allotted group means in order to simplify computations.
In other fields like epidemiology many variables are categorical by na-
ture, too, like ‘treatment’ or ‘diagnosis’. If all relevant covariates are
such discrete categorical variables, we may set up a complete cross tab-
ulation of the sample with a limited number of cells; the total sample
information is then summarized by the number of observations with and
without the outcome attribute for each cell. Such categorical or grouped
data permit a greater choice of methods of estimation.
Let j = 1, 2, . . . , J denote the cells defined by the cross-classification of

the sample by the categorical covariates. Empty cells, which are bound
to occur if we cross all available classifications, are ignored. The number
of observations in each cell is nj , the number of successes with Yi = 1 is
mj , and the number with Yi = 0 is lj = nj −mj ; the relative frequency
of the attribute in cell j is

fj = mj/nj .

The covariates take a single value for each cell; this may be a (0, 1)
dummy, a class rank on a conventional scale, or the mid-class value or
class mean of a continuous variable, as the case may be. All within-cell
variation of these variables is ignored.
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A straightforward method of estimation is to regard the grouped ob-
servations simply as repeated individual observations, and to apply the
methods of the preceding section. This is merely a matter of adjusting
the notation. From (3.16) we find for the score vector

q =
∑
j

[mj − njPlj(θ)]xj

=
∑
j

nj [fj − Plj(θ)]xj .

The equivalent of the maximum condition (3.19) is therefore∑
j

nj(fj − P̂ lj)xj = 0,

with P̂ lj = Pl(xj , θ̂). The discrepancy (fj − P̂ lj) will asymptotically
tend to zero: as all nj increase, along with the sample size, it is basic
sampling theory that fj converges to Plj , while P̂ lj converges to Plj too
since θ̂ is a consistent estimate of θ, and therefore P̂ lj is a consistent
estimate of Plj .
For H of (3.17) we find

H =
∑
j

njPljQljxjxTj .

Together, these expressions permit the implementation of the scoring
algorithm (3.10), viz.

θt+1 = θt +H(θt)−1q(θt).

A different method of estimation is based on the chi-squared statis-
tic for testing whether an observed frequency distribution agrees with a
given probability distribution. The general formula of this classic Pear-
son goodness-of-fit statistic is

χ2 =
∑
j

(sj − ŝj)
2

ŝj
,

where sj and ŝj denote the observed and the predicted frequencies in
class j. This nonnegative quantity has a chi-squared distribution with
J−K degrees of freedom, with J the number of cells and K the number
of adjusted parameters that enter into the predicted numbers, provided
the numbers in the cells are not too small: the standard prescription is
that the predicted frequencies must not be smaller than 5. For large
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values of this statistic we must reject the null hypothesis that the sj are
a sample from the given distribution.
In the present case the predicted frequencies are those given by a logit

model with estimated or assumed parameter values. Consider a single
cell of the cross-classification. With two classes only (with and without
the attribute) and frequencies mj and lj , mj + lj = nj , the test statistic
is

χ2
j =

(mj − m̂j)2

m̂j
+

(lj − l̂j)2

l̂j
,

or, after some rearrangement

χ2
j = nj

(fj − f̂j)2

f̂j(1− f̂j)
.

These terms sum over all cells to

χ2 =
∑
j

nj
(fj − f̂j)2

f̂j(1− f̂j)
. (3.29)

The null hypothesis is that the observed cell dichotomies have been gen-
erated by the logit model; for large values of the last statistic this must
be rejected. Conversely this statistic can be taken as a criterion func-
tion that must be minimized for purposes of estimation, thus defining
minimum chi-squared estimates of θ (which enters into the formula via
the predicted m̂j and l̂j). Here, too, zero or very small values of the cell
numbersmj and lj , m̂j and l̂j , should be avoided, if necessary by pooling
adjacent cells of the original classification by covariates. This estimator
is not identical to the maximum likelihood estimator, although the two
share the same asymptotic properties; see Rao (1955). Minimum chi-
squared estimation has been advocated with fervour by Berkson (1980),
who stresses its superior small-sample qualities.
There is a third method of estimation from categorical data; once

more zero (or very small) values of mj or lj must be avoided. In that
case the relative frequencies fj do not attain the bounds of 0 or 1, and
we may apply the log-odds transformation of (2.6)

logit(fj) = log[fj/(1− fj)].

This is the original meaning of the logit transformation. Insofar as fj is
approximately equal to the logistic probability Pl(xTj β), we have

logit(fj) ≈ xTj β.
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This immediately suggests plotting logit(fj) against X or fitting an OLS
regression. A probit transformation of the frequencies, obtained from
tabulations, can be used in the same manner. More about these tech-
niques from the old days, before the advent of the computer, can be
found in Chapter 9.

3.6 Private car ownership and household income

We illustrate the binary logit model by an analysis of private car owner-
ship in a Dutch household survey of 1980. The data have been described
in Section 1.3. In this chapter we consider a single attribute, namely
ownership of one or more private cars, new or used, and in this section
the log of household income per head or linc is the only explanatory
variable. We thus revert to the simple model

Pr(Yi = 1) = Pl(α+ β linci).

For economists this is an example of an Engel curve, although of a
peculiar variety as income determines ownership and not expenditure
on a particular good.
To begin with α and β have been estimated by the scoring method

of (3.18), as embodied in an early version of the logitjd module of
pcgive. Three iterations are sufficient for convergence; their course is
shown Table 3.1. The first or zero iteration shows the starting values
with α0 given by the base-line estimate of (3.24) and β0 equal to zero: all
probabilities are equal to the average sample frequency of 0.65. In the
next iterations the coefficients are adjusted, the loglikelihood increases,
and the elements of the scoring vector qmove towards zero. Convergence

Table 3.1. Household car ownership and income:
iterative estimation.

iteration logL α̂ β̂ |qα| |qβ |

0 −1839.63 0.5834 0 < 10−11 48.25
1 −1831.29 −2.7420 0.3441 2.30 22.72
2 −1831.29 −2.7723 0.3476 0.0016 0.0166
3 −1831.29 −2.7723 0.3476 < 10−8 < 10−7

(3.35) (4.03)

Absolute value of t − ratios in brackets.
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Table 3.2. Household car ownership by income classes.

class limits xa
j nj mj fj logit(fj)

< 10 000 7 000 400 220 0.55 0.20
10 000− 15 000 13 000 962 627 0.65 0.63
15 000− 25 000 20 000 992 636 0.64 0.58
25 000− 35 000 28 000 330 227 0.69 0.79

≥ 35 000 40 000 136 100 0.74 1.02

aClass means of inc,fl . p.a.

is reached in only three iterations, but then the loglikelihood at its max-
imum is not very much larger than at the zero iteration. In the last line
we have made use of the asymptotic standard errors, obtained from the
asymptotic covariance matrix, to calculate t-values; these are shown in
absolute value in brackets below the estimates to which they refer. We
adhere to the common convention of treating coefficients with a t-value
over 2 as significantly different from zero, or statistically significant for
short.
The same relation can be estimated from grouped data. The house-

holds have been classified into five classes by inc, and the entire sample
information is thus condensed in Table 3.2.† With some adjustments,
mid-class values have been assigned to the classes and their logarithms
are the regressor variable. Maximum likelihood estimation treating the
group values as if they were repeated individual observations yields the
results of Table 3.3. We find much the same result as from the individual
observations, again in three iterations.
Finally, the logit transformation of the relative frequencies from Table

3.2 is plotted against the logarithm of mid-class income in Figure 3.1.
Upon fitting a straight line by eye we read off its parameters as α =
−3.60, β = 0.43. The difference from the earlier estimates is that the
class means have not been weighted by class numbers. The estimates of
the intercept and the slope are apparently strongly correlated, for one
goes down and the other up. The technique does not provide a standard
error of the estimates; it only serves for a quick inspection of the data,
and perhaps for finding starting values of the parameters.
The three estimation techniques yield virtually the same results, but

these results are disappointing. We have already noted that logL does

† The classification by income per head is unusual; it is used here in order that the
grouped data have the same regressor variable as the individual data.
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Table 3.3. Household car ownership: iterative
estimation, grouped data.

iteration logL α β |qα| |qβ |

0 −1839.63 0.5834 0 < 10−13 48.38
1 −1830.89 −2.9184 0.3617 2.4144 23.33
2 −1830.88 −2.9153 0.3618 0.0013 0.0124
3 −1830.88 −2.9154 0.3618 < 10−9 < 10−8

(3.48) (4.17)

Absolute values of t − ratios in brackets.

INC x fl.1000, log scale

logit(f)
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Fig. 3.1. Logit of car ownership plotted against the logarithm of income per
head.

not improve much beyond the zero iteration, which is the null model of
constant probability. This means that variations in income contribute
very little to an explanation of private car ownership. The restrictive
hypothesis of zero β may be tested by the LR test of (3.27); upon com-
paring the final loglikelihood of Table 3.1 with the null value, we find a
test statistic of 16.68. This is quite significant, for the 5% critical value
of chi-squared with one degree of freedom is 3.84. The absence of any
income effect is thus rejected. We could have known, for the estimated
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Fig. 3.2. Fitted probability of car ownership as a function of income per head.

income coefficient of Table 3.1 differs significantly from zero by its t-ratio
of just over 4.
But this purely statistical reassurance does not alter the fact that the

effect of income alone on private car ownership is small. The grouped
data demonstrate directly that the incidence of car ownership varies very
little from one income class to another.† Since the income variable is in
logarithms, the quasi-elasticity is given by the derivative (2.3); at the
sample mean ownership rate of 65%, this gives 0.35× 0.65× 0.35 = 0.08,
which is much lower than one would expect: a 12% rise in income is
needed to increase the probability of car ownership by 1 percentage
point. By a statistical assessment the income effect is significantly dif-
ferent from zero, but by economic considerations it is very weak. This is
once more demonstrated by the fitted curve of private car ownership as
a function of income per head in Figure 3.2. Note that the logarithmic
transformation of income makes the sigmoid curve asymmetrical. The
main conclusion from the graph is that its slope is very small.
There are two reasons for this low income effect. It is possible that

private car ownership was already so well established in 1980 that it
was indeed hardly related to income. This is unlikely, for it would mean

† Another consequence of the limited ownership variation between income classes,
coupled with anomalous low car ownership in income class 3, is that the grouped
data estimates are quite sensitive to the mid-class income values assigned to each
class and to the treatment of the open-ended classes at either end of the range.
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that the ownership levels of about 0.7 already constitute saturation. The
second possibility is that the estimate of the income coefficient is biased
downward by the omission of other covariates from the analysis. This
is strongly suggested by the results of the next section. We return at
greater length to this bias in Section 5.3.

3.7 Further analysis of private car ownership

We now add other regressors to the income variable linc, namely all the
other variables listed in Section 1.3,
• lsize, the log of household size;
• buscar, a (0, 1) dummy variable for the presence of a business car;
• urba, the degree of urbanization, graded from countryside (1) to city
(6);

• age, the age of the head of household by five-year classes.

We have some misgivings about measuring household size in equivalent
adults, not in persons, but the definition of the variables is dictated by
the available data set. Note that the order of the variables is different
from their order in the data set.
The addition of significant regressor variables improves the fit, in-

creases the precision of the estimates, and leads to higher estimates of
the income effect. These effects are shown in Table 3.4. The maximum
loglikelihood increases upon the addition of each new variable, as is only
natural. Whether these increases are significant can be tested by the
likelihood ratio test of (3.11), for at each stage the simpler model is a
restricted form of the next model, with one coefficient equal to zero;
since chi-squared with one degree of freedom is significant at the 5%
level when it exceeds 3.84, the loglikelihoods should increase by at least
half of this, or by 1.92. All additional variables pass this test, with urba
giving the weakest performance. It also stands to reason that the pre-
cision of the estimates, as reflected in their t-values, increases with each
additional regressor.
Table 3.4 also shows the effect of introducing additional variables on

the estimated slope coefficients and in particular on the income coeffi-
cient. This shows an increase in absolute value, away from zero, that is
roughly in line with the increase in logL. The effect of adding the size
variable on the income coefficient is spectacular; this is due to the fact
that linc and lsize are negatively correlated while they have a similar
effect on car ownership. If lsize is absent, its effect is confounded with
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Table 3.4. Household car ownership: effect of adding
covariates on estimated slope coefficients.

logL linc lsize buscar age urba

−1831.29 0.35
(4.0)

−1614.92 1.77 2.22
(14.1) (18.7)

−1393.74 2.46 3.09 −2.95
(16.7) (21.6) (18.9)

−1360.23 2.36 2.83 −3.00 −0.12
(16.1) (19.8) (19.4) (8.1)

−1351.39 2.38 2.76 −3.04 −0.13 −0.12
(16.2) (19.1) (19.5) (8.2) (4.2)

Absolute values of t − ratios in brackets.

opposite sign with the effect of linc, and this depresses the income coef-
ficient. A further advance in the income coefficient takes place when the
presence of a business car is taken into account. From the third line on,
the improvement of logL as well as the changes in the slope are less pro-
nounced. The mechanism of the omitted variables bias and its operation
in the present case are discussed at greater length in Section 5.3.
The last line of Table 3.4 gives the best estimates that can be ob-

tained from the present data set. Since linc and lsize are in loga-
rithms, quasi-elasticities equal derivatives, and these can be evaluated
at the mean ownership level, as before; the quasi-elasticity in respect of
income is then 0.54, and in respect of household size 0.63. The latter
elasticity refers to a pure size effect, measured at a given income per
head or a constant standard of living, and it is therefore considerably
higher than the effect of an increase in family size at a given nominal
income level. These are reasonable values. The presence of a business
car is the third important determinant: it reduces the probability of pri-
vate car ownership substantially. For otherwise identical households, the
odds ratio of private car ownership for the presence of a business car is
exp(−3) = 0.05; this means that a business car is an almost perfect sub-
stitute for a private car. The two remaining variables are less important
(though still significant): upon taking derivatives we find that moving
up one step in a six-class scale of urbanization reduces the probability
of private car ownership by 3 percentage points, and so does a five years
older head of the household.
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Some statistical tests and measures of fit

In discussing the car ownership example of Chapter 3 we loosely applied
tests of significance to individual coefficients and to the model as a whole.
The subject deserves a more systematic treatment and this is given in
the first section of this chapter. Textbook etiquette also demands that
estimation is accompanied by diagnostic testing, putting the model un-
der heavy strain before it is accepted. In applied work this is not always
done. If the statistical analysis serves only for a preliminary screening of
the evidence, preparatory to substantive studies, probability models are
used in the same way as ordinary regression as an exploratory technique,
without much regard for the suitability of the underlying assumptions.
But when it comes to classification or conditional prediction with heavy
consequences, it is worth while to perform a goodness-of-fit test of the
model, and to assess its quality in describing the data.

4.1 Statistical tests in maximum likelihood theory

One of the basic requisites of the statistical model of maximum likelihood
theory is the definition of a parameter space in which the true parameter
vector θ as well as its MLE θ̂ must lie. In the context of maximum
likelihood theory, statistical tests bear on nested hypotheses that restrict
θ to a subspace of a wider but still acceptable parameter space. The
restriction may constrain one element of θ to a particular value (often
zero), but it may also take a more general form and involve any number
of parameters. There are three types of tests of such restrictions against
the wider alternative, namely
• LR or Likelihood Ratio tests, based on a comparison of the maximum
value of the loglikelihood with and without restrictions;

• Wald tests, based on a comparison of the restricted parameter values

56
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with the asymptotic normal distribution of the unrestricted parameter
estimates;

• LM or Lagrange Multiplier tests, also known as score tests, based on
a comparison of the score vector of the unrestricted model, evaluated
at the constrained parameter estimates, with the unrestricted value
(which is zero).

Any nested hypothesis can be subjected to all three tests. They are
asymptotically equivalent, but they may give different results in any
particular instance and they may have different small sample perfor-
mances in specific applications.
In the car ownership analysis of Chapter 3 the relevance of covariates

was assessed by testing (and rejecting) the restrictive hypothesis of a zero
coefficient by LR and by Wald tests. The latter contrast the constrained
value of a parameter β◦

j with the distribution of its unrestricted estimate,
which is a normal or rather a Student distribution. This gives

β̂j − β◦
j

s.d.(β̂j)
;

if β◦
j is zero (a common choice), this is the t-value of β̂j . The natural

choice for testing the joint relevance of several covariates is an LR test,
and this may also serve to establish the significance of the entire model
by a comparison with the null model, as in the test statistic (3.28) of
Section 3.3. This last test is like the F test of ordinary regression; the
null hypothesis is that the fitted model is not significantly different from
the base-line model. This is almost invariably rejected, but it only means
that the fitted model is better than nothing. The goodness-of-fit tests
discussed below are much more stringent.
Apart from these standard tests for the direct effect of covariates there

is a variety of diagnostic tests of the model against alternatives like ad-
ditional transformations of the covariates (including interaction terms),
heteroskedasticity, or an altogether more general model. When such
issues arise the first concern is to set up a nested hypothesis, and the
next step is to choose one of the three types of test. In the past this
choice has been influenced strongly by considerations of computational
convenience: up to the 1980s the iterative nature of maximum likelihood
estimation was regarded as so onerous that Wald or score tests were
preferred since they require one fit while an LR test requires two. This
led authors like Pregibon (1982) and Davidson and McKinnon (1984)
to develop score tests of great ingenuity and elegance; in Davidson and
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McKinnon (1993) the last authors advocate their system of auxiliary
regressions as a general approach to hypothesis testing. In their earlier
paper, they examine the performance of several variants of these score
tests in small and moderate samples (from 50 to 200 observations); the
LR test, used as a standard of comparison, performs well, but is dis-
missed because of its computational burden. This is one of the rare
studies of small sample properties of these various tests; another exam-
ple is the early paper of Hauck and Donner (1977), who show that for
case–control analyses of small samples the Wald test may exhibit per-
verse behaviour. So far LR tests have not attracted this sort of criticism.
With present computing facilities they are no longer at a disadvantage,
although there may still be technical difficulties in fitting both the re-
stricted and the unrestricted model by a standard routine.

4.2 The case of categorical covariates

The case of categorical data samples provides a good illustration of the
nature of goodness-of-fit tests of a model. The data consist of frequencies
of the two outcomes in the homogeneous cells of a multidimensional
cross-classification of the individual observations by their covariates, as
discussed earlier in Section 3.5. The classification has J cells with index
j, there are nj observations in a cell, mj successes with Y = 1 and lj
failures with Y = 0; the sample numbers are n, m and l. As before,
empty cells are ignored, and zero values of mj or lj avoided by pooling
adjacent cells. The observed relative cell frequencies of success are fj =
mj/nj , and these are contrasted with predicted or theoretical frequencies
f̂j . In the present case these are the estimated probabilities P̂j from a
probability model (or more specifically a logit model) that has been
fitted to the same data.
The Pearson goodness-of-fit statistic for a single cell j is

χ2
j =

(mj − nj f̂j)2

nj f̂j

and in this binary case this can be simplified to an expression in the
relative frequency of success alone,

χ2
j =

(fj − f̂j)2

f̂j(1− f̂j)
.
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The sum over all cells is then

χ2 =
∑
j

nj
(fj − f̂j)2

f̂j(1− f̂j)
,

or

χ2 =
∑
j

nj
(fj − P̂j)2

P̂j(1− P̂j)
, (4.1)

or the sum of squared Studentized residuals in each cell. This is the same
expression as (3.29) of Section 3.5, where it was introduced as a criterion
function for estimating the model parameters; originally, however, its use
is to test the goodness-of-fit of a given model, i.e. the null hypothesis
that the observed cell dichotomies have been generated by a probability
distribution, here: by the fitted model. Under this hypothesis, and pro-
vided the parameter estimates are consistent (as maximum likelihood
estimates are), the test statistic is chi-squared distributed with J−k−1
degrees of freedom, with J the number of cells and k+ 1 the number of
adjusted parameters, viz. k slope coefficients and an intercept. For large
values of (4.1) the null hypothesis must be rejected.
Another test of model performance is a likelihood ratio test in which

the fitted model is regarded as a restricted variant of the saturated model
that provides a perfect fit. In the saturated model the predicted proba-
bilities for each cell equal the observed relative frequencies; see Bishop
et al. (1975, pp. 125–126). This means putting f̂j = fj ; altogether J
parameters are estimated, and all available degrees of freedom are used
up. The saturated loglikelihood is

logLs =
∑
j

[mj log f̂j + lj log(1− f̂j)]

=
∑
j

(mj logmj + lj log lj − nj log nj),

and this is indeed a maximum maximorum. With a little ingenuity it
must be possible to represent the fitted model as a restricted version
that is nested within the saturated model. Its loglikelihood is

log L̂ =
∑
j

[mj log P̂j + lj log(1− P̂j)]

and the LR test statistic is then

LR∗ = 2(logLs − logL̂). (4.2)
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This is again chi-squared distributed with J − k− 1 degrees of freedom.
It tests whether the fitted model falls significantly short of the saturated
model.
Both test statistics (4.1) and (4.2) are based on a comparison of fre-

quencies and predicted probabilities; some rearrangement yields

χ2 =
∑
j

nj(fj − P̂j)2P̂−1
j

LR∗ =
∑
j

{mj log[fj/P̂j ]2 + lj log[(1− fj)/(1− P̂j)]2}.

Both quantities are asymptotically distributed as chi-squared with J −
k−1 degrees of freedom, regardless of sample size. Asymptotic theory is
here based on increasing the sample size n for a given classification with
a constant number of cells J . In this process all nj will increase in line
with n; but this effect on the test statistics is offset by the convergence
of frequencies and probabilities, for the fj tend to the true probabilities
by the law of large numbers, and the P̂j tend to the the true proba-
bilities since they are consistent. But while they have the same basis
and the same asymptotic distribution, the two statistics answer differ-
ent questions: the null hypothesis of the classic test of (4.1) is that the
observations satisfy the given model, the null hypothesis of the LR test
of (4.2) is that the given model is as good as the best.
We recall another LR test from Section 3.3 which checks whether the

fitted model is an improvement on the null or base-line model with a
constant only. This is the test statistic of (3.28),

LR◦ = 2[logL(β̂)− logL◦],

which has k degrees of freedom. With the base-line model we have three
loglikelihoods, the base-line model, the fitted model and the saturated
model, and the fitted model is as it were suspended between the two
extremes. Always omitting the common combinatorial constant, the
three likelihoods are, in ascending order,∑

j

nj log nj − n log n,

∑
j

[mj log P̂j + lj(1− P̂j)],∑
j

(mj logmj + lj log lj − nj log nj).

A comparison of the first and second terms tests whether the model
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Table 4.1. Performance tests of car ownership
analysis by income class.

statistic null df value

χ2 model fits data 5− 2 = 3 2.09

LR∗ model equals 5− 2 = 3 5.70
saturated model

LR◦ income does 2− 1 = 1 17.49∗∗

not matter

contributes significantly to an explanation of the variation of the ob-
served frequencies, a comparison of the second and third terms tests for
the agreement between the model and the observed frequencies, and a
comparison of the first and third terms would test whether the cross-
classification of the sample by cells is at all relevant to the incidence of
the attribute under review.
We illustrate the tests of this section in Table 4.1 for the only analysis

of categorical data at hand, viz. the car ownership example of Section
3.6, with income the sole regressor and five income classes as the cells.
At the top of the table we record the goodness-of-fit statistic (4.1); this
does not register significance, so that the fitted model is not rejected.
There follow two LR tests, constructed from the three loglikelihoods
given above, which are −1839.05, −1830.88 and −1828.04 respectively.
From the last two values, the test of (4.2) comes out at 5.70, and this is
not significant: the fitted model is therefore an acceptable simplification
of the saturated model. The LR test of (3.28) is significant, so that
income does contribute to an explanation of car ownership. – Altogether
the analysis under consideration passes all tests, while it is in fact quite
poor. The reason is that the goodness-of-fit tests for categorical data
depend on the given classification, and that the classification by five
income classes alone is a meagre representation of the distinctions that
are relevant to car ownership: with this classification even the saturated
model is not much superior to the base-line model.
With a somewhat more sophisticated notation, the arguments and

formulae of the present section are easily extended to multinomial models
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with S alternative outcome states s = 1, 2, . . . , S instead of just two.
They can therefore be readily applied to the models of Chapters 7 and 8.
There is trouble when these goodness-of-fit tests are applied to very

large samples. With cell numbers nj of a thousand or so, the observed
frequencies must be very close to the estimated probabilities to fall
within the limits of sampling variation. Both goodness-of-fit tests will
therefore take significant values, even though the agreement between the
fj and P̂j looks reasonable enough. It is not certain that this outcome
must be taken seriously: the tests allow only for sampling variation and
leave no room for the approximate nature of the model specification or
for imperfections of the recorded data. Under the null hypothesis, the
fitted probability model is a true description of the experiment, and the
observations form an impeccable random sample; with increasing sample
size the relative frequencies must therefore converge to the prescribed
probabilities without fail. In much applied work this is not realistic. It
stands in contrast to ordinary regression, where the disturbances con-
tinue to reflect imperfections of data and model however large the sample
may be.

