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Preface

The author has worked for 12 years as an information scientist in interdisciplinary
fields involving physics, economics and information studies and has written works
that specifically fall within econophysics and information sciences. The specific
intention behind this book is to contribute to ‘‘econoinformatics’’.

The data on human societies was partial and limited at the beginning of twenty-
first century. However, current data availability has improved remarkably. As a
result, researchers in various fields such as economics, finance, marketing, data
mining, sociology, physics and information sciences have a similar interest in data
on our society and study societal issues using a large amount of these data. They
have opened up a new paradigm of studies on society that is described by a single
keyword: data. In this book, these new emerging fields are termed ‘‘Applied Data-
Centric Social Sciences’’, which in association with data use, and this book has
been written to share a vision of these fields.

Human society often shows interesting properties, such as non-stationarity,
synchrony and spatiotemporal patterns. In order to capture these properties,
individual behaviour, social relationships among individuals and man-made arti-
ficial systems need to be understood.

Since the nineteenth century, social scientists have conducted empirical
investigations to understand the characteristics of collective versus individual
behaviour and relationships between individuals within a society. Concurrently,
data on socio-economic technological systems have accumulated in various fields
of study.

Since research topics within applied data-centric social sciences are wide and
deep, this book attempts to introduce some fundamental segments of these fields,
including several mathematical expressions and some techniques to handle a vast
amount of data and computer analysis. This work is also based on several example
studies of data-oriented investigation in which advanced mathematics is used to
analyse and model several specific problems.

The fundamental philosophy underlying this book is that both mathematical and
physical expressions should be used to express actual, real-world data with high
accuracy and thereby understand data-generating mechanism.

In data-centric science method, thinking first starts from the data in a specific
field. Next, a search is attempted for an adequate method or expression to
investigate the data. Explanatory data analysis provides an improvement cycle
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through data acquisition, data collection and data analysis to reach interpretation.
This type of activity constructs a PDCA (plan-do-check-action) cycle, which is a
part of data-centric science. Data preservation and data recycling may thus be
examined over a longer time horizon, a process sometimes referred to as ‘data
curation’.

Mathematics are useful tools to express processes and states of our socio-
economic technological systems. If problems can be described by well-defined
mathematical notations and modelled by expressions, then cyber-enabled tech-
niques can be constructed—such as automated data collection, automatic data
verification and optimisation techniques—by using both mathematical and phys-
ical expressions and models.

Data is defined as several numbers to describe physical quantities (e.g. length,
weight, time and velocity) or a number of texts expressing the actual situations or
processes. The data is collected to trace real-world situations (records) to transfer
information on what is focused on in the real world to other people (communi-
cations). Why should the data be analysed? The dominant purpose of data analysis
is deeply associated with decision-making. In general, humans want to know and
understand processes and phenomena in more details when they have to make
some decisions in actual environments where they live. Thus, the results of data
analysis are used as information for decision-making in the real world.

Some contact points to actual society are present in data analysis on socio-
economic technological systems. Legal issues on data-centric social sciences are
also addressed, although some of these issues are still under discussion.

Furthermore, this book contains separate intentions behind each chapter. The
first of these is how to describe mathematical and statistical methods for data
analysis. The second is to look at the background of data-generating mechanism.
The third is the motivation for applying data-centric sciences to socio-economic
technological systems. The example studies using the data of a specific field are
presented to help readers to understand the different situations of socio-economic
technological systems and how mathematical and physical methods are applied to
actual data. Activities in data-centric social sciences are addressed as much as
possible.

To satisfy these intentions, this book is organised as follows. Chapter 1 dis-
cusses the concepts used to deal with data on socio-economic technological sys-
tems and the reliance of the data-centric social sciences on the data for social
activities, relationships and behaviour. Chapter 2 explains the research framework
of applied data-centric social sciences. Why do scientists acquire, collect and
analyse data on human society? How can the results of data analysis be utilised?
This chapter also discusses methodologies within applied data-centric social
sciences.

Chapter 3 introduces mathematical expressions used to describe societies,
human behaviour and relationship. Several fundamental methods are explained,
including statistical procedures, stochastic methods, network description and
geographic information. Chapter 4 shows several methods of processing data with
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computers. Database servers and parallel computation techniques are needed to
handle large scale data.

Chapter 5 shows an example study of risk assessment in the foreign exchange
market by using both q-Gaussian and Pearson type IV distributions, while Chap. 6
discusses a method to quantify states of the foreign exchange market by using a
recursive segmentation procedure. Chapter 7 presents analysis of Japanese hotel
booking data and quantifies the regional dependence of hotels, and Chap. 8 looks
at relationships between flight ticket prices and their geodesic distance. Chapter 9
considers the relationship between electric power consumption per capita and
economic performance (GDP per capita). Finally, Chap. 10 examines the future of
the applied data-centric social sciences.

This book hopes, in this way, to encourage readers to acquire, collect, store,
analyse and interpret data from socio-economic technological systems, in order to
solve their own problems.

Kyoto, Zurich, 2013, 2014 Aki-Hiro Sato
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Chapter 1
Introduction

Abstract Recent development of information and communication technology
enables us to acquire, collect, analyse data in various fields of socioeconomic-
technological systems. In this chapter, we will address data from several different
perspectives and define the applied data-centric social sciences. I will explain that
limitation of our ability to understand our society from inductive approach is origins
of complexity. Concepts and methodologies of data-centric science will be intro-
duced and their potential applications and existing studies will be mentioned.

1.1 Why Write this Book?

The purpose of this book is to share my vision of applied data-centric social sciences.
I suggest that applied data-centric social sciences can be defined as a transdisciplinary
study of our society based on data from socioeconomic-technological systems, using
methodologies from data-centric science. Data-centric science is an emerging field
related to “data” in various fields of sciences. Our society is located in nature and can
be understood as a human-machine system. Therefore, studies on our society should
include topics of both human nature and man-made objects, such as technology.

Traditionally, social sciences are defined as the academic disciplines concerned
with society, individual behaviour and the relationships among individuals within a
society. This is a common umbrella term covering anthropology, economics, political
science, psychology and sociology. Strictly speaking, the social sciences are also
divided into two types of disciplines:

• empirical social science
• normative social science

Empirical social science attempts to investigate human behaviour through obser-
vations or experiences. Economics, sociology, history and geography mainly focus
on empirical research. While normative social science, such as nomology, logic,
laws, ethics, and aesthetics, attempts to clarify correct meanings and the validity of

A.-H. Sato, Applied Data-Centric Social Sciences, 3
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Table 1.1 An example of classification of social sciences

Norms Politics/power Market

Mechanism Law Politics Economics
Phenomena/analysis Sociology Policy making Marketing
Application Social welfare Education Management

social contexts. In fact, there is a clear difference between empirical and normative
social sciences. For example, laws of empirical social sciences are common phe-
nomena observed in our society with a high probability of validity, while laws of
normative social sciences are rules that we should follow in our society. The model
of the empirical social sciences is a simple description of our society or individuals,
which is constructed in order to understand phenomena observed in a socioeconomic-
technological system. In contrast, the model of the normative social sciences is an
ideal realisation of our society. If we behave according to this model, we expect
that our organisation or our behaviour can be formed following the model assump-
tions. We can also classify several disciplines that belong to social sciences as shown
in Table 1.1. In this table, there are two aspects, consisting of fields (norms, poli-
tics/power, and market) and methodologies (mechanism, phenomena/analysis, and
application). Our concept of applied data-centric social sciences influences ways to
study in each field. We can, of course, understand the social sciences from other
aspects.

The original empirical science of society was established in 19th century by
several researchers. Max Weber is one of the most famous founders of empirical
social science. He proposesmethods of empirical social science and classified several
types of laws observed in social phenomena.

In his approach, he mentions two kinds of meanings: the subjective meaning
of the actual existing agents and the theoretically assumed pure type of subjective
meaning by hypothetical agents. He also regards two kinds of understandings as
important: the direct observational understanding of the subjective meaning of a
given act (both verbal and nonverbal actions) and direct observational understanding
of irrational emotional reactions. Empirical science attempts to interpret meaning
with clarity and to ensure the verifiable accuracy of an insight and understanding.
The line betweenmeaningful action andmerely reactive behaviourwithout subjective
meaning, however, cannot be clearly drawn in an empirical sense.
Tounderstand society fromanempirical point of view,wecanuse three approaches:

1. an historical approach to the meaning of concrete individual action
2. an observational approach to socioeconomic mass phenomena
3. a model approach to scientifically-formulated pure type of socioeconomic-

technological phenomena observed, with high probability of validity.

Recent advanced computerising society has enabled data-driven research on our
society, human behaviour and the relationships among individuals. Before the com-
puterisation of our society, observations of and experiments on human nature were
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strictly partial. Only small-scale experiments in a laboratory and direct/indirect ques-
tionnaire surveys were possible. Frequency and coverage of data on socioeconomic-
technological systems were also partial. Traditionally social and cultural data are
collected via field studies, user panels, focus groups, interviews, questionnaires and
surveys (small or huge like the decennial U.S. census).

However, recent computer networks consisting of computers and both wired and
wireless networks allow the automatic detection of human behaviour and accumula-
tion of data on socioeconomic-technological systems.

This appears to have created a kind of transition phase from quantity to quality.
Rich data is slowly changing the methodology used in social sciences. Since data-
centric social sciences are classified as a part of data-centric science, they belong
within both inductive and cyber-enabled social sciences (see Sect. 1.4). The three
types of empirical approaches mentioned above can be improved both quantitatively
and qualitatively. Of course, the importance of cyber-enabledmethodologies in social
sciences has increased as the data has expanded.

There are, of course, two perspectives on data-centric social sciences: empirical
and normative. The research environment from the empirical perspectives has been
drastically improved by the computerisation of our society. Increasingly, the social
and cultural interactions passing through or taking place on the web are consid-
ered as valuable sources of data for social and cultural research [127, 170]. New
methodologies of social sciences based on data have emerged.

Specifically, query log analysis of a Web search engine reveals human typical
behaviour [14, 100]. For example, one canwatch andpredict the spreadof flu [69, 77],
unemployment rates [10, 46, 113], trading volume and return volatility of financial
markets [25, 43, 164, 185, 208], travel tendencies [155, 220], private consumption
tendency [209] and results of elections [191]—all from search queries. However, the
accuracy of these predictions is still under discussion [29].

Meanwhile, computerisation of our society creates issues that we have not consid-
ered from a normative point of view. How do we behave in cyberspace? How do we
establish our organisation within a network structure? How do we publicise informa-
tion in both the real world and cyberspace? We can easily address several normative
issues; however, several important issues are still under discussion. Legal issues of
data-centric researches (secondary usage of data and data protection acts) are crucial
today. The trust formation of human relationships [27], analysis of complex social
phenomena [87] and design of societal framework [103] have been studied from a
normative point of view.

Thus, fields of data-centric social sciences are slowly being established following
the spread of computers and the Internet. In the 1960s, computers began to play an
important role in business. Companies started to introduce mainframe computers in
their offices. At the end of the 1970s, personal computers changedwork and business.
In the 1980s, companies began to handle consumer information easily, due to the
development of relational databases. Data analysis in business was often used.

The origins of the Internet can be traced back to the development of a packet
switched network called ARPANET by the U.S. Federal Government’s Defence
Advanced Research Projects Agency (DARPA). In 1969, this agency started
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building ARPANET supporting various computer science and military research
projects. By 1980, a stable protocol suite was established, facilitating connectiv-
ity among ARPANET computers. In 1983, transmission control protocol/Internet
protocol (TCP/IP) started to be used by all ARPANET users. The Internet has been
used commercially since 1992, after the removal of a ban on the use of the Inter-
net in commercial sectors. Many applications and services have been designed and
realised based on combinations of several types of Information and Communica-
tion Technology (ICT). The Internet consists of network architectures (both wired
and wireless communication), computer hardware, and cyber-enabled services and
applications [48, 96].

Recent ICT has advanced so far that it is indistinguishable from magic. This is
known as the Clarke’s Third Law. Arthur C. Clarke mentioned this law in his famous
essay entitled “Hazards of Prophecy: The Failure of Imagination” in Profiles of the
Future (1962) [41]. Since advanced technologies are constructed of many elements,
which are complex systems themselves, ordinary people cannot completely identify
these mechanism, even professionals. Therefore, it is often perceived as a kind of
magic.

Nonetheless, there is no magic in the world.We just perceive something as magic,
even though the magic is always produced by a combination of operational methods.
However, this magic actually plays a significant role and influences many of those
who perceive it as a magic. Therefore, I believe that we need to possess adequate
knowledge, morals, and techniques in order to establish the stable world based on
advanced technologies (magic). Specifically, to know the applicable limits of tech-
nology is important, as well as to understand how to apply the technology to actual
problems.

Recently, people can access data in various fields due to developments in ICT.
This circumstance enables us to study our society based on a large amount of
data on socioeconomic-technological systems. One can collect and accumulate
large amounts of socioeconomic-technological data on human activities, and then
analyse and visualise them. Vast amounts of data collected from socioeconomic-
technological systems have allowed new types of commercial services and research
fields to emerge.

Data-centric social sciences have been recently developing based on ICT. A large
amount of data on socioeconomic-technological systems has slowly accumulated in
several institutions and fields. The data is generated and collected in some type of
data-generating mechanism and then stored in a database or computer storage. The
data is eventually distributed or analysed for a purpose, which is to interpret the
world from the data and to make decisions. We can also start to formulate a model
of a specific phenomenon from the data since the data may provide us with useful
insights to construct a model. For this reason, this book is needed to share this vision
of applied data-centric social sciences.

There is a pipeline from data to our decision-making [37]. The study of deci-
sion making has a long, distinguished, and interdisciplinary history. According to
Knight [119], we can distinguish between risk and uncertainty. Risk defines decision
situations in which the probabilities are objective or given, such as betting on a flip
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of an evenly-weighted coin. Uncertainty defines situations in which the probabilities
are subjective (the decisionmakermust estimate or infer the probabilities). Examples
of this type of situation are the decision to invest overseas, launch a new product,
and to buy or sell stocks. Data analysis can contribute to estimating the probabilities
of uncertainty.

This is not a single process but construct a cycle consisting of data and thinking.
In methods of data-centric science, we firstly start our thinking from data in a specific
field. Next, we attempt to search an adequate method or expression to investigate the
data. Explanatory data analysis provides an improvement cycle fromdata acquisition,
data collection, data analysis and interpretation. Such a type of activity constructs a
PDCA (Plan-Do-Check-Action) cycle. I therefore start this chapter with an overview
of our society.

1.2 Overview

1.2.1 Our World

The problem of socioeconomic-technological systems is deeply related to human.
Since the populations determine both economic and social affairs mainly, it seems
to be worth grasping populations and their spatial distribution.

What do the data on populations tell us? First of all, let us address the largest
cities in the world. Figure 1.1 shows the geographical position of the 135,074 largest
cities around the world. The data source is geonames (http://www.geonames.org),
which is an open database of population in cities with geographical information.
Figure 1.2a shows the ranking by population of the largest 50 cities. The largest
city of the world is Shanghai, China, with a population estimated at 14,608,512,
according to the figures for March 2012. The second largest population is in Buenos
Aires, Argentina. The third is Mumbai, India. The largest urban areas in the world
is Tokyo-Yokohama, Japan, with a population estimated at 37,239,000 in 2013 [49].
The world population reached seven billion on October 31, 2011 according to an
estimate by the United Nations Population Found [18]. According to the data on
world population issued by the Population Division in the Department of Economic
and Social Affairs of the United Nations, the world’s population is predicted to reach
eleven billion in 2100, as shown in Fig 1.2b.

How does each person behave in each country? In fact, there are several dimen-
sions used to quantitatively measure human behaviour. The characteristics of aver-
aged behaviour can be derived from World Development Indicators provided by the
World Bank’s World DataBank.1 One of the best approaches to understanding of our
society is to consider allometric relationship in analogy of biology.

1 The World Bank’s World DataBank: http://data.worldbank.org.

http://www.geonames.org
http://data.worldbank.org
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Fig. 1.1 Geographical positions of around 135,074 of the largest cities around the world. This
image is drawn by using data on major city population recorded in 2012. The dark grey represents
cities with large populations. The grey represents those with smaller populations

Allometry is a relationship seen between two physical quantities of living things.
For example, it is well-known that there is a relationship between body size of
creatures and their mass [95, 106, 210]. An elephant is both heavy and big, but a
mouse is both light and small. If we plot the relationship between weight of each
creature and its representative length, then they have a positive correlation.

Allometric relationship can be also seen in our society [19, 214, 225]. There are
scaling relationships between urban indicators and city size [19, 225]. Several urban
indicators such as GDP, total electrical consumption, total housing, total employ-
ment, road surface and so forth, as the populations increase. The data on several
types of human behaviour also show some correlations, including the relationship of
some physical quantities each person consumes or produces to his or her economic
contribution as an individual (Gross Domestic Product (GDP) per capita).

Figure 1.3 shows the relationship between GDP per capita (USD in 2013 per
capita) and energy consumption per capita (kg of oil equivalent per capita) in 2000 and
2010. Each point represents the relationship in each country. Developing countries
are positioned on the left hand side and developed countries are found on the right
hand side, which implies that energy usage per person is strongly correlated with
economic activity per capita. This implies that the quality of our life is generated by
the contributions of man-made systems. Figure 1.4 shows the relationship between
GDP per capita (USD in 2013 per capita) and CO2 emissions per capita (metric tons
per capita) in 2000 and 2010. We can see a clear power law relationship between
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Fig. 1.2 aThe ranking by population of the largest 50 cities as of 2012. The data source is geonames.
b The total population (both sexes combined as of 1 July) issued by the population division in the
department of economic and social affairs of the United Nations in 2012
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opment indicators by World DataBank of the World Bank are used. Unfilled circles represent the
relation of each country in (left) 2000 (188 countries and territories) and (right) 2010 (185 coun-
tries and territories). The solid line presents the power law relationship between GDP per capita
and energy consumption per capita

GDP per capita and CO2 emissions per capita. Thus, CO2 emissions also show an
obvious correlation with economic activity.

Studies in allometry often assume that the relationship between the two measur-
able quantities y and x is often expressed as a power law [225]:

y = cxa, (1.1)

where a is the scaling exponent of the law, and c a positive constant. The parameters
are estimated by using the reduced major axis (RMA) regression (see Sect. 3.1.9.2)
for its logarithmic form:

log10 y = a log10 x + log10 c. (1.2)

Figure 1.5 shows the evolution of the power lawexponent for the relationship between
GDP per capita and energy consumption per capita and for the relationship between
GDP per capita and CO2 emission per capita by year. It is confirmed that the power
law exponent for the relationship between GDP per capita and energy consumption
per capita showed smaller values than before and after the period of 2004–2008.
Meanwhile, the power law exponent for the relationship between GDP per capita
and CO2 emission per capita decreased. This seems to correspond to a difference
between developed countries and developing countries in how mind-set changed
individual behaviour during the globalisation of the world economy.

Other types of allometric relationships have been observed in the context of soci-
etal issues. For example, economic indices can be seen as a function of urban pop-
ulation, and level of energy consumption are also associated with urban population.
The urban infrastructure or functions, including roads and railroad, is associated with
national populations [19, 225].

http://dx.doi.org/10.1007/978-4-431-54974-1_3


1.2 Overview 11

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 2000  2002  2004  2006  2008  2010

po
w

er
 la

w
 e

xp
on

en
t

year

energy-gdp
 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 2000  2002  2004  2006  2008  2010

po
w

er
 la

w
 e

xp
on

en
t

year

CO2-gdp

(a) (b)

Fig. 1.5 The power law exponent for the relationship a between GDP per capita and energy
consumption per capita and b between GDP per capita and CO2 emissions per capita for the period
of 2000–2010. The error bars represent standard errors of a parameter estimate

1.2.2 Origin of Complexity

We can extract information from a collection of data, construct knowledge from
plentiful information, and hopefully extract wisdom from several pieces of knowl-
edge. Specifically, researchers in the fields of sociology, economics, informatics, and
physics are focusing on these frontiers and have launched data-driven investigation
for our society in order to understand the complexity of socioeconomic-technological
systems. This is an inductive approach from facts to wisdom.

However, since our society which is the sum total of both internal and external
states of individuals, is several orders of magnitude more complicated than each
individual, it appears to be difficult to image how we can manage to capture the real
totality of the state of society from the cooperation of many agencies. The nature
of this problem is referred to as “complexity”, which is a new research field into
understanding how groups of people, organisations, communities, and the economy
actually behave in the real world.

According to von Foerster [211], complexity is not a property that observed sys-
tems possess; rather, it is to be perceived by observing systems. He asks us about it
through the following question: Are the states of order and disorder states of affairs
that have been discovered, or are these states of affairs that are invented? If states
of order and disorder are discovered, then complexity is a property of the observed
systems. If invented, then it pertains to the observing systems. Foerster’s definition
of complexity proposes that the relative degree of order and disorder is determined
by the degrees of freedom within an observed system and an observing system. One
of the most significant reasons why we recognise complexity in observed systems is
because the ability with which we are able to observe the systems is finite, and our
memory and a priori knowledge are limited. These limits lead us to our bounded
rationality, or ignorance.
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1.2.3 Big Data and Landauer’s Experiment

How many megabytes of memory does our brain have? Von Neumann proposes that
human memory can be estimated as 100 Eb from all the neural impulses conducted
in the brain during a lifetime [212]. Another method is to estimate the total number
of synapses, and then presume that each synapse can hold a few bits. Estimates
of the number of synapses have been made in the range from 1013 to 1015, with
corresponding estimates of memory capacity. This estimation suggests that human
memory capacity is from 10 Tb to 1 Pb.

Furthermore, there is another approach to estimating the humanmemory capacity.
How fast can we interpret information from physical stimuli? Landauer studied how
much people remember at Bell Communications Research [126]. The remarkable
finding of this study was that human beings remember very nearly two bits per
second under all experimental conditions (visual, verbal, and musical).

How many symbols can we remember in our life? The 35-year accumulation of a
human beings’ memory is estimated at 0.2–1.4 Gb if a loss of memory is assumed. If
the amount of data is greater than this estimate of memory capacity, then we cannot
memorise all the data even over an entire life.

Clearly, almost all the data that we deal with in our current, advanced-information
society is far beyond our cognitive capacity. All we can do is to construct a system to
handle the large amount of data exceeding our human ability. Recently, this type of
data is often called “big data”. The definition of big data is still under discussion, but
the most famous definition is constructed from the three perspectives of data volume,
data velocity and data variety (3V).

From the data-centric viewpoint, complexity is also defined from these three per-
spectives; volume, velocity, and variety. Volumemeans that we recognise complexity
in the data when the amount of data is larger than a single human’s cognitive capacity
(0.2–1.4 Gb). The second perspective, velocity, considers the data-generating speed.
We recognise that the data is complex when the data generating speed exceeds our
cognitive speed (2 bps). The third perspective focuses on the number of element
types referred to in the data. We realise that the data is complex when the number
of types is larger than the number of symbols which we know (depending on their
own experiences). In these three dimensions, complexity of data seems to be related
to our cognitive capacity.

We can measure the degree of big data by using 3V. Figure 1.6 shows a scale for
data on the three dimensions of 3V. Each dimension has a certain scale. The volume
is measured by bits or bytes (=8 bits). Since the memory of human and a learning
speed is finite, in fact it is possible for us to remember 100 bytes of text data, but it
is hard to memorise a gigabyte of text data. It is more difficult to handle a petabyte
of text data when using even an up-to-date personal computer. The velocity means
an average period of data generation. Daily data can be easily retained; however, it
is hard to recognise data by the second. Variety expresses the number of items or
elements comprising the data. Thus, the area of triangle constructed from these three
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Fig. 1.6 Pictorial illustration
of the three dimensions
of data. Big data expands
on all three fronts of each
perspective

dimensions in Fig. 1.6 corresponds to the capacity that is needed when we analyse
the data with the defined properties.

In this sense, we also need to carefully consider methods of acquisition, analysis,
curation, storage and usage of the vast amount of data in our computer system. Big
data analytics is data-centric research based on this vast amount of data. Generally
speaking, the gigabytes level of text data cannot be analysed by using personal
computers. Presumablywe need to use parallel computation techniques or distributed
architecture in order to analyse this level of data. Thus, it is possible to deal with big
data with cyber-enabled methodologies: digital data and computation.

In addition to 3V, human nature makes our society more complicated. Observa-
tions sometimes influence the behaviour of observed individuals. Furthermore, the
principle of the uniformity of society seems to be weak, since human responses to
stimuli or information are not unique.

In this book, I present example studies of observation and data analysiswith a large
amount of data in several socioeconomic-technological systems. I suggest that some
of them should be placed within “econoinformatics” in applied data-centic social
sciences. The applied data-centic social sciences not only need powerful computer
systems but also mathematical methods, including analytics, geometry, statistics,
time series analysis, network analysis and so forth. This will provide us with useful
methods to visualise and quantify the behaviour of human beings, and will provide
deep insights for us to adapt our environment as it evolves over time.

In addition, we shouldmention the problem of data linkage in data-centric studies.
Data linkage is defined as a method of linking data from different sources with
the same elements. Integrated data from different data sources can provide us with
new insights more than each data source. Comprehensive study is further useful in
obtaining new findings on our environment. This technique is sometimes mentioned
in studies of data integration and data fusion [91, 112, 161].
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1.3 Data

1.3.1 What is Data?

Data is a collection of facts that can be described as values or expressions. Data is
expressed as a set of descriptions or numbers and can be qualitative or quantitative.
Qualitative data is descriptive information, whereas quantitative data is expressed by
numerical information (numbers). In this book, I mainly focus on quantitative data
since cyber-enabled technique is adaptable. Methods of qualitative data analysis are
introduced in Richards’s book Handling Qualitative Data [168].

Figure 1.7 shows the fundamental research framework of data-centric science.
Data is collected from the real world. Recently our society can often be comput-
erised, and many computers are used to facilitate social services. These computers
are connected with one another through a high speed network infrastructure. The
data used in data-centric social sciences are generated from personal computers,
smart phones, telephones, and sensors. Electronic commerce (EC) systems can also
be used as a data source. Since goods or services in EC are provided through Inter-
net applications or Application Programming Interface (API), we can accumulate
data on our society. Several public institutions provide open data for social sciences.
For examples, e-Stat is a portal site of the Official Statistics of Japan, developed by
Statistics Bureau of the Ministry of International Affairs and Communications.2 UK
data service also provides the data that promotes evidence-based social research and
policies.3 The European Commission provides a portal site of European statistics.4

Data.gov provides public access to machine readable datasets generated by the Exec-
utive Branch of the Federal Government of the United States of America.5 In the
web-page of open data index6 of the Open Knowledge Foundation,7 we can find ten
types of open data:

• Transport timetables
• Government budget
• Government spending
• Election results
• Company register
• National map
• Legislation
• Postcodes/Zip codes
• Emissions of pollutants

2 e-Stat: http://www.e-stat.go.jp/SG1/estat/eStatTopPortalE.do.
3 UK data service: http://ukdataservice.ac.uk.
4 Eurostat: http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/.
5 Data.gov: http://www.data.gov.
6 Open data index: http://index.okfn.org.
7 Open Knowledge Foundation: http://okfn.org.

http://www.e-stat.go.jp/SG1/estat/eStatTopPortalE.do
http://ukdataservice.ac.uk
http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
http://www.data.gov
http://index.okfn.org
http://okfn.org
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Fig. 1.7 A schematics illustration of the platform of data-centric sciences. Data are generated
by sensor devices and both human and machine agents in actual environments. These data are
transmitted through network infrastructure to a data platform. The data are collected as files in
computers and stored in databases. Both validation and verification of the data are needed in order
to improve the data quality. Researchers and practitioners use the data for analysis and decision-
making

In fact, these data are no answers, but inspire questions to researchers and practi-
tioners. Data just tells us how a phenomenon behaves, and at the same time, it asks
us why a phenomenon behaves as we observe. Data is a collection of observations
or facts. We first need to extract common parameters (variables) from the data. After
that, we have to find relationship among parameters and attempt to construct a model
of the phenomenon. This is an important task in explanatory data analysis.

If we can also accumulate data from sensors, and these sensors are connected with
the Internet, then we can additionally accumulate data on the state of our world [60].
These sensors are called sensor networks [207]. Research in the area of sensor net-
works has been active at several levels, starting from the component level, the system
level, and up to the application level. This has already been set up for geophysics
and climates, where many sensors automatically collect data on temperature, winds
and earthquakes. For example, Japan National Research Institute for Earth Science
and Disaster Prevention has a nationwide broadband seismograph network called
F-net,8 and the Japan Meteorological Agency provides weather, climate and earth-
quake information in Japan.9 Incorporated research institutions for seismology gives
earthquake information across the globe.10

The data are automatically collected and stored. Eventually, our smart phone and
computers will play the role of sensors in our society. Blog data and twitters can be
another of these. Usage of mobile phones can be used as a further measure of human
activities [166].

8 F-net: http://www.fnet.bosai.go.jp/top.php?LANG=en.
9 http://www.jma.go.jp/jma/indexe.html.
10 http://www.iris.edu/seismon/.

http://www.fnet.bosai.go.jp/top.php?LANG=en
http://www.jma.go.jp/jma/indexe.html
http://www.iris.edu/seismon/
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Fig. 1.8 Examples of
one-to-one relationship. Each
symbol has a one-to-one
relation to an object or concept

There are five important steps of data-centric sciences: Data Acquisition, Data
Collection, Data Validation, Data Analysis, and Interpretation. This is understood as
a data analysis pipeline [37, 204].

Normally, data are noisy and context-based. We need to clean the data and store
them as digital files (raw data or meta data). Several types of database servers can be
used to handle and select data by using some conditions. After pre-processing, data
are inserted into the database servers.

Some data are structured as ExtensibleMarkup Language (XML). The Structured
Query Language (SQL) standard and the relational data model provide a uniform,
powerful language to express many query needs and, in principle, allow customers
to choose between vendors. XML databases have recently become available in both
commercial and open usages. Some SQLdatabases includeXMLextensions orXML
parsers. The XML extensions provide functions to insert and search data formatted
as XML. The XML parsers provide the ability to read an XML file/string and extract
its contents according to the structure. Several NoSQL databases or object-oriented
database servers are enabling us to collect and search data with methods different
from those of traditional relational databases.

In further advances, we also use data in order to control our environment. This is
called a cyber-physical system (CPS) [129], which consists of distributed computa-
tion interconnected by computer networks thatmonitor and control switched physical
entities interconnected by physical infrastructures [157, 158]. The data flow from an
actual environment, computation based on the collected data, and control over our
environment based on computations are main focuses [183].

1.3.2 Meaning of Data

Data is described as symbols associated with objects or concepts in the real world.
Ideally, the relationship between a series of symbols and an object (or a con-
cept) is expressed as a one-to-one relationship. Figure 1.8 shows examples of this.
Mathematically, this type of relationship can be described as an injective function
between a set of symbols and a set of objects. Let f be a function whose domain is
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Fig. 1.9 ISO 3166: ISO 3166-1 provides country codes and ISO 3166-2 provides regional codes
in each country

a set A. The function f is injective if

∀a1, a2 ∈ A, f (a1) = f (a2) ⇒ a1 = a2, (1.3)

which is logically equivalent to

∀a1, a2 ∈ A, a1 ∞= a2 ⇒ f (a1) ∞= f (a2). (1.4)

Generally speaking, the injective function f is defined as a coding system (deter-
mined by researchers, practitioners, policy makers, and so on). Therefore, functions
often depend on the coding systems. Namely, since symbols do not contain any rela-
tionships, the relationship between the symbols and entities or quantities should be
imposed by the designers of datasets.

Thus, data is provided with an explanation of symbols. When we want to analyse
data,we also carefully read the definition of a sequence of symbols describing the data
and their explanation. This is defined as a database schema in a data management
system in general. The formal definition of database schema is a set of formulae
(sentences) called integrity constraints, which are imposed on a database. Normally,
a conceptual schema provides meanings of symbols in the real world.
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Table 1.2 Example of ISO 3166-1

Country name Alpha-2 Alpha-3 Numeric

Australia AU AUS 036
Canada CA CAN 124
China CN CHN 156
Germany DE DEU 276
Japan JP JPN 392
Republic of Korea KR KOR 410
Netherlands NL NLD 528
Poland PL POL 616
Singapore SG SGP 702
Switzerland CH CHE 756
United Kingdom GB GBR 826
United States US USA 840

Three types of country codes are defined

To avoid confusion among different coding systems, standards of codes have
already been defined. We share several types of codes defined by the International
Standardisation Organisation (ISO). For example, we can denote countries, regions,
currencies and so on identically with these. Figure 1.9 shows a conceptual illustration
of the one-to-one relationship between codes of ISO 3166 and countries. ISO 3166-
1 provides country codes and ISO 3166-2 provides regional codes in each country.
There is hierarchical structure in ISO 3166. Tables 1.2 and 1.3 show examples of
country codes (ISO 3166-1) and regional codes (ISO 3166-2). Even in ISO 3166-
1, there are three types of country codes called Alpha-2, Alpha-3, and three-digit
numeric. These codes should be used in order to allow every researcher to access,
refer to and share the results of the data when we need to acquire, collect, analyse
and publish data at an international level.

Some international organisations other than ISO also define their own interna-
tional common codes. For example, the International Air Transportation Associa-
tion (IATA) defines airline and airport codes. A 2-letter code of an airline and the
3-letter code of an airports are used in the IATA system, while, the International Civil
Aviation Organisation (ICAO) issues the 3-letter code of an airline and the 4-letter
code of an airport. Table 1.4 shows some examples of airport codes. Since IATA and
ICAO independently issue their codes, three types of situations exists; (i) both IATA
and ICAO issue an airport code, (ii) IATA issues an airport code, but ICAO does not
issue one, and (iii) IATA does not issue an airport code, but IATA issues one. In the
case of (i), we can identify airports by using both IATA and ICAO codes. In this case,
an exchange table between IATA and ICAO codes are useful. In the cases of (ii) and
(iii), we can only determine an airport by using IATA or ICAO.

In terms of time, there is CoordinatedUniversal Time (UTC), which is the primary
time standard by which the world regulates clocks and time. The current version of
UTC is defined by International Telecommunications UnionRecommendation (ITU-
R TF. 460-6). We can express time zones around the world as positive or negative
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Table 1.3 Examples of ISO 3166-2

Prefecture name ISO 3166-2:JP

Hokkaido JP-01
Aomori JP-02
Iwate JP-03
Miyagi JP-04

State name ISO 3166-2:AU

New South Wales AU-NSW
Queensland AU-QLD
South Australia AU-SA
Tasmania AU-TAS

The regional codes are defined as sub-codes of ISO 3166-1

Table 1.4 Some examples of airport abbreviation and name

IATA ICAO Airport name Country code Regional code

PEK ZBAA Beijing Capital International Airport CN CN-11
CBR YSCB Canberra International Airport AU AU-ACT
DRS EDDC Dresden Airport DE DE-SN
FRA EDDF Frankfurt am Main International Airport DE DE-HE
GVA LSGG Geneva Cointrin International Airport CH CH-GE
ICN RKSI Incheon International Airport KR KR-28
KIX RJBB Kansai International Airport JP JP-27
AMS EHAM Amsterdam Airport Schiphol NL NL-NH
LHR EGLL London Heathrow Airport GB GB-ENG
YUL CYUL Montreal/Pierre Elliott Trudeau International Airport CA CA-QC
NRT RJAA Narita International Airport JP JP-12
PHX KPHX Phoenix Sky Harbor International Airport US US-AZ
SFO KSFO San Francisco International Airport US US-CA
SHA ZSSS Shanghai Hongqiao International Airport CN CN-31
SIN WSSS Singapore Changi International Airport SG SG-04
WAW EPWA Warsaw Chopin Airport PL PL-MZ
ZRH LSZH Zurich Airport CH CH-ZH

offsets from UTC. Table 1.5 shows examples of time zone acronyms and offset. For
example, Japan Standard Time (JST) has +9:00 as its offset, and Central Standard
Time in United States (CST) shows −5:00 as its offset.

There is a lifetime of data in these standard codes. We need to mention updates of
these international codes. Some of them change or are newly inserted and deleted.
This is one of hard problems when we analyse data with standard codes.
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Table 1.5 Time zone acronyms and offsets from UTC

Acronym Time zone Offset

AET Australia Eastern Time UTC+10:00
JST Japan Standard Time UTC+9:00
CTT China Taiwan Time UTC+8:00
VST Vietnam Standard Time UTC+7:00
IST India Standard Time UTC+5:30
EAT Eastern African Time UTC+3:00
ECT European Central Time UTC+1:00
UTC Universal Coordinated Time UTC
CAT Central African Time UTC−1:00
UTC Greenwich Mean Time UTC
BET Brazil Eastern Time UTC−3:00
CNT Canada Newfoundland Time UTC−3:30
EST Eastern Standard Time UTC−5:00
CST Central Standard Time UTC−6:00
PNT Phoenix Standard Time UTC−7:00
AST Alaska Standard Time UTC−9:00
HST Hawaii Standard Time UTC−10:00

1.3.3 Understanding the World from Data

How can we understand the world from data? We have two types of understanding:

• qualitative understanding
• quantitative understanding

If we can change our behaviour through decision-making from the results of inves-
tigation, then our investigation turns out to be meaningful. If not, it is meaningless.

Roughly speaking, we often use four types of descriptions of data:

• time series
• spatial description
• network representation (relationship)
• text

To analyse these data, we may employ:

• time series analysis
• spatial analysis
• network analysis
• natural language processing

Of course, we can use combination of these methods in data analysis.
Time series analysis uses several types of methods to estimate parameters of

models. Regression analyses are the most popular methods to quantify relationships
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within data. Explained and explanatory variables can be assumed to determine causal-
ity (cause and effect). Autoregressive models are used to determine the effects of past
observations on a present observation.

Every variable observed in our society is non-stationary. We need to carefully
consider the non-stationary nature of the temporal development of human behaviour.
In order to analyse a non-stationary time series, we need to have a model of non-
stationarity. One of the models for non-stationary time series is some combination
of locally stationary time series. Non-stationary time series are assumed to consist
of several locally stationary segments. For this purpose, segmentation procedures or
segmented regression analyses have been developed in mathematical economics or
statistics. Regime switching models and a GARCH process are used in econometric
and finance. We will treat these topics in Chaps. 3 and 6.

Moreover, network structure of socioeconomic-technological system is also mod-
elled as a network. There are several methods to quantify states of network structure
in network analysis. A degree distribution, average path length, betweenness cen-
trality and network entropy are often used. We will treat these topics in Chaps. 3
and 4.

Spatial analysis is often used in order to quantify the spatial distribution of data.
Therefore, the population density and geographical positions of humans are some of
the most important issues of social sciences. We will treat spatial data in Chaps. 3,
4, 7 and 8.

According to Goodchild [74], every human is able to act as an intelligent sensor,
and in that sense, the earth’s surface is currently occupied by more than seven billion
sensors. In this way, urban population centres of humans have been successively
studied by many researchers [20, 22, 62, 73, 123, 130, 138].

Time series with spatial information have been studied in various ways. The
mobility of individuals can be currently studied from geographical information. We
have already obtained data on population density in real-time. Reades et al. [24,
147] show that real-time demographic data can be collected by using logs of mobile
phones [166]. The spatial patterns of human communication and their mobility can
bemodelled in spatio-temporal data.Wewill treat these topics in Chaps. 3, 4, 7 and 8.

In addition, human communication can be described as symbols. These symbols
are formed into languages. Natural language processing (NLP) providesmethods that
enable computers to derivemeaning fromhumanor natural language input.NLP tasks
include automatic symmetrisation, discourse analysis, machine translation, morpho-
logical segmentation and named entity recognition, information retrieval (IR) and
information extraction (IE).

For example, the automatic symmetrisation is to produce a readable summary
from a chunk of text. The discourse analysis is a work to identifying the discourse
structure of connected text. Recently, Evans and Foster propose metaknowledge,
which is defined as knowledge about knowledge [59]. The growth of electronic pub-
lication and informatics archives makes it possible to harvest vast quantities of the
metaknowledge. Metaknowledge research also investigates the effect of knowledge
context on content. The metaknowledge research requires methods of NLP and sta-
tistics.
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1.4 Concept

1.4.1 Why Do We Measure?

Galileo Galilei, who was a famous Italian natural philosopher, astronomer and math-
ematician, told us to measure what is measurable and make measurable what is not
so measured. In fact, his interests were mainly in natural sciences. However, his say-
ing is also alive in the goals of data-centric social sciences. We can enthusiastically
measure our environment and socioeconomic-technological systems using data, but
what is the goal of measurement in this research? Measurement is not a single goal
but a part of the process of improving something. We cannot control what we cannot
measure. Measuring what we have an interest in and obtaining insights from obser-
vation enable us to improve something. Galileo’s quote leads us to the process for
improvement. The purpose of data analysis can be to extract insights to determine
our actions in real environments.

This forms ahierarchical structure fromdata to knowledge.Weextract information
from data and construct partial knowledge from some segments of information. We
always desire to obtain knowledge since we want to behave intelligently in the real
world. The final goal of our data analysis in the real world is not to just obtain
knowledge but to determine how best to act in real environments.

The classical definition of knowledge by Plato specifies that a statement must
meet three criteria in order to be considered knowledge: it must be justified, true,
and believed. This means that we need to have some experience to confirm its truth
in our world in order to construct our knowledge. From the scientific point of view,
knowledge is justified through the scientific method, consisting of the collection
of data through observations and experiments, and the formulation and testing of
hypotheses.

Sir Francis Bacon established and popularised an inductive methodology for sci-
entific inquiries. According to his definition of the scientific method, science needs
to collect evidence that is both observable and reproducible—and apply concrete
inference rules to it. In this case, it is important to collect data from experiments and
observations, hypothesise, and falsify hypotheses based on the data. The scientific
method consists of four perspectives; experiments, theory, computation and data.
The data-centric social sciences appear to focus on characteristics of data and its
properties.

Given the problemof induction, a finite number of confirming observations cannot
verify a universal generalisation. Sir Karl Popper proposes falsification as a solution
to the problem of induction. He also stresses the problem of demarcation, distin-
guishing the scientific from the unscientific, and makes falsifiability the demarcation
criterion.

Desiring to approach wisdom, we carry out scientific research with scientific
methodology. Data-centric social sciences should also be science, based on actual
data on socioeconomic-technological systems. Therefore, data-centric social sci-
ences utilise methodologies of data-centric science to deal with societal issues. Data-
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Fig. 1.10 Four methodologies for scientific work

centric science is a terminology to show a new scientific concept based on data, which
has been used by some scientists since 2007. According to Kitagawa [118], compu-
tational science and data-centric science are newly established cyber-enabled deduc-
tive and inductive methods. He proposes four faces constructed from inductive and
deductive methods, and human-dependent and cyber-enabled methods. Figure 1.10
shows the fourmethodologies that drive scientific researches. In this pictorial illustra-
tion, data-centric science is positioned as a fourth science with experimental science,
theoretical science and computational science.

In inductivism, in order to construct a model, we assume that a collection of data
is generated from the same mechanism. This is called principle of the uniformity
of nature. The principle of the uniformity of nature appears to be true; however,
principle of uniformity of society can not be validated. Since our humans have free
will, individual behaviour does not always show the same response to the same
stimuli or perception. In fact, human beings often show the same response to stim-
uli with high probability, if there is a strong condition. This situation is sometimes
observed. Only in this case, the principle of uniformity in society seems to be true.
In inductivism, in order to find a law or pattern, we need to assume the principle
of uniformity in observations. Since data-centric science is inductive, we must care-
fully consider the principle of uniformity in society. Statistical regularity is often
observed in socioeconomic-technological system. The statistical regularity implies
that random events exhibit regularity when repeated enough times or that enough
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Fig. 1.11 A hierarchical
structure from data to wisdom

sufficiently similar random events exhibit regularity. This covers the law of large
numbers, central limit theorems and ergodic theorems. If we observe random events
with different regularity repeatedly, then we need to separate them into each regu-
larity. Finite mixture models can deal with a mixture of several types of different
reasons.

According to a qualitative definition of information by Gregory Bateson, infor-
mation is defined as “a difference which makes a difference”. In his definition, a
message and an observing system are assumed. The inner state of the observing
system changes if the observing system recognises a meaning in the message. This
can be seen as that what is included in the message makes the inner state of the
observing system change. Something in the message is recognised as information.
For example, if you see clouds in the morning, and go out with an umbrella. Under
this situation, the “clouds” provide you with information. Namely, you recognise a
meaning in the clouds. Otherwise, the “clouds” provide you with no information and
you do not recognise any meanings in the clouds.

I would like to close this sectionwith the following conclusion: there is a hierarchy
structure from data to wisdom. The “data” collected from observations and exper-
iments leads to “information”. Several segments of “information” create “knowl-
edge”. The “knowledge” is confirmed in the real world through “experience”. This
“experience” allows us to determine our best actions in the world with “wisdom”.

Figure 1.11 shows a conceptual illustration of a hierarchical structure from data to
wisdom.Asmentioned in Sect.1.3.2, the data is the closest to real environments. Data
consist of records described by symbols generated through observations in the real
world. Information is extracted from the data, and it is used to construct knowledge.
To create wisdom from segments of knowledge, we need to justify the knowledge
and confirm that it is true in real environments. This is a reconstruction mechanism
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from data to wisdom in an inductive inference (to derive a general pattern or rule
from every event and object). Final justification appears to be done in a deductive
inference (to infer each event or object from a fundamental principle).

1.4.2 What is a Model?

1.4.2.1 The Purpose of Models

The purpose of modelling is not unique. We construct models for several purposes.
Joshua Epstein proposes the purposes of developing models are to [58]:

• prediction
• explain
• illuminate core dynamics
• suggest dynamical analogies
• discover new questions
• promote a scientific habit of mind
• bind outcomes to plausible ranges
• illuminate core uncertainties
• offer crisis options in near-real time
• demonstrate trade-offs/suggest efficiencies
• challenge the robustness of prevailing theory through perturbations
• expose prevailing wisdom as incompatible with available data
• train practitioners
• discipline the policy dialogue
• educate the general public
• reveal the apparently simple (complex) to be complex (simple)

From a data-centric point of view, models are used with a different purpose in each
step:

• discovering questions and aims in a research design step
• a guide of data collection in a data acquisition step
• explanation, prediction and inference in an analysis step
• decision support in an application phase

1.4.2.2 Unknown Unknowns

In order to understand the relationship between data and models, I introduce here
the concept of the Johari House with four rooms [85]. This is constructed from two
dimensions of Self and Others. Each dimension has two types: known and unknown.
Table 1.6 shows the concept of the Johari House. The first room is called “Area”.
The Area is the part of ourselves that we see and others see. The second room is
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Table 1.6 Johari’s house with four rooms

Known to others Unknown to others

Known to self Area Façde
Unknown to self Blind spot Unknown

Table 1.7 Four faces consisting of model and data

Model is known Model is unknown

Data is known KK KU
Data is unknown UK UU

called “Blind Spot”. This is the aspect that others see but we are not aware of. The
third room is called “Façde”. This is our private space, which we know but keep
from others. “Unknown” is the most mysterious room in that our unconscious or
subconscious part is seen by neither ourselves nor others.

Suppose that we ourselves correspond to the data, and that others correspond to
models. Using the Johari House, we can construct four faces consisting of two dimen-
sional concepts of Model and Data. Table 1.7 shows four rooms; Known Known
(KK), Known Unknown (KU), Unknown Known (UK), and Unknown Unknown
(UU).

(KK) Known Known (Model and Data): This is observed in problems where
we have a well-tested model and much data. The model is used to forecast future
situations and/or infer unobservable portions from the data.
(KU) Known Unknown (No Model and Data): This is the most commonly
encountered situation, specifically for problems in the social and behavioural
domains. We have a lot of measured data, and want to construct a model that fits that
data.
(UK) Unknown Known (Model but No Data): The notion of “knowing” what is
unknown seems to be paradoxical. How can we know the unknown? The degree of
this paradox is related to the distinction between implicit and explicit knowledge.
This is deeply related to a transition process from the implicit to the explicit and
emergent properties. We can assume or infer that there is a mechanism of a phe-
nomenon, however, we do not have a concrete way to observe the phenomenon. In
this case, we face this situation. What type of methodology do we have available to
bring out these emergent properties?
(UU) Unknown Unknown (No Model and No Data): It is very difficult to imagine
what kinds of events might be included here. How can we imagine an unknown that
is definitely unknown? One possible answer is related to our lifetime. If we think
about types of events that actually have happened and then consider variants of those
events that have never yet been seen, we start edging into the domain of unknown
unknown. In general, we cannot know what we have never seen.
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(a) (b)

Fig. 1.12 a How do you draw a line to fit several points? b A line fitting to the points is a possible
answer, but it is limited to the line

Specifically, the Unknown Unknown is often mentioned in the context of extreme
events. The extremeevents are highly improbable eventswhichprovide the significant
impact. These are often observed as phenomena in natural disasters and synchronous
behaviour in markets and society. They are treated by using extreme value theorem
or some power-law distributions mathematically [2, 56, 57]. The probability distrib-
ution of impacts is well-fitted with a power law distribution.We will treat the method
to estimate risks of the power law distribution in Chap. 5.

Nassim Nicholas Taleb calls the extreme events Black Swan events in his book
[195]. A black swan event is positive or negative and an event that is deemed improb-
able yet causes massive consequences.

Thus, in order to investigate Unknown Unknown, we need to understand data of
our society from a historical perspective. How do we infer the UnknownUnknown in
our society? We can deal with these rare events: by using catalogued data of specific
events described in historical documents and synthesising data fromdifferent sources,
we can approach to Unknown Unknown.

1.4.3 Models for Socioeconomic-Technological Systems

Wewant to examine models of socioeconomic-technological systems in this section.
Models of social systems appear to have many variables. Currently, our society
consists ofmany individualswho possess properties (knowledge, relationship, goods,
information and preferences). To describe our society in more detail, we have a
tendency to need more variables. Some of them are hierarchically structured. The
bottom-level models are used in the top-level models.

http://dx.doi.org/10.1007/978-4-431-54974-1_5
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1.4.3.1 Agent-Based Models

Axelrod has suggested that agent-based models can be useful tools for “thought
experiments” and clarification of theory. There aremany types of agent-basedmodels
used in various problems of social sciences [11, 89, 128, 181, 192, 199]. LeBaron
proposes agent-based computational finance [128]. Tesfatsion considers agent-based
computational economics [199, 200]. Helbing [89] classifies two types of agent-
based models (detailed models and simple models) and analyses their advantages
and disadvantages.

A detailed agent-based model attempts to describe the world with agents whose
behaviour is modelled with many parameters. This type of model can best be
described by using object-oriented languages. An object-oriented language defines
a class having inner variables and input and output interfaces. An object is produced
from a class (instance). Objects can also interact with each other. We can use other
objects in a class as well as variables. This feature can be used to describe agent-
based models. Agents are modelled by using a class having some inner variables,
input and output interfaces. Interactions among agents are also modelled as a class
having several objects of agents. Based on this philosophy, major software platforms
(NetLogo, MASON, Repast, Java Swarm and Swarm) are developed for agent-based
simulation [165]. SOARS [197] is also an agent-based simulation language designed
to describe agent activities according to roles within social and organisational struc-
tures. The U-mart11 is a simulator for artificial market [182], allowing both human
traders and software agents to participate in an artificial market to trade securities
via the Internet.

In the context of computational social science, models that grasp as many details
as possible have been developed. In fact, these try to implement many features of
socioeconomic systems, but there are some problems with this approach. (1) It is
difficult to specify parameters of detailedmodels in a real context. Models withmany
parameters have a large variety of different solutions. Imagine that we define an agent
with 10 variables. Suppose that 10 small groups consisting of 10 agents are connected
through some agents. This model has 10×10×10 = 1, 000 parameters at least. (2) It
is hard to calibrate parameters of detailed models because the number of parameters
is large. (3) It is not easy to determine the goodness-of-fit of detailed models with
many parameters. (4) It is not easy to interpret the underlying mechanism of a certain
phenomenon. Nevertheless, Yang et al. [223] propose a genetic algorithm based on
an inverse technique of an agent-based model that is applicable to fit simulation
outputs with real data.

A simple agent-based model attempts to avoid complexity. It tries to express the
models as simply as possible. A simple model aims at extracting some simplified and
abstracted essences of the system. This approach is based on the “Keep It Simple and
Straightforward” (KISS) principle for building a model. This principle is also known
as Occam’s razor or as the principle of parsimony. Albert Einstein once asserted,
‘Make everything as simple as possible’. A simple model is expected to give a

11 http://www.u-mart.org/html.

http://www.u-mart.org/html
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better understanding than detailed agent-based models. The model is used to guide
researchers and provide a working hypothesis. This can include a simple ecological
model as a socioeconomic model such as Ising-models [34, 99], Granovetter-type
threshold models [79, 216] and voter models [39, 63, 141, 187].

There are some criticisms of simplemodels: They are too simple to use in decision-
making. A simple model tends to be oversimplified and ignore other important parts
of phenomena. To improve a simple model is to add elements, which implies that
the successive improvement of the model includes making the model complicated.
Improving a simple model repeatedly turns out to make it a detailed model.

1.4.3.2 Statistical Model

A statistical model assumes a true statistical distribution with parameters, and the
data is assumed to be sampled within the statistical distribution. A statistical model
is rather simple, but the reason for why the distribution is adequate is not necessarily
specified. This is derived from stochastic processes and/or dynamical models. The
model parameters are estimated by using the maximum likelihood procedure. The
models are evaluatedbasedon an information criterion, and an adequatemodel should
be selected by maximising the information criterion. Several types of information
criteria have been proposed [120]. The Akaike Information criterion is one of them.
The Bayesian information criterion is also often used. The information criterion is
defined from the maximum log-likelihood value and a penalty function in terms of
the number of parameters and/or the number of observations (see Sect. 3.1.8). The
created model can sometimes be derived from a simple model in a theoretical way
or from a detailed model in a numerical way, but it is often empirically confirmed.

Data assimilation is the process by which observations are incorporated into a
computer model of a real system [31, 148]. There are two purposes of the data
assimilation. One is to improve accuracy and ability of numerical simulation using
the actual data. In numerical simulation, we always need to determine adequate
initial states and boundary conditions as well as parameters. If we have actual data,
then we may estimate them by minimising the difference between observations and
results obtained from the numerical simulation. The other purpose is to supplement
missing datawith numerical results obtained from the calibratedmodel and tomodify
observation errors. It is not practically impossible to obtain the observations at points
homogeneously distributed in time and space. The data assimilation enables us to
generate the data inferred at the points homogeneously distributed in time and place.

The data assimilation attempts to compute best estimates of probability distribu-
tions to explain the data. Recursive Bayesian estimation is an ideal method; however,
probabilistic analysis is usually simplified into a computationally feasible form. In
general, the probability density function (PDF) in time can be described by the
Fokker–Planck equation [169] (we will employ a one-dimensional Fokker–Planck
equation in Sect. 3.1.12).In the case of a continuous stochastic dynamical systemwith
partial observations distributed at discrete times, an ideal data assimilation scheme
would be given by solving the Fokker–Planck equation for the time interval between

http://dx.doi.org/10.1007/978-4-431-54974-1_3
http://dx.doi.org/10.1007/978-4-431-54974-1_3
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observations. The scheme should be implemented as a rule that modifies the PDF in
both time and space by using all the available observations.

The fundamental difficulty of this approach, however, underlies the high dimen-
sionality of the state space. Moreover, it is impossible in practice to obtain the initial
probability density function. As the method of the Fokker–Planck equation requires
computational resources, various approximations operating on simplified represen-
tation of the probability distribution are used [31]. If the probability density function
is normal and the linear dynamics and linear relationship between observations on
the system’s state variables are assumed, then the probability density function can
be characterised by its first and second moments. Namely, it can be expressed by its
mean and variance-covariance matrix, which is called the Kalman filter (KF) equa-
tions [108, 118]. In the case of a large number of degrees of freedom in the state, we
also need to use approximations.

To form the data assimilation, we need the four elements:

• numerical simulation
• observation data
• statistical methods
• high performance computing (HPC)

The data assimilation requires both a model and data in numerical simulation. There
are several methods of data assimilation. The fundamental underlying idea behind
data assimilation is to reduce the difference between observations and the results
obtained from the numerical simulation.