4.3 The Hosmer–Lemeshow test

The difficulty of designing a likelihood ratio goodness-of-fit test for in-
dividual data is the formulation of the ideal model in which the fitted
model is nested. The idea of a saturated model with probabilities equal
to 1 and a loglikelihood of 0 has played a role in the definition of the
deviance,

D = − logL

as a measure of the (lack of) performance of the fitted model. But
such a saturated model does not stand up to asymptotic considerations,
for there must be a parameter for each observation to ensure a perfect
fit, and the number of parameters will therefore increase beyond all
bounds with the sample size. To overcome this problem, Tsiatis (1980)
partitions the covariate space into a finite number of J regions, and
considers a model with J (0,1) additional dummy variables as the ideal.
He then develops a score test of the null hypothesis that these dummy
variables have zero coefficients. The test statistic is a quadratic form in
the discrepancies

fj − P̂j
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that played such a prominent role in the test statistics of the last sec-
tion. Pregibon (1982) takes up this idea and arrives at a simpler form
of the test statistic; he resolves the problem of how to define the J

regions (which is not addressed by Tsiatis) by lumping together obser-
vations with similar predicted probabilities. The same idea is used in the
goodness-of-fit test which Hosmer and Lemeshow developed in a num-
ber of papers in the 1980s; see Hosmer and Lemeshow (2000) and the
references cited there. We explain this test more fully and apply it to
an illustrative example.
The Hosmer–Lemeshow test closely resembles the classic Pearson test

of (4.1), with the difference that the cells are not determined by a cross-
classification of the covariates, but that the individual observations are
ordered into G groups by their estimated probability P̂i. For each group
g the expected frequency of successes m̂g is the sum of the estimated
probabilities, and this is compared with the actual frequency mg. The
estimated probability for the group is simply the mean of the P̂i, or
P̄g = m̂g/ng. The test statistic is

C =
∑ (mg − m̂g)2

ngP̄g(1− P̄g)
,

or, in the same form as (4.1),

C =
∑

ng
(fj − P̄g)2

P̄g(1− P̄g)
. (4.3)

Under the null hypothesis this has a chi-squared distribution with G−2
degrees of freedom. This test is derived from first principles and sup-
ported by a number of simulations in Hosmer and Lemeshow (1980) and
further discussed in Lemeshow and Hosmer (1982). But in the asymp-
totic arguments its authors need the restriction that the number of co-
variate vectors (or covariate patterns) is fixed, or at least that it does
not increase in proportion with the sample size. This is tantamount to a
cross-classification of the individual observations by categories of the co-
variates, as in the last section. The assumption is prompted by concern
over the behaviour of continuous variables as the sample size increases,
with ever increasing numbers of different observed values demanding an
ever increasing number of parameters of the perfect model. In the ab-
stract, the number of different values a continuous variable can take is
infinite, but in practice this number is limited or at any rate finite. This
is certainly so for samples from a real population. In the car ownership
data of Section 1.3, for example, urbanization, which is clearly contin-
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uous, has been sensibly recorded on a six–point scale. linc, or the log
of income per head, while treated as a genuine continuous variable, is
still given with finite precision. Even at absurd levels of precision (which
are often employed), the number of different income levels in Holland in
1980, though large, is certainly finite, and for the abstract problem this
is enough. In the theoretical exercise there will inevitably come a point
when further increases in the sample size will produce more of the same,
and from then on there is no need to add new cells to the classification
and new parameters to the ideal model.
In the implementation of the Hosmer–Lemeshow test its authors use

ten groups, defined either by deciles of P̂i or by deciles of the ordered
sample observations. With ten groups and the range of P̂i from 0 to
1, the former case gives class limits of 0, 0.1, 0.2, . . . , 1, regardless of the
actual sample values of P̂i. With unbalanced samples this may lead to
a very uneven distribution of the observations over classes, and some
classes may have mg or lg of less than 5, which is the conventional lower
limit. The alternative is to form groups of equal numbers of observa-
tions. Lemeshow et al. (1988) compare the two methods for severely
unbalanced samples, and advocate caution as the test statistics show
somewhat erratic behaviour with small values of mg and lg.
The illustration we give bears on a very unbalanced but quite large

sample, and it leads to a clear rejection of the fitted model. The example
comes from a Dutch bank and refers to over 20 000 bank loans to small
business granted in a single year. Two years later some 600 loans are
identified as bad loans, and this attribute is related to financial ratios
of the debtor firm, recorded at the time the loan was granted. Further
details are given in Section 6.2. A standard binary logit has been fitted,
and this gives the values of mg and m̂g shown in Table 4.2. Both panels
of this table report the expected and observed numbers of bad loans for
ten classes of observations, ordered by P̂i. The first panel employs the
standard classification by deciles of P̂i, and we give the overall number
of observations by class in the first column. In the second panel the
classification is by equal numbers of observations, giving ten classes of
2081 or 2082 observations each; the first column now reports the highest
value of P̂i in each class. The test statistic C of (4.3) is 97.27 for the first
classification and 164.35 for the second; both values are highly significant
at 8 degrees of freedom, and the logit model is soundly rejected.
The table shows that in the present case the second classification is

much more informative than the first, owing to the highly unbalanced
nature of the sample. Quite small probabilities prevail, as the mean of
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Table 4.2. Hosmer–Lemeshow test of logit
model for bad loans.

deciles of P̂j equal sizes

ng m̂g mg maxP̂i m̂g mg

20 453 543 586 0.0100 11 7
233 32 23 0.0158 27 6
60 15 8 0.0198 37 13
26 9 3 0.0229 45 17
11 5 3 0.0258 51 31
9 5 1 0.0286 57 36
11 7 1 0.0317 63 51
4 3 1 0.0359 70 63
6 5 1 0.0443 82 158
3 3 0 0.9148 185 245

predicted probabilities is equal to the sample frequency of 0.03 by the
equality of means of Section 3.3. In the classification by deciles of P̂i
observations of either type are therefore very heavily concentrated in
the first cell, and the numbers beyond that class are too small to give a
clear idea of the quality of the fitted curve. One of the advantages of the
Hosmer–Lemeshow test is that it permits inspection of the discrepancies
that lead to the rejection of the model: the second classification immedi-
ately shows that there is severe overestimation of the probability of bad
loans in the lower ranges and underestimation in the two highest classes.
This is further illustrated in Figure 4.1, where the expected and actual
numbers of bad loans from the second classification have been converted
into relative frequencies which are plotted against the argument of the
logit function, the log odds ratio of the expected probability,

zg = log[P̄g/(1− P̄g)].

The smooth line of the expected frequencies follows a logistic curve by
construction; since the overall sample frequency is so small, it represents
the far left-hand tail of the logit function. In contrast, the actual fre-
quencies appear to trace a far larger and much more central part of the
same sigmoid shape, if on a reduced scale. This suggests a bounded logit
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Fig. 4.1. Expected and observed frequencies of bad loans in ten classes.

function with an upper level well below 1, as if a fairly large part of the
sample is completely immune to the risk of becoming a bad loan. This
variant of the logit model is further discussed in Section 6.2.

4.4 Some measures of fit

The value of the loglikelihood function provides an immediate measure
of the model fit; by (3.2) of Section 3.1 the mean loglikelihood, which
is often among the standard output of a program package, gives the
geometric mean of P̂r(Yi), the estimated probabilities of the observed
outcomes. For the car ownership example of Table 3.4, Section 3.7, this
gives exp(−1351.39/2820) = 0.61; but this value largely reflects the over-
all composition of the sample with an ownership rate of 0.65. Kay and
Little (1986) have also proposed direct calculation of the (arithmetic)
average of P̂r(Yi).
Another simple measure of model performance is the percentage cor-

rectly predicted, also known in marketing research as the hit rate. This is
found by predicting the outcome by P̂i, employing a cut-off value of 0.5,
and counting the matches of predicted and observed outcomes. With
unbalanced samples this gives nonsense results: for the bank loan exam-
ple of the last section, admittedly an extreme case, the numbers are as
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follows:

predicted

actual Y = 0 Y = 1

Y = 0 20 160 623

Y = 1 29 4

The percentage correctly predicted is 97%, but it would be the same if we
had indiscriminately predicted that all loans are good loans. The result
reflects the uneven sample composition, and the prevalent outcome is
much better predicted than the rare alternative. This also holds in less
extreme cases. The measure is quite sensitive to the sample composition
and also to the distribution of P̂i, as argued with some force by (Hosmer
and Lemeshow (2000, p. 146–147). More sensible results are obtained
by equating the cut-off value to the sample frequency, that is the mean
value of P̂i, as I have proposed elsewhere (Cramer 1999). In the present
example this is 0.0301, and it gives the following result:

predicted

actual Y = 0 Y = 1

Y = 0 13 425 138

Y = 1 6764 489

Overall, 67% of the outcomes are correctly predicted, 66% of the Yi = 0
and 78% of the Yi = 0. This is less flattering but more realistic and much
more equitable than above. Even so, all such comparisons of individual
predictions with the actual outcomes rely on intuitive appeal rather than
on a solid theory.
All these measures vary between 0 and 1, and the higher their value

the better the performance: in this respect they resemble R2 of ordinary
linear regression. That is a purely descriptive sample statistic which does
not contribute to proper statistical inference, yet it has an irresistible
intuitive appeal. A large number of R2-like measures have therefore
been put forward for binary discrete models; for reviews see Windmeijer
(1995) and Menard (2000). Here we restrict the discussion to two mea-
sures that are based on an analysis of variance or decomposition of a sum
of squares, just like the classic coefficient of determination of ordinary
regression.
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We briefly recall the argument from ordinary regression. This starts
from the equality

yr = ŷr + er

with yr and ŷr vectors of the observed and estimated values of the
dependent variable, and er the residuals; the suffix r indicates that we
are dealing with continuous variables in a regression context. Squaring
both sides gives

yTr yr = ŷTr ŷr + eTr er,

and since yr and ŷr have the same mean Ȳr

yTr yr − nȲ 2
r = (ŷTr ŷr − nȲ 2

r ) + eTr er.

The sum of squares of yr, always taken in deviation from the mean, is
thus decomposed as

SST = SSR + SSE

where T, R and E stand for Total, Regression and Error. The proportion
of the total variation accounted for by the regression is therefore given
by the coefficient of determination

R2 =
SSR
SST

= 1− SSE
SST

. (4.4)

In addition to the equality of the means of yr and ŷr this argument
makes use of the orthogonality of ŷr and er,

ŷTr er = 0.

Since er has zero mean, the elements of ŷr can be taken in deviation from
the mean, and this is therefore equivalent to ŷr and er having covariance
zero, or being uncorrelated.
McKelvey and Zavoina (1975) apply the same argument to the latent

variable regression equation of (2.8) of Section 2.3. The dependent vari-
able is Y ◦

i , after normalization; as this is unobserved, SST cannot be
directly established. SSR can however be obtained from the variable

Ŷ ◦
i = xTi β̂,

while SSE follows from the residual variance, which is set at π2/3 for a
logit model. This gives the McKelvey-Zavoina measure as

R2
MZ =

SS of xT
i β̂

SS of xT
i β̂ + π2/3

.
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Note that the estimated coefficients are obtained by maximum likelihood
estimation of the logit model and not from the latent regression equation
under consideration.
The second measure is due to Efron (1978) and it is based directly

on the (quasi–)residuals of (3.21) from Section 3.3, which we shall here
denote by e, omitting the suffix l; the argument that follows applies to
any probability model, not just to the logit. Efron’s R2 is defined as

R2
E = 1− eTe

yTy − nȲ 2
. (4.5)

The derivation follows exactly the same lines as for ordinary regression,
given above, starting off from the equality of (3.22)

y = p̂+ e,

and making use of the same two properties as above, viz. the equality
of the means of p̂ and y and the orthogonality of p̂ and e. For a logit
analysis, the equality of the means is assured by (3.25) of Section 3.3, but
the orthogonality is not obvious. Efron indeed restricts the discussion
to the particular case of categorical variables in order to establish that
p̂ and e are uncorrelated.
Both properties however do hold much more generally, if only asymp-

totically; for it can be shown that for consistent estimates (like ML
estimates) p̂ of any probability model the residuals e = y − p̂ satisfy

ıTe/n
p→ 0 (4.6)

and

p̂Te/n
p→ 0. (4.7)

The first of these is the familiar equality of the means, which happens
to hold exactly if the p̂ are ML estimates of a logit model; the second
is the orthogonality property. A rather laborious proof can be found
in Cramer (1997). The asymptotic orthogonality implies that p̂ and
e are approximately uncorrelated in samples of reasonable size; this is
easily verified in any particular instance. We shall give some examples
below.
The approximate orthogonality vindicates the wider use of Efron’s

R2
E, beyond the special case considered by its author. It also has some

further implications. From

p̂Te ≈ 0
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it follows that

p̂Ty ≈ p̂T p̂

so that the sum of the probabilities over the observations with Yi = 1
is equal to the sum of the squared probabilities over the entire sample.
Another result, which strengthens the case for Efron’s measure, is that
it also reflects the discrimination by P̂i between the two subsamples with
Yi = 1 and Yi = 0. To see this we define the mean probabilities in these
two subsamples as P̄+ and P̄−. If the sample frequency of success is f ,
these means must evidently satisfy

fP̄+ + (1− f)P̄− = P̄ = f, (4.8)

and their difference is therefore

P̄+ − P̄− =
P̄+ − f

1− f
.

By (4.8) we may develop P̄+ as

P̄+ =
p̂Ty
nf

≈ p̂T p̂
nf

=
SSR + nf2

nf
=

SSR
nf

+ f.

Upon substituting this in the former expression we obtain

P̄+ − P̄− =
SSR

nf(1− f)
=

SSR
SST

= R2
E. (4.9)

While we cannot give a distribution of R2
E, we can provide a rough

idea of what values one may expect to find in the practice of applied
work. These values vary with the nature of the data: R2

E is much higher
for analyses of homogeneous samples under the controlled conditions of
laboratory trials of bio-assay than for the sample survey data of epi-
demiology and the social sciences. This is illustrated in Table 4.3 for a
number of widely different binary logit analyses.† The first four columns
record the subject of the analysis, the sample size n, the number of co-
variates (including the intercept), and the sample frequency of the most
frequent outcome f . The next column gives ρp̂,e, the sample correlation
between p̂ and e, which should be close to zero by (4.8); and so it is.
The last column gives the Efron R2; the examples have been arranged
in ascending order of its value. Apart from the curious steel ingot data,
it is sample survey data that lead to quite low values of the order of

† The data of six analyses were kindly provided by their authors and the data of
four others were taken from open sources; the intensive care data were copied from
the 1989 edition of Hosmer and Lemeshow’s textbook.
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Table 4.3. Efron’s R2
E for eleven logit analyses.

n k + 1 f ρp̂,e R2
E

Rolling out of steel ingots,
Cox and Snell (1989) 387 3 0.97 0.004 0.044

Depression
Los Angeles, 1979,
Afifi and Clark (1990) 294 6 0.83 −0.000 0.046

Educational choice of
schoolchildren, Holland, 1982,
Oosterbeek and Webbink (1995)a 1706 12 0.80 0.001 0.072

Antecedents of rapists,
Great Britain, 1965–1993,
Davies et al. (1997)a 210 13 0.84 0.000 0.183

Performance of schoolchildren,
Holland, 1965,
Dronkers (1993)a 699 8 0.78 −0.019 0.208

Employment of women,
France, 1979,
Gabler et al. (1993)a 3658 21 0.52 0.002 0.223

Fibrosis after breast surgery,
Holland, 1979–1988,
Borger et al. (1994)a 332 12 0.72 −0.014 0.260

Private car ownership
Holland, 1980 2820 6 0.64 0.009 0.327

Survival in intensive care,
Massachusetts, 1983,
Lemeshow et al. (1988) 200 9 0.80 0.010 0.359

Toxicity of Tribolium,
Hewlett (1969) 1989 4 0.54 0.018 0.385

Hatching mites eggs,
Bakker et al. (1993)a 149 2 0.58 −0.004 0.504

a I thank the authors for kindly making these data sets available to me.
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0.1 to 0.3. This is probably comparable to the values of R2 in ordinary
regressions for such data. The best result is obtained for the intensive
care example, but this is a nonrandom subset from a larger sample, se-
lected by Hosmer and Lemeshow (2000) for textbook use. The fit is
much better (and the samples are more evenly balanced) in traditional
laboratory experiments from bio-assay.



5

Outliers, misclassification of outcomes, and
omitted variables

This chapter deals with a miscellany of imperfections of data and models.
The first subject is the detection of outlier observations, which is largely
a matter of common sense and not much different from the approach of
ordinary regression. Errors of observation in a discrete dependent vari-
able take the form of misclassification of outcomes, and this is handled
by a simple modification of the probability model that has wider appli-
cations. The effect of omitted variables on estimation is also different
from their role in ordinary regression; this difficult issue has not yet been
satisfactorily resolved.

5.1 Detection of outliers

Outliers are observations that do not belong to the sample under review,
either because they represent alien elements or because of obvious errors
of recording or definition of the variable concerned. It is a good idea to
screen the covariate values in the sample, singly or in combination, and
to inspect extreme observations for anomalies that may justify their re-
moval. In a narrower definition, outliers are observations that do not
obey the relation under review, and these are found by examining the
contribution of individual observations to some measure of fit, and sin-
gling out those that contribute least (or detract most). The χ2 statistic
of Section 4.2 leads to the squared Studentized or Pearson residual

e2i /PiQi,

and the Efron R2
E of Section 4.4 to the squared (quasi-)residual

e2i .

73
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The simplest measure is logL, and in the representation of (3.2) of Sec-
tion 3.1 the contribution of observation i is

P̂r(Yi).

This is the (estimated) probability of the observed event, and a very
small value is a natural indication of an unusual observation.
The squared Pearson residuals have expectation 1, the squared (quasi-)

residuals lie between 0 and 1, and so do the probabilities; but this is not
enough to set a criterion for what constitutes an extreme value. This
must be judged in relation to the other values in the sample under re-
view, bearing in mind the sample size. A practical approach is to rank
the sample observations, singling out for further examination extreme
values that are separated by a large gap from their neighbours. As P̂r(Yi)
is related to the (quasi-)residual by

P̂r(Yi) = 1− |ei|,
all three characteristics produce the same ranking and brand the same
observations as outliers. In a sample of unequal proportions, the over-
all level of P̂r(Yi) will be much lower for the rare outcome than for
the predominant alternative, and it is therefore advisable to rank the
observations separately for the two outcomes. This means ranking the
observations by their contribution to Efron’s R2

E in its interpretation of
(4.9) of Section 4.4.
In the literature the screening for outliers in this sense is often accom-

panied by the consideration of another diagnostic characteristic which
indicates the relevance or technically the leverage of each observation.
Some observations are more influential in determining the fit or the co-
efficient estimates than others, and a great deal of sophisticated work
has been done to develop characteristics of the individual observations
that reflect this property. We refer the reader to Pregibon (1981) and to
the treatment in Chapter 5.3 of Hosmer and Lemeshow (2000). Such di-
agnostic characteristics can serve to bring to light influential data that
are not among outliers of the first kind; for once outliers have been
identified, their influence is nowadays established without great effort
by running analyses with and without the suspected observation. With
large samples it would however even now be impracticable to assess the
influence of all observations in this fashion.
For a given outlier observation j, we designate the regular sample by

the suffix r and the purged or cleaned sample after its removal by c.
The change in the loglikelihood upon removing observation j can then
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Table 5.1. Car ownership example: observations with
small probabilities.

P̂r(Yi) e2
i e2

i /PiQi

Yi = 1

817 0.0021 0.9958 465.53
1134 0.0453 0.9115 21.06
17 0.0495 0.9035 19.21
864 0.0509 0.9012 18.67
2221 0.0541 0.8947 17.50

Yi = 0

752 0.0082 0.9837 121.14
1823 0.0098 0.9805 101.25
2332 0.0251 0.9504 38.85
2694 0.0374 0.9266 25.75
981 0.0421 0.9176 22.74

be partitioned as

logLc − logLr = − log P̂rr(Yj) +

∑
i�=j

log P̂rc(Yi)−
∑
i�=j

log P̂rr(Yi)

 .

Recall that all loglikelihoods are negative, and that the direct effect of
deleting an observation is an increase in logL; this is the first term of
this partition. The second term is the change in the loglikelihood of the
remaining observations brought about by its removal, via the change in
the estimated coefficients; this, too, is never negative. It reflects the
influence of the observation.
We illustrate these ideas by the car ownership example of Section 3.7.

Table 5.1 shows the five smallest values of P̂r(Yi) for the two subsamples
with Yi = 1 and Yi = 0, with the corresponding squared residuals and
squared Studentized residuals; the ordering is the same, but the scales
are quite different. Observation 817 is the only potential outlier; its value
of P̂r(Yi) is perhaps not too impressive for a sample of almost 3000.†
The effects of its removal are shown in Table 5.2. Neither the coefficient
estimates nor the loglikelihoods are much affected. The increase in logL
is 6.2183, and in the partition given above by far the largest part is the

† It is a powerful outlier in a multinomial analysis of the same data by Windmeijer
(1992).
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Table 5.2. Estimates of car ownership model with
and without observation 817.

regular cleaned
sample sample

linc 2.38 2.43
(16.17) (16.39)

lsize 2.76 2.80
(19.12) (19.23)

buscar -3.04 -3.07
(19.55) (19.64)

age -0.13 -0.13
(8.24) (8.18)

urba -0.12 -0.12
(4.20) (4.17)

logL -1351.39 -1345.18

Absolute values of t − ratios in brackets.

direct effect of − log(0.0021) = 6.1658; there remains only 0.0525 for the
second term, which reflects the influence of the omitted observation.

5.2 Misclassification of outcomes

Misclassification of outcomes occurs if Yi is given as 0 while it should
be 1 or the other way around. This can be a recording error, due to
simple negligence, but it can also arise from a systematic reporting bias,
as when respondents in a sample survey are asked to recall past events
from their personal histories. The recorded outcome may also be cor-
rect but still at variance with the model under consideration, as in the
study of Birnbaum (1968), who wishes to explain the performance of
candidates on a multiple-choice test by covariates that represent ability
or knowledge. With multiple-choice testing, however, candidates have a
fair chance of giving the correct answer even if they do not know what it
is. A similar mechanism operates the other way round in the records of
a survey where the answer to a sensitive question has been randomized
by design.
Probability models can be modified in a simple way to allow for these

errors of observation of the dependent variable. Let P ◦ denote the prob-
ability of Yi = 1 without misclassification, and suppose that a fixed frac-
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tion α1 of observations with Yi = 1 is erroneously recorded as Yi = 0,
with a fraction α0 for the reverse error. The probabilities of the observed
values are

P (Yi = 1) = Pi = (1− α1)P ◦
i + α0(1− P ◦

i ),
P (Yi = 0) = Qi = (1− α0)(1− P ◦

i ) + α1P
◦
i .

(5.1)

This is equivalent to

P (Yi = 1) = Pi = (1− α0 − α1)P ◦
i + α0,

P (Yi = 0) = Qi = (1− α0 − α1)(1− P ◦
i ) + α1.

(5.2)

This formulation makes it clear that the modified model is a bounded
probability model, with the sigmoid curve operating over a reduced range
from a lower bound of α0 to an upper bound of 1 − α1. This model is
of long standing in bio-assay, where P ∗ is the probability of death from
an insecticide and the two α’s represent the forces of natural mortality
and immunity of insects, which take precedence over the operation of the
poison. Finney (1971) cites an early article by Abbott (1925) advocating
this modification of the standard model. In economic applications an
upper bound may reflect saturation constraints; there is an upper limit
to car ownership because some people cannot drive.
Hausman et al. (1998) made a thorough study of this type of error

in responses to survey questionnaires, with an application to past job
changes as reported in two large-scale American sample surveys, the
Current Population Survey and the Panel Study of Income Dynamics.
The authors conclude that there is strong evidence of misclassification at
rates of up to 20% or even 30%. These results are obtained by nonpara-
metric estimation, along with standard maximum likelihood estimation
of the modified model given above, with P ◦ a probit model. Hsiao and
Sun (1999) employ similar constant error rates in the setting of more
complex probability models with an application to the market for elec-
tronic appliances.
Here we consider the implications of misclassification for the logit.