Suppose that the model of numerical simulation can be described as

xt = f (xt−1, t) + ξ t , (1.5)

where xt is a column vector representing states, t is discrete time, f the assumed
model and ξ t a column vector expressing random disturbance. Consider the dif-
ference between the k-dimensional observations yt and the k-dimensional results
obtained from numerical simulation f (xt ; t). Then, how do we find adequate results
from numerical simulation minimising the difference between the observations and
the results?

The simplest way is to use the least squared regression (see Sect. 3.1.9). Namely,
the results of numerical simulation xt is determined by minimising the squared error
|| yt − f (xt ; t)||2. Normally, we need to seek values xt around assumed values xt,b.
Therefore, the evaluation function of this problem is assumed to be ||xt − xt,b||2 +
|| yt − f (xt ; t)||2. The linear model f (xt , t) = H t xt with a time-dependent matrix
H t is often assumed.

A more sophisticated way is to use Bayesian inference. Bayes’ theorem is for-
malised as

p(xt | yt ) = p( yt |xt )p(xt )∫
p( yt |xt )p(xt )dxt

. (1.6)

http://dx.doi.org/10.1007/978-4-431-54974-1_3
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The PDF p(xt | yt ) on the left hand side describes a conditional probability distrib-
ution of the state variables under the observations yt . If we assume that p(xt ) and
p( yt |xt ) are normal

p(xt ) = 1
√

(2π)k |V | exp
(
−1

2
(xt − xt,b)

T V−1(xt − xt,b)
)
, (1.7)

p( yt |xt ) = 1
√

(2π)k |R| exp
(
−1

2
( yt − H t xt )

T R−1( yt − H t xt )
)
, (1.8)

and the dynamics f is linear ( f (xt , t) = H t xt ), then we can estimate the state
variables xt by using

xt,est = xt,b + V HT
t (H t V HT

t + R)−1( yt − H t xt,b).

This is referred to as optimal interpolation (OI) [44, 45]. The third method is a KF
algorithm [108]. The KF equations describe the time evolution of both the mean and
the covariance. According to Carrassi [31], in the case of linear dynamics, a linear
observation operator and observational and system noise that are both Gaussian,
white in time and mutually uncorrelated, the KF equations give the optimal linear
estimate of the state of the system by propagating the associated error covariances,
along with the state estimates. In the nonlinear case, the PDF cannot be described
by a finite set of parameters, and the extended Kalman filter algorithm is required by
extending the linear results to the nonlinear case.

1.4.4 Forecasting the World from Data

Suppose that several points x(t) in terms of t , which are assumed to be observations,
are plotted on a graph as shown in Fig. 1.12a. If you have to draw a fitting curve,
how do you draw a line? You may want to draw a solid line as shown in Fig. 1.12b.
This is a typical example showing a prediction problem from past observations. In
fact, you can draw a line passing through the points. However, this line is not always
a good model of these observations.

If several types of functional forms are permitted, then we may obtain other types
of solutions. The possibilities are infinite. In our habitual way of thinking, we may
prefer a line, but this is just a belief. If we have a nonlinear model in our brain, we
can find other types of solutions.

This problem is referred to as the problem of induction. David Hume worked on
an explanation of howwe are able to make inductive inferences. According to Hume,
we tend to believe that things show regular patterns, and that the behaviour of objects
will persist into the future, and throughout the unobserved present. This persistence
of regularities is called uniformitarianism or the principle of the uniformity of nature.
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The principle of uniformity of nature is the assumption that the same laws and
processes that have operated in the past can be used to explain observations. Inductive
reasoning always makes this assumption. This implies that we always assume a
model when we make a prediction or reasoning. We want to believe that what we
have experienced can be applied to our current observations. Further, we want to find
a pattern from the data under some assumptions from models that we create during
our experiences. We have a tendency to assume that what we will observe is similar
to what we have experienced in the past.

However, Hume argues thatwe cannot rationally justify the principle of the unifor-
mity of nature. Both demonstrative reasoning and probable reasoning are inadequate.
If the assumption in our model fits with the data generating mechanism, then our
prediction seems to work well. This is true, but this is not rationally justified.

Nelson Goodman also dealt with this problem as the new riddle of induction [75].
This problem is also mentioned in the grue paradox. Normally what we want to
recognise often possesses more than two properties at the same time. This paradox
is deeply related to the principle of the uniformity of nature and originates from the
fact that we often use projectable predicates to discriminate something included in
more than two groups at the same time. This situation is often seen in social sciences.

Moreover, individual behaviour may be affected by announcing prediction. Thus,
the principle of the uniformity in society may be violated by reactions to this predic-
tion. This feedback mechanism between observed systems and observing systems
creates complexity in our society.

1.4.5 Designing the World from Data

In fact, the predictability of our society from the data turns out to beweak conclusions.
However, we do have an ability to create the future of our society.

Figure 1.13 illustrates coherent multilevel theories to support policies on social
design. At the micro-level, the dynamics emerge from the interactions of individuals.
An agent-based model on societal issues is a favoured scientific way of investigat-
ing micro-level behaviour in agent-based simulations. Members of the micro-level
change their awareness and decisions under the meso-status. A large number of the
micro-level members and macro-level factors affect the meso-status.

Terano et al. [198] propose multilevel agent-based computer simulations. Kasuga
et al. [110] propose a new technique of constructing the simulation model that can
take decision making of the patient, the fire department and the medical institute into
consideration by using an agent-based model approach.

These simulations do not generate predictions of future system behaviour but
give insights on possible system behaviour. This means that agent-based models are
useful in the design of socioeconomic-technological systems, not from an empirical
science point of view but from a normative science point of view.

The mesoscopic level can be described by stochastic dynamics. Financial time
series are good examples of stochastic dynamics and can often be modelled by
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Fig. 1.13 A schematic
illustration of multilevel
systems. micro-level
to macro-level through
mesoscopic description

stochastic differential equations. The macroscopic level is institutional or national,
which seems to show more dynamical behaviour.

Social policy is inevitably expressed in natural language within a legal framework
for implementation. Nevertheless, numerical simulation by using an agent-based
model must be described by some algorithms or mathematics. Johnson [103] also
proposes the relationship between policy informatics and Big data in the context of
policy design in “systems of systems of systems”.

Social informatics is not necessarily policy-driven and can be pure research. Cur-
rently, big data plays an important part in social informatics and the development of
new models of social processes.

In policy design, three types of methods can be considered;

• evidence-based design (EBD)
• simulation based design
• evolutionary design

Evidence-based design originated in the health-care industry as a combination of
evidence-based medicine and evidence-based practice. The evidence-based design
is a process for creating or improving products buildings by using rigorous evidence
to create benchmarks of current practice, achieve specific goals, and then monitor
the success of the design to inform future decision making. Rules of policy can be
formed based on evidence thatwe experienced. Simulation-based design is often used
in engineering more recently. Agent-based simulations are sometimes used to design
socioeconomic-technological system. Evolutionary design needs to be introduced to
policy design for long term perspectives, since rules or laws of our society have
been created through evolutionary processes. This view is referred to as “cultural
evolution”.
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Fig. 1.14 Conceptual illus-
tration of business cycles.
A business cycle consists of
four phases: construction,
development, saturation, and
destruction. New goods or ser-
vices destroy a mature system
reaching its saturation point

1.4.6 What is Collective Behaviour?

According to “The Theory of Economic Development” by Schumpeter [180], our
modern capitalistic society creates business cycles, or boom-and-bust cycles. A cycle
consists of expansion occurring at the same time in many economic activities. Busi-
ness cycles may vary from more than one year to 10 or 12 years. Business cycles are
inevitable under capitalism since these are associated with behaviour which firms
employ to obtain gains from markets.

Business cycles have a long history of theoretical studies. Samuelson showed
that a linear second-order ordinary differential equation based on multiplier and
accelerator effects couldgenerate these cycles in theGDP[172].Hickes demonstrated
that this type of cycle is sustainable by introducing a “ceiling” and a “floor” into
his model [90]. Some researchers focused on non-linearity. Goodwin introduced a
nonlinear accelerator in order to generate a sustainable cycle [76]. Kaldor captured
the business cycle as a stable limit cycle [107].

The most influential theory among neoclassical economists is the real business
cycle (RBC) theory [124]. The essential feature of RBC is to treat the impact of
technological innovations as themost important cause of a business cycle. Themarket
travels through its initial stage (construction stage), development stage, saturation
stage, as shown in Fig. 1.14. Profits are generated only within the development
stage. Eventually, the market becomes mature and the enterprises need to destruct
the present market and create a new market. This movement generates a business
cycle or boom-and-bust cycle.

This is an example of collective behaviour in human activity. Other types of
collective behaviour are often seen in opinion formation. Opinions or preferences
sometimes coincide due to social forces. There are several types of opinion formation
models including the voter model, the heterogeneous voter model, the partisan voter
model, opinion formation model on a network, the evolutionary model of language
competition [1, 4, 35, 38, 39, 51, 61, 63, 92, 137, 140, 141, 150, 156, 187, 189,
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205, 206, 226, 227]. The Bass model in marketing science explains how goods
or services produced by new technology are accepted by users [16]. Jung [104]
proposed a concept of synchronicity, which is the experience of two ormore events as
meaningfully related, even though these cannot be explained causally. Jung classifies
synchronicity into three forms:

• The coincidence of a certain psychic content with a corresponding objective
process which is perceived to take place simultaneously.

• The coincidence of a subjective psychic state with a phantasm (dream or vision)
which later turns out to be a more or less faithful reflection of a synchronistic
objective event that took place more or less simultaneously, but at a distance.

• The same, expect that the event perceived takes place in the future and is repre-
sented in the present only by a phantasm that corresponds to it.

1.4.6.1 Classical Models of Collective Behaviour

I next address some classicalmodels of collective behaviour in this section.Collective
behaviour or synchrony can be understood as the bifurcation of a dynamical system
or the phase transition in an analogy to statistical physics. The simplest model of
collective behaviour in statistical physics is the Ising model [99]. The Granovetter’s
type threshold model in sociology also shows similar properties to explain collective
behaviour [79]. Schelling also provides one explanation for collective behaviour
referred to as “contagion” [179]. Contagion of behaviour from one agent to other
agents occurs when individual has an incentive to pay attention to the decisions
of others. Kirman’s model established “herding behaviour” (called conformity) in
aggregate expectations stimulating agent interaction [117].

Ising Model

Although the Ising model [99] is a model of magnetism, it is often used as a model of
opinion formation from a socioeconophysics approach [34]. Physicists have interests
in the Ising model on several types of networks such as random graphs and scale-free
networks [13, 21, 33, 84, 190].

I will introduce the one-dimensional Isingmodel based onGlauber dynamics [70].
Suppose that N particles interact in a random field where a state of the i-th particle
flips between the values σi = 1 and σi = −1 randomly. For a sufficiently small
period Δt , the individual probabilities p(±1, t) can be assumed as

p(σi , t) =

⎧
⎪⎨

⎪⎩

1

1 + exp(−Ii (t − Δt)/θ)
(σi = 1)

exp(−Ii (t − Δt)/θ)

1 + exp(−Ii (t − Δt)/θ)
(σi = −1)

, (1.9)
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where Ii (t) is an external field perceived by the i-th particle and θ(>0) represents a
social temperature. For the sake of simplicity, we only assume an interaction of the
one-dimensional case from the nearest neighbours

Ii (t) = J

2

(
σi−1(t) + σi+1(t)

)
, (1.10)

where J is a constant. If J is positive, then the state of the i-th particle takes the
same direction as the nearest neighbours (a follower). Otherwise, it has a tendency
to take a direction opposite to the nearest neighbours (a contrarian). We approximate
the mean value as

≥σ(t)≡ = 1

N

N∑

i=1

σi (t). (1.11)

By using a mean field approximation that σi−1(t), σi (t) and σi+1(t) are identical
to ≥σ(t)≡, we have

≥σ(t)≡ ≈ +1 × p(+1, t) + (−1) × p(−1, t)

= 1 − exp(−J ≥σ(t − Δt)≡/θ)

1 + exp(−J ≥σ(t − Δt)≡/θ)

= tanh
( J ≥σ(t − Δt)≡

θ

)
. (1.12)

By setting ≥σ(t)≡ and ≥σ(t − Δt)≡ into σ , a fixed point σ of Eq. (1.12) is derived
from

σ = tanh
( Jσ

θ

)
. (1.13)

Here, we consider a fixed point of Eq. (1.12) in the case of J > 0. As shown
in Fig. 1.15, we have two types of solutions; (a) m = 0,±σ ∗ for J/θ > 1 and
(b) m = 0 for J/θ < 1. Stability analysis of Eq. (1.12) tells us that m = 0 is an
unstable fixed point and that m = ±σ ∗ are stable fixed points in the case of J/θ > 1.
In the case of J/θ < 1, m = 0 is a stable fixed point. Therefore, for J/θ > 1, all
n particles converge to the same state: σi = 1 or σi = −1. This phenomenon is not
confirmed for J/θ < 1.

Collective behaviour is defined as the event where some particles take the same
direction using an analogy of ferromagnetism. Since J represents the strength of
positive interaction and θ represents the strength of disturbance, collective behaviour
can be observed when positive interaction is stronger than disturbance.

Granovetter Threshold Model

Granovetter proposes a simple threshold model to explain collective behaviour in
the case of binary decisions [79]. More recently, Watts and Dodds [216] studied
influential hypothesis of public opinion formation. They introduced the threshold
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 0

 0

y=σ
y=tanh(Jσ/θ)

0

 0

y=σ
y=tanh(Jσ/θ)

(a) (b)

Fig. 1.15 Two types of solutions of the Ising model. a J/θ > 1 and b J/θ < 1

rule of decision-making on influence networks [215]. Their model proceeds from
an initial state in which all N individuals are inactive (state 0), with the exception
of a single, randomly chosen initiator i , who is activated (state 1) exogenously.
Depending on the model parameters of i’s neighbours, this initial activation may or
may not trigger some additional endogenous activations. Subsequently, these newly
activated neighbours may activate some of their own neighbours, who may, in turn,
trigger more activations still, and so on, generating a sequence of activations, called
“cascade” [215].

Granovetter suggests several examples of binary choice situationswhere threshold
models could be applied;

• Diffusion of innovations
• Rumours and diseases
• Strikes
• Voting
• Educational attainment
• Leaving social occasions
• Migration
• Experimental social psychology

All the examples above can be expressed as a threshold model with the initial
distribution of thresholds and the ultimate number or proportion of elements making
each of the two decisions. We assume that there are two types of decisions: 1 and
2. A simple example is a case of a uniform distribution of threshold. Imagine 100
people have their thresholds, which are distributed as a uniform distribution. They
are assumed to be able to see other decisions. There is one individual with threshold
0, one with threshold 1, one with threshold 2, and so on up to the last individual
with threshold 99. This model can explain a “bandwagon” or “domino” effect. The
person with threshold 0, the “instigator,” must take decision 2. This activates the
person with threshold 1; the activity of these two people then activates the person
with threshold 2, and so on, until all 100 people join. In this case, the equilibrium
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is 100. Next, we consider the case where we remove the individual with threshold 1
and replace him by one with threshold 2. In this case, the instigator takes decision
2 but other people do not take decision 2 since there is no person with threshold 1.
Therefore, the collective behaviour does not occur.

TheGranovetter thresholdmodel ismathematically expressed as follows. Suppose
that n people have their riot thresholds, which are distributed. The threshold x is
sampled from the PDF p(x) and the cumulative distribution function (CDF) by
Pr[X ≤ x] (see these definitions in Sect. 3.1.1). The CDF indicates the proportion
of the population having thresholds less than or equal to x . Call the proportion of the
population that has taken decision 2 by discrete time t x(t). When knowing x(t) for
some t , we express the proportion at time t + 1 as a difference equation

x(t + 1) = Pr[X ≤ x(t)]. (1.14)

Then, when the probability distribution of the threshold has a simple form, the dif-
ference equation can be solved explicitly to give an expression for x(t) at any value
of t . Thus, the equilibrium solution x may be solved as x = Pr[X ≤ x] by setting
x(t + 1) = x(t) = x . This implies that the shape of CDF and an initial condition
determines the equilibrium state.

1.5 Literature Review

Recently, several researchers in a wide spectrum of fields have paid a remarkable
amount of attention to massive amounts of comprehensive data. For example, search
engines of web services need massive data about hyperlink connections among web
pages, and electronic commerce systems need to cover information about various
kinds of products. As a result of the development of ICT, the Advanced Information
Society has already achieved a global profile, and it is gradually making our world
smaller and smaller.

The term “information explosion” has been coined to describe this situation [54,
121]. This term refers to a situation in which the total amount of digital information
created by individuals exceeds the individuals’ information processing capability.

Researchers belonging to several different fields have the same interest in analysing
data on socioeconomic-technological systems:

• statistics
• management sciences and marketing
• social network analysis
• socioeconophysics
• data engineering and computer sciences
• computational social science

Recently, several different disciplines have been attracted by rich data and often use
a common framework of data-centric methodologies.

http://dx.doi.org/10.1007/978-4-431-54974-1_3
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1.5.1 Statistics

Data scientists are industrial practitioners using data on socioeconomic-technological
systems. They attempt to solve societal problems with knowledge obtained from
data analysis, ICT and social implications [47]. These data scientists need to have
knowledge of:

• mathematics, statistics, physics
• computer systems, ICT, software and hardware
• markets, specific fields of industrial sectors

Education for data scientists is now important issues in both academics and industries.
Data scientists should be the people who understand how to find out answers to
important business questions from current tsunamis of unstructured information.
The roles of data scientists are akin to ones of quants of financial sectors in 1990’s.

Business intelligence (BI) is an important field for organisations across all indus-
tries. A number of business sectors can continue to obtain benefits from the careful
use of business intelligence. Business intelligence enables individuals to perceive
information with little technical expertise. Contributions of business intelligence are
divided into four categories: data presentation, creation of new knowledge, respon-
sive and anticipate decisions, and improvement of planning for the future [171].

In many cases presence of wrong data is even worse than absence of the data,
and it makes a harmful effect in decision-making and optimisation. Therefore, data
validation is an important step [186]. There is further a problem that predicts future
affairs from partially disclosed data [202].

Optimality in human society is not unique but this is derived from a trade-off
relationship among sectors under multiple evaluation functions. Thus, this should be
expressed as multi-objective optimisation problems. In the multi-objective optimal-
ity, the scalar concept of “optimality” does not apply directly. The concept of Pareto
optimality should be introduced. The Pareto optimal for a multi-objective problem
is that an N -dimensional vector x∗ ∈ S exists if all other vector x ∈ S have a higher
value for at least one of m objective functions fi (x), with i = 1, . . . , m, or have the
same value for all the objective functions.

To find the Pareto optimal solution cannot be computed efficiently in many cases.
Even if it is theoretically possible, computationally they are reduced as a NP-hard
problem.There are severalmethods to approximate thePareto optima.To this context,
evolutionary algorithms [101, 196] contribute to finding solutions.

1.5.2 Management Sciences and Marketing

Internet technologies have created new opportunities for companies to sell a variety
of products and services via their e-commerce platforms. This has alreadymentioned
by Arthur [8] in the 1990s. He stated that the mechanism that determines economic
behaviour has shifted from the processing of resources and the application of raw
materials to the processing of information and the application of ideas. Wymbs [219]
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has suggested that the dramatic increase in the availability of information and a
plethora of ways to manipulate it would both increase the number and diversity of
new service businesses and cause the fundamental reconfiguration of existing service
industries. He has proposed how uncertainty can be used by firms to create value
by increasing their options in e-commerce. Wen et al. [218] also proposed strategies
and models of e-commerce website design in the early stage of the Internet era.

These suggestions and proposals during the development of Internet have been
implemented in current Internet environment. Recently, social media marketing,
which is the process of gaining website traffic or attention through social media sites,
is often used. There are several tools and methods [30] such as social media mea-
surement, social network aggregation, social bookmarking, social analytics, opinion
mining, sentiment analysis and sentic extraction.

Specifically, it is important to understand and manage electronic word of mouth
(eWoM) in e-commerce. Kietzmann and Canhoto discuss classification of eWoM
and implementation to manage it in social media marketing [114]. Li et al. [131]
examine the factors related to eWoM that influence travelers’ online hotel booking
intention.

Techniques of social media measurement or social media monitoring have been
developed [98]. Social media measurement is an activity to monitor information
about firms or organisations from social media channels such as blogs, wikis, news
sites, micro-blogs, video-photo-sharing websites and forums. After crawling digital
files from these media channels, semantic analysis and NLP are applied to extract
information. “Emotional polarity” is also an importantmeasure in socialmediamoni-
toring. The emotional polarity is a label indicating either positive, neutral or negative,
assigned in each word of the lexicon. The emotional polarity technique allows us to
characterise the emotional charge of words or sentences as either negative, neutral,
or positive. Opinion mining focuses on opinion polarity detection, while sentiment
analysis considers emotional influence. In general, existing approaches to opinion
mining and sentiment analysis can be classified into three categories: keyword spot-
ting, lexical affinity and statistical methods. Modelling emotional interactions in
cyberspace and developing measures of social interactions are being studied by sev-
eral researchers [42, 64, 66, 146, 222].

1.5.3 Social Network Analysis

Network analysis has often been used in the context of sociology [32, 127, 216] and
economics [7, 9, 17]. Each kind of resource exchange is considered while construct-
ing social network relationships among agents. These relationships maintained by
agents are called “ties”. The strength of a tie varies in time and ranges from weak
to strong, depending on the quantity, quality and frequency of exchanges between
agents [135]. Mark Granovetter proposes that weak ties are operationally strong for
the diffusion of job information [78]. This is a very well-known example of social
network analysis.
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A long-standing traditional theory of public opinion and individual judgements
has been affected by observations of social aggregations and mass behaviours. For-
mation and change of collective behaviour or public opinion are assumed to be a
mechanism by which a certain action affects other future actions of agents. However,
according to Olson [154], the logic of collective action is based on the assumption
that individuals motivated by self-interest will avoid investing resources in a joint
endeavour. This is a phenomenon known as “free riding”. This means that agents’
communication is very weak, and that common external stimuli drive their collective
behaviour. Bad relationships sometimes spread in a group. Several researchers have
had an interest in promoting and increasing good relationships. Oliver and Maxwell
have emphasised the importance of the network of relationships in which interdepen-
dent agents are embedded [136, 153]. There are studies of network theory in several
fields, such as social network analysis and data-driven network analysis.

KimandBearman [115] have developed an interestingmodel of opinion formation
within a network. Agents increase their interest in participating in public processes if
connected with others with higher interest levels who contribute, and they decrease
their interest if connected to others with lower interest levels who defect. In this
model, collective action occurs if and only if there is a positive correlation between
interest and power/centrality. Therefore, heterogeneity of interests creates positive
effects by “pulling up” a population’s potential for participation.

Watts and Dodds [216] studied influential hypothesis of public opinion formation.
They introduced the threshold rule of decision-making on influence networks [215]
based on Granovetter threshold dynamics [79]. Their model proceeds from an initial
state in which all N individuals are inactive (state 0), with the exception of a single,
randomly chosen initiator i , who is activated (state 1) exogenously. Depending on the
model parameters of i’s neighbours, this initial activationmayormaynot trigger some
additional endogenous activations. Subsequently, these newly activated neighbours
may activate some of their own neighbours, whomay, in turn, triggermore activations
still, and so on, generating a sequence of activations called cascade [215]. Bahr and
Passerini [15] have developed a statistical mechanics model of collective behaviour
through an analogy to physical systems and studied under which conditions a group
changes opinions and how this depends on the size of the group.

In the context of economics, banking sectors can be represented by using an agent-
based model in a network. Lending and borrowing relationships among banks are
expressed as a network [17]. Financial markets can be described by using agents,
while the trading of stocks and currencies forms a bipartite network. To study the
systemic risk of financial systems, Huang et al. [94] consider a bipartite banking
network model composed of banks and bank assets and propose a cascading failure
model to describe the risk propagation process. Companies have connections with
other companies, and this can be expressed by using an agent-based model in a
network [7]. The firm productivity is examined empirically from an international
point of view. Mizuno et al. [143] estimate firm productivity for about 3.2 million
firms from 30 countries.

Data-driven network analysis for socioeconomic-technological systems has been
conducted by some researchers. Tomasello et al. [201] studied a large database of
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publicly announced research and development (R&D) alliances. They have described
the evolution of R&D networks in a large number of economic sectors from 1986
to 2009. They show that many properties of R&D networks are characterised by
rise-and-fall dynamics, with a peak in the middle of the 1990s. This corresponds to
IT and bio-tech doubles. Garas and Panos have studied the networks of collaboration
between partners for projects carried out with the support of European Commission
Framework Programmes FP5 and FP6. They have found that there is an increase in
the average number of collaborative partners per institution when FP5 is compared to
FP6, and that the number of signed contracts and the total number of unique partners
has decreased [67].

1.5.4 Socioeconophysics

Socio-Econophysics is an interdisciplinary research field. Rich data enable physicists
to investigate phenomena observed in our society from an empirical point of view.
Many researchers belonging to the physics community have attempted to develop
applications ofmethods in statistical physics in order to solve phenomena observed in
economics and sociology [6, 7, 26, 36, 68, 134, 184, 188, 193, 194]. They often use
methodologies in statistical physics, agent-based modelling and network analysis,
which have been evolving over the past decade.

A large amount of data on financial markets has been available since electronic
matching systems of financial markets have spread all over the world with the devel-
opment of ICT. Computer trading can be done through electronic platforms, and
settlement operations are done through electronic clearing systems. Real-time data
of financial markets can be collected through direct market access (DMA) as well
as historical data from centres of data providers. Some researchers have examined
cross-correlations among various figures from the financial markets [53, 93, 133,
159, 176]. Podobnik et al. studied volume growth rates and volume changes for
14,981 daily records of the Standard and Poor’s (S&P) 500 index over a 59-year
period (1950–2009) [159]. Using detrended cross-correlation analysis, they found
that there are power law cross-correlations between these indices. Bonanno et al.
[23] studied correlation-based network analysis of financial equities. Researchers of
econophysics focus on several types of scaling relationships observed in the financial
markets in order to understand the behaviour of market participants [55, 139, 160,
213].

Studies of foreign exchange rates have been conducted by numerous researchers
using various approaches based on statistical physics and time series analysis [3, 52,
82, 86, 97, 109, 132, 152, 167, 178]. Drożdż et al. have shown that exchange rate
return fluctuations for main currency pairs are well described by non-extensive statis-
tics and possess multifractal characteristics [52]. Rebitzky has studied the influence
of macroeconomic news on exchange rates [167].

Kaltwasser [109] has further estimated the herding tendency in the foreign
exchangemarket for three currency pairs, using the extendedAlfrano–Luxmodel [3],
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and has computed several unconditionalmoments of corresponding daily log-returns.
Gworek et al. [82] have analysed the exchange rate returns of 38 currencies (including
gold). They examined the cross-correlations between the returns of various currency
pairs, as well as between their signs, and in this way, they have constructed a corre-
spondingMinimal Spanning Tree for several base currencies. Liu et al. [132] applied
cross-sample entropy (Cross-SampEn) to compare two different time series in order
to asses their degree of asynchrony to the daily log-return time series of foreign
exchange rates in the currency markets. Several types of models of financial markets
are studied: agent-based models and stochastic processes are often used [149, 163,
175, 203].

Moreover, massive amounts of blog entries and Twitter data can be analysed
empirically [173]. Patterns of human behaviour are characterised from several per-
spectives. Periodic patterns and power law behaviours have been found. Yakovenko
[221] proposes an agent-based model to explain conservative quantity of money and
debt, and examines relationships between economic activity and energy consump-
tion. He suggests that money and energy will be the key factors shaping the future
of human civilisation.

Some researchers investigate transportation from a physical point of view [80,
105, 224]. According to the study by Guimerà and Amaral [81], the worldwide
airport network has properties of a small-world network. The degree and betweenness
centrality distributions exhibit the power-law decay. Jung et al. [105] examine the
traffic flows of the Korean highway system. They show that the traffic flow between
two cities forms a gravity model.

1.5.5 Data Engineering and Computer Sciences

Query log analysis of a web search engine reveals human typical behaviour [14,
100]. According to Broder [28], search queries reveal three types of user intents:
(1) “navigational” (the user wants to reach a particular website), (2) “informational”
(the user wants to find a piece of information on the web), and (3) “transactional”
(the user wants to perform a web-mediated task). When do people send queries to a
search engine, and what types of queries do they send? This tendency has a strong
correlation with real society and economy.

Jansen et al. [100] studied 1,005,296 real-time search queries during the 190 days
that originated from 43,140 unique IP addresses. They examined intradaily seasonal-
ity, weekly dependence, query length and term frequency. They found that real-time
query logs can be a good representative quantity to characterise users, linking users’
zip codes to U.S. census data. Weber and Jaimes found that the Yahoo! query logs
provide a good demographic description of the U.S. population and that there are
different segments in the topics that they search for as well as distinctions in their
search behaviour [217]. Kato et al. [111] study how users of a web search engine use
query suggestions. They analyse three kinds of data sets obtained from Microsoft’s
Bing search engine, comprising approximately 126 million unique queries, 876 mil-
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lion query suggestions and 306million action patterns of users. They show that query
suggestions are often used (1) when the original query is a rare query; (2) when the
original query is a single-term query; (3) when query suggestions are unambiguous;
(4) when query suggestions are generalisations or error corrections of the original
query; and (5) after the user has clicked on several URLs in the first search result
page. Mitamura and Yoshida [142] propose a method for analysing social interests
fromDNS query logs. They investigate reactions of Japanese people on the eco-point
system and the switchover to the digital TV broadcasts using their proposed method.

The launch of the E-Stat, which is a portal site of the Japanese government [162],
provides us with new technological means for a data-based understanding of our
country. In principle, everyone can understand the state of our country based on
demographic data. Furthermore, real-time demographic data has also been available
since the technologies to collect human activities via personal mobile phones were
developed [72]. In the near future, we will be able to visualise real-time demograph-
ics, both comprehensively and circumstantially. Gao et al. [65] study real anomalous
events using country-wide mobile phone data, finding that information flow dur-
ing emergencies is dominated by repeated communications. They show that human
communications are both temporally and spatially localised following the onset of
emergencies, indicating that social propagation is a primary means to propagate
situational awareness. They further demonstrate that the observed communication
patterns cannot be explained by inherent reciprocity in social networks, and are
universal across different demographics.

Recently, several car navigation companies have launched autonomous sensory
navigation services. As a result, these companies can collect real-time car traf-
fic data via each car navigation terminal. By collecting data from many cars, one
can find roads and points where traffic jams are occurring. Without constructing
new infrastructure to collect traffic states, real-time traffic data can be accumulated
through the development of Integrated Transport Systems (ITS). Based on this data,
comprehensive analyses of traffic flows can be conducted in order to address the
problem of traffic jams [5]. These and other recent developments in traffic measure-
ment technologies have been driving the theoretical development of traffic control
and modelling [88].

Web-based commerce systems enable us to purchase everything from books to
electronic equipment via websites. The details of consumers and goods can be stored
on the database engine of each website. If we can access this data, then we can,
in principle, capture real-time demand and supply of all items that are traded via
websites.

Analysing massive amounts of data on items that are sold via web commerce
systems is expected to open a window to new economic theory and service engineer-
ing [50, 125, 151]. Data on hotel booking opportunities [177], international flight
booking opportunities [83, 174], intercity passenger railway [40] and price compari-
son sites [145] have also been studied. POS is an abbreviation for point-of-sales, and
all department stores and supermarkets have introduced this kind of system in order
to ring up purchases at cash registers. As a result, retail sales can be managed in real-
time, and data-centric operations can be performed. On the basis of these massive
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amounts of data, new marketing methods have been developed. The statistical prop-
erties of expenditure in a single shopping trip show a power law distribution [144].
Comprehensive analysis of retail sales is one of the most promising directions to be
followed in order to bridge the gap between microeconomics and macroeconomics.

1.5.6 Computational Social Science

Lazer et al. address researches of computational social science from several perspec-
tives [127]. They mention studies on video recording and analysis, examination of
group interactions through electronic communication, examination of face-to-face
group interactions over time, macro communication patterns, tracking movement
and Internet as computational social science researches. Moreover, they emphasise
that in a computational social science, properly managing privacy issues should be
essential. Anonymisation technique is applied to solve the privacy issue. However,
research revealed the potential for de-anonymisation, based on the statistical power
for the sheer quantity of data collected from each individual in the database [12].

Kosinski et al. [122] show that easily accessible digital records of behaviour
can be used to automatically and accurately predict a range of highly sensitive per-
sonal attributes including: sexual orientation, ethnicity, religious and political views,
personality traits, intelligence, happiness, use of addictive substances, parental sep-
aration, age and gender.

King [116] suggests that it is necessary to build up the scientific infrastructure
supporting data sharing, data management, informatics, statistical methodology and
research ethics and policy in order to make progress possible in analysing, under-
standing and addressing major societal problems. Specifically, he mentions that data
sharing regarding privacy protection plays an important role to progress studies using
social science data. He proposes that we need to develop a common, open-source,
collaborative infrastructure that makes data analysis and sharing easy under inter-
operation across scholarly fields. Moreover, social scientists can use additional help
from the legal community. Standard rules and data-use agreements need to be devel-
oped.

Golder and Macy [71] identified individual-level diurnal and seasonal mood
rhythms in cultures across the globe, using data from millions of public Twitter
messages. They found that individuals awaken in a good mood that deteriorates
as the day progresses—which is consistent with the effects of sleep and circadian
rhythm—and that seasonal change in baseline positive affect varies with change in
day-length.

Many observations of the dynamics of pedestrian crowds, including various self-
organisation phenomena, have been successfully examined. Helbing et al. [88] stud-
ied video recordings of the crowd disaster inMina/Makkah during the Hajj in 1426H
on 12 January 2006. They found two subsequent, sudden transitions from laminar
to stop-and-go and turbulent flows, which question many previous simulation mod-
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els. Johansson et al. [102] examine social force pedestrian model by evolutionary
adjustment mechanism to video tracking data.

1.6 Conclusion

The concept of complexity has been discussed from several points of view. Com-
plexity is determined by the relative degrees of freedom of observing systems and
in observed systems. I have briefly explained a framework of data-centric sci-
ences. Applied data-centric social sciences can be established from data-centric
studies based on large amounts of data on socioeconomic-technological systems.
This data can be obtained from our society. However, to overcome the complexity
of socioeconomic-technological data, we need to develop mathematical concepts,
algorithms, rich computer systems and integrated databases. To construct synthe-
sised data on socioeconomic-technological systems, spatial-temporal axes should be
employed. Various kinds of data collected from different paths can be synthesised
with time and locations. Rich synthesised databases representing aspects of our soci-
ety may help us to obtain deeper insights into our own socioeconomic-technological
systems.

I have also suggested that these studies are associated with applied data-centric
social sciences. These applied data-centric social sciences include several research
topics such as mathematical concepts, algorithms, computer systems, databases and
modelling for data analysis.

Mathematical concepts can help us to develop automated algorithms to extract
knowledge on socioeconomic-technological systems. These algorithm and compu-
tation systems help us to collect, store and analyse large amounts of data. It is also
crucial to construct synthesised data sets from uncensored data obtained from differ-
ent data sources. Furthermore, models can then become a guide for us to understand
observed systems, connecting physical mechanisms with observations.

The property that these studies seem to have in common is their ability to overcome
complexity in socioeconomic-technological systems by using massive amounts of
data and vast computations. Copious amounts of data on human activities are col-
lected by means of ICT, and vast amounts of computation for this data are conducted
for the purposes of searching, matching, visualising and extracting.

This book is organised into four parts, including this introduction. In Part I, back-
ground and motivation of applied data-centric social sciences were shown. Part II
shows mathematical methods in order to conduct data analysis of socioeconomic-
technological systems. Fundamental methods of statistical inference, time series
analysis, network analysis, and spatial analysis are explained. Part III contains sev-
eral exemplar studies of socioeconomic-technological systems. Part IV addresses
future work of applied data-centric social sciences.

The following list indicates potential fields of data-centric social sciences:

• Financial markets
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• E-commerce
• Transportation
• Telecommunications
• Consumer products and Retail
• Demography
• Social network
• Search log
• Tourism
• Natural disaster prevention

I show several exemplar studies from some of these topics as examples of applied
data-centric social sciences. The data is now available in various types of fields in our
society, so, using additional concepts and methods, data from some specific fields is
analysed. These exemplar studies should provide readers with much information to
solve their own problems.
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Chapter 2
Framework

Abstract A framework of the applied data-centric social sciences is based on
data-centric science. A methodology of data-centric science is very common and
applicable to all the types of sciences. In this chapter, we will see a methodology
used in applied data-centric sciences commonly.

2.1 Pipelines of Data-Centric Science

Generally, the data-centric investigation or data-driven study is constructed from the
following steps:

• problem definition
• project design
• an explanatory data analysis
• data acquisition
• data collection
• data analysis
• interpretation
• decision-making

These steps construct a cycle to improve data quality, interpretation adequateness
and effectiveness of decision-making. In order to understand the data-generating
mechanism,we also should visit actual spotswhere the data are generated and confirm
correspondence between the data and objects or concepts which they express. In
general, the problem and project are unknown firstly. We may not clearly understand
the problem which we need to solve and the project where we should work. To
understand them, it is useful to come in touch with data of the problem or of the
field where the project will be built. This type of activity is called explanatory data
analysis [34].

In both the inductive and deductive approaches, in general, we face the so-called
chicken-and-eggproblem.This is a kindof causality dilemma.Theproblemdefinition
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and the project building sometimes face the causality dilemma. This means that we
need to build a project to understand details of the problem related to the project.
The abductive approach may solve this causality dilemma. The abductive approach
is defined as an approach to start to think the problem on a hypothesis. A plenty of
data often becomes a starting point of the hypothesis. The explanatory data analysis
provides us with knowledge on phenomena and characteristics of the problem.

2.2 Purpose, Goal and Proposal

We need a purpose or purposes for our research activity in order to justify our own
activity. When we start our research or project, we have to ask ourselves whether we
can improve our society, add new information to existing studies, solve a societal
problem or propose a new policy to decision-makers. Our activity may simply create
knowledge on a societal issue. Then, we need to consider how to contribute to our
society by increasing knowledge on the societal issue.

The goal is different from the purpose. The goal of our research activity or our
project should be concrete with some quantitative measures. For example, in the case
of a business, the goal should be defined as a measurable improvement such as the
number of consumers, the duration time for production, and so on. In the case of the
academic research, the goal should find new things and/or propose new concepts or
methods with some quantitative manners. How many or how much do we improve
the activity or clarify the phenomena? To do so, we firstly need to grasp our current
situation and determine an area where we can make a difference.

2.3 Project Design

In order to design our project or research activity, wemust ask ourselves the following
questions again and again during the project:

• What is our question?
• How do we ask and solve the question?
• What data do we need to answer the question?

We often start our project without any concrete goals. However, such a launch seems
to create some problems during our own research activity. For example, imagine that
we do not know what we should achieve and how to examine the issue. How do we
feel about this situation?

Actually,we need to find a goal for our activity.Asking ourselves several questions
may lead us to a concrete goal. To find an adequate question, a bird’s eye view of the
problem or phenomenon may help us. For example, we can ask ourselves as follows:

1. What is our research field?
2. Do we find any gaps between existing studies and general questions?
3. What is our focus?
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4. What kinds of questions can we ask in our focus?
5. What can we expect to contribute based on our resources and skills?
6. Can we find any relationship between our standing point and the questions?

These questions may also help us to find a concrete goal for our project:

• What types of data do we need?
• How many or much data do we need?
• What types of data do we need to reach our goal?

Through these questions, we find a way to investigate our object to reach our goal.
How do you feel from these questions? You may not find any concrete answers

to these questions. The main reasons why you cannot find any answers are because:

• a lack of information in the fields
• a lack of knowledge on the problem
• a lack of skills to solve the problem
• a lack of resources of the research

Then, you need to have an experience to treat the (even small) data on the problem
or the field at least to find a concrete answer. You can start your explanatory data
analysis from acquiring a small amount of data related to the field which you want
to contribute to. And then, you will be able to find better answers to the problem.

Furthermore, during our research activity, it is important for us to often check
whether our activity is adequate? To do so, it is useful to record logs of our own activi-
ties. In fact, documents ormemos of our own activities help us to confirmour research
activity. The research diary may be useful for this purpose. We can write our activity
in research noteswith dates. The software and procedures for computations should be
also recorded. We need to check our activity during our research project repeatedly.

2.4 Data Acquisition

The data is recorded from some data-generating source. The data of society are
currently available from web pages. Both personal and official web pages are a pre-
liminary data source of our society. Electronic commerce systems are also sources of
data for products and services. We can accumulate data on prices for goods and ser-
vices from application programming interface (API) of some data providers. Data of
financial markets, job opportunities, hotels, flights, traffic and so on are accumulated
via Web API nowadays.

Web API is an application programming interface which can be used via the
Internet. InWeb API, there are several technologies to exchange commands and data
between an API provider and users. Functions of natural language processing, geo-
graphical information systems (GIS), search engines and databases of e-commerce
services are available as Web APIs. This list shows several examples:

• Yahoo! JAPAN text analytics WebAPI [37]
• Jalan vacant room information retrieval WebAPI [18]
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• AB-ROAD travel retrieval WebAPI [2]
• Rakuten Web Service WebAPI [25]
• Google Translate WebAPI [14]

The secondary source of data is a sensor network. Several types of sensors have
recently become available. Some of them can send data to a database server via the
Internet directly. We require sensors that convert physical parameters to electrical
signals. The sensor signals are converted into a form that can be converted to digital
values. Analog-to-digital converters are included in the sensors. The sensors are
connected with one another through wired or wireless network. This is sometimes
referred to as Internet of things (IoT).

Machine-to-machine (M2M) solution is one of the implementations of IoT, which
is provided from several vendors. Functional requirements of the M2M application
are as follows:

• There are data that can be exchanged between a device and a server.
• There are device management capabilities provided by an M2M application.
• There are different components of which an M2M application is made.

Data management of the M2M application includes hierarchical structure of data
elements. The data type can be associated with the data elements. Primitive data
types such as string, integer, double, date, Boolean and byte array are supported.
Users can define constraints for the data, identify the protocol to be used when
exchanging a given data element and configure parameters to protocols. There are
some commands that can be sent by a server to a device, and sets of events that can
be sent by a device to a server.

2.5 Data Collection

Data collection is the process of gathering information. In the data collection, several
types of sampling methods are known:

• simple random sampling
• systematic sampling
• snowball sampling
• comprehensive sampling

A simple random sampling means that we obtain a subset of individuals chosen
from a larger set. Each piece of data is chosen randomly and has the same probability
to be chosen at any stages.

A systematic sampling is to sample data according to some ordering scheme
and then select elements at regular intervals through that ordered list, for example,
selecting every 10th name from the telephone directory.

A snowball sampling is often used in sociology and statistics research. Snowball
sampling is non-probability sampling where existing data recruits the potential data
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which will be sampled in the future. Therefore, the sample group appears to grow
like a rolling snowball. For example, suppose that we accumulate data of web pages
from theWorldWideWeb. In this case, firstly, we choose a web page. Next, we select
a page from a link included in the sampled web page. Repeating this procedure, we
eventually collect data of web pages.

A comprehensive sampling means that we obtain all the data that we can cover.
If we have sufficient computer resources and time, then we can conduct the compre-
hensive sampling.

The data are stored in computer systems as digital files such as CSV, TSV, XML
and so on. These files can be inserted into database servers, which play an important
role in data collection. A database management system (DBMS) is at the core of data
collection. Some types of DBMS are recently available:

• relational database
• XML database
• object-oriented database
• document-oriented database

We need to handle several types of databases at the same time. In the data collection,
we may need to determine the area of the data. A relational database management
system (RDBMS) have a high affinity with CSV and TSV formats. XML formats
can be transformed to CSV or TSV formats and can be handled by RDBMS. XML
databases can be used to handle XML-formatted data directly.

Furthermore, we need to carefully consider the way to prevent data loss. The data
loss badly affects results of data analysis and generate additional data acquisition and
costs. Intentional and accidental deletion of files or data damages collections of data.
Using a journaling file system and Redundant Arrays of Independent Disks (RAID)
storage can protect against some types of software and hardware failure. Regular data
backups are an effective method to recover the data from data-loss events. In fact,
user errors or system failures cannot be prevented by regular backups, but we may
quickly recover the system from such failures if we keep several versions of backups.

2.6 Data Validation

Data validation is one of the most important but the most time-consuming tasks [28].
Without clean data, data analysis and optimisation tools cannot work well. Data
analysis and optimisation solutions always assume the presence of correct data. In
many cases presence/inference of wrong data is even worse than absence of the data,
and a harmful effect in decision-making will happen. Therefore, it is an important
step for any researcher to verify and validate the accuracy and adequateness of the
data. There are several types of validation methods:
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• multiplexing data sources
• consistency check

– item count validation test
– range validation test

• finding outliers

Multiplexing data sources may help us to find data inconsistency. For example,
suppose that we use macroeconomic statistics such as population or GDP. Then,
we should collect the same data from two institutions. We can compare the same
data elements obtained from the difference institutions at least. If quantities in the
elements are different from each other, then we can understand that one of them is
wrong or contains some error. This technique is, of course, applicable to other areas
than macroeconomic data.

Consistency check is a common method for several types of data. In this case,
a physical model of data-generating mechanism is useful. For example, causality,
time and space can be used for this purpose. There are two types of data errors:
systematics errors and random errors. Systematics errors can result from bugs of
software to generate data or procedures. Thus, when they occur at all, they occur
repeatedly. Systematic errors can produce three types of errors: (1) too many data
elements, (2) too few data elements and (3) classification of data elements. The
primary action of the data validation is to identify the occasions when systematic
errors happen. (1) and (2) can be checked if we count the number of data elements.
This is called item count validation test. (3) can be confirmed by checking the types
of data and range of data. This is called range validation test. The range validation
test is done by checking that all records are within specified ranges.

Random errors are generated as input errors or judgement errors. In general,
random errors occur intermittently. This type of error can be detected as an outlier
from other values. Both the range validation and item count validation tests can be
used to detect random errors.

Range validation test is sometimes useful if the data are numeric or one of several
options. If a data element is out of range, then we can determine that it is wrong data.
When we use geographical information, we can use distance from a position as a
norm of data. We may find incorrect data as some outliers from a relation of feature
to the distance. When we use time series data, time order can be used to check the
data consistency. If the time order is contrary or missing, then we may find incorrect
data or missing data.

Outliers are defined as a data point that extremely differs from other data points.
Ben-Gal [5] classifies outlier detection methods into univariate statistical methods
and multivariate outlier detection. The earliest univariate methods for outlier detec-
tion use the assumption of an underlying knowndistribution of the data.Anoutlier can
be detected by usingmean of values included in a dataset and their standard deviation.
If we assume that the values are sampled from a normal distribution, then the prob-
ability where the samples appear between the mean minus three times the standard
deviation and the mean plus three times the standard deviation is 99.9%. Therefore,
the values deviating from this range are detected as outliers. Barnett and Lewis [3]
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showed statistical methods to identify outliers (Chauvenet’s criterion, Grubbs’s test
for outliers [15], Peirce’s criterion [23], Dixon’s Q test [9], Thompson test). In the
multivariate case, Mahalanobis distance [21] can be used. The Mahalanobis dis-
tance [21] for each multivariate data point xs (s = 1, . . . , T ) is defined as

Ms =
(
(xs − x̄)TV−1

n (xs − x̄)
)1/2

, (2.1)

where V represents the sample covariance matrix defined as

V = 1

T − 1

T∑

s=1

(xs − x̄)(xs − x̄)T, (2.2)

and x̄ the sample mean. A large value of Ms for the s-th data point indicates that it
is an outlier.

During the data analysis, we may often find some outliers. In this case, we should
check whether the outliers are consistent with the mechanism to generate the data or
not.

Data quality problems are recognised as important tasks in data engineering.
Detecting and removing errors and inconsistencies from data improve the quality of
data. These tasks are called “data cleaning”. There is a big range of data cleaning
commercial tools available in themarket. Some of those aremore generic in operation
and others are solving a specific problem in a particular domain. Rahm and Do [24]
also propose five phases of data cleaning approaches to construct an automated data-
cleaning system for data warehousing:

• Data analysis
• Definition of transformation work flow and mapping rules
• Verification
• Transformation
• Backflow of cleaned data

The data analysis is needed in order to detect which kinds of errors and inconsisten-
cies are to be removed. The definition of schema-related data transformations and
mapping rules for data elements should be considered. The correctness and effec-
tiveness of a transformation work flow and the transformation definitions should be
tested and evaluated. The transformation steps are executed.After errors are removed,
the cleaned data should also replace the dirty data in the original sources. To data
quality management (DQM) to the data loaded in the system, we need define DQM
rules that perform a variety of repair, clean up, and standardisation functions on
incoming identity data values. These functions are implemented in recent Big Data
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Analytics solutions such as IBMNetezza,1 SAPDataQualityManagement software2

and Talend Enterprise Data Quality solution.3

2.7 Explanatory Data Analysis

One of the most important steps in the investigation is an explanatory analysis [34].
This is a kind of feasible study. The explanatory data analysis consists of the following
steps:

1. visualise data and compute fundamental statistics
2. construct a model from ideas obtained from statistical analysis
3. estimate model parameters
4. validate or check an adequacy of the model with parameter estimates
5. interpret data using the estimated model
6. repeat 1–5 until we are satisfied with the interpretation

Concretely, this procedure can be drawn as

1. Make scatter plots between variables, draw time series, networks and spatial
plots, and make a histogram from observations. From the plots, we can find
some patterns and detect outliers of data. If we need a new axis of data, we
define it or additionally start to collect data from environment. It is useful to
compute descriptive statistics (mean, variance, quartile, skewness, and kurtosis).
Changing granularity of data or spatio-temporal scales we need to compute these
fundamental properties of data.

2. Applying methods of multivariate analysis (regression analysis, principal com-
ponent analysis, spatial regression, and factor analysis) and time series analysis
(autoregressive analysis) we need to determine relationship among variables and
their temporal transitions (transition probabilities). These processes provide us
with ideas on data generating mechanisms and stochastic models as an approxi-
mation of actual mechanism.

3. Repeating step 1 and step 3, we increase kinds of data and accumulate the number
of observations as well as ideas of models for variables.

4. Realising the model, we attempt to estimate model parameters from observations.
If we use a regression model, we will check goodness-of-fit of data for the model
in terms of an explained variable and explanatory variables. A degree of freedom
of the model is determined by using some criteria such as information criteria.
Data bias (sampling bias, processing bias, and so on) should be taken into account
in this step. During this step, we sometimes recognise a fault of data acquisition
or data collection.

1 IBM Netezza: http://www-01.ibm.com/software/data/netezza/.
2 SAP Data Quality Management software: http://www.sap.com/pc/tech/enterprise-information-
management/software/data-quality/index.html.
3 Talend Enterprise Data Quality solution: http://www.talend.com/resource/data-quality.html.

http://www-01.ibm.com/software/data/netezza/
http://www.sap.com/pc/tech/enterprise-information-management/software/data-quality/index.html
http://www.sap.com/pc/tech/enterprise-information-management/software/data-quality/index.html
http://www.talend.com/resource/data-quality.html
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5. Repeatedly step 1 to step 4, we eventually accumulate our knowledge on phe-
nomena and data. If we cannot reach an adequate interpretation, then we go back
to previous steps.

2.8 Data Analysis

How do we analyse the data which we have in our problem or project? The applied
data-centric social sciences are cyber-enabled and require the use of inductive strate-
gies to define problems and solution. One of our final goals in the inductive approach
is to find amodel to explain the data-generating mechanism. If we have a goodmodel
to explain it, we have an ability to predict or to infer the phenomenon which we treat
from a subset of the data.

In the data analysis, we can have several types of tools: segmentation, change-
point-detection, parameter estimation, classification, correlation, quantification and
so on. These methods and tools are addressed in Chap. 3 in detail.

2.9 Data Life-Cycle

Data is often used for a longer lifespan than the research project that creates them.
Researchers may continue to work on data after funding is over. Following projects
may need data to analyse them or add to the data. The secondary analysis of the data
will need the data to analyse them for purposes other than those the primary project
intended. As shown in Fig. 2.1, the data creation, recycle and reuse is an ongoing
process. The data life-cycle is constructed from the following elements:

• creating data
• processing data
• analysing data
• preserving data
• giving access to data
• reusing data

The data is created from both new data collection which is acquired from the
research activity and old data collection which was created at the past activity.
Processing data and analysing data are done in the current research project, as we
have seen above. The data created in the activity should be preserved as an archive.
Giving access to data means that the authors of the data transfer ownership to others
and waive the authors’ right, which places the work into the public domain. In the
European Union, there is the database right. In some countries, there may be no
protection for collections of data. When we reuse the data in our own publications,
we should indicate the licence under which we are reusing the data in order to make
readers to recognise the data reused.

http://dx.doi.org/10.1007/978-4-431-54974-1_3


66 2 Framework

Fig. 2.1 A schematic
illustration of data life-cycle

2.10 Social Implementation

2.10.1 Examples

Recently, data-oriented services have launched in several branches of commercial
sectors. Facebook [12] and Twitter [35] are currently first examples of social media.
ResearchGate [26] and Google Scholar [13] are academic examples. In the case of
tourism management systems, Expedia [11], Ebookers [10] and Tripadvisor [32] are
good examples. SurveyMonkey [29] enables us to design, collect and analyse our
own surveys.

After the Earth Summit, which was held in Rio de Janeiro in 1992, the finiteness
of our environment and the importance of monitoring our society was recognised.
Several international institutions have issued sustainability indicators in order to
guide and facilitate decision-making.

Consequently, social statistics databases from public sectors are available. United
Nations Statistical Databases (UNSD)4 provide sustainable development indicators
as well as macro statistics. United Nations Commission on Sustainable Development
(CSD) indicators (CSDIs) for Sustainable Development are measured in 14 themes:

• poverty
• natural hazards
• economic development
• governance
• atmosphere
• global economic partnership
• health
• land

4 http://unstats.un.org/unsd/databases.htm.

http://unstats.un.org/unsd/databases.htm
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• consumption and production patterns
• education
• oceans, seas and coasts
• biodiversity
• demographics
• freshwater

The European Union also selects eleven headline indicators as Sustainable Devel-
opment Indicators (SDIs)5:

• socioeconomic development
• sustainable consumption and production
• social inclusion
• demographic changes
• public health
• climate change and energy
• sustainable transport
• natural resources
• global partnership
• good governance

The World DataBank of the World Bank is a free and open comprehensive data
service on socioeconomic-technological systems, which provides several perspec-
tives as macroeconomic indicators related to human activities [31]. Much of the data
from the statistical systems of 188 member countries of the International Bank for
Reconstruction and Development (IBRD).

Helbing and Balietti proposed the 85 online repositories for the socio-economic
sciences [17]. They classified these databases into 18 categories such as:

1. Internet and historical snapshots
2. information retrieval engines
3. text mining on the Web
4. social data sharing
5. conflict data
6. data in economics and finance
7. scientific collaboration data
8. social sciences
9. urban data
10. traffic data
11. open maps
12. logistic data
13. health data
14. climate and environmental data

5 http://epp.eurostat.ec.europa.eu/portal/page/portal/sdi/indicators.

http://epp.eurostat.ec.europa.eu/portal/page/portal/sdi/indicators
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15. energy
16. reality mining
17. other open data initiatives

These databases define situations of our world from several dimensions such as
economy, environment, technology and societies. Some of them have been updated
and expanded currently. The current data availability of databases obviously enhance
our research and business environment. A future data availability will expand our
research to capture our world from data-centric point of view more than the current.

2.10.2 Privacy and Public Utility

2.10.2.1 Data Protection Act

The Data Protection Act 1998 is a United Kingdom Act of Parliament which defines
UK law for processing data on identifiable living people [8]. It provides us with
the ability to control the area and purpose where our personal information is used
by organisations, businesses or the government with the contract at the time when
we provide our personal information. Everyone who is responsible for using data
has to follow strict rules called data protection principles. They must make sure the
information is:

• used fairly and lawfully
• used for limited, specifically stated purposes
• used in a way that is adequate, relevant and not excessive
• accurate
• kept for no longer than is absolutely necessary
• handled according to people’s data protection rights
• kept safe and secure
• not transferred outside of the company without adequate protection

Fundamentally, usage of personal information other than primary purposes is not per-
mitted. Specifically, ethnic background, political opinions, religious beliefs, health,
sexual health and criminal records are sensitive information tobe treatedwith stronger
legal protection.