If P ◦ is a standard binary logit probability, the model (5.2) cannot be
accommodated by a simple adjustment of the coefficients of the logit
transform, and its estimation by maximum likelihood (while not partic-
ularly arduous) requires separate programming of the likelihood function
and its derivatives.
The effect of ignoring misclassification can be gauged by comparing

the results of fitting (5.2) with those of a standard logit. Since P ◦

applies to a restricted range, it is no use comparing the coefficients β̂
◦
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directly with the estimates of a standard logit, fitted to the same data:
we should instead examine the effect of regressors on the probability of
the outcome in the two models. The derivative of (5.2), with P ◦ a logit
probability, is

∂P/∂Xj = (1− α0 − α1)P ◦(1− P ◦)β◦
j .

Upon fitting a (misspecified) standard logit P •, the effect is

∂P •/∂Xj = P •(1− P •)β•
j .

There is a single point where P = P • and that is the halfway point
where both probabilities are 0.5. The slopes are equal at this point if

β•
j = (1− α0 − α1)β◦

j . (5.3)

There is some evidence in the tables of Hausman et al., however, that in
addition to this adjustment factor there is a misspecification bias that
reduces the β̂

•
further towards zero.

The operation of this mechanism is illustrated for a simple case in
Figure 5.1. The solid line represents the course of P of (5.2) with α0 =
α1 = 0.2 and 0+ 1.5X as the argument of the logit P ◦. The dotted line
is P̂ • from a misspecified ordinary logit fitted to simulated values of P .
These simulations mimic the latent regression equation (2.9) of Section
2.3. The single covariate X is a standard normal variate, established
once and for all for a sample of size 3000; in each of 100 replications
the latent regression is completed by drawing fresh disturbances from a
logistic distribution with mean zero and variance π2/3 ≈ 3.29. The Yi

X

P

0

1

Fig. 5.1. Logit curve with errors of observation.
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Table 5.3. Bias through ignoring misclassification.

(1− 2α)β◦ mean β̂• ratio

α = 0.02 1.44 1.39 0.96
(.006)

α = 0.05 1.35 1.24 0.92
(.005)

α = 0.10 1.20 1.04 0.87
(.005)

α = 0.20 0.90 0.72 0.80
(.004)

Standard errors from replications in brackets.

are determined from the usual inequality, and then changed at random
from 1 to 0 and from 0 to 1 by the equal misclassification probabilities
α0 = α1 = α = 0.1. An ordinary logit is then fitted by a standard routine
to these partly misclassified outcomes. By (5.3) the slope coefficient
should be 0.6×1.5 = 0.9 but the mean over the replications is only 0.72,
and this value has been used to draw the dotted line. The misspecified
logit function is apparently distorted by fitting it to the constrained
range so as to give a weaker slope. We have repeated this exercise for
various values of α; Table 5.3 shows that the bias due to neglect of the
misclassification increases with its extent, as was to be expected.
In the form of (5.2) the present modification is easily generalized to

multinomial models, with separate αs for each state s, but I know of no
empirical applications.

5.3 The effect of omitted variables

When a treatment is tested on a homogeneous sample under controlled
laboratory conditions, the effect of other covariates can be safely ignored.
In randomized field trials and the surveys of epidemiology and the so-
cial sciences, however, there are always contingent regressor variables
at work, and there are always some missing from the analysis through
oversight or lack of data. Marketing and finance analyses may employ
twenty or thirty regressors, but even then some determinants will be
absent and lead to unobserved heterogeneity. Ordinary regression is lit-
tle affected by these imperfections: provided the omitted variables are
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not correlated with the remaining regressors, the coefficient estimates
are still consistent and unbiased, and the only inconvenience is a loss
of precision due to increased residual variance. No such comforting ar-
gument holds for the logit and probit models. We shall see that even
if the omitted variables are uncorrelated with the remaining covariates
they will affect the parameter estimates, usually (but not always) biasing
them towards zero.
There are some scattered references to omitted variables in the lit-

erature. Gail et al. (1984) consider a simple case–control setting with
binary outcome, binary treatment and a binary additional covariate, and
show that its neglect leads to a bias towards zero in two nonlinear mod-
els, namely the logistic regression and hazard models. In econometrics,
a number of authors have attempted (and failed) to find an analogy to
the omitted variable paradigm of ordinary regression: see Lee (1982),
Ruud (1983) or Gourieroux (2000). Amemiya and Nold (1975) allow for
omitted variables by adding an extra disturbance to the logit transform
of categorical data.
The present treatment is simpler than these sophisticated theoretical

studies. We trace the effect of an omitted (but relevant) variable through
the latent variable equation (2.8) of Section 2.3

Y ∗
i = xTi β∗ + ε∗i .

This has all the standard properties of ordinary regression; ε∗ has zero
mean and variance σ∗2 and is uncorrelated with the regressors. The
sign of the latent variable Y ∗

i determines the (0, 1) observed indicator
variable Yi. We recall that β∗ and σ∗2 are not identified, and that this
is resolved by setting the value of σ∗2 at some a priori value C2 and
estimating the normalized coefficients

β =
C

σ∗β∗.

For the logit model the constant C is π/
√
3 ≈ 1.814.

The effect of omitting a relevant variable is examined by considering
the removal of X2 from a reference equation with two regressors

Y ∗
i = β∗

0 + β∗
1X1i + β∗

2X2i + ε∗i , (5.4)

which will give a curtailed equation with only one covariate. X2 may be
projected on to the unit constant 1 and X1 as in

X2i = γ∗0 + γ∗1X1i + υ∗i , (5.5)
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which again has the same properties as an ordinary regression equation;
the variance of υ∗ is σ2

υ. Substitution gives the curtailed equation as

Y ∗
i = (β∗

0 + β∗
2γ

∗
0) + (β∗

1 + β∗
2γ

∗
1)X1i + ε◦i (5.6)

with

ε◦i = ε∗i + β∗
2υ

∗
i .

We disregard the change in the intercept, which had already absorbed
a nonzero mean of ε∗ and now (with γ∗0) absorbs a nonzero mean of
υ∗ as well. The main effects of omitting X2 are a direct change in the
coefficient of X1, from β∗

1 to β∗
1 + β∗

2γ
∗
1 , and an increase of the residual

variance from σ∗2 to σ◦2 = σ∗2 + β∗2
2 σ2

υ. As a result, the normalized
coefficient of X1 in the curtailed equation is

β◦
1 =

C√
σ∗2 + β∗2

2 σ2
υ

(β∗
1 + γ∗1β

∗
2). (5.7)

The interesting point is that even if X2 is not related to X1 its removal
still affects the remaining coefficient. The regressors are uncorrelated, or
orthogonal, or there is no confounding among the covariates if γ∗ = 0,
and in this case the projection of (5.5) collapses to

X2i = γ∗0 + υ∗i = X̄2 + υ∗i

where X̄2 is the sample mean of X2. As a result, υ∗i = X2i − X̄2 and
σ2
υ = var X2. The curtailed equation (5.6) now becomes

Y ∗
i = (β∗

0 + β∗
2X̄2) + β∗

1X1i + ε◦i (5.8)

with

var ε◦i = σ◦2 = σ∗2 + β∗2
2 var X2. (5.9)

The coefficient of X1 in the latent variable equation is not affected by
the removal of X2, but the normalized coefficient declines because of the
increase in the residual variance. In terms of β2 instead of β∗

2 we find

β◦
1

β1
=

1√
1 + β2

2var X2/C2
. (5.10)

The same ratio holds for all slope coefficients if there are several left.
Omitting orthogonal variables thus leads to a systematic tendency or
bias towards zero of the remaining coefficients. The ratio (5.10) is the
rescaling factor of Yatchev and Griliches (1985); its size depends on the



82 Outliers, misclassification of outcomes, and omitted variables

impact of the omitted variable, relative to the imposed variance C2, that
is on

impact = β2
j varXj . (5.11)

Since βj can be estimated in the reference model, this argument can
be empirically verified, provided we can find an orthogonal regressor to
delete.
The addition of βjXji to the disturbances will also affect the shape

of their distribution. Xj must have a very special sample distribution
indeed for both ε∗ and ε◦ to satisfy a logistic distribution; it must be
distributed like the difference of two independent logistic variates.† In
the literature this point is often overlooked, though not by Ford et al.
(1995) for hazard models, where it is particularly relevant. Apart from
this special case, the two models cannot be simultaneously valid, and
one or both is misspecified. We shall see that this may lead to further
systematic changes in the estimated coefficients. It stands to reason that
the size of this misspecification effect will vary along with the impact;
but in contrast to the rescaling effect, its direction is uncertain.
As an illustration consider car ownership as a function of income and

habitat, which is a simple dichotomy by town and country. Within each
group car ownership rates vary with income along logit curves with the
same coefficient β1 of log income but different intercepts β0; this shift
of the ownership Engel curves reflects the fact that at equal incomes
country people have a higher rate of car ownership than city dwellers.
In Figure 5.2 the two separate logit curves are shown as solid lines. If
the distinction between the two strata is ignored and they each provide
half the sample, overall car ownership varies with income as the average
of the two logistic functions, shown by the dotted line. At income level
X◦

1 overall car ownership is 0.5 and the specific ownership rates must
add up to 1; we put them at α for the city and 1 − α for rural areas.
The slope of the two logistic curves is P Q β1, and at this point it is the
same for both strata and equal to α (1 − α) β1. The same slope must
hold for the average curve; but while this is sigmoid in shape, it is not
a logit curve, for the average of two logit curves is not a logit (nor is
the average of two probit curves a probit curve). If nevertheless a logit
is fitted to the overall sample its slope at X◦

1 will be 0.5× 0.5 β◦
1 . This

must be approximately equal to the slopes of the separate curves, and

† In a probit model Xj must have a normal distribution to meet this requirement;
most people feel more comfortable with this, but it is equally restrictive.
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Fig. 5.2. Logit curves for car ownership in two strata and overall.

β◦
1 will be lower than β1 by a factor

β◦
1

β1
=
α(1− α)
0.25

.

Ignoring the strata thus leads to a slope coefficient that is closer to zero.
The same example can be treated by numerical simulation. The two

separate curves correspond to a reference latent regression with two vari-
ables,

Y ∗
i = β0 + β1X1i + β2X2i.

X1 is the log of income and a X2 a binary habitat dummy taking the
values 0, 1. The curtailed regression has X1 alone. We have constructed
a sample of size 3000 with X1 a standard normal variate and X2 a (0, 1)
dummy variable with a 50/50 distribution; the two are independent. In
the reference equation β1 is 1.8; β0 and β2 vary with the shift parameter
α that was introduced above. The latent variable regression equation
is completed by drawing disturbances from a logistic distribution with
mean zero and variance π2/3 ≈ 3.29, so that no normalization of the
coefficients is needed. The Yi are determined by the condition Y ∗

i > 0.
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Table 5.4. Effect of omitted variables from simulations.

simulation impact rescaling mean simulated
factor factor coefficient

ratio

strata dummy

α=0.40 0.1645 0.9759 0.9634
(0.00077)

α=0.35 0.3833 0.9464 0.9263
(0.00093)

α=0.30 0.7182 0.9060 0.8568
(0.00140)

α=0.25 1.2074 0.8553 0.7886
(0.00135)

normal X2

1 0.1674 0.9755 0.9725
(0.00064)

2 0.4003 0.9442 0.9302
(0.00091)

3 0.7285 0.9048 0.8918
(0.00112)

4 1.1746 0.8584 0.8138
(0.00133)

Standard errors from replications in brackets.

Both the reference model and the curtailed model are fitted by standard
maximum likelihood methods and the ratio of the two estimates of β1

is established. This exercise has been repeated in 100 replications with
the same X1 and X2 but fresh disturbances.
The results are reported in the top panel of Table 5.4. In the first

line α = 0.4, and this gives an impact (5.11) of 0.1645 and a rescaling
factor of 0.9759. The simulations however give a mean coefficient ratio
of 0.9634 with a standard deviation of 0.00077: there is an additional
downward shift that must be attributed to the misspecification of the
distribution. The overall effect is still small, but then the impact is
quite small relative to C2 of 3.29. In the next three simulations α moves
away from 0.5, the gap between the strata widens, the impact and the
rescaling factor increase, and so does the misspecification effect.
We have added simulations where X2 is a normal variate instead of a

binary dummy. With roughly similar impacts and rescaling factors the
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misspecification effect is much smaller. Clearly this effect depends on
the distribution of the omitted variable; it appears that it is particularly
sensitive to its kurtosis. The kurtosis of the binary dummy is negative,
and the kurtosis of the normal variate is zero; these values stand in
contrast with the kurtosis of 1.2 of the logistic distribution with its
fat tails. Further experiments have shown that for X2 with a positive
kurtosis the misspecification effect disappears; for high values it may
even change sign, and partly offset the rescaling effect.
The conclusion is that omitted variables do affect the estimated coeffi-

cients of the remaining covariates, even if they are orthogonal, and that
in this case they are likely to depress the estimates. The rescaling effect
leads to a downward bias, and it is accompanied by a misspecification
effect that depends on the distribution of the omitted variable. This will
often strengthen the rescaling bias, but in the final analysis its size and
sign are uncertain.
In practice, we do not know the omitted variables, we can only spec-

ulate about their effect, and we cannot remedy it – the more so as we
cannot be sure of the logistic distribution of the disturbances of the ref-
erence equation in the first place. The only practical conclusions are
that it is important to include all relevant covariates in the analysis,
and that meta-analyses must be approached with caution. Estimates
from different studies are seldom comparable as the omitted variables
are bound to vary from one analysis to another.
All this refers to the estimated slope coefficients. As we have explained

in Section 2.4, the purpose of the analysis often goes beyond their cal-
culation. In their further use for purposes of selection or discrimination
the omitted variable effect is mitigated, for if all estimated coefficients
are biased towards zero in the same proportion, the rank order of the
observations by P̂i remains the same and so does the selection; but the
cut-off criterion may have to be adjusted. The use of estimated prob-
abilities in conditional aggregate predictions may suffer more from the
omitted variable effect on the coefficients. In this application, however,
it is much more important whether it is justified to ignore the omitted
variables in the larger sense that they are assumed constant in the ceteris
paribus condition of the prediction.
Finally, we give an empirical demonstration of the effect of deleting

variables from a logit analysis for the car ownership example of Section
3.7. The final equation with five regressors of Table 3.4 is the refer-
ence equation, and four regressors are removed one by one until only
linc remains. The order of this process is suggested by the statistics of
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Table 5.5. Household car ownership: statistics of regressor variables.

variable linc lsize buscar age urba impact rescaling
factor

linc 1 −0.56 −0.01 0.06 0.14 1.23 0.85
lsize 1 0.15 −0.22 −0.22 1.84 0.80
buscar 1 −0.11 −0.08 0.98 0.88
age 1 0.03 0.16 0.98
urba 1 0.04 0.99

Table 5.5. The last three variables are almost uncorrelated with linc
and therefore the first candidates for removal, even though their impacts
and rescaling factors are quite small. Cursory inspection of a handful of
similar studies shows that the present example provides a better illus-
tration than most: quite often all explanatory variables have negligible
impacts, even though the estimated coefficients are significantly differ-
ent from zero. This may indicate that the reference equation itself is

Table 5.6. Household car ownership: effect of removing regressor
variables on remaining coefficients.

all five less less less less
urba age buscar lsize

linc 2.38 2.36 2.46 1.77 0.35
(0.15) (0.15) (0.15) (0.13) (0.09)

lsize 2.76 2.83 3.09 2.22
(0.14) (0.14) (0.14) (0.12)

buscar −3.04 −3.00 −2.95
(0.16) (0.15) (0.16)

age −0.13 −0.12
(0.02) (0.02)

urba −.12
(0.03)

Standard errors in brackets.
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severely incomplete, so that omitted variable bias has already depressed
the reference estimates at the start.
The effect of the successive removal of all regressors except linc is

shown in Table 5.6. urba and age have so little impact that they can
be omitted without affecting the other coefficients, as can be seen by
comparing the first three columns. But buscar, while only faintly cor-
related with lsize and linc, is a powerful explanatory variable, and
upon its removal the remaining two coefficients are reduced to 0.72 of
their previous values. This is far more than the rescaling effect of 0.80,
but we know from the simulations that the removal of a binary variable
has a strong downward misspecification effect. The last remaining re-
gressor, lsize, has a strong negative correlation with linc, and we must
therefore use (5.6) to assess the effect of its removal. A regression of
lsize on linc gives γ̂∗1 = −0.59, and this goes a long way to explain the
sharp decline of the income coefficient.



6

Analyses of separate samples

In Section 3.2 we have described the data as resulting from a series
of laboratory experiments or from sampling a real population. In either
case they are generated by a single process and form a single entity, even
though the elements differ in outcome and covariates. This view is now
abandoned and the data are distinguished by outcome and treated as
separate groups, or even collected as two distinct samples. In discrimi-
nant analysis the data are regarded as a mixed sample from two different
populations. We next consider trimming a single sample by discarding
observations with the more numerous outcome, which is equivalent to
drawing separate samples for each outcome. Finally we briefly examine
case-control studies, which are the ultimate example of using separate
samples.
At first sight it must make a difference whether the data are a single

sample from a mixed population or two separate samples from different
outcome groups. The logit model surprisingly applies in either case.

6.1 A link with discriminant analysis

Discriminant analysis is a statistical technique for classification and se-
lection. In its simplest form (which is the only form considered here) it
starts off from the assumption that the sample observations are drawn in
proportions λ and 1−λ from two populations, groups or classes, labelled
1 and 0. The elements of the two groups differ systematically in k char-
acteristics x̃i, a vector of proper covariates without a unit constant. In
each of the two populations the x̃i have a k-dimensional normal distri-
bution with the same covariance matrix Σ but with different means µ1

and µ0. An element with characteristics x̃◦ is observed, and we wish to
assign it to one of the two groups. In practice, this question arises when

88
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components like nuts or bolts are produced by two machines, or bought
from two suppliers, and the origin of a defective item is in question.
Botanists may wish to assign plants or flowers to a particular species,
and entomologists to classify insects without clear sex characteristics
as male or female. In finance the technique is used to identify firms
that are likely to go bankrupt or that are targets of take-over bids, and
in marketing it serves to classify consumers into market segments with
different preferences.
In discriminant analysis, this statistical problem is solved by finding a

linear function Z of x̃ that best separates the two groups. One criterion
for doing so is to maximize the ratio of between-group variance to within-
group variance, taking into account the (relative) costs of the two kinds
of potential misclassification as well as the proportion λ. But we may
equally well follow a roundabout route and solve the problem in two steps
by first finding the probability that an element belongs to the target
group and then applying a cut-off criterion as discussed in Section 2.4.
This route leads to the logit model and we shall adopt it here, following
the derivation of Ladd (1966); more about discriminant analysis can be
found in the monograph of Lachenbruch (1975).
The probability that an item with characteristics x̃◦ belongs to group

1 is established by Bayes’ theorem. For two events A and B we have

P (AB) = P (A)P (B|A) = P (B)P (A|B)

and hence

P (A|B) =
P (A)P (B|A)

P (B)
. (6.1)

For the present problem, we define
• A as the event “the observed item belongs to group 1”;
• Ā as its complement, “the observed item belongs to group 0”;
• B as the event “the observed item has characteristics x̃◦”.

The probabilities are given by

P (A) = λ,

P (Ā) = 1− λ,

P (B|A) = φ1(x̃◦),

P (B|Ā) = φ0(x̃◦),

where φ1 and φ0 denote the k-dimensional densities of x̃ in the two
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populations. It follows that

P (B) = P (B|A)P (A) + P (B|Ā)P (Ā)
= λφ1(x̃◦) + (1− λ)φ0(x̃◦).

Substitution of these probabilities into (6.1) gives the probability that
an item with x̃◦ belongs to group 1, or, with an indicator function Y for
this event,

P (Y = 1|x̃◦) = P (A|B) =
λφ1(x̃◦)

λφ1(x̃◦) + (1− λ)φ0(x̃◦)
. (6.2)

The corresponding odds are

O(Y = 1|x◦) =
λφ1(x̃◦)

(1− λ)φ0(x̃◦)

and the log odds or logit is

R(Y = 1|x̃◦) = log[λ/(1− λ)] + log φ1(x̃◦)− log φ0(x̃◦).

We now make use of the specification of φ1 and φ0 as multinomial
normal densities,

φ1(x̃◦) = C exp−1
2
[(x̃◦ − µ1)

TΣ−1x̃◦ − µ1)],

φ0(x̃◦) = C exp−1
2
[(x̃◦ − µ0)

TΣ−1(x̃◦ − µ0)],

with C the constant πk/2|Σ|−1/2. Substitution into the preceding for-
mula gives

R(Y = 1) = log[λ/(1− λ)] +
1
2
[(x̃◦ − µ1)

TΣ−1(x̃◦ − µ1)]

−1
2
[(x̃◦ − µ0)

TΣ−1(x̃◦ − µ0)].

This can be simplified by expanding and rearranging terms; note that
terms like x̃◦Σ−1µ1 are scalars, and hence invariant under transposition.
The end result is

R(Y = 1) = log[λ/(1− λ)]− 1
2
[(µ1 + µ0)

TΣ−1(µ1 − µ0)]

+ x̃T◦Σ
−1(µ1 − µ0). (6.3)

The log odds or logit of P (Y = 1) is therefore the sum of a constant and
a linear function in x̃◦; in other words, P (Y = 1) follows a standard logit
model with argument xT◦ β. Upon partitioning x and β as in (2.11), the
intercept β0 is given by the first line of (6.3), and the slope coefficients
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β̃ by the second line. The population proportion λ (which may be
unknown) enters only in the intercept; the slope coefficients reflect the
contrast between the two populations as expressed by µ1 − µ0.
Once the logit function has been thus obtained its origins may be

forgotten, and it can be estimated by the standard routines without
regard to the specification of a normal distribution of the regressors.
This will yield estimated probabilities for any x◦, and the item concerned
can then be allotted to either population by a cut-off criterion, derived by
minimizing the expected loss from misclassification, as has been sketched
in Section 2.4.
From the viewpoint of discriminant analysis this is a roundabout

route, and it is much more sensible to estimate the optimal discriminant
function directly, taking into account the proportion λ and incorporat-
ing misclassification costs into the estimation procedure. This does not
give the same estimates as logistic regression, and the resulting classifi-
cation of elements may also be different, especially if the assumption of
a normal distribution of the covariates is poorly satisfied. There is an
extensive literature on the relative performance of the two methods; for
recent examples from finance see Lennox (1999) and Barnes (2000).
In further developments of the method, the rigid assumptions listed

above can be relaxed by allowing for different covariance matrices for the
groups, or by considering other distributions of the regressors than the
normal. These alternatives may still yield logit functions for P (Y = 1),
in some cases with transformations of the regressor variables in the ar-
gument. Other distributions of the covariates can also lead to different
probability functions; see Kay and Little (1987). But while these alter-
natives widen the field they still impose strict (and somewhat contrived)
conditions on the distribution of the covariates.
Here, discriminant analysis is brought in only to demonstrate how the

logit function may arise from a different model with a quite different
background. Discriminant analysis is a more natural approach to clas-
sification or selection than the logit model; the notion that observations
belong to distinct populations and that their allegiance can be inferred
from their covariates is alien to its strong causal tradition. Technically,
the two models differ in the importance of distributional assumptions
about the covariates: even with departures from normality this remains
an important issue in discriminant analysis, while it is of no concern
in logistic regression. These viewpoints cannot be reconciled, and the
link between the two models is largely a mere accident of algebra. Still



92 Analyses of separate samples

it can occasionally be instructive to consider the logit in the light of
discriminant analysis, as we shall see in the next section.