However, the implementation of data protection principles strongly depends on
countries. For instance, U.S.-based service providers mostly implement their own
privacy policy as self-regulations. The mindset behind this could be summarised as
“agree, or stay out”. Users whowant to use servicesmust accept terms and conditions
before they provide their privacy data. European data protection laws are more based
on laws and regulations. European privacy protection research has identified three
major protection goals of privacy, equivalent to the well-known protection goals of
common security such as confidentiality, availability and integrity. In addition to
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them, transparency, intervenability and unlinkability are to be considered. Confiden-
tiality is an opposite concept to availability. Transparency is opposite to unlinkability.
Integrity is opposite to intervenability. These axes show trade-off relationships in pri-
vacy protection.

Demand of secondary usage of data is observed. There is a trade-off relation-
ship between privacy and transparency. Thus, the task of implementing transparency
services is a crucial part of all electronic commerce under the regulation.

Anonymisation is one of the key technologies. The data related to privacy is often
used for secondary purposes after anonymisation. Several types of anonymising
techniques are available. For example, deletion of personal identification numbers
and random shuffling are often used. In this case, some methods can keep statis-
tical properties of the data. This technique is called data anonymisation. In a data
anonymisation process, a real-world application of a privacy-preserving technology,
which is called the synthetic data generation, is needed [20]. A plenty of data process-
ing techniques regarding privacy-preserving are recently proposed [1, 22, 33, 36].
The privacy-preserving computations consist of several computations executed in
partitioned databases while keeping privacy [1]. The privacy-preserving record link-
age techniques [36] allow the linking of databases between organisations while at the
same time preserving the privacy of these data. Tsubaki considers a way to evaluate
the value of informative data for prediction under partial disclosure [33].

In the study of synthetic data generation [20], there are three types of privacy
definition. l-diversity, (d, γ )-privacy and differential privacy. l-diversity can protect
against adversaries with background knowledge, but it does not always guarantee
privacy when there is a semantic relationship between distinct sensitive values.
(d, γ )-privacy is a probabilistic privacy definition in which an adversary believes
in some prior probability appearing in the data. Differential privacy is a privacy defi-
nition that the anonymisation algorithm should not give additional information about
the remaining individual to the adversary who knows complete information about
all individuals in the data except one. Jensen also proposes a decentralised solution
for supporting an anonymised collection of transparency-relevant information based
on the service-oriented principles [19].

In the data validation service, privacy issues are important. Soni et al. propose
three types of data validation concepts [28]: producer-centric, customer-centric and
reporting-centric. In the provider-centric approach, the actual processing of the data
is performed on provider’s side, which implies that the relevant data is transferred
from consumer to provider. The customer-centric approach shows high privacy but
low latency and low efficiency. In the consumer-centric approach, the processing is
performed on the consumer side. This results in low privacy but high latency and high
efficiency. In the reporting-centric approach, the processing of rules is performed as
it is in the consumer-centric approach; however, the flagged data is transferred to the
provider for reporting purposes. This shows medium privacy and medium latency
but low efficiency.
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2.10.3 Problems in Social Implementation

We need to carefully consider social implementation to data-centric social sciences.
We eventually recognise several types of problems relating to social implementation
of the data-centric approach:

• data lifetime
• data accuracy
• manipulation

The available time of individuals is finite. We often face the problem of data lifetime.
Imagine that some data can be shared in some individuals in order to decide their
behaviour. The data are created step by step and change gradually. The previous
data may mislead the behaviour of the decision-maker. How do we distinguish old
data from the latest data? I think that we should observe physical environment and
interpret the data with a linkage with the actual environment.

The second problem is data accuracy. The data accuracy should be confirmed
based on data from other sources or improved by using several validation procedures.
If we found some differences between two databases, then we understand that we
need to validate the data from these databases. These data errors may mislead both
individual and social behaviour. The manipulation by data is sometimes observed.
Some of them are used for the purpose of controlling social behaviour in public
sectors or commercial sectors. The Libor (London Interbank Offered Rate) scandal
was a series of fraudulent actions. Thiswas that severalworld’s banks obtained profits
by manipulating the Libor interest rate illegally [4, 27].

2.10.4 Application of Data Analysis Techniques

Data analysis techniques can be used to detect fraud behaviour. These techniques
were firstly employed by banks, telephone companies and insurance companies.
The techniques for fraud detection are classified into two main categories including
artificial intelligence and statistical techniques [6]. Someof the examples of statistical
data analysis techniques are as follows:

• data preprocessing for detecting, validating, correcting error and filling up of incor-
rect and missing data

• computation of user profile
• matching algorithms for detecting incongruities in the behaviour of users or trans-
actions, which are compared with earlier known profiles or models

To apply these techniques to actual situations, we need to access private data. How-
ever, public utility in commercial transactions is sometimes prioritised in comparison
with privacy. Other examples are found in drug development. A database concerning
medication delivery to the patients has recently been analysed for the purpose of drug
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design. Patients’medical data are recorded as electronic health records (EHRs). There
are studies on a privacy-protecting information system for controlled disclosure of
EHR related to personal data to third parties [16]. The automated healthcare-data-
mining system is studied as applications of web technology to healthcare for remote
patients [30]. The data-mining service extracts information from data based on a
correlation between lifestyle and health data.
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Chapter 3
Mathematical Expressions

Abstract Statistical methods are useful tools to deal with data on
socioeconomic-technological systems. In this chapter, we will address fundamental
expressions used in statistics and methods of data analysis: time series analysis,
network analysis and spatial analysis.

3.1 Statistical Methods

Uncertainty is deeply related to randomness, which originates from a lack of
knowledge. Randomness comes from a large number of possible realisations due to
an enormous number of combinations (complexity). Under complexity, we should
use a statistical method to understand the meaning of randomness. Knight calls
measurable uncertainty risk, and distinguishes it fromunmeasurable uncertainty [27].

To measure socioeconomic-technological systems, we can extract information on
the underlying characteristics of observations. If the statistical properties are stable
over time, thenwemayuse them for our decisionmaking.Themeasurable uncertainty
can be expressed using a probability.

3.1.1 Stochastic Variables and Probability Distributions

Suppose that there is a causality for actual events. Let us consider the value of an
output (outcome) X generated from an input (cause) π, which depends on changes
in time and circumstances. Furthermore, suppose that we cannot determine the
value of π for each X from direct observation because of insufficient knowledge or
technology.

Even under these circumstances, it is possible to study the values of X that are
generated as output repeatedly. In this way, we can gain some understanding of the
properties of the output. This, in turn, may make it possible to predict, at least to
some degree, what the output will be even in the case of uncertain values of π.

A.-H. Sato, Applied Data-Centric Social Sciences, 75
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An observed sequence of outputs, for example, x1, x2, . . . , xT is called a sample.
When we express an output X as a function X (π) of some uncertain input π, we
consider X to be a stochastic variable.

For stochastic variables, when the value of X is associated with discrete events
Ei , which are mutually exclusive (Ei

⋂
E j = ∀; i ∈= j), the ‘probability’ of each

state Ei is written as Pr[Ei ].
The probability is the non-negative real-valued function defined by the set of

events that fulfils the following principle:

1. The probability of each event occurring is more than 0 and less than 1. Namely,
0 ⇒ Pr[Ei ] ⇒ 1 holds for all i .

2. The probability of the whole event S = ⋂n
i=1 Ei occurring is 1: Pr[S] = 1

3. The sum rule holds for countable exclusive events: Pr[⋃n
i=1 Ei ] = ∑n

i=1 Pr[Ei ]
In terms of a consecutive state space, for continuous random variables for which

R = {−∞ < x < ∞} applies, we can use the probability density function (PDF)
p(x) ≥ 0 to express the probability distribution for a given interval (a; b] as

Pr[a < X ⇒ b] =
b∫

a

p(x)dx . (3.1)

This means that the probability of a stochastic variable X falling within a minute
interval (x; x + σx] is approximately equal to the quadrilateral area between the
graph y = p(x) and the x-axis (y = 0):

Pr[x < X ⇒ x + σx] ≡ p(x)σx . (3.2)

In accordance with the definition of a probability, the probability of the whole event
is 1. This can also be expressed as a normalisation condition:

∞∫

−∞
p(x)dx = 1. (3.3)

The probability of X being less than x is expressed as

Pr[X ⇒ x] =
x∫

−∞
p(x ≈)dx ≈. (3.4)

This is called the cumulative distribution function (CDF). In addition, the probability
of X being greater than x is expressed as

Pr[X > x] =
∞∫

x

p(x ≈)dx ≈. (3.5)
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This is called the complementary cumulative distribution function (CCDF). Clearly,
Pr[X ⇒ x] + Pr[X > x] = 1 holds.

The CDF Pr[X ⇒ x], calculated from Eq. (3.4), is a non-decreasing function. In
addition, we can derive a PDF from Pr[X ⇒ x] through differentiation owing to the
relationship between integration and differentiation.

p(x) = d

dx
Pr[X ⇒ x]. (3.6)

Recall that the discrete probability variable X is derived from the discrete state,
R = {a1, a2, a3, · · · }. Using the concept of the PDF defined in Eq. (3.6), we can
express the PDF of the stochastic variable X as

p(x) =
∞⎧

n=1

pnΔ(x − an), (3.7)

where Δ(x) is a Dirac Δ-function. For a given continuous function f (x) and a given
real number x0, the Δ-function fulfils the following characteristics:

f (x0) =
∞∫

−∞
f (x)Δ(x − x0)dx,

∫ ∞

−∞
Δ(x)dx = 1. (3.8)

Accordingly, we refer to p(x) as a probability density function in the case of discrete
random variables as well as continuous random variables.

The measure of central tendency for stochastic variables are the mode, median
and mean. The mode m∗ is the value where the probability density function p(x) is
maximised:

m∗ = argmax
x

p(x). (3.9)

The median mm is the value for which the probability of being higher or lower than
X is equal:

Pr[X ⇒ mm] = Pr[X ≥ mm] = 1

2
. (3.10)

The mean m1 or E[X ] corresponds to the expected value of the stochastic variable X :

m1 = E[X ] =
∞∫

−∞
xp(x)dx . (3.11)

The mode, median and mean depend on the form of the PDF p(x) and are not
necessarily always the same value. We can also use the variance defined as
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Var[X ] = θ 2 = E[(X − m1)
2] =

∞∫

−∞
(x − m1)

2 p(x)dx . (3.12)

The variance is also calculated as Var[X ] = E[X2] − E[X ]2. In addition, the square
root of the variance is called the standard deviation θ .

Next, we introduce moments as a more generalised approach to the mean and
variance.

E[Xr ] =
∞∫

−∞
xr p(x)dx . (3.13)

The mean is calculated using r = 1, and is the first moment. The variance can be
calculated using the r = 2 and r = 1 moments.

Generally, when the stochastic variable X follows the probability density function
p(x), the expected value for the stochastic variable f (X) is calculated as

E[ f (X)] =
∞∫

−∞
f (x)p(x)dx . (3.14)

In addition to the standard deviation and the three measures of central tendency,
other important quantities that characterise the PDF include skewness and kurtosis.
These quantities standardise the standard deviation to the third and fourth power as
the third and fourth central moments defined as

λ3 = E[(X − m1)
3]

θ 3 , λ4 = E[(X − m1)
4]

θ 4 . (3.15)

If the form of the PDF is symmetrical, the skewness is λ3 = 0. The kurtosis λ4
quantifies the peakedness of the PDF.

A normal (Gaussian) distribution is often used. Its PDF is defined as

p(x) = 1
⎪
2Γθ 2

g

exp
⎨
− (x − μ)2

2θ 2
g

⎩
, (3.16)

where μ and θg are parameters representing mean and standard deviation,
respectively. Equation (3.16) is often denoted as N (μ, θ 2

g ). Its CDF and CCDF are
calculated as

Pr[X ⇒ x] = 1

2

[
1 + erf

( x − μ≤
2θg

)]
, (3.17)
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Pr[X > x] = 1

2

[
erfc

( x − μ≤
2θg

)]
, (3.18)

where erf(x) and erfc(x) are the error function and the complementary error function.
They are, respectively, defined as

erf(x) = 2≤
Γ

x∫

0

e−t2dt, erfc(x) = 2≤
Γ

∞∫

x

e−t2dt. (3.19)

The skewness and kurtosis of a normal distribution defined in Eq. (3.16) are,
respectively, given as λ3 = 0 and λ4 = 3.

A Poisson distribution is an example of a discrete distribution, which is used in a
counting process under a diluted assumption. This is formalised as

Pr[X = n] = e−λP λn
P

n! , (3.20)

where λP (>0) is called intensity and n represents a non-negative integer
(n = 0, 1, 2, . . .). The mean of Eq. (3.20) is given as m1 = λP , and its variance
as θ 2 = λP .

Both the normal and Poisson distributions are derived as different limits of a
binomial distribution, respectively.

3.1.2 Sample Moment

Themoments corresponding to the stochastic variables andPDFsdescribed above can
be estimated using data (samples). Assume that there is a sample Xi (i = 1, . . . , T )

of T items that are independently and randomly selected from the PDF p(x). This
is called a random sample. In this case, the simple mean calculated from the sample
data is the sample mean.

m̂1 = 1

T

T⎧

i=1

Xi . (3.21)

In addition, the variance calculated from the sample data is the sample variance.

θ̂ 2 = 1

T

T⎧

i=1

(Xi − m̂1)
2. (3.22)

In the same manner, we use the following calculation for the r subsequent sample
moments.
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m̂r = 1

T

T⎧

i=1

Xr
i . (3.23)

In accordance with the law of large numbers (described below), as the number of
samples increases, the r subsequent sample moments converge to the moments com-
puted from the PDF.

Generally, for a random sample Xi (i = 1, . . . , T ) and E[ f (X)] < ∞, the
following holds:

YT = 1

T

T⎧

i=1

f (Xi )
a.s.→ E[ f (X)], (3.24)

where a.s. represents almost sure convergence, such that for a stochastic variable
sequence {YT (π)} defined on π ∈ � if and only if π where {YT (π)} does not
converge to the right hand side are included in a zero-probability event.

3.1.3 Major Limit Theorems

Assume that there is an i.i.d. stochastic variable series, X1, X2, . . .with a finite mean
m1. The initial T items of the sample mean ST = 1

T

∑T
i=1 Xi converge to m1 as

T → ∞. This can also be expressed as follows:

ST
a.s.→ m1, ST

P→ m1.

The former is called the strong law of large numbers and the latter is called the weak

law of large numbers. Here
P→ represents convergence in probability.

Assume that there is an i.i.d. stochastic variable series, X1, X2, . . . with finite
mean m1 and variance θ 2. In this case, the following applies.

≤
T

ST − m1

θ

d→ N (0, 1).

This expression describes how the distribution for ST approaches a normal distribu-

tion when T is large. Here,
d→ represents convergence in distribution.

3.1.4 Multivariate Case

The probability of the joint events X = ak , Y = b j being realised when there are
two stochastic variables X (π) and Y (π) is called a joint probability distribution, and
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is expressed as

Pr[X = ak, Y = b j ] = Pr[ak, b j ], k, j = 1, 2, . . . . (3.25)

The sum of probabilities over the event is normalised as

∞⎧

k=1

∞⎧

j=1

Pr[ak, b j ] = 1. (3.26)

The probability distribution obtained by the summing a joint probability distribution
in terms of one variable with respect to one other variable is called a marginal
probability distribution:

PX (ak) =
∞⎧

j=1

Pr[ak, b j ], (3.27)

PY (b j ) =
∞⎧

k=1

Pr[ak, b j ]. (3.28)

The joint probability is equivalent to a product of marginal distributions Pr[ak, b j ] =
PX (ak)PY (b j ) if and only if two stochastic variables X (π) and Y (π) are independent
of each other.

The joint probability of events {X ∈ A, Y ∈ B} for two continuous stochastic
variables X and Y can be described as

Pr[X ∈ A, Y ∈ B] =
∫

x∈A

∫

y∈B

p(x, y)dxdy, (3.29)

where p(x, y) is called the joint probability density function. The joint probability
density function fulfils p(x, y) ≥ 0 and

∫∞
−∞

∫∞
−∞ p(x, y)dxdy = 1. The marginal

probability density function is defined by integrating a joint probability density func-
tion in one variable:

pX (x) =
∞∫

−∞
p(x, y)dy, (3.30)

pY (y) =
∞∫

−∞
p(x, y)dx . (3.31)

The joint probability density is equivalent to a product ofmarginal probability density
functions, p(x, y) = pX (x)pY (y) if and only if x and y are independent of each
other.



82 3 Mathematical Expressions

Covariance can be defined as

Cov[X, Y ] = E[XY ] − E[X ]E[Y ]. (3.32)

Covariance is a quantity that describes the relationship between the alignment of two
stochastic variables. When the covariance is positive, Y has a tendency to increase as
X increases, and conversely, to decrease as X decreases. Note that the covariance is a
quantity that depends on the scales of X and Y . Therefore, covariance in itself is not
very useful. To solve this problem, practical applications often use the standardised
correlation coefficient, which is based on the size of the standard deviation and
correlation

Corr[X, Y ] = Cov[X, Y ]≤
Var[X ]≤Var[Y ] .

TheCauchy-Schwartz inequality indicates that the value of the correlation coefficient
satisfies −1 ⇒ Corr[X, Y ] ⇒ 1. The closer the correlation value is to 1, the more
positive the relationship, and the closer it is to−1, the more negative the relationship.
If the correlation is 0, then this means that there is no relationship. A value of
Corr[X, Y ] = ±1 indicates perfect correlation.

From observations (xi , yi ) (i = 1, . . . , T ), covariance Cov[X, Y ] can be approx-
imated as

Cov[X, Y ] ≡ 1

T

T⎧

i=1

xi yi −
⎨ 1

T

T⎧

i=1

xi

⎩⎨ 1

T

T⎧

i=1

yi

⎩
, (3.33)

which is called the sample covariance.
In addition, the conditional probability density function can be defined as

p(x |y) = p(x, y)

p(y)
, p(y) > 0. (3.34)

Using this definition, the conditional expectation value can be defined as

E[X |Y ] =
∞∫

−∞
xp(x |y)dx . (3.35)

For a stochastic variables X1, . . . , X N for which N (≥2) applies, the joint probability
density, conditional probability density, and conditional expectation value can be
defined in the same manner.
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3.1.5 Entropy and Relative Entropy

In this section, we introduce entropy, which is a measure that quantifies the
randomness of a phenomenon within the scope of a PDF. The information entropy
for N -dimensional PDF p(x1, . . . , xN ) is given as

S(p) = −
∫

dx1 . . .

∫
dxN p(x1, . . . , xN ) ln p(x1, . . . , xN ). (3.36)

Entropy concerns the ease of predicting event Xi . Now, consider a single variate case
(N = 1). In the case that the stochastic variable X is often realised around the mode
m∗, the entropy becomes a small value. This implies that the mode estimator gives
a good prediction.

Relative entropy is the standard for measuring the difference between two PDFs
p1 and p2. Kullback–Leibler divergence (KL divergence) is one of the most general
form of relative entropy. KL divergence is defined as

I (p1, p2) =
∫

dx1 . . .

∫
dxN p1(x1, . . . , xN ) ln

p1(x1, . . . , xN )

p2(x1, . . . , xN )
. (3.37)

I (p1, p2) shows non-negativity. In the inequality I (p1, p2) ≥ 0, the equality is
satisfied when p1(x1, . . . , xN ) and p2(x1, . . . , xN ) are identical p1 = p2 almost
everywhere domain of (x1, . . . , xN ). This can be derived by using ln x ⇒ x − 1
(when equality is satisfied with x = 1).

I (p1, p2) is asymmetric. I (p1, p2) ∈= I (p2, p1) and, accordingly, the triangular
inequality I (p1, p2)+ I (p2, p3) > I (p1, p3) are not satisfied. As a result, the axiom
of distance is not satisfied, which we refer to as quasi-distance. J -divergence, which
matches themutual inversion of relative entropy, J (p1, p2) = I (p1, p2)+ I (p2, p1)
is often used so that symmetry is satisfied.

Jensen–Shannon divergence is known as another type of relative entropy. Lin
proposed a symmetric measure to calculate distance between two probability density
functions, called Jensen–Shannon divergence (JS divergence), as a new definition
for relative entropy [28]. JS divergence allows the probability density function to
take a zero value since 0 ln 0 = 0, which is proven in Appendix A.

For two density functions, p1(x1, . . . , xN ) and p2(x1, . . . , xN ), JS divergence is
defined as

J S2(p1, p2) = S
⎨
Γ1 p1 + Γ2 p2

⎩
− Γ1S(p1) − Γ2S(p2), (3.38)

where S(p) is the information entropy introduced by Eq. (3.36), and the weights Γ1
and Γ2 must satisfy Γ1 + Γ2 = 1, for 0 ⇒ Γ1 ⇒ 1 and 0 ⇒ Γ2 ⇒ 1.

1. Non-negativity: JS divergence is the non-negative value J S2(p1, p2) ≥ 0.
J S2(p1, p2) = 0 is satisfied only when p1(x1, . . . , xN ) = p2(x1, . . . , xN ).
almost everywhere domain of (x1, . . . , xN ).
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2. Symmetry: JS divergence has symmetry J S2(p1, p2) = J S2(p2, p1). However,
because JS divergence does not satisfy the triangular inequality either, it is a
quasi-distance that does not fully satisfy the distance axiom.

JS divergence can be extended as follows as a measure that for comprehensively
quantifying the degree of similarity in the probability density for K items:

J SK (p1, . . . , pK ) = S
⎨ K⎧

i=1

Γi pi

⎩
−

K⎧

i=1

Γi S(pi ), (3.39)

where weight Γi must satisfy the characteristic of
∑K

i=1 Γi = 1, for 0 ⇒ Γi ⇒ 1.

1. Non-negativity: K -variate JS divergence is a non-negative value.
J SK (p1, . . . , pK ) ≥ 0. J SK (p1, . . . , pK ) = 0 is only satisfiedwhen p1(x1, . . . ,
xN ) = · · · = pK (x1, . . . , xN ) almost everywhere.

2. Convertibility: K -variate JS divergence satisfies convertibility for distributions.
J SK (p1, . . . , pi , . . . , p j , . . . , pK ) = J SK (p1, . . . , p j , . . . , pi , . . . , pK ).

3.1.6 Maximum Likelihood Estimation

When assuming a model and estimating the model parameters from data, it is natural
to select parameters that minimise the difference between the true distribution p1
assumed from the data and the model distribution p2. In this case, it would be
appropriate to measure the difference between p1 and p2 using Kullback–Leibler
divergence:

I (p1, p2) =
∞∫

−∞
dX1 . . .

∞∫

−∞
dX N p1(X1, . . . , X N ) ln

⎨ p1(X1, . . . , X N )

p2(X1, . . . , X N )

⎩

= Ep1

[
ln
⎨ p1(X1, . . . , X N )

p2(X1, . . . , X N )

⎩]

= Ep1 [ln p1(X1, . . . , X N )] − Ep1 [ln p2(X1, . . . , X N )], (3.40)

where Ep[X ] represents the mean of X in terms of the PDF p. Since the first term of
the right hand side in Eq. (3.40) only depends on the true PDF of the data, it does not
contribute to theminimisation of Eq. (3.40). The second term of the right hand side in
Eq. (3.40), which is called a cross entropy to measure the fit between the model and
true distributions. The maximisation of the cross entropy Ep1 [ln p2(X1, . . . , X N )]
implies the minimisation of the distance between p1 and p2. Although the true PDF
of the data is unknown, if there are a sufficient number of observations, it is possible
to compute the cross entropy (the mean logarithmic likelihood) as the sample mean
in accordance with the law of large numbers.
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In the context of parameter estimation, p1 is a true PDF generating the data, which
is given as T samples {x1, . . . , xT }, and p2 is a PDF assumed as amodel. Ifwe assume
that the sample xi is sampled from an i.i.d distribution, then we employ a simpler
model distribution p2(X1, . . . , XT ) = ∏T

i=1 p2(Xi ). Then, the cross entropy can be
approximated as the sample mean in terms of the data,

Ep1 [ln p2(X1, . . . , XT )] = Ep1

[

ln
T∏

i=1

p2(Xi )

]

≡
T⎧

i=1

ln p2(xi ). (3.41)

Furthermore, we assume a functional form of p2(X1, . . . , XT ) in terms of m
parameters {θ1, . . . , θm} as p2(X; θ) and want to estimate adequate parameters
{θ̂1, . . . , ˆθm}. Then, the cross entropy is described as a function in terms of the
parameters {θ1, . . . , θm} and called the log–likelihood function:

l(θ1, . . . , θm) =
T⎧

i=1

ln p2(xi ; θ1, . . . , θm). (3.42)

Thus, adequate parameters minimising the Kullback-Leibler divergence defined in
Eq. (3.40) are given by maximising the cross entropy Ep1 [ln p2(X1, . . . , X N )]:

{θ̂1, . . . , ˆθm} = arg max
θ1,...,θm

l(θ1, . . . , θm). (3.43)

This solution can be obtained from likelihood equations

∂l

∂θ1
= · · · = ∂l

∂θm
= 0. (3.44)

The Cramér-Rao inequality provides us with a lower bound on the variance-
covariance matrix of the bias θ̂ − θ . The score of the observations {x1, . . . , xT } for
the assumed PDF p2(xi ; θ1, . . . , θm) is defined as

Yki (θ1, . . . , θm) = ∂

∂θk
ln p2(xi ; θ1, . . . , θm). (3.45)

The Fisher information is defined as the variance of the scores

Fi j = E
[ ∂

∂θi
ln p2(x; θ1, . . . , θm)

∂

∂θ j
ln p2(x; θ1, . . . , θm)

]
, (3.46)

or the second partial derivatives of the Shannon entropy of p2 in terms of parameters
θi (i = 1, . . . , m).

Fi j = −E
[ ∂2

∂θi∂θ j
ln p2(x; θ1, . . . , θm)

]
, (3.47)
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which it can be derived as the Hessian of the log–likelihood function. This gives the
lower bound of variance-covariance matrix of the bias:

Cov[θ̂i − θi , θ̂ j − θ j ] ≥ [F−1]i j . (3.48)

Moreover, if we assume that a model is Markovian, then we may employ
a model distribution p2(X1, . . . , XT ) = ∏T

i=2 q2(Xi |Xi−1; θm+1, . . . , θm+n)r2
(X1; θ1, . . . , θm), where q2(x2|x1; θm+1, . . . , θm+n) is a PDF of x2 conditioning
on x1 and r2(X1; θ1, . . . , θm) is an unconditional PDF of X . In this case, the log–
likelihood function is written as

l(θ1, . . . , θm+n) =
T⎧

i=2

ln q2(Xi |Xi−1; θm+1, . . . , θm+n) + ln r2(X1; θ1, . . . , θm).

(3.49)
However, we cannot always get the solution of Eq. (3.43) in an analytical manner.

We often need to use a numerical method to solve it. To solve this optimisation
problem, we use a gradient method. Furthermore, the log–likelihood function is not
always unimodal and its convexity is not always guaranteed. Therefore, we need
to calculate optimised parameters from different initial parameter values in several
trials, and then we choose the most optimal ones as parameter estimates. Note that
this method does not always guarantee the global optima of Eq. (3.43).

3.1.7 Gradient Method

In most cases, Eq. (3.43) cannot be solved in any analytical manner. Thus, we must
use numerical optimisation methods. In fact, there are many methods to find an opti-
mal solution numerically. Gradient ascent (descent) is the first-order optimisation
algorithm to find a local maximum (minimum) of a function using gradient ascent
(decent). Suppose that U (x) is a scalar function in terms of m-dimensional mul-
tivariate variable x. U (x) increases (decreases) fastest if one goes from a in the
direction of the positive (negative) gradient at a, ∇U (a) = ∑m

i=1
∂U
∂xi

(a)ei , where
ei represents the i-th orthogonal unit vector in the m-dimensional space, such that
ei · e j = Δi j for i, j = 1, . . . , m. For a small value ζn , the sequence x0, x1, x2, · · ·
such that

xn+1 = xn ± ζn∇U (xn), (3.50)

may converge to the desired local maximum (minimum) of U (x) corresponding
to an initial value x0. The conjugate gradient (CG) method is an algorithm for the
numerical solution of particular systems of linear equations and is often implemented
as an iterative algorithm. The stochastic gradient descent (SGD) is recently proposed
to solve an optimisation problem in machine learning [14].
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Fig. 3.1 Flow chart of
the gradient method for
maximisation

Here, we will see a simple local optimal search algorithm with the local gradient
to understand the mechanism. For a sake of simplicity, let us consider an algorithm to
find adequate parameters maximising the likelihood function with three parameters
(m = 3) l(θ1, θ2, θ3). Figure 3.1 shows a flow chart of the gradient method.

1. Set initial values (θ
(0)
1 , θ

(0)
2 , θ

(0)
3 ) and step size d(0).

2. Calculate J (k)
i (i = 1, 2, 3) as

∂l

∂θ1
≡ J1

(k) = l(θ(k)
1 + σθ1, θ

(k)
2 , θ

(k)
3 ) − l(θ(k)

1 − σθ1, θ
(k)
2 , θ

(k)
3 )

2σθ1
,

∂l

∂θ2
≡ J2

(k) = l(θ(k)
1 , θ

(k)
2 + σθ2, θ

(k)
3 ) − l(θ(k)

1 , θ
(k)
2 − σθ2, θ

(k)
3 )

2σθ2
,

∂l

∂θ3
≡ J3

(k) = l(θ(k)
1 , θ

(k)
2 , θ

(k)
3 + σθ3) − l(θ(k)

1 , θ
(k)
2 , θ

(k)
3 − σθ3)

2σθ3
,

where k indicates time step. Update the parameters as θ
(k+1)
i = θ

(k)
i + d(k)

i (i =
1, 2, 3), in which d(k)

i is determined by

d(k)
i = d(k) J (k)

i√⎨
J (k)
1

⎩2 +
⎨

J (k)
2

⎩2 +
⎨

J (k)
3

⎩2
(i = 1, 2, 3).

3. Ifσl = l(θ(k+1)
1 , θ

(k+1)
2 , θ

(k+1)
3 )−l(θ(k)

1 , θ
(k)
2 , θ

(k)
3 ) becomesmore than 0, update

the step size d(k+1) = d(k) and then go to step 2. If not, update the step size as
d(k+1) = εd(k) (0 < ε < 1) and then go to step 4 (e.g. ε = 0.1).
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4. If d(k) < de, then go to step 5. If not, then go to step 2. This is a terminate
condition, where de is a positive constant (e.g. de = 10−10).

5. Stop the program and display (θ
(k)
1 , θ

(k)
2 , θ

(k)
3 ) as parameter estimates.

Thus, we obtain (θ̂1, θ̂2, θ̂3) such that Ji = 0 (i = 1, 2, 3) and l(θ1, θ2, θ3) is
locally maximised. For given data that are assumed to obey a certain distribution, we
set the log–likelihood function l(θ1, θ2, θ3) and control parameters (θ

(0)
1 , θ

(0)
2 , θ

(0)
3 ),

d(0), σθ1, σθ2, σθ3, ε, and de. Then, we update (θ
(k)
1 , θ

(k)
2 , θ

(k)
3 ) to maximise

l(θ1, θ2, θ3).

3.1.8 Information Criteria

Information criteria are used to evaluate which models are better than other. Gener-
ally, the higher number of parameters K in the model indicates that the maximum
log–likelihood value tends to be higher. However, it is believed that models in which
the number of parameters is too high contain more error in parameter estimates than
the model with the less number of parameters.

The Akaike information criterion is an information criterion that considers how
well the data fits the model and penalises for higher numbers of parameters [1]. The
Akaike information criterion (AIC) can be defined as

AI C = −2 × (maximum log–likelihood value) + 2 × (freedom of parameters).
(3.51)

Another frequently used information criterion is called the Bayesian information
criterion. There are several definitions for the Bayesian information criterion (BIC),
one of which can be written as follows:

B I C = −2 × (maximum log–likelihood value) + (freedom of parameters)

× ln(data length). (3.52)

BIC imposes penalties towards for parameters that change depending on the data
length.

3.1.9 Regression Analysis

Suppose that we have T sets of some variables and that we want to examine a
dependence among the variables or to explain a variable with other variables. Then,
regression analysis is required.
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There are several types of regression methods such as ordinary least squared
regression (OLS) [44], generalised least squares [26], reduced major axis
regression (RMA) [23, 41] and major axis regression (MAR). In this subsection,
we will address two regression methods, OLS and RMA regressions. The underly-
ing idea of regression analysis is to find the parameters of a functionwhileminimising
errors between the curve and the data.

3.1.9.1 An Ordinary Least Squared Regression

Let us start with a simple case. Suppose an OLS regression of Y on X for T obser-
vations (xi , yi ) (i = 1, . . . , T ) under the assumption that

Y = aX + b + e. (3.53)

Y is called the explained variable and X the explanatory variable. All variation that
is not explained by the line Y = aX + b is expressed as error term e in Eq. (3.53).
The value of e for each subject is identical to the residual for that subject. Then, we
want to find the best estimate of model parameters a and b that minimises the sum
of squared residuals.

{â, b̂} = min
a,b

[ T⎧

i=1

⎨
yi − axi − b

⎩2]
. (3.54)

Partially differentiating Eq. (3.54) in terms of parameters a and b and setting them
into zero, we obtain

⎡

⎢
⎢
⎣

T
T∑

i=1
xi

T∑

i=1
xi

T∑

i=1
x2i

⎤

⎥
⎥
⎦

[
b̂
â

]

=

⎡

⎢
⎢
⎣

T∑

i=1
yi

T∑

i=1
xi yi

⎤

⎥
⎥
⎦ , (3.55)

which is called the normal equations. Equation (3.55) can be solved as follows:

[
b̂
â

]

=

⎡

⎢
⎢
⎣

T
T∑

i=1
xi

T∑

i=1
xi

T∑

i=1
x2i

⎤

⎥
⎥
⎦

−1⎡

⎢
⎢
⎣

T∑

i=1
yi

T∑

i=1
xi yi

⎤

⎥
⎥
⎦

= 1

T
T∑

i=1
x2i −

(
T∑

i=1
xi

)2

⎡

⎢
⎢
⎣

T∑

i=1
x2i −

T∑

i=1
xi

−
T∑

i=1
xi T

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

T∑

i=1
yi

T∑

i=1
xi yi

⎤

⎥
⎥
⎦ . (3.56)
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Thus, the OLS slope a of Y on X is given as

â = Cov[X, Y ]
Var[X ] , (3.57)

and the intercept is described as

b̂ = E[X2]E[Y ] − E[X ]E[XY ]
Var[X ] = E[Y ] − âE[X ]. (3.58)

Errors of the parameter estimates can be calculated as [44]

θa =
√

M SE

TVar[X ] , (3.59)

θb =
√

M SE

(
1

T
+ E[X ]2

TVar[X ]
)

, (3.60)

where the mean square error M SE is described as

M SE = 1

T − 2

T⎧

i=1

⎨
yi − âxi − b̂

⎩2 =
⎨
Var[Y ] − Cov[X, Y ]2

Var[X ]
⎩ T

T − 2
. (3.61)

Equation (3.61) is derived as follows: From Eq. (3.58), the mean square error M SE
can be written as

M SE = 1

T − 2

T⎧

i=1

⎨
yi − E[Y ] − â(xi − E[X ])

⎩2

= 1

T − 2

T⎧

i=1

{
(yi − E[Y ])2 + â2(xi − E[X ])2 − 2â(xi − E[X ])(yi − E[Y ])

}

=
{
Var[Y ] + â2Var[X ] − 2âCov[X, Y ]

} T

T − 2
. (3.62)

Inserting Eq. (3.57) into Eq. (3.62), we have

M SE =
⎨
Var[Y ] − Cov[X, Y ]2

Var[X ]
⎩ T

T − 2
. (3.63)

3.1.9.2 A Reduced Major Axis Regression

A regression analysis assumes that the equation allows for error in both X and Y :
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Fig. 3.2 A schematic
illustration of a reduced major
axis regression

Y + u = aX + b + e, (3.64)

where u represents errors in the observed values of X . If X is measured with error,
then the X -axis trait has an added component of variation and should be expressed
as (X + u). The slope becomes

aobserved = Cov[X, Y ]
Var[X ] + Var[u] . (3.65)

The error in X causes the slope of Eq. (3.65) to be shallower since it has a larger
denominator than the OLS slope calculated if X is measured without error in
Eq. (3.57). The bias in the slope calculated with Eq. (3.65) is known as attenuation or
regression dilution. Thus, error in X and error in Y have different consequences for
an OLS regression. Another problem is called the symmetry problem. This second
source of concern about OLS is not directly related to the errors but is based on the
lack of symmetry between the OLS regression of Y on X and of X on Y .

To improve these drawbacks of the OLS regression, an RMA regression is con-
sidered [40]. We assume a linear relationship between the explanatory variable X
and the explained variable Y :

Y = aX + b, (3.66)

where a and b are a slope and intercept. Let us find an adequate line with a and b by
minimising the sum of the area of the triangles constructed from the line and a data
point. Figure 3.2 shows a conceptual illustration of the RMA regression. Consider
the area of a triangle of the line (y = ax + b) and the i-th data point (xi , yi ). The
area of this triangle is calculated as

1

2

∣
∣
∣xi − yi − b

a

∣
∣
∣
∣
∣
∣axi + b − yi

∣
∣
∣ = 1

2

(axi + b − yi )
2

|a| .
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Therefore, the total area of the triangles computed from T data points, which is an
objective function, is calculated as

f (a, b) = 1

2

T⎧

i=1

(axi + b − yi )
2

|a| . (3.67)

For a > 0, minimising f (a, b) in terms of a and b implies

∂ f

∂a
= 1

2a2

T⎧

i=1

[a · 2(axi + b − yi )xi − (axi + b − yi )
2] = 0, (3.68)

∂ f

∂b
= 1

2

T⎧

i=1

2(axi + b − yi )

a
= 0. (3.69)

From Eq. (3.69), we have

b̂ =
∑T

i=1 yi

T
− â

∑T
i=1 xi

T
. (3.70)

Inserting Eq. (3.70) into Eq. (3.68), we obtain

â2
[ T⎧

i=1

x2i − (
∑T

i=1 xi )
2

T

]
−
[ T⎧

i=1

y2i − (
∑T

i=1 yi )
2

T

]
= 0. (3.71)

Thus, since we impose a > 0, we have

â =

√√
√
√
√

∑T
i=1 y2i − (

∑T
i=1 yi )

2

T
∑T

i=1 x2i − (
∑T

i=1 xi )
2

T

. (3.72)

For a < 0, we obtain the same equations as Eqs. (3.70) and (3.72) from Eqs. (3.68)
and (3.69). Consequently, since we impose a < 0, we get

â = −

√√
√
√
√

∑T
i=1 y2i − (

∑T
i=1 yi )

2

T
∑T

i=1 x2i − (
∑T

i=1 xi )
2

T

. (3.73)

Equations (3.72) and (3.73) are also expressed as

â = ±
√
Var[Y ]
Var[X ] , (3.74)
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Therefore, the sign of â should be chosen according to the sign of the second
derivative of f (a, b) in terms of a. Namely, the sign of â should be determined as a

value satisfying ∂2 f
∂a2

< 0. Thus, the sign of â is equivalent to the sign of Cov[X, Y ].
We can also obtain b̂ from Eq. (3.70) and Eq. (3.74). The coefficient of determination

r2 = Cov[X,Y ]2
Var[X ]Var[Y ] and errors are calculated as

θa =
√

M SE

TVar[X ] , (3.75)

θb =
√

M SE

(
1

T
+ E[X ]2

TVar[X ]
)

, (3.76)

where the mean square error M SE is computed as

M SE = 1

T − 2

T⎧

i=1

(yi − âxi − b̂)2 =
⎨
Var[Y ] − âCov[X, Y ]

⎩ 2T

T − 2
, (3.77)

which is derived in Appendix B.
As discussed by Ricker [37], the difference between the two OLS lines (of Y on

X and of X on Y ) for a single data set is normally observed. This allows the two
OLS regressions to be examined on a single set of axes. The two lines will intercept
at E[X ] and E[Y ].

Figure 3.3 shows the difference between the two OLS lines (of Y on X and of X
on Y ) for a single data set. The dashed lines express the two OLS lines. The solid line
represents the RMA line. Three fitting lines are computed for the same dataset (the
common logarithm of GDP per capita and the common logarithm of CO2 emissions
per capita in 2000). Specifically, when we compute coefficients of an allometric
relationship, we should prefer the RMA regression to the OLS regression because
of its symmetricity. Table 3.1 shows parameter estimates with the three cases. The
slopes estimated from the three methods are slightly different from one another.

3.1.9.3 Alternative Derivation of RMA Regression Using Kullback–Leibler
Divergence

Let us derive the same coefficients as the RMA regression, given as Eqs. (3.70) and
(3.74) from an alternative perspective.

A fundamental idea of this derivation is equivalence between the marginal distrib-
ution in terms of x and a distribution of x transformed from the marginal distribution
in terms of y under an assumed function or vice versa.

We assume that we have T data points of (xi , yi ). Let pY (y) be denoted as a
marginal distribution of y, and pX (x) as a marginal distribution of x . Namely, the
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Fig. 3.3 Scatter diagram of the data showing the RMA regression and OLS regression of Y on
X and of X on Y . The X represents common logarithms of GDP per capita and the Y common
logarithms of CO2 emissions per capita for 188 countries and territories (T = 188) in 2000. The
data source is DataBank of the World Bank

Table 3.1 Parameter
estimates of regression
analysis for GDP per capita in
2000 (X ) and CO2 emissions
per capita in 2000 (Y )

Method â b̂

OLS (X on Y) 1.13269 3.08109
OLS (Y on X) 0.83864 3.15315
RMA 0.97464 3.11982

observations xi are assumed to be sampled from pX (x) and the observations yi from
pY (y).

Consider a marginal probability density function qX (x) that is derived from the
transformation of a stochastic variable y into x using a linear function x = (y−b)/a.
Using a transformation formula of the stochastic variable qX (x)dx = pY (y)dy, we
have

qX (x) = pY (ax + b)|a|. (3.78)

Next, let us measure a distance between qX (x) and pX (x) using Kullback–Leibler
divergence:

K L(pX , qX ) =
∞∫

−∞
pX (x) ln pX (x)dx −

∞∫

−∞
pX (x) ln pY (ax + b)dx − ln |a|.

(3.79)
The maximisation or minimisation of Eq. (3.79) can be given by ∂K L

∂a = 0 and
∂K L
∂b = 0. Namely, we have
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∞∫

−∞
pX (x)

p≈
Y (ax + b)x

pY (ax + b)
dx = −1

a
, (3.80)

∞∫

−∞
pX (x)

p≈
Y (ax + b)

pY (ax + b)
dx = 0, (3.81)

where p≈(x) denotes dp
dx

. In contrast, consider amarginal probability density function
qY (y) that is derived from the transformation of a stochastic variable x into y using
the linear function y = ax + b.

qY (y) = pX

⎨ y − b

a

⎩ 1

|a| . (3.82)

Here, let us also measure the distance between qY (y) and pY (y) using Kullback–
Leibler divergence.

K L(pY , qY ) =
∞∫

−∞
pY (y) ln pY (y)dy −

∞∫

−∞
pY (y) ln pX

⎨ y − b

a

⎩
dy + ln |a|.

(3.83)

The maximisation or minimisation of Eq. (3.83) can be derived from ∂K L
∂a = 0 and

∂K L
∂b = 0. Thus, we have

∞∫

−∞
pY (y)

p≈
X

⎨
y−b

a

⎩

pX

⎨
y−b

a

⎩ (y − b)dy = a, (3.84)

1

a

∞∫

−∞
pY (y)

p≈
X

⎨
y−b

a

⎩

pX

⎨
y−b

a

⎩dy = 0. (3.85)

Therefore, we have

a =
∞∫

−∞
pY (y)

p≈
X

⎨
y−b

a

⎩
y

pX

⎨
y−b

a

⎩ dy, (3.86)

∞∫

−∞
pY (y)

p≈
X

⎨
y−b

a

⎩

pX

⎨
y−b

a

⎩dy = 0. (3.87)
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Suppose that pX (x) and pY (y), respectively, are normal distributions para-
metrised by μX , μY , θ 2

X and θ 2
Y :

pX (x) = 1≤
2ΓθX

exp
[
− (x − μX )2

2θ 2
X

]
, (3.88)

pY (y) = 1≤
2ΓθY

exp
[
− (y − μY )2

2θ 2
Y

]
. (3.89)

Then, since from Eq. (3.89) we have the equality

p≈
Y (ax + b)

pY (ax + b)
= −ax + b − μY

θ 2
Y

, (3.90)

inserting it into Eq. (3.80), we get

1

a
= aE[X2] + bE[X ] − μYE[X ]

θ 2
Y

,

1

a
= aE[X2] + bE[X ] − E[Y ]E[X ]

Var[Y ] ,

E[X2]a2 + abE[X ] − aE[X ]E[Y ] = Var[Y ]. (3.91)

From Eq. (3.81), we have

aE[X ] + b = E[Y ],
b = E[Y ] − aE[X ]. (3.92)

Inserting Eq. (3.92) into Eq. (3.91), we obtain

E[X2]a2 − E[X ]2a2 = Var[Y ],
Var[X ]a2 = Var[Y ]. (3.93)

Equations (3.92) and (3.93) imply that the adequate slope â and intercept b̂ are given
as

â = ±
√
Var[Y ]
Var[X ] , (3.94)

b̂ = E[Y ] − âE[X ]. (3.95)

Next, let us consider the case of X . Since from Eq. (3.88) we have the equality
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p≈
X

⎨
y−b

a

⎩

pX

⎨
y−b

a

⎩ = − (y − b)/a − μX

θ 2
X

, (3.96)

Equation (3.86) can be rewritten as

a =
1
aE[Y 2] + b

aE[Y ] − μXE[Y ]
θ 2

X

,

Var[X ]a2 = E[Y 2] + bE[Y ] − E[Y ]E[X ]a,

Var[X ]a2 − E[Y 2] − bE[Y ] + E[X ]E[Y ]a = 0. (3.97)

From Eq. (3.85), we get

E[Y ] − b

aVar[X ] = E[X ]
Var[X ] . (3.98)

Namely, we obtain

b = E[Y ] − aE[X ]. (3.99)

Inserting Eq. (3.99) into Eq. (3.97), we obtain

Var[X ]a2 = Var[Y ]. (3.100)

Namely, Eqs. (3.99) and (3.100) imply

â = ±
√
Var[Y ]
Var[X ] , (3.101)

b̂ = E[Y ] − âE[X ]. (3.102)

Thus, Eqs. (3.94) and (3.101) are the same equations as each other. The sign of a can
be determined by considering the sign of the second-order derivative of K L(pX , qX )

in terms of a. a is given as a value satisfying ∂2K L
∂a2

< 0. Thus, the sign of â is
equivalent to the sign of Cov[X, Y ].

3.1.9.4 OLS Regression Derived from Maximum Likelihood Estimation

Suppose that we have the data sequence (xi , yi ) (i = 1, . . . , T ). We also assume the
following model parametrised by a0, . . . , am :

y = f (x) = a0 + a1x + · · · + am xm . (3.103)



98 3 Mathematical Expressions

From Eq. (3.103), we introduce an error ui between f (xi ) and yi ,

ui = yi − f (xi ) = yi − a0 − a1xi − · · · − am xm
i . (3.104)

Then, we want to find the best estimate of model parameters a0, . . . , am in the sense
of minimising the sum of squared residuals.

{â0, . . . , âm} = min
a0,...,am

[ T⎧

i=1

⎨
yi − a0 − a1xi − · · · − am xm

i

⎩2]
. (3.105)

Partially differentiating the sum of squared residuals in Eq. (3.105) in terms of para-
meters a0, a1, . . . , am and setting them into zero, we obtain the normal equations

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T
T∑

i=1
xi

T∑

i=1
x2i · · ·

T∑

i=1
xm

i

T∑

i=1
xi

T∑

i=1
x2i

T∑

i=1
x3i · · · ∑T

i=1 xm+1
i

...
...

. . .
...

T∑

i=1
xm

i

T∑

i=1
xm+1

i

T∑

i=1
xm+2

i · · ·
T∑

i=1
x2m

i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a0
a1
...

am

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T∑

i=1
yi

T∑

i=1
xi yi

...
T∑

i=1
xm

i yi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.106)

We shall derive the same equations from a different perspective. Assume that ui are
sampled from i.i.d. normal distributions with zero mean and variance θ 2

u :

p(y|μ(x; a0, a1, . . . , am), θ 2
u ) = 1

√
2Γθ 2

u

exp
[
− (y − (a0 + a1x + · · · + am xm))2

2θ 2
u

]
.

(3.107)

Then, the log–likelihood function can be written as

l(a0, a1, . . . , am , θ 2
u ) =

T⎧

i=1

ln p(yi |μ(xi ; a0, a1, . . . , am), θ 2
u )

= − T

2
ln(2Γ) − T

2
ln θ 2

u − 1

2θ 2
u

T⎧

i=1

⎨
yi − (a0 + a1xi + · · · + am xm

i )
⎩2

.

(3.108)

Therefore, partially differentiating Eq. (3.108) in terms of ai (i = 0, 1, . . . , m) and
setting them at zero imply

∂l

∂a0
= 1

θ 2
u

T⎧

i=1

⎨
yi − a0 − a1xi − · · · − am xm

i

⎩
= 0,
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∂l

∂a1
= 1

θ 2
u

T⎧

i=1

xi

⎨
yi − a0 − a1xi − · · · − am xm

i

⎩
= 0,

...

∂l

∂am
= 1

θ 2
u

T⎧

i=1

xm
i

⎨
yi − a0 − a1xi − · · · − am xm

i

⎩
= 0.

Thus, we get the same equations as Eq. (3.106). Moreover, a partial derivative in
terms of θ 2

u gives

− T

2θ 2
u

+ 1

2θ 4
u

T⎧

i=1

(yi − a0 − a1xi − · · · − am xm
i )2 = 0. (3.109)

Thus, we have

θ̂ 2
u = 1

T

T⎧

i=1

(yi − â0 − â1xi − · · · − âm xm
i )2. (3.110)

As a result, the maximum log–likelihood value is obtained as

l(â0, â1, . . . , âm, θ̂ 2
u ) = −T

2
(ln(2Γ) + 1 + ln θ̂ 2

u ). (3.111)

Therefore, AIC and BIC are written as

AIC = T (ln(2Γ) + 1 + ln θ̂ 2
u ) + 2(m + 1), (3.112)

BIC = T (ln(2Γ) + 1 + ln θ̂ 2
u ) + (m + 1) ln(T ). (3.113)

We can select the regression with parameter estimates for the degree m as a model
where the information criteria are minimised.

3.1.9.5 Multiple Linear Regression Analysis

Let yt and xi,t be T sets of observations (i = 1, . . . , p; t = 1, . . . , T ). Assuming
that yt is an explained variable and xi,t are explanatory variables, we consider their
OLS regressions:

yt = β0 +
p⎧

i=1

βi xi,t + zt , (3.114)

where β0, . . . , βp represent regression coefficients, and zt an error. If we assume
that the residual zt is drawn from a zero-mean normal distribution with variance θ 2

z ,
zt ∼ N

(
0, θ 2

z

)
, then we can explicitly express the analytical solutions of regression
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coefficients. Substituting observed data into the regression Eq. (3.114) and setting
regression coefficients β0, . . . , βp to the values which minimise

∑T
t=1 z2t , we obtain

the estimated parameters β̂0, . . . , β̂p.
Let the density function of z be assumed as:

f (z; θ 2
z ) = 1

⎪
2Γθ 2

z

exp

[

− z2

2θ 2
z

]

. (3.115)

Now, in order to estimate parameters β0, . . . , βp, we attempt to maximise the log–
likelihood value

L(β0, . . . , βp, θ
2
z ) =

T⎧

t=1

ln
⎨ 1
⎪
2Γθ 2

z

exp

[

− z2t
2θ 2

z

]⎩
, (3.116)

with respect to β0, . . . , βp and θ 2
z . The parameters β0, . . . , βp and θ 2

z are estimated
as the maximum likelihood estimators

{β̂0, . . . , β̂p, θ̂
2
z } = arg max

β0,...,βp,θ 2
z

L(β0, . . . , βp, θ
2
z ).

Partially differentiating L in terms of β0, . . . , βp and θ 2
z , and setting them into zero,

i.e., ΔL
Δβi

= 0 (i = 0, . . . , p) and ∂L
∂θ 2

z
= 0, we get

⎡

⎢
⎢
⎢
⎢
⎢
⎣

β̂0

β̂1

β̂2
...

β̂p

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

T
∑

x1,t
∑

x2,t · · · ∑
x p,t∑

x1,t
∑

x21,t
∑

x1,t x2,t · · · ∑ x1,t x p,t∑
x2,t

∑
x1,t x2,t

∑
x22,t · · · ∑ x2,t x p,t

...
...

...
...

...∑
x p,t

∑
x1,t x p,t

∑
x2,t x p,t · · · ∑

x2p,t

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−1⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑
yt∑

x1,t yt∑
x2,t yt
...∑

x p,t yt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(3.117)

where
∑

stands for
∑T

t=1, and

θ̂ 2
z (β̂0, . . . , β̂p) =

∑T
t=1 z2t
T

=
∑T

t=1(yt − β̂0 − ∑p
i=1 β̂i xi,t )

2

T
. (3.118)

Therefore, the maximised log–likelihood value turns out to be
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max L = max
β0,...,βp,θ 2

z

L(β0, . . . , βp, θ
2
z )

= L(β̂0, . . . , β̂p, θ̂
2
z )

= −T

2

⎨
ln(2Γ) + 1 + ln θ̂ 2

z (β̂0, . . . , β̂p)
⎩

. (3.119)

Thus, AIC and BIC are written as

AIC = T (ln(2Γ) + 1 + ln θ̂ 2
z (β̂0, . . . , β̂p)) + 2(p + 1), (3.120)

BIC = T (ln(2Γ) + 1 + ln θ̂ 2
z (β̂0, . . . , β̂p)) + (p + 1) ln(T ). (3.121)

3.1.10 Numerical Assessment of Sampling Error

For the probability distribution, statistics and simple aspects of the base stochastic
variable, it may be possible to assess closely and analytically the error for a finite
number of observations. However, this is generally difficult. While it is possible to
approximate the sampling error by assuming a sufficiently large number of observa-
tions based on the central limit theorem, when the actual number of observations is
small, it may not be possible to have confidence in this value.

The bootstrap method and the jackknife method are methods for reusing sampling
data to assess the sampling error for this type of estimator [38]. These are vigorous
methods that can be conducted regardless of the form of the probability distribution
and complexity of the scope of estimation. The bootstrap method consists of approx-
imately generating the sample distribution when the sample distribution of a statistic
is unknown for an event that one wants to learn about to assess the sampling error
and other factors of the statistic.

Assume that the sampling time series is x1, . . . , xT . With the bootstrap method,
the bootstrap sample x∗

1 , . . . , x∗
T is composed of a time series allowed to be repeat-

edly randomly selected (sampling with replacement) from T items of sample data.
Creating B bootstrap sequences, we compute a statistic computed from B statistics,
denoted as θ∗

i (i = 1, . . . , B). Through simulation, it is possible to estimate the
sampling error from the sample mean and the sample standard deviation computed
from

θ∗ = 1

B

B⎧

i=1

θ∗
i , (3.122)

std. err. =
√√
√
√ 1

B

B⎧

i=1

(θ∗
i − θ∗)2. (3.123)
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With the jackknife method, proposed by Quenouille [35], a jackknife sample
x∗
1 , . . . , x∗

T −T/m is generated as follows. Let the i th group be divided into m groups
of size T/m each. The statistic θ∗

i is computed from the jackknife sample where
the i th group of size T/m has been deleted from the original sample time series
x1, . . . , xT .