6.2 One-sided sample reduction

One-sided sample reduction is the simplest form of endogenous sample
selection. This practice must surely have arisen before its theory was
developed, for it is the only easy way of analysing rare attributes in very
large samples. A direct mail firm sends circular letters to hundreds of
thousands of potential customers with a few known covariates (like zip
code and ordering record), and receives only a few hundred orders in
return. A statistical analysis of this response is in order. In view of
the vast numbers involved the analyst may decide to contrast the small
group of respondents with an equal number of nonrespondents drawn at
random. We shall see that this can be a sensible and valid procedure.
It was originally prompted by technical obstacles to data handling and
computations with vast numbers of observations, but these no longer
hold. There is however still a strong case for restricting the sample size if
additional data must be collected. In the analysis of take-over targets of
Palepu (1986), the initial sample consist of all companies that are quoted
on the stock exchange; only a tiny fraction has been subjected to a take-
over bid. Since further information on the companies in the sample must
be collected by documentary research, it will pay to consider all subjects
of take-over bids but only part of the others.
Suppose the initial or full sample consists of a small number m of

observations with state 1 and a very large number l with state 0. Upon
taking only a fraction λ of the latter, drawn at random, we obtain a
reduced sample of m observations with state 1 and l• = λ l observations
with state 0. The probability model

P (Yi = 1|xi) = P ∗
i = P ∗(xi,θ) (6.4)

applies to all observations of the full sample, and hence also to the ele-
ments of the reduced sample. But the basic conditions of maximum like-
lihood theory as set out in Section 3.2 no longer apply, and in particular
it is no longer legitimate to invoke ‘conditioning on the covariates’. The
data may still be submitted to a routine maximum likelihood estimation,
but the resulting estimates will not possess the optimal properties listed
at the end of Section 3.1 that form the main attraction of this method.
One way of facing this complication is to relate the probability of

Y = 1 for an element of the reduced sample explicitly to its probability
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in the full sample, and to adjust the likelihood accordingly. This is done
again by an application of Bayes’ theorem of (6.1),

P (A|B) =
P (A)P (B|A)

P (B)
.

This time we define
• A as the event “Yi = 1”;
• Ā as its complement, “Yi = 0”;
• B as the event “element i is part of the reduced sample”.

The probabilities are

P (A) = P ∗
i ,

P (Ā) = 1− P ∗
i ,

P (B|A) = 1,

P (B|Ā) = λ.

This gives

P (B) = P (B|A)P (A) + P (B|Ā)P (Ā)
= P ∗

i + λ(1− P ∗
i ),

so that the probability of Y = 1 for an element of the reduced sample is

Pi =
P ∗
i

P ∗
i + λ(1− P ∗

i )
. (6.5)

λ is a known constant, set at will by the analyst; upon writing P ∗ in
full as P ∗(xi,θ), Pi is a function of θ alone. The loglikelihood of the
reduced sample is therefore easily expressed as a function of θ, too, and
these parameters can be estimated from the reduced sample by stan-
dard maximum likelihood methods, though as a rule not by a standard
routine.
In the special case that (6.4) is a logit probability, estimation is much

easier. For the odds of (6.5) we have

Pi
1− Pi

=
P ∗
i

λ(1− P ∗
i )

and for the log odds or logit

logit(Pi) = − log λ+ logit(P ∗
i ). (6.6)

If P ∗ is a binary logit probability, logit(P ∗
i ) is a linear function of xi,

namely xTi β; by (6.6) logit(P̃i) is almost the same linear function, with
the intercept adjusted to β0 − log λ but the same slope coefficients β̃.
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Thus the Pi of the selected sample also obey a standard logit model
with the same slope coefficients as the logit model for the full sample.
This powerful result, first noticed by Prentice and Pyke (1979), sets the
logit specification apart from all other models; its major implications
are sketched in the next sections.
It follows that standard logistic regression routines may be applied

without further ado to the reduced sample to give proper estimates of the
slope coefficients; if needs be, the full sample intercept can be retrieved
by adding log λ to the intercept of the reduced sample. For purposes of
selection the intercept is however immaterial, as the ordering of elements
by their estimated probability remains the same if the intercept varies
(though the cut-off point must be adjusted). The selection of take-
over targets is a case in point, as the main purpose is to identify a few
companies most likely to be the subject of a bid.
We illustrate this technique by two examples. The first, from Cramer

et al. (1999), concerns a Dutch financial institution which offers a va-
riety of savings accounts and investment funds. Its clients can easily
shift their holdings from one product to another. For almost six years
monthly shifts in investments have been recorded for 9600 clients with
a positive balance in a savings account and no other investment at the
beginning of the month. The issue is whether they switch part of their
holdings to other products (and thereby drop from the sample). The
data consist of 293 880 monthly observations with only 1488 switches,
or a sample frequency of 0.0051. In a preliminary screening of the mate-
rial a simple binary logit is fitted with five covariates. Two are customer
characteristics: loyalty, or the length of time a client has been with the
firm, and savings, the amount in the savings account (in logarithms).
Three are outside events during the month, namely share index, last
month’s return; interest rate, change from previous month; and new
product, a binary dummy for the introduction of a new product.
We compare the logit estimates of the full sample with l = 292 392

and of a reduced sample with an equal number of zero observations,
drawn at random, or l• = 1488.† The result is shown in Table 6.1; the
intercept of the reduced sample has been re-adjusted by adding logλ.
The estimates from the two samples show a remarkable resemblance,
even if is borne in mind that they have the observations with Y = 1 in
common. The only appreciable difference occurs in the coefficients of

† This was done by the standard maximum likelihood routine of gauss; no special
provisions were needed beyond an increase of the program memory and an upgrade
of the working memory of the desk computer to 320 MB.
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Table 6.1. Switching savings to investments:
estimates from three samples.

λ 0.0051 1 0.0254

l 1488 292 392 7440

intercept −4.85 −4.87 −4.86
(0.12) (0.08) (0.09)

loyalty −.29 −.26 −.21
(0.10) (0.07) (0.08)

savings .47 .46 .46
(0.04) (0.02) (0.03)

share index 1.39 1.51 1.18
(0.53) (0.35) (0.39)

interest rate −1.20 −1.21 −1.14
(0.16) (0.12) (0.13)

new product 0.85 0.76 0.76
(0.08) (0.05) (0.06)

Standard errors in brackets.

share index, which are less precise than the others, as their standard
errors show.
The second example is the incidence of bad loans at a Dutch bank.

This bank granted over 20 000 bank loans to small business in a single
year; two years later some 600 loans turned out to be bad loans. This
does not mean that the debtors default: a bad loan is a loan that causes
trouble and demands the attention and time of bank managers. In ad-
dition to this dichotomy the data set reports six covariates, all financial
ratios of the debtor firm, recorded when the loan was granted; five are
used in a logit analysis, viz.
• solvency or the ratio of own capital to the balance sheet total;
• rentability or the ratio of gross returns to the balance sheet total;
• working capital or the ratio of working capital to the balance sheet
total;

• cash flow coverage or the ratio of cash flow to interest due;
• stocks, a (0,1) dummy variable for the presence of material stocks.

As these financial ratios have been taken mechanically from the firms’
accounts, extreme values occur easily when the denominator is close to
zero; out of 20 862 observations 46 were discarded as outliers because
of one or more extreme regressor values, separated by substantial gaps
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Table 6.2. Incidence of bad loans: estimates from
reduced and full sample.

mean of 100 full sample
estimates from
reduced samples

solvency 1.65 −0.49
(0.34) (0.09)

rentability −0.93 −0.43
(0.25) (0.12)

working capital −1.41 −0.90
(0.28) (0.12)

cash flow cov. −2.96 −2.60
(1.52) (0.40)

stocks 0.13 0.33
(0.20) (0.15)

Standard errors in brackets,
in first column from replications.

from the next value and therefore clearly out of line. There remain
20 189 good loans and 627 bad loans. A logit has been fitted to reduced
samples of equal numbers (with 627 good loans drawn at random) and
this gives quite different estimates from the full sample. As the result
may be due to chance, we have repeated the procedure 100 times; but
Table 6.2 shows there remains an appreciable difference between the two
estimates. In this case the one-sided sample reduction does not work.
This brings home that the short-cut method works only in the special
case of a logit probability. But the present data do not satisfy the logit
model, as we have seen in Section 4.3.
When the method does work the question arises how many zero ob-

servations should be included in the reduced sample. In applied work
there is a strong tradition of using equal numbers from both categories,
putting l• = m, presumably for reasons of symmetry. The precision of
the estimates will improve with a larger number of zero observations,
but with such a one-sided increase the usual rule that variances vary in-
versely with sample size does not apply. At this point the analogy with
discriminant analysis is helpful for a rough approximation. By (6.3) logit
slope coefficients reflect the difference between the two population means
of the covariate, and by analogy estimated coefficients reflect the differ-
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ence between sample means. Writing σ2
1 and σ2

0 for the within-group
variances of a covariate Xj , elementary sampling theory gives

var β̂j = var (X̄j1 − X̄j0) =
σ2

1

m
+
σ2

0

l•
.

If the within-group variances are assumed equal this gives

var β̂j ∝ 1
m

+
1
l•
.

We now vary the number of zero observations by multiples K of the
given number m, or l• = Km. This gives

var β̂j ∝ 1 +
1
K
.

Finally we take the ratio of the variance to its value in the reference case
with K = 1 and obtain

var β̂j,K
var β̂j,1

=
1
2
+

1
2K

.

It follows that one-sided increases in the sample size will not reduce
the variance below one half of its value for equal numbers. Most of the
gain in precision is moreover obtained in the initial stages: K equal to 5
already realizes 80% of this potential gain. The third column of Table
6.1 shows that for this value the standard deviations are indeed quite
close to the values for the full sample, where K is almost 200. This is in
line with the view of Breslow and Day (1980, p. 27) that there is little
additional precision to be gained by going beyond values of K of 3 or 4.

6.3 State-dependent sampling

The arguments of the last section also apply if the full sample coin-
cides with the population, as in the case of companies quoted on the
stock exchange or the loans of a particular bank. It is then a small
step to consider endogenous stratification, with sampling rates that vary
according to the outcome, or state-dependent or choice-based samples,
composed of separate samples drawn from population segments with
different outcomes. If the attribute under consideration is rare this form
of data collection is much more efficient than random sampling, for a
random sample must be very large to yield sufficient observations with
the attribute. We give an example in the next section. Moreover, there
are gains from adapting the data collection methods to the conditions
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of each stratum, as in transport studies where bus passengers are ques-
tioned at bus terminals, car travellers at car parks, and so on. Differences
in collection costs between these strata can also be taken into account
in determining the optimal allocation of effort. For more on this (in a
different context) see Gail et al. (1976).
The argument of the last section applies to logit analyses of such

samples. With endogenous stratification the sampling fractions for the
two outcome strata are λ1 and λ0, and (6.5) is replaced by

Pi =
λ1P

∗
i

λ1P ∗
i + λ0(1− P ∗

i )
.

If P ∗ is a logit model (6.6) is adjusted accordingly with the ratio λ0/λ1

replacing λ; the preceding section deals with the special case λ1 = 1,
λ0 = λ. For logit models the conclusion still holds that the probabil-
ities in the combined sample obey a logit model with the same slope
coefficients as in a random sample, and an adjusted intercept

β0 = β∗
0 − log(λ0/λ1).

This is an irresistible argument for assuming a logit model and employing
standard maximum likelihood techniques for its estimation from a state-
dependent sample or from separate samples from several sources. But
if the phenomenon under consideration does not satisfy the plain logit
model the technique is not applicable, as was demonstrated by the bank
loan example of the preceding section. The case has been forcefully
argued by Xie and Manski (1989).
Various alternative methods of estimation have been put forward for

the general case. Manski and Lerman (1977), who were the first to
raise this issue, show that the standard ML estimates are inconsistent
under state-dependent sampling. They propose a weighted maximum
likelihood method of estimation. If s denotes a state or outcome with
frequency K(s) in the population and H(s) in the combined sample,
the composition of the state-dependent sample is distorted by factors
H(s)/K(s). This can be undone by (re)weighting the loglikelihood of
the individual observations logPr(Yi) by the inverse K(s)/H(s). The
method is intuitively appealing: in the one-sided sample reduction case
it would mean that we take a fraction λ of the abundant outcome, and
then replicate these observations by a factor 1/λ in the calculations. But
these weights are not always known: whileH(s) is obviously known,K(s)
is not. Approximate values may sometimes be obtained from outside
sources, but the K(s) may also have to be inferred from the sample
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data as part of the estimation procedure, which complicates matters
considerably. For a review of the theory of this (and related) methods of
estimation we refer to Amemiya (1985, Ch. 9.5), and for an appraisal of
the performance of the various estimators in the case of logistic regression
to Scott and Wild (1986).
Other methods of estimation are Manski’s maximum score method,

originally proposed as a nonparametric or distribution-free method of
estimation, from Manski (1985), and the moment estimator of Imbens
(1992). But this is beyond our scope.

6.4 Case–control studies

Case-control studies or retrospective analyses can be regarded as a special
form of the state-dependent sampling methodology of the previous sec-
tion. This approach has been developed independently and vigorously in
epidemiology or medical statistics, with an agenda and a terminology of
its own. We shall here present it within the framework of the logistic re-
gression model of Chapter 2, but this will only cover the simplest form.
Great advances have been made in extending the method to matched
samples, and in the combination of evidence from several independent
case–control studies. The reader is referred to the survey of Breslow
(1996) as an entry to the vast literature in this field.
In case–control studies the distinction between cases and controls

refers to the dichotomy by outcome: the cases are patients who suf-
fer from a particular disease, and the controls are individuals who do
not. In the basic form there is only a single discrete covariate, a cate-
gorical variable like exposure to adverse conditions. The data consist of
two separate samples: the cases are as a rule at hand in a hospital, or
in the files of a medical consultant, and the controls are taken from any
data readily available. The natural tendency is to have approximately
equal numbers of both categories, presumably for reasons of symmetry,
although the merits of this usage can be challenged. The controls are
usually selected with a view to similarity to the cases in respect of ma-
jor characteristics like age, gender, and habitat; if the cases are patients
with breast cancer, the controls will also be adult women. This mild con-
trol of the sample composition by two or three major factors is generally
thought a sufficient precaution to justify the neglect of other covariates
than the single exposure variable. While the data are treated as if they
were random samples from the two populations, they have seldom been
obtained in this manner.
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Table 6.3. A 2× 2 table.

Y = 0 Y = 1

X = 0 n00 n01

X = 1 n10 n11

In the simple version we consider here with a single binary covariate
the data can be summarized in a 2 × 2 contingency table by outcome
and exposure, with Y = 1 for the cases and Y = 0 for the controls, and
a categorical covariate X = 1 and X = 0 for the presence or absence of
exposure. It makes no difference whether we write the observations as
(relative) frequencies or as numbers, as we do in Table 6.3.
The central concept of case–control studies is the odds; the odds by

exposure are n01/n00 and n11/n10 respectively, and the odds ratio is

n01

n00

n10

n11
. (6.7)

This is a measure of the effect of exposure; if the incidence of the outcome
is small, that is if the attribute or disease under consideration is rare in
both exposure classes (as is often the case), both odds are close to zero
and therefore a close approximation of the corresponding risks

n01

n00
≈ n01

(n00 + n01)
,

n11

n10
≈ n11

(n10 + n11)
.

In this case the odds ratio is approximately equal to the relative risk in
the exposed population.
It is remarkable that the same odds ratio holds if the roles of X and Y

are reversed, and we start from the odds of exposure in the two outcome
classes: if we take odds in the columns instead of the rows of Table 6.3,
and proceed as above, the same odds ratio is obtained.
The effect of exposure is often expressed by taking the logarithm of

the odds ratio of (6.7). This is equivalent to the slope coefficient in a
standard binary logit model with a single categorical covariate, and we
shall regard it in this light. In that model we have

logit[P (Y = 1|X)] = α+ βX,
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for the logit or log odds. If X takes only two values, 0 and 1, there are
only two probabilities or frequencies, and only two log odds or logits,
and these are

log(n01/n00) = α,

log(n11/n10) = α+ β.

The log odds ratio is the difference of these logits, and corresponds to β;
it provides an estimate of that coefficient which reads

β̂ = log
(
n11/n10

n01/n00

)
. (6.8)

As we have seen in the preceding section, the use of a state-dependent
or retrospective sample affects the intercept but not the slope coefficient
β, and maximum likelihood estimation on the lines of Section 3.3 is
therefore applicable. It gives the same result as (6.8). This is one of
the rare cases that the maximum condition (3.20) does permit of an
analytical solution. It gives rise to two equations in the elements of the
2 × 2 table and the probabilities Pl(Y = 1) and Pl(Y = 0), and when
these are solved this gives the same β̂ as above.
We have already pointed out that the same odds ratio (6.7) holds if

the roles of X and Y are reversed. Hence the effect of Y on X is identical
to the effect of X on Y : if we consider a logit model the other way round,
say

logit [P (X = 1|Y )] = αo + γY,

the estimate γ̂ is identical to β̂ of (6.8), for we find

γ̂ = log
(
n11/n01

n10/n00

)
.

Since β̂ from the log odds ratio is identical to the maximum likelihood
estimate, its variance can also be established from that theory by im-
plementing the information matrix H of (3.17) for the particular data
structure of the present case, and then inverting it, as in (3.8). In the
present instance H is a 2×2 matrix, and this exercise is not particularly
arduous; it gives

var β̂ =
1
n00

+
1
n01

+
1
n10

+
1
n11

. (6.9)

The one-sided sample reduction, endogenous stratification and state-
dependent sampling of the last three sections have all been prompted by
concern over the small number of rare attributes which will turn up in a
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random sample. We conclude by an empirical illustration of the various
sampling schemes with an application to 2×2 contingency tables of cases
and controls. In this example the cases (with Y = 1) are motorists who
have sustained severe injuries from a traffic accident, and the exposure
variableX is the vehicle mode:X = 1 for riding a motorcycle versusX =
0 for travelling by car or truck (anything with four or more wheels), for
passengers and drivers alike. The starting point is a known population,
with aggregate data from the Netherlands in 1994, taken from the official
statistics of Centraal Bureau voor de Statistiek (1997); this forms the
top panel of Table 6.4. The following panels show the expected numbers
in contingency tables from hypothetical samples of various types. Since
they are expected numbers, all these tables give the same case–control

Table 6.4. Motor traffic participants with severe injuries:
expected numbers in various samples.

Y = 0 Y = 1

Population

X = 0 8 820 828 5172
X = 1 320 213 1087

Random sample, size 8500

X = 0 8197 5
X = 1 297 1

Stratified sample, twice 4250

X = 0 4248 2
X = 1 4236 14

Retrospective sample, twice 4250

X = 0 4101 3512
X = 1 149 738

Retrospective sample, 7000 and 1500

X = 0 6755 1240
X = 1 245 260

Case-control sample, twice 50

X = 0 48 41
X = 1 2 9
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estimate of β̂ of (6.8), apart from the effect of rounding the sample
frequencies to the nearest integer. This estimate is 1.75, so that the
risk of injury while riding a motorcycle is exp(1.75) ≈ 5.75 times as
great as for other motorists. But while the estimate is the same, its
standard deviation from (6.9) varies widely from one sampling design
to another. Inspection shows that it is very sensitive to small numbers
of observations in any one cell. What we want is therefore sizeable
frequencies in all cells, or, if we wish to economize on the overall sample
size, a balanced distribution of observations over the four cells.
The first case is a random sample of size 8500 from the entire popula-

tion. This very large number is dictated by the need to have an expected
number of at least one observation in each cell; there is of course still a
definite risk that sampling will produce a zero cell which will wreck the
analysis altogether (see Section 3.4). In spite of the large overall sample
size, it is a very inefficient design, and the standard deviation of β̂ is
1.1. The next panel describes a sample of the same size with exogenous
stratification, composed of two samples of size 4250 from the two ex-
posure categories, motorcyclists. This does a little better in respect of
sparse cells, but not much; the standard deviation of β̂ is 0.8.
The next two samples are retrospective or state-dependent samples

of the same size, and they show a spectacular improvement. The first
consists again of twice 4250 observations, but now from each of the
outcome classes, and this reduces the standard deviation of β̂ to 0.1. It
might be thought that further improvement would be achieved by having
unequal samples with a view to more balanced cell numbers, but in the
present instance this makes no difference to the standard deviation of β̂.
In the interest of comparability we have adopted the same overall

sample size of 8500 throughout, but this is a very large number for
any survey. If a genuine case–control study were undertaken by an
emergency room coping with traffic accidents the number of cases and
controls would probably be around 50. The expected numbers are given
in the last panel of the table; they give a standard deviation of β̂ of 0.85.
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The standard multinomial logit model

This chapter and the next deal with extensions of the binary model
to more than two outcomes. This chapter treats ordered probability
models very briefly and the standard multinomial logit model at some
length. The ordered probability models are a direct and fairly narrow
generalization of the stimulus and response models of Section 2.2, and in
particular of the latent regression equation of Section 2.3; the standard
multinomial logit is a direct generalization of the binary logistic formula,
without reference to any particular underlying idea. This model differs
much more sharply from the binary model, and it is more versatile than
the ordered model. Its properties as well as its estimation deserve a
fuller explanation. We also give an empirical application, once more
to household car ownership. The chapter is concluded by a a test for
pooling states (and thereby reducing the number of distinct outcomes).
There are still other generalizations of the binary model to more than

two alternatives, for this has been the chosen vehicle for more profound
theories of choice behaviour which bring new practical implications with
them. This is the subject of Chapter 8.

7.1 Ordered probability models

We recall the simple stimulus and response models and their formal
representation in the latent regression equation model of Section 2.3.
The stimulus determines a latent variable Y ∗

i by the ordinary regression
equation (2.8),

Y ∗
i = β∗

0 + x̃Ti β̃
∗
+ ε∗i , (7.1)

104
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where we now distinguish the intercept from the slope coefficients. The
observed dichotomous outcome Yi is determined by the sign of Y ∗

i , as in
(2.9):

Yi = 1 if Y ∗
i > 0,

Yi = 0 otherwise.

This is equivalent to the operation of a zero threshold for the latent
variable. A straightforward generalization is to allow for a graduated
response, distinguishing several ordered states r which correspond to
successive intervals of Y ∗

i . Instead of recording survival and death of
insects subjected to a toxin (or of patients admitted to an intensive
care unit), we allow for intermediate categories of continuing illness or
invalidation. Marketing firms will distinguish several sections of the
public, from those who never buy their product to customers with an
almost addictive loyalty. Ordered categories of this sort are particularly
popular in marketing and public opinion surveys where respondents are
invited to express their feelings on particular issues on a five-point or
seven-point scale.
The R ordered categories correspond to intervals of Y ∗

i , separated by
thresholds α∗

r , and the outcome is denoted by a vector yi which has
zeros everywhere apart from a single 1 at the position indicating the
state r(i) that actually obtains. Formally we have

r(i) = 1 if −∞ < Y ∗
i < α∗

1,

r(i) = t if α∗
t−1 < Y ∗

i < α∗
t ,

r(i) = R if α∗
R−1 < Y ∗

i < ∞.

It is clear from (7.1) that the intercept β∗
0 and the α∗

r are not separately
identified. In the binary case this was resolved by setting the threshold
at zero; here we put the intercept at zero and retain the thresholds.
Substitution gives the inequality conditions in terms of the random dis-
turbance ε∗i , as in

r(i) = t if α∗
t−1 − x̃Ti β̃

∗
< ε∗i < α∗

t − x̃Ti β̃
∗
.

This gives the probability of the observed outcome as a difference be-
tween two values of the distribution function of ε∗, and once again a
further normalization of β and of the αr with respect to its standard
deviation is in order, exactly as in Section 2.3. The upshot is that we
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have

Pr[r(i) = t] = Pit = F (αt − x̃Ti β̃
∗
)− F (α∗

t−1 − x̃Ti β̃
∗
), (7.2)

where F (·) is a given distribution function of ε with zero mean and
fixed variance. This may again be a standardized normal or logistic
distribution, but in practice most ordered probability models are ordered
probits, not logits.
The ordered probit was introduced by Aitchison and Silvey (1957)

and later in the present form by McKelvey and Zavoina (1975). Its
use is mainly confined to marketing and public opinion analyses. The
estimated coefficients βj reflect the effect of the covariates Xj on the
latent variable Y ∗

i , and one can trace through (7.2) how this will affect
the probabilities of the ordered alternatives. But this does not lead to a
simple overall measure of the effect of covariates on the outcome. Odds
may be defined, for example as the ratio

Pr[r(i) ≤ t]/Pr[r(i) > t],

and for a logit specification the log odds are again linear in xi, but it is
questionable whether this is of much use. And it is certainly difficult to
use this model (or any other multinomial model) to assign observations
to a certain class or group on the basis of estimated probabilities. With
R probabilities attached to each xi, it is difficult to define an analogue
to the cut-off criterion of a binary model (see Section 2.4). If we assign
an observation to the class with the highest probability, this is an even
worse prescription than the conventional cut-off point of 0.5 in the binary
case: for the highest probability may be only a little in excess of 1/R.
With k covariates and R classes the ordered probit model has k +

R − 1 parameters, and their maximum likelihood estimation is a fairly
straightforward exercise; the formulae can be found in Maddala(1983,
Ch. 2.13). Some authors worry about the possibility that the estimates
of the αr do not obey the necessary ordering, but in practice this does
not seem to be a problem.