The sampling error from the sample mean and sample standard deviation are
computed from

θ∗ = 1

m

m⎧

i=1

θ∗
i , (3.124)

std. err. =
√√
√
√ 1

m

m⎧

i=1

(θ∗
i − θ∗)2. (3.125)

Generally, with the jackknife method the sampling error can be calculated with a
smaller amount of calculation than the bootstrap method.

3.1.11 Statistical Hypothesis Testing

In some cases, it is necessary to make a statistical judgement using data to determine
whether the hypothesis is correct. In this case, a formal procedure called a statistical
hypothesis test is used.

In the statistical hypothesis test, first a hypothesis called a null hypothesis that
is the opposite of what we wish to prove is established. The null hypothesis is
written as H0. In addition, a hypothesis that is in opposition to the null hypothesis
is often established. This hypothesis in opposition to the null hypothesis is called
an alternative hypothesis, which is written as H1. Rejecting the null hypothesis H0
indicates that the alternative hypothesis H1 is true.

In general, the following procedure is used in the statistical hypothesis test:

1. Establish a null hypothesis and an alternative hypothesis.
2. Define a test statistic and seek the sample distribution.
3. Decide on a significance level and establish the rejection range for the test statistic.
4. Calculate the test statistic’s instance from the sample data.
5. If the instance is in the rejection range, reject the null hypothesis and adopt the

alternative hypothesis.

As shown in Table 3.2, regardless whether the null hypothesis H0 is correct, there
is the chance of the type I error of erroneously rejecting the null hypothesis and the
type II error of erroneously not rejecting the null hypothesis.

It is impossible to decrease type I errors and type II errors at the same time. In
response to this, the type I error is emphasised by selecting verification procedure
that minimises the type II error under the restriction of not exceeding a significance
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Table 3.2 Decision making
in a statistical hypothesis test

H0 is true H1 is true

Null hypothesis H0 is not rejected Correct Type II error
Null hypothesis H0 is rejected Type I error Correct

level α (normally, α is set as 0.01, 0.05, etc.), that is determined in advance. This is
called the Neyman–Pearson framework.

When a test has a significance level α, it indicates that the test formula will lower
the probability of type I errors to below that level. In other words, the probability
of erroneously rejecting the null hypothesis H0 will fulfil Pr[H0] ⇒ α when it is
correct.

Assume a sample X = (X1, . . . , XT ), and use a statistic Y = u(X1, . . . , XT ) to
test the null hypothesis H0. Assume that the rejection range for the test can be written
as u(x1, . . . , xT ) ⇒ c (in other words, reject H0 if the rejection level c falls below the
test statistic Y instance) and that the observation value is y = u(x1, . . . , xT ). At this
time, p = Pr[Y ⇒ y; H0] is called p-value of the actual data. Pr[u(x1, . . . , xT ) ⇒
c; H0] = 0.05 means that H0 is rejected by a significance level of 5 % if y ⇒ c.

If the rejection range is u(x1, ..., xT ) ≥ c, the p-value on the left tail of the distrib-
ution would be p = Pr[Y ≥ y; H0], or if the rejection range is |u(x1, . . . , xT )| ≥ c,
it would result in p = Pr[|Y | ≥ |y|; H0] in both tails of the distribution. In this
manner, a p-value viewed in one tail of the test distribution is called a single-sided
p-value, and a p-value viewed in both tails is called a two-sided p-value.

In other words, because the actual value of the test statistic is y = u(x1, ..., xT )

if the data at hand (x1, . . . , xT ) is used for calculation, if the stochastic variable
y = u(X1, ..., XT ) occurs repeatedly over multiple trials when the null hypothesis
is correct, this results in a probability assessment that exceeds result y, representing
one trial. In this case, the p-value indicates just how extreme an instance the y-value
is. Namely, the smaller the p-value is, the more it is probabilistically unlikely for y
to occur, and if y does actually occur, there is a basis to doubt the truth of H0.

3.1.12 Anderson–Darling and Kolmogorov–Smirnov Tests

In this subsection, statistical hypothesis tests to assess the difference between datasets
and its assumed distribution are introduced.

Kolmogorov–Smirnov (KS) test is a popular statistical method of assessing a
difference between datasets and its assumed distribution by p-value, which is a
measure of probability where a difference between these two distributions happens
by chance [39]. This test is widely used because it does not depend on the distribution
formof data.However, theKS test has a disadvantage that it tends to bemore sensitive
near the centre of the distribution than at the tails.

Anderson–Darling (AD) test is an efficientmethod [5],which is a generalisation of
theKS test.We can assess the statistical significance level putting aweight on the part
of distributionswhichwe think important. Here,we showhow to assess the difference
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between datasets and its assumeddistribution focusing on tails, and calculate p-value.
This will be used for evaluating parameter estimates for risk estimation in Sects. 5.6
and 5.7.

Suppose that one has T observations {x1, x2, . . . , xT }, and let KT be a test statistic
of the KS test or the AD test,

KT = sup
1⇒i⇒T

≤
T |PT (xi ) − P(xi )|

√
ψ(P(xi )) (0 ⇒ P(x) ⇒ 1), (3.126)

where P(x) is an assumedCDF, and PT (x) an empirical one based on T observations
such that PT (xi ) = k

T , in which k represents xi ’s ascending order.
The test statistic KT is the measure of distance between these two distributions,

and we can put a weight on the deviations with ψ(u) (0 ⇒ u ⇒ 1) according to the
importance attached to portions CDF. In the case of KS test, the weight function is
chosen as ψ(u) = 1. p-value of the KS test is given as the Kolmogorov–Smirnov
distribution:

p = Pr[K ≥ z] = 2
∞⎧

n=1

(−1)n−1e−2n2z2 . (3.127)

If p < α (0 < α < 1), then the hypothesis that an assumed probability distribution
coincides the empirical probability distribution is rejected at level α.

In the case of AD test,ψ(u) = 1
u(1−u)

is often assumed. Nowwewant to know the
CDF of the test statistic KT in order to obtain the p-value of the AD test. Consider
the transformation u = P(x). Under the null hypothesis that {xi } (i = 1, . . . , T ) are
drawn from the distribution P(x), {ui } (i = 1, . . . , T ) can be considered as drawn
from the uniform distribution for 0 ⇒ u ⇒ 1. Introducing GT (u) defined as the
empirical distribution derived from {u1, . . . , uT }, from Eq. (3.126) we get

KT = sup
1⇒i⇒T

≤
T |GT (ui ) − ui |

√
ψ(ui ). (3.128)

Then, YT = ≤
T (GT (u) − u) is a random variable for 0 ⇒ u ⇒ 1, and the set of

these random variables may be considered to be a stochastic process with parameter
u.

Let us assume

BT (z) = Pr

{

sup
1⇒i⇒T

|YT (ui )|
√

ψ(ui ) ⇒ z

}

, (3.129)

and calculate B(z) = limT →∞ BT (z).
For T → ∞, the limiting process of YT (u) is a Gaussian process y(u), 0 ⇒ u ⇒ 1,
which is specified as

http://dx.doi.org/10.1007/978-4-431-54974-1_5
http://dx.doi.org/10.1007/978-4-431-54974-1_5
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E[y(u)] = 0,

E[y(u)y(v)] = min(u, v) − uv.

When putting

b(z) = Pr

{

sup
0⇒u⇒1

|y(u)|√ψ(u) ⇒ z

}

, (3.130)

we obtain b(z) = B(z), which leads to b(z) = Pr[K ⇒ z] where K =
sup0⇒u⇒1 |y(u)|≤ψ(u).

In order to calculate the limiting distribution, we consider the problem of a cor-
responding stochastic process. It is obvious that the event {K ⇒ z} is equivalent to
the event

{
−zψ(u)− 1

2 ⇒ y(u) ⇒ zψ(u)− 1
2 , 0 ⇒ u ⇒ 1

}
, which naturally leads to

Pr {K ⇒ z} = Pr
{
−zψ(u)−

1
2 ⇒ y(u) ⇒ zψ(u)−

1
2

}
. (3.131)

Therefore, it can be very crudely said that the probability b(z) is the proportion of
all paths y(u) of the diffusing particle which do not get absorbed into the barriers

y = ±zψ(u)− 1
2 .

It is convenient to make the following transformation which simplifies the
analysis:

X (t) = (1 + t)y
⎨ t

1 + t

⎩
, (3.132)

where X (t) is the Wiener-Einstein process for which

X (0) = 0, E[X (0)] = 0, E[X (s)X (t)] = min(s, t).

Then, we can compute Pr[K ⇒ z] from

Pr[K ⇒ z] = Pr[|X (t)| ⇒ ξ(t) , 0 ⇒ t ⇒ ∞], (3.133)

where

ξ(t) = z(1 + t)
⎪

ψ( t
1+t )

.

Thus, we have the absorption probability problem for a free particle with barriers
X = ±ξ(t) for t ≥ 0.

One of the methods to solve the problem is to treat the corresponding diffusion
problem as a boundary value problem with the Fokker–Planck equation for the dif-
fusion process:
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∂ f (t, X)

∂t
= 1

2

∂2 f (t, X)

∂ X2 (t ≥ 0, |X | ⇒ ξ(t)) , (3.134)

where f (t, X) represents a time-dependent probability density function of X at time
t and the initial condition f (0, X) = Δ(X). In this analogy, f (t ≈, X) will be the
density of X (t ≈) which have not been absorbed for 0 ⇒ t ⇒ t ≈.
Then, we have

Pr[K ⇒ z] = lim
t→∞

∫ ξ(t)

−ξ(t)
f (t, X)dX. (3.135)

Eq. (3.127) is derived from Eq. (3.135) for ψ(u) = 1 [5].
To calculate Eq. (3.135) numerically, we consider the Crank-Nicholson discreti-

sation of Eq. (3.134) such that

f (tl+1, X j ) − f (tl , X j )

σt
= 1

4(σX)2

[(
f (tl+1, X j+1) − 2 f (tl+1, X j )

+ f (tl+1, X j−1)
) + (

f (tl , X j+1) − 2 f (tl , X j ) + f (tl , X j−1)
)]

, (3.136)

where σt = tl − tl−1 and σX = X j − X j−1 and f (tl , X j ) is obtained by the
following tridiagonal problem:

− r f (tl+1, X j+1) + (1 + 2r) f (tl+1, X j ) − r f (tl+1, X j−1) =
r f (tl , X j+1) + (1 − 2r) f (tl , X j ) + r f (tl , X j−1), (3.137)

where r = σt
4(σX)2

. Enumerating Eq. (3.137) iteratively for large enough l, with the
boundary condition f (t, X) = 0 for |X | ≥ ξ(t), we get b(z) approximately from
the numerical computation of

∫
|X |<ξ(t) f (t, X)dX .

There is also another way to get b(z) approximately, using Monte Carlo simula-
tion: The corresponding stochastic differential equation is dX (t) = dW . Using the
Euler–Maruyama scheme as its discretisation of the equation, we obtain

X (tl+1) = X (tl) + ≤
σtσW, (3.138)

where σt = tl+1 − tl and σW is sampled from a zero mean standard normal
distribution N (0, 1).

In the same way, we can obtain the CDF of KT with ψ(u) in general. When we
focus on tails of distributions, we set ψ(u) = 1

u(1−u)
. Then, the barriers ξ(t) in the

corresponding Wiener process is set as ξ(t) = ≤
t . In the case of ψ(u) = 1

u(1−u)
,

the range of t in the process is confined for numeration as a
1−a < t < b

1−b , where
a = P(min1⇒i⇒T xi ) and b = P(max1⇒i⇒T xi ) [5].

Here, we introduce another convenient transformation to calculate b(z):
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X (t) = ≤
tU

⎨ 1

2αX
ln t

⎩
. (3.139)

Then, U (t) is an Uhlenbeck process with correlation parameter αX and

b(z) = Pr

{

|U (t)| ⇒ z, 0 ⇒ t ⇒ 1

2αX
ln

b(1 − a)

a(1 − b)

}

. (3.140)

In similar to the Wiener process, the problem is solved as a boundary value problem
with the corresponding Fokker–Planck equation,

∂ f ≈(t, U )

∂t
= αX

∂ f ≈(t, U )

∂U
+ αX

∂2 f ≈(t, U )

∂U2

(

|U | ⇒ z, 0 ⇒ t ⇒ 1

2αX
ln

b(1 − a)

a(1 − b)

)

,

(3.141)

where f ≈(t, U ) is the PDF that U (t) have not been absorbed by the barriers, yet.
Therefore, we describe the Crank–Nicholson discretisation of Eq. (3.141):

f ≈(tl+1, U j ) − f ≈(tl , U j )

σt
= αX

2

[ f ≈(tl+1, U j+1) − f ≈(tl+1, U j−1)

2(σU )

+ f ≈(tl , U j+1) − f ≈(tl , U j−1)

2(σU )

+ f ≈(tl+1, U j+1) − 2 f ≈(tl+1, U j ) + f ≈(tl+1, U j−1)

(σU )2

+ f ≈(tl , U j+1) − 2 f ≈(tl , U j ) + f ≈(tl , U j−1)

(σU )2

]
,(3.142)

and b(z) is approximated as
∑

j f ≈(t, U )σU by using the solution f ≈(t, U j ) com-

puted from Eq. (3.142) at t = 1
2αX

ln b(1−a)
a(1−b)

under the initial condition f ≈(0, U ) =
Δ(U ) and the boundary condition f ≈(t, U ) = 0 for |U | ≥ z. In the case of Monte
Carlo simulation, the corresponding stochastic differential equation is dU (t) =
−αX U (t)dt + ≤

2αXdW . Using the Euler–Maruyama scheme as the discretisation,
we have

Ul = Ul−1 − αX Ul−1σt + √
2αXσtσW, (3.143)

and b(z) is estimated as na−nb
na

, where nb is the number of na samples that Ui is

absorbed into the barrier for 0 ⇒ t ⇒ 1
2αX

ln b(1−a)
a(1−b)

.
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3.2 Time Series Analysis

In variousfields, it is common todealwith data collected fromsequential observations
over time. In business, we observe exchange rates between pairwise currencies, stock
prices, and interest rates. This is called a time series.

The number of events observed in a period is also represented as a time series. This
is modelled as a counting process. For example, the daily number of available flights,
the daily number of available hotels, and the number of transactions of currency
exchange within each minute can be expressed as a time series, respectively.

This section will introduce fundamental methods to treat the time series are
explained. It is a nontrivial task to find appropriate models of time series. A multi-
step model-building strategy was proposed by Box and Jenkins [15]. There are three
main steps, each of which may be used several times:

1. Model specification (or identification)
2. Model fitting
3. Model diagnostics

In the model specification step, we may select a model that may be appropriate
for a given observed series. In this step, we often look at the plot of time series and
compute many different statistics from the data.

To choose a model, we shall attempt to use the principle of parsimony. This is
related to the following remarks by Albert Einstein in Parzen: ‘Everything should be
made as simple as possible but not simpler’. This is an assumption that the model
used should require the smallest number of parameters that will adequately represent
the time series. The information criterion is often used for this purpose.

In the model fitting step, the model parameters should be estimated from the
data. We shall consider criteria such as least squares and maximum likelihood for
estimation.

Model diagnostics is concerned with assessing the quality of the model that we
have specified and estimated. We repeatedly compute statistics to find inadequacies
between the data and the model. We cycle through the three steps until an acceptable
model is found.

3.2.1 Stochastic Processes

Suppose a sequence of random variables {Yt (π) : t = 0,±1,±2,±3, . . .}. This is
called the stochastic process, and it serves as a model for an observed time series. π
represents unknown information or input, and it is ignored in many cases. Namely,
let {Yt : t = 0,±1,±2,±3, . . .} be a stochastic process. The probabilistic structure
of the stochastic process is given by the set of distributions of all finite collections of
Yt . If we accept the assumption that the information of joint probability distributions
characterising the stochastic process can be described in terms of means, variances,
and covariances, then our task is mainly to compute these first and second moments.
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3.2.2 Means, Variances and Covariances

For a stochastic process {Yt : t = 0,±1,±2,±3, . . .}, the mean is defined as

μt = E[Yt ], (3.144)

where μt is the expected value of the process at time t . Generally, μt can differ at
each time point t . The autocovariance function, ζt,s , is defined as

ζt,s = Cov[Yt , Ys] for t, s = 0,±1,±2, . . . , (3.145)

where Cov[Yt , Ys] = E[(Yt − μt )(Ys − μs)] = E[Yt Ys] − μtμs . Then, the autocor-
relation function, ρt,s , is given by

ρt,s = Cov[Yt , Ys]≤
Var[Yt ]Var[Ys] = Corr[Yt , Ys] = ζt,s≤

ζt,tζs,s
. (3.146)

The following important properties for ζt,s and ρt,s are known:






ζt,t = Var[Yt ] ρt,t = 1
ζt,s = ζs,t ρt,s = ρs,t

|ζt,s | ⇒ ≤
ζt,tζs,s ρt,s ⇒ 1

. (3.147)

Values of ρt,s near ±1 indicate strong (linear) dependence, while values near
zero indicate weak (linear) dependence. If ρt,s = 0, it is said that Yt and Ys are
uncorrelated.

To make statistical inferences about the structure of a stochastic process from the
data, we must usually assume that the probability law governing the behaviour of
the process does not change over time. This is called stationarity. This is equivalent
to the assumption that the process is in statistical equilibrium. In this case, means
and variances are constant over time: E[Yt ] = E[Yt−k] and Var[Yt ] = Var[Yt−k].
Furthermore, the covariance between Yt and Ys can be described in terms of the time
difference |t − s|:

ζt,s = ζ0,|t−s|. (3.148)

Therefore, for a stationary process, we use simple notations:

ζk = Cov[Yt , Yt−k], ρk = Corr[Yt , Yt−k]. (3.149)
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3.2.3 Autoregressive Model

An autoregressive model (AR model) is a linear model under the assumption that
the current value of the series xt can be represented as a linear combination of the p
most recent past values of itself {xt−p, . . . , xt−1}

xt = a1xt−1 + a2xt−2 + · · · + apxt−p + ut =
p⎧

i=1

ai xt−i + ut , (3.150)

where a1, …, ap are coefficients and ut is an innovation term that is not explained
by the past values. Thus, for every time t , ut is independent of xt−1, xt−2, xt−3, . . ..
Since an AR model is both simple and solvable, this has various applications in time
series analysis.

Assuming that ut are sampled from i.i.d. normal distributions with zero mean and
variance θ 2

u , we can rewrite Eq. (3.150) as

ut = −
p⎧

i=0

ai xt−i , (3.151)

where a0 = −1 is assumed. Then, the log–likelihood function for t ∈ [n0, n1] is
described as

l(a0, a1, a2, . . . , ap, θ
2
u ) = −n1 − n0 + 1

2
ln(2Γθ 2

u ) − 1

2θ 2
u

n1⎧

t=n0

⎨ p⎧

i=0

ai xt−i

⎩2
.

(3.152)

Partially differentiating Eq. (3.152) in terms of parameters a0, …, ap and setting
them at zero imply that

∂l

∂a0
= ∂l

∂a1
= ∂l

∂a2
= · · · = ∂l

∂ap
= 0. (3.153)

Using a0 = −1, we have

⎡

⎢
⎢
⎢
⎣

C(1, 1) C(1, 2) C(1, 3) · · · C(1, p)

C(2, 1) C(2, 2) C(2, 3) · · · C(2, p)
...

...
. . .

...

C(p, 1) C(p, 2) C(p, 3) · · · C(p, p)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

â1
â2
...

âp

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

C(0, 1)
C(0, 2)

...

C(0, p)

⎤

⎥
⎥
⎥
⎦

, (3.154)

where
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C(i, j) =
n1⎧

t=n0

xt−i xt− j . (3.155)

Equation (3.154) is called Yule–Walker equation. Furthermore, by solving ∂l
∂θ 2

u
= 0,

we get the maximum likelihood estimator of θ 2
u as follows:

θ̂ 2
u = 1

n1 − n0 + 1

n1⎧

t=n0

⎨ p⎧

i=0

ai xt−i

⎩2 = 1

n1 − n0 + 1

p⎧

i=0

p⎧

j=0

ai a j C(i, j).

(3.156)
Thus, the maximum log–likelihood value is given as

l(â0, . . . , âp, θ
2
u ) = −1

2
(n1 − n0 + 1)(ln(2Γ) + 1 + ln θ̂ 2

u ). (3.157)

Therefore, information criteria (AIC and BIC) can be derived as

AIC = (n1 − n0 + 1)(ln(2Γ) + 1 + ln θ̂ 2
u ) + 2(p + 1), (3.158)

BIC = (n1 − n0 + 1)(ln(2Γ) + 1 + ln θ̂ 2
u ) + (p + 1) ln(n1 − n0 + 1).

(3.159)

If the number of observations is T , then n1 is set as T . Since xt is determined by the
most recent past values of itself {xt−p, . . . , xt−1}, n0 − 1 should be greater than or
equal to p.

3.2.4 Segmented Regression Analysis

We consider how we can improve the precision of multiple linear regression analysis
mentioned in Sect. 3.1.9.5. Normally, we use all the data for the given period and
conduct a linear regression analysis. However, this does not work well when the
trend of the data changes during the period. If we can find the turning points, we
should divide the data into a few segments at those points. We can improve the
precision by conducting linear regression analysis for each segment of data sets
because it corresponds to each tendency. Furthermore, when we want to predict the
future realisation even in a short period, we may use the latest data set because it
includes the latest trend. Such a method is called segmented regression [25, 44]. We
discuss how we can find the turning points of data in terms of tendency, and show
the segmented linear regression analysis below.

Let τ (1 < τ < T ) be the point to divide the data into two segments, that is,
tl ∈ {1, . . . , τ }, tr ∈ {τ + 1, . . . , T }. Here, in order to regard heteroscedasticity of
disturbances zt , we define an alternative log–likelihood value:
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L2(τ ;βl0, . . . , βlp, θ
2
l , βr0, . . . , βr p, θ

2
r )

=
τ⎧

t=1

ln
1

⎪
2Γθ 2

l

exp

[

− z2lt
2θ 2

l

]

+
T⎧

t=τ+1

ln
1

√
2Γθ 2

r

exp

[

− z2r t

2θ 2
r

]

, (3.160)

where

zlt = yt − βl0 −
p⎧

i=1

βli xi,t , (3.161)

zrt = yt − βr0 −
p⎧

i=1

βri xi,t . (3.162)

The parameters βl0, . . . , βlp, θ
2
l , βr0, . . . , βr p, θ

2
r are estimated as the maximum

likelihood estimators

{β̂l0, . . . , β̂lp, θ̂
2
l , β̂r0, . . . , β̂r p, θ̂

2
r }

= arg max
βl0,...,βlp,θ 2

l ,βr0,...,βrp,θ 2
r

L2(τ ;βl0, . . . , βlp, θ
2
l , βr0, . . . , βr p, θ

2
r ).

Partially differentiating L2(τ ;βl0, . . . , βlp, θ
2
l , βr0, . . . , βr p, θ

2
r ) in terms of its

parameters conditioning on fixed τ and setting them into zero, we have

⎡

⎢
⎢
⎢
⎣

β̂l0

β̂l1
...

β̂lp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
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⎢
⎢
⎢
⎣
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∑
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⎥
⎦
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⎢
⎢
⎣

∑
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x p,t yt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where
∑

stands for
∑τ

t=1, and

θ̂ 2
l (β̂l0, · · · , β̂lp) =

∑τ
t=1

⎨
yt − β̂l0 − ∑p

i=1 β̂li xi,t

⎩2

τ
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⎦
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⎢
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⎥
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⎢
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⎦

,
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where
∑

stands for
∑T

t=τ+1, and

θ̂ 2
r ( ˆβr0, · · · , ˆβr p) =

∑T
t=τ+1

⎨
yt − β̂r0 − ∑p

i=1 β̂ri xi,t

⎩2

T − τ
.

Therefore, the maximum log–likelihood value is given as

max L2(τ )

= max
βl0,...,βlp,θ 2

l ,βr0,...,βrp,θ 2
r

L2(τ ;βl0, . . . , βlp, θ
2
l , βr0, . . . , βr p, θ

2
r )

= L2(τ ; β̂l0, . . . , β̂lp, θ̂
2
l , β̂r0, . . . , β̂r p, θ̂

2
r )

= −T

2

(
ln(2Γ) + 1

) − τ

2
ln θ̂ 2

l (β̂l0, . . . , β̂lp)

−T − τ

2
ln θ̂ 2

r (β̂r0, . . . , β̂r p). (3.163)

We, respectively, assume a null model and an alternative model as

H0: OLS regression for all the data given in Eq. (3.114) (homogeneous disturbance
distribution)
H1: OLS regression for two segmented data at τ (a mixture of two different normal
distributions)

Which OLS method is more suitable, the null model H0, or the alternative model
H1? In this case, a likelihood-ratio test [46] may provide an answer to this question.
Namely, the difference of log–likelihood can be used as a discriminant measure.

Let us introduce a logarithmic form of a likelihood-ratio σ(τ), the difference
of maximum log–likelihood value between L2(τ ) and L , which are, respectively,
defined in Eqs. (3.163) and (3.119),

σ(τ) = max L2(τ ) − max L

= 1

2

⎨
T ln θ̂ 2

z (β̂0, . . . , β̂p) − τ ln θ̂ 2
l (β̂l0, . . . , β̂lp)

−(T − τ) ln θ̂ 2
r (β̂r0, . . . , β̂r p)

⎩
. (3.164)

More precisely, an information criterion is used as the discriminant measure. The
difference of AIC between the null model and the alternative model is written as

σAI C (τ ) = −2max L2(τ ) + 2 × 2(p + 1) − (−2max L + 2 × (p + 1))

= −2σ(τ) + 2(p + 1). (3.165)

Wemove tentative segmenting point τ and calculate for each data set themaximum
log–likelihood value max L , which is described as above. In order to find the turning



114 3 Mathematical Expressions

point regarding tendency, we deal with the variable τ ranging from 5 to T − 4. From
this calculation, we obtain spectrum of σ(τ). According to the likelihood-ratio test,
tentative segmenting point τ which maximises the log–likelihood ratio σ(τ) can be
regarded as the most probable turning point:

τ ∗ = argmax
τ

σ(τ). (3.166)

This is equivalent to

τ ∗ = argmin
τ

σAI C (τ ). (3.167)

Normally, a statistic computed fromafinite number of data points is noise-dressed.
Therefore, when we get τ ∗, we must also compute a confidence level of τ ∗. From
the Wilks’s theorem [46], it is known that an asymptotic distribution of 2σ(τ) is χ2

distribution. However, the distribution of 2σ(τ) is empirically estimated by using
the bootstrap method or jackknife method for small T , empirically. Let us discuss the
confidential level of dividing the data when the threshold of the likelihood-ratio test is
set toσth . Whenσ(τ ∗) ≥ σth , τ ∗ seems to be the segment boundary but not always.
This is because τ ∗ contains a noise. Therefore, we should compute a confidence
level of τ ∗ while considering how τ ∗ fluctuates. Such a statistical fluctuation can be
approximated with a Bootstrap method [18].

Generally, the procedure for obtaining aBootstrap distribution for the one-sample
problem is as follows. When the data sample x = (x1, x2, . . . , xT ) is given, we
construct the sample probability distribution F̂ . With F̂ fixed, we draw a random
sample of size T from F̂ , say

X∗
i = x j , X∗

i ∼ind F̂, (3.168)

where i = 1, 2, . . . , T .
we call this the Bootstrap sample, X∗ = (X∗

1, X∗
2, . . . , X∗

T ) resampled from x =
(x1, x2, . . . , xT ). Then we can approximate the sampling distribution of R(X, F) by
the Bootstrap distribution of

R∗ = R(X∗, F̂), (3.169)

i.e., the distribution of R∗ is induced by the random mechanism Eq. (3.168) with F̂
held fixed at its observed value. The simplest way to set probabilities to resample
sequences is to put the probability 1/T at each point of x.

Let D be the T × (p + 1) data matrix and Dk represent the k-th data set, i.e.,
[
xk,1 . . . xk,p yk

]T . In our model, we conduct the Bootstrap sequences by the fol-
lowing procedure.

As we express in Fig. 3.4, we select τ ∗ data sets at random with replacement
from the data sets D and call the obtained data sets D∗

l . We introduce its t-th data
set D∗

lt so that D∗
lt = Dk (t = 1, . . . , τ ∗) where k ∈ {1, . . . , τ ∗} is selected with

the probability 1/τ ∗. We also select (T − τ ∗) data sets from D and call it D∗
r . Its
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Fig. 3.4 Procedure to
construct Bootstrap sequences
D∗, D∗

l and D∗
r from D

t-th content will be D∗
r t = Dk (t = τ ∗ + 1, . . . , T ) where k ∈ {τ ∗ + 1, . . . , T }

is selected with the probability 1/(T − τ ∗). We connect the obtained data sets as
D∗ = [

D∗
l D∗

r

]
.

Then, we calculate the disturbance terms z∗
t , z∗

lt and z∗
r t which we get by substitut-

ing data sets D∗, D∗
l and D∗

r for Eqs. (3.114), (3.161) and (3.162). Using z∗
t , z∗

lt and
z∗

r t , we can calculate max L∗ and max L∗
2(τ

∗) by Eqs. (3.119) and (3.163). At the
end, we get the Bootstrap variable σ∗(τ ∗) by substituting max L∗ and max L∗

2(τ
∗)

for Eq. (3.164). Repeating this procedure, we can estimate the sampling distribution
of σ(τ ∗) by means of the Bootstrap distribution.

Figure 3.5 is an example of a Bootstrap distribution. As shown in this figure, we
will be able to estimate the range of the error of σ(τ ∗) with this distribution. We can
estimate the value σ5 % at which its CDF is 5 %, as is described with a green line
in Fig. 3.5. Thus we can set the condition to terminate segmenting recursively by
using σ5 %. Throughout this analysis, we set a threshold of segmenting as zero
(σth = 0), and if σth < σ5 %, we regard the segmenting procedure significant
and continue it recursively, or otherwise, terminate segmenting for the considering
interval. We use this for the terminal condition of segmentation.

Finally, following to this procedure, we get s segments and regression coefficients
for each segments. We should evaluate if this model is well-fitted to the data given
or not. Akaike information criterion (AIC) will give an answer to this. According to
AIC, we should choose a model which is well-fitted to data with a small number of
parameters as an adequate model from many candidates of models. AIC is defined
as AI C = −2 × (log–likelihood) + 2 × (the number of parameters). In the case of
OLS, when the number of explanatory variables is p, AIC is given as:

AI CO L S = −2 × max L + 2 × (p + 1). (3.170)

In the case of our proposed method, AIC is given as:
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Fig. 3.5 Bootstrap
distribution and its 5 % point.
The red boxes represent the
percentage of taking the value
of log likelihood-ratio. The
green line represents the
value where the cumulative
percentage is 5 %
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AI CSO L S = −2 ×
s⎧

m=1

max Lm + 2 ×
⎨

s(p + 1) + (s − 1)
⎩

(3.171)

= −2
s⎧

m=1

max Lm + 2
⎨

s(p + 2) − 1
⎩
, (3.172)

where p is the number of explanatory variables, s is the number of segments, and
max Lm is the maximum log–likelihood value computed from the m-th segmented
period. We need “the number of segmented period − 1” term because not only the
number of explanatory variables but also the segmenting points τ ∗ are parameters.

3.3 Network Analysis

In this section, we will address fundamental parts of graph theory. They are needed
whenwe attempt to express and analyse relationship of socioeconomic-technological
systems. The network perspective provides new tools for answering questions in stan-
dard social and behavioural science research by giving precise formal definition to
fields of social sciences. In addition, mobility of human behaviour and transportation
are also represented using network description. Readers may find useful information
in a number of review articles and books on complex networks [2, 8, 12, 43].

3.3.1 Basic Graph Theory

Graph theory has been commonly used in social network analysis to express the
structure of relationships simply. Fundamentally, a graph consists of nodes (e) and
of links (l) that connect the nodes. In the context of social sciences, nodes correspond
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Fig. 3.6 The example of
a fully connected network
consisting of six nodes 1

2

3

4

5

6

to actors or events, and links represent the set of their relationships. We assume a set
of nodes E = {e1, . . . , eN } and a set of links V = (l1, . . . , lL), where N and L are
the number of nodes and the number of links, respectively.

The link is defined as the connection between two nodes. If a connection l1 refers
to the connection between nodes e2 and e6, we write as

l1 = {e2, e6}. (3.173)

For a network with the number of nodes equal to N , the maximum number of
connections in an undirectional graph is given as

Lmax,undir = N (N − 1)

2
. (3.174)

The ratio of the total number of links to the maximum number of links is called
density , which is defined as

d = 2L

N (N − 1)
. (3.175)

Figure 3.6 shows fully connected network consisting of six nodes. In this case,
from Eq. (3.174), the number of links is calculated as L = 6 × 5/2 = 15. This
provides the maximum number of links Lmax allowed in an undirectional graph.

Up to this point, a connection between two nodes is established, and the relation-
ship is not in any specific directions. A directional connection is that which represents
a connection that goes from one node (origin) and ends at another (destination). For
example, if we try to conduct an analysis of a transportation network, there is a direc-
tion in the connections. Thus, if a connection l1 refers to the directional connection
of nodes e2 and e5,

l1 = {e2 → e5}. (3.176)

In the case of directional connections, the maximum number of links is given as

Lmax,dir = N (N − 1). (3.177)
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Fig. 3.7 The domestic air
transportation network of
Japan. This network consists
of 58 nodes and is drawn from
data for Japanese domestic
flights on 15 October 2013
(JST). A node represents an
airport, and a link a flight
between two airports. 4-letter
codes represent ICAO airport
identifiers shown in Sect. 4.5
(p. 169)
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Therefore, the density is calculated as

d = L

N (N − 1)
. (3.178)

As an example of a directional graph in a real world, let us consider a Japanese
domestic air transportation network. Figure 3.7 shows an example of the air trans-
portation network of Japan. In this network, there are 58 airports (N = 58), repre-
sented as nodes that are connected with 261 links (L = 261). Since the maximum
number of possible links is computed as Lmax,dir = 58 × (58 − 1) = 3,306, the
density is estimated to be d = 261/3,306× 100 = 7.89 %. This implies that 7.89 %
of the possible connections between two airports are used in Japanese domestic air
transportation.

Graphs enable many interesting analyses to be made, and they have visual appeal,
which helps us to understand the network. However, there are too many nodes and
links to show in a visual representation. When increasing the number of nodes and
links, it becomes impossible to use visualisation. Moreover, some important infor-
mation, such as the frequency of occurrence and weights to characterise some infor-
mation, are difficult to show in a graph. To solve this problem, we use the matrices
to express the existence of a link between two nodes. Both directed and undirected
networks can be expressed as a matrix. If the weights of links are homogeneous, then
such a matrix is called an adjacency matrix.

Let Ai j represent an adjacency matrix. The indices i and j correspond to nodes
ei and e j included in the set of nodes E . If the nodes ei and e j are connected, then an
element of the matrix Ai j is unity. Otherwise, Ai j equals zero. For an undirectional

http://dx.doi.org/10.1007/978-4-431-54974-1_4
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network, we have a symmetric matrix

Ai j =
{
0 (ei and e j are not connected)
1 (ei and e j are connected)

, (3.179)

and Ai j = A ji . The diagonal element Aii = 0 if we do not regard a self-connection
of the node ei . Figure 3.8a shows an example of a directed network for which an
adjacency matrix is described as

Ai j =

⎛

⎜
⎜
⎝

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

⎞

⎟
⎟
⎠ . (3.180)

We consider a degree of the i-th node, which is defined as

ki =
N⎧

j=1

Ai j . (3.181)

The degree sum formula states that

N⎧

i=1

ki = 2L . (3.182)

We also define the average degree as

〈k〉 = 1

N

N⎧

i=1

ki = 2L

N
. (3.183)

The average degree is sometimes called the density since there is a relationship
between the average degree and the density defined in Eq. (3.175):

〈k〉 = d(N − 1). (3.184)

In the case of an undirected network, which is represented as Eq. (3.180), the
degrees are given as (k1, k2, k3, k4) = (2, 2, 1, 3). We can confirm that the sum of
degrees is satisfied as

4⎧

i=1

ki = 2 + 2 + 1 + 3 = 8 = 2L , (3.185)

and compute the average degree as 〈k〉 = 8/4 = 2 and the density as d = 2/3.
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Fig. 3.8 An example of an
undirected network (a) and a
directed network (b)

1 2

3

4

12

3

4

(a) (b)

If the connections are directional, we have an asymmetric matrix:

Ai j =
{
0 ({ei → e j } are not connected)
1 ({ei → e j } are connected) , (3.186)

Figure 3.8b shows an example of directed networks and their adjacency matrix, for
which an adjacency matrix is described as

A =

⎛

⎜
⎜
⎝

0 0 0 1
1 0 0 0
0 0 0 0
0 1 1 0

⎞

⎟
⎟
⎠ . (3.187)

In this case, we need to consider two types of degrees, called in-degree and out-
degree. The in-degree is the number of links that enter a node. The out-degree is the
number of links that emerge from a node. The in-degree and out-degree of the i-th
node are, respectively, defined as

k(in)
j =

N⎧

i=1

Ai j , (3.188)

k(out)
i =

N⎧

j=1

Ai j . (3.189)

The average in-degree and the average out-degree are defined as

〈k(in)〉 = 1

N

N⎧

j=1

k(in)
j , (3.190)

〈k(out)〉 = 1

N

N⎧

i=1

k(out)
i . (3.191)

In the directed network, we have the degree sum formula for both in-degree and
out-degree, such that



3.3 Network Analysis 121

Fig. 3.9 An example of a
weighted network consisting
of four nodes
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N⎧

j=1

k(in)
j =

N⎧

i=1

k(out)
i = L . (3.192)

Therefore, the average out-degree equals the average in-degree, which is equal to

〈k(in)〉 = 〈k(out)〉 = L

N
= d(N − 1). (3.193)

Similar to Eq. (3.184), we also find a relationship between the average degree
and the density in the case of directed network. In the case of the directed net-
work given in Eq. (3.187), the in-degrees and out-degrees are, respectively, com-
puted as (k(in)

1 , k(in)
2 , k(in)

3 , k(in)
4 ) = (1, 1, 1, 1) and (k(out)

1 , k(out)
2 , k(out)

3 , k(out)
4 ) =

(1, 1, 0, 2). The degree sum formula in the directed network is confirmed from the
calculation:

4⎧

j=1

k(in)
j = 1 + 1 + 1 + 1 =

4⎧

i=1

k(out)
i = 1 + 1 + 0 + 2 = 4 = L . (3.194)

Therefore, the average in-degree, the average out-degree and the density are
calculated as 〈k(in)〉 = 1, 〈k(out)〉 = 1, and d = 1/3.

The adjacency matrix expresses only connections. We often use a weighted
adjacencymatrix. One simple example of the weighted network is amatrix to express
a flow (the yearly number ofmeetings between twopersons, the daily number of buses
travelling between two bus stops, themonthly number of flights between airports, and
so forth) between ei and e j . Figure 3.9 shows an example of an undirected weighted
network, for which a weighted adjacency matrix is described as

A =

⎛

⎜
⎜
⎝

0 1 0 2
1 0 1 3
0 1 0 1
2 3 1 0

⎞

⎟
⎟
⎠ . (3.195)

This undirected graph consists of four nodes. For example, the weight of l(1, 4) is
given as 2 and l(2, 3) as 1.
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Fig. 3.10 The domestic air
transportation network of
Japan. This network consists
of 58 nodes and is drawn from
data for Japanese domestic
flights on 15 October 2013
(JST). A node represents an
airport, and a link a flight
between two airports. The
thickness of the link indicates
the daily number of flights
between departure and arrival
airports. 4-letters codes indi-
cate ICAO airport identifiers
shown in Sect. 4.5 (p. 169)
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As an example of a directed weighted network obtained from actual network data,
we consider the Japanese domestic air transportation network shown in Fig. 3.10
again. The daily number of connections seems to be associated with the weight of a
link. If two aeroplanes fly from Narita International Airport (RJAA) to Sendi Airport
(RJSS) a day, we assign the weight from RJAA to RJSS as 2. Figure 3.7 shows the
Japanese domestic air transportation network. The link weight is drawn in proportion
to the daily number of connections between departure and arrival airports. We can
see that there are many links among major airports, such as Narita International
Airport (RJAA), Kansai International Airport (RJBB), NewChitose Airport (RJCC),
Fukuoka Airport (RJFF), Osaka Airport (RJOO), Haneda Airport (RJTT) and so on.

3.3.2 Bipartite Graph

A bipartite network is a graph consisting of two types of nodes. Different types of
nodes have links, but the same types of nodes have no links. Assume that there are
two types of nodes, a and b. There are N nodes belonging to type a and M nodes
belonging to type b. This structure can be expressed as an (N + M) × (N + M)

adjacency matrix Ai j .
Suppose an undirectional bipartite network described by the adjacency matrix

http://dx.doi.org/10.1007/978-4-431-54974-1_4


3.3 Network Analysis 123

A =

N
︷ ︸︸ ︷

M
︷ ︸︸ ︷

N






⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 1 · · · 0 ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

...
. . .

...
...

. . .
...

0 · · · 0 1 · · · 0

M






1 · · · 1 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 1 0 · · · 0

(3.196)

The first N nodes are included in type a, and the last M nodes are included in type
b. The adjacency matrix Ai j can be partitioned into four blocks:

A =
[

O(N , N ) B
BT O(M, M)

]

, (3.197)

where the N × N block matrix and the M × M block matrix are zero matrix since
there are no links between nodes of the same type. The matrix B is an N × M
rectangular matrix in general. In the rectangular matrix B, each column expresses a
and each row b, and the element is 1 if the node belonging to b in that row has a link
to the node belonging to a.

A degree of the i-th node belonging to a is given by k(a)
i = ∑M

j=1 Bi j

(i = 1, . . . N ), and a degree of the j-th node belonging to b is given by
k(b)

j = ∑N
i=1 Bi j ( j = 1, . . . , M).

In general, we can find the overlap for any pair of nodes a or b by summing
the multiplied elements of the corresponding rows or columns of the rectangular
adjacency matrix Bi j . That is,

A(a)
i j =

M⎧

k=1

Bik B jk, A(b)
i j =

N⎧

k=1

Bki Bk j , (3.198)

where the matrices A(a) and A(b) give a one-mode projection by nodes belonging to
type a and to type b, respectively. In matrix notation, Eq. (3.198) is rewritten as

A(a) = B BT, A(b) = BTB. (3.199)

The diagonal components of these matrices show the number of links between two
nodes. For example, suppose 3 nodes of type a (N = 3) and 4 nodes of type b
(M = 4), which construct a bipartite network described as the rectangular adjacency
matrix

B =
⎡

⎣
1 0 0 0
1 1 1 0
0 0 1 1

⎤

⎦ . (3.200)
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Fig. 3.11 An example of a
bipartite graph

Fig. 3.12 One-mode
projections of bipartite
networks. a Projections by
the nodes belonging to type a
and b to type b

1

2

3(a)

1

2

3

4(b)

This bipartite network can be described as Fig. 3.11. The one-mode projection by
nodes belonging to type a and to type b are given as

A(a) =
⎡

⎣
1 0 0 0
1 1 1 0
0 0 1 1

⎤

⎦

⎡

⎢
⎢
⎣

1 1 0
0 1 0
0 1 1
0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎣
1 1 0
1 3 1
0 1 2

⎤

⎦ , (3.201)

and

A(b) =

⎡

⎢
⎢
⎣

1 1 0
0 1 0
0 1 1
0 0 1

⎤

⎥
⎥
⎦

⎡

⎣
1 0 0 0
1 1 1 0
0 0 1 1

⎤

⎦ =

⎡

⎢
⎢
⎣

2 1 1 0
1 1 1 0
1 1 2 1
0 0 1 1

⎤

⎥
⎥
⎦ . (3.202)

Non-diagonal elements of A(a)
i j and A(b)

i j show connections of one-mode projections
by the nodes belonging to type a (see Fig. 3.12a) and to type b (see Fig. 3.12b),
respectively. Figure 3.12 shows one-mode projection networks expressed as adja-
cencymatrices, Eqs. (3.201) and (3.202). These are obtained as one-mode projections
from a bipartite network shown in Fig. 3.11.
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3.3.3 Mean Path Length

In a network, themean path length is defined as the average length of the shortest path
between two nodes. The mean path length is often called the average path length.

Let Di j be the length of the shortest path between node i and j . In a network,
the length of a path is defined using several ways. The shortest path length is often
defined as the number of hops between two nodes. The shortest path between two
points, called geodesic, is also considered. The definition of the length between two
nodes should be symmetrical if the underlying network structure is undirectional.
Namely, we impose Di j = D ji .

The mean path length is computed as an average of the shortest path length Di j

over all the pairs of nodes. For an undirected network of N nodes, the mean path
length is defined as

〈l〉 = 2

N (N − 1)

N⎧

j=1

N⎧

i= j

Di j , (3.203)

or

〈l〉 = 2

N (N − 1)

N⎧

j=1

j−1⎧

i=1

Di j , (3.204)

where the diagonal components of the shortest path length are zero Dii = 0. If two
nodes are disconnected, then the path length between them is infinite. As a result, if a
network contains disconnected components, then themean path length l also diverges
to infinity. To avoid the divergence of 〈l〉, we may take the sum over only nodes in
the largest connected component. In the case of an undirectional network, we may
not find a pair of nodes that has no connections in the largest connected component.
However, a directed network often has pairs of nodes that are not reachable. In this
case, we can take an average of pairs of nodes in weakly connected components
(WCC).

3.3.4 Centrality

3.3.4.1 Degree Centrality

Degree centrality was firstly proposed by Freeman in social network analysis [22].
An underlying idea behind is that nodes which have more links to other nodes may
be related to the importance of the nodes. Because they have many links, they may be
able to access resources of other nodes. Therefore, we can measure the importance
of a node by using its degree.
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In an undirected network, nodes differ from one another only in the number of
connections which they have. In a directed network, however, it can be important
to distinguish centrality based on in-degree with centrality based on out-degree. If
a node receives many links (has high in-degree centrality), it is often said to be
prominent or to have high prestige. Nodes that have an unusually high out-degree
are often said to be influential since they are able to exchange with many others.

Suppose that we have an adjacency matrix Ai j for N nodes. In the case of an
undirectional network, a degree of the i-th node is calculated using Eq. (3.181).
Thus, a degree centrality of the i-th node is defined as

CD(ei ) =
∑N

j=1 Ai j

N − 1
= ki

N − 1
. (3.205)

In a directional network, an in-degree of the j-th node is defined as

C (in)
D (e j ) =

∑N
i=1 Ai j

N − 1
= k(in)

j

N − 1
, (3.206)

and the out-degree of the i-th node is defined as

C (out)
D (ei ) =

∑N
j=1 Ai j

N − 1
= k(out)

i

N − 1
. (3.207)

The degree centrality of a point is viewed as important as an index of its commu-
nication activity. Obviously, CD(ei ), C (in)

D (e j ) and C (out)
D (ei ) take a value ranging

from 0 to 1.

3.3.4.2 Betweenness Centrality

Betweenness centrality was also formalised by Freeman [21]. It is defined as follows.
Suppose that gi j represents the number of geodesic linking ei and e j . If we assume
that two nodes ei and e j are indifferent with respect to which of several alternative
geodesic carries their communications, then the probability of using any one of
them is

1

gi j
. (3.208)

The potential of point ek for control of information passing between ei and e j may
be defined as the probability that ek falls on a randomly selected geodesic connecting
ei and e j . By introducing gi j (ek) to the number of geodesics linking ei and e j that
contain ek , we can calculate the probability as
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bi j (ek) = 1

gi j
× gi j (ek) = gi j (ek)

gi j
. (3.209)

The overall centrality of a node ek is given by the sum of its partial betweenness
values for all unordered pairs of nodes where i ∈= j ∈= k:

CB(ek) =
N⎧

i=1

N⎧

j=i+1

bi j (ek), (3.210)

where N is the number of nodes in the network. When ek falls on the only geodesic
connecting a pair of nodes, CB(ek) increases by 1. Obviously, CB(ek) takes a value
ranging from 0 to 1.

3.3.4.3 Eigenvector Centrality

Eigenvector centrality is an index that considers both direct and indirect influences
from the other nodes in a network. When thinking about a real network, the impor-
tance of a node needs to be quantified by considering the indirect influence to a
node that is located more than two links away, the eigenvector centrality is the more
practical measure to apply to the real network analysis.

The eigenvector centrality Cev(ei ) of node i in an undirectional network with N
nodes can be defined as

Cev(ei ) = 1

λ1(A)

N⎧

j=1

Ai j Cev(e j ), (3.211)

where Ai j represents an element in the i-th row and the j-th column of the adjacency
matrix and λ1(A) shows the maximum eigenvalue of the adjacency matrix A. In the
matrix notation, Eq. (3.211) can be expressed as

λ1(A)Cev = ACev, (3.212)

where Cev is an N ×1 column vector in which each element corresponds to the value
of the eigenvalue centrality Cev(ei ).

3.3.4.4 Alpha Centrality

Bonacich [13] proposed an extension of the eigenvector centrality, which is called
alpha centrality. In the case of an undirectional network, the alpha centrality is
defined as
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Cα = (I − α A)−1e, (3.213)

where Cα is an N ×1 column vector in which each element corresponds to the value
of the alpha centrality Cα(ei ) of the i-th node. e is an N × 1 column vector in which
all elements are 1, and I is a unit matrix. α is an arbitrary parameter that controls the
weight of directional or undirectional influence from the other nodes in the network
represented by the adjacency matrix A. Any symmetrical matrix can be decomposed
as follows:

AX = λX, A = XλX−1 = XλXT. (3.214)

Because the eigenvectors of a symmetrical matrix are orthogonal, the powers of A
have similar decompositions.

Ak =
N⎧

i=1

λk
i vi vTi , (3.215)

where vi is the i-th orthonormal eigenvectors of an N × N symmetric matrix A,
which is described as an N × 1 column vector, and λi is the associated with the i-th
eigenvalues. For α < 1/λ1, we have

Cα = (I − α A)−1e =
⎨ ∞⎧

k=0

αk
N⎧

i=1

λk
i vi vTi

⎩
e

=
⎨ N⎧

i=1

( ∞⎧

k=0

αkλk
i

)
vi vTi

⎩
e =

N⎧

i=1

vi vTi
1 − αλi

e. (3.216)

In the case of directional network, the eigenvectors of an asymmetrical adjacency
matrix are not orthogonal. Therefore, Eq. (3.213) is a bit different. For an asym-
metrical matrix, AX = λX , as before, but XT ∈= X−1. However, it is true that
A = Xλk X−1. Letting wi be the i-th row of X−1,

A =
N⎧

i=1

λi vi wi , Ak =
N⎧

i=1

λk
i vi wi . (3.217)

Therefore,

Cα = (I − α A)−1e =
⎨ ∞⎧

k=0

αk
N⎧

i=1

λk
i vi wi

⎩
e

=
⎨ N⎧

i=1

( ∞⎧

k=0

αkλk
i

)
vi wi

⎩
e =

N⎧

i=1

vi wi

1 − αλi
e. (3.218)
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If λ1 is strictly greater than any other eigenvalue, the coefficient for the first term in
the final sum in Eq. (3.218) will become more and more dominant as α approaches
1/λ1.

3.3.5 Network Entropy

The concept of statistical–physical entropy was applied by Bianconi [6, 10] to
measure network structure. She considered that the complexity of a network is related
to the number of possible configurations of nodes and links under some constraints
determined by observations. She calculated the network entropy of an arbitrary
undirected network in several cases of constraints. She considered four types of
constrains [6, 10]:

1. An ensemble of random networks with a given number of nodes N and links
L = ∑

i< j Ai j .
2. An ensemble of networks with given degree sequences {k1, . . . , kN } with

ki = ∑
j=1 Ai j .

3. An ensemble of networks with given degree sequences {k1, . . . , kN } and given
average nearest neighbour connectivity knn(k) = [∑i, j Δ(ki − k)Ai j k j ]/(k Nk)

(with Nk indicating the number of nodes of degree k in the network).
4. An network ensemble with a given degree sequence and a given community

structure.

One of the simple cases of network entropy is given by using the number of undirected
networksN0 = N (N−1)

2
CL with a given number of nodes N and links L as constraints.

In this case, the entropy per node can be described as

�0 = 1

N
lnN0. (3.219)

There is an alternative definition of network entropy to characterise network
structure with information-theoretic entropy [16, 30, 36, 42, 45]. Several graph
invariants, such as the number of nodes, the node degree sequence and extended
degree sequences, have been used in the construction of entropy-basedmeasures [45].

The simplest case of the network entropy is defined by using the node degree.
The network entropy is defined as the Shannon entropy for the node degree density.
In the case of an undirected network of the number of nodes N with the adjacency
matrix Ai j (i, j = 1, . . . , N ), the node degree density of the i-th node to the total
number of links L is computed as

c(ei ) =
∑N

j=1 Ai j
∑N

i=1
∑N

j=1 Ai j
= ki

2L
. (3.220)
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Obviously, 0 ⇒ c(ei ) ⇒ 1 and
∑N

i=1 c(ei ) = 1. Then, the network entropy H(A) is
defined as

H(A) = −
N⎧

i=1

c(ei ) ln c(ei ). (3.221)

The network entropy H(A) takes a small value if c(ei ) is heterogeneous and it takes
a large value if c(ei ) is homogeneous. The maximum value of H(A) is Hmax = ln N
for a homogeneously connected network with c(ei ) = 1/N .

In the case of a directed network, we have two types of network entropies for
in-degree and out-degree. They are defined as

H (in)(A) = −
N⎧

j=1

c(in)(e j ) ln c(in)(e j ), (3.222)

H (out)(A) = −
N⎧

i=1

c(out)(ei ) ln c(out)(ei ), (3.223)

where

c(in)(e j ) =
∑N

i=1 Ai j
∑N

i=1
∑N

j=1 Ai j
= k(in)

j

L
, c(out)(ei ) =

∑N
j=1 Ai j

∑N
i=1

∑N
j=1 Ai j

= k(out)
i

L
.

(3.224)

Note that 0 ⇒ c(in)(e j ) ⇒ 1,
∑N

j=1 c(in)(e j ) = 1, 0 ⇒ c(out)(ei ) ⇒ 1 and
∑N

i=1 c(out)(ei ) = 1.

3.3.6 Assortativity Coefficient

The assortative coefficient is used to measure the level of homophily of the graph.
Suppose that there are K types of nodes in a network. If the same type of nodes
tends to be connected to each other, then this is defined as an assortative network.
If the different types of nodes to be connected to each other, then this is defined
as a disassortative network. Newman defines two kinds of assortativity coefficients
[31, 32].

Let qi j be the fraction of links in a network that connect a node of type i to one
of type j . For an undirectional network, obviously we have qi j = q ji . It satisfies the
sum rules
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K⎧

i=1

K⎧

j=1

qi j = 1,
K⎧

j=1

qi j = ai ,

K⎧

i=1

qi j = b j , (3.225)

where ai and b j are the fraction of each type of end of a link that is connected to
nodes of type i and j , respectively. On an undirectional network, ai = bi holds.

The first assortative coefficient [31] is defined as

r =
∑K

i=1 qii − ∑K
i=1 ai bi

1 − ∑K
i=1 ai bi

. (3.226)

If Eq. (3.226) gives r = 0, then there is no assortative mixing in the network. r = 1
implies that there is perfect assortative mixing and

∑K
i=1 qii = 1. If the network is

perfectly, disassortative so that every link connects two nodes of different types, then
r is negative and takes the minimum value −(

∑K
i=1 ai bi )/(1 − ∑K

i=1 ai bi ).
The second assortativity variant is based on values assigned to the nodes [32].

This is defined as

r =
∑K

j=1
∑K

k=1 jk(q jk − b j bk)
∑K

k=1 k2bk − (
∑K

k=1 kbk)2
, (3.227)

which is equivalent to the Pearson correlation coefficient of the degrees at either
ends of a link and lies in the range −1 ⇒ r ⇒ 1. In the case of directed network, the
assortativity takes different values for in-degree and out-degree.

3.3.7 Community Detection

Community detection in networks is an important issue in complex network studies,
and many different methods are proposed [20]. The simple method to detect commu-
nities in a network is based on the maximisation of modularity measure [33], defined
as

Q =
nM⎧

s=1

{ Ls

L
−
⎨ Ns

2L

⎩2}
, (3.228)

where nM denote the number of communities (modules), Ns and Ls represent the
number of nodes in community s and the number of links inside community s. The
first term of the summand in Eq. (3.228) is the fraction of links inside community s
and the second term represents the expected fraction of links in that community if
links were located at random in the network. The number of communities nM is also
a variable of which value is obtained by the maximisation.
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Fig. 3.13 A conceptual
illustration of geographic
coordinate system

3.4 Spatial Analysis

Spatial analysis and geographic information system (GIS) provide us with the ability
to analyse data with geographical information. In spatial analysis, we treat data of
physical quantitieswith geographical positions. Visualisation, density estimation and
computation of spatial statistics are often used. In this section, we will address the
fundamental methods for spatial descriptions and spatial autocorrelations. Readers
may find useful information in a number of books on spatial analysis [11, 19].

3.4.1 Geographic Coordinate System

A geographic coordinate system enables every location on Earth to be specified by
the latitude, longitude and elevation. Figure 3.13 shows a conceptual illustration
of geographic coordinate system. The latitude is defined from north to south. The
longitude is defined from east to west.

The latitude of a point on Earth’s surface is the angle between the equatorial plane
and a curve that passes through that point and the centre of Earth to the surface of a
reference ellipsoid that approximates the shape of Earth. This line passes from the
centre of Earth except at the poles and the equator where it passes through Earth’s
centre. Curves joining points of the same latitude trace circles on the surface of Earth,
called parallels, as they are parallel to the equator, and to each other.

The longitude of a point onEarth’s surface is the angle east orwest froma reference
meridian to another meridian that passes through that point. A curve passing near the
Royal Observatory in Greenwich (UK) has been chosen as the international zero-
longitude reference curve, which is called the Prime Meridian. Places to the east are
in the eastern hemisphere, and places to the west are in the western hemisphere.

Let φ◦ and λ◦ be the latitude and longitude at position s, respectively. We assume
that they are measured in degrees. The latitude φ◦ takes a value ranging from −90◦
to 90◦. The north pole is 90◦ and the south pole is −90◦. The 0◦ parallel of latitude
corresponds to the equator. The longitude λ◦ takes a value from−180◦ to 180◦. Thus,
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the western hemisphere ranges from −180◦ to 0◦, and the eastern hemisphere from
0◦ to 180◦. The antipodal meridian of Greenwich is both −180◦ and 180◦.

If we measure the latitude and longitude in radians, the longitude λ takes a value
ranging from −Γ to Γ and the latitude φ from −Γ/2 to Γ/2. The equality between
radians and degrees can be used in the interpretation.

λ = Γλ◦/180, φ = Γφ◦/180. (3.229)

3.4.2 Data on Geography

Grid data of Earth’s surface can be downloaded fromNOAAData Centre.1 ETOPO1
[3] is a 1 arc-minute global relief model of Earth’s surface that integrates land
topography and ocean bathymetry. It is built from numerous global and regional
data sets. There are two versions of the Grid in ETOPO1: Ice Surface and Bedrock.

Shape files are the most popular data used in geostatistics. GADM is a spatial
database of the location of the world’s administrative area for use in GIS.2 This
contains various attributes (‘spatial features’), such as the name and variant names
for each Global Administrative Area.

3.4.3 Map Projections

In this section, we address how to transform the latitude and the longitude into
horizontal and vertical positions. This is called a map projection, which provides
a systematic method to transform the latitudes and longitudes of locations on the
surface of a sphere or an ellipsoid into locations on a plane. There are several map
projections classified into:

• Cylindrical type
• Pseudocylindrical type
• Azimuthal type
• Pseudoazimuthal type
• Conic type
• Pseudoconical type
• Polyhedral type
• Retroazimuthal type

We measure both the latitude φ (−Γ/2 ⇒ φ ⇒ Γ/2) and longitude λ (−Γ ⇒ λ ⇒ Γ )
in radians. Let x and y be the horizontal and vertical positions. We see, for example,
four typical map projections in cylindrical and pseudcylindrical types below and

1 http://www.ngdc.noaa.gov/mgg/global.
2 GADM database: www.gadm.org.

http://www.ngdc.noaa.gov/mgg/global
www.gadm.org
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draw maps with actual data. We address four types of typical projections in the list
above.

3.4.3.1 Equirectangular Projection

Equirectangular projection is a simple map projection, which is classified into cylin-
drical projections. This is defined as:

{
x =

{
(λ − λ0 + Γ) mod 2Γ

}
− Γ

y = φ
, (3.230)

where the point (0, 0) is at the centre of the resulting projection. This position is
mapped into λ = λ0 (λ0 is the central meridian), and φ = 0. Figure 3.14a shows the
world map drawn using equirectangular projection for λ0 = 135

180Γ . The range of x is
from −Γ to Γ , and of y from −Γ/2 to Γ/2.

3.4.3.2 Lambert Cylindrical Equal-Area Projection

Lambert cylindrical equal-area projection is a cylindrical, equal-areamap projection.
It is defined as

{
x =

{
(λ − λ0 + Γ) mod 2Γ

}
− Γ

y = sin φ
, (3.231)

where λ0 is the central meridian. Figure 3.14b shows the world map drawn using
the Lambert cylindrical equal-area projection for λ0 = 135

180Γ . The range of x is from
−Γ to Γ and of y from −1 to 1.

3.4.3.3 Sinusoidal Projection

The sinusoidal projection is classified into a pseudocylindrical equal-area map
projection. This is also called Sanson projection. This projection is described as

{
x =

[{
(λ − λ0 + Γ) mod 2Γ

} − Γ
]

× cosφ

y = φ
, (3.232)

where λ0 is the central meridian. Figure 3.14c shows the world map drawn using the
sinusoidal projection for λ0 = 135

180Γ . The range of x is from −Γ to Γ and of y from
−Γ/2 to Γ/2.
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Fig. 3.14 a The world map drawn with the Equirectangular projection. b The world map drawn
with the Lambert cylindrical equal-area projection. c The world map drawn with the sinusoidal
projection. d The world map drawn with the WagnerVI projection. These pictures are drawn with
Grid data of Earth’s surface (ETOPO1 Ice Surface Global Relief Model) downloaded from NOAA
Data Centre

3.4.3.4 Wagner VI Projection

Wagner VI projection is classified into a pseudocylindrical and compromise map
projection, which is defined as:





x =

[{
(λ − λ0 + Γ) mod 2Γ

} − Γ
]

×
√

1 − 3
⎨

φ
Γ

⎩2

y = φ

, (3.233)

Figure 3.14d shows theworldmap drawn usingWagner VI projection for λ0 = 135
180Γ .

3.4.4 Geodesic Distance

There are several types of approximation to calculate geodesic distance from two
points of latitude and longitude. The simplest method is an approximation under the
assumption that Earth is a sphere. This approximation is referred to as Vincenty’s
formulae. Let φs , λs , φ f and λ f be the geographical latitude and longitude of two
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points s and f . The distance D between s and f is given by

D = r tan−1

⎛

⎝

⎪
(cosφs sinσλ)2 + (cosφs sin φ f − sin φs cosφ f cosσλ)2

sin φs sin φ f + cosφs cosφ f cosσλ

⎞

⎠ ,

(3.234)

where r represents the earth’s radius (r = 6, 371.2 km) and σλ = λs − λ f .
More accurately, the shape of Earth closely resembles a flattened sphere (ellipsoid)

with an equatorial radius a of 6,378.137 km, and the polar semi-minor axis b equals
6,356.7523142 km. Therefore, the flattening of Earth, which is defined as

flattening = f = a − b

a
, (3.235)

is calculated as f = 1/298.257223563. This model of Earth is employed in the
World Geodetic System 1984 (WGS 84), which is meant to be Earth’s centre of
mass. The error of distance measured by the WGS 84 is believed to be less than
2 cm.

3.4.5 Spatial Autocorrelation

To estimate spatial autocorrelation statistics, classically, there are two types of spatial
autocorrelation statistics, calledMoran’s [29] I and Geary’s C [24]. The local spatial
autocorrelation called Getis-Ord’s G [34] is also considered. The spatial data is
described as a value, which is called “feature”, with information on its location.

To compute spatial autocorrelation, we first need to define how to measure the
proximity between two observations. Namely, the distance measure must be intro-
duced. These distances are expressed as a matrix called the weight matrix, which
defines the relationships between locations where measurements were made. If we
have T observations collected at each location, then theweight matrix will be a T ×T
matrix with zeros on the diagonal. Examples of the weight matrix are as follows:

• The weight for any two different locations is a constant.
• All observations within a specified distance have a fixed weight.
• The nearest neighbours up to K -distance have a fixed weight, and all others are
zero.

• The weight is proportional to the inverse distance, the inverse distance squared or
the inverse distance up to a specified distance.
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3.4.5.1 Moran’s I

Moran’s I assumes that the null hypothesis states that there is no spatial clustering of
the values associated with the geographic features in the study area [29]. When the
p-value is small, the null hypothesis can be rejected. Namely, it indicates that there
is a spatial clustering in the features. If the index value I is greater than 0, the set of
features exhibits a clustered pattern. Otherwise, the set of features shows a dispersed
pattern.

Suppose that we have T features xi with the geographical position. TheMoran’s I
statistic for spatial autocorrelation is defined as

I = T

S0

∑T
i=1

∑T
j=1 wi j (xi − X̄)(x j − X̄)
∑T

j=1(x j − X̄)2
, (3.236)

where X̄ represents the empirical mean defined as X̄ = ∑T
i=1 xi/T ,wi j is the spatial

weight between feature i and j and S0 is the aggregate of all the spatial weights:

S0 =
T⎧

i=1

T⎧

j=1

wi j . (3.237)

Negative (positive) values of Moran’s I indicate negative (positive) spatial correla-
tion. Since the mean and the variance of Moran’s I for the null hypothesis are given
as

E[I ] = −1

T − 1
, (3.238)

Var[I ] = E[I 2] − E[I ]2

= T S4 − S3S5
(T − 1)(T − 2)(T − 3)S2

0

− 1

(T − 1)2
, (3.239)

where

S1 = 1

2

T⎧

i=1

T⎧

j=1

(wi j + w ji )
2, (3.240)

S2 =
T⎧

i=1

⎛

⎝
T⎧

j=1

wi j +
T⎧

j=1

w ji

⎞

⎠

2

, (3.241)

S3 =
⎨∑T

i=1(xi − X̄
⎩4

⎨∑T
i=1(xi − X̄)2

⎩2 , (3.242)



138 3 Mathematical Expressions

S4 = (T 2 − 3T + 3)S1 − T S2 + 3S2
0 , (3.243)

S5 = T (T − 1)S1 − 2T S2 + 6S2
0 , (3.244)

the p-value for the null hypothesis is written as

p = erfc

( |I − E[I ]|≤
2Var[I ]

)

. (3.245)

z = I−E[I ]≤
Var[I ] is called z-score, which is used to confirm the significance level of the

spatial autocorrelation.

3.4.5.2 Geary’s C

WhileMoran’s I measures global spatial autocorrelation,Geary’s C ismore sensitive
to local spatial autocorrelation [24]. Geary’s C is related to Moran’s I , but it is not
identical.

Suppose that we have T features xi with the geographical position. Geary’s C is
defined as

C = (T − 1)
∑T

i=1
∑T

j=1 wi j (xi − x j )
2

2S0
∑T

i=1(xi − X̄)2
, (3.246)

where X̄ represents the empirical mean of xi , wi j a weight matrix, and S0 the sum
of all wi j defined in Eq. (3.237). Geary’s C takes a non-negative value. Since the
expectation value of the null hypothesis (the absence of spatial autocorrelation) inde-
pendently of the specific weight matrix, the value of C less than 1 implies positive
spatial autocorrelation. The negative spatial autocorrelation corresponds to the value
of C more than 1. The variance of Geary’s C is given as

E[C] = 1, (3.247)

Var[C] = 1

T (T − 2)(T − 3)S2
0

×
{

S2
0 [T 2 − 3 − (T − 1)2S3]

+ S1(T − 1)[T 2 − 3T + 3 − (T − 1)S3]
+ 1

4
S2(T − 1)[S3(T 2 − T + 2) − (T 2 + 3T − 6)]

}
, (3.248)

where S0, S1, S2 and S3 are computed from Eqs. (3.237) to (3.242). The p-value is
computed from Eq. (3.245) as well as Moran’s I . Consequently, the p-value for the
null hypothesis is given as
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p = erfc

( |C − E[I ]|≤
2Var[C]

)

. (3.249)

z = C−E[C]≤
Var[C] is called z-score, which is used to confirm the significance level of the

spatial autocorrelation.

3.4.5.3 Local Moran’s I Statistic

Equation (3.236) estimates a global tendency of clustering but does not measure a
local spatial autocorrelation. To measure a local spatial autocorrelation, the local
Moran’s I statistic is defined as

Ii = T

S0

(xi − X̄)
∑T

j=1 wi j (x j − X̄)
∑T

j=1(x j − X̄)2
, (3.250)

where I = ∑T
i=1 Ii holds. Ii can be used to measure the local tendency of clustering.

According to Anselin [7], Moran’s I is interpreted as a regression coefficient of the
linear association between zi = xi − X̄ and

∑T
j=1 wi j z j . From Eq. (3.57), for OLS

regression of
∑T

j=1 wi j z j = azi + b, we can derive

â =
∑T

j=1 z j
∑T

k=1 w jk zk − (
∑T

i=1 zi )(
∑T

j=1
∑T

k=1 w jk zk)
∑T

j=1 z2j

=
∑T

j=1
∑T

k=1 z j w jk zk
∑T

j=1 z2j
,

=
∑T

j=1
∑T

k=1(x j − X̄)w jk(xk − X̄)
∑T

j=1(x j − X̄)2
= S0

T
I, (3.251)

where
∑T

i=1 zi = 0 is used. This also forms a method to visualise a tendency of
local spatial autocorrelations from a bivariate scatter plot of

∑T
j=1 wi j x j against xi .

This is called univariate Moran scatter plot. If we consider the Moran scatter plots
for different features xi and yi and make scatter plots of

∑T
j=1 wi j y j in terms of xi ,

then this is called bivariate Moran scatter plot.

3.4.5.4 Getis-Ord’s Local G

Getis and Ord introduced a family of statistics, G, that can be used as measures of
spatial association in a number of circumstances [34].

Suppose that we have T features xi with the geographical position. Getis-Ord’s
Local G is defined as
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Fig. 3.15 a 1 km square statistics of the Japanese census population in 2010, b the number of
males, c the number of females and d the number of families

Gi (d) =
∑T

j=1 wi j (d)(x j − X̄)
∑T

j=1(x j − X̄)
, (3.252)

where X̄ represents the empirical mean of xi and wi j (d) is a binary, symmetrical
weight matrix with 1 for all points j within distance d of point i and 0 otherwise. T
is equal to the total number of features. Essentially, the Gi statistic represents a ratio
of the values within distance d of point i to the sum of all values minus the value
at point i . G∗

i is computed from the randomised data using the bootstrap method or
the jackknife method to evaluate the significance level of the spacial autocorrelation.
Gi and G∗

i enable us to detect pockets of spatial association that may not be evident
when using Moran’s I and Geary’s C .
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Table 3.3 The values of spatial autocorrelation for Moran’s I and Geary’s C ; data for 1 km square
statistics for the Japanese population

Type Moran’s I E[I ] ≤
Var[I ] p-value

Population 0.729504 −0.000050 0.000017 0.000000
Male 0.730892 −0.000050 0.000017 0.000000
Female 0.726565 −0.000050 0.000017 0.000000
Family 0.732767 −0.000050 0.000017 0.000000
Type Geary’s C E[C] ≤

Var[C] p-value
Population 0.272013 1.000000 0.000044 0.000000
Male 0.270554 1.000000 0.000043 0.000000
Female 0.275036 1.000000 0.000044 0.000000
Family 0.269214 1.000000 0.000054 0.000000

3.4.5.5 Empirical Analysis

Using 1 km square statistics data for the Japanese population as spatial data, let
us consider an example of empirical analysis for spatial autocorrelation. The data
were generated based on Japanese Census, by the Statistics Bureau of the Ministry
of Internal Affairs and Communications.3 In the dataset, four types of 1 km square
statistics are included: population, male population, female population, and the num-
ber of families. Figure 3.15 shows the spatial distribution of the Japanese population
of the southern part of Japan.

Moran’s I and Geary’s C are computed by using R for statistical computing.
The commands moran.test() and geary.test() in the library ‘spdep’ are available to
calculate Moran’s I and Geary’s C . The commands moran.test() and geary.test()
also need a list of neighbours, which is constructed by the command tri2nb().
Table 3.3 shows the results of spatial autocorrelations for both cases. In the four
cases, the values of the Moran’s I are positive with statistical significance. The val-
ues of the Geary’s C are also less than 1. Since, for all cases, I and C show positive
spatial autocorrelation and the p-value is zero, the null hypothesis that the population
is randomly distributed is rejected with statistical significance. Furthermore, values
of the localMoran’s I are computed by using localmoran() and the univariateMoran
scatter plot is drawn by using moran.plot(). Figure 3.16 shows the univariate Moran
scatter plots for population. We can see some outliers in the local Moran autocor-
relation. For example, the grid #581 corresponds to the place (latitude, longitude) =
(26.2, 127.6875). This is the centre place of Naha city.

3 http://www.stat.go.jp/english/index.htm.

http://www.stat.go.jp/english/index.htm
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Fig. 3.16 The univariate Moran scatter plots for a population, b male, c female and d family in
20,000 1-km square grids of a southern part of Japan

3.5 Combinations of Methods

We may consider combination of methods mentioned below for data analysis. We
can usemethods of time series analysis and spatial analysis at the same time, which is
mentioned as spatial temporal analysis [4, 17]. Furthermore,we can consider network
analysis with geographical information, which is called spatial network analysis [9].

For example, let us consider a Japanese domestic air transportation networkwhich
were shown in Fig. 3.7. In fact, the network structure is embedded in space. Figure
3.17 shows a projection of the Japanese domestic air traffic network on the map.
This can be drawn as a spatially embedded network. We can see that there are many
flights between large airports (such as Haneda Airport, Osaka Airport, Fukuoka Air-
port, New Chitose Airport and so on). The location of large airports seems to have a
correlation with population density. Figure 3.17 shows 1 km square statistics of the
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Fig. 3.17 a The Japanese domestic air traffic network on a map. The colour represents the daily
number of connections between two airports. Blue colour corresponds to the number of flights.
b The population density of Japan in 2010. Green colour corresponds to the number of census
population
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Fig. 3.18 The relationship between the daily number of flights both departing from and arriving at
the airports on 15October 2013 and the number of people who live within a radius of 50 km from the
airport in 2010. The solid line represents a power-law relationship: (the daily number of flights) =
C(the number of people living within 50 km)a , wherea is estimated as 0.701124 (the standard error
0.086132) and log10 C = −2.785608 (the standard error 0.516015)

Japanese census population in 2010. It is found that the large airports are located at
neighbour of large cities. In order to confirm this intuitive understanding, we regard
the relationship between the daily number of flights both departing from and arriving
at the airports (this is a degree of network analysis k(in)

i + k(out)
i ) and population

(the number of people who live within a radius of 50 km from the airport).
Figure 3.18 shows the relationship in double logarithmic plots. We can see an pos-
itive correlation between the population and the number of flights. To evaluate the
relationship, we assume the power-law relationship:

(the daily number of flights) = C × (the number of people living within 50 km)a,

(3.253)

where a represents a power-law exponent and C is a positive constant. By using the
RMA regression for the common logarithm for relationships, we obtained parameter
estimates as a = 0.701124(0.086132) and log10 C = −2.785608(0.516015). This
means that the number of flights landing from and taking off at the airport increases
100.701124 ≡ 5 times if the number of people who live within a radius of 50 km from
the airport increases 10 times.
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Appendix A: Proof of 0 ln 0

Let us consider

h = lim
x→+0

x ln x . (3.254)

Putting x = e−z one has

h = − lim
x→+0

ze−z . (3.255)

By using the Taylor expansion of ez = ∑∞
k=0

1
k! z

k , one obtains

h = − lim
z→∞ ze−z

= − lim
z→∞ z/ez

= − lim
z→∞

z
∑

k=0
1
k! zk

= − lim
z→∞

1
∑

k=0
1
k! zk+1

= 0. (3.256)

Therefore, we gets

h = lim
x→0

x ln x = 0 ln 0 = 0. (3.257)

Appendix B: Derivation of the Mean Square Error of
RMA Regression

The mean square error M SE of the RMA regression is defined as

M SE = 1

T − 2

T⎧

i=1

(yi − âxi − b̂)2. (3.258)

Inserting Eq. (3.70) into Eq. (3.258), we get



146 3 Mathematical Expressions

M SE = 1

T − 2

T⎧

i=1
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⎨
xi −

∑T
i=1 xi

T

⎩}2

= 1

T − 2

T⎧

i=1
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⎩2 + â2
⎨
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i=1 xi

T

⎩2

− 2â
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xi −
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i=1 xi
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i=1 yi

T
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. (3.259)

This is also written as

M SE = T

T − 2

{
Var[Y ] + â2Var[X ] − 2âCov[X, Y ]

}
. (3.260)

Inserting Eq. (3.74) into Eq. (3.260), consequently we obtain

M SE =
⎨
Var[Y ] − âCov[X, Y ]

⎩ 2T

T − 2
. (3.261)
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Chapter 4
Data in Computers

Abstract The applied data-centric social sciences are cyber-enabled and require the
use of inductive strategies to define problems and challenges. Thus, we require the
use of computers to process a large number of data points. In this chapter, we will
see how computers can be used to acquire, handle and analyse data.

4.1 Computers and Data

Figure 4.1 conceptually illustrates the pipeline from data acquisition to data analysis.
Data is acquired from data providers, and stored as some files of certain types on
computers. In order to easily access the data, a database server is normally used.
Analysis software gets data from the database server with some filters and computes
statistics or visualises the data.

The implementation of program codes to conduct data analysis and processing
by combining several computer languages enables us to conduct statistical analysis
with high reliability for a short development period. Computer software has evolved
in a very specific way to cohere with data management requirements. Three types of
software are used in order to collect, process and analyse data: databases (MySQL,
PostgreSQL, Oracle, MangoDB, Shunsaku, TX1, Hadoop, and so on), script lan-
guages (Perl, Ruby, PHP, Python and so on), and analytics languages (R, S-plus,
Matlab, Octave, and so on).

The script languages are used to control other computer programs and process
data. The Structured Query Language (SQL) of databases is used to insert, extract
and sort data under certain constraints. The analytics languages are used to compute
several statistics and parameter estimates of amodel and conduct regression analysis.

Since the data-centric science is cyber-enabled and requires the use of inductive
methodologies, certain functional elements related to both the hardware and the
software of computers are mandatory. In this chapter, we will explore how a research
environment conductive to the applied data-centric social sciences can be set up.

A.-H. Sato, Applied Data-Centric Social Sciences, 149
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Fig. 4.1 A schematic illustration of a pipeline from data acquisition to data analysis

Fig. 4.2 A conceptual illustration of the research platform

4.1.1 Hardware

Several types of equipments are used to collect, accumulate, analyse data. Aminimal
research platform consists of two types of components: a database server and analysis
software.

Figure 4.2 shows a conceptual illustration of an ideal research platform on data-
centric study. This platform consists of data crawlers, cluster computers, database
servers, management servers, file servers, and consoles.
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• The data crawlers collect socioeconomic-technological data from e-commerce
platforms,Web pages, blogs services, Web APIs or sensor networks in the Internet

• The raw data is stored as a file in the file server
• The data stored as files are cleaned and validated before being moved to the data-
base server

• The data in the database server is analysed by analysis software
• Time-consuming computation (inference, estimation, and optimisation) is per-
formed at the cluster computer in a parallel manner

• The management server controls these operations among the data crawlers, the
file server, the database server and the cluster computer

• Researchers use this system from the consoles

The manufacturing and management activities of enterprises continue to rely on a
much greater degree on high-quality data. In fact, high-quality data have become the
basis which business is carried out, and benefit companies. The data-centric social
sciences also provide methods to determine the quality of data.

Sensor networks represent another type of hardware that businesses rely on. Sen-
sor networks involve both humans and machines. Human sensors are based on the
concept ofGoodchild [8]. In recent years, there has been an explosion of interest in us-
ing theWeb to create, assemble, and disseminate geographical information provided
voluntarily by individuals. He proposes a special term called volunteered geographic
information (VGI), which is a special case of the more general Web phenomenon
of user generated content. Machine sensors have been recently developed and used
in our real lives; to provide examples, web cameras and web sensors continue to
gain in popularity, and are more popular now than when they were first introduced.
The use of these and other web applications can facilitate the collection of data on
socioeconomic and environmental systems.

4.1.2 Software

In the typical application, the number of data points is large and data generation
occurs at a speed faster than that possible with human computational skills. For these
reasons, data should be handled and computed automatically. In order to improve
the reliability of a data processing system, we should construct the system using
several kinds of computer languages. For example, data should be stored in database
servers and handled using an SQL. Statistical analysis of data should be conducted
by a statistical computing language such as R. Finally, a script language should be
used for analysis control and visualisation of results.

Given this circumstance, we need a technique of a (completely or partially auto-
matic) batch process. The batch process can be divided into two types of processes
(data processing and statistical analysis). Computer software has been specifically
developed for certain disciplines and uses. Therefore,we should select computer soft-
ware for their purposes. Roughly speaking, script languages (Perl, Ruby, PHP and
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Python) should be used when we handle other software automatically, and statistical
computation languages such as R, S-plus, Matlab and Octave should be used for
the analysis of data. When we extract data from a database with filters, we can use
languages to handle the database server. The SQLs are commonly implemented in
relational database management systems (RDBMS). The Apache Hadoop software
allows for the distributed processing of large data sets across clusters of computers
using simple programming models. Several useful open software applications can
be used for the purpose of data analysis and data processing. The following list con-
tains examples of open source software to construct a system to realise both the data
processing and data analysis.

• Perl; http://www.perl.org/
• Ruby; https://www.ruby-lang.org/
• PHP; http://www.php.net/
• Python; http://www.python.org/
• R; http://www.r-project.org/
• Octave; http://www.gnu.org/software/octave
• PostgreSQL; http://www.postgresql.org/
• MongoDB; http://www.mongodb.org
• MySQL; http://dev.mysql.com/
• Apache Hadoop; http://hadoop.apache.org/

In the next section, I will address each process: data acquisition, data collection
and data analysis.

4.2 How to Acquire Data

At first, we need to either create (or obtain) data from the actual environment or
acquire data fromsomewhere else. Thedata on socioeconomic-technological systems
are collected from a multitude of locations:

• Open data sources (free of charge)
• Commercial data sources (that is, data are purchased)
• The actual environment, through the use of sensors (allowing generation of data)
• Crawling technology (collecting data from the Internet)

Some data sources provide anWeb application programming interface (WebAPI)
to obtain or purchase data as computer-readable files. Other data collection alterna-
tives include downloading texts or crawling web pages for files. In this case, it is
necessary to develop crawling software.

We have three types of methods to acquire data from data providers.

• as media provided from data providers
• via WebAPI
• as a file (CSV, TSV, Excel, XML, and so on) downloaded from a Web service

http://www.perl.org/
https://www.ruby-lang.org/
http://www.php.net/
http://www.python.org/
http://www.r-project.org/
http://www.gnu.org/software/octave
http://www.postgresql.org/
http://www.mongodb.org
http://dev.mysql.com/
http://hadoop.apache.org/
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The situations for all socioeconomic-technological system sectors have changed or
are currently changing from data-poor to data-rich. This permits data-centric social
science research to be conducted based on large amounts of data related to these
systems.

Recently, we have been able to purchase data from some data providers as CDs,
DVDs, or USB sticks. We copy these files from the physical media onto our com-
puters. When APIs provided by data providers are used, the additional need exists to
develop computer programs to acquire the data from the servers of the data providers.

This allows us to calibrate model parameters from actual data. Moreover, the
data integration from different kinds of data sources (such as demographic data
and socioeconomic activity with geographic data) can be archived. Mesh statistics
are detailed spatial statistics, which contain geographical information. These data
allow us to detect statistical properties of each grid associated with the location.
Grid statistics related to the census population, the population of different cities, the
population of workers, economic values and transportation data can be used in this
analysis. Map-Reduce architecture is one of implementations of parallel computing
for large amounts of data.We further need to explore parallel computation combining
database servers.

Normally, the computation of integrated data requires rich computational
resources, including parallel computing techniques and a supercomputer.

4.3 Database Server and SQL

Many data elements cannot be handled as text files. I would like to recommend use
of a database server to manage several types of datasets. Fundamental commands
often used in a database server are as follows:

• create a table
• insert data into table
• search data
• update data
• delete data

4.3.1 Create a Table

Whenwe use a database server, we need to first define the type of data. This process is
called database normalisation. Normalisation usually involves dividing large tables
into smaller tables and defining relationships between them. Codd [3] introduced
a relational model of data and proposed the concept of normalisation at the same
time [3]. Nowadays, this is realised as RDBMS.

In many relational database servers, this is done by defining a table, which is
sometimes called schema. In the case of RDBMS, the data format is defined as a
table consisting of columns and rows. If the data is stored in a tabular format (format
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such as CSV, TSV and Excel), we can easily define the data format. In the case
of XML format, we may use an XML database server or transform the XML data
format into the relational data.

I will show several exampleswith concrete SQL commands in PostgreSQL,which
is one of RDBMSs below. References [5, 12] provide a concise overview to help the
readers understand and use PosegreSQL’s features.

The SQL commands to create tables (weather and cities) are written as

CREATE TABLE weather (
city varchar(80),
temp_lo float,
temp_hi float,
prcp float,
date date

);
CREATE TABLE cities (

name varchar(80),
latitude float,
longitude float

);

In this example, the table weather contains five kinds of fields: city,
temp_lo, temp_hi, prcp, and date. The table cities have three kinds of
fields: name, latitude and longitude.

4.3.2 Insert Data into Table

The data is inserted into the table by using the ‘INSERT’ command:

INSERT INTO weather VALUES (’Kyoto’,25.7,32.8,57,
’2013-08-01’);

This is an implicit way but an explicit way is readable for programmers:

INSERT INTO weather (city,temp_lo,temp_hi,prcp,date)
VALUES (’Kyoto’,25.7,32.8,57,’2013-08-01’);
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Table 4.1 PHP script to insert records coded as a CSV file into a table of the database server
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Table 4.2 Data recorded in a sample file

City temp_lo temp_hi prcp Date

Kyoto 25.7 32.8 57 2013-08-01
Kyoto 24.3 33.6 47 2013-08-02
Kyoto 23.2 33.3 44 2013-08-03
Kyoto 34.9 24.1 47 2013-08-04
Tokyo 26 32.8 63 2013-08-01
Tokyo 23 29.1 63 2013-08-02
Tokyo 23.5 30.8 53 2013-08-03
Tokyo 25.4 31.3 64 2013-08-04
Osaka 27.7 33.8 59 2013-08-01
Osaka 26.8 34.1 47 2013-08-02
Osaka 24.6 33.4 48 2013-08-03
Osaka 26 34.6 47 2013-08-04

Normally, to insert a large number of records automatically, we will call “INSERT”
commands in a code described as a script language. Table 4.1 shows the PHP script
to insert records coded as a CSV file into the database server. References [20, 24]
contains a concrete informationonPHP. In this PHPscript, the dbnameof thedatabase
server is assumed to be test, localhost, username and pass should be
replaced in accordance with the server setting. The file name of the CSV file is
assumed to be ‘weather.csv’, which contains records shown in Table 4.2. The
first line represents field names starting with #. The first command argument of the
PHP script is assumed to be the file name of the CSV file.

4.3.3 Search Data

Searching data from a table in the database server is mostly used in data analysis. The
“SELECT” command searches records that fulfil certain pre-selected conditions.
Furthermore, selecting fields in a table is often used. In the following cases, we can
search the data from weather and city.

SELECT * FROM weather WHERE temp_lo < 10;
SELECT city, temp_lo, temp_hi, date FROM weather;

Normally, we will call the “SELECT” command in codes written in R for data
analysis. I will show an example code in Sect. 4.5.
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4.3.4 Update Data

When we update the data in the table, we use the “UPDATE” command. In the case
of subtracting two from the current values of temp_hi and temp_lo for data after
1999-12-3, we use the following SQL command.

UPDATE weather SET temp_hi = temp_hi - 2,
temp_lo = temp_lo -2 WHERE date > ’1999-12-3’;

We often use the “UPDATE” command to modify records when we find corrections
of data after data validation and data verification.

4.3.5 Delete Data

If we want to delete data records, then use the “DELETE”. For example, when we
delete data records having city=’Tokyo’, we use the following command:

DELETE FROM weather WHERE city = ’Tokyo’;

We also delete all the elements from the table weather by using the following
command:

DELETE FROM weather;

4.4 Analysis Software

There are several choices of analysis software as well as the database server. In this
section, we will show several examples of codes with R. The statistical analysis
software R is provided via R-Project.1 The R for three different operating systems
(Linux, Mac OS X, and Windows) are provided. After installation following the
manual, R is executed by entering “R” from a command line. The R supports various
kinds of libraries and there is dependency on the version of R. I show a part of
libraries which are useful in data analysis. There are useful textbooks of R [1, 4] and
documentations available at web pages of R-Project.

1 http://r-project.org.

http://r-project.org
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4.4.1 Packages

When we want to install an additional package named as “packagename” from
the command line, we type:

> install.packages("packagename")

After installing the library “packagename”, we load it using the following
command:

> library(packagename)

The current version of R (version 3.0) has various libraries for data formats
[6, 17, 18, 25], visualisation [7, 10, 21], parallel computation [16, 22], interfaces
to other languages [14, 15, 19] and data analysis [2, 9, 11, 23]. The following list
shows a part of the libraries in R:

• gdata: Various R programming tools for data manipulation [6]
• RMySQL: R interface to the MySQL database [17]
• RPostgreSQL: R interface to the PostgreSQL database system [18]
• XML: Tools for parsing and generating XML within R [25]
• Rmpi: An interface (wrapper) to MPI (Message-Passing Interface) [16]
• snow: Support for simple parallel computing in R [22]
• ggplot2: A plotting system for R [7]
• scatterplot3d: Plots a three dimensional (3D) point cloud [21]
• lattice: Data visualisation system for multivariate data [10]
• rPython: An interface (wrapper) to call Python from R [19]
• Rcpp: Seamless R and C++ Integration [14]
• Rgnuplot: R interface for gnuplot [15]
• bigmemory: Create, store, access and manipulate massive matrices [2]
• igraph: Network analysis and visualisation [9]
• maptools: Tools for reading and handling spatial objects [11]
• spdep: Spatial analysis for statistics and models [23]

4.4.2 Data Import

Weneed to import the text file into R before we start our working. The “read.table()”
command is used for importing a text file into R. We will see an example of R
commands. Assume that the text file is named topix.txt. The topix.txt is
a text containing five cells inside the table which are separated by blank characters.



4.4 Analysis Software 159

Table 4.3 Example of data on TOPIX

Date Start_price High_price Low_price End_price

2013/09/10 1181.31 1192.16 1180.74 1190.22
2013/09/11 1199.03 1199.3 1186.47 1189.25
2013/09/12 1187.35 1188.69 1178.87 1184.36
2013/09/13 1179.26 1190.27 1174.51 1185.28
2013/09/17 1190.55 1192.35 1181.56 1181.64
2013/09/18 1188.95 1201.08 1186.05 1193.07
2013/09/19 1205.67 1215.48 1199.63 1215.48
2013/09/20 1219.37 1221.8 1215.29 1218.98
2013/09/24 1208.67 1217.9 1206.47 1214.87
2013/09/25 1212.91 1214.66 1207.67 1211.15
2013/09/26 1200.92 1220.49 1191.63 1220.49
2013/09/27 1220.77 1223.12 1214.69 1217.52
2013/09/30 1200.15 1205.16 1192.28 1194.1
2013/10/01 1198.18 1204.32 1193.31 1193.44
2013/10/02 1193.99 1199.88 1171.06 1175.16
2013/10/03 1174.59 1180.26 1171.45 1173.99

Table 4.3 shows an example of data on TOPIX downloaded from Yahoo! Finance.2

These contain dates and daily candles of TOPIX (start price, high price, low price
and end price).

We can load the data into workspace with the “read.table()” command:

> data<-read.table("topix.txt", sep=" ", header=T)

The sep parameter specifies what character is used to separate columns in the file.
The header parameter selects the existence of header characters. “head()” command
is used for showing the table up to 5 rows.

> head(data, 5)

Table 4.4 shows an output of the head command.
When you want to know details of the “read.table()” command, you can consult

the R documentation.

2 The time series data is downloaded from http://stocks.finance.yahoo.co.jp/stocks/history/?code=
998405.T.

http://stocks.finance.yahoo.co.jp/stocks/history/?code=998405.T
http://stocks.finance.yahoo.co.jp/stocks/history/?code=998405.T
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Table 4.4 Output of head() command in R

Date Start_price High_price Low_price End_price

1 2013/09/10 1181.31 1192.16 1180.74 1190.22
2 2013/09/11 1199.03 1199.3 1186.47 1189.25
3 2013/09/12 1187.35 1188.69 1178.87 1184.36
4 2013/09/13 1179.26 1190.27 1174.51 1185.28
5 2013/09/17 1190.55 1192.35 1181.56 1181.64

Fig. 4.3 Example of a chart
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> help(read.table)

4.4.3 Visualisation

R provides the “plot” command that is used to create time series charts. The “plot”
command needs lists to serve as the x- and y-axes of the chart.

> plot(data[, 2],type="o",xlab="days",ylab="TOPIX")

Figure 4.3 shows a daily chart of start prices of TOPIX.
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4.5 Examples

This section reviews the acquisition, collection and analysis of data on socioeconomic-
technological systems. Two types of data analysis (flight-time tabular data and
population data) are examined.

4.5.1 Data Analysis of a Flight Time Table

4.5.1.1 Data Acquisition

The flightaware provides a commercial Web API service called FlightXML.3 Func-
tions exist that enable us to obtain the flight time table in FlightXML. Using these
functions of Web API allows collection of the flight time table data. We assume that
we can collect the time table for flights and that this table will include 2,025 flights
under the following conditions:

• Data process:

1. Data on the flight time table were obtained from FlightXML of flightaware
2. Data for all flights (both departing and arriving) at 58 airports in Japan were

collected
3. Airport-specific data on times of arrival and departure were collected

• Duration: 0:00–23:59 on 15 October, 2013 (UTC+9)
• Period of data collection: 5 hours

Table 4.5 shows a part of the data. The data contain identification code of a flight,
actual identification code of a flight (for the code share flight), departure time, arrival
time, a departure airport, an arrival airport, aircraft type,meal availability, the number
of seats in first class, the number of seats in business class, and the number of seats
in economy class.

4.5.1.2 Data Collection

We define the table named “flightschedules”. Table 4.6 shows the definition
of the table. After inserting all the data into the table “flightschedules” in the
PostgreSQL database server, we processed and analyse the data. To count the daily
number of connections between two airports for 58 Japanese airports, the “SELECT”
command is used. Table 4.7 shows the SQL command and its result.

Weneed all the possible pairs of airports included in both the origin and destination
fields. To extract the airport codes included in the data, we can use “DISTINCT”

3 FlightAware: http://flightaware.com.

http://flightaware.com
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Table 4.5 An example of flight time table data

From left to right each field corresponds to identification code of a flight, actual identification code
of a flight (for the code share flight), departure time, arrival time, a departure airport, an arrival
airport, aircraft type, meal availability, the number of seats in first class, the number of seats in
business class, and the number of seats in economy class

Table 4.6 The table definition for the flight time table

Table 4.7 An example of an SQL command to count the number of connections fromRJAA (Narita
Airport) to RJBB (Kansai International Airport)

in the “SELECT” command. Furthermore we can count the number of connections
for all the possible combinations of airports as shown in Table 4.8. We obtained
a list of 58 Japanese airports used in domestic flights.4 Finally, 261 links among

4 The included airports are listed as Narita International Airport (RJAA), Hyakuri Airport (RJAH),
Kansai International Airport (RJBB), Nanki Shirahama Airport (RJBD), Kobe Airport (RJBE),
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Table 4.8 An example of SQL command to detect all the airport codes included in the flight time
table data and count the number of connections for each pair of connections

Table 4.9 The daily number of connections

Departure airport Arrival airport # connections

RJAA RJBB 5
RJAA RJCC 15
RJAA RJFF 15
RJAA RJFO 2
RJAA RJGG 15
RJAA RJNK 6
RJAA RJOA 6
RJAA RJOM 2
RJAA RJOO 15
RJAA RJSN 3
RJAA RJSS 11

Japanese domestic flights are extracted from the data. Table 4.9 shows a part of data
on the daily number of connections. This can be represented as a weighted adjacency
matrix.

(Footnote 4 continued)
Tokachi-Obihiro Airport (RJCB), NewChitose Airport (RJCC), Hakodate Airport (RJCH), Kushiro
Airport (RJCK), Memanbetsu Airport (RJCM), Nakashibetsu Airport (RJCN), Wakkanai Air-
port (RJCW), Iki Airport (RJDB), Yamaguchi Ube Airport (RJDC), Tsushima Airport (RJDT),
Asahikawa Airport (RJEC), Fukue Airport (RJFE), Fukuoka Airport (RJFF), Kagoshima Airport
(RJFK), Miyazaki Airport (RJFM), Oita Airport (RJFO), Kitakyūshū Airport (RJFR), Saga Airport
(RJFS), KumamotoAirport (RJFT), NagasakiAirport (RJFU), ChubuCentrair International Airport
(RJGG), Nagoya Airport (RJNA), Komatsu Airport (RJNK), Shizuoka Airport (RJNS), Toyama
Airport (RJNT), Noto Airport (RJNW), Hiroshima Airport (RJOA), Okayama Airport (RJOB),
Izumo Airport (RJOC), Miho Yonago Airport (RJOH), Iwakuni Kintaikyo Airport (RJOI), Kchi
Ryma Airport (RJOK), Matsuyama Airport (RJOM), Osaka International Airport (RJOO), Tottori
Airport (RJOR), Tokushima Airport (RJOS), Takamatsu Airport (RJOT), Aomori Airport (RJSA),
Yamagata Airport (RJSC), Fukushima Airport (RJSF), Hanamaki Airport (RJSI), Akita Airport
(RJSK), Misawa Air Base (RJSM), Niigata Airport (RJSN), Odate Noshiro Airport (RJSR), Sendai
Airport (RJSS), Shonai Airport (RJSY), Hachijojima Airport (RJTH), Tokyo International Airport
(RJTT), Naha Airport (ROAH), Ishigaki Airport (ROIG), Kumejima Airport (ROKJ), and Miyako
Airport (ROMY).
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Table 4.10 Examples of functions to compute centrality measure of “igraph” in R

4.5.1.3 Visualisation and Data Analysis

We focus on two types of visualisation to display the network structure:

1. Centrality
2. Weights

The centrality measures importance of nodes (See Sect. 3.3.4). The weights describe
the property of links. “igraph” in R supports many types of centrality measures.
Table 4.10 shows functions to compute centrality measures supported in “igraph”.

A way in which centrality measures in Japanese domestic air transportation can
be visualised will become apparent. Figure 4.4 shows the Japanese domestic air
transportation networkwith the four differentways of visualisation: degree centrality,
eigenvector centrality, alpha centrality and Page rank. The link weights are drawn
in proportion to the daily number of connections between two airports. The size of
nodes is in proportion to the centrality measure.

We can find that RJTT has the largest centrality in all the airports used in Japanese
domestic air transportation for (a) degree centrality, (b) eigenvector centrality and
(c) alpha centrality. In the case of alpha-centrality for α = 1, RJTT does not have the
largest value of centrality. The airports having the second and third largest centrality
values depend on a type of centrality measure.

The histogram of the daily number of connections is shown in Figure 4.5. The
maximum daily number of connections is 15. The small number of connections
corresponds to flights to local airports. Depictions of larger numbers of connections
correspond to flights between hub airports.

4.5.2 Data Analysis of Population

4.5.2.1 Data Acquisition

Next, we present an example in which population statistics for people living in
1-km2 are used. These data are generated from the Population Census, conducted by
the Statistics Bureau of Japan. The data are obtained from e-Stat (the portal site of
government statistics) [13].

http://dx.doi.org/10.1007/978-4-431-54974-1_3
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Fig. 4.4 The domestic air transportation network of Japan. The thickness of links is proportional
to the daily number of flights. The size of nodes represents a value of, a degree centrality at the
node, b its eigenvector centrality, c its alpha centrality (α = 1.0) and d its Page Rank. The network
consists of 58 nodes and is drawn from Japanese domestic flight data on 15 October, 2013

• Data process:

1. Each record contains grid square code (corresponding to the longitude and
latitude), the number of people living in the area of the grid square, the number
of males, the number of females, and the number of families.

2. In total, these data contain 180,220 records related to population, male popu-
lation, female population, and the number of families.

3. The data were collected for the year 2010, and are based on the Japanese
population census for that year.

• Duration: 2010
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Fig. 4.5 The histogram of the
daily number of connections
extracted from the data in the
flight time table for Japanese
domestic flights

Histogram of # connections

# of connections

F
re

qu
en

cy

2 4 6 8 10 12 14

0
10

20
30

40
50

60
70

Table 4.11 The data schema definition for Japanese population (1-km2 grid square data)

4.5.2.2 Data Collection

In order to store our data to the PostgreSQL database server, we define the table
“tblT000608” as shown in Table 4.11.

The first field “keycode” represents a grid square code; the second
“population”, the number of people living in the 1-km square represented by
the “keycode”; “male”, the number of males; “female”, the number of females;
and “family”, the number of families. Throughout this example, we assume that the
host name of the database server is “localhost”, the user name is “username”,
and the password is “pass”.

The grid square code defines the relationship between a grid square and geo-
graphical position which is numerically described as latitude and longitude.5 The

5 In 1973, the Administrative Management Agency (the current Ministry of Internal Affairs and
Communications) announced Standard Grid Square and Grid Square Code Used for the Statistics
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grid square code is calculated from the following equations:

�latitude × 60 ÷ 40� = p (p is two digits.), (4.1)

a = (latitude × 60 ÷ 40 − p) × 40, (4.2)

�a ÷ 5� = q (q is one digit.), (4.3)

b = (a ÷ 5 − q) × 5, (4.4)

�b × 60 ÷ 30� = r (r is one digit.), (4.5)

c = (b × 60 ÷ 30 − r) × 30, (4.6)

�longitude − 100� = u (u is two digits.), (4.7)

f = longitude − 100 − u, (4.8)

� f × 60 ÷ 7.5� = v (v is one digit.), (4.9)

g = ( f × 60 ÷ 7.5 − v) × 7.5, (4.10)

�g × 60 ÷ 45� = w (w is one digit.), (4.11)

h = (g × 60 ÷ 45 − w) × 45, (4.12)

where �·� represents the maximum integer less than ·. Consequently, from
Eqs. (4.1), (4.3), (4.5), (4.7), (4.9) and (4.11), the grid square code is constructed
from a sequence:

grid square code = puqvrw. (4.13)

From Eqs. (4.2), (4.4) and (4.6), we obtain

latitude = p × 40 ÷ 60 + q × 5 ÷ 60 + r × 30 ÷ 3600 + c ÷ 3600. (4.14)

From Eqs. (4.8), (4.10) and (4.12), we get

longitude = 100 + u + v × 7.5 ÷ 60 + w × 45 ÷ 3600 + h ÷ 3600. (4.15)

Therefore, in the case of statistics for the 1-km2 area, since we have 0 ≤ c < 30 and
0 ≤ h < 45, we can decode both latitude and longitude at the bottom left corner of
the grid from a grid square code by using the following equations:

latitude0 = (1st and 2nd digits of grid square code) × 40 ÷ 60

+ (5th digit of grid square code) × 5 ÷ 60

+ (7th digit of grid square code) × 30 ÷ 3600, (4.16)

(Footnote 5 continued)
(Announcement No. 143 by the Administrative Management Agency on July, 12, 1973) as the
integrated compilation method of the Grid Square. Also, this compilation method of the Grid
Square was authorised as JIS in January, 1976 (Code JIS X 0410).
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Fig. 4.6 The x-axis represents
longitude, y-axis latitude, and
z-axis population in the 1-km
square. The displayed place
corresponds to the southern
part of Japan
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longitude0 = 100 + (3rd and 4th digits of grid square code)

+ (6th digit of grid square code) × 7.5 ÷ 60

+ (8th digit of grid square code) × 45 ÷ 3600. (4.17)

Thus, the ranges of latitude and longitude on the grid can be estimated as latitude0 ≤
latitude < latitude0 + 30/3600 and longitude0 ≤ longitude < longitude0 +
45/3600. Thismeans that an interval of latitude is 30′′ and that an interval of longitude
is 45′′.

4.5.2.3 Visualisation and Data Analysis

Visualisation is the first step in the understanding of data; we often visualise data in
data validation and in explanatory data analysis.

To illustrate, let us attempt to draw a graph using 1-km2 grid square area for
the Japanese population as spatial data. Four types of data are available for this
area: population, the number of males, the number of females, and the number of
families. To draw this area, let us use the command “scatterplot3d()” from the library
“scatterplot3d”. This command generates a three-dimensional (3D) plot; we can use
this command for 3D data.

We assume that all the records from this 1-km2 grid square statistics of Japanese
population census in 2010 was stored in our PostgreSQL database server. As men-
tioned in the above, the data is assumed to be inserted into the table “tblT000608”
of dbname “estat” in a relational database server of localhost. Table 4.12 shows
how to obtain the data from the PostgreSQL database server and compute Moran I .
The “RPostgreSQL” library enables us to access a PostgreSQL database server.
In this library, we mainly use the function “dbConnect()”, “dbSendQuery()”,
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Table 4.12 R code for data visualisation

“fetch()” and “dbDisconnect()”. “dbConnect()” is used first to connect to the data-
base server. “dbDisonnect()” is used to finally close the connection.
“dbSendQuery()” is a function that sends a query to the database server with which
the connection has been established in order to obtain query results.

Figure 4.6 shows the spatial distribution for the Japanese population in the south-
ern part of Japan. This graph is generated by the following R code.

Next, let us compute Moran’s I and Geary’s C using an alternative method
(See Sect. 3.3.5). We will use moran.test() and geary.test() in the library “spdep”.

http://dx.doi.org/10.1007/978-4-431-54974-1_3
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Table 4.13 R code for computing spatial autocorrelation based on Moran’s I and Geary’s C

moran.test() and geary.test() do not need a geodesic distance matrix for all the
features. In the place of this matrix, moran.test() and geary.test() use a neighbours
list that is constructed by the command tri2nb(). This function constructs a doronei
list to express the distance. This contributes to the reduction in the number of arrays
in the computation. Table 4.13 shows a sample R code to compute both Moran I and
Geary C . Table 4.14 shows results computed by the sample R code. We can see that
the value of Moran’s I is close to 1 and that the value of Geary’s C is close to 0. This
means that the features of the population are strongly concentrated with statistical
significance since these p-values are zero.
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Table 4.14 The values of spatial autocorrelation for Moran’s I and Geary’s C

Type Moran’s I E[I ] √
Var[I ] p-value

Population 0.729504 −0.000050 0.000017 0.000000

Type Geary’s C E[C] √
Var[C] p-value

Population 0.272013 1.000000 0.000044 0.000000

These values are obtained from moran.test() and geary.test() in “spdep” library of R. The data of
1-km2 grid square of the Japanese population in 2010 is used
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Chapter 5
Risk Assessment of Extreme Events

Abstract Risk assessment is one of the crucial issues in management science.
Specifically, it is important to infer risks of extreme events, which generate huge
damage with small probability. To estimate risk of these extreme events, we need
a method to extrapolate tail probabilities. In this chapter, the method to estimate
parameters and empirical evidence are introduced through exemplar study of the
foreign exchange market.

5.1 Introduction

There aremore than 100 kinds of currencies in theworld, and exchange rates between
most of them are determined by trades through the market. Table5.1 shows foreign
exchange turnover in April 2013, which is provided by BIS Triennial Central Bank
Survey [3]. Trading in foreign exchange markets averaged 5.3 trillion USD per day
in April 2013. This is up from 4.0 trillion USD in April 2010 and 3.3 trillion in April
2007.

Usually, traders participate in the foreign exchange market all around the world,
and they actively trade in their business hours. Therefore, there is a typical
24-h pattern in the trading activity. Since trades and quotes are mainly conducted in
electronic systems, their exchange rates are changing second by second.

Basically, their fluctuations are based on the balance of long-term supply and
demand, but a variety of factors seems to affect the exchange rates. Recently, it
has been much easier for individuals to buy and sell currencies in the market, and it
becomesmore important to understand the foreign exchange risk to hold several types
of currencies safely. Exchange rates sometimes fluctuate unpredictably, causing loss
of value in holding currencies. Especially, it is well-known that the volatilities of
the price fluctuate depending on the time period, which is observed as fat-tailedness
of a probability density function (PDF) for log-return time series. Therefore, it is
important to regard its fat-tailedness when we estimate the risk from historical data.

A.-H. Sato, Applied Data-Centric Social Sciences, 175
DOI: 10.1007/978-4-431-54974-1_5, © Springer Japan 2014
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Table 5.1 The turnover is adjusted for local and cross-border inter-dealer double-counting

Instrument 1998 2001 2004 2007 2010 2013

Foreign exchange instruments 1,527 1,239 1,934 3,324 3,971 5,345
Spot transactions 568 386 631 1,005 1,488 2,046
Outright forwards 128 130 209 362 475 680
Foreign exchange swaps 734 656 954 1,714 1,759 2,228
Currency swaps 10 7 21 31 43 54
Options and other products 87 60 119 212 207 307

Turnover at April 2013 exchange rates 1,718 1,500 2,036 3,376 3,969 5,345

The numbers express daily averages in April, in billions of US dollars

Foreign exchange rates have been investigated by numerous researchers with
various approaches based on statistics and time series analysis. Mandelbrot and
Taylor [14] proposed the concept of time changes or subordinated process in order to
explain fat-tailedness of returns. According to the normal mixture model in finance,
unconditional distributions of log-returns are reported to be well-fitted to the mixture
of normal distributions with an unconditional distribution of volatility [5]. Beck
proposed the same theory in the literature of superstatistics [2]. Gabaix et al. examine
the power law distributions observed in financial markets [10] and proposes a model
providing an explanation for these empirical power laws [11].

Tsallis statistics or nonextensive statistical mechanics is also useful to fit the
unconditional PDF of log-return time series [12]. Drożdż showed that exchange
rate return fluctuations for many currency pairs are well-described by nonexten-
sive statistics [7]. In this framework, the q-Gaussian, a generalised normal dis-
tribution with index q, is used to explain the fat-tailedness of actual data. Here,
we mainly focus on the q-Gaussian distribution for the purpose of risk estimation
(see Sect. 5.3).

Suppose that we hold a certain foreign currency and that we can accept loss to a
certain amount of money, as we possess some money used as risk buffer. Here, we
introduce a method to compare and evaluate foreign exchange risk by using a loss
probability where loss exceeds the risk buffer. Let r(s) = ln R(s +1)− ln R(s) (s =
0, . . . , T − 1) be a log-return at time s, where s represents a daily business day and
R(s) an exchange rate between pairwise currencies at time s.

Denoting p(r) as an unconditional PDF of r , we can express the probability where
incidental or short-term loss becomes larger than the buffer h as

Pr[r < −h] =
−h∫

−∀
p(r ∈)dr ∈. (5.1)

Using a definition of relative frequency for historical data, this can be approximated
as

Pr[r < −h] ⇒ N [r < −h]
T

, (5.2)
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where N [r < −h] is the number of losses that exceed the deposit h in the past,
and T is the total number of historical data. In this empirical method, however, the
probability for loss to be greater than the maximum loss in the historical data is
always estimated as 0. Namely, Eq. (5.2) shows a truncation at the maximum loss.
Because the number of historical data is finite, we cannot solve this truncation.