7.2 The standard multinomial logit model

In multinomial probability models, also known as polychotomous or
polytomous models, there are any number S of alternative outcomes
or states with index s = 1, 2, . . . , S. These states are disjoint and ex-
haustive: they cover all possible outcomes, if necessary by the addition
of a residual category. Instead of treating private car ownership as a
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simple attribute we can distinguish ownership of new cars, of used cars,
and of more than one car, or we may classify cars by price, age, size
or engine power. For travellers making a particular trip, the choice of
a mode of transport (or modal split) is between walking, riding a bicy-
cle, using a private car, and public transport. These classifications are
dictated by the purpose of the analysis and often limited by the nature
of the data. In principle, categories can be distinguished at will, but
some distinctions may be irrelevant to the choices under consideration.
Section 7.6 provides a statistical test for pooling states. In spite of what
the car ownership example suggests, the states are not ordered from
‘less’ to ‘more’, and if there is such an ordering it is disregarded. The
standard multinomial model treats all states on the same footing and is
impervious to changes in their order.
We denote the outcome at observation i by yi, a vector of S elements

yis with a single element equal to 1 and all others 0. The position of
this unit element indicates the state that obtains or s(i). The model
determines a vector pi of S probabilities

Pis = Pr(yis = 1) = Ps(xi,θ)

for each trial or observation i as a function of covariates xi and unknown
parameters θ. In some cases, the range of feasible or accessible alterna-
tives (or choice set) varies from one individual or trial i to another; in
an analysis of modal split, the choice of some individuals is constrained
because they have no car or because there is no public transport for their
itinerary.† In these cases there is a known choice set Si associated with
each i, the probabilities are only defined for s ∈ Si, and the notation
changes accordingly. As this complication seldom arises in connection
with the standard logit model we shall ignore it in this chapter.
In the standard multinomial logit model the probability function is

Pis = Ps(xi,θ∗) =
exp(xTβ∗

s)∑S
t=1 exp (xTβ∗

t )
, (7.3)

with separate parameter vectors β∗
s for each state s. The xi of k + 1

covariates always include a unit element, and the β∗
s an intercept. This

model is clearly overparametrized, for we may add a constant vector to
each β∗ without affecting the Pis; the parameters are only determined
up to an additive constant, they are not identified. But their differences
β∗
s−β∗

t are identified, and the standard remedy is to suppress one vector

† In extreme cases, the set is reduced to a single option, the individual has no choice,
and probability models do not apply.
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β∗
1 by subtracting it from all β∗

s, reducing β∗
1 itself to 0. Since the states

may be (re)ordered at will it does not matter what state is taken as this
reference state s = 1. The identifiable parameters are redefined as

βs = β∗
s − β∗

1,

β1 = 0.
(7.4)

and the probabilities as

Pis = Ps(xi,θ)

=
exp(xTβs)

1 +
∑S
t=2 exp (xTβt)

for s �= 1,

Pi1 =
1

1 +
∑S
t=2 exp (xTβt)

.

(7.5)

With S states and k+ 1 elements in βs the total number of parameters
of the entire model is (k + 1) × (S − 1). Equations (7.3) and (7.5)
are equivalent representations of the same probabilities, denoted in the
present chapter by the shorthand notation Pl∗s and Pls. (7.3) with its
nice symmetry in the S states is best suited for theoretical discussions,
but the reduced form (7.5) is in order when it comes to estimation and
practical implementation.
For S = 2 (7.5) reduces at once to the binary model of (2.1), with

Y = 0 the reference state. The present model is thus a straightforward
algebraic generalization of the binary logit, and it was first presented in
this manner by Cox (1966) and Theil (1969) (who incidentally also intro-
duced elements of the conditional logit of Section 8.3). But as we have
seen in the last section, a generalization of the underlying arguments of
stimulus and response and of the latent regression leads to the ordered
probability model, not to the present model. The nearest multinomial
analogue to the latent regression model is probably the discrete choice
model, in which the sophisticated and elegant formulations of random
utility maximization replace the crude utility maximization of Section
2.2. This theory can very well serve to justify the standard multinomial,
but in practice it is inextricably bound up with the conditional model.
Its discussion is postponed to Chapter 8.
There is of course also a multinomial probit model, which initially ran

in tandem with the multinomial logit. It is more flexible, as it allows
naturally for correlation among the random elements, but analytically
it is much less tractable and this has limited its practical use for some
time. But new methods (and new computer capacities) have overcome
this obstacle. We return to this subject in Section 8.5.
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Proper odds make little sense in a multinomial context: their analogue
is the ratio of two probabilities of any pair of states (s, t). Its logarithm
closely resembles the log odds or logit of (2.4)

R(s, t) = log(Ps/Pt)

which gives

R(s, t) = xT (βs − βt), (7.6)

or, with t the reference state 1,

R(s, 1) = xTβs. (7.7)

The linearity of all these pairwise log odds in the covariates x is a dis-
tinguishing characteristic of the present model, just as the linearity of
the logit defines the binary model; when this property is taken as a
starting-point, (7.5) will follow. Note that the log odds depends exclu-
sively on the parameters of the two states concerned, regardless of all
others. This property is known as the independence from irrelevant al-
ternatives. It applies to the wider class of the general logit model, and it
has major consequences for the behavioural implications of the discrete
choice theory. For a fuller discussion see Section 8.1.
The standard multinomial probability does not share the monotonic

behaviour of the binary probability. The derivative of Pls with respect
to the jth regressor is

∂P l∗s/∂Xj = Pl∗s

(
β∗
sj −

S∑
t=1

β∗
tjPl

∗
t

)
,

or equally

∂P ls/∂Xj = Pls

(
βsj −

S∑
t=1

βtjPlt

)
. (7.8)

Inspection shows that the derivative is not affected by the choice of the
reference state. By the values of the Pls and Plt, its value depends on
the point of evaluation, just as in the bivariate case; but now it can also
vary in sign between one point of evaluation and another, for the sign
of the second term may change through changes in the probabilities.
The multinomial logit probabilities may thus exhibit non-monotonic be-
haviour with respect to the elements of x: we shall see in Section 7.5 that
the probability of owning a used car first increases and then declines as
income rises. This is an exceptional case, and as a rule probabilities will
not change sign within the sample range of the regressors. Even so, it
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should be noted that the sign of the derivative (7.8) is not determined
by βsj = (β∗

sj − β∗
lj) alone. The sign and size of covariate effects on the

various probabilities cannot be inferred from the βsj .
As before, the derivatives can be turned into quasi-elasticities

ηsj = Xj∂P ls/∂Xj ,

which indicate the percentage point change in Pls upon a 1% increase
in Xj . Over all states, the probabilities sum to 1, and the derivatives
and quasi-elasticities to 0. Like the derivatives, quasi-elasticities are
invariant to the choice of the reference state, and they may change in
sign and size when they are evaluated at different points.

7.3 ML estimation of multinomial models: generalities

As in Section 3.1, we apply the principles of maximum likelihood esti-
mation to a general multinomial probability model, not necessarily of
the logit type; in the next section these formulae are adapted to the
special case of the standard multinomial. Here, we start off from the S
probabilities

Pis = Pis (xi,θ)

with xi a vector of covariates and θ a vector of K parameters. These
probabilities are nonnegative and sum over i to 1 for all x and all θ, so
that in particular ∑

s

Pis = 1 for all i.

Moreover

Eyis = Pis.

Assume that the maximum likelihood estimates are again calculated
by the iterative scoring method of (3.10) of Section 3.1,

θt+1 = θt +H(θt)−1q(θt). (7.9)

In addition to the loglikelihood function itself we shall need the score
vector q of its first derivatives as well as the information matrix H. We
consider these elements in turn.
As always we assume independence of the observations, so that the

sample loglikelihood is simply the sum over i of the loglikelihoods of
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the single observations; so are its first and second derivatives. The
loglikelihood for observation i is

logLi =
∑
s

yis logPis.

As there is only a single nonzero yis, this summation actually yields only
a single term; the same holds for the expressions for qij and Qijh that
follow. The sample loglikelihood is then

logL =
∑
i

logLi =
∑
i

∑
s

yis logPis.

A typical element qj of the score vector q is the derivative of logL
with respect to the jth element of θ. For observation i this is

qij =
∑
s

yis
Pis

∂Pis
∂θj

,

or, for the entire sample.

qj =
∑
i

∑
s

yis
Pis

∂Pis
∂θj

. (7.10)

For the contribution of observation i to a typical element of the Hes-
sian Q, consider the second derivative of the loglikelihood function

Qijh =
∑
s

(
yis
Pis

∂2Pis
∂θj∂θh

− yis
P 2
is

∂Pis
∂θj

∂Pis
∂θh

)
,

which again yields only a single term. For the information matrix we
reverse the sign and take the expected value by substituting Eyis = Pis,
and now the summation is no longer trivial. The sum of the first term
turns into a sum of second derivatives, which vanishes since the Pis
sum to 1 and the first derivatives sum to 0. The second term is much
simplified: this yields

Hijh =
∑
s

1
Pis

∂Pis
∂θj

∂Pis
∂θh

. (7.11)

The value for the entire sample is of course

Hjh =
∑
i

∑
s

1
Pis

∂Pis
∂θj

∂Pis
∂θh

. (7.12)

These expressions can be rewritten in matrix notation. The deriva-
tives of the Pis with respect to the elements of θ can be arranged in



112 The standard multinomial logit model

S ×K matrices Ai, and the S probabilities Pis in diagonal S × S ma-
trices p̌i. The rank of the Ai is at most S − 1, for as the Pis add up
to 1 their derivatives add up to 0, and so do the columns of Ai. We
shall indeed assume that the rank of Ai is S − 1 as we may reasonably
suppose that the number of parameters K is at least equal to S − 1; in
actual practice it is usually much larger. The information matrix for a
single observation of (7.11) can then be rewritten as

Hi = AT
i p̌

−1
i Ai.

This K ×K matrix is singular, for its rank is set by the rank of Ai, and
this is only S − 1.
The Hi are summed to the sample information matrix of (7.12)

H =
∑
i

AT
i p̌

−1
i Ai

and this operation can again be expressed in matrix terms. We stack
the Ai in an (n S)×K matrix A as in

A =



A1

A2

·
·
·
An


and the p̌i are arranged in an S × n block diagonal matrix p̌

p̌ =



p̌1 0 . . . 0
0 p̌2 . . . 0

. . .

. . .

. . .

0 0 . . . p̌n


.

The end result is

H = ATp−1A. (7.13)

H is a K ×K matrix, and its rank is set by the ranks of its constituent
parts. p has full rank, just like the pi; as for A, its rank is determined
by its number of columns K. Linear dependence among these columns
is ruled out, for it would mean underidentification. The number of
rows is of course far in excess of K: there are n(S − 1) rows, and it is
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most unlikely that the rank is reduced below K by linear dependencies
between the derivatives for different observations i.
If AT is premultiplied by a nondegenerate 1×K row vector zT , this

will give a column vector of length nS; pre- and postmultiplication of H
by z therefore yields a weighted sum of squares with positive weights
1/Pis, which are positive scalars. This means that H is a positive
semidefinite matrix for any feasible set of parameter values that pro-
duces nonnegative probabilities, always provided K exceeds S − 1; we
must have at least one parameter for each probability, bearing in mind
that these sum to 1. But if H is positive definite, the scoring algorithm
(7.9) will always converge to a maximum, whatever the starting values.
The argument moreover suggests (but does not prove) that the Hessian
Q is negative definite for all parameter vectors, so that the loglikeli-
hood function is everywhere convex and has a unique maximum. The
implication is that we can trust the scoring algorithm to turn up with
the proper ML estimates of the parameters. We assert these powerful
properties without a proper proof; see McFadden (1974, p. 119) for the
conditions for the Hessian of the logit model to be everywhere negative
definite. – Note that the present convergence argument is quite general.
It holds for any multinomial probability model, and therefore also for
any binary model; for all varieties of the logit model, for probit models,
and for any other probability model that may be devised.

7.4 Estimation of the standard multinomial logit

We now apply the general principles of the last section to the standard
model (7.5),

Plis = Pls(xi,β)

=
exp(xTβs)

1 +
∑S
t=2 exp (xTβt)

for s �= 1,

P li1 =
1

1 +
∑S
t=2 exp (xTβt)

.

With S states and k + 1 covariates (including a unit constant) the pa-
rameter vector β consists of S − 1 subvectors βs of length k + 1 for
s = 2, 3, . . . , S.
No problems arise in the substitution of these probabilities into the

loglikelihood function. The derivatives of qi of (7.10), however, require
some further algebra. To begin with, we must distinguish between the
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derivatives of Plis with respect to the elements of its ‘own’ parameter
vector βs and the derivatives with respect to elements of alien subvectors
βt with t �= s. We find

∂P lis/∂βj = XjiPlis(1− Plis) if βj ∈ βs,

∂P lis/∂βj = −XjiPlisPlit if βj ∈ βt, t �= s.
(7.14)

For the reference state all parameter vectors are alien, and the second
line applies with s = 1 to Pli1. We substitute these expressions into
(7.10), with βr denoting the subvector to which βj belongs. This gives

qij =
yis
Pis

XjiPlir(1− Plir)−
∑
s �=r

yis
Pis

XjiPlisPlir

= Xji(yir − Pliryir − Plir
∑
s �=r

yis)

= Xji (yir − Plir) ,

where we make use of the fact that by their definition the yis sum to 1.
For the entire rth segment of qi, corresponding to βr, we have

qir = (yir − Plir)xi,

or, for the whole sample,

qr =
∑
i

(yir − Plir)xi. (7.15)

Note that in the summation over i many yir will be zero: yir is only 1 for
observations with state r. – These subvectors of the score vector have
length k + 1 (since xi has length k + 1), as they should, and there are
S − 1 of them for r = 2, 3, . . . , S. Stacked on top of one another they
form the column vector q.
It is seen from (7.15) that the random variables yir disappear upon

further differentiation of q with respect to elements of β. The Hessian
matrix of second derivativesQ is therefore nonrandom, and for the infor-
mation matrixH = −EQ we need only reverse its sign. WhileH is easily
obtained in this manner, we shall here find it by substituting the deriva-
tives of (7.14) into (7.12), which gives a typical (j, h)th element ofH. As
before, we must distinguish between the case that βj and βh both belong
to the same subvector, say βr, and the case that they belong to different
subvectors. H is a square matrix of order K = (S−1)(k+1), and it can
be partitioned into (S− 1)(S− 1) submatrices of order (k+1)× (k+1),
with the Hr,r on the main diagonal and the Hr,t the off-diagonal blocks.
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First take the case that both βj and βh belong to the same subvector
βr. Here substitution of (7.14) into (7.11) gives

Hijh =
1
Pir

XjiXhiPlir(1− Plir)2 +
∑
s �=r

1
Pis

XjiXhi(PlisPlir)2

= XjiXhi

Plir (1− Plir)
2 +

∑
s �=r

PlisPl
2
ir


= XjiXhiPlir (1− Plir) . (7.16)

In passing from the second to the third line we make use of the fact that
the Plis sum over s to 1. If βj and βh belong to different subvectors a
similar but slightly lengthier development gives

Hijh = −XjiXhiPlirPlit. (7.17)

The submatrices on the diagonal are constructed from (7.16), and the
others from (7.17); we find

H(rr)i = Plir(1− Plir)xixTi ,

H(rt)i = −PlirPlitxixTi .
(7.18)

The complete matrix H is obtained by summing these expressions over
i and arranging the blocks as indicated.
All the elements needed for estimation by the scoring algorithm (7.9)

have now been assembled. For given parameter values β0 the probabili-
ties Pis are easily obtained, and these can be inserted in the formulae for
the current values of q and H given above, and this is all we need. Af-
ter convergence we obtain the same results as in the bivariate case, viz.
parameter estimates, their asymptotic variances, and the value of logL
at its maximum. Other statistics like derivatives and (quasi-)elasticities,
with their standard errors, can be derived as before. The properties of
maximum likelihood estimation listed in Section 3.1 apply as a matter
of course.
In practice estimation will be carried out by means of some program

package. The above algebra may help to understand what is going on,
and occasionally what is going wrong. Much of the discussion of the
binary logit estimation at the end of Section 3.3 applies equally here.
Upon summing the expressions of (7.18), we again find that H closely
resembles XTX, the regressor moment matrix of ordinary regression;
the difference lies in a fairly complicated weighting scheme, with various
terms of the form PlirPlit as the weights. Still the main arguments
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about the structure of the regressor matrix X once more apply. It must
have full rank and preferably little collinearity, and in order to facilitate
its numerical inversion it should be well balanced in the sense that the
diagonal elements of XTX are of the same order of magnitude. This is
achieved by scaling the covariates so that they have comparable vari-
ances.
The MLEs of the parameters define ML predictions of the probabili-

ties,

P̂ lis = Pl(xi, β̂),

and these must satisfy the first-order conditions for a maximum qs = 0,
or, by (7.15), ∑

i

(yis − P̂ lis)xi = 0.

The first term on the left is again termed a quasi-residual esi

eis = yis − P̂ lis,

or, arranging all three terms in matrices with n rows and S columns,

E = Y − P̂l.

In this notation, the first-order condition reads as

XTE = 0. (7.19)

Each row of Y consists of S− 1 zeros and one unit element, each row of
P̂l consists of nonnegative elements that sum to 1, and each row of E
therefore sums to 0.† The columns of Y sum to the sample frequencies
of the outcome states ns, and by (7.19) the columns of E sum to 0 since
X contains a column of unit constants. Hence∑

i

eis = 0,

and ∑
i

P̂ lis/n =
∑
i

yis/n,

so that the equality of the means also holds in the multinomial case: the
mean predicted probability of a state equals its sample frequency.
This also holds for the null or base-line estimate, when we reduce the

arguments xTi βs to a vector of constants. The fitted probabilities P̂ l◦s
† If we had consistently treated the two outcomes of the binary case on an equal
footing, their quasi-residuals would be equal and of opposite sign.
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are constants, too, and by the equality of the means they must be equal
to

P̂ l◦s = ns/n.

The corresponding null loglikelihood is therefore

logL◦ =
∑
s

ns log ns − n log n. (7.20)

This can be used in an overall LR test of the performance of the regressor
variables (other than the intercept) along the lines of (3.24).
Further analysis will bring to light that the zero cell complication of

Section 3.4 may also occur in a multinomial context.
If there is only a limited number of regressor variables that are all

measured in intervals or classes, the sample data consist of a cross-
classification of all observations by these variables, with the frequencies
of the S states in each cell. This is the case of categorical covariates. As
in Section 3.5, the estimation presents no problems when the grouped
observations are treated as repeated individual observations. It would
be tedious to repeat the argument in detail. Minimum chi-squared es-
timation is also feasible, although I know of no examples. As for the
traditional logit transformation of observed cell frequencies at the end
of Section 3.5, its analogue in the multinomial case is the log of the
ratio of any two state frequencies in the covariate cells. Let fjs denote
the relative frequency of state s in cell j of some (cross-)classification
by covariates, and fj1 the frequency of the reference state in that cell.
If these frequencies reflect standard multinomial logit probabilities, the
logarithm of their ratio is

log(fjs/fj1) ≈ xTj βs,

as in (7.7). This once more suggests ordinary regression of this log ratio.
In economics such analyses are fairly common for shares of aggregates
like expenditure or trade flows, even though these are not frequencies
and have little or nothing to do with probabilities, apart from the fact
that they are nonnegative and sum to 1.

7.5 Multinomial analysis of private car ownership

The standard multinomial logit model is illustrated by a continued anal-
ysis of private car ownership, based on the same data set as in Sections
3.6 and 3.7 and making use of the same regressors. We now distinguish
three forms of private car ownership, or four states in all, viz.
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Table 7.1. Multinomial analysis of car ownership: effect of adding
regressor variables on loglikelihood.

nr. regressors logL

0 constant only −3528.37
1 constant, linc −3466.80
2 constant, linc, lsize −3176.80
3 constant, linc, lsize, buscar −2949.76
4 constant, linc, lsize, buscar, age −2884.59
5 constant, linc, lsize, buscar, age, urba −2874.90

• none, household does not own private car (1010 households);
• used, household owns one used private car (944 households);
• new, household owns one new private car (691 households);
• more, household owns more than one private car (175 households).

none is taken as the reference state, but all results reported below are
invariant to this choice.
Table 7.1 shows the course of the maximum loglikelihood as additional

regressors are successively introduced, starting from the null model of
a constant only. This shows the same unsteady rise as in Table 3.4 of
Section 3.7, with large leaps forward upon the introduction of lsize and
buscar and quite small further contributions of age and urba. We
can test for the significance of additional regressors by the likelihood
ratio test of (3.11); since there are four states and one is the reference
state, there are three parameters associated with each covariate. The 5%
significant value of chi-squared with three degrees of freedom is 7.815, so
that the loglikelihood should increase by at least 3.9 for each additional
regressor, as it amply does. – While the rise of the loglikelihood is similar
to that in the binary case, its level is very much lower. This is due to
the increased number of states. Recall that by (3.2) of Section 3.1 the
maximum loglikelihood can be written as

logL =
∑
i

log P̂r(Yis(i))

with P̂r(Yis(i)) the predicted probability of the observed state s(i). Un-
less there is perfect discrimination, the probabilities are bound to be-
come smaller as more states are distinguished, as the probability of a
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particular form of car ownership must be less than the probability of car
ownership as such. The strength of this effect can be demonstrated for
the loglikelihood of the base-line model of (7.20),

logL◦ =
∑
s

ns log ns − n log n.

Consider a given set of S states, and let one state t be further subdivided
into J states tj ; then logL◦ changes by∑

j

ntj log ntj − nt log nt

which is always negative. For the present subdivision of car ownership
as such into three separate categories this amounts to −1688.75, as can
be verified from the sample numbers given above.
Table 7.2 shows the effect of additional regressors on the derivatives

with respect to linc, or quasi-elasticities with respect to income per
head. Note that the effect of income on the proportion of used car
owners is almost negligible throughout. As more regressor variables are
added, the t-ratios improve (as was to be expected), but the systematic
movement away from zero of the binary model is not repeated; it appears
that the omitted variables bias of Section 5.3 does not carry over to the
multinomial case.

Table 7.2. Multinomial analyses of car ownership:
income effects.

nr. none used new more

1 −0.08 −0.13 0.18 0.03
(4.11) (6.36) (10.00) (2.61)

2 −0.43 −0.01 0.28 0.16
(14.60) (0.47) (11.44) (11.35)

3 −0.59 0.06 0.34 0.19
(17.04) (1.99) (13.10) (12.49)

4 −0.56 0.04 0.34 0.18
(16.28) (1.31) (12.87) (12.02)

5 −0.56 0.04 0.34 0.18
(16.29) (1.37) (12.90) (12.01)

Derivatives with respect to linc,
absolute values of t − ratios in brackets.
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Table 7.3. Multinomial analysis of car ownership:
regressor effects on four states.

none used new more

linc −0.56 0.04 0.34 0.18
(16.29) (1.37) (12.90) (12.01)

lsize −0.67 0.23 0.20 0.25
(19.83) (7.56) (7.60) (13.98)

buscar − −3.00 −3.02 −3.60
(16.10) (14.39) (9.74)

urba 0.03 −0.02 −0.01 −0.00
(4.21) (3.11) (1.82) (0.08)

age 0.03 −0.04 0.01 0.00
(8.22) (10.74) (2.05) (1.16)

Derivatives at the sample mean, except for
buscar; absolute values of t − ratio in brackets.

The results for the full model with all five regressors are shown in
Table 7.3. For most covariates this gives the derivatives of (7.8); their
variances have been calculated according to (3.9). Since linc and lsize
are in logarithms, their derivatives are quasi-elasticities. For buscar
however we prefer the log probability ratio of (7.7) with respect to none.
Since buscar is a (0, 1) dummy and none is the reference state, the
log probability ratios are given by the β3s.† For all three types of car
ownership, the log probability ratio with respect to none is about −3, so
that the ratio of the probabilities is of the order of exp(−3) = 0.05. All
car ownership probabilities are thus severely reduced by the presence
of a business car, in other words a business car is an almost perfect
substitute for any category of private car. – Income rises lead to a shift
towards new cars and multiple car ownership, but hardly affect used
car ownership; in contrast, increases in family size do cause a shift from
none to used. urba and age have only modest effects on all classes of
private car ownership.
All effects have been measured at the mean sample frequencies of the

four ownership states, and this gives a narrow view; when the regressors
range over wider intervals, the outcome can be quite different. In the
present case the low income elasticity of used car ownership arises largely

† With a different reference state, we would subtract the coefficients of none from
the β3s to obtain the log probability ratio; for the t-ratio we would however need
the adjusted variances, and these must be constructed with the help of (3.9).
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Fig. 7.1. Car ownership status as a function of household income.

because at the sample mean the probability of used car ownership is al-
most at its peak. Figure 7.1 shows how the shares of the four states shift
when income varies over a wide range, with all other regressor variables
kept constant at their sample mean values. The sample mean of inc is
about fl. 16000, or about $8000 (in 1980), and at this value used is near
its maximum. The incomes at the lower end of the graph are unrealistic,
but they do illustrate how used first increases with rising income at the
expense of none and then declines because it is overtaken by new. As
we have seen in connection with (7.8), multinomial probabilities, unlike
binary probabilities, do not vary monotonically with the covariates.
Another way of illustrating the estimates is to work out predicted

ownership rates for a few stereotype households. In Table 7.4, the first
column gives these probabilities at the sample mean covariates; they
differ a little from the sample frequencies, especially for more, because
of the nonlinearity of the probability functions. The other two columns
refer to two specimen households. Household A is a large family with a
young father, a modest income, living in the country; B is a much older
pair, quite well off and living in a large city. Neither household has a
business car. The contrast in car ownership probabilities is striking. The
poor countryside family is more likely to own a car than the rich city
dwellers, but it goes for used cars while the latter usually have a new
car. The differences between the two families may be decomposed and
attributed to the various aspects in which they differ. The exercise could
also be extended to a group of various households in given proportions,
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Table 7.4. Estimated car ownership probabilities
at selected regressor values.

sample household household
mean A B

regressors
income per head 15.74 6.0 25.0
size 2.12 4.0 1.7
business car 0.12 0 0
urbanization 3.74 1 6
age of head 45 22.5 52.5

ownership status
none 33.6 14.3 24.5
used 36.7 74.7 26.0
new 27.1 9.4 43.4
more 3.1 1.6 6.1

Geometric means; income per head in fl.1000 p.a.,
size in number of equivalent adults.

for example in order to assess the likely demand for parking places for
an apartment building with a mixed group of inhabitants, and it would
then amount to micro-simulation.

7.6 A test for pooling states

So far the classification of outcomes by states has been taken as given.
As the analyst can distinguish as many states as the data permit, an
understandable wish to preserve information can easily lead to irrele-
vant distinctions. In the interest of parsimony states should however be
pooled together unless they are significantly different for the purpose of
the analysis. This issue was first tackled by Hill (1983) in a study of fe-
male labour participation in underdeveloped countries, and a statistical
test has been provided by Cramer and Ridder (1991, 1992).
We reason in reverse from the introduction of a superfluous distinction

in an initial model with S states. State t (not the reference state) is
singled out for further subdivision. In the light of the things to come we
rewrite the standard formula (7.5) of Section 7.2 in a slightly unusual
way, separating off state t and distinguishing intercepts β0s and slope
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coefficients β̃s. This gives

Pit =
exp(β0t + x̃Ti β̃t)

1 + exp(β0t + x̃Ti β̃t) +Ri
,

Ri =
∑
s �=1,t exp(β0s + x̃Ti β̃s).

(7.21)

Now suppose all outcomes of state t are further divided into two subsets
by an arbitrary criterion like the name of a street or the colour of a bus
(a classic example that will be used later in an entirely different context),
the outcomes being allotted at random to the two new classes u and v

in proportions λ and (1 − λ). The original model is then extended to
S + 1 states, and in lieu of Pit we have two probabilities

Piu = λPit, Piv = (1− λ)Pit. (7.22)

All other probabilities remain the same. Substitution of (7.21) gives

Piu =
exp(log λ+ β0t + x̃Ti β̃t)
1 + exp(β0t + x̃Ti β̃t) +Ri

,

Piv =
exp[log(1− λ) + β0t + x̃Ti β̃t]
1 + exp(β0t + x̃Ti β̃t) +Ri

.

(7.23)

The denominators are the same as before, since

exp(log λ+β0t+x̃Ti β̃t)+exp(log(1−λ)+β0t+x̃Ti β̃t) = exp(β0t+x̃Ti β̃t).

Thus the introduction of an irrelevant distinction changes a standard
model into another standard model with two new states u and v in
lieu of t, and these states have the same slope coefficients β̃t as their
parent state; only the intercepts differ. It follows that conversely in any
standard multinomial model states with the same slope coefficients but
different intercepts can be regarded as arbitrary subdivisions of a larger
class and merged together. To test for pooling states is to test for the
equality of all regressor coefficients apart from the intercept, or, for any
two states u and v, to test the null hypothesis

β̃u = β̃v = β̃t.

This can be done by a straightforward likelihood ratio test. The test
statistic of (3.11) of Section 3.1 is

LR = 2[logL(θ̂u)− logL(θ̂r)],

or, for short

LR = 2(logLu − logLr),
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with u and r for the unrestricted and the restricted models respectively.
Both models have S + 1 states, but in the restricted model two states
have the same slope coefficients. If this restriction cannot be rejected,
the two states are merged and we obtain a third model, the pooledmodel,
with S states.
logLu is available as a matter of course from fitting the original model;

the question is to find a simple formula for logLr. To this end we order
the observations by outcome and rewrite the loglikelihood accordingly,
as in (3.4) of Section 3.1. Here we use

i ∈ As
for the event that observation i has outcome s. In the present context
Au + Av = At. Setting the states u and v apart and renumbering the
other states from 1 to S − 1, the unrestricted loglikelihood is

logLu =
∑
i∈Au

logPiu +
∑
i∈Av

logPiv +
S−1∑
s=1

∑
i∈As

logPis.

Under the restriction of equal slopes, (7.22) applies, and this gives

logLr =
∑
i∈Au

log λ+
∑
i∈Av

log(1− λ) +
∑

i∈Au,Av

logPit +
S−1∑
s=1

∑
i∈As

logPis.

This expression has four terms. The last two terms add up to the un-
constrained loglikelihood of the pooled model with S states, say logLp.
The first two terms depend on the parameter λ; if this is estimated by
maximizing logLr (as it should be), the result is

λ̂ = nu/nt

with ns denoting the sample number of observations with outcome s.
As a result, the first two terms of logLr add up to

nu log nu + nv log nv − nt log nt.

Altogether this gives

logLr = logLp + (nu log nu + nv log nv − nt log nt).

The LR test statistic may therefore be obtained from two estimation
runs, one of the original model with S+1 states which gives logLu, and
one of the pooled model with S states which gives logLp; upon adding
the term in the numbers nu, nv and nt this gives logLr. The formula is
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easily extended to more than two states; if state t is split into J states
tj, the last formula becomes

logLr = logLp +

∑
j

ntj log ntj − nt log nt

 . (7.24)

As an illustration, we test whether the three categories of private
car ownership in the analysis of the last section can be pooled, that is
whether there are significant differences in their determination by the
five covariates employed. The null hypothesis is that they are the same,
and that the multinomial model can be reduced to the binary model
with the same regressor variables of Section 3.7.
The restricted loglikelihood consists of two terms, viz. the loglikeli-

hood from the pooled model and the contribution of the sample distri-
bution of car ownership over the three subcategories. The first term is
taken from Table 3.4 of Section 3.7:

logLp = −1351.39.
From the sample numbers of car–owning households at the beginning of
Section 7.5 we find∑

j

ntj log ntj − nt log nt = −1688.75

so that

logLr = −3040.14.
From Table 7.1 we have

logLu = −2874.90,
so that finally

LR = 330.48.

Since five covariates are involved and three parameter vectors have been
constrained to equality, ten restrictions have been imposed, and this is
the number of degrees of freedom of the chi-squared distribution. The
restriction is soundly rejected, and the multinomial model is a significant
improvement over the binary analysis.



8

Discrete choice or random utility models

This chapter gives an account of the theoretical and technical innova-
tions in the econometrics of multinomial models that have been crowned
by the Nobel prize for McFadden. Much of this work arose from ap-
plied research, primarily in transportation and marketing, and it has
not widely spread beyond these fields. The firmly behavioural interpre-
tation of the general logit model of discrete choice has been very fertile
in bringing forth new generalizations and new specifications of the ar-
gument of the logit transformation. These techniques are however not
necessarily linked to maximizing behaviour and they could be used with
advantage in other fields.

8.1 The general logit model

The standard multinomial logit model is a special case of the general or
universal logit model

Pis = Pl(Vis) =
expVis∑
t∈Si

expVit
, s ∈ Si. (8.1)

The summation is over sets Si of feasible or accessible states, which may
vary from one i to another. The arguments Vis are further specified
in various ways as functions of observed traits of observation i and of
unknown parameters.
In practice there are two main classes of linear specifications of the

Vis. The first is the standard model of (7.3) of Chapter 7:

Pis = Pl(xTi β∗
s), Si = S for all i.

This mainstream form of multinomial logistic regression is obtained from

126
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the general model by specifying the Vis as

Vis = xTi β∗
s. (8.2)

The elements of xi, including the dummy unit constant, are generic
covariates of observation i that have the same value for all states. In an
analysis of the choice of transport modes s for a particular trip i they
may reflect characteristics of the individual making the trip like gender,
age and income, as well as other conditions like the time of day or
the distance involved. The parameters β∗

s are specific for the transport
modes or outcome states. The need to normalize these parameters with
respect to a reference state, as in (7.4) of Section 7.2, is directly due to
the form of this specification. This simple and robust specification is
usually accompanied by the assumption of a single identical choice set
of states S for all i.
The second major specification is the conditional logit model, where

Vis is specified as

Vis = z̃Tisγ̃.

In this pure version the vectors contain no unit constant and no inter-
cept. Here the roles have been reversed: the covariates z̃is are specific
and vary with the states s (and possibly also with the observation i),
and the slope coefficients are generic and the same for all states. If the
s are again modes of transport, the elements of zis describe properties
like safety or comfort (the same for all i) and the duration and cost of
a trip (varying with s but also with i). As the description of an option
by the specific covariates is never complete, a state-specific intercept is
often added to reflect the remaining unique qualities of each alternative.
This gives

Vis = β0s + z̃Tisγ̃. (8.3)

The unit constant is generic and the intercept is specific, and these
β0s must be normalized with respect to a reference state. In many
applications other state-specific covariates are added as well, and the
two specifications are combined into a single expression

Vis = β0s + x̃Ti β̃s + z̃Tisγ̃ (8.4)

with a reference state s = 1 where all β are zero. The conditional logit
model is usually associated with more sophisticated studies than the
standard model, and it is here that we find variation of the set Si from
one observation to another.
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An important property of the general model is that for any pair (s, t)
in the choice set Si the logarithm of the ratio of any two probabilities
R(s, t) is given by

Ri(s, t) = log(Pis/Pit) = Vis − Vit. (8.5)

Ri, like the ratio of any two probabilities, depends exclusively on the
characteristics of the two states concerned, and it is independent of
the number and nature of all the other states that are simultaneously
considered; in the conditional model they are not affected by changes in
the values of alien covariates ziv. In consequence, the introduction of a
new alternative (or the deletion of an existing option), or a change in
the specific characteristics of a state, will alter the probabilities of all
other outcomes in the same proportion, leaving their ratios unchanged.
This property of the general logit model is known as independence of
irrelevant alternatives or IIA. Since it also applies to highly relevant
alternatives, it can lead to unacceptable results. The standard example
is that of the red and blue buses versus private transport.† Consider
the choice among several modes of transport, with s denoting private
transport and t public transport, more specifically, travel by a red bus.
This is the only available form of public transport. Suppose now that
a new bus service is added to the choice set Si that is almost identical
to the existing service but uses blue buses. If the general logit model
holds, (8.5) implies that the probability ratio for (t, s) and indeed all
probability ratios from the original choice set are unchanged; the blue
buses will therefore gain their share of the market by a proportional
reduction of the probabilities of all previously existing transport modes.
This is an unpalatable result, for in practice red bus traffic will suffer
much more than other travel modes. The general logit model (and all
its special forms) makes no allowance for this phenomenon.
The IIA property is due to the blind indifference of the model to

any similarity or dissimilarity of the S states. In many applications
this substantive assumption is clearly inappropriate. This defect cannot
be remedied by an adjustment of the general logit model, but only by
changing to a different probability model like the nested logit model or
the multinomial probit model that are briefly discussed at the end of
this chapter.
The standard multinomial and the conditional logit differ in the varia-

† This classic example is due to McFadden (1974). Debreu (1960) demonstrates the
IIA by considering various recordings of the same concerto as alternatives to a live
performance.
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tion of the covariates and of the parameters. They can be combined, and
with some ingenuity still other specifications of Vis may be designed. The
broad dichotomy between standard and conditional models is a matter
of practical considerations and of the observed regressor variation, not
of profound theories about the process that generates the outcomes. In
practice, however, the standard model is often treated as a mechanistic
extension of the binary model, itself based on diverse ad hoc theoreti-
cal arguments, while the conditional model is linked specifically to the
sophisticated theories of maximizing behaviour of random utility or dis-
crete choice, which have a wide following in the fields of transportation
and market research. We used this interpretation in discussing the IIA
property, and we shall adhere to it throughout the present chapter. But
there are no grounds for these ideological distinctions: discrete choice
theory may very well be used in conjunction with the standard model,
and the conditional logit (like other models that discrete choice theory
has brought forth) is a valid statistical model in its own right without
the particular connotation of random utility maximization.
The wider paradigm of discrete choice theory first arose in mathe-

matical psychology, where the need to explain variations in repeated
experimental measurements of individual preferences led to the notion
of probabilistic choice. The seminal work is that of Thurstone (1927),
and some ideas can even be traced all the way back to Fechner (1860).
In the 1950s, theorists turned to the abstract mathematical represen-
tation of the choice process by the choice probabilities Ps of a given
subject; for a survey of this work, see Luce and Suppes (1965). This
led to probabilistic analogues of the preference relations of the classical
theory of consumer behaviour: the deterministic relation ‘s is preferred
to t’ is replaced by ‘given the choice between s and t, the probability
that s is selected exceeds 0.5.’ The next step is to search for equiv-
alents of properties like the transitivity of preference relations, and to
see whether probabilities with the requisite regularity properties can be
linked to the maximization of an underlying utility function. At this
stage, a distinction is in order between the random utility model, where
the actual choice reflects the maximization of random utility indicators
of the feasible options, and the constant utility model in which the util-
ities are determinate but the choice process is probabilistic.
In the context of constant utility, Luce (1959) imposed the choice

axiom, whereby the conditional probability of selecting the state s out
of a given subset is constant, regardless of the wider choice set to which
this subset belongs. This is a mirror image of the IIA property. The
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axiom ensures that the probabilistic preference relation between two
states holds regardless of what other states are considered, and once it
is adopted the theory can be developed further without the restriction
to a fixed and fully enumerated choice set, which may raise awkward
problems. Luce also shows that this choice axiom implies the existence
of a function φs such that

Pr(s is chosen out of S) = φs/
∑
t∈S

φt,

where S is any set that contains s and at least one other choice. With
minor additional assumptions Luce then proceeds to derive (8.1) from
this strict utility model, with expVis taking the place of φs and S re-
placed by the feasible set Si.
The general logit model may also be derived from a random utility

model. The discrete choice then reflects the maximization of (perceived)
utility, which is a random attribute of feasible alternatives, and the
model is driven by the distribution of these random variables. This very
fruitful innovation of McFadden dates from the early 1970s; we shall
reproduce his derivation in the next section.

8.2 McFadden’s model of random utility maximization

In this derivation the general logit model reflects the maximization of
the utility Uis, which is a random attribute of Si alternatives. This
process is conditional upon the given characteristics of observation i (or
of individual i or experiment i), but in the present section this subscript
is deleted. The random utility of outcome s is then defined as

Us = Vs + εs, (8.6)

where Vs is a systematic component and εs a random disturbance. Man-
ski (1977) lists the origins of this random component: unobserved char-
acteristics of the ith experiment, unobserved taste variation and similar
imperfections. It may also accommodate a genuine indeterminacy of in-
dividual behaviour which calls for a probabilistic description, although
this is strictly alien to deterministic utility maximization over random
utilities.
With random utilities Us and a feasible choice set S, utility maximiza-

tion implies choice probabilities

Ps = Pr(Us > Ut for all t �= s ∈ S). (8.7)
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The Ps are thus determined by the Vs and by the stochastic specification
of the εs. McFadden has established that Ps satisfies the general model of
(8.1) if the disturbances εs are independently and identically distributed
according to a type I extreme value distribution of standard form. We
reproduce this derivation from McFadden (1974) and Domencich and
McFadden (1975).
First, rewrite Ps as

Ps = Pr(Us > Ŭs),

with

Ŭs = max(Ut, t ∈ S̄),
S̄ = S − s.

In words, Us must exceed Ŭs, which is the largest of all other utilities.†
The distribution functions of Us and Ŭs are

Fs1(x) = Pr(Us ≤ x)

and

Fs2(x) = Pr(Ŭs ≤ x) = Pr(Ut ≤ x, Uv ≤ x, Uw ≤ x, . . .).

Since the εs are stochastically independent, so are the Us (although they
are not identically distributed as they have different parameters Vs). As
a result

Fs2(x) =
∏
t∈S̄

Ft1(x).

Given proper analytical expressions for Fs1 and Fs2, Ps can be obtained
by the convolution theorem (see, for example, Mood et al., (1974, p. 186).
By this theorem we have for any two independent random variables y
and z

Pr(y > z) =
∫ +∞

−∞
F ′
y(t)Fz(t)dt.

Here we have

Ps = Pr(Us > Ŭs) =
∫ +∞

−∞
F ′
s1(t)Fs2(t)dt. (8.8)

This completes the preliminaries.

† We ignore the possibility of a tie, which would arise if Us were equal to Ŭs. In
the algebra that follows, strict and weak inequalities are treated in similar cavalier
fashion.



132 Discrete choice or random utility models

It is now assumed that the disturbances εs are independent and iden-
tically distributed according to the type I extreme value distribution in
standard form, also known as the log Weibull distribution and sometimes
associated with Gumbel. This has the distribution function

F (x) = exp[− exp(−x)]. (8.9)

In the present case

Fs1(x) = Pr(Us ≤ x) = Pr[εs ≤ (x− Vs)]

gives

Fs1(x) = exp[− exp(Vs − x)]

for the distribution function of Us. For Fs2(x) we must take the product,
or

Fs2(x) = exp−
∑
t∈S

exp(Vt − x)

= exp[− exp(V̆s − x)],

with

V̆s = − log
∑
t∈S̄

expVt.

Upon substituting these expressions into (8.9) we obtain

Ps(x) =
∫ ∞

−∞
expVs − t exp[− exp(Vs − t)] exp[− exp(V̆s − t)]dt

= expVs
∫ ∞

−∞
exp{−t exp{− exp[−t(expVs + exp V̆s)]}}dt.

We now make use of
d
dt

exp[−A exp(−t)] = A exp{−t exp[−A exp(−t)]}
with

A = expVs + exp V̆s,

to write

Ps(x) =
expVs

expVs + exp V̆s

∫ +∞

−∞
d exp[− exp(−tA)],

and obtain

Ps(x) = expVs/(expVs + exp V̆s).
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Finally we use (8.9) to find the expression we are looking for, namely
(8.1)

Ps(x) = expVs/
∑
t

expVt.

This completes the derivation of the general logit model from random
utility considerations.
We have recorded these involved algebraic exercises to bring out the

crucial assumption in the argument, which is that the εs are independent
and identically distributed according to the standard type I distribution
of (8.9). This is not a natural assumption. The stochastic independence
of the εs across alternative choices is a strong restriction; it lies at the
root of the IIA property. The εs must moreover follow a particular
distribution with particular parameter values that are the same for all
alternative choices. We briefly discuss what these assumptions imply.
In its general form the type I extreme value distribution function has

two parameters, µ and λ, and its distribution function is

F (x) = exp{− exp[−(x− µ)/λ]}. (8.10)

Johnston and Kotz (1970, vol. 1, Ch. 21) review this distribution and its
properties. There is no clear link of the present usage of the distribution
with its derivation from the asymptotic behaviour of extreme sample
values. If z has this distribution its mean and variance are

Ez = µ+ 0.5772λ,

varz = 1.6449λ2.

In the standard form of the distribution, µ is 0 and λ is 1, and the
mean and standard deviation are 0.58 and 1.64. The standard density
function is shown in Figure 8.1; it is not so very different in shape from
a normal distribution. With S = 2 (and the specification of Vis as
αs + βsXi) the present model reverts to the binary model of Chapter
2: the disturbance with the logistic density of (2.15) of Section 2.3 is
the difference of two independent variates with the standard form of the
extreme value distribution.
Whether the assumption of a common mean and variance with given

values for all εs is an effective restriction depends on the specification of
Vs. Suppose the true model is

U∗
s = V ∗

s + ε∗s

and the ε∗s have an extreme value distribution with distinct parameters
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Fig. 8.1. Extreme value probability in standard form.

µs and λs for each state s. The desired standard disturbances εs are
related to ε∗s by

εs = (ε∗s − µs)/λs,

so that

U∗
s = V ∗

s + λsεs + µs.

Whether this can be rewritten like Us = Vs+ εs, as in (8.6), depends on
the specification of V ∗

s and its ability to absorb µs and λs. This operation
is analogous to the treatment of the latent regression equation in Section
2.3, but the outcome is different. First, the mean µs can be absorbed
as always by state-specific intercepts, as in (8.2) and (8.3). But the λs
can not be accommodated by rescaling the slope coefficients of either
specification, for if we were to divide these coefficients by different λs
this would affect the ordering of the Vs and change the inequality (8.7).†
We must therefore maintain the assumption that all λs are equal, in
other words that the disturbances have the same variance for all s. The
slope coefficients (and the Vs and Us) can then be normalized by a single
rescaling factor so as to reduce their common λ to 1 and their common
variance to 1.64.

† For the standard multinomial model this argument holds both before and after
normalizing the parameters with respect to the reference state.
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This assumption of a common variance of the disturbances for all s is
an effective restriction. It is for example incompatible with the view that
the disturbances take care of the effects of neglected variables, for these
will vary across states. Whether the restriction is acceptable depends on
the nature of the choice process, the definition of the alternatives and
the nature of the observations. A consumer’s choice of breakfast bever-
age can be a choice between tea and coffee, between blends, brands or
places of purchase of coffee; the observations can refer to households or
to individuals, they can be restricted to a certain locality or a certain
type of shop, and they can consist of repeated observations for the same
consumers. All these aspects have a bearing on the distribution of the
random elements in the choice process. For a review of the subtle con-
sideration of these matters in market research, and of the various models
that meet the ensuing complications, see Baltas and Doyle (2001).
So much for the algebra and the implicit assumptions of this oper-

ational discrete choice theory. While it rests on a narrow basis, it has
been very fertile in applied research like policy analyses of transport and
travel demand and marketing research. While it may equally well lead
to the standard multinomial as to the conditional logit model, its ex-
ceptional power has mainly made itself felt with the latter specification.
It is here that the interpretation of Vs as the systematic utility of one
option relative to the others is fully exploited. Some of its advocates
believe that discrete choice theory is also superior to other derivations
of the general logit model because it permits a structural analysis of
observed choice behaviour, as the probability model is directly linked
to underlying utility-maximizing behaviour. Forceful statements of this
doctrine are found in the writings of McFadden (1976, 2001) and Man-
ski (1977). The theory does indeed provide an instance of that rare
and much sought after prize, economic theory dictating the form of an
empirically valid mathematical function; but to make the theory work
some fairly arbitrary assumptions have been necessary. It is probably a
greater achievement of the theory that it has provided an effective vehi-
cle for the conditional logit model as well as for several more advanced
models that are free from the IIA property.