To assess the probability of loss larger than themaximum loss in the historical data,
we need to use an extrapolation method for the ruin probability under a proper model
assumption that can grasp fluctuations of the exchange rates. As the simplest model,
p(r) is often approximated as a Gaussian distribution with mean μ and standard
deviation σ . In this case, Eq. (5.1) is described as

Pr[r < −h] = 1

2
erfc

(h − μ∞
2σ

)
, (5.3)

where erfc(x) represents the complementary error function defined as

erfc(x) = 2∞
π

∀∫

x

e−t2dt.

Therefore, we can estimate the ruin probability from T historical observations
{r(0), . . . , r(T − 1)} by plugging sample mean and standard deviation into μ and σ

of Eq. (5.3), respectively. These are estimated as

μ̂ = 1

T

T −1∑

s=0

r(s), σ̂ 2 = 1

T

T −1∑

s=0

(
r(s) − μ̂

)2
. (5.4)

However, thismodel does not fit the empirical probability distribution computed from
actual data of the foreign exchange rates. As an alternative model, we introduce the
q-Gaussian distribution(1 < q < 3), defined as

pq(r; q, μq , σq) = 1

B
(

1
q−1 − 1

2 ,
1
2

)

⎧
q − 1

(3 − q)σ 2
q

(
1 + q − 1

(3 − q)σq
2 (r − μq)2

) 1
1−q

,

(5.5)

where B(a, b) is the beta function1 defined as

B(a, b) =
1∫

0

ta−1(1 − t)b−1dt. (5.6)

1 The beta function is symmetric: B(a, b) = B(b, a).
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Fig. 5.1 a Daily exchange rates of EUR/USD for the period from September 2004 to August 2012
and b their daily log-returns

The q-Gaussian distribution for 1 < q < 3 is equivalent to Student’s t-distribution

p(x) = 1

ν1/2B( ν
2 , 1

2 )

(
1 + x2

ν

)−(ν+1)/2
, (5.7)

where ν = (3 − q)/(q − 1) is satisfied.
Before considering an unconditional distribution of log-return,we see a time series

of the foreign exchange rates. Figure5.1 shows the daily exchange rates of EUR/USD
and their log-returns for the period of September 2004 to August 2012. Figure5.2
shows its complementary cumulative distribution. This is calculated in three man-
ners explained above (empirical distribution, Gaussian distribution and q-Gaussian
distribution). We see that the Gaussian distribution does not fit the empirical distrib-
ution at all. This is because the Gaussian distribution ignores the influence volatility
fluctuation observed in the exchange markets. As a result, it can underestimate the
loss probability.

On the other hand, the q-Gaussian is well-fitted to the empirical distribution, and
it can extrapolate the tail probability. From this extrapolation, we can assess the loss
probability. In fact, the q-Gaussian is obtained by a mixture of normal distributions
of which deviation σ fluctuates for a long time scale. This seems to be related to the
fact that volatilities of the return observed from data in the market are not constant
and depend on a time period. This may be the reason why the q-Gaussian is a good
model for estimating foreign currency risk.

In this chapter, we discuss a parametric risk assessment procedure with the
q-Gaussian and another efficient distribution, the Pearson type IV, and examine the
foreign exchange risk for 30 currency pairs traded in the foreign exchange market.

In Sect. 5.3, we describe the framework of Tsallis statistics, which we use for
risk estimation. In Sect. 5.4, we explain maximum likelihood procedure, the method
to estimate parameters of the assumed distribution from given observations. In
Sect. 5.6,we perform analysis of daily data for 30 currency pairs using theq-Gaussian
distribution. In Sect. 5.7, we deal with the Pearson type IV and compare it with the
q-Gaussian. Section5.8 is devoted to the conclusion.
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Fig. 5.2 Cumulative distributions of daily log-returns of EUR/USD for the period from September
2004 to August 2012 (T = 2008) calculated in three manners: empirical, Gaussian, and q-Gaussian
distributions. A solid curve represents a fit by means of a q-Gaussian distribution. A dashed curve
shows a Gaussian fitting, and a dotted curve the empirical

5.2 GARCH Processes

A generalised autoregressive conditional heteroskedastic (GARCH) process, which
is a generalisation of an autoregressive conditional heteroskedastic (ARCH) process
proposed by Engle [8], has been formalised by Bollerslev [4]. The GARCH(p,q)
process is described as

⎪
⎨

⎩
σ 2

t = α0 +
p∑

i=1
αi x2t−i +

q∑

j=1
β jσ

2
t− j

xt = σt zt

, (5.8)

where xt is a dynamical variable at discrete time t , σt is called volatility at time t ,
and zt is an i.i.d. zero-mean standard normal random variable. In order to guarantee
the positivity of unconditional mean of σ 2

t ,

E[σ 2] = α0

1 − ∑p
i=1 αi − ∑q

j=1 β j
, (5.9)

parameters {α0, α1, . . . , αp, β1, . . . , βq} should satisfy

p∑

i=1

αi +
q∑

j=1

β j < 1. (5.10)
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The ARCH (p) process is also expressed as the GARCH (p, 0) process, which is
described as

⎪
⎨

⎩
σ 2

t = α0 +
p∑

i=1
αi x2t−i

xt = σt zt

. (5.11)

The simplest case of the ARCH process (p = 1) can be rewritten as

xt =
√

α0 + α1x2t−1 · zt . (5.12)

According to Haan [13], it is proven that the unconditional PDF of Eq. (5.12) has
the power law tails,

p(x) ≥ x−a−1, (5.13)

where a represents the power law exponent a > 0, which follows

α
a/2
1 2a/2

∞
π

Γ
(a + 1

2

)
= 1. (5.14)

The unconditional PDF in Eq. (5.13) is present for

E[ln(∞α1|z|)] < 0. (5.15)

In this derivation, the conditions for the power law exponent of Kesten random
multiplicative processes [6, 21] is used.

5.3 Tsallis Statistics

In this section, we introduce a q-Gaussian distribution. Tsallis statistics is a
generalisation of ordinary Boltzmann-Gibbs statistical mechanics to describe statis-
tical behaviours of complex systems. Here, we introduce a q-Gaussian distribution,
one of the typical distributions of generalised canonical distribution.

Tsallis [12] introduced a q-extension of exponential function defined as

expq(x) ≡ (1 + (1 − q) x)
1

1−q . (5.16)

This is the solution of the ordinary differential equation, dy
dx = yq , y(0) = 1. Then,

lnqx is defined as the inverse function of Eq. (5.16),
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lnq x ≡ x1−q − 1

1 − q
. (5.17)

Therefore, q–entropy, a generalised entropy functional, is defined as

Sq [p] ≡
∀∫

−∀
p(x) lnq

(
1

p(x)

)

dx = 1 − ∫∀
−∀ p(x)qdx

q − 1
. (5.18)

In the limit of q ≈ 1, this functional converges into the Boltzmann-Gibbs entropy.
From themaximisation of Eq. (5.18) under some constraints, we have the q-Gaussian
distribution:

p(x) = 1

B
(

q
q−1 − 1

2 ,
1
2

)

⎧
q − 1

(3 − q)σ 2
q

(
1 + q − 1

(3 − q)σq
2 (x − μq)2

) 1
1−q

. (5.19)

Equation (5.19) can also be described as

p(x) = Aq
√

Bq expq

(
−Bq(x − μq)2

)
, (5.20)

Aq =
∞

q − 1

B
(

q
q−1 − 1

2 ,
1
2

) , Bq = 1

(3 − q)σ 2
q

.

The derivation of the q-Gaussian distribution is shown in Appendix A.
As shown in Appendix B, the complementary cumulative distribution of the q-

Gaussian for 1 < q < 3, F1(x) = Pr[X ∗ x] is obtained as

F1(x) =

⎪
⎨

⎩

1

2







1 − β

⎡

q − 1

(3 − q)σ 2
q

(x − μq)2

1 + q − 1

(3 − q)σ 2
q

(x − μq)2
; 1
2
,

1

q − 1
− 1

2

⎢

⎣

⎤
⎤
⎤
⎥

(x ∗ μq)

1

2







1 + β

⎡

q − 1

(3 − q)σ 2
q

(x − μq)2

1 + q − 1

(3 − q)σ 2
q

(x − μq)2
; 1
2
,

1

q − 1
− 1

2

⎢

⎣

⎤
⎤
⎤
⎥

(x < μq),

(5.21)

where β(x; a, b) is the regularised incomplete beta function defined as

β(x; a, b) = 1

B(a, b)

x∫

0

ta−1(1 − t)b−1dt (0 ≤ x ≤ 1).
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Note that the q-Gaussian distribution is derived as a stationary distribution of the
following Langevin equation [9]

du = −νudt +
√

γ u2 + δdW (ν, γ, δ > 0) , (5.22)

where u is a dynamical variable and W (t) is the Wiener process such that

E[W (t)] = 0, E[W (t1)W (t2)] = min(t1, t2). (5.23)

Let us derive that its stationary distribution p(u) obeys the q-Gaussian. The cor-
responding Fokker–Planck equation of Eq. (5.22) is described as

∂p(u, t)

∂t
= ν

∂

∂u

⎦
up(u, t)

]
+ 1

2

∂2

∂u2

⎦
(γ u2 + δ)p(u, t)

]
. (5.24)

Then, the stationary distribution p(u) is the solution of the following equation:

ν
d

du

⎦
up(u)

]
+ 1

2

d2

du2

⎦
(γ u2 + δ)p(u)

]
= 0. (5.25)

Under the natural boundary condition p(±∀) = 0 and dp
du

|u=±∀ = 0, this is
naturally integrated as

νup(u) + 1

2

d

du

⎦
(γ u2 + δ)p(u)

]
= 0,

which leads to

dp(u)

p(u)
= −2 (ν + γ ) u

γ u2 + δ
du.

Therefore, we have the solution

p(x) = C
(
1 + γ

δ
u2
)− ν+γ

γ
, (5.26)

where C is a normalisation constant. Equation (5.26) is the form of q-Gaussian
distribution with q = ν+2γ

ν+γ
and σ 2

q = δ
2ν+γ

. This is a model that its deviation
fluctuates with u. In the case of γ = 0 in Eq. (5.22), its stationary distribution is the
Gaussian. This shows that fluctuation of the deviation results in fat-tailedness of the
distribution.



5.4 Maximum Likelihood Method 183

5.4 Maximum Likelihood Method

In this section, a maximum likelihood method is introduced. This is a parameter
estimation procedure from observations under an assumed distribution. We verify
whether q-Gaussian distributions plugged parameter estimates are well-fitted to the
log-return time series of foreign exchange rates.

Suppose that we estimate parameters (q, μq , σq) of the q-Gaussian distribution
pq(x; q, μq , σq) from T observations {r(0), . . . , r(T − 1)}. Here, we assume that
r(s) is sampled in i.i.d. Thus, the log-likelihood function is set as

l(q, μq , σq) =
T −1∑

s=0

ln pq(r(s); q, μq , σq). (5.27)

By maximising l(q, μq , σq), we obtain parameter estimates of assumed PDF,

{q̂, μ̂q , σ̂q} = arg max
q,μq ,σq

l(q, μq , σq). (5.28)

This solution can be obtained from the likelihood equations

∂l

∂q
= ∂l

∂μq
= ∂l

∂σq
= 0. (5.29)

However, as we cannot get the solution in an analytical manner, we solve it numeri-
cally. In order to solve this optimisation problem, we use a gradient method as shown
in Sect. 3.1.7.

Furthermore, since the log-likelihood function is multimodal, its convexity is
not guaranteed. Therefore, we calculate optimised parameters from different initial
parameter values in 50 trials, and then we choose the most optimal ones as parameter
estimates.

5.5 Test with Artificial Data

Beforewe treat historical data in themarket, wewant to check the validity of applying
this method. Here we examine whether we can estimate the parameters that we set
with artificial data. We make datasets drawn from a q-Gaussian distribution with the
Generalised Box–Müller method (GBMM) [22], in which samples are generated as

{
Z1 = √−2lnq ∈(ζ1) cos(2πζ2)

Z2 = √−2lnq ∈(ζ1) sin(2πζ2)
, (5.30)

http://dx.doi.org/10.1007/978-4-431-54974-1_3
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Table 5.2 Parameter estimates for datasets of samples drawn from theq-Gaussian byusingGBMM,
in which the parameter is set as (q, μq , σq ) = (1.5, 2.0, 3.0)

Size q μq σq

102 1.430907 2.063977 3.068865
103 1.488220 2.006066 3.007677
104 1.499276 2.003754 2.999074
105 1.499567 2.000199 2.999297

where ζ1 and ζ2 are i.i.d. (0, 1) uniform random numbers, and q = 3q ∈−1
q ∈+1 . Then, Z1

and Z2 obey the q-Gaussian distribution with μq = 0 and σq = 1, which we denote
as Z1, Z2 → Nq(0, 1). Then, σq Z1 + μq → Nq(μq , σq). Thus, we can generate
q-Gaussian random numbers with any possible parameters.

Table5.2 shows averages of the parameter estimates for the artificial q-Gaussian
datasets, in which the parameters are set as (q, μq , σq )= (1.5, 2.0, 3.0). The data
size is 102, 103, 104 and 105, and we estimate parameters for 100 datasets of each
data size. The table indicates that we can estimate the parameters we set regardless
of the data size.

5.6 Application of the q-Gaussian for the Foreign
Exchange Market

We perform empirical data analysis in order to check the adequacy of applying q-
Gaussian for foreign exchangemarkets.We analyse log-returns of daily closing price
for the period from September 2004 to August 2012 of 30 currency pairs consisting
of 11 currencies (see Table5.3).2

The data are downloaded from PACIFIC Exchange Rate Service [16]. Using the
method in Sect. 5.4, we estimate parameters of q-Gaussian distributions for the log-
returns of the 30 pairs. Table5.4 shows the results of parameter estimation.

We see that in all cases, parameter estimates q̂ are larger than 1.3. This means
that fluctuations of volatility cannot be ignored, and that the assumption of normal
distribution can cause underestimation of the loss probability. Therefore, once the
statistical significance of the q-Gaussian distributions is verified, this can be used for
risk estimations more efficiently than the normal distribution.

In order to check whether the parameter estimates above are statistically signif-
icant, we calculate p-values of Kolmogorov–Smirnov (KS) and Anderson–Darling
(AD) tests (see Sec. 3.1.12). For the parameter estimates (q̂, μ̂q , σ̂q),

2 We select 30 currency pairs: AUD/JPY, BRL/JPY, CAD/JPY, CHF/JPY, EUR/AUD, EUR/BRL,
EUR/CAD, EUR/CHF, EUR/GBP, EUR/JPY, EUR/MXN, EUR/NZD, EUR/SGD, EUR/USD,
EUR/ZAR, GBP/JPY, MXN/JPY, NZD/JPY, SGD/JPY, USD/AUD, USD/BRL, USD/CAD,
USD/CHF, USD/GBP, USD/JPY, USD/MXN, USD/NZD, USD/SGD, USD/ZAR and ZAR/JPY.

http://dx.doi.org/10.1007/978-4-431-54974-1_3
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Table 5.3 ISO 4217 code, country and currency

Code Country Currency

AUD Australia Australian dollar
BRL Brazil Brazilian real
CAD Canada Canadian dollar
CHF Switzerland Swiss franc
GBP United Kingdom British pound
JPY Japan Japanese yen
MXN Mexico Mexican peso
NZD New Zealand New Zealand dollar
SGD Singapore Singapore dollar
USD United States of America United States dollar
ZAR South Africa South African Rand

the complementary cumulative distribution of the q-Gaussian is given by

F1(x; q̂, μ̂, σ̂q) =

⎪
⎨

⎩

1
2

(

1 − β
⎡

q̂−1

(3−q̂)σ̂2q
(x−μ̂q )2

1− q̂−1

(3−q̂)σ̂2q
(x−μ̂q )2

; 1
2 ,

1
q̂−1 − 1

2

⎢
)

(x ∗ μ̂q)

1
2

(

1 + β
⎡

q̂−1

(3−q̂)σ̂2q
(x−μ̂q )2

1− q̂−1

(3−q̂)σ̂2q
(x−μ̂q )2

; 1
2 ,

1
q̂−1 − 1

2

⎢
)

(x < μ̂q)

(5.31)

When we let FT (x) be an empirical complementary cumulative distribution com-
puted from T observations {r(0), . . . , r(T −1)} of log-returns, the distance between
the empirical and assumed distributions is

z = sup
0≤s≤T −1

∞
T |FT (r(s)) − F1(r(s); q̂, μ̂q , σ̂q)|√ψ(F(r(s))),

where T is the data length, r(s) is a log-return of the currency and ψ(u) is a weight
function (ψ(u) = 1 in the KS test or ψ(u) = 1

u(1−u)
in the AD test). Then we obtain

p-value. Table5.5 shows p-values of q-Gaussian distributions fitted to the data of
daily log-returns. Concerning the KS test, all the p-values are larger than 0.1. This
means that the hypotheses that the log-returns obey the q-Gaussian are not rejected
for all pairs with 10% significance level if we do not focus on the tails. Therefore, it
can be said that the log-returns of the exchange rates obey q-Gaussian distributions
as a whole.

In the case of the AD test, however, the p-values of 9 pairs (AUD/JPY, EUR/AUD,
EUR/BRL, EUR/MXN, EUR/NZD, NZD/JPY, USD/AUD, USD/CHF and
USD/MXN) are less than 0.1. This means that the difference between the empir-
ical and assumed distribution at tails is too large to say that the data are drawn
from assumed distribution. Therefore, parameters estimated for the 9 pairs are not
statistically significant, and cannot be used for risk assessment. One of the rea-
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Table 5.4 Parameter estimates of the q-Gaussian for 30 currency pairs

Pair q̂ μ̂q σ̂q

AUD/JPY 1.609419 0.000704 0.006200
BRL/JPY 1.473631 0.000636 0.008481
CAD/JPY 1.445925 0.000306 0.006873
CHF/JPY 1.435333 0.000188 0.005205
EUR/AUD 1.435251 −0.000381 0.004816
EUR/BRL 1.460339 −0.000501 0.006275
EUR/CAD 1.258671 −0.000196 0.005356
EUR/CHF 1.705258 −0.000081 0.001919
EUR/GBP 1.392350 −0.000017 0.003845
EUR/JPY 1.456122 0.000187 0.005577
EUR/MXN 1.391250 −0.000068 0.005402
EUR/NZD 1.351964 −0.000393 0.005844
EUR/SGD 1.305555 −0.000130 0.004026
EUR/USD 1.343271 0.000027 0.005140
EUR/ZAR 1.328723 −0.000054 0.007293
GBP/JPY 1.499094 0.000041 0.005660
MXN/JPY 1.464356 0.000213 0.006993
NZD/JPY 1.532771 0.000522 0.007324
SGD/JPY 1.449534 0.000237 0.004899
USD/AUD 1.452021 −0.000513 0.006218
USD/BRL 1.473395 −0.000533 0.006568
USD/CAD 1.390452 −0.000229 0.004998
USD/CHF 1.326300 −0.000077 0.005608
USD/GBP 1.341826 −0.000043 0.005027
USD/JPY 1.359103 −0.000068 0.005070
USD/MXN 1.538956 −0.000307 0.004136
USD/NZD 1.373616 −0.000351 0.007173
USD/SGD 1.404451 −0.000223 0.002616
USD/ZAR 1.326522 −0.000068 0.008779
ZAR/JPY 1.400170 0.000125 0.009754

sons seems to be that asymmetry is seen in the empirical distribution for the log-
returns of the exchange rates for the power or the economic circumstances between
nations although the q-Gaussian is symmetry. This could result in discrepancy at
tails between the empirical and the assumed distribution, which means that we need
to assume another distribution which can express asymmetry. In Sect. 5.7, we treat
another distribution, the Pearson type IV, which does not only include q-Gaussian
distribution for 1 < q < 3, but also has a parameter to express skewness.



5.7 Pearson Type IV Distribution 187

Table 5.5 The p-values of q-Gaussian distributions fitted to the data of daily log-returns

Pair KS AD Pair KS AD

AUD/JPY 0.202516 0.014810 GBP/JPY 0.786078 0.894253
BRL/JPY 0.259701 0.130124 MXN/JPY 0.590475 0.250290
CAD/JPY 0.782789 0.221188 NZD/JPY 0.109631 0.033321
CHF/JPY 0.912204 0.902014 SGD/JPY 0.749587 0.380528
EUR/AUD 0.821304 0.000398 USD/AUD 0.703012 0.004203
EUR/BRL 0.530867 0.081283 USD/BRL 0.542118 0.172771
EUR/CAD 0.750889 0.564035 USD/CAD 0.793130 0.779604
EUR/CHF 0.196867 0.421569 USD/CHF 0.918346 0.000000
EUR/GBP 0.356244 0.721617 USD/GBP 0.979804 0.441559
EUR/JPY 0.640597 0.213853 USD/JPY 0.192410 0.662888
EUR/MXN 0.473614 0.043808 USD/MXN 0.119169 0.004294
EUR/NZD 0.298500 0.033507 USD/NZD 0.735193 0.242241
EUR/SGD 0.912438 0.605466 USD/SGD 0.864110 0.759757
EUR/USD 0.608185 0.927556 USD/ZAR 0.824589 0.501781
EUR/ZAR 0.836994 0.513467 ZAR/JPY 0.625725 0.646715

5.7 Pearson Type IV Distribution

We applied q-Gaussian distribution in Sect. 5.6, and see that parameter estimates of
the q-Gaussian are statistically significant as a whole, but not when we focus on
tails. One reason seems to be that asymmetry of the empirical distributions. In this
section, we introduce another distribution, the Pearson type IV distribution, which
has fat-tails with skewness. The Pearson type IV distribution was derived as one of
stationary distributions of a Pearson system [17]. Recently, there are several papers
on an application of the Pearson type IV distribution to risk assessment [15, 20].
We estimate parameters for log-returns time series. Then, we discuss the validity
of the assumption of the Pearson type IV distribution for the daily log-return of the
exchange rates by using both KS and AD tests.

We consider the following distribution that we modify the q-Gaussian with a
parameter α;

p(x) = A∈
q

√
Bq expq

(
−Bq(x − μq)2

)
exp

(
α arctan

(√
(q − 1)Bq(x − μq)

))
,

(5.32)

A∈
q =

∞
q − 1

G
(

2
q−1 − 2, α

) , Bq = 1

(3 − q)σ 2
q

,

where G(u, v) is Pearson function defined as
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G(s, λ) = e− πλ
2

π∫

0

sins θeλθdθ.

Equation (5.32) is called a Pearson type IV distribution, which we parametrise as a
modification of the q-Gaussian. Here, we introduce the distribution as a stationary
distribution of a certain diffusion process.

In Sect. 5.3, we have stated that the diffusion process Eq. (5.22),

du = −νudt +
√

γ u2 + δdW (ν, γ, δ > 0) ,

results in the q-Gaussian as its stationary distribution. In order to consider a distrib-
ution that is better fitted to log-returns of the exchange rate than the q-Gaussian, we
extend Eq. (5.22) to

du = (−νu + a)dt +
√

γ u2 + δdW (ν, γ, δ > 0) . (5.33)

Here, we show that the stationary solution of Eq. (5.33) can be described as
Eq. (5.32). The corresponding Fokker–Planck equation of Eq. (5.33) is described as

∂p(u, t)

∂t
= − ∂

∂u

⎦
(−νu + a)p(u, t)

]
+ 1

2

∂2

∂u2

⎦
(γ u2 + δ)p(u, t)

]
. (5.34)

Similarly to Eq. (5.25) in Sect. 5.3, the stationary distribution p(u) is the solution of
the following equation:

−(−νu + a)p(u) + 1

2

d

du

⎦
(γ u2 + δ)p(u)

]
= 0,

which is transformed as

dp(u)

p(u)
= −2 (ν + γ ) u

γ u2 + δ
du + 2a

γ u2 + δ
du.

Then, this is integrated as

ln p(u) = −ν + γ

γ
ln(γ u2 + δ) + 2a

γ

√
γ

δ
arctan

(√
γ

δ
u

)

+ C,

where C is a constant of integration. Therefore, the solution is given as

p(x) = C ∈ (1 + γ

δ
u2
)− ν+γ

γ
exp

(
2a

γ

√
γ

δ
arctan

(√γ

δ
u
))

, (5.35)
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where C ∈ is a normalisation constant. The constant C ∈ is derived in Appendix C.
Therefore, we obtain the stationary distribution of Eq. (5.33) as

p(u) = 1

G
(
2ν
γ

, 2a
γ

√
γ
δ

)

√
γ

δ

(
1 + γ

δ
u2
)− ν+γ

γ
exp

(
2a

γ

√
γ

δ
arctan

(√γ

δ
u
))

.

(5.36)

In order to treat the distribution as a modification of the q-Gaussian distribution, we

make the transformation as x − μq = u, q = ν+2γ
ν+γ

, σ 2
q = δ

2ν+γ
, and α = 2a

γ

√
γ
δ
.

Then, we finally obtain Eq. (5.32).
The complementary cumulative distribution of Eq. (5.32) is described as

F2(x) = Pr[X ∗ x]

= e− πα
2

G
(

2
q−1 − 2, α

)

π
2 −arctan

(∞
(q−1)Bq (x−μq )

)

∫

0

(sin θ)

(
2

q−1−2
)

eαθdθ.

(5.37)

The detail derivation of the cumulative distribution is also shown in Appendix D.

5.7.1 Data Analysis

Using Eqs. (5.32) and (5.37), we perform parameter estimation procedures and
statistical tests for the 30 currency pairs in the same manner as the q-Gaussian.

Table5.6 shows parameter estimates obtained from empirical data. In addition to
the 3 parameters q, μq and σq , α is estimated as a skewness of the distributions.
The values of q and σq are almost equal to those in q-Gaussian distributions with
differences by 0.1% at most. However, μq is different from that of q-Gaussian
distributions in each currency pair because the parameter α is added in the case
of the Pearson type IV distribution. We note that, in Pearson type IV distribution,
μq is not equivalent to average, and that it should be considered just as a location
parameter. Therefore, we should focus on both μq and α when we want to know
which currency pair is strong or weak.

We calculated the statistical significance of the parameter estimates. Table5.7
shows p-values to indicate whether Pearson type IV distributions fitted to the empir-
ical distributions for daily log-returns of the exchange rates. Concerning the KS test,
all the p-values are larger than 0.2, which are better than those of q-Gaussian.

In the case of the AD test for the q-Gaussian distribution, p-values for only 9 pairs
(AUD/JPY, EUR/AUD, EUR/BRL, EUR/MXN, EUR/NZD, NZD/JPY, USD/AUD,
USD/CHF and USD/MXN) are less than 0.1, although, in the case of the AD
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Table 5.6 Parameter estimates of the Pearson type IV distribution for 30 currency pairs

Pair q̂ μ̂q σ̂q α̂

AUD/JPY 1.610139 0.001887 0.006151 −0.262934
BRL/JPY 1.472487 0.002940 0.008405 −0.437468
CAD/JPY 1.444235 0.001625 0.006851 −0.321471
CHF/JPY 1.434890 0.000991 0.005191 −0.261791
EUR/AUD 1.431137 −0.001284 0.004813 0.316844
EUR/BRL 1.455900 −0.002179 0.006243 0.438050
EUR/CAD 1.258280 −0.001598 0.005331 0.622461
EUR/CHF 1.704824 −0.000005 0.001920 −0.050019
EUR/GBP 1.393331 −0.000639 0.003830 0.293999
EUR/JPY 1.456696 0.001518 0.005531 −0.394483
EUR/MXN 1.389923 −0.001127 0.005385 0.355433
EUR/NZD 1.342089 −0.002884 0.005786 0.854961
EUR/SGD 1.306032 −0.000009 0.004025 −0.064110
EUR/USD 1.343607 0.000123 0.005139 −0.036981
EUR/ZAR 1.325985 −0.001973 0.007262 0.539210
GBP/JPY 1.500839 0.000770 0.005636 −0.199748
MXN/JPY 1.464645 0.001865 0.006939 −0.384782
NZD/JPY 1.532918 0.001876 0.007281 −0.278273
SGD/JPY 1.448921 0.001182 0.004878 −0.321406
USD/AUD 1.451001 −0.002055 0.006176 0.409805
USD/BRL 1.469904 −0.002161 0.006536 0.398716
USD/CAD 1.388414 −0.000927 0.004996 0.254392
USD/CHF 1.326647 0.000445 0.005602 −0.189920
USD/GBP 1.339521 −0.001051 0.005017 0.399280
USD/JPY 1.359006 0.000445 0.005065 −0.194651
USD/MXN 1.542045 −0.001543 0.004063 0.441634
USD/NZD 1.370606 −0.002314 0.007135 0.515685
USD/SGD 1.404469 −0.000672 0.002607 0.305095
USD/ZAR 1.325492 −0.002284 0.008735 0.517640
ZAR/JPY 1.401579 0.002084 0.009698 0.358533

test for Pearson type IV distributions, p-values of 5 pairs (EUR/AUD, EUR/BRL,
EUR/CAD, USD/CHF and USD/GBP) are less than 0.1. Table5.8 shows the average
of p-value over 30 currency pairs with the two distributions in the KS and AD tests.
This indicates that Pearson type IV distributions are better fitted to the empirical
distributions calculated from the data than q-Gaussian distributions in average both
as a whole or at the tails.

We also compare the results for the q-Gaussian and the Pearson type IV byAkaike
Information Criterion (AIC). AIC is defined as

AIC = −2L(θ̂) + 2(K + 1), (5.38)



5.7 Pearson Type IV Distribution 191

Table 5.7 The p-values of Pearson type IV distributions fitted to the data in the market

Pair KS AD Pair KS AD

AUD/JPY 0.647416 0.733195 GBP/JPY 0.931475 0.886082
BRL/JPY 0.946681 0.402711 MXN/JPY 0.993608 0.994554
CAD/JPY 0.882842 0.995040 NZD/JPY 0.290311 0.721085
CHF/JPY 0.998742 0.771110 SGD/JPY 0.876989 0.935569
EUR/AUD 0.861370 0.016699 USD/AUD 0.759749 0.204882
EUR/BRL 0.892361 0.056225 USD/BRL 0.959783 0.348942
EUR/CAD 0.959756 0.035925 USD/CAD 0.651646 0.614915
EUR/CHF 0.261394 0.325228 USD/CHF 0.965324 0.000000
EUR/GBP 0.446183 0.951811 USD/GBP 0.999893 0.090961
EUR/JPY 0.978599 0.989188 USD/JPY 0.218458 0.711086
EUR/MXN 0.563741 0.314231 USD/MXN 0.983102 0.454872
EUR/NZD 0.778930 0.987520 USD/NZD 0.960887 0.828784
EUR/SGD 0.932922 0.561600 USD/SGD 0.956389 0.246523
EUR/USD 0.622775 0.927162 USD/ZAR 0.850672 0.884366
EUR/ZAR 0.991990 0.970829 ZAR/JPY 0.806047 0.988715

Table 5.8 The p-value averages with the two distributions in the KS and AD tests for the 30
currency pairs

Distribution KS AD

q-Gaussian 0.603903 0.372297
Pearson type IV 0.799001 0.598327

Fig. 5.3 Relation between
the absolute value of the
parameter estimates α̂ of the
Pearson type IV and ΔAIC =
AIC(Pearson type IV) −
AIC(q-Gaussian) for the 30
currency pairs. Each unfilled
circle represents a relation for
a currency pair
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where L(θ) is the log-likelihood function in terms of the parameters θ , θ̂ are the
parameter estimates and K denotes the number of parameters. The smaller values of
AIC mean that the model is better fitted to the given data.

Figure5.3 shows the relationbetween the absolute values of theparameter estimate
α̂ for the 30 currency pairs, and ΔAIC, the difference of AIC between the two dis-
tributions which we define as ΔAIC = AIC(Pearson type IV)−AIC(q−Gaussian).
There is negative correlation between |α̂| and ΔAIC, and ΔAIC are larger than 0 in
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the case that |α̂| is small. This means that if an unconditional PDF for log-returns
is skewed, the goodness-of-fit of the Pearson type IV distribution is better than one
of the q-Gaussian distribution. Therefore, this indicates that a skewed parameter α

plays an important role to explain the daily log-returns of the exchange rates.

5.7.2 Value at Risk and Expected Shortfall

We compare value at risk (VaR) and expected shortfall (ES) calculated from the
q-Gaussian and the Pearson type IV distribution. VaR is one of the risk measures
related to the loss probability. This is defined with confidence level c as

Pr[x < −VaR] =
−VaR∫

−∀
p(x; θ̂)dx = 1 − c, (5.39)

where x is log-returns and p(x; θ̂) is the assumed distribution with estimated
parameters. Using the complementary cumulative distribution F(x; θ̂), we have
1− F(−VaR; θ̂) = 1−c. Then, VaR is calculated as an absolute value of the solution
of c = F(x; θ̂). c is generally chosen from the range of 95–99.5%. This means that
the losses larger than the amount of the VaR occur with probability 100(1 − c)%
during the period for estimation. Expected shortfall (ES) is an alternative to value
at risk that is more sensitive to the shape of the loss distribution in the tail of the
distribution. The expected shortfall is defined as

ESc = 1

c − 1

1∫

c

qF (γ )dγ, (5.40)

where qF (γ ) is a quantile function of F(x), which is defined as the inverse function
of F(x) so that qF (γ ) = F−1(γ ). The expected shortfall is also expressed as

ESc = V a Rc + 1

1 − c

−V a Rc∫

−∀
(1 − F(x))dx . (5.41)

Table5.9 shows 1% (c = 99%) VaR and ES of the 30 pairs calculated from
q-Gaussian and Pearson type IV distributions with parameter estimates. We indicate
∗ in VaR and ES of pairs in which the p-values of the parameter estimates in the
AD test are less than 1%. Table5.9 shows that VaRs and ESs in the two distributions
differ by approximately 10%, and especially the VaR and ES of the Pearson type IV
seems to be larger than that of the q-Gaussian if α in the Pearson type IV is negative.
For example, all pairs with JPY have negative α in the Pearson type IV, and the VaR
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Table 5.9 1% VaR and ES of the 30 pairs calculated from q-Gaussian and Pearson type IV
distributions with estimated parameters

Pair q-Gaussian Pearson IV

VaR ES VaR ES
AUD/JPY 0.035906 0.065811 0.041032 0.076342
BRL/JPY 0.035834 0.054405 0.040603 0.062731
CAD/JPY 0.027680 0.040877 0.030041 0.044836
CHF/JPY 0.020587 0.030209 0.021970 0.032532
EUR/AUD 0.019598* 0.028540* 0.018048 0.025815
EUR/BRL 0.026774 0.039757 0.023556 0.034043
EUR/CAD 0.016433 0.021230 0.015527 0.019848
EUR/CHF 0.015199 0.033776 0.015736 0.035032
EUR/GBP 0.014234 0.020215 0.013393 0.018842
EUR/JPY 0.022972 0.034329 0.025570 0.038826
EUR/MXN 0.020003 0.028153 0.018573 0.025776
EUR/NZD 0.020623 0.028038 0.017881 0.023533
EUR/SGD 0.013137 0.017549 0.013250 0.017726
EUR/USD 0.017536 0.023884 0.017643 0.024061
EUR/ZAR 0.024426 0.032708 0.022542 0.029706
GBP/JPY 0.025606 0.039958 0.027418 0.043281
MXN/JPY 0.029302 0.044001 0.032640 0.049815
NZD/JPY 0.035238 0.057390 0.039148 0.064664
SGD/JPY 0.019848 0.029573 0.021601 0.032556
USD/AUD 0.026131* 0.038480* 0.023317 0.033615
USD/BRL 0.028753 0.043245 0.025415 0.037261
USD/CAD 0.018656 0.026201 0.017691 0.024588
USD/CHF 0.018752* 0.025179* 0.019264* 0.025989*
USD/GBP 0.017178 0.023366 0.016111 0.021647
USD/JPY 0.017822 0.024514 0.018418 0.025467
USD/MXN 0.020790* 0.033973* 0.017369 0.027666
USD/NZD 0.026059 0.035908 0.023639 0.031911
USD/SGD 0.010103 0.014562 0.009453 0.013488
USD/ZAR 0.029302 0.039085 0.027180 0.035720
ZAR/JPY 0.036418 0.051292 0.029778 0.042931

* Represents that p-value of the KS or AD test is less than 1%

and ES in the Pearson type IV are all larger than those in the q-Gaussian. Therefore,
risk assessment with the q-Gaussian could result in underestimation of risks when
the historical distribution is skewed sufficiently.

5.8 Conclusion

In this chapter, we applied the q-Gaussian and Pearson type IV distributions to
assess currency risks of the foreign exchange market. In the hypothesis that log-
returns of foreign exchange rates obey the q-Gaussian distribution, we performed
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parameter estimation procedures for 30 currency pairs. In order to check whether the
estimated parameters are statistically significant, we calculated p-values of two types
of statistical test, Kolmogorov-Smirnov (KS) test [18, 19] and Anderson-Darling
(AD) test [1].

The parameterq is estimated in the range of 1.3–1.7,which indicates that empirical
distributions for the daily log-return of the exchange rates have fat-tails, and a risk
assessment with normal distribution could result in underestimation of risk. We
revealed that all p-values in the KS test are larger than 0.1, though p-values of 9
currency pairs were less than 0.1 in the AD test. This means that the log-returns obey
the q-Gaussian as a whole, but do not always obey at tails.

We treated another distribution for risk assessment, the Pearson type IV
distribution. We parametrise the distribution as a modification of the q-Gaussian
with skewness and performed parameter estimations procedures for log-returns of
the exchange rates.We revealed that the Pearson type IV distributions are better-fitted
to the empirical distributions. All the p-values in the KS test were larger than 0.2,
and p-values for only 5 pairs were less than 0.1 in the AD test. On average, p-values
in both KS and AD tests with the Pearson type IV are larger than those with the
q-Gaussian. This indicates that skew of the empirical distributions should be taken
into consideration, and the Pearson type IV distribution is a more efficient model for
risk assessment than the q-Gaussian.

We calculated 1% value at risk (VaR) and expected shortfall (ES) of the currency
pairs with the two distributions and compared the values.We found that VaRwith the
Pearson type IV are different from those with the q-Gaussian approximate of about
10%. This indicates that even the assumption of the q-Gaussian distributions could
result in underestimation of loss probability than the assumption of the Pearson type
IV distribution.

Acknowledgments The author shows his sincere gratitude to Mr. Takashi Isogai (Bank of Japan)
for his fruitful suggestions.

Appendix A: Derivation of q-Gaussian Distribution

Consider the maximisation of the Tsallis entropy

Sq [p] =
∀∫

−∀
p(x) lnq

(
1

p(x)

)

dx = 1 − ∫∀
−∀ p(x)qdx

q − 1
, (5.42)

under constraints

∀∫

−∀
p(x)dx = 1, (5.43)
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∀∫

−∀
x Pq(x)dx = μq , (5.44)

∀∫

−∀
(x − μq)2Pq(x)dx = σ 2

q , (5.45)

where μq is q-average and σ 2
q q-variance, which are calculated with an escort

probability Pq(x) = p(x)q/
∫

p(x)qdx .
This optimisation problem can be solved by using the Lagrangian multipliers,

H = Sq [p] + λ1




∀∫

−∀
p(x)dx − 1

⎣

⎥ + λ2




∀∫

−∀
x(p(x))qdx − μq

∀∫

−∀
(p(x))qdx

⎣

⎥

+ λ3




∀∫

−∀
(x − μq)2(p(x))qdx − σ 2

q

∀∫

−∀
(p(x))qdx

⎣

⎥ ,

(5.46)

where λi (i = 1, 2, 3) are Lagrangian multipliers.
When p(x) maximises H , we have

∂ H

∂p
=

∀∫

−∀

(

q(p(x))q−1
(

1

q − 1
+ λ2

⎡
x − μq

⎢ − λ3

(⎡
x − μq

⎢2 − σ 2
q

))

+ λ1

)

dx = 0.

This requires that the integrand is 0 for all x , so we have

q(p(x))q−1
(

1

q − 1
+ λ2

⎡
x − μq

⎢ − λ3

(⎡
x − μq

⎢2 − σ 2
q

))

+ λ1 = 0. (5.47)

From Eq. (5.47), we get

p(x) =
(

q − 1

q
λ1

) 1
1−q (

1 + (1 − q)
(
λ2

⎡
x − μq

⎢ − λ3

(⎡
x − μq

⎢2 − σ 2
q

))) 1
1−q

=
(

q − 1

q
λ1

) 1
1−q (

1 − (1 − q)λ3

(
λ22 + σ 2

q

)
+ (1 − q)λ3

⎡
x − μq + λ2

⎢2
) 1
1−q

=


 (q − 1)λ1

q(1 − (1 − q)λ3

(
λ22 + σ 2

q

)
)

⎣

⎥

1
1−q



1 + λ3

1 − (1 − q)
(
λ22 + σ 2

q

) (1 − q)
⎡
x − μq + λ2

⎢2

⎣

⎥

1
1−q

= λ∈
1

(
1 + λ∈

3(1 − q)
⎡
x − λ∈

2
⎢2
) 1
1−q

, (5.48)
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where we put λ∈
1, λ

∈
2 and λ∈

3 as

λ∈
1 =



 (q − 1)λ1

q(1 − (1 − q)λ3

(
λ22 + σ 2

q

)
)

⎣

⎥

1
1−q

,

λ∈
2 = μq − λ2,

λ∈
3 = λ3

1 − (1 − q)
(
λ22 + σ 2

q

) .

In the case of q > 3,
∫∀
−∀ p(x)dx diverges. Therefore, q must be less than 3.

In the case of 1 < q < 3, in which p(x) has fat-tails, we want to determine λ∈
1,

λ∈
2 and λ∈

3 so that p(x) satisfies the conditions Eqs. (5.43) to (5.45).
From Eq. (5.43), we have

∀∫

−∀
λ∈
1

(
1 + λ∈

3(1 − q)
⎡
x − λ∈

2

⎢2)
1

1−q
dx = 1.

Considering the transformation t = 1
1+λ∈

3(1−q)(x−λ∈
2)

2 , we get

∀∫

−∀
λ∈
1

(
1 + λ∈

3(1 − q)
⎡
x − λ∈

2

⎢2)
1

1−q
dx

=
1∫

0

λ∈
1√

(1 − q)λ∈
3

t
1

q−1− 3
2 (1−t)−

1
2
dt

= λ∈
1√

(1 − q)λ∈
3

B

(
1

q − 1
− 1

2
,
1

2

)

= 1. (5.49)

From Eq. (5.44), we have

∀∫

−∀
(x − μq)λ∈

1

(
1 + λ∈

3(1 − q)
⎡
x − λ∈

2

⎢2)
q

1−q
dx = 0.

Putting x ∈ = x − λ∈
2 into Eq. (5.8), we have

∀∫

−∀
(x ∈ + λ∈

2 − μq)λ∈
1

(
1 + λ∈

3(1 − q)x ∈2)
q

1−q
dx ∈ = 0.
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Because
∫∀
−∀ x ∈ ⎡1 + λ∈

3(1 − q)x ∈2⎢ q
1−q dx ∈ = 0 for the integrand is an odd function,

we get

∀∫

−∀
(λ∈

2 − μq)λ∈
1

(
1 + λ∈

3(1 − q)x ∈2)
q

1−q
dx ∈ = 0.

This means

λ∈
2 = μq . (5.50)

From Eq. (5.45), we have

∀∫

−∀

(
(x − μq)2 − σ 2

q

)
λ∈
1

(
1 + λ∈

3(1 − q)
⎡
x − λ∈

2

⎢2)
q

1−q
dx = 0.

By the same transformation of Eq. (5.45), we have

⎡
(1 − q) λ∈

3

⎢− 3
2 B

(
q

q − 1
− 3

2
,
3

2

)

− ⎡
(1 − q) λ∈

3

⎢− 1
2 σ 2

q B

(
q

q − 1
− 1

2
,
1

2

)

= 0.

Therefore, we obtain

λ∈
3 = 1

(1 − q) σ 2
q

B
(

q
q−1 − 3

2 ,
3
2

)

B
(

q
q−1 − 1

2 ,
1
2

)

= 1

(1 − q) σ 2
q

Γ
(

q
q−1 − 3

2

)
Γ
⎡ 3
2

⎢

Γ
(

q
q−1

)
Γ
(

q
q−1

)

Γ
(

q
q−1 − 1

2

)
Γ
⎡ 1
2

⎢

= − 1

σ 2
q (3 − q)

, (5.51)

where Γ (x) is the gamma function defined as

Γ (x) =
∀∫

0

t x−1e−tdt,

and we use the equality aΓ (a) = Γ (a + 1). From Eqs. (5.49) to (5.51), λ∈
1 is

determined as
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λ∈
1 = 1

σ 2
q B

(
q

q−1 − 1
2 ,

1
2

)

⎧
q − 1

3 − q
. (5.52)

Consequently, we have the q-Gaussian distribution for 1 < q < 3,

p(x) = 1

B
(

q
q−1 − 1

2 ,
1
2

)

⎧
q − 1

(3 − q)σ 2
q

(
1 + q − 1

(3 − q)σq
2 (x − μq)2

) 1
1−q

. (5.53)

Equation (5.53) can also be described as

p(x) = Aq
√

Bq expq

(
−Bq(x − μq)2

)
, (5.54)

Aq =
∞

q − 1

B
(

q
q−1 − 1

2 ,
1
2

) , Bq = 1

(3 − q)σ 2
q

.

Appendix B: Complementary Cumulative Distribution
of the q-Gaussian

Let us derive the complementary cumulative distribution of the q-Gaussian,

F(x) =
∀∫

x

Aq
√

Bq(1 − (1 − q)Bq(x ∈ − μq)2)
1

1−q dx ∈. (5.55)

In the case of x ∗ μq , consider the following transformation:

t = 1

1 − (q − 1)Bq(x − μq)2
.

Then, we have

F(x) = Aq

2
∞

q − 1

1
1−(1−q)Bq (x−μq )2∫

0

t
1

q−1− 2
3 (1 − t)−

1
2 dt. (5.56)

Transforming s = 1 − t with ds = − 1
2
∞

(q−1)Bq
t− 3

2 (1 − t)− 1
2 dt , we get
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F(x) = Aq

2
∞

q − 1

1∫

(q−1)Bq (x−μq )2

1−(1−q)Bq (x−μq )2

s− 1
2 (1 − s)

1
q−1− 3

2 ds

= Aq

2
∞

q − 1









B

(
1

2
,

1

q − 1
− 1

2

)

−

(q−1)Bq (x−μq )2

1−(1−q)Bq (x−μq )2∫

0

s
1
2 (1 − s)

1
q−1− 1

2 ds

⎣

⎤
⎤
⎤
⎤
⎥

= 1

2








1 − 1

B
(
1
2 ,

1
q−1 − 1

2

)

(q−1)Bq (x−μq )2

1−(1−q)Bq (x−μq )2∫

0

s
1
2 (1 − s)

1
q−1− 1

2 ds

⎣

⎤
⎤
⎤
⎤
⎥

,

where we use Aq =
∞

q−1

B
(
1
2 , 1

q−1− 1
2

) . Therefore, we have

F(x) = 1

2

(

1 − β

(
(q − 1)Bq(x − μq)2

1 + (q − 1)Bq(x − μq)2
; 1
2
,

1

q − 1
− 1

2

))

= 1

2

(

1 − β

( q−1
(3−q)σ 2

q
(x − μq)2

1 + q−1
(3−q)σ 2

q
Bq(x − μq)2

; 1
2
,

1

q − 1
− 1

2

))

. (5.57)

In the case of x ≤ μq , using the same transformation t = 1
1−(q−1)Bq (x−μq )2

(dx ∈ = 1
2
∞

(q−1)Bq
t− 3

2 (1 − t)− 1
2 dt), we obtain

F(x) =
∀∫

x

Aq
√

Bq(1 − (1 − q)Bq(x ∈ − μq)2)
1

1−q dx ∈

= 1 −
x∫

−∀
Aq

√
Bq(1 − (1 − q)Bq(x ∈ − μq)2)

1
1−q dx ∈

= 1 − Aq

2
∞

q − 1

1
1−(1−q)Bq (x−μq )2∫

0

t
1

q−1− 2
3 (1 − t)−

1
2 dt

= 1 − 1

2

(

1 − β

(
(q − 1)Bq(x − μq)2

1 + (q − 1)Bq(x − μq)2
; 1
2
,

1

q − 1
− 1

2

))
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= 1

2

(

1 + β

(
(q − 1)Bq(x − μq)2

1 + (q − 1)Bq(x − μq)2
; 1
2
,

1

q − 1
− 1

2

))

= 1

2

(

1 + β

( q−1
(3−q)σ 2

q
(x − μq)2

1 + q−1
(3−q)σ 2

q
(x − μq)2

; 1
2
,

1

q − 1
− 1

2
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. (5.58)

Appendix C: Derivation of the Normalisation Constant
of Pearson Type IV Distribution

Let us determine the normalisation constant of Pearson type IV distribution,

p(u) = C ∈ (1 + γ

δ
u2
)− ν+γ

γ
exp

(
2a

γ

√
γ

δ
arctan

(√
γ

δ
u

))

. (5.59)

Because this is normalised (
∫∀
−∀ p(u)du = 1), we have

C ∈−1 =
∀∫

−∀

(
1 + γ

δ
u2
)− ν+γ

γ
exp

(
2a

γ

√
γ

δ
arctan

(√
γ

δ
u

))

du. (5.60)

By using the transformation θ = arctan
(√

γ
δ

u
)
, Eq. (5.60) is transformed as

C ∈−1 =
⎧

δ

γ

π
2∫

− π
2

(cos θ)
2ν
γ exp

(
2a

γ

√
γ

δ
θ

)

dθ.

Furthermore, putting θ = −θ ∈ and θ ∈ = π
2 − φ, we have

C ∈−1 =
⎧

δ

γ

π∫

0

(sin φ)
2ν
γ exp

(
2a

γ

√
γ

δ

(
φ − π

2

))

dφ

=
⎧

δ

γ
G

(
2ν

γ
,
2a

γ

√
γ

δ

)

. (5.61)
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Thus, we obtain the stationary distribution of Eq. (5.33) as

p(u) = 1

G
(
2ν
γ

, 2a
γ

√
γ
δ

)

√
γ

δ

(
1 + γ

δ
u2
)− ν+γ

γ
exp

(
2a

γ

√
γ

δ
arctan

(√γ

δ
u
))

.

(5.62)

Therefore, in order to treat the distribution as a modification of the q-Gaussian
distribution, we make the transformation as x − μq = u, q = ν+2γ

ν+γ
, σ 2

q = δ
2ν+γ

and α = 2a
γ

√
γ
δ
. Then, we finally obtain

p(x) = A∈
q

√
Bq expq

(
−Bq(x − μq)2

)
exp

(
α arctan

(√
(q − 1)Bq(x − μq)

))
,

(5.63)

A∈
q =

∞
q − 1

G
(

2
q−1 − 2, α

) , Bq = 1

(3 − q)σ 2
q

.

Appendix D: Derivation of the Cumulative Distribution Function
of Pearson Type IV Distribution

Let us derive the complementary cumulative distribution of Eq. (5.63). Using the
same transformation of θ = arctan

⎡√
(q − 1)Bq(x ∈−μq)

⎢
, θ ∈ = −θ and θ ∈ = π

2 −φ,
we obtain its complementary cumulative distribution as

F2(x) =
∀∫

x

A∈
q

√
Bq expq

(
−Bq (x ∈ − μq )2

)
exp

(
α arctan

(√
(q − 1)Bq (x ∈ − μq )

))
dx ∈

= 1

G
(

2
q−1 − 2, α

)

π
2∫

arctan
⎡∞

(q−1)Bq (x−μq )
⎢
(cos θ)

(
2

q−1−2
)

eαθdθ

(
where we use θ = arctan

⎡√
(q − 1)Bq (x ∈ − μq )

⎢)

= 1

G
(

2
q−1 − 2, α

)

π
2 −arctan

⎡∞
(q−1)Bq (x−μq )

⎢
∫

0

(sin φ)

(
2

q−1−2
)

eα
⎡
φ− π

2

⎢
dφ

(
where we use θ ∈ = −θ and φ = π

2
− θ ∈)

= e− πα
2

G
(

2
q−1 − 2, α

)

π
2 −arctan

⎡∞
(q−1)Bq (x−μq )

⎢
∫

0

(sin φ)

(
2

q−1−2
)

eαφdφ. (5.64)
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Chapter 6
Segmentation Study of Foreign
Exchange Market

Abstract This chapter explains a recursive segmentation procedure under normal
distribution assumptions. The Akaike information criterion between independently
identically distributed Gaussian samples and two successive segments drawn from
different Gaussian distributions is used as a discriminator to segment time series.
The Jackknife method is employed in order to evaluate a statistical significance
level. This chapter shows univariate and multivariate cases. The proposed method is
performed for artificial time series consisting of two segmentswith different statistics.
Furthermore, log-return time series of currency exchange rates for 30 currency pairs
for the period from January 4, 2001 to December 30, 2011 are divided into 11
segments with the proposed method. It is confirmed that some segment corresponds
to historical events recorded as critical situations.

6.1 Introduction

Both a mixture of distributions and switching models provide good expressions for
non-stationary time series. Specifically, it is powerful to employ statistical inference
methods under the assumption of these models combining with a model selection
such as a likelihood-ratio test [33]. This type of methods is called change-point
detection.

Detecting and modelling structural change and break-point from time series are
often needed when we consider an problem of socioeconomic-technological sys-
tems. There are successive studies on change-point detection including monographs
[4, 6, 8, 13]. Giraitis and Leipus [16, 17] study a method to detect a change-point by
means of power spectra. Hawkins [23, 24], Chen and Gupta [9], Mia and Zhao [32],
Sen and Srivastava [42] among others, are also of interest.

There are two types of approaches to change-point detection. One is a regression
analysis. Several segments with different coefficients between an explained variable
and explanatory variables. This is called spanned regression or segmentation. The
Chow test is a statistical test to determine whether the coefficients in two linear
regressions on different data sets are equal [12]. Quandt and Ramsey [40] have

A.-H. Sato, Applied Data-Centric Social Sciences, 203
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developed estimation procedure for mixture of linear regression. Hansen’s [22] test
of model stability was based on a cumulative sum of the least squares residuals.

Another approach is to determine change-points from a time series based on
some models. Markov [21] switching models, stochastic differential equations [43],
Gaussian models [10] are often assumed for this purpose. The likelihood ratio or
some test statistics are used to determine breakpoints from a uni-variate time series
or multivariate time series.

Two types of approaches to divide time series into several segments. One is a
local approach and another is a global approach. In the local approach, a binary seg-
mentation procedure is recursively applied to segments. There are some termination
conditions to decide whether the binary segmentation procedure is applied or not.
It is also considered to use a penalty function to prevent too many segments to be
generated. The global approach solves a nonlinear optimisation problems in terms
of parameters in segments.

Kawahara and Sugiyama [26] propose a non-parametric method to detect change
points from time series based on direct density-ratio estimation. More recently, a
recursive entropic scheme to separate financial time series has been proposed [10].
Their method is parametric and uses the log-likelihood ratio test. Ducré-Robitaille
et al. [14] compare several methods to detect change points. They segment arti-
ficial time series based on 8 methods; standard normal homogeneity test (SNHT)
without trend [2], SNHT with trend [3], multiple linear regression (MLR) [45], two-
phase regression (TPR) [15], Wilcoxon rank–sum (WRS) [25], sequential testing for
equality of means (ST) [20], Bayesian approach without reference series [37, 38],
and Bayesian approach with reference series [37, 38]. Karl and Williams [25] pro-
pose a method to find an adequate segment boundary based on Wilcoxon rank-sum
test and investigate climatological time series data.

I further address some existing approaches to the problem of multiple change-
point detection in multivariate time series. Ombao et al. [34] employed the SLEX
(smooth localised complex exponentials) basis for time series segmentation, origi-
nally proposed byOmbao et al. [35]. The choice of SLEXbasis leads to the segmenta-
tion of the time series, achieved via complexity-penalised optimisation. Lavielle and
Teyssière [29] introduced a procedure based on penalised Gaussian log-likelihood as
a cost function, where the estimator was computed via dynamic programming. Sato
proposes Akaike Information Criterion of multivariate Gaussian models [41]. The
performance of themethod was tested on bi-variate examples. Vert and Bleakley [44]
proposed a method for approximating multiple signals (with independent noise) via
piecewise constant functions, where the change-point detection problem was re-
formulated as a penalised regression problem and solved by the group Lasso [47].
Note that Cho and Fryzlewicz [11] argued that Lasso-type penaltieswere sub-optimal
for change-point detection.