8.3 The conditional logit model

In the conditional logit model (8.3)

Vis = β0s + z̃Tisγ̃
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the elements of z̃is represent specific properties of the various options
s that may or may not vary with the conditions of observation i. For
modes of transport they reflect safety or speed (which do not vary with
i) or costs or time (which do), for college choice they represent tuition
costs (the same for all i) and distance from the freshman’s home (varies
with i). There are S vectors zis of k elements for each observation, but
there are only k generic parameters in γ̃, and another S−1 parameters in
the β0s. In contrast to the generic β of the standard multinomial model,
γ does not need to be normalized in the interest of identification.
An early example that conveys the flavour of such analyses is the study

of travel behaviour of Washington commuters by Lerman and Ben-Akiva
(1976). They distinguish five travel modes, defined as combinations of
household car ownership and car use, such as ‘two cars, but not used
for travel to work’. The utility of each mode depends on variables like
travel time, a combined variable for travel costs in relation to income,
and the ratio of cars to licensed drivers in the household, with different
definitions for car-to-work travel modes and others. In a similar vein,
Gaudry et al. (1989) distinguish nine travel modes for office workers in
Santiago de Chile, and employ covariates like several components of the
time for the trip (walking time, waiting time, in-vehicle time) and the
cost as a fraction of the traveller’s income.
The assumption of a single γ̃ for all modes is only justified if it is

believed that aspects like costs and travel time, if properly measured,
affect the utility of all modes for a given trip in the same way. The
terms of zTisγ̃ then give the contribution of each aspect to the overall
utility Vis of a given mode, and the elements of γ̃ reflect the relative
weight of these aspects. Cost and speed will affect utility with opposite
sign: the ratio of their coefficients then marks the trade-off between these
aspects at constant utility, and shows how much a traveller is willing to
pay for a given saving in time. Apart from this useful interpretation
of the parameters, the model also permits extrapolation to a new mode
of travel v with known characteristics ziv for each i. Once γ̃ has been
estimated, we can calculate Viv and insert this in the model. This is
useful when the introduction of a new option or product with known
properties is contemplated. The analysis can even be extended to a
new product with characteristics that have not yet been experienced
by the public, making use of survey data about stated preferences (as
opposed to the revealed preferences of observed behaviour). In these
interviews respondents are asked to give their opinion on hypothetical
products that are described in great detail. This technique was already
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used by Adam (1958) for probit analyses of the willingness to pay for
particular products; for a much more sophisticated analysis, employing
an ordered logit model with both specific and generic covariates, see
Beggs et al. (1981). But it will be clear that this is also precisely the
type of application where the limitations of the IIA property are most
keenly felt.
In a pure conditional logit, systematic utility Vis is completely de-

scribed by the zis. This resembles the view of all commodities as bun-
dles of properties that make up their utility, as in the consumer demand
theory of Lancaster (1971). In practice, the covariates are an incom-
plete description, and a state-specific intercept is added, as we have
done above. This can also be done by introducing state-specific unit
variables for each of S − 1 states as part of the zis, with S − 1 addi-
tional coefficients in γ; this technique is illustrated in Table 8.2 below.
– State-specific intercepts complicate the prediction of the utility of a
new option v, for it will be necessary to put a value on βv. And this
becomes worse if other generic covariates have been added as well, as in
(8.4).
The properties of the conditional logit model (with or without generic

regressors) are easily derived. The derivative of the probabilities with
respect to the jth element of zis or zit under given conditions i are

∂Pis/∂Zis,j = γjPis(1− Pis),

∂Pis/∂Zit,j = −γjPisPit.
(8.11)

The derivatives can be evaluated at the sample mean, with the sample
frequencies substituted for the probabilities. As an example, s can be
private transport and t public transport, Zis,j and Zit,j their costs for
a particular trip i, and γj the coefficient that reflects the (dis)utility of
expenditure on fares. In contrast to the standard multinomial model, the
probabilities vary monotonically with any Zj , with the sign depending
on γj . Note that the effect on the probability of state s of changes in its
own properties and in the same properties of other states are of opposite
sign: if Pis declines upon a cost increase of mode s, it increases if the
cost of other modes is cut.
By (8.11) the cross-effects exhibit symmetry, or

∂Pis/∂Zit,j = ∂Pit/∂Zis,j . (8.12)

It is easily verified that ∑
s

∂Pis/∂Zit,j = 0,
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as well as ∑
t

∂Pis/∂Zit,j = 0.

The first expression states the obvious (that the probabilities sum to 1),
and the second shows that the probabilities remain the same upon the
same change in Zit,j for all t, as they should. For if all Zit,j change by
the same amount, all utilities Vis also change by the same amount, and
the preferred choice at observation i remains the same.
Quasi-elasticities are obtained as before by multiplying the derivatives

by the relevant values of Zis,j or Zit,j , or

ηss = γjZis,jPis(1− Pis),

ηst = −γjZit,jPitPis.
For the estimation of the conditional logit model we once more rely on

the iterative scheme of (7.9) of Section 7.3. All we need to complete the
score vector q and the Hessian H are the derivatives of the probabilities
with respect to the parameters, which are then inserted in the general
expressions

qij =
S∑
s=1

yis
Pis

∂Pis
∂θj

and

Hijh =
S∑
s=1

1
Pis

∂Pis
∂θj

∂Pis
∂θh

.

The derivatives with respect to the elements of γ are

∂Pis/∂γj = Pis

(
Zis,j −

∑
t

Zit,jPit

)
.

Upon defining a weighted average of the Zis,j for observation i over all
modes,

Z̄ij =
∑
t

Zit,jPit,

this can be rewritten as

∂Pis/∂γj = Pis
(
Zis,j − Z̄ij

)
. (8.13)

Substitution in the score gives

qiγj
=

∑
s

Yis
(
Zis,j − Z̄ij

)
.



8.3 The conditional logit model 139

The estimates enter into this expression via the weights Pis of Z̄ij . Note
that the summation over s yields only a single term, as all but one of the
Yis are zero. As before, the maximum likelihood estimates will satisfy∑

i

qiγj
= 0

but this does not lead to simple side relations, as in the case of the
standard model. The equality of the means, for example, is not ensured,
unless there are state-specific intercepts; in that case the argument of
(7.19) of Section 7.4 applies. In a pure conditional model, it will only
hold approximately in large samples because of an entirely different ar-
gument, namely (4.6) of Section 4.4.
For an element of Hiγ we obtain,

Hijh =
∑
s

Pis
(
Zis,j − Z̄ij

) (
Zis,h − Z̄ih

)
,

which looks like a weighted moment. The weights Pis (which also enter
into the Z̄) vary of course with the parameters that are being estimated,
as is usual in iterative schemes.
If we wish to estimate the fuller model (8.4), qi and Hi can be parti-

tioned as

qi =
[
qiβ
qiγ

]
,

and

Hi =
[
Hiββ Hiγβ

Hiβγ Hiγγ

]
.

The terms in β have been given in Section 7.4, and the terms in γ have
just been derived; for the off-diagonal matrices of H, the derivatives of
(7.15) of Section 7.4 and of (8.13) must be combined, but this presents
no particular difficulties.
If the choice set varies between observations, summation over s for

each i should take place over a set Si that varies from one observation to
another. Differences in the choice set will also affect qiβ and the elements
ofHi that involve the β parameters, as the absence of a state implies the
absence of a subset of β, and zero elements in the corresponding places.
But this is a matter of careful programming which raises no questions
of principle.
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8.4 Choice of a mode of payment

We illustrate the conditional model for the choice of a mode of payment
by Dutch consumers in 1987.† The example is outdated, but it is in-
structive insofar as both the standard multinomial and the conditional
logit are applied with almost the same covariates. The major differ-
ence is that the standard model describes while the conditional model
explains.
Point-of-sale payments by anonymous clients in shops and restaurants

demand immediate and secure settlement. At the time of the study the
only acceptable means of payment were cash and guaranteed cheques,
available in three types with slightly different properties. The analysis
was intended to contribute to improved conditions of cheque use and
the design of new modes of payment; but it was soon superseded by
technological progress, which permitted the widespread installation of
point-of-sale terminals for electronic transfer. This has completely re-
placed cheques.
The Dutch Intomart household expenditure panel recorded the mode

of payment (cash or cheque of a particular type) of each item of expen-
diture, the person making the purchase and the place of payment (shop,
bank, home). We use data on 2161 point-of-sale payments in cash or by
guaranteed cheque from a random sample of payments by 1000 house-
holds. There are three types of cheque, all guaranteeing payment to the
recipient up to a certain limit, provided the payer has shown a bank
card; they are here distinguished by their colour. The green cheque,
issued by the commercial banks, is guaranteed for sums up to fl. 100,
roughly the equivalent of $50; the orange cheque of the postal giro sys-
tem has an upper limit of fl. 200; and the blue Eurocheque, issued by the
banks along with the green cheque, has an upper limit of fl. 300. Access
to the blue cheque, which is also valid in other European countries, is
somewhat restricted and carries a small charge. All limits apply to a
single cheque, and larger sums can be paid by writing several cheques.
Very nearly all Dutch households (and all households in the sample)
have an account with the postal giro system and/or with one or more
banks, with the giro most widely prevalent among all classes of society.
In principle, all three types of cheque are available to all households and
in practice very nearly so. With cash this makes four modes of payment
and we assume that these are accessible to all payers.

† This example is taken from a study commissioned by the Postbank and earlier
reported in Mot et al. (1989) and Mot and Cramer (1992)



8.4 Choice of a mode of payment 141

Table 8.1. Point-of-sale payments, Dutch households, 1987.

cash guaranteed cheque

green orange blue

number of observations 1899 32 131 99

column percentage

less than fl. 100 97.2 78.1 73.6 67.7
fl. 100 – fl. 200 2.2 18.8 17.6 25.3
fl. 200 – fl. 300 0.4 3.2 4.6 3.0
over fl. 300 0.3 0.0 2.3 4.0

Table 8.1 shows that the vast majority of point-of-sale payments are
made in cash, and that only the larger payments are made by cheque.
The object of the analysis is to find out why this is so. We employ three
logit models to answer this question. Model A is the standard multi-
nomial model of (7.5) for four modes of payment, with the logarithm
of the amount paid of lsum as the single regressor apart from the unit
constant. Model B is the pure conditional logit of (8.2) with two spe-
cific covariates Zis called risk and inconvenience, two aspects of the
intangible transaction costs; they have generic coefficients. In model C
specific intercepts are added along the lines of (8.3).
Table 8.2 sets out the variables of the three models. For Model A

these are the unit constant and lsum; the use of the logarithm is a
purely empirical device, adopted because it gives a better fit. For mod-
els B and C we must find operational measurements of the risk and
inconvenience associated with payment by a particular mode. By risk
we mean the dangers of theft or loss associated with a payment. For cash
payments this is just the sum paid, for this is the amount of cash the
payer must carry; once more the logarithm of this amount is taken, but
now this transformation reflects the way the loss is felt. Thus cash risk
is measured once more by lsum. For the guaranteed cheques, risk is the
perceived cost of losing cheques and/or the accompanying bank card, for
the payer must carry both to make payments. The issuing banks usually
limit these costs to a fixed amount, depending on the circumstances of
the loss or theft, but the public are not always aware of the precise rules.
We assume that the perceived cheque risk is constant and the same
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Table 8.2. Choice of a mode of payment: three models and
their variables.

cash guaranteed cheque

green orange blue

Model A

Xi1 constant 1
Xi2 lsum log(amount)

Model B

Zi1 cash risk log(amount) 0 0 0
Zi2 cheque risk 0 1 1 1
Zi3 inconvenience 0 nrr nrr nrr

Model B

Zi1 constant1 0 1 0 0
Zi2 constant2 0 0 1 0
Zi3 constant3 0 0 0 1
Zi4 cash risk log(amount) 0 0 0
Zi5 inconvenience 0 nrr nrr nrr

nrr is the number of cheques required for the payment.

for all three cheques: the covariate is a unit constant, and its coefficient
will measure the monetary value. As for inconvenience or loss of time,
this is measured by the number of cheques that the payment requires.
For currency it is zero, regardless of the amount paid; for cheques it
is the number of cheques that must be filled in and signed. This takes
time; payers are also reluctant to part with cheques because they receive
only a limited number at a time from their bank. The number required
or nrr is one more than the integer part of the quotient of the amount
paid and the cheque limit; this varies with the sum paid and also with
the type of cheque, since these have different limits.
Model B is a pure conditional logit, with risk and inconvenience

together completely determining the utility of each mode of payment;
model C allows for other, unobserved differences by specific intercepts,
with cash the reference state. The generic unit constant of (8.3) has here
been replaced by three specific unit covariates for the three cheques, each
with its own (generic) coefficient. As these three covariates together are
identical to cheque risk of model B, its coefficient can no longer be
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Table 8.3. Estimates of three models of
mode-of-payment.

Model A : Standard logit
6 parameters, logL = −826.55
quasi− elasticities with respect to amount paid :

cash −0.18 (16.8)

green cheque 0.02 (6.6)

orange cheque 0.08 (13.1)

blue cheque 0.07 (12.3)

Model B : Pure conditional logit
3 parameters, logL = −839.12
coefficients of cash risk −1.86 (18.0)

cheque risk −8.44 (20.4)

inconvenience −1.17 ( 5.0)

Model C : Conditional logit with intercepts
5 parameters, logL = −816.55

coefficients of cash risk −1.79 (17.4)

inconvenience −0.91 (4.0)

intercepts green cheque −9.25 (21.0)

orange cheque −8.04 (19.5)

blue cheque −8.39 (20.2)

Absolute values of t − ratios in brackets;
null loglikelihood − 1052.68.

estimated separately; in the discussion it is equated to the mean of the
cheque intercepts, and the deviations from this mean are interpreted as
the intrinsic utility of the three cheque modes relative to one another.
The estimates for the three models (with t-values in brackets) are

shown in Table 8.3. Model A confirms what was already apparent from
Table 8.1 as well as from casual observation, namely that small amounts
are paid in cash and only larger sums by cheque. The quasi-elasticities
are quite small, but then the amount paid varies from one payment to
another by multiples, not by a few per cent. The very small elasticity of
green cheques is probably associated with their limited face value.
These results are sensible but they throw no light on the question

why cheques are generally reserved for the larger payments. The two
conditional models attempt an answer to this question. In model B,
the coefficient of −1.86 corresponds at the sample mean frequency to a
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derivative of Pcash with respect to cash risk of −1.86× 0.85× 0.15 =
−0.23, and this is a quasi-elasticity since cash risk is the logarithm of
the amount at stake. This quasi-elasticity applies with the properties of
cheques held constant, and it is not surprising that it is larger than the
quasi-elasticity in respect of the amount paid of Model A, even though
they refer to the same variable. The risk of using cheques is equivalent
to a cash risk of exp(−8.442/ − 1.86) = fl. 93.50, and this is a sensible
result.
Model C yields equally precise estimates as A and B; the fit is sig-

nificantly better than that of B, with an increase in logL of 22.57 for
two additional parameters, and logL is also higher than in model A in
spite of a smaller number of parameters (but these two models are not
nested). The coefficients of cash risk and of inconvenience are not
substantially different from model B. If we identify cheque risk with
the weighted mean of the cheque intercepts, its coefficient is −8.32, near
enough to the earlier estimate of −8.44. The specific utility of the three
cheques relative to one another is then represented by the deviation of
their intercepts from this weighted mean, or

green cheque −0.93,
orange cheque 0.28,
blue cheque −0.07.

Allowing for inconvenience and with the assumption of a common cheque
risk, orange cheques are by far the most popular of the three, with blue
cheques a good second and green cheques at a considerable distance.
This may reflect the popularity of the postal giro system.
The major advantage of the conditional logit model is that it per-

mits prediction of the likely effect of policy changes, like changes of the
cheque risk or of the guaranteed limits (and hence of inconvenience).
The variables of Table 8.2 or the estimated coefficients are changed ac-
cordingly, the probabilities of the four modes are recalculated for all
payments in the sample, and then summed to give the new incidence of
the various modes of payment. But we do not report the outcome of
such exercises here.

8.5 Models with correlated disturbances

Several models have been put forward to break free of the restrictive
IIA property within the random utility framework with the outcome
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determined by maximizing random utilities

Uis = Vis + εis.

Since the independence of the disturbances εs is at the root of the IIA
property, the natural solution is to introduce a joint S-dimensional dis-
tribution of the εs that allows for their correlation. But without inde-
pendence the easy algebra of the convolution theorem of (8.8) no longer
applies, and formidable analytical obstacles arise over the inequality
(8.7). Moreover the correlations may bring up to S(S − 1)/2 additional
parameters into play, and it is desirable to reduce this number by im-
posing a certain structure on the correlation matrix.
We shall briefly discuss two models of this kind. The first is based

on a direct generalization of the extreme value distribution of (8.9),
namely Gumbel’s Type B extreme value distribution usually defined in
the literature for the case S = 2; its distribution function is then

F (x, z) = exp{−[exp(−x/ρ) + exp(−y/ρ)]ρ}; (8.14)

see Johnson and Kotz (1972, p. 256) or Amemiya (1985, p. 306). If the
distribution is generalized to more than two variates, the same correla-
tion ρ holds for all pairs. This parameter reflects the dependence of the
variates; it must lie between 0 and 1, and the correlation between any
pair of variates is 1 − ρ2. In spite of the notation (which suggests the
reverse), the limiting case ρ = 1 corresponds to independence, with all
variates having the standard Type I extreme value distribution of (8.9);
this brings us back to the original model and the IIA property.† This
opens the way to a test of the IIA property by testing the nested para-
metric hypothesis ρ = 1 by the usual repertoire listed in Section 4.1.
Hausman and McFadden (1984) develop such a test for a conditional
logit as a restricted case of a nested logit (to be discussed presently),
along with another test which is based on first principles of choice be-
haviour under IIA. If the property holds, the probability ratios of the
remaining options are unchanged if one state is eliminated; one may test
whether the parameter estimates from the full model and the reduced
model differ significantly. The difficult part is the derivation of the co-
variance matrix of the differences between the two estimate vectors.

† The other extreme of ρ = 0 or perfect correlation implies identical disturbances,
but not identical utilities, for the systematic components will usually differ. With
identical utilities choice would be indeterminate; with identical disturbances but
different systematic components one alternative is always preferred, and the entire
stochastic framework of choice breaks down.



146 Discrete choice or random utility models

Since the assumption of the same correlation for all pairs of alterna-
tives is only a little less restrictive than independence, flexibility is intro-
duced in the nested logit model by imposing a hierarchical structure of
the choice process which looks like a tree with a succession of branches.
The various states are classified along these branches into subgroups or
clusters of similar alternatives. Within each cluster the random distur-
bances are correlated and between clusters they are independent. This
is the nested logit model of McFadden (1981), also discussed at some
length by Amemiya (1985).
In the simplest case there are three states, with two related or similar

alternatives forming one cluster and a third state that is independent
of both. The stock example is once more the case of private driving
and two public transport services or of the car versus red and blue bus
services as transport modes for a given trip. The two bus services form
a correlated cluster; note that they must differ in other aspects than
the colour of their vehicles alone, for if they have the same systematic
component Vis the analysis will break down. The car disturbance ε1 has
the Type I extreme value distribution of (8.9),

F (x) = exp [− exp(−x)]
and the other two disturbances ε2 and ε3 have the joint distribution
function of (8.14). Amemiya (1985, pp. 300-306) derives the probabilities
for the three alternatives from these distributional assumptions as

P1 =
exp(V1)

exp(V1) + [exp(V2/ρ) + exp(V3/ρ)]ρ
,

P2 = (1− P1)
exp(V2/ρ)

exp(V2/ρ) + exp(V3/ρ)
,

and

P3 = (1− P1)
exp(V3/ρ)

exp(V2/ρ) + exp(V3/ρ)
.

This suggests that the parameters of the Vs can be estimated in two
steps. The first is restricted to the alternatives in the cluster, here the
numbers 2 and 3; within this group, a straightforward conditional logit
estimation will give estimates of the parameters of V2 and V3. If these
are specified as Vs = zTisγ the estimates refer to γ/ρ. These estimates
can then serve to construct estimated values of the denominators of P1 in
a subsequent binomial analysis at cluster level. With some ingenuity the
estimation is thus reduced to routine procedures, although the variances
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of the estimates require separate further computation. But the nested
model may also be estimated by classical maximum likelihood methods.
Some of the advanced program packages provide ready routines.
In comparison with the general logit of (8.1), the nested version in-

troduces greater flexibility to the tune of one additional parameter for
each separate cluster. A full description of S random utilities calls for
a much larger number. For utility maximization one state can be taken
as the reference state, with all utilities measured relative to it; this is
often identified with the preferred choice, so that this has utility zero
and all alternatives have negative utilities. There remain S − 1 random
utilities, with their means determined by the systematic component Vs;
in the covariance matrix, one variance is set at 1 to determine the scale
of the slope coefficients.† Then there are S(S − 1)/2 correlations (pos-
sibly with some constraints). The full richness of this specification is
recognized in the multinomial probit model.
In this model the additive specification Uis = Vis + εis is completed

by the assumption

εs ∼ N(0,Ω∗).

Subsequently the dimension is reduced by 1 by taking out a reference
state, and one (diagonal) element of the covariance matrix Ω∗ is equated
to 1. The disturbances of the differential utilities still have a normal
distribution (except for the reference state). In the case S = 2 this
reduces to the standard normal distribution of the binary probit model
of Section 2.3. As in (8.7), utility maximization implies

Ps = Pr(Us > Ut for all t �= s).

With a joint density f(·) of the Us, the probability (say) P1 is given by
the multiple integral

P1 =
∫ ∞

−∞

∫ Us−1

−∞
. . .

∫ U1

−∞
f(U1, U2, . . . , Us)dU1dU2 . . . dUs. (8.15)

Estimation requires that this probability is expressed in terms of the pa-
rameters of the model, viz. the parameters of the systematic component
and the parameters of the normal density. But the normal distribution
does not permit of an analytical solution, and the integral must be eval-
uated by numerical methods. For the univariate and, to a lesser extent,
for the bivariate distribution the difficulties are not insuperable, but for

† If the disturbances are identically distributed, as in Section 8.2, all variances are
equal and this takes care of a further S − 2 parameters.
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S > 3 the problem rapidly becomes intractable. Note that in the it-
erative schemes of maximum likelihood estimation the probabilities Ps
must at each iteration be evaluated anew for all observations. Early
analyses of the multinomial probit by Hausman and Wise (1978) and
Daganzo (1979) are therefore limited to the case S = 3.
One way of solving this problem is by simulating the probabilities in-

stead of evaluating the integral. The simplest form is to take a sample
of random drawings from the multidimensional density and establish-
ing the frequency of the outcomes that have Us as the largest of all
Ut. This idea was mooted by Lerman and Manski (1981) and later
taken up independently by Pakes and Pollard (1989) and McFadden
(1989). Since then the method has been further refined and improved
by ingenious techniques which permit valid working probabilities (and
sometimes also of their derivatives) from a small number of drawings
from each distribution. For examples see Börsch-Supan and Hajivassil-
iou (1993) or Hajivassiliou et al. (1996). The illustrative simulations in
these articles deal with five states, but in the transportation and mar-
ket research literature examples are found with up to nine states, as in
Gaudry et al. (1989). Problems of such larger dimension naturally arise
in the analysis of panel data, where the stochastic structure is further
complicated by autoregressive elements. Such generalizations are far re-
moved from the initial moves to break free from the IIA property of the
general logit model.



9

The origins and development of the logit
model

The present practices of logistic regression, case–control studies and dis-
crete choice analyses have separate and distinct roots, often spreading
back to achievements of the 19th century. The development of these
techniques has been governed equally by the immediate needs of such
diverse disciplines as biology, epidemiology and the social sciences and
by the personal histories of individual scholars. The present account is
limited to the origins of the logistic function and its adoption in bio-
assay and in economics, followed by a brief survey of alternative routes
to the same model.†

9.1 The origins of the logistic function

The sigmoid logistic function

W =
exp(α+ βt)

1 + exp(α+ βt)
Ω

or a related form, embellished by additional parameters, was introduced
in the 19th century for the description of population growth and of the
course of autocatalytic chemical reactions. In either case we consider
the time path of a quantity W (t) and its growth rate

Ẇ (t) = dW (t)/dt. (9.1)

The simplest assumption is that Ẇ (t) is proportional to W (t):

Ẇ (t) = αW (t), α = Ẇ (t)/W (t),

† An updated paper giving fuller biographical and bibliographical sources can be
found at http://publishing.cambridge.org/resources/0521815886/.
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with α the constant relative growth rate. This simple differential equa-
tion leads of course to exponential growth,

W (t) = A expαt,

where A is sometimes replaced by the initial value W (0). This is a
reasonable model for unopposed population growth in a young country
like the United States in its early years; it can be argued that it lies at
the basis of Malthus’ contention of 1798 that a human population, left to
itself, would increase ‘in geometric progression’.† But Alphonse Quetelet
(1795–1874), the formidable Belgian astronomer turned statistician, who
took a great interest in vital statistics, was well aware that indiscriminate
extrapolation of exponential growth must lead to impossible values. He
experimented with various adjustments and then asked his pupil, the
mathematician Pierre-François Verhulst (1804–1849), to look into the
problem.
Verhulst added an extra term to the differential equation (9.1) as in

Ẇ (t) = βW (t)[Ω−W (t)], (9.2)

where Ω denotes the upper limit or saturation level of W . We may
express W (t) as a fraction of Ω, say P (t) =W (t)/Ω. (In this context P
denotes a proportion, not a probability as in the earlier chapters.) This
gives

Ṗ (t) = βP (t)[1− P (t)]. (9.3)

As we know from (2.3) of Section 2.1, the solution of this differential
equation is

P (t) = exp(α+ βt)/[1 + exp(α+ βt)], (9.4)

which Verhulst named the logistic function. He published his findings
between 1838 and 1847 in three papers, first in the Correspondance
Mathématique et Physique edited by Quetelet and then in the Proceed-
ings of the Belgian Royal Academy (Verhulst 1838, 1845, 1849). In the
second paper he fitted (9.2) to the Belgian population and arrived at an
estimate of the upper limit Ω of 6.6 million, which is far surpassed by
the present population of 10.2 million in 1998.
The discovery of Verhulst was repeated by Pearl and Reed (1920). At

the time Raymond Pearl (1879–1940) had just been appointed Director
of the Department of Biometry and Vital Statistics at Johns Hopkins

† Exponential growth is still with us in economic analyses. It also played a major
part in the Report to the Club of Rome of Meadows et al. (1972).
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University, and Lowell J. Reed (1886–1966) was his deputy (and his suc-
cessor when Pearl was promoted to Professor of Biology). Pearl was
trained as a biologist, and acquired his statistics as a young man by
spending a year with Karl Pearson in London. He became a prodigious
investigator and a prolific writer on a wide variety of phenomena like
longevity, fertility, contraception, and the effects of alcohol and tobacco
consumption on health, all subsumed under the heading of human biol-
ogy. During World War I Pearl worked in the US Food Administration,
and this may account for his preoccupation with the food needs of a
growing population in the 1920 paper. At that time, Pearl and Reed
were unaware of Verhulst’s work (though not of the curves for autocat-
alytic reactions discussed presently), and they arrived independently at
a close variant of the logistic curve. They fitted this to the US popula-
tion census figures from 1790 to 1910 and obtained an estimate of Ω of
197 million, which compares badly with the present value of 270 million
in 1998. In spite of many other interests, Pearl and his collaborators
in the next twenty years went on to apply the logistic growth curve to
almost any living population from banana flies to the human population
of the French colonies in North Africa as well as to the growth of melons
– see Pearl (1927), Pearl et al. (1928) and Pearl et al. (1940) for exam-
ples. Reed, who had been trained as a mathematician, made a quiet
career in biostatistics. He excelled as a teacher and as an administrator;
after his retirement he was brought back to serve as President of Johns
Hopkins. Among his papers in the aftermath of the 1920 paper with
Pearl is an application of the logistic curve to autocatalytic reactions
(Reed and Berkson 1929). We shall hear more about his co-author in
the next section.
In 1918, Du Pasquier, Professor of Mathematics at Neuchâtel, Switzer-

land, published a brief survey of mathematical representations of pop-
ulation growth in which he names Verhulst (Du Pasquier 1918). There
are some indications that it was Du Pasquier who informed Pearl and
Reed of Verhulst’s work. The first time these authors acknowledged
Verhulst’s priority is in a footnote in Pearl (1922); this is followed by
a fuller reference in Pearl and Reed (1923). Some years later, Yule
(1925), who says he owes the reference to Pearl, treats Verhulst much
more handsomely and devotes an appendix to the writings of Quetelet
and Verhulst on population growth. Yule also adopts the term ‘logis-
tic’ from Verhulst. It would take until 1933 for Miner (a collaborator
of Pearl) to write an article about Verhulst, largely a translation of an
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obituary by Quetelet with the addition of an extract from the published
reminiscences of Queen Hortense de Beauharnais.
There is another early root of the logistic function in chemistry, where

it was employed (again with some variations) to describe the course of
autocatalytic reactions. These are chemical reactions where the prod-
uct itself acts as a catalyst for the process. This leads naturally to a
differential equation like (9.2) and hence to functions like the logistic
for the time path of the amount of the reaction product. A review of
the application of logistic curves to a number of such processes by Reed
and Berkson (1929) quotes work of the German Professor of Chemistry
Wilhelm Ostwald of 1883. Authors like Yule (1925) and Wilson (1925)
were well aware of this strand of the literature.
The basic idea of logistic growth is simple and effective, and it is

used to this day to model population growth and market penetration of
new products and technologies. The introduction of mobile telephones
is an autocatalytic process, and so is the spread of new products and
techniques in industry.

9.2 The invention of probit and the advent of logit

The invention of the probit model is usually credited to Gaddum (1933)
and Bliss (1934a,b), but one look at the historical section of Finney
(1971) or indeed at Gaddum’s paper and his references will show that
this is too simple. Finney traces the roots of the method and in partic-
ular the transformation of frequencies to equivalent normal deviates to
the German scholar Fechner (1801–1887). Stigler (1986) recounts how
Fechner was drawn to study human responses to external stimuli by ex-
perimental tests of the ability to distinguish differences in weight. He
was the first to recognize that response to an identical stimulus is not
uniform, and to transform the observed differences to equivalent normal
deviates. The historical sketches of Finney (1971, Ch. 3.6) and Aitchi-
son and Brown (1957, Ch. 1.2) record a long line of largely independent
rediscoveries of this approach that spans the seventy years from Fech-
ner to the early 1930s. Gaddum and Bliss attach more importance to
the logarithmic transformation of the stimulus than to the assumption
of a normal distribution of the response threshold, which they regard
as commonplace. Their publications contain no major innovations, but
they mark the emergence of a standard paradigm of bio-assay, with Gad-
dum’s report particularly effective in Britain and the work of Bliss in the
United States. Gaddum wrote a comprehensive report with the emphasis
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on practical aspects of the experiments and on statistical interpretation,
giving several worked examples from the medical and pharmaceutical lit-
erature. Bliss published two brief notes in Science, and introduced the
term probit; he followed this up with a series of scholarly articles setting
out the maximum likelihood estimation of the model. Both Gaddum
and Bliss set standards of estimation; until the 1930s this was largely
a matter of ad hoc numerical and graphical adjustment of curves to
categorical data.
Both authors adhere firmly to the stimulus and response model of

bio-assay, with determinate stimuli and random responses that reflect
the distribution of individual tolerance levels. Bliss originally defined
the probit (short for ‘probability unit’) as a convenient scale for the
equivalent normal deviate, but abandoned this very soon in favour of a
different definition which was generally accepted. The equivalent normal
deviate of a (relative) frequency f is the solution of Z̃ from

f =
1√
2π

∫ Z̃

−∞
exp(−1

2
u2)du,

and the probit is the equivalent normal deviate increased by 5. This
ensures that the probit is almost always positive, which facilitates cal-
culation; at the time this was a common procedure.
The acceptance of the probit method was aided by the articles of Bliss,

who published regularly in this field until the 1950s, and by Finney and
others (Gaddum returned to pharmacology). The full flowering of this
school in bio-assay probably coincides with the first edition of Finney’s
monograph in 1947. Applications in other fields like economics and
market research appear already in the 1950s: Farrell (1954) employed a
probit model for the ownership of cars of different vintage as a function
of household income, and Adam (1958) fitted lognormal demand curves
to survey data of the willingness to buy cigarette lighters and the like
at various prices. The classic monograph on the lognormal distribution
of Aitchison and Brown (1957) brought probit analysis to the notice of
a wider audience of economists.
As far as I can see the introduction of the logistic as a valid alterna-

tive is the work of a single person, namely Joseph Berkson (1899–1982),
Reed’s co-author of the paper on autocatalytic functions mentioned in
the last section. Berkson read physics at Columbia, then went to Johns
Hopkins for an MD and a doctorate in statistics in 1928. He stayed
on as an assistant for three years and then moved to the Mayo Clinic
where he remained for the rest of his working life as chief statistician.
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In the 1930s he published numerous papers in medical and public health
journals. But in 1944 he turned his attention to the statistical methods
of bio-assay and proposed the use of the logistic, coining the term ‘logit’
by analogy with the ‘probit’ of Bliss. Berkson’s advocacy of the logit as
a substitute for the probit was tangled by his simultaneous campaign for
minimum chi-squared estimation as vastly superior to maximum likeli-
hood. Between 1944 and 1980 he wrote a large number of papers on
both issues, often in a somewhat provocative style, and much contro-
versy ensued.
The close resemblance of the logistic to the normal distribution must

have been common knowledge among those who were familiar with the
logistic; it had been demonstrated by Wilson (1925) and written up by
Winsor (1932), another collaborator of Pearl. Wilson was probably the
first to use the logistic in bio-assay in Wilson and Worcester (1943), just
before Berkson (1944) did so. But it was Berkson who persisted and
fought a long and spirited campaign which lasted for several decades.
The logit was not well received by the practitioners of probit analysis,

who often regarded it as a cheap and somewhat disreputable device.
Thus Aitchison and Brown (1957, p. 72) dismiss the logit in a single
sentence by the argument that ‘the logistic lacks a well-recognized and
manageable frequency distribution of tolerances which the probit curve
does possess in a natural way’. Finney’s authoritative textbook of probit
analysis kept silent about the logit in the first and second edition of 1947
and 1952; the author only made amends in the third edition of 1971. For
a long time no one (not even Berkson) recognized the formidable power
of the logistic’s analytical properties; one of the first to do so was Cox
in his textbook of 1969 which later became Cox and Snell (1989). On
the other hand the practice of logit analysis spread more rapidly on the
workfloor, in part because it was so much easier to compute.
It should be appreciated that until the advent of the computer and

the pocket calculator all numerical work had to be done by hand, that
is with pencil and paper, sometimes aided by graphical inspection of
‘freehand curves’, ‘fitted by eye’.† For probit and logit analyses of cate-
gorical data there were graph papers with special grids on which a probit
or logit curve would appear as a straight line. Wilson (1925) introduces
the logistic (or ‘autocatalytic’) grid, and examples of lognormal paper
can be found in Aitchison and Brown (1957) and Adam (1958). Numer-
ical work was supported rather feebly by simple mechanical calculating

† We have paid tribute to this tradition in Section 3.5.
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machines, driven by hand or powered by a small electric motor, doing
addition and multiplication; values of the normal distribution (and of ex-
ponentials and logarithms) had to be obtained from printed tables. The
Biometrika tables of Pearson (1914) were famous. In 1938 a modern set
was published by Fisher and Yates. These Statistical Tables for Biolog-
ical, Agricultural and Medical Research from the first carried specially
designed tables for probit analysis (with auxiliary tables contributed by
Bliss and by Finney). From the fifth edition of 1957 onwards they also
included special tables for logits.
In the 1960s the logit gradually achieved an equal footing with the

probit, both in academic writings and in practical applications. Probit
and logit were also more widely adopted beyond bio-assay, in economics,
epidemiology and the social sciences. The close link to tolerance levels
or threshold values was dissolved in the more general and abstract rep-
resentation of the latent regression equation. I believe this was first
explicitly formulated by McKelvey and Zavoina (1975) for an ordered
probit model of the voting behaviour of US Congressmen. The wider
acceptance was greatly helped by the advent of the computer and by the
introduction of package routines for the maximum likelihood estimation
of both logit and probit models from individual data, as in the bmdp or
biomedical data processing package of 1977, probably the first to
offer this facility. By 1989, when the first edition of the comprehensive
textbook of Hosmer and Lemeshow appeared, the use of such routines
was taken for granted.
During the 1960s statisticians gradually discovered the superior ana-

lytical properties of the logit transformation and its usefulness outside
bio-assay. This development was matched by generalizations and ex-
tensions of the binary model. The multinomial generalization was first
mooted by Cox (1966) and then, independently, by Theil (1969), who
immediately saw its potential as a general approach to the modelling
of shares. The simple algebra of this generalization opened up a very
wide field of applications in economics and other social sciences, and the
lead in exploiting its possibilities soon passed to a group of economists
led by McFadden. Sophisticated multinomial models were used in em-
pirical work, often undertaken in the course of consultancy, and many
theoretical problems were solved in the course of this applied work. The
survey article of Amemiya (1981) and the textbooks of Maddala (1983)
and Amemiya (1985) made probit and logit models familiar to students
of econometrics, and they quickly became familiar research tools of em-
pirical economic research, with the logit much preferred for multinomial
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analyses. As we have seen in Chapter 8, during the 1990s the wheel
turned and the limitation of the IIA property of logit models made ad-
vanced market research turn back to the multinomial probit.

9.3 Other derivations

Apart from the route of the stimulus and response model and the adop-
tion of the logistic curve there are several other paths which lead to the
logit model. Fisk (1961) derived it as a limiting form of a Champernowne
income distribution, and Theil (1969) linked the multinomial version di-
rectly to considerations from information theory; but these views were
not followed up by their authors or by others. Agresti (1996) hints at
a relation with the methods of Rasch, which has some following among
psychologists and sociologists; there may well be others of which I am
unaware. I shall here conclude with a brief historical note on the method
of case–control and on discrete choice, which have both been treated in
earlier chapters. Both paradigms have been developed independently
and in isolation due to self-imposed separation between scientific disci-
plines. Logistic regression has largely been the work of biologists, with
some later contributions from econometricians; case–control has been
developed in medicine, discrete choice in mathematical psychology and
in transportation studies. A glance at the bibliographical references
of published papers shows that communication among scholars is often
confined to a narrow group of kindred minds.
Case–control studies combine two radical shifts in the attitude of

medicine to disease. A doctor’s natural approach is to treat the patient
and study the course of the illness, and epidemiology was revolutionary
in widening the outlook to a group of patients and to the contrast of their
conditions with those of healthy people. The first examples date from
the middle of the 19th century. Secondly, the usual view of a scientific
experiment is that the outcome is unknown when it is undertaken. This
tradition of prospective or forward-looking observation must be reversed
in retrospective samples, collected after the event and even in direct re-
lation with the outcome. As we have argued in Section 6.3, this is the
only way of obtaining a sufficient number of cases of specific and rare
diseases. Armenian and Lilienfeld (1994) cite a number of examples from
the 1920s onward, but the major breakthrough occurred in the 1950s in
retrospective studies of the relation between lung cancer and cigarette
smoking. Both the method and the substantive findings caused heated
controversy among doctors and statisticians. A major contribution es-
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tablishing the validity of case–control studies was made by Cornfield,
himself not a doctor but a self-taught statistician (he read history and
started his career at the US Bureau of Labor Statistics); see Cornfield
(1951, 1956). The statistical analysis of these samples proceeded from
the consideration of risks and relative risks to odds, odd ratios and the
log of odds ratios; a vigorous but separate investigation of the statistical
issues followed before it was realized that the method is closely related
to discriminant analysis and logistic regression. The survey of Breslow
(1996) is instructive.
The second independent and distinct route to the logit model and

specifically to its multinomial form is from the discrete choice theory of
mathematical psychology. We have briefly sketched this relation to the
work of Luce and Suppes in the 1950s in Section 8.1. The recognition
that it leads to operational statistical models like the general logit spec-
ification is very largely due to McFadden (1974), who first read physics
at Minnesota (where he obtained a thorough knowledge of differential
equations) and who worked as a research assistant in social psychology
before he graduated in economics and began his academic career in that
field. He soon moved to Berkeley, and there developed the multinomial
(conditional) logit model from random choice theory. From 1970 onward
he was involved in transportation research consultancy, and soon he and
his collaborators began publishing a stream of path-breaking papers on
the subject. His views of the role of discrete choice theory are best ex-
emplified by his paper on the nested logit model (McFadden 1981). His
personal intellectual development as well as his debt to forerunners and
to many of his equally gifted collaborators are set out in his Nobel prize
acceptance speech (McFadden 2001).
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of standard multinomial logit

model 114
heteroskedasticity 11
hit rate 66
horseshoe crabs 27
Hosmer–Lemeshow test see tests and

tests statistics

identification of parameters 17,
19–20, 21, 22, 23, 80, 105,
107–108, 112, 136

IIA see independence of irrelevant
alternatives

impact of omitted variable 81–87
income elasticity 53, 55, 120
independence of irrelevant

alternatives 109, 128, 129–130,
133, 137, 144–145, 148, 156

independence of observations 34, 35,
110

independent variables see regressor
variables

information matrix
for categorical variables 48, 101
of binary logit model 41–42
of conditional logit model 138–139
of general binary model 36
of general multinomial model

111–113
of standard multinomial logit

model 114–116
injuries from motor traffic example

102–103
intercept 15, 21, 22, 90, 93–94, 98,

105, 107, 123, 127, 137, 139, 141
investment switch example 94–95, 97

kurtosis 25, 85

Lagrange Multiplier test see tests
and test statistics

latent variable 20–21
latent variable regression equation

20–22, 29, 68, 78, 80–81, 83–84,
104–105, 100, 134, 155

curtailed 80–81, 83–84
reference 80–81, 83–84

law of proportionate effect 20
leverage 74
likelihood function 34
limited dependent variables 10
linear probability model 11
linear regression see ordinary linear

regression
link function 14
LM test see Lagrange Multiplier test

under tests and test statistics
log odds same as logit

transformation 13
log odds ratio 47, 101
logistic

distribution 23–26, 82, 83, 85,
106, 133

function, curve 12–14, 65,
149–152

regression, same as logit analysis
1, 4

logit analysis 4
logit model

binary 9–15, 133, 153–154
bounded 65, 77–79
conditional 107, 127, 128–129,

135–139, 141–144
general 126–130
justification 16–20
nested 146–147
standard multinomial 106–110,

126–127, 128–129, 134n,
141–143

universal see general
logit transformation 13–14, 23, 25,

49–50, 51–52, 65, 90, 93, 100,
109, 117, 153–154

logitjd 5, 50
loglikelihood 34–35, 39, 66, 74–75,

110–111, 118
log odds see logit transformation
log odds ratio 47, 100
LR see likelihood ratio test under

tests and test statistics

matched samples 99
maximum likelihood see estimation

by maximum likelihood
maximum score estimation 99
meta-analyses 85
microsimulation 32, 122
minimum chi-squared see estimation

by minimum chi-squared
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misclassification of outcomes 76–79
misspecification 82, 84, 87
modal split 107
mode of payment example 140–144
multinomial probit model 108,

147–148
multinomial probability model

goodness-of-fit test 61–62
logit 106–110
misclassification of outcomes 79

multiple-choice question 18, 76

nested hypothesis 38, 56–57, 144
nested logit model see under logit

model
Newton-Raphson algorithm 36
normal distribution 18, 23–26, 82n,

106, 133
multinomial 90, 147
of regressor variables 88, 90, 91

normal equations 43
normalization

of parameters 22, 80–81, 105, 127,
134, 136

see also standardization
notation 6–8
null model 44, 50, 52, 57, 60, 61,

116, 118
number of iterations 37, 45, 51

odds 13–14, 93, 100, 106, 108, 109
odds ratio 47, 55, 100
OLS see estimation by Ordinary

Least Squares
omitted variable effect 54–55, 79–87

120–121
car ownership example 54–55, 119

ordered probability model 104–106,
108, 137, 155

ordinary linear regression 1–2, 10,
15, 16, 29, 42, 50, 56, 62, 67–68,
79

orthogonality (of residuals) 68–69,
71t

outlier 6, 73–76

parameter space 56
Pearson

chi-squared goodness-of-fit
statistic see under tests and
test statistics

residual see quasi-residual,
Studentized

percentage correctly predicted 66–67
point-of-sale payments 140–141
polychotomous or polytomous same

as multinomial 106
pooling states, test for 122–125
predicted probability 42
prediction 26, 29–32

by enumeration 31
error 31
of aggregates 30–32
of individual outcomes 30
rule 30

probability model 2, 11
probit model 23–25, 29, 82, 152–152

multinomial 147–148
probit transformation 23–25, 29,

152–154
program packages 4, 37, 155
proper regressor variables 22, 88, 90
proportionate effect 20

quadratic hill-climbing 36
quantal variables 9
quasi-elasticity

of binary logit model 14–15, 30,
36, 53, 55

of conditional logit model 138
of ordered probability model 110
of standard multinomial logit

model 119, 143
quasi-residuals 43–44, 73–74, 75, 116

Studentized 43, 59, 73–74, 75

R2 or coefficient of determination
67–72

for binary discrete variables,
Efron 69–71, 73–74

for binary discrete variables,
McKelvey-Zavoina 68–69

for ordinary linear regression 68
random sample 38
random utility 18–19, 129, 130–135,

147
reduced form coefficients 20, 22, 108
reduced sample 92, 94
reference equation 80–81, 83–84
reference state 108, 109, 117, 120n,

127, 142, 147
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regression see latent variable
regression equation; logistic
regression;

ordinary linear regression
regression sum of squares see

decomposition of sum of squares
regressor variables 1, 15

categorical 4, 15, 47–50, 58–62,
63, 69, 99–103, 117, 154

distribution 31, 33, 38–39, 42, 88,
91

proper 22, 88, 90
same as covariates 3, 18
same as independent variables 3
standardization 15

relative risk 100
rescaling factor of omitted variable

81–82
residual sum of squares see

decomposition of sum of squares
residuals

ordinary linear regression 43–44,
68

see also quasi-residuals
response see threshold model
retrospective sample see sample,

state-dependent
risk 100

sample
choice-based see state-dependent
full 92, 94
matched 99
one-sided reduction 92–97
random 38
reduced 92, 94
selection 29
size 40
state-dependent 39, 97–99,

101–103
stratified 38–39
retrospective see state-dependent

sample survey 38–39, 70
saturated model 59–61, 62
saturation level 150
score test see tests and test statistics
score vector

for categorical variables 48
of binary logit model 40–41, 50
of conditional logit model 138
of general binary model 35

of general multinomial model
111–112

of standard multinomial logit
model 113–114

scoring algorithm 36, 42, 50, 110, 113
selection 26, 27–29, 89, 91

see also discrimination
share models 117, 155
simulation of probabilities 148
slope coefficients 22, 90–91, 93–94,

98, 105, 123
specific variables, parameters 127,

136, 137, 141–142
standard multinomial logit see under

logit model
standardization

of extreme value distribution
133–135

of logistic distribution 23, 25
of normal distribution 18, 23, 25
of parameters see normalization

of parameters
of regressor variables 15
of residuals 43

starting values 37, 44, 50, 113
state-dependent sample 39, 97–99,

101–103
stated preferences 136–137
statistical tables 154–155
stimulus and response same as

threshold model 10
stratified sample 38–39
structural parameters 19, 22
Student distribution 57
Studentized residuals 43, 59, 73–74,

75
sum of squares see decomposition of

sum of squares
switching investment example 94–95,

97

tests and test statistics 56–65
diagnostic tests 57
for pooling states 122–125
F-test 57
Hosmer–Lemeshow test 62–66
H–L test applied to bank loan

example 64–66
Lagrange Multiplier test 57
likelihood ratio test 37–38, 44,

56–62, 117, 118, 123–125,
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LR test applied to car ownership
example 52, 61, 118

of independence of irrelevant
alternatives 145

Pearson chi-squared
goodness-of-fit test 48–49,
58–59, 63, 73

score test 57, 58, 62
t-test applied to car ownership

example 51
t-test of significance of

parameters 51, 56–58
Wald test 56–58
see also goodness-of-fit tests

threshold model 9–11, 17–20, 153,
154, 155

ordered 104–106
tobit 29
tolerance level 17
total sum of squares see

decomposition of sum of
squares

transportation studies 39, 98, 107,
127, 136, 137, 146, 156

t-test of coefficients see tests and
test statistics

universal logit model see logit model,
general

utility (maximization) 2, 18–19, 108,
120, 130–135, 136, 142–144

variance
of case–control estimates 101–103
of estimates from reduced

samples 96–97
of functions of estimates 36
of maximum likelihood estimates

36, 42
of prediction 31, 32

vasoconstriction 27

Wald test 56–58
Weber–Fechner law 20
weighted maximum likelihood

estimation 98

zero cell defect 46, 49, 58, 103, 117
zero mean assumption 21
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