It still remains a challenge for financial engineering. The segmentation method
presented in this chapter is an attempt to provide some insights into the problem of
finding transition points in financial time series, or more generally in multivariate
financial data. We consider an application of a method to detect change-point for
multivariate time series to the foreign exchange rates. Statistical properties of asset
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price returns in stockmarkets have been extensively studied in the literature of finance
and econophysics over the past two decades [5, 31]. By these studies, many stylised
facts about the statistics of returns have been determined. An important property of
prices statistics is that the probability distribution of stock returns exhibits a fat-tailed
distribution [19, 30]. The presence of fat tails in the observed return distributions
can be partially attributed to the non-stationarity of the underlying processes that are
responsible for shaping the prices of assets in the market. Indeed, even if a time series
representing asset returns is a mixture of twoGaussian processes that are flip-flopped
in consecutive time intervals, the resulting distribution is not Gaussian.

Actually, if the volatility of the two Gaussian distributions differs significantly,
one effectively detects a distribution that has a large kurtosis as if it had a fat-tail.
More generally, almost any distribution, including fat-tailed distributionswith power-
like tails, can be obtained as a weighted composition of Gaussian random variables.
Non-stationary time series can easily explain fat-tails in historical financial data.
Therefore, a systematic treatment and control of non-stationary effects in a financial
time series are important.

In this chapter, I propose a segmentation procedure for a multivariate time series
under the assumption of local stationarity, which means that the corresponding time
series are generated from different multivariate Gaussian distributions that are sta-
tionary in given time intervals. I adopt this scheme here to analyse multivariate data
on foreign exchange rates. The proposed procedure is applied to the process of seg-
menting multiple daily log-return time series of currency exchange rates for selected
30 currency pairs for the period from January 4, 2001 to December 30, 2011.

This chapter is organised as follows. Sections 6.2 and 6.3 briefly explain the
likelihood-ratio test for segmentation of both univariate and multivariate time series.
Section 6.4 proposes the statistical test for segmentation of multivariate time series
based on information criterion. Section 6.5 interprets the statistical error of test
statistics from random matrix theory. Section 6.6 shows results of the proposed
segmentation procedure with an artificial multivariate time series. Section 6.7 shows
empirical analysis of the multivariate time series of daily foreign exchange rates.
Section 6.8 is devoted to concluding remarks.

6.2 Likelihood-Ratio Test for Univariate Time Series

Suppose that there are T observations xs (s = 1, . . . , T ). We assume that the time
series consists of m locally stationary segments (statistics within each segment are
assumed to be homogeneous) and that each segment is sampled from a Gaussian
distribution with different mean and variance. How do we determine the unknown
m − 1 segment boundaries ti (i = 1, . . . , m − 1).

Recently, Cheong et al. have considered a recursive segmentation scheme for one
dimensional time series under a Gaussian assumption [10] in the context of financial
time series analysis. Their procedure can be interpreted as a kind of hypothesis test
between a null hypothesis and an alternative model.
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Let g(x;μ, σ 2) be a Gaussian distribution:

g(x;μ, σ) = 1∀
2πσ 2

exp
[
− (x − μ)2

2σ 2

]
, (6.1)

Assuming that the observations xs should be segmented at t, and that the observations
on the left hand side are sampled from g(x;μL, σ 2

L ), and that those on the right hand
side are from g(x;μR, σ 2

R), we define likelihood functions:

L1 =
T∏

s=1

g(xs;μ, σ 2), (6.2)

L2(t) =
t∏

s=1

g(xs;μL, σ 2
L )

T∏

s=t+1

g(xs;μR, σ 2
R). (6.3)

The log-likelihood ratio test can be constructed from the logarithmic difference
between L1 and L2(t), defined as

Δ(t) = ln L2(t) − ln L1. (6.4)

Inserting Eqs. (6.2) and (6.3) into Eq. (6.4), we have

Δ(t) =
t∑

s=1

ln g(xs;μL, σ 2
L ) +

T∑

s=t+1

ln g(xs;μR, σ 2
R) −

T∑

s=1

ln g(xs;μ, σ 2). (6.5)

In general, if a random variable A is given and its distribution admits a PDF p,
then from T random variables ai (i = 1, . . . , T ) the expected value of f (A), where f
is a function, (if exists) can be approximated as

1

T

T∑

i=1

f (ai) ∈ E[f (A)] =
⇒⎧

−⇒
f (x∞)p(x∞)dx∞. (6.6)

By using this approximation for T observations xs, we obtain

T∑

s=1

ln g(xs;μ, σ 2) ∈ T

⇒⎧

−⇒
g(x;μ, σ 2) ln g(x;μ, σ 2)dx = −T

2
ln(2πeσ 2). (6.7)

Furthermore, the standard deviations σ , σL and σR can be estimated as the sample
standard deviations defines as
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σ̂ =
⎪⎨
⎨
⎩ 1

T

T∑

s=1

(
xs − 1

T

T∑

s∞=1

xs∞
)2

, (6.8)

σ̂L =
⎪⎨
⎨
⎩1

t

t∑

s=1

(
xs − 1

t

t∑

s∞=1

xs∞
)2

, (6.9)

σ̂R =
⎪⎨
⎨
⎩ 1

T − t

T∑

s=t+1

(
xs − 1

T − t

T∑

s∞=t+1

xs∞
)2

. (6.10)

Therefore, Δ(t) is empirically calculated as,

Δ(t) = T ln σ̂ − t ln σ̂L − (T − t) ln σ̂R ≥ 0. (6.11)

Δ(t) can be used as an indicator to separate the observations into two parts. An
adequate procedure to separate the observations is that we choose the boundary at t
where Δ(t) is maximised,

t≡ = argmax
t

Δ(t). (6.12)

If maxt Δ(t) is less than a threshold value Δc, then this procedure should be termi-
nated.

This process is recursively applied to each segmented time series. After separate
the time series into two parts, we also apply this procedure for each segment hierar-
chically. A multivariate version of this procedure will be seen in the next section.

6.3 Likelihood-Ratio Test for M-Dimensional Multiple
Time Series

Let x(s) = (x1(s), . . . , xM(s))T (s = 1, . . . , T ) be the M-dimensional multiple
time series. Let further us assume that the multivariate time series consists of m
sequences sampled from m different multivariate Gaussian distributions. We further
assume that a segment k follows a multivariate Gaussian distribution with mean
μ(k) = (μ

(k)
1 , . . . , μ

(k)
M ) and a variance-covariance matrix C(k),

p
(
x; μ(k), C(k)

) = 1

(2π)M/2|C(k)|1/2 exp
[
−1

2

M∑

i=1

M∑

j=1

[(C(k))−1]ij(xi − μ
(k)
i )(xj − μ

(k)
j )

]
.

(6.13)

To determine the m stationary segments from the given T observations of multiple
time series x(s), let us consider a recursive segmentation procedure based on the
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likelihood-ratio test. The likelihood-ratio test is one of the most efficient tests of
statistical hypotheses [33].

Let us consider a method to determine a segment boundary between two seg-
ments for a multivariate time series. The null hypothesis assumes that T observa-
tions are sampled from an i.i.d M-dimensional Gaussian distribution p(x;μ, C),
and the alternative model assumes that left t successive observations are sampled
from an i.i.d M-dimensional Gaussian distribution p(x;μL, CL) and that right T − t
successive observations are sampled from an i.i.d M-dimensional Gaussian distribu-
tion p(x;μR, CR). In this case, the test statistic Δ(t) consisting of likelihood values
defined as

L1 =
T∏

s=1

p(x(s);μ, C), (6.14)

L2(t) =
t∏

s=1

p(x(s);μL, CL)

T∏

s=t+1

p(x(s);μR, CR), (6.15)

is given as

Δ(t) = ln L2(t) − ln L1. (6.16)

In the M-dimensional Gaussian case, the logarithmic likelihood-ratio Δ(t) is com-
puted as

Δ(t) = T

2
ln |Ĉ| − t

2
ln |ĈL| − T − t

2
ln |ĈR|, (6.17)

since Eqs. (6.14) and (6.15) are approximated as

ln L1 ∈ −T

2
ln |Ĉ| − TM

2
ln(2π) − TM

2
, (6.18)

ln L2(t) ∈ − t

2
ln |ĈL| − T − t

2
ln |ĈR| − TM

2
ln(2π) − TM

2
, (6.19)

where Ĉ, ĈL , and ĈR represent their maximum likelihood estimators (empirical
variance-covariance matrix), respectively, defined as

Ĉij = 1

T

T∑

s=1

(
xi(s) − μ̂i

)(
xj(s) − μ̂j

)
, (6.20)

ĈL,ij = 1

t

t∑

s=1

(
xi(s) − μ̂L,i

)(
xj(s) − μ̂L,j

)
, (6.21)
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ĈR,ij = 1

T − t

T∑

s=t+1

(
xi(s) − μ̂R,i

)(
xj(s) − μ̂R,j

)
, (6.22)

where

μ̂i = 1

T

T∑

s=1

xi(s), (6.23)

μ̂L,i = 1

t

t∑

s=1

xi(s), (6.24)

μ̂R,i = 1

T − t

T∑

s=t+1

xi(s). (6.25)

The derivation of Eqs. (6.18) and (6.19) is shown in Appendix A.
The spectrum of the log likelihood-ratio Δ(t) in terms of t has a maximum at

some time denoted as t≡,
Δ≡ = Δ(t≡) = max

t
Δ(t). (6.26)

The interpretation of this time point t≡ is that it gives an optimal separation of the
multiple time series into two statistically most distinct segments. This segmentation
procedure can be used recursively to separate further the multiple time series into
smaller segments.We do this iteratively until the iteration is terminated by a stopping
condition. As the stopping condition, Cheong et al. assume a constant threshold value
Δth. If Δ≡ < Δth, then the recursive segmentation procedure is terminated and does
not proceed any more. Wilks proposes the test statistics 2Δ(t) should asymptotically
follow χ -squared distribution with degree of freedom equal to the difference of the
number of parameters between the alternative and nullmodels: (M2+3M+2)/2 [46].

6.4 Information Criterion Test for M-Dimensional
Multiple Time Series

However, since the likelihood-ratio test is a kind ofmodel selection problem,we need
to use test statistics constructed from an information criterion. Assuming Akaike
Information Criterion (AIC) [1] as the information criterion, I attempt to reconstruct
the likelihood-ratio test. The AIC of a model with K model parameters θ for T
observations is defined as

AIC = −2L(θ̂) + 2K, (6.27)

where L(θ̂) is the likelihood value of the model with the maximum likelihood
estimator θ̂ . The AIC value AIC1 for the null model expressed in Eq. (6.14) is given



210 6 Segmentation Study of Foreign Exchange Market

by the i.i.d M-dimensional Gaussian distribution with T observations;

AIC1 = T ln |Ĉ| + TM ln(2π) + TM + (M2 + 3M + 2), (6.28)

Similarly to AIC1, the AIC value AIC2(t) for the alternative model is described as

AIC2(t) = t ln |ĈL| + (T − t) ln |ĈR|
+ TM ln(2π) + TM + 2(M2 + 3M + 2). (6.29)

Therefore, I propose that the test statistic Δ(t) based on information criterion may
be modified as

ΔAIC(t) = AIC2(t) − AIC1

= t ln |ĈL| + (T − t) ln |ĈR| − T ln |Ĉ| + (M2 + 3M + 2). (6.30)

The spectrum of the log likelihood-ratio ΔAIC(t) in terms of t has a minimum at
some time denoted as t≡,

ΔAIC(t≡) = min
t

ΔAIC(t). (6.31)

If ΔAIC(t≡) < 0, then the multivariate time series is divided into two segments at
t≡. Otherwise, the segmentation procedure is terminated. The interpretation of this
time point t≡ is that it gives an optimal separation of the multiple time series into two
statistically most distinct segments.

As a termination condition, it is further necessary to introduce a statistical
significance level. This idea behind this termination condition is as follows. The
test statistic Δ(t) contains estimation error which is determined by the number of
observations T , the segment boundary t≡, and sampled variance-covariances Ĉ, ĈL,
and ĈR.

Assume that C̃, C̃L, and C̃R are denoted as Jackknife variance-covariancematrices
computed from K Jackknife segments frommultiple time series x(s) (s = 1, . . . , T ).
Let γ (0 ≈ γ ≈ 1) be a ratio to determine the length of Jackknife segments. C̃L
are computed from Jackknife sequences xL(s) (s = τk, . . . , τk + [t≡γ ]), where τk is
randomly selected with the same probability for 1 ≈ τk ≈ t − [tγ ]. [·] represents
the largest integer which is less than or equal to ·. C̃R is computed from Jackknife
sequences xR(s) (s = τ ∞

k, . . . , τ
∞
k + [(T − t≡)γ ]), where τ ∞

k is randomly selected

with the same probability for t≡ + 1 ≈ τ ∞
k ≈ T − [(T − t≡)γ ]. C̃ is computed

from both the Jackknife sequences xL(s) (s = τk, . . . , τk + [t≡γ ]) and xR(s) (s =
τ ∞

k, . . . , τ
∞
k +[(T −t≡)γ ]). From these Jackknife values, we can compute the Jackknife

test statistic:

Δ̃AIC(t≡) = t≡ ln |C̃L| + (T − t≡) ln |C̃R| − T ln |C̃| + (M2 + 3M + 2). (6.32)

The estimation error of the test statistic ΔAIC(t≡) is estimated from the Jackknife
density of Δ̃AIC(t≡). The p-value of the event whereΔAIC(t≡) < 0 is approximated as
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Pr
[
ΔAIC(t≡) < 0

]
∈

K
[
Δ̃AIC(t≡) < 0

]

K
, (6.33)

where K[ΔAIC(t≡) < 0] is the number of events where Δ̃AIC(t≡) < 0 is satisfied. We
can use the probability Pr[ΔAIC(t≡) < 0] as the statistical significance level. Namely,
the multivariate time series is divided into two segments at t≡ if Pr[ΔAIC(t≡) < 0] >

αth, where αth is the significance level.

6.5 Estimation Error

Let us now briefly discuss some issues related to the estimation error to themaximum
likelihood estimators of variance-covariance matrix computed from T successive
observations.

ΔAIC(t) = t ln |ĈL| + (T − t) ln |ĈR| − T ln |Ĉ| + (M2 + 3M + 2)

= t
M∑

i=1

ln λ
(L)
i + (T − t)

M∑

i=1

ln λ
(R)
i − T

M∑

i=1

ln λi + (M2 + 3M + 2)

∈ M
(

t

⇒⎧

0

ρL(λ) ln λdλ + (T − t)

⇒⎧

0

ρR(λ) ln λdλ − T

⇒⎧

0

ρ(λ) ln λdλ
)

+ (M2 + 3M + 2), (6.34)

where λi, λ
(L)
i , and λ

(R)
i represent eigenvalues of the corresponding variance-

covariance matrices: C, CL , and CR, respectively. These matrices are estimated from
data by using Eqs. (6.20), (6.21) and (6.22). The relationship between true variance-
covariancematrix and sampled variance-covariancematrix describing the underlying
correlations can be found using random matrix theory [7, 28, 36, 39].

In general, the eigenvalue distribution of a sample variance-covariance matrix
depends on the ratio between the length of the data set T and the number of degree of
freedom M. In particular, if x(s) (s = 1, . . . , T ) describes M-multivariate Gaussian
uncorrelated identically distributed random variables, the density of the eigenvalues
of the sample variance-covariance is approximated by the Marčnko-Pastur density:

ρ(λ) =
{

T
M

∀
(λ−λ−)(λ−λ+)

2πσ 2λ
(λ− ≈ λ ≈ λ+)

0 (otherwise)
, (6.35)

whereλ± = σ 2
(
1±

√
M
T

)
and σ 2 is a scale factor related to the variance of individual

degrees of freedom. At M = T , the last equation reduces to
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ρ(λ) =
{

1
2πσ 2

√
λ+−λ

λ
(0 < λ ≈ λ+)

0 (λ > λ+)
, (6.36)

where λ+ = 4σ 2. In this case, the integrand in the last formula for ΔAIC(t) becomes
singular at λ = 0 and, in effect, Δ(t) is ill-defined. From the statistical point of
view this means that Δ(t) is estimated with a huge statistical uncertainty when M
approaches T and, thus, this makes it practically impossible to estimate t≡ properly.
This situation is even worse for M/T > 1, since then the density has a peak at λ = 0.
The integral iswell definedonly ifT > M. The sameholds for eachof the subsystems:
t≡ > M and T − t≡ > M and, in effect, t≡ is restricted to a certain range, from tmin

to tmax, for which the two inequalities are fulfilled. So far, I have discussed the
simplest case of uncorrelated i.i.d numbers. For a correlated multivariate time series,
the situation is more complicated but, in general, one expects a finite window for
t≡. Actually, for a mixture of two Gaussian distributions there are further limitations
on tmin and tmax , which are related to the statistical significance of the separation of
two different eigenvalues that can be made for a given sample variance-covariance
matrix. Typically, to distinguish two eigenvalues of the variance-covariance matrix
one needs M > 3T [7].

6.6 Numerical Study

As test data, we generate artificial multiple time series consisting of four segments
(m = 4). Each segment is an M-dimensional multivariate time series drawn from a
normal distribution with a specific variance-covariance matrix. The test time series
is generated from the following procedure:

x(t) =






A1ξ(t) (1 ≈ t ≈ 100)
A2ξ(t) (101 ≈ t ≈ 200)
A3ξ(t) (201 ≈ t ≈ 300)
A4ξ(t) (301 ≈ t ≈ 400)

, (6.37)

where x(t) represents an M-dimensional column vector expressing dynamical vari-
ables at time t and ξ(t) is an M-dimensional column vector expressing random
fluctuations drawn from i.i.d standard normal distributions. A is an M × M random
matrix where each element sampled from a standard normal distribution. This proce-
dure providesM-dimensional multiple time series with different variance-covariance
matrices depending on segments. The variance-covariance matrix at each segments
is given as

C(k) =
tk−1∑

t=tk−1

x(t)xT(t) = Ak

tk−1∑

t=tk−1

ξ(t)ξT(t)ATk = AkATk , (6.38)
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Fig. 6.1 An example of the segmented multi-dimensional time series artificially generated for
M = 10, T = 400, and αth = 0.01

where [tk−1; tk − 1] represents a range of the k-th segment (t0 = 1, t1 = 101,
t2 = 201, t3 = 301 and t4 = 400).

Setting the dimension M as 10, the length T as 400, and each segment length as
100, I generatemultivariate time series and apply the proposedmethod to separate the
time serieswithγ = 0.3,αth = 0.01 andK = 1,000 restricting that the length of each
segment must be greater than 3M. Namely, tmin = 3M + 1 and tmax = T − 3M − 1.
Figure 6.1 shows an example of the segmented artificial time series. Each colour
represents every segment. Four segments can be detected at exact boundaries by
using the proposed method.
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Table 6.1 Alphabetic codes of currencies based on ISO 4217

Abbreviation Currency names

AUD Australian dollar
BRL Brazilian real
CAD Canadian dollar
CHF Swiss Franc
EUR Euro
GBP UK sterling
JPY Japanese yen
MXN Mexican peso
NZD New Zealand dollar
SGD Singapore dollar
USD US dollar
ZAR South African rand

6.7 Data and Empirical Analysis

In the empirical analysis, I use daily log-returns of exchange rates for 30 currency
pairs1 consisting of AUD, BRL, CAD, CHF, EUR, GBP, JPY, MXN, NZD, SGD,
USD, and ZAR during the period from January 3, 2001 to December 30, 2011. Table
6.1 shows three letter alphabetic codes of currencies based on ISO 4217.

Let Ri(s) be the daily exchange rate of currency pair i at time s and ri(s) =
lnRi(s + 1) − lnRi(s) be its daily log-return.

There are 2,760 data points in themultiple time series. The proposed segmentation
procedure is applied to the process of separating the multiple log-return time series.
We have 11 segments at αth = 0.01 with the restriction that the length of each
segment must be greater than 3M. Namely, tmin = 3M + 1 and tmax = T − 3M − 1.
Figure 6.2 shows segmented time series for 30 currency pairs. Each colour represents
a segment. The log-return time series for currency pairs shows clustered volatility
and sometimes synchronously fluctuate in time.

Table 6.2 shows the period of each segment. The 6th segment corresponds to the
after-shock of BNP Paribas shock in 2007, the 7th segment to after-shock of Lehman
shock in 2008, and the 11th segment is related to after-shock of Euro debut crisis in
2011.

1 The selected currency pairs are listed as AUD/JPY, BRL/JPY, CAD/JPY, CHF/JPY, EUR/AUD,
EUR/BRL, EUR/CAD, EUR/CHF, EUR/GBP, EUR/JPY, EUR/MXN, EUR/NZD, EUR/SGD,
EUR/USD, EUR/ZAR, GBP/JPY, MXN/JPY, NZD/JPY, SGD/JPY, USD/AUD, USD/BRL,
USD/CAD, USD/CHF, USD/GBP, USD/JPY, USD/MXN, USD/NZD, USD/SGD, USD/ZAR, and
ZAR/JPY.
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Fig. 6.2 The log-return time series of 30 currency pairs. They are separated into 11 segments. (1)
AUD/JPY, (2) BRL/JPY, (3) CAD/JPY, (4) CHF/JPY, (5) EUR/AUD, (6) EUR/BRL, (7) EUR/CAD,
(8) EUR/CHF, (9) EUR/GBP, (10) EUR/JPY, (11) EUR/MXN, (12) EUR/NZD, (13) EUR/SGD,
(14) EUR/USD, (15) EUR/ZAR, (16) GBP/JPY, (17) MXN/JPY (18) NZD/JPY, (19) SGD/JPY,
(20) USD/AUD, (21) USD/BRL, (22) USD/CAD, (23) USD/CHF, (24) USD/GBP, (25) USD/JPY,
(26) USD/MXN, (27) USD/NZD, (28) USD/SGD (29) USD/ZAR, and (30) ZAR/JPY
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Table 6.2 The period of each segments determined by the proposed method

k Start date End date

1 2001-01-03 2001-10-15
2 2001-10-16 2002-12-31
3 2003-01-02 2004-07-07
4 2004-07-08 2007-01-02
5 2007-01-03 2007-07-26
6 2007-07-27 2008-09-11
7 2008-09-12 2009-05-04
8 2009-05-05 2010-03-12
9 2010-03-15 2010-12-31
10 2011-01-04 2011-05-10
11 2011-05-11 2011-12-30

6.8 Conclusion

The information criterion (AIC) test for a mixture of multivariate Gaussian distribu-
tion was proposed. I also proposed to adopt the Jackknife method in order to evaluate
statistical significance level of separation. I performed the proposed method for arti-
ficial 10-dimensional multivariate time series consisting of two segments sampled
from different distributions. It was confirmed that the proposed method detects the
segmented boundarywith a 6% relative error. The proposedmethod is also applied for
log-return time series consisting of 30 currency pairs and 11 segments are obtained.
It was confirmed that some of segments correspond to critical events such as Paribas
shock, Lehman shock, and Euro shock, respectively.

Acknowledgments The author would like to express his sincere gratitude to Prof. Zdzislaw Burda
of Jagiellonian University for constructive comments and stimulating discussions.

Appendix A: Derivation of the Likelihood Function

Firstly, let us derive the likelihood function of the i.i.d M-dimensional Gaussian
distribution p(x;μ, C). The log–likelihood value is calculated as follows:

ln L1 =
T∑

s=1

ln p(x(s);μ, C)

= T × 1

T

T∑

s=1

ln p(x(s);μ, C)
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∈ T

⇒⎧

−⇒
dx1 · · ·

⇒⎧

−⇒
dxMp(x;μ, C) ln p(x;μ, C)

= −T

2
ln |C| − TM

2
ln(2π) − TM

2
. (6.39)

Replacing true parameters C as its maximum likelihood estimators Ĉ, one has

ln L1 = −T

2
ln |Ĉ| − TM

2
ln(2π) − TM

2
. (6.40)

The log-likelihood value ln L2(t) of the alternative model expressed in Eq. (6.15) is
similarly computed as

ln L2(t) =
t∑

s=1

ln p(x(s); μL, CL) +
T∑

s=t+1

ln p(x(s); μR, CR)

∈ t

⇒⎧

−⇒
dx1 · · ·

⇒⎧

−⇒
dxMp(x; μL, CL) ln p(x; μL, CL)

+ (T − t)

⇒⎧

−⇒
dx1 · · ·

⇒⎧

−⇒
dxMp(x; μR, CR) ln p(x; μR, CR)

= − t

2
ln |CL| − tM

2
ln(2π) − tM

2

− T − t

2
ln |CR| − (T − t)M

2
ln(2π) − (T − t)M

2

= − t

2
ln |CL| − T − t

2
ln |CR| − TM

2
ln(2π) − TM

2
. (6.41)
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Chapter 7
Hotel Booking Data

Abstract This study considers a method to determine and classify districts based
on the stay capacity of hotels in order to understand regional dependence of social
wealth. We analyse the geographical positions and the number of rooms about 2,881
Japanese hotels which have 582,898 rooms in total empirically. Firstly, we conduct
a clustering analysis of regional statistics on the stay capacities by using the centroid
method. Secondly, we divide areas by a centroid method from a maximum entropy
point of view hierarchically. It may be concluded that the rank size distribution for the
number of rooms in the cluster is fitted with a power-law function with the exponent
depending on the number of clusters included in the level. We further investigates an
association between the availability of hotels and socioeconomic dynamics before
and after the Great East Japan Earthquake on 11 March, 2011.

7.1 Introduction

The regional statistics provide useful quantitative methods for understanding
situations of socioeconomic systems [7]. One direction of research purposes is to
measure societal stocks. For example, we may characterise socioeconomic states
based on regional dependence of social wealth. The other is to characterise societal
flows such as migration, monetary flow, and logistics. These flows are deeply related
to the regional dependence of the social stocks.

It is known that the wealth distribution is fitted with the power-law function,
referred to as Pareto distributions. A size distribution of populations in cities is also
known as the power-law distribution. Since these power-law properties are believed
to be generated through preferential attachment mechanism [1], we may also find
some relationship between regional dependence of socioeconomic activities and the
power-law distributions.

The migration processes have been intensively studies in the context of
socioeconomic dynamics with particular interests for quantitative research [20].
Weidlich and Haag proposed the Master equation with transition probabilities
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depending on both regional-dependent and time-dependent utility and mobility in
order to describe collective tendency of agent decision in migration chance [9].

The tourism industry obtains profits from demands of temporal migration. There-
fore,whatwe examine stay capacities of hotels included in areasmay provide insights
on relationship between the social wealth and the migration process. In this chapter,
we investigate regional dependence of social wealth based on the data on Japanese
hotel industry with geographical information. By using data on room capacities as
proxy variables of the regional dependence of wealth distribution, we propose a
method to characterise a spatial density of Japanese economy.

In Japan, there are over 54,000 accommodations [11], which are rich in various
types: from the largest hotel with over 3,000 rooms to the highest class Japanese inn
with few rooms. Their types and capacities also depend on a district.

According to the study of tourismmanagement [3], there are push and pull factors,
so that tourism motivation is determined by the situation of the travellers (push)
and the situation of the destination (pull). The idea behind this two-dimensional
approach is that people travel because they are pushed by their own internal forces
and pulled by the external forces of the destination attributes [6]. The pull factors
originate from the destination properties (supply). More recently, Tkaczynski et al.
applied the stake-holder theory, a management theory proposed by Freeman [8], to a
destination in tourism [19]. The existence of hotel accommodations implies that pull
factors are present in the district where they are located. In the context of economics,
this means that the demand-supply situation is generated by both consumers and
suppliers. Namely, they can be dependent on the area and the season [5].

Moreover, a problem for estimating demand from censored booking data has
been recognised for many years in the hotel industry. Patrick et al. [12] developed
parametric regressionmodels that consider not only the demand distribution, but also
the conditions under which the data were collected. Sato [13] investigated regional
patterns of Japanese travel behaviour by using the EM algorithm for finite mixtures
of Poisson distributions. Aftereffects of some events can be observed from activities
of tourism industry [14].

Therefore, we may assume that demand and supply in the hotel industry can
reflect both the social and economic situations. In this chapter, we collect Japanese
hotel data from Jalan [10], which is one of the most famous hotel booking sites in
Japan. We analyse regional hotel distribution from this. Particularly, we define areas
in terms of their hotel capacities with a hierarchical classification method. Recently,
Chen proposed the maximum entropy principle on the city size distribution [4]. This
concept is applicable to defining the regional category for our purpose. Using the
maximum entropy principle on the total number of rooms in the areas, we propose a
method to decide hierarchical structure of capacity.

This chapter is organised as follows. In Sect. 7.2, the data description is briefly
presented. In Sect. 7.3, characteristics of data on hotel opportunities are shown. In
Sect. 7.4, we determine regional dependence on the number of rooms and classify
its districts. In Sect. 7.5, we examine relationship between the hotel availability and
physical damage of the Great East Japan Earthquake on 11 March, 2011. Finally,
Sect. 7.6 is devoted to concluding remarks.
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7.2 Data Description

In this section, we give a brief explanation of our data. We used data collected
from a Japanese hotel booking site named Jalan. The data contains hotel identifiers
(“hotelid”), geographical position (“latitude” and “longitude”), area identifiers (“pre-
fecture”, “large area” and “small area”), and room capacity (“number of rooms”).
The area identifiers (“large area” and “small area”) are defined by Jalan.

Firstly, we explain the Jalan Web Application Programming Interface (API) to
collect data on accommodations. The Jalan Web API is a source code intended to
be used as an interface by software components to communicate with the Jalan Web
server. Third party can build a new web application service with the Jalan Web API.
Figure 7.1 shows a conceptual illustration of the Jalan web service. The Jalan server
can store various information on accommodations. The hotel managers input basic
information about their accommodation into the Jalan server via a Web interface.
The customers can search their preference from available information stored in the
Jalan server via their Internet browsers.

The data contains latitude, longitude, prefecture, large area, small area, and
hotelid, but does not contain the number of rooms. Moreover, we accessed hotel
homepages on the Jalan web site and got the HTML document including the num-
ber of rooms of every hotel. In order to get each hotel capacity automatically, we
have developed a HTML parser which extracts the portion describing its own room
capacity from the document. After extracting the capacities, we linked them with the
hotel locations by using the hotel identifiers.

7.3 Outlook

In the data set, there exist over 100,000 room opportunities at over 14,000 hotels.
Table 7.1 shows contents included in the data set. Each plan contains sampled date,
stay date, regional sequential number, hotel identification number, hotel name, postal
address, URL of the hotel website, geographical position, plan name, and rate.

Since the data contains regional information, it is possible for us to analyse
regional dependence of hotel rates. Throughout the investigation, we regard the num-
ber of recorded opportunities (plan) as a proxy variable of the number of available
room stocks.

First of all, we show the data for the period from 24 December, 2009 to 8 May,
2011. The data is missing from 14 to 30 March, 2011 because the the web service
was not available due to the Great East Earthquake. Figure 7.2 shows an example
of distributions and representative rates. An example of rates distributions under the
condition that two adults can stay at the hotel for one night at 23 December, 2009.
This data have been sampled on 25 December, 2009. The yellow to black filled
squares represent hotel plans costing ranging from 1,000 JPY and 50,000 JPY per
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Fig. 7.1 A conceptual illustration of the Jalan web service. The hotel information is input on the
Jalan server. Customers can browse the basic information such as a number of rooms via the Jalan
web page

Table 7.1 The data format of
room opportunities

Date of collection
Date of stay
Hotel identification number
Hotel name
Hotel name (kana characters)
Postal code
Address
URL
Latitude
Longitude
Opportunity name
Meal availability
The latest best rate per night
Rate per night

night. The red filled squares represent hotel plans costing over 50,000 JPY per night.
We found that there was a strong dependence of vacancies on places. Specifically,
we find that many hotels are located around several centralised cities such as Tokyo,
Osaka, Nagoya, Fukuoka, and so on.

The number of one-night, twin-share room plans was counted from the recorded
csv files throughout the whole sampled period. Figure 7.3 shows the daily number
of room opportunities with different durations D, which is defined as a difference
between stay date and sampling date. From this graph, we found three facts:
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Fig. 7.2 The regional dependence of room prices of Japanese available on 26 December, 2009,
as of 23 December, 2009

(1) The number of room opportunities shows a weekly seasonality.
(2) There is a strong dependence of the number of available opportunities on the

Japanese calendar. Namely, Saturdays and holidays drove reservation activities
of consumers. For example, during the New Year holidays (around from 30
December to 3 January) and holidays in the spring season (around 20 March),
the time series of the numbers show big drops.
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Fig. 7.3 The number of room plans for one-night stay by two adults during the period between 24
December, 2009 to 8 May, 2011

(3) The number eventually increases as the date of stay reaches. Specifically, it is
observed that the number of opportunities drastically decreases two days before
the date of stay.

Furthermore, Figure 7.4 shows dependence of average rates all over the Japan
on calendar dates with different durations. During the New Year holidays in 2010,
the average rates rapidly decreased. Meanwhile, on the spring holidays in 2010, the
average rates rapidly increased. This difference seems to arise from the difference
of consumers’ motivation structure and preference on price levels between these
holiday seasons.

Figure 7.5 shows scatter plots between the daily number of room opportunities
and average of room rates. The high-demand dates exhibit larger variations of the
average rate than low-demand dates. The preferable price level of consumers has a
high variability on high-demand dates.

7.4 Hotel Rank Distribution

Here, we focus on accommodations which possess more than 100 rooms. Figure 7.6
represents geographical position of accommodations on a map of Japan on January
11, 2012. As shown in Fig. 7.6, the large cities, such as Tokyo and Osaka, there are
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Fig. 7.5 Scatter plots between the daily number of room opportunities and mean room rates across
Japan for the period from 24 December, 2009 to 10 June, 2011

more hotels than other local cities. Obviously, this fact suggests that the larger cities
have the larger stay capacities. Table 7.2 shows the total number of hotels, of rooms,
of large areas and of small areas. The 582,898 rooms in 2,881 accommodations are
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Fig. 7.6 The position of
accommodations with more
than 100 rooms on a Japanese
map on January 11, 2012. The
x-axis represents longitude,
and the y-axis latitude
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Table 7.2 Summary of
accommodations with more
than 100 rooms

# Hotels # Rooms # Large area # Small area

2,881 582,898 311 682

distributed in 311 large areas consisting of 682 small areas. According to the Japan
TourismAgency of theMinistry of Land, Infrastructure, Transport and Tourism [11],
it is reported that there exist 6,390 hotels where more than 10 employees work in
Japan. Assuming that there are 10 or more employees in every hotel which has more
than 100 rooms,we estimate coverage of hotelswhich are available in Jalan as 45.1%.

We sort hotels in descending order about the number of rooms and examine
a relation between the room capacity of each accommodation and its rank. This
relationship is generally called rank size distribution. Figure 7.7 shows that the rank
size distribution is approximated as a power-law function

Rk = R1k−q , (7.1)

where Rk shows the number of rooms at the rank k hotel, q represents a scaling expo-
nent (q > 0) and R1 is a positive constant (R1 = 2829.3673 and q = 0.3917). The
power law rank distribution is often observed in natural and economic phenomena.

This figure shows that there exist hotels more than 1,000 rooms from the first
to 10th largest. We found that accommodations from 100 rooms to 500 rooms are
ranked from the top 100 to the top 1,000. We calculate q ∀ 0.3917 by using the OLS
regression.

Figure 7.8 shows geographical representation of a stay capacity at each hotel.
The diameters represent the stay capacities, and the centre coordinates are geograph-
ical positions. It seems that in the capital city Tokyo, a large number of rooms is
accumulated.
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Fig. 7.7 The number of
rooms Rk as a function of
its rank k in a double log-
arithmic scale. The solid
line represents the power-
law relationship computed
with the OLS regression:
Rk = 2829.3673k−0.3917
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Fig. 7.8 The geographical
position and capacity of every
hotel. The x-axis is longitude,
and the y-axis latitude. The
centre coordinates of circle
are the longitude and latitude
of the hotel. The diameter
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rooms of each hotel
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7.4.1 Method

In this section, we explain a clustering method to define districts in terms of stay
capacity and their hierarchical structure based on the maximum entropy principle.
Because we want to measure regional stay capacity, we use a clustering with the
centroid method. Because we want to know regional level, we define hierarchical
structure with the maximum entropy principle.
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7.4.1.1 Clustering by Centroid Method

We give an explanation of the clustering algorithm used throughout the investigation
in this subsection.

Let ei (i = 1, . . . , T ) represent the i th hotel identifier consisting of its longitude
xi , latitude yi and capacity ci , where T is the total number of hotels. LetH further
denote a set {H0, . . . ,HT −1} of nested clustering, whereHt (t = 0, . . . , T −1) is a
clustering at step t . Suppose that E j ( j = 1, . . . , T ) is the j th cluster,which is initially
E j = {e j }, ( j = 1, . . . , T ). Let d(Ei , E j ) be a distance function between clusters
Ei and E j . Then, the clustering algorithm is described as shown in Algorithm 1.

Algorithm 1 Clustering by centroid method
Require: A set {e1, . . . , eT } of data points
Ensure: A set H = {H0, . . . ,HT −1} of nested clustering

begin
Initialisation: H0 = {E1, . . . , ET } where Ek = {ek}
repeat
Selection: Ei ,E j d(Ei , E j )

Merge: Ht+1 = (Ht\{Ei , E j }) ∈ {Ei ∈ E j }
until all points belong to the same cluster
end

The clustering method consists of three phases: Initialisation, Selection, and
Merge. After the Initialisation phase, the clustering algorithm repeats the Selection
and Merge phases until all points belong to the same cluster. Note that this iteration
can be stopped at any step t .

The Selection phase works based on the T × T distance matrix that requires
O(T 2) space and time complexities. In the selection phase, the distance function
between clusters is defined as

d(Ei , E j ) =
√

(xG
i − xG

j )2 + (yG
i − yG

j )2, (7.2)

where (xG
i , yG

i ) and (xG
j , yG

j ) are centroids of Ei and E j , respectively. A coordina-
tion of the centroid of Ei is expressed as

xG
i =

∑

ei ⇒ ∞Ei
ci ⇒ xi ⇒

∑

ei ⇒ ∞Ei
ci ⇒

, (7.3)

yG
i =

∑

ei ⇒ ∞Ei
ci ⇒ yi ⇒

∑

ei ⇒ ∞Ei
ci ⇒

. (7.4)
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The Merge phase removes the nearest pair of clusters, Ei and E j , from Ht and
then adds a union of these two clusters in order to formulate the clusterHt+1 at the
next step. A union of these two clusters has elements (xi≥ , yi≥ , ci≥), given by

xi≥ = ci xi + c j x j

ci + c j
, (7.5)

yi≥ = ci yi + c j y j

ci + c j
, (7.6)

ci≥ = ci + c j . (7.7)

If two clusters are merged into a single cluster at a certain step, then they will remain
in the same cluster for all subsequent clustering. Because there are T − t clusters at
step t , there are (T −t)(T −t−1)

2 pairs to compare to find the nearest pair at that step.
Note that the algorithm needs to repeat up to T −1 times; thus, this clusteringmethod
requires O(T 3) time complexity.

7.4.1.2 Maximum Entropy Principle

The general form of the rank size scaling law can be expressed as [4]

Rk = R1k−q , (7.8)

where k denotes the rank by the capacity of the areas, Rk refers to the number of
rooms of the kth area, R1 to the number of rooms of the largest area, and q, the
scaling exponent of the rank size distribution.

Suppose that there is a region R consisting of n number of subareas and that there
are N rooms within the region R. Here, we consider that we classify the areas into
M levels and form a hierarchy.

7.4.1.3 Total Room Number

We maximise the entropy of the total number of room capacities. Let fm and Cm

be the number of districts at the mth level and the mean size over the fm districts,
respectively. The number of room capacities at the mth level, denoted as Sm , may be
described as

fmCm = Sm, m = 1, . . . , M. (7.9)

The state number of the N rooms in different M classes, WS , can be expressed
as a problem of ordered partition of the room set. In fact, an ordered partition of
“typeS1 + · · · + typeSM” is one in which the mth part has Sm rooms, for m =
1, . . . , M . The state number of such partitions is given by the following multinomial
coefficient:
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WS =
(

N

S1, . . . , SM

)

= N !
S1! · · · SM ! . (7.10)

Thus, the information entropy function is defined as

HS = ln Ws

= ln N ! −
M∑

m=1

ln Sm !. (7.11)

Regarding that the total number of room capacities N is constant, we may describe
the maximum entropy problem as

{ŝ1, . . . , ŝm} = argmax HS, (7.12)

s.t.
M∑

m=1

Sm

N
= 1. (7.13)

Equation (7.13) means that the entropy is maximised on the condition where the
summation of room capacities over different classes equals N . If M is finite, then a
Lagrange function of the above nonlinear programming problem can be defined by

L S = ln N ! −
M∑

m=1

ln Sm ! + λ

(
M∑

m=1

Sm − N

)

, (7.14)

where λ is a Lagrange multiplier. According to the condition of extreme value,
derivative of L(S) with respect to Sm (m = 1, . . . , M) yields

Sm = eλ = Const., (7.15)

where eλ is a positive constant and Sm is independent of m. Inserting Eq. (7.13) into
Eq. (7.15), we have Sm = N/M (m = 1, . . . , M). Equations (7.9) and (7.15) imply
the relation

fm = ηC−1
m , (7.16)

where we set η = eλ.

7.4.1.4 The Number of Districts and Averaged Number of Room Capacities

The state number of n districts included in different M classes, W f , can be expressed
as a problem of ordered partition of the district set. In fact, an ordered partition
of “type f1 + · · · + type fM” is one in which the mth part has fm members, for
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m = 1, . . . , M . The state number of such partitions is given by the followingmultino-
mial coefficient:

Wf =
(

n

f1, . . . , fM

)

= n!
f1! · · · fM ! , (7.17)

wherem = 1, . . . , M denotes the ordinal number of district levels in hierarchy. Thus,
the information entropy of frequency distribution of districts is described as

Hf ≡ ln Wf = ln n! −
M∑

m=1

ln fm !, (7.18)

where H f refers to the information entropy of frequency distribution.
Let K represent the summation of the averaged number of room capacities in

different classes,

K =
M∑

m=1

Cm . (7.19)

The state number of the averaged number of the capacities in the hierarchy based on
top-down order, WC , can be expressed as an ordered partition problem and defined by

WC =
(

K

C1, . . . , CM

)

= K !
C1! · · · CM ! . (7.20)

The information entropy of the size distribution is described as

HC ≡ ln WC = ln K ! −
M∑

m=1

lnCm !, (7.21)

where HC refers to the information entropy of size distribution.
Here, let us assume that these entropies, H f and HC , are maximised at the same

time. Then a nonlinear programming problem can be built as follows:

Max H f + μHC = ln W f + μ ln WC , (7.22)

S.t.
M∑

m=1

fm

n
= 1, (7.23)

M∑

m=1

m
fm

n
= ω, (n > fM ), (7.24)
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M∑

m=1

Cm

K
= 1, (7.25)

M∑

m=1

m
Cm

K
= ϕ, (K > Cm), (7.26)

fmCm = Sm, (m = 1, . . . , M), (7.27)

where ω and ϕ are positive constants, μ represents an arbitrary constant. The former
implies that the mean of levels is finite. The latter implies that the mean of capacities
is finite. This is a kind of optimisation problem. The first constraint condition, Eq.
(7.23), indicates that the number in a district is also constant. The second constraint
Eq. (7.24) indicates that there exists an expectation value of area level. The third
constraint condition, Eq. (7.25), indicates that the sum of the averaged number of
rooms in a district is constant. The fourth constraint Eq. (7.26) indicates that there
exists an expectation value of averaged number of rooms.

In order to solve the aforementioned programming problem, we can construct a
Lagrange function such as

L = ln n! −
M∑

m=1

ln fm ! + λ1

(

n −
M∑

m=1

fm

)

+ λ2

(

nω −
M∑

m=1

m fm

)

+ μ ln K ! − μ

M∑

m=1

lnCm ! + λ3

(

K −
M∑

m=1

Cm

)

+ λ4

(

Kϕ −
M∑

m=1

mCm

)

+ λ5(S1 − f1C1) + · · · + λ4+M (Sm − fM CM ), (7.28)

where λ1, . . . , λ4+M are Lagrange multipliers. According to Stirling’s formula,
ln x ! ∀ x ln x − x is satisfied, for a sufficiently large integer x . Therefore, we obtain
an approximate expression in d ln x !

dx ∀ ln x . Namely, if n, fm, K and Cm are large

enough, then d ln n!
dn ∀ ln n,

d ln fm !
d fm

∀ ln fm, d ln K !
dx ∀ ln K and d lnCm !

dCm
∀ lnCm . We

consider the Lagrangian condition of extreme value:

∂L

∂ fm
= − ln fm − λ1 − λ2m − λ4+mCm = 0, (7.29)

∂L

∂Cm
= −μ lnCm − λ3 − λ4m − λ4+m fm = 0. (7.30)

From Eqs. (7.29) and (7.30), respectively, we can introduce

fm = f0 exp(−λ2m − λ4+mCm), (7.31)

Cm = C0 exp

(−λ4m − λ4+m fm

μ

)

, (7.32)
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where f0 = exp(−λ1) and C0 = exp(−λ3/μ). Considering Eq. (7.16), we get

fmCm = f0C0 exp

(

−λ2m − λ4+mCm − λ4m

μ
− λ4+m fm

μ

)

= η. (7.33)

Taking the logarithm of Eq. (7.33), we have

(

λ2 + λ4

μ

)

m + λ4+m

μ
fm + λ4+mCm + ln

η

f0C0
= 0. (7.34)

SinceEq. (7.34) is the identical equation in termsofm, fm , Cm ,we have the following
relation:

λ2 + λ4

μ
= 0, λ4+m = 0, η = f0C0. (7.35)

Hence, we can rewrite Eqs. (7.31) and (7.32) as

fm = f0e−λ2m, (7.36)

Cm = C0eλ2m . (7.37)

The number of districts and the averaged number of room capacities, respectively,
at the mth level are exponential functions in terms of m.

7.4.2 Results and Discussion

In order to estimate regional stay capacity, we use a method to cluster
accommodations based on their locations and capacities. As shown in Sect. 7.4.1.1,
we can arbitrarily determine the number of clusters. Here, we fix the cluster number
to be 311 because Jalan identifies 311 large areas. Figure 7.9 shows the rank-size
relationship. We found the power-law relationship between rank k and the number
of rooms Rk . The power law exponent is estimated as 0.9787 by means of the OLS
regression. Note that the scaling exponent is nearly equal to 1.

Figure 7.10 represents the relation between the number of clusters τ and the
scaling exponent q, where we set τ = T − t . As shown in this figure, the scaling
exponent tends to decrease as the number of clusters increases. From τ = 219 to
τ = 482, the scaling exponent exists around 1. The scaling exponent decreases
rapidly when the number of clusters is 482, and then falls below 1. In addition, if the
number of clusters is under 219, the exponent fluctuates steeply. The cluster number
311, which is equal to large area number, exists between the 219 clusters and the 482
clusters. Figure 7.11 shows the regional dependence of stay capacity computed with
the proposed method. The diameter represents the stay capacity of the cluster, and
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Fig. 7.9 The room number of
the cluster Rk as a function of
its rank k in a log–log scale.
The solid line represents the
power-law relationship com-
putedwith theOLS regression:
Rk ∀ 88416.7982k−0.9787
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Fig. 7.10 The relation
between the number of
clusters τ and an power
exponent q
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the centre coordinates are the centroids of the cluster. Tokyo and Osaka are extracted
as the largest cluster and the second largest.

Let us classify the 311 areas into 4 levels. As shown in Sect. 7.4.1.2, we can
arbitrarily determine what level the areas is divided into, and the total number of
rooms in each level are equal. Moreover, the number of areas in each level increases
exponentially, and the average number of rooms decreases exponentially. Here, we
separate every area in the descending order so that the total number of rooms in each
level becomes equal. We confirmed that there is clear relationship among m, fm and
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Fig. 7.11 The geographical position of every cluster and capacity. The x-axis is longitude, and the
y-axis latitude. The centre coordinates of circle are the longitude and latitude of the cluster. The
diameter shows the total room number of the cluster

Cm . Figures 7.12 and 7.13 show their relations. We found that fm and Cm are fitted
with an exponential function in terms of m.

The cities of level 1 are Tokyo and Osaka which are the largest city and the second
largest city. The cities of level 2 are government-decreed city (see Table 7.3 ). The
cities of level 3 are provincial central city, and those of level 4 are rest.

7.5 Impact of Natural Disasters (Great East Japan Earthquake
on 11 March, 2011)

Since people are also products of nature, the physical effects of the natural
environment on our society are remarkable. Specifically, natural disasters often affect
our societies significantly. Therefore, we need to understand the subsequent impact of
natural disasters on human behaviour, from both economical and social perspectives.

The first Great East Japan Earthquake hit at 14:46 on 11 March, 2011 in Japanese
local time (05:46 in UTC). Within 20 min, huge tsunamis had devastated cities along
Japan’s northeastern coastline. In addition towide-spread physical destruction, social
infrastructures also suffered extensive damaged. It is important for us to understand
its subsequent impact on our socioeconomic activities.

We focus on the number of available hotels in each district before and after the
Great East Japan Earthquakes and Tsunami. Especially, we estimate both economic
and social damages in three Tohoku prefectures: Iwate(JP-03), Miyagi(JP-04) and
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Fig. 7.12 The relation
between area number fm and
levelm (top). The curve shows
exponential function com-
puted with the least-square
method: fm = 0.4179e1.5849.
The relation between average
room number Cm and level
m (bottom). The curve shows
exponential function com-
puted with the OLS regres-
sion: Cm = 324678e−1.556

Level m 

A
re

a 
nu

m
be

r 
f  m

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
50

10
0

15
0

20
0

25
0

Level m 

A
ve

ra
ge

 r
oo

m
 n

um
be

r 
C

 m

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
20

00
0

40
00

0
60

00
0

80
00

0

Fukushima(JP-07), selecting 21 specfic districts in the three prefectures as shown in
Table 7.4 and two periods, which are one before and one after the disaster.

Therefore, we have to estimate the states that were not sampled from these sam-
pled booking data. If we assume that the accommodations included in the data are
sampled from uncensored data in a homogeneous way, then the relative frequency
of the available accommodation from censored data can approximate the true value,
computed from uncensored data. The data on accommodations in this area cover
about 31% of the potential accommodation. Therefore, we have to estimate the
uncensored states from these censored booking data.
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Fig. 7.13 The relation
between area number fm
and average room number Cm
in a log–log scale. Accord-
ing to Eq. (7.16), the scaling
exponent is 1
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Table 7.3 List of cities that belong to level 1 and level 2

m Capacity Longitude Latitude Prefecture

1 88569 35.7340627777778 139.673714722223 Tokyo
49990 34.5044509594461 135.399519193506 Osaka

2 21068 33.6876391095 130.435037212792 Fukuoka
19340 42.9922036111203 141.338132222232 Hokkaido
18261 35.5042238888889 139.620402222222 Kanagawa
18159 35.1159801925342 136.914723823803 Aichi
15423 34.9023485760692 135.803759574299 Kyoto
11911 26.2700305555556 127.729891944444 Okinawa
10598 38.3092827766947 141.026505832357 Miyagi
8199 34.3397072222222 132.4663275 Hiroshima
8147 35.6579983333333 139.876596388889 Tokyo
7565 35.7407119444444 140.347868055556 Chiba
6931 33.8997980555556 130.810205833333 Fukuoka

If we assume that accommodation in the data are sampled from uncensored data
in a homogeneous way, then a relative frequency of the available accommodations
from censored data can approximate the true value that would be computed from
uncensored data.

In order to conduct a qualitative study, let xi (t, s) (i = 1, . . . , K ; t = 1, . . . , T ;
s = 1, . . . , S) be the number of available hotels in district i at day t in period s,
where K , T and S represent the number of districts, the number of observations and
the number of periods, respectively. Then a relative frequency at district i can be
calculated as,
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Table 7.4 The ratio of the number of available hotels during the period from 1st to 31st May 2011
to that during the period from 1st to 31st May 2010

Prefecture District qi (a|b) Complete Partial Evacuees
collapse collapse

Iwate Shizukuishi 1.970 0 0 372
Morioka 1.834 0 4 366
Appi, Hachimantai, Ninohe 2.250 3 0 0
Hanamaki, Kitakami, Tohno 1.350 27 364 853
SanrikuKaigan 0.481 18,098 2,166 12,896
Oushu, Hiraizumi, Ichinoseki 0.374 83 533 338

Miyagi Sendai 0.550 21,789 37,522 3,608
Matsushima, Shiogama 0.345 7,895 12,581 5,115
Ishinomaki, Kesennuma 0.0 33,661 6,083 23,840
Naruko, Osaki 1.484 486 1,577 929
Kurihara, Tome 1.404 224 1,105 1,049
Shiroishi, Zao 1.608 2,522 1,644 1,612

Fukushima Fukushima, Nihonmatsu 0.665 168 1,898 1,321
Soma 0.038 6,279 1,618 1,969
Urabandai, BandaiKogen 1.134 0 0 2
Inawashiro, Omotebandai 1.009 10 12 303
Aizu 1.352 4 27 266
Minamiaizu 1.768 0 0 14
Koriyama 0.604 2,596 12,185 2,489
Shirakawa 1.915 135 1,820 418
Iwaki, Futaba 0.195 6,550 17,614 2,115

(after and before the Great East Japan Earthquake), the number of both completely destroyed
houses and partially destroyed houses, as confirmed at the end of September 2011 and the number
of evacuees, as confirmed at 1st May 2011

pi (s) =
∑T

t=1 xi (t, s)
∑K

i=1
∑T

t=1 xi (t, s)
. (7.38)

Let us consider a ratio of the relative frequencies after and before a specific event,

qi (a|b) = pi (a)/pi (b), (7.39)

where pi (a) and pi (b) represent the relative frequencies after and before the event,
respectively. Obviously, Eq. (7.39) can be rewritten as:

qi (a|b) = ni (a)

ni (b)
/

N (a)

N (b)
, (7.40)

where ni (s) and N (s) are defined as
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Table 7.5 The number of evacuees of the Great East Japan Earthquake at three prefectures (Iwate,
Miyagi, and Fukushima)

Prefecture A: public places B: hotels C: others A + B + C

Aomori 0 78 777 855
Iwate 9,039 2,007 14,701 25,747
Miyagi 23,454 2,035 − 25,489
Akita 128 619 909 1,656
Yamagata 305 779 2,366 3,450
Fukushima 6,105 17,874 − 23,979

The data were officially announced by the Japanese Cabinet Office on 3rd June 2011

ni (s) =
T∑

t=1

xi (t, s), N (s) =
K∑

i=1

ni (s). (7.41)

Since N (a)/N (b) is independent of i , qi (a|b) should be proportional to a ratio of
the number of hotels after and before the event.

Table 7.4 shows qi (a|b), where the term b represents May 2010 (before the dis-
aster), and the term a May 2011 (after the disaster), respectively. Since the value
of qi (a|b) is related to damage to hotels in the district i , qi (a|b) < 1 implies that
available hotels decreased after the earthquake at i relative to the total number of
hotels. Similarly qi (a|b) > 1 means that they maintained at i .

We may assume that the decrease of qi (a|b) at district i results from both a
decrease of supply and an increase of demand. The decrease of supply is caused in
this case by the physical destruction of infrastructure. The increase of demand comes
from behaviour of individuals like refugees, workers, volunteers, and civic groups.

The regional dependence of supply can be estimated from the number of destroyed
houses in each district. To do so, we calculate the numbers of both completely-
destroyed and partially-destroyed houses at each district from the data downloaded
from a website of the National Research Institute for Earth Science and Disaster
Prevention [18]. The numbers are calculated by summing the number of destroyed
houses in the towns or cities included in each district. Table 7.4 shows the numbers
of destroyed houses. In this table it is shown that damaged houses were concentrated
in the maritime areas of these prefectures.

We can confirm that house damage was serious in Sanrikukaigan, Sendai, Mat-
sushima, Shiogama, Ishinomaki, Kesennuma, Soma, Koriyama, Iwaki, and Futaba.
The greatest number of completely-destroyed houses is 33,661 in Ishinomaki and
Kesennuma. The second is 21,789 in Sendai. The third is 18,098 in Sanrikukaigan.
The greatest number of partially-destroyed houses is 37,522 in Sendai. The second
is 17,614 in Iwaki and Futaba. The third is 12,185 in Koriyama.

In fact, in places where the ratio qi (a|b) is greater than 1, the number of destroyed
houses is not significant, as shown in Table 7.4. We confirmed that the ratio qi (a|b)

may measure the degree of damage to economic activity in the travel industry. How-
ever, it is not confirmed that there was significant physical damage to houses in
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Oushu, Hiraizumi, Ichinoseki, Fukushima, and Nihonmatsu, even having a ratio less
than 1. It may be thought that hotels in Oushu, Hiraizumi, and Ichinoseki were used
by workers and evacuated victims of the disaster. Decreases of available hotels in
Fukushima andNihonmatsumay be related to accidents in FukushimaDaiich nuclear
power plant. The number of victims evacuated from the disaster in each prefecture,
according to an official announcement by the Japanese Cabinet Office on 3 June
2011, is shown in Table 7.5. In the case of Fukushima prefecture, 17,874 people
were evacuated to hotels at that time. We can see the detail number of evacuee from
the web page of the three prefecture [15–17].

7.6 Conclusions

We analysed the data of positions and the number of rooms collected from a Japanese
hotel booking site and showed the regional stay capacity and its hierarchical structure.

Firstly, we found that a stay capacity becomes larger as city size is increasing and
that a rank size distribution shows power-law relationship. Secondly, we proposed
a mathematical method to divide a district into sub-districts with respect to the stay
capacities at each district.

It was concluded that the rank size distribution for the number of rooms in the
cluster is fitted with a power-law function and that the scaling exponent is dependent
on the number of clusters. One of future works is to develop a centroid method
regarding that the earth is spherical [2]. This ensures that we can calculate the stay
capacities of the areas both more correctly and more globally.

Furthermore, we examined the aftereffect of Great East Japan Earthquake and
tsunami turmoil on 11March, 2011 from the hotel availability estimated from the on-
line data obtained from a hotel booking site. It was found that there was a correlation
between the hotel availability and physical damage to the infrastructure.

Acknowledgments The author is thankful to Mr. Kotaro Sasaki and Mr. Daichi Tanaka of
RECRUIT Co., Ltd (Jalan) for stimulating discussion.
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Chapter 8
Tendency of International Air Travels

Abstract This study considers the relationship between the price of flight tickets
and their geodesic distance from the departure airport to the destination. Using the
data collected from a Japanese flight booking site, I empirically investigated demand-
supply situations from parameter estimates of an N th order polynomial function of
the price in terms of the distance on each observation date. An adequate order of the
polynomial function is determined by using two kinds of information criteria (AIC
and BIC). It is confirmed that the ticket availability strongly depends on the Japanese
calendar date and that the parameter estimates also depend on the calendar date. The
parameter estimates may correspond to demand-supply situations of the Japanese air
travel market.

8.1 Introduction

How many commercial airports are used in passenger plane? Figure 8.1 shows
geographical positions of commercial airports usedby scheduledflightswithinMarch
2013. 3,388 airports are displayed in our planet. The worldwide air transportation
network supports the traffic of over three billion passengers travelling between more
than 4,000 airports on more than 50 million flights in a year [13].

Imagine how many connections there are between the airports. It is not so easy
to capture all the connections across the globe. However, we may estimate flight
tendency from the available number of flight tickets.

Various kinds of items and services can be purchased via e-commerce systems.
The emergence of Internet applications has had an unprecedented impact on our
lifestyle. Recently, an interest in large-scale data on socioeconomic activities has
increased [8]. Utilities and preferences of agents in socioeconomic systems and the
availability of items and services at such e-commerce platforms should be studied.

Migration processes have been intensively studied in the context of socioeco-
nomic dynamics, with particular interests in quantitative research. Weidlich and
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Fig. 8.1 Geographical positions of 3,388 airports used by scheduled flights in March 2013

Haag proposed the Master equation with transition probabilities depending on
regional-dependent and time-dependent utility and mobility in order to describe the
collective tendency of agent decision in migration choice [7, 12]. Since the moti-
vation to migrate seems to come from both psychological and physical factors, an
understanding of the dynamics of migration is expected to lead to knowledge of the
inner states of agents and insight to the collective behaviour of agents.

A literature on tourist destination choice pays a great attention to the direct impact
of the attributes of the distance to the destination and prices of the destination [9].
There are various approaches to defining a tourist destination.One focuses on destina-
tion type, such as regional or national natural parks, scenic or historic sites, hot-spring
resort and so forth. Another approach defines choice alternative destinations through
aggregation of geographical areas.

Studies of air transportation are necessary in order to understand international
tourism management. A relation between demand-supply balance and flight prices
is an issue in aviation management. It may be assumed that there are multiple levels
of market segments and factors to determine the prices. In principle, geographic,
economic, and demographic factors determine the availability of flights (supply) and
the potential of passengers (demand). The distance obviously dominates the price of
flight tickets. As the distance increases, the price also increases.

Geographic distance is a standard proxy for transport costs under the simple
assumption that fees increase monotonically over space. In the case of air trans-
portation, the price of flight tickets and the geodesic distance between the departure
and arrival places may be an important issue to be considered in air transportation
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management. Usually, the employment cost of crews and the maintenance cost
increase as flight distance becomes long. Therefore, there is some relationship
between price and distance in aviation.

Sunday studied the parameter effect of prices on American demand from
foreign travel and tourism by using regression analysis and panel data [11]. He sug-
gested that high air fares decrease the demand of passengers. Brons et al. examined
the price elasticities of passenger demand in air travel. They indicated that long-
distance flights generally correspond to higher price elasticities than short-distance
flights [4]. In fact, demand-supply situations may influence the flight rates, but it is
not obvious that there is relationship among the price of flights, the distance, and
the demand-supply situations. Woolley-Meza et al. also investigate the structure and
resilience of both the worldwide air-transportation network and the global cargo-ship
network [13]. Brockmann and Helbing propose the approach that can identify the
spatial origin of spreading processes and be applied to data of the worldwide 2009
H1N1 influenza pandemic and 2003 SARS epidemic based on the international air
transpiration network [3].

In this chapter, we focus on the fundamental issue of the relationship between the
price of flight tickets and the geodesic distance between the departure and arrival
airports. Assuming the N th order polynomial function of price in terms of the dis-
tance, I will estimate the parameters of the relation on each departure date (different
demand-supply situations) with the OLS regression and two types of information
criteria (AIC and BIC) and examine the relationship between the parameters and the
demand-supply situations.

This chapter is organised as follows: In Sect. 8.2, a source of data and data descrip-
tion are explained. In Sect. 8.3, an empirical analysis of the relationship between the
price of flight tickets and their geodesic distance is conducted. In Sect. 8.4, the rela-
tionship between the price of flight tickets and their geodesic distance is discussed.
Section 8.5 is devoted to the concluding remarks.

8.2 Data Description

In this section, I give a brief explanation of a method to collect data on air ticket
availability. In this study, I used a Web Application Programming Interface (API)
to collect the data. An API is an interface code set that is designed to simplify the
development of application programs.

AB-ROAD (http://www.ab-road.net) is a Japanese Internet travel booking site.
About 14,000 flight opportunities are available on this site every day. This booking
site serves a Web API for both travel agencies and customers. On the one hand,
travel agencies can register their flight opportunities on the site via the Internet. On
the other hand, consumers can search and book flights that they want to purchase
from all the registered flights via the web page. Third parties can even build web
services with the data provided by the Web API.

http://www.ab-road.net
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I collected information regarding available flight tickets using the AB-ROADweb
service every day and stored it as comma-separated (CSV) files. This data set contains
the flight tickets that a person would be able to use to depart from one of the airports
in Japan. Each flight also contains the date when I sampled the data, departure date,
departure airport, arrival airport, type of class (economy, business, and first classes),
name of air carrier, and price (the fuel surcharge and tax are excluded). The data
period is from 29 July, 2010 to 14 December, 2011. Due to mechanical reasons, data
on several dates is missing (8 November, 2010, 10 April, 2011, from 14 to 25 April,
2011).

Let us denote Δ as the difference between the departure and sample dates. It is
inferred that as Δ decreases, the number of flight opportunities decreases. Further-
more, the regional dependence of the number of opportunities on Δ may be related
to the supply-demand situation of each destination. We use the data under Δ = 28
days throughout this investigation. In the dataset, there exist about 14,000 kinds of
flight opportunities for about 78 airline companies every day.1

The total number of available flight opportunities from a city in Japan to a city in
a foreign country was counted from the data throughout the entire sampled period.
Figure 8.2 shows the total number of flight opportunities per day. From this data, we
found three points:

• There exists weekly seasonality for the total number of available flight tickets. The
demand of flight tickets is higher on Sundays and Mondays than on other days.

• The number of flight tickets strongly depends on the Japanese calendar. Namely,
summer holidays influence the reservation activities of consumers. For example,
during Golden week holidays (from 1 to 5 May, 2011) and the holidays in the
spring season (around 20 March, 2011), total availability shows steep decreases.

• Since several airline companies update their flight schedule every April and Octo-
ber, the ticket availability drastically drops at that time.

1 The included airline companies are listed as follows: Jetstar Asia Airways (3K), Cebu Air (5J),
Jeju Air (7C), Gill Airways (9C), Jet Airways (9W), American Airline (AA), Air Canada (AC),
Mandarin Airlines (AE), Air France (AF), Air India (AI), Aeromexico (AM), Finnair (AY), Alitalia
(AZ), British Airways (BA), Eva Air (BR), Air Busan (BX), Air China (CA), China Airlines (CI),
Continental Airlines (CO), Cathay Pacific Airways (CX), China Southern Airlines (CZ), Delta Air
Lines (DL), Emirates (EK), Etihad Airways (EY), Shanghai Airlines (FM), Garuda Indonesia (GA),
Hawaiian Airlines (HA), Hong Kong Airlines (HX), Uzbekistan Airways (HY), Business Air (II),
Iran Air (IR), Air Inter (IT), Japan Airlines (JL), JALways (JO), Jetstar Airways (JQ), Korean Air
(KE), KLM-Royal Dutch Airlines (KL), Kenya Airways (KQ), Lufthansa German Airlines (LH),
Crossair (LX), Air Madagascar (MD), Xiamen Airlines (MF), Malaysia Airline System Berhad
(MH), SilkAir (MI), EgyptAir (MS), China Eastern Airlines (MU), All Nippon Airways (NH),
Northwest Airlines (NW), Air Macau (NX), Air New Zealand (NZ), MIAT Mongolian Airlines
(OM), Austrian Airlines (OS), Asiana Airlines (OZ), Pakistan International Airlines (PK), Philip-
pine Airlines (PR), Air Niugini (PX), Qantas Airways (QF), Qatar Airways (QR), Cargolux (S1),
South African Airways (SA), Air Caledonie International (SB), Shandong Airlines (SC), Scandina-
vian Airlines (SK), Brussels Airlines (SN), Singapore Airlines (SQ), Aeroflot (SU), Thai Airways
(TG), Turkish Airlines (TK), Air Tahiti Nui (TN), United Airlines (UA), Air Lanka (UL), Transaero
Airlines (UN), Hong Kong Express Airways (UO), Vietnam Airlines (VN), Virgin Atlantic (VS),
Vladivostok Air (XF), Arcus Air (ZE) and Shenzhen Air (ZH).
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Fig. 8.2 The daily number of
flight opportunities from 29
July, 2010 to 14 December,
2011
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8.3 Empirical Analysis

Recently, the air transportation network has been studied by several researchers
[2, 5, 6, 14, 15]. According to the study by Guimerà and Amaral [6], the world-wide
airport network has properties of a small-world network. The degree and betweenness
centrality distributions exhibit the power-law decay. In fact, the most connected
cities (largest degree) are typically not the most central cities (largest betweenness
centrality). Airports with high betweenness tend to play a more important role in
keeping networks connected than those with high degree. A passenger can travel
from a departure airport to a destination with a short path. Namely, the geodesic
distance between departure and arrival airports may give a good approximation of
the actual flight distance of passengers.

The geodesic distance is measured by Vincenty’s formulae. Let φs , λs , φ f and
λ f be the geographical latitude and longitude of two points s and f , respectively,
and Δλ = λs − λ f . Under the assumption that the earth is a sphere, the distance D
between points s and f is approximated as

D = r tan−1





√
(cosφs sinΔλ)2 + (cosφs sin φ f cosΔλ)2

sin φs sin φ f + cosφs cosφ f cosΔλ



⎧ , (8.1)

where r represents Earth’s radius (r = 6371.2 km).
It is possible to analyse the geodesic dependence of ticket prices with this data.

Figure 8.3 shows the relation between the price of economy-class flight tickets and
the geodesic distance from the departure airport to the destination. The distance of
each flight ticket is computed from the geographical latitude and longitude of the
departure and arrival airports by using Eq. (8.1). Figure 8.3a represents the relation-
ship of economy-class on 3 August, 2010 (high demand season) and Fig. 8.3b on
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Fig. 8.3 Relationship
between the price of economy-
class flight opportunities and
geodesic distance a on 3
August, 2010 and b on 12
October, 2010. Each point
represents the relationship
between price and geodesic
distance. Each curve repre-
sents the N th order polyno-
mial function with parameter
estimates by the OLS regres-
sion, where the adequate order
of the polynomial function is
determined by each informa-
tion criterion (AIC or BIC)

12October, 2010 (lowdemand season). Short-distance corresponds to flights toAsian
cities (1,000–3,000 km), middle-distance to cities in Europe and North America
(8,000–10,000 km), and long-distance to cities in Central and South America
(15,000–20,000 km). During high demand season, it is found that various kinds
of flights appear for both short-distance and long-distance flights, but, during low
demand season, there are few long-distance flights.

Figure 8.4 shows the relationship between the price of business-class flight tickets
and the geodesic distance from the departure and arrival airports. Figure 8.4a rep-
resents the relationship of business-class on 3 August, 2010 (high demand season)
and Figure 8.4b on 12 October, 2010 (low demand season). Since the number of
business-class flight tickets for long distance flights (more than 13,000 km) is small,
the OLS regression does not seem to work. However, the relations for short distance
flights are fitted with the curve.

Ademand-supply situationdetermines price direction.Namely, the excess demand
(supply) increases (decreases) prices of goods or services. According to the study
by Brons et al. [4], the price elasticities of passenger demand in air travel depend on
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Fig. 8.4 Relationship between the price of business-class flight opportunities and geodesic distance
a on 3August, 2010 and b on 12October, 2010. Each point represents the relationship between price
and geodesic distance. Each curve represents the N th order polynomial function with parameter
estimates by the OLS regression, where the adequate order of polynomial is determined by each
information criterion (AIC or BIC)

distance. This implies that the price elasticity of demand is a function of distance. Let
τ and Qd denote the price of goods and its quantity demanded, respectively. Suppose
that the price elasticity of demand εd depends on distance of a flight opportunity D.
From the definition of the price elasticity of demand, we may assume

εd(D)
τ

dτ
= Qd

dQd
. (8.2)

Therefore, we get

τ(D, Qd) = cQ
1

εd (D) = c exp
⎪ ln Qd

εd(D)

⎨
, (8.3)
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where c is a positive constant. Equation (8.3) states that price τ is a function in terms
of both the quantity of demand Qd and distance D. The logarithmic form of Eq. (8.3)
is described as

ln τ(D, Qd) = ln c + ln Qd

εd(D)
. (8.4)

Expanding Eq. (8.4) in terms of D, we may get

ln τ(D, Qd) =
N⎩

m=0

αm Dm, (8.5)

where N denotes the order of the polynomials. The parameters αm are given by

αm =





ln c+ln Qd
εd (0) (m = 0)

ln Qd
m!

dm

dDm
1

εd (D)

∣
∣
∣

D=0
(m ∀= 0)

, (8.6)

These parameters depend on the demand-supply situations of both international
economics and the seasonal trend of tourism markets. In order to understand such
effects on ticket prices, we compute the parameters of the relationship between price
and distance for each flight opportunity. The parameters are estimated from the data
on each departure date with the OLS regression for Eq. (8.5).

Suppose that there is data on n flight tickets. Let the price of the kth flight ticket and
the geodesic distance between departure and arrival places be τk and Dk , respectively.
Then, a squared error of Eq. (8.5) to the data (τk, Dk) (k = 1, . . . , n) is defined as

E(α0, . . . , αN ) =
n⎩

k=1

(

ln τk −
N⎩

m=0

αm Dm
k

)2

. (8.7)

Partially differentiating E in terms of parameters αm (m = 0, . . . , N ), respectively,
and setting them into zero, one has
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(8.8)

Therefore, I obtain parameter estimates as
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(8.9)
Assuming Gaussianity of the error term ηk in Eq. (8.5),

ln τk =
N⎩

m=0

αm Dm
k + ηk, (8.10)

one obtains the probability density of ln τ conditioning on D,

p(ln τ |D) = 1∈
2πσ 2

exp

⎤

− (ln τ − ∑N
m=0 αm Dm)2

2σ 2

⎥

, (8.11)

where σ 2 represents variance of the error ηk . Then, the log-likelihood function of
Eq. (8.11) is defined as

l(α0, . . . , αN ) =
n⎩

k=1

ln p(ln τk |Dk) = −n

2

⎦
ln(2πσ 2) + 1

}
, (8.12)

where the approximation σ 2 = 1
n

∑n
k=1(ln τk − ∑N

m=0 αm Dm
k )2 is used during the

derivation.
Moreover, Akaike’s information criterion (AIC) [1] and Bayesian Information

criterion (BIC) [10] are employed in order to determine the number of parameters N .

AIC = −2l(α̂0, . . . , α̂N ) + 2(N + 1), (8.13)

BIC = −2l(α̂0, . . . , α̂N ) + N ln n. (8.14)

The adequate order of the polynomials is selected as N if AIC or BIC takes the
minimum value at N . By using this procedure, parameter estimates are computed for
each departure date. In order to compare polynomials obtained by minimising AIC
with those by BIC, two cases are computed.

Table 8.1 shows the estimated order of the polynomial function, squares error,
AIC or BIC, and parameter estimates for m = 0 and 1 with economy-class data on
3 August, 2010 and 12 October, 2010. Red and blue curves in Fig. 8.3 show Eq. (8.5)
with parameter estimates obtained by using AIC and BIC on these two example dates
(high demand date and low demand date). AIC and BIC were computed by using
Eqs. (8.13) and (8.14). The curves imply that on the high demand date the price of
long-distance flights is clearly higher than on the low demand date. There are peaks
at D = 2,500, 8,000, 14,000, and 16,000 km. On the low demand date, long-distance
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Table 8.1 The estimated order of the polynomial function and parameter estimates with the
economy-class data on 3 August, 2010 and 12 October, 2010

Date N E AIC α0 α1

03/Aug/2010 15 67.81 4159.73 10.57 8.83 × 10−4

12/Oct/2010 28 67.87 22831.77 9.85 1.04 × 10−3

Date N E BIC α0 α1

03/Aug/2010 15 67.81 4307.18 10.57 8.83 × 10−4

12/Oct/2010 18 67.95 23087.26 9.53 2.16 × 10−3

Table 8.2 The estimated order of the polynomial function and parameter estimates with the
business-class data on 3 August, 2010 and 12 October, 2010

Date N E AIC α0 α1

03/Aug/2010 10 23.86 −2605.88 13.68 −4.37 × 10−3

12/Oct/2010 25 16.28 −4266.64 9.69 5.60 × 10−3

Date N E BIC α0 α1

03/Aug/2010 9 23.87 −2529.49 13.36 4.95 × 10−3

12/Oct/2010 15 16.32 −4135.58 9.55 6.34 × 10−3

flights (greater than 10,000 km) are less than middle-distance flights (8,000 km). The
order of polynomials and parameters for m = 0 and 1 obtained by using AIC are
slightly different from those by BIC. However, these curves are close to each other
until middle distance.

Table 8.2 shows the estimated order of the polynomial function, squares error,
AIC or BIC, and parameter estimates for m = 0 and 1 with business-class data on
3 August, 2010 and 12 October, 2010. Red and blue curves in Fig. 8.4 show Eq. (8.5)
with parameter estimates obtained by using AIC and BIC on these two example dates
(high demand date and low demand date). AIC and BIC were computed by using
Eqs. (8.13) and (8.14).

Figures 8.5 and 8.6 show parameter estimates on each observation date during
the period from 29 July, 2010 to 28 December, 2011. Both the squares error and
information criterion took larger value during June to August, 2011 than during the
previous and successive periods. This implies that during this period, the relationship
between the price and the distance differed from other dates. This is related to the
mismatch between the demand of passengers and supply of flights. In fact, in the
summer season of 2011, Japanese international air travel tendency decreased in
comparison with that of 2010. It is confirmed that α0 took larger value during the
high demand season than during the low demand season. α0 increased steeply during
New Year holidays in January, 2011, spring holidays in May, 2011 and October,
2011. From July to September, 2011 α0 took smaller value than July to September,
2010. α1 took smaller value during the high demand season than during the low
demand season.
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Fig. 8.5 The regression coefficients obtained from the relation between price of economy-class
flights and their geodesic distance. a α0 from AIC, b α0 from BIC (economy class), c α1 from
AIC and d α1 from BIC by using the OLS regression of N th order polynomials to the relationship
between price and geodesic distance on each departure date during the period of 29 July, 2010 to
14 December, 2011

8.4 Discussion

Since airlines cover their own area of flights, short-distance flights and long-distance
flights are managed by different airlines. However, it is found that the price of flights
has a tendency to increase as the distance increases as shown in Figs. 8.3 and 8.4.
This may imply that the price of flights is not determined by airlines independently,
but is adjusted by demand-supply situations. Dominant reasons of this tendency are
energy consumption, time duration and competitiveness.

The geodesic distance between the departure and arrival airports is approximately
proportional to the energy consumption of the flight. Since recent commercial jet air
planes exhaust about 1 kL kerosene fuel to fly 50 km, a passenger exhausts 1 L
kerosene fuel to fly 10–15 km. In the case of a 10,000 km distance, a passenger con-
sumes 666 L to 1 kL kerosene fuel. Moreover, the recent commercial jet aeroplanes
fly about 800 km/h in velocity. However, the price of air tickets included in the data
set exclude the surcharge (fuel charge). Therefore, the price is not related to fuel price
directly. The flight price excluding the surcharge is determined by the geodesic dis-
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Fig. 8.6 The regression coefficients obtained from the relation between price of business-class
flights and their geodesic distance. a α0 from AIC, b α0 from BIC (economy class), c α1 from
AIC and d α1 from BIC by using the OLS regression for N th order polynomials to the relationship
between price and geodesic distance on each departure date during the period of 29 July, 2010 to
14 December, 2011

tance, which can be equivalent to time duration of the flight. Suppliers prefer higher
price per geodesic distance (time duration) but consumers take lower one. Since there
are competitors, one airliner suffers from pressures that prices decline. Of course, it
is meaningful to investigate the relationship between surcharge and oil price in order
to obtain a better understanding of cost-effectiveness of energy consumptions per
capita.

Furthermore, Figs. 8.3 and 8.4 show that the flight prices do not increase linearly
to the geodesic distance. Specifically, the flight prices are relatively higher at 3,000,
8,000 and 14,000 km than other distances. These spectra correspond to short distance
flights to Asian cities, middle distance flights to European cities, and long distance
flights to American cities. There are several cities with higher demand than others.
Demand and supply from airports of Japan to these cities are large and their price
elasticity is smaller than in other ranges of distance.As a result, there ismultimodality
in the relation between price of flight ticket and its distance.

Since the flight prices may be determined by both physical factors and demand-
supply situations, pricing decisions should be done by air companies independently.
However, the competitiveness among airlines plays a role of interaction among them.
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Therefore, demand-supply situations can affect the relationship between price of
flight tickets and their distance. Its parameter estimates on each observation day may
contain the demand-supply situation of Japanese air travel.

As shown in Figs. 8.5 and 8.6, temporal dependence of demand and supply
situations is confirmed from the value of α0 and α1 for both economy and busi-
ness classes.

In high (low) demand season the value ofα0 takes a large (small) value. During the
summer vacations in 2010 (August to September) α0 are larger than after the period
for both economy and business classes (see Figs. 8.5a, b and 8.6a, b). The values of
α0 in 2011 are less than in 2010. This implies that the demand in the summer holiday
season of 2011 is less than in 2010. We further confirm that a peak at New Year
Holiday (from the end of December in 2010 to the beginning of January in 2011)
for both classes. α0 exhibits a peak at Golden week Holidays (the beginning of May
in 2011) for an economy class specifically (see Fig. 8.5a, b). α0 during the summer
in 2011 does not take lower values than in 2010 for both classes. From this, it is
thought that demand of the Japanese air travel market in 2011 was lower than 2011.
In August 2011, a peak higher than in 2010 appears for a business class (see Fig. 8.6).
Meanwhile, in October 2011, a peak higher than the summer in 2010 appears for an
economy class (see Fig. 8.5). However, α0 for a business class does not show a peak
in October 2011 as shown in Fig. 8.6. Large values of α0 seem to show high demand
of flights at this time.

8.5 Conclusion

I collected and analysed data from flight tickets sold on a Japanese flight booking
site during the period of 29 July, 2010 to 14 December, 2011. It was found that flight
opportunities strongly depend on the Japanese calendar date. It is further confirmed
that a relationship exists between the prices of flight tickets (both economy and
business classes) and the geodesic distance.

Using the OLS regression for the N th order polynomials to the data, parameter
estimates were computed. The adequate order of equation was selected by using
Akaike’s information criterion and Bayesian information criterion. The parameters
depended on demand-supply situations. High demand seasons (summer vacation,
winter vacation, and spring holidays) hold larger α0 than during the low demand
season. It was found that the values of AIC and BIC during the period of June
to July, 2011 were larger than those of other observation dates. This is related to
the mismatch between demand and supply. This result may help travel agencies
understand demand-supply situations of air travel and airlines manage prices of
flight tickets and flight schedules from a comprehensive point of view.
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Chapter 9
Energy Consumption

Abstract The relationship between annual electric power consumption per capita
and gross domestic production (GDP) per capita is investigated. In addition, the
values of the annual electric power production by four international agencies that
report macro data on socioeconomic systems are examined. An increasing tendency
of GDP per capita was found in relation to the annual electric power consumption
per capita. The results also showed that the data structure, values, and unit depended
on the data on annual electrical power consumption in a sample of organisations:
the U.S. Energy Information Administration (EIA), International Energy Agency
(IEA), OECD Factbook (Economic, Environmental and Social Statistics), and the
United Nations (UN) Energy Statistics Yearbook. Further research should establish
data standards and an organisation that would oversee to collection, storage, and
distribution of data on socioeconomic systems. A distributed energy management
system is proposed for the accurate and rigorous collection of data on electrical
power consumption.

9.1 Introduction

Sustainability is an important issue throughout the world. The fundamental idea
of sustainability was proposed by Buckminster Fuller in his Operating Manual for
Spaceship Earth, which was first published in 1968 [1]. He proposed that Earth is
similar to a spaceship flying through space. He emphasised that the spaceship has a
finite amount of resources and the resources that cannot be replenished.

In 1987, the Brundtland Commission proposed a concept of sustainable devel-
opment. It contains two key ideas: “needs” and “limited resources” in develop-
ing countries. The concept of sustainable production next emerged in 1992 at the
United Nations Conference on Environment and Development. The conference con-
cluded that especially in industrialised countries, the major cause of the counting
deterioration of the global environment is the unsustainable patterns of consumption
and production.

Figure 9.1 provides a conceptual illustration of a human society. Energy injection
and substantial inflow/outflow are mandatory for maintaining the mechanical and
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Fig. 9.1 Conceptual illustration of a society consisting of many elements

electrical infrastructure of society. Human resources and social organisations should
be resupplied to enable the next generation to maintain our socioeconomic systems.
Therefore, the sustainability of our society may be classified into several categories:
energy sustainability, substantial sustainability, food sustainability, economic sus-
tainability, social sustainability, and so forth.

Veleva and Ellenbecker proposed a framework and methodology to measure sus-
tainable production [9]. Their framework is based on six main aspects of sustainable
production:

• Energy and material use (resources)
• Natural environment (sinks)
• Social justice and community development
• Economic performance
• Workers
• Products

They developed indicators of sustainable production (ISPs). The Lowell Center for
Sustainable Production defined sustainable production as [6]:

• Non-polluting
• Conserving of energy and natural resources
• Economically viable
• Safe and healthful for workers, communities, and consumers
• Socially and creatively rewarding for all working people

However, to implement their framework precisely in actual situations, we need
more data on human activities. Information communication technology (ICT) is
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expected to contribute to constructing a sustainable society for the next generation.
In principle, ICT enables us to communicatewith one another via computer networks.
Large amounts of data on human activities can be transmitted through the computer
network and accumulated in a data server. This technologyhas allowed the emergence
of data-centric social sciences at this time. This also has potential for reconstructing
our social structure from computerised data.

Our society consists of 7 billion individuals and various types of mechanical and
electrical equipment. Each element is located in space and has several properties
and states. According to Goodchild [2], every human is able to act as an intelligent
sensor: hence, the earth’s surface is currently occupied by more or less seven billion
sensors. We can extract information from data, construct knowledge from informa-
tion, and hopefully establish wisdom from several pieces of knowledge. Specifically,
researchers in the fields of sociology, economics, informatics, and physics are cur-
rently focusing on these frontiers, and they have launched the data-centric social
sciences in order to understand the complexity of socioeconomic-technological sys-
tems [10]. In order to achieve this outcomes, computer simulation environments,
data infrastructure, and high performance computing environment are needed and
are expected to yield outcomes in the socioeconomic-technological-environmental
sciences.

Measuring the properties and states of social elements yields large amounts of
data on socioeconomic activities. The number of elements comprising our society
is enormous, and the information generated from our society exceeds the cognitive
capacity of an individual. In fact, it is difficult to grasp the state of our social envi-
ronment. However, it is necessary to understand the state of our society precisely
and accurately in order to construct a sustainable community.

In this chapter, we focus on data concerning electrical power consumption as a
form of energy consumption. Energy production and consumption are useful quan-
tities in measuring socioeconomic activity. Socioeconomic systems are constructed
using mechanical and electronic equipment that is driven by electricity or oil. There-
fore, the gross energy consumption in a society is expected to be proportional to
its socioeconomic activities. The relationship between annual energy consumption
and annual gross domestic product (GDP) has been largely studied in the context of
designing efficient energy conservation policies. Using data on gross energy inputs
and gross national product (GNP) for the USA, Kraft and Kraft’s [4] pioneering
study reported causality between GNP and energy consumption. Recently Narayan
et al.’s study of Granger causality between electricity consumption and real GDP in
93 countries [8]. They reported that in the six most industrialised nations, increasing
electrical power consumption may reduce GDP.

Individual activities in electrical power consumption and economic productivity
are strongly correlated. One of the aims of this chapter is to elucidate the relationship
between electrical power consumption per capita and GDP per capita. Furthermore,
we propose that data management is necessary to understand our social states accu-
rately. Another aim of this chapter is to show the inconsistency in data among
organisations that report energy statistics. In order to construct rigorous database
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of socioeconomic systems, we need to consider both the rules of data and the roles
of organisations.

We also need to consider standards of data generation. I will show a prototype of
distributed energy management system that allows us to collect data on both human
activity and environments. This energymanagement system consists of central nodes
and sensor nodes, which are designed to behave collectively, based onmessages from
a cloud server.

This chapter is organised as follows. Section 9.2 describes the relationship
between annual electrical power consumption per capita andGDP per capita. Section
9.3 provides an example of the data inconsistency in energy consumption among
organisations reporting energy statistics. In Sect. 9.4, I propose the conceptual design
of a distributed energy management system. I believe that this would enable us
to manage electrical power generation and consumption accurately and rigorously.
Section 9.5 is the conclusion to this chapter.

9.2 Relationship Between Energy Consumption
and Socioeconomic Activity

Energy production and consumption is deeply related to human activities in our
society. This fact can be partially confirmed from the relationship between annual
GDP per capita (current USD/person) and annual electrical power consumption per
capita (kWh/person).

9.2.1 Relationship for 130 Countries

The graph in Fig. 9.2 contains double logarithmic scatter plots that indicate the
annual electric power consumption per capita and GDP per capita in 2009 in 130
typical countries.1 The data were downloaded from the DataBank of theWorld Bank
(http://data.worldbank.org). The graph shows monotonically increasing tendency of

1 In this data, annual electrical power consumptionper capita ofAlbania,Algeria,Angola,Argentina,
Armenia, Australia, Austria, Azerbaijan, Bahrain, Bangladesh, Belarus, Belgium, Benin, Bolivia,
Bosnia and Herzegovina, Botswana, Brazil, Brunei Darussalam, Bulgaria, Cambodia, Cameroon,
Canada, Chile, China, Colombia, CongoDem.Rep., CongoRep., CostaRica, Cote d’Ivoire, Croatia,
Cyprus, Czech Republic, Denmark, Dominican Republic, Ecuador, Egypt Arab Rep., El Salvador,
Eritrea, Estonia, Ethiopia, Finland, France, Gabon, Georgia, Germany, Ghana, Greece, Guatemala,
Haiti, Honduras, Hong Kong SAR China, Hungary, Iceland, India, Indonesia, Iran Islamic Rep.,
Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Korea Rep., Kuwait, Kyr-
gyz Republic, Latvia, Lebanon, Libya, Lithuania, Luxembourg, Macedonia FYR, Malaysia, Malta,
Mexico, Moldova, Mongolia, Morocco, Mozambique, Namibia, Nepal, Netherlands, New Zealand,
Nicaragua, Nigeria, Norway, Oman, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portu-
gal, Qatar, Romania, Russian Federation, Saudi Arabia, Senegal, Serbia, Singapore, Slovak Repub-
lic, Slovenia, South Africa, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Syrian Arab Republic,
Tajikistan, Tanzania, Thailand, Togo, Trinidad andTobago, Tunisia, Turkey, Turkmenistan,Ukraine,
United Arab Emirates, United Kingdom, United States, Uruguay, Uzbekistan, Venezuela RB, Viet-
nam, Yemen Rep., Zambia, and Zimbabwe are included.

http://data.worldbank.org
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Fig. 9.2 Double logarithmic
plots showing annual electric
power consumption per capita
and GDP per capita. The solid
line represents a fitting curve
estimated by using the RMA
regression
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GDP per capita according to the annual electric power consumption per capita. This
means that the annual use of electrical power in industrialised countries is greater
than in developing countries. Hence, the annual electrical power consumption per
capita and the GDP per capita show a positive correlation.

We assume that the GDP per capita y and the annual electrical power consumption
per capita x follow an allometric relationship, which is described as the power-law
relationship:

y = kxa . (9.1)

The parameters a and k are estimated by using a regression for its logarithmic form:

log10 y = a log10 x + log10 k. (9.2)

Allometric scaling is a symmetrical relationship. Therefore, we estimate parame-
ters a and log10 k, not by using the ordinary least squared (OLS) regression, but by the
reduced major axis (RMA) regression. Suppose that we have T sets of observations
(xi , yi ). The regression coefficients can be expressed as follows:

â = ±
√
Var[Y ]
Var[X ] , (9.3)

b̂ = log10 k̂ = E[Y ] − âE[X ], (9.4)

and the errors are calculated as

σa =
√

M SE

TVar[X ] , (9.5)

σb =
√

M SE
( 1

T
+ E[X ]2

TVar[X ]
)
, (9.6)
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Table 9.1 Parameter estimates of the power law relationship between annual electricity consump-
tion per capita (kWh/year/person) and GDP per capita (current USD in 2013 per person)

Year â log10 k̂ Error of â Error of log10 k̂

2000 0.985951758607218 0.300042720350031 0.0482321749097389 0.156301260833071
2001 0.994128210954011 0.259166177818036 0.0469997204333143 0.153298786583552
2002 1.00223642203815 0.239481014780061 0.0461764921803797 0.151081753773536
2003 1.0160249249667 0.241900318713561 0.0458897017838435 0.150819272951516
2004 1.02362467860409 0.264417089625706 0.0454382896190995 0.149844065985442
2005 1.02889543235893 0.282249625648446 0.0447762761005685 0.148349590211332
2006 1.0120719546637 0.380491478362557 0.0427514717779263 0.141849553707711
2007 1.00861045890497 0.450802103823013 0.0414923379717983 0.138055455483469
2008 0.996261007549224 0.547311196947091 0.0407868210738637 0.136310918603779
2009 0.994554527404275 0.5129114058097 0.0406821728454173 0.13606331216819
2010 0.981574478285654 0.577775671218905 0.0405471545958007 0.136193496545949

where the mean square error M SE is computed as

M SE = 1

T − 2

T∑

i=1

(yi − âxi − b̂)2 =
(
Var[Y ] − âCov[X, Y ]

) 2T

T − 2
. (9.7)

Table 9.1 shows the parameter estimates and their errors for the power-law rela-
tionship between GDP per capita and annual electricity consumption per capita for
the period from 2000 to 2010. The power law exponent fluctuates around 1.0, which
means that the annual electric power consumption per capita is almost proportional
to the GDP per capita.

9.2.2 Relationship for 47 Prefectures in Japan

Data on the annual electric power consumption in each prefecture in Japan is available
from the Japanese Agency for Natural Resources and Energy of the Ministry of
Economy,Trade and Industry.2 Thedata on the populations in 47 Japanese prefectures
were also downloaded from the homepage of the Statistics Bureau of the Japanese
Ministry of International Affairs andCommunications.3 The data on theGDP of each
prefecture in Japan is available in the National Accounts of Japan from the Cabinet
Office.4 These data were downloaded from these official sites. Table 9.2 shows the
macroeconomic statistics of 47 prefectures in Japan.

Figure 9.3 shows the annual power consumption per capita in each prefecture. The
annual electric power consumption per capita and the GDP per capita are computed

2 Japanese Agency for Natural Resource and Energy of Ministry of Economy (http://www.enecho.
meti.go.jp).
3 StatisticsBureau ofMinistry of InternationalAffairs andCommunications (http://www.stat.go.jp).
4 Cabinet Office in Japan (http://www.esri.cao.go.jp/en/sna/memu.html).

http://www.enecho.meti.go.jp
http://www.enecho.meti.go.jp
http://www.stat.go.jp
http://www.esri.cao.go.jp/en/sna/memu.html
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Table 9.2 Macroeconomic statistics of 47 prefectures in Japan in 2009

ISO Name Oil Electricity Heat Population Area GDP
3166 consumption consumption [TJ] [person] [km2] [JPY]

[ML] [GWh]

JP-01 Hokkaido 1,812 20,429 10,607 5507,456 83,457 18,052,779
JP-02 Aomori 424 5,448 2,265 1,373,164 9,644 4,416,985
JP-03 Iwate 415 5,401 1,967 1,330,530 15,279 4,254,622
JP-04 Miyagi 600 8,343 2,887 2,347,975 6,862 8,006,517
JP-05 Akita 374 4,819 1,731 1,085,878 11,636 3,697,229
JP-06 Yamagata 373 5,674 1,796 1,168,789 6,652 3,690,958
JP-07 Fukushima 554 8,249 3,502 2,028,752 13,783 7,228,078
JP-08 Ibaraki 426 12,043 6,130 2,968,865 6,096 10,312,413
JP-09 Tochigi 433 12,149 5,172 2,007,014 6,408 7,894,092
JP-10 Gunma 403 12,222 9,907 2,008,170 6,363 7,042,778
JP-11 Saitama 735 26,535 7,301 7,194,957 3,767 20,431,114
JP-12 Chiba 645 20,924 12,707 6,217,119 5,082 19,209,032
JP-13 Tokyo 1,101 59,753 17,686 13,161,751 2,103 85,201,569
JP-14 Kanagawa 806 3,4040 13,930 9,049,500 2,416 29,747,555
JP-15 Niigata 478 12,192 5,363 2,374,922 10,364 8,423,085
JP-16 Toyama 364 7,460 3,134 1,093,365 2,046 4,096,576
JP-17 Ishikawa 349 5,832 2,787 1,170,040 4,186 4,250,003
JP-18 Fukui 256 6,202 4,255 806,470 4,190 3,113,150
JP-19 Yamanashi 174 4,606 1,621 862,772 4,201 2,906,397
JP-20 Nagano 524 11,931 3,527 2,152,736 13,105 7,918,547
JP-21 Gifu 678 11,325 7,486 2,081,147 9,768 6,906,226
JP-22 Shizuoka 895 21,993 17,337 3,765,044 7,329 15,112,757
JP-23 Aichi 1,423 39,777 23,343 7,408,499 5,116 31,891,277
JP-24 Mie 494 12,421 12,895 1,854,742 5,762 7,155,303
JP-25 Shiga 324 9,226 7,447 1,410,272 3,767 5,701,543
JP-26 Kyoto 322 1,1240 5,867 2,636,704 4,613 9,553,851
JP-27 Osaka 783 39,043 13,112 8,862,896 1,898 35,826,529
JP-28 Hyogo 760 24,529 16,080 5,589,177 8,396 17,825,902
JP-29 Nara 143 4,474 2,720 1,399,978 3,691 3,438,173
JP-30 Wakayama 158 4,447 3,079 1,001,261 4,726 3,122,488
JP-31 Tottori 144 2,387 1,062 588,418 3,507 1,888,277
JP-32 Simane 208 3,439 3,024 716,354 6,708 2,333,570
JP-33 Okayama 441 9,164 8,071 1,944,986 7,010 6,928,690
JP-34 Hiroshima 572 1,3941 4,684 2,860,769 8,479 10,815,045
JP-35 Yamaguchi 435 8,735 14,952 1,451,372 6,114 5,476,589
JP-36 Tokushima 165 3,776 3,955 785,873 4,147 2,643,444
JP-37 Kagawa 272 5,237 1,770 995,779 1,862 3,587,627
JP-38 Ehime 307 7,160 7,885 1,430,957 5,678 4,631,968
JP-39 Kochi 145 3,012 289 764,596 7,105 2,140,766
JP-40 Fukuoka 906 20,324 8,446 5,072,804 4,845 17,564,936
JP-41 Saga 231 4,909 1,874 849,709 2,440 2,723,530
JP-42 Nagasaki 336 5,102 2,002 1,426,594 4,105 4,320,061
JP-43 Kumamoto 370 7,540 3,855 1,817,410 7,077 5,366,136
JP-44 Ohita 265 5,871 4,095 1,196,409 5,099 4,044,058
JP-45 Miyazaki 242 5,277 4,021 1,135,120 6,346 3,470,016
JP-46 Kagoshima 474 6,676 1,416 1,706,428 9,044 5,133,170
JP-47 Okinawa 269 4,691 246 1,392,503 2,276 3,721,071
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Fig. 9.3 Annual power consumption per capita in 2009 in each prefecture
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Fig. 9.4 GDP per capita in 2009 in each prefecture

from the values shown in Table 9.2. The annual power consumption per capita in
Japan ranges from 3.1 to 7.7 MWh. The highest electricity consumption per capita
is in Fukui, at 7.7 MWh, and the lowest is in Nara, at 3.1 MWh. Figure 9.4 shows
the GDP per capita in each prefecture. The GDP per capita in Japan ranges from 250
million JPY to 650 million JPY. The highest is in Tokyo, and the lowest is in Nara.

Figure 9.5 shows double logarithmic plots for the annual electric power consump-
tion per capita and GDP per capita of each prefecture in Japan. Throughout Japan,
the annual electrical power consumption per capita ranges from 3 to 8 MWh. In fact,
Tokyo is an outlier, and the annual GDP per capita in other prefectures shows no
correlation with the annual electrical power consumption per capita. These differ-
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Fig. 9.5 Double logarithmic
scatter plots showing the
annual electric power
consumption per capita and
GDP per capita in 2009. A
solid curve is computed from
a power-law fitting
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ences may be because of differences in human behaviour. Specifically, the situation
of Tokyo is different from that of other prefectures and is related to the mechanism
of incomes of people in Tokyo. The number of company headquarters in Tokyo is
larger than in other prefectures and the domestic production in Tokyo is calculated
by the production in branches and factories located in other prefectures. However,
the slope between the annual electrical power consumption per capita and GDP per
capita is less than in the international relationship, as shown in Fig. 9.2. We also
obtained log10 k = 20.4824 (3.4602) and a = −2.6261 (0.5294) with the RMA
regression. The power law exponent a in Japan is less than in the whole world. How-
ever, the population in Tokyo is an outlier. It shows an increase in GDP per capita of
6,473,422.039 (JPY/year) from only 844.53 (MWh/year). Hence, the homogeneity
of Japanese is very high except in the Tokyo population.

9.3 Example of Data Inconsistency

According to the data quality management model, six control dimensions of data
quality are proposed:

1. completeness
2. accuracy
3. duplicates
4. consistency
5. integrity
6. conformity
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Table 9.3 Electric power
production in several typical
countries by five international
organisations in 2009

United States Electrical power production in 2009
EIA 3,950,331,600,000 [kWh]
UN 4,188,214 [GWh]
OECD 4165.4 [TWh]
World Bank 4,165,394,000,000 [kWh]

Germany Electrical power production in 2008
EIA 594,685,400,000 [kWh]
UN 637,232 [GWh]
OECD 631.2 [TWh]
World Bank 631,211,000,000 [kWh]

Japan Electrical power production in 2009
EIA 984,799,000,000 [kWh]
UN 1,047,919 [GWh]
OECD 1071.3 [TWh]
World Bank 1,040,983,000,000 [kWh]

China Electrical power production in 2009
EIA 3,445,716,000,000 [kWh]
UN 3,714,950 [GWh]
OECD 3 695.9 [TWh]
World Bank 3,695,928,000,000 [kWh]

In the dimension of completeness, key data items are defined in the data structure.
In the dimension of accuracy, it is required that the value is consistentwith its standard
definition. In the dimension of duplicates, only one record exists in the table of key
data. In the dimension of consistency, the data in different tables should be consistent
with the rule. In the dimension of conformity, the data should follow the standard
format.

We found inconsistency in the data on energy statistics of several international
organisations. Table 9.3 shows the electrical power production reported by several
international organisations, such as the U.S. Energy Information Administration
(EIA),5 the Energy Statistics Yearbook of the United Nations Statistics Division
(UN),6 the OECD Factbook 2011–2012: Economic, Environmental and Social Sta-
tistics,7 and the DataBank of the World Bank.8

According to the EIA , the annual production of electricity in the US is estimated
at 3,950,331,600,000 kWh. The UN reported that the annual production of electricity

5 U.S. Energy Information Administration (EIA) (http://www.eia.gov/).
6 Energy Statistics Yearbook of UnitedNations Statistics Division (UN) (http://unstats.un.org/unsd/
energy/yearbook/default.htm).
7 OECD Factbook 2011–2012: Economic, Environmental and Social Statistics (http://www.oecd-
ilibrary.org/economics/oecd-factbook_18147364).
8 DataBank of World Bank (http://data.worldbank.org).

http://www.eia.gov/
http://unstats.un.org/unsd/energy/yearbook/default.htm
http://unstats.un.org/unsd/energy/yearbook/default.htm
http://www.oecd-ilibrary.org/economics/oecd-factbook_18147364
http://www.oecd-ilibrary.org/economics/oecd-factbook_18147364
http://data.worldbank.org
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in US in 2009 was 4,188,214 GWh. However, the OECD Factbook reported that the
annual generation of electricity in the US in 2009 was 4165.4 TWh. The UN Energy
StatisticsYearbook reported that the annual generation of electricity in theUS in 2009
was 4,188,214GWh, whereas theWorld Bank reported it at 4,165,394,000,000 kWh.
The same tendency towards inconsistency was confirmed in other countries.

We found that the unit of annual electricity generation is not standardised. TheEIA
uses kWh, the UN uses GWh, the OECD uses TWh, and the World Bank uses kWh.
The values reported by the EIA, UN, and OECD are not the same, but the OECD
and the World Bank showed the same values. This means that these statistics are not
unique, that is, the values depend on the associations that report data. These associa-
tions do not seem to communicate with each other or adjust their reports accordingly.
This lack of communication is because of weak international standards regarding the
collection and sharing of data on electrical power consumption. Furthermore, no
organisation controls or negotiates the data standards. In addition, the updating of
data is infrequent because it is delayed for 1–2 years.

In the case of Japan, the Statistics Bureau of the Japanese Ministry of Internal
Affairs and Communications collects both micro andmacro data on Japan and shares
them in a website called E-stat. We suggest that a standard of macro data in socioeco-
nomic systems and several international organisations responsible for socioeconomic
data are required.

9.4 Technological Contribution to Energy Management

Recent technologies on smart grids have been intensively developed. Examples are
automated meter reading (AMR) and smart meters [3, 5]. ICT may assist the auto-
mated matching of electrical power demand and supply. This automated matching
system is called a smart grid, which could also be used to measure electrical power
generation and consumption in real-time. However, we need to carefully consider
balancing consumer privacy with novel applications in the smart grid [7].

We should propose a decentralized distributed energy management system
(DDEMS) that does not require the details of data related to the consumer pri-
vacy. I propose a concept of DDEMS in Fig. 9.6a. The DDEMS consists of central
nodes and sensor nodes. The sensor nodes collect data on energy consumption and
the environment (e.g. light intensity, temperature, humidity, and so on). The center
nodes accumulate and store data obtained from sensor nodes.

They also control energy balance and communicate through messages from a
cloud server. The sensor nodes generate data that transform physical quantities to
digital sequences. The communication between the central nodes and the sensor
nodes is implemented by using power line communication. The cloud services can
control demand and supply and manage the accounting process. DDEMS may con-
tribute to enhancing the usage of data collected by the sensors, aswell as the efficiency
of the social energy balance.
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(a)

(b)

Fig. 9.6 a Conceptual illustration of a decentralized distributed energy management system
(DDEMS). b A schematic illustration of the implementation of DDEMS. The central node (distrib-
uted EMS) can be controlled by a user via wireless connections. The sensor node is implemented
as a sensor tap, which allows the monitoring and controlling of energy consumption. The central
node collects data on energy consumption and the environment in real time through power-line
communication
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Fig. 9.7 A prototype of sensor node

Figure 9.7 shows prototype of a sensor node. Light intesity and temperature can
be recorded. These functioning are implemented by using embidded systems.

9.5 Conclusion

We investigated the relationship between electrical power consumption per capita
and GDP per capita in 130 countries using the data reported by World Bank. We
found that an electrical power consumption per capita increased as the GDP per
increased. The comparison analysis of countries showed a clear scaling relationship.
Furthermore, we examined the same relationship in 47 prefectures in Japan. The
comparison analysis of 47 prefectures in Japan showed a homogeneity, but less
than that found in the 130 countries. This finding may indicate that the relationship
between energy consumption and economic activities strongly depends on the life
style and social organisation in countries as well as individual.

Moreover, inconsistencies in the data on international electricity production were
found in the reports of the EIA, UN, OECD, and World Bank. We suggested the
need for data standardisation and the establishment of an organisation that controls
the quality and consistency in the international exchange of socioeconomic data.
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In this chapter, I proposed a distributed energy management system. This system
may contribute not only tomanaging electrical demand and supply but also to collect-
ing accurate and rigorous data on electrical power generation and consumption. In
implementing the proposed central energy management system, we need to carefully
consider balancing consumer privacy concerns with novel applications.
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Chapter 10
Future Research in Applied Data-Centric
Social Sciences

Abstract This chapter addresses futureworks in applieddata-centric social sciences.
Rich data on human societies should not only contribute to establishing better under-
standing of our society but also to developing new services and goods.

10.1 What is Needed to Expand Data-Centric Social Sciences

Howmany companies are there in the world? Howmany cars are there in each coun-
try? How many buildings are present in each city? How many people are currently
flying in aeroplanes? How large an area can be used as residential places? To answer
these questions, data is needed on the world. Data on socioeconomic-technological
systems are vast, and macroscopic data can be easily accessed. Improving spatial
and time resolutions may provide more information on human society, and data
infrastructure have recently contributed to enhancing the ability of data.

The human imagination is unlimited. People who lived 100 years ago predicted
the shape of recent society. Some of these predictions have been realised, including
mobile phones, Internet, air travel, air forces, air combat, air conditioners, television,
electricity, bullet train, train network, motorisation and high education. The future
of human society has two faces, chance and necessity. Humans also have the ability
to design, construct, change and renovate their social systems. Therefore, they can
change their world in whichever ways they desire. Specifically, humans need to
consider that the scale of human activities may reach the physical limit of their
planet. The scope of energy consumption tells us that human activities may reach
the physical limit of their planet. Human energy consumption may be influencing
climate. Currently, sustainability of society seems to be the most crucial issue in
human survival.

To reduce the influenceof humanactivities in environments, humanneed to change
their societal structure. Two possibilities will be addressed:
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• to reduce the impact of human activities on their environment, people need
to change their societal structures based on Information and Communication
Technology.

• to extract or harvest energy from resources not yet in use

Applied data-centric social sciences can contribute to decision-making and finding
inefficiency points in various sectors of human society. Humans need to create soci-
etal values based on knowledge of data on socioeconomic and technological systems.
To do so, they need to have a concept of multi-objective optimisation and real-time
data analysis, which is sometimes identified as complex event processing (CEP) in
business information systems.

Constructing and deepening links between researchers from fields in data-centric
social sciences will provide new insights into how to solve societal problems in the
future. Data on human societies are generated from social contexts. Some data are
regulated by physical laws, however, other segments of data are generated from social
rules (programmes). Rich data are gradually changing many research fields. Applied
data-centric social sciences are transdisciplinary or consist of several fields. Below
are fields with the potential to take part in applied data-centric social sciences:

• social informatics
• econoinformatics
• computational sociology
• computational economics
• data engineering and computer sciences
• high-frequency finance and econometrics
• tourism informatics
• complexity sciences
• socioeconophysics
• management sciences and marketing
• design technology
• social technology
• statistics
• disaster prevention
• energy management
• healthcare management
• transportation management

Specifically, event data can empower those who have data to change the struc-
ture of organisations, implement new technology, predict future contexts and create
economical benefits.

10.2 Create Added-Value From Data

It is necessary to create added-value fromdata. The speedup of processing or updating
information seems to be improving.However, thismayormaynot imply that societies
will improve their quality of life directly. For example, high-speed trading seems to
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improve society’s ability to exchange goods or services. However, trading higher than
the human capacity for recognition is meaningless. Too much information also loses
meaningfulness since humans cannot be affected by large quantities of information
generated at a higher speed than our cognitive capacity. Artificial control of societies
without human demand may not create value, but it may be harmful to human life.
Humans need to create the lives they want in society. Added-value is connected to
what is meaningful in life. Needs should meet seeds of technology.

10.3 Data Synthesis

Data infrastructures are currently being constructed around the world. UNDS and
World Bank DataBank are examples of data infrastructures. However, data are still
stored separately, and elements must be reconstructed in order to understand what
needs to be known. This study is a type of data synthesis where the data are acquired
and collected from different sources and different purposes. Their resolution and cov-
erage are dependent on the observing systems employed. From these data sources,
both computation and algorithms need to be designed and the data synthesised in
order to realise research purposes and to reach goals. This problem is also referred
to as data integration or data fusion. The majority of challenging tasks in data syn-
thesis arise from the data to be fused, imperfection and diversity. The number of
combinations among data is very large, thus new findings may be discovered in the
synthesised data that no one has yet identified.

10.4 Complex Events Processing

CEP has been studied in business intelligence literature and real-time business mon-
itoring. Challenging tasks in CEP are as follows:

• Autonomous data collection with networked sensors
• Automatic data validation with rules and patterns of data
• Automatic data normalisation without human designers
• Automatic detection of events that generate a trigger signal to drive actuators and
notify agents without human administration

• Graphic generation based on information, visualisation of data and quantification
of affairs

• Data selection based on statistics to measure a degree of outliers from data
• Interlock technology of devices under network disconnection

These technologies not only contribute to create new services and goods, but they
allow us to obtain a better understanding of our society based on data accumulated
in CEP systems.
